@ MOTOROLA

/”P MOTOROLA
ﬂ PROGRAMMABLE ARRAY DATA

VLY AVHHY T18VIWINYHI0Hd Y10HOLON ()

Motorola Programmable Arrays

{8 ¥ @ 4 i

Motorola Programmable Arrays

General Information

Product Specifications

Packaging, Quality & Reliability

Application Notes

How to Reach Us

g B O WN

The brands or product names mentioned are trademarks or registered trademarks of their respective holders.

Suggested References:

Packaging Manual for ASiC Arrays, Motorola Inc., 1993. Stock Code BR916/D

HDC Series Design Reference Guide, Motorola Inc., 1991. Stock Code HDCDM/D
Reliability and Quality Handbook, Motorola Inc., 1993. Stock Code BR518/D

H4CPlus Series Design Reference Guide, Motorola Inc., 1994. Stock Code H4CPDM/D

@ MOTOROLA

Motorola
Programmable Array Data

This databook contains device specifications for Motorola’s Programmable Arrays (MPAs).

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes
no warranty, representation or guarantee regarding the suitability of its products for any particular purpose,
nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifi-
cally disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters can and do vary in different applications. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Motorola does not convey any
license under its patent rights nor the rights of others. Motorola products are not designed, intended, or autho-
rized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products
for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part. Motorola and @ are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 1997
Previous Edition © February 1996
“All Rights Reserved” Printed in U.S.A.

Ch1.

Ch 2.

Ch 3.

Ch 4.

Ch 5.

CONTENTS

General Information
INtrOdUCHION .. e 1-2
MPA Product Briefs
MPA1000 Description and Featuresuoiueiiiii it 1-3
MPA Design System Description and Featurescoiiiiiiiiiiiiiiiiinnineannnn 1-4
MPA17000 Series Serial EPROMSt e i aaeas 1-5
MPA Product Specifications
MPAT1000 Product DeSCHPtIONttt ittt ettt et et 2-2
Architectural OVEIVIBWo et e e e e 2-5
Device Configurationt 2-15
Configuration Data FOrmati.iii ittt e i e e 2-33
JTAG BOUNGANY SCAN . ..ottt ettt e e et e e e e e e 2-35
MPA1T000 Pin Definitionsttt e e e .2-38
Pin Assignments
MPATOTG .. e e 2-39
MPATOB6 ..ottt et e e e e 2-41
MPATOBS ...t s 2-44
MPATI00 . . e e 2-48
Electrical Specifications s 2-52
MPA17128 and MPA1765 Product Descriptionsiiuiinitenii it 2-54
MPA17C256 Product DescCriptionoiinn i e e e 2-64
Design System Product DesCriptionttt et 2-76
Design System Product Listt e 2-80
Packaging, Quality & Reliability
Packaging & Case Information 3-2
Motorola Quality and Reliability i e 3-13
Application Notes
68030 DRAM Controller Design Using Verilog HDL (AN1561/D)o.viuiin it 4-2
Programming Multiple MPA1000 Devices Using Serial Peripheral Interface (SPI) (AN1562/D) 4-12
Effective Syntehsis Techniques for MPA1000 Devices (AN1563/D)coviuiiiuiniinnennnnnn 4-25
Interfacing to the PowerPC™ with a Motorola Programmable Array (AN1564/D) 4-31
Using VIEWIogic’s PROSeries 6.1 with the MPA Design System (AN1565/D)coou... 4-83
In System Prototyping Using HDLs and FPGAS (AN1566/D)ouueeiuueenrnennennnenns 4-93
Tuning the MPA Design System for Speed (AN1569/D)iueiitnritii i eiai s 4-96
Estimating Power in the MPA1000 Family (AN1587/D)ttt ieiie i eanens 4-110
Using Mentor Graphics’ Design Architect ver. A3 with the MPA Design System (AN1588/D) 4-113
Using OrCAD’s Capture and Simulate with the MPA Design System (AN1589/D) 4-122
Using VIEWIogic’s Workview Office 7.0 with the MPA Design System (AN1592/D) 4-133
Programming Large Configuration Files into Smaller Serial PROMs (AN1595/D) 4-145
Using Exemplar Logic’s Galileo with the MPA Design System (AN1604/D)c..ccvuenn. 4-158

Integrating Schematic Capture and Verilog Synthesis When Designing with the MPA (AN1613/D) ... 4-180

Optimizing VHDL/Verilog Designs for Speed for the MPA Family

Using Exemplar Galileo Synthesis (AN1614/D) 4-198

An FPGA Primer for PLD Users (ANT615/D) e vt ittt ettt e e e eeaeeanens 4-204
Using JTAG Boundary Scan with the Motorola MPA1000 Family of FPGAs (AN1618/D) 4-209
MPA1000 Primer for Schematic Designers (AN1619/D)cciuiuiiiiiiiiii e 4-226
HDL Techniques for Faster Synthesized Counters (AN1623/D)couuiiiniiiiiiinnnnannn 4-236

How to Reach Us

Three Ways to Receive Motorola Semiconductor Technical Information
Distributor and Worldwide Sales Officesttt e e

1

General Information

‘Motorola Programmable Arrays

MOTOROLA

SEMICONDUCTOR GENERAL INFORMATION

INTRODUCTION TO
MOTOROLA PROGRAMMABLE ARRAYS

Field programmable logic. and in particular, field
programmable arrays, have become the solution of choice
for logic design implementation in applications where time to
market is a critical product development factor. In addition,
reconfigurable arrays have been used to enhance Customer

product flexibility in ways that no other technology can

match.

Microprocessors have traditionally been used to satisfy
time to market and end product flexibility needs. This solution
may not meet performance constraints and lacks the
concurrency possible in an unconstrained hardware design.
Typical design processes, therefore, reach a point where the
overall design is partitioned into hardware and software
components. An interface is defined and the design process
continues along two parallel paths. Sometime later, the
software and hardware components must be integrated.
Problems usually develop at this point because of interface
misinterpretation or partitioning that cannot meet design
requirements. This impacts the hardware, the software and
the schedule. If the hardware design is realized in
programmable logic, the hardware can be manipulated as
easily as the software.

Products which adapt to the end users particular
requirements through self directed or end user directed
reconfiguration are becoming more prevalent. As the number
of modes of operation increases, mode specific hardware
becomes a less cost effective solution. In the case where the
end user is truly directing the adaptation, predetermined
hardware solutions become untenable. Reconfigurable logic
enables design solutions where dynamic hardware—software
repartitioning is possible.

Programmable logic not only vastly improves the time
necessary to implement a static design, but significant time
to market and product feature benefits can be realized when
hardware can be dynamically altered as easily as software.

MPA1016 MPA1036

e[l |
I

HHIH ™

To reduce design cycles, designers have also turned
towards high level design languages and logic synthesis
tools. Many programmable logic solutions are poorly suited
to this design methodology, however. An. incompatibility
exists between logic = synthesis algorithms originally
developed for gate level design and the block-like structures
found on many programmable logic devices. This can result
in significant under utilization or degraded performance. In
either case a more expensive device is required. Real gate
level programmable devices are ideally suited to this design
methodology.

When schematic based design methods are used, some
programmable logic solutions impose significant constraints
on design implementation to insure satisfactory results. This
imposition tends to bind the design to a particular
programmable device and requires a significant learning
investment. Any design specification changes which impact
design decisions made to fit this imposed structure can have
disastrous effects on utilization and performance and
potentially require a more expensive device or even a costly
redesign. Gate level programmable devices coupled with
sophisticated, timing driven, implementation tools minimize
device specific optimization.

Any design process includes a significant amount of
learning. Usually engineers spend most of this time learning
about product requirements or prototyping critical portions of
the design to prove implementation feasibility. Many
programmable logic solutions are not push button; time must
be spent learning programmable device architecture or
implementation tool quirks. Worse yet, the design may
require modification or manual component placement to
meet design targets. The cost? Time to market.

The reconfigurable Motorola Programmable Array (MPA)
and MPA design system maximize application flexibility and
minimize time to market by delivering a gate level, push
button, programmabile logic solution.

MPA1064 MPA1100
s vt
|
HH| |
munslsnnn !
I
T

M4

MOTOROLA MPA DATA — DL201 REV. 2
1-2

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

MPA Family Overview

MPA1000 Programmable Arrays

Motorola Programmable Array (MPA) products are a high density, high
performance, low cost, solution for your reconfigurable logic needs. When
used with our automatic high performance design tools, MPA delivers
custom logic solutions in minutes rather than weeks. And the low cost keeps
those solutions competitive throughout the product lifecycle.

The MPA architecture has solved the historical problems associated with
fine grain devices without sacrificing re-programmability, reliability, or cost.
MPA1000 devices are reprogrammable SRAM based products
manufactured on a standard 0.43p Leff CMOS process with logic capacities
from 3,500 to more than 22,000 equivalent FPGA gates. MPA Logic
resources hold a single gate or storage element providing a highly efficient,
adaptable, design implementation medium. Gate level logic resources,
abundant hierarchical interconnection resources and automatic, timing
driven, tools work together to quickly provide design implementations that
meet timing constraints without sacrificing device utilization.

Staying focused on end product design rather than implementation tools
or device architecture gets the design done faster and, unlike other
programmable solutions, without programmable logic device specificity to
impede future design migration efforts. The combination of automatic tools
and gate level architecture is ideal for traditional schematic driven or high
level language based design methodologies. In fact, logic synthesis tools
were originally designed for and produce the most efficient results when
targeting gate level devices.

High MPA1000 register count and controlled clock skew is ideal for
designs employing pipelining techniques such as communications. The
unique set of MPA1000 I/O programming options make these devices
suitable for industrial and computer interfacing circuits.

MPA1000 Family Members

MPA1016
MPA1036
MPA1064
MPA1100

PROGRAMMABLE ARRAY
3,500 to 22,000 GATES

Multiple /O from 80-200 I/O Pins
Programmable 3V/5V 1/O at Any Site
Multiple Packaging Options

Fine Grain Structure Is Optimized for
Logic Synthesis

Programmable Output Drive,

4/6mA @ 5.0V and 3.3V

High Register Count, with 560-2,900
Flip—Flops

IEEE 1149.1 JTAG Boundary Scan
Eight Low—Skew (<1ns) Clocks

FPGA Logic Internal 1/0 Cell Avail —_—
Gates* Part No. Cells Flip—Flops | Flip—Flops 1/0 Pins Packages Availability
3500 MPA1016FN 1600 400 122 61 84 PLCC NOW
MPA1016DD 160 80 128 PQFP NOwW
8000 MPA1036FN 3600 900 122 61 84 PLCC NOW
MPA1036DD 160 80 128 PQFP NOW
MPA1036DH 240 120 160 PQFP NOW
MPA1036HI 240 120 181 PGA NOw
14200 MPA1064DH 6400 1600 240 120 160 PQFP NOW
MPA1064DK 320 160 208 PQFP NOwW
MPA1064KE 320 160 224 PGA NOw
MPA1064BG 320 160 256 PBGA 3Q97
22000 MPA1100DK 10000 2500 320 160 208 PQFP NOW
MPA1100HV 400 200 299 PGA NOW
MPA1100BG 400 200 256 PBGA 3Q97

* Equivalent to Industry Standards, as supplied by most manufacturers.

MOTOROLA MPA DATA — DL201 REV 2

1-3

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

Motorola Programmable Array

Design System DESIGN

SYSTEM

The Motorola Programmable Array (MPA) design system is a bridge between a design capture environment and Motorola field
programmable arrays. The MPA design system automatically transforms designs into device configurations to realize a design,
when loaded into an MPA device. A design is automatically analyzed, optimized, transformed into MPA cells, partitioned, placed
and routed based on timing constraints for every path in the design. MPA design tools understand and optimally utilize the MPA
device architecture; this eliminates the need to learn a new set of rules and makes these tools ideally suited for use with logic
synthesis. Full incremental design support reduces design implementation time and powerful library retargeting capabilities allow
you to reuse designs which may have been implemented on less capable devices. The MPA design system operates on existing
hardware platforms and supports design capture and simulation tools from more than 10 vendors. All these features plus
on-line, hypermedia, help make the MPA design system a powerful, yet extremely easy to use, design implementation engine.

Features
o Push Button Implementation o Layout viewer
* Optimal Use of MPA Device Resources ¢ Incremental design support

o Optimal Results with Gate Level Design Input
o Library of Common MSI Functions
¢ Design Flow Manager

¢ On-line, hypermedia, documentation
o Supports all popular design capture and simulation tools

« Design Retargeter o Lowest cost FPGA development systems.
« Timing Driven with Integrated Static Timing Analysis * Instant access; Downloading via the internet (WWW, ftp).
o Layout Delay extraction for post layout simulation « Supports multiple speed grades

(_ N

Design Importation

Read Appropriate Rules File
Retarget to MPA Primitives '\
Macro Expansion .
Design Optimization

Design Rule Checks

Constraint Generation
* Read User Constraints

e Path Enumeration F
[&] N e Path Constraint Generation W W Wy
Q@Ealulug}@%lm | N e T o T
Sl= 8 s s i T
%ﬁ%},ﬁ%{%%;%{% Timing Driven Autolayout
\.i| * Partition Design Into Clusters
Chipview -t~ ® Assign Clusters to Zones
o Read Stored Layout ® Global Place & Route
* Construct Graphical © Zonal Place & Route
Representation e Continuous Slack
Redistribution

Delay Annotation
* Read Stored Layout
e Construct Annotated

Netlist

{ Configuration

* Read Stored Layout
® Construct Bitstream .
Anno =)

Device
Lo o)) -)

W} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

14

L

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

MPA Family Overview

1-5

MPA17000 Serial EPROMs
The MPA17128, MPA1765 serial OTP EPROMs provide a compact, low MPA 1 7 1 28
pin count, non-volatile configuration store for MPA1000 devices.
MPA17000 devices can be cascaded for increased memory capacity MPA1 765
when needed. They are available in the standard 8-pin plastic DIP (N
suffix), 8-pin SOIC (D suffix) and 20—pin PLCC (FN suffix) packages.
e Configuration EPROM for MPA1000 Devices
* Voltage Range — 4.5 to 6.0V
e Maximum Read Current of 10mA
o Standby Current of 10uA, Typical 128K, 64K SERIAL EPROM
o Industry Standard Synchronous Serial Interface
¢ Full Static Operation
e 10MHz Maximum Clock Rate at 5.0V
* Programmable Polarity on Hardware Reset
e Programs With Industry Standard Programmers
» Electrostatic Discharge Protection > 2000 Volts
¢ 8-Pin PDIP and SOIC; 20-Pin PLCC Packages
e Commercial (0 to +70°C) and Industrial (—40 to +85°C) 8
1
X P SUFFIX
8-Lead Pinouts PLASTIC PACKAGE
(Top View) CASE 626-05
DATA [1] 18] Vce @
8
CLK Vpp 7
RESET/OE (6] CEO D SUFFIX
_ PLASTIC SOIC PACKAGE
CE [5] Vss CASE 751-05
20-Lead Pinout W
(Top View) 3¢
P FN SUFFIX
NG Vpp NG NG CEO PLCC PACKAGE
5 I s O s CASE 775-02
18 17 16 15 14
Ne [
vee [] PIN NAMES
NC E Pins Function
DATA Data I/O
DATA I: CLK Clock
- RESET/OE | Reset Input and Output Enable
NC |3 CE Chip Enable Input
Vss Ground
CEO Chip Enable Output
Vpp Programming Voltage Supply
Vce +4.5 to 6.0V Power Supply
NC Not Connected
MOTOROLA MPA DATA — DL201 REV 2

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

Advance Information
MPA17000 Serial EEPROM

The MPA17C256 is an easy to use and cost effective serial configuration
memory ideally suited for use with today’s popular SRAM based FPGAs.
The MPA17C256 is available in 8—pin PDIP and 20-pin SOIC and PLCC
packages, adhering to industry standard pinouts. The device interfaces
downstream FPGA(s) with a very simple enable, clock and data interface.
The MPA17C256 is reprogrammable with no need for a higher
programming “super voltage”; it may even be reprogrammed on board. The
MPA17C256 also has user programmable RESET/OE polarity.

e EE Programmable 262,144 x 1 bit Serial Memories Designed to Store
Configuration Programs for FPGAs
Simple Interface to SRAM FPGAs

Cascadable to Support Additional Configurations or Future Higher Density
FPGAs

e Low Power CMOS EEPROM Process
e Programmable Reset Polarity

Available in Space Efficient 8—Pin PDIP, 20—Pin SOIC and 20-Pin PLCC
Packages

In-System Programmable via 2-Wire Bus

L]

Controlling the MPA17C256 Serial EEPROM

Most connections between the FPGA device and the Serial EEPROM
are simple and self-explanatory:

e The DATA output of the MPA17C256 drives DIN of the FPGA devices
e The master FPGA DCLK output drives the CLK input of the MPA17C256

o The CEO output of the first MPA17C256 drives the CE input of the next
MPA17C256 in a cascade chain of EEPROMs.

e SER_EN must be connected to VcC
« CE enables the chip and is required to enable the DATA output pin
RESET/OE is chip reset and is part of the DATA output enable structure

MPA17C256

il

P SUFFIX
8-LEAD PLASTIC PACKAGE
CASE 626-05

DW SUFFIX
20-LEAD PLASTIC SOIC WIDE PACKAGE
CASE 751D-04

FN SUFFIX
20-LEAD PLCC PACKAGE
CASE 775-02
PIN NAMES

Pins Function
DATA Data /O
CLK Clock
RESET/OE | Reset Input and Output Enable
CE Chip Enable Input
Vss Ground
CEO Chip Enable Output
SER_EN Programming Enable
vce +4.5 to 6.0V Power Supply
NC Not Connected

This document contains information on a new product. Specifications and information herein are subject to

change without notice.

1-6

MOTOROLA MPA DATA — DL201 REV 2

Motorola Programmable Arrays

Product Specifications

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

MPA1000 Product Description

Motorola Programmable Array (MPA) products are a high
density, high performance, low cost, solution for your
reconfigurable logic needs. When used with our automatic
high performance design tools, MPA delivers custom logic
solutions in minutes rather than weeks. And the low cost
keeps those solutions competitive throughout the product
lifecycle.

The MPA architecture has solved the historical problems
associated with fine grain devices without sacrificing
re—programmability, reliability, or cost. MPA1000 devices are
reprogrammable SRAM based products manufactured on a
standard 0.43u Leff CMOS process with logic capacities from
3,500 to more than 22,000 equivalent FPGA gates. MPA
logic resources hold a single gate or storage element
providing a highly efficient, adaptable, design implementation
medium. Gate level logic resources, abundant hierarchical
interconnection resources and automatic, timing driven, tools
work together to quickly provide design implementations that
meet timing constraints without sacrificing device utilization.

Staying focused on end product design rather than
implementation tools or device architecture gets the design
done faster and, unlike other programmable solutions,
without programmable logic device specificity to impede

Table 2-1. MPA1000 Family Members

future design migration efforts. The combination of automatic
tools and gate level architecture is ideal for traditional
schematic driven or high level language based design
methodologies. In fact, logic synthesis tools were originally
designed for and produce the most efficient results when
targeting gate level devices.

High MPA1000 register count and controlled clock skew is
ideal for designs employing pipelining techniques such as
communications. The unique set of MPA1000 1/O
programming options make these devices suitable for
industrial and computer Interfacing circuits.

Features

Multiple 1/0 from 80-200 I/O Pins -

Programmable 3V/5V I/O at Any Site

Multiple Packaging Options

Fine Grain Structure Is Optimized for Logic Synthesis
Programmable Output Drive, 4/6mA @ 5.0V and 3.3V
High Register Count, with 560-2,900 Flip—Flops
|EEE 1149.1 JTAG Boundary Scan

e Eight Low-Skew (<1ns) Clocks

FPGA Logic Internal 1/0 Cell Avail .
Gates* Part No. Cells | Flip-Flops | Flip-Flops | 1O Pins Packages | Avallability
3500 MPA1016FN 1600 400 122 61 84 PLCC NOW
MPA1016DD 160 80 128 PQFP NOW
8000 MPA1036FN 3600 900 122 61 84 PLCC NOW
MPA1036DD 160 80 128 PQFP NOW
MPA1036DH 240 120 160 PQFP NOW
MPA1036HI 240 120 181 PGA NOW
14200 MPA1064DH 6400 1600 240 120 160 PQFP NOW
MPA1064DK 320 160 208 PQFP NOW
MPA1064KE 320 160 224 PGA NOW
MPA1064BG 320 160 256 PBGA 3Q97
22000 MPA1100DK 10000 2500 320 160 208 PQFP NOW
MPA1100HV 400 200 299 PGA NOW
MPA1100BG 400 200 256 PBGA 3097

* Equivalent to Industry Standards, as supplied by most manufacturers.

MOTOROLA MPA DATA — DL201 REV 2
2-2

MPA1000 Serial EPROM/EEPROM Family

MPA1000 Product Description

Capacity MPA Companion Part Number Packages Availability Notes
64K MPA1016 MPA1765P 8 DIP NOw oTP
MPA1765D 8 SOIC
MPA1765FN 20 PLCC
128K MPA1036 MPA17128P 8 DIP NOwW OTP
MPA17128D 8 SOIC
MPA17128FN 20 PLCC
256K MPA1064 MPA17C256P 8 DIP 3Q97 Eraseable
MPA17C256DW 20 SOIC
MPA17C256FN 20 PLCC
MPA1000 Capacity information yields an unrealistically high expectation for

Programmable logic gate capacity is difficult to ascertain
because it is design and design tool dependent.
Programmable logic capacities can only be meaningfully
compared using identical designs and automatic tools.

Figure 2-1 shows that under these circumstances, the
MPA1036 contains from 2.1 to 1.3 XC3190 devices.
i
2.0 MPA
i 1036
R
5 41 - ~ MPA MPA
Ets— 1036 1036
T S
5 i o X3195
F10 = =—
N X4008
05
Figure 2—1. Equivalent Gate Capacity
Table 2-1 on page 2-2 shows the members of the

MPA1000 family and lists the 1/O, logic cell, flip flop and gate
capacities for each device. To facilitate Customer device
selection, Motorola rates MPA device capacity in FPGA
equivalent gates. The equivalent gate counts shown were
derived using identical designs and a push button
implementation methodology. While this method is useful in a
comparative sense, actual device capacity remains a design
dependent quantity. Designs with high register gate or XOR
gate to total gate ratio will pack more efficiently than the
averages shown in Figure 2—1.

MPA1000 Performance

Device performance is more design and design tool
dependent than device capacity. Table 2-2 shows selected
cell performance figures for a typical ungraded MPA1000
device. Calculating MPA1000 DFF toggle rate from this

device performance. Some manufacturers publish
specifications for small functional blocks like counters. While
more useful than toggle rates, they are based on ideal
placement and routing conditions seldom achievable without
manual intervention. Industry benchmarks are useful for
relative comparisons of benchmark design performance, but
benchmark designs don’t end up in products. In addition, the
design methodology used requires, manual, architecture
dependent, design optimization and expert level architectural
and design tool experience. Using this design methodology
for real designs means a costly learning curve, severe
technology migration limitations and many hours of extra
design effort for each end product. If the incentive to use a
programmable solution is time to market and product
flexibility, this is not the ideal approach. A push button, gate
level, approach increases design flexibility and improves time
to market. The MPA1000 and MPA design system have been
engineered to deliver a high performance gate level solution.
Gate level design is widely understood, technology
independent and synthesis friendly. A library of common MSI
functions with optimized gate level representations are
provided to reduce design implementation time.

Table 2-2. Selected MPA1000 Performance Figures

Typical
MEDIUM BUS DELAY 1.2ns
DFF CLKTOQ 0.6ns
DFF SETUP TIME 1.5ns
TYPICAL DFF TOGGLE RATE 256MHz

(25°C,Vee =5VY)

If identical designs and timing constraints are used with
automatic, timing driven, design tools, a more appropriate
performance comparison can be made. Figure 2-2
compares the MPA1036 vs. the XC4008 for 7 designs. The
typical MPA1036 device is 48% faster than the XC4008-6
and 28% faster than the XC4008—4 for 7 identical, complex,
chip level designs. In real design situations, gate level
flexibility and hierarchical routing coupled with sophisticated,
timing driven, design tools results in significant performance
gains and reduced time to market.

MOTOROLA MPA DATA — DL201 REV 2

2-3

MPA1000 Product Description

2 narrowly distributed performance constraints and shallow

Avg MPA vs Xc4008-6 48% path depths atypical of many real design implementations. In
Avg MPA vs Xc4008-4 28% either case using benchmark information to estimate product
20 B VPA-Typ performance for arbitrary designs is unlikely to yield reliable
B Xc4008-4 results. This information is intended to illustrate the range of
15 B Xc4008-6 performance enhancement possible when MPA is selected.
z
= 120
10 Avg MPA vs Xc4008-6 38%
100 Avg MPA vs Xc4008-4 15%
M MPA-Typ
5 Xc4008—-4
80 | | B Xc4008-6
xCust! xCust2 xCust3 xCust4 xCusts5 xCust6 aCust? = 60
Figure 2-2, MPA1036 versus XC4008 — 7 Push 40
Button Designs
20
If step and repeat style designs typical of industry
benchmarks are used (Figure 2-3), MPA retains it's
performance edge. While the performance gap shrinks by Circuit1 Circuit2 Circuit3 Circuit4 Circuit5 Circuit6 Circuit7
about 10%, absolute design performance increases
dramatically compared to those shown in Figure 2-2. As Figure 2-3. MPA1036 versus XC4008 — 7 Push Button,
critical path depth decreases, design performance increases Step & Repeat Designs

as expected. In general these benchmarks tend to have

ﬂ} 7 i E@n MOTOROLA MPA DATA — DL201 REV 2

2-4

MPA1000 Product Description

MPA1000 Architectural Overview

MPA1000 Architecture

MPA1000 is a high density, high performance, low cost
device family which maximizes application flexibility and
minimizes time to market by delivering a gate level
reprogrammable logic solution. Combined with automatic
high performance design tools, the MPA1000 family is ideally
suited to logic synthesis or gate level (gate array like) design
methods.

Logic resources in the MPA1000 are fine grained — each
logic cell holds a single gate or a storage element. This
provides a highly efficient, adaptable, design implementation
medium. Gate level logic resources, abundant hierarchical
interconnection resources and automatic, timing driven, tools
work together to quickly provide design implementations that
meet timing constraints without sacrificing device utilization.

The MPA1000 architecture has solved the historical
problems associated with fine grain architectures without
sacrificing re—programmability, reliability, or cost. Previous
reprogrammable fine grain architectures utilized routing
architectures substantially similar to that of coarse grained
products. Other fine grained architectures resorted to
antifuse programming elements to address performance
issues, increasing cost, while reducing reliability and
abandoning reconfigurability. MPA utilizes a new routing
structure which takes advantage of fine logic block
granularity to achieve superior design performance.

MPA1000 devices are manufactured using a standard
submicron CMOS process. SRAM cells comprise device
configuration memory. MPA1000 devices can be quickly and
infinitely reprogrammed.

E

Zone

:E\ Port Cells

Clock Distribution

Spines

Central Clock Buffer

Quadrant Switches
and Bus Pull-Ups

et

Peripheral Bus /m e i D,
Joins and Pull-Ups E
"= .
GIobaIBuses/E 1
I/OCeIIs/E
1/0 Cell Clock
Distribution S|
Peripheral Bus/é 2ot
Sin
E =
EE%:-%&:::w::
Er:~§§:::§§::: 3Lt
issiinsiru i (I8 (B I8

X-Bus Switches

Figure 2-4. MPA Architectural Overview

Partitioned Resources

Each device is a multilevel partitioned array of cells. At the
highest level of hierarchy each device is partitioned into 4
equal sized sections called quadrants. I/O cells surround the
quadrants. Each quadrant is further subdivided into zones. A
zone consists of a 10x10 array of core cells, 20 port cells and
a clock distribution cell (Figure 2-6). Zone core cells are

organized into 2x2 groups called tiles. The number of zones
per quadrant defines a particular device as shown in
Figure 2-5. Partitioning the device in this manner minimizes
bus loading and provides an opportunity to segment device
level placement and routing. This speeds design
implementation time, especially if multiple processors are
used. Figure 2—4 is a synopsis of the overall MPA structure.

MOTOROLA MPA DATA — DL201 REV 2

2-5

MPA1000 Product Description

MPA1016 MPA1036
] T ——
BB |
AT MR
EIE I“ ——
ottt |

L

MPA1064 MPA1100

N E——
[| l
| {
L-um_n e
L ST | W
|
L
LILL ULL]
RN

Figure 2-5. The MPA 1016, MPA1036, MPA1064
and MPA1100

Hierarchical functionality complements the robust routing
resource to deliver extremely efficient design realizations.
While the look up table approach of non—gate level devices
can provide any function of its inputs, this flexibility is costly
when simple functions are required. In contrast the simplicity,
small size, and hierarchical organization of the MPA1000
delivers a more silicon efficient implementation. Logic blocks
of arbitrary size and aspect ratio are automatically
constructed, optimized and interconnected based on design
constraints and gate level design representations. This
capability complements logic synthesis technology and
maximizes design migration potential. As FPGA device
capacity increases, design diversity will also increase. The
malleable granularity and adjustable routing resource of the
MPA can accommodate this diversity with consistent silicon
efficiency and performance.

rtical port cells
CLK/RST

select cell

Figure 2-6. Zone Structure

Core Cells

Each core cell has 2 inputs, each input is configured to
receive signals from 1 of 7 potential sources (Figure 2-7). 5
sources are from local interconnect and 2 are from zone
level interconnect. Each cell output connects to 8 other cells
via local interconnect and is configured to connect to up to 4
medium buses. Cells are sometimes used to provide
additional routing resource. The ability to use a core cell as a
routing resource or as logic provides a programmable means
of adjusting routing resource to fit design specific
requirements.

4 Medium Bus
Programmable Connections
_I.— / Inversion CLK/
5 Local | A
2M-Bus |

Local
Interconnect

Secondary
Function

5Local |
2 M-Bus |

Input
Multiplexer

. Figure 2-7. Core Cell Structure

Each cell has three states; repowering buffer, primary
function, and secondary function. In addition, all cell inputs
have programmable input inversion. MPA1000 core cells are
organized in 2x2 groups called tiles. Within a tile, each of the
4 cells has a different secondary function (Figure 2-8). The
core cell primary function is a 2 input NAND. Secondary
functions include; XOR, register, and wired OR. The register
element is configured as a DFF or latch with clock enable
and set or reset. A special, 1ns skew, network is provided to
drive register clock and reset/set pins. High performance,
gate level, cells necessitate controlled clock skew to avoid
negative setup time situations. The MPA cell states were
chosen based on a careful analysis of macrocell utilization
statistics from a large number of ASIC designs implemented
in Motorola’s H4C array.

TYPE3 TYPE 4
DFF/Latch XOR
with reset
and enable
TYPE 1 TYPE2
Wired-OR XOR

Figure 2-8. Core Cell Secondary Function

M

2-6

MOTOROLA MPA DATA — DL201 REV 2

One Hot State Machine Design is Preferred

Designing your state machines as one hot is
usually the most efficient method for the register
rich MPA.

BUFF from the MICROLIB

BUFF is the only buffer available to the designer
that will not get mapped out on import.

There are quite a few trivial optimizations that get
made to your design during import, one of the most
common is getting rid of superfluous ‘buffers’.
Examples of which include INV (inverters), AN2
gates with both inputs tied together, AN2 gates with
one input tied high etc. (A more complete
description of this re-mapping process can be
found in the on-line help of the MPA Design
System under: “Help on Design — Logic
Optimisation — Summary of Optimisations”.)
Don’t panic at the above statement that inverters
are “gotten rid of”. They are simply mapped to the
correct sense on the core cell’s programmable
input multiplexers. No delay penalty is incurred for
inserting an INV.

Tri-State drivers are not available internally

Because the MPA's routing resources are fully
buffered (actively driven) there are no internal
tri-state buffers available. Designers accustomed
to using such elements to allow multiple drivers
access to a single data line, should instead
consider using multiplexers.

Wired-Or a.k.a. Open Drain

In some instances, it may be preferable to use a
collection of open drain drivers to drive a single
data line. The MPA library elements that
accommodate this type of connection include:
WINV, WOR2, WND2, and WBUF. ltis important to
remember that open drain drivers can only actively
pull a signal low, a passive pull up resistor is
required to pull the net high; that’s the job of the
WPUP library element. By default, instantiating a
WPUP element results in a single pull-up resistor
being attached to the net. Assigning the attribute
DPLD_PUP with a value of BOTH results in two
pull up resistors being added in parallel to the net.
The low to high transition time is thus improved, but
at the expense of more static current drain when
any of the attached drivers is holding the net low.

Besides lower speed, another draw back of using
open drain drivers in the MPA is the restriction that
all the open drain drivers within a zone must reside
on the same Wired—OR Bus, and that drivers in
other zones must also be in placed in the same
relative horizontal position. The autolayout tool

MPA1000 Product Description

handles all of this automatically, but it does tend to
reduce the number of valid solutions available to
the autolayout tool for the remainder of your
design.

= You Must Use All Macro Inputs, ONE and
ZERO

The autolayout tool insists that all MACROLIB and
MICROLIB inputs be used. If you don’t need a
particular input for your design, you are still
required to tie it to logic or a ONE or a ZERO (from
the MICROLIB). There is no routing consumed
when specifying a ONE or a ZERO, the tie off is
made at the cell’s input selection mux. There is no
fan out restriction for a ONE or a ZERO.

1/0 cells

1/0 celis are located at the device periphery surrounding
the quadrants (Figure 2—4 on page 2-5). Besides direct
input and output, each 1/O cell can be configured to be; input,
output, bidirectional, registered input, registered output,
registered 1/0. The two registers can be independently
configured as a latch or D-type flip flop. Input register setup
time is adjustable to compensate for clock network input
delay. Input buffer threshold adjustment provides either TTL
or CMOS levels. Output buffer drive capability is
programmable to 4mA or 6mA. And each output can be
independently programmed to either 3V or 5V levels with
slew rate control. The output buffer can be configured as an
open drain to facilitate system level wired OR applications.
Figure 2-10 sums up 1/O cell structure. Dedicated, fully IEEE
1149.1 compliant boundary scan is also provided.

The output buffers of unused I/O cell outputs are
“turned—off’ presenting a high impedance load to the external
world. Similarly, input buffers of unused I/O cell inputs are
also “turned-off”; there is no requirement to tie unused inputs
high or low.

The MPA’s output drivers are actually composed of a pair
of 4mA drivers, only the second of which has controllable
slew rate.

Default output configuration is the first 4mA driver. If the
user attributes the 1/0 cell (or its formal port) with
DPLD_OPDRIVE set to a value of 6mA, then the second
4mA driver will be added in parallel.

If the design calls for multiple 8BmA drivers to be switched
simultaneously, the designer should consider also attributing
the outputs with DLPD_OPSLEW set to a value of “low”.
Doing so decreases the di/dt term in the familiar V = L di/dt
equation, thus reducing ground bounce.

instance outbuff attribute dpld_opdrive 6ma
instance outbuff attribute dpld_opslew low

Figure 2-9. Sample .PAT Entries for a 6mA, Low Slew
Rate Output Called “Outbuff”

MOTOROLA MPA DATA — DL201 REV 2

2-7

MPA1000 Product Description

Table 2-3. Slew Rates for the MPA1000 Family (Note 1.)

- tr(ns) | tg(ns) | tr(ns) | t§(ns)
OutputConditions | 24 5y | at5v | at3.6v | ata.ev

DPLD_OPDRIVE=6mA &

DLPD_OPSLEW-=high 17| 20 | 08 | 12
DPLD_OPDRIVE=6mA &

DLPD_OPSLEW=low 06 | 10 | 03 08
DPLD_OPDRIVE=4mA &

DLPD_OPSLEW=high 11 | 14 | 08 | 10
(Note 2.)

1. Measurements taken between 10% and 90% of Vpp at 25°C, C|_=
50pF. Note that DPLD_OPDRIVE = 4mA with DPLD_OPSLEW =
low is an illegal combination.

2. Default values.

[Start Off Easy, Begin with IPBUF, OPBUF,

IPCLK, IPRST

The Complex I/O can be a space and a time saver
for your more critical designs, but you may want to
consider starting off slow and use the simpler 1/O
structures.

Enable and Reset Pins on Complex I/Os do
not have to be tied

There are too many permutations possible in the
/0 cell to make each available as a unique
macrocell in the IOLIB. Consequently a short cut
has been made available to the designer using
Complex I/0O, namely it is not necessary to tie reset
or clock enable inputs high or low when using
elements of the IOLIB. (N.B. This is not true for
elements from the MICROLIB or MACROLIB.
Each of these inputs must be used or otherwise
tied off.) The autolayout software will make the
obvious assumptions about how the unused input
should be tied and make the tie off for you.

Don’t fix your /O locations unnecessarily

Fixing your 1/O locations using DPLD_PAD_
PLACE attribute may place an undue burden on
the autolayout tool. Most designs will route to a
higher performance level if the autolayout tool is
given as much freedom as possible with regards to
1/0 pin placement.

Twinning Outputs

Two outputs can be connected in parallel to
increase the the output drive current, however, to
avoid contention between drivers, care must be
taken to insure that output signals are
synchronized. Use the following as guidelines:

— Connected outputs must reside in the same I/O
zone. (The /O pad ring is divided into zones
each containing 5 1/O cells and two primary
clocks. To identify a zone in a packaged
product, look for groups of 5 adjacent I/Os in the
pinout assignment.)

Output signals must be gated through the I/O
flip—flop registers.

Output flip—flops must be clocked by a common
primary clock signal via the clock distribution
network, which is balanced and has a skew of
<1ns between any two registered clock inputs.
(Primary clock signals are the only way in which
the 1/O flip—flop clocks. Clock signals may
originate external to the device via library
element IPCLK or from the array by routing the
signal to the primary clock bus via APCLK.)

— To reduce ground bounce, twinned outputs
should be as close as possible to a VSSE pin. If
ground bounce persists, alternate slew rate —
fast on one, slow on the other.

— Using open drain output is a safer alternative,
although, the speed will be limited by the
pull-up resistor.

Hierarchical Routing Resources

The MPA interconnection structure is partitioned into 3
levels; Global, Zonal (or medium), and Local. Local
interconnection is used to connect a core cell to 8 of it's
perpendicular neighbors (Figure 2-11). Zonal interconnect
consists of the medium buses and connects groups of cells
within a zone (Figure 2-12). Global interconnect includes
global buses, x buses and interquadrant switches
(Figure 2-4 on page 2-5). Global buses provide quadrant
and chip level inter-zone and zone to /O cell
interconnections. Special interconnection resources are also
present and consist of clock distribution, wired-OR and
peripheral bus. Routing specialization provides an
opportunity for level specific performance optimization.
Specialization also diminishes the amount of interconnection
options required at each core cell, reducing cell size and
boosting silicon efficiency.

Local Interconnect

Local interconnect provides the fastest path between 8
neighboring core cells. Local interconnect is continuous
across the device and is not effected by zonal boundaries.
Local interconnection favors frequently used connections,
the cell to the immediate left and immediate right of the
driving cell have 2 connections. Local connections are used
for high performance intrazone connections and are also
used to cross zone boundaries when necessary.

M ©

2-8

MOTOROLA MPA DATA — DL201 REV 2

MPA1000 Product Description

to En and
Rst Muxes
- 3visv
| |
o
Selected En Rst xH E
Array Signal OEMUX
u Q
| D
Selected ‘:-a) QL
P-Bus Signal Slew Rate Drive
Current 3V/5V ““&
Open Drain
To P-Bus C n
To Array &l&;

Figure 2-10. Input/Output Cell Structure

Medium Interconnect

Medium interconnect spans a single zone and provides
intrazone connections beyond the span of local interconnect
or for connection of zone cells to global signals through the
port cells. There are 4 horizontal and 4 vertical medium
buses per core cell. Medium bus connectivity to core cells is
sparse to minimize loading and limit core cell input
multiplexer size. This connectivity is arranged so that a tile
can be fully connected to the 16 medium buses which
cross it.

0a

08

0a

[1g:]
0a 0a i 0A
08 1 DB [is

g | B2

Figure 2-11. Local Interconnect

Port Cells

At zone edges, port cells provide a bridge between global
resources and zonal resources. Port cells transport signals
into and out of a zone and are the only interface between

zonal and global resources (Figure 2-13). All 4 medium
buses, 4 global buses and the x bus in a given row or column
connect to the port cell.

M1-4

Figure 2-12. Medium Interconnect

Port cells also provide connections to 4 of the 8 low skew
clock distribution lines which span the device. Port cells also
provide global to x bus access and serve as a pathway for
zonal wired OR buses to connect to global busses.

MOTOROLA MPA DATA — DL201 REV 2
2-9

MPA1000 Product Description

G1 G2 M3 X M3 M4 X M4G3G4 G2

M1 X M3 M4 M2 X

Figure 2-13. Vertical Port Cells

Global Interconnect

Global interconnect consists of global buses, x buses,
interquadrant switches. There are 4 horizontal and 4 vertical
global buses passing over each core cell. All Global buses
only connect to the port cells, I/O cells and interquadrant
switches. Global buses span a quadrant and are used to

interconnect the zones within the quadrant together. .

Between quadrants, interquadrant switches connect two
global buses together to form a device level connection.

Each core cell contains a x-bus switch (Figure 2-16)
which is independent of cell logic or interconnect functions. A
single vertical and a single horizontal x bus passes over
each core cell and connects to this switch. Each x bus
connects to all the core cells is a single zone column or row
and terminates at the port cells on opposite edges of the
zone. Each x bus has 10 connections inside the zone and 2
port cell connections. Port cell connections are used to make
x to global, x to x and medium to x connections. Medium to x
connections are used to hop over a single zone X buses are
used to facilitate 90° global bus turns and provide a means
for global bus fanout.

= High Fan Out

As mentioned previously, the routing resources of
the MPA are fully buffered. There is no reason for
the designer to concern himself with loading
effects of high fan out net. However, high fan out
nets can have an undesirable impact on routing
resource consumption. Using only local routing, a
single driver could under the most ideal conditions
drive only 8 local neighbors. In real world designs
however, each of the destinations of a high fan out
net has its own downstream circuitry associated
with it; there is a vanishingly low probability that
they will be placed in the 8 local adjacent locations.
For fan outs greater than 8, exclusive local routing
is impossible, and both medium and global routes
will be used to complete the net. If the fan out is
large enough, and the circuitry placed sufficiently
far apart in the array, routing resource
consumption may become problematic.

The primary clock and reset distribution network
may be used to route high fan out signals. Driving
the high fan out net internally with an ACLK or
ARST buffer, or externally with an IPCLK or IPRST
buffer will put the signal on one of the 8 global
Clk/Rst distribution lines. The routing congestion
can thus be solved, but at the expense of reducing
the clock and reset routing solution space. Do not
route nets to I/O (other than Clk/Rst) on the primary
clock network. There is no mechanism for
completing such a route on the MPA devices.

For software versions 2.4 and later, ACLK and
ARST insertions for high fanout nets will be
automatic.

Delays in Routing

Both PCB and older ASIC designers share the
mind set that delay through a multi-level logic path
is principally a function of “gate delay”. In the ASIC
world, routing paths are as short as possible and
do not pass through multiple levels of pass gates,
muxes, and buffers. Similarly, a PCB trace is a
simple and hopefully short run of metal, with most
of the “gate” delay happening as a function of
package input and output delays. A “logical” net in
an FPGA however may be a series of several
different electrical nodes, each being separated by
amux or switch of some type. The consequence of
this is that “routing delays” not gate delays are the
first order factor determining the resultant circuit’s
speed.

Empirical analysis of several hundred sample
designs suggests that a multiplication factor of 2.4
can by applied to the sum of a path’s gate delays to
come up with a very rough estimate of what the
post autolayout total path delay might be. There
are many factors that influence that actual number,
so please consider this only as a very crude
estimate.

S-R Flops, Avoid the Temptation

QBAR

ND2B1

Figure 2-14. A Classic S-R Flop;
An Accident Waiting to Happen

The above construction of an asynchronous S-R
flip flop is familiar to all, but should be so for its
unfavorable characteristics. Remember that
routing delay in an FPGA is the highest order term
in delay equation. In the above construction, the
(active high) SET pulse width must be greater than
the ND2B1 propagation delay plus Q to A routing
plus another ND2B1 delay plus QBAR to A routing

M7 T

MOTOROLA MPA DATA — DL201 REV 2
2-10

delay. Without a detailed analysis of the post
autolayout path delays, the pulse width
specification can not be known. The same holds for
the RESET pulse width. A new autolayout run on
the same design may alter these path lengths
considerably. Additionally this sort of
asynchronous feedback loop will generally cause
back annotation, simulation and timing analysis
tools trouble.

Avoid asynchronous design.

= Delay Lines, Avoid the Temptation

~ N N
ﬂ-—n——l, L L I_\)

NON_DELAY_PATH

Figure 2-15. A Delay Line for Turning Edges into
Pulses, a Dangerous Proposal

Remember that in an FPGA routing is not just a
piece of wire. Routing is comprised of wire, muxes
and pass gates. In the above example, the intentis
to turn a rising or falling input edge into an output
pulse. The assumption is that the
“NON_DELAY_PATH” will have a shorter delay
than-the “delay line” formed by the series of BUFF
elements. Again, the MPA design software does
not guarantee minimum delays and soitis possible
that the an autolayout run might result in the
NON_DELAY_PATH to have a delay significantly
close the delay line path. The circuit may not work.

Avoid any design habit that makes assumptions
about minimum delays, even for just plain routes.

1/0 Cell Connections and Peripheral Bus

1/0 cells are a pathway between array and bonding pads.
Gilobal buses, x buses and adjacent zone medium buses can
be connected to I/O cells at quadrant edges. Each 1/O cells is
directly connected to the adjacent bonding pad.

A specialized bus, called the peripheral bus, resides in the
1/0 cell — quadrant interface (Figure 2—4 on page 2-5). The
peripheral bus comprises 8 lines which are interrupted at
device corners by a peripheral bus switch similar to the
interquadrant switch. This switch joins peripheral bus
segments to create connections spanning more than a single
device edge. Peripheral buses carry I/O control signals
common to two or more I/O cells such as a latch enable or
tristate control signal. The I/O cells can also drive these
buses with an open drain device. When combined with
programmable pullups located in the corners of the device,
the peripheral bus can be used to form wide gates for
address decoding (Figure 2-17).

MPA1000 Product Description

= Use the P-Bus to route enable signals

Whenever an enable signal goes to more than one
1/0 cell, it is recommended that the designer
employ the P-Bus (by inserting and APBUF).

X-Bus

X-Bus

X-Bus X-Bus

Figure 2-16. Global Bus Turn Using the X-Bus

Wired OR Nets

Wired OR nets are constructed using type 1 core cells.
When the type 1 secondary function is enabled, the NAND
drives an open drain device directly connected to a special
bus shared by all the type 1 cells in the same zone row. This
bus, the zone wired OR bus, terminates in the port cell and
has a single, dedicated, pullup. When this bus is used, the
port cell wired OR to global bus connection and the global
bus pullup located near the interquadrant switch are enabled.
These resources can be used to map 3—state buses onto the
MPA1000 device.

Clock Distribution

Clock distribution is implemented through a dedicated, low
skew, network consisting of; 8 dedicated clock input lines
connected to 2 I/O cells on each device edge, a central clock
buffer, a distribution comb structure, zone corner clock
selection cells and the zone port cells along the top of each
zone. The zone corner cell selects 2 of the 8 lines for zone
clocks and 2 of the 8 lines for zone reset (Figure 2—18). Zone
registers are connected to these clock and reset signals
through the top row of port cells. The comb extends into the
I/0 cells via a similar clock selection cell attached to each
group of 5 I/O cells. This group is called an 1/O zone. All 8
clock lines can be driven from the 1/0O bonding pad or the
array. The distribution network is balanced and has a skew of
< 1ns between any two register clock inputs.

MOTOROLA MPA DATA — DL201 REV 2
2-11

MPA1000 Product Description

connection which provides non-clock network access to

P'°g$m:b'e zone register clock and reset inputs.
f? Wired—AND = I Secondary Clock Networks Consume
|~ A1A0 Enable Routing Resources

/0 Cell =

Pad The MPA easily handles a fair number of

a secondary clock networks, but networks with large
A0 & l>° '5_ numbers of Clk/Rst loads are more efficiently
—= accommodated by moving onto the primary Clock
Distribution Network using ACLK or ARST buffers

: mentioned previously.
n ——] >°—|5_
Tertiary clock (reset) networks are identified by the

- autolayout software as any net driving four or fewer clock
(reset) inputs not on the primary clock distribution network.

NC x There is no skew guarantee on these tertiary clock nets; they
are routed on normal resources.

To Array
> Too Many Clocks
D0 X D Q)) ! .
The MPA is best suited for designs with a few
S ‘ primary clocks, but multiple clocks are supported.
En The problem with tertiary and especially
L secondary clock networks is that they consume a
i fair amount of routing resources. An otherwise
1/0 Clock easy to fit design may not be routable once multiple
Peripheral Bus Segment (1 of 8) secondary clocks are accommodated.
Figure 2-17. Using the Peripheral Bus = Gated Clocks, Avoid When Possible
for Address Decoding] . . .

Inserting anything but an INV in a clock path will
Connections in the port cells allow the clock network to resultin the clock being pulled off the primary clock
drive zone logic in addition to the register clock and reset network and placed either secondary or tertiary
inputs. Unused clock lines can be used for efficient routing (depending on the number of clock loads
distribution of any high fanout signal. If there are more clocks downstream of the inserted gate). As mentioned
in the design than clock resources, the MPA design system above, this tends to spread the resulting layout out
automatically constructs a comb from global buses to a bit more and consequently can slow things down
generate a secondary clock network with a skew of < 3ns. some. If a gated clock is desired, try instead using

Secondary clock construction is facilitated by a port cell register elements with clock enables.

ﬂ} 7 i E@“ MOTOROLA MPA DATA — DL201 REV 2

2-12

MPA1000 Product Description

G2
Vertical Port Cell |

-
——
=
5
=
>
S
—
=
£
=
o
S
= S

I Mux A ‘ | Mux C | Zone Clk/Rst
Selection Cell
10 Horizontal
Column Clk Column Rst Port Cells

©

]

é
N

Central Clk/Rst From /0 Cell

Distribution

Central Clk/Rst
Buffer

Figure 2-18. Clock Distribution Network Connectivity

MOTOROLA MPA DATA — DL201 REV 2
2-13

M @

MPA1000 Product Description

= ACLK & ARST Consume Clk/Rst I/O Sites

Each ACLK and ARST buffer used resides in one
of the 8 clock pad locations. Using an ACKL or
ARST consumes this pad location such that it is no
longer available to use as an I/O site. The designer
is allowed a total of 8 ACLK, ARST, IPCLK, IPRST
cells in his design.

I/0 Cells Can Only Be Clocked From the
Primary Clock Distribution Network

Clocking I/O macros via secondary or tertiary
clocks is prohibited. Reset is however permitted to
be sourced from the array or Peripheral Bus
(P-Bus).

Clock Sense Selection is Made in the Vertical
Port Cell

Al flops within a column will have the same clock
and reset (or will lie unused).

Do Not Use the Primary Cik/Rst Distribution
Network to Route Clock Enable Signals

Referring to Figure 2-18 on page 2—-13, note thata
clock is paired with a reset and brought down to all
5 of the Type 3 cells within a column. If the
associated clock enable (if used) is also on'the
primary clock network, there would be no efficient
route available to get it down to the target flops. Do
not use the Primary Clock Distribution Network to
route clock enables. (Do use it for “Latch Enable”
signals.)

2-14

MOTOROLA MPA DATA — DL201 REV 2

MPA1000 Product Description

MPA1000 Device Configuration

Configuration Overview

MPA1000 devices have an SRAM configuration memory.
Configuration memory contents completely define MPA
device function. The MPA1000 design system generates
configurations from completed layouts. On chip control logic
loads configurations in one of four modes automatically on
power up or under external control. MPA1000 devices have a
very rapid configuration load cycle, infinite reload and are in
system reconfigurable. The configuration modes are; Boot
From ROM (BFR1:3) and microprocessor peripheral or
MICRO Mode. In either mode, multiple devices can be daisy
chained to form a large programmable subsystem.

In all BFR modes, the MPA device controls configuration
and loads from either a byte wide or serial memory. In BFR
mode 1 (Figure 2-20), the device generates 18 bits of
address and reads 8 bits of configuration data. MPA devices
generate 18 bits of address or 262K bytes (e.g., 17
MPA1036 devices). If a larger address range is required,
BFR mode 3 (Figure 2-26 on page 2-21) can be used. In
BFR mode 3 an external address generator is used to extend
the address space. BFR mode 2 is a special case of BFR 3.
In this case the address generator is resident in the external
serial EPROM and data is presented to the device 1 bit at a
time. The MPA design system download POD and the
MPA17000 serial EPROMSs are used with this mode.

In MICRO Mode, the MPA1000 device becomes an 8 bit
peripheral slave device. A microcontroller or microprocessor
controls the configuration process. MICRO Mode provides
more control over configuration and user mode device
behavior than other modes. For example MICRO Mode can
be used to both write and read configuration memory.

—>| RESET DATA0:7] je——»-
DG ADD[0:17) f——>
~——{ DCLK ’
———»] MODE[3:0]
MICRO BFR
-~ 5 BFR FO|
<—— RD ERR F[1]
-~ WR WEWCE F2
<« Rs PWRUP F[3]
<—f BUSY END Fl4
—f TCK
— ™S
— JTAG
— o TRsTB
~«~—— 0

Figure 2-19. Configuration Interface Signals

Configuration information generated by the MPA Design
System includes Error Check Bytes (ECBs). ECBs are used
to detect configuration data corruption while configurations
are loaded into the device. The configuration process halts
and error status is indicated if an ECB mismatch is detected
anytime during the configuration process. ECB checks insure
the integrity of configuration data and protect MPA devices
from possible damage.

Depending on the selected configuration mode, some user
/0 pins become unavailable for post configuration use.
These pins are listed as “dedicated” in Table 2-7 on page
2-25 and Table 2-5 on page 2-17. The system level
interface for MPA configuration is shown in Figure 2-19.
Note that the meaning of the F[4:0] pins is mode specific,
refer to Table 2-7 and Table 2-5 for detailed signal
descriptions.

Table 2-4. MODE[3:0] Pin Programming
Mode Bits

[3]1 | [2] | [1] | [0]

X X 0 0

Description

MICRO Mode — Micro—processor/control-
lerinterface circuitry with parallel (byte wide)
data.

BFR Mode (1) — Boot From ROM, byte
wide data. MPA generates ROM addresses.

BFR Mode (2) — Boot From ROM, serial
data. (Low pin count serial EPROM gener-
ates own addresses.)

BFR Mode (3) — Boot From ROM, byte
wide data. MPA does not generate ROM
addresses.

Use external clock for configuration.

Enable JTAG circuitry and pins.

Configuration Clock

The MPA1000 device has an internal oscillator. The
internal configuration clock is derived from the oscillator and
is presented at the CLK pin when MODE[2] is low. When
MODE[2] is high, the internal clock is disconnected from the
oscillator and an external clock must be presented on the
CLK pin to configure the device.

The configuration clock drives the configuration logic and
its associated state machine. If using an external
configuration clock, it is necessary to provide it always to
ensure RESET, BFR and PWRUP signal transitions are
detected and handled in the expected fashion by the
configuration logic.

Bootstrap Voltage

Signal pathways in the MPA 1000 device are controlled
with n—channel transistors. The gates of these transistors are
connected to individual SRAM configuration memory cells.
To pass a rail to rail signal through these transistors during
user operation, the gate voltage must be elevated above Vpp

MOTOROLA MPA DATA — DL201 REV 2
2-15

MPA1000 Product Description

to compensate for transistor. threshold and body effect
voltage drops. MPA1000 devices contain a charge pump to
generate this elevated voltage, called the bootstrap voltage.
The charge pump is connected to the supply line of each
SRAM cell and is driven by the internal oscillator.

Since configuration memory is generally not dynamically
changing during user operation, the charge pump must only
supply small leakage current losses and is not designed to
supply sufficient current for SRAM write operations. During
configuration, the charge pump (bootstrap) is internally

disabled by shunting the SRAM supply to Vpp through a

large p—channel device. In order for the charge pump to
operate properly, the internal oscillator as well as the
bootstrap circuitry must be enabled. In MICRO Mode, the
processor has control over these functions. In BFR modes,
the on chip configuration controller insures proper
sequencing of these controls.

The MPA1000 device is only guaranteed to function
properly with bootstrap enabled. The internal oscillator must
be running and bootstrap should be activated 100us before
user inputs or outputs are enabled. If dynamic configuration
modification is desired, the bootstrap voltage can be supplied
externally on the Vpp pin and MICRO Mode can be used to
disable bootstrap by shutting off the on-board oscillator. The
bootstrap voltage should be Vpp + 1.5V. At no time should
Vpp exceed 6.5V.

JTAG

The MPA1000 device contains dedicated JTAG IEEE
1149.1 boundary scan circuitry. JTAG can be used on
configured devices. JTAG is enabled any time MODEI[3] is
raised. When MODE[3] is high, 5 user I/O pins become
JTAG controls and user mode operation of those pins is
interrupted. Since the TAP controller can take control of all
device pins, care must be used to prevent the TAP controller
from interfering with device user mode or configuration
operation.

Boot From ROM (BFR) Modes

In BFR modes, the MPA device controls device
configuration and assumes a memory—processor interface to

the configuration store. The MPA device either asserts
addresses directly (internal address generation) or issues
address reset and increment pulses (external address
generation). Data is read either serially or 8 bits at a time.
Table 2-5 describes BFR interface signal operation.
ADD[17:0] are only used in BFR mode 1. DATA[7:1] are not
used in BFR mode 2 (serial data).

A BFR load sequence is initiated by; a falling edge of BFR,
device power up or a rising edge of RESET. MEMCE falls to
indicate the start of a configuration load sequence. On
subsequent alternate rising edges of CLK, the data bus value
is latched. The configuration process terminates when a
complete configuration is successfully loaded and END is
asserted or when a configuration error is detected and ERR
is asserted. After END is asserted, the device will begin user
mode operation 3 clocks after PWRUP is asserted or 3
clocks after END if PWRUP was already high. All
configuration timing is synchronous with the internal or
externally supplied configuration clock. Figure 2-22
describes BFR sequence timing details.

All BFR sequences begin with an internal device reset
sequence where the entire configuration memory is reset.
The duration of this sequence depends on the size of the
MPA device being configured. A faling MEMCE edge
indicates configuration commencement and data loads begin
after 2 subsequent configuration clocks. The first positive
edge of DCLK signals the external address generator to
increment the byte or bit address. Prior to MEMCE assertion,
DCLK is tristated.

The duration of the configuration process is also
dependent on device size. Configuration duration can be
estimated for BFR 1,3 by dividing the total number of
configuration bytes by 1/2 the configuration clock frequency.
For example, the MPA1036 device has 139 rows of 105
bytes including the ECB or 14,595 bytes. If the configuration
clock is 2MHz, configuration will take approximately 15ms. If
BFR 2 is used, the configuration process will take
approximately 8 times longer. See “Device Configuration
Memory Organization” on page 2-33 for device specific
configuration memory sizes.

A%

MOTOROLA MPA DATA — DL201 REV 2
2-16

MPA1000 Product Description

Table 2-5. BFR Mode Configuration Control Pins

Pin Name BFR /o Description

MODE[3:0] | MODE[3:0] | Dedicated* Configuration mode

RESET RESET | Dedicated | Configuration reset — Clear configuration memory. Configure when released.

CLK CLK /0 Dedicated Configuration clock — If MODE[2] is low, the internal configuration clock is presented. If
MODE[2] is high, an external clock must be supplied.

FO BFR | Dedicated BFR initiate — A falling edge starts a reset and configure sequence.

F1 ERR (o] Dedicated Error — Configuration checksum (ECB) or incorrect device ID error. Open drain output

F2 MEMCE [e] Dedicated Memory Enable — Active low during configuration sequence.

F3 PWRUP I Dedicated Power up — After configuration complete; enable bootstrap, enable user inputs, enable user
outputs. Often simply tied to Vpp.

F4 END (o] Dedicated Configuration completed — Asserted when a configuration has been successfully loaded
into the device.

DCLK DCLK /10 Dedicated Data clock — Each output pulse indicates current data bus value has been latched and data
address should increment. Becomes an input after configuration completes.

DATA[7:0] | DATA[7:0] | User/Data Data port

ADD[17:0] | ADD[17:0] (o) User/Address | Address output — If internal address generation is selected. (BFR Mode 1)

JTAG[4:0} 110 User/JTAG JTAG pins — Active when MODE[3] is asserted.

* Dedicated — Pins used for configuration. Not available for user 1/0.

MODE[3:0]

RESET
CLK
PWRUP
BFR

MPA

DCLK
MEMCE
AIT0)
USER /0

DATA[7:0)
USERI/0

UQUU

U

CE
OE
STD
8-BIT
EPROM ADD

Data

Optional FPGA
Status LEDs

2

-

END
ERR

x Board Test

J& Points

Figure 2-20. BFR Mode 1: 8-Bit Data, Internal Address, External Clock

BFR Mode 1 Operation: 8 bit data, Internal Address
Generation

In BFR 1, MPA configuration logic asserts an 18 bit
address and reads data 8 bits at a time as shown in
Figure 2—20 on page 2-17. A paging scheme could also be
used where additional upper address bits were provided by
an external page register. Multiple configurations could be
accessed by writing the page register, asserting BFR, and
self loading the referenced configuration.

ADD[17:0] are tristated during device reset, asserted
during configuration and released for user mode operation.
DCLK is tristated until 1 clock prior to MEMCE assertion. The

first address is asserted coincident with the falling edge of
MEMCE and the data bus is latched 2 configuration clocks
later. The internal address counter is incremented on each
positive DCLK edge (Figure 2-21). This process proceeds
until an entire row of configuration data is loaded into the
internal row data register and the ECB is verified. ADD[17:0]
(current address) and DCLK (=1) hold while the internal write
cycle takes place. Start Access (SA) marks the beginning of
the write cycle and End Access (EA) marks write completion
(Figure 2-27). After the write completes, the address
presentation and data latching process resumes. When the
entire device configuration is loaded, END is asserted, DCLK

MOTOROLA MPA DATA — DL201 REV 2
2-17

MPA1000 Product Description

is tri—stated and 2 clocks later user inputs are enabled and asserted, DCLK becomes an input and the internal address
MEMCE is deasserted. One additional .clock and user counter remains active untl PWRUP is asserted.
outputs are enabled and user mode operation commences. If Figure 2-30 shows how this can be used in a multiple device
the written ECB does not match the internally calculated subsystem. Because DCLK becomes an input, it must be
value, ERR is asserted 2 clocks after the ECB is written. tied high with a weak pullup when used in a single device
Once ERR is asserted, the configuration process halts and configuration (Figure 2-20) to prevent a floating input
cannot be restarted until a new configuration process is condition.

initiated using BFR, RESET or a power down. When END is

CLK \ \ N ‘ W
WEMCE
JUSER 110
@—» f—
ADD[470]
USER /0 0 >< 1 >< 2
<
ADD 0 >< 1 >< 2
s
DATA[7:1] /
o 35_< o
DATA[O] { DATA DATA L
JUSERI/O \
HIGH-Z P
DCLK *—-1 \
o
3
©

**1 - Internally generated Address

*2 - Externally generated Address
Figure 2-21. BFR Data Access Detail

Number Characteristic Min Max Unit Notes
1 Data Setup to DCLK 20 ns
2 Data Hold after DCLK 0 ns
3 DCLK Period (When Active) 2 2 CLK
4 CLK to Address Valid (Internal Generator) 15 ns

W} 7 i @m MOTOROLA MPA DATA — DL201 REV 2

2-18

MPA1000 Product Description

Input BFR |
Input (MODE[2}=1) oK |] I I I | | | I l I ‘ —UF
Output (MODE[2]=0) —_
Output MEMCE
O
A\
Output END
ERR \
Output ERR w
____________ —_
Input PWRUP*
14
Internal Enable_User_Inputs 12
4—@—»
Internal Enable__ User_Outputs <—-@
* PWRUP can be, and usually is, tied to Vpp internally.
Figure 2-22. BFR Sequence
Number Characteristic Period Unit Notes
5 BFR Low to MEMCE High 3 CLK | If BFR reasserts durning a boot
6 END High to MEMCE High 2 CLK
7 PWRUP to MEMCE High 2 CLK
8 BFR Low to END Low 3 CLK | Note 3.
9 BFR Low to Internal Disable 3 CLK | Note 3.
10 BFR Pulse Width 50 ns Minimum
11 Configuration Sequence Duration Configuration sequence dependent on
device size
12 END to Enable User Inputs 2 CLK | If PWRUP asserted, Note 4.
13 END to Enable User Outputs 3 CLK | If PWRUP asserted, Note 4.
14 PWRUP to Enable User Inputs 2 CLK [Note 5.
15 PWRUP to Enable User Outputs 3 CLK | Note 5.

apw

PWRUP can be, and usually is, tied to Vpp.

. BFR is usually an asynchronous input, 4 CLKs assumes Tgo_BFR is met.

. PWRUP may be an asynchronous signal, 2,3 CLK, assumes Tgso_pWRUP is met.

MOTOROLA MPA DATA — DL201 REV 2

2-19

MPA1000 Product Description

A Sample BFR Mode 2 Load Sequence

The most common boot configuration for the MPA is the
BFR Mode 2, using a serial boot (E)EPROM. The timing
overview for such a boot load is given in Figure 2-23 and
Figure 2—24, with timing notes in Table 2—6.

In"this example the CLK signal can either be sourced by
the MPA or generated externally and received by the MPA
(according to the state of the MODE[2] pin). BFR is usually
asynchronous, Figure 2-23 assumes the falling edge of BFR
meets the set-up requirement with respect to the rising edge
of the CLK signal. Three CLKs later The END signal
de—asserts and a reset sequence begins. The length of the

reset sequence is a function of the array type as shown in
Table 2-6. As the reset sequence ends DCLK (connected to
the EPROMS clock input) goes high, then MEMCE asserts
(connected to me EPROM’s RESET/OE pin. The first bit of
configuration data will appear at the EPROM'’s data pin after
this falling MEMCE. Data is latched into the MPA as DCLK is
raised. The next rising edge of DCLK causes the EPROM to
shift out the second configuration bit, and so on.

The internal configuration SRAM of the MPA is loaded up
one row at a time. The number and width of the rows varies
by array type. After a row’s worth of data is read in to a
configuration shift register, the MPA holds DCLK high for 12

Table 2-6. BFR Mode 1 Sequence Timing for All MPA Family Members

Number Characteristics CLKs Notes
1 BFR Low to MEMCE Low Internal SRAM Reset Sequence
MPA1016 971 | =21+(10*95), 95 SRAM Rows
MPA1036 1411 | =21+(10*139), 139 SRAM Rows
MPA1064 1851 | =21+(10*183), 183 SRAM Rows
MPA1100 2291 | =21+(10*227), 227 SRAM Rows
2 Low to DCLK Hold Off Shifting in ID and first row of SRAM data
MPA1016 1232 | =80+(2*576), ID & data type then 576 bits/row
MPA1036 1760 | =80+(2*840), ID & data type then 840 bits/row
MPA1064 2288 | =80+(2*1104), ID & data type then 1104 bits/row
MPA1100 2800 | =80+(2*1360), ID & data type then 1360 bits/row
Internal SRAM Row Load 12 | All devices, every row
4 Subsequent Row Sequence Shifting in row data
MPA1016 1163 | =12+(2*576)-1, 576 bits / row
MPA1036 1691 | =12+(2*840)-1, 840 bits / row
MPA1064 2219 | =12+(2*1104)-1, 1104 bits / row
MPA1100 2731 | =12+(2*1360)—1, 1360 bits / row
BFR Low to User Outputs Enabled The complete BFR Sequence
MPA1016 111,540 | =971+1232+12+(1163*94)+3, reset+1st_row+rows+//O
MPA1036 236,544 | =1411+1760+12+(1691*138)+3
MPA1064 408,012 | =1851+2288+12+(2219*182)+3
MPA1100 622,312 | =2291+2800+12+(2731*226)+3
B\
MEMCE | T o soouareenom
ok UL ULt
4) |
DOLK ———Z——"] L Lond First Row SRAM LI L LT Coadsecondrowsram L[1.
bit 0 latched in by MPA, and EPROM begins to address and access next bit, bit 1 :
End

Figure 2-23. Start of a Typical Serial Boot From ROM Sequence
(Clock may be internal or external. BFR is an external asynchronous signal, TSy_BFR is assumed to have been met.)

MEMCE Jser Ouputs Enabled
e UL UUUUUUSUUUUUgel U
User Inputs Enabled
DOLK LI L L Coad Last Row SRAM L—z
End

Figure 2-24. Completion of a Serial Boot From ROM Sequence

M4

MOTOROLA MPA DATA — DL201 REV 2

2-20

CLK cycles and transfers this data to the interal SRAM row.
Provided no device ID or check—sum errors are detected, the
load will continue in this row by row fashion until complete.
As the last row of SRAM is written, the END signal asserts
then user 1/O is enabled as shown.

BFR Mode 2 Operation: 1 bit (serial) data, External
Address Generation

BFR mode 2 is used for connecting MPA devices to a
serial configuration memory. The MPA device provides an
address increment signal (DCLK) rather than an internally
generated address as in BFR mode 1. Low pin count serial
memories, like the MPA17128, contain address generation
logic which responds to a single increment signal.
Addressing is sequential starting at zero. Multiple MPA17000
devices can be daisy chained if a larger memory is required
(See MPA17128 data sheet on page 1-6). Serial memories
are programmed (written) in the opposite bit order from the
way they are read. The MPA Design System configuration
generation program will generate a correctly formatted
PROM programming file by reflecting each configuration byte
prior to writing the file.

MEMCE is high until configuration commences. MEMCE is
connected to the RST/OE pin of the MPA17128 holding its
internal address counter at 0 and its outputs tristated. The
falling edge of MEMCE enables the memory data pin and 2

-

>
>

|
_lq...vj

8

= MODERD]
o RESET
o CLK
= PWRUP
= BFR
MPA17128 g MPA END
CLK DOLK
RST/OE :;:—4—— MEMCE ~ ERR
CE '
DATA[OY
Data USER /0

MPA1000 Product Description

clocks later a data bit is latched into the MPA1000 device.
The first rising edge of DCLK signals the memory to index its
address register and present the next locations data bit.
Each time 8 bits are accumulated by the MPA1000, they are
written to the internal row data register. As in BFR 1, this
process proceeds until a complete row is loaded and the
ECB is verified. DCLK holds while the row data register is
written to the current configuration memory row. After the
write completes, additional bits are loaded until the next row
boundary is reached. Configuration completion and error
indications are identical to BFR 1.

BFR Mode 3 Operation: 8 bit data, External Address
Generation

BFR mode 3 is identical to BFR mode 2 except that 8 bits
of data are loaded rather than one. An external address
generator is used and responds to the MPA address
increment signal (DCLK). BFR mode 3 is useful because
BFR 1 requires 18 user I/O signals (ADD[17:0]) during
configuration. While these are subsequently released, it does
impose restrictions on surrounding circuitry complicating
overall system design. Secondly in applications requiring
rapid configuration of a large number of MPA devices or
many alternate configurations, the MPA 18 bit address space
may not be large enough and an external counter (address
generator) would required anyway.

Optional FPGA
Status LEDs

& Board Test

E Points

Figure 2-25. BFR Mode 2: 1-Bit (Serial) Data, External Address, External Clock

COUNTER b3
BANK
CLK
RST
ADDR = MODE[3:0]
It RESET
P CLK
o PWRUP
ot BFR
\/ wpa END
<] ERR
SO o ﬁféb.'ée
8-BIT >
EPROM DATA[0)/
Data | USER 0

Optional FPGA
Status LEDs

& Board Test

& Points

Figure 2-26. BFR Mode 3: 8-Bit Data, External Address, External Clock

MOTOROLA MPA DATA — DL201 REV 2

2-21

MPA1000 Product Description

gl iaigipiy
- LT
-0

X

<D D

ADD

= Start Row Access

Figure 2-27. End of Row Behavior
= End Row Access

]

[141 I
= MODE[3:0] = MODE[3:0]
o RESET END RESET END
o~ CLK CLK
PWRUP PWRUP
= BFR BFR
MPA MPA
MPA17128 PHA— #? el
CEpy — < ok ERR— NIC DCLK ERR [— NIC
OEp MEMCE NIC — MEMCE
.]
Dat DATA[O)/ DATA[OY
ata USER /0 USER /0

Figure 2-28. Multiple Device Subsystem: BFR2; Serial Data, External Address, External Clock

%} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

2-22

BFR Multiple Device Subsystems

If multiple devices are used together in BFR mode, the first
device loads first and the END signal on each device is
connected to the RESET pin of the next device. As an
upstream device completes configuration, a configuration
sequence is initiated on the next device. This daisy chain
extends to the last device. This devices END is connected to
the PWRUP pins of all subsystem MPA devices. All devices
enter user mode when the last device successfully
configures.

Care must be taken to insure proper operation. BFR on all
but the first device must be tied high and the subsystems
composite DCLK line must be pulled up to eliminate spurious
clock signals as one device tristates DCLK and the next
device asserts it. Figure 2-29 illustrates the control signal
hand off.

MPA1000 Product Description

When constructing a subsystem in which the first device
asserts the 18 bit address (BFR mode 1), this device
provides address generation for all devices in the subsystem.
The DCLK pin of the first device becomes an input when it
successfully configures and its internal counter remains
active. Positive edges applied to this pin will increment the
first devices internal address counter and present the
resulting address on the first devices 18 bit address bus.
Subsequent devices in this subsystem should use BFR
mode 3 (external address, 8 bit data).

Examples of multiple device boot configurations are shown
in Figure 2-28, Figure 2-30 and Figure 2-31. The last
device’s END signal is fed back into the first device’s
PWRUP pin. Holding PWRUP low, holds the MEMCE output
low.

DCLK #1 J | '

DCLK #2 ----

- L

N

ADD ___>< >< o

X

m w

CSE #1 l |

END#1&
RST #2

CSl#2

:

= Start Row Access

=End Row Access

= Configuration Sequence End, Device #1

= Configuration Sequence Initiate, Device #2

Internal Signals

Figure 2-29. BFR Mode Daisy Chain Timing

MOTOROLA MPA DATA — DL201 REV 2
2-23

MPA1000 Product Description

AAA]
1

-[._.. MODERT] | ., -[__. MODE:
= RESET END RESET
o OLK CLK
PWRUP PWRUP
o BFR | BFR
MPA MPA
* P 2
CE P polk SRR NG DCLK
o P MEMCE N/C —]| MEMCE
8-BIT Ao KP A[iT0) {
EPROM N USER /O
N DATA[7:0) DATA[7:0)
Data |l Usen o USER /0

[NIC

* DCLK of first device driven by subsequent
devices, after its configuration completes.
** Subsequent devices held in reset until all

prior devices configure.

Figure 2-30. Multiple Device Subsystem: BFR1 and BFR3; 8 Bit Data, Internal Address, External Clock

COUNTER
BANK

CLK

RST
ADDR

gl

MODE[3:0]

0y

RESET END

CLK

PURUP

OEP

BFR

STD
EPROM

Data

DATA[0)
USER /0

‘\/7

— NC

RESET

CLK

PWRUP

BFR
'l%— NIC —

MPA
#2

DCLK
MEMCE

DATA[OY
USER 1/0

=i,

MODE[3:0]

END

RR

™ NIC

Figure 2-31. Multiple Device Subsystem: BFR3, 2; 8 Bit Data, External Address, External Clock

MtH =

MOTOROLA MPA DATA — DL201 REV 2

2-24

MICRO Mode

In MICRO Mode the MPA device behaves as an
asynchronous microprocessor peripheral. Table 2-7 details
MICRO Mode configuration pin function. A chip select (/CS)
is derived from the processor address and enables a single
MPA device. In a multiple device subsystem, a chip select for
each MPA device is required. When a device is selected, the
data bus is used to write commands, read status, write
configuration data and read configuration data. There are
two device configuration registers, the function register
(RS=0) and the data/status register (RS=1). Configuration
commands are written to the function register. Subsequent
behavior is specific to the command issued and is
documented in Table 2-8. The data register is either used to
read device status, read device configuration data or write
device configuration data. RS is normally connected to the
least significant address line to map the function register to
address A and the data/status register to address A+1.

Configuration data format information can be found in the

Table 2-7. MICRO Mode Configuration Control Pins

MPA1000 Product Description

“Device Configuration Data Format” section on page 2-33.
Configuration data is generated by the MPA design system
configuration generator after a layout is complete.

-
Sys_rst >— :E
Sys_CLK = o e e
3 — MODER0] | =
A[19:1] 3 —9- [-
=] RST
Ready < Wait CLK
Busy MPA
WEMW - +—- WR
MEMR 5 RD
A0} @ RS
e 1 — DU

Figure 2-32. MICRO Mode: Single Device With External
Clock and Wait State Insertion

Pin Name Micro o Description

MODE[3:0] MODE([3:0] | Dedicated* | Mode Pins

RESET RESET | Dedicated | General configuration reset

CLK CLK /0 | Dedicated | Clock for configuration circuitry — If external clock is selected, pin is an input. If not
selected internal configuration clock is used and output through this pin.

FO Ccs | Dedicated | Chip select for device in MICRO Mode.

F1 RD | Dedicated | Micro read signal

F2 WR | Dedicated | Micro write signal

F3 RS I Dedicated | Register select — Two register locations are active: Function Register (RS = 0) and Data/
Status Register (RS = 1).

F4 Busy o Dedicated | Busy signal — Active high when device is not ready to accept data, i.e. while device is
resetting data in array or a data register to array transfer is taking place.

DATA[7:0] DATA[7:0] /0 | Dedicated | Micro data port — for configuration logic.

JTAG [4:0] J [4:0] /0 | UserlJTAG | JTAG pins — JTAG or User I/O is selected by MODE[3].

* Dedicated — Pins used for configuration. Not available for user 1/O.

MOTOROLA MPA DATA — DL201 REV 2

2-25

MPA1000 Product Description

Table 2-8. MICRO Mode Function Register (RS=0)

DATA

5|4

[3:0]

Function

0000

Normal operation — No function performed.

0001

Reset Device — Entire device configuration is reset. BUSY is asserted until reset completes.

0010

Load Configuration — After writing this command, an entire normal format device configuration is presented to
the data register in 8 bit segments starting with the configuration header block. At any time during the loading
process, a read from the data register will return status register contents. As complete rows including ECB are
loaded, BUSY is temporarily asserted while row data is internally transferred from the internal data register to the
currently addressed memory row. Once this write operation is complete, BUSY is deasserted and additional data
can be written. Each time BUSY is deasserted, the status register should be checked for incorrect ID or row
configuration data error(s). Once an error is detected, NO further write accesses to the data register will be accepted
until the device is reset or another load configuration command is issued.

0011

Reset Row — Indicates that the next data written to the data register will be a device row address. After the address
is written, the contents of that configuration memory row are reset. BUSY is asserted after the address is written
and deasserted when the operation is complete.

0100

Load Row — The next data written to the data register consists of a row address followed by configuration data
for that row including the terminating ECB. After the ECB is written, BUSY will be asserted during internal write and
deasserted when the write completes. Reading the data register returns status register contents. The status register
should be checked for row configuration data error(s). Once an error has been detected, NO further write accesses
to the data register will be accepted until the device is reset or a load configuration command is issued.

0101

Read Row — The next data written to the data register will be interpreted as a row address. After the row address
is written, BUSY is asserted while row data is read into the internal data register. BUSY is deasserted when the
transfer is completed. Subsequent successive reads from the data register will return row configuration data. No
ECB is returned. The row data read back is in the same order as it is written, rightmost byte first.

0110

Read Device ID — 4 subsequent reads from the data register return device ID. The most significant ID byte is read
first. Refer to “configuration data format” for individual device ID values.

o111

Bits [3:0] — Reserved pattern.

1XXX

Bits [3:0] — Reserved pattern.

User Outputs Enabled — Normally user outputs are enabled one or more clocks after user inputs are enabled to
insure valid input values have propagated into the device.

User Inputs Enabled — Normally user inputs are enabled after a configuration is successfully loaded into the
device.

Internal Oscillator Disabled — Normally always enabled. May be disabled if external clock and Vpp are user
supplied. If internal configuration clock is used (Mode[2] = 0), oscillator cannot be disabled. Internal oscillator drives
a charge pump that generates bootstrap Vpp. If turned off, then back on, allow 100us restart time.

Bootstrap Enabled (Vpp) — Should be enabled after configuration is completed and disabled during configuration.
(Disableties Vpp to Vpp.) Only afew package types bond out Vpp to a pin. The Vpp pin can be used to monitor Vpp.
The Vpp pin may be driven between Vpp and 6.5V externally if Bootstrap is enabled and internal oscillator is
disabled. Vpp is applied to the pass gate transistors inside the array, to ensure the lowest possible RpON-

Table 2-9. MICRO Mode Data/Status Register (RS=1)

Bit Position
[7]1 | [6] | [S] | [4] | [3]1 | [2] | [1] | [O] Function
R|R|R R |R 1 | Incorrect Device ID.
R R R R R 1 Row configuration data error. ECB mismatch.
R|R|R|R|R 1 Busy signal asserted. Allows software handshaking if hardware wait states are not to used.

R = Uspecified, reserved for factory use.

M7

MOTOROLA MPA DATA — DL201 REV 2
2-26

MPA1000 Product Description

.

7
©,

®
=3

@
DATA
BUSY — _Jy
Figure 2-33. MICRO Mode External Timings (Write Cycle)

cs

———\. /——
A — O,

@\
DATA < Vé;l'—
@)

@

BUSY —Y

Figure 2-34. MICRO Mode External Timings (Read Cycle)

Number Characteristic Min Max Unit Notes
16 CS Setup before Read/Write Falling Edge 10 ns
17 RS Setup before Read/Write Falling Edge 10 ns
18 . RS Hold after Read/Write Falling Edge 10 ns
19 Read/Write Pulse Width 50 ns
20 Data Setup to End of Write 20 ns
21 Data Hold after Write 10 ns
22 Busy Inactive before End of Read/Write 50 ns
23 Busy Active after Write 0 20 ns
24 Data Access Time 20 40 ns
25 Data Hold Time after Read 0 10 ns

The configuration clock is still used to drive the MPA's internal configuration logic in MICRO mode. The length of BUSY is, therefore, a function of
the configuration clock.

MOTOROLA MPA DATA — DL201 REV 2
2-27

MPA1000 Product Description

MICRO Mode Maximum Data Transfer Rate

The maximum MICRO Mode data transfer rate is governed
by the R/W timing described in Figure 2-33 and Figure 2-34.
The processor must only write data when BUSY is inactive.
BUSY is only asserted when data cannot be accepted at the
maximum rate. The specific behavior of BUSY for each
MICRO Mode function is described in Table 2-8. When the
device is powered up, an internal reset sequence is initiated
and BUSY is asserted (see “Behavior During
Power-On-Reset”). BUSY will be deasserted when the
internal reset sequence completes. The processor can
monitor BUSY directly or the status register can be read.

If processor R/W cycles are faster than the timing shown,
external circuitry must be used to insert wait states.
Figure 2-32 and Figure 2-39 show an application circuit
consisting of one or more MPA devices and an optional wait
state insertion block used to lengthen R/W timing based on
CS, MEMW, MEMR, BUSY, and RESET using an externally
provided clock.

Using MICRO Mode to Read Configuration SRAM

An interesting side benefit of using MICRO mode is the
ability to go back to the MPA after the normal boot process
completes and read back out the configuration SRAM. While
under spec operating conditions, the is no possibility of
configuration SRAM corruption. Some applications, however,
may have out-of-spec operating conditions, such as
extreme noise on power rails or rails subject to power dips.
In such applications, system level health monitoring can be
augmented using this SRAM read out feature. Normal MPA
device operation is not disturbed during configuration SRAM
reads.

Multiple Devices in MICRO Mode
If multiple devices are used in MICRO Mode, external

logic is required to individually address each MPA device
using CS (chip select) signals. After configuration, the
processor must write bootstrap enable, enable inputs and
enable outputs commands to each device. A subsystem
BUSY signal can be derived by OR-ing the BUSY signals
from each individual device. Refer to Figure 2—39.

Internal Clock Specification

The internal ring oscillator is a clock source with possible
frequencies ranging from 10MHz to 40Mhz. This variation is
expected and does not present a problem for proper charge
pump or configuration operation. The internal configuration
clock is derived by dividing the oscillator frequency by 8. The
internal configuration clock can be used for user mode
operation and is presented on the CLK pin when MODE[2] is
low.

RING OSCILLATOR
OUTPUT

@
INTERNAL CLK -—

Figure 2-35. Internal Oscillator and Clock Specification

Num Characteristic Min | Typ | Max | Unit
26 | Ring Oscillator Low 10 25 50 ns
27 | Ring Oscillator High 10 25 50 ns
28 | Ring Oscillator Period 25 50 | 100 | ns
29 | Internal Config Clock Period | 200 | 400 | 800 | ns

M# -

MOTOROLA MPA DATA — DL201 REV 2
2-28

Write Disable and Reset
Write 00000001b to the Func-
tion Register (RS=0) (Boot-
strap off, internal oscillator on,
userinputs disabled, user out-
puts disabled, initiate Reset
Device)

>

f Write Load Conﬁguranon
Write 00000010b to the
Function Register (RS=0)
L (Load Configuration)

Busy? — There are two different ways
Busy can be checked. The first is to
examine the state of the physical
BUSY signal. The second is to read
the contents of the Data/Status Regis-
ter (RS=1)

Write Data Byte
—| Write data byte to the Data
L Register (RS=1)

Note - The designer has a fair number
of options with regards to what code to
putinthis “Status”testblock. The code
may simply check that neither busy
nor any error flags have been set and
move on (this is what is shown) or the
code may be optimized for higher
speed.

Note

@

Last Byte’7

To decrease the total load time, you
might want to only check for busy at
the end of the every row of data.
(When counting bytes to keep track of
where you are in the load, remember
that the first row has an additional 5
data bytes, the first four are JTAG ID
and the next is the Data Type tag.)

Enable the Device
Write 10110000b to the
Function Register (RS=0) Iffor some reason you also shut offthe
(Enables user input, boot- internal oscillator during this boot pro-
strap voltage and user out- cess, this would be the time to turn it
puts) back on (preferably prior to enabling

l the bootstrap; the oscillator drives the

charge pump that provides bootstrap
voltage). Start up time for the oscillator

is not greater than 100ys.

Figure 2-36. MICRO Mode Configuration Load
Sequence Example

External Clock Specification

To improve configuration performance an external clock
can be connected to the CLK pin when MODE([2] is asserted.
The specifications for this clock are given in Figure 2-37.

The maximum external clock frequency is 40MHz. At this
frequency, boot time in the BFR modes will decrease by a
factor between 8 and 32 times.

MPA1000 Product Description

®@

CLK / O\ /

@)1=

Figure 2-37. External Clock Specification

Num Characteristic Min | Max | Unit
30 | External Clock Low 10 ns
31 | External Clock High 10 ns
32 | External Clock Period 25 ns

Power On Reset Operation

The MPA1000 devices contain circuitry to insure reliable
self configuration when power is applied to the device. An
counter clocked by the internal configuration clock and
triggered by an analog power on reset circuit delays
configuration until the power supply has been g|ven sufficient
settling time (Figure 2—40).

The analog power on reset circuit provides a reliable signal
(APOR) to indicate that Vpp is sufficient to reliably operate
device logic. While APOR is low a 17 bit counter is held
reset. When APOR is asserted, the counter is enabled and
POR occurs when the most significant counter bit reaches 1.
Between APOR assertion and POR, the configuration
circuitry is continuously resetting configuration memory row
by row. When POR is asserted, a final internal reset
sequence is performed (Figure 2—40). If an external clock is
selected (by asserting MODE[2]) this final internal reset
sequence will begin four internal clocks after POR, and will
run using the external clock.

(Stage 1) (Stage 2)
rF——=—""
Delay/Counter Chain | |
Analog | ntermal |
Power-On- e | Ring |
Reset Pulse Reset Clk | Oscillator |
|
APOR 1 Internal_Clk &————-

POR

Figure 2-38. 2-Stage Power—-On—Reset

External Reset

An external reset sequence can only be initiated by a
falling edge on RESET. If an external clock is selected (by
asserting MODE[2]), it must be active in order for the reset
sequence to complete successfully. Once a reset sequence
is initiated it cannot be terminated by a subsequent rising
edge of RESET.

If RESET is low when the internal reset sequence
completes, configuration will not commence until RESET is
deasserted (Figure 2—41). This feature can be used to hold
off configuration until other external events occur. This

MOTOROLA MPA DATA — DL201 REV 2
2-29

MPA1000 Product Description

feature is used in conjunction with the multiple device daisy configuration mode, internal reset and internal configuration
chain. Figure 2-42 shows RESET effect on other signals.

Sys_rst >
Sys_CLK =
MODE[3:0] 4_} MODE[3:.0]
o] » Busy Busy
Af19:1] >— 8 >~ TS L{cs
I
Wait RST RST
Ready <=
v — - CLK MPA CLK MPA
MEMW c>— —* WR # WR #
MEMR £ - RD RD
ALl g%ﬁ_ RS RS
= A N
D70 >— 1 K | DATAT7:0] ™ DATA[7:0]
v

Figure 2-39. MICRO Mode: Multiple Devices With External Clock and Wait State Insertion

SUPPLY 2sv_| "

APOR () ——

POR '|= G2
CONTINUOUSLY SEQUENCE THRU ROW FINAL RESET
ADDRESSES AND WRITE 0's TO ADDRESSED ROW SEQUENCE

Figure 2-40. Power-On-Reset Circuitry Timing

Number Characteristic Min Max Unit Notes
33 APOR 10 1000 us
34 POR (Active) 1 132 52.4 ms

ﬁ } 7 i @ MOTOROLA MPA DATA — DL201 REV 2

2-30

MPA1000 Product Description

RESET l I—
RSI | l
RSE «— INT. RESET SEQUENCE :I—‘

>

CONFIGURATION SEQUENCE |
Csl r

RESET r

RSE }“— INT. RESET SEQUENCE j I

CONFIGURATION SEQUENCE |
“——‘ DEVICE INACTIVE r 1

- - - -

(&)

= Reset Sequence Initiate RSE | =Reset Sequence End CSl | = Configuration Sequence Initiate

Figure 2-41. External Reset Behavior

MOTOROLA MPA DATA — DL201 REV 2
2-31

MPA1000 Product Description

JutiyuyUguirrirdyu iy

—
— _(22)
RES 38

mj
=

ENABLE_USER_INPUTS
ENABLE_USER_OUTPUTS
ENABLE_BOOTSTRAP

RSI

RSE

A
]

BFR MODE SIGNALS
END

mj
|
=l

MICRO Mode SIGNALS

BUSY

= Reset Sequence Initiate

RSE | =Reset Sequence End

cs! = Configuration Sequence Initiate
Figure 2-42. External Reset Timing
Number Characteristic Min Max Unit Notes

35 RESET Low to Reset Sequence 2 3 CLK

36 RESET Low to END Low i 0 3 CLK

37 RESET Low to ERR High 0 3 CLK

38 RESET Pulse Width 50 ns

39 RESET Low to Internal Disable 0 3 CLK

40 RESET Low to Busy Active 0 3 CLK

41 RESET High to CSI Pulse 2 CLK | RESET Released After RSE
42 RESET High to Busy Inactive 2 CLK | RESET Released After RSE

In MICRO Mode, the busy signal remains high while the reset signal is asserted and until the internal reset sequence is completed.

W} ' 7 i E@n MOTOROLA MPA DATA — DL201 REV 2

2-32

MPA1000 Product Description

MPA1000 Configuration Data Format

Device Configuration Memory Organization

The MPA1000 devices are programmed by loading
configuration data into on chip configuration memory
constructed of SRAM cells. This memory is organized
differently from standard memory products. The configuration
SRAM is distributed throughout the MPA device. Data is read
and written to the device 1 row at a time via the internal row
data register (RDR). Individual rows are addressed via the
row address register (RAR). Each device has a different size
RDR and RAR (Figure 2-43). The configuration logic is
responsible for the control of these resources.

Bit0
(] OoODODOOOOO0 e e ¢ODOD Rowo
|| OD0O00O0O000Oe e eO000
§> 000000000000 e e e 0000
¢| DooooooODOOOe @ o000
3| Ooooooooooooe e eoooD
o
000000000000 e e e OO0
L | Ooooooooooode e eOoOD
l L Row Data Register l
Filler Bits Real Bits
Total
Real Row
Device | # Rows Bits # Filler #ECB Bits
1016 95 562 6 8 576
1036 139 828 4 8 840
1064 183 1090 6 8 1104
1100 227 1352 0 8 1360

Figure 2-43. Device Memory Organization

A complete configuration image includes the total row bits
shown in Figure 2-43, prefaced by the 5 byte header block.
The total configuration imange size is given in Table 2-10.

Table 2-10. Configuration Image Size

Device Total Bits Decimal Bytes Hex Bytes
1016 54,760 6,845 1ABD
1036 116,800 14,600 3908
1064 202,072 25,259 62AB
1100 308,760 38,595 96C3

Configuration logic writes data to the leftmost (most
significant) RDR byte and reads from the rightmost (least
significant) RDR byte. Each of these transfers occurs in 8 bit

increments. When serial data is presented, the bits are
accumulated into a byte before RDR transfer. Each
configuration logic RDR write operation first shifts the RDR
eight 8 bits and transfers the new byte into the leftmost RDR
byte position. Configuration read operations transfer the
rightmost RDR byte to the configuration logic and then shifts
RDR contents right 8 bits.

The RAR enables a single configuration memory row. MPA
configuration logic writes a row addresses into the RAR.
Subsequent read or write operations are performed between
the RDR and the RAR selected row in parallel.

Filler bits are used to round the RDR up to the nearest
byte boundary. The ECB is not part of the RDR. During
configuration a single row data vector is written to the RDR
and an ECB is calculated from the data written. The
calculated value is compared to the ECB contained in the
data vector. If a mismatch is detected, ERR is asserted and
the configuration process terminates. The ECB mechanism
prevents data write disturbances from causing unpredictable
device function.

Device Configuration Data Formats

When whole configurations are loaded into a device, the
first 40 bits contain a 32 bit device ID followed by an 8 bit
data type field. The device ID is the same as the JTAG
device ID described in “JTAG Boundary Scan”. If an incorrect
ID is presented, ERR is asserted and configuration stops.
Device ID comparison prevents incompatible configurations
from causing unpredictable device behavior. The data type
field identifies subsequent data format. Recognized data
types are shown in Table 2—11.

Table 2-11.
[7:3] |21 | [1] | [0] Data Type

00000 0 | Sequential data (Normal data)

00000 1 | Test data — Multiple row access

00000 0 Unencrypted data

00000 1 Encrypted data — Not supported on
first product. Reserved for future
implementations

00000 0 Uncompressed data

00000 1 Compressed data — Not supported
on first product. Reserved for future
implementations

Header Block

Device ID [3]
Device ID [2]
Device ID [1]
Device ID [0]
00000000b = Normal
Data Type 00000001b = Test

MOTOROLA MPA DATA — DL201 REV 2
2-33

MPA1000 Product Description

Two data formats are supported; Normal data and test
data. Normal data is generated by the MPA Design System
and is the only data type users are expected to use. Test
data is a special format developed to aid device testing
where many very regular configuration patterns must be
rapidly loaded during production test. Test mode data only
results in a memory savings when many rows of
configuration memory contain identical information. Since
this is unlikely for real designs, test mode data offers little or
no benefit for reducing user configuration memory storage
requirements.

Normal data consists of a series of configuration memory
row images including filler bits and ECB. Each device has a
different number of bytes per row and a different number of
rows. A generalized normal data representation is shown in
Figure 2-44. Bytes are presented to the device from left to
right and from top—most row (row 0) to bottom-—most row.
The ECB is calculated by summing the row data byte by
byte, complementing the carry and using this as the carry
into the next addition.

Data 0 (Row 0) |Data1(Row0) [~ ~ ~ ECBO
Data 0 (Row 1) |Data1(Row 1) | ~ ~ ~ ECB 1
Data O (Rowx) |Data1(Rowx) | ~ ~ ~ ECB x
Data O (Rowy) |Data1(Rowy) | ~ ~ ~ ECBy

Figure 2-44. Configuration Data Block (Normal Data)

Test data format is similar to normal data except that a row
count and address list follows the ECB. The RDR is loaded
and the ECB calculated normally. Each address is written to
the RAR, a write cycle initiated to transfer the RDR to the
addressed configuration memory row, the expected address
count is decremented and the next address is loaded until
the expected address count reaches zero. The next byte is
assumed to be the first byte of a new row data vector.
Configuration ends when a row address of 255 is presented.
Figure 2-45 shows the generalized test data format.

|Datao [pata1| ~ |ECBM | No.Rows RowA |

Row B
Row C
Row D

I Data 0 I Data 1 I ~ I ECBN | No. Rows Row E

Row F
Row G
Row 255

(Row 255 = Configuration Terminating Byte)

Figure 2-45. Test Data Configuration

M7 ©

2-34

MOTOROLA MPA DATA — DL201 REV 2

MPA1000 Product Description

MPA1000 JTAG Boundary Scan

JTAG Boundary Scan Functions

JTAG is a standardized boundary scan methodology used
for board level testing to detect faults in package and board
connections, as well as internal circuitry. The MPA1000
JTAG boundary scan cell is designed to meet the IEEE std.
1149.1 for testability test of an integrated circuit.

IEEE 1149.1 Architecture

Figure 2-46 shows the general diagram of the IEEE
1149.1 MPA1000 JTAG system. Its design is compatible to
Motorola H4C and H4C+ family of arrays. The MPA1000
JTAG design is hard wired.

A more detailed description of the MPA1000 JTAG system
can be found in Motorola Application Note AN1618/D Using
JTAG Boundary Scan with the Motorola MPA1000 Family of
FPGAs in Ch 4. on page 4-209.

TAP and /O Periphery Signals

The TAP (Test Access Port) consists of five externally
accessible signals which are used to control and observe
boundary scan data. These five pins; TCK, TMS, TDI,
TRSTB, and TDO are multiplexed with normal signal pins.
After JTAG testing, these pins can be programmed as
normal 1/0 pins when MODEJ3] is deasserted. The test clock
pin, TCK, is used to synchronize all JTAG functions. The
TCK, TMS and TRSTB control the TAP controller. TDI is the
test data input pin and TDO is the test data output pin.

JTAG Control and Test Register

The TAP Controller is a synchronous, 16-state machine,
which selects the mode of operation for the test circuitry. An
example of the operation of the TAP controller is shown in
Figure 2—-47 where the TAP controller is sequenced through
most of its test states.

BOUNDARY SCAN o
REGISTER ‘_ ‘|
A
DEVICE ID | g X
REGISTER N
SL
[BYPASS
REGISTER
INSTRUCTION
REGISTER
TAP
CONTROLLER T
INSTRUCTION
REGISTER
Lq ARRAY CORE
k 1/0 PERIPHERY
l,, i B Il B JTAG CLOCK AND
” o 1 g CONTROL SIGNALS
TRSTB || T™™MS || TCK DI TDO

Figure 2-46. JTAG System

MOTOROLA MPA DATA — DL201 REV 2
2-35

MPA1000 Product Description

TEST LOGIC RESET

SELECT-DR-SCAN

="“D" STATE OF
TAP CONTROLLER

0 =LOGIC STATE OF TMS
“0” = OFF/LOW
“1”= ONHIGH

DR = DATA REGISTER
IR =INSTRUCTION REGISTER

SELECT-IR-SCAN

Jr_J + + + + + + + + + + + TRSTB
U U U U U U U L R LUy rek
4___’—+’_'_'+‘I_I_1 + T+ M+ Ml s M+ M+ Ml -+ |™S
T T o (0 3 = N S] i - 3 1 S () P 1 3 S v) STATE
T + + + + + + + + + + + RB
T + + HUU + LR+ + + + + + CKIR
T + s+ L+ + + + + + SHIR
T + + + + + [I:2 + + + + + UDIR
i ¥ ¥ ¥ ¥ + ¥ 1RO+ IR+ + CKDR
T + + + + + £ L+ M+ L+ + SHDR
T + + + + + + + + + Tk + UDDR
T T + L_IF ¥ ¥ L+ + + FLF s
T + + +L T+ L o IS o Y + EN
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Figure 2-47. TAP Controller and Test Cycle

M

MOTOROLA MPA DATA — DL201 REV 2
2-36

The Instruction Register is a 3-bit shift register, which
permits an instruction to be shifted into the design to select
the test to be performed. The Instruction Decode translates
the instruction into separate control signals. Table 2-12
shows the basic public instructions supported by Motorola’s
FPGA:

Table 2-12. Basic Public Instructions

Public Register
la [lo Instruction Selected
0 0 0 EXTEST Boundary Scan Cell
0 0 1 INTEST Boundary Scan Cell
0 1 0 SAMPLE | Boundary Scan Cell
1 0 0 IDCODE | Device Register
1 1 1 BYPASS Bypass Register

EXTEST (external test) is the boundary scan test that checks
board interconnections between integrated circuits(i.C.s).

INTEST (internal test) checks the logic internal to I.C.s.
SAMPLE test samples data at the |/O pins of an |.C. during
normal operating mode.

IDCODE instruction outputs the identification code of the I.C.
BYPASS instruction redirects the test data from TDI directly

to TDO, effectively removing the |.C. from the boundary scan
chain.

The Bypass Register is a single-bit shift register used to
provide a shortest path between TDI and TDO.

Table 2-13. Device Register ID Codes

Bit Number Code Use
0-11 Motorola Identification
12-21 Array ldentification
22-27 Programmable Logic Products Identification
28-31 Version Number

MPA1000 Product Description

The Device ldentification Register is a 32-bit register
which holds a manufacturer’s identity code, part number and
version code. The bit assignment for the ID code is given in
Table 2-13.

For example, for MPA1036 & MPA1064, the ID codes are
listed as follows:

Array ID code (Binary)

MPA1016 0001 001110 0100001110 000000011101
MPA1036 0001 001110 0100011110 000000011101
MPA1064 0001 001110 0100110100 000000011101
MPA1100 0001 001110 0101000000 000000011101
Array Hex ID code Hex ID Code
(Bit Order Reversed)

MPA1016 1390E01D C8 0507 B8

MPA1036 1391E01D C8 8507 B8
MPA1064 1393401D C8 C502 B8
MPA1100 1394001D C8 2500 B8

The JTAG ID code can easily be located when viewing a
configuration file with a text editor. The ID code is always the
first four data bytes. The bit order reversed version of the
code shows up in configuration images targeted to serial
EPROMs.

The Boundary Scan Register is the chain of JTAG
boundary scan cells that are linked together to form a shift
register around the periphery of the array. The test data
enters the boundary scan register through the TDI pin, the
rising edge of CKDR when SHDR is asserted, then is shifted
around the array through each 1/O cell in a counter clockwise
direction, and finally exits through the TDO pin. Since each
1/O pin is designed as a bidirectional pin, a 2—bit shift register
resides in each I/O cell, one for monitor either the input or
output, and the other to monitor the enable pin of the 3—state
output buffer. For every two clock cycles, the data shifts from
one /O site to the other. The boundary scan cell resides in
every /O site with the exception of TDI, TCK, TMS, TRSTB
and TDO pins.

MOTOROLA MPA DATA — DL201 REV 2
2-37

MPA1000 Product Description

MPA1000 Pin Definitions

Table 2-14. MPA1000 Package Pinout Compatibility

Device FN Suffix DD Suffix DH Suffix DK Suffix
84-Pin PLCC 128-Pin QFP 160-Pin QFP 208-Pin QFP

MPA1016 . .

MPA1036 . . .

MPA1064 . .

MPA1100 .

Table 2-15. Pin Definitions

Pin Definition

5V Int Vdd Internal array power (Vpp)

5V Ext Vdd Pad driver power for I/Os programmed to 5V

3V Ext Vdd Pad driver power for I/Os programmed to 3V. If no I/Os are programmed to 3V, tie to 5V Ext
Vdd. If 3V I/Os are used, connect is a 3.0V or 3.3V supply. These pins must be < 5V Ext Vdd.

Ext Vss Pad driver Vgg

Int Vss Internal array Vgg

110 User I/O

1/0 Clk User I/O with optional clock input

W} 7 i E@ MOTOROLA MPA DATA — DL201 REV 2

2-38

141 109
= - 108
. MPA1016
MPA1000 Pin Assignments Die Pad
Layout
kign} 07
Pinouts for MPA1016 o o
E Pin Location E Pin Location
d FN Suffix DD Suffix d FN Suffix DD Suffix
g 84-Pin 128-Pin g 84-Pin 128-Pin
e | Pad Pad Type PLCC QFP e | Pad Pad Type PLCC QFP
1 5V Int Vdd 1 37 Ext Vss
2 Ext Vss 38 Ext Vss 33
3 3V Ext Vdd 12 2 39 5V Ext Vdd
4 5V Ext Vdd 40 |l RESET 33 34
5 Ext Vss 3 41 3V Ext Vdd 35
L |6 1/0 (A16) 13 4 42 F[1] 34 36
L7 1/0 (A15) 14 5 B |43 /0 (A4) 35 37
L |8 1/0 (A14) 15 6 B |44 1/0 (A3) 36 38
L |9 1/0 (A13) 16 7 B |45 1/0 (A2) 37 39
L |10 /0 (A12) 17 8 B |46 1/0 (A1) 38 40
5V Ext Vdd B |47 1/0 (AO) 39 41
1/0 (A11) 18 9 5V Ext Vdd 40 42
/0 10 10 43
1/0 (A10) 19 1 /0 44
110 12 1/0 (D7) 41 45
1/0 Clk 20 13 /0 46
Int Vss 21 14 1/0 Clk 42 47
L |18 1/0 Clk 22 15 5V Int Vdd 43 48
L |19 1/0 (A9) 23 16 B |55 110 Clk 44 49
L |20 1/O (A8) 24 17 B |56 /10 50
L {21 110 18 B |57 /0 51
L |22 1/0 (A7) 25 19 B |58 1/0 (D6) 45 52
Ext Vss 26 20 B |59 110 53
/0 21 Ext Vss 46 54
1/O (AB)) 27 22 1/0 (D5) 47 55
/o 23 1/0 (D4) 48 56
1/0 (A5) 28 24 1/0 (D3) 49 57
/10 25 1/0 (D2) 50 58
F[4] 29 26 /0 (D1) 51 59
30 Int Vss 27 MODE[0] 52 60
31 F[3] 30 28 67 Ext Vss 61
32 Ext Vss 68 MODE[1] 53 62
33 F[2] 31 29 69 3V ExtVvdd
34 5V Ext Vdd 30 70 5V Ext Vdd 63
35 F[O] 32 31 71 Probe Pad NOT BONDED
36 3V Ext Vdd 32 72 Ext Vss 66

Shaded areas indicate Alternate I/O Zones.

MOTOROLA MPA DATA — DL201 REV 2
2-39

MPA1000 Product Description

Pinouts for MPA1016 (continued)

Shaded areas indicate Alternate 1/O Zones.

M4 T

E Pin Location E Pin Location
d FN Suffix DD Suffix d FN Suffix DD Suffix
g 84-Pin 128-Pin g 84-Pin 128-Pin
e | Pad Pad Type PLCC QFP e | Pad Pad Type PLCC QFP
73 5V Ext Vdd 11 5V Ext Vdd 75 98
74 MODE[2] 54 67 112 || 3V Ext Vdd 99
75 5V Int Vdd 113 Ext Vss
76 MODE([3] 55 68 T|114 /0 76 100
77 Vpp T{115 110 77 101
78 Clk 56 69 T]116 /0 78 102
79 3V Ext Vdd 57 70 T 117 /0 79 103
80 Ext Vss 7 T\ 118 110 80 104
R |81 1/0 (DCLK) 58 72 Ext Vss 105
R |82 /10 73 /0 81 106
R |83 1/0 (DO) 59 74 /0 82 107
R |84 110 75 110 83 108
R |85 1/O (TDO) 60 76 /0 109
Ext Vss 77 1/O Clk 84 110
1/O (TDI) 61 78 5V Int Vdd 1 m
1/O (TMS) 62 79 T {126 | 1/OClk 2 112
110 80 T {127 |10 113
1/0 (TRSTB) 63 81 T|128 l{e} 3 114
1/0 Clk 64 82 T|129 |10 115
Int Vss 65 83 T}130 |} I/O 5 116
R |93 1/0 Clk 66 84 5V Ext Vdd 17
R |94 /10 85 110 6 118
R |95 /0 67 86 110 7 119
R |96 /0 87 110 8 120
R |97 /10 68 88 /0 9 121
98 Ext Vss 89 1/0 (A17) 10 122
99 1/0 (TCK) 69 90 187 || Ext Vss 123
100 |l 11O 70 91 138 || 5V Ext vdd 124
101 l[e} 71 92 139 || Ext Vss 1 125
102 || /O 72 93 140 || 3V Ext Vdd 126
103 110 73 94 141 Int Vss 127
104 || 5V Ext Vdd NC 64,65,128
105 || 3V Ext Vdd
106 || Ext Vss 74 95
107 || 5V Ext Vdd
108 || 5V Int Vdd 96
109 Int Vss 97
110 Ext Vss

MOTOROLA MPA DATA — DL201 REV 2

2-40

195 150
= e 149

MPA1036

Pinouts for MPA1036 Die Pad

Layout

s1f_ _gss

52 97

Pin Location Pin Location

E DD DH E DD DH
d FNSuffix | Suffix | Suffix | HiSuffix d FNSuffix'| Suffix | Suffix | HISuffix
g 84-Pin 128-Pin | 160-Pin | 181-Pin g9 84-Pin 128-Pin | 160-Pin | 181-Pin
e | Pad Pad Type PLCC QFP QFP PGA e | Pad Pad Type PLCC QFP QFP PGA
1 5V Int Vdd 1 A2 L]s7 [[wo 21 9 M1
2 |l extvss VSSE L |38 | 1o e 27 22 8 L2
3 [lavExtvad| 12 2 40 Al tlse [[vo 23 7 N1
4 | 5VExtvdd VDDE L{40 [voas) 28 24 6 J3
5 || Extvss VSSE tlar [[vo 25 5 P1
L|e [wvonie 13 39 B2 a2 | Fa 29 26 4 K3
Lz |lvo 38 c2 43 [Intvss 27 VSSI
L{s [vonts) 14 5 37 D4 44 | Fi3 30 28 3 M2
L]e [lwo 36 B1 45 | Extvss VSSE
L |10 [von1e 15 6 35 c3 46 | Fi21 31 29 2 L3
11 |[5V Extvdd VDDE 47 || 5V Ext vad 30 VDDE
L]12 [vo(a13) 16 7 34 D3 48 | Fio) 32 31 1 M3
L3 [[vo 33 ci 49 || 3v Ext vdd 32 P2
L {14 [fvo(a12) 17 8 32 D2 50 || ExtVss VSSE
;L 15 |[[vo 31 D1 51 || ExtVss VSSE
L [16 [von 18 9 30 E3 52 || Extvss 33 VSSE
17 || Extvss 29 VSSE 53 || 5V ExtVvdd VDDE
L|1s [wo 10 28 F3 54 || RESET 33 34 160 Ri
L |19 [voi0) 19 1 27 E1 55 || 3V Ext Vdd 35 N2
L{20 [wo 26 E2 56 || F[1] 34 36 159 R2
L2t JJvo 12 25 F1 B [57 |[vo e 35 37 158 N3
Ll22 [fvock 20 13 24 G3 B|s8 [0 157 R3
23 || 5vintvdd 23 G1 B [59 [[vo (a3 36 38 156 N4
24 || Intvss 21 14 22 vssl Bleo [[1vo 155 R4
t]2s [lvock 22 15 21 G2 B |61 | 102 37 39 154 P3
tles |wo 20 F2 Ext Vss 153 | VSSE
L{27 [[vo 19 Hi 1/0 152 N5
‘L |28 [1O (A9) 23 16 18 H3 /0 (A1) 38 40 151 R5
{20 [fvo 17 H2 10 150 P4
30 || 5V Extvdd 16 VDDE 1/0 (A0) 39 4 149 R6
L |31 [[voe) 24 17 15 J /0 148 NG
L{s2 [vo 18 14 J2 5VExtvdd | 40 42 147 | VDDE
L{33 [[vonn 25 19 13 K1 Bles [0 43 146 P5
L|34 [Jvo 12 K2 B[70 [[vo 44 145 R7
L{ss [fvo 1 L1 B |71 [[vom7) 4 45 144 N7
36 || ExtVss 26 20 10 VSSE B|72 [fvo 46 143 R8

Shaded areas indicate Alternate 1/0 Zones.

MOTOROLA MPA DATA — DL201 REV 2

2-41

MPA1000 Product Description

Pinouts for MPA1036 (continued)

Shaded areas indicate Alternate 1/O Zones.

M7 0

Pin Location Pin Location
E DD DH E DD DH
d FNSuffix | Suffix | Suffix | HiSuffix d FNSuffix [Suffix | Suffix | HiSuffix
g 84-Pin 128-Pin | 160-Pin | 181-Pin g 84-Pin 128-Pin | 160-Pin | 181-Pin
e | Pad {| Pad Type PLCC QFP QFP PGA e | Pad || Pad Type PLCC QFP QFP PGA
B |73 1/0 Clk 42 47 142 N8 R | 109 || /O (Dclk) 58 72 116 L14
74 Int Vss 141 VSsI R | 110)| /O 73 115 M13
5V Int Vdd 43 48 140 P6 R | 111 || I/0 (DO) 59 74 114 M15
1/0 Clk 44 49 139 P8 R | 112 || I/1O 75 113 N14
/10 50 138 P7 R | 113 |} I/O (Tdo) 60 76 12 K14
110 51 137 R9 114 || Ext Vss 77 1 VSSE
1/0 (D6) 45 52 136 P9 115 || I/O (Tdi) 61 78 110 L15
/0 53 135 R10 116 || 110 109 K13
Ext Vss 46 54 134 VSSE 117 || /O 108 K15
B |82 1/O (D5) 47 55 133 R11 118 || I/O (Tms) 62 79 107 M14
B |83 /0 132 N9 119 || /O 106 J15
B |84 1/0 (D4) 48 56 131 R12 120 || 5V Ext vdd 105 VDDE
B |85 /0 130 P10 R | 121 || /O 80 104 H14
B | 86 1/0 (D3) 49 57 129 P11 R | 122 || I/O (Trstb) 63 81 103 J13
5V Ext Vdd VDDE R {123 || /O 102 H15
/0 128 R13 R | 124 || I/O 101 J14
1/0 (D2) 50 58 127 N10 R | 125 || I/O Clk 64 82 100 G14
/10 126 R14 Int Vss 65 83 99 VSSI
1/0 (D1) 51 59 125 N11 5V Int Vdd 98 G15
/0 124 P13 1/0 Clk 66 84 97 H13
MODE[0] 52 60 123 P12 /0 85 96 F15
94 Ext Vss 61 VSSE /0 67 86 95 G13
95 MODE[1] 53 62 122 N12 110 87 94 E15
96 3V Ext Vdd 121 P14 110 68 88 93 F14
97 5V Ext Vdd 63 VDDE Ext Vss 89 92 VSSE
98 Probe Pad NOT BONDED R | 134 | I/O (Tck) 69" 90 91 F13
99 Ext Vss VSSE R | 135 || 11O 90 D15
100 || ExtVss 66 VSSE R [136 || /O 70 89 E14
101 || 5V Ext Vdd VDDE R 137 || /O 91 88 C15
102 || MODE[2] 54 67 120 M12 R 138 || IO 7 87 E13
103 || 5V Int Vdd R15 5V Ext Vdd VDDE
104 || MODE[3] 55 68 119 N13 110 92 86 D13
105 || Vpp P15 /0 72 85 D14
106 || Clk 56 69 118 L13 110 93 84 C13
‘1 07 || 3V Ext Vdd 57 70 117 N15 /10 83 B15
108 || Ext Vss 71 VSSE 110 73 94 82 D12

MOTOROLA MPA DATA — DL201 REV 2

2-42

MPA1000 Product Description

Pinouts for MPA1036 (continued)

Pin Location Pin Location
5 oD DH 5 DD DH
g F:ﬁ:gjx 1233% 1233':% '::s?f;f-.i,’,(g Fﬁ'ﬁ,‘;!ﬁ" 12:3‘1‘;% 1§xfl|’)i(n :“sff;fi:
e | Pad || Pad Type PLCC QFP QFP PGA e | Pad || Pad Type PLCC QFP QFP PGA
145 || Ext Vss VSSE T|181 [[1VO 118 53 A6
146 || 3V Ext Vdd c12 T|182 |[I/O 6 52 cé6
147 || Ext Vss 74 95 81 VSSE T]183 || /O 51 A5
148 || 5V Ext Vdd VDDE T|184 || 1O 7 119 50 B5
149 || 5V Intvdd 96 Ci14 185 || Ext Vss 49 VSSE
150 || Int Vss 97 VSSI T.|186 [[/O 8 120 48 c5
151 || Ext Vss VSSE T 1187 || /O 47 A4
152 || 5V Ext Vdd 75 98 80 VDDE T 188 |[/O 9 121 46 B4
153 || 3V Ext Vdd 99 A15 T189 [/O 45 A3
154 || Ext Vss 79 VSSE T1190 || /O (A17) 10 122 44 c4
T (155 || /O 76 100 78 B14 191 || Ext Vss 123 43 VSSE
T |156 || I/O 77 Cc11 192 | 5V Ext Vdd 124 42 VDDE
T 157 |[11O 77 101 76 B13 193 || Ext Vss 11 125 VSSE
T 158 |f 11O 75 B12 194 || 3V Ext Vdd 126 41 B3
T (159 (f 11O 78 102 74 Al4 195 || Int Vss 127 VSsI
160 || 5V Ext Vdd 73 VDDE NC 64,65, E5
T1161 || 11O 79 103 72 A13 - 128
T|1e2 | vo 71 c1o 3/8813263;:12: I(53.312 E12, K12, D10, M10, G4, E4, K4, D6, M6
T.{163 | /O 80 70 A12 VSSI Plane: ES, L8, H11, M11, H5, D5
7 [164 10 04 o B VDDE Plane: ?z,m?b?a;ﬁgnz, L12, D9, M9, D11, H4, F4, M4,
T:{165 || /O 81 68 A1l
166 || Ext Vss 105 67 VSSE
T |167 || /O 82 106 66 A10
T|168 |f 11O 107 65 B10
T 169 |f VO 83 108 64 A9
T |170 [f 11O 109 63 c9
T [171 || /O Clk 84 110 62 B8
172 || 5V IntVdd 1 111 61 B9
173 || Int Vss 60 VSSI
T 174 || /O Clk 2 12 59 Cc8
T 1175 || VO 13 58 A8
T |176 || VO 3 14 57 B7
T 177 |[1O 115 56 A7
T 1178 t1/O 4 116 55 c7
179 | 5V Ext vdd 17 VDDE
T |180 [[11O 5 54 B6

Shaded areas indicate Alternate /O Zones.

MOTOROLA MPA DATA — DL201 REV 2
2-43

241 184

0 |=)

1 0183
MPA1064
Pinouts for MPA1064 Die Pad
Layout
62 Jn nc 121
63 120
E Pin Location E Pin Location
d DH Suffix | DK Suffix | KE Suffix d DH Suffix | DK Suffix | KE Suffix
g 160-Pin 208-Pin 224-Pin g 160-Pin 208-Pin 224-Pin
e |Pad || Pad Type QFP QFP PGA e | Pad || Pad Type QFP QFP PGA
1 5V Int Vdd VDDI 37 |[vo 32 L1
2 Ext Vss VSSE 38 || /O (A9) 18 33 J3
3 3V Ext Vdd 40 E4 39 (|0 34 L2
4 5V Ext Vdd VDDE 40 |vo 17 35 K3
5 Ext Vss VSSE 41 o 36 M1
L|6 1/0 (A16) 39 1 c4 42 || 5V Ext Vdd 16 37 VDDE
L{7 110 2 B2 L |43 | VO (A8) 15 38 N1
L8 110 3 D4 L4 [fvO 14 39 K2
L]9 1/0 38 4 c2 L |45 | VO (A7) 13 40 P1
L|10 ||vo 5 c3 L |46 [vO 12 41 L3
Ext Vss 6 VSSE L |47 ||vO 1 42 N2
1/0 (A15) 37 7 D3 Ext Vss 10 43 VSSE
110 8 B1 /0 9 44 R1
110 36 9 D2 1/0 (A6) 8 45 M3
110 10 ci l[e} 7 46 T1
110 (A14) 35 1 G4 1/O (A5) 6 47 L4
5V Ext Vdd 12 VDDE 110 5 48 R2
L |18 | vo(A13) 34 13 E3 Fl4] 4 49 N3
L |19 [vo 33 14 D1 55 || IntVss VssI
L {20 [wona12) 32 15 E2 56 || FI3] 3 50 P2
L|21 |wo 31 16 E1 57 || ExtVss VSSE
L |22 | vo(At1) 30 17 F3 58 || F[2] 2 51 P3
Ext Vss 29 18 VSSE 59 || 5V ExtVdd VDDE
1/0 28 19 G3 60 |l F[o] 1 52 P4
1/0 (A10) 27 20 F1 61 || 3vExtvdd N4
110 26 21 G2 62 | ExtVss VSSE
110 25 22 G1 63 || ExtVss 53 VSSE
1/0 Clk 24 23 Ja 64 |l 5V Extvdd VDDE
5V Int Vdd 23 24 VDDI 65 | RESET 160 54 R3
Int Vss 22 25 VssI 66 [3V ExtVdd 55 P5
L |31 | vock 21 26 H1 67 || F[1] 159 56 T2
L|32 |wo 27 H3 B |68 | /O (A4) 158 57 R4
L|33 |vo 20 28 J2 B |69 [1o 58 T3
L |34 |10 29 H2 B |70 |10 157 59 P6
L3 o 19 30 K1 B|71 ||voO 60 u2
36 || ExtVss 31 VSSE B |72 |10 (A3) 156 61 T4

Shaded areas indicate Alternate I/O Zones.

M T

MOTOROLA MPA DATA — DL201 REV 2
2

—44

MPA1000 Product Description

Pinouts for MPA1064 (continued)

E Pin Location E Pin Location
d DH Suffix | DK Suffix | KE Suffix d DH Suffix | DK Suffix | KE Suffix
g 160-Pin | 208-Pin | 224-Pin g 160-Pin | 208-Pin | 224-Pin
e | Pad || Pad Type QFP QFP PGA e | Pad || Pad Type QFP QFP PGA
73 || Extvss VSSE B | 109 [[vo 126 % T13
g |74 [[vo 62 R5 110 [Ext vss 97 VSSE
s8|7s [vo 155 63 U3 g |11 [[vo 98 u1s
8|76 |vo 64 5 g 112 [[vo 1) 125 99 R13
8|77 [[vo@n2 154 65 U4 a3 [[vo 100 U16
gl78 [[vo 66 P7 8|14 Jfwo 124 101 T14
79 || Extvss 153 67 VSSE 8115 [[vo 102 T15
B[so [0 152 68 R6 116 || MODE[0] 123 103 R14
B |81 [vo@an 151 69 us 117 || Extvss VSSE
Ble2 |wo 150 70 R7 118 || MoDE[] 122 104 R15
B |83 | 10 (a0) 149 71 us 19 [[avExtvdd| 121 P12
B[es [0 148 72 P8 120 [5v Ext vdd VDDE
85 || 5V Extvdd 147 73 VDDE 121 || Probe Pad NOT BONDED
B8lss [0 146 74 T7 122 || Ext vss VSSE
887 [[wo 145 75 u7 123 || 5v Ext vd 105 VDDE
888 |10 D7) 144 76 R8 124 || MODE[2] 120 106 T16
B8 [[wo 143 77 us 125 | 5v 1nt vad P1o
8|90 [[vock 142 78 8 126 || MODE3] 119 107 T17
91 |l intvss 141 79 VsSl 127 || vep P14
92 | 5vintvdd 140 80 vDDI 128 || cik 118 108 P16
B|o3 [[vock 139 81 To 129 [[3V Ext vdd 117 109 N14
Blos [[1o 138 82 R9 130 || Extvss 110 VSSE
B|os [[10 137 83 u10 R [131 [[o (ocLKy 116 111 R16
B |96 [0 (Ds) 136 84 R10 R [132 [[vo 112 R17
B[o7 [fuo 135 85 T10 R [133 ([0 15 113 L14
98 | ExtVss 134 86 VSSE R |134 [0 114 N16
890 [1o (Ds) 133 87 utt R [135 || vo (Do) 114 115 P15
8100 [[10 132 88 P10 136 || ExtVss VSSE
8.[101 [[vo (D4 131 89 T 137 || vo 113 116 N15
8 {102 1o 130 90 R11 138 || 110 17 P17
8103 || vo (D3) 129 91 U2 139 | 110 118 M15
104 || 5V Ext vdd VDDE 140 [0 119 N17
B [105 [[10 128 92 u13 141 || vo (TDO) 12 120 L15
B 108 |10 93 P11 142 || Extvss 1M 121 VSSE
B [107 [1o (D2) 127 94 u14 143 || vo (toI) 110 122 L16
B [108 |10 95 R12 144 [0 109 123 M17

Shaded areas indicate Alternate I/O Zones.

MOTOROLA MPA DATA — DL201 REV 2

2-45

MPA1000 Product Description

Pinouts for MPA1064 (continued)

E Pin Location E Pin Location
d DH Suffix | DK Suffix | KE Suffix d DH Suffix | DK Suffix | KE Suffix
g 160-Pin | 208-Pin | 224-Pin g 160-Pin | 208-Pin | 224-Pin
e | Pad Pad Type QFP QFP PGA e | Pad Pad Type QFP QFP PGA
R | 145 || 11O 108 124 K15 181 |f Ext Vss 81 VSSE
R | 146 || O (TMS) 107 125 L17 182 || 5V Ext Vdd VDDE
R | 147 || 1O 106 126 K16 183 || 5V Int Vdd vDDI
148 || 5V Ext Vdd 105 127 VDDE 184 f| Int vss vssl
R |49 1o 104 128 J15 185 || Ext vss 157 VSSE
R | 150 || /O (TRSTB) 103 129 K17 186 || 5V Ext vdd 80 VDDE
W 151 | 10 102 130 J14 187 || 3V Ext Vdd 158 D13
R 152 {10 101 131 J16 188 || Ext Vss 79 VSSE
2 1153 || 110 Clk 100 132 H16 T|189 || 1O 159 cl4
154 || Int Vss 99 133 VSSI T1]190 }| /O 78 160 B15
155 | 5V Int Vdd 98 134 VDDI 171|191 [VO 161 D12
R | 156 || 11O Clk 97 135 H17 T 192 1o 77 162 A16
R | 157 || /O 96 136 H15 T]193 || VO 76 163 c13
R | 158 || /O 95 137 G17 194 || Ext Vss 164 VSSE
R [159 [l 1O 94 138 G16 71 {195 [0 165 B13
R | 160 | /O 93 139 F17 196 || 110 75 166 B14
161 || Ext Vss 92 140 VSSE 71 [197 w0 167 D11
A [1e2 o 141 E17 71198 || Vo 74 168 A15
1163 || O 142 G15 r | 199 [fvo 169 c12
R | 164 || VO (TCK) 91 143 D17 200 || 5V Ext Vdd 73 170 VDDE
165 || 110 90 144 F15 T | 201 || 10 72 171 c11
R 166 | VO 89 145 c17 T {202 |10 71 172 A4
167 || 5V Ext Vdd 146 VDDE T | 203 || WO 70 173 B11
168 || 110 88 147 E16 T {204 [l 10 69 174 A13
169 | /O 148 G14 T |205 [o 68 175 c10
170 || /O 87 149 D16 206 || Ext Vss 67 176 VSSE
171 || vo 86 150 Ei5 1207 [[vo 66 177 B10
172 || /o 85 151 B17 208 || vO 65 178 A12
173 || ExtVss VSSE 1 [200 [VO 64 179 c9
174 | 1o 84 152 c16 {210 [[vo 63 180 At
R|175 | 1o 153 D15 211 || vo cik 62 181 D9
% 176 || 11O 83 154 B16 212 | 5V Int vad 61 182 VDDI
R | 177 || O 155 D14 213 |l Intvss - 80 183 vssl!
[178 | WO 82 156 c15 T |214 || voCik 59 184 A10
179 || Ext Vss VSSE T |215 || 10 58 185 B9
180 || 3V Ext vdd E14 T |216 || 11O 57 186 A8

Shaded areas indicate Alternate /O Zones.

s

MOTOROLA MPA DATA — DL201 REV 2

2-46

MPA1000 Product Description

Pinouts for MPA1064 (continued)

Shaded areas indicate Alternate 1/O Zones.

E Pin Location E Pin Location
d DH Suffix DK Suffix KE Suffix d DH Suffix DK Suffix KE Suffix
g 160-Pin 208-Pin 224-Pin g 160-Pin 208-Pin 224-Pin
e | Pad || Pad Type QFP QFP PGA e | Pad || Pad Type QFP QFP PGA
T {217 ||vo 56 187 B8 1 110 45 202 D6
T|218 |10 55 188 A7 110 203 A2
5V Ext Vdd 189 VDDE {tvo a1y 44 204 cs
1/0 54 190 B7 /0 205 B3
10 53 191 cs 237 || Ext Vss 43 VSSE
110 52 192 A6 238 |f 5V Ext Vdd 42 VDDE
10 51 193 c7 239 || Ext Vss 206 VSSE
110 50 194 A5 240 || 3V Ext Vdd 4 207 D5
Ext Vss 49 195 VSSE 241 || IntVss 208 VsSI
T [226 [WO 196 A4 224 PGA NOTES:
T2 jvo 8 197 o7 VSSE P i?:f;,(),&r;’;;%;séx?ﬂ,F14,H13,J1,J5,J17,K13,
T 228 | /O 198 B5 M4, M14, N7, N11, P9, U1, U9, U17
1 N N I N N (L 4P
T |23 |f o 46 200 A3
Ext Vss VSSE
1/0 201 B4

MOTOROLA MPA DATA — DL201 REV 2

2-47

Pinouts for MPA1100

MPA110
Die Pad

Layout

E Pin Location Pin Location
d DK Suffix HV Suffix DK Suffix HV Suffix
g 208-Pin 299-Pin 208-Pin 299-Pin
e [Pad || Pad Type QFP PGA Pad Type QFP PGA
1 5V Int Vdd VDDI 1/0 Clk 26 L3
2 Ext Vss VSSE 10 27 L1
3 3V Ext Vdd F5 110 28 L4
4 5V Ext Vdd VDDE 110 29 L2
5 Ext Vss VSSE 110 30 M2
L|6 110 c2 Ext Vss 31 VSSE
L|7 110 D3 L |43 (1O 32 M3
L|8 10 (A16) 1 B1 L |44 | /O (A9) 33 M1
L]|9 110 E3 L[45 | 1O 34 M4
L|10 [0 2 c1 L |46 | VO 35 N1
11 || ExtVss VSSE L |47 1O 36 N2
12 |0 3 D1 5V Ext Vdd 37 VDDE
13 || /o F3 1/0 (A8) 38 N3
14 |0 4 E2 110 39 P1
15 || /0 G4 1/0 (A7) 40 N4
16 || /O 5 E1 110 41 P2
17 || ExtVss 6 VSSE 110 42 P3
L |18 | /O (A15) 7 F2 Ext Vss 43 VSSE
L|19 [fvo 8 H4 L |55 [0 44 P4
Ll20 [[io 9 Fi L|s6 [0 R1
L2t JJvo 10 H3 L |57 [vO(A6) 45 R3
L |22 | 1/O(A14) 1 G2 L|s8 [1O R2
5V Ext Vdd 12 VDDE L|59 |vo 46 R4
1/0 (A13) 13 G1 Ext Vss VSSE
110 14 J4 I/} T3
1/0 (A12) 15 H2 1/O (A5) 47 T
110 16 J3 110 T4
1/0 (A11) 17 H1 7o) 48 T2
Ext Vss 18 VSSE 110 u3
L|30 [0 19 J F[4] 49 ut
L |31 || 1o (A10) 20 K4 67 || IntVss VsslI
L3 [fro 21 K2 68 | FI3] 50 V1
L33 [[vo 22 K3 69 || ExtVss VSSE
L |34 ||ocCk 23 K1 70 || F2] 51 w1
35 || 5V Int Vdd 24 VDDI 71 || 5V Ext Vdd VDDE
36 | IntVss 25 VssI 72 || Flo] 52 v2

Shaded areas indicate Alternate I/O Zones.

M -

MOTOROLA MPA DATA — DL201 REV 2

MPA1000 Product Description

Pinouts for MPA1100 (continued)

E Pin Location E Pin Location
d DK Suffix HV Suffix d DK Suffix HV Suffix
g 208-Pin 299-Pin -] 208-Pin 299-Pin
e [Pad || Pad Type QFP PGA e | Pad || Pad Type QFP PGA
73 |{ 3V Ext vdd R5 8|11 vock 81 V11
74 || Extvss VSSE ‘81112 [0 82 Y11
75 [Extvss 53 VSSE B 110 83 Ut
76 || 5V Ext Vdd VDDE 1/0 (D6) 84 W11
77 || RESET 54 V3 110 85 w12
78 || 3V Ext Vdd 55 T6 Ext Vss 86 VSSE
79 | Fl1] 56 us B | 117 || /O (D5) 87 V12
B |80 [0 w2 B |118 |10 88 Y12
B |81 |f1o V5 B | 119 [VO (D4) 89 u12
B |82 |10 (A4 57 Y2 B |120 |10 90 Y13
B |83 [0 V6 B | 121 | vo (D3) 91 w13
B |84 |f1o 58 Y3 5V Ext Vdd VDDE
Ext Vss VSSE ¢} 92 V13
110 59 Y4 1/0 93 Y14
1/0 60 u7 1/0 (D2) 94 u13
1/0 ws 110 95 W14
1/0 (A3) 61 v7 1/0 96 V14
10 Y5 Ext Vss 97 VSSE
Ext Vss VSSE B [129 |f 11O 98 u14
B|92 [fvo 62 Y6 B |130 {f VO Y15
B|93 [[vo 63 us B | 131 | vO (D1) 99 V15
B |94 [l1o 64 w7 B |132 |l 1o Y16
B|os | Vo (A2) 65 v8 B |133 |f 110 100 u1s
B |9 [fvo 66 Y7 Ext Vss VSSE
97 || ExtVss 67 VSSE 1/0 V16
/0 68 ws /0 101 Y17
1/0 (A1) 69 ug9 110 V17
/0 70 Y8 110 102 Y18
1/0 (A0) 71 V9 1/0 V18
10 72 w9 140 || MODE[0] 103 Y19
5V Ext Vdd 73 VDDE 141 || Ext vss VSSE
B |104 {[1O 74 Y9 142 || MODE[1] 104 w19
B |105 [l 1O 75 u10 143 |l 3V Ext Vdd Ti6
B | 106 || 110 (D7) 76 W10 144 || 5V Ext Vdd VDDE
B | 107 [[1O 77 V10 145 || Probe Pad NOT BONDED
B | 108 || VO CK 78 Y10 146 [Ext Vss VSSE
109 Int Vss 79 VSSI 147 || 5V Ext Vdd 105 VDDE
110 || 5V Int vdd 80 VDDI 148 [| MODE[2] 106 V19

Shaded areas indicate Alternate I/O Zones.

MOTOROLA MPA DATA — DL201 REV 2

2-49

MPA1000 Product Description

Pinouts for MPA1100 (continued)

E Pin Location Pin Location
d DK Suffix HV Suffix DK Suffix HV Suffix
g 208-Pin 299-Pin 208-Pin 299-Pin
e | Pad Pad Type QFP PGA Pad Type QFP PGA
149 [5V Int Vdd u17 /10 136 K18
150 || MODE[3] 107 W20 110 137 K19
151 || Vpp u18 I} 138 K17
152 || Clk 108 V20 110 139 J20
153 || 3V Ext Vdd 109 R16 Ext Vss 140 VSSE
154 || Ext Vss 110 VSSE R [192 [[11O 141 H20
R | 155 |[/O T17 R 193 [I/O 142 J18
R | 156 || 11O u20 R [194 || /O (TCK) 143 H19
R | 157 || I/O (DCLK) 111 T18 R | 195 || /O 144 J17
R | 158 || 11O T19 R | 196 || I/O 145 G20
R 1159 || /O 112 R17 5V Ext Vdd 146 VDDE
Ext Vss VSSE /o] 147 G19
110 113 R18 110 148 H18
l{e} 114 T20 110 149 F20
/0 R19 110 150 H17
1/0 (DO) 115 R20 110 151 F19
/0 P17 Ext Vss VSSE
Ext Vss VSSE R | 204 || I/O 152 E20
R | 167 [/O 116 P18 R |205 || I/O G17
R | 168 [f /O 17 P19 R |206 |l I/O 153 E19
R [169 | /O 118 N17 R | 207 || /O F18
R [170 |[/O 119 P20 R |208 [fI/O 154 D20
R | 171 || /O (TDO) 120 N18 Ext Vss VSSE
Ext Vss 121 VSSE l[e} 155 C20
1/0 (TDI) 122 N19 l[e} E18
/10 123 N20 /[e] B20
110 124 M17 /0 156 D18
1/O (TMS) 125 M20 /{e] C19
l[e} 126 M18 Ext Vss VSSE
5V Ext Vdd 127 VDDE 216 || 3V Ext Vdd F16
R | 179 || /O 128 M19 217 || Ext Vss VSSE
R | 180 || I/O (TRSTB) 129 L19 218 || 5V Ext Vdd VDDE
R | 181 || /O 130 L17 219 || 5V Int Vdd VDDI
R | 182 || VO 131 L20 220 || IntVss VSSI
R | 183 [f /O Clk 132 L18 221 || Ext Vss 157 VSSE
184 || IntVss 133 VSSI 222 || 5V Ext Vdd VDDE
185 || 5V Int Vdd 134 VDDI 223 || 3V Ext Vdd 158 E15
1/0 Clk 135 K20 224 || Ext Vss VSSE

Shaded areas indicate Alternate /O Zones.

M

MOTOROLA MPA DATA — DL201 REV 2

2-50

MPA1000 Product Description

Pinouts for MPA 1100 (continued)

Shaded areas indicate Alternate I/O Zones.

E Pin Location E Pin Location
d DK Suffix HV Suffix d DK Suffix HV Suffix
g 208—Pin 299-Pin g 208-Pin 299-Pin
e | Pad || Pad Type QFP PGA e | Pad || Pad Type QFP PGA
T 225 [[o c18 T | 262 |[10 190 B9
T 226 [[10 159 B19 T | 263 [[vo 191 co
T | 227 110 Cc17 T | 264 110 192 A8
T 228 [10 160 A19 T {265 || vo 193 D9
T 229 || 1o ci6 T | 266 |[vo 194 B8
230 || Ext Vss VSSE 267 || Ext Vss 195 VSSE
7 [231 [[v0 161 D15 268 || 110 196 A7
1232 [[vo A18 269 || O 197 cs
T {233 [0 162 c15 270 [vO 198 B7
7 234 || 10 A17 271 [1o 199 D8
T {235 [|vo 163 D14 ¥ 272 [vo 200 A6
236 || Ext vss 164 VSSE 273 || 5V Ext Vdd VDDE
T | 237 [0 165 cl4 T 274 [[vo 201 A5
T 238 || 1o 166 A16 T 275 [Vo c7
T 239 [vo 167 D13 T |276 |{vo 202 B5
T 240 [[10 168 A15 T |277 [fvo c6
T |241 [[vo 169 c13 T |278 [vo 203 A4
242 || 5V Ext Vdd 170 VDDE 279 || Ext Vss VSSE
1o 171 B13 280 || Vo A3
1o 172 Al4 281 || vo (A17) 204 c5
1o 173 D12 282 [vo A2
) 174 A13 283 || 1o c3
1 [247 w0 175 c12 284 || 10 205 B2
248 || Ext Vss 176 VSSE 285 || Ext Vss VSSE
T | 249 [0 177 B12 286 || 5V Ext Vdd VDDE
T {250 [[10 178 Al2 287 || ExtVss 206 VSSE
T|251 [o 179 D11 288 || 3V Ext Vdd 207 E6
T |25 [0 180 A 289 || Int vss 208 VSSI
T | 253 |[vo cik 181 Ci1 299 PGA NOTES:
S | oo | Veskre 1 a0 9,0 01,6 0,057, 0
Int Vss 183 vssl N16,T5, T8, T13, U2, U6, U16, U19, V4, W3, W16, W18,
Vo Cik 184 A0 VSS! Plane: \Eqb?{é?z,ns, K5, L16, M5, T10, T12
110 185 c10 VDDE Plane: B4, Bi1, B15, B17, D4, D6, D17, E5, E7, E14, E16, F4,
0 156 510 E17,G5,G16, P5, P16, 7, T14, U4, W4, W6, W15, W17
VDDI Plane: E9, E11, J5, K16, L5, M16, T9, T11
e 187 D10
10 188 A9
5V Ext Vdd 189 VDDE

MOTOROLA MPA DATA — DL201 REV 2

2-51

MPA1000 Product Description

Absolute Maximum Ratings*

MPA1000 Electrical Specifications

Symbol Parameter Min Max Unit
Vdd: Vddo | DC Supply Voltage -0.5 6.5 \
Vout DC Output Voltage -0.5 Vpp +0.5 \
Vin DC Input Voltage -0.5 Vpp +0.5 \
| DC Current Drain per Pin, Any Single Input or Output 50 mA
TA Operating Temperature Range (In Free Air) Commercial 0 70 °C

Industrial —40 85
hq Storage Temperature Range —65 150 °C

*

Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating

Conditions. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, itis advised that normal precautions
be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Recommended Operating Conditions

Symbol Parameter Min Max Unit
Vdd DC Supply Voltage Commercial 4.75 5.25 \'
Industrial 4.50 5.50
Vddo Output Supply Voltage 5V Output Supply (5V ext) Vdd Vdd \
3V Output Supply, No I/Os Programmed to 3V Vdd Vdd
AN 3V Output Supply, 1 or more I/Os Programmed to 3V 3.0 3.6
VIH High Level Input Voltage TTL 2.0 Vdd \
CMOS 70 100 %Vddo
ViL Low Level Input Voltage TTL 0 0.8 \
CMOS 0 20 %Vddo
DC Electrical Characteristics — Inputs
Symbol ' Parameter Min Max Unit
VIH High Level Input Voltage TTL 2.0 Vdd \
' CMOS 70 100 %Vddo
ViL Low Level Input Voltage TTL 0 0.8 \
CMOS 0 20 %Vddo
IIN Input Leakage Current -10 10 HA
loz 3-State Leakage Current -10 10 HA
IPD Pad Pull-Down (When Selected) at Vin = Vddo 40 110 pA
Ipu Pad Pull-Up (When Selected) at Vi = 0V 20 200 A
CIN Input Capacitance (Sample Tested) PGA Package 15 pF
Plastic Packages 10

DC Electrical Characteristics — Outputs (4.5 < 5_Ext_Vdd < 5.5; ~40°C < Ta < +85°C; Vdq = 5V; 3.0 < 3V_Ext_V{q < 3.6)

Symbol Parameter Min Max Unit
VOH High Level Output Voltage DPLD_OPLEVEL=5V; DPLD_OPDRIVE=high; loH=6mA 24 \
DPLD_OPLEVEL=5V; DPLD_OPDRIVE=low; IpH=4mA 24
DPLD_OPLEVEL=3V; DPLD_OPDRIVE=high; IoH=6mA 2.1
DPLD_OPLEVEL=3V; DPLD_OPDRIVE=low; IoH=4mA 21
(Note 6.) DPLD_OPLEVEL=5V; DPLD_OPDRIVE=high; |pH=44mA 22
VoL High Level Output Voltage =~ DPLD_OPLEVEL=5V; DPLD_OPDRIVE=high; IoH=—6mA 0.4 \
DPLD_OPLEVEL=5V; DPLD_OPDRIVE=low; Ipq=—4mA 0.4
DPLD_OPLEVEL=3V; DPLD_OPDRIVE=high; lpH=—6mA 0.4
DPLD_OPLEVEL=3V; DPLD_OPDRIVE=low; |pH=—4mA 0.4
(Note 6.) DPLD_OPLEVEL=5V; DPLD_OPDRIVE=high; IoH=-95mA 1.4

6. Not available on all family members. Please ask your sales representative for more information.

M

MOTOROLA MPA DATA — DL201 REV 2
2-52

MPA1000 Primary Clock Characteristics

MPA1000 Product Description

Symbol Parameter Min Typ Max Unit
Tekin Primary Clock Pad to Register Delay 56 ns
Tcks Primary Clock Skew 1.0 ns
Tewh Clock High Time 20 ns
Tewl Clock Low Time 2.0 ns

MPA1000 JTAG Clock Characteristics

Symbol Parameter Min Typ Max Unit

Fejtag Shift Clock Frequency 16 MHz
AC Characteristics (These are Maximum values based on worst case operating points for an MPA1036.)
Speed Grade

Symbol Parameter 2 L] 6l 2 4 6 Unit
Ten Core Cell AND (Note 7.) 1.1 13 1.4 1.0 1.2 13 ns
Tex Core Cell XOR (Note 7.) 1.7 2.0 2.2 1.6 1.8 21 ns
Tip Input Pad Delay 27 3.1 3.5 2.6 29 3.3 ns
Tji Local Interconnect (Note 8.) NEG NEG NEG NEG NEG NEG ns
Tmb Medum Bus 0.8 0.9 1.0 0.8 0.9 1.0 ns
Tmbt Medium Bus Turn 2.1 24 27 2.0 2.2 25 ns
Tg Global Bus (Same Quadrant) 14 1.7 1.9 14 1.6 1.8 ns
Tgg Global Bus (Adjacent Quadrant) 3.3 3.8 4.3 3.2 3.6 4.0 ns
Txt X-Bus Turn 14 1.6 1.8 13 1.5 17 ns
Tpb Peripheral Bus (Generic) 6.2 7.2 8.1 5.9 6.7 76 ns
Tiwo Internal Wired—-OR (Full Device) 8.1 9.5 10.6 7.8 8.8 10.0 ns

7. Includes routing.

8. Value is negligible — value is lumped into core cell delays.

Example Delay Paths

(These are Maximum values based on worst case operating

points for an MPA1036.)

Speed Grade
Path Parameter 21 4 6l 2 4 6 Unit
Path 1 | Local 1.1 1.3 1.4 1.0 1.2 1.3 ns
Path2 | Medium 1.9 22 24 1.8 21 23 ns
Path 3 | Medium Turn 3.1 3.6 4.0 3.0 3.5 3.8 ns
Path4 | M—Port-M 3.0 35 3.9 29 3.4 37 ns
Path5 | M-Xturn-M 6.1 71 7.7 5.9 6.6 74 ns
Path6 | M-G-M 59 6.8 76 56 6.5 7.2 ns
Path7 | M-G-IQ-G-M 7.6 8.8 9.8 72 8.3 9.3 ns
Path8 | M-G-IQ-G-Xtun-G-IQ-G-M | 144 | 16.8 | 188 | 13.8 | 158 | 17.8 | ns

M =Medium; G = Global; IQ = Inter-Quadrant Switch. All paths include 1 cell delay. Path is from cellinput

to next cell input.

MOTOROLA MPA DATA — DL201 REV 2
2-53

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

) : e .
MPA17000 Serial EPROMs MPA17128
The MPA17128 and MPA1765 are serial OTP EPROMs. They provide a M PA 1 765
compact, low pin count, non—volatile configuration store for the MPA1000
devices. : ' o
MPA17000 devices can be cascaded for increased memory capacity
when needed. They are available in the standard 8-pin plastic DIP (P
suffix), 8-pin SOIC (D suffix) and 20—pin PLCC (FN suffix) packages.
o Configuration EPROM for MPA1000 Devices 128K, 64K SERIAL EPROM
¢ Voltage Range — 4.5 to 6.0V
e Maximum Read Current of 10mA
e Standby Current of 10uA, Typical
e Industry Standard Synchronous Serial Interface
o Full Static Operation
* 10MHz Maximum Clock Rate at 5.0V
e Programmable Polarity on Hardware Reset H
e Programs With Industry Standard Programmers 1
e Electrostatic Discharge Protection > 2000 Volts P SUFFIX
Pi . 20-Pin P PLASTIC PACKAGE
e 8-Pin PDI'P and SOIC; 20-Pin LCQ Packages CASE 626.05
e Commercial (0 to +70°C) and Industrial (—40 to +85°C) B
.)
1
. D SUFFIX
DATA [1] 8] Voo PLASTIC SOIC PACKAGE
CLK[Z] 8-Lead v CASE 751—05
Pi pp
- inouts o
RESET/OE (Top View) n CEO
CE[4] 5] Vss W
19 8
3 4
FN SUFFIX
PLCC PACKAGE
CASE 775-02
20-Lead _Pinout PIN NAMES
= (Top View)
DATA I 2 Pins Function
DATA Data /O
NC ClK Clock
4 5 6 7 8 RESET/OE Reset Input and Output Enable
T - CE Chip Enable Input
CLK NG RESET/ NC .GE Vss Ground
3 CEO Chip Enable Output
Vpp Programming Voltage Supply
Vee +4.5 to 6.0V Power Supply
NC Not Connected
6/97
@ MOTOROLA
. © Motorola, Inc. 1997 2-54 REV 0.5

Table 2-16. MAXIMUM RATINGS*

MPA17128 MPA1765

Parameter Value Unit
V¢ and Input Voltages W.R.T. Vgg -6.0to Vpp + 0.6 \
Vpp Voitage W.R.T. Vgg During Programming -0.6to0 +14.0 A
Output Voltage W.R.T. Vgg -0.6toVcc +0.6 \
Storage Temperature Range —65 to +150 °C
Ambient Temperature With Power Applied —65to +125 °C
Soldering Temperature of Leads (10 Seconds) +300 °C
ESD Protection on All Leads >2 kv

NOTE: Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the

Recommended Operating Conditions.

Table 2-17. DC CHARACTERISTICS (VcC = 4.5 to 6.0V; Commercial (C) TA = 0 to +70°C; Industrial (1) TA = —40 to +85°C)

Symbol Characteristic Min Max Unit Condition
ViH Input Voltage High DATA, CE, CEO, Reset 2.0 Vee \Y
ViL Input Voltage Low DATA, CE, CEO, Reset -0.3 0.8 \
VoH Output Voltage High DATA, CE, CEO, Reset 3.86 \Y IoH =—4mA; Vog 2 4.5V

2.40
VoL Output Voltage Low DATA, CE, CEO, Reset 0.32 \ loL = 4.0mA
LI Input Leakage Current -10 10 pA VIN=0.1Vto Voo
ILo Output Leakage Current -10 10 pA VouT =0.1Vto Ve
CINT Internal Capacitance (All Inputs/Outputs) 10 pF Vce = 5.0V (Note 1);
TA = 25°C; folk = TMHz

lcc Read | Operating Current 10 mA | Voc = 6.0V; CLK = 10MHz
Iccs Standby Current 500 uA |Vceo=6.0V

1. This parameter is initially characterized and not 100% tested.

Applications Information

DATA

Three—state DATA output for reading and function as the
input during programming.

CLOCK

Clock input. Used to increment the internal address and bit
counters for reading and programing.

RESET/OE

Reset and Output Enable input. A Low level both the CE
and RESET/OE inputs enables the data output driver. A High
level on RESET/OE resets both the address and bit counters.
In the MPA17128, the logic polarity of this input is
programmable as either RESET/OE or OE/RESET. This
document describes the pin as RESET/OE although the
opposite polarity is also possible, this option is defined and set
at device program time.

CE
Chip Enable input. Used for device selection. A Low level
on both CE and OE enables the data output driver. A High

level on CE disables both the address and bit counters and
forces the device into a low power mode.

CEO

Chip Enable Out output. This signal is asserted Low on the
clock cycle following the last bit read from the memory. It will
stay Low as long as CE and OE are both Low. It will then follow
CE until OE goes High. Thereafter CEO will stay High until the
entire PROM is read again. This pin also used to sense the
status of RESET polarity when program mode is entered.

VpP

Programming Voltage Supply. Used to enter programming
mode (+10V) and to program the memory (+13V) Must be
connected directly to Vcc for normal Read operation. No
overshoot above +15.5V permitted.

MOTOROLA MPA DATA — DL201 REV 2
2-55

MPA17128 MPA1765

USING THE MPA17000 WITH MPA1000 DEVICES
Connections between the MPA devices and the Serial

EPROMs are:

e The DATA output of the MPA17000 drives DO (data in).

e The CLK input of the MPA17000 is driven by the data clock
DCLK output.

* MPA17000s can be cascaded using the CEO output to drive
the CE input of the next MPA17000.

e Fornormal Read operations Vpp mustbe connectedto Vg .

Do not leave Vpp open.

The connections between an MPA device and an
MPA17000 device are shown in Figure 2-48. The MPA D[0]
line is connected to the MPA17000 CLK. At power—up or upon
reconfiguration, the MEMCE signal goes Low, enabling the
MPA17000 DATA output. During the configuration process,
D[0] reads data from the MPA17000 on every rising DCLK
edge. The MEMCE signal goes High at the end of
configuration and resets the internal address counters of the
MPA17000.

+5V
<
Optional: Additional
L MPA1036 Devices
r————1
—d BFR q BFR [
RESET —1—>C(RESET END d RESET END
PWRUP —’I PWRUP
Optional: _ J _ - |
External Clock CLK | DO fe—ry
— Mt v DCLK b
Mo é L —d Optional:
< Weak Pullup* Adtional
1 M2 MPA17128
P [Daices
= Do DATA —-i DATA I
DCLK CLK —'l CLK |
M—EMCE—[:C CE CEO CE I wia
|
MPA1036 g OE I_OE___‘
MPA17128

Figure 2-48. MPA1036 Configuration Using MPA17128 Serial EPROM

Cascading Serial Configuration PROMs

Cascading MPA17000s provide additional memory for
multiple MPA1000s or for MPA1000s requiring larger
configuration memories.

When the last bit from the first MPA17000 is read, the next
clock signal to the MPA17000 asserts its CEO output Low and
disables its DATA line. The second MPA17000 recognizes the
Low level on its CE input and enables its DATA output. (See
Figure 2-48).

Additional logic may be required if cascaded memories are
so large that the rippled chip enable is not fast enough to
activate successive MPA17000s.

STANDBY MODE

The MPA17128 enters a low power standby mode
whenever CE is High. In standby mode, the MPA17000
consumes less than 500pnA of current. The output will remain
in a high impedance state regardless of the state of the OE
input.

PROGRAMMING MODE

Programming mode is entered by holding Vpp High for at
least two clock edges and is exited by removing power from
the device or by a Low on both CE and OE. Figure 2-51
through Figure 2-56 shows the programming algorithm.

MPA17128 RESET POLARITY

The MPA17128 lets the user choose the reset polarity as
either RESET/OE or OE/RESET. Any third-party commercial
programmer should prompt the user for the desired reset
polarity.

The programming of the overflow word should be handled
transparently by the PROM programmer; it is mentioned here
as supplemental information only.

The polarity is programmed into the first overflow word
location, max address+1. 00000000 in these locations makes
the reset active Low, FFFFFFFF in these locations makes the
reset active High. The default condition is RESET active High.

MOTOROLA MPA DATA — DL201 REV 2
2-56

MPA17128 MPA1765

T /

Tsce Tsce THCE

RESET/OE ———————,

CLK

—J ToE

le—TCE

DATA

Figure 2-49. AC Characteristics Over Operating Conditions

Table 2-18. AC OPERATING CONDITIONS

Limit
4.5V <Vge < 6.0V
Symbol Parameter Min Max Unit | Condition

ToE OE to Data Delay 45 ns

TcE CE to Data Delay 50 ns

TcAC CLK to Data Delay 60 ns

TOH Data Hold From OE, CE or CLK 0 ns

TDF OE or CE to Data Float Delay 50 ns | Note1
TLe CLK Low Time 25 ns Note 2
THC CLK High Time 25 ns | Note2
TSCE CE Setup Time to CLK (To Guarantee Proper Counting) 25 ns

THCE CE Hold Time to CLK (To Guarantee Proper Counting) 0 ns Note 2
THOE OE High Time (Guarantees Counters are Reset) 20 ns Note 2
CLKmax Clock Frequency 10 MHz

1. Float delays are measured with minimum tester AC load and maximum DC load.
2. Guarantee by design, not tested.

MOTOROLA MPA DATA — DL201 REV 2
2-57

MPA17128 MPA1765

RESET/OE

2 TeorF —=

VAN i
CLK

DATA X RED: (FRsTBIT
Tock —= —> Tooe
CEO
TocE —>
— Toce
Figure 2-50.
Table 2-19.
Limit
45V <Vge < 6.0V
Symbol Parameter Min Max Unit Condition

TCDF CLK to Data Float Delay 50 ns
Tock CLK to CEO Delay 40 ns
TOCE CE to CEO Delay 40 ns
TOoE RESET/OE to CEO Delay 40 ns

M

MOTOROLA MPA DATA — DL201 REV 2
2-58

MPA17128 MPA1765

Table 2-20. PIN ASSIGNMENTS IN THE PROGRAMMING MODE

Pin Name DIP PLCC [e} Function

DATA 1 2 /0 The rising edge of the clock shifts a data word in or out of the PROM one bit at a time.

CLK 2 4 | Clock input. Used to increment the internal address/word counter for reading and program-
ming operation.

RESET/OE 3 6 | The rising edge of CLK shifts a data word into the PROM when CE and OE are High; it shifts a
data word out of the PROM when CE is Low and OE is High. The address/word counter is
incremented on the rising edge of CLK while CE is held High and OE is held Low. Note: Any
modified polarity of the RESET/OE pin is ignored in the programming mode.

CE 4 8 1 The rising edge of CLK shifts a data word into the PROM when CE and OE are High; it shifts a
data word out of the PROM when CE is Low and OE is High. The address/word counter is
incremented on the rising edge of CLK while CE is held High and OE is held Low.

GND 5 10 — Ground pin.

CEO 6 14 (¢] The polarity of the RESET/OE pin can be read by sensing the CEO pin. Note: The polarity of
the RESET/OE pin is ignored while in the programming mode. In final verification, this pin
must be monitored to go Low one clock cycle after the last data bit has been read.

Vpp 7 17 — Programming Voltage Supply. Programming mode is entered by holding CE and OE High and
VppatVpp1 fortworisingclockedgesandthen lowering Vpp toVpp2 forone more risingclock
edge. Awordis programmed by strobing the device with Vpp for the duration TPGM Vpp must
be tied to Vcc for normal operation.

Vce 8 20 — +5 V power supply input.

Table 2-21. DC PROGRAMMING SPECIFICATIONS

Limit

Symbol Parameter Min Max Unit Condition
Vcep Supply Voltage During Programming 5.0 6.0 \
ViL Input Voltage Low 0 0.5 \
VIH Input Voltage High 2.4 Vce \
VoL Output Voltage Low 0.4 \
VoH Output Voltage High 3.7 \
Vpp1 Programming Voltage 125 13.5 A Note 1
Vpp2 Programming Mode Access Voltage Veep Veep+1 |-V
Ippp Supply Current in Programming Mode 100 mA
IL Input or Output Leakage Current -10 10 A
VeeL First Pass Supply Voltage Low for Final Verification 28 3.0
VccH Second Pass Supply Voltage High for Final Verification 6.0 6.2

1. No overshoot is permitted on this signal. Vpp must not be allowed to exceed Vpp{ max.

MOTOROLA MPA DATA — DL201 REV 2
2-59

MPA17128 MPA1765

vee [veop { I
Vpp2 1 |
Vep Vep : \I___ o
Vep2 Veep ' ’ ’
TrpP vee : _ -
Tsve _.l 1ms !<—-
CLK CE 5! |
i | GND
DATA / | |
RESET/OE \ |
_ # : : GND
CE _/ 4 | |
cLK X '
RESETOE __ / 1 | GND
Figure 2-51. Enter Programming Mode Figure 2-52. Exit Programming Mode
Table 2-22. AC PROGRAMMING SPECIFICATIONS
Limit
Symbol Parameter Min Max Unit Condition
TRPP Rise Time of Vpp (10 to 90%) 50 ns
TEPP Fall Time of Vpp (90 to 10%) 50 ns
TPGM Vpp Programming Pulse Width 0.95 1.05 ms
Tsve Vpp Setup to CLK for Entering Programming Mode 100 ns
THVC Vpp Hold from CLK for Entering Programming Mode 300 ns
TsDP Data Setup to CLK for Programming 50 ns
THDP Data Hold from CLK for Programming 0 ns
Tscc CE Setup to CLK for Programming/Verifying 100 ns Note 1
THCC CE Hold from CLK for Programming/Verifying 200 ns
Tscv CE Setup to Vpp for Programming 100 ns
THCV CE Hold from Vpp for Programming 50 ns
TsIC OE Setup to CLK for Incrementing Address Counter 100 ns
THIC OE Hold from CLK for Incrementing Address Counter 0 ns
TCAC CLK to Data Valid 400 ns
ToH Data Hold from CLK 0 ns ’
TCE CE Low to Data Valid 250 ns

1. While in programming mode, CE should only be changed while CLK is High and has been High for 200ns.

M7 -

MOTOROLA MPA DATA — DL201 REV 2
2-60

MPA17128 MPA1765

Vee=Veep
v
«© _-I_ —Vpp1 L
Vpp ENTER 1ms 1m Nx1ms 1ms Nx1ms
PROGRAMMING PROGRAMMING ~ PROGRAMMING OVERPROGRAMMING PROGRAMMING OVERPROGRAMMING
MODE PULSE PULSE PULSE PULSE PULSE
VERIFY (RETRY) VERIFY VERIFY
O T A1 1
2CLKS *READLOAD LOAD LOAD READ LOAD LOAD
D3 D2 DI D3 D2
CLOCK INCREMENTS
ADDRESS COUNTER

* I N LI LU _
ESET/OE |_| N

CEO | ~~HIGH IF RESET/OE CONFIGURED |~ LOW IF RESET/OE CONFIGURED
N = NUMBER OF ATTEMPTS REQUIRED TO PROGRAM THE DATA WORD
*32 CLOCKS
Figure 2-53. Programming Cycle Overview
PROGRAM
| LOAD PROM INTERNAL "1 Thep_ Teer |
<~ READ CURRENT DEVICE WORD —Jc——l DATA LATCHES ———l| I
| | | | VERIFY
: : —
Vep | 1 1 reau THoy —>
1
' |
CLK
—]
ToH "
DATA 1 ?_XXXX 3 X usrer i X 2 X XissTer 1
te— T |
— s Tsce +1THoe <—
—— HCC | N
CE i
RESET/OE /

Figure 2-54. Details of Read/Program/Verify Cycle

MOTOROLA MPA DATA — DL201 REV 2
2-61

MPA17128 MPA1765

Vppy —
|

!
T\{ I THic
Ts:c—1|> -

LAST BIT

N M:z LASTBIT 1 f‘(2 X

[
]
T
!
1
I

—_)4 -4 ———

re— TCE
_.::;’.;l:' THee Tsce i
CE |
|
|

RESET/OE OVER- 3
|<—- READ CURRENT DEVICE WORD ———»j— "OADPROMINTERNAL L ooncram —») \ /
DATA LATCHES o
INCREMENT
WORD
COUNTER

Figure 2-55. Overprogramming Detail

W I 7 i E@ MOTOROLA MPA DATA — DL201 REV 2

2-62

Enter Programming Mode

1. VG = Veep; Vpp = Vppg; CE = OE = Vi
2. Vpp = Vpp1 for 2 CLK Rising Edges
3. Vpp = Vppg for 1 CLK Rising Edge

Read Device Word: D1
Read Data Word: D2

Increment N

Increment Address
Counter

D3 = D1 XNOR D2

No
'Load D3

Pulse Vpp With
Vpp1 for Tegm

Read & Verify
Data Word

Pulse Vpp With
Vpp1 forNx 1ms

No /
Last Word?

st

Figure 2-56. MPA17128 Programming Spec

Yes

Exit Programming Mode
Device Power Off
Turn Power On

!

Verify
Al Data Bits
Voe = Vpp =VeeL &
Yee= VP: =Veey

Pass

Device Passed

MPA17128 MPA1765

* Verify CEO has gone Low one
clock after last bit.

MOTOROLA MPA DATA - DL201 REV 2

2-63

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

Advance Information
MPA17000 Serial EEPROM

The MPA17C256 is an easy to use and cost effective serial configuration
memory ideally suited for use with today’s popular SRAM based FPGAs.
The MPA17C256 is available in 8—pin PDIP and 20—pin SOIC and PLCC
packages, adhering to industry standard pinouts. The device interfaces
downstream FPGA(s) with a very simple enable, clock and data interface.
The MPA17C256 is reprogrammable with no need for a higher
programming “super voltage”; it may even be reprogrammed on board. The
MPA17C256 also has user programmable RESET/OE polarity.

e EE Programmable 262,144 x 1 bit Serial Memories Designed to Store
Configuration Programs for FPGAs

Simple Interface to SRAM FPGAs

Cascadable to Support Additional Configurations or Future Higher Density
FPGAs

Low Power CMOS EEPROM Process
Programmable Reset Polarity

Available in Space Efficient 8—Pin PDIP, 20—Pin SOIC and 20-Pin PLCC
Packages

In-System Programmable via 2-Wire Bus

Controlling the MPA17C256 Serial EEPROM

Most connections between the FPGA device and the Serial EEPROM
are simple and self-explanatory:

The DATA output of the MPA17C256 drives DIN of the FPGA devices
The master FPGA DCLK output drives the CLK input of the MPA17C256

o The CEO output of the first MPA17C256 drives the CE input of the next
MPA17C256 in a cascade chain of EEPROMs.

¢ SER_EN must be connected to Vcc
CE enables the chip and is required to enable the DATA output pin
RESET/OE is chip reset and is part of the DATA output enable structure

The simplest connection to a Motorola Programmable array (MPA) is shown below. In this configurations, the MEMCE output of
the MPA enables the MPA17C256 and takes it out of reset. Shortly after, the first bit of configuration data will appear on DATA.
Subsequent rising edges of DCLK bring out the next bits. For more complex connections, including cascading of EEPROMs and
cascading of MPA devices, please consult the MPA databook (DL201/D).

MPA17C256

m

P SUFFIX
8-LEAD PLASTIC PACKAGE
CASE 626-05

il

DW SUFFIX
20-LEAD PLASTIC SOIC WIDE PACKAGE
CASE 751D-04

FN SUFFIX
20-LEAD PLCC PACKAGE
CASE 775-02
PIN NAMES

Pins Function
DATA Data /0
CLK' Clock
RESET/OE Reset Input and Output Enable
CE Chip Enable Input
Vss Ground
CEO Chip Enable Output
SER_EN Programming Enable
Vce +4.5 to 6.0V Power Supply
NC Not Connected

This document contains information on a new product. Specifications and information hersin are subject to

change without notice.

- 697

© Motorola, Inc. 1997 2-64

@ MOTOROLA

REV O

MPA17C256

b3 Optional FPGA
i = I
= MODE[3:0] | |
fa RESET | |
= RE AT
[PWRUP | |
= BFR i i
MPA17C256 MPA END X Board Test
CLK DCLK — Points
RST/OE g:'— MEMCE ER X
CE
DATA[O)/
Data USER I/0

Figure 2-57. BFR Mode 2: 1-Bit (Serial) Data, External Address, External Clock

SER_EN

v | PROGRAMMING
_ | PROGRAMMING DATA SHIFT
MODE LOGIC REGISTER
24/32)
ROW -
> ADDRESS 11
COUNTER ROW EECF,’ETCL’M
DECODER MATRIX
24/3gl,
o BIT =
COUNTER 5 COLUMN
DECODER
1 T
[
O O o
CLK RESET/OE CE COE DATA

Figure 2-58. Block Diagram

MOTOROLA MPA DATA — DL201 REV 2
2-65

MPA17C256

patA[1] |O 8] vee
CLK[2 | 7] SERCEN

RESET/OE [3 6] CEO

CE[4 5] GND

Figure 2-59. 8-Lead DIP Pinout

F
III
L RS—
NC l& NC NG TEO
ne[1]|O 20] vee [rarari
18 17 16 15 14
DATA [2] @ NC ne 1o " j NG
ne[3 N
H is] o vee [[eo 12| ne
cik[4 17] SER_EN
m ne []0) 1] ne
NC[5 [16] NG
_ DATAlj 2 10 J GND
RESET/OE [6 [15] NC
_ 3
Nc[7 [14] CEO Ne lj ° r:l Ne
4 5 6 7 8
ce[g] 73] N g
CLk NC & NC CE
NC [‘ﬂ 2] NC E
GND [10) 1] ne g
Figure 2-60. 20-Lead SOIC Pinout Figure 2-61. 20-Lead PLCC Pinout

%} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

2-66

Table 2-23. PIN DESCRIPTIONS

MPA17C256

PLCC/
soic DIP Name /(o] Description

2 1 DATA 110 Three—-State DATA outpui for reading. Input/Output pin for programming

4 2 CLK | Clock Input. Rising edge used to increment the internal address and bit counter for read-
ing and programming

6 3 RESET/OE | RESET/Output Enable input (when SER_EN is High). A Low level on both the CE and
RESET/OE inputs enables the data output driver. A High level on RESET/OE resets both
the address and bit counters. The logic polarity of this input is programmable as either
RESET/OE or RESET/OE. This document describes the pin as RESET/OE.

RESET Polarity | RESET Polarity Select Input. During programming, when CE is High, this input is used to

Selected determine the polarity of the pin when SER_EN is High.

WP | Write Protect (WP) input. When WP is Low, the entire memory can be written. When WP
is enabled (High), the lowest 1/4 of the memory cannot be written; i.e., 64K in
MPA17C256. Note that when WP is High, the chip will still acknowledge the receipt of
data, but it will not write it into memory.

8 4 CE | Chip Enable input. Used for device selection only when SER_EN is High. A Low level on
both CE and OE enables the data output driver. A High level on CE disables both the
address and bit counters and forces the device into a low power mode. Note this pin will
not enable/disable the device in 2—wire Serial mode (i.e., when SER_EN is Low).

During programming, and when CE is Low, the main array is read and written. When CE
is High, the main array is deselected and a Serial WRITE operation will change the polar-
ity of the RESET pin.

10 5 GND - Ground Pin

14 6 CEO o Chip Enable Out output. This signal is asserted Low on the clock cycle following the last
bit read from the memory. It will stay Low as long as CE and OE are both low. It will then
follow CE until OE goes High. Thereafter, CEO will stay High until the entire PROM is
read again and senses the status of RESET polarity.

A2 | Device selection input, A2. Used to enable (select) the device during programming. When
SER_EN is Low, this pin MUST be at either a logic level ‘1’ or ‘0’ (i.e., not 3-state) and
the A2 contents of the Device Address must match the condition of the pin for the device
to be selected.

17 7 SER_EN | Serial enable is normally high during FPGA loading operations. Bringing SER_EN Low,
enables the two wire serial interface mode for programming.

20 8 \ole} - +5V Power Supply input
Table 2-24. MAXIMUM RATINGS*
Symbol Parameter Value Unit

Vee DC Supply Voltage (Referenced to GND) -0.5t0 +7.0 \

Voltage Applied to Output in High Output State —-0.1to Vgc+0.5V \
TA Operating Temperature Range (In Free-Air) -55to +125 °C
TsTG Storage Temperature Range —65 to +150 °C
TsoL Maximum Soldering Temperature (10s @ 1/16in) 260 °C
ESD Rzap = 1.5K, Czap = 100pF 2000 \

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended
Operating Conditions.

Table 2-25. RECOMMENDED OPERATING CONDITIONS

Symbol Parameter Min Max Unit
Vee Supply Voltage Relative to Ground Commercial (-0 to +70°C) 4.75 5.25 \
Industrial (=40 to +85°C) 4.50 5.50

MOTOROLA MPA DATA — DL201 REV 2

2-67

MPA17C256

Table 2-26. DC CHARACTERISTICS OVER OPERATING CONDITIONS

Symbol Parameter Min Max Unit
ViH High Level Input Voltage 2.0 Vce Vv
ViL Low Level Input Voltage 0 0.8 v
VOH High Level Output Voltage Commercial 3.86 '

Industrial 3.76
VoL Low Level Output Voltage Commercial 0.32 v
Industrial 0.37
Icca Supply Current, Active Mode 10 mA
I Input/Output Leakage Current (Vin = Vo or GND) -10 10 HA
Iccs Supply Current, Standby Mode Commercial 1 mA
Industrial 2
CE SF ;[\\
< 1SCE —>
tsce e tHoE —
RESET/OE ﬂ\ A

Lo -»r— tHe ~— tHOE
CLK 7 — 7 N\
—> l0E [« —>| tcAC toH r_—b- DF
e— {CE —> X—J

S

DATA <

= toH

Figure 2-62. AC Characteristics Over Operating Conditions

Table 2-27. AC CHARACTERISTICS OVER OPERATING CONDITIONS (Note 1.)

Commercial Industrial

Symbol Parameter Min Max Min Max Unit
toE OE to Data Delay 110 150 ns
tcE CE to Data Delay 50 50 ns
tCAC CLK to Data Delay 50 55 ns
toH Data Hold from CE, OE, or CLK] 0 ns
tiDF CE or OE to Data Float Delay (Note 2.) 50 50 ns
tLe CLK Low Time 30 35 ns
tHC CLK High Time 30 35 ns
tSCE CE Setup Time to CLK (To Guarantee Proper Counting) 45 50 ns
tHCE CE Hold Time to CLK (To Guarantee Proper Counting) 0 5 ns
tHOE OE High Time (Guarantees Counter Is Reset) 50 60 ns
fmax Maximum Input Clock Frequency 10 10 MHz

-

. AC test load = 50pF.
2. Float delays are measured with 5pF AC loads. Transition is measured +500mV from steady state active levels.

#} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

2-68

A

RESET/OE
CE A X
CK __/ N\ K
ICDF =™ <
DATA X IASTBIT | F < FIRST BIT
~—toCE

CEO ook {:}L‘ﬁ 1

—Pl ~— tOCE

Figure 2-63. AC Characteristics Over Operating Conditions When Cascading

Table 2-28. AC CHARACTERISTICS OVER OPERATING CONDITIONS WHEN CASCADING

MPA17C256

Commercial Industrial
Symbol Parameter Min Max Min Max Unit
tCDF CLK to Data Float Delay 50 50 ns
tocK CLK to CEO Delay 65 75 ns
tocE CE to CEO Delay 55 60 ns
to0E RESET/OE to CEO Delay 55 55 ns
Table 2-29. DC CHARACTERISTICS (Vcc = 5.0V £5%)
Symbol Parameter Min Typ Max Unit Condition
Vce Supply Voltage 4.75 5.00 5.25 \
Icc Supply Current 2.0 5.0 mA Voo =5V
ILL Input Leakage Current 0.10 3.00 WA Vin=VgcorVss
ILo Output Leakage Current 0.05 3.00 HA Vout = Vcc or Vss
VIH High Level Input Voltage Vee x0.7 Vee +0.5 Vv
ViL Low Level Input Voltage -0.5 0.4 A
VoL Output Low Level Voltage 0.4 \ loL =3mA
Table 2-30. DC CHARACTERISTICS (Vo = 3.3V £10%)
Symbol Parameter Min Typ Max Unit Condition
Vce Supply Voltage 3.0 3.3 3.6 \
Icc Supply Current 2.0 3.0 mA Voc =3.6V
ILL Input Leakage Current 0.10 3.00 pA Vin=VccorVss
Lo Output Leakage Current 0.05 3.00 HA Vout = Vcc or Vss
VIH High Level Input Voltage Vee x 0.7 Vec +05 \
ViL Low Level Input Voltage -0.5 0.2 \
VoL Output Low Level Voltage 0.4 \ loL=2.1mA

MOTOROLA MPA DATA — DL201 REV 2

2-69

MPA17C256

Table 2-31. AC CHARACTERISTICS (VcC = 5.0V £5%)

Symbol Parameter Min Max Unit
fClock Clock Frequency, Clock 400 kHz
tLow Clock Pulse Width Low 1.2 us
tHigh Clock Pulse Width High 0.8 us
tAA Clock Low to Data Out Valid 0.1 0.9 us
tBuf Time the Bus Must Be Free Before a New Transmission Can Start 1.2 us
tHST Start Hold Time 0.6 us
tssT Start Setup Time 0.6 us
tHDA Data In Hold Time 0 us
tSDA Data In Setup Time 100 ns
tr Input Rise Time 0.3 us
t Input Fall Time 300 ns
tssTP Stop Setup Time 0.6 us
tDH Data Out Hold Time 50 ns
tWR Write Cycle Time 10 ms

flow | tHigh
SCL N
tssT tr = {tsm - ssTP
r— tHST tHDA
SDA_IN /
tBuf
< 'DH
SDA_OUT
Figure 2-64. Serial Data Timing Diagram
Table 2-32. AC CHARACTERISTICS (Vcc = 3.3V £10%)

Symbol Parameter Min Max Unit
fClock Clock Frequency, Clock 100 kHz
tLow Clock Pulse Width Low 4.0 us
tHigh Clock Pulse Width High 4.0 us
tAA Clock Low to Data Out Valid 0.1 1.0 us
tBuf Time the Bus Must Be Free Before a New Transmission Can Start 4.5 us
tHST Start Hold Time 2.0 us
tSST Start Setup Time 2.0 us
tHDA Data In Hold Time 0 us
tSDA Data In Setup Time 200 ns
tr Input Rise Time 0.3 us
t# Input Fall Time 300 ns
tsSTP Stop Setup Time 2.0 us

M7 T

MOTOROLA MPA DATA — DL201 REV 2

2-70

Table 2-32. AC CHARACTERISTICS (Vg = 3.3V £10%)

MPA17C256

Symbol Parameter Min Max Unit
tDH Data Out Hold Time 100 ns
tWR Write Cycle Time 20 ms

Cascading Serial Configuration EEPROMs

For multiple FPGAs configured as a daisy—chain, or for
future FPGAs requiring larger configuration memories,
cascading MPA17C256s provides additional memory.

After the last bit from the first MPA17C256 is read, the next
clock signal asserts its CEO output LOW and disables its
DATA line. The second MPA17C256 recognizes the LOW

level on its CE input and enables its DATA output.

Standby Mode

The MPA17C256 enters a low power standby mode
whenever CE is asserted HIGH. In this mode, it consumes

less than 1.0mA of current. The output remains in a high
impedance state regardless of the state of the OE input.

MPA17C256 Reset Polarity

The MPA17C256 lets the user choose the reset polarity as
either RESET/OE or RESET/OE.

Programming Mode

The programming mode is entered by bringing SER_EN
LOW. In this mode, the chip can be programmed by a 2-wire
interface. The programming is done at Vcc supply only.
Programming (high) voltages are generated inside the chip.
For additional programming information, see the
Programmer’s Guide section on page 2-71.

Programmer’s Guide

Serial Bus Overview

The serial bus is a two wire bus; one wire (CLOCK)
functions as a clock and is provided by the programmer, the
second wire (DATA) is a bi—directional signal and is used to
provide data and control information.

Information is transmitted on the serial bus in messages.
Each MESSAGE is preceded by a START BIT and is ended
with a STOP BIT. The message consists of an integer number
of bytes, each byte consists of 8 bits of data and is followed by
a ninth ACKNOWLEDGE BIT. This ACKNOWLEDGE BIT is
provided by the recipient of the data, This is possible because
devices only drive DATA low, the system (in the programming
case the Programmer) provides a small pull-up current (1k
Ohm equivalent) for the Data Pin.

The MESSAGE FORMAT consists of the bytes shown in
the Message Bytes table below. The MESSAGE FORMAT is
preceded by a start bit and ended by a stop bit.

The programmer provides all the bytes except for the data
bytes when the device is being read. Note that each byte is
individually acknowledged. This acknowledgment is provided
by the MPA17C256 in all cases except for the data bytes in the
read mode, in which case the acknowledge is provided by the
programmer.

Bit Format

Data on the DATA pin may change only during CLOCK low
times.

Figure 2-65. Message Bytes

DEVICE 1STADDRESS | 2NDADDRESS

ADDRESS WORD WORD DATABYTE(S)

Figure 2-66. Message Format

18T 2ND
START DEVICE | AppRress | AopRress | PATA STOP

BT | ADDRESS | “womo | womn | BYTE®) | BT

Start and Stop Bits

The START BIT is indicated by a high—to—low transition of
DATA when CLOCK is high. Similarly, the STOP BIT is
generated by a low-to-high transition of DATA when CLOCK
is high, as shown below.

L N\ SN\

V7

SDAZ —7 N/ A
Wordn tWR
Start Stop
Condition Condition

Figure 2-67. Start and Stop Bits

Acknowledge Bit

The ACKNOWLEDGE BIT is shown in the above figure.
Note that the ACKNOWLEDGE BIT is provided by the device
receiving the byte. The receiving device can accept the byte,
by asserting a low value, on DATA or it can refuse the byte by
asserting (not driving the signal) a 1 on DATA. All bytes must
be terminated by either the ACKNOWLEDGE BIT or a STOP
BIT.

MOTOROLA MPA DATA — DL201 REV 2
2-71

MPA17C256

Bit Ordering Protocol

The most significant bit is the first bit of a byte transmitted
on DATA for the DEVICE ADDRESS BYTE and the EEPROM
ADDRESS BYTES. It is followed by the lesser significant bits
until the eighth bit, the least significant bit is transmitted. This
is followed by the acknowledge bit. However, for DATA BYTES
(both writing and reading) the first bit transmitted is the least
significant bit. This protocol is shown in the tables below.

Device Address Byte

The contents of the Device Address Byte are shown below,
along with the order in which the bits are clocked into the
device. The A2 bit is provided to allow 2 devices to share a
common bus; when programming a single device, the A2 bit
must be forced to a logic ‘0’ or ‘1’ level. It is recommended that
this pin be connected to OV using a 4.7K ohm resistor
pulldown

M7 0

MOTOROLA MPA DATA — DL201 REV 2
2-72

Figure 2-68. Device Address Byte

MPA17C256

MSB LSB

1 0 r 1 T 0 Ay 1 1 RW

18T 2ND 3RD 4TH 5TH 6TH 7TH 8TH
Where: R/W = 1 Read

= __ 0 write
A2 = 1 if CEO pin is at vCC
= 0 if CEO pin is at GROUND

EEPROM Address 15-bit address AE14 — AEO. The order in which each byte is

The EEPROM address consists of two bytes, each of which
is followed by an acknowledge bit. These two bytes define a

Figure 2-69.
MSB LSB

clocked into the device is also indicated. AE14 is MSB for
17C256.

MsB LSB

| 0]O/AE14|0/AE13| AE12 I AEN |AE1o| Agg | AEg | Ack LAEd Agb | Ags | AE4 rAES | Ag2 | AE1 l Ag0 | Ack

1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH

Data Byte

The organization of the Data Byte is shown below. Note that
in this case, the data byte is clocked into the device LSB first
and MSB last.
Writing

All writing takes place in pages. A page is 64-bytes long
and the page boundaries are addresses where A5-AQ are all

18T 2ND 3RD 4TH 5TH 6TH 7TH 8TH

zero. Writing can start at any address within a page and the
number of bytes written must be 64. The first byte is written at
the transmitted address. The address is incremented in the
device following the receipt of each data word received, Only
the lower six bits of the address are incremented and if the
address is incremented after the 64th byte in the page is sent,
then the next byte to be written is the first byte of the page.

Figure 2-70.
LSB MSB
Do D1 | Do | D3 Dy I Dg Dg D7
18T 2ND 3RD 4TH 5TH 6TH 7TH 8TH

A write action consists of

a Start Bit _
a Device Address with R/W = 0

An Acknowledge Bit From the device
First Word of the Address

An Acknowledge Bit From the device
Second Word of the Address

An Acknowledge Bit From the device
One or more data bytes (sent to the device)

Each followed by an Acknowledge Bit From the device

a Stop Bit

WRITE POLLING: On receipt of the stop bit, the device
enters an internally timed write cycle. While the device is busy
with this write cycle it will not acknowledge any transfers. Thus
the programmer can start the next page write by sending the
Start Bit followed by the Device Address. If this is not
acknowledged, then the programmer should abandon the
transfer without asserting a stop bit. The programmer can then
repeat this until an acknowledge is received. When this is
received the write action can proceed, i.e., the next byte to be
sent is the device address.

Reading

Read operations are initiated the same way as write
operations with the exception that the R/W bit in the device
address is set to one. There are three read operations: current
address read, random read and sequential read.

CURRENT ADDRESS READ: The internal data word
address counter maintains the last address accessed during
the last read or write operation. incremented by one. This
address stays valid between operations as long as the chip

MOTOROLA MPA DATA — DL201 REV 2 -
2-73

MPA17C256

power is maintained and the device remains in 2-wire access
mode. If the last operation was a read at address n, then the
current address would be n + 1. If the final operation was a
write at address n, then the current address would again be n
+ 1 with one exception. If address n was the 64th byte address
in the page, the incremented address n + 1 would "roll over” to
the first byte address on the next page.

Once the device address with the R/W select bit set is
clocked in and acknowledged by the device the current
address word is serially clocked out. The programmer does
not acknowledge the read but does generate a following stop
condition.

A current address read action consists of
a Start Bit _
a Device Address with R/W = 1
An Acknowledge Bit From the device
a data byte from the device
a Stop Bit from the programmer

RANDOM READ: A random read requires a “dummy” byte
write sequence to load in the data word address. Once the
device address word and data word address are clocked in
and acknowledged by the device, the programmer must
generate another start condition. The programmer now
initiates a current address read by sending a device address
with the R/W bit high. The device acknowledges the device
address and serially clocks out the data word. The
programmer does not acknowledge the read but does
generate a following stop condition.

A random address read action consists of

a Start Bit _
a Device Address with R/W = 0

An Acknowledge Bit From the device
First Word of the Address

An Acknowledge Bit From the device
Second Word of the Address

An Acknowledge Bit From the device
a Start Bit _
a Device Address with R/W = 1

An Acknowledge Bit From the device
a data byte from the device
a stop bit from the programmer

SEQUENTIAL READ: Sequential reads are initiated by
either a current address read or a random address read. After
the programmer receives a data word, it responds with an
acknowledge. As long as the device receives an
acknowledge, it will continue to increment the data word
address and serially clock out sequential data words. When
the memory address limit is reached, the data word address
will “roll over”. The sequential read operation is terminated
when the programmer does not respond with an acknowledge
but generates a stop condition.

Programming Pins

Eight pins are used to program the devices. These eight
pins, and their mapping to the package pins are shown in the
following table:

Table 2-33. Programming Pins

Pin 8-Pin Device 20~Pin Device
DATA 1 2
CLOCK 2 4
RESET/OE 3 6
CE 4 8
GROUND 5 10
A2 (CEO) 6 14
SER_EN 7 17
Vece 8 20

Programmer Functions

The programmer needs to perform the following functions:

1. Check the Manufacturers Code and the
Device Code (Not necessary for In-System
Programming)

2. Program the device
3. \Verify the device
4. Set the Reset Polarity option

In the order given above. They are performed in the following
manner.

Reading Manufacturers and Device Code

These two bytes are read from addresses 0 and 1,
respectively, by performing a “read’ as specified in this spec,
with the following DC voltages set:

RESET/CE = ov

CE = 11.5 + 0.5V

A2 (CEO) = (Same as applied to A2 Pin,
usually 0V) .

SER_EN = ov

The correct codes are (Note 1.)

Manufacturers Code - Byte 0 1E

Device Code - Byte 1 FF 17C128
TF 17C65
77 17C256

1. The Manufacturer’s Code and Device Code are read using the
same byte ordering specified in the beginning of this document:
i.e., LSB first, MSB last.

Programming the Device

All the bytes in the device’s 64-byte page must be written,
The order is not important but it is suggested that the device
be written sequentially from Byte 0. Writing is accomplished by
using the DATA and CLOCK pins and setting the other
programming pins as follows:

A O

MOTOROLA MPA DATA — DL201 REV 2
2-74

RESET/CE = ov

CE = ov

A2 (CEO) = (Same as applied to A2 Pin,
usually 0V)

SER_EN = ov

Verifying the Device

All bytes in the device must be read and compared to their
intended values. Reading is done using the CLOCK and DATA
pins with the other programming pins set to the same value as
in programming:

RESET/CE = o

CE = ov

A2 (CEO) = (Same as applied to A2 Pin,
usually 0V)

SER_EN = ov

MPA17C256 Setting the Polarity Option

Setting the Polarity Option Active High

Write a byte of data set to FF to address 3FFF, using the
previously defined 2-wire write algorithm, with the other
programming pins set to the following:

RESET/CE = VCC % 0.25V

CE = VCC 0.25V

A2 (CEO) = (Same as applied to A2 Pin,
usually 0V)

SER_EN = ov

This will change RESET/OE pin functionality to RESET/OE,
i.e., active high OE and active low RESET.
Setting the Polarity Option Active Low:

Write a byte of data set to FE to address 3FFF, using the

previously defined 2-wire write algorithm, with the other
programming pins set to the following:

RESET/CE = ov

CE = VCC % 0.25V

A2 (CEO) = (Same as applied to A2 Pin,
. usually 0V)

SER_EN = ov

This will change RESET/OE functionality to RESET/OE i.e.,
active low OE and active high RESET (the default condition).

MPA17C256

After RESET polarity has been modified the MPA17C256
device must be powered down before the modified RESET
polarity takes effect.

Verifying the RESET/OE Polarity

If a programmed (master) device is to be used as the
source for the data to be programmed info some new devices,
then the programmer can read the data from the master The
polarity of the RESET/OE must be known before this can be
done successfully for the MPA17C256. Depending on the
capabilities of the programming device, one of the following
algorithms can be used to read the programmed polarity of the
RESET/OE pin.

1. It the programmer is able to sense a tn-state
condition:

Switch the power on with

RESET/CE = ov

CE = ov

A2 (CEO) = Input to programmer (High Z)
SER_EN = vCcC + 0.25V

CLOCK = 0

INPUT = Input to programmer

In this condition, if the SDA pin is 3-stated then he
RESET/OE fuse is active high: it the SDA pin reads a "O”or a
"1”, then the RESET/OE fuse is active low.

2. [If the programmer is NOT able to sense a 3-state
condition:

Switch the power on with

RESET/CE = VCC £ 0.25V

CE = ov

A2 (CEO) = Input to programmer (High Z)
SER_EN = vce + 0.25v

CLOCK = 0

INPUT = Input to programmer

Hold this configuration for tyyR time after Vg reaches
nominal level. Then, set RESET/OE to low and pulse the clock
262,144 times for the MPA17C256, reading the data provided
at each clock pulse. After the last clock has been issued CEO
should drop from high to low. If it does so then the polarity is
RESET/OE (active low). If CEO remains high, then the polarity
is RESET/OE (active high). In this latter case, none of the data
read is reliable and it should be discarded. The procedure
should be redone with RESET/OE = 0V on power up and
switched to Vo + 0.25V before starting the clock. The data
read is now good data.

MOTOROLA MPA DATA — DL201 REV 2
2-75

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

MPA1000 Design System Product Description

Overview

The Motorola Programmable Array (MPA) design system is a bridge between a design capture environment and Motorola field
programmable arrays. The MPA design system automatically transforms designs into device configurations which, when loaded
into an MPA device, realize a design. A design is automatically analyzed, optimized, transformed into MPA cells, partitioned,
placed and routed based on timing constraints for every path in the design. MPA design tools understand and optimally utilize the
MPA device architecture; this eliminates the need to learn a new set of rules and makes these tools ideally suited for use with
logic synthesis. Full incremental design support reduces design implementation time and powerful library retargeting capabilities
allow you to reuse designs which may have been implemented on less capable devices. The MPA design system operates on
existing hardware platforms and supports design capture and simulation tools from more than 10 vendors. All these features plus
on-line, hypermedia, help make the MPA design system a powerful yet extremely easy to use design implementation engine.

Features

e Push Button Implementation e Layout Delay extraction for post layout simulation

o Optimal Use of MPA Device Resources e Layout viewer

o Optimal Results with Gate Level Design Input e Incremental design support

e Library of Common MSI Functions e On-line, hypermedia, documentation

e Design Flow Manager e Supports all popular design capture and simulation tools
o Design Retargeter e [owest cost FPGA development systems.

e Timing Driven with Integrated Static Timing Analysis e |nstant access; Downloading via the internet (WWW, ftp).

i

| Design Importation

ﬁ o Read Appropriate Rules File W
. ® Retarget to MPA Primitives | .
e Macro Expanslon :

] . Design Optimi: |

. ' o Design Rule Checks '

-1 Constraint Generation |

® Read User Constraints |
® Path Enumeration
. o

o Path Constraint Generation . | Tgigig e
—
—_—

Timing Driven Autolayout ‘J mnrn

o Partition Design Into Clusters
d e Assign Clusters to Zones 5 Delay Annotation
| * Global Place & Route o Read Stored Layout

. Zona] Place & Route ® Construct Annotated
o Continuous Slack Netlist
Redistribution

7 Y
Configuration
- * Read Stored Layout .
\ ¢ Construct Bitstream)

Chipview
* Read Stored Layout
e Construct Graphical
Representation

W } 7 i E@I MOTOROLA MPA DATA — DL201 REV 2

2-76

Push Button Design Implementation

The MPA design system minimizes training investment and
automatically generates design implementations which meet
timing constraints.

The gate level logic and abundant hierarchical routing
resources of the MPA device present a rich implementation
media for design implementation. MPA design tools
understand and optimally utilize the MPA device resources
so there are no elaborate rules to learn or design
modifications required to begin design capture. Staying
focused on end product design rather than implementation
tools or device architecture gets the design done faster and,
unlike other programmable solutions, without programmable
logic device specificity to impede future design migration
efforts. The combination of automatic tools and gate level
architecture is ideal for traditional schematic driven or high
level language based design capture methods. In fact, logic
synthesis tools were originally designed for and produce the
most efficient results for targeting gate level devices.

A design is analyzed, optimized, transformed into MPA
cells, partitioned, placed and routed based on timing
constraints for all paths in the design — automatically. A netlist
from one of the popular design capture systems or an
existing LPM netlist is imported into the MPA design system.
The logic is mapped to a series of MPA cells and the entire
resulting netlist is optimized and checked. Based on a simple
clock specification, the MPA design system generates timing
constraints for all paths in the design. During automatic
partitioning, placement and routing path slack time is
constantly redistributed insuring only the resources required
to meet timing requirements are consumed. Because MPA
tools implement the design according to constraints, tool
induced design iterations are virtually eliminated. Completed
layouts can be transformed into device configurations, as
well as annotated simulation netlists. A layout browser is also
available.

The MPA design system also includes complete online,
hypermedia, help covers the device, the design system and
the integration kits. Integration kits for Viewlogic, Exemplar,
Synopsys, VeriBest, Verilog-SDF, VITAL-SDF, VHDL. (1076),
Verilog (OVI) and OrCAD are included (contact your vendor
for additional kits).All these features add up to a powerful yet
extremely easy to use design implementation engine for the
MPA product family.

Design Importation

Designs can be captured using schematics, a high level
language, or a combination of these entry methods using
commercially available design capture and logic synthesis
software and the appropriate interface kit. Alternatively,
existing designs can be retargeted from other programmable
logic devices to the MPA device using commercial logic
synthesis tools or the powerful retargetting capabilities
provided with MPA design system.

Design importation begins with a netlist and an optional
clock specification file. The clock specification file provides a
mechanism for the user or design capture tools to document
system level timing requirements. In addition, a rich set of
attributes can be attached to specific components or nets

MPA1000 Design System Product Description

within the design to specify timing and design pinout
constraints.

A retargetting rules file is read and the input netlist is
transformed into a series of MPA cells and associated
interconnections. Rules files provide a mechanism to perform
attribute mapping, cell mapping and macro expansion. By
creating custom rule files, the user can extend the
importation process from arbitrary sources. The MPA design
system comes with rules for it's native library/EDIF. The
resulting netlist is optimized to clip unused logic and remove
redundant logic. For example: each MPA cell has
programmable input inversion capability. All Inverters or
non-inverting buffers can be removed from the netlist and
replaced with signal sense information attached to each
input.

A series of design rule checks are performed to insure
design integrity before the layout process begins.

Constraint Generation

Timing constraints, the optimized MPA netlist and static
timing analysis is used to generate path slack constraints for
all paths in the design. Each unique signal pathway between
a register output and a register input throughout the design
are enumerated. The total logic and estimated or real wire
delays along the path are summed. The time between the
active upstream register clock edge and the next active
downstream clock edge minus the downstream register
setup time is subtracted from the total path delay. This
difference is called path slack. If any path in the design has a
negative slack value, the implementation will not function at
the required clock rate(s).

Path constraints are utilized throughout the layout process
to insure that a design implementation which meets timing
constraints is automatically generated. If no clock or timing
specifications are provided, the MPA design system uses the
fastest possible clock based on very small net delay
estimates to generate the path constraints. This usually
results in the best possible implementation, but may take
longer than the time required to generate a satisfactory rather
than best possible result.

Contrast this to other programmable logic design tools
which only provide manual net constraint annotation or net
criticality assignment. In these cases significant effort is
necessary to generate constraints and many costly iterations
are required to tune these constraints for a given design. If
any changes are made to the design, another costly round of
iterations is required.

Autolayout

The autolayout process makes use of the hierarchical
organization of the MPA device to minimize run time and
deliver implementations that meet timing requirements.
Designs which have diverse timing requirements are ideally
implemented because path slack estimates are refined
throughout the autolayout process insuring only the
resources required to meet timing requirements are
consumed.

The process begins by flattening the design and
partitioning it into small component groups of approximately

MOTOROLA MPA DATA — DL201 REV 2
2-77

MPA1000 Design System Product Description

the same size called clusters. A cluster boundary delay
estimation is applied to pull the most tightly constrained paths
into a minimum number of clusters. The clusters are then
assigned to zones talking into account zonal boundary delay
cost and relative zone placement delay costs. Other costs
like total number of port connections per zone and are also
considered. As assignment proceeds, cluster and zone
boundary delay costs are added to each path and slack is
recomputed.

Next global placement and routing is done. Global routes
begin and end on either 1/O cells or port cells. Intrazone
placement and routing is deferred to a later phase. During
global routing all the port cell and I/O cell locations are fixed
and the connections between them established. High fanout
nets are constructed in a highly regular manner to insure
efficient resource utilization. As in partitioning, slack
estimates are refined throughout global routing.

Finally the intrazonal placement and routing is done. Cells
assigned to a particular zone are placed and routed to other
zone cells or zone port cells. Port cells and core cells are
constructed to allow port swapping. Core cells can be routed
through if necessary. Allowing core cells to act as routing
cells allows dynamic adjustment of routing resources within
the zone. Dynamic resource adjustment is a powerful design
specific adaptation mechanism.

This process produces a layout from which device
configurations, delay back annotations, and chipviews can
be generated.

Incremental Design Support

When specification changes necessitate design iterations,
simply push the button again. Constraints are automatically
recalculated and autolayout only reworks those portions of
the design which have changed. Full incremental design
support means simple design changes to facilitate design
verification can be made quickly and easily.

Delay Back Annotation

Designs can be verified through numerous methods. One
particularly useful method is the annotation of device and
implementation specific delays back into the original
simulation environment to improve system or device level
simulation accuracy. A MPA device layout can be
transformed into an appropriately formatted delay annotation

file or annotated netlist quickly and easily. The annotated
delay information represents the worst case delays for a
given device speed grade.

Chipview

While the MPA design system provides a rich set of reports
describing the implementation of a design, a graphical view
of the implementation can be indispensable for reviewing
overall layout quality. Chipview provides a graphical view of a
completed layout. Chipview can be useful during initial
design iterations to visually verify 1/0 pin placements before
commencing PCB layout, for example.

Configuration

A layout can be transformed into a device configuration
which, when loaded into the appropriate MPA device,
produces a physical design realization. Many formatting
options are available. The MPA download pod can be used
to emulate a serial PROM. Using the pod, device
configuration files can be downloaded to a device directly
from the PC or workstation development environment.

Integration Kits

The MPA design system can be used with a large number
of commercial electronic design automation software. The
Vendor Software List on page 2-79 shows the currently
supported vendors and tools. For each supported vendor, an
integration kit is provided which facilitates MPA design within
that vendors’ environment. Many of these kits are available
from Motorola and included at no charge on the MPA design
system CD-ROM. Other kits can be acquired directly from
the vendor. Refer to the MPA Design System Product List for
more information.

Low Cost, Easy Access

MPA Design systems are easy to use, competitively priced
and widely available. Copies of MPA design system software
supporting 1016 and 1036 can be downloaded from the
World Wide Web (WWW) @ http:/sps.motorola.com/fpga.
Complete kits including download pod, evaluation board,
MPA device, CD-ROM and documentation can be ordered
from your local authorized Motorola disttibutor or Motorola
sales representative (see Motorola Distributor and Worldwide
Sales Office listings in Ch 5. on page 5-3).

Fast, Efficient Design Implemiation With Miniomal lpwesiment,
Tlat's MPA!

A% T

2-78

MOTOROLA MPA DATA -——DL201 REV 2

MPA1000 Design System Product Description

Vendor Software List

Vendor Package, Revision Synthesis Schematic Simulation Timing Analysis
Viewlogic Workview Office, 7.31 (7.4 Aug 97) Q2-97 Yes Yes Q3-97
Viewlogic Workview Office, 7.12 Q2-97 Yes Yes No
Synopsys Design Compiler, 3.1 Yes Yes (Generated) Yes No
Exemplar Galileo, 3.2.5 (4.1 Aug 97) Yes Yes (Generated) Yes No
Exemplar Leonardo 4.0.3 (4.1 Aug 97) Yes Yes (Generated) Yes No
Model Tech 3Q97 No No Yes Yes
Data I/0 Synario, 3.0 Yes Yes Yes No
Cadence FPGA Designer, TBD No No Yes Yes
OrCAD Capture, 7.0 No Yes Yes No
OrCAD Express, TBD No Yes Yes No
Protel Advanced Schematics, 3.23 No Yes No No
VeriBest VeriBest, VB97 Yes Yes Yes No
Mentor Graphics Design Architect, A3 Q2-97 Q2-97 Q2-97 Q2-97

MOTOROLA MPA DATA — DL201 REV 2

2-79

MPA1000 Design System Product Description

Design System Product List

Platform
Part MPADS | Supports | Supports | Eval
Number Description | PC | WS |CD-ROM | 1016/1036 | All MPAs | Board | POD | Maintenance | S.R.P.

MPA1E/P Entry Level X X X X X $295
Kit

MPA1E/W | Entry Level X X X X X $595
Kit

MPA1S/P Standard X X X X X 1 Year $2,295
Level Kit

MPA1S/W Standard X X X X X 1 Year $3,995
Level Kit

MPA1CD/P | Design Soft- X X X $12.95
ware CD

MPA1CD/W | Design Soft- X X X $295
ware CD .

MPA1/POD | Download X X X X $195
Pod

MPA1/BRD | Evaluation X X X (FN) X $145
Board

MPA1M12P | Maintenance X 1 Year $595

MPA1M12W | Maintenance X 1 Year $795

Motorola Programmable Design System Descriptions

MPA1CD - Motorola Design System Software. Single CD—ROM containing MPADS software for both PC and
workstation including MPA databook, application notes and all supported EDA vendor integration kits. MPA1CD/D
is available from the Motorola Literature Distribution Center — Call 1-800-441-2447 or 303-675-2140. MPA1CD
and software downloaded from our web site do not include maintenance.

MPA1E/P — PC Entry Kit. MPADS software with full support for MPA1016 and MPA1036 devices, download pod
(MPA1/POD) and an evaluation board (MPA1/BRD), with an 84—pin MPA device, and a CD-ROM, at an attractive
price.

MPA1S/P - PC Standard Kit. MPADS software with support for all MPA devices, maintenance for 1 year,
download pod (MPA1/POD) and evaluation board (MPA1/BRD).

MPA1E/W - Workstation Entry Kit. MPA Entry kit for workstations — Sun OS V 4.1 (Now), HPUX V 8 (2Q/97).
MPA1S/W - Workstation Standard Kit. MPA standard kit for workstations.

MPA1/POD - Serial port download cable for both workstation and PC. Downloads configuration directly to a MPA
device. :

MPA1/BRD - Evaluation board including EPROM socket and an MPA1000 device in the 84—pin PLCC package.
MPA1M12P, MPATM12W - 1 year maintenance (Standard Level Kit includes 1 year of maintenance).

ﬂ/ 7 i @ MOTOROLA MPA DATA — DL201 REV 2
2-80

MPA1000 Design System Product Description

Motorola Integrated Design System Packages for Windows ‘95/NT

Kit Part Suggested
Type Number Description Retail Price
Basic | MPA1WV/BSC e Schematic Entry & Simulation $749

MPA Design System Software (MPADS) for MPA1016, MPA1036
Note: Maintenance Is Not Included

Basic Plus [MPA1WV/BSCPL |e Schematic Entry, Simulation & VHDL Editor/Compiler $1,049
MPA Design System Software (MPADS) for MPA1016, MPA1036
Note: Maintenance Is Not Included

Schematic Entry, Simulation & VHDL Editor/Compiler $3,149
MPA Design System Software (MPADS) for All MPA1000 Devices
One Year of Maintenance on All Software

Download Pod and Evaluation Board

Deluxe | MPATWV/DLX e Schematic Entry, VHDL Editor/Compiler, Speedwave VHDL Simulator, $5,149
Mixed Mode VHDL/Gate Level Simulator

MPA Design System Software (MPADS) for All MPA1000 Devices
One Year of Maintenance on All Software

Download Pod and Evaluation Board

Standard | MPA1WV/STD

For additional information on Workview Office, visit the Viewlogic Web page at: http://www.viewlogic.com/products

The Motorola Integrated Design System incorporates Viewlogic’s Workview Office Tool Suite with Motorola’s
Programmable Array Design System (MPADS) providing an integrated, easy to use, complete design environment for
MPA1000 FPGAs. Support for other popular design.capture and simulation tools, as well as stand—alone MPADS kits
and accessories, are also available.

The Motorola Integrated Design System includes:

Hierarchical Schematic Entry

Gate Level Simulation

Simulation Waveform Viewing
VHDL and Mixed Mode Simulation
VHDL Entry and VHDL Compilation
Schematic Generation

EDIF Netlist Writer

Design Optimization

Automatic, Timing Driven, Layout

e Layout Viewing

Configuration Generation
Download Hardware and Demo Board

A 30-day evaluation copy of the Integrated Design System with MPA1016 and MPA1036 support is available. Consult
factory.

MOTOROLA MPA DATA — DL201 REV 2
2-81

MPA1000 Design System Product Description

W] 7 i @ MOTOROLA MPA DATA — DL201 REV 2

2-82

Motorola Programmable Arrays

Packaging, Quality & Reliability

MOTOROLA
SEMICONDUCTOR GENERAL INFORMATION

MPA1000 Family
Packaging & Case Information

NS

84-LEAD PLASTIC PLCC 208-LEAD PLASTIC QFP
CASE 780A-01 CASE 872A-01
ISSUE A ISSUE O
FN SUFFIX DK SUFFIX

128-LEAD PLASTIC QFP
CASE 862A-02 224-LEAD CERAMIC PGA
ISSUE B CASE 860F-01
DD SUFFIX ISSUE O

KE SUFFIX

160-LEAD PLASTIC QFP 256-LEAD PLASTIC BGA

CASE 864A-03 CASE 1208A-01
ISSUE C ISSUE O
DH SUFFIX BG SUFFIX

181-LEAD CERAMIC PGA 299-LEAD CERAMIC PGA
CASE 768N-01 CASE 861B-01
ISSUE O ISSUE O
HI SUFFIX HV SUFFIX
PICTORIALS NOT TO SCALE

W} 7 i E@. MOTOROLA MPA DATA — DL201 REV 2

3-2

Packaging & Case Information

FN SUFFIX
84-LEAD PLASTIC PLCC PACKAGE
CASE 780A-01
ISSUE A
~B
[¢] 0180007 @[T[NO©P O[LOME)]
T
(610180007 @[TNO®-PO[LO-ME)|
5 ® /—Yanx §
A00o00nanoonnonooononn -— D Eg—’"
54 332 Z1 =
g =
g =
b =L
= =F
-L- M= =
b =L
=l]
F b 1 =
K:
g =
3 =9
b =L,
2] =L
5 E:
74 312 r w L_::
7 “ 1 i D
I -
G

1
[@]0250010@[TNOP B[LOME)
DETAIL D-D

A
[@]0180.007@[T[LOMBO[N®-P B

NOTES:
1. DATUMS -L-, ~M-, -N-, AND ~P- DETERMINED

» f\ WHERE TOP OF LEAD SHOULDER EXITS
z PACKAGE BODY AT GLASS PARTING LINE.
S IO
|$| 0'18(0‘007)®IT| L©_M(®|N©_P ©l + 3. DIMENSIONSRANDUDO;JOTINCLUDE)
fs GLASS PROTRUSION. ALLOWABLE GLASS
------------ £ . DIVENSIONING AND TOLERANGNG PER ANSI
_____ 1 u'!"!'l!l'l!!:l’l"!" ' égNiMR’O‘I?LBIzNG DIMENSION: INCH.
5. : .
¢ Gl i F 1] 0.100 (0.004) e
. 61 | gime L ow ETENTE
X 195 | 30.10 | 3035
[#] 0250010 T[LO-MBO[NO-P) DETAIL S TN
220 | 279
il 0.33 0.53
1.27BSC
Y 066 | 081 |
X —_— 0.51 —
, [B[0rem@[TLONCING+® i o 5w
150 156 | 29.21 | 29.36
$[0180007®|TINO-PO|LO-MEO R T W
i 0.042 .048 1.07 1.21
0.042 | 0.056 1.07 142
— 0020 T — T 050 |
K1 § 20° 1_25_ gazmo 231%
1] 111 1. ¥ A
) ——”-— 0180007 ®|T[LO-MBO|NO-P® Kleam oo 1l —
F 15018000 ®@|TINOPO|LOMND

DETAIL S

MOTOROLA MPA DATA — DL201 REV 2
3-3

Packaging & Case Information

DD SUFFIX
128-LEAD PLASTIC QFP PACKAGE
CASE 862A-02
ISSUE B
L]
R L st
o HHHHHHHHHHHHH{H?I‘.HEHHHHHHHHHHHHH,
5 = @]
= = 12
= = @
A = = g
= :
- =T Bla[2]
i = e
= &
=
! ! [Bf—lk— %2
A
[0200008 @[H] A-8 ®]D B
1 | 005(0.002)A-B]
s
(@] 0200008 @[c] A8 ®[D O]
DETAILC

AR

PLANE

/ . | DATUM
el a1 G AN e
‘sE—g—NIGT TJ —>[«—G '_ DETAIL B - " [0.10(0.004)

=

J

N

Pl UL
D METAL

[#] 020 0008/ ®[c[4B O[D B

DETAIL B DETAIL C

[@] 0200008 ®@[c] A-B ®[DB)]

L

ilil

—A-,—B-,-D-
DETAIL A

NOTES

@ -

e o &

~N

. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.

CONTROLLING DIMENSION: MILLIMETER
DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINGIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE BOTTOM OF THE PARTING LINE.

DATUMS -A-, ~B~ AND -D-TO BE DETERMINED
AT DATUM PLANE -H-.

DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE ~C-.

DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
(0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE —H-.
DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT BE
LOCATED ON THE LOWER RADIUS OF THE
FOOT.

MILLIMETERS

| DM |~ MIN
2790
27.90

0.125 | 0.144
0012 | 0016
0.80 BSC 0.032 BSC
025 | 035 [0010 | 0014
013 | 023 | 0.005 | O

K 065 | 095 | 0.0 0.037

24.80 REF 0.976 REF

M 5°] 16°] 5°[16°
N | 013 | 017 [0005 | 0.007
P 040BSC 0016 BSC

0° 7° 0° 7°
013 | 030 | 0.005 | 0.012
3095 | 3145 | 1219 | 1.238

03 [— (0005 | —
U o] —1 o] —
| v 3095 | 3145 | 1219 | 1238
"W | 040 [— [oot6 | —
X | 1.60REF 0,063 REF
Y | 1.60REF 0.063 REF
Z | 160REF 0.063 REF

7 i @ MOTOROLA MPA DATA — DL201 REV 2

34

Packaging & Case Information

DH SUFFIX
160-LEAD PLASTIC QFP PACKAGE
CASE 864A-03
ISSUE C

1

8
le »|
Y {- L —!

121 -

@] @]
=l =l — «{=A=B-,-D-]
i | P
=7 | o]
L B[®={v[® A 1
g2 |8 b
sisl||e H|U
Sl8| |5 MR
$ -— ﬁ — G |-
- - DETAIL A
21
-~ A
9] 02000008 ®[H[A8 ©[D)]
1 [020(0.008]a-B T
s N
(@] 020 0008 @[c[A-B O]D®)] ¥ NEEE I
DETAIL C e— F—>
4 re— p —
Ban nin s [&] 0130005 ®[c][A-B ®[D®)]
-7 SECTION B-B

MILLIMETERS | INCHES
Y DIM
/v\ M A
TOP & NOTES: B
1. DIMENSIONING AND TOLERANCING PER ANSI c
Y14.5M, 1982,
2. CONTROLLING DIMENSION: MILLIMETER. X X
3. DATUM PLANE -H~ IS LOCATED AT BOTTOM OF Y
LEAD AND IS COINCIDENT WITH THE LEAD WHERE
THE LEAD EXITS THE PLASTIC BODY AT THE H o.g%
c E BOTTOM OF THE PARTING LINE.] 0004 | 0008
4 [T , 4. DATUMS -A-, -B- AND -D-TO BE DETERMINED AT = oo T 005
DATUM PLANE -H-. .
998 REF
I 5. DIMENSIONS S AND V TO BE DETERMINED AT L 908 REF.._
SEATING PLANE —C-. L} 5 16/
' 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD N 0.004_| 0007
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 P 0.013BSC
(0.010) PER SIDE. DIMENSIONS A AND B DO Q 0l 7°
— T INCLUDE MOLD MISMATCH AND ARE DETERMINED | R 0005 | 0012
SEATING H AT DATUM PLANE -H-. s 1.220 | 1.236
PLANE 7. DIMENSION D DOES NOT INCLUDE DAMBAR T 0005 | —
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION [y i —
(0] 0.10(0.009) SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D X T2 [T
DIMENSION AT MAXIMUM MATERIAL CONDITION. 040 | — T oote —
DAMBAR CANNOT BE LOCATED ON THE LOWER 160 FEF OB]
RADIUS OR THE FOOT. y :
DETAIL C 1.33 REF 0.052 REF
z 1.33 REF 0.052 REF.

MOTOROLA MPA DATA — DL201 REV 2
3-5

Packaging & Case Information

DK SUFFIX
208-LEAD PLASTIC QFP PACKAGE
CASE 872A-01
ISSUE O

NOTES:

. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982

CONTROLLING DIMENSION: MILLIMETER.
DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE BOTTOM OF THE PARTING LINE.

DATUMS -A-, -B- AND -D~ TO BE DETERMINED
AT DATUM PLANE —H-.

DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE ~C-.

. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS
0.25(0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE —H-,
DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
NOT CAUSE THE D DIMENSION TO EXCEED
0.38(0.015).

MILLIMETERS
MIN_| MAX
27.90 | 28.10
27.90 | 28.10
345 [410

wn

o &

~

[$]020 (000 ®[C[AB © [0 O

$[020(0.008)®[H[AB ®[DE)]

1 [0.05(0.002) [A-B

$] 0200008/ ®[H[A-B B[D B
1 [0.05(0.002) [A-B

olvz|z|rix|-|z|o|n|mlo ,m,lg
>
=
o

s
[02000008 ®[C[A-B® [DO)] 51.00 [3140

I
1

[¢]
m
=
8
B
[
(9]
IN|< | |<
o (2
5818
3
0
M (e
I

—c- H
ShAnpa DETALB M

e~ u
BASE METAL T
—T1— P /
f<— F —> }
= X T —H- R
y ; N B
v (A A B
A — le— D —»] W f
————— |] 0.06 0002 ®|C[A-B ® [DO)] B
Lk a
DETAIL B |__
SECTION B-B X
DETAIL A ROTATED7° COW DETAILC

MOTOROLA MPA DATA — DL201 REV 2
3-6

Packaging & Case Information

BG SUFFIX
256-LEAD PLASTIC BGA PACKAGE
CASE 1208A-01
ISSUE O
X—e D DETAIL K
F M
| Ve AN NOTES:
T \ 1. DIMENSIONS ARE IN MILLIVETERS.
() 2. INTERPRET DIMENSIONS AND TOLERANGES
N b/ PER ASME Y14.5M, 1994.
| DIMENSION b IS MEASURED AT THE MAXIMUM
'SOLDER BALL DIAMETER, PARALLEL TO DATUM
o] | PLANE Z.
| /A\DATUM Z (SEATING PLANE) IS DEFINED BY THE
l 'SPHERICAL CROWNS OF THE SOLDER BALLS.
| MILLINETERS
E G -I|+————— +———— OIM[MIN [MA;
| Al 192] 2%
AT 050 [070
| (A2 | 08REF
| m e | 12
b [060 | 090
| 27.00B5C
| E | 27.0085C
F_| 2400 | 2470
G_| 24.00 | 24.70
p e | 127B5C
S | 063585C
M g—
— S
le— 20X €
2120181716151413121110 9 8 7 6 5 4 3 2 1
’ ¢ l \
b bbb b b b Al LA b
060000000000000000| 4)
00000000 010000000000-| 8 < 2 ¢ N \ [#]o3s] 2]
SO0 ObObOtodtdodd | o
Q9000000 P94 A4 P +IJ -
$0000000000000000000-(D -+
o |-6664 | 6660-| & } g '
& P44
5 >&00 >0-| F
o ¥ | 8883 | 3383 ¢ = g/ owE[]
P >0-60-| H
&4 s L
V| | 69ed | 66-| 4
000 9066 |k
1 0000 9000-| L Al
bbb | 35661 A
POOP 10064 ROTATED 90 ° CLOCKWISE
b | >$9-| N
2221 ©009-| p
PO OO | 3060 r
b
> PO 694
33 0066660606660000. | 1
& 560900000 3
POODVVVV000000000666-| v
O-O-O-O-O O-O-OO-O-O a n - D w
> >3 00000009 0600
> 0000000000000000-| v
N ull |
I
A 256X D b
VIEW M-M

MOTOROLA MPA DATA — DL201 REV 2
3-7

Packaging & Case Information

HI SUFFIX
181-LEAD CERAMIC PGA PACKAGE
CASE 768N-01
ISSUE O
¥ frmon ol
[PIN 1 INDENTIFICATION Cle— r_ G~
[O] T ‘ﬂ =1 A OO © o] T OMENSIONNG AND TOLERANCING PER ANS!
=L g H 0O Y1450, 1982.
—\ ¢ 9080009 2. CONTROLLING DIMENSION: INCH.
E @ INCHES | MILLIMETERS
T ; | DIM[MIN | MAX | mIN | MAX
B M i 06660 ® 58 [0 | sos0 | d0s1
; o o.1o§ 0124 gi? 31?
> Y .02 ¥ X
': © ® F gglo ggsg 1.02 1.22
G | 0.100BSC 254 BSC
{: 29 8 88 1} K | 0110 | 0.150 | 279 | 381
© L | 0043 | 04 X 4
X+ RO @) 1] gggs g% 1;3 1;.12
- N> | 1|: 1514131211109 87 6 54 3 2 1 N | oo [ono] 229] 279
L D1s1pPL
s (] $[2 0030076 ®[T[A O[O
&2 0015(0.38)®| T
KE SUFFIX
224-L EAD CERAMIC PGA PACKAGE
CASE 860F-01
ISSUE O

A
y
c
D
Ef
F
G
H

L o

K|
L
]
N
P
R
T
1

T

D S

0.020 1. DIMENSIONS ARE IN INCHES.
220X (016 2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994,
3. MINIMUM SPACING BETWEEN CONDUCTORS
& 20030® |C|A® l B® | SHALL BE 0.020.
20010® INCHES
MIN_| MAX
0070 | 0145
1.740 | 1.780
1.740 | 1.780
0100 | 0.200
0,045 | 0,075

(]

=
|- mio>=

ﬁ} ; i @ MOTOROLA MPA DATA — DL201 REV 2

3-8

Packaging & Case Information

HV SUFFIX
299-LEAD CERAMIC PGA PACKAGE
CASE 861B-01
ISSUE O

[J 0.080 MAX

<E<CHIVZEr-X«IOTMMOOTP>

224X 88%2
[ofoxe[c o 2000® c[A®@[B®]
@0010®

[e]

TES:
1. DIMENSIONS ARE IN INCHES.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. MINIMUM SPACING BETWEEN CONDUCTORS
SHALL BE 0.020.

o
wo-—mu»LI
=
=
=
=
&

0.100 | 0200
0045 | 0075
0.050BSC

MOTOROLA MPA DATA — DL201 REV 2
3-9

Packaging & Case Information

MPA17000 EPROM/EEPROM
Packaging & Case Information

P SUFFIX
8-LEAD PLASTIC DIP PACKAGE
CASE 626-05
ISSUE K
8 5 NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
D -B] FORMED PARALLEL.
C 2. PACKAGE CONTOUR OPTIONAL (ROUND OR
Os 4 SQUARE CORNERS).
3. DIMENSIONING AND TOLERANGING PER ANSI
I.r' Lu" Lll Y14.5M, 1982.
——l FL— MILLIMETERS | _INCHES
NOTE2 D [MIN | MAX | MIN | MAX
A | 940 [1016 [0.370 | 0.400
B | 610 | 660 | 0.240 | 0260
c .94 .45 155 | 0.175
.38 .51 .015 [0.020
02 [178 | 0040 | 0.070
254 BSC 0.100BSC
076 | 127 | 0030 [0.050
-T 0.20 | 030 | 0.008 | 0012
SEPALTI:(E; 2.92 343 [0.115 [0.135

L 762 BSC 0.300 BSC
| — [0 — [
N_| 076 | 1.01 | 0030 0.040

G
(]2 0130005@[T] A® | B®|

D SUFFIX
8-LEAD PLASTIC SOIC PACKAGE
CASE 751-05
ISSUE S

D NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
m m m m - Y14.5M, 1994.

. DIVEENSIONS ARE IN MILLIVETERS.
f 5 S . DIMEENSION D AND £ DO NOT INCLUDE MOLD
PROTRUSION.
. MAXIMUM MOLD PROTRUSION 015 PER SIDE.
E H[$]ozs @8 @] . DIMENSION B DOES NOT INCLUDE MOLD
1 PROTRUSION. ALLOWABLE DAMBAR
v lo 4 PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
i i q] lﬂ 1 CONDITION.
[h x4s °

@ N

[LFN

MILLMETERS
B] -’IE"— DM [MIN_| MAX
Al 13 [175
Al 0.10 025
B | 0% | 049
c [0] 02
Y O L E | 360 [400
o | 12788C
H | 560 [620
A1" h | 025 | 050
L[040 | 125
@025@03@ A® s T oo 7°

WI 7 i @ MOTOROLA MPA DATA — DL201 REV 2

3-10

Packaging & Case Information

DW SUFFIX
20-LEAD PLASTIC SOIC WIDE PACKAGE
CASE 751D-04
ISSUE E
[y —A— - NOTES:
= 1. DIMENSIONING AND TOLERANGING PER
H H H H H H H H H D ANSI Y14.5M, 1982.
20 1 2. CONTROLLING DIMENSION: MILLIVETER.
’ 3. DIMENSIONS AAND B DO NOT INCLUDE
e MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.150
EE 10x P (0.00) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
E 0.010 (025)@ DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.13
1 10 (0.005) TOTAL IN EXCESS OF D DIMENSION
H H H H H H B H H H —_— AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS | INCHES
20x D J | DM [MIN | MAX | MIN | MAX
l %'010(0'25)@|T| A @l B@l £ 1265 | 12.95 | 0499 [0510
r 740 | 7.60 | 0292 | 0.299
235 | 265 | 0003 | 0104
__l F L, 035 | 049 | 0.014

0.019
050 | 080 | 0.020 | 0.035
1.278SC 0.050 BSC
025 | 032 | 0010 | 0.012

025 | 0.004 | 0.009

7° 0° 7°

10.05 | 10.55 | 0.395 | 0.415
025 | 075 | 0.010 | 0.029

e
) ¥
B
b
>
&
3
0 |O|= (R |D |
o2

—-4 |<—1ax G K

MOTOROLA MPA DATA — DL201 REV 2
3-11

Packaging & Case Information

FN SUFFIX
20-LEAD PLASTIC PLCC PACKAGE
CASE 775-02
ISSUE C

»l /v BRK — B [®[0007 0.180@[T[L- MO NG|
_oonon }«D | —U [@]0.007 0.180@[T[L-MB [N® |
z
I S
7
T F R0 , .
Vv Xl L G1{] 0.010(0250@[T[L MO [N® |
VIEW D-D
A [@] 0.007 0.180@[T[L-MO [N® |
A z)

r Al [
+ } K1

VIEW S
G1 VIEW S

[]0.0100.250@[T[L-MO [N® |

NOTES:
. DATUMS -L-, -M-, AND -N- DETERMINED WHERE

-

E
) T Tl 0.004 (0100 K
. i S—
e -+l L- F [&] 0007 0180@] T L-M® [NO |

TOP OF LEAD SHOULDER EXITS PLASTIC BODY
AT MOLD PARTING LINE.

DIM G1, TRUE POSITION TO BE MEASURED AT
DATUM -T-, SEATING PLANE.

»

=
=

w

DIM R AND U DO NOT INCLUDE MOLD FLASH.

ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER
S

DE.
DIMENSIONING AND TOLERANCING PER ANSI

-

Y14.5M, 1982.

CCONTROLLING DIMENSION; INCH.

oo

THE PACKAGE TOP MAY BE SMALLER THAN THE

PACKAGE BOTTOM BY UP TO 0.012 (0.300).

DIMENSIONS R AND U ARE DETERMINED AT THE

OUTERMOST EXTREMES OF THE PLASTIC BODY
EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS,

GATE BURRS AND INTERLEAD FLASH, BUT

INCLUDING ANY MISMATCH BETWEEN THE TOP
AND BOTTOM OF THE PLASTIC BODY.

~

DIMENSION H DOES NOT INCLUDE DAMBAR

PROTRUSION OR INTRUSION. THE DAMBAR
PROTRUSION(S) SHALL NOT CAUSE THE H

DIMENSION TO BE GREATER THAN 0.037 (0.940).

DM [MIN | MAX | MIN | MAX
A [0385 0395 | 978 | 1003

385 | 0.395 | 9.78 | 10,03 |

165 | 0180 | 420 | 457

000 | 0110 | 229 | 279

0013 | 0019 033 | 048
G 0.050 BSC 1.27 BSC
H [0.026] 0.082 | 066] 081
J (000 — [051 —

K [0m5] — 1 0641 — |

350 | 0.356 | B89 | 0.4 |

U 350 | 0356 | 889 | 0.0
0042 [0048 | 107 | 121
0042 | 0048 | 107 | 121

0.042 | 0056 | 107 | 142

— [0t | — 50

T e | 2| 10|

1 | 0310 | 0330 7.88 | 838
Ki | 0040 — | 102] —

THE DAMBAR INTRUSION(S) SHALL NOT CAUSE
THE H DIMENSION TO BE SMALLER THAN 0.025
(0.635).

MOTOROLA MPA DATA — DL201 REV 2
3-12

M @

Quality and Reliability

Quality and Reliability

Quality

The Motorola culture is a culture of quality. Throughout all
phases of product development, from defining and designing
to shipping the product, Motorola strives for total customer
satisfaction through “Six Sigma” and “On Time Delivery”
programs.

Designing Products

Extensive work was done on the 75% UDR CMOS
process to ensure a solid platform for quality products.
Process reliability studies were performed to uncover any
weaknesses in the initial process so that enhancements
could be made to strengthen it before it was released to
production. In addition, comprehensive characterization and
correlation work was completed on the process to ensure the
utmost in modeling parameter accuracy.

The design of the products strictly adhered to the design
rules set forth by the process designers. Conservative,
manufacturable layout rules were followed to minimize the
performance variability due to a marginally manufacturable
product.

Manufacturing Process

Through SPC and continual engineering work, the
manufacture of the CMOS process is both monitored and
enhanced on a continuous basis. Statistical data is gathered
at both probe and final test through the device data collection
to monitor the distribution of a parameter to its specification
limits. In addition, final quality assurance gates are set up to
guarantee the quality of outgoing product.

Product Characterization

Products are both DC and AC characterized for all data
book environmental conditions prior to the release of the
product to production. The distributions of the parameters
are compared to their specification limits to ensure that
Motorola “manufactures” quality products as opposed to
“testing” quality products through distribution truncation. In
addition, ongoing AC characterization is performed to
enhance the distributions of the AC parameters of the
device. In doing so, as the distributions warrant, further
enhancements to the AC specifications can be achieved.

Reliability

To ensure the long term reliability of MPA products,
extensive accelerated life testing is performed prior to
production release. This qualification work is performed by
Logic Reliability Engineering, an organization specifically
dedicated to monitoring and guaranteeing the quality and
and reliability of logic products. The accelerated life test
consists of the following:

Operating Life Test: 145°C, 5.5V Man Supply
Temperature Cycle: —-65°C to 150°C
Pressure, Temperature, Humidity (Hermeticity)

A minimum of 35 lots, 100 die per lot taken from seven
different waters in the lot constitute a qualification sample.
Various intermediate readouts are taken to monitor the
performance more closely. In addition, the devices are tested
beyond the specification limits to determine where and how
they will fail.

Another responsibility of the reliability group is that of
failure analysis. This failure analysis service is supported for
both internal purposes and for servicing the needs of our
customers. Analysis entails everything from simple package
examination to internal microprobing to SEM analysis of IC
structures. The results of the analysis are returned to the
customer and if the analysis suggests a potential problem
with the device the information is also passed to the internal
product groups.

RAP: Reliability Audit Program

The Reliability Audit Program (RAP) devised in March
1977 is the Motorola internal reliability audit which is
designed to assess outgoing product performance under
accelerated stress conditions. Logic Reliability Engineering
has overall responsibility for RAP, including updating its
requirements, interpreting its results, administration at
offshore locations and monthly reporting of results. These
reports are available at all sales offices. Also available is the
“Reliability and Quality Handbook” which contains data for all
Motorola semiconductors (BR518/D).

Rap is a system of environmental and electrical tests
performed periodically on randomly selected samples of
standard products. Each sample receives the tests specified
in Figure 3—1. Frequency of testing is specified per internal
document 12MRM15301A.

MOTOROLA MPA DATA — DL201 REV 2
3-13

Quality and Reliability

45-116 PCS* 116-328 PCS™ 76-116 PCS
I ‘ | I
I 1] 1 OP LIFE**
PTHB PTH INITIAL SEAL™* INITIAL SEAL*** 40 HOURS
48HRS 96 HRS [|
TEMPCYCLE THERMAL SHOCK
100 CYCLES 100 CYCLES
SEAL*™ SEAL™
I I
RICAL ELECTRICAL
ELECTRICAL ELECTRICAL ELE?;;‘}CAL ELE%TSTCA TEST
TEST TEST | | |
| ! THERMAL SHOCK THERMAL SHOCK OPLIFE
PTH PTH ADD 900 CYCLES ADD 900 CYCLES ADD 210 HRS
ADD 48 HRS ADD 48 HRS I -
ELECTRICAL ELECTRICAL ELECTRICAL
TEST TEST TEST
ELECTRICAL ELECTRICAL | |
TEST TEST TEMP CYCLE OP LIFE****
‘ ADD 1000 CYCLES ADD 750 HRS.
ELECTRICAL I
TEST " ELECTRICAL
TEST
[
SCRAP

Figure 3—1. Reliability Audit Program Test Flow

* PTH will be run as a substitute if PTHB sockets are not PTHB

available. Only required on plastics packages. 15psig/121°C/100% RH at rated VGG or VEE — to be
** Thermal Shock will be run if Temp Cycle is not available. performed on plastic encapsulated devices only.
*** Seal (fine and gross) only required on hermetic Temp Cycle

packages. Mil. Std. 883, Method 1010, Condition C, — 65°C to 150°C
**+* All units for Op Life to be AC/DC tested before and after

being stressed. All units failing AC after stress will be Op Life }

analyzed. : Mil. Std. 883, Method 1005, Condition C (Power plus
***** One sample per month Reverse Bias), Ta = 145°C.
Notes:

1. All standard 25°C DC and functional parameters will be measured Go/NoGo at each readout.

2. Any indicated failure is first verified and then submitted to the Product Analysis Lab for detailed analysis.
3. Sampling to include all package types routinely. :

4. Device types sampled will be by generic type and will include all assembly locations.

5. 16 hrs. PTHB is equivalent to ~ 800 hrs. of 85°C/85% RH THB for Vo < 15V.

6. Only moisture related failures (like corrosion) are criteria for failure on PTHB test.

7. Special device specifications (48A’s) for digital products will reference 12MRM15301A as a source of generic data for any customer requiring monthly audit
reports.

W } 7 i @ MOTOROLA MPA DATA — DL201 REV 2

3-14

Latch up

Latch up will not a problem for most designs, but the
designer should be aware of it, what causes it, and how to
prevent it.

Figure 3-3 shows the cross—section of a typical CMOS
inverter and Figure 3-2 shows the parasitic bipolar devices.
The circuit formed by the parasitic transistors and resistors is
the basic configuration of a silicon controlled rectifier, or
SCR. In the latch up condition, transistors Q1 and Q2 are
turned ON, each providing the base current necessary for
the other to remain in saturation, thereby latching the devices
into the ON state. Unlike a conventional SCR, where the
device is turned ON by applying a voltage to the base of the
NPN transistor, the parasitic SCR is turned ON by applying a
voltage to the emitter of either transistor. The two emitters
that trigger the SCR are connected to the same point, the
CMOS output. Therefore, to latch up the CMOS device, the
output voltage must be greater than Vpp+0.5V or less than
Vss-0.5V and have sufficient current to trigger the SCR. The
latch—up mechanism is similar for the inputs.

ouT

VDD —4

L

0_1[——4
1»—4\/\/\/—4»—75

Figure 3-2. Latch-Up Circuit Schematic

To reduce the current for triggering the SCR, guard rings
are formed and act as dummy collectors to collect charges

GND G VDD

Quality and Reliability

directly through Vi and ground, rather than through active
circuitry, thereby shunting the parasitic transistors. The guard
rings are connected to Vgc and ground near the input and
output diodes to short out the parasitc SCR. Guard ring
diffusion also creates additional parasitic transistors and
reduces effective substrate resistance which makes the SCR
harder to turn on.

Once a CMOS device is latched up, if the supply current is
not limited, the device will be destroyed. Ways to prevent
such occurrences are listed below:

3. Insure that inputs and outputs are limited to the
maximum rated values, as follows: —0.5V < Vi, or
Vout < VDD + 0.5V (referenced to Vgg) Hlin or loutl <
10mA (unless otherwise indicated on the data
sheet).

4. If voltage transients with sufficient energy to latch
up the device is expected on the inputs or outputs,
external protection diodes can be used to clamp the
voltage. Another method of protection is to use a
series resistor to limit the expected worst case
current to the maximum rating of 10mA.

5. Sequence power supplies so that the inputs or
outputs of CMOS devices are not active before the
supply pins are powered up (e.g., recessed edge
connectors and/or series resistors may be used in
plug—in board applications).

6. Voltage regulating or filtering should be used in
board design and layout to insure that power supply
lines are free of excessive noise.

7. Limit the available power supply current to the
devices that are subject to latch—up conditions. This
can be accomplished with a power supply filtering
network or a current limiting regulator.

OUTPUT

ST T O T

N+J
L

N-Well Q2

P-Substrate

Figure 3-3. CMOS Wafer Cross-Section

MOTOROLA MPA DATA — DL201 REV 2
3-15

Quality and Reliability

Electrostatic Discharge

The gate electrode of a CMOS circuit is completely
isolated from the substrate by a silicon dioxide layer, which
forms the dielectric of the gate—to—substrate capacitor. The
thickness of the oxide insulator between the gate and the
substrate of a MOS device is about 1000A and has a typical
breakdown voltage in the range of 100 to 120V.

If a voltage higher than the breakdown voltage is applied
to the gate, the silicon dioxide beneath the gate will rupture.
This can result in permanent damage of the device, causing
a short between gate metal and either the substrate or a P
or N region. Because of the extremely high resistance of the
gate oxide, even a very low energy source (i.e., stray
electrostatic charges) is capable of developing this
breakdown voltage. The possibility that a CMOS device will
be destroyed by static overvoltage exists only during
handling and testing. Once the device is mounted in a circuit,
normal circuit impedances and voltages make this danger
virtually impossible. In order to avoid destruction of CMOS
devices by static discharge, various input protection circuits
were developed.

The protection system used for ESD is the Double Diode
Plus Resistor Protection Circuit as shown in Figure 3—4.

It consists of a series isolation resistor Rs, whose average

value is 1.5kohm, and diodes D1 and D2 for clamping
excess input voltages to the power supply pins, VDD or VSS.
Diode D3 is a distributed parasitic structure resulting from the
diffusion fabrication of Rs.

Added Protection Circuitry
at Each External Input Lead
Vss
NOTES: Rg = 1.5k Nominal
Avalanche Voltages
BVD{ =30V BVDo =30V
BVD3 = 80V BVD4 =90V

Figure 3-4. Double Diode Plus
Resistor Protection Circuit

M @

3-16

MOTOROLA MPA DATA — DL201 REV 2

Application Notes | 4

Motorola Programmable Arrays

3/96

AN1561
Application Note

68030 DRAM Controller
Design Using Verilog HDL

Prepared by
Phil Rauba
Field Applications Engineer

© Motorola, Inc. 1996

4-2

@ MOTOROLA

REV 0

AN1561

68030 DRAM Controller Design Using Verilog HDL

Purpose

This article is intended to give a hardware engineer insight
into the design methodology of using the Verilog Hardware
Descriptive Language (HDL), targeting Motorola’s field
Programmable Array (MPA) and H4C gate array families. The
advantage of using an HDL, such as Verilog, is the ability to
retarget the design to other device technologies, by only
resynthesizing the design description. A 68030 Dynamic Ram
Controller design was used to demonstrate the portability of
the Verilog language, and included all of the circuits necessary
to interface DRAM to a 68030 microprocessor including:
memory decoding, STERM generation, refresh request
generation, CAS before RAS refresh, burst address
sequencing, DRAM address multiplexing, and bus error
time—out.

Design Methodology

The DRAM Logic was designed with a synchronous state
machine design technique and described using the Verilog
Hardware Descriptive Language, with the intent of providing a
portable and easily maintainable design. The design tools
used for this project are listed in Appendix A. The steps
included in the design process include the system block
diagram definition, state diagram generation, Verilog HDL
logic definition, Verilog logic simulation, Verilog logic
synthesis, place and route, and Verilog post simulation.

Simulation Code
Simulation Tool

Figure 1. Verilog Design Method

The Verilog Design Methodology, Figure 1, illustrates the
design flow beginning with the generation of the Verilog RTL
source code. The DRAM design used a hierarchical module
development methodology, which partitioned the design into
eight submodules and instantiated each of the submodules
into the design through a top module description designated
as module glue68k. A stimulus module was also created that
provided the test bench for verification of simulation code. The
stimulus module included a 25MHz clock generator module, a
behavioral 68030 bus controller module, and the instantiation
of the top glue68k module, designated with the instance name
of u1. As each Verilog submodule was written, the code was
verified logically with the use of the stimulus module and the
waveform capabilities of the Verilog simulator.

Once the design was logically verified, the original Verilog
source code, that was used for simulation, was also used for
synthesis. Each module of the hierarchical design was
synthesized separately so that if a module needed to change,
only that module would have to be resynthesized, saving
considerable time by not having to resynthesize the entire
design.

Since different tools were used for the logic synthesis, when
targeting MPA and gate array, different methods were used
during the synthesis process. For MPA development, the
Exemplar tool was used for synthesizing each of the
submodules individually. When synthesizing the top glue68k
module, two passes were used with the Exemplar tools, one to
generate submodule connectivity and the other to read and
reformat the Verilog netlist. Empty submodules were
instantiated in the design during the first pass of the Exemplar
logic synthesizer with a Verilog netlist being generated. The
Verilog glue68k netlist was then edited to add the links to the
submodules by using the include command, referencing each
of the submodule’s file pathname. A final netlist was output
from the second pass of the synthesizer, which read the eight
Verilog netlists from the links in the top module, and
reformatted the file to an EDIF netlist.

For gate array development, Synopsys was used for
synthesis of the design. Each of the eight submodules and the
top module, glue68k were read-into Synopsys and
synthesized all at one time without having the need to use the
include command.)

The EDIF netlist is used by the MPA and gate array place
and route tools to generate the final design files. The MPA
design procedure was to create a project, select the target
device (MPA1036 181 pin PGA), input the EDIF netlist, place
and route the design, and back—annotate into a structural
Verilog netlist.

After placing and routing the DRAM MPA design, the
structural Verilog netlist was used for post simulation. The
structural Verilog netlist generated by the place and route
back--annotation tool, contains precise MPA1036 gate and
path delays to accurately predict the timing behavior of the
final placed and routed design. Post simulation is useful for
verifying and altering the design, if needed, before a printed
circuit board is required. For post simulation, a modified
version of the presimulation stimulus file was written to reflect
the net name changes that were incurred by use of the design
tools, but included the same clock and 68030 bus controller
test suites as before. Final simulation of the DRAM design
required the structural Verilog netlist module, the stimulus
module, and the Verilog MPA1000 series gate primitive library,
that was supplied with the MPA design system.

System Description

Bursting is a feature in the newer generation of CISC/RISC
microprocessors that is comprised of a memory access of four
long words of 32 bits each. The DRAM burst cycle is initiated
by first generating a RAS cycle access and a CAS cycle
access for the first long word, and then fetching the next three
long words by generating only CAS cycles thereafter. The
intention of the burst cycle is to divide the RAS cycle

MOTOROLA MPA DATA — DL201 REV 2
4-3

AN1561

generation overhead of the first access amongst all four
longword fetches; thereby, providing an overall access
performance improvement as compared to single RAS
generation for each longword.

The system block diagram is shown in Figure 2 and
includes a 68030 microprocessor, a 16MByte dram array
using 4Mx4 DRAMs, data bus drivers, and the MPA (or gate
array). The MPA provides all of the DRAM interface circuitry
needed to support 68030 bursting.

MPA Functional Description

The block diagram functional description of the MPA is
shown in Figure 3 and shows all of the modules within the
design, including the refresh timing generator, the refresh
request state machine, the address decoder, the RAS/CAS
state machine, the RAS/CAS decoder logic, the burst control
state machine, the burst address generator, the DRAM
address multiplexer, and the bus error time-out state
machine.

MPA Timing Synchronization

As indicated in the MPA functional block diagram Figure 2,
the main clock for all the state machines is the inverted 25MHz

clock to the 68030. Since all of the output timing out of the
68030 is referenced to the falling edge of the processor’s
25MHz clock, the clock is inverted and is used for clocking the
MPA’s internal registers. A delay line (not shown) will be
needed for moving the assertion point of the address strobe
signal with respect to the internal clock skew within the target
device to prevent flip—flop metastable conditions. The delay
line value will be dependent on the actual clock skew within
the MPA or gate array.

Refresh Timing Generator

The refresh timing generator provides a 97.656KHz refresh
request square wave with a period of 10.24usec for the refresh
request state machine. The generator is comprised of a eight
bit free running up counter with a 25MHz clock source.

Refresh Request State Machine

The refresh state machine receives the 97.656KHz refresh
square wave and generates a ref_rq signal to the RAS/CAS
state machine. The refresh state machine requests a refresh
cycle only once when ref{7] is asserted high and inhibits the
request after the RAS/CAS state machine has initiated a CAS
before RAS refresh cycle.

d(31:0)

m_d(31:24)

F645

er_\;d(7:0)

dir

RAM

4Mx4 D

Lr:d(zane) E:ms:e)

4Mx4 DRAM
4Mx4 DRAM
4Mx4 DRAM

a(31:0)

[§ Bytet
K Byle‘z

_ij Byte 0

siz(1:0)
as*

ras0*
casQ*

ds* we0*

w* rasi*

cbreq* | casi*

wel*

ras2*

68030
MPA

[cas2r

we2*

ras3*

25mhz i_25mhz cas3*

we3*

sterm*
cback*
berr*

Figure 2. MPU-DRAM Controller Interfacing

4-4

MOTOROLA MPA DATA — DL201 REV 2

AN1561

o 25mhz .
25mhz Re'f\resh Timing ref7] Rerfresh Timing | ref_rq
L__, raz
I_a(31:24) —] %%cmd i_as —] oo
i_as Address | dram_rq RAS ref_cycle
Decoder | CAS |cpu_cycle)
i_25mhz —»] e [m 2(10) RAS i_ras(3:0)
ref[7) — ate | TUX it CAS i_cas(3:0)
. Bus Error | Mach \ N = -
i_as Tlme;ut i_berr f:pu_ok !_a(1 0) Logic i we(30)
: i_oe i_as
i_25mMhz ——w = =
dir i_ds
' burst i_w
|_cbreE —] - b ———]
cpu_ok —] urs|
Control o2d PUICLIW
State | count Burst . DRAM
Machine |i cback 1.a(3:2) Addrs | ba(3:2) Addrs f—m m_a(10:0)
i_25mhz —»] i_sterm i_25mhz Gen | | a@ea) | MUX

Figure 3. MPA DRAM Controller Detail

Figure 7 shows the refresh cycle that was initiated by the
rising edge of ref[7] and by the assertion of ref_rq to the
RAS/CAS Controller. The RAS/CAS Controller generates the
timing for a CAS before RAS refresh cycle in synchronization
with the refresh request state machine sequencing through
the request operation. At the end of the refresh cycle the
refresh request state machine is in the REFEND state waiting
for negation of ref[7].

oy
Geo)

Figure 4. Refresh Request State Diagram

Synchronized DRAM Address Decoder

The DRAM Address decoder is used to decode the 68030
address O1xxxxxxh with qualification of address strobe to
generate a access request to the RAS/CAS state machine.
The dram_rqg timing is shown in Figure 5.

RAS/CAS State Machine

The RAS/CAS State machine arbitrates between refresh
requests and 68030 access requests via signals, ref_rq and
dram_rq respectively. The arbitration between the two
requests occurs in the IDLE state, where refresh has the
highest priority. If a refresh request is pending the state
machine will take the refresh branch and generate a CAS
before RAS refresh timing sequence.

If a DRAM request is pending from the 68030 and a refresh
request is not present, the state machine will take the 68030

access branch and generate the RAS, MUX, and CAS timing
for a random access into the DRAM array. The assertion of
RAS latches the row address into the DRAMs, the MUX signal
will present the column address to the DRAM array, and the
CAS signal will then latch the column address into the
DRAMSs. The signal cpu_ok will indicate to the burst controller
to start wait state generation. If a burst request sequence is
requested by the burst controller via the signal burst, the
RAS/CAS state machine will sequence through the burst
control states. For a full four long word burst, the burst address
generator will provide the column addresses for each of the
long word accesses. The RAS/CAS controller state machine
will exit bursting upon the negation of address strobe, and has
the capability of exiting a burst upon a premature ending of a
full four long word burst.

RAS/CAS Logic

The RAS/CAS logic is comprised of combinational logic
that encodes the CAS signals for selecting which byte lanes of
the DRAM array that are going to be accessed during a cycle.
For a CPU write access, the logic supports the misalignment
capabilities of the 68030, providing CAS signals only to the
bytes of the DRAM array that will be accessed for the write
operation. For a CPU read cycle all of the CAS signals will be
asserted. During refresh cycles all of the CAS and RAS lines
will be asserted.

Burst Control State Machine

The burst control state machine provides all of the bursting
control for a 68030 DRAM access and is synchronized to the
RAS/CAS controller. Upon the receipt of a dram_rq, the
RAS/CAS controller will generate RAS and CAS timing to the
DRAM array and will assert the signal cpu_ok, indicating to the
burst controller state machine to start a burst cycle. The burst
controller will leave an idle state and assert the i_cback signal
indicating a synchronous burst access. The burst controller
will then insert wait states during the burst operation and be
responsible for asserting i_sterm indicating the availability of

MOTOROLA MPA DATA — DL201 REV 2
4-5

AN1561

DRAM data. The burst controller will also generate the
counting and load controls for the burst address generator and
provide the burst multiplexing control to the DRAM address
multiplexer.

Burst Address Generator

The burst address generator provides the two least
significant bits of the DRAM address during a 68030 burst
cycle. The burst controller will initiate the loading of the first
burst address into the burst address generator and then
control the incrementing of the addresses for the next three
long word accesses of the burst cycle.

The burst address generator sequences through the long
word addresses, which are generated from the ba(3:2)
signals. Entry into the counter state machine can occur at any
state and will be defined as the starting 68030 starting address
plus one. During the first long word access of the burst, the
first address will be supplied by the 68030; the next three long
word addresses will be supplied by the burst address
generator. After the first 68030 address, the address
generator will enter the state of the next address from the load
signal from the burst controller. The burst address generator
will then be incremented two more times for the next two long
word addresses.

DRAM Address MUX

The DRAM address MUX provides the row and column
addresses on a eleven bit multiplexed address bus to the
DRAM array. The 68030 provides the row address to the
DRAM array, and the column address of the first long word
access of a burst cycle. The two least significant bits of the
column address will be supplied by the burst address
generator for the next three long word accesses in the burst

cycle. Gating of the addresses onto the DRAM multiplexed
address bus is controlled by both the burst controller and the
RAS/CAS controller. The DRAM address MUX generates a
68030 burst access to long word address locations 01xxxxx0h
to 01xxxxxCh, when the starting 68030 address is 01xxxxx0h.

Bus Error 'flrne-out

A bus error watch dog time—out function is provided by the
DRAM controller to keep the 68030 from locking up due to
accesses into unused memory. The bus error time—out
controller monitors the assertion of address strobe and will
generate a bus error to the 68030 if it has kept address strobe
asserted from 40.96 usec to 46.08 usec. This time—out may
vary depending on where the 68030 started a memory access
in relationship to ref{7] of the refresh timing generator. The bus
error time—out controller monitors ref[7] for its state transitions,
while watching the assertion of address strobe. If address
strobe is negated before reaching the state NOACK of the bus
error time—out state machine, a bus error will not generated.

System Timing

The system timing is shown in Figure 5 and gives the
overall operation of the modules within the DRAM design for a
DRAM array access. The diagram shows the logical
implementation of the design with zero propagation delay and
is meant to give a relationship of the signal handshaking
between the submodules of the design. The system timing
diagram shows a four long word burst read access to the
DRAM array and is comprised of a 14—7-7-7 burst for a total
of 35 cycles. The design has not been optimized for speed at
this time, with the intent of generating a reasonable amount of
logic for timing verification targeting lower cost designs using
slower DRAMs.

Signal 225ns 975ns 1475ns 1975ns

v b b o b s by b by b b b by s b by i by
.ul.i2smhz (1 FUAMAANMAANAAUAAAL Aot
lus.ul.i_as | 0 1 L
l.i_sync_as |0 1 M
lus.ul.i_ds |1 1 -
.ul.dram_rq | 0 - -
.ul.i_cbreqg |1 M [
.ul.i_cback |1 [T L |
s.ul.cpu_ok | 0 M M M M
ulus.ul.mux | 0] . 1
us.ul.burst |0 M I 1
.ul.i_sterm |1 | % LT I | i
lus.ul.i_oe |1 [—
ulus.ul.dir |1
.ul.counten | 0 M M M
s.ul.i_ras0 |1 E—— | | —
s.ul.i_cas0 |1 | L M 1 |
ulus.ul.raz | O | I 1
ulus.ul.caz | 0 IS | LJ |] LT 1

Figure 5. DRAM Burst Timing

M T

MOTOROLA MPA DATA — DL201 REV 2
4-6

Signal

AN1561

50ns 1050ns 2050ns

Voo v b v v b e by v by b by e by by 1

gic.i_25mhz
ic.ref[7:0]
.ref[7]
.ref[6]
.ref[5]
ogic.ref[4]
ogic.ref[3]
ogic.ref[2]
ogic.ref[1]
ogic.ref (0]

ogic
ogic
ogic

Signal

h
'

C o r O R R R P

Figure 6. Refresh Counter Timing

5115ns 5265ns 5365ns 5465ns

v b b v b by e b e v b e by by b by

gic.i_25mhz
ic.timerclk
ogic.ref_rqg
c.ref_cycle
states[1:0]

s.ul.i_ras0
s.ul.i_cas0
_state[3:0}

Figure 5, Figure 6 and Figure 7 timing diagrams are logical
simulations of the design copied from the Frontline waveform
timing analyzer and do not include final place and route

timings.

Verilog Coding Example
The following Verilog synthesis code describes the refresh

module:

o r P OO oo o

Figure 7. Refresh Timing

ref[1] = temp[1];
ref{2] = temp[2];
ref[3] = temp][3];
ref[4] = temp[4];
ref[5] = temp[5];
ref[6] = temp[6];
ref[7] = temp[7];
end

module refresh (i_25mhz, ref_cycle,

timerclk, ref_rq);

input i_25mhz;
output timerclk;
wire [7:0] temp;
reg [7:0] ref;

assign timerclk=ref[7];

assign temp[0] = ~ref[0];

assign temp[1] = ref[1] A ref[0];
assign temp[2] = ref[2] A (&ref[1:0]);
assign temp[3] = ref[3] A (&ref[2:0]);
assign temp[4] = ref[4] ~ (&ref[3:0]);
assign temp[5] = ref[5] A (&ref[4:0]);
assign temp[6] = ref[6] A (&ref[5:0]);
assign temp[7] = ref[7] ~ (&ref[6:0]);

always @ (posedge i_25mhz)
begin
ref[0] = temp[0];

/I Refresh request state machine

input ref_cycle;

reg [1:0] ref_states;
output ref_rq;

reg ref_rq;

parameter IDLE =’b00; // idle state
parameter REFRQ ='b01; // assert ref rgst
parameter REFEND = 'b10; // wait for end

always @ (posedge i_25mhz)
begin
case (ref_states)
IDLE:begin
if (ref[7])
begin
ref_states = REFRQ;
ref_rq=1;
end
if (~ref[7])

MOTOROLA MPA DATA — DL201 REV 2

4-7

AN1561

begin
ref_states = IDLE;
ref_rq=0;
end
end
REFRQ:begin
if (ref_cycle)
begin
ref_states = REFEND;
ref_rq =0;
end
if (~ref_cycle)
begin
ref_states = REFRQ;
ref_rq=1;
end
end
REFEND:begin
if (~ref[7])
begin
ref_states = IDLE;
ref_rq=0;
end
if (ref[7])
begin
ref_states = REFEND;
ref_rq =0;
end
end
endcase
end
endmodule

a(31:0) dir
siz(1:0) i_oe

i_as m_a(10:0)
ids i_ras(3:0)
iw i_cas(3:0)
i_cbreq i_we(3:0)
i_25mhz i_sterm
i_cback
i_berr

68030 Bus Controller

DRAM Controller

| Clock I[l

Figure 8. Simulation Model

MPA -~ Verilog Simulation

Figure 8 shows a block diagram of the Verilog stimulus
module used for logic simulation and includes the 25MHz
clock module for generating a system clock, the: 68030 bus
controller module for generating the timing for a 68030 burst
cycle, and the glue68k DRAM Controller module. Figure 5 to
Figure 7 show the results of the simulation, which was run
from Ons to 10,000ns. The stimulus module included the
vectors for generating the 68030 bus signal timing for a burst
read cycle. Once the simulation code was verified logically by
the simulator and waveform analyzer, the code was
determined to be free from syntax errors and matched the

"expected timing for the design. Note that at this point, the

design has not been verified with the gate and path delays
generated from the final place and route tool.

MPA - Exemplar Synthesis

Prior to synthesis, the MPA1000 libraries, that are supplied
with the MPA design system place and route software must be
properly installed into the directory pathname C:/exemplar/lib
and include the filenames p_mpa20.syn and p_mpa23.syn.
Exemplar will reference these libraries for gate type selection
when targeting a MPA1000 series part.

Although Exemplar has a graphical user interface, this
designer preferred to use DOS synthesis commands included
in (.bat) batch files. As the design was synthesized, the file
manager was used to navigate through the design’s
subdirectories and to synthesize by double clicking on the
batch file contained in'a submodule’s directory.

The refresh submodule example is synthesized with the
DOS command “fpga refresh.v refresh.vg —target=p_mpa
—save —macro”. The save option stores all the optimization
passes of the logic synthesizer allowing the user to select the
best pass based on timing and cell count size. The macro
option is used for inhibiting the assignment of I/O pads to the
inputs and outputs of the submodules, reserving /O pad
assignments to the top module. Each submodule of the design
is synthesized separately using the same command, but with
different filenames that are identical to the submodule name.
The top module glue68k is synthesized with “fpga glue68k.v
glue68k.vg —target=p_mpa —pass=2" and uses a control file
within its directory called glue68k.ctr, which includes the
command:

BUFFER_SIG IPCLK i_25mhz

to assign the signal i_25mhz to a clock tree within the
MPA1036. The glue68k.vg Verilog netlist is edited manually,
adding include commands to the end of the file to read in all
the Verilog netlists into the top hierarchical module during the
Exemplar reformat pass. The include command:

‘include “c:\fpga\refresh.vg”

reads in the refresh submodule into the glue68k.vg module
when the DOS command “fpga glue68k.vg glue68k.edif
—source=p_mpa -target=p_mpa -—effort=reformat”, is
executed in the fpga directory with the glue68k.ctr control file
removed. The final design resulted in 440 gates including 44
DFs, 40 inputs. and 25 outputs , when targeted to a Motorola
Programmable Array.

The types of gates that were synthesized by the Exemplar
tool for the DRAM Controller design included:

AN2 INV ONE
BUFF IPBUF IPCLK
OPBUF DF ND2
OR2 DFR NR2
XN2 XR2

The synthesis times for the modules varied with the
complexity of the logic, but were relatively fast. For instance
the dram module, which is a fairly complex state machine
design, took seconds to synthesize as shown:

s

MOTOROLA MPA DATA — DL201 REV 2
4-8

Pass Cells Delay (ns) Min:Sec
1 153 28.8 00:13
2 93 8.4 00:10
3 155 28.8 00:18
4 88 18.0 00:09
5 153 27.6 00:14
6 88 18.0 00:08
7 156 28.8 00:15
8 88 18.0 00:08
9 187 26.4 00:21
10 98 9.6 00:35
11 91 16.8 00:33

The passes of the Exemplar synthesizer are related to
eleven different types of optimization algorithms. The best
pass for the dram module, based upon timing, is pass 2, with
an estimated gate delay of 8.4ns. In general all of the modules
synthesized in this design, had pass two consistently generate
the least amount of level delays. One may save some CPU
time by specifying that a particular pass be executed by the
Exemplar tool.

MPA Design System Place and Route

The design was processed by five steps using the MPA
design system graphical user interface: Set Tool Options,
Import, Autolayout, Generate Configuration, and Generate
Back—Annotation. The input to the place and route tool is an
EDIF netlist and requires the Exemplar EDIF netlist file
glue68k.edi to be renamed to glue68k.edn to be imported.

MPA design system options that are required to be selected
prior to place and route include: part number, package type,
and mode. For this design the part was a MPA1036HI, which is
a Motorola 181 pin, 8000 MPA equivalent gates, 3600 cell
array. The mode determines how the device will be configured
upon power up and reserves programming pins on the device
to prevent the place and route tools from assigning them to
user 1/0. The mode selected for the design was “Boot From
ROM”, where the MPA loads its program from a serial ROM.
The Autolayout place and route option was set to use default
settings and provided adequate delay timings at 25MHz.
Optional parameter settings for high utilization and for
minimum delay, which are intended for compact and high
speed designs respectively.

The Autolayout tools at default settings, generated a design
that used 376 cells, utilizing 20.9% of the device, with an
estimated maximum frequency of 30.7MHz. With the minimum
delay option selected, the design routed with an estimated
maximum frequency of 39.4MHz. The user may experiment
with different option settings to generate faster designs, but for
this application the 30.5MHz output was adequate and was
used for the final design.

Pin assignments for the design can be viewed in the pin
report file glue68k.prp with a small section of the report shown
here:

AN1561

1/0 Pin report file
Definition: glue68k
Layout: glue68k

Format: Port Name, Net Name, Device Coord, Internal
Pad No, Package Pin Name

Port i_25mhz, net i_25mhz @ (36, 0)
IO pad 15 pinn8

Port i_sterm, net i_sterm @ (20, 0)
10 pad 8 pin p4

Port siz1, net siz1 @ (78, 40)

10 pad 166 pin h13

The Back—Annotation tool is used to generate a structural
Verilog netlist for post simulation and assigns the file
extension of .vba, which was renamed to .v for input into the
simulator. The designer can verify the final design with post
simulation or by viewing the timing report generated by the
Autolayout tool.

H4C Gate Array

The Verilog netlist files for the design were transferred on a
DOS disk to a Sun workstation. Synopsys was used to read in
the top hierarchical glue68k module and each of the
submodules of the design. The design was synthesized and
targeted to the H4C gate array family without any errors. The
combinational area of the design was 446 and the
noncombinational area was 344 (43 flip—flops using 8 gates
per flip—flops) with a total used area of 790.

The types of gates generated by Synopsys include:

AND2 INV2 NOR8H
AND2H INVB OA211H
AND3 MUX2A OA21H
AO22H MUX2I OA22H
AOI22H MUX2IH OAI211H
DFFP NAN2 OAI22H
DFFRP NAN3 ONDAI22H
EXNORA NAN4 OR2
EXORA NOR2B OR3

INV NOR2H OR4

One observation of the synthesized design was that the
Synopsys synthesizer added buffers to heavily loaded signals
to minimize the wire delays and edge rates in the design.
Another observation indicated that the gates that were
generated for the MPA and H4C gate array were quite similar
because of the fine grained nature of the MPA.

Final Simulation

The final placed and routed MPA design was post simulated
with the back—annotated structural Verilog netlist using the
Verilog simulator. Prior to post simulation, the MPA design
system Verilog library file, located in the path
C:\dpld\verilog\library.v was edited to enable Verilog XL
compliance with the command ’define XL_comp. Another
modification of the library needed to eliminate errors
encountered during post simulation was that the library
description of the module ONE was changed from:

MOTOROLA MPA DATA — DL201 REV 2

49

AN1561

ifdef XLcomp
pullup (strong1,strong0) (PU);
"endif
to:
ifdef XLcomp
pullup (strong1) (PU);
’endif

The structural Verilog netlist file glue68k.v was also edited
to declare the netlist as type back-annotated by enabling the
line: "define source_back_annotation

The post stimulation file stimulus.v is similar to the
simulation file, but was edited to change input and output
names from lower case to upper case, caused by the
renaming of signals from the MPA design system
back-annotation tool. The following is a subset of Verilog
simulation module stimulus.v, that was used for the test bench
and includes a 25MHz free running clock:

/

‘timescale 1ns / 1ps
module stimulus ;
wire |_25MHZ;

wire DIR;
clk25 clockGen (I_25MHZ);
GLUEG68K u1(l_25MHZ, I_AS, D_I_AS,
I_DS, I_RW, I_CBREQ, SIZ1,
SIZ0, L_A31, L_A30, L_A29,
L_A28, L_A27,L_A26, L_A25,
L_A24, L_A23,L_A22,L_A21,
L_A20, L_A19,L_A18,L_A17,
L_A16, L_A15,L_A14,L_A13,
L_A12, L_A11,L_A10,L_A9,
L_A8, L_A7,L_A6, L_A5,
L_A4,L_A3,L_A2,L_A1,L_A0,
_CBACK, I_STERM, BCYCLE,
_A10, M_A9, M_A8, M_A7,
6, M_A5, M_A4, M_A3,
2, M_A1, M_AQ, I_CASO,
CAS1, |_CAS2, |_CAS3, I_RASO,
RAS1, I_RAS2, |_RASS,
BERR, I_OE, DIR);

|
M
M_Al
M_A:
I

|
I
initial

begin

.B_A3=0;
.B_A2=0

| i

ui
ui

u1.CONTROL_VL8 = 0;
end

// simulate a 68030 DRAM burst cycle
initial
begin
#5 u1.L_A31=0;ul.L_A30=0;
ul.L_A29 =0; ul.L_A28 = 0;
end
endmodule
module clk25 (clock);
output clock;
reg clock;
initial
#5 clock = 0;
always
#20 clock = ~clock;
endmodule

Frontline’s graphical user interface was invoked and a
project called glue68k.dgn was created. Setup of the simulator
included setting directory pathnames to the locations of the
Verilog source files stimulus.v and glue68k.v and of the MPA
design system Verilog library file library.v. The simulator was
setup for maximum delay type and to use the +heirinstport
command line option to allow the use of hierarchical
pathnames used in the glue68k hierarchical design. The
simulation was run and the timing of the design was verified
with the waveform analyzer as illustrated in Figure 9 and
Figure 10. Note that timing waveforms show accurate gate
and path delays within the MPA1036.

Appendix A - Design Tools

The design tools were selected for a 486 PC Platform and
included Frontline Design Automation, Inc’s PureSpeed
Verilog Simulator, Exemplar's CORE-TD-DOS PC Topdown
Verilog Synthesizer, and MPA design system. The PC was
upgraded to 24MBytes of DRAM memory, of which 16MBytes
were the minimum required to run the Exemplar software. A
CD-ROM drive was used for loading the MPA design system
software. Waveforms included in this application note were
captured from Frontline’s waveform analysis tool for both
logical and post-simulation figures.

For targeting H4C gate arrays, the design development tool
kit was Motorola’s Open Architecture CAD System (OACS).
Synopsys was used for Verilog logic synthesis on a Sun
platform in one of Motorola’s ASIC design centers.

M

MOTOROLA MPA DATA — DL201 REV 2
4-10

AN1561

. 175ns 925ns 1425ns 1925ns

Signal b bt bbb bt b b b
~ul.I_25MHZ |1 Hfuwmﬂrmfmnruumnnjmnrmnmmnnmmmmmumm
lus.ul.I_as |0 [1 1
lus.ul.IDS |1 [|
.ul.DRAM RQ | 0 R | | I
.ul.I_CBREQ | 1 1 I

.ul.I_CBACK |1 1 |
s.ul.CPU_OK | 0 1 M 1 I

us.ul.BURST | 0 il M 1

.ul.I_STERM | 1 LS 1 LI L
lus.ul.I_OE |1 1 |
ulus.ul.DIR | 1

.ul.COUNTEN | 0 1 1 1

s.ul.I_RASO |1 [|
s.ul.I_CASO |1 1 1 il I
ulus.ul.CAZ [O [LT L L J I

Figure 9. DRAM Burst Timing Final Simulation

1597ns 1627ns 1647ns 1667ns

o b b b b g b b b a by

Signal

1 1 |

.ul.I_25MHZ
lus.ul.I_AS
lus.ul.I_DS
.ul.DRAM_RQ
.ul.I_CBREQ
.ul.I_CBACK
s.ul.CPU_OK
us.ul.BURST
.ul.I_STERM
lus.ul.I_OE
ulus.ul.DIR
.ul.COUNTEN
s.ul.I_RASO
s.ul.I_CASO
ulus.ul.CAZ

i
|
|
1
J |
l
1
1
|
T

O P ORRPRPROORREROROR

—
+
r |
|
f
|
|
|
|

Figure 10. DRAM Burst Timing Final Simulation — Delay Example

MOTOROLA MPA DATA — DL201 REV 2
4-11

3/96

AN1562
Application Note

Programming Multiple MPA1 000 Devices
Using Serial Peripheral Interface (SPI)

Prepared by
Ajay Matani
Field Applications Engineer

© Motorola, Inc. 1996

4-12

@ MOTOROLA

REV 0

AN1562

Programming Multiple MPA1000 Devices Using
Serial Peripheral Interface (SPI)

Introduction

Serial Peripheral Interface (SPI) is an efficient on—board
Serial Data Transfer mechanism supported by most of
Motorola Microcontrollers. MPA1000 series arrays offer
various modes of loading “ConfigWARE” (Configuration data
that defines MPA logic functionality and interconnect) data into
the device. This application note details a microcontroller MPA
configuration control interface using an SPI port.

Why Use SPI for “ConfigWARE” Download?

In—-system programmability is not a new concept, as most
SRAM based MPA’s provide a mechanism for the
Microprocessor to configure functionality. For embedded
systems, Hardware and Firmware constitute a typical system.
Sophisticated embedded systems like Laser Printers provide
support for downloading “SoftWARE” (as Fonts, Printer
Emulation etc.) for example; while FLASH EEPROMS allow
for “FirmWARE” upgrade as is a case in many new
PC-motherboards that have BIOS in FLASH. As shown in
Figure 1, flexibility offered by these different layers decreases
as we approach the HardWARE layer, which is quite fixed.

High \ SOMWARE /
\ FirmWARE /

ConfigWARE

Programmable
HARDWARE

HardWARE

Flexibility

Low

Figure 1. Programming Flexibility

“ConfigWARE” provides the flexibility to use the same
“HardWARE” to carry out different functionality. The time and
resources required to download “ConfigWARE” into the MPAs
becomes critical as device size and number of devices in a
system increase. It is also beneficial to store “ConfigWARE”
along with “FirmWARE” in non-volatile memory like FLASH,
Floppy, HDD or download over a Network connection.

Many of Motorola’s highly integrated MCU devices have
on—chip resources (such as RAM, PROM, serial ports etc.)
that enable independent boot-up and loading of the
“ConfigWARE”. Considering that most of them also have SPI
support, it is worthwhile to examine efficient use of SPI for
downloading “ConfigWARE”.

MPA1000 Configuration Methods

Four basic methods are available to downioad
“ConfigWARE” into the MPA devices; one Micro Mode with

typical peripheral bus interface and three BFR (Boot From
ROM) modes. The Micro Mode, BFR Mode(1) and BFR
Mode(3) support byte wide data transfer hence BFR Mode(2)
which supports serial data transfer is the only one we consider
for SPI interface. In fact, MPA configuration logic supports
8-bits at a time and thus accumulates the serial stream into a
byte before loading it in the internal RAM array. This
arrangement matches well with the SPI support of byte data
transfer at a time on the serial protocol.

BFR Mode(2) operation is a very simple serial transfer
mechanism that uses 3 signals, CLK(clock in), DCLK(clock
out) and DO(data). This mode is intended to load from external
serial PROM devices like MPA17128 (page 1-6). The signal
relationships are as follows:

CLK (up_to 20Mhz) is the master clock used by configuration
logic. This could also be generated from the MPA internal Ring
Oscillator.

DCLK is output from the MPA and can run as fast as 1/2 the
CLK frequency.)

A simple way of looking at DCLK is to consider it as a Data
Strobe and clock for an Address Counter, where DCLK low to
high transition is the critical edge for both operations
(Figure 2). As each transition of DCLK is generated by a rising
edge of the CLK signal, manipulating CLK allows controlling
DCLK operation. DO is data presented to the MPA.

idle | idle | active | recover| active | wait | recover

(/G e Uy N ey A e Iy S

DCLK L I 1 |
D0 72777777771 72204 vzZa

Tsetup —>1 re—

= Tholg

NOTE: During ‘idle” phase of CLK, internal Reset or Configuration
Sequence logic is being exercised. At the end of “active” phase of
CLK, new configuration data is read in. The “wait” phase of CLK is
created by stretching the CLK low phase of the active cycle. After
every “active” or ‘wait’ condition, a ‘recover” cycle of CLK is needed.

Figure 2. ConfigWARE Download Timing

By extending DCLK in its low state, wait states can be
inserted in the access of serial data on DO. This can be easily
achieved by keeping CLK in low state whenever needed. As
CLK is used by the configuration logic also, the suggested
clock stretching should be applied only during data access
cycles denoted by DCLK low state. Since the configuration
logic is a static design, there is no minimum operational
frequency requirement allowing large number of wait states if
needed.

The window for which DO should be stable with valid data is
defined by Figure 2-33, Figure 2-34 and the accompanying
table on page 2-27. This relatively narrow window
requirement is easily achievable.

MOTOROLA MPA DATA — DL201 REV 2
4-13

AN1562

Serial Peripheral Interface

SPI operation as well, is quite straightforward. The SPlon a
MCU can be configured as either a Master or a Slave. The
serial transfer operation is carried out on four lines, SCK
(Serial Clock), MOSI (Master Out Slave In), MISO (Master In
Slave Out) and SS/(Slave Select) supporting synchronous
bi—directional serial transfer of byte size data.

The primary difference between the Master and Slave
Mode is the source of SCK. Though transfers are
synchronous, SPI circuit is required to be a static design which
allows the SCK to have no maximum phase or period time
requirement. In Master Mode, the MCU based SPI circuit
sends a burst of 8-bits, synchronized to a prescaled internal
CPU clock.

The programmer’s model of SPI consists of SPDR (8-bit
SPI data register), SPCR (SPI control register) and SPSR
(SPI status register). Refer to MC68HC11RM/AD for detailed
discussion of SPI operation.

Once configured as a Master, writing to SPDR starts a
transfer of the data byte uninhibited, on the MOSI signal. The
data presented on MISO by the slave is de—serialized and
made available in the SPDR at the end of byte transfer. As
writing to the SPDR also starts a transfer sequence, there is
no facility to carry out hand shake with the slave apriori to the
transfer.

When SPI on a MCU device is configured as a slave, the
SCK supplied by the external master controls the flow of
transfer. MOSI now becomes input and MISO becomes
output. The SS/ signal plays an important role in this mode,
acting as a gate to the SCK. This facilitates selective transfer
to multiple slave using common SCK signal.

DESIGN APPROACH

This application note is based on a design implementedina
working system with multiple MPA1036 devices daisy
chained. The requirement of this system is to provide a flexible
and efficient “ConfigWARE” download capability. The design
uses MC68HC11K4 MCU with external FLASH EEPROM to
store the “ConfigWARE”.

Various possibilities were considered to establish the lower
level handshake with MPA configuration logic. BFR Mode(2)
was chosen as it sacrifices only one general purpose i/o signal
for configuration, namely DCLK.

The easiest, gluless and trivial method of interfacing an
MCU to an MPA device in BFR[2] is a single, 8-bit I/O port and
100% software controlled transfer. MCU software overhead
results in a long MPA subsystem start—up time if this method is
used. As the size of the MPA subsystem increases, this
problem is compounded. Using the MCU SPI hardware in
Slave Mode and a minimal amount of external logic, relatively
fast configuration times xan be acheived using a serial data
stream.

FUNCTIONAL DESCRIPTION

We have established the basic serial transfers in terms of
MPA BFR Mode(2) and SPI in our discussion up to this point,
but there are a few more functionalites that need to be
examined at system level. Consider that there are n MPA
devices daisy chained as shown in Figure 3. The MCU
(MC88HC11 in this discussion) and PAL device constitute the
controller.

The controller requires only three outputs (CLK, DO and
RESET1/) to carry out the task. The POWRUPN signal may be
monitored to confirm the end of download sequence, though
any error condition may be detected alternatively by making
sure that exact number of bytes are downloaded.

M7 O

MOTOROLA MPA DATA — DL201 REV 2
4-14

AN1562

PWRUPn
mcu \/\4
MPA #1 MPA #2 MPA #n-1 MPA #n
Pit PWRUP1 MEMCE [~ BFR2 MEMCE |- BFRn-1 MEMCE BFRn MEWCE [~
PWRUP2 ___L_{pwRUPn-1 PWRUPn
P03 (e RESETT ENDY |-~ RESET2 END2 (=2 * { RESETn-1 ENDn-1 RESETn ENDn
1| oo
PO4 BFRI
ERR1 [~ ERR2 |- ERRn-1 ERRn [~
Do Do —1bo Do
| — oLk DOLK | | — oLk ook b+ | e DCLK ‘ If CLK DCLK
PAL
i of |2
o2 |22
f [—EOK CLK END
T3 |——
MSO 50— sT2 f—
ScK PO3 [3 ST f—o
|' SS PO4 14 STO _|

SCK

Figure 3. Multiple Daisy Chained MPA Devices

Let us look at all the signals in detail.

Signals outside of the controller :

regardless of the state of BRF1 signal. (The use of
this signal is optional).

BFRn These are pulled up.

CLK Derived from PAL External clock input. Used X
during reset and configuration sequence. Clock PWRUPn Last MP_A END connects to.aII PWRUP signals.
stretching is used in this application during the When this signal on the MPA is low, all the user /O
Configuration sequence to establish proper are. disabled (|n' tri-state). Abdeswable condition
handshake between the MPA and program until all the devices are configured properly.
controlled sequence on the MCU. MEMCE Not used.

RESET1 Output from MCUReset to the First MPA in the ERRn These output signal gets asserted during
daisy chain. The falling edge initiates reset configuration sequence if Device ID mismatch or
sequence. At the end of reset sequence, if the Checksum error is detected. They can be left
signal is still asserted, configuration sequence is open as such error condition stops configuration
delayed till the rising edge of signal is recognized. sequence and can be detected alternatively.
Otherwise, the configuration sequence
immediately follows the reset sequence. CLK DCLK Input to PAL. Is the wired—or signal (requires
must be active during these sequences. external pull-up) from all the MPA devices that

gets pulled low by the currently configuring device

RESETn Connect ENDn-1 to RESETn as configuration during data transfer. :
logic keeps END low till the present device L)
completes the configuration sequence and lets Do Output frgm PAL. This is the data input to all the
the next MPA device start its own reset and MPA devices.
configuration sequence. Signals inside the controller (between MCU and PAL) :

BFR1 Output from MCU. Active low signal initiates E_CLK Output from MCU. System clock.

Reset and Configuration sequences. Acts same
as RESET1 except that the Configuration MISO Output from MCU. SPI data out of MCU in Slave

sequence immediately follows the reset sequence

Mode.

MOTOROLA MPA DATA — DL201 REV 2
4-15

AN1562

GO_SPI Output from MCU. Sequence Master Control
output, resets and enables configuration

sequence logic under program control.

XFR8 Output from MCU. Byte Transfer Control output,
initiates data transfer sequence logic under
program control. Also acts as Slave Select for SPI
logic with connection external to the MCU.

SCK Output from PAL. SPI clock input from MCU.
Controls bit data transfer out of SPI shift register.

CONTROL LOGIC IMPLEMENTATION

The MC68HC11K4 and a PAL22V10 device is used for the
control logic.

The base clock for the circuit is the “E” clock from MCU that
is also used by the SPI logic internal to the MCU. Typical
frequencies for 8-bit MCUs for the system clock “E” are 4 Mhz
and as high as 25 Mhz for some 32-bit MCUs.

The circuit uses four inputs, three outputs and four state bits
on the PAL. One of the outputs, SCK is considered as a state
variable too. Refer to Appendix A, where the PAL design in
CUPL (need to check trade mark) source language is
described. Appendix B lists the Boolean equations in
AND-OR form for each of output and state variable as
generated by CUPL assembler.

Two general purpose Output Port bits (GO_SPI and XFR8)
from the MCU are required besides the SPI signals.
Considering that data is flowing from MCU to the MPAs, only
data out signal (MISO in slave mode) of the SPI logic is used
along with the SCK and SS signals.

Appendix C lists the assembly source code for
MC68HC11K4 MCU for the subroutines needed to carry out
the ConfigWARE download.

CONTROL FLOW

For ease of understanding, let us follow the firmware in
Appendix C to track the operation of control sequence.

The calling function to “LD_FPGA” is assumed to have set
the general purpose port bits to the correct direction and have
made a call to “RST_FPGA” which forces RESET1/. The first
thing LD_FPGA does is to call “EN_FPGA” which makes the
control logic ready by negating XFR8, correctly set up the SPI
on MCU, assert GO_SPI and negate RESET1/.

This forces the sequencer in the PAL to STATE S0 and stay
there till sequence begins when XFR8 is asserted (active low).
The CLK output of PAL keeps on toggling while in STATE SO,
defining the the “idle” phase of of CLK (Fig. 4). Negated XFR8
also negates END state variable.

Next, LD_FPGA makes sure that the correct ConfigWARE
for the first device is made available (starting at address
$4000) before it calls the “IM2FPGA” (Image to FPGA)
function. IM2FPGA calls “BY2FPGA” for the exact number of
times to download the complete image for a single FPGA
device. For FPGA1036 for example, the number is 14600
($3908) bytes as explained in Appendix D.

BY2FPGA is the lowest level routine that directly controls
the transfer of byte to the current FPGA device. The data byte
is written to the SPI data register and XFR8 is made active to
begin the transfer. While the sequencer in PAL and MPA
synchronize and carry out the transfer, the program waits for
SPI transfer to complete within a certain period of time. If the
code times out, it returns with error condition set. As only the
completion of SPI transfer is waited cn, there is no need for
any external signals to indicate error conditions.

A% 0

MOTOROLA MPA DATA — DL201 REV 2
4-16

ide |
a b c d e f h i i

acive | wat | recover | active |

CLK

recover |
9 k m n 0 p q 4 s t u g
SO | SO | SO | SO | SO | S1 | ST | S2 | S2 |Sodd | Sodd |Seven|Seven| SF | SF | SO | SO | SO | SO | SO | S1 | St |

AN1562

acive | recover | active | wait | recover

DCLK

[S R

XFR8 l l_____l—
END | |
SCK | I I L |
DO A7 A6 A0 B7
NOTE: a -——> b : s0>S0, as DCLK is high k ---> 1 : Sodd>Seven, as DCLK is high
b ---> ¢ : S0>S0, as DCLK is high 1 ---> m : Sodd>Seven, as XFR8 is high
c --->d : S0>S0, as XFR8 is high m ---> n : Seven>SF, as DCLK is low
d ---> e : S0>50, as XFR8 is high n ---> o : SF>SF, as DCLK is low
e ---> f : S0>S1, as DCLK and XFR8 low o ---> p : SF>S0, as DCLK is high (END set)
f -—-> g : S1>S1, as DCLK is low p ---> q : S0>S0, as DCLK is high
g ---> h : S1>82, as DCLK is high q ---> r : S0>S0, as DCLK is low but END is high
h -> i : $2>82, as DCLK is high r -——> s : S0>S0, as DCLK is low but END is high
i ---> 3j : S2>So0dd, as DCLK is low s -—-> t : S0>S0, as DCLK is low, END is low but XFR8 is high
j ===> k : Sodd>Sodd, as DCLK is low t --->u : S0>S1, as DCLK is low, END is low and XFR8 is low
u ---> g catch the sequence at g again

Figure 4. System Training

For the normal transfer, the sequencer in the PAL waits in
STATE SO when MPA device is not ready for transfer as
indicated by DCLK high. When FPGA is ready to receive data,
it asserts DCLK low. State m/c responds by stopping the
transitions on CLK signal, forcing wait condition till MCU holds
XFR8 signal high. When MCU program sequence catches up
and asserts XFR8 low, STATE S1 is entered.

All odd numbered states are similar and correspond to the
time when DCLK is high. Except for STATE SO, all even
number states correspond to the time when DCLK is low. For a
byte transfer, XFR8 going low should run the sequencer from
STATE SO to STATE SF in a sequence, and back to STATE
S0. When the state m/c is in STATE SF, END state variable
gets set on the next clock, indicating completion of a transfer.
Until XFR8 is negated by BY2MPA when it detects completion
of SPI transfer, the END condition forces the state m/c to stay
in STATE SO0, even when the MPA is ready to receive the next

bit, indicated by DCLK low. This mechanism ensures that one
and only one byte is transferred on every MCU controlled
cycle of XFR8.

The new transfer will not start till program sequence makes
a new call to BY2MPA, which in turn will begin with XFR8
active. Timeout or SPI error condition, if any, makes
BY2FPGA return a non zero value indicating error. The
address value of the image byte of the erroneous transfer is
saved in SPI_ERR variable. IM2FPGA passes the error back
to LD_FPGA.

If there is no error, LD_FPGA repeats the above process
for additional devices, making sure that the correct
ConfigWARE for that device is addressed.

If an error ocurrs, the sample code jumps to “LD_FERR”.
The handling of error is left to the calling routine and user
interface.

MOTOROLA MPA DATA — DL201 REV 2
4-17

AN1562

APPENDIX A.

JRFEE KKKk Rk ok kKR KKK KKK K KA KR AR KR IR IR KK I IR KR IR IR KA K IR AR F ok ok Ak ko kk ko ko ko ko kkk ko /

/* MPA1000 series FPGA configuration logic with SPI
/* HC1ll companion PAL

/*******‘k***-k***/
p22vl0lcc;
/*** Pin Assignments

Device

/* Clock and

PIN 2
PIN 3
PIN 4
PIN 11
PIN 6

/* Outputs and

PIN 20
PIN 21
PIN 23
PIN 24
PIN 25
PIN 26

PIN 27

Inputs

= MCEK; /* Input - Register Clock

= MISO; /* Input - Serial data, HC1ll

= XFR8; /* Input - Transfer control, HC11l
= GO_SPI; /* Input - Master Control, HC1l1
= DCLK; /* Input - CLK feedback from FPGA

State variables

= CLK; /* Output - clock to FPGA

= DO; /* Output - Data out to FPGA

= ST3; /* State - var 3

= ST2; /* State - var 2

= ST1; /* State - var 1

= STO; /* Output - SPI clk to HC1l1l

/* State - var 0 (Dual function)

= END; /* State - End condition */

/*** Declarations and Intermediate Variable Definitions

field count

$define
$define
$define
$define
$define
$define
$define
$define
$define
$define
$define
$define
$define
$define
$define
$define

S0

SD
SE
SF

/*** Logic

CLK.d

CLK. sp
CLK.ar

END.d

DO

= [ST3..0]; /* declare counter bit field
‘b’ 0000 /* define counter states
‘b’ 0001
‘b’0010
‘b’0011
'b’0100
‘b’0101
‘b’0110
‘b’0111
‘b’1000
‘'b’1001
'b’1010
'b’1011
‘b’1100
‘b’1101
'b’1110
‘b’1111
Equations
= ICLK & DCLK
/* High if idle or restore state
ICLK & !DCLK & !(!ST3 & !ST2 & !ST1 & !STO);
/* High if data ready in active state
= 'b’0;
= 'b’0
= ST3 & ST2 & ST1 & STO
END & !XFRS8;
/* Count has expired but no new XFRS8
= ‘b’0;
= 'b’0;
= !GO_SPI & MISO /* active low GO_SPI
GO_SPI & XFRS8; /* Slave Select signal

*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/

*/

*/

*/

*/
*/

M4 O

MOTOROLA MPA DATA — DL201 REV 2
4-18

STO.ar
STl.ar
ST2.ar
ST3.ar

STO.sp
ST1.sp
ST2.sp
ST3.sp

STO0.oe

= ‘b’0;
= ‘b’0;
= ‘'b'0;
= ‘b’0;

= !GO_SPI;

sequence count {

present

present

present

present

present

present

present

SO

sl

S2

S3

sS4

S5

S6

if IDCLK
next S1;

if DCLK

!DCLK

!DCLK
next S0;

if I XFR8
next S2;

if IXFR8
next S1;

if XFR8
next S0;

if I XFR8
next S3;

if ! XFR8
next S2;

if XFR8
next S0;

if IXFR8
next S4;

if I XFR8
next S3;

if XFR8
next S0;

if IXFR8
next S5;

if ! XFR8
next S4;

if XFR8
next S0;

if | XFR8
next S6;

if ! XFR8
next S5;

if XFR8
next S0;

if IXFR8
next S7;

if IXFR8
next S6;

if XFR8
next SO0;

&

&
&

&

&

&

&

&

&

&

&

&

&

&

&

/* Master control

/* free running counter

'END & !XFR8

END
XFR8

DCLK

!DCLK

IDCLK

DCLK

DCLK

!DCLK

{DCLK

DCLK

DCLK

!DCLK

{DCLK

DCLK

AN1562

MOTOROLA MPA DATA — DL201 REV 2
4-19

AN1562

present

present

present

present

present

present

present

present

present

s7

S8

S9

SA

SB

sC

SD

SE

SF

if IXFR8
next S$8;

if IXFR8
next S7;

if XFR8
next S0;

if IXFR8
next S9;

if IXFR8
next S8;

if XFR8
next SO;

if IXFR8
next SA;

if IXFR8
next S9;

if XFR8
next S0;

if IXFR8
next SB;

if I XFR8
next SA;

if XFR8
next SO0;

if !XFR8
next SC;

if I XFR8
next SB;

if XFR8
next SO;

if I XFR8
next SD;

if ! XFR8
next SC;

if XFR8
next SO;

if !XFR8
next SE;

if I XFR8
next SD;

if XFR8
next SO;

if ! XFR8
next SF;

if ! XFR8
next SE;

if XFR8
next SO0;

if ! XFR8
next SO;

if I XFR8
next SF;

if XFR8
next SO;

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

DCLK

!DCLK

!{DCLK

DCLK

DCLK

!DCLK

!DCLK

DCLK

DCLK

IDCLK

!DCLK

DCLK

DCLK

!DCLK

!DCLK

DCLK

DCLK

!{DCLK

M T

MOTOROLA MPA DATA — DL201 REV 2
4-20

AN1562

APPENDIX B.

[Kk ok ok ok ok ok Sk Sk ok kK ek ok ok ok ek R ok K ok K ok K R K Rk kK Ok ek ok kR kK kR kR ok kR ok ok ok ko kK ok k kK /

/* LOGIC reduced to AND-OR equations (LISTING) */

[/ Kk Rk Kk ok ke k kK Kk ok ok kR kK Kk Kk kK kK Kk KKk KKk Kk kKK KK kKKK KK KKK IR KK A KKK KKK KA K I XA KT KK/

CLK.d =>
!CLK & DCLK
I!CLK & !DCLK & ST3
!CLK & !DCLK & ST2
!CLK & !DCLK & STO
ICLK & !DCLK & ST1
DO =>

IGO_SPI & MISO
GO_SPI & XFR8
END.d =>
STO & ST1 & ST2 & ST3
END & !XFRS8

ST0.d =>
!DCLK & !END & !STO & !ST1 & !ST2 & !ST3 & !XFR8
IDCLK & !STO & ST1 & ST2 & ST3 & !XFR8
IDCLK & STO & !ST2 & !ST3 & !XFRS8
!DCLK & !STO & ST1 & !ST3 & !XFRS8
!DCLK & !ST1 & ST2 & !XFR8
!DCLK & STO & STl & ST2 & !XFR8
!DCLK & !ST2 & ST3 & !XFR8

STl.d =>
IDCLK & STO & ST1 & !XFR8
DCLK & STO & !ST1 & !XFRS8
!STO & ST1 & !XFR8
ST2.d =>
IDCLK & STO & ST1 & ST2 & !XFR8
DCLK & STO & ST1 & !ST2 & !XFR8
!STO & ST1 & ST2 & !XFR8
!ST1 & ST2 & !XFRS8
ST3.d =>
IDCLK & STO & ST1 & ST2 & ST3 & !XFR8
DCLK & STO & ST1 & ST2 & !ST3 & !XFR8
STO & ST1 & !ST2 & ST3 & !XFR8
!ST1 & ST3 & !XFR8
ISTO & ST1 & ST3 & !XFR8

APPENDIX C.

; Code Excerpts for HCll using SPI to configure MPA1000 series FPGA

§OKEEKK A KKK KA KKK

Px Define *

; Kk ok ok kK kok ok ok ok ok ok ok ok

DDRD: equ REGBS+$09 ; port D Data Direction reg

SPCR: equ REGBS+5$28 ; spi control reg

SPSR: equ REGBS+$29 ; spi status reg

SPDR: equ REGBS+S$2A ; spli data reg

PORTG: equ REGBS+$S7E ; port G data reg

PORTH: equ REGBS+S$7C ; port H data reg

CFG1: equ $11 ; Page 1 image for memory mapper
CFG2: equ $22 ; Page 2 image for memory mapper
; more or less depending on number of FPGA devices in chain
CFGn: equ SEf ; Page n image for memory mapper

MOTOROLA MPA DATA — DL201 REV 2
4-21

AN1562

Kk ok kK ko K Kk ok ok Kk ok Kk

;o RAM *

Kok ok ok ok ok ok ok ok okokokkkKk

org $200 ; FLEXVAL ram area
SPI_ER: ds.b 2 ; Address of failed transfer if any
;SEC_IMG: ds.b 1 ; Sector image number for current 16K byte block

; in external FLASH EEPROM paged at address $4000
Consider writing to this address for proper page
selection of the ConfigWARE image.

Kk ok Kk ok k Kok ok

; Enable FPGA Transfers via SPI

; Entry H none

; Exit : SPI is enabled as SLAVE
; : GO_SPI is active

kkokkkkkkokk

EN_FPGA:

bset PORTH, #$00 ; make sure XFR8 is inactive (high)
belr PORTH, #3504 ; assert GO_SPI

ldaa #$44 ; SPE = 1 and CPHA = 1, rest 0
staa SPCR ; to SPI control register

bset DDRD, #$04 ; MISO is made output PD[2]

bset PORTG, #$40
rts

negate RESET1* at bit-6

ke ok ok ok ko ok ok ok

; Disable FPGA Transfers via SPI

; Entry : none

; Exit : SPI is disabled

; : GO_SPI is inactive
* ok ok ok ok kok ok ok ok

DI_FPGA:

bset PORTH, #$00 ; make sure XFR8 is inactive (high)
bset PORTH, #$04 ; negate GO_SPI (high)

bclr DDRD, #$04 ; MISO is made input again PD[2]
ldaa #3504 ; SPE = 0 and CPHA = 1, rest 0
staa SPCR ; to SPI control register

rts

%k kK Kok ok koK K K

; Transfer byte to FPGA via SPI (ignore SPI errors if any)

; Entry : x = pointer to the byte
; Exit : a =0 if o.k.
; : a != 0 if time out
x =x+ 1 if o.k. else x is unchanged

*ok ok kok ok ok ok Kk ok

BY2FPGA:
ldaa 0,x
staa SPDR ; write to SPI data register
bclr PORTH, #$01 ; XFR8 = low (active)
ldaa #Sff ; time out counter
BY2_F1l:

tst SPSR check if spif is set
bmi BY2_F2 ; jump if transfer complete

deca ; not complete, decrement time out
bne BY2_F1 ; check for time out

BY2_F9:
stx SPI_ERR ; address at which error occurred
ldaa #Sff ; indicate error condition

BY2_F8:
bset PORTH, #501 ; XFR8 = high (inactive)
rts

W} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

4-22

BY2_F2:
tst SPDR
ldaa SPSR
bne BY2_F9
inx
bra BY2_F8

% Kk ok ok ok ok Kk ok ok ok
; Transfer image to
; Entry
; Exit
; Notes

ek ok ok ok ok k ok
IM2FPGA:

ldx #$4000
IM2_F1:

; dummy read to clear SPIF bit in SPSR

; some error ?

; normal exit

single FPGA (MPA1036 case)
SEC_IMG has the current sector
passes end condition of BY2FPGA to
MPA1036 has 116800 bits

14600 bytes as follows

5 bytes of header

14595 bytes of data as follows

139 rows containing

105 bytes/row
address of byte after end of image
$3908 (when starting address is $0
$7908 (in this code, as ConfigWARE

; start of image in FLASH

jsr BY2FPGA

tsta
beqg IM2_F2
rts
IM2_F2:
cpx #$7908
bne IM2_F1
rts
; * Kk k ok ok ok ok k ok ok

; Reset FPGAs

; jump if no error
; pass error up

; end of image
; keep looping
; return with a = 0

calling routine

)
image is at $4000)

; Entry none
; Exit : FPGAs are forced into reset state
; kok ok ok ok kk ok ok ok
RST_FPGA:
bset PORTH, #$00 ; make sure XFR8 is inactive (high)
bset PORTH, #$04 ; negate GO_SPI
beclr PORTG, #$40 ; assert RESET1* at bit-6
rts
; *ok ok ok ok ok ok ok ok ok
; Program FPGAs
; Entry : none
; Exit : FPGAs are loaded and active unless error
; In error case, a jump to LD_FERR routine (not shown here)
made.
* Kk ok ok ok ok ok ok ok ok
LD_FPGA:
jsr EN_FPGA
LD _F1:
ldaa CFG1
staa SEC_IMG
jsr IM2FPGA ; do transfer
tsta
bne LD_FERR ; jump if error
LD_F2:

AN1562

is

MOTOROLA MPA DATA — DL201 REV 2

4-23

AN1562

ldaa CFG2
staa SEC_IMG
jsr IM2FPGA
tsta

bne LD_FERR

; jump if error

; more or less segments depending on number of FPGA devices in chain

LD_Fn:
ldaa CFGn
staa SEC_IMG
jsr IM2FPGA
tsta
bne LD_FERR

LD_END:
jsr DI_FPGA
rts

APPENDIX D.

; jump if error

ConfigWARE RAM Array Sizes for MPA1000 Device Family

MPA1016 MPA1036 MPA1064 MPA1100

HEADER (bytes) 5 5 5 5
ROWS 95 139 183 227
Bytes/Row 72 105 138 170
Total Bytes 6845 14600 25259 38595
Total Bytes (Hex) 1ABD 3908 62AB 96C3
RAM Array Size (Relative to MPA1016) 1.00 2.13 3.69 5.64
Number of Cells (Relative to MPA1016) 1.00 2.25 4.00 6.25

A T

MOTOROLA MPA DATA — DL201 REV 2

4-24

AN1563
Application Note

Effective Synthesis Techniques
for MPA1000 Devices

Prepared by

Thomas G. Felske

Wanhao Li

Motorola Programmable Logic Products

@ MOTOROLA

3/96
© Motorola, Inc. 1996 4-25 REV 0

AN1563

Effective Synthesis Techniques for MPA1000 Devices

Introduction

Logic synthesis has become an increasingly important
issue in the FPGA design area due to the rapid growth of the
FPGA design complexity. Many FPGA vendors offer synthesis
design flows for designers who prefer synthesis over
schematic design entry. This paper presents the critical
architectural components of the MPA device and HDL
techniques to achieve the best design performance from the
MPA10000 synthesis design flow. The synthesis design flow
includes Synopsys Design Compiler (Version 3.3b), Exemplar
Galileo (Version 3.1), and Mentor Autologic which all map to
the Motorola MPA1000 FPGA technology. Although this
application note focuses on the Synopsys tool, most of the
techniques are tool-independent and shall apply to the other
synthesis tools.

Direct Mapping For Design Compilers

One of the biggest advantage of using the MPA1000
synthesis flow is that the MPA architecture requires a single
mapping process for synthesis. The MPA1000 architecture is
fine—grained and each basic cell can be configured directly to
logic gates such as AND, OR, XOR, and Multiplexer. Since the
MPA technology mapping is very ASIC-like, the synthesis
tools can map the design with regular ASIC logic optimization
algorithms. Consequently, this provides an convenient FPGA
synthesis environment for designers who have ASIC
experience or want to retarget FPGA designs to an ASIC at a
later time. This is important to Motorola to be able to use the
same tool for both ASIC and FPGA design. It not only saves
designers from buying another tool but also prevents them
from having to learn another synthesis tool.

To re—target Synopsys’ Design Compiler from the FPGA
technology to ASIC, Design Compiler’s “.synopsys_dc.setup”
file is modified to link to the ASIC target library. Upon startup,
Design Compiler loads the library setup file to link to the
desired synthesis library. The command lines in the setup file
that link a target library are:

technology = ASIC or FPGA technology name
link_library = {technology + “.db” }
target_library = {technology +".db”}

search_path = {Regular Synopsys path ASIC or FPGA
library path}

Logic Optimization and Technology Mapping

MPA1000 Architecture Resources

When partitioning functional blocks at the system level, the
design capacity of the MPA device must be known to calculate
how many FPGAs may be required for the system design in
order to distribute the logic amongst the FPGAs. The
calculations are bound by the physical limitations of the MPA
device. The following sections define the physical limitations
of the MPA architecture for various design resources. The
limitations are related to the routing resources available to
connect to the clock and reset pins for IOBs, wire—or and
wire—and bus limits, clock resources, and set/reset resources
for registers.

Although most of the logic optimization is done at the
synthesis level, the MPA1000 backend system further
optimizes logic by stripping back logic of unused output pins or
signals, and optimizing inverters by cancelling out or pushing
the inversion into the driven macro’s input signal (bubble
pushing).

Clock Signal Resources

Clock resources can use up to eight dedicated clock pad
sites to connect to the dedicated clock tree resource.

The core array contains routing paths to go from primary
clock resources to regular routing resources and vice versa.
Therefore, the clock pins of the registers located inside core
array can be routed from either primary clock tree or
secondary clock tree which are implemented by reguiar
routing resources. However, the clock pins of the I/0 registers
can only be driven by primary clock resources. If a clock signal
is generated inside the core array, it can only drive registers
inside the core array unless the signal is connected to the
primary clock tree.

Regular routing signals inside the core array can be routed
to primary clock resources and back, some high—fanout
regular signals can be implemented with the primary clock tree
and improve both routing congestion and routing delays.
However, the designer must be aware of the limitation of the
total number of primary clock trees.

Due to potential routing resource limitation, the total
number of clock and reset signals (primary and secondary)
should not exceed 15. If the total number exceed 15, place
and route is very likely to fail.

Only five different clock/reset signals are allowed in each
cell zone (10x10 cells) since each cell column is connected by
the same clock signal. Among the five signals, only two can
come from primary clock tree. In the 1/0 area, five I/O macros
are aligned as an 1/O segment and connected to a cell zone.
Each 1/0 segment only allows 2 clock signals which need to
come from primary clock trees. In general, place and route
tools handle all the registers and clock signal placement to
make sure no violations occur. However, if the designer
changes or influences the cell or I/0O placement manually by a
control file, the clock signal limitation has to be followed. For
instance, if all the I/O pins are fixed by a control “<design>.pat”
file, it will cause partition failure if three of the /O pins inside a
1/0 segment- are driving three different clock signals.

Three—-State/WOR Resource

The MPA1000 devices offer real three—state signals only in
the I/O areas. Inside the core array, WOR structures are
supported instead of an three—state structure. The I/O macros
can utilize an WOR structure that connects to the P-bus
resource. The internal WOR bus requires the designer to
utilize the WPUP pull up macro with each bus and the PWPUP
pull up macro for each P-bus WOR structure.

10B Resource

When a designer assigns “port_is_pad” attributes and
“insert_pads” to the top—level 1/0O “ports” that do not contain
instantiated I/O macros, each I/O port will be inferred as an I/O
macro. The default I/O inference for MPA1000 devices are:

M

MOTOROLA MPA DATA — DL201 REV 2
4-26

clock input port IPCLK
regular input port IPBUF
regular output port OPBUF
three—state port OPTBUF

Each input macro (IPBUF) can be configured as TTL or
CMOS levels. Each output macro (OPBUF) can be configured
into 3V/5V, high drive or low drive, slow slew or fast slew rate.
Those parameters can be inserted into the system through
several different ways. The most convenient way is to use
Design Compiler’s “set attribute” command as follows:

set attribute {I/O instance name} attribute_name
attribute_value —type string

The 1/O properties can also be inserted in a separate ASCII
control (<design>.pat) file which will input those properties
during the backend “import” stage. Refer to the on-line
documentation for details of the “<design>.pat” control file.

There are two 1/O structures that cannot be inferred by an
behavior description; the open—drain structure and the
registers inside 1/O macros. Designers who need to use these
two structures need to instantiate the desired macros. The
following is a VHDL example for an open—drain macro:

Uo1: OPBUF port map
EXTOUT=>output_port);

A list of the special /0O macros with registers are in the
on-line manual for more details on the available macros.

(O=>internal_signal,

Peripheral Bus Resources (to route to I0B clock/reset pins)

The MPA1000 architecture contains an eight bit bus that
runs the lengths of the chip next to the 10Bs. This is the
peripheral bus or P-bus. This resource is used for an interface
resource for the OB pins and global routing. This resource is
not automatically used by the routing tool and it is up to the
designer to instantiate the special P-bus macros for access to
and from the P-bus. The special buffers are the APBUF,
PABUF, PWPUP, APWBUF, and APWINV. The prefix AP
refers to an Array to P-bus connection and visa versa for PA.
The W refers to the wire—or capability.

Set/Reset Resources

The internal core and the 0B registers have asynchronous
set and reset capability that are mutually exclusive. The
register contains a single pin that can be programmed for a set
or reset function. The dedicated low skew reset tree is
physically the same as the clock tree until the signal enters a
zone. There the port cell(s) direct the signal to either a clock
pin or reset/set pin.

MPA1000 Design Resources

The MPA1000 synthesis library contains special macros
that aid in the efficiency of the FPGA design. Efficiency shall
be described as guiding critical routes of the design to special
or dedicated routing resources, utilizing special function
macros optimized for the MPA architecture, and utilizing MPA
functional resources that can be only be structurally
instantiated from the MPA synthesis library. The following
sections describe the special types of macros that can be
found in the MPA synthesis libraries. These macros are for

AN1563

specific design requirements. Please peruse the synthesis
libraries for more macro specific details.

Clock Tree macros

The clock tree macro resource consists of the IPCLK clock
pad macro and the ACLK internal clock buffer. The “ACLK”
macro must be instantiated by the designer to connect
internally generated clock signals to the primary clock tree. An
example of a structural description applying an internal clock
buffer signal to the primary clock tree.

(VHDL) Buffer_instance_name: ACLK port map

(A=>clk_input, Q=>clk_output);

(VERILOG) Buffer_instance_name

(-A(clk_input), .Q(clk_output));

The “clk_output” signal will be driving register clock pins
from the primary clock tree.

There are only eight primary clock signals in a MPA1000

device. The total number of IPCLK and ACLK macros must
not exceed eight. If it does, partitioning failure will occur.

ACLK

Three-state/WOR macros

To use WOR structures in the MPA1000 devices, There are
several macro resources. They are WBUF, WINV, WND2,
WOR2 for an internal WOR bus and there are several |10
macros that have the WOR capability that utilize the P-bus
resource. An example would be the IPWINV or APWBUF
macros. For each WOR bus created, an pull up macro must be
attached. The pull up resources are WPUP for the internal
WOR bus, and PWPUP for the P-bus pull up. When creating
an internal or P-bus WOR structure, both the WOR buffer and
the pull up macros must be instantiated. Currently, there is not
a method to inference an WOR structure when using
Synopsys. The following is an VHDL example of an internal
WOR instantiation :

U01: WBUF port map (A=>sig1, W=>worbus);
Uo2: WBUF port map (A=>sig2, W=>worbus);
U03: WBUF port map (A=>sig3, W=>worbus);
uo4: WPUP port map (W=>worbus);

The “WPUP” macro is necessary to pull up the wor bus
signal. The on-line documentation has more information on
how many “WPUP” macros should be placed on the wired—or
bus.

Three state functionality can be inferred in an HDL when it
will be used in the I/O area of the FPGA. The “m” signal in this
example needs to be an external I/O signal which is assigned
“out port” “ port is pad” attributes . A three—state inference:

if (sli = ‘1’) then
m=e; elsem="‘Z,;

10 macros

The MPA input output block (IOB) is a complex logic block
with data registers on the input and output data signals. The
registers cannot be inferred with RTL code, but can be
accessed through a structural description. In general when the
synthesis tool places pads onto the design’s peripheral
signals, the pad macros are simple pad buffers e.g. IPBUF
and OPBUF. To utilize the registers in the 0B, an structural
description must be used. There are more that seventy

MOTOROLA MPA DATA — DL201 REV 2
4-27

AN1563

different IOB macros. The on-line help describes the many
different types.

Clock Signals/Clock Tree Generation

Without careful attention, clock tree implementation can
cause problems for both synchronous and asynchronous
designs. There are several clock tree related issues, the HDL
designer should know :

e Design Compiler does have the capability to infer clock pads
for those assigned clock signals. Internal clock buffers
require a structural description. However, Design Compiler
cannot insert internal clock buffers automatically. For
instance, a gated clock signal which needs to drive the clock
pins in I/O flip—flops will require an internal clock buffer to get
onto the primary clock tree. This is an MPA1000 architecture
limitation since the 1/O register clock pins can only be
accessed from the dedicated clock tree. By structurally
inserting an internal clock buffer, the gated clock signal will
connect to the dedicated primary clock tree through the clock
buffer. Since the number of primary clocks (buffers and pads)
of MPA1000 is eight, it is important to limit the total number
of inferred clock pads/buffers and inserted clocks to eight.

e |f a signal is assigned as an “input port” and as “clock”,
Synopsys will map the signal into a “IPCLK”. Even if the
designer doesn’t assign “clock” for an “input port” signal, if
the input signal is driving a clock input of a register directly,
it will also be assigned as an “IPCLK” macro automatically.
All the IPCLK pads will connect to the primary clock tree by
default. The designer must make sure that “don’t touch” was
assigned to all those primary clock trees. If Synopsys
“optimize” or “balance” the clock tree, it might generate many
secondary clock trees which ends up causing clock tree
routing problems.

e |f an internally generated clock signals need to drive both
primary clock tree and a regular output pad, a separate
output macro “OPBUF” needs to be added to bring the signal
to an output pad. The following is a VHDL example:

clkbuf1: aclk port map (A=>internal_clock,
Q=>primary_clock);

outbufi: opbuf port map (O=>internal_clock,
EXTOUT=>output_pad);

General HDL Techniques

The description of an design in an HDL is very important.
The synthesis tool interprets the description and then maps
the design to the target library. Performance of the design
depends on the interpretation of the HDL description and the
style of HDL coding. These influence the logic that will be
mapped to the design.

Synopsys does not optimize logic based on XOR logic
reduction (Mueller-Reed). However, since 50% of the
MPA1000 cells can be implemented as an “XOR”, the
designers can build macros based on XOR logic. The
outcome of the XOR based logic can potentially be faster and
use fewer number of cells.

e Merge registers into the /O macros. Registers that are
directly connected to input macros or output macros with out
feedback can be pulled into an 1/O location by instantiating

MPA I/O macros such as “OPDFR” and “OPDLR” in an HDL
design. If specialized I/O macros are not used, the register
resource will come from inside the core array area.

e For multiple clocks within a design, it is recommended to
implement a clock enable signal for the various registers and
have the registers all clocked with the top level clock.

For state machines, an important issue when compiling a
state machine is that the one-hot state assignment
approach is very viable for a fine—grained architecture such
as the MPA1000. In general, Design Compiler supports five
types of state assignment: manual, auto, one—hot, binary,
and gray. The one-hot state assignment assigns one unique
flip—flop per state. In coarse—grained architectures such as
Xilinx 3000/4000, there are large combinational circuits
attached before the flip—flops in each block (CLB). One-hot
state assignment will cause significant penalties of areas for
3000/4000 architectures. On the other hand, the MPA1000
architecture has no combinational circuits attached to each
flip—flop within a cell. The area penalty is, therefore, minimal.
Since our both designs are utilizing less than 30% of the
cells, In general, it is recommended to use the one-hot state
assignment if timing is more critical than area. The “one—hot”
mode in most cases achieves faster timing due to its much
simplified combinational logic.

Synchronous Design Style

The synchronous design style is the preferred method of
design recommended by synthesis tool and FPGA vendors.
Few designers use the asynchronous design style since it can
result in a little bit faster performance in an ASIC or custom
design environment. In an FPGA environment, this
assumption can be false. In general, asynchronous clock
signals are not driven from primary clock resources and are
therefore implemented in an “secondary clock tree” in
MPA1000. The secondary clock trees use the regular routing
resources to route the signal and have significantly longer
clock delays and clock skews. The extra clock signals also
occupy routing resources such as ports and global busses that
result in increased routing congestion. All those combined, the
asynchronous design typically will not get the faster-speed
advantage the designer might expect.

The only asynchronous design styles suggested by
Synopsys are designs with gated—clock and designs with
asynchronous reset. Designers who use gated—clocks have to
be aware of all the asynchronous clock tree problems that
exist.

The asynchronous reset, however, is a popular design style
and generally will not cause serious design problem since it is
usually implemented as a global signal and tends to be
mapped into primary clock/reset tree.

Area Estimation and Area Optimization

The designer should do some rough area estimations
before trying to fit the design into the target MPA device. The
rule of thumb is :

o The total number of cells (components) created by synthesis
should not exceed 40% of the total raw cells of each device
since some cells will be used as routing resources. The
routability is usually design—specific. However, if there are
more- high—fanout nets, the routability usually decreases.

M7

MOTOROLA MPA DATA — DL201 REV 2
4-28

There is still some chance to route designs with more than
40% cell utilization. However, the performance usually is not
as good and the probability of successful routing is much
lower.

The total number of flip—flops should not exceed 80% of raw
flip~flops.

The total number of clock/reset signals should not exceed
15.

In general, device area is not a concern for FPGA unless it
cannot be fitted into a device. There are some techniques to
improve device areas:

Instantiate special /O macros to utilize registers inside /O
macros. There are two registers available inside each I/O
macro. It will reduce the device area, reduce the required
routing resource, and help in synchronizing on/off-chip
timing.

Use wired—or structure can reduce the number of gates.
However, special attention should be given to timing and
routability issues.

Using the primary clock tree to implement high—fanout net
will not only improve the wiring delays but also save a lot of
routing resources. However, an active primary clock tree will
consume more power than an idle clock tree. If power
consumption is an important issue, designers should do
some calculations as to the trade offs of using the clock tree.

Use Synopsys techniques of resource sharing and area
optimization options.

L]

L]

Techniques for Timing Optimization

In general, most of the timing improvement will come from
the design and HDL code changes. By knowing the behavior
of HDL compilers will generally lead to big improvements in
device timing. the following describes some of the common
timing optimization techniques used in HDL code structure
and design synthesis:

Avoid long “if_elsif” or “case” statements. Each elsif or
“when” statement usually will add at least one logic level to
the circuit. A better technique would be to see if the
statements can be broken down and inserted into different
concurrent processes or blocks. The same thing applies to
the other statements inside each process. Since they are all
implemented sequentially, try to see if they can be
implemented as concurrent statements outside of the
process.

Be aware of the default inferred latches and registers. Make
sure that the if/elsif statements always close with an “else”
statement if no latch element is expected.

High—fanout nets usually cause very long wiring delays. Try
to reduce the number of fanouts if possible.

Use clock file to differentiate slow clock and fast clock. It will
help timing—driven layout to optimize and report the right
critical paths.

e Use Synopsys “timing optimization” option.

Timing Analysis and Delay Estimation

Since FPGA place & route can take a long time for larger
designs, it is important to do timing analysis and delay
estimation during the synthesis stage to avoid many design

AN1563

iterations. In general, accurate FPGA delay estimation is very
difficult to achieve due to large metal wire delays and large
switching element delays. However, by using component
delays and wiring delays derived from statistical analysis,
some obvious problems can be identified and avoided in the
early design stages.

Critical path analysis is the most popular way to estimate
device frequency. The post—layout critical-path delays are
reported in the “timing file” (design.tim). The path delays in the
timing file include both the component and wiring delays. Each
level of logic in the critical path needs at least 1.2ns (0.7ns cell
delay and 0.5ns direct interconnect delay). In general, for
delay paths longer than 5 logic levels, the average delay for
each level of logic is between 2.5ns to 3.5ns.

To estimate the critical path delay, the designer should
count the levels of logic of the critical path by using the
“highlight_path” command to highlight the critical path.
Assuming the number of logic levels for the critical path is N,
the theoretical lower bound of the critical path delay (LD) can
be calculated with the following equation:

LD =1.2*N + setup + clk_to_q

For the MPA1000 family, the setup time is about 1ns while
the clk_to_q is about 1.5ns.

In a real design, the average delay for each level of logic is
around 3ns. Therefore, the expected delay (ED) for the critical
path should be:

ED = 3*N + setup + clk_to_q
General timing analysis guidelines for MPA1000 synthesis
designers are:

If timing budget is smaller than or only slightly more than LD,
there is no chance to reach the timing goal. The designer
should try to modify the design by modifying the HDL code
structure, or modifying the timing budget to solve the
problem.

If the timing budget is close to ED, the place&route tool has
a good chance to reach the timing goal. The designer should
utilize the timing optimization techniques in the Synopsys
environment and use timing driven layout options for the
place and route software. For a multiple clock system, the
slower clock usually will not create a critical path. However,
the software will not be able to differentiate the less critical
clock signal unless the designer creates a timing group for
each clock in the “clock file”. Please refer to the online
documentation for detailed information regarding the “clock
file” format.

If the timing budget is far exceeding ED, the designer will
have a large slack time for the critical path. Even though
timing—driven layout is still suggested for place&route, the
designer may have some flexibility in using a less aggressive
timing goal to reduce run time and focus more on the area
optimization when synthesizing the design.

Behavioral vs. Structure Synthesis

In an traditional synthesis flow, structure design is generally
recommended at the top-level for constructing logic
hierarchies. Behavioral design, however, is usually much
easier and maintainable for designers. For example, in an
FPGA design, critical portions of the design utilized the
structural description method to capture specific logic

MOTOROLA MPA DATA — DL201 REV 2
4-29

AN1563

modules. One area that used an structural description was the
I/O logic module. Although some FPGA technology mappers
have the capability to do special mapping processes for the
1/0, such as mapping flip—flops into an /O, it is generally much
more controllable to construct an I/O logic module with an
structural description. It is also easier to insert attributes to the
macros which are described structurally. The current
MPA1000 synthesis library includes a large variety of I/O
macros which have many combinations of input/output, clock,
flip—flop/latch, and delay elements. By instantiating I/O macros
directly from the MPA1000 library, the designer can avoid
some potential problems caused by the synthesis logic

inference process.

An interesting note when using an structural description is
that Design Compiler is still capable of optimizing the
structural description even it is supposed to be optimized by
the designer already. It can be concluded that the software is
usually capable of performing a much more thorough logic
optimization search compared to human beings under a
well-defined environment. In one example, an 20%
improvement was achieved by running optimization on hand
crafted structural modules.

A%

4-30

MOTOROLA MPA DATA — DL201 REV 2

AN1564
Application Note

Interfacing to the PowerPC™ with
a Motorola Programmable Array

11/96

Prepared by
Rich Rejmaniak
Field Applications Engineer

PowerPC is a of i Aachines Corporati

© Motorola, Inc. 1996

4-31

@ MOTOROLA

REV 0

AN1564

Interfacing to the PowerPC™ with a Motorola Programmable Array

Introduction

With the higher speeds and wider busses for modern RISC
processors, designing bus peripherals can be a daunting task.
The need to decode an ever expanding address range in an
ever shrinking period of time can overwhelm many logic
designers. In addition, the new generations of processors
have far more complex bus protocols aimed at increasing
overall bus throughput. The pressures on a particular design
to meet performance specifications within economic
boundaries are quickly outpacing standard design solutions.
In the past, PALs or other small programmable logic devices
were used to perform this function. Current processor bus
complexity is now outdistancing the pinouts of these devices,
let alone their logic functionality. The solution to these
problems in high volume applications is through the use of
ASICs. However, ASICs are not an economical solution for the
small and medium production runs (<5000 units) which
characterize the majority of processor designs.

The solution to this problem is the FPGA. It sits between the
PAL and the ASIC in both cost and complexity at this
production scale. This article demonstrates the use of a
Motorola Programmable Array as a bus peripheral to the
PowerPC family of RISC microprocessors. The design
contained herein is a bus cycle analyzer capable of triggering
on a bus event and capturing a snapshot of 5 bus cycles. This
device operates in two modes: One is a voyeuristic mode
where the MPA is silently monitoring and recording bus cycles,
waiting for the trigger event. The other is as an addressable
bus device to allow the host processor to program the trigger
event and retrieve the captured bus cycles.

To accomplish this, the design must handle all aspects of
the PowerPC bus protocol. The design is exhaustive in this
sense, ignoring only two aspects of the bus: It does not
monitor bus arbitration, nor does it support enveloped writes. It
does not monitor bus arbitration because it never assumes
address bus mastership. Enveloped write support was not
implemented for complexity reasons, thus limiting this device
in designs that have multiple caching bus masters.

The PowerPC Bus

To fully understand the design of a peripheral to a particular
bus, it is first necessary to understand the bus itself. The
PowerPC family of processors has a bus that is quite different
from that of typical CISC processors. Most CISC processors
have a single processor bus composed of address and data
lines under the auspices of a single set of control signals. The
PowerPC actually has two busses. This should not be
confused with a Harvard Architecture, which has two data
pathways. The PowerPC follows the standard single pathway
design for instructions and data. What the PowerPC does that
is different that older processors is to provide for independent
mastership of the address and data buses. Each of these
buses has its’ own control lines and can operate with some
degree of independence. The processors that conform to the
bus model being studied are the MPC601, MPC603 (In 64 bit
data bus mode), and the MPC604. The MPC620, MPC602,

MPC5xx, and the MPC8xx processors have differing bus
structures that are not applicable to this design.

All control and timing signals on the PowerPC bus are
active low and are designated in this text with a preceding
exclamation point. i.e. Transfer Start is designated as ITS. The
only exception to this is obviously the processor system clock,
SYSCLK, which is symmetrical in time. .

All transaction control signals on the PowerPC bus are
synchronous to the SYSCLK signal. All asserted signals are
driven’ by the rising edge of the clock and their timing
specifications are defined by this edge. Just as well, all
sampled input signals are defined with their setup and hold
times relative to the rising edge of SYSCLK. While the
PowerPC bus allows most synchronous bus signals to occur
at any number of clock edges in order to extend the length of a
memory cycle, all signals must be stable in their active or
inactive state during the rising edge of SYSCLK.

The reader should be cautioned that this application note
doesn’t contain the full specification for the PowerPC bus.
Described herein are only the bus signals needed to interface
to this bus analyzer circuit. For the reader to properly design a
PowerPC based processor system, the detailed electrical and
architectural specifications must be referenced. These
documents are available through the local Motorola
Semiconductor sales offices.

Bus Arbitration

The arbitration of the PowerPC bus is done without the
knowledge of the MPA devices used in this design. The only
time a bus device needs to participate in the arbitration cycle,
is when it intends to assume mastership of the address bus to
initiate host (i.e. processor) to slave (i.e. memory) transfers.
This device never initiates such transfers but simply monitors
and responds to these transfers initiated by other bus masters.

Address Bus Tenure

There are two major classes of address bus cycles. Data
bus preambles imply that a data bus cycle will follow the
address bus cycle. Address only transactions are for cache
synchronizing purposes. Enveloped writes are considered to
be data bus preambles by the processor. This design treats
them as address only transactions, limiting the ability to
completely monitor them.

An address bus tenure starts with the assertion of Transfer
Start (ITS) and Address Bus Busy (IABB) by the current bus
master. These signals are asserted synchronously with the
processor SYSCLK signal. All address and transfer control
lines (TT[0:4], TBST, TSIZ[0:2], TC[0:2], and WT) become
valid within ten nanoseconds (typical: plus or minus) of the
control lines.

The ITS signal is only asserted for one clock cycle, at the
start of the address bus tenure. The !ABB signal remains
asserted for the duration of the address tenure, signaling other
masters in the arbitration phase that they are denied the bus,
as well as for use by the memory subsystem to determine the
stability of the address and transfer control signals.

The final step in a successful address cycle is the assertion
of Address Acknowledge (IAACK) by the address bus slave.

MOTOROLA MPA DATA — DL201 REV 2
4-32

This slave is usually the memory or I/O subsystem. When the
bus master samples !AACK asserted on the rising edge of
SYSCLK, it immediately negates |ABB and places all address
and transfer control signals into the high impedance state. If
the bus slave doesn’t assert Address Retry (IARTRY) on the
next clock cycle, the address tenure is considered to be retired
successfully. This bus analyzer circuit does not monitor the
IARTRY signal. If a bus slave asserts !ARTRY, the address
tenure will be re—run, and will be captured again.

Data Bus Preambles

Data bus preambles are the start of a ‘typical’ processor
bus cycle. It is the address phase of a data transfer action
between a bus master and a bus slave. If the processor is
initiating a single beat transfer, there will be a separate
address bus cycle for each data bus cycle. In practice, most
bus transactions on the PowerPC (indeed on most RISC
processors) are burst transactions. Burst transaction involve
the instigation of a number of data bus cycles (four on the
PowerPC) from a single address bus cycle.

Another type of data bus preamble is the enveloped write.
The PowerPC uses this transaction to maintain horizontal
cache synchronization among caching bus masters.

Address Only Transactions

Address only transactions are used by the PowerPC to
maintain horizontal cache synchronization among multiple
caching bus masters. An example of such a transaction is
when a particular bus master updates an internal cache line
that is flagged as write back and is in the ‘shared’ state. In this
instance, the processor that is altering its’ internal cache line
must broadcast this action to any other processor that has the
same data in its’ cache. Such a notification is done with an
address only transaction. This address only transaction can
occur while the data bus is busy completing the data phase of
a data bus preamble address cycle. This overlap can only
occur when the system architecture supports a pipelined bus
structure.

‘Both data bus preambles and address only transactions
differ only in the state of the Transfer Type (TT[0:4]) signals
asserted during the cycles. The timing remains the same for
both types of cycles.

Data Bus Tenure

The data bus is capable of operating under different bus
mastership from the address bus. While systems that optimize
cost over performance can avoid this feature, high
performance systems will generally support this via SDRAMs.
The processors supported by this design allow only one level
of pipelining; that is, only one address bus cycle can be
outstanding (waiting for corresponding data bus cycle) at a
time.

The data bus tenure timing is very similar to the address
bus tenure timing with a few exceptions. The data bus has no
Transfer Start signal as does the address bus. Instead, there
is an infer transfer start during the first cycle of Data Bus Busy
('DBB). !DBB is preceded by a Data Bus Grant (IDBG) to the
bus master from the arbitration logic. This device is not
connected to the !IDBG signal. Data Bus Busy is asserted by
the bus master for one or more integral SYSCLK cycles until

AN1564

Transfer Acknowledge (ITA) is asserted by the bus slave.
During a store operation (a.k.a. a bus write cycle), the bus
master will drive the data lines for the duration of the assertion
of the !'DBB signal. During a load operation (a.k.a. a bus read
cycle), the bus master assumes that the bus slave will have
the data lines driven and stable for the rising edge of SYSCLK
coincident with the assertion of ITA. The data bus also has a
Data Retry (IDRTRY) signal that operates in the same manner
as the !ARTRY signal on the address bus.

Single Beat Transactions

A single beat transaction occurs when there is only one
data bus cycle for a particular address bus cycle. This is
caused by the processor accessing a non—cacheable memory
address. Single beat transactions can be from one to eight
bytes in width. The width of the access is determined by the
processor. The memory is assumed to be 64 bits wide and is
expected to support byte lane write selection. Depending on
the bus timing imposed by the system design engineer, the
address may be present on the address bus for none, some,
or all of the data bus cycle.

The duration of a single beat transfer data bus tenure can
be as short as one SYSCLK cycle. In this case, the bus master
asserts |DBB (and drives the data bus on a write cycle)
following the rising edge of SYSCLK that sampled the |IDBG
signal. The bus slave responds within the constraints of one
SYSCLK cycle and has either latched or driven the data bus
and drives. ITA by the next rising clock edge.

Burst Transactions

A burst transaction is the result of a cache line push or fill.
This type of access comprises the vast majority of bus cycles
on a high performance design. The external memory system
does not have the option of declining a burst transaction. The
only way to protect a memory device from a burst notification
from the processor is to designate the area as non—cacheable.

A burst transaction can be pipelined or non-pipelined.
Non—pipelined bursts provide an address bus cycle for each of
the four data bus cycles. A pipelined burst will only post the
address of the initial data bus cycle. The memory device is
expected to latch and auto—increment the address provided by
the processor. The address is modulo four (on a double word
boundary) and can specify any double word in the cache line
as the first transaction.

In high performance systems, the piplined burst transaction
will be the dominant type of bus cycle. The timing of a burst
cycle is that of four back—to—back single beat transactions. In
the case of a burst, IDBB is asserted unbroken for the entire
duration of the bus tenure. The bus master will drive or latch
the data bus for the next data cycle as determined by the
modulation of the ITA signal from the bus slave. The bus slave
can cause the bus master to extend any of the four data
transfer sub—cycles an arbitrary number of SYSCLK cycles.
The Bus master will hold the data bus in the current transfer
sub—cycle until it receives a ITA signal from the bus slave. At
that time the master will proceed to the next sub—cycle or
terminate bus ownership after the fourth transfer.

Endianess
It must be remembered that the PowerPC is a big endian
machine, both in byte ordering and in bit ordering. On all

MOTOROLA MPA DATA — DL201 REV 2
4-33

AN1564

busses and in-all registers’ bit [0] is the most significant bit.
This design follows this convention with one noticeable
exception: the numbering of the register selection lines in the
address decode logic. The address lines follow the big endian
bit format, however, the write and read enable lines use the
little endian (LSB = 0) format. This was done to maintain the
convention as marked on the multiplexers and demultiplexers
in the component library. When data is routed to and from the
internal registers, big endian alignment is maintained.

The user must wire the device to the processor bus using
big endian bit ordering. While, in theory, reversing the bit
ordering would carry through the entire pattern matching
scheme, it would convolute the address decoding and the
mapping of the internal setup and history registers.

The Design

This design demonstrates solutions to a number of
PowerPC processor design criteria using the Motorola
programmable array. This particular implementation is
targeted to an MPA1064. An MPA1064 contains 6400 logic
cells, providing 1600 internal flip—flops in addition to the
flip—flops in each of the I/O cells. The MPA1064 contains 160
I/0 cells, each containing one flip—flop for input and one
flip—flop for output. This design fits into the MPA1064 placed in
a 160 pin QFP, which only bonds out 120 of the 160 I/O pads.
The remaining 80 flip—flops in the unbonded 40 I/O pads are
available for internal logic realization. This size MPA is
necessary because of two aspects of the processor bus:
signal count and bus speed.

Bus Speed

The bus speed supported on this design is 50MHz. When
the MPA is acting as a bus slave, it responds with wait states
to slow the bus down. This is because the only time that the
device is addressed is for setup and result retrieval. Both of
which are not time critical operations.

When the MPA is monitoring the bus in voyeuristic mode, it
must keep up with the bus at full speed. At 50 MHz, there can
be at most three levels of logic between clock edges to
maintain a reasonable design margin. This results in a heavily
pipelined design.

Pipelining

Pipelining impacts this design in two ways: There is an
element of latency in the reaction of this circuit to the triggering
events. There is also a large consumption of register logic in
the target device.

As the monitored bus data flows through this device, it is
processed in stages of a nine level pipeline. The first four
stages process and synchronize the incoming data,
compensating for bursting, split bus tenures, and address only
transfers. The last five stages contain the triggering event, the
two bus cycles prior to the trigger, and the two bus cycles after.

Latency

The latency inherent in this device means that it is
incapable of halting the processor on a trigger event as is
common with a breakpoint feature of a development system.
When a trigger event occurs, the processor can be interrupted
to service the event, however, several bus cycles will have

transpired between the trigger and the interrupt. It is for this
reason that the circuit maintains a record of the two bus cycles
preceding and following the trigger event.

Register Consumption

The captured data stream is 109 bits wide, multiplied by
nine pipeline stages results in 981 register elements for
pipelining alone. This does not include the various elements
used for setup registers (218 bits) and state control. The MPA
architecture is naturally rich in registers,making it extremely
useful for pipelined designs.

Bus interface

There are two basic types of signals on the PowerPC bus
that connect to this design. The first group of signals are
captured by the design when it is in voyeuristic mode. The
second group are signals that interact with the device to
provide timing and control. When the device is being
addressed as a bus peripheral, some the signals that are part
of the capture group become interactive with the device.

Signals Captured

The captured signals are the address bits, data bits,
transfer type, transfer size, transfer control, write, and burst.
Any of the captured signals can be used to construct the
trigger event. All captured bits are present in the trace memory
regardless as to their role in the trigger event.

All of the signals mentioned in the preceding paragraph,
with the exception of the data bits, are captured on the same
clock edge. The data bits corresponding to the other signals
may be captured at some indeterminate time after the address
cycle occurs. This design will synchronize the signals, aligning
the data bus information with the proper address and control
information. It should be noted, however, that if address only
transactions are permitted, they will be synchronized with an
arbitrary data bus capture result. In many cases, this captured
data bus information will be data from a burst transaction. If
the trigger event is set to detect an address only transaction,
the data portion of the trigger should be masked off.

Another caveat of allowing address only transactions, is
that the address may be captured during a burst, thereby
preventing the compare logic from seeing that particular burst
address. In these cases the burst address will be internally
generated, but will be obliterated by the captured address bus
information. If the obliterated address bus cycle matches the
trigger event, it will not be detected.

As a result, this circuit should be programmed to trigger on
address only transactions and ignore the data bus, or it should
be programmed to disallow the capture of address only
transactions.

Signals Interacted

Interacting signals are signals that provide timing and
control to the design to allow it to capture the needed signals.
The signals in this group are: Transfer start, Transfer
acknowledge, Data bus busy, Address acknowledge, and Bus
clock.

These signals, with the exception of Bus clock, are
generated by the bus master or the bus slave. Some of these
signals are generated by this design when it is responding to a
load or store from the processor.

M

MOTOROLA MPA DATA — DL201 REV 2
4-34

Transfer start (ITS) marks the beginning of an address
tenure and is used by the analyzer to capture the address and
control signals. After the address signals are captured, they
start to pass through the monitoring pipeline while being
simultaneously applied to the address decode logic. If a bus
slave responds to the address tenure with an Address
acknowledge (!AACK) signal prior to complete decoding, this
design assumes that it is not the target of the address and
stops the address decoding process. If a successful decode
occurs, the analyzer will generate an !AACK signal and
standby to respond to the corresponding data tenure. The
analyzer never drives Transfer start.

Data bus busy (IDBB) is generated by the data bus master
to indicate the start and duration of a data bus tenure. Itis used
by this analyzer to communicate with the processor when the
MPA is addressed as a bus peripheral. Transfer acknowledge
(ITA) is used by the analyzer to latch the data from a bus
transaction being monitored and is driven by the analyzer
when it is acting as a bus slave.

Address bus busy (!ABB), Bus request (BR), Bus grant
(IBG), Data retry (\DRTRY), and Address retry ({ARTRY) are
not connected to this analyzer.

The Implementation

The elements used to construct the final circuit are brought
together in the MPA. Each of the aforementioned criteria are
met using the basic gates elements of this device. Again, the
high register density and fine grained flexibility of the MPA
device made it an ideal choice for this design.

The design was done using ViewLogic schematic capture.
It is a hierarchical design with each section of the circuit
represented as components in the next higher level of the
schematic.

Compound Components

The components constructed from the basic gate elements
are the same type of functions found in most logic libraries.
The main difference is that they are pipelined and therefore
synchronous.

This analyzer can be modified to operate at a higher bus
speed, using more register elements, or at a lower speed, thus
saving register elements by editing the pipeline depth of the
lower level components. This will not change the overall
structure of the design.

Data Pipes

A couple of new elements are synchronous pipeline chains.
These have been constructed in both 45 bit and 64 bit widths.
The pipeline chains are basically synchronous FIFO stages.
Each will clock in data when an enable is present and provide
the data and the enable bit at the output at the completion of
the clocking operation. While the data will remain at the output
until additional data is clocked in, the enable bit will last only
one clock cycle at the output of this logic function.

These pipelines are used to carry the data to be captured
and compared while control signals are processed through
their respective pipelines. They are used again to store the
captured data during the comparison process.

AN1564

Pipelined Comparator

The 109 bit width of the trigger event meant that the
comparator had to be pipelined. The first stage masks off the
bits that are not part of the trigger and does a 109 by 109 bit
exclusive OR. The remaining stages reduce the 109 by 109 bit
result by successive ORing down to a single bit.

Each stage of the comparator uses three levels of logic
between registers. The first stage that compares the 109 bit by
109 bit values implements an XOR and an OR, considering
the XOR to introduce two levels of logic delay.

Monitoring Sections

The most complex sections of this design are those that
deal with the monitoring of the bus activity for the trigger event.
The most pressing issue is that of synchronizing the split
pipelined address and data transactions. The monitoring
circuit must be able to retain and optionally increment the
address that corresponds to the current data transaction while
it latches and starts processing the current address bus cycles
for later data bus activity. In addition, there may be an address
only transaction on the address bus while current data bus
activity is relying on a previous address bus cycle.

Transfer Type Decoding

This circuit decodes the transfer type to determine if the
current address cycle is a single beat, burst, or address only
transaction. The complexity of the decoding has this circuit
heavily pipelined. In most designs, address only transactions
can be decoded with only one or two bits, but since this is a
potential debug circuit, complete decoding is implemented.

Burst Transaction Address Generation

Burst transactions are always aligned and transfer 64 bits
per data cycle. After the address is latched, decoded, and
synchronized with the data bus cycle, it is incremented for
future data bus cycles. The address counter uses modulo
counting to maintain compatibility with the critical word first
nature of cache line fills.

Address Only Transaction Override

Address only transactions produce a unique situation for
the trigger event. In a pipelined bus system, a processor can
issue and retire an address only transaction while the data bus
is active using the contents of the previous address bus cycle.
In fact, address only transactions can occur in situations
where the data bus is active for all of the time surrounding the
address only cycle. When the data bus is active, there is a
corresponding address bus cycle inside of the MPA that is
either captured off of the address bus, or is generated by the
burst address generation logic. If the MPA device is generating
the burst address internally while there is an external address
only transaction, the MPA device is faced with deciding which
address to use in its’ comparison logic. For this reason, there
is a bitin the control register that resolves this issue. When this
bit is set, the processor will process the address only
transaction. If this transaction happens to align itself with a
data bus cycle, the address only transaction will be paired with
the randomly occurring data cycle when presented to the
trigger event comparator. In this case, when triggering on an
address only transaction, the contents of the data bus should
be masked out of the trigger event. When the address only

MOTOROLA MPA DATA — DL201 REV 2
4-35

AN1564

transaction override bit is clear, address only transactions will
be blocked from reaching the event trigger comparator stages.

Bus Peripheral Sections

In order for the processor to set up the trigger event and to
retrieve the results of a trigger, the MPA device must behave
as a slave memory device on the processor bus. During this
time the setup and history registers are memory mapped into
the processors address space. This design provides for two
methods of placing these registers into the appropriate
address locations. In the chip select mode, a control line
decodes the processor address externally to the MPA and
provides an active low chip select to indicate that the device is
being addressed by the processor. In the internal decode
mode, the MPA decodes the address bus itself to determine if
it’s being addressed. In this case the chip select line is used to
select one of two address locations for the MPA. In both
modes, individual register addresses are decoded internally.

Processor Store Cycles

A store cycle from the processor to this design must be a 32
bit word aligned on a 64 bit boundary. All internal setup
registers are 32 bits wide, except for the control register.

Processor Load Cycles

A load cycle from the processor to this design must be a 32
bit word aligned on a 64 bit boundary. All internal history
registers are 32 bits wide, however, not all bits read will
contain useful information.

Schematics

The schematics are drawn in a hierarchical topography.
Figure 7 shows the structure of the schematics as they are
assembled in the design. Pages that are shaded appear more
than once in the design, due to the fact that a hierarchical
design allows the use of a schematic page as design
component.

ANALYZER

Figure 8 is the top ‘page of the bus analyzer design. It
provides the high level interconnect between the main
operational sections of the design.

I/O_PINS

Figure 9 contains all of the external interface pins for the
analyzer. They are grouped into three sections: Data bus
interface, Address and transfer control, and timing and
operational control.

The top left corner of the page shows the data bus
interface. The upper bits [0:31] are input only and the lower
bits [32:63] are input and output pins. (Remember: the
PowerPC uses big endian bit ordering with bit[0] as the MSB.)
The reason for the difference in input and output types is that
the device captures the full 64 bit data bus in voyeuristic mode,
but responds as a 32 bit peripheral in bus slave mode.

The upper center and right areas of the schematic page are
the timing and operational pins. These include the signals that
regulate the bus activity as well as the MODE, SELECT,
ISTART, ISTOP, and !IRESET operational pins.

The bottom left quarter of the page contains the interface to
the address lines and the transfer type signal lines. These
lines control the non-timing aspects of the transaction, such
as data bus direction (WT), transaction size, and transaction
type.

The bottom of the page, just to the left of the title block
contains the designation for the processor bus clock input pin.

INVBIPAD

Figure 10 is a bi-directional inverting I/O pin. This
component was created by modifying the noninverting
bi—directional pad for use with active low control signals.

INVINPAD

Figure 11 is an inverting input pin. This component was
created by modifying the noninverting input pad for use with
active low control signals.

PIN32BI

Figure 12 shows the creation of a 32 bit wide array of /0
pads used to interface to the low 32 bits of the data bus. Each
pad is drawn independently, as opposed to an array of
components, to allow individual pin assignments if it became
necessary.

PIN32IN

Shown in Figure 13, a 32 bit input only array of pins. Again,
called out separately to allow individual pin assignment. They
are used to monitor the address and upper data bus bits.

IN_PROC

The schematic in Figure 14 is the input processor of the bus
monitoring section. The function of this section is to process
and synchronize the address and data bus tenures. The
resulting output is a unified 109 bit wide snapshot of an
aggregate bus cycle.

The incoming address cycle is stored in three 45 bit wide
synchronous pipeline stages while the transfer type is
decoded. Selected bits of the final pipeline stage can be taken
from the burst counter to provide auto incrementing addresses
for burst cycles.

The signals captured from the data bus are stored in a three
deep pipeline as well, this one being 64 bits wide. The data
from the data bus isn’t processed during this time, but is
pipelined to provide synchronization with the corresponding
address signals.

PIPE45

The 45 bit wide pipeline stage shown in Figure 15 is
comprised of a 45 bit wide data register and a single flag bit.
The flag bit is present for one clock cycle following the latching
of data into the register.

REG45

Figure 16 is a 45 bit wide register. It is composed of 8 bit
wide standard library components as well as a 32 bit wide
composite component. Logic trimming in the place and route
software removes the unused logic from the second 8 bit wide
register from the final circuit.

This composite component is used as the data register in
the 45 bit pipeline as well as a section of the 109 bit wide pipe.

M# —

MOTOROLA MPA DATA — DL201 REV 2
4-36

REG32

The 32 bit wide register in Figure 24 is used wherever a
register of this width is needed in the design

PIPE64

Figure 17 is a 64 bit version of Pipe45. It is used to provide
a delay to the data bus signals for synchronization to the
address bus signals.

REG64

Figure 18 is a 64 bit register. It is used to construct the 64 bit
wide pipe component and it is used in conjunction with the 45
bit register to create the 109 bit registers.

TTDEC1

Figure 19 is the first stage of the transfer type decoding
circuitry. The balance of the decoding is performed discretely
at one level higher in the hierarchy, on the IN_PROC
schematic.

The only two cases that are decoded from the transfer type
are burst cycles and address only cycles. The user is free to
program the pattern detection circuitry to trap on other types of
transfers. This detection circuitry is independent of the trap
pattern and is used to control burst address generation and
blocking or passing of address only signals.

BURSTCTR

Figure 20 is the burst counter. It operates in parallel with the
third address pipeline stage. Its purpose is to latch the adders
bus signals, just as the third pipeline stage does. However, it
retains this information and increments the address bits that
are implied by the burst cycle. It is a modulo counter, as
required by the PowerPC specification to allow critical word
first loading of cache lines.

CNTCTRL

Figure 21 is the state machine to control the sequencing of
the burst counter. It is a three bit unary counter whose output is
true if any of the count bits are nonzero.

SELECTOR

The selector circuit shown in Figure 22 is a 45 bit by two
way gate. Its purpose is to determine if data from the third
stage of the address processing pipeline or data from the burst
counter should enter the pattern matching section of the
design.

REG109

The 109 bit register in Figure 23 is used throughout the
design to carry the full trigger pattern through its processing
stages.

TRC_CTRL

Figure 25 is the state machine that controls the operation of
the pattern matching section. It accepts input signals to start,
stop, reset, and to detect a trigger match. It outputs an all clear
signal and a run signal.

The reset signal is from an external pin to the MPA. It forces

a clear signal and places the pattern matching section in stop
mode.

AN1564

The start signal generates a pulse on the clear signal and
asserts the run signal. The clear pulse is one clock cycle in
length and is separated from the run signal by three clock
cycles. A start can be generated by an external pin or a bit in
the control register. The start signal is edge sensitive.

The stop signal halts the pattern matching logic and
suppresses any applied start signal. The stop signal must be
removed before the start signal will be accepted. Like the start
signal, the stop signal can be applied from the control register
or an external pin. The stop signal is edge sensitive.

A match signal halts the pattern matching section, but
doesn't affect the reception of a start signal as does the stop
signal. The match signal is generated by the trigger circuitry.

The clear signal is distributed to all registers in the
processing pipeline. It doesn’t affect the contents of the setup
registers.

Run is an active low signal that allows the pattern matching
section to clock in unified data from the input processing
section.

REG_FILE

The schematic shown in Figure 26 is the setup register file.
It consists of the two 109 bit registers for the match pattern and
the pattern mask. It also contains the three bit setup register
which contains the start, stop, and address only control bits.
All of these registers are write only.

SETUPREG

Figure 27 is a 109 bit register used for storing the trigger
pattern and the trigger mask.
REG13

The 13 bit register in Figure 28 is used to store bits 96
through 108 in the 109 bit setup registers.

REG_SEL

Figure 29 is the schematic of the register selection logic.
This allow the contents of five 109 bit history registers to drive
the data bus in 32 bit blocks.

Selection bits [0, 1] break the 109 bit registers into four 32
bit sections, the last section containing 13 bits of valid data.
Selection bits [2, 4] are then used to determine which register
is chosen. These bits can select up to eight registers,
therefore not all values are meaningful.

Register selection bits are generated by the address
decoding logic.
109SEL32

Shown in Figure 30 is the logic that delivers the chosen 32
bit subset of the 109 bit history register. When the most
significant bits are selected, the unused bits are driven to zero.

32SEL8
Figure 31 is used by the logic in Figure 30 to break down
the history registers.

MUX_BY32

Figure 32 is used to select one 32 bit history register slice
from the array of five presented to it.
MUX_BY8

The logic in Figure 33 is used by Figure 32 to break down
the history registers.

MOTOROLA MPA DATA — DL201 REV 2
4-37

AN1564

MUXS5TO1

The five input muxes in Figure 34 are derived from the
library of parameterized modules entry for an eight to one
multiplexer.

BUS_SLV

Figure 35 is the control logic used to place the setup and
history register into the processor’s address space.

The latches at the bottom of the page, the shift register, and
associated logic comprise a state machine that is continually
monitoring the processor buses. If no other bus slave
responds to an access before the address decode circuitry in
Figure 36 detects a hit, then either the write control in
Figure 38 or the read control in Figure 39 will transfer the data
to or from the proper registers and generate the proper control
signals to, complete the bus cycle.

This process can take up to 14 clock cycles to complete. It
was not considered critical to have this device respond quickly
to bus accesses.

ASYNCDEC

This schematic in Figure 36 is used to determine if the MPA
is being addressed by the processor, and which internal
register is being selected.

Address decoding can operate in one of two modes,
internal or external. Each mode has a different function
assigned to the select pin.

Internal decoding (mode = 1) uses the logic on this page to
decipher the address generated by the processor. The MPA
will reside at a base address of FFFF 0000 or FFOO 0000 as
determined by the select signal. The MPA reserves 256
addresses off of the base address for its’ registers. Thus the
actual address that cause an access are FFFF 00XX or FF0O
00XX. Note that there are not 256 registers in this device, so
not all of these addresses are legal.

If external addressing is used (mode = 0), then the select
pin is used to indicate that the MPA has been addressed. In
both cases, the read addresses of the history registers and the
write address of the setup registers maintain the same offset
from the resulting MPA base address.

WHICHREG

Figure 37 is the address decoding section that generates
the individual register selection lines.

There are nine lines to select the setup registers. Four for
each of the mask and pattern registers, and one for the control
register.

) There is a selection signal for reading each of the history
registers. The particular 32 bit word from each register is
determined in the schematic hierarchy starting at Figure 29.

WRITEREG

Figure 38 is the control for the writing of the setup registers.
After a launch signal is received from the master decode logic,
the system waits for a data bus busy to indicate that data is
present on the data bus. The logic then waits for six clocks to

latch the data and generate the transfer acknowledge. It then
generates an idle signal to reset the main state machine.

READREG

Figure 39 is the read register control. Upon receiving a
launch signal, it drives the data bus and then drives the data
bus busy. It holds these signals until the transfer acknowledge
is received.

MATCH

Figure 40 is the pattern matching logic. It is heavily
pipelined to compensate for the width and speed of the
processor bus. This circuit actually maintains two pipelines.
The first is the pattern matching pipe, and the second is a
parallel path for the captured data to be recalled later.

The first pipeline accepts the unified 109 bit wide bus data.
This data is AND’ed with the contents of the mask register.
The result of this AND is then XOR’ed with the contents of the
pattern register. The result is a 109 bit wide comparison of the
data bus and the trigger pattern for the selected bits. It should
be noted that the contents of the reference pattern is not
AND’ed with the mask register. It is up to the user to make sure
that there are no bit positions with a zero in the mask register
and a corresponding one in the pattern reference register.
Such a combination would preclude a trigger event from
occeurting.

The resulting 109 bit wide result is successively ORed
down to a single bit, which is the unary addition of all of the bits
in the result of the XOR. This takes three clocks to work its way
through the pipeline. The final result is an active high match
signal.
~ The second pipeline is actually the history buffer register
file. It stores the result of the match at T_ZERO[0:108] with two
samples before and after the trigger. When a match occurs,
the logic in Figure 25 suppresses the enable signal, freezing
the contents of the pipelines.

REG_2

Figure 41 is a two bit wide register used in the pattern
comparison pipeline.
REG_14

Figure 42 is a fourteen bit wide register used in the pattern
compatrison pipeline.
MASK

Figure 43 is a 109 bit wide array of AND gates. It is used as
a single component in Figure 40 to allow the contents of the
mask register to suppress bits captured from the processor
bus.

XOR

Figure 44 is a 109 bit wide array of XOR gates. It is used as
a single component in Figure 40 to compare the contents of
the captured data with the contents of the pattern reference
register. '

OR109_14

Figure 45 OR’s 109 bits down to 14 bits. It is the second of
three stages in the pattern matching pipeline shown in
Figure 40.

M

MOTOROLA MPA DATA — DL201 REV 2
4-38

OR14_2

Figure 46 OR'’s 14 bits down to 2 bits. It is the third and final
stage in the pattern matching pipeline in Figure 40.

Usage

Control of the bus analyzer consists of programming the
mask and compare registers for the trigger event, followed by
the control register to set the environment for the trigger. The
monitoring of bus activity can be started or stopped either by
programming the control register or by activating external
control lines to the MPA.

This analyzer will attempt to monitor and trigger on
accesses to itself if it is in capture mode while it is being
accessed. This could result in unstable driving of the data bus
during a load operation or a false trigger during a store
operation. The control register can safely be written to while
the device is capturing in order to stop operation. The analyzer
will attempt to capture this bus cycle, however, it will shut down
before the aforementioned cycle reaches the history buffers.

Figure 5 shows the addresses of the internal setup and
history registers. The setup registers share the same
addresses as the history registers with a read or a write used
to differentiate accesses.)

Compare Registers

The total trigger compare width is 109 bits. The compare
value is stored in four 32 bit registers. The first three registers
use all 32 bits, the fourth uses 13 bits. The remainder of the
bits in the fourth register are ignored. It is possible to program
a trigger pattern that cannot occur. An example of such a
pattern would be a burst access from an odd address. It is the
responsibility of the user to avoid programming to trigger on
such events.

The compare register resides at locations 0x10, Ox14,
0x18, and 0x1C off of the base address of the MPA in the
processors memory map.

Mask Registers

The mask registers allow the user to exclude specific bits of
the captured bus signals from the comparison process. Each
bit in the compare registers has a corresponding bit in the
mask registers. Any bit masked off will not be considered in
the comparison, but will still be captured and recorded. If all
bits in the mask registers are set to zero, all bits in the
compare register will be ignored and a match will occur as
soon as the capture process is enabled.

The mask register resides at locations 0x0, 0x4, 0x8, and
0xC off of the base address of the MPA in the processors
memory map.

Control Register

The control register consists of three bits. Bit Zero starts the
bus monitoring process, and is equivalent to applying the
ISTART signal to the MPA. Bit One stops the bus monitoring
process, and is equivalent to applying the ISTOP signal to the
MPA. Bit Two is the address only override selection bit. When
this bit is set to a one, address only cycles are processed by
the bus analyzer. When it is set to a zero, address only cycles
are ignored.

AN1564

The control register resides at location 0x20 off of the base
address of the MPA in the processors memory map.

Input Control Signals

There are three input control signals: Start, Stop, and
Reset. Start and stop are falling edge triggered inputs. The
start signal causes the MPA to clear out its history buffers and
start capturing and comparing the processor bus cycles. The
stop signal has the effect of a trigger event becoming true. All
capturing stops and the contents of the history buffers are
frozen. Reset, which is active low level controlled, causes a
stop command to be executed as well as clearing all history
buffers and setup registers. It must remain low for one full bus
clock cycle.

Output Result Signals

Two output signals indicate the state of the capture control
logic: Run and match. Run indicates that the circuit is currently
capturing the processor bus. It is active low, a high indicates
that the circuit is stopped. The second signal is the match
signal. This signal is also active low and indicates that the
contents of the trigger history register matches the trigger
word. When a trigger occurs, the run signal becomes high
(inactive) and the match signal goes low (active). The match
signal will remain low until a reset or a start command is
executed.

Trigger History Buffer

There is a five entry trigger history buffer. Each entry is 109
bits wide. The entries are named Tminus2 (Tm2), Tminus1
(Tm1), TZERO (TZ), Tplus1 (Tp1), and Tplus2 (Tp2). Entry
TZERO contains the trigger word. Tminus1 contains the bus
cycle immediately preceding the trigger event and Tminus2
contains the cycle preceding Tminus1. Tplus1 is the cycle
following the trigger event, and Tplus2 follows Tplus1. Thus,
the history buffer contains the bus cycle that caused the trigger
event and the two cycles preceding and the two cycles
following the event.)

Programming bit fields

Table 1 through Table 5 shows meanings of the various
transfer control bit fields. Figure 6 provides the locations of the
bits as they are assigned in the trigger word. These bit
positions hold true for both setup registers and the history
buffers.

Summary

This application note attacks a number of PowerPC design
issues. The most significant being the speed and bus width
criteria.

This design shows that there is very little opportunity to

. implement a great deal of external logic on a modern RISC

processor bus. While at the same time, a wide bus can require
a great deal of decoding.

It is hoped that it demonstrates that, while the design of a
RISC based system is not trivial, state of the art support
devices such as Motorola’s Programmable Array can resolve
all design issues.

MOTOROLA MPA DATA — DL201 REV 2
4-39

AN1564

SYSCLK

Qualified IBG

ITS (out)

1ABB (out)

ADDR+ (out)

IAACK (in)

IARTRY (in)

Figure 1. Address Bus Tenure

SYSCLK

1BG (in)

ITS (out)

1ABB (out)

ADDR#+ (out)

1AACK (in)

IARTRY (in)

Figure 2. Address-Only Bus Transaction

SYSCLK

1DBG (in)

1DBB (out)

DATA (in)

ITA (in)

IDRTRY (IN)

Figure 3. Data Bus Read Cycle

MOTOROLA MPA DATA — DL201 REV 2
4-40

AN1564

SESE I
DBB o) N\ s=n e S
DATA (in) X X > d
YRR 5 S N
IDRTRY (IN) S/ ‘ i g

Figure 4. Data Bus Burst Cycle

X
X

Bit 127
Bit 108
B0 ——
Mask Register | 0x00 | 0x04 | 0x08 I 0x0C I
1 I I
Referemoe Register [oo | oca [oxs [oxic |
| |]
Control Register l 0x20 I I | I
—— Accessed when Writing
— Accessed when Reading
History T, [o0 | o0e [ows | owc |
[1
History Ty [oo | oaa | oxts | oxic |
| | 1
History To [o0 | oes | oes | oec |
] |]
History T_q [oo | oxas | ows | oac |
|]]
History T_p [oo | ows | ous | ouc |
L L

Figure 5. Internal Register Addressing

MOTOROLA MPA DATA — DL201 REV 2

4-41

AN1564

Data bus 0 Bit0
—L A
—— A
—LA
—— A ————
Data bus 63 Bit 63
Address bus 0 Bit 64
——L A
—_ A
Address bus 31 Bit 95
Transfer Type 0 Bit 96
Transfer Type 4 Bit 100
TBST Bit 101
Transfer Size 0 Bit 102
Transfer Size 2 Bit 104
Transfer Control 0 Bit 105
Transfer Control 2 Bit 107
WT Bit 108

Figure 6. Bit Positions in Trigger Word

Table 1. Transfer Type Encoding

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size
Asserted 0 0 0 Not Defined
Asserted 0 0 1 Not Defined
Asserted 0 1 0 Eight Word Burst
Asserted 0 1 1 Not Defined
Asserted 1 0 0 Not Defined
Asserted 1 0 1 Not Defined
Asserted 1 1 0 Not Defined
Asserted 1 1 1 Not Defined
Asserted 0 0 0 Not Defined
Asserted 0 0 1 Eight Bytes
Asserted 0 1 0 One Byte
Asserted 0 1 1 Two Bytes
Asserted 1 0 0 Three Bytes
Asserted 1 0 1 Four Bytes
Asserted 1 1 0 Five Bytes
Asserted 1 1 1 Six Bytes

Ml 7 i @ MOTOROLA MPA DATA — DL201 REV 2

4-42

Table 2. Transfer Type Encoding

Bus Run Snoop Hit

TT[0:4] Operation T til Tr tion on Transaction
00000 Clean Block Address only 601, 604

00100 Flush Block Address only 601, 604

01000 sync Address only 601, 604

01100 Kill Block Address only 601, 603, 604 601, 603, 604
10000 eieio Address only 604

10100 ecowx SBW 601, 603, 604

11000 TLB Invalidate Address only 601, 604

11100 eciwx SBR 601, 603, 604

00001 larx rsvr set Address only 604

00101 (reserved)

01001 tibsync Address only 604

01101 icbi Address only 604

1xx01 (res for customer)

00010 WR w/ FLUSH SBW or Burst 601, 603, 604 601, 603, 604
00110 WR w/ Kill Burst 601, 603, 604 601, 603, 604
01010 Read SBR or Burst 601, 603, 604 601, 603, 604
01110 RWITM Burst 601, 603, 604 601, 603, 604
100010 WR w/ Flush Atomic SBW 601, 603, 604 601, 603, 604
10110 (reserved)

11010 Read Atomic SBR or Burst 601, 603, 604 601, 603, 604

11110 RWITM Atomic Burst 601, 603, 604 601, 603, 604
00x11 (reserved)

01011 RWITMC SBR or Burst 603, 604
o111 (reserved)

1xx11 (res for customer)

SBW = Single Beat Write; SBR = Single Beat Read; RWITM = Read With Intent to Modify; RWITM = Read With
Intent to Modify Cache

Table 3. Transfer Codes for MPC601

TCx Function
TCO On aread: 1 = Instruction fetch, 0 = Data operation
On a write: 1 = Response to a snoop hit to modified data, 0 = Not a snoop push
TCH1 An operation to reload the other sector is queued
Table 4. Transfer Codes for MPC603
TC[0:1] Read Write

00 Data Transfer Not Snoop Copyback
01 Touch Load Reserved
10 Instruction Fetch Snoop Copyback
1 Reserved Reserved

AN1564

MOTOROLA MPA DATA — DL201 REV 2

4-43

AN1564

Table 5. Tranfer Codes for MPC604

TC[0:2] WT TT[0:4] Function
100 1 00110 (WRITE w/ Kill) Cache Copyback
100 0 00110 (WRITE w/ Kill) Block Invalidate (DCBF)
000 0 00110 (WRITE w/ Kill) Block Clean (DCBST)
010 1 00110 (WRITE w/ Killy Snoop Push (READ)
100 1 00110 (WRITE w/ Killy Snoop Push (RWITM)
000 1 00110 (WRITE w/ Kill) Snoop Push (CLEAN)
100 1 00110 (WRITE w/ Kill) Snoop Push (FLUSH)
100 Don’t Care 01100 (Kill Block)) Kill Block Deallocate (DCBI)
000 1 01100 (Kill Block) Kill Block and Allocate no Castout Required (DCBZ)
001 1 01100 (Kill Block) Kill Block and Allocate Castout Required (DCBZ)
000 1 01100 (Kill Block) Kill Block (Allocate) Write to SH Block
0x0 Write through Bit Value x1x10 (READ) Data Read no Castout Required
Ox1 Write through Bit Value x1x10 (READ) Data Read Castout Required
1x0 Write through Bit Value x1x10 (READ) Instruction Read
100 Don’t Care 01101 (icbi) Kill Block Deallocate (icbi)

Mn O

MOTOROLA MPA DATA — DL201 REV 2
4-44

AN1564

11 10_PINS I BUS_SLV l MATCH

[nverap ——f mvineap |
[rnvas | pinean | — Rrec2 |

—] WHICHREG | —{ Rec e |
i N_PROC | -

—] wrirereG | sk

] READREG | XOR

OR14_2

I CNTB2UP I——
CNTCTRL SELECTOR

i TRC_CTRL I

REG_FILE

I REG13

REG_SEL
[fossez2 | | muxava: |
| ases |] muxevs |

Figure 7. Schematic Hierarchy

MOTOROLA MPA DATA — DL201 REV 2
4-45

se 133Hs 3iva
g -371s yeTusLlay uITY . IWYN
238 |T "HIZATYNY.suey orey GorTOd3uU0] =ng
[27:017413
ETETT N0~ vs %1
sezhreu sn samo
A 8 Jd d FTEIT IN0" 880 813
-3IWYN 9KD TTETT |00~ %3vy
T NI® RIS
“OU] 932NnPOUy JO0IDNPUODTWES ETO0J0IOY NI-gaq] [RUFY]
NI X3V TTOT
S1 27817
TTETT 3AI40
1 T
= 50131183 rTe
300 TTE
7028 13y
[v:r01)73s
[EPIYTPINTYIN
IRE!
1visT N1 YT
nou [(8:0)4K~ 934
18vis793
yigasTha TTTETYT
40187938]
. TT
.:::.Ill_ ¥17 sutyg 0/1
1383 FARE P —
_ av CRE]
Crr-033v
®JE0uo] M
2€ °3 80C>s —— v L£9-01VivO leg-a1nz”0
EAEN m 20NV L€9-2€11n07Q
E 180c 01sn1a2"
80r-013 taor-alie ! ; xw 4/
801010 180c 008014871
(eer-ojoo [RF]
! 2% g0t 012 (805 010037
. . -
teer-0iao 180r-0J438
Lsar-oj4av
<018 BOC-0)SANINL™ L
(eoc-0lon Lsoc-0)usvn -
| — L8806 0)¥svx
80F-0)saNINZ-L (a0¢-0Je3141Kn
taor-olve (801 01v1Y
o o5 0Ye3 hrun I
N3ta
ossss0uy 3nav]
(re-o0ling-g
T
3-vIvD
R D
- RIITY ——— BRI
TFETTRTY
(yy: 013V
T 3 7 v

AN1564

4-46

Figure 8. Analyzer
MOTOROLA MPA DATA — DL201 REV 2

M

Lt

2 A34 10210 — VLVA VdIN VIOHOLONW

6 94nbig

SNId Ol

INDATA(O:31) D_IN[O:31]

D_IN{O:63]

32Bit

IN[32:63]

D__
DRIVE ~ INDATA(O:31

'DATA(O :
32Bit
—

D_OUT([32:63]

MODE

CTRL(0:12]

- a7

IRVAL

SELECT
ra

- 1{ E}(ksul,’l'u
CTRL1

TNFAD

CTRLO

' TS oA ESULTO
CTRL2
INFAD
! AACKono enanLE
<Y
5
_sesdiro
! DBB pan enaBLE

H
s A4
.
/%
| i
£
:

CTRL7
CTRL3

CTRLS8

| CTRL.4

! STOP o

esuciy

CTRL10O

CNTIRRAR

! START .,

EsuLTs

CTRL11

TROTRAD
t RESET pp,

ESULTO

1NDATA;0:31| AC[O0:311

AC[O0:44)

32Bit
TSIZO . ——
AcC38
2248
TSIZ1 ., ESULTO.
AC39
TTO . T TSTZ2
en esuiro
D4 ac3z 1 AC40
TTL _ ea suiro
el
T2
Pa zsur.’rﬂA T TCO eA; ESULTO
TNPAD 1 Ac4al
T3 y
PAl Esur -roA =55 TC1l Pa; EsuLTo
INPAD Ac4e2
e AL
A ESULTO TC2 A ESULTO
o4 AC36 AC43 BeLx
2748
TBST o courro WE__ -
AC37 acaa
=2 -8

crock

" nﬁ &gsuu)‘a -

CLK

CTRL6

Input / Ouput Connections

TO_PINS.1

CTRLY

CTRLS

YOS INY

AN1564

DATAO AN an
[) oKX —TDRTR
- NV

RESULTO
BPPAD

Figure 10. INVBIPAD

IPBUF
RNOT - RESULTO
EXTI I A ~"/ OoN
PP
“hinv
PAD INPAD

Figure 11. INVINPAD

WI 7 i @ MOTOROLA MPA DATA — DL201 REV 2

4-48

67—

¢ A34 10210 — V.Lva VdW V1OHOLOW

192ESNId "2} 94nbig

OUTDATA(0.31)

B DRIVE

INDATA31

INDATA(O 31}

32 Bit Bidirectional Pir

PINS32BI.1

Y9SNV

05—

¢ A3H 10210 — V.ivd VdN VIOHOLONW

0 vy

NIZENId "€1 24nbiy

INDATA(O:31}

L= [N ZaN? 2 INDATAO

D2 1AL UL INDATAL
boss

D2 AL ESULT INDATA2
e

D3 DA T INDATA3
ey

De enc esu INDATAS
TR

DS DA ESULS INDATAS

D€ Al ST INDATAS

mRze enc” N INDATA1O
2%
[FE=EES mr_ylg }sz; T INDATALL
INPAD
D12 [N ESULTO INDATALZ
INPRD
D13 syLTO InpaTals B
IRPAG
D14 el ESULTO INDATALS
INPAD
g2s mqlg }-gm 0 znparais §f
TREAD

D1is pax V" iU T INDATALS
AN
b
D17 eacl” Nkesurro JINDATALY
TNERD
Dis EA V“A SULTO INDATALS
TRPAD
eacl/ \kesuLTo INDATA19
DA
TNPAD
D20 £l nsm,-m INDATA20Q
DA !
TREAD
D231 eal” Nkesurro INDATA221
N/}
TRERD
D22 pag] " EsULTO INDATAZ2
DN
INPAD
D23 EAs "‘ SULTO INDATA23
N .
TRFAD
[ME=EX) each” e
IMNPAD
D2s eanl” \kEesvLTo INDATAZS
DA -
INPRD
D2s asul. o INDATA26
4 .
TNEAD
D27 pag) V" RESULTO INDATAZ27
/) .
"D
D28 INDATAZS
D23 x s
-
TNERD
D30 eacl” \kesurTo INDATA3O
W
TREAD
D31 n gsuLTO INDATA3L
DNA
TNPAD

32 Bit Input Pins

PIN32IN.1

Y9SNV

8= 4

¢ A3Y 10271 — V1va YdIN VIOHOLOW

O0Hd NI vt @inbiy

AD_EN

DATA_S3[0-63] ADR.S3[0 44

AND2
ADR_IN[D 44 N
s CLA AQOR_SI[D 44 ADR.S2{0 44 ADR_S3(0D 44)
INPU'[D“‘]IBUYPUY(D"J] INPUT[OD 44]| QUTPUT[D 44] INPUT[D -44]] DUTPUT[D 44] |
CLK Hg" LK CLk H;I" LK LLK F‘;“’ CLK A0 O ul/‘
- EN | |ENﬂl.IY EN] | NOUT EN | | NQUT
AOR-EN 45831t 4581t 4581t
STATE
!INPUT(D‘AA‘&
TTR
ce 45 Bat i)
TT Decode 1 . .
Lo Reg/Ctr oAz «109
TT(D-4] ent]
TTOECID 6 - QUTPUT[44
ADR.S1(32 361 ! o2
BURST[O0:44
TTOEC{O 6] h
UNIFIED(0-108)
LK TTDE/CHT TOEC ITIDECD
TTIDEC 4T HDEC 1
riogcyifogce
o 222222928 o
>0 Ziaaaaaook e
ed IriIiiii- B
" o oooo oo ol TRETers
3 2 o
L
AND2 :D— AND2
0A2
::D-_:D 1 p———
0R2Z
CLAR oAz
L T 4 Motorola Semicanductor Producte Inc.
DATA_IN(] 631 0¥ NN
- INPUTID 6311 OUTPUT[D 63) INPUTIO 631 OUTPYT[O 631 INPUTL0 631] OUTPUT[D-63] Address & Data Input Processor
CLK Lk LK Lk LK Lk and Bus Cycle Synchronizer
- EN ENQUT EN NOUT EN ENDUT
DATA_EN File Name' TN _PARQC.1|REV:
64B it oarasito-631 64B1t oarasetooe31 64B1t NAME: Rach Rejmanaar size- B
DATE - SHEET - of
A [8 c 0

VOGNV

a0 ©133HS -3iva

g -3z1s aetvenloy uoTy - IWVN

-a38 | T Gv3dId suoy erty

®qo0u3Gg yiTH
WDAL mvma WENZ UHm mV

ELLL:LY]

“Su] 839NPOuY YDIONPUOOTWES ETOUOIDN

3YNI—
0%301

1NON73 oy

3395440

Chl
T

($y_ 01i0d10Q0

[vyy:-011N0d1lND 1 ,H . H12

uﬁmmvx”u N3
[[A13

Tvv-0JINdNT

an]

vy JINdNI

AN1564

4-52

Figure 15. PIPE45
MOTOROLA MPA DATA — DL201 REV 2

My

AN1564

—T T _ T v
30 EETH -31v0
g 315 aeTueulay 4Ty - IWVN
438 | TGP T 93Y .ewey ercy
Jaastbay a1tg gy
INYN 9RO
5U] S319NMPO4g 403IVNPUDITEES ET[OJO0IO0K
[1£.01i04100
1T€:0110d1N0] ;_
'RE
1Tgzew
L 1
TTE OIITIaNT
LE]
w13
EREITE! 318YNI—]
%307 %307
LTE-0)iNdNT
O VIVe— FEIAAIND 8 Lvav FEINANT
PO SVivO— BEINaINT 0 svav TEITANT
—O sYivo— TETTaTND 0 sviv TETTINT
FFIMEINT 0 vviv FVITaNT JEIMAINT o oyviv “IETTANT
TFIMGIny 0 EVLY TPINaNT SEIMaINg O EVIVO——ZFTmaNT
TV IMEINg 0 2viv ZVITaNT FEINIINT o 2viy FETTGNT
TFIMGInT 0 VLY TFIMaNT TEIMAINg FO TViv TEEITENT
0 aviy 0 av1y
LEFRCELL 2% '3 TFIMaNT TETEINT L e TETTINT
gTTV IV
¥13
{vr-0)i0d1n0 Lvy-0)indNT
T —3 7 v

Figure 16. REG_45

MOTOROLA MPA DATA — DL201 REV 2

4-53

AN1564

se FEELT S31vo
g -321s Aetueuloy waty - IHYN
a3y | T VP93dId .ewen erry
2Q0J3G YITH
sdrg eaeqg @pTH 3Tg pg
-INVN_9K0
"OuU] 3319NPOuy YCIOINPUOOTWEG ETDUDION

318V NI—

LNONJ

0 %307
ovav
3245440

[T

TISV

1€9-0110d100

[E9:-0]LNndLNO

1]

RE —

1979
ﬁ 1S%] D:—Wzk Xl_u

[E9:01LNdNI

H713

un JI

Figure 17. PIPE64

MOTOROLA MPA DATA — DL201 REV 2

4-54

AN1564

T T [l v
5e ©133Hs -31va
q -321s yetuewCay udTy . IHVN
a3y [DP9 03 esen ercy
4se3stbeay 3Tg pg
INYN M0
5G] 8315NPO4g 403IDNPUODTWBG E[O0OION

[L€:0110d100

(€9-2ejindino
(LE-01404100

1)

[fE-011nd1N0

1

CRE

1TEZE

e e

[TE-0J1NdNI

R

Rk

1Tg2E
[

£€9-0)10d1N0

TTE - 0IIngNT

[€9-2E HINdNT

L€8-0)1NdNI

18. REG_64

Figure

MOTOROLA MPA DATA — DL201 REV 2

4-55

AN1564

£33011

T 3
yeo - 1338s S31va
g ar1s sezueuCoy uaty .3NvN
a3 | TOTJ30LL ewey orry
WDOUGD GQ)F LWmemc_h w:m o y3
o e e =l T ed
* Beag peurtedry sty 2Ny zany
S3KYN_an0 _
“5u] S319Npouy 403IONPUCDTUEG E[OUCIO
1 d s " 2ONY ZONY
20Ny Zany
923011 _ .
260
208V I TT]
s33011 I 5’
20NV 20N
280 4 _||AI_F
2any zany
v33011 v|g
280
20Ny 20NY
£33011 v[|m|~
20Ny
20NY
20NY
233011 ~ [FDAIJ_
ZAONY

033011

19-03193011

[v.0lis

Figure 19. TTDEC1

MOTOROLA MPA DATA — DL201 REV 2
4-56

M

A4

¢ A34d 1021d — V.LVA VdW Y1O0HOLOW

! INPUT(D 441 QUTPUTIO 44
CLR
[=
| ACLlR
REGOBCE
Pyt Qureyrao
INPUTA4Y RESOPGE DuUTPUTAL Lney ATAD ©
INPUT 4R ATAL 01 QuiPUTY DATAL 02—
T3 —pataz 02
PUT34 T
INPUT3 ATAZ 0 QUTPYUT34 INPUTA3 Aina o y‘ QuTPUT4l
INPUT3S ATAZ 0 QUTPUTS
INPUT A ATAd O ouTePuT4s
INPUT3E ATA4 O QUTPUTIE
2 PUT3 puUTPUTE ——DATAS 0f
INPUT(0-33) ATAS 08 [
n t PUT3E ATAB O ouUTPITIE —““"‘5 0§
—patar adl
‘g INPUT3S bATA7 07 QuIPUT3Y }"
° LDCK
z CMLADELKE ENABLE
— L
e
@ - LLK
S -
-
[7:] L0
= INPUT[D-26] INPUT[20:33]
(9] INPUTIO 331
)])
3 CTR
e 372Bat
CLR
TUTPUTTO 317
J OUTPUT[O0'26],0UTPUT([29 33]
INPUT[27 28]
Motorola Semicaonductor Products Ina.
I I 0W6 NANE
LTI Address & Transfer Attraibutes
CNT Lk Holdaing Aegister wath Burst
4 - LORO Counter for Address Generation
L COUNT 0[0:1]
QUTPUT[27:28] Fale Neeo BURSTCTA. 1| REV
NAME: Rich Rejnanaak s1ze B
OATE SHEET or
A] 8 I c 0

V9SG INV

AN1564

T _\ <
40 ©133HS ©31ve
g -3z1s rectuewloy usty .INVN
A8 | T OIHLJUIND .svey srry

ue3junoy

Toviuog

sseuppy
03 euTyoely

asung
®e3e13g
©3INYN 9RO

coug

839npouy

4030NPUOOTUBG ETO0UO0IO0)

20NV

a .i_‘ N3 -
L 4 -
u._m<zw\|'||._ X132
00 %2013 EREITE
avive 0 %3073 378YN3I—
3085440 avivg 03300
¥ 3785440 (2287 s
¥ 33¥5440 NI
1 v ¥l
I
=
> L 4 -
813

Figure 21. CNTCTRL

M

MOTOROLA MPA DATA — DL201 REV 2

4-58

AN1564

133HS

31vo

9

3718 retueuloy us

Y OIHVN

A28 |T 90133135 evey stey

sseuppy

LJoasareg uota
asung ‘sa ATup

eususg
sseuppy
INYN_9nMD

Su] 939NPOuUy UOIONPUOOTWEG ETOJUOION

vy 0l1nd1no

vy . 0)8~1ndNT

(vr 01V INdNT

193135

Figure 22. SELECTOR

MOTOROLA MPA DATA — DL201 REV 2

4-59

AN1564

INPUT(0:108]

INPUT(64:208]

ouTPUTIO:108)

cLx

- 5

BN o 45BiE
-
CLR
»CL i
oUTPUT (642081
INPUT(0163)
OUTPUTI0:63]
INPUT(0: 311 CUTPUT0:33)
cin
I Acur ‘ acLn
RECORCE FEeBsoE

1npuTo RRaoecE NeUTLG ST euTie

inpuTy INPUTL? ouTeuTLY

1npUTZ ZneuTIE :

ZnpUTa INpUTIO

1npUTe INpUTZO

INEUT: INPUTIL QuTeUT:

InFUTE InpUT22

ENpUT? - o InpuT23
,—SEX ,l I
-

e | o

anrue FEonsTE suze anpuTae EeTeeE

IvpUTS ourpyTe INPUTIS

ZNpuTIO uTPUT: INPUTZE

ZNPUTIL TRUTAL xnpuT2T 7

InPUTAZ — INpuT2E

INRUTLI INPUT2S

INpuUTIe zneyTIO

InpuTIS - INPUTIL

— [
1 l 32 Bit Register
REG_32.1

Figure 24. REG32

M# T

MOTOROLA MPA DATA — DL201 REV 2

4-60

AN1564

’ |
31v0
ecueutow waty - INVA
T THLI7 dU L emen otcy
Touauog asea)
INYN 9n0
‘aup 813npoay 403dnpuODTuLG L0403 ON
annovs
oxnavs w0 LYVIS NI
= ERLALE! ERLALE!
100 %3073 00 %307
ovLivY oviy
3185340 3345440
T
w15V

Figure 25. TRC_CTRL
MOTOROLA MPA DATA — DL201 REV 2

AN1564

a (] Y
40 ©133HS ~31v0
g -3z1s yetuewlay Yty - IKYN
a3y [T737T1 4793 eamy otcy
s3tg Towjucj pue 'ssulauayzey
‘dysey 4oy srT4 weiastbey dnieg
SINYN 9HO ERl AL
%307 8138
“ou] 839npOuy 403IONPUOITUBG E[OJ03IOK
—to cvivol—
~—90 9VivO—
—60 SViIVOF—
~0 PVIVO—
—Eo evivo—
By 0 zviv TNT
4015 o ovar TNI
LBVLS 3780934 ONI
CRik
§-800.0110440Q
[(80T:0143H Duwm
(RE
e o_zu_ (s v]3s
TTETTINaNT
13
§80E-01104100 2113
[BOT ' 0OIXNSYH
[€:0113s (8013138
TYETTIMGNT
[TE+O0INT

. REG_FILE

Figure 26,
MOTOROLA MPA DATA — DL201 REV 2

M -

4-62

AN1564

4

—a T <
40 133K 3iv0
9 -3z1s retveuleoy yaty - Juyn
A3 [T "93HdN 1 3G even o1ty
swt | e 3e s3Tg zg STAesSSBuppPy (807:9611NdLN0

we3istbay dn3yeg 3tg 0T
“INVN 980

aup

2319np0Ouy 4DIVNPUODTUSG ETOYOION

[G6:731iNndLNg

(€9:2€31NdLN0

(re011NdLN0

[2£:01i04100

¥y

ITgET .

i

TZT-OTIMdNT

fTg-0)4nasng

(27:0J1NdNT

ytgzeii

ZN3

TTE-OTIMdRT

frg-0linging

FRE

(TE-0JLINdNI

ITE2E M

E]

TTE OTINGNT

[If.01i0di00

(8071 :011NdING

(T€:0J1NdNI

B3] 13
ITG2E wy L
A3
TTE TIIMdNT
(T€ 0)1ndNI e

[TE 0JINGNI

Figure 27. SETUPREG

MOTOROLA MPA DATA — DL201 REV 2

4-63

AN1564

T x; v v
3o 133KS S3ive
g -3r1s retueuloy woaty .3IuyN
A3 | T ETT93Y .owey orry
veisthey 3tg ¢ .
INVN_9A0
ERCITE
9u] 8319NPOug 40IINPUODTUBG ETOYOIOK %307
—to cvivo—
90 9VIVO—
—60 SVivo-—
TTTAGIND o orvay TTIAINT
TTTaIng o Eviv AZLELM
TTTAaIno 0 2vivo TOTINaNT
TIMaIND LA LELELSS
0y 1Y
FIMGINT % 6%'at 2 LERIELD
LE]
¥TT
378YN
%2019
Tmaing €0 LviLy TTMaNT
FINIINT 0 9viLv FTMANT
CTHaInT 0 SVLY TITWaNT
FIMaInT 0 vviv FITaNT
TNy 0 eviy ETTanT
TNaIny 0 2viy FLELD
TTAGIND Q tviv IZLELH
ov1Ly
TIAIIAG 90, etas OTHaNT
L] v
-
g
D—

(er-ojindino

[2r-0J1ndNT

Figure 28. REG_13
MOTOROLA MPA DATA — DL201 REV 2

M

AN1564

T 3 4 v
so 13345 31va
g -321s aeTueuloy uaty IWVN
A3y [T 7135793 ewey orcy
sng e3jeg eya o3ug 3Indang oy
ssejstbey Au03sTH G 40 yosej
484 BOT ©43a 40 sS3Tg ZE 3Iseleg
IWYN_ 9T
“bu] 815nP0ug JOIINPUDDOTUEG ETOY0IOK _
[(sar-0l3g
(r-oj33s
socs02d]
r8or-ajog
[r-0113s
2EXT015X0N
Te-013 T
1010 p— —1
TE-012 ——— 8014 02¢]
fre-oling (80r-0130
T
(re-o)vr
2 49 RE] fr-0ja3s
t T Uy-2173s !
180r-01l40
(80r-01vo
(r-a113s
v-0113s
— T l A

Figure 29. REG_SEL

MOTOROLA MPA DATA — DL201 REV 2

4-85

AN1564

i]

40 133Hs -31v0

g -3z1s aetueeCey udaty . INVN

a3y |7 TZET3ISBO0T . ewen o1ty

speey voy SOODTTG 3ITQ 2¢ ©O3u]

eaeqg °pTH 3tg 60T 71=°4g
ELALIELE

“Du] 919NPOJg JOIINPUOOTEBG E[CIDIO0K

(L' 0INI
) [6€:ZEINI
(cr01l11n0 {TZ:9P9INI
[€0T 96 INI
1ST 8INI
[y 0V INT
{(sr:81lLno st 0y —muxuuwzw
4/‘7 (81911770

-

N'[80T 7Ol INI

[€2:9TINI annoue
(ez sT1un0 (7508 N1 T
) {£:01770N
[TE- P2 INT
{re-vziing MMNMWMNW
(ST:8177NN
{re:01314in0 pere
{87°0177INN"[80T:01INI
(80T 0INI
[r:-0173s
T T 7 " 1 Y

Figure 30. 109SEL32
MOTOROLA MPA DATA — DL201 REV 2

M7

4-66

AN1564

[

io 133Hs 3ive
a ats retuowlay ysty . IHVN

w38 | T 813526 euen otes

s3Tg 2¢ 30 1ng g 102818 G

INYN 9A0

Sul s3dnpoay

40310NpPUOOTEBG B[O0J40IO0K

£100

[rul

gnn
LN
. IR
* 97170
(3 ERE]
613373

—

P
{03770
PE———
{¢:01k70
P
{Z£:01kNng
———————
0ino ofrng
TTINSTE| oWng t/:-01nnag
cairxn TR TT
vino B I N F13s
LERLAEL TF Y
B FAIQ
= y11d 0135
a_uuwgum
—m Du._.DO oIT3TY
£r:01135
{£-010N0°CZ-01WNC ' [Z:0}WI0 [£:0]170
a I v

Figure 31. 32SEL8

MOTOROLA MPA DATA — DL201 REV 2

4-67

T n <
S133Hs 3iva
g -3z1s Aeruewloy yary . INVN
A3y [T TZEADTXNAN. ovwy orcy
2E€ 340 3eg
sandnp pue s3tg gg 40
838G g s3deddy 3ey)] xnp y
IRYN_9KQ
830NPOJy JYOIONPUODTWEG €TO0J0I0Y A
L el "
[re-vzlino e ———
BRAERS 0

Ttersl U

Lgan el

{€z9rling

{€z-9T1v0 ——
[1e 0130
T {1£:0]00
87 T01SXNN (1€:0130
Z2:-013
L0130
d.|n\.=-:r.n 013 !
(sT.81100 cons e
L0)Y
tsi 81vo e’
[re 01va
T
8*T01SXNNW
<£-0]30]
L-0130 .
T c~~y.ﬁ_N 91
[z:01100 Y
L/:01va
(2.-0777
[re-01Ln0 e
T m (

AN1564

4-68

re 32. MUX_BY32

Figu
MOTOROLA MPA DATA — DL201 REV 2

M4

AN1564

T 5 q\ (
se 133HS 11va
g -3z1s wetusulay usty . 3Iuyn
A3Y T BAG XMW swey orcy

8 +0 385
eug s3indnpg pue s3tg
s3eg G s3desdy ey x

8 40
WV
~3WYN 9nQ

‘ou] S20nMpPOug y0IDNPUODTUBG

BroJoaoy

[RE]

CRE]

TIg

OTTITY [REL] OIT3ITIS OIS
tosexn £01SxOK
“oviv T 32%% —r 3T
Toviy ek} tz-0130
(¢-0l00
[RCREN
(e-011n0 P ——
tz-0l80
8733735 0T3S
te-0lva
(2-0]173s
T J v

. MUX_BY8

Figure 33

MOTOROLA MPA DATA — DL201 REV 2

4-69

AN1564

g _ B 3

se 133HS ©31¥0

g -3z1s AetueuCay YaTy . IMYN

a38 | T TOLGXNH .even =ceg

sandul g ©3 umog

PoddrJiyg [QIBXAW HHI°®N ¥
ELLLIELL]

9U] $392NPO4y 403IONPUDDITHES ETOYDIOK

20NY

2anv

e-oviva

T70Y1V0

2anv

2-0viva

E70VLIVE

1

0133138

11337138

20NV

zany

21331138

vy oviva

Figure 34. MUXSTO1
MOTOROLA MPA DATA — DL201 REV 2

M -

4-70

AN1564

T T T I] T v
I 133Hs -31ve
g -az1s vetusuloy usty .3IMYN
ca3g | T IAYISSNBewey orcy NI“VL
ssej3ng Auoasty pue annove
sae3stbey dnaeg r[euuBjuU] 20NV =
Jo Tosiuoj satupspeey C e
. 2 2 x
IMYN_9na e i
“5u] 935NPOug J0IINPUODTUBG ETOJIOIOfN C 2398440
Y1
T
—
] ERE-AR
%3012
(v 01738 —lo cvivo— R
touiueg pusy po 2viv @
L M X} w o«
v TS0 Yy 5 378YN S 5
Laa 1o TTTCED V1Y 75 %301 M §
N LTS Ty —leo cvivo— =)
ISTT] DREER n<.< T —go svivol— % _
vy EEL ELLLED) B8R 75T 0 SVivo— =} <
HINAY AT 2u0 v0 pvivo— m =
__444\‘\ €0 Evivol— . M
20 2vivol— 1
20NV] <
3T8YN t0 CVivOo— [} o
(8:01HM 307 00 ovival— -u- =
NIL4IH 4 (<))
0 (v
L AL 4845 zanv 51 P M
U 0 9viy 5N T..._.<,|_| o w te)
tosivog 3ty ELL o v s ! NT-N3VV S
Gz Y 2l 9
(801135 an 0 aviv wn 813 s
101 0 TvLy
[S— THHN TH
) PRE!
L8 0131146k ¥19) oBM 5 e Sy f OR
— fise-— _
- L 88 0] epooe sseuppy
1oy HINAY
Ty ot v 0l0v3y vYav
8:.013118M
2ONY (8:01H 134
L 3004 TOoOR ™
1IN0~ x3vy . INYY
(vy Q)Y
[AN AL
T T _\ k] v

4-71

AN1564

©133Hs -3i1va

g -3z1s aeTueuloy yory . INVN

a3 [T J30INASY. cwey o1cy

TOU3uU0] JUs3SUBU] PUE SSEJUPPY

30 eposeg snououyoudsy
ELALIELL

seutq eraeuy bey

X

810NMpOuy 403IONPUOOTUBG BT040IOK

[v:-01lavie

[(B:0]31IHHK

ERR AR

[VEEREN]

v.a_n:ww
{yy-0140Y
8-013114M
L8Y LY O
9BYLY
SBYLY
v8YLY
£8YLY
28v1iv
ravivo—@
o8viY mel
@3y
LVYYLY L]
SYYLY VHU‘(
m“<—< TTIV
Tz
vy TV
TV
TYVLY B3V
azand ' a3V
3V
mc\FT 93V
8aNY TV
.
taivxn vV
v —_€3v
ownous P
T T3V
ol IV
i
JUOW
[vv:.0l3v

Figure 36. ASYNCDEC
MOTOROLA MPA DATA — DL201 REV 2

M4

4-72

€Ly

¢ A34 10270 — VY1va YdIN VIOHOLOW

DIYHOIHM *L€E a.nbig

ADR[O0-44]

WRAITE[OD-81]

AREAD[O0:4]

ADR44
TWK‘BLE
DEE"DEIDB NMTEO
co WAITEDL
e WAITE?Z
o WATTE3
e WRITEQ
. WRAITES
ADRZS oatas 0 WATTES
ADR28 ATAL EQ WRITE7Z
ADR27 ATAZ E WRAITEB
ADRZS ATA3 EQS—
E0 10—
EQ311f—
EQ12—
EQ 13—
EQ 14—
EQ15—
A 44
"E‘M“A’B'LEE AEADQ
o READ?Z
a0n29 crao £ arans
ATAL AEADA4
ADRZ7 Nas €0
EQ5—
EQ6—
EQ7—

Motorola

Semiconductor Products

Inc.

DWE NAME -

Translate Address and Type

Into ARegister Select Lanes

Fale Nems WHICHRAREG. 1| REV
NAME- Rach Reymanaak stze- B
DATE - SHEET of
A 2}

Y9SNV

AN1564

T _ E] v
3o - 133HS -31va
g -3zis aecuosCoy oty . IWVN
ca3y [T 9IHILTHM. evey otey
se1Tuy ueistbey dnieg
40 [043u0] 4oy suUTyDER e3E3§
LA IELY]
">U] $20NPOUy JOIONPUODITUBG ET[OJ03IOY
6=AVMWS
|_| (8:0173s
[(8:0luH N
378VN
%301 =
X137
£ Lvivol—
8vivO—
= SYLVO— anntvs
Vi v0 pYLYO— =
€0 EV1VO—
20 2vive—
to tvivo—
aunous 00 0VivVO—
= NIL4IHS-——
48HS
PRraa]
WNITITAS 813
—
884
3101
-
HINNY T
T T ¥ v

4-74

Figure 38. WRITEREG

MOTOROLA MPA DATA — DL201 REV 2

M -

AN1564

5o 133HS iiva

9 3715 Aeruewlay Y3ty . INYN

Thas | T 03HOVIE ewen eres

speey ueistbey dnieg : v

30 [O0u3uO0] uoy BuUTYDEN 233€3g
INYN 9HT

“5U] $39NPOL4 JOIDNPUODTUBS B[O IOIOK

annave

¥i

884d

a
<
<
<
Py

.
|
Figure 39. READREG

MOTOROLA MPA DATA — DL201 REV 2

=
485 HINTVT™

[REL;
T ’ ¥3

L 5
JAIE0

4-75

AN1564

g 7 v
I I
9o 133HS -31vo
g -3z1s yetusulay w3ty - INYN 2808
cA3y T HILVH .oven ercy
suor3oesueu) sng 1de .y
pue '31se)] ‘euedwo] ‘ysey
-INYN_ 90
U] $319NPOJy 403IINPUODTUBG ETOJ0IOK
[&
HILVH [E-0JHLITS™ NI
{80r-0])snd2”1
LEC-0)Hi1Yn04~and
{80r-0]sn74at"t
-
¥713
{807-0J0¥3Z71
LEC-0J0UINI™4ND
N3
%13

(80T - 0ISANIWE™L

(80r:0]2357dND

(80L-0)SANINZ L

(8067 0333y

7}

180T -0J1S¥I3™dud Q

[80C-0)03INSVH

180T-01%SVH

A
{80t-0jvivo

I
Figure 40. MATCH
MOTOROLA MPA DATA — DL201 REV 2

_ v

M O

4-76

AN1564

0 () v
ye S133KS -31v0
g 321s retveuCoy uaty LINVN
A3y 1727934 swey oty
veastbey 3tg 2
3NV 9RO
2U] 9312NPOJy 40IINPUOCDITWEG BTOIOION
Ll
ERLALE!
%207

—eo eviva—

—so svivo—

—s0 sviva—

—o svivo—

—eo evivol—

—z0 zvivol—

TINITNG a cviv TTTanT
LELERY 0 O LFLELD
vy
h—
tr-0J1nd1no (E-0)ingn
T g v

Figure 41. REG_2

MOTOROLA MPA DATA — DL201 REV 2

4-77

AN1564

a El v
30 133Hs -31vo
g -371S yetusulay yaty . 3IHYN
ca3y | DOV T793H evwen erxy
se3stboy atg py
EELAL LY
"5U] 830NPOUg JOIDNPUOOTEEG E[OJDION
378YN3|
%301
—{¢o svive—
—90 9vivo—
TTINGING 0 sviv TTIMaNT
ZTINgIng 0 rviv IASUCLES
TTINaINg 0 £viv TTIMaNT
TTIMIIND @ 2viv TTTTENT
FTMaIng 0 fviv BTTaNT
FIMINY %9 05 LELELD
-
L R
T8
EREALE!
%2071
TIMaIny 0 eviv ZTTaNT
TIMSINT G 8viv JTMGNT
TIMaIND 0 sviv TTTaNT
VITAINT 9 rviv VIMaNT
TINgINy 0 Eviv TIMaNT
ZIMaIny 0 2viv TTMaNT
TIMaIny 0 tvav TIMaNT
TIMaINg % ot TITaNT
g
-
7Ty .
Pesen——
(€5 0)1nd1no [E€T-0JINdNT
T T v

Figure 42. REG_14
MOTOROLA MPA DATA — DL201 REV 2
4-78

M

AN1564

T k] v
4o 133HS <31va
g 3218 yetuoulsy sty -IMVN
cA3Y FONSYH ewen orcy

s3tg pesnup aya 330 Asep
03 ss3eg gNy 4O Aeuay

51943 sng aya urt

~3INVN 9HO

RS

s19npouy

Jo35npuUOOTEEG E[OU03IOYN

BOT = AFHNNY S

(gor-olinovivo

—
.

(BOT-DINIVIYED

[BOF- 01438

Figure 43. MASK

MOTOROLA MPA DATA — DL201 REV 2

4-79

AN1564

g E] v
Ed 133HS 31vY0
g 3718 yetuealoy yory 3RYN
a3y T HOX ewey oteq
4g ertsnIox3 epty 3Tg 60T
EELALEELYLY
“5uU] S10NPOUY JOIDNPUOOTUSBG BTOJDIOK
(sor-0lag
cor2umure
teor-oling
teor -0y
T L] v

Figure 44. XOR
MOTOROLA MPA DATA — DL201 REV 2

My G

4-80

AN1564

g H 3 Bl _ v

PR 1330S 3ivo

g -3z1s asruevlay 421y - JHVN

a3y [P VDT 60TB0. evey orxy

swau®3) p[©03

swau23 Q[yg Te2tHoq
“INYN 9AC

5u] 839MpPO4g 4O3IINPUODTEEG E[OJOION

N
>
¢ w
€rinaino o
BOTINdNI - -
9287 TYNUIINT 280 M I
- =) m
EEx2WEHYS [S2- €018 TYNBIINI b4
([0T1INdNT = |
Lgr-0linaing N - [* o <
(200187 YNYIUINT (o]
{2r-031na1n0 o) .N
g Qe a
. -4 -
(92018 wnyaing [JE27RU8EYS LES L2IVIVNUIINT ESVTIVNETINT 90T1NANT < 2
l|Ql| o o
19203V TYNYIINT uduu =
. 1
LES 0}V IVNYIINT 5= dens 51N NI ic w
(2 o
[25-01V T¥YNEIINT
[2s-0]ingnT m
o]
=

[80C-0)1naNT

AN1564

30 S133HS 31ve
g -321s Aecuouloy yaty .IWVN
a3y [Z27vIHO . evey orey

swaue| 2 o013

swius| p g TEoT6oOq
EELAL:LY

‘U] S10PPOJg J4OIONPUOOTWSG ETOUOIDK

2= 2uByvS

€218 TYNBIINT

9V IVNEIINT

(r-olinding /|ﬁ.

(F-0)8 TYNBIINT
L€-0187 IWNETINT

{2018 T¥NUIINT

E8TIVNUIINT 4
- ~

- -1
PO R A AL EETER

=

[2-0]V I¥NUIUINT

(ET-L110dNT
L= QueYY S

19-0)¥ IVNE3ILINT

QI

[s-0}indNT

R—
(€0-G)1NaNT

Figure 46. OR14_2
MOTOROLA MPA DATA — DL201 REV 2

%

4-82

9/96

AN1565
Application Note

Using VIEWIogic’s PROSeries 6.1
with the MPA Design System

Prepared by
Douglas M. Shade
Motorola Programmable Logic Products

© Motorola, Inc. 1996

4-83

@ MOTOROLA

REV 1

AN1565

Using VIEWIogic’s PROSeries 6.1 with the MPA Design System

Introduction

The Motorola family of MPA devices and supporting
software provides system designers with a collection of
flexible and powerful tools. This application note focuses on
the use of VIEWIogic’s PROSeries 6.1 schematic capture and
simulation programs as front end design tools for the MPA
Design System FPGA place and route software. A basic
design flow is introduced followed by a more in depth
discussion of parameters for place and route and concludes
with a discussion on back annotation and simulation
procedures.

Basic Design Flow

In this simplest example of using PROSeries, a straight
path is taken from design entry through export to the MPA
Design System. More detailed discussions on: place and route
parameters, /O parameters, hardware dependent macros,
back annotation and simulation are deferred. The reader is
assumed to be familiar with PROSeries and have casual
knowledge of the MPA Design System.

Libraries

The EDIF net list reader of the MPA Design System is
currently constrained to understand only those components
passed to it from the MACROLIB, MICROLIB and IOLIB
libraries provided. Only a very few other symbols from the
BUILTIN library may be used directly in the schematic. These
are: IN, OUT and BI; their usage is explained more fully later.
Your VIEWDRAW.INI file must contain lines similar to the
following in order to steer PROSeries in the correct direction
when adding components to your schematic.

DIR [rm] C:\mpa\wvlibs\mpalib\macrolib (macrolib)
DIR [rm] C:\mpa\wvlibs\mpalib\microlib (microlib)
DIR [rm] C:\mpa\wvlibs\mpalib\iolib (iolib)

DIR [rm] C:\mpa\wvlibs\mpalib\builtin (builtin)

When adding components to your FPGA schematic, be
sure to use only components from these first 3 libraries and
only the special hierarchical connectors IN, OUT and BI from
the BUILTIN.

Capture

There are just a few unique steps to take during schematic
capture to ensure a valid MPA Design System EDIF netlist.
The netlist importer of the MPA Design System needs to
recognize your design’s I/O pins. To accomplish this, you may
either create a top level symbol for your completed schematic
or you may opt to include VIEWIogic’s hierarchical connectors.

If you are going to instantiate your completed FPGA
schematic into a larger board or system level schematic then
generating a top level symbol is the more appropriate method
to use. In order to do this, each of the IOLIB components used
must have a named net stub attached to their ‘external world’
pins. Once this task is completed all that is left is to create a
VIEWIogic symbol for the entire FPGA schematic. Each of the
pin names on the symbol must match the net-stub names
exactly. A pin is required for every I/O net—stub.

Figure 1. Top Level Schematic, Named Net Stubs

SAMPLE1.1(SYM)->SAMPLE1.1(SCH) 2-1.3"x1

Figure 2. Top Level Schematic’s Symbol,
Pin Names = Net Stub Names

If on the other hand the schematic you are creating is stand
alone for the FPGA, then a short cut method is available to
you. As before, place the desired IOLIB components on your
schematic. Then from the BUILTIN library select the IN, OUT
or Bl hierarchical connector as appropriate. Connect this
hierarchical connector with to the IOLIB component's ‘external
world’ pin and name the net.

AMPLE2. 1(SCH) B-17"x11" G:10

IPBUF

OPBUF

INAND_A E Z| I: A
IPBUF 9 0. XT
ouTATDTD
EXT IXH
INAND_B

[$1119

Figure 3. Top Level Schematic Using IN and OUT
Symbols from BUILTIN. The OUT Symbol Is
Highlighted (Boxed), Instance $1119.

This name may now be referenced for stimulus/response in
the VIEWIlogic simulator. Additionally, this net name is passed
in the exported EDIF netlist to the MPA Design System place
and route tool.

M4 &

'MOTOROLA MPA DATA — DL201 REV 2
4-84

Net List Export

EDIFNETO is the VIEWIlogic tool that translates your
completed schematic into an EDIF file importable to the MPA
Design System. While the PROSeries netlisting tool is
generally available from the pull down menus, some of the
requisite features of the tool for MPA compatible netlisting are
not. So from a DOS session in your current VIEWIlogic design
directory, run EDIFNETO. The following log shows the correct
answers to EDIFNETO’s questions. You need to generate a
“flattened” netlist, at the level “micro”.

(C:\PROSER61\MYDESIGNYedif neto

[EDIP U2.8.8. WIRELISTER - U4.1.2; Workview 4.1.2 832992, 308@ Series
Copyright 19851992 by Uieulogic Systems, inc.
roject Name: samp.

Do You want a ioRtoned netlise? N1 y

Do you vant to evaluate parameterized attributes? [N] :

el Name: micro
utput Fils Hame [C:\PROSERG1\MYDESIGN\SAMPLE2 EDNI:
uthor string: Doug Shade

ort/supply type configuration file name [EDIFPTYP.CFGI:

cvel string: HICRO

E 3 Nets > Reading complete.

sxns DIFPTYP.CFG for signal name, port/supply type name pairs.
Updating global interface nets.

pdate complete.

rocessing complete.

errors and @ warnings found.

nodule(s) written to C:\PROSER61\MYDESIGN\SAMPLE2.EDN

|C:\PROSERG1\MYDESIGN>_

Figure 4. EDIFNETO DOS Window Session

You now have a .EDN EDIF netlist ready for import to the MPA
Design System. Give it a try.

Attributes

The MPA Design System’s import process can accept a set
of attributes to help the designer tune the layout and routing
processes. The system also accepts I/O parameters to specify
CMOS/TTL compatibility, I/O drive, package pin assignment
and slew rate control. Declaring attributes in the schematic will
result in their being passed into the EDIF netlist and then
imported into the MPA Design System. Optionally the designer
may prefer to include attributes in an external .PAT file of the
same name as the design. The designer may choose to use
the combination of the two methods, but is should be noted
that attributes passed into the MPA Design System in .PAT
files will always take precedence if declared in both places.

Place and Route Layout Attributes

The MPA Design System enables the tuning of place and
route algorithms in three ways. The first is with the adjustment
of the Auto Layout tool options such as annealing
temperature, target delays, target zone utilization etc.
Additional details on the available options and their use are
available in the on-line help facility of the MPA Design
System. The second method involves the construction of
separate clock files. Here again, additional information is
provided in the on-line help system and is not presented in
this application note. The third method of influencing place and
route results is the inclusion of the following attributes in the
schematic, or in an external .PAT file.

AN1565

Table 1. Valid Attributes

Sch. Place and I/O Attributes
Component Route Attributes
Net DPLD_IGNORE_TIMING

DPLD_CLUSTER_SEED

1/0 Symbol | DPLD_IGNORE_TIMING PULLUP or PULLDOWN
(instance) DPLD_PAD_PLACE DPLD_OPDRIVE
or DPLD_OPLEVEL
Formal Port DPLD_OPSLEW

DPLD_IPLEVEL

DPLD_PAD_PROPERTIES

DPLD_IGNORE_TIMING

The DPLD_IGNORE_TIMING attribute is used to inform
the tool which nets to ignore timing on. It may be set on a
symbol (instance), a net or an external pin (formal port). If a
net has the attribute set, then all delay paths associated with
that net are ignored. If an instance has the attribute set, then
all input delay paths driving and all delay paths being driven
from that instance are ignored. Assigning the attribute to a
formal port has exactly the same effects as assigning it to the
1/0 instance itself. Once all of the objects to be ignored have
been identified, their paths are propagated forward and
backward through combinatorial gates until clocked objects
(or top level circuit I/O) are reached. The result is that
additional segments other than those explicitly specified may
be ignored for timing purposes as well.

You are required to use a dummy value with this attribute,
but the value stated is otherwise ignored.

Assigning this attribute to a symbol, net or formal port frees
the timing driven auto-layout algorithms to more optimally
cluster, place and route the speed critical nets.

DPLD_CLUSTER_SEED
The DPLD_CLUSTER_SEED attribute is used to assign a

cluster seed to a net. This will cause the clustering to treat all

instances that connect to that net specially. The action taken

depends on the value of the attribute, as follows:

0 ignore this net during clustering. Setting this
attribute on a net is likely to cause the net to be
implemented in global interconnect.

1 default operation
<1000 weight this net by the given factor in the
clustering

DPLD_PLACE_PRIORITY

The DPLD_PLACE_PRIORITY attribute can be applied to
a net to force the software to lay out that net in a physically
smaller area — in other words, to place the instances
connected to that net closer together. The value of
DPLD_PLACE_PRIORITY should be an integer in the range 1
to 10 (1 is the defauit). Higher values of place priority let you
prioritize nets relative to each other.

DPLD_PAD_PLACE
DPLD_PAD_PLACE - instructs the 1/0 pad to be allocated
to the package pin number specified. Only one pad may be

MOTOROLA MPA DATA — DL201 REV 2
4-85

AN1565

allocated to any pin. Automatic placement of /O pads usually
results in a better layout, so this attribute should only be added
when it is necessary. Example: DPLD_PAD_PLACE=C2

l/O Parameter Attributes

DPLD_PUP

DPLD_PUP - attaches to WPUP primitive cells only, to
select either or both of the pull-up resistors available in a
WPUP cell. Valid values are 1, 2 or BOTH.

PULLUP or PULLDOWN

PULLUP — set this to 1 if you want to enable the puli-up
resistor on the external pin of an I/O pad. Default is O (resistor
disabled). Example: PULLUP = 0

PULLDOWN - set this to 1 if you want to enable the
pull-down resistor on the external pin of an I/O pad. Default is
0 (resistor disabled). Example: PULLDOWN = 0

DPLD_OPDRIVE

DPLD_OPDRIVE - sets the output drive current of an
output or bi-directional pad to either 6ma (default) or 12ma.

DPLD_OPLEVEL

DPLD_OPLEVEL - sets the output voltage level of an
output or bi—directional pad to either 3v or 5v (default).

DPLD_OPSLEW

DPLD_OPSLEW - sets the output slew rate (transition
speed) of an output or bi—directional pad to high (default) or
low.

DPLD_IPLEVEL

DPLD_IPLEVEL - sets the input threshold voltage of an
input or bi—directional pad to either CMOS or TTL (default).

DPLD_PAD_PROPERTIES

VIEWIogic permits the use of the combined attribute,
DPLD_PAD_PROPERTIES which combines the following

[saMPLE2.1(SCH) B-17"x11" G:10

attributes into a single comma separated list: PULLUP,
PULLDOWN, DPLD_IPLEVEL, DPLD_OPLEVEL,
DPLD_OPDRIVE, DPLD_OPSLEW. This is especially useful
when defining a block of I/0 pins in an external attribute file.
When prompted, answer NO to the “Expand Label?” prompt in
VIEWIlogic. Example: DPLD_PAD_PROPERTIES =
0,0,CMOS,5v,12ma,high

Defaults and Invalid Combinations

The default I/O pad attributes have been selected so that
they can connect to either TTL or 5v CMOS without
adjustment. The default parameters may not be ideal for every
design, and they should be matched to the application in order
to achieve the best performance and noise immunity. 3v
CMOS users should be especially careful to set
DPLD_OPLEVEL to 3v, otherwise damage to peripheral IC’s
may result.

The following combinations of user attributes are not
permitted:

DPLD_OPDRIVE = 6ma AND DPLD_OPSLEW = low.
PULLUP = 1 AND PULLDOWN = 1

The following combination of user attributes on a single
bi—directional pad should be avoided, as it may produce
unpredictable results:

DPLD_IPLEVEL = CMOS AND DPLD_OPLEVEL = 3v

Assigning Attributes in a Schematic

Any of the attributes listed above can be assigned to pins,
nets and macro symbols as appropriate. In PROSeries, the
method of assigning attributes is straight forward. Select the
desired net or symbol (its color will change or a bounding box
will appear respectively, identifying it as being the currently
selected object) then from the “Add” pull down menu, select
“Object Attribute”, the bottom of the screen (the text input
area) will then prompt you with “Attribute Text String”. Type in
the attribute and the value (if appropriate) and hit enter. The
attributes will then be included in the EDIF netlist once
EDIFNETO is run.

DPLD_CLUSTER _SEED=0

BINAND _A
i 1]

OPBUF |[OFLO_PAD_PLACE-CZ]

EXTIN@

[~_
L

ANZ
DPLD_IGNORE_TIMING

EX[TOUT >
OUTAND_0O

[DPLD_PAD _PROPERTIES=-0,0,T7TL,3V,12MA,HIGH]

Figure 5. The Net “NETA” Atrributed With DPLD_CLUSTER_SEED=0. The “B” Input Pin of AN2 Attributed With

DPLD_IGNORE_TIMING. The Selected Component “OPBUF $114” and its Attached Attributes are Boxed.

MOTOROLA MPA DATA — DL201 REV 2
4-86

Selecting a component pin is just a bit trickier. Left click on
the desired component (in this example AN2) then right click
on the desired input pin. “Add” — “Object Attribute” as
described above.

Assigning Attributes & Instances in an External .PAT File
Assigning attributes to a long series of pins, or a variety of
nets in the above manner can be time consuming and may be
error prone. The MPA Design System gives the designer the
option to enter all the valid attributes in an external .PAT file.
Entries in the .PAT file take precedence over any attributes
that may have also been instantiated in the EDIF netlist via
schematic entry. The .PAT file must have the same name as
the EDIF netlist .EDN file, and must reside in the same
directory.
The external attributes file supports three main operations:
1) Insertion of attributes to specify pin placements and
pad characteristics.
2) Insertion of special pad cells, IPCLK/IPRST, to drive
the primary clock/reset network.
3) Insertion of special buffer primitives into a named net.

This has two uses:

a) Force a named net onto/off the peripheral bus,
by inserting the primitives APBUF/PABUF
respectively.

b) Force a named net onto the primary
clock/reset network, by inserting the primitives
ACLK/ARST respectively.

The external attributes file must exist in the same directory and
with the same name as the EDIF netlist, with the file extension
.PAT During import, the MPA Design System automatically
checks for the existence of a .PAT file and uses it when one is
found.

Syntax of the External Attributes (.PAT) File
The external attributes file contains a list of commands, one
per line. Each command contains up to five fields, as follows:
<object—class> <object-name> <operation> <name> [<value>]
where:
<object—class> is one of port, net, or instance.

is the netlist name of the object (port,
net or instance) being operated on.

<object-name>

<operation> is one of attribute or instance.

<name> is the name of a definiton or an
attribute.

<value> is only used in attribute operations,

and is the value to be given to the
attribute. This field is only required
when an attribute requires a value.

// This is a comment
This is a comment as well

port sega attribute dpld_pad_place 22

AN1565

The following are specific syntax forms of all valid attribute or
instance assignments.

port <name> attribute <name> <value>
Attribute <name> with (optional) value <value> is added
to the port instance (the instance driven by the formal
port). Only works with input and ports.

port <name> instance <name>
The port instance (the instance driven by the formal
port) is replaced by an instance of the given definition.
The only valid definitions are IPCLK, IPRST. This syntax
is limited input ports with 1 input pin and 1 output pin
(IPBUF for example).

net <name> attribute <name> <value>
Attribute <name> with (optional) value <value> is added
to the net.

net <name> instance <name>

Creates an instance of the given definition and inserts it
into the named net. The only valid definitions are ACLK,
ARST, APBUF and PABUF.

instance <name> attribute <name> <value>

Attribute <name> with (optional) value <value> is added
to the instance

Example .PAT File Entries

The following sample .PAT file entries reference the simple
schematic shown in Figure 6.

C v
0PBUF
L%nr\ EXTDUT S
P Y

IPBUF 1s $433, BUFF 1s $1112,
OPBUF 1= $1i4

Figure 6. The .PAT File Attributes Are Added to This
Simple Schematic. Nets Are Named SEGA, SEGB,

SEGC and SEGD.

//This results in the IPBUF being placed on the pad associated with package

//pin 22.

MOTOROLA MPA DATA — DL201 REV 2
4-87

AN1565

port sega attribute dpld_ignore_timing dummy_arg

//For place and route purposes,

the design’s timing parameters are ignored

//for the net segment associated with the formal port sega. A dummy
//argument is required for this attribute.

port sega instance ipclk
//This results in the IPBUF being replaced by an IPCLK, forcing the net onto
//a clock network.

net segb attribute dpld_ignore_timing dummy_arg

//For place and route purposes,

the design’s timing parameters are ignored

//for the entire net “segb”. A dummy argument is required for this
//attribute.

net segb attribute dpld_cluster_seed 1
//The dpld_cluster_seed attribute and value shown get assigned to the net B
//for evaluation during place and route.

net segb attribute dpld_place_priority 1
//The dpld_place_priority attribute and value shown get assigned to the net
//B for evaluation during place and route.

net segb instance aclk
//This results in an ACLK buffer being inserted between IPBUF’s output and
//BUFF’s input. BUFF is now driven off the resulting clock routing

//resource.

instance $1I4 attribute dpld_opdrive 12ma
//This results in the OPBUF getting 12ma drive capability.

instance $1I12 attribute dpld_ignore_timing dummy_arg

//For place and route purposes,

the design’s timing parameters are ignored

//for the all nets associated with the instance $1I112. A dummy
//argument is required for this attribute.

All Valid Combinations of Attributes & Instances in an

External .PAT File

The following show all the valid combinations of the
attributes in the .PAT file.

port <name> instance (name here can only refer to input

port <name> attribute

net <name> attribute

instances with one input pin and one
output pin)

ipelk

iprst

dpld_ignore_timing dummy_arg.
dpld_pad_place <value, see data book for
package being used>

pullup 110

pulldown 110

dpld_opdrive 6mal12ma
dpld_oplevel 3vi5v

dpld_opslew highllow

dpld_iplevel CMOSITTL
dpld_pad_properties (see above
paragraph describing this attribute)

dpld_cluster_seed n (where 0 < n <1000,
1 is default, 0 means ignore net)

dpld_place_priority n (where 0 <n <10, 1
is default)
net <name> instance
aclk
apbuf
arst
pabuf
instance <name> attribute
dpld_ignore_timing dummy_arg
dpld_pad_place <value, see data book for
package being used>
pullup 110
pulldown 110
dpld_opdrive 6mall2ma
dpld_oplevel 3viSv
dpld_opslew highllow
dpld_iplevel CMOSITTL
dpld_pad_properties (See above
paragraph describing this attribute)

Library Elements Specific to MPA Hardware Features

Most designs can be fit to the desired speed into the MPA
family without the designer needing to know much about the
details of the device’s internal construction. However, to get
the most out of the MPA, you should take some time to browse
through the on-line help files thoroughly. The help files are rich

A

MOTOROLA MPA DATA — DL201 REV 2

4-88

in detail regarding the hardware specific macros and routing
resources macros inherent in the MPA design system. The
following topics are presented as simple examples on most of
these hardware specific features. For an exhaustive
presentation, please refer to the on-line help facility.

Logic One and Logic Zero

It may at times be necessary to modify the functionality of a
macro from the supplied libraries by tying one or more of its
inputs to logic high or low. There are two special elements
provided in MICROLIB for this purpose. ONE produces a logic
high to all input pins tied to it; there are no fan—out restrictions
for the signal. The ZERO element provides a logic low. An
alternate method is to tie the input pins requiring a logic high to
a net named VDD, and tie the output pins requiring a logic low
to a net named GND.

For all the above methods, the MPA Design System will
recognize the logic as static and eliminate superfluous logic
elements wherever possible during the place and route
process.

Wired-OR

The MPA family allows for connecting many outputs to a
single common signal line. The available macros for this
function are: WND2, WINV, WOR2, WBUF. When using these
macros, a WPUP component is required. The maximum
number of connections to a single signal is given by

%J# of core cells.

Table 2. Maximum Drivers on a Wired—-OR Signal

MPA Family Member Max Drivers
MPA1016 20
MPA1036 30
MPA1064 40
MPA1100 50

If the number of drivers on the Wired—OR net is below half
of the maximum allowed, then only a single pull-up resistor is
recommended. Adding a second pull-up resistor to a very
large net, will help speed things up some, but at the cost of
increased power consumption. The allowable values for the
DPLD_PUP attribute are 1, 2 or BOTH. Resistors 1 & 2 are of
equal value, so it makes no difference which one you select.
BOTH ties resistors 1 & 2 in parallel and decreases the low to
high transition time, but at the expense of extra power
consumption.

AN1565

WPUP
E DPLD_PUP=~BOTH
W
5 | B r‘_‘-
WIRED_OR_SIGNAL
WNDZ
D)
WNDZ

Figure 7. The Diamond Symbol Reminds the User That
These Outputs Cannot Source a Logic HIGH, but Are
Only Able to Pull the Output to a Logic LOW.

Adding additional wired—or outputs to the net
WIRED_OR_SIGNAL will slow it down. Adding additional
inputs to the net has little effect on speed. Low to high
transitions are typically slower than high to low transitions on a
wired-or signal.

Peripheral Bus

The periphery of the MPA die is bordered with an 8 bit wide
Peripheral Bus (P-Bus). The P-Bus can be broken at each
corner of the array by switches. (Setting of the switches is
handled automatically in the MPA Design System software.)
Each of the resulting 4 segments has two programmable pull
up circuits, one at each end. The P-Bus is ideal for routing
common signals to many /O macros.

It is easy to build a scenario where many /O pins have a
single or several control signals in common. In this instance
you would want to place that signal on the P-Bus using a
APBUF. Conversely, pulling a signal off the P-Bus back into
the array is accomplished using the PABUF.

The ability to construct Wired—OR nets is not limited to
signals internal to the array. P-Bus Wired—OR nets can be
constructed using APWBUF (or APWINV) and their
associated pull-up structure PWPUP. However, using these
features requires the user to be aware of the natural
consequences of adding capacitance and pull-ups to a
resistive bus. Adding additional segments of P-Bus (by
assigning 1/0s to different edges of the die) increases
capacitance that effects rise and especially fall times. Also, the
somewhat resistive nature of the P-Bus can cause Vol noise
margin problems if the active low P-Bus driver is far from the
pull-up element and driven element.

The assignment of P-Bus pull-up resistors is automatic.
On import, all PWPUP instances defined by the designer are
removed from the netlist. The tool automatically balances the
number of pull-up resistors against the P-Bus loading
(incurred by the use of multiple die edges) by automatically
inserting additional pull-up capacity for each P-Bus segment
used. During autolayout, the MPA Design System re—attaches
a single peripheral bus pull-up resistor per occupied die edge,
for each unique P-Bus signal. For example, if several I/Os that
use a P-Bus Wired-OR signal get split between ‘top’ and
‘right’ edges of the die during autoplacement, the tool would
assign two pull-up resistors to the net.

MOTOROLA MPA DATA — DL201 REV 2
4-89

AN1565

Low Skew, Clock and Reset Nets

For a high fan out signal or for a signal where you would like
to keep the skew limited to less than 1nS, you should consider
moving the signal onto a clock network using the ACLK or
ARST macro (they both do the same thing).

MPA /O Structures

The standard 1/O cell of the MPA array is very feature rich.
The complexity of this structured is apparent in the large
number of choices available in the /O macro library IOLIB.
(Here again, the reader is encouraged to invest some time in
the on-line help facility, in particular “Help on Libraries — Input
and Output Pads” and “Help on Device — Functional
Description — /O Cell”. Defining a bookmark for these two
particularly useful help sections will provide a short cut for
referencing them in the future.)

440pR0

Each of the macros in the IOLIB fit in a single I/O cell.
Couple these relatively complex functions with the availability
of P-Bus routing resources (including the P-Bus Wired—-OR
resources previously mentioned) and it becomes clear that
significant functionality can be achieved before ever using the
normal internal resources of the array.

In Figure 14, a three bit address decoder was implemented
using only the resources available in the complex /O Cells
and the associated P-Bus. No internal logic or routing
resources were consumed. The features used unique to the
/0 Cell and P-Bus include: input delay to synchronize
external data with the buffered clock signal, APBUF used to
bus a common enable to signal to several I/O sites, XNOR
used to compare external and internal address values, and
finally the Wired—-OR P-Bus line.

Of course, all of this functionality could be moved internal to
the array, using only the simple /O macros.

FHFUF

IFDDFAYX i Wy

CLK

;

cLK >—u
ADDA_DETECT

AsDDAZ

IFDDFAYX

o

CLE

E

AsnpRz

E X TD|
oLY

EXT_ADDRZ
CLE

ADDRAL210]

RESETH

A i a
ENABLE
AFBUF IFCLK

EXTIN 1
EXT_CLK

Figure 8. A Three Bit Address Decoder, Only I/O Cell and P-Bus Resources Used

Simple I/O Structures

Your first designs for the MPA will probably only use the
above I/O macros, with all the latching, decoding etc. being
handled internal to the array. Soon though, you will probably
encounter a real world design that constrains you to a specific

clock-to—Q specification or some other requirement that will
have you going back to re—examine the components available
in the IOLIB. There are many variations of latched, registered,
and Wired-OR inputs, outputs and bi—directional macros.
Again, please invest some time with the on-line help
descriptions of the device and the libraries.

M

MOTOROLA MPA DATA — DL201 REV 2

4-90

IPBUF IPCLK OPBUF

ExTug >I_ Enyg >1_ VL_D_%TOUT

Figure 9. The Three Most Commonly Used I/0 Macros

Back Annotation and Simulation

It is assumed that the reader is familiar with the tools and
procedures involved in using the VIEWlogic PROSIm tools.

The MPA Design System has a facility that provides post
place and route back annotation data in a format compatibie
with the PROSIm netlister. Briefly, a VIEWIlogic format back
annotation data table file (.DTB) can be generated after
completion of a place and route. The .DTB file can be read in
by VIEWIogic’s VSM netlister tool, to provide an accurate
simulation netlist of your completed design.

Within the main window of the MPA Design system, select
the Tool Options button (or use the pull down menu “Tools —
Options”). Select Back Annotation and select “VIEWlogic
(.dtb)”. Once your design has been imported, placed and
routed, the back annotation button becomes selectable.
Invoke the back annotation tool by pressing its button. A back
annotation file will be placed in the same directory as the rest
of the MPA Design System’s output files. The files name will be
the same as your .DSN file (visible in the title bar of the MPA
Design System main window). Generally, this file needs to be
moved up to your VIEWIogic design directory.

PROsim Wirelister

T

Figure 10. VSM Netlister, and its Options sub-window.
“BACKANO?” is the design name. The back
annotation file name is “layout2.dtb”.

Invoking the VSM netlister from the PROCapture is done in
the normal way. Using the “Tools — Link to PROSim” pull down
menu, select “Options” in the PROSIim Wirelister window.
Enter the name of the desired back annotation file. (You may
have several different valid layouts completed at this point, but
you can only merge one back annotation file at a time into the
simulation netlist.) In the example shown above, the

AN1565

schematic’s name is “BACKANO” and the post place and
route back annotation file is “layout2.dtb”. The MPA Design
System generated delays will now be included in the
simulation net list.

In Figure 12, ANDB goes high at time 45 and ripples
through the AND tree (Q1, Q2, Q3) with the final output
ANDOUT going high about 14nS later. When ANDB drops, the
third AND gate (Q3) is the first to fall because in this
implementation it happened to be placed closer to the ANDB
input than AND gates Q1 & Q2. With ANDA held high, gate
delay is the limiting factor for a rising ANDOUT and path delay
is the limiting factor for a falling ANDQOUT.

Figure 11. Before back annotation. ANDB going
high ripples through all three AND gates and
the output instantaneously.

Figure 12. After back annotation of place and route
delays. ANDB going high ripples through Q1,2 & 3, but
going low happens to take Q3 low first.

Back Annotation and Logic Reduction

The MPA Design System does some “bubble pushing”
during the retargeting / fitting of the logical design into the
physical implementation. In some cased, redundant gates in
the schematic design are eliminated in the physical layout.
When this occurs, back annotation proceeds as before with
the resulting delays being added only to the input pin of the
most downstream logic element not eliminated in the
retargeting / fitting process.

In Figure 21, the 4 inverters are eliminated in the retarget /
fitting process. The wire delay between the remaining IPBUF
and OPBUF gets back annotated to the OPBUF’s input pin.
The back annotated simulation netlist has 4 zero delay
inverters (just as the pre back annotation netlist had) followed
by the OPBUF with the real world delay.

MOTOROLA MPA DATA — DL201 REV 2
4-91

AN1565

IFBUF

QPBUF
a EXTOUT
INYOQUT

Figure 14. The string of inverters will be removed during place and route.

W } ’ i @ MOTOROLA MPA DATA — DL.201 REV 2
4-92

3/96

AN1566
Application Note

In System Prototyping
Using HDLs and FPGAs

Prepared by

Thomas G. Felske

Doug Hergatt

Motorola Programmable Logic Group

@ MOTOROLA

© Motorola, Inc. 1996

4-93

REV 0

AN1566

In System Prototyping Using HDLs and FPGAs

Introduction

This paper describes the rapid prototyping method used in
the development of the power control logic for a complex
communication system. VHDL and SRAM based FPGAs were
used to optimize the HDL code before it was merged into an
existing ASIC. This method will prove an effective way to verify
the HDL code’s functionality while reducing development time.

Application

A large state machine needed to be developed and verified
to monitor and control the receiving and transmitting function
of a commercial space communication system. The
underlying goal of the design was to minimize overall system
power consuimption by intelligently managing the sequence
(state events) of transmit, receive, and power up/down steps
inherent to the system. Long system level simulation runs,
typically two days per simulation would be required to verify an
HDL modification. The use of an FPGA as an in system
verification vehicle to model new HDL code gave instant real
time feedback of the design performance.

Design Environment

To develop the large scale communication system, a high
level design environment for signal processing was chosen.
The Signal Processing Worksystem (SPW) was used as the
behavioral front end model for all logic in the system. The
VHDL derived from the SPW tool was then the input to
Synopsys for logic synthesis and technology mapping to the

Receive
Status

ASIC and FPGA architectures. For the FPGA, the Motorola
SRAM based MPA1036 was used. The Motorola FPGA place
and route tools provided the bitstream to program an EPROM
with the FPGA configuration. System level verification was
completed in a test environment as shown in Figure 1, FPGA
Prototyping Application.

The system evaluation was controlled by the System Test
Environment (STE) software that was resident on an HP
workstation. The System Test Environment could exercise the
desired receive and transmit function, while logic analyzers
and current probes, monitored the system signals and current
levels. With this data displayed graphically, the success of the
power control logic was observed immediately.

The initial state machine design and subsequent
modifications went through the FPGA Design Flow as shown
in Figure 2, FPGA Design Flow. The logic synthesis was
controlled by user defined scripts and synthesis constraint
files to produce an EDIF netlist. The Place and route tools
imported the EDIF file and used minimal design constraints
with fixed pin placements to generate the FPGA configuration
bitstream. Each new bitstream was loaded into a new EPROM
that replaced the one on the prototype board. Only the
EPROM on the prototype board was replaced with each state
machine modification. Retrieving and emulating an earlier
design was as easy as replacing the EPROM on the prototype
board with an alternate EPROM. In the future, download cable
capability from the HP will further reduce the turn around time
in configuring the FPGA.

RECEIVE
BOARD
6-ASICs 4-D/As

Receive
Power
Control

Bit Stream

MPA17128 MPA1036

SYSTEM TEST

EPROM FPGA

ENVIRONMENT
HP WORKSTATION

Transmit
Power
Control

LOGIC ANALYZER
CURRENT PROBE
WAVEFORM GENERATOR

Status

Transmit

TRANSMIT
BOARD
5-ASICs 4-D/As

Figure 1. FPGA Prototyping Application

M#

MOTOROLA MPA DATA — DL201 REV 2
4-94

SPW
Behavioral
Modeling

VHDL Code

SYNPOSYS MPA1000
Logic Synthesis
Synthesis Library

Synthesis
Constraints

EDIF Netlist

MPA1000
Mapping and
Place/Route

Place/Route
Constraints

Bit Stream

MPA17128
EPROM

Figure 2. FPGA Design Flow

AN1566

Summary

The development of the complex state machine that
monitors and controls the power of the transmit and receiving
modules of the communications system would be extremely
time consuming and difficult to verify in a simulation
environment. The rapid prototyping and emulation approach
described offered a flexible design environment with quick
turn—around time. In this case, new RTL code could be
synthesized, placed and routed, and a new FPGA
configuration bitstream generated in less than two hours. The
advantages are the quick turn— around time for design
modifications and the real time system emulation and
verification. Down loading the FPGA configuration, performing
the system emulation, and observing the system signals and
current probe readings proved to be the quickest way to
evaluate the control logic. The alternative would be to make
several system level simulations that take typically two to
three days per simulation, then several hours to evaluate the
simulation data.

Choosing an SRAM based FPGA proved cost effective by
being able to reprogram the existing FPGA. The EPROM that
was used to hold the configuration bitstream costs
approximately $7.00. An equivalent antifuse FPGA that would
require a new part for every evaluation would cost
approximately $70.00.

For the solution that met the design requirements, the HDL
code was then merged into an existing ASIC HDL module
without any technology mapping issues.

MOTOROLA MPA DATA — DL201 REV 2

4-95

6/96

AN1569
Application Note

Tuning the MPA Design
System for Speed

Prepared by
Douglas M. Shade
Motorola Programmable Logic Products

© Motorola, Inc. 1996

4-96

@ MOTOROLA

REV 0

AN1569

Tuning the MPA Design System for Speed

Introduction

This application note covers methods for maximizing the
clock frequency of a given design using the MPA1000
generation of Motorola MPAs. The discussion is limited to
those areas specific to the MPA Design System: MPA library
components, pin, net and instance attributes, MPA Design
System Tool Options and clock files. Generic fast logic design
techniques such as look ahead carry and pipelined logic are
not covered in this note. A section which covers the progress
monitors of the tool is also included.

Front end techniques discussion is limited to schematic
entry however the basic concepts of each of the sections of
this application note apply to all design entry methods.

Taking Advantage of the Architecture

A very good investment of your design time is to spend a
while reviewing the data book section “MPA1000 Architectural
Overview” and the extensive on line documentation included
with the MPA Design System. In particular use the pull down
menus: “Help > Help on Device”, and “Help > Help on
Libraries”. Read these sections thoroughly.

Clock Resources

Each member of the MPA1000 family has an identical set of
clock distribution resources. Two pads on each edge of the die
may be dedicated to driving the 8 clock distribution lines.
These primary clock distribution lines roughly bisect the die
along the horizontal and vertical. From there, the lines branch
to form a load balanced distribution comb covering the entire
die. Skew is held to within 1nS for the complete clock network.

Using these clock resources to distribute register clock and
latch enables is a conventional requirement of most designs.
These resources are mentioned in this application note
because they may also be used to distribute internal logic
(non—clock or reset) signals with high fanout or otherwise tight
skew requirements. Speeding up high fanout signals by
putting them on one of the 8 available clock networks is
accomplished by appending the output of the source driver
with an ACLK or ARST buffer.

Similarly, external non—clock and non—reset signals can be
distributed throughout the array on the clock network by using
the IPCLK or IPRST input buffers at one of the 8 valid pad
locations. Using one of these buffers without specifying the
pad location will result in the MPA Design System
automatically assigning the buffer to one of these 8 valid pad
locations.

The MPA Design System treats ACLK and ARST
identically. The same holds IPCLK and IPRST. However, each
Zone is limited to two unique primary clock and two unique
primary reset signals. Since most designs have more clocks
than resets, it may be more prudent to use ARST and IPRST
macros for routing speed critical high fan out nets.

Taking Advantage of the I/O Cell

The standard I/O cell of the MPA array is very feature rich.
The complexity of this structure is apparent in the large
number of choices available in the /O macro library IOLIB.
(Here again, the reader is encouraged to invest some time in
the on-line help facility, in particular “Help on Libraries > Input
and Output Pads” and “Help on Device > Functional
Description > 1/O Cell”. Defining a bookmark for these two
particularly useful help sections will provide a short cut for
referencing them in the future.)

Each of the macros in the IOLIB fit in a single 1/O cell.
Couple these relatively complex functions with the availability
of P-Bus routing resources and it becomes clear that
significant functionality can be achieved before ever having to
slow down to use the normal internal resources of the array.
Another advantage to using the registers in the /O cells is
guaranteed clock to out timing.

PUPUP

PTILIT . %
AippRo)Z
) o
EXTD| ad]
—] ST Ho o
ex1anon0 n
cux
cLK &—u
€ A ADDA_DETECT
nn
PTIEIT:
Asoons O
EX 10|
!—. » a
ex1avons { .
cux ",
£ E
an
1rooFRux
fsv0nz o
Y oie
E XTI i
™ o a
ex1lavonz J a
cux ;.
£ E
ADDALZ.01] AN
) 7
RESETE |
TN f
et {> o
EnasLe
sraur Treix

1un [>a
extocie VO

Figure 1. A Three Bit Address Decoder, Only I/O Cell and
P-Bus Resources Used

In the example above, a three bit address decoder was
implemented using only the resources available in the
complex I/O Cells and the associated P-Bus. No internal logic
or routing resources were consumed. The features used
unique to the 1/O Cell and P-Bus include: input delay to
synchronize external data with the buffered clock signal,
APBUF used to bus a common internal enable to signal to
several I/O sites, XNOR used to compare external and internal
address values, and finally the Wired—-OR P-Bus line. The
P-Bus Wired—-OR of Figure 1 is shown only for reference.
Wired—-OR should be avoided on speed critical nets; explained
more fully in the next section.

MOTOROLA MPA DATA — DL201 REV 2
4-97

AN1569

Of course, all of this functionality could be moved internal to
the array, using only the simple /0 macros, but the design will
generally incur a slight speed penalty when doing so.

Wired—OR, Not the best choice

Several elements of the MPA library give you access to the
chip’s Wired—OR (open drain) structures. While the high to low
transition time of such nets is generally acceptable, the low to
high ‘drive’ of such nets is provided only by pull-up resistors.
As such, the low to high transition time suffers and so such
structures should be avoided on speed critical nets.

The pull-up resistor structure is provided in the WPUP
component. The number of paraliel pull-up resistors used in
the WPUP is under control of the DPLD_PUP attribute. If it
becomes necessary to use such a net on a speed critical path,
be sure to use the DPLD_PUP attribute set to BOTH.

The available macros for the internal Wired—OR functions
are: WND2, WINV, WOR2, WBUF. When using these macros,
exaclty one WPUP is required per Wired-OR net. The
maximum number of drivers of a single Wired—OR signal is
given by

%\/ # of core cells.

MPA Family Member Max Drivers
MPA1016 20
MPA1036 30
MPA1064 40
MPA1100 50

Figure 2. Maximum Drivers on a Wired—-OR Signal

If the number of drivers on the Wired—OR net is below half
of the maximum allowed, then only a single pull-up resistor is
recommended for power conservation. The allowable values
for the DPLD_PUP attribute are 1, 2 or BOTH. Resistors 1 & 2
are of equal value, so it makes no difference which one you
select. BOTH ties resistors 1 & 2 in parallel and decreases the
low to high transition time, but at the expense of extra power
consumption.

WPUP

; DPLD_WPUP-BOTH

W

A
E@&ﬁ—l
WIRED_OR_SIGNAL

WND2

HE%

WND2

Figure 3. The diamond symbol reminds the user that
these outputs can not source a logic high, but are only
able to pull the output to logic low.

Adding Wired—OR drivers to the net WIRED_OR_SIGNAL
will slow it down. Adding inputs to the net has little effect on
speed.

The ability to construct Wired—OR nets is not limited to
signals internal to the array. Peripheral Bus (P-Bus)
Wired-OR nets can be constructed using APWBUF (or
APWINV) and their associated pull-up structure PWPUP.
However, using these features requires the user to be aware
of the natural consequences of adding capacitance and
pull-ups to a resistive bus. Adding additional segments of
P-Bus (by assigning 1/Os to different edges of the die)
increases capacitance that effects fall and especially rise
times. Also, the somewhat resistive nature of the P-Bus can
cause Vol noise margin problems if the active low P-Bus
driver is far from the pull-up element and driven element.

The assignment of P-Bus pull-up resistors is automatic.
On import, all PWPUP instances defined by the designer are
removed from the netlist. The tool automatically balances the
number of pull-up resistors against the P-Bus loading
(incurred by the use of multiple die edges) by automatically
inserting additional pull-up capacity for each P-Bus segement
used. During autolayout, the MPA Design System re—attaches
a single peripheral bus pull-up resistor per occupied die edge,
for each unique P-Bus signal. For example, if several I/Os that
use a P-Bus Wired—-OR signal get split between the ‘top’ and
‘right’ edges of the die during autoplacement, the tool would
assign two pull-up resistors to the net.

The Wired—OR resources are provided to help simplify
some logic designs, however, their use should be avoided on
speed critical paths.

Guiding Layout with Attributes

The MPA Design System’s import process can accept a set
of attributes to help the front end designer tune the layout and
routing processes. The system also accepts 1/0 attributes to
specify CMOS/TTL compatibility, /O drive, package pin
assignment and slew rate control. Declaring attributes in the
schematic will result in their being passed into the EDIF netlist
and then imported into the MPA Design System. Optionally the
designer may prefer to include attributes in an external .PAT
file of the same root file name as the EDIF netlist. The
designer may otherwise choose to use the combination of the
two methods, but is should be noted that attributes passed into
the MPA Design System in .PAT files will always take
precedence if declared in both places.

Sch. Attached Place and Attached
Comp’nt Route Attribute /0 Attribute
Net DPLD_IGNORE_TIMING

DPLD_CLUSTER_SEED
DPLD_PLACE_PRIORITY

Symbol
(instance)

DPLD_IGNORE_TIMING DPLD_PUP

DPLD_PAD_PLACE (I/Os only) PULLUP or PULLDOWN
DPLD_OPDRIVE
DPLD_OPLEVEL
DPLD_OPSLEW
DPLD_IPLEVEL

DPLD_PAD_PROPERTIES

Formal Port | DPLD_IGNORE_TIMING

Figure 4. All Valid Attributes. Place and Route Attributes
can be used to affect a design speed up.

M7

MOTOROLA MPA DATA — DL201 REV 2
4-98

Place and Route Attributes

Place and Route Attributes can be used to affect a design
speed up by providing guidance to the autolayout tool about
which are the unimportant nets, and which nets and should be
clustered and placed tightly together. Absolute placement of
I/Os and relative placement of instances are also used as
autolayout guides.

DPLD_IGNORE_TIMING

The DPLD_IGNORE_TIMING attribute is used to inform
the tool which nets to ignore timing on. It may be set on an
symbol (instance), a net or an external pin (formal port). If a
net has the attribute set, then all delay paths associated with
that net are ignored. If an instance has the attribute set, then
all input delay paths driving and all delay paths being driven
from that instance are ignored. Assigning the attribute to a
formal port has exactly the same effects as assigning to the
I/0 instance itself. Once all the objects to be ignored have
been identified, their paths are propagated forwards and
backwards through combinatorial gates until clocked objects
(or top level circuit 1/0) are reached. The result is that
additional segments other than those explicitly specified may
be ignored for timing purposes as well.

You are required to use a dummy value with this attribute,
but the value stated is otherwise ignored.

Assigning this attribute to a symbol, net or formal port frees
the timing driven autolayout algorithms to more optimally
cluster, place and route the speed critical nets.

DPLD_CLUSTER_SEED

Once a netlistimport is complete, the first step of autolayout
is clustering. During clustering the tool attempts to group
related chunks of logic together. This helps simplify the place
and route problem by reducing the total number of ‘things’ the
place and route algorithm has to deal with.

The DPLD_CLUSTER_SEED attribute is used to assign a
cluster seed to a net. This will cause the clustering to treat all
instances that connect to that net specially. The action taken
depends on the value of the attribute, as follows:

G:10

SAMPLE2.1(SCH) B-17"x11
IFBUF

DPLD_CLUSTER _SEED=0

AN1569

0 ignore this net during clustering. Setting this
attribute on a net is likely to cause the net to be
implemented in global interconnect.

1 default operation
<1000 weight this net by the given factor in the
clustering

Assigning a high value cluster seeds on your most speed
critical nets results in a tighter clustering and consequently
shorter delays for these nets.

DPLD_PLACE_PRIORITY

The DPLD_PLACE_PRIORITY attribute can be applied to
a net to guide the software to lay out that net in a physically
smaller area — in other words, to physically place the instances
connected to that net closer together. The value of
DPLD_PLACE_PRIORITY should be an integer in the range 1
to 10 (1 is the default). Higher values of place priority let you
prioritize nets relative to each other.

DPLD_PAD_PLACE

DPLD_PAD_PLACE - instructs the I/O pad to be allocated
to the package pin number specified. Only one pad is
allocated to any pin. Automatic placement of /O pads usually
results in a better layout, so this attribute should only be added
when it is necessary to back fit an existing PCB layout.
Example: DPLD_PAD_PLACE=C2

Assigning Attributes in a Schematic

In PROSeries, the method of assigning attributes is straight
forward. With a left mouse click, select the desired net or
symbol (instance). A net’s color will change or a bounding box
will appear around the instance, identifying it as the currently
selected object. Then from the “Add” pull down menu, select
“Object Attribute”, the bottom of the screen (the text input
area) will then prompt you with “Attribute Text String”. Type in
the attribute and the value (if appropriate) and hit enter. The
attributes will then be included in the EDIF netlist once

EDIFNETO is run.

EXTIN
INAND_A

NETA
A

IPBUF

INAND_B

il

)J_D_l\/ Esxwur
DUTAND_O

ANZ
DPLD_IGHNORE _TIMING

OPBUF | (GFLD_PAOD_PLACE-CZ|

[DPLD_PAD_FPROPERTIES=0,0,7TTL,3V,12MA,HIGH]

$114

Figure 5. The net “NETA” attributed with DPLD_CLUSTER_SEED=0, The AN2 is attributed with DPLD_IGNORE_TIMING.
The selected component “OPBUF $114” and its attached attributes are boxed.

MOTOROLA MPA DATA — DL201 REV 2
4-99

AN1569

Assigning Attributes & Instances in an External
.PAT File

Assigning attributes to a long series of instances, or a
variety of nets in the above manner can be time consuming
and may be error prone. The MPA Design System gives the
designer the option to enter all the valid attributes in an
external .PAT file. Entries in the .PAT file take precedence over
any attributes that may have also been instantiated in the
EDIF netlist via schematic entry.

The external attributes file supports four main operations:

4) Insertion of attributes to specify pin placements and
pad characteristics.

5) Insertion of special pad cells, IPCLK/IPRST, to drive
the primary clock/reset network.
6) Insertion of special buffer primitives into a named net.
This has two uses:
c) Force a named net onto/off the peripheral bus,

by inserting the primitives APBUF/PABUF
respectively.

d) Force a named net onto the primary
clock/reset network, by inserting the primitives
ACLK/ARST respectively.

7) Attaching place and route attributes to existing nets,
instances and formal ports.

The external attributes file must exist in the same directory and
with the same name as the EDIF netlist, with the file extension
.PAT During import, the MPA Design System automatically
checks for the existence of a .PAT file and uses it when one is
found.

Syntax of the External Attributes (.PAT) File
The external attributes file contains a list of commands, one
per line. Each command contains up to five fields, as follows:
<object—class> <object-name> <operation> <name> [<value>]
where:
<object-class> is one of port, net, or instance.

is the netlist name of the object (port,
net or instance) being operated on.

<object-name>

<operation> is one of attribute or instance.

<name> is the name of a definition or an
attribute.

<value> is only used in attribute operations,

and is the value to be given to the
attribute. This field is only required
when an attribute requires a value.

The following are specific syntax forms of all valid attribute or
instance assignments.
port <name> instance

(name here can only refer to input instances with one
input pin and one output pin)

ipelk

iprst
port <name> attribute
dpld_ignore_timing dummy_arg

dpld_pad_place <value, see data book for package being
used>

pullup 110
pulidown 110
dpld_opdrive 6mall2ma
dpld_oplevel 3vi5v
dpld_opslew highllow
dpld_iplevel CMOSITTL
dpld_pad_properties 0I1, 0i1, CMOSITTL, 3vl5v, 6mall2ma,
highllow
net <name> attribute
dpld_cluster_seed n (where, 1 is default, 0 means ignore net)
dpld_place_priority n (where, 1 is default, 10 is highest priority)

net <name> instance
aclk
apbuf
arst
pabuf

instance <name> attribute
dpld_ignore_timing dummy_arg
dpld_pad_place <value, see data book for package being
used>
pullup 110
pulldown 110
dpld_opdrive 6mall2ma
dpld_oplevel 3vi5v
dpld_opslew highllow
dpld_iplevel CMOSITTL

dpld_pad_properties 0i1, 011, CMOSITTL, 3viSv, 6mall2ma,
highllow

The nomenclature of port, net and instance and their use
can be a little confusing, I'll attempt to clarify a bit. A ‘net’ is
simply the name of the net of interest. In Figure 6 the valid net
names are SEG[0:8]. An ‘instance’ is the unique designator for
the instantiated library macro. In Figure 6, $1146 is the
instance of the OR gate. A ‘port’ refers to only formal ports
(external 1/0 pins).

Another point of confusion is that the valid attribute sets for
“port <name> attribute” and “instance <name> attribute> are
identical and each guides the MPA Design System to respond
in an identical fashion. You may use either syntax, but for the
sake of simplicity, stay consistent in your methodology.

Example .PAT File Entries

The following sample .PAT file entries reference the simple
schematic shown in Figure 6. The entries of Figure 7 should
be considered one at a time; considering them all to be part of
the same .PAT file, all operating on this simple circuit
simultaneously is not the intended interpretation.

M

MOTOROLA MPA DATA — DL201 REV 2
4-100

AN1569

SAMPLE2.1(SCH) B-17"x11

G:18
IPBUF
EXTIN P SEET iy
cEco a 2 0o ™ EXTOUT,
I L SEGE
0RZ
IPBUF

Figure 6. A sample schematic to add .PAT file attributes to. Nets are named SEG[0:8].

// This is a comment

This is a comment as well

port seg0 instance ipclk X

//This results in the top IPBUF being replaced by an IPCLK, forcing the
//net SEG3 onto a clock network.

port seg0 attribute dpld_pad_place 22

//This results in the top IPBUF being placed on the pad associated with
//package pin 22.

port seg2 attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design’s timing parameters are ignored
//for the entire delay path driven from the formal port SEG2. A dummy
//argument is required for this attribute.

net seg5 attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design’s timing parameters are ignored
//for the entire delay path associated with the net SEG5. For the design
//of Figure 6, this statement has the same effect as the previous one.

//A dummy argument is required for this attribute.

net seg5 attribute dpld_cluster_seed 500

//During clustering, the MPA Design System will strongly associate

//the top and bottom OR2s. The resulting layout will likely have

//these two instances in the same cluster.

net seg5 attribute dpld_place_priority 10

//With the net SEG5 attributed with a high place priority, the autolayout
//tool will likely place the top and bottom OR2s physically adjacent to one
//another.

net seg5 instance aclk

//This results in an ACLK buffer being inserted after the bottom OR2’s output
//and the top OR2’s B input. The B input of the top OR2 will now be driven
//off of a primary clock routing resource.

instance $1I23 attribute dpld_opdrive 12ma

//This results in the OPBUF getting 12ma drive capability.

instance $1I46 attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design’s timing parameters are ignored
//for the all nets associated with the instance $1I46. A dummy

//argument is required for this attribute.

Figure 7. Sample .PAT file entries showing the major syntax variations allowed. Consider each entry individually, this
entire figure is not applicable as a .PAT file for the referenced design.

MOTOROLA MPA DATA — DL201 REV 2
4-101

AN1569

Tool Options — Autolayout

Referring to Figure 8, clicking on the Tool Options button brings you to the Tool Options window of Figure 9.

C:AMPA\EXAMPBEAEXAMPLE 2. EDN

™ Tl Lplons Bution

BACKANC.DSN

Figure 8. A sample tool context window. In this example, two design (.DSN) files are available.

Figure 9. Almost all autolayout parameters are adjusted from this window. ‘Seed’ is available under the Advanced
Autolayout tab.

W} 7 i @m MOTOROLA MPA DATA — DL201 REV 2

4-102

The ‘Parameter Group’ roll down menu has a scrollable list
of pre—defined tool settings to choose from: Default, High
Utilisation, Minimum Delay, Try Harder, and Ignore Timing.
Each of these parameter groups was established as a result of
studying many sample designs, each with varying design
styles and densities. These provided Parameter Groups are
generally very good starting points for guiding the MPA Design
System through optimization of your designs. If after some
experience, you find a new unique set of parameter settings
that works better for you, you may save your own custom
parameter groups. (The changes are written to a file called
PMEL.INI in the Windows installation directory.)

Target Delay

Minimum 1 Maximum 9999 Default 50 (5nS)

Target delay is the most significant guiding parameter of the
autolayout process. The ‘delay’ of a combinatorial network is
calculated as the longest path from input to output. For
synchronous circuits, path delays are calculated as /O to
clocked element (register), register to I/O and from register to
register.

Autolayout attempts to keep the delay of each of these
paths types below the target delay value. For a single clock
design, you set the target delay to the reciprocal of the desired
operating frequency.

The units are 10~10s. For example, 80 yields an 8ns delay
target. (A screen shot of Version 2.2.3 of the MPA Design
System is shown in Figure 9. The panel shows the units as
“ns”, this is incorrect and will be corrected on version 2.2.4 and
later.)

Utilisation
Minimum 1 Default 80

The percentage of the recommended maximum number of
core cells partitioning will attempt to use in a zone. Partitioning
will exceed this number if necessary to complete.

Maximum 150

For the MPA1000 family, the recommended number of cells
per zone to use is around 50. Setting utilisation to 100% tells
the partitioning tool to consume approximately 50 of the 100
possible cell sites per zone. If the utilisation parameter is set
too high, then the autolayout tool may spend a lot of effort on a
few highly utilized zones, while other zones are left empty or
underutilized. If the utilisation parameter is too low, then the
autolayout tool will adjust the parameter upward until it is
compatible with the design. Increasing the value of the
utilisation parameter may increase the operating speed of the
circuit, only at the cost of increased tool run time. Values
greater than 100% are not recommended.

Effort

Minimum 1 Default 30

The relative amount of work applied to the partitioning
phase. When setting utilisation high, effort should be set high
as well.

Maximum 100

The two major phases of autolayout that typically consume
the most time are partitioning and zone routing. The time taken
in partitioning is directly related to effort.

AN1569

Start Temp
Minimum 1 Maximum 100 Default 10

Partitioning and zone routing are performed using a
simulated annealing algorithm. Setting the start temperature
higher gives the partitioning and zone routing tools the
freedom to make more aggressive moves in the search for the
optimal solution. With the start temp set low, the respective
algorithms may only be free to find local minimum solutions
whereas the best overall solution lies over some other cost
hump that the tool was otherwise constrained from traversing.
It is usually best to increase start temp in a highly utilized
device. If increasing start temp, be sure to increase effort as
well.

Fanout
Minimum 1 Maximum 100 Default 2
This is the maximum fanout of a net which is still included in
the clustering. All nets which have a fanout greater than the
number specified are ignored in the clustering phase. Any nets
ignored during clustering are more likely to be routed on global
resources (typically a bit slower than medium or zonal routing
resources).

Attempts

Minimum 1 Maximum 20 Default 1
The number of runs through partitioning phase. More runs

typically yield a better solution, only at the expense of

extending tool run time.

Min Zone Delay

Minimum 1 Maximum 9999 Default 5 (0.5nS)
The units are 10—10s. The zone router will attempt to keep

the delay of all net segments within the zone being routed to

less than the value specified.

Back Off
Minimum 0% Maximum 100% Default 30%

Percentage of relaxation to apply if the target delay was
unobtainable. Expressed as a percentage of the previously
described Target Delay.

Delay Cost
Minimum 1 Maximum 100 Default 5
This is the weighting given to timing during partitioning. If a
particular partition includes a net that is failing to meet its
timing target, then the cost of that partition will be artificially
raised by an amount proportional to the delay cost. Increasing
the delay cost is likely to trade off against achievable
utilization. Setting delay cost to zero will result in much
reduced tool run times and increased achievable utilization,
however this is accomplished at the expense of lowering the
design’s maximum frequency.

Seed

A ‘seed’ value may be set in the Advanced Autolayout panel
of the Tool Options window. The seed is as a starting point for
the autolayout’s pseudo—random number generator. Random
numbers are used in several of the autolayout algorithms.
Because it is note a true random number generator, two layout
runs with identical settings will yield identical results.

MOTOROLA MPA DATA — DL201 REV 2
4-103

AN1569

Changing nothing but the seed value may yield significantly
different solutions. The PC and Workstation versions of the
MPA Design System have different pseudo—-random
generators and so solutions from each will always differ in
spite of identical initial seed values. It is mentioned here only
for completeness. Changing the seed value does not
guarantee a faster place and route solution, only a different
one.

Clock Files

In a simple single clock design, it is sufficient to declare a
Target Delay value in the autolayout panel of the tool options
window. The autolayout attempts to achieve a place and route
solution in which all I/0 to clocked element path delays and all
clocked element to clocked element path delays are shorter
than the target delay.

However, more complex designs may have multiple clocks,
each running at unrelated frequencies. In such instances it
may be unwise to ask the autolaycut tool to constrain every
path of the design to the delay target of the fastest path
required.

Clock files provide a method of grouping related
components of your design into unique timing groups. The
timing groups may then each be assigned unique clock
specifications, only as restrictive as required. This assists the
autolayout tool by guiding it to complete the more speed

critical nets using the more valuable placement, routing and
switching resources as required.

Clock files also provide a method of specifying target delays
between such timing groups. The syntax presented below can
be a bit daunting at first. Please read through to the examples,
and it should become a bit clearer on just how to use a clock
file.

Clock File Syntax
The following meta—syntax conventions are used in this
definition:
1= introduces a rule
; terminates a rule

Indicate one or more occurrences of
the phrase inside the braces
Indicates zero or more occurrences of
the phrase inside the braces

[...1 Indicates an optional single
occurrence of the phrase inside the
brackets

| Separates alternative choices

Timing groups identify those portions of the design driven
by a particular clock with a particular specification. The syntax
for Timing Group Definitions is given as:

timingGroupDefinitions ::='(‘' ‘timingGroupDefinitions' {timingGroupl}+ ‘)‘;

where

timingGroup ::= ‘(' ‘timingGroup‘' timingGroupDef [clock]
timingGroupInstanceList ‘) ‘;

where

timingGroupDef ::= timingGroupName; any string, ie my_timing group

clock ::= ‘(' ‘clock' period [phase]

where

v

period ::= time_in_units_10-10_seconds (50 = 5nS), ie ‘50"
phase ::= time,_in_units_lD‘lO_seconds

timingGroupInstancelList
where
allIO ::= ‘(' ‘allIOo: ‘)‘;

allFlipFlops ::= ‘(' ‘allFlipFlops"

where

::={allIO|allFlipFlops|netRef |instanceRef}+;

[clockInputSense] ‘')‘;

clockInputSense ::= ‘INVERTED' |‘'NONIVERTED'
netRef ::= ‘(' ‘netRef' netName [clockInputSense] ‘)‘;

where

netName ::= any string, ie my_net_name
clockInputSense ::= ‘INVERTED' | ‘NONIVERTED"
instanceRef ::= ' (' ‘instanceRef‘'instanceName ‘)‘';

where
instanceName :

:= ‘“‘any_ instance ‘"',

ie “$1119”

Intended Target Delay is the method used to limit the delay between the previously defined timing groups.

The syntax for Intended Target Delay is given as:

intendedTargetDelay ::='(‘' ‘intendedTargetDelay' targetDelay driverGroupRef

drivenGroupRef ‘)‘;
where

targetDelay ::= time_in_units_lO'lO_seconds (50 = 5ns), ie ‘50"

driverGroupRef :
drivenGroupRef :

timingGroupName; any string, ie my_timing_group
timingGroupName; any string, ie my_timing group

i O

MOTOROLA MPA DATA — DL201 REV 2
4-104

AN1569

Clock File Examples

The syntax specification is for clock files is harder to read than it is to type, and it wasn’t easy to type. So in an effort to clarify the
topic some, lets look at some clock file examples.

(timingGroupDefinitions
timingGroup My_Flip_Flops
clock 50

allFlipFlops)

timingGroup My IO
allio)

)
(intendedTargetDelay 10000000 My_Flip_Flops My_IO)
(intendedTargetDelay 10000000 My_ IO My Flip Flops)

In the above example all of the flip—flops are intended to be clocked with a 5nS period clock. I'm further specifying that | don’t
care how long it takes to get signals in and out of the design by defining a very large intendedTargetDelay between groups and not
specifying a target clock period set for “alllO”,

(timingGroupDefinitions
timingGroup My_CLK1_Group
clock 200)

netRef CLK1)

timingGroup My_CLK2_Group
clock 100
netRef CLK2)

)

In the above example, two clock groups were specified: ‘My_CLK1_Group’ and ‘My_CLK2_Group’. All instances driven with the
clock named CLK1 will be placed and routed to meet a 20nS delay criteria, and all instances driven with the clock named CLK2 will
accommodate a 10nS clock.

(timingGroupDefinitions
(timingGroup My_Group
(clock 200)

(instanceRef “$1I*~)
)
)

In the above example, the wild card * is used to define the instances that are members of the timing group ‘My_Group’.

(timingGroupDefinitions
timingGroup My_CLK1_Group
clock 200)

netRef CLK1)

timingGroup My_CLK2_Group
clock 100)
netRef CLK2)

)
(intendedTargetDelay 100 My CLK1l_Group My_CLK2_Group)
(intendedTargetDelay 100 My CLK2_Group My CLK1l_Group)

Inthe above example, two clock groups were specified: ‘My_CLK1_Group’ and ‘My_CLK2_Group’. All data paths between these
two groups are constrained to meet the more restrictive of the two timing requirements.

MOTOROLA MPA DATA — DL201 REV 2
4-105

AN1569

Tool Progress Monitoring

As the you gain experience and the density of your designs
starts to increase, and our your speed requirements become
more restrictive, you may find the MPA Design System
working longer on your designs. As such, this section is
included to give you a clear explanation of all the status
windows and displays the system gives you during the course
of design importation and auto layout.

Import

System Help I

Reading

[Reading Netlist 'c:\mpa\libs\mpalib\iolib\ipbuf\ipbu
|Reading Netlist 'c:\mpailibs\mpalib\iolib\ipclkiipcl
lIReading Netlist ‘c:\mpa\libs\mpalib\ielib\iprstiiprs
IFlattening definition example2...

|Retargeting definition example2

|Reading Binary Retargeter Rules File 'C:\MPA\SYSTEM\

Figure 10. Importing and Retargeting

During the import and retarget phase, the MPA Design
System takes the EDIF netlist in, checks it for compatability
and errors. The macro elements of the EDIF netlist are
mapped to the cell definitions available to the MPA family. If
there are no problems found, the import phase concludes with
the output of a .NET file, the native netlist format of the tool.

Autolayout

| System Help

Netlist 'c:\mpa\libs\mpalib\iolib\ipclk\ipcl
Netlist 'c:impa\libs\mpalib\iolib\iprstiiprs
Netlist ‘c:\mpailibs\mpalib\iolib\ipbuf\ipbu
Netlist 'c:\mpa\libs\mpalib\microlib\one\one
Netlist 'c:\mpa\libs\mpalib\microlib\zero\ze
Package File 'C:\HPA\SYSTEM\mBpga181.pkg"
181-PGA package selected

mode ‘Boot_From_ROM_Hode' selected

Layout 'c:\mpailibsimpalib\microlib\or2\ab.1

Figure 11. The beginning of Autolayout

During the brief initialization period of the autolayout
process, the previously mapped component nets are read in,
the package information is read in, I/O pads are counted along
with core cells. A figure of utilization is echoed back and the
tool proceeds to the clustering phase. No status bars are
presented in this step.

Clustering

System Help

problem

| T

index 2 2] 3

S 2

S primary clock/reset pads free (consider using the
68 1/0 pads used (120 available on device)
59 I/0 pins used (119 available on package)
928 core cells used by design
iThis is approximately 51.11% of the maximum device
land corresponds to an autelayout Utilisation parame
iClock Information at end of initialisatien:
i Frequency

208.8MHz

Figure 12. The Clustering Status

Clustering combines groups of related logic together to help
break up the place and route problem into more manageable
chunks. In Figure 12: Problem refers to the number of root
level clustering problems to be solved. A root level clustering
problem is a cluster containing sub—clusters or and I/O. Index
refers to the 3 phases of clustering for that problem. Phase 1 is
the stage where the clustering algorithm decides which
clusters are root level clusters, and is already complete.
Therefor the progress bar starts on 2 and finishes on 3. Pass
refers to the estimated number of items per root level problem.

Partitioning and Pre—Placement

About half of the tool's time is spent in the partitioning
phase. During this phase, the MPA Design System places the
clusters formed in the previous process into zones.
Pre—placement refers to the placement of I/O sites that were
optionally fixed via the DPLD_PAD_PLACE attribute.

M7 -

MOTOROLA MPA DATA — DL201 REV 2
4-106

passes

R I —

928 core cells used by design

This is approximately 51.11% of the maximum device c.
land corresponds te an autolayout Utilisation paramet
Clock Information at end of initialisation:

Name Frequency period

c1lk 280.06MHz 5.8ns 0.
iClustering took 48s -~ 281 clusters created

Writing Clustered context file °C:\MPA\EXAMPLE\examp

Figure 13. The Initial Partitioning Phase

The first part of the partitioning algorithm completes the
initial placement tasks. Passes refers the fixed number of
passes at the placement problem. The first pass yield an initial
placement of clusters, the remaining 4 passes are refinements
of this initial placement. Objects refers to the number of
clusters created in the previous clustering phase.

attempts

steps

cost

area

io

Frequency period
2080.8MHz 5.68ns
lustering took 37s - 281 clusters created
i riting Clustered context file *C:\MPA\EXAMPLE\examp
iPart1t1on1ng 281 top level objects (total 281 object

Figure 14. The Second Partitioriing Phase

This phase takes the initial placement results and refines it
by assigning specific zones and routing ports to the clusters.
Attempts refers to the number of times this entire phase

AN1569

will/has run. Attempts is set as a autolayout tool option
‘Attempts’. Partitioning is the miost important phase of the
autolayout process. If you are looking for more speed from
your design this is a good place to experiment. Increasing
‘Attempts’ in the autolayout tool options will generally yield
improved results, but at the expense of extending the tool’'s
run time of course. Steps refers to the number of steps the tool
must take to complete the partitioning. The step rate increases
as the tool proceeds. This is the indicator to watch to get the
best feel for how long partitioning will take. Cost refers to the
total cost of the design (the sum of the cost of the nets plus the
cost of the cost of the parts). Cost generally starts off high and
proceeds in a downward trend as a solution is approached. it
gives you an indication of the quality of the partition in the
current stage, whether or not the tool is converging to a
solution, how good that solution is, and how sensitive the
design is to changes in the way the clusters are placed. Area
is proportional to the sum of the number of instances in the
zones in excess of the number specified in the utilisation
parameter. 10 refers to number of over congested areas in the
10 zones.

Global Routing

| attempts

passes

l| segments

lock Information at end of initialisation:
i Frequency period
2080.0MHz 5.6ns

l r1t1ng clustered context F1le ‘C: \MPn\EngPLE\exam

Figure 15. Global Routing Phase

After partitioning has assigned all the clusters to zones,
global routing assigns signals to zone port cells and routes
these ports to one ancther as required. Attempts refers to the
number of attempts to route all segments. If global router fails
to complete the routes on the fifth iteration it will give up.
Passes refers to the number of attempts per segment to route
globally (1000 per segment). Segments refers to the total
number of segments to be routed.

MOTOROLA MPA DATA — DL201 REV 2
4-107

AN1569

Zone Routing

System Help

zones NN T %

Attempts 1] 1 15

Obct 1 3

lWriting 2one Routed context file 'C:\MPA\EXAHPLE\exai
iZone processing took 8s

Routing zone (1,1) (11 of 36): 27 instances, 18 zon
Writing Zone Routed context file 'C:\MPA\EXAMPLE\exa|
Zone processing took 5s

Routing zone (1,2) (12 of 36): 21 instances, 24 zon
lWriting Zone Routed context file ‘C:\MPA\EXAMPLE\exa
lizone processing took 4s

IRouting zone (2,3) (13 of 36): 27 instances, 2

Figure 16. Simple Zone Routing Example

Zone routing is the final major step in completing the
autolayout problem. The tool can often spend more than half
of its time completing this task. Partitioning has placed
clusters into zones, and global routing has assigned and
routed signals from zone to zone and zone to I/O. Now the
zone routing tool must complete the connections at the lowest
level of hierarchy. Zones refers to which zone is currently
being processed. Attempts is the number of attempts taken at
completing the zone routing. If the zone router fails to route the
zone on the fifth iteration, it will give up on the current
placement solution and attempt to replace instances within the
zone as described in Figure 17. Object refers to the total
number of objects to be placed and routed in the zone.

System Help

Zones 1

[|3

| Attempts 1]] 5

Iteration 1] 10
1 'S 12] 500

iting Zone Routed context file "C:\MPA\EXAMPLE\exa|
[2one processing took S5s
IRouting zone (4,6) (21 of 36): 24 instances, 20 zon

lriting Zone Routed context file 'C:\MPA\EXAMPLE\exa
liZone processing took 65 .
Routing zone (5,5) (22 of 36): 24 instances, 20 zon
Mriting Zone Routed context file 'C:\MPA\EXAMPLE\exa
izone processing took 5s

Routing zone (1,4) (23 of 36): 26 instances, 18 zon

Figure 17. COmhIex Zone Routing Problem

If the instance placement solution provided by partitioning
can not be zone routed, the tool (zone router) gives up on the
process described in Figure 16 and moves to a second phase
of zone routing. In this phase the tool discards the placer’s
solution and provides new possible solutions to try. In this
case, Zones refers to the zone currently being processed.
Attempts is the number of attempts taken at completing the
zone routing. Iteration is the number of attempts to take to
achieve the targets for zone routing. Step refers to the
maximum number of steps (per iteration) to obtain the zone
routing targets.

Back Annotation

Output ports 1 r J 985
Input ports % o

100

Layout 'c:\mpa\libs\mpalib\iolib\ipclk\in.ly
Layout ‘c:\mpa\libs\mpalib\iolib\iprstiin.ly
Layout ‘c:\mpa\libs\mpalib\ielib\ipbufiin.ly
Layout ‘c:\mpa\libs\mpalib\microlib\one\a.ly
Layout ‘c:\mpa\libsi\mpalib\microlib\zeroia.l
Package File 'C:\MPA\SYSTEM\mBpga181.pkg"’
181-PGR package selected
mode ‘Boot_From_ROM_Mode' selected

| back annotation architecture file:

G = \MPA\SYSTEM\mpa10836.baa

Reading back annotation intrinsic delay File *C:\MPA

iReading back annotation lookup table file:

C:\MPA\SYSTEM\mpa1636.bal

Figure 18. Back Annotation Status

Once you've successfully completed a layout, you may
want to generate a back annotation file so timing data can be
passed back to your simulator. In this process the estimated
RC and routing switch delays are compiled and passed back
to a netlist format of your choosing. Output ports refers to the
every driving pin of the design. Input ports (expressed as a
percentage) refers to all the inputs that could possibly affect
the output port being considered.

M

MOTOROLA MPA DATA — DL201 REV 2
4-108

Summary

Figure 19 is a matrix that shows how each of the methods
discussed in this application note interacts with the various
phases of the autolayout process. You can see from this
matrix that the most critical phase of the autolayout process is
partitioning. If you are having trouble meeting a restrictive
timing requirement, this is where you should concentrate your
efforts.

The number of different combination of design styles, tool
settings and use of attributes is very large and so it is
impossible to give exact guidance on how to use the MPA
Design System to get the absolute best possible speed
solution for your particular design. However, the MPA Design
System and the MPA1000 architecture were co—developed
and as such should provide you with a total system ready to
implement your requirements quickly and easily with no need
to adjust the parameters and attributes as described in this
note. If however your timing requirements are not met on your
first pass through the tool, hopefully you have been provided
with enough information in this note to start experimentation in
an informed manner.

AN1569

gl s
sla 2 é £ s
Front End Design
Macro Selection | X
PIN Attribute
DPLD_IGNORE_TIMING X | X X X
INSTANCE Attribute
DPLD_IGNORE_TIMING XX |X]|X
NET Attributes
DPLD_IGNORE_TIMING XX | X |X
DPLD_CLUSTER_SEED X
DPLD_PLACE_PRIORITY X
DPLD_PAD_PLACE X
Tool Options
Target Delay X[X | X |X
Utilization X
Effort X
Start Temp X
Fan Out X
Attempts X
Min Zone Delay X
Back Off X|x |X
Delay Cost XX |X
Seed X[X |X}|X

Figure 19. Effected Modules for Macros, Attributes, and
Tool Option Settings

MOTOROLA MPA DATA — DL201 REV 2
4-109

AN1587
Application Note

Estimating Power
in the MPA1000 Family

10/96

Prepared by
Paul Butler

© Motorola, Inc. 1996

4-110

@ MOTOROLA

REV 0

AN1587

Estimating Power in the MPA1000 Family

This application note is intended to provide the users of
Motorola’s MPA1000 family a method of quickly estimating the
worst case power consumption of a completed design.

MPA1000 power consumption is dependent on the size,
physical structure, logical structure and timing behavior of a
Customer design. MPA Design System software is used to
automatically transform an input design into a physical
implementation or layout. From this representation a bitstream
is derived which when loaded into a MPA1000 device
produces the desired design behavior.

MPA1000 power consumption has four components:
internal or array power (Pa), clock network power (Pc),
intrinsic I/O power (Pioi) and output load power (Pol). The
major factors affecting MPA1000 power consumption are:
array size, number of simultaneous switching cells and 1/Os,
/0 capacitive loading, supply voltage, and the switching
frequency of cells and 1/Os.

The switching frequency of a cell or I/O is not the same as
the system or applied clock frequency. For synchronous
designs each individual cell or I/O in may switch at a rate
related to the applied clock frequency, but the actual switching
frequency depends on the logical structure and timing
behavior of the design. Similarly, the number of simulta—
neously switching nodes is also related to design structure
and timing behavior. Manually calculating switching
frequencies of each node in a design is typically not practical.
Some commercially available tools utilize static timing
analysis techniques coupled with device specific nodal
capacitances to make very accurate power calculations.

This application note provides a simplified method for
estimating worst case MPA1000 power consumption based on
simplifying assumptions concerning switching frequencies
and simultaneous switching behavior.

A worst case switching frequency assumption might be to
consider all nodes switch once per clock period assuming a
single system clock. If any knowledge concerning design
structure and timing behavior can be applied a much more
realistic power consumption estimate can be obtained,
however.

Simultaneous switching estimation rules of thumb used by
various ASIC vendors varies from 15% to 25% Since FPGAs
tend to have routing delays which approach logic delays, a
significant amount of signal skew can occur. This skew can
effectively lower the amount of simultaneous switching one
might expect when reviewing the design alone. While applying
knowledge about design timing behavior improves accuracy,
variable routing delays can significantly alter actual behavior.

Array Power Consumption (Pa)

In MPA1000 devices core celis are used to implement logic
functions and are also used to implement routing functions
under certain circumstances. In addition, many routing
resources are self buffering and also contribute to overall
power consumption. To simplify power consumption
estimation, typical resource usage has been taken into

account and an effective power consumption for a single logic
cell has been derived.
Under the assumption of a single system clock frequency
and a single estimate for logic cell simultaneous switching, the
worst case internal array power consumption can be
estimated by:
Pa = #cells * cellp * ssw% * f * 10e—6
Where:
Pa Total internal power in watts.
#cells Total number of logic cells used by the
design as reported by the MPA Design
System Autolayout tool.

cellp Effective cell power in micro watts per
MHz(uW/MHz). For the MPA1000 device
this has been derived as 33 pW/MHz when
Vdd = 5.0v.

ssw% Estimated percentage of cells which switch

simultaneously.

f Switching frequency in MHz.

For a more accurate internal power estimate, the total
number of cells consumed by the design could be partitioned
into several groups each with its own switching frequency. The
power consumed for each group could then be calculated and
the total internal power obtained by summing the results. A
very pessimistic result can be obtained by using the input or
system clock frequency as the switching frequency. If multiple
clocks are used, partitioning and summing can also be used to
improve accuracy.

Clock Power Consumption — Pc
The MPA1000 has 8 dedicated low skew resources. These
resources have a large capacitive load and can contribute
significantly to overall power consumption. Power
consumption for a single dedicated clock is given by:
Pc = clockp * f * 10e-6 * 2
Where:
Pc Clock power in watts.
clockp Effective clock power in micro watts per
MHz (uW/MHz) MPA1000 Clock power is a
function of the device size. Clock power for
each MPA1000 device is:

MPA1016 600pW/MHz
MPA1036 1050pW/MHz
MPA1064 1650uW/MHz
MPA1100 2380uW/MHz
f Clock frequency in MHz. Note the factor of 2

is required because clock nodes switch
twice per clock period. Nodal switching
frequency not the clock period determines
power consumption.
The power consumed by multiple clocks is calculated by
summing the power consumption of each clock used. This

MOTOROLA MPA DATA — DL201 REV 2
4-111

AN1587

gives the worst case power consumption for all clocks
assuming they are related and frequently have common
simultaneous transitions.

I/O Power Consumption — Pioi & Pol

Total 1/0 power consumption is the summation of /O
intrinsic power requirements and power required to drive
external loads. When calculating 1/0 power an average load
capacitance can be calculated based on actual output pin
loading and applied to all active outputs. Optionally, the power
consumed by each I/O could be calculated individually based
on specific external loading conditions and summed.

The total intrinsic power consumed is given by:
Pioi = #ios * ioip * ssw% * f * 10e-6

Where:
Pioi Total I/O intrinsic power in watts.
#ios The total number of /O pads used by the

design. This is reported by the MPA Design
System Autolayout tool.

Output load power consumption is given by:

Pol = #out * ssw% * Cload * Vdd**2 * f * 10e—6
Where:)

Pol Total output load related power in watts.

#out The total number of outputs used by the
design. This is the subset of total I/Os which
are used to drive external loads.

ssw% Estimated percentage of outputs which
switch simultaneously.

Cload Average load capacitance in pf.

Vdd Supply voltage in volts

f Output switching frequency in MHz.

Total I/O power is given by:

Piot = Pioi + Pol

Example Power Consumption Calculation
For an MPA1036 with:

ioip Intrinsic /O pad power in micro watts per #eells 1500
MHz (UW/MHz) For the MPA1000 device ssw%. (cells) 20%
this is 200pW/MHz. #clocks 1
; . f (clock) 70MHz
ssw% Estimated percentage of /O pads which) A
° switch simultaneously. L i((;:ells) = f (io) = f (clock) I:g(s)smlstlc Est.
f Switching frequency in MHz. #out 50
If outputs are not latched and tied to a common output ssW% (io) 10%
clock, it is unlikely that they will simultaneously switch due to Cload 50pf
path skews induced by routing delays. Because I/Os consume
significant power very general assumptions of /O switching Pa = 1500 * 33 * .20 * 70 * 10e-6 = 693mW
frequency and simultaneous switching behavior can make Pc = 1050 * 70 * 10e-6 * 2 = 147mW
resultant power estimates very inaccurate. .
) . Pioi = 100 * 200 * .10 * 70 * 10e—6 = 140mwW
If multiple clocks are used, a closer estimate could be . . . o
obtained by dividing #ios into groups, calculating power for Pol =50 * .10 * 50 * 25 * 70 * 10e~6 = 437.5mW
each group and summing the results. Ptotal = Pa + Pc + Pioi + Pol = 1.42W
Sample Data 1500 —
o ° °
o) © (o]
o8 § °
1000 — 6%}
g g % go o
= o AP
o 9
% OO o [}
a
O,
500 —
000
° y = 15.340x + 2.062
0 T T T]
0 25 50 75 100
FREQUENCY (MHz)

The data from the above graph is a collection of 125 sample designs fit into an MPA1036. Pol is not included in this sample data set. Power consumption for the MPA1036 is roughly 15mW/MHz.

MR

MOTOROLA MPA DATA — DL201 REV 2

4-112

AN1588
Application Note

Using Mentor Graphics’
Design Architect ver. A3
with the MPA Design System

10/96

Prepared by
Claudia Colombini
Motorola Programmable Logic Products

© Motorola, Inc. 1996

4-113

@ MOTOROLA

REV 0

AN1588

Using Mentor Graphics’ Design Architect ver. A3 with the MPA Design System

Introduction

The Motorola family of MPA devices and supporting
software provides hardware designers with a wide selection of
design methodologies. This application note is intended to
demonstrate a valid design flow for Motorola MPA series field
programmable gate arrays using Mentor Graphics’ Design
Architect environment.

The reader should be familiar with the Mentor Design
Architect tool suite. The reader should also have access to the

Motorola MPA Design System software and the Mentor
integration kit libraries supporting the MPA1000 family. This
application note was written using version A3- of Design
Architect and version 2.2.3 of the MPA Design System.

Schematic Entry Flow

Figure 1 shows the recommended flow for moving your
Design Architect schematic through export and into the MPA
Design system and Quicksim simulation.

SCHEMATIC ENTRY
1——— DESIGN ARCHITECT
enwrite
FUNCTIONAL SIMULATION
Qicksim QuickVHDL
REALTIME SIMULATION

MPA
™ DESIGN SYSTEM

Figure 1. General Design Flow Using Design Architect

The complete functional schematic is moved from Design
Architect via the EDIF netlist writer “enwrite”. The MPA Design
System imports the resulting EDIF netlist.

The implementation into the MPA1000 device is completed
using the Motorola MPA Design System place and route tool.
After completion of autolayout, a backannotated VHDL gate

level netlist can optionally be generated and exported to the
Mentor simulation environment. The VHDL timing
representation is used as input for the real time simulation with
Quicksim. The whole flow will be explained with the help of a
small example. A 4 bit carry look ahead adder with
synchronous inputs and outputs shown in Figure 2.

A -

MOTOROLA MPA DATA — DL201 REV 2
4-114

| U ! CLK EXTIN |

DPLD_PAD_PLACE

RN
RN bo >— exo | RS
a0 > EXTD £
E —CLK Q
—Clk Qf—————

AN1588

EXTIN |
I -—1RN

D
F{CLK__EXTQ[—T=> SUM0

E
0 _EXTOUT
ouT

RN
al EXTD

RN
b1 - EXTD

—CLK_Q

PR I e
—{cik_a a2 cOUT

RN
a2 > EXTD

RN
EXTD

—1CLK_Q

c
a0 —{RN
bo e
al D
; t—CLK _EXTQ|——> SuM!1
b2 SUMI
a3 sume
—{ b3 SUM3
c

IN SUMO
M—1RN
E
EXTIN | o

CLK_Q

| FCLK_EXTQ—T>sum2
CIN

I P

L—{RN
3 > ::TD AN E
é e b3 > EXTD b
E
|| —{CLK EXTQ
oK Q —CK_Q |
SUM3
Figure 2. A Simple 4 Bit Adder
Schematic Entry Setup 2. Use special I/O pads for clock and reset pins:

1. Install the libraries for Motorola FPGA on your workstation

2. Add the following line to your mgc_location_map file:

$MPA_SYMBOLS -t LIBRARY
<path_to_Motorola_library>/library/symbols

By adding this line to the mgc_location_map file, the Design
Architect will be able to locate the Motorola MPA symbol
library and the symbols can be used for drawing schematics.

3. Create a directory for your design:
mkdir <design_dir_name> .

All design related data will be located in this directory.

Schematic Entry Rules
Please refer to Figure 2 for help.

1. Generate a top level sheet containing:
— symbol of the core design
— I/O pads

—Mentor GENLIB portin, portout, portbi symbols (“a0” is
a portin, “sum0” is a portout)

For external clock signals the 1/O macro IPCLK and for
external reset signals the /O macro IPRST should be used.
This will force the external clock and reset signals to the clock
distribution network during MPA place and route and increase
the speed of the design. There are 8 clock/reset pads
available in the MPA1000 series.

3. Use I/O macros for buffered I/Os:

In the example all 1/O signals are synchronous. Best
performance for area and speed in the MPA1000 series can
be obtained using the macrocells targeted specifically for the
MPA's feature rich 1/0 pad sites. For the registered I/Os the
IPDFR and OPDFR macros are used as inputs and outputs
respectively. The use of these special I/O macros in the design
entry will force the place and route tool to automatically take
the flip—flops available in each I/O cell and not consume
internal flip—flop resources for mapping. For more information
on the I/O macro elements please refer to the online help of
the MPA Design System tool. The Motorola library contains
more than 70 different I/O symbols covering all available
possibilities.

MOTOROLA MPA DATA — DL201 REV 2
4-115

AN1588

4.Use special macros for Ones and Zeros

In the example schematic a “One” symbol from the
$MPA1000 library was used to tie high the enable inputs of the
flops. The library also contains a “Zero” macro for similar use.
Do not attempt to tie unused inputs to anything but One or
Zero. Do not leave unused macro inputs floating.

5. Fix I/O placement:

To specify the I/O placement, pin numbers are attached to
the 1/0O symbols:

Commands:
- select I/O symbol

— attach attribute: name: DPLD_PAD_PLACE
value: <pin_number>

Refer to the Motorola MPA databook for pin number
information for the different packages. For this example the
MPA1016 in the 84 PLCC package is used. While assigning
pins in this fashion keeps all the design documentation in a
single place, it can be tedious and error prone on larger
designs.

The MPA Design System gives the designer the option to
enter all the valid attributes in an external .PAT file. Entries in
the .PAT file take precedence over any attributes that may
have also been instantiated in the EDIF netlist via schematic
entry. The .PAT files must have the same root file name as the
EDIF netlist .EDN files, and must reside in the same directory
during import to the MPA Design System. See the addendum
on .PAT files for further details.

6. Generate a symbol out of the top level schematic

The symbol can be generated automatically out of the top
level schematic in the Design Architect with the generate
symbol command.

This symbol is needed for the EDIF netlist writer to
recognize the I/O interfaces. Without this symbol the port
directions will not be written correctly into the EDIF netlist,

which will cause problems during place and route in the MPA
design system tool.

Functional simulation setup:
1.cd <design_dir>

2. qvmap mpa <path_to
Motorola_lib>/library/mpa

This command will copy the Mentor quickvhdl.ini file into the
<design_dir_name> directory and attach the path to the
Motorola VHDL simulation library to the VHDL library name
map. The quickvhdl.ini file will be accessed during simulation
start and simulation.

3. qvlib <qvpro_lib_name>

This creates a library where the qvpro simulator will put the
VHDL code for the design. During qvpro startup a VHDL
representation will be generated automatically and the
compiled entity and architecture will be put into the
<qvpro_lib_name> directory.

Functional Simulation with Quicksim
Start the simulator with the command:
qvpro <design_sim_toplevel> -1ib <qvpro_lib_name>

Qupro is the Mentor simulation environment which allows
cosimulation of of VHDL and Quicksim simulation models with
Quicksim or QuickVHDL simulator. For schematic entry the
Quicksim simulator will aliow the probing of the signals which
should be traced in the schematic. The qvpro command
initializes the design for Quicksim and QuickVHDL
cosimulation. The functional simulation can be done using the
Quicksim tool as known to the user.

This application note describes the use of qvpro with
Quicksim as the master. Prerequisite for this configuration is a
schematic as top level simulation view. For other use of the
qgvpro simulator please refer to the Mentor documentation,
Simulating with qvpro.

M

MOTOROLA MPA DATA — DL201 REV 2
4-116

AN1588

clk + + + T n T +
res LJ + + + + + + + + + + + + +
cin + + + + + [+ + + +] 4+ + + +
cout | + + + + [+ + + + + + + ¥ ¥
ap + +XE + + XF + + + + + + + + +
b1+ + + + + + Xo + + + Xt + +
amfo + e D +)(D@ T Yo+ X+ ¥ X ¥
forces @ @/res L_I + T T ¥ T T T T T T T T T
forces@ @/cin + + + + + |+ + + + | + ¥ + +
forces@@a(3:0) D+ +XE + + XF_+ + + + + + + + +
forces@ @b(3:0) 1 + + + + + + +X0 + + + X2+ T T

0 140 280 420 560 700 840

TIME (ns)

Figure 3. A Functional Simulation Run of the Example Circuit

+
aXs + + Xr " " T T I Yo + "
b <3 + + X
sum 1():(X0 + + e X Xw + X + + xR
ot ey + + + = " T T T Sl
forces@ @/res +___-t + + +
forces@@/cin + + + + +]t__-"___"L n n + +
forces@@2(30) « 5 + + XF ¥ + + + + Xo + I
forces@ @h(3:0) »(L + + X1 + + + + + }@ I -
0

100 200 300 400 500
TIME (ns)

Figure 4. A Simulation Run with Back Annotated Timing Data

MOTOROLA MPA DATA — DL201 REV 2
4-117

AN1588

Interface to the Motorola MPA Place & Route Tool

Input for the MPA Design System software is an EDIF 2.0
netlist which is generated by the Mentor EDIF netlist writer
“enwrite”. To have all hierarchical information available in the
MPA design software for automatic design partitioning, it is
recommended to produce a hierarchical netlist.

Command:
enwrite <top_level_design> <designname.edn>

Implement the Design Into the Motorola FPGA

Figure 4 shows the steps during the implementation of the
design into the Motorola MPA using the MPA Design System
software.

IMPORT AUTOLAYOUT BACKANNOTATION:

1. EDIF NETLIST READING
2. MAP TO DEVICE

1. INITIALIZATION
2. CLUSTERING

1. WRITE TIMING FILE
2. WRITE PIN REPORT FILE

PART + PACKAGE 3. PARTITIONING 3. WRITE BACKANNOTATION FILE
3. WRITE INTERNAL NETLIST 4. GLOBAL ROUTING
FORMAT 5. ZONE ROUTING

Figure 5. The Basic Place and Route Flow

Implementation of the design in the MPA1000 family device
is a straightforward two step process.

1. Import:

Reads the EDIF netlist of the design, maps it to the selected
device and generates an internal netlist representation (a
.NET file).

2. Autolayout:

All steps during autolayout will be reported in the .LOG file.
In the .LOG file all information about device usage and
estimated maximum frequency after each step is reported.

Using default parameters for import and autolayout will
produce satisfying results in most cases. Nevertheless it is
possible to modify the results by changing the autolayout
options and re-running. For more information please refer to
the MPA Design System online help or the application note
AN1569 Tuning the MPA Design System for Speed. The
necessary backannotation format for timing simulation with
Mentor is VHDL. Therefore VHDL must be chosen as
backannotation format from the Tools —> Options pull down
menu.

Setup for Timing Simulation:

1. Copy the backannotated vhdl file to
<design_dir_name>

2.qvlib <compile_dir_name>

creates a directory where the backannotated vhdl will be
compiled to

3. gvmap <compile_lib_name>
<path_to_compile_dir_name>

adds the path to the <compile_dir_name> to the
quickvhdLini file

4. gvcom <backannotated_vhdl_file_name> -work
<compile_dir_name>

compiles the backannotated vhdi file

5. Create a symbol and instantiate it in a new schematic.

To be able to use the Quicksim environment also for timing
simulation, a symbol has to be created out of the
backannotated vhdl file and instantiated in a new schematic.

Steps:
1. start Design Architect
2. generate symbol
settings:
- source: entity
— quickvhdl.ini file : <design_dir_name>/quickvhdl.ini
— library logical name: <compile_lib_name>
With these settings in the generate symbol window, the entity

and architecture of the vhdl file will be found when clicking on
entity and architecture

3. check symbol and save

4. generate new schematic <backannotated_top_level> and
instantiate the symbol generated out of the backannotated
VHDL.

Start Timing Simulation

Start the qvpro cosimulation environment for simulating
with Quicksim:
qgvpro <backannotated_top_level> -1lib
<qvpro_lib_name>
Quicksim simulation can be started.

Results of the timing simulation from the example see
Figure 5.
Comment:

The Quickvhdl simulator can also be used for timing
simulation. Just compile the backannotated design and start
the Quickvhdl simulator: qvsim <compile_dir_name>

M -

MOTOROLA MPA DATA — DL201 REV 2
4-118

Addendum - .PAT External Attribute Files
The external attributes .PAT file supports three main
operations:
1) Insertion of attributes to specify pin placements and
pad characteristics.
2) Insertion of special pad cells, IPCLK/IPRST, to drive
the primary clock/reset network.
3) Insertion of special buffer primitives into a named net.

This has two uses:

a) Force a named net onto/off the peripheral bus,
by inserting the PMel primitives
APBUF/PABUF respectively.

b) Force a named net onto the primary
clock/reset network, by inserting the PMeL
primitives ACLK/ARST respectively.

The external attributes file must exist in the same directory and
with the same name as the EDIF netlist, with the file extension
.PAT During import, the MPA Design System automatically
checks for the existence of a .PAT file and uses it when one is
found.

Syntax of the External Attributes (.PAT) File
The external attributes file contains a list of commands, one
per line. Each command contains up to five fields, as follows:

N PP

ject—class> <obyji

e> <operation> <name> [<value>]
where:
<object—class> is one of port, net, or instance.

is the netlist name of the object (port,
net or instance) being operated on.

is one of attribute or instance.

<object-name>

<operation>

AN1588

<name> is the name of a definition or an
attribute.
<value> is only used in attribute operations,

and is the value to be given to the

attribute. This field is only required

when an attribute requires a value.
The following are specific syntax forms of all valid attribute or
instance assignments.

port <name> attribute <name> <value>
Attribute <name> with (optional) value <value> is added
to the port instance (the instance driven by the formal
port). Only works with input and ports.

port <name> instance <name>

The port instance (the instance driven by the formal
port) is replaced by an instance of the given definition.
The only valid definitions are IPCLK, IPRST. This syntax
is limited to input ports with 1 input pin and 1 output pin
(IPBUF for example).

net <name> attribute <name> <value>
Attribute <name> with (optional) value <value> is added
to the net.

net <name> instance <name>

Creates an instance of the given definition and inserts it
into the named net. The only valid definitions are ACLK,
ARST, APBUF and PABUF.

instance <name> attribute <name> <value>

Attribute <name> with (optional) value <value> is added
to the instance

MOTOROLA MPA DATA — DL201 REV 2
4-119

AN1588
Example .PAT File Entries '

// This is a comment
This is a comment as well

port sega attribute dpld_pad place 22
//This results in the IPBUF being placed on the pad associated with package //pin 22.

port sega attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design’s timing parameters are ignored
//for the net segment associated with the formal port sega. A dummy
//argument is required for this attribute.

port sega instance ipclk
//This results in the IPBUF being replaced by an IPCLK, forcing the net onto
//a clock network.

net segb attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design’s timing parameters are ignored
//for the entire net “segb”. A dummy argument is required for this
//attribute.

net segb attribute dpld_cluster_seed 1
//The dpld_cluster_seed attribute and value shown get assigned to the net B
//for evaluation during place and route.

net segb attribute dpld_place_priority 1
//The dpld_place_priority attribute and value shown get assigned to the net
//B for evaluation during place and route.

net segb instance aclk

//This results in an ACLK buffer being inserted between IPBUF’s output and
//BUFF’s input. BUFF is now driven off the resulting clock routing
//resource.

instance $1I4 attribute dpld_opdrive 12ma
//This results in the OPBUF getting 12ma drive capability.

instance $1I12 attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design’s timing parameters are ignored
//for the all nets associated with the instance $1I12. A dummy

//argument is required for this attribute.

W} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

4-120

All Valid Combinations of Attributes & Instances in
an External .PAT File

The following show all the valid combinations of the
attributes in the .PAT file.

port <name> instance (name here can only refer to input

port <name> attribute

instances with one input pin and one
output pin)

ipclk

iprst

dpld_ignore_timing dummy_arg
dpld_pad_place <value, see data book for
package being used>

dpld_pup 12IBOTH

pullup 110

pulldown 110

dpld_opdrive 6mall2ma

dpld_oplevel 3vI5v

dpld_opslew highllow

dpld_iplevel CMOSITTL
dpld_pad_properties 011, 011, CMOSITTL,
3vI5v, 6mall12ma, highllow

net <name> attribute

net <name> instance

AN1588

dpld_cluster_seed n (where 0 < n <1000,
1 is default, 0 means ignore net)
dpld_place_priority n (where 1 <n<10, 1
is default)

aclk
apbuf
arst
pabuf

instance <name> attribute

dpld_ignore_timing dummy_arg
dpld_pad_place <value, see data book for
package being used>

dplid_pup 112IBOTH

pullup 110

pulldown 110

dpld_opdrive 6mal12ma

dpld_oplevel 3viSv

dpld_opslew highllow

dpld_iplevel CMOSITTL
dpld_pad_properties 011, 0I11, CMOSITTL,
3vl5v, 6mall2ma, highllow

MOTOROLA MPA DATA — DL201 REV 2

4-121

AN1589
Application Note

Using OrCAD’s
Capture and Simulate
with the MPA Design System

Prepared by
Derrick H.J. Klotz
Motorola Field Applications Engineer

10796 @ MOTOROLA

© Motorola, Inc. 1996 4-122 REV 0

AN1589

Using OrCAD’s Capture and Simulate with the MPA Design System

Introduction

The Motorola family of MPA devices and supporting
software provides system designers with a collection of
flexible and powerful tools. This application note focuses on
the use of OrCAD’s Capture and Simulate programs as the
front end schematic capture and logic simulation design tools
for the MPA Design System FPGA place and route software. A
general overview of the following topics is provided:
Libraries
File Naming Convention
Schematic Capture
MPA Software Attributes
Timing Control
MPA Hardware Features
Netlist Export
Functional Simulation
EDIF Netlist Import
MPA Autolayout
Layout Viewer
Device Configuration
Back Annotation and Simulation

This application note is intended to be used as an overall
MPA design reference. Much of the information here is also
available via the on-line help but has been included here in
order to be complete.

The reader is assumed to be familiar with OrCAD Capture
and Simulate and have casual knowledge of the MPA Design
System. More detailed coverage of the above topics can be
found in the appropriate documentation and on-line help.

LIil orcadwin
- [T1 capture
1 tibrary
3 mpa
macrolib.olb
microlib.olb
mpa1000.0lb
capsym.olb
2 netforms
L] simulate
L3 ibrary
L7 mpa
microlib.vhd
mpa1000.vhd
orcomp.vhd
packmpa.vhd

Figure 1. MPA Library Files

Libraries

The EDIF netlist reader of the MPA Design System is
currently constrained to understand only those components
passed to it from the MACROLIB, MICROLIB and MPA1000
libraries provided. It is recommended that these library files be
located within an “MPA” subdirectory under OrCAD’s Capture
library and Simulate library directories, as shown in Figure 1.

Only components from these three libraries can be used for
MPA schematic design. The only other symhols which may be
utilized directly in the schematic are the hierarchical ports and
off-page connectors found in OrCAD’s CAPSYM library. Refer
to the appropriate OrCAD reference documentation regarding
the proper use of these components.

File Naming Convention

One important consideration that the d»signer must be
aware of is the file and directory naming conventions which
are used by OrCAD and the MPA Design System. By default,
OrCAD Capture uses the “.dsn” extension for schematic
design files. This is the same extension used for MPA design
context files.

In order to avoid confusion, a recommended user’s file
naming convention is illustrated in Figure 2. All user provided
files are named “project.xxx” and are located in a subdirectory
called “example”. The OrCAD Capture schematic design file,
“project.dsn”, and VHDL netlist file used by OrCAD Simulate,
“project.vhd”, are not directly required by the MPA Design
System and, hence, don’t need to be in the “example”
subdirectory, but are shown here as a matter of convenience.

F(= example

S| project
project.net
layout1.cxt
layouti.log
layout1.lyt
layouti.prp
@ layout1.tim
layout1.vhd

NE
- project.dsn
- project.clk
- projectedn
- project.pat
‘ projectvhd
' layouti.dsn

Figure 2. MPA Design Files

MOTOROLA MPA DATA — DL201 REV 2
4-123

AN1589

A brief description of each file follows. More details
regarding each file can be found in the MPA Design System
on-line help facility. Note that the “project” subdirectory and
“project.net” file are not provided by the user but are created
by the MPA Design System.

Files provided by the designer:
project.dsn (optional) OrCAD Schematic

project.clk (optional) MPA-DS Timing Control

project.edn EDIF Netlist (from OrCAD to MPA-DS)
project.pat (optional) MPA-DS External Attributes
project.vhd (optional) OrCAD VHDL (simulation)

Files and directories created by the MPA Design System:

layout1.dsn Design Context

project Autolayout Results Subdirectory
project.net MPA-DS Netlist

layout1.cxt Context

layout1.log Log

layout1.lyt Layout

layout1.prp Port Report

layout1.tim Timing Report

layout1.vhd VHDL Back Annotation

Schematic Capture

There are just a few unique steps to take during schematic
capture to ensure a valid MPA Design System EDIF netlist.
Components placed in a schematic will have their OrCAD
Primitive property set to “Default”. To assure that netlist
generation descends properly to the MPA primitive level,
hierarchy for parts as well as hierarchical blocks must be set to
“Nonprimitive”. This is achieved in OrCAD Capture via the
Hierarchy tab on the Design Template dialog box, which is
accessed by choosing Design Properties from the design
manager’s Option menu.

The power and ground power connectors supplied with
OrCAD must not be used in MPA schematics. Instead, “ONE”
must be used for logical one connections and “ZERO” must be
used for logic zero connections. For resistive pull-ups on
wired—or nets, “WPUP” is employed. These components are
found in the MPA MICROLIB library. “PWPUP” is put to use as
a resistive pull-up on wired—or peripheral bus nets, and can be
found in the MPA1000 library.

The provided macro library elements must not be changed.
If they are altered, the elements may not perform as described
in the documentation help for the MPA Design System. Library
elements are marked “LIBRARY COPY — DO NOT MODIFY”
for identification. If accidentally modified, a library element can
be retrieved by re-installing the MPA Design System libraries.

The netlist importer of the MPA Design System needs to
recognize the design’s I/O pins. To accomplish this,
hierarchical ports must be added to the MPA1000 I/O
components, as shown in Figure 3. The hierarchical port type
must also be of the correct type (i.e., “input’, “output”, etc.).
Running the Design Rules Check will verify conformance to
the electrical rules required for netlist generation.

IPBUF
Figure 3. /O Pin Hierarchical Port Example

MPA Software Attributes

The MPA Design System’s import process can accept a set
of attributes to help the designer tune the layout and routing
processes. The system also accepts I/O parameters to specify
CMOS/TTL compatibility, I/O drive, package pin assignments
and slew rate control. Declaring attributes in the schematic will
result in their being passed into the EDIF netlist and then
imported into the MPA Design System. Optionally, the
designer may prefer to include attributes in an External
Attributes file (“.pat”) of the same name as the design. The
designer may choose to use the combination of the two
methods, but it should be noted that attributes passed into the
MPA Design System in “.pat” files will always take precedence
if declared in both places.

The MPA Design System, for historical reasons, will accept
attribute names with or without a “DPLD_” prefix. For example,
IGNORE_TIMING can also be written as DPLD_IGNORE_
TIMING.

Place and Route Layout Attributes

The MPA Design System enables the tuning of place and
route algorithms in three ways. The first is with the adjustment
of the Auto Layout tool options such as annealing temperature,
target delays, target zone utilization, etc. Additional details on
the available options and their use are availabie in the on-line
help facility of the MPA Design System.

The second method involves the construction of separate
clock files. Here again, additional information is provided in the
on-line help system and is not presented in this application
note. The third method of influencing place and route results is
the inclusion of the following attributes in the schematic, or in
an external “.pat” file.

Table 1. Valid Attributes

Schematic Attached Place and Attached
Component Route Attribute I/O Attribute
Net DPLD_IGNORE_TIMING

DPLD_CLUSTER_SEED

DPLD_PLACE_PRIORITY
Symbol DPLD_IGNORE_TIMING |PULLUP or PULLDOWN

DPLD_PAD_PLACE DPLD_OPDRIVE
DPLD_OPLEVEL
DPLD_OPSLEW

DPLD_IPLEVEL

DPLD_PAD_PROPERTIES

Formal Port | IGNORE_TIMING

M4

MOTOROLA MPA DATA — DL201 REV 2
4-124

IGNORE_TIMING

The IGNORE_TIMING attribute is used to inform the tool
which nets to ignore timing on. It may be set on a symbol
(instance), a net or an external pin (formal port). if a net has
the attribute set, then all delay paths associated with that net
are ignored. If an instance has the attribute set, then all input
delay paths driving and all delay paths being driven from that
instance are ignored. Assigning the attribute to a formal port
has exactly the same effects as assigning to the I/O instance
itself. Once all the objects to be ignored have been identified,
their paths are propagated forwards and backwards through
combinatorial gates until clocked objects (or top level circuit
1/0) are reached. The result is that additional segments other
than those explicitly specified may be ignored for timing
purposes as well.

You are required to use a dummy value with this attribute,
but the value stated is otherwise ignored.

Assigning this attribute to a symbol, net or formal port frees
the timing driven autolayout algorithms to more optimally
cluster, place and route the speed critical nets.

CLUSTER_SEED

CLUSTER_SEED is used to assign a cluster seed to a net.
This will cause the autolayout clustering algorithm to treat all
instances that connect to that net specially. The action taken
depends on the value of the attribute, as follows:

0 Ignore this net during clustering. Setting this

attribute on a net is likely to cause the net to be
implemented in global interconnect.

1 Default operation
>1 Weight this net by the given factor in the
clustering.

The maximum value for the CLUSTER_SEED attribute is
1000. Example: CLUSTER_SEED = 2.

PLACE_PRIORITY

The PLACE_PRIORITY attribute can be applied to a net to
increase the chance that the autolayout algorithm will route the
net more efficiently and with less delay in a physically smaller
area, at the possible expense of surrounding nets. The value
assigned to PLACE_PRIORITY should be an integer in the
range of 1 (default) to 10 inclusive. Higher values of place
priority allow the designer to prioritize nets relative to each
other. Example: PLACE_PRIORITY = 2.

PUP

PUP attaches to WPUP primitive cells only, to select either
or both of the pull-up resistors available in a WPUP cell. Valid
values are 1, 2, or BOTH. Example: PUP = BOTH.

1/O Parameter Attributes
The following attributes can be applied to /O cells only:

PAD_PLACE

PAD_PLACE instructs the I/0 pad to be allocated to the
package pin number specified. Only one pad may be allocated
to any pin. Automatic placement of I/O pads usually results in
a better layout, so this attribute should only be added when itis
necessary. Example: PAD_PLACE = 1.

AN1589

PULLUP

Setting PULLUP to 1 will enable the pull-up resistor on the
external pin of the I/O pad. Default is O (resistor disabled).
Example: PULLUP = 1.

PULLDOWN

Setting PULLDOWN to 1 will enable the pulldown resistor
on the external pin of the 1/O pad. Default is 0 (resistor
disabled).
Example: PULLDOWN = 1.

DPLD_OPDRIVE

DPLD_OPDRIVE sets the output drive current of an output
or bi—directional pad to either 6mA (default) or 12mA.
Example: DPLD_OPDRIVE = 12mA.

DPLD_OPLEVEL)

DPLD_OPLEVEL sets the output voltage level of an output
or bi—directional pad to either 5v (default) or 3v.
Example: DPLD_OPLEVEL = 3v.

DPLD_OPSLEW

DPLD_OPSLEW sets the output slew rate (transition
speed) of an output of bi-directional pad to high (default, slew
rate limiting off) or low (slew rate limiting on).
Example: DPLD_OPSLEW = high.

DPLD_IPLEVEL

DPLD_IPLEVEL sets the input threshold voltage of an input
or bi—directional pad to either TTL (default) or CMOS.
Example: DPLD_IPLEVEL = CMOS.

DPLD_PAD_PROPERTIES

OrCAD Capture allows the use of a combined attribute,
DPLD_PAD_PROPERTIES, that combines the following
attributes into a single comma separated list: PULLUP,
PULLDOWN, DPLD_IPLEVEL, DPLD_OPLEVEL,
DPLD_OPDRIVE, DPLD_OPSLEW. Example:
DPLD_PAD_PROPERTIES = 0,0,CMOS,5v,12mA, high.

Defaults and Invalid Combinations

The default I/O pad attributes have been selected so that
they can be connected to either TTL or 5v CMOS without
adjustment. The default parameters may not be ideal for every
design, and they should be matched to the application in order
to achieve the best performance and noise immunity. 3v
CMOS users should be especially careful to set OPLEVEL to
3v, otherwise damage to peripheral IC’s may result.

The following combinations of user attributes are not
permitted:

DPLD_OPDRIVE = 6mA

and

DPLD_OPSLEW = low.

PULLUP = 1 and PULLDOWN = 1.

The following combination of user attributes on a single
bi—directional pad should be avoided, as it may produce
unpredictable results:

DPLD_IPLEVEL = CMOS

and
DPLD_OPLEVEL = 3v.

Assigning Attributes in a Schematic
Any of the attributes listed above can be assigned to pins,
nets and macro symbols as appropriate. With OrCAD

MOTOROLA MPA DATA — DL201 REV 2
4-125

AN1589

Capture, the method of assigning attributes is straight forward
by adding user—defined properties.

The Edit Part dialog appears after double clicking on the
object with the mouse, or by selecting the object and choosing
Properties from the Edit menu (or “Ctrl+E”). Choosing the User
Properties button and, in the User Properties dialog box that
displays, picking the New button activates the New Property
dialog box. The attribute name and its value can then be
entered (as above, case insensitive). Choosing OK completes
the task and the attribute will be included in the EDIF netlist.
OrCAD Capture also allows the attribute to be visible if
desired.

Multiple objects can be edited simultaneously by using the
spreadsheet editor in OrCAD’s Capture. In this case, the
desired objects are all selected together and Properties is
chosen from the Edit menu (or “Ctri+E”). The spreadsheet
editor eases the process of assigning the same user property
to all selected objects. Make sure these objects are all the
same type (i.e., nets, symbols, etc.).

After a property has been assigned, it can be modified later
with either of the above methods. Viewing and changing the
same property across multiple objects is greatly simplified and
accelerated by using the spreadsheet editor. .

Assigning Attributes in an External “.pat” File

Assigning attributes to a long series of pins, or a variety of
nets directly to the schematic can be time consuming and may
be error prone. The MPA Design System gives the designer
the option to enter all the valid attributes in an external
attributes text file (extension “.pat”). Entries in the “.pat” file
take precedence over any attributes that may have also been
instantiated in the EDIT netlist via schematic entry.

The external attributes file supports three main operations:

1) Insertion of attributes to specify pin placements and
pad characteristics.

2) Insertion of special pad cells, IPCLK/IPRST, to drive
the primary clock/reset network.

3) Insertion of special buffer primitives into a named net.
This has two uses:

a) Force a named net onto/off the peripheral bus,
by inserting the primitives APBUF/PABUF
respectively.

b) Force a named net onto the primary
clock/reset network, by inserting the primitives
ACLK/ARST respectively.

The external attributes file must exist in the same directory
and with the same name as the corresponding EDIF netlist,
with the file extension “.pat”. During import, the system
automatically checks for the existence of a “.pat” file and uses
it when one is found.

Syntax of the External Attributes (“.pat”) File
The external attributes file contains a list of commands, one
per line. Each command contains up to five fields, as follows:

<object—class> <object~name> <operation> <name> [<value>]

where:
<object—class> is one of port, net or instance.

is the netlist name of the object (port,
net or instance) being operated on.

<object-name>

<operation> is one of attribute or instance.

<name> is the name of a definition or an
attribute.

[<value>] is only used in attribute operations,

and is the value to be given to the
attribute. This field is only required
when an attribute requires a value.

The following are specific syntax forms of all valid attributes
or instance assignments:
port <name> attribute <name> [<value>]

Attribute <name> with (optional) value <value> is added
to the port instance (the instance driven by the formal
port). Only works with input and ports.

port <name> instance <name>

The port instance (the instance driven by the formal
port) is replaced by an instance of the given definition.
The only valid definitions are IPCLK and IPRST. This
syntax is limited to input ports with 1 input pin and 1
output pin (IPBUF for example).

net <name> attribute <name> [<value>]
Attribute <name> with (optional) value <value> is added
to the net.

net <name> instance <name>
Creates an instance of the given definition and inserts it
into the named net. The only valid definitions are ACLK,
ARST, APBUF, and PABUF.

instance <name> attribute <name> [<value>]

Attribute <name> with (optional) value <value> is added to
the instance.

SEGA

SEGC| 0 cpmyer WU pxrouT
2 SEGD
OPBUF

Figure 4. The “.pat” File Attributes are Added to this
Simple Schematic

Example “.pat” File Entries
The following sample “.pat” file entries reference the simple
schematic shown in Figure 4.

M4

MOTOROLA MPA DATA — DL201 REV 2
4-126

// This is a comment
This is a comment as well
port sega attribute pad_place 22

AN1589

// This results in the IPBUF being placed on the pad associated with package

// pin 22.

port sega attribute ignore_timing dummy_arg

// For place and route purposes, the design’s timing parameters are ignored
// for the net segment associated with the formal port sega. A dummy

// argument is required for this attribute.

port sega instance ipclk

// This results in the IPBUF being replaced by an IPCLK, forcing the net onto

// a clock network.
net segb attribute cluster_seed 1

// The cluster_seed attribute and value shown get assigned to the net B for

// evaluation during place and route.
net segb attribute place_priority 1

// The place_priority attribute and value shown get assigned to the net B for

// evaluation during place and route.
net segb instance aclk

// This results in an ACLK buffer being inserted between IPBUF’s output and
// BUFF'’s input. BUFF is now driven off the resulting clock routing resource.

instance OPBUFl attribute opdrive 12mA

// This results in the OPBUF getting 12mA drive capability.

instance BUFF1l attribute ignore_timing dummy_arg

// For place and route purposes, the design’s timing parameters are ignored
// for all nets associated with the instance BUFFl. A dummy argument is

// required for this attribute.

All Valid Combinations of Attributes & Instances in
an External “.pat” File

The following show all the valid combinations of the
attributes in the .PAT file.

port <name> instance (name here can only refer to input
instances with one input pin and one
output pin)
ipclk
iprst

port <name> attribute
ignore_timing dummy_arg
dpld_pad_place <value> (refer to data
book for package being used)
pullup 110
pulldown 110
dpld_opdrive 6mAl12mA
dpld_oplevel 3viSv
dpld_opslew highllow
dpld_iplevel CMOSITTL
dpld_pad_properties (see above
paragraph describing this attribute)

net <name> attribute
dpld_cluster_seed n (where 0 <n <1000,
1 is default, 0 means ignore net)
dpld_place_priority n (where 0<n<10,
1 is default)

net <name> instance
aclk
apbuf
arst
pabuf

instance <name> attribute

dpld_ignore_timing dummy_arg
dpld_pad_place <value> (refer to data
book for package being used)
pullup 110

pulldown 110

dpld_opdrive 6mAI12mA
dpld_oplevel 3vISv

dpld_opslew highllow

dpld_iplevel CMOSITTL
dpld_pad_properties (see above
paragraph describing this attribute)

Timing Control

The MPA clock frequency determines or is determined by
the performance of the design. Any signal starting at an input
or flip—flop, propagating through some combinatorial logic,
and arriving at an output of a flip—flop, must arrive within one
clock cycle.

There are two clocking strategies employed by the MPA
Design System. Design critical clocking signals should be
implemented via the primary clocking network for guaranteed
low skew. This network encourages the use of synchronous
design techniques and, combined with the flip—flip rich
architecture, eases the inclusion of internal scan paths in the
design. Note that the I/O flip—flop clocks and I/O latch enables
can only be driven by the primary clock network.

Secondary clocks are those signals not implemented via
the primary clocking structure and will be routed as a tree
structure so as to minimize any skew between the clock inputs
driven by the net.

More control over individual clock net speeds can be
obtained by specifying a Clock File (“.clk”). A Clock File (also
referred to as a “Timing Group File”) must have one Timing

MOTOROLA MPA DATA — DL201 REV 2
4-127

AN1589

Group Definition and may have one or more Intended Target
Delays. The Timing Group Definition must have at least one
Timing Group.

Each Timing Group must have a unique name and may be
a clocked timing group. A Timing Group Instance List consists
of individual reference statements defining the instances
assigned to each timing group. Each statement is one of either
“instanceRef”, “netRef”, “allFlipFlop”, or “alllO”. There is no
limit to how many statements can be assigned to each Timing
Group.

(timingGroupDefinitions
(timingGroup timingGroupDef
[(clock [phase] period)]
(instanceRef instanceName)

allFlipFlops [clockInputSense]
allio)

|
I
|

)
)

netRef netName [clockInputSensel

An Intended Target Delay is a guide to the approximate
delay intended by the user between two timing groups. If both
timing groups are clocked, the MPA Design System will adjust
this value to take into account skew. Otherwise, the intended
value will be the actual value.

The Clock File syntax is summarized in the following listing.
Please refer to the available on-line help facility for a more
in—depth description.

[(intendedTargetDelay targetDelay driverGroupRef drivenGroupRef)]...

where,
timingGroupDef — is a text string identifying a timing group.
phase — is an integer defining the clock phase shift in units of 100ps.
period — is an integer defining the clock period in units of 100ps.
instanceName — is a text string identifying an instance or a group of instances.
netName — is a text string identifying a net or a group of nets.
clockInputSense — is either “NONINVERTING” or “INVERTING”.
targetDelay — is an integer defining the intended target delay in units of 100ps.
driverGroupRef — is a text string identifying a source timing group.
drivenGroupRef — is a text string identifying a destination timing group.

convention explanation:

normal - indicates keywords to be entered as shown.
italics - indicates variable information specified by the user.

[1 — square brackets enclose an optional symbol or symbols.
| — avertical bar indicates a choice between alternatives.
- an ellipsis indicates a repetitive structure.

MPA Hardware Features

Most designs can be fit to the desired speed into the MPA
family without the designer needing to know much about the
details of the device’s internal construction. However, to get
the most out of the MPA, some time should be taken to browse
through the on-line help files thoroughly. The help files are rich
in detail regarding the hardware specific macros and routing
resources macros inherent in the MPA Design System. The
following topics are presented as simple examples on most of
these hardware specific features. For an exhaustive
presentation, please refer to the on-line help facility.

Logic One and Logic Zero

It may at times be necessary to modify the functionality of a
macro from the supplied libraries by tying one or more of its
inputs to logic high or low. There are two special elements
provided in MICROLIB for this purpose. ONE produces a logic
high to all input pins tied to it. The ZERO element provides a
logic low. There are no fan—out restrictions for these signals.
An alternate method is to tie the input pins requiring a logic
high to a net named VDD, and tie the input pins requiring a
logic low to a net named GND. :

For all the above methods, the MPA Design System will
recognize the logic as static and eliminate superfluous logic
elements wherever possible during the place and route
process.

Wired-OR

The MPA family allows for connecting many outputs to a
single common signal line. The available macros for this
function are: WND2, WINV, WOR2, and WBUF. When using
these macros, a WPUP component is required. The maximum
number of connections to a single signal is given by:

%‘/# of core cells.

Table 2. Maximum Drivers on a Wired-Or Signal

MPA Family Member Max. Drivers
MPA1016 20
MPA1036 30
MPA1064 40
MPA1100 50

If the number of drivers on the Wired-OR net is below half
of the maximum allowed, then only a single WPUP element is

M

MOTOROLA MPA DATA — DL201 REV 2
4-128

recommended. Adding a second WPUP to a very large net,
will help speed things up some, but at the cost of increased
power consumption. The allowable values for the WPUP
attribute are 1, 2, or BOTH. Resistors 1 & 2 are of equal value,
so it makes no difference which one you select. BOTH ties
resistors 1 & 2 in parallel and decreases the low to high
transition time, but at the expense of extra power
consumption.

us
WPUP
DPLD_PUP=BOTH

A UT gWN w
o
3aB B }———> WIRED_OR_SIGNAL

Figure 5. Simple Wired—-OR Net

Adding additional Wired—OR outputs to the net
WIRED_OR_SIGNAL will slow it down. Adding additional
inputs to the net has little effect on speed. Low to high
transitions are typically slower than high to low transitions on a
Wired-OR signal.

Peripheral Bus

The periphery of the MPA die is bordered with an 8 bit wide
Peripheral Bus (P-Bus). The P-Bus can be broken at each
corner of the array by switches. (The setting of these switches
is handled automatically in the MPA Design System software.)
Each of the resulting 4 segments has two programmable pull
up circuits, one at each end. The P-Bus is ideal for routing
common signals to many /O macros.

It is easy to build a scenario where many /O pins have a
single or several control signals in common. In this instance,
that signal can be placed on the P-Bus by using an APBUF.
Conversely, pulling a signal off of the P-Bus back into the
array is accomplished by using the PABUF.

The ability to construct Wired—OR nets is not limited to
signals internal to the array. P-Bus Wired—OR nets can be
constructed using APWBUF (or APWINV) and their
associated pull-up structure PWPUP. However, using these
features requires the user to be aware of the natural
consequences of adding capacitance and pull-ups to a
resistive bus. Adding additional segments of P-Bus (by
assigning 1/Os to different edges of the die) increases
capacitance that effects rise and especially fall times. Also, the
somewhat resistive nature of the P-Bus can cause Vol noise
margin problems if the active low P-Bus driver is far from the

AN1589

pull-up element and driven element. The assignment of
P—Bus pull-up resistors is automatic.

On import, all PWPUP instances defined by the designer
are removed from the netlist. The tool automatically balances
the number of pull-up resistors against the P—Bus loading
(incurred by the use of multiple die edges) by automatically
inserting additional pull-up capacity for each P-Bus segment
used. During autolayout, the MPA Design System re—attaches
a single peripheral bus pull-up resistor per occupied die edge,
for each unique P-Bus signal. For example, if several I/Os that
use a P-Bus Wired—OR signal get split between the ‘top’ and
‘right’ edges of the die during autoplacement, the tool would
assign two pull-up resistors to the net.

The Wired-OR resources are provided to help simplify
some logic designs, however, their use should be avoided on
speed critical paths.

Low Skew, Clock, and Reset Nets

For a high fan out signal or for a signal with a desired skew
limited to less than 1ns, the signal can be moved onto a clock
network using the ACLK or ARST macro (they both do the
same thing).

MPA I/O Structures

The standard 1/O cell of the MPA array is very feature rich.
The complexity of this structure is apparent in the large
number of choices available in the I/O macro library MPA1000.
(Here again, the reader is encouraged to invest some time in
the on-line help facility, in particular “Help on Libraries — Input
and Output Pads” and “Help on Device — Functional
Description — 1/0 Cell”. Defining a bookmark for these two
particularly useful help sections will provide a short cut for
referencing them in the future.)

Each of the macros in the MPA1000 library fit in a single I/O
cell. Couple these relatively complex functions with the
availability of P-Bus routing resources (including the P-Bus
Wired—OR resources previously mentioned) and it becomes
clear that significant functionality can be achieved before ever
using the normal internal resources of the array.

In Figure 6, a three bit address decoder was implemented
using only the resources available in the complex I/O Cells
and the associated P-Bus. No internal logic or routing
resources were consumed. The features used which are
unique to the I/O Cell and P-Bus include: input delay to
synchronize external data with the buffered clock signal,
APBUF used to bus a common enable to signal to several /O
sites, XNOR used to compare external and internal address
values, and finally the Wired—OR P—-Bus line.

Of course, ali of this functionality could be moved internal to
the array, using only the simple I/O macros.

MOTOROLA MPA DATA — DL201 REV 2
4-129

AN1589

w
PWPUP
ut
A IPDDFRWX p
4 g wo -+
EXTD Dq-z—-—-o
EXT_ADDRO [~ d oy o a @ $——{"> ADDR_DETECT
CLKE 1
3 > CLK
5
RN
17
U2
A IPDDFRWX
4 -4 wo
EXTD Dq-g——-—o
EXT_ADDR1 [& oLy D a Q
CLKE 1
8 > CLK
5
AN
17
U
A~ IPDDFRWX
4 4 Wo
EXTD Dq_i__
EXT_ADDR2 [§ DY —p a Q
CLKE 1
N 3
ADDRI0:2] P> CLK
5
AN
RESETB [> ig
AUs Q
ENABLE 2 !
us
APBUF EXTIN |
EXT_CLK [>—o—— 2| —[>—1—

IPCLK

Figure 6. A Three Bit Address Decoder, Only I/O Cell and P-Bus Resources Used

Net List Export

The OrCAD Create Netlist tool in the design manager’s Tool
menu is used to translate a completed schematic into an EDIF
file (“.edn”) which is then importable to the MPA Design
System. Unlike some other netlist formats available and
supported by OrCAD, creating an EDIF 2 0 0 netlist will work
properly in either logical or physical view, regardless of
whether the design is flat or hierarchical.

Selecting the EDIF 2 0 0 tab in the Create Netlist dialog box
presents the user with various options. Part Value must be
specified as {Value} (the defaulty and PCB Footprint is
inconsequential. “Allow nonEDIF characters” must not be

enabled as the MPA Design System Import tool will only
accept EDIF characters. All other options should be enabled
to allow any special attributes to be included in the netlist. The
selected options are:

o Output pin names (instead of pin numbers)
« Do not create “external” library declaration
e Output net properties
o Output part properties
o Output pin properties
Successful execution of the netlist tool will generate a file
with an “.edn” extension; for example: “project.edn”. This is the
file that gets imported into the MPA Design System.

M4

MOTOROLA MPA DATA — DL201 REV 2

4-130

Functional Simulation

Prior to creating an EDIF netlist for importing to the MPA
Design System, the designer should verify circuit operation.
Generating a VHDL netlist (“.vhd”) is required for functional
simulation with OrCAD’s Simulate. Both netlists will describe
the circuit as required and can be produced at the same time
in the design flow if desired. Please refer to the appropriate
documentation for a details.

MPA Netlist Import

Netlist import is the process used by the MPA Design
System to import a design produced from a front—end design
capture package into the Autolayout Tool. The Netlist Import
tool runs in a standard Tool Execution Window. Any errors
encountered during netlist import will be output to this window.

When a netlist is first imported into the system, it is
processed through the following phases to prepare the circuit
for autolayout:

LPM Instantiation
Addition of External Attributes

o Netlist Checking

* Retargeting

e Wired—or Net Splitting

A more detailed description of each phase is provided in the

MPA Design System on-line help facility. When comparing the
original schematic with the final chip layout, the designer
should be aware that the MPA Design System does some
“bubble pushing” during the retargeting/fitting of the logical
design into the physical implementation. In some cases,
redundant gates in the schematic design are eliminated in the
physical layout.

Once the netlist has been imported into the system,
Autolayout can be applied to the netlist repeatedly without
having to re-import.

MPA Autolayout

The Autolayout Tool performs fully automatic timing driven
layout for the current design. The Autolayout Tool runs in a
Tool Execution Window. Any errors encountered during layout
will be output to this window.

Control over the autolayout process is provided through the
autolayout parameters and attributes that can be added to the
netlist. Before the autolayout process begins the layout, the
system performs definition checking to make sure that the
definition is suitable for autolayout.

The autolayout process goes through several distinct
phases and generates a context file after each phase is
complete. When autolayout is complete, the following files are
generated:

e A timing report file (“.trm”) to allow for further
analysis of the timing aspects of the layout,

e A port report file (“.prp”) is also generated giving the
pinout of the resulting autolayout,

* A back-annotation file, giving delay information for
the layout suitable for input to a logic simulator, and,
of course,

o A layout file (“.Iyt"), containing the final layout. This
layout is used as the input to the configuration

AN1589

generator to create a configuration bit—stream for
the target device.
The area of the chip the layout will use is determined by the
circuit size and the autolayout parameters specified for the
design.

Autolayout Options

Autolayout options are set using the Autolayout pane of the
Tool Options dialog. The choices available are outlined here:

Parameter Groups

Autolayout Parameter groups are used to reference a
particular set of parameter settings. Any number of Autolayout
Parameter Groups can be set up for easy access to commonly
used parameter settings. These parameter groups can be
selected from the Autolayout options dialog.

Utilization

This parameter controls the number of functional cells that
the partitioning operation will attempt to place in a 100 core
cell area (i.e., a zone). Its value is the percentage of functional
core cells in the imported design against the recommended
maximum number of usable core cells (= 50). Autolayout will
automatically exceed this limit if it has to.

Minimum: 1

Maximum: 150

Default: 80
Effort

This parameter controls the amount of work applied to the
partitioning operation. A larger value will generally produce a
better result in the partitioning for high utilization circuits. The
time taken for partitioning is directly related to Effort. Effort
must be balanced by the Start Temp parameter for optimum
results.

Minimum: 1

Maximum: 100

Default: 30
Start Temp

Partitioning is performed using a simulated annealing
technique. The Start Temp parameter controls the start
temperature for that process. A higher temperature allows the
average cost of a move during partitioning to be greater.
Increasing the start temperature may result in a better
partition, especially in high Utilization designs. Note that a high
value of Start Temp may result in a bad partition if not used in
conjunction with a larger value for the Effort parameter.

Minimum: 1
Maximum: 100
Default: 10

Simulated annealing is a software technique used for
combinatorial optimization. It simulates the relaxation of
stresses during the repeated heating and cooling of materials,
where the temperature that the material is heated to each time
is gradually reduced. Simulated annealing is a stochastic
technique, and will produce different results for different sets
of starting conditions (such as layout parameters, seed
values, etc.). Simulated annealing is used by the MPA Design

MOTOROLA MPA DATA — DL201 REV 2
4-131

AN1589

System during the Partitioning and Zone Routing phases of
autolayout.

Attempts
This parameter controls the number of runs through the
partitioning phase. More runs should deliver a better partition.

Minimum: 1

Maximum: 20

Default: 1
Backoff

This parameter controls the percentage relaxation of the
target delay if the initial target is not obtainable. This is
expressed as a percentage of the previous target delay.

Minimum: 0%
Maximum: 100%
Default: 30%

Increasing this parameter makes the next attempt at
autolayout use a new Delay Target further away from the
maximum possible delay thus making it easier to complete.
This is expressed as a percentage increase in the optimum
target delay.

Delay Cost

This parameter is the weighting given to timing during
partitioning. If a particular partition includes a net that is failing
to meet its timing target, then the cost of that partition will be
artificially raised by an amount proportional to the delay cost.
Increasing the delay cost is likely to trade off against
achievable Utilization.

Minimum: 0

Maximum: 100

Default: 5
Delay Target

This parameter is the desired maximum delay target for the
autolayout process to achieve, in steps of 0.1ns. For
combinatorial circuits, the maximum delay is calculated from
the longest path from input to output. For synchronous circuits,
the maximum delay is calculated from the longest path
between flip—flops, or from 1/O to flip—flop, whichever is the
greater. This parameter is only relevant when you are using
the standard timing model. If a clock file is specified, then the
Delay Target parameter will be ignored.

Minimum: 0

Maximum: 9999

Default: 50 (5ns)
Fanout

This parameter is the maximum fan—out of a net which is
included in the clustering. All the nets which have a fan—out
greater than this value are ignored during clustering. Any nets
ignored during clustering are more likely to have to be globally
routed.

Minimum: 1
Maximum: 100
Default: 2

Min Zone Delay

This parameter forces the delay of segments within a zone
to be within a certain value. The delay is specified in unit of
0.1ns. The smaller the delay is, the harder the zone routing
algorithm will work to reduce delays within the zones.

Minimum: 0

Maximum: 9999

Default: 5 (0.5ns)
Seed

Setting the seed for the autolayout process lets you control
the repeatability of the autolayout. If you run the autolayout
with a given seed value, you can reproduce the same
autolayout from the same circuit simply by setting the same
seed value.

Minimum: [}
Maximum: 9999
Default: 1

Several of the autolayout algorithms use stochastic
techniques similar to simulated annealing that require a
pseudo-random number generator. The Seed is used to set
the random number generator to a known point in the
sequence.

Layout Viewer

The MPA Design System provides a Layout Viewer tool
which gives a graphical view of the completed layout. This
view shows the instances of primitives in the design and the
routing that connects them together. Aspects of the device
architecture are also shown.

Multiple graphical and browser views may be created.
Moving about in the graphical view is made possible by
zooming and panning. Instances, nets and ports can be
selected. The mouse cursor changes according to the design
object under it, and the status bar gives more information
about the design object beneath the cursor.

Note that no changes to the layout are possible with the
Layout Viewer. Please refer to the on-line help facility for more
details. '

Device Configuration

Device configuration is the process of translating a
completed layout into a stream of 1’s and 0’s used to program
the actual device. Pressing the device configuration button
launches this tool. Please refer to the on-line help facility for
more details.

Back Annotation and Simulation

The MPA Design System has a facility that provides post
place and route back annotation data in a VHDL format
(“.vhd”). This file has some regular VHDL constructs which
unfortunately are not currently supported by OrCAD’s
Simulate. Back annotation with OrCAD’s Simulate is planned
for support in the near future.

M#

MOTOROLA MPA DATA — DL201 REV 2
4-132

10/96

AN1592
Application Note

Using VIEWIlogic’s
Workview Office 7.0
with the MPA Design System

Prepared by
Marten L. Smith
Motorola Programmable Logic

© Motorola, Inc. 1996

4-133

@ MOTOROLA

REV 0

AN1592

Using VIEWIogic’s Workview Office 7.0 with the MPA Design System

Introduction

The Motorola family of MPA devices and supporting
software provide system designers with a collection of flexible
and powerful tools. This application note focuses on the use of
VIEWIogic’'s Workview Office 7.0 schematic capture and
simulation programs as front end design tools for the MPA
Design System’s FPGA place and route software. A basic
design flow is introduced followed by more in depth discussion
of parameters for place and route and concludes with a
discussion on back annotation and simulation procedures.

Basic Design Flow

In this simplest example of using Workview Office, a
straight path is taken from design entry through export to the
MPA Design System. More detailed discussions on: place and
route parameters, I/O parameters, hardware dependent
macros, back annotation and simulation are deferred. The
reader is assumed to be familiar with Workview Office and
have casual knowledge of the MPA Design System.

Libraries

The EDIF net list reader of the MPA Design System is
currently constrained to understand only those instances
passed to it from the MACROLIB, MICROLIB and IOLIB
libraries provided. Only a very few other symbols from the
BUILTIN library may be used directly in the schematic. These
are: IN, OUT and BI; their usage is explained more fully later.
Your VIEWDRAW.INI file must have the following lines
appended to the end of the file in order to steer Workview
Office in the correct direction when adding instances to your
schematic. Typically the VIEWDRAW.INI file will be located at
C:\wvoffice\standard\viewdraw.ini.

DIR [rm] C:\mpa\wvlibs\mpalib\macrolib (macrolib)
DIR [rm] C:\mpa\wvlibs\mpalib\microlib (microlib)
DIR [rm] C:\mpa\wvlibs\mpalib\iolib (iolib)

DIR [rm] C:\mpa\wvlibs\mpalib\builtin (builtin)

When adding instances to your FPGA schematic, be sure
to use only instances from these first 3 libraries and only the
special hierarchical connectors IN, OUT and Bl from the
BUILTIN library.

Starting a New Project

Before starting the schematic capture process you must
first set up a project with the Viewlogic Project Manager. First
pull down the Viewlogic Project Manager “File” menu and
select “New” for a new project. Then by selecting the “Browse”
button you can point Workview Office to the primary directory
in which you will be placing your project in (see Figure 1).

viewlogic Project Manager - Untitied_ [~]

Figure 1. Viewlogic Project Manager Window
with Project Path

The next step is to select the MPA libraries for the project.
This can be done in two ways. One method is to pull down the
“Project” menu, select “Libraries”, and manually select the
paths for the MPA libraries using the “Browse” and then “Add”
buttons. The other method is to pull down the “Project” menu
and select “Import Existing Searchorder.” This will give you a
window that asks for an .INI file name. Put in the full path name
of the VIEWDRAW.INI file, that you modified earlier, in the “File
Name:” space. This will automatically bring in the MPA
libraries’ path names for your project. The resulting Viewlogic
Project Manager window should have the MPA libraries as
shown in Figure 2.

] -
Viewdraw Libraries

© cimpaiwvi iy

% cAmpalwwlibsimp "
% cimpajwviibsimpalibtiolib (iolib)
@ ciAmpalwvlibsimpalibibuiltin (builtin)

Figure 2. MPA Libraries Selected

After selecting the libraries, the final project step is to save
the new project. At this point you will be asked to type in the
name of the Viewlogic project file in the “File Name” space.
The name of the file will be <your filename> with the .VPJ file
extension (see Figure 3). After pressing the “OK” button
Viewlogic Project Manager saves the .VPJ file to your project
directory. Viewlogic Project Manager also saves a copy of the
VIEWDRAW.INI file in your project directory.

M -

MOTOROLA MPA DATA — DL201 REV 2
4-134

B WVEXAMPLE

£ PKT
£ SAMPLE
£ sCH

Figure 3. Saving the .VPJ File

Capture

There are just a few unique steps to take during schematic
capture to ensure a valid MPA Design System EDIF netlist.
The netlist importer of the MPA Design System needs to
recognize your design’s I/O ports. To accomplish this, you may
either create a top level symbol for your completed schematic
or you may opt to include VIEWIogic’s hierarchical connectors.

If you are going to instantiate your completed FPGA
schematic into a larger board or system level schematic then
generating a top level symbol is the more appropriate method
to use. In order to do this, each of the IOLIB instances used
must have a named net stub attached to their ‘external world’
pins (see Figure 4). Once this task is completed all that is left is
to create a VIEWIlogic symbol for the entire FPGA schematic.
Each of the pin names on the symbol must match the net-stub
names exactly. A pin is required for every I/O net-stub (see
Figure 5).

OrBUF pyutan

| ITNaND_&

UUT.&Nq

I
|
I |_ltnano_g
i
i

Figure 5. Top Level Schematic’s Symbol,
Pin Names = Net Stub Names

If on the other hand the schematic you are creating is stand
alone for the FPGA, then a short cut method is available to
you. As before, place the desired IOLIB instances on your
schematic. Then from the BUILTIN library select the IN, OUT
or Bl hierarchical connector as appropriate. Connect this

AN1592

hierarchical connector to the IOLIB instance’s ‘external world’
pin and name the net (see Figure 6). This name may now be
referenced for stimulus/response in the VIEWIogic simulator.
Additionally, this net name is passed in the exported EDIF
netlist to the MPA Design System place and route tool.

INAND_&

I ~
| ——f >

OPBUF puranp
SAgeraur
/‘/ < —

Figure 6. Top Level Schematic Using IN and OUT Sym-
bols from BUILTIN. The OUT Symbol is Highlighted
(boxed), Instance $1131

The final step before ending your ViewDraw session is to
pull down the “File” menu and select “Save + Check.” This not
only saves the current version of your schematic, but it also
checks for minor connectivity violations as well as creates a
file in the WIR directory which will be used later to create a
simulation netlist.

Net List Export

The EDIF netlist writer is the VIEWIogic tool that translates
your completed schematic into an EDIF file importable to the
MPA Design System. The Workview Office netlisting tool is
called EDIFGRAF.EXE and it can be put into your Workview
Office toolbar by using Workview Office’s “customize toolbar”
option.

When you execute Workview Office’s EDIF program you

will have the choices shown in Figure 7. Select “EDIF Netlist
Writer” and press the “OK” button.

Figure 7. EDIF Interfaces Window

This will give you the “EDIF Netlist Writer” window (see
Figure 8). Use the “Browse” button to select the schematic file
that you want to generate the EDIF netlist for. Type “micro” in
the Level box and select “Flatten without evaluating
attributes.” Press the “OK” button and the EDIF Netlist Writer
will generate a .EDN EDIF netlist file ready for import to the
MPA Design System.

MOTOROLA MPA DATA — DL201 REV 2
4-135

AN1592

Figure 8. EDIF Netlist Writer Window

Attributes

The MPA Design System’s import process can accept a set
of attributes to help the designer tune the layout and routing
processes. The system also accepts I/O parameters to specify
CMOS/TTL compatibility, I/O drive, package pin assignment
and slew rate control. Declaring attributes in the schematic will
result in their being passed into the EDIF netlist and then
imported into the MPA Design System. Optionally the designer
may prefer to include attributes in an external .PAT file of the
same root file name as the design’s EDIF netlist. The designer
may choose to use the combination of the two methods, but it
should be noted that attributes passed into the MPA Design
System in .PAT files will always take precedence if declared in
both places.

Table 1. Valid Attributes

Sch. Attached Place and Attached I/O Attribute
Component Route Attribute
Net DPLD_IGNORE_TIMING

DPLD_CLUSTER_SEED

DPLD_PLACE_PRIORITY

1/0 Symbol | DPLD_IGNORE_TIMING | DPLD_PAD_PROPERTIES
(Instance) DPLD_PAD_PLACE PULLUP or PULLDOWN
or DPLD_OPDRIVE

Formal Port DPLD_OPLEVEL

DPLD_OPSLEW

DPLD_TIPLEVEL

Place and Route Layout Attributes

The MPA Design System enables the tuning of place and
route algorithms in three ways. The first is with the adjustment
of the Auto Layout tool options such as start temperature,
target delays, utilization etc. Additional details on the available
options and their use are available in the on-line help facility of
the MPA Design System. The second method involves the
construction of a separate clock file. Here again, additional
information is provided in the on—line help system and is not
presented in this application note. The third method of
influencing place and route results is the inclusion of the
foliowing attributes in the schematic or in an external .PAT file.

DPLD_IGNORE_TIMING

The DPLD_IGNORE_TIMING attribute is used to ignore
certain paths for timing purposes. It may be set on an instance,
a formal port, or a net. If a net has the attribute set, then the
timing on all segments within that net are ignored. If an
instance has the attribute set, then the timing on all inputs and
output net segments from that instance are ignored. Assigning
the attribute to a formal port has the same effect as assigning it
to the associated /O instance.

The effect of ignoring a net, a formal port, or an instance for
timing purposes is to cause the autolayout to ignore all paths
between clocked objects which the net, formal port, or
instance lies on. Once all the objects to be ignored have been
identified, their paths are propagated forwards and backwards
through combinatorial gates until clocked objects are reached.
The result is that additional segments other than those
explicitly specified will be ignored for timing purposes as well.

You are required to use a dummy value with this attribute,
but the value stated is otherwise ignored. Also, assigning this
afttribute to an instance or a net frees the timing driven
autolayout algorithms to more optimally cluster, place, and
route the speed critical nets.

DPLD_CLUSTER_SEED
The DPLD_CLUSTER_SEED attribute is used to assign a
cluster seed to a net. This will cause the clustering to treat all
instances that connect to that net differently and it increases
the chance that the net and surrounding nets will be
implemented in local or medium interconnect.
The action taken depends on the value of the attribute as
follows:
0 ignore this net during clustering. Setting this
attribute on a net is likely to cause the net to be
implemented in global interconnect.

1 default operation
<1000 weight this net by the given factor in the
clustering

DPLD_PLACE_PRIORITY

The DPLD_PLACE_PRIORITY attribute can be applied to
a net to force the software to lay out that net in a physically
smaller area, in other words, to place the instances connected
to that net closer together. The value of
DPLD_PLACE_PRIORITY should be an integer in the range 1
to 10 (1 is the default). Higher values of place priority let you
prioritize nets relative to each other.

M7 ©

MOTOROLA MPA DATA — DL201 REV 2
4-136

DPLD_PAD_PLACE

DPLD_PAD_PLACE - instructs the I/O pad to be allocated
to the package pin number specified. Only one pad may be
allocated to any pin. Automatic placement of /O pads usually
results in a better layout, so this attribute should only be added
when it is necessary. Example: DPLD_PAD_PLACE=C2

I/O Parameter Attributes

DPLD_PUP

DPLD_PUP — attaches to WPUP primitive cells only, to
select either one or both of the pull-up resistors available in a
WPUP cell. Valid values are 1, 2 or BOTH.

PULLUP or PULLDOWN

PULLUP - set this to 1 if you want to enable the pull-up
resistor on the external pin of an I/O pad. Default is O (resistor
disabled). Example: PULLUP = 0

PULLDOWN - set this to 1 if you want to enable the
pull-down resistor on the external pin of an I/O pad. Default is
0 (resistor disabled). Example: PULLDOWN = 0

DPLD_OPDRIVE

DPLD_OPDRIVE — sets the output drive current of an
output or bi—directional pad to either 6ma (default) or 12ma.

DPLD_OPLEVEL

DPLD_OPLEVEL - sets the output voltage level of an
output or bi-directional pad to either 3V or 5V (default).

DPLD_OPSLEW

DPLD_OPSLEW - sets the output slew rate (transition
speed) of an output or bi-directional pad to high (default) or
low.

DPLD_IPLEVEL

DPLD_IPLEVEL - sets the input threshold voltage of an
input or bi-directional pad to either CMOS or TTL (default).

DPLD_PAD_PROPERTIES

Workview Office permits the use of the combined attribute,
DPLD_PAD_PROPERTIES which combines the following

———
DPLD_CLUSTER_SEED=0

AN1592

attributes into a single comma separated list: PULLUP,
PULLDOWN, DPLD_IPLEVEL, DPLD_OPLEVEL,
DPLD_OPDRIVE, DPLD_OPSLEW. This is especially useful
when defining a block of I/O pins in an external attribute file
such as a .PAT file. Example: DPLD_PAD_PROPERTIES =
0,0,CMOS, 5V, 12MA, HIGH (Also, see Figure 11 for an
example).

'Defaults and Invalid Combinations

The default I/O pad attributes have been selected so that
they can connect to either TTL or 5V CMOS without
adjustment. The default parameters may not be ideal for every
design, and they should be matched to the application in order
to achieve the best performance and noise immunity. 3V
CMOS users should be especially careful to set
DPLD_OPLEVEL to 3V, otherwise damage to peripheral IC’s
may result.

The following combinations of user attributes are not
permitted:

DPLD_OPDRIVE = 6ma AND DPLD_OPSLEW = low.
PULLUP = 1 AND PULLDOWN = 1

The following combination of user attributes on a single
bi—directional pad should be avoided, as it may produce
unpredictable results:

DPLD_IPLEVEL = CMOS AND DPLD_OPLEVEL = 3V

Assigning Attributes in a Schematic

The attributes listed above can be assigned to nets and
macro symbols (also referred to as, “instances” or
components) as appropriate. In Workview Office, the method
of assigning attributes is straight forward.

To assign an attribute to a net, select that desired net (its
color will change identifying it as being the currently selected
net) and then double—click on that net (or you can just
double—click to begin with). The Net window will appear.
Select the “Attributes” tab and then type the attribute in the
“Name” box. Finally, press the “Set” button and the “OK”
button (see Figure 9). The attributes will then be included in
the EDIF netlist once the EDIF Netlist Writer is run.

Figure 9. The Net Properties Box, Used to Assign Net Attributes

MOTOROLA MPA DATA — DL201 REV 2
4-137

AN1592

To assign an attribute to an instance, select that desired
instance (a bounding box will appear identifying it as being the
currently selected instance) and then double—click on that
instance (or you can just double~click to begin with). The
Component Properties window will appear. Select the

“Attributes” tab and then type the attribute in the “Name” box.
Finally, press the “Set” button and the “OK” button (see Figure
10). The attributes will then be included in the EDIF netlist
once the EDIF Netlist Writer is run.

mponent Properties

PLD_OPSLEW = HIGH
PLDD_F'FHM = PADOUT
P

Figure 10. The Component Properties Box, Used Here to Assign Instance Attributes

Sl.:.fﬁ,;;ampleZ

INAND_& IFBUF
EXTI [~
L/
INAND.B LPBUF

EXTL

DPLD.CLUSTER_.SEED=0

DUTAND

Figure 11. The Net “NETA” Attributed with DPLD_CLUSTER_SEED=0.
The Selected Instance “OPBUF $114” and its Attached Attributes are Boxed.

Assigning Attributes & Instances in an External .PAT File
Assigning attributes to a long series of instances, ports, or

nets in the above manner can be time consuming and may be

error prone. The MPA Design System gives the designer the
option to enter all the valid attributes in an external .PAT file.
Entries in the .PAT file take precedence over any attributes
that may have also been instantiated in the EDIF netlist via
schematic entry. The .PAT file must have the same root file
name as the EDIF netlist .EDN file, and must reside in the
same directory.)
The external attributes file supports three main operations:
4) Insertion of attributes to specify pin placements and
pad characteristics.
5) Insertion of special pad cells, IPCLK/IPRST, to drive
the primary clock/reset network.

6) Insertion of special buffer primitives into a named net.
This has two uses:

c) Force a named net onto/off the peripheral bus,
by inserting the primitives APBUF/PABUF
respectively.

d) Force a named net onto the primary
clock/reset network, by inserting the primitives
ACLK/ARST respectively.

The external attributes file must exist in the same directory and
with the same name as the EDIF netlist, with the file extension
.PAT During import, the MPA Design System automatically
checks for the existence of a .PAT file and uses it when one is
found.

M

MOTOROLA MPA DATA — DL201 REV 2
4-138

Syntax of the External Attributes (.PAT) File

The external attributes file contains a list of commands, one
per line. Each command contains up to five fields, as follows:
<object—class> <object-name> <operation> <name> [<value>]
where:
is one of port, net, or instance.

is the netlist name of the object (port,
net or instance) being operated on.

<object—class>

<object-name>

<operation> is one of attribute or instance.

<name> is the name of a definition or an
attribute.

<value> is only used in attribute operations,

and is the value to be given to the

attribute. This field is only required

when an attribute requires a value.
The following are specific syntax forms of all valid attribute or
instance assignments.

port <name> attribute <name> <value>

Attribute <name> with (optional) value <value> is added
to the port instance (the instance driven by the formal
port). Only works with input and output ports.

port <name> instance <name>

The port instance (the instance driven by the formal
port) is replaced by an instance of the given definition.
The only valid definitions are IPCLK, IPRST. This syntax
is limited to input ports with 1 input pin and 1 output pin
(IPBUF for example).

net <name> attribute <name> <value>

// This is a comment
This is a comment as well

port sega attribute dpld_pad_place 22

AN1592

Attribute <name> with (optional) value <value> is added
to the net.

net <name> instance <name>
Creates an instance of the given definition and inserts it
into the named net. The only valid definitions are ACLK,
ARST, APBUF and PABUF.

instance <name> attribute <name> <value>

Attribute <name> with (optional) value <value> is added
to the instance

Example .PAT File Entries

The following sample .PAT file entries reference the simple
schematic shown in Figure 12.

arBUF SEGD

IPBUF

4 = $1 4 1 -

Figure 12. The .PAT File Attributes Are Added to This
Simple Schematic. Nets Are Named SEGA, SEGB,
SEGC and SEGD.

//This results in the IPBUF being placed on the pad associated with package

//pin 22.

port sega attribute dpld_ignore_timing dummy_ arg
//For place and route purposes, the design’s timing parameters are ignored
//for the instance associated with the formal port sega. A dummy

//argument is required for this attribute.

port sega instance ipclk

//This results in the IPBUF being replaced by an IPCLK, forcing the net onto

//a clock network.

net segb attribute dpld_ignore_timing dummy_arg
//For place and route purposes, the design’s timing parameters are ignored

//for the entire net “segb”.
//attribute.

net segb attribute dpld_cluster_seed 1

A dummy argument is required for this

//The dpld_cluster_seed attribute and value shown get assigned to the net B

//for evaluation during place and route.

net segb attribute dpld_place_priority 1

//The dpld_place_priority attribute and value shown get assigned to the net

//B for evaluation during place and route.

MOTOROLA MPA DATA — DL201 REV 2
4-139

AN1592

net segb instance aclk

//This results in an ACLK buffer being inserted between IPBUF’s output and
//BUFF’s input. BUFF is now driven off the resulting clock routing

//resource.

instance $1I4 attribute dpld_opdrive 12ma

//This results in the OPBUF getting 12ma drive capability.

instance $1I12 attribute dpld_ignore_timing dummy_arg
//For place and route purposes, the design’s timing parameters are ignored
//for the all nets associated with the instance $1I12. A dummy

//argument is required for this attribute.

All Valid Combinations of Attributes & Instances in an
External .PAT File

The following show all the valid combinations of the
attributes in the .PAT file.

port <name> instance (name here can only refer to input
instances with one input pin and one
output pin)
ipclk
iprst

port <name> attribute
dpld_ignore_timing dummy_arg
dpld_pad_place <value, see data book for
package being used>
pullup 1i0
pulldown 110
dpld_opdrive 6mall2ma
dpld_oplevel 3viSv
dpld_opslew highilow
dpld_iplevel CMOSITTL
dpld_pad_properties (See above
paragraph describing this attribute)

net <name> attribute
dpld_cluster_seed n (where 0 < n < 1000,
1 is default, 0 means ignore net)
dpld_place_priority n (where 1 < n<10, 1
is default)
dpld_ignore_timing dummy_arg

net <name> instance
aclk
apbuf
arst
pabuf

instance <name> attribute
dpld_ignore_timing dummy_arg
dpld_pad_place <value, see data book for
package being used>
pullup 110
pulldown 110
dpld_opdrive 6mall2ma
dpld_oplevel 3viSv
dpld_opslew highllow
dpld_iplevel CMOSITTL
dpld_pad_properties (see above
paragraph describing this attribute)

Library Elements Specific to MPA Hardware Features

Most designs can be fit to the desired speed into the MPA
family without the designer needing to know much about the
details of the device’s internal construction. However, to get
the most out of the MPA, you should take some time to browse
through the on-line help files thoroughly. The help files are rich
in detail regarding the hardware specific macros and routing
resources macros inherent in the MPA design system. The
following topics are presented as simple examples on most of
these hardware specific features. For an -exhaustive
presentation, please refer to the on-line help facility.

Logic One and Logic Zero

It may at times be necessary to modify the functionality of a
macro from the supplied libraries by tying one or more of its
inputs to logic high or low. There are two special elements
provided in MICROLIB for this purpose. The ONE element
produces a logic high to all input pins tied to it. The ZERO
element provides a logic low. There are no fan—out restrictions
for either of these elements. An alternate method is to tie the
input pins requiring a logic high to a net named VDD, and tie
the output pins requiring a logic low to a net named GND.

For all the above methods, the MPA Design System will
recognize the logic as static and eliminate superfluous logic
elements wherever possible during the place and route
process.

Wired~OR

The MPA family allows for connecting many outputs to a
single common signal line. The available macros for this
function are: WND2, WINV, WOR2, WBUF. When using these
macros, a WPUP instance is required. The maximum number
of connections to a single signal is given by

V# of core cells.

=

Table 2. Maximum Drivers on a Wired-OR Signal
MPA Family Member | Max. Drivers on a Wired-OR Signal

MPA1016 20
MPA1036 30
MPA1064 40
MPA1100 50

If the number of drivers on the Wired-OR net is below half
of the maximum allowed, then only a pull-up resistor is
recommended. Adding a second WPUP to a very large net,

M

MOTOROLA MPA DATA — DL201 REV 2
4-140

will help speed things up some, but at the cost of increased
power consumption. The allowable values for the DPLD_PUP
attribute are 1, 2 or BOTH. Resistors 1 & 2 are of equal value,
so it makes no difference which one you select. BOTH ties
resistors 1 & 2 in parallel and decreases the low to high
transition time, but at the expense of extra power
consumption.

KPUP

< DPLO_PUP=BOTH
¥

[TTH WIRED _DRA_SIGNAL

Figure 13. The Diamond Symbol Reminds the User
That These Outputs Cannot Source a Logic HIGH, but
Are Only Able to Pull the Output to a Logic LOW.

Adding additional wired—or outputs to the net
WIRED_OR_SIGNAL will slow it down. Adding additional
inputs to the net has little effect on speed. Low to high
transitions are typically slower than high to low transitions on a
wired-or signal.

Peripheral Bus

The periphery of the MPA is bordered with an 8 bit wide
Peripheral Bus (P-Bus). The P-Bus can be broken at each
corner of the array by switches. (Setting of the switches is
handled automatically in the MPA Design System software.)
Each of the resulting 32 segments has two programmable pull
up circuits, one at each end. The P-Bus is ideal for routing
common signals to many /O macros.

It is easy to build a scenario where many 1/O pins have a
single or several control signals in common. In this instance
you would want to place that signal on the P-Bus using the
APBUF. Conversely, pulling a signal off the P-Bus back into
the array is accomplished using the PABUF.

The ability to construct Wired—OR nets is not limited to
signals internal to the array. P-Bus Wired—OR nets can be

AN1592

constructed using APWBUF (or APWINV) and their
associated pull-up structure PWPUP. However, using these
features require the user to be aware of the natural
consequences of adding capacitance and pull-ups to a
resistive bus. Adding additional segments of P-Bus (by
assigning /Os to different edges of the die) increases
capacitance that effects rise and especially fall times. Also, the
somewhat resistive nature of the P-Bus can cause Vol noise
margin problems if the active low P-Bus driver is far from the
pull-up element and driven element.

The assignment of P-Bus pull-up resistors is automatic.
On import, all PWPUP instances defined by the designer are
removed from the netlist. The tool automatically balances the
number of pull-up resistors against the P-Bus loading
(incurred by the use of multiple die edges) by automatically
inserting additional pull-up capacity for each P-Bus segment
used. During autolayout the MPA Design System re—attaches
a single peripheral bus pull-up, per occupied die edge, for
each unique P-Bus signal. For example, if several I/Os that
use a P-Bus Wired-OR signal get split between the ‘top’ and
‘right’ edges of the die during autoplacement, the tool would
assign two pull-up resistors to the net.

Low Skew, Clock and Reset Nets

For a high fan out signal or for a signal where you would like
to keep the skew limited to less than 1nS, you should consider
moving the signal onto a clock network using the ACLK or
ARST macro (they both do the same thing).

MPA I/O Structures

The standard 1/O cell of the MPA array is very feature rich.
The complexity of this structure is apparent in the large
number of choices available in the I/O macro library IOLIB
(Here again, the reader is encouraged to invest some time in
the on-line help facility, in particular “Help on Libraries — Input
and Output Pads” and “Help on Device — Functional
Description — /O Cell”. Defining a bookmark for these two
particularly useful help sections will provide a short cut for
referencing them in the future.).

Each of the macros in the IOLIB fit in a single 1/O cell.
Couple these relatively complex functions with the availability
of P-Bus routing resources (including the P-Bus Wired—-OR
resources previously mentioned) and it becomes clear that
significant functionality can be achieved before ever using the
normal internal resources of the array.

MOTOROLA MPA DATA — DL201 REV 2
4-141

AN1592

FUFUF

IPDDFAYX “ta

AsppRO - & ¥

E :X3 Wo ¢
EXTD

— X son
ExT aD0R0O /N a
cLK
cLK >—u
E E ADDA_DETECT
AN

AappA3 é}

CLK
E

EXT_ADDA1

44poAz

Enn

CLK
E

EXT_ADDAZ

ADDAL2401]

=
RESETH

A a

ENABLE
APBUF IPCLK

EXTIN I
EXT_CLK

Figure 14. A Three Bit Address Decoder, Only I/O Cell and P-Bus Resources Used

In Figure 14, a three bit address decoder was implemented
using only the resources available in the complex 1/O Cells
and the associated P-Bus. No internal logic or routing
resources were consumed. The features that were used which
are unique to the I/O Cell and P-Bus include: input delay to
synchronize external data with the buffered clock signal,
APBUF used to bus a common enable signal to several /0
sites, XNOR used to compare external and internal address
values, and finally the Wired—-OR P-Bus line. Of course, all of
this functionality could be moved internal to the array, using
only the simple I/O macros.

Simple I/O Structures

IPBUF
EXTIN EXTL

IPCLK OPBUF

L{>__|E§_Unu1

Figure 15. The Three Most Commonly Used I/O Macros

Your first designs for the MPA will probably only use the
above I/O macros, with all the latching, decoding etc. being
handled internal to the array. Soon though, you will probably
encounter a real world design that constrains you to a specific
clock-to—-Q specification or some other requirement that will
have you going back to re—examine the instances available in
the IOLIB. There are many variations of latched, registered,
and Wired-OR inputs, outputs and bi—directional macros.

Again, please invest some time with the on-line help
descriptions of the device and the libraries.

Back Annotation and Simulation

It is assumed that the reader is familiar with the tools and
procedures involved in using the Workview Office ViewSim
tools. As mentioned earlier, when the schematic capture
(ViewDraw) session is complete you should create a wirelist
file in the WIR directory. You do this, in ViewDraw, by pulling
down the “File” menu and selecting “Save + Check.” Having
created the wirelist file, the next step is to create a simulation
netlist. This is done with VIEWIogic’s VSM netlist tool. Running
VSM from one of VIEWIlogic’s window-based programs only
gives you a functional simulation without any timing data.

The MPA Design System has a facility that provides post
place and route timing data in a format compatible with the
VIEWIlogic VSM netlist tool. The VIEWIlogic format back
annotation data table file (.DTB) can be generated after
completion of a place and route. The .DTB file can be read in
by the VIEWIogic VSM netlist tool to provide an accurate
simulation netlist of your completed design.

After the MPA Design System generates the .DTB file, it will
need to be moved up one level to your Workview Office design
directory. In order to use the timing data in the .DTB file the
VSM netlist program must be run from a DOS command
prompt. It is run by entering the command line: vsm
<schematic name> -d <.DTB filename>.

M7

MOTOROLA MPA DATA — DL201 REV 2
4-142

Command Prompt
C:\smith\wusim>usm backano -d laa outl.dth
IJIEHSIH WIRELISTER - US. 3 1; UIEWlogic 7.8 <128795)>
c Copyright 1985,1995 by Uxewlogic Systems, Inc.

Using initialization file ’C:\WUOFFICE\STANDARD\vsm.ini’
Using 24 attribute fxlter(s
Reading design hierarchy .

Long format VUIEWSIM file for project BACKANO
Using back-annotation file ’C:\smith\wusim\layoutl.dth’
Found 6 component, 5 pin, and @ net records in layouti.d|
Wirelisting project BACKANO into file backano.vusm . . .
[Completed file backano.usm
24 module(s>, 2?7 net(s)>, 16 net equivalence(s)
5 delay block(s) added to netlist.

@ error(s)> and @ warning(s> in file backano.vsm

IC:\smith\wusim)

[

Figure 16. VSM Netlist Tool. The Schematic Name is

“backano” and the back annotation file name is “lay-
outl.dtb.”

By running VSM, a “VSM" file is created. The “.VSM” file
must be loaded into the ViewSim program. This is done in

IPBUF

IFPBUF

AN1592

ViewSim, by pulling down the “Find” menu and selecting “Load
ViewSim Netlist”. Then enter the name of the desired “.VSM”
file (see Figure 17). In this example, the ViewSim netlist file is
called “backano.vsm.” The MPA Design System generated
delays will now be included in the simulation net list.

buckuno vsm

bac kull() vsin

€3 BACKANO
2 PKT
€1 SCH
€1 SYM

ANDOUT

Figure 18. The Sample Circuit, “backano” Used to Ex-
plore Simulation Before and After Back Annotation.

Time {(Seconds)

Figure 19. Before Back Annotation. ANDB Going
High Ripples Through All Three AND Gates and
the Output Instantaneously.

MOTOROLA MPA DATA — DL201 REV 2
4-143

AN1592

backanu.\a}f‘\rﬁ D

f
|
|

I ey

Time (Seconds)

Figure 20. After Back Annotation of Place and Route
Delays. ANDB Going High Ripples Through Q1,2 & 3
with Delays, and When Going Low, Takes Q3 Low First.

In Figure 20, ANDB goes high at time 20 and ripples Back Annotation and Logic Reduction

through the AND tree (Q1, Q2, Q3) with the final output The MPA Design System does some “bubble pushing”
ANDOUT going high about 16n§ later. When ANDB drops, the during the retargeting / fitting of the logical design into the
third AND gate (Q3) is the first to fall because in this physical implementation. In some cases, redundant gates in
implementation it happened to be placed closer to the ANDB the schematic design are eliminated in the physical layout.

input than AND gates Q1 & Q2. With ANDA held high, gate When this occurs, back annotation proceeds as before with
- delay is the limiting factor for a rising ANDOUT and path delay the resulting delays being added only to the input pin of the

is the limiting factor for a faling ANDOUT. most downstream logic element not eliminated in the
retargeting / fitting process.

QRrBUF

Figure 21. 'i‘he String of Inverters will bé Removed During Place and Route.

In the example above, the 4 inverters are eliminated in the OPBUF’s input pin. The back annotated simulation netlist has
retarget / fitting process. The wire delay between the 4 zero delay inverters (just as the pre—back annotation netlist
remaining IPBUF and OPBUF gets back- annotated to the had) followed by the OPBUF with the real world delay.

W} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

4-144

11/96

AN1595
Application Note

Programming Large Configuration
Files into Smaller Serial PROMs

Prepared by
Douglas M. Shade
Motorola Programmable Logic Products

© Motorola, Inc. 1996

4-145

@ MOTOROLA

REV 0

AN1595

Programming Large Configuration Files into Smaller Serial EPROMs

Introduction

This application note describes methods for programming
large configuration files into. lower capacity serial PROMs.
Three source file formats are demonstrated along with three
target PROM programmers. BP Microsystems BP-1200
programmer with version 3.19 software, Data 10 Unisite at
software version 5.20, and Logical Devices ALLPRO-88
programmer at version 2.70 are all demonstrated. While your
programmer and software version numbers may be different,
the concepts demonstrated here are generally applicable. The
reader is assumed to have some familiarity with the
programmer of interest.

An MPA1064KE was selected as the target FPGA device.
Configuration files in Intel Hex format (1064.1HD), Motorola S
Record format (1064.MS1) and a generic ASCII Hex format
(1064.AHF) were all generated from the source design. Serial
PROMs have the characteristic of reading out the bits of a byte
in the opposite order from which they were programmed in. To
accommodate this behavior, it is required that you select
“Serial PROM (reverse bit ordering)” in the Tools —> Options
—> Configuration panel of the MPA Design System Software,
Figure 1.

The MPA17128 Serial PROM was selected as the target
PROM. The MPA1064 was selected as the target array and
requires a total of 202072 bits for a complete configuration
image. Since an MPA17128 has a capacity of only 128k bits,
two will be required. For more details on the data formats and
device sizes, please reference the Motorola Programmable
Array data book (DL201), the section MPA1000 Configuration
Data Format.

Using the BP Microsystems BP-1200

Once you select the desired PROM using the “Select”
pull-down menu, in this case an MPA17128 in a DIP package,
you should set the programmable reset polarity to the desired
value as shown in Figure 2. Use the Device —> ResetPol
menu.

Using the Device —> Options menu as shown in Figure 3,
set the “Data path width” to 1, the “Number of banks” to 2, and
the “Programming mode” to SET.

Figure 1. Select “Serial PROM” When Building a
Configuration File for the MPA
or Other Families of Serial PROMs

M

MOTOROLA MPA DATA — DL201 REV 2
4-146

U3.19 DOS (C) 1996 BP Microsystems, Inc.

AFS Buffer Configure YN Info JobMaster Macro Pause Quit Select
Blank Compare Handler Mark Options Program Read Sum Uerify

Use this screen to control the options that will be
programmed into your device with the Program command.
Reset Polarity is active: JHHj LOW

J93JY CANCEL

Buffer: Empty

bavice:

Motorola MPA17128 Size: 4000x8H Pins: 8
Config: BP-1208/32,/5M48D LPT1 Test-Twice Blank-Check Verify-Twice Check-IDs

{iHelp HiIWhen done [F¥Next field FMWTo cancel

Figure 2. Selecting the Programmable Reset Polarity to Be “High”

U3.18 DOS (C) 1996 BP Microsystems, Inc.

Blank Compare Handler Mark U3STIY Progr

AN1595

AFS Buffer Configure [[IEEA] Info JobMaster Macro Pause Quit Select
am Read ResetPol Sum Uerify

———————————————————— Buffer Se
Buffer offset: 0

Clear buffer bhefore reading:

- Sets of E
Data path width (number of EPR

Number of banks: 2
Programming made: SINGLE S
. - Command Exe

Blank check before programming

Insertion

Check electronic identifiers:
DECIMAL IEE}

: DISABLE
Uer ify after programming: NONE ONCE

Continuwity test: DISABLE IEIIRA

ttings

NO
PROMs
DMs): 1

TR R) T r———

Test

DISABLE | AUTO-SELECT
i CANCEL

Buffer: Empty
Device: Motorola MPA17128

Size: 4008x8H Pins: 8

Config: BP-1200,/32/SM48D LPT1 Test-Twice Blank-Check Verify-Twice Check-IDs

FHelp FEfIWhen done [EINext field F¥¥To cancel

Figure 3. Setting the “Buffer Settings” to Correctly Handle Multiple Serial PROMs

The next step is to read in the source configuration file. For
this example the ASCIlI Hex format file was selected,
1064.AHF. The final step is to program as normal. The
programmer will prompt you to insert a blank device ‘0’. After
successful programming and verification of the first PROM,
the programmer will then prompt for device ‘1"

That's all there is to it. The BP-1200 handles the chore
easily. If this is something you intend to do on a regular basis
with your programmer, you might consider writing a macro
using the Macro menu. A sample macro for this procedure is
shown in Figure 4.

MOTOROLA MPA DATA — DL201 REV 2

4-147

AN1595

;jMacro file V3.19 for BP-1200 generated 10/08/96 11:08:11.

/Select
Device selector: Motorola MPA17128
Package type: DIP
Family shown: All
: ACCEPT
/Device/ResetPol
Reset Polarity is active: HIGH
: ACCEPT
/Device/Options
Buffer offset: 0x0
Clear buffer before reading: YES

Data path width (number of EPROMs): 0x1

Number of banks: 0x2
Programming mode: SET
Blank check before programming: ENABLE
Verify after programming: TWICE
Continuity test: ENABLE
Check electronic identifiers: ENABLE
: HEX
: ACCEPT

/Buffer/Load
Directory: c:\sch\twosite\top*.ahf
File to load: 1064.AHF
Type: STRAIGHT
Clear buffer before loading: YES
Lowest address to load: 0x0
Highest address to load: Ox7fffff
Load address in buffer: 0x0
: HEX
: ACCEPT

/Device/Program
: ACCEPT
: ACCEPT

;End of file

Figure 4. TWOPROM.PGM, A Sample BP-1200 Macro File

The BP-1200 software does a good job of automatically
detecting the configuration file formats automatically once a
file has been selected. There are some limitations to be aware
of however. The MPA Design System allows you to specify
“Line Length” when using the ASCII Hex file format. A line
length of 0 causes an .AHF file to be written out with no
“newline” characters inserted anywhere in the file. This fools
the BP-1200 software into thinking it is looking at a “binary” file
type, which is incorrect. Setting the line length option to 40,
results in an .AHF file in which 40 configuration bytes are
represented on each line of the file (80 ASCII characters
followed with a “newline” character). This setting seems to
work well with the BP-1200’s automatic file type detection
(and most text editors as well).

Using Logical Devices ALLPRO-88
Using the ALLPRO-88 to perform this task is only slightly

more complicated. Select the device and the source file type
and name as you normally would. In this example an
MPA17128 DIP was used. The source file selected was an
Intel Hex format file, 1064.IHD. After selecting the source file,
the ALLPRO prompts you for additional input into the
“Download Parameter Editor” window, Figure 5. Unlike the BP
Microsystems software there is no direct entry for specifying
“Banks”. One method then of splitting the configuration file
between two PROMSs is to read in the source file once,
ignoring all data extending past the upper physical address
range of the PROM and programming the device; then read in
the source file a second time, this time skipping past the
previously programmed data.

Figure 5 shows the appropriate settings for “start file
address” and “end file address for the bank'0’ serial PROM.
Figure 6 likewise shows the settings for the second or bank‘1’
serial PROM.

M

MOTOROLA MPA DATA — DL201 REV 2
4-148

AN1595

Download Parameter Editor

of devices in set . . 1
current device 0
start file address . . 0
end file address . . . 3fff
start device address . 0

| |
| |
| |
| |
| |
| |
| nibble to download . . 2 |
| |
l |
| |
| |
| |

: \PROMFILE\1064 .IHD |
B ity Message Center Operator Input-————---—-- +

|
Use cursor keys to move highlight |
Type in a new value and press Enter |

|
Press Fl for help |
Press F10 when done. |

I

Figure 5. “Start” and “End” File Addresses for the First MPA17128, Bank ‘0’

Download Parameter Editor

+ +|
| il
| # of devices in set . . 1 I
| current device 0 1
| start file address . . 4000 |
| end file address . . . TEEE ||
| start device address . 0 |
| nibble to download . . 2 |l
| I
| I
| I
[I
I Il
+ C:\PROMFILE\1064.IHD |

o] Message Center ++ Operator Input----------—-— +

Use cursor keys to move highlight
Type in a new value and press Enter

|
|
|
|
| Press F1 for help
|
|

Press F10 when done. >
>
|
e |ALLPRO 88 Universal Programmer - v2.70]

Figure 6. “Start” and “End” File Addresses for the Second MPA17128, Bank ‘1’

MOTOROLA MPA DATA — DL201 REV 2
4-149

AN1595

Fuse Map Editor

| |
Il 4000 - 1 I
I I
I I
[[
I I
I I
I [
I I
I I
I I
[I
I I
| +-Addr: 4000 Reset Polarity-+|
B Message Center Operator Input----——------ +|
I Help Screen 2 I I
I [I
[IF1 help I y
| |F3 £ill I il
| |F5 goto F6 search I i
| |F7 prev array | > |
| |F9 search next F10 done | 1> I
| + |
B |ALLPRO 88 Universal Programmer - v2.70]|

Figure 7. Setting the Programmable Reset Polarity to Be Active High

As always, the user should be certain that the
programmable reset polarity is set to the desired level. When
using the ALLPRO, edit the data, then use F8 for access to
“next array”. Setting location 4000 of the MPA17128 to a 1
programs reset polarity to be active high. Figure 7 shows how
the “Fuse Map Editor” should look.

Using the DATA-IO Unisite

The Unisite’s large feature set can make the user interface
a bit cumbersome to navigate, however the task is much the

FILENAME:
MANUFACTURER:Motorola
I/0 FORMAT: Motorola S3

RAM AVAIL:

1024 OF 1024KB
PART #: 17128

same as described above. The basic steps begin with the
selection of a device, again the MPA17128 DIP was used. The
next item to select is the file translation format. In this example
a Motorola S Record format configuration file was used,
1064.MS1. For this particular version of the Unisite software,
the appropriate translation code is 95.

The next step is to “download” the configuration file for the
first (bank ‘0’ PROM. Figure 8 shows the appropriate settings.
In this example the Unisite is connected to a PC and the
“Transfer” command was used.

REV: 5.20
FAMILY/PIN CODE:

5.20 EM1
206 / 226

- Data transfer complete. Data sum = 000063EB (8-bit)

TRANSFER MENU DOWNLOAD DATA FROM HOST

Download data Source (Remote,Terminal) T
Upload data Destination (RAM, Disk) R
Compare data

Format select I/0 Translation Format 95
Input from disk I/0 addr offset 0
Output to disk Memory begin address 0

Serial output User data size 62AB
Download host command

transfer c:\promfile\1064.msl

PF2:

Num

PFl: Main menu Prev menu PF3 or ?: Help

Bin

Figure 8. No “I/O Addr Offset” Is Required for Reading in the Configuration File for the Bank ‘0’ PROM

M -

Note the “User data size” hex 62AB is considerably larger
than the physical capacity of the MPA17128 (hex 4000 byte locations = 128K bits)

MOTOROLA MPA DATA — DL201 REV 2
4-150

Once the entire configuration file has been read in, program
the PROM as you normally would. The only out of the ordinary
message you should see in Figure 9 is that the PROM was

FILENAME:
MANUFACTURER:Motorola
I/0 FORMAT: Motorola S3

PART #: 17128

| OPERATION COMPLETE. Partial Set Sumcheck =

MAIN MENU
Select device Source (RAM,Disk)
Quick copy

Data word width
Load device Next device
Total set size

Program device User data size

Next operation begins at

Verify device
More commands
Device block size

RAM AVAIL: 1024 OF 1024KB

PROGRAM MEMORY DEVICE

AN1595

recognized as receiving only a “partial set”. The “User data
size” exceeds the “Device block size”.

REV: 5.20 5.20 EML
FAMILY/PIN CODE: 206 / 226
00005EE5 (8-bit)
(non—-default)
R
Set auto-increment N
8
1
2
62AB
0
4004

Return: Execute PF4: Select mode/options
PFl: Main menu PF2: Prev menu PF3 or ?: Help
Num Bin

Figure 9. After Programming the First (Bank ‘0’) PROM, the Unisite Returns
a “Partial Set Sumcheck” Message; There Is More Data Than the PROM Can Hold

The next step after successful programming of the bank ‘0’
PROM is to read in the source configuration file once again;
this time using an “I/O addr offset” as shown in Figure 10. In
this case, the offset used was equal to the capacity of the
previously programmed serial PROM, 4000x byte locations.
(The Unisite reports that the “Device block size” as being

4004. The first 4000 locations of an MPA17128 are available
for user data, with the last 4 bytes reserved for programming
the reset polarity.) After the second read of the configuration
file, the Unisite recognizes that less data was read in than the
selected PROM has room for and issues an appropriate
warning to the user “Partial or no transfer performed”.

FILENAME: RAM AVAIL: 1024 OF 1024KB REV: 5.20 5.20 EM1
MANUFACTURER:Motorola PART #: 17128 FAMILY/PIN CODE: 206 / 226
I/0 FORMAT: Motorola S3
- WARNING: Partial or no transfer performed. Data sum = 000063EB (8-bit)
TRANSFER MENU DOWNLOAD DATA FROM HOST
Download data Source (Remote,Terminal) T
Upload data Destination (RAM, Disk) R
Compare data
Format select I/0 Translation Format 95
Input from disk I/0 addr offset 4000
Output to disk Memory begin address 0
Serial output User data size 22AB
Download host command
transfer c:\promfile\1064.msl
PFl: Main menu PF2: Prev menu PF3 or ?: Help
Num Bin

Figure 10. Setting “I/O Addr Offset”, After Reading in the Larger File, the Unisite Warns You About a “Partial...Transfer”

Now that the second half of the configuration data set has
been read in, you're almost ready to program the bank ‘1’
PROM. Note that the “PROGRAM MEMORY DEVICE”
window of Figure 11 shows the “User data size” to be less than

the “Device block size”. Attempting to program with these
parameters will result in the “OPERATION FAILED” error
shown Figure 12.

MOTOROLA MPA DATA — DL201 REV 2

4-151

AN1595

FILENAME: RAM AVAIL: 1024 OF 1024KB REV: 5.20 5.20 EM1

MANUFACTURER:Motorola PART #: 17128 FAMILY/PIN CODE: 206 / 226
I/0 FORMAT: Motorola S3
/
MAIN MENU PROGRAM MEMORY DEVICE (non-default)
Select device Source (RAM,Disk) R
Set auto-increment N

Quick copy

Data word width 8
Load device Next device 1

Total set size 1
Program device User data size 22AB

Next operation begins at 0
Verify device
More commands

Device block size 4004

Return: Execute PF4: Select mode/options

PFl: Main menu PF2: Prev menu PF3 or ?: Help

Num Bin

Figure 11. After Reading in the Partial (Second Part) Configuration File, Note the
“User Data Size” Is Reported to Be Something Less Than the Capacity of the PROM

FILENAME: RAM AVAIL: 1024 OF 1024KB REV: 5.20 5.20 EM1
MANUFACTURER:Motorola PART #: 17128 FAMILY/PIN CODE: 206 / 226
I/0 FORMAT: Motorola S3

\ OPERATION FAILED: Partial device operation is not allowed

MAIN MENU PROGRAM MEMORY DEVICE (non-default)
Select device Source (RAM,Disk) R
Set auto-increment N

Quick copy

Data word width 8
Load device Next device 1

Total set size 1
Program device User data size 22AB

Next operation begins at 0

Verify device
More commands

Device block size 4004

Return: Execute PF4: Select mode/options

PFl: Main menu PF2: Prev menu PF3 or ?: Help
Num Bin

Figure 12. Attempting to Program the Device With the “User Data Size” Less Than the “Device Block Size”
Results in an “OPERATION FAILED”. The Unisite Will Normally Refuse to Program Just a Portion of a Device

%} 7 i EE?QIL MOTOROLA MPA DATA — DL201 REV 2

4-152

AN1595

FILENAME: RAM AVAIL: 1024 OF 1024KB REV: 5.20 5.20 EM1
MANUFACTURER:Motorola PART #: 17128 FAMILY/PIN CODE: 206 / 226
I/0 FORMAT: Motorola S3 .
\ OPERATION COMPLETE. Sumcheck = 000010B4 (8-bit)
MAIN MENU PROGRAM MEMORY DEVICE (non-default)
Select device Source (RAM,Disk) R
Set auto-increment N
Quick copy
Data word width 8
Load device Next device 1
Total set size 1
Program device User data size 4004
Next operation begins at 0
Verify device
More commands
Device block size 4004
Return: Execute PF4: Select mode/options
PFl: Main menu PF2: Prev menu PF3 or ?: Help
Num Bin

Figure 13. Hand Editing the “User Data Size” to Match the “Device Block Size” is a Simple Work Around;
Allowing You to Program the Bank ‘1’ or Second PROM

Figure 13 shows the completion of a successful
programming of the bank ‘1’ PROM; after the hand edit of the
“User data size” to match the “Device block size”.

The configuration data for the second (bank ‘1’) PROM only
occupied the first 22AB locations. Hand editing the “User data
size” to 4004 results in programming the addresses 22AB and
above with whatever happened to be in the Unisite’s RAM at
the time. This will cause no problems for the MPA at
configuration time, so long as addresses 4000-4003 inclusive

CURSOR AT LOCATION: 00004005

are set appropriately.

As always, the user should be cautious about how the
programmable reset polarity is being set prior to programming
both the bank ‘0" and ‘1’ devices. When using the Unisite, the
user is required to go in and manually edit the locations
appropriate to the particular PROM. For the MPA17128, the
programmable reset polarity is controlled by the contents of
40004003 as shown in Figure 14.

8 BIT ADDRESSING

HEXADECIMAL ASCII
ADDRESS -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F 0123456789ABCDEF
00004000 FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
00004010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00004020 00 00 00 00 00 00 00 OG 00 00 00 00 00 0O 00 00
00004030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
. 00004040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 GO
00004050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00004060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00004070 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 OO
00004080 00 00 00 00 OC 90 00 00 00 00 0O 00 00 00 00 00
00004090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O
00004020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000040B0 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 0O
000040Cc0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000040D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O
000040E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O
. 000040F0 00 00 00 00 00 00 00 00 00O 0O 00 00 00 00 00 OO
~P: Prev block ~E: Exchange with
~N: Next block ~F: Search pattern ~U: Restore block
“D: Delete byte “B: Jump to address 4000 PF2: Exit editor
~T: Start/stop insert Tab: Toggles

between Hex/ASCII mode

Num Bin

Figure 14. Programming the Locations 4000-4003 Inclusive With FF sSelects Active High
Reset Polarity. Setting These Locations to 00 Would Yield Active Low Reset Polarity

MOTOROLA MPA DATA — DL201 REV 2
4-153

AN1595

The Unisite’s user interface is a bit more cumbersome than Appendix - Sample File Formats
the others described, but it is an extremely robust and capable
machine. With the help of this application note you should be
able to work your way through programming a large
configuration file into smaller serial PROM devices with the
Unisite or any other programmer using any one of the file
formats available to you from the MPA Design System.

The heads and tails of all the available configuration file
formats from the MPA Design System version 2.3 are
presented in this appendix. The target device for each of these
files was the MPA1064 array. “Serial PROM (reverse bit
ordering)” was selected for each of these formats. An
excellent detailed reference for these and other generic file
formats can be found in the documentation for the Data I/O
Unisite programmer.

Intel Hex (.IHD)
:020000020000FC
:20000000C8C902B80095
:20002000C0
:2000400000000000000000000020004000040000000000000000000000000000000000003C
[center of file deleted]
:2062600000000000004000000400DA
:20628000FE
:0B62A00000000000000000000000559E
:00000001FF
Looking at the first line of the .IHD format file:
:020000020000FC
<- 1is the start character
02 <- is the byte count

0000 <- is the address for the data
02 <- is the record type of Extended Address
0000 <- is the offset address

FC <- is the line’s checksum
Looking at the second line:
:20000000C8C902B80095
: <- is the start character
20 <- is the byte count
0000 <- is the address for the data
00 <- is the record type of Data
C8C902B8 <- represents the MPA1064’s JTAG ID (bit order reversed)
00 <- is the data type record for the following config data
“95” is the line’s checksum -> 95
Looking at the last line:
:00000001FF
<- is the start character
00 <- is the byte count
0000 <- is the address for the data
01 <- is the record type of End Record
FF <- is the line’s checksum

Motorola S1 (16 bit address, .MS1)

$1230000C8C902B80091
$123002000BC
$1230040000000000000000000200040000400000000000000000000000000000000000038
[center of file deleted]
$123626000000000004000000400D6
$123628000FA
S10E62A000000000000000000000559A
S9030000FC

Looking at the first line of the .MS1 format file:
$1230000C8C902B80091
S1 <- is the start character specifying the address field has 4 characters (16 bits)

23 <- is the byte count (35 decimal) for data, address and line’s checksum
0000 <- is the address for the data
C8C902B8 <- represents the MPA1064’'s JTAG ID (bit order reversed)
00 <- is the data type for the following data (00 = Sequential)
“91” is the line’s checksum -> 91

W} 7 i E@ MOTOROLA MPA DATA — DL201 REV 2

4-154

AN1595

Looking at the last line:
S9030000FC
g9 <- is the start character specifying end of file
03 <- is the byte count for data, address and line’s checksum
0000 <- is the address field
FC <- is the line’s checksum

Motorola S2 (24 bit address, .MS2)

$224000000C8C902B80000000000000000000000000000000600000000000000000000000090
$22400002000BB
$224000040000000000000000000200040000400000000000000000000000000000000000037
[center of file deleted]
S22400626000000000004000000400D5
$22400628000F9
S20F0062A0000000000000000000005599
S9030000FC
Looking at the first line of the .MS2 format file:

$224000000C8C902B80090
S2 <- is the start character specifying the address field has 6 characters (24 bits)

24 <- is the byte count (36 decimal) for data, address and line’s checksum

000000 <- is the address for the data
C8C902B8 <- represents the MPAl064’s JTAG ID (bit order reversed)
00 <- is the data type for the following data
“90” is the line’s checksum -> 90
Looking at the last line:

S9030000FC
S9 <- is the start character specifying end of file

03 <- is the byte count for data, address and line’s checksum

0000 <- is the address field
FC <- is the line’s checksum

ASCII Hex (.AHF)

C8C902B800
0020004000040000
00
[center of file deleted]
004000000400000000000000
00
00000000000000000000000000000000000055

This file format contains only the data intended to be checksums or record types are included. Each byte of
transferred to the MPA array during the configuration process. configuration data is represented in Hex format by two ASCII
No file specific items such as starting addresses, file characters.

Looking at the first line of the .AHF format file:
C8C902B800
C8C902B8 <- represents the MPA1064’s JTAG ID (bit order reversed)

00 <- is the data type for the following data (00 = Sequential)
0000... <- the remainder of the file is all config data and ECBs

ASCII Binary (.ABF)

11001000110010010000001010111000
00
00
[center of file deleted]
00
00
0001010101

MOTOROLA MPA DATA — DL201 REV 2

4-155

AN1595

Like the .AHF format above, the .ABF format contains only
data to be transferred to the MPA array. The ASCII Binary file
is not a readable format for many programmers, but is offered
as a convenient file format for any custom post processing you

Looking at the first line of the .ABF format file:

may want to do to a configuration file. Instead of representing
8 bits as two ASCII Hex characters as the .AHF file does, each
bit is represented as an ASCII ‘1’ or ‘0.

11001000110010010000001010111000

1100 <- hex ‘C’
1000 <- hex '8’
1100 <- hex ‘C’
1001 <- hex ‘9
0000 <- hex ‘0
0010 <- hex ‘2’
1011 <- hex ‘B’

1000 <- hex '8’

Bit Order Reversing

When targeting a serial PROM, it is important to select
“Serial PROM (bit order reversing)” from the Tools —> Options
—> Configuration menu (Figure 1). This option reverses the
order of the bits within each byte. A common ‘gotcha’ for
novice users is to forget to take this option and program a
serial PROM with a ‘standard’ PROM file. If this should
happen, the MPA will fail to boot. The first 4 bytes of
configuration data will be read in by the MPA, and the MPA will
not recognize those first 4 bytes as matching the expected
Device ID. The MPA will assert the error line and hait
configuration.

Standard

If in doubt, a quick visual check of your configuration file will
tell you whether or not bit order reversing was selected. The
two examples below show the first lines of a standard and a bit
order reversed .AHF format configuration file. In the standard
version, the JTAG ID (also referred to as the Device ID) for an
MPA1064 is clearly seen as 1393401D. The Serial PROM
version for the same device is bit order reversed. The Device
ID’s for the entire family of MPA devices are listed in the data
book (DL201).

1393401D00

Serial PROM, Bit Order Reversed

C8C902B800

Configuration Data Checksums vs. Configuration File Checksums

Another point of confusion when examining configuration
files in detail is the topic of checksums or ECBs (Error Check
Bytes). Most configuration file formats have some facility to
ensure that the entire file was transferred to the programmer
without error. Usually in the form of checksums, these bytes
are normally appended to each line of the configuration file or
may be appended to the end of the file.

The MPA family of FPGAs includes a similar safety feature
in its raw configuration data as well. The MPA design system
calculates an ECB for each physical row of configuration data.
When the configuration data is read into the array, the MPA
itself re—calculates an ECB based on the data read. This
calculated ECB is compared to the ‘read’ ECB. If there is a
match, the configuration is allowed to continue. If any errors

are detected the configuration process halts immediately,
protecting the MPA. This system of ECBs ensures that valid
data is passed from the PROM to the MPA much in the same
way that checksums ensure that data is passed from a file to a
device programmer.

Each of the 183 rows of configuration SRAM of the
MPA1064 requires 1096 bits (137 bytes). An additional ECB
byte is calculated and added to the configuration data by the
MPA Design System software for each of the rows. In the
annotated Serial PROM ASCII Hex file shown below, these
end of row ECBs are shown as bold characters for the first 4
rows of an MPA1064’s configuration SRAM. They are located
at addresses (modulo 138) + 4.

M7 (1

MOTOROLA MPA DATA — DL201 REV 2
4-156

AN1595

C8C902B800 <- These are (4) Device (JTAG) ID and (1) Data Type bytes
The array’s configuration data begins here

-> 00
0020004000040000
00
00750000000000000000000000000000000000
00
00
00
1100
00
00
00000000000000000000000000000000000011000000000000000000000000000000000000020000
00000000000000000000000000004000000000000000000000000000000008000000000000000000
00
00000000000000000000000000000000020000000000000000000000000000000000000098. ...

Figure 15. A Sample Serial PROM ASCII Hex File Targeted to an MPA1064.
End of Configuration SRAM Row ECBs Are Shown in Bold

Additional details on configuration data for each of the
members of the MPA family can be found in the Motorola
Programmable Array data book (DL201/D).

MOTOROLA MPA DATA — DL201 REV 2
4-157

3/97

AN1604
Application Note

Using Exemplar Logic’s Galileo
with the MPA Design System

Prepared by
Philip J. Rauba
Motorola Field Applications Engineer

© Motorola, Inc. 1997

4-158

@ MOTOROLA

REV O

AN1604

Using Exemplar Logic’s Galileo with the MPA Design System

Purpose

The goal of this application note is to guide a Field
Programmable Gate Array (FPGA) designer on the use of
Exemplar Logic’s Galileo synthesis tool in conjunction with the
Motorola Programmable Array Design System (MPADS) when
targeting a FPGA project to the Motorola Program— mable
Array (MPA) family. Exemplar Logic’s Galileo Logic Explorer is
a powerful synthesis tool that supports the Verilog and VHDL
Hardware Description Languages (HDL). The advantages of
using HDL design entry along with a synthesis tool such as
Galileo, as opposed to using schematic capture based tools,
include faster time to market, portability to other technologies,
and reuseability of designs. The Motorola fine grain
architecture is very synthesis friendly and takes advantage of
the same type of optimizing algorithms used for gate arrays,
yielding designs with higher utilization and faster speeds as
opposed to coarse grain architectures.

Prior knowledge of coding with Verilog or VHDL HDLs and
of using the MPADS place and route tools is assumed. Note
that file and directory syntax mentioned within this application
note are in reference to a DOS based PC platform. Reference
to directory paths assume that Galileo and MPADS was
installed at the default directories of c:/exemplar and c:/mpa
respectively. Within the DOS environment file names are
limited to eight characters with a three character file extension
identifying the file type. The HDL design file names mentioned
in this article are recommendations and are named using the
design convention that Verilog, VHDL, and EDIF source
filenames match the Verilog module name or VHDL entity
name instantiated within the design’s file. Text enclosed within
brackets like <design>.v indicates that the user should provide
a name to substitute for the text included within the brackets,
but not including the brackets themselves.

HDL Design Environment

Figure 1 shows the HDL design flow for the Galileo
synthesis tool and the MPADS place and route tool. Designs
typically start with the development of HDL source code with
the suggested filenames designated as design.v for Verilog or
design.vhd for VHDL. As the source code grows in size, it is
often necessary to verify that the code is logically performing
as intended through the use of a Verilog or VHDL simulator.
Simulators are highly recommended and are readily available
from third party vendors, such as the Model Technology
Incorporated V-System VHDL simulator from Exemplar Logic.
When verifying HDL code with a simulator, test bench code is
commonly developed that can provide system clock sources
with test vectors and is designated with the suggested
filename stimulus.v for Verilog or stimulus.vhd for VHDL. The
HDL test bench code will include the instantiation of the HDL
source code under test with the instance name of “u1” and
module (Verilog) or entity name (VHDL) of “design”. Please
refer to the section entitled Verilog Simulation for more
clarification.

Once the source code has been verified through simulation,

it can be synthesized with Galileo producing an EDIF 2.0.0
netlist with the filename designated as design.edf. Galileo

processes the design through three steps including:
synthesis, architecture specific optimization, and technology
mapping. MPADS is then used for importing the EDIF netlist,
automatic timing driven place and route, bitstream generation
(configuration), and back annotation to a structural Verilog
(layout1.v) or VHDL 1076 (layout1.vhd) netlist.

HDL Test Code
1(

stimulus.v or .vhd

HDL Code

Simulation Tool I

design.v or .vhd

Galileo

design.edf

MPADS

layout1.vba or
layout1.vhd

Figure 1. HDL Design Flow

Structural netlists can be used by a simulation tool to post
simulate the final placed and routed design and include the
intrinsic gate and path delays of the MPA device. Post
simulations will show the true timing of the device, which are
based upon highly accurate RC spice models.

Hierarchical Designs

When starting a new Verilog or VHDL design, the designer
has a choice of using a flat or a hierarchical design
methodology. If the design is relatively small, it may be easier
to enter the source as one flat design file; however, as a
design gets larger, one should consider using a hierarchical
approach.

The advantages of using a hierarchical design
methodology are: One, the design will be more manageable in
terms of file and directory structures. Two, the reuse of
commonly used pieces of code such as modules in Verilog
and entities in VHDL, will result in code efficient design. Three,
the designer has control on how each module of the code will
be synthesized. Four, the synthesis of individual modules of
the design will put less demand on your computer system
memory, speeding up compile times. Five, design changes will
require only the modules that changed to be resynthesized,
instead of the whole design, again speeding up compile times.

Essentially the top module or entity of a design instantiates
the individual pieces of the design with all of the appropriate
interconnections. The submodules will be referenced in the
top module and contain empty code sections with just
declarations of inputs and outputs. These submodules will
then be redeclared within individual files that contain the actual
code of the design. File names must be the same names as
the modules or entities.

When working with hierarchical designs, the designer
should not use vector or bus syntax for input or output signals

MOTOROLA MPA DATA — DL201 REV 2
4-159

AN1604

between modules. If a bus or vectors are used, Galileo will
separate and rename them into individual signals, causing
possible interconnection problems, when imported into the
MPADS place and route tools.

The hierarchical design methodology as described above
requires the top module and each submodule of the design to
be individually synthesized, producing muitiple EDIF netlists.
The Motorola place and route tool requires the type EDIF 2.0.0
netlist and has multiple netlist reader capability. For designs
with multiple netlists the MPADS reader requires that each
EDIF file name matches the module name and will search the
design directory for modules which are referenced within the
top module’s EDIF netlist. If you are going to use multiple EDIF
netlists for your design, you will need to set up MPADS to
enable this feature. By using your favorite editor, open the
DOS text file:

c:/windows/pmel.ini
Change the line from:
#DPLD_MULTI=TRUE
To:
DPLD_MULTI=TRUE

Note that if you are not going to use a hierarchical
methodology, you will not have to modify the pmel.ini file, since
after installation the MPADS tool defaults to read in a single flat
EDIF netlist.

Galileo MPA Library Setup

After Galileo and the MPA Design System (MPADS) has
been installed, Galileo will need to be setup before synthesis is
invoked. First, copy the MPADS supplied synthesis libraries
from c:/mpa/exemplar/p_mpa20.syn and p_mpa23.syn to
c:/exemplar/lib. Second, create a file called
c:/exemplar/data/exemplar.rc which includes the line:

Technology: IO p_mpa none none Motorola MPA1000

You do have the option of adding this line to Galileo’s
supplied file called c:/exemplar/data/master.rc, but this file will
be overwritten whenever a new version of Galileo is installed.

Galileo synthesizes a design using the gate primitives that
are referenced within the Motorola supplied libraries.
Descriptions of the MPA gate primitives are available within
MPADS by invoking Help on Libraries. If Galileo’s graphical
user interface (GUI) is being used to invoke the synthesizer,
the exemplar.rc file is used for enabling the listing of
Motorola’s MPA library in the menu of the available target
technologies.

Galileo Control File

Galileo has the capability for the designer to guide the
synthesis through an optional control file designated as
<input_file>.ctr. When synthesis is invoked, Galileo will search
for the control file with the same filename as the input design
(by default) and will execute the commands contained within
the file.

The control file is particularly useful for assigning clocks
and resets to the eight low skew networks that are available in

the MPA family. Clock and reset pad inputs can be assigned to
the low skew network with the ipcik (input pad clock) and iprst
(input pad reset) MPA primitives using the control file
commands:

buffer_sig ipclk <clock_name>

buffer_sig iprst <reset_name>

Assignment of internally generated clocks and resets may
also be connected to the low skew network with the aclk (array
clock) and arst (array reset) MPA primitives using the control
file commands:

buffer_sig aclk <clock_net>

buffer_sig arst <reset_net>

Note that these assignments will use up one of the MPA
clock 1/0O pads for each command.

Another resource that is available in the MPA architecture is
an eight bit peripheral bus, that runs around the outside 1/0
boundary. The peripheral bus is a resistive path, slower than
the low skew network, but useful for assigning tristate /O
buffer output enable signals. Connections to the bus are made
through the apbuf (array to peripheral bus buffer) primitive and
can be assigned using the control file command:

buffer_sig apbuf <oe_net>

A sample control file is available after MPADS installation,
which can be used as a template for new designs, and is
called c:/mpa/exemplar/control.txt.

It is clearly important to assign clocks and resets to the low
skew network in order to achieve a high speed design, but it
may be unclear why the control file is needed. When writing
HDL source code, the inclusion of complex I/O, clock buffers,
or reset buffers specific to one vendor is not often desirable,
since it makes the code lose portability. The Galileo control file
is an attractive mechanism for instantiating the vendor specific
primitives into the design without touching the original source
code; thus, maintaining portability.

The Galileo control file, however, is not the only method of
configuring the clocks and resets within a design. MPADS has
a similar capability through a pin attribute file that is
designated as <design>.pat and will be discussed in detail
later. The decision on using the Galileo control file, the MPADS
attribute file, or possibly both, rests upon the designer. When a
design is synthesized, signal names are commonly replaced
by cryptic names such as N$1000. To make sure clock and
reset primitives get instantiated and hooked up correctly when
undergoing signal name changes during synthesis, the control
file is recommended. In cases of internally generated resets or
clocks, the designer may find that a signal name has changed
because of optimization with no way of identifying the correct
signal name within a control file. Here the designer should use
the MPADS pin attribute file.

Please refer to the Galileo Reference manual for additional
control file commands.

Galileo Synthesis Recommendations

A designer has the option of running Galileo from its
graphical user interface (GUI) or from a DOS batch command

M7

MOTOROLA MPA DATA — DL201 REV 2
4-160

file. For those unfamiliar to DOS batch commands, this
method requires a file to be created with the file extension .bat,
such as synth.bat, that contains a list of DOS commands that
the user wishes to execute. When double clicking on the batch
command file icon from the Windows Explorer, the list of
commands within the file are executed. Note that running
Galileo from a batch command is no longer supported on
Windows 3.X and only available to Windows 95 and Windows
NT users. The advantages of using a DOS batch command
file over a GUI when invoking Galileo are: One, the user can
execute multiple synthesize commands. Two, the user has a
documented step by step record on how a design is
synthesized and what Galileo synthesis options were used for
a particular design or module. Three, the user can save time
during design iteration by not having to set up the GUI each
time synthesis is required.

HDL designers should be aware of the type of gates that
are being generated by the synthesizer from the source code
they have written. This is particularly important to users who
are trying to optimize their design for speed. For example, in
the Boolean equation d=ae (bec), the input a is specified as the
last gating term in order to meet timing requirements. During
synthesis, Galileo’s optimization algorithms, if used, may
juggle the equation to d=(aeb)ec. Logically the equation is the
same, but timing wise it is not. To let the designer see the type
of gates that are generated and how they are connected, it is
helpful to generate structural Verilog or VHDL netlists in
addition to the EDIF netlist, needed by MPADS. These
structural netlists are far easier to read than an EDIF netlist
and review of them will give the designer insight on the critical
paths and structures of his circuit. Examples of the EDIF,
Verilog, and VHDL netlists are shown in Appendix A, B, and C
respectively.

Instead of reviewing netlists for critical paths, the user may
prefer to use the graphical timing analysis tools available in
Galileo. Exemplar Logic’'s Galileo Time Explorer includes
timing analysis, schematic viewing, and back annotation. A flat
pre—place and route MPA EDIF netlist can be analyzed by
Timescope and the critical timing paths can be graphically
reviewed by the designer using the Netscope schematic
generator and viewer.

Galileo Synthesis

Galileo requires a Verilog or VHDL source file designated
with the file name extensions .v or .vhd, respectively and an
optional control file with the file name extension .ctr. For ease
of discussion, the use of Galileo will be described from the
DOS batch command file perspective, instead of the Galileo
graphical user interface. The Verilog (line one) and VHDL (line
two) synthesis commands for the top mcdule of a hierarchical
or flat HDL source are:

gc design.v net.v —target=p_mpa —save
—edif_file=design.edf
gc design.vhd net.vhd —target=p_mpa —save

—edif_file=design.edf.

AN1604

The commands generate Verilog (net.v) or VHDL (net.vhd)
and EDIF (design.edf) netlists using eleven optimization
algorithms for the MPA family. The save option stores the
output of each of the eleven passes and records the results in
a log file designated as design.log. A sample UART design file
is provided during the installation of Galileo designated as
c:/exemplar/demo/uart.v and when synthesized produced the
following log:

Area Delay CPU
Pass (Gates) (ns) min:sec File
1 176 146 00:32 uart_1.vg
2 198 13.6 00:29 uart_2.vg
3 180 13.6 00:27 uart_3.vg
4 180 13.6 00:30 uart_4.vg
5 178 13.6 00:25 uart_5.vg
6 177 14.6 00:24 uart_6.vg
7 180 13.6 00:25 vart_7.vg
8 180 13.6 00:26 uart_8.vg
9 179 13.6 00:35 uart_9.vg
10 208 13.4 00:29 uart_10.vg
11 201 21.8 00:29 uart_11.vg

Note that the area is the number of MPA core cells and delay is
the worst case path core cell delay, not including the worst
case net delays. It is recommended to use the save option in
order to select the desired output based upon the design’s
needs. When optimizing a design for speed, it is not true that
selecting the optimization pass that has the smallest delay will
result in the fastest design. In most cases the opposite is true
in that the smallest area will produce the fastest design. The
smallest area will have fewer interconnections, thus less net
delays. In FPGA architectures the net delays have a far
greater effect on the speed of a design than the gate delays.
So select the optimization pass that has the smallest area, in
this case pass one will be the best candidate with a core cell
area of 176. The designer may find themselves selecting
several of the lowest area design outputs, trying them through
place and route, and picking the best at the end.

Getting back to the original synthesis commands, Galileo
uses default options when compiling a design targeting the
MPA family. The descriptions of these are explained in detail in
the Options and Switches section of Galileo’s Reference
Manual, but are listed here for completeness.

—area

—chip

—complex_ios

—control=<input_filename>.ctr

—effort=standard

—latch_detect

—report=slack_table

—wire_tree=worst
If you are involved in a hierarchical design, the synthesis of
individual submodules is needed and can be accomplished
with the following commands:

MOTOROLA MPA DATA — DL201 REV 2
4-161

AN1604

gc sub.v subnet.v —target=p_mpa —save —~macro

—edif_file=sub.edf

gc sub.vhd subnet.vhd —target=p_mpa —save —macro

—edif_file=design.edf.

The primary difference with these commands versus the
top module synthesis commands, listed earlier, is that the
—macro option is used to specify that this module or entity is
part of a hierarchical design. It implies that inputs and outputs
of the module or entity are not I/Os and are replaced by
internal buffers. Please note that the name “sub” is only a
suggestion and the naming of file with module or entity names
should be maintained.

As discussed earlier in synthesis recommendations, it was
stated that control over critical timing paths may be needed. In
these cases, consider the use of the remap option capabilities
of Galileo. This option does not use optimization in the
synthesis of the design, but merely maps the circuitry into MPA
primitives as specified within the HDL source code. Thus the
timing critical specification of the Boolean equation d=ae (bec),
will be retained. Again, emphasizing the fact that the designer
has to be aware of the output of the synthesizer and take into
consideration that careful processing of a design is needed for
speed critical design. When using the remap option, Galileo
will ignore the save option if it is also specified. With synthesis
complete, we proceed onto place and route setup.

MPADS .pat File Setup

The EDIF netlist produced by Galileo HDL development will
typically not include pin attributes for configuring the electrical
characteristics of the I/0 or timing attributes for optimizing the
design for speed. MPADS provides a method for doing these
via an attributes file designated as design.pat. During the
import of the EDIF netlists, MPADS will search for the .pat file
for preprocessing of the design. Attributes assigned in the .pat
file will be inserted into an internally generated netlist
designated as design.net and will override any attributes
contained in the EDIF netlist. The attributes that can be
assigned to a design are listed in Table 1.

Don’t be overwhelmed by all of these attributes, they are
simply provided to give you control over your design. Take a
few moments to get acquainted with the MPADS design
environment, invoking the graphical user interface. One of the
features of MPADS is its extensive on line help utility. Launch
help from the top help menu and select index. Follow the help
linking sequence: Reference Topic: Libraries, Input and
Output Pads, I/O Pads: Attributes, and then Attributes:
Attribute Glossary. Get familiar with these and then read on.

Table 1. Valid Attributes

Design Attached Place and Attached
Component Route Attributes I/0 Attributes
Net IGNORE_TIMING
CLUSTER_SEED
PLACE_PRIORITY
Symbol IGNORE_TIMING DPLD_PAD PLACE
or PULLUP or PULLDOWN
Formal Port DPLD_OPDRIVE
DPLD_OPLEVEL
DPLD_OPSLEW
DPLD_IPLEVEL
DPLD_PAD_PROPERTIES

MPADS .pat File Setup - I/O Setup

Using your favorite text editor or MPADS View Text File
editor, we are going to start configuring your 1/0. Open your
HDL top module design file and select all of your input and
output declarations and copy them into a new file called
<design>.pat, which must be located in the same file directory
as your EDIF netlists <design>.edf. Start assigning your input
clocks and resets to ipclk and iprst instance primitives
respectively, only if you have not already assigned them
through Galileo’s control file, by adding the .pat commands:

port <clock> instance ipclk

port <reset> instance iprst

If you mistakenly assigned ipclk and iprst primitives through
both the .ctr and .pat files, double assignment may occur,
adding an extra buffer delay within your design. Remember
that the ipclk and iprst primitives assign clocks and resets from
their input pads to the low skew networks within the MPA
family.

Assignment of inputs in the MPA family are on an individual
basis as TTL or CMOS level, so assign them accordingly
adding the .pat commands:

port <clock> attribute dpld_iplevel cmos

port <reset> attribute dpid_iplevel ttl

Note that TTL input level is the default input pin attribute,
but really should be specified for completeness.

Assignment of outputs, including bi—directional I/O, in the
MPA family are also on an individual basis and can be
configured with the attributes pullup, pulldown, iplevel (cmos
or ttl input level), oplevel (3V or 5V output level), opdrive (6ma
or 12mA ouput drive), and opslew (low or high slew output for
12mA drive only). It is recommended to use the pin attribute
pad_properties to assign all of the above mentioned
properties all at once with the following statement:

port <signal> attribute dpld_pad_properties
0,0,cmos,5V,12mA,high

The above command specifies that the output named signal
has the attributes of no pullup, no pulldown, cmos input level,
5V output level, 12mA source/sink, and high slew rate. For

M

MOTOROLA MPA DATA — DL201 REV 2
4-162

good design technique, configure all of your I/O by assigning a
pin attribute command for each one of your pad signalis.

User attribute assignments of the following are not
permitted:

opdrive 6ma and opslew low.

pullup 1 and pulidown 1.

The opdrive 6ma and opslew low selection is not permitted,
because slew control is only available on 12mA drive.

The following combination of user attributes on a single
bi—directional pad should be avoided, as it may produce
unpredictable results:

iplevel cmos and oplevel 3V.

Pad_place is another attribute that can be used for
configuring the /O to specify the pin assignment of a signal.
For new designs it is recommended that the pad_place
attribute should not be used and let MPADS select the pin
assignments during place and route, allowing for an optimal
design output. Pad_place attributes can be used for
production designs that require minor changes by copying
these attributes from the layout.prp file that is created by
MPADS.

MPADS .pat File Setup — Timing Control

MPADS is a timing driven automatic place and route tool
that includes capabilities for the user to specify how a design
will perform in terms of the frequency of operation. This is
based on the maximum worst case delay within the design.
For combinatorial logic the worst delay is the longest path from
an input pad to an output pad. For synchronous logic the worst
case delay is the longest path, which may be from flip—flop to
flip—flop, flip—flop to 1/0, or I/O to flip—flop. The user can guide
the timing driven algorithms of MPADS in three ways.

The first is with the adjustment of Auto Layout tool options,
through the MPADS graphical user interface, with controls
such as annealing temperature, target delays, target zone
utilization, etc. The target delay function allows the user to
specify the overall frequency of operation in terms of its period
with resolution in increments of 0.1ns. Additional details on the
available options and their use are available in the on-line
help facility of the MPA Design System.

The second method involves the use of a separate clock
file, designated as design.clk and is recommended for
advanced users. Here again, additional information is
provided in the on-line help system and is not presented in
this application note.

The third method of influencing the timing driven place and
route algorithms is through the use of the attributes file. Start
off assigning your internally generated clocks and resets to the
low skew networks with the aclk and arst instance primitives
respectively, by adding the .pat commands:

net <int_clock> instance aclk

net <int_reset> instance arst

Note that you will probably need to review your structural
netlists in order to correctly identify the nets that need to be

AN1604

assigned to the low skew networks and that you are limited to
eight for the entire design. You are now ready to assign timing
attributes to nets to control the MPADS timing driven
algorithms. There are basically three attributes that you will
need to review:

The ignore_timing attribute is used to inform the tool which
nets to ignore timing on. If during place and route a signal is
identified as causing the worst case delay within a design
(from the MPADS timing report layout.tim) and its timing is non
critical, it should be assigned the attribute ignore_timing. The
attribute may be set on an symbol (instance), a net, or an
external pin (formal port). If a net has the attribute set, then all
delay paths associated with that net are ignored. If an instance
has the attribute set, then all input and output delay paths from
that instance are ignored. Assigning the attribute to a formal
port has exactly the same effects as assigning it to the 1/0
instance itself. Once all the objects to be ignored have been
identified, their paths are propagated forwards and backwards
through combinatorial gates until clocked objects (or top level
circuit I/O) are reached. The result is that additional segments
other than those explicitly specified may be ignored for timing
purposes as well.

You are required to use a dummy value with this attribute,
but the value stated is otherwise ignored. Assigning this
attribute to a symbol, net, or formal port frees the timing driven
autolayout algorithms to more optimally cluster, place, and
route the speed critical nets. Examples include:

net <signal> attribute ignore_timing dummy_arg
port <signal> attribute ignore_timing dummy_arg

instance <inst> attribute ignore_timing dummy_arg

The cluster_seed attribute is used to assign a cluster seed
to a net. This will cause the autolayout clustering algorithm to
treat all instances that connect to that net specially. The action
taken depends on the value of the attribute, as follows:

0 ignore this net during clustering. Setting this
attribute on a net is likely to cause the net to be
implemented in global interconnect.

1 default operation
>1 weight this net by the given factor in the
clustering

The maximum value for the cluster_seed attribute is 1000.
Example:

net <signal> attribute cluster_seed 2

The place_priority attribute can be applied to a net to
increase the chance that the autolayout algorithm will route the
net more efficiently and with less delay in a physically smaller
area, at the possible expense of surrounding nets. The value
assigned to place_priority should be an integer in the range of
1 (default) to 10 inclusive. Higher values of place priority allow
the designer to prioritize nets relative to each other. Example:

net <signal> attribute place_priority 2

It is really only through experience that MPADS users will
learn how to fine tune their designs through the timing driven
algorithms with the three timing control methods provided by
the tools. A suggested methodology for high speed design is

MOTOROLA MPA DATA — DL201 REV 2
4-163

AN1604

to first assign critical clocks to the low skew networks by using
the Galileo .ctr or MPADS .pat control files that instantiate the
ipclk and aclk primitives within the design. Try running the
design through MPADS and if the design is not meeting the
target speed goals, start assigning the ignore_timing attributes
within the .pat file to those nets or pads that are not critical
timing paths. Run MPADS again and if timing is not met,
proceed with assigning critical logic sections using the
cluster_seed attribute and critical nets using the place_priority
attribute. These attributes will place and route these logic
sections as high priority with critical timing algorithms. If more
control over critical nets and instances is needed, proceed to
the use of the MPADS .clk control file.

MPADS

The Motorola Programmable Array Design System
(MPADS) is a push button automatic timing driven place and
route tool set for MPA development. MPADS provides the
capabilities to import multiple EDIF netlists, to place and route
the design, to generate a configuration file for device
programming, to back annotate a structural netlist for post
simulation, and to view the layout of a completed chip design.
The design files generated by a HDL designer include:

design.clk MPADS timing control (optional)
design.edf Top EDIF netlist (Galileo)

sub.edf Hierarchical submodule EDIF netlist
design.pat MPADS attributes file (optional)
design.v Verilog source code

sub.v Hierarchical Verilog submodule
test.v Verilog test bench code (simulation)

design.vhd VHDL source code
sub.vhd Hierarchical VHDL sub—entity
test.vhd VHDL test bench code (simulation)

Note that the filenames are recommendations, but the
extensions are required. If a hierarchical design is used, the
name “sub” should be replaced with the module or entity’s
name.
The files and directories created by MPADS include:
layout1.dsn Design context
design Autolayout results subdirectory
design.net MPA-DS netlist
layouti.log MPADS design log
layouti.cxt Context
layouti.lyt Layout
layouti.prp Port report
layouti.tim Timing report
layouti.vba Verilog back annotation
layouti.vhd VHDL back annotation

Note that the name “layout1.xxx” is only a suggestion and is
only used as an example within this article for consistency.

MPADS Import

Netlist import is the process used by MPADS to import a
single flat EDIF netlist or multiple EDIF netlists produced from
Galileo into the Autolayout Tool. The Netlist Import tool runs in
a standard Tool Execution Window and any errors

encountered during netlist import will be output to this window
and to the c:/design/design/layout.log file. The import
performs a reader function where it will open up the design.edf
file and, if other unresolved modules are referenced in this
netlist and the multiple reader option is enabled, import will
search and open the other required EDIF files.

Once the netlist is read, import will proceed to search and
read the attributes file design.pat. It will instantiate ipclk, iprst,
aclk, arst, apbuf, and pabuf primitives if required and assign
the additional attributes to nets, ports, and instances as
specified in the .pat file.

The next retargeting stage involves checking for unused
inputs and if any are detected the tool will fail import. The user
must go back to the original HDL source code and remove the
unused inputs from the design and resynthesize. Unused
output signals are then searched, resulting in them being
stripped from the design with all the associated unused logic.
Bubble pushing is then executed where INV inverter primitives
are stripped out, assigning them into the programmable input
and output inverters within the MPA core cells.

Wired-OR splitting occurs next, where output drivers are
separated from the input loads by the assignment of an
intermediate buffer preparing the design for place and route.

The import process concludes by creating an intermediate
netlist designated with the file name design.net. If errors are
encountered during import, the design.net file name will not be
generated. If you make changes to the .pat file after running
import, you will need to rerun import to make sure that the
changes get incorporated into the intermediate netlist.

MPADS Autolayout

The Autolayout Tool performs fully automatic timing driven
layout for the current design. The Autolayout Tool runs in a
Tool Execution Window and any errors that are encountered
during layout will be output to this window and to the file
c:/design/design/layout.log, Control over the autolayout
process is provided through the autolayout option switches
and attributes assigned through the .pat file.

The autolayout process first performs definition checking
to make sure that the design definition is suitable for
autolayout. It proceeds to a clustering phase, where sections
of interconnected logic are grouped together, dividing the
design into smaller pieces called clusters. Partitioning is then
executed to assign clusters of logic into specific zones within
the chip. Preplacement is executed assigning I/O to specific
pin assignments automatically or to specific pin assignments
specified by the user through the .pat file. Global routing is
executed routing the global nets to the ports cells of the zones
and routing the low skew network clocks. Zone routing is then
executed routing each zone using local and medium bus
interconnections for its cluster assignments. The autolayout
process concludes with the generation of the following files:

layout.tim — A timing report file which includes a list of
the critical path nets, allowing the user to
analyze the timing aspects of the layout

layout.prp — A port report file which contains the pin
out assignments of the resulting layout,

layout.lyt— A layout file containing the final layout.
This layout is used as the input to the
configuration generator to create a

MH T

MOTOROLA MPA DATA — DL201 REV 2
4-164

configuration bit—stream for the target
device.

layout.cxt — A context file which contains the
complete data base generated from each
phase of autolayout.

MPADS Autolayout Options

Autolayout options are set using the MPADS graphical user
interface Tool Options button. The choices available are
outlined here:

Autolayout: Parameter Group is used to reference a
particular set of parameter settings. Any number of Autolayout
Parameter Groups can be set up and saved under user
specified group names for easy access to commonly used
parameter settings. These parameter groups can be selected
from the Autolayout options dialog. It is recommended for the
new MPADS designer to start using the predefined parameter
groups that are available. For high speed designs the
Minimum Delay parameter group should be selected.

Autolayout: Utilization controls the number of functional
cells that the partitioning phase will attempt to place within a
zone, that consist of a 100 core cell area. Its value is the
percentage of functional core cells in the imported design
against the recommended maximum number of 50 usable
core cells. Autolayout will automatically exceed this limit if it is
required.

Minimum: 1 (0.5 % or 1 core cell)
Maximum: 150 (75% or 75 core cells)
Default: 80 (40% or 40 core cells)

Autolayout: Effort controls the amount of work applied to the
partitioning operation. A larger value will generally produce a
better result in the partitioning for high utilization circuits. The
time taken for partitioning is directly related to Effort. Effort
must be balanced by the Start Temp parameter for optimum
results.

Minimum: 1
Maximum: 100
Default: 30

Autolayout: Start Temp controls the start temperature for the
partitioning process, using a simulated annealing technique. A
higher temperature allows the average cost of a move during
partitioning to be greater. Increasing the start temperature
may result in a better partition, especially in high utilization
designs. Note that a high value of Start Temp may result in a
bad partition if not used in conjunction with a larger value for
the Effort parameter.

Minimum: 1
Maximum: 100
Default: 10

Simulated annealing is a software technique used for
combinatorial optimization. It simulates the relaxation of
stresses during the repeated heating and cooling of materials,
where the temperature that the material is heated to each time
is gradually reduced. Simulated annealing is a stochastic
technique, and will produce different results for different sets
of starting conditions (such as layout parameters, seed
values, etc.). Simulated annealing is used by MPADS during
the Partitioning and Zone Routing phases of autolayout.

AN1604

Autolayout: Attempts controls the number of runs through
the partitioning phase. More runs should deliver a better
partition.

Minimum: 1
Maximum: 20
Default: 1

Autolayout: Backoff controls the percentage relaxation of
the target delay if the initial target is not obtainable. This is
expressed as a percentage of the previous target delay.

Minimum: 0%

Maximum: 100%

Default: 30%

Increasing this parameter makes the next attempt at
autolayout to use a new Delay Target further away from the
maximum possible delay thus making it easier to complete.
This is expressed as a percentage increase in the optimum
target delay.

Autolayout: Delay Cost controls the weighting given to
timing during partitioning. If a particular partition includes a net
that is failing to meet its timing target, then the cost of that
partition will be artificially raised by an amount proportional to
the delay cost. Increasing the delay cost is likely to trade off
against achievable utilization.

Minimum: 0
Maximum: 100
Default: 5

Autolayout: Delay Target controls the desired maximum
delay target for the autolayout process to achieve, in steps of
0.1ns. For combinatorial circuits, the maximum delay is
calculated from the longest path from input to output. For
synchronous circuits, the maximum delay is calculated from
the longest path between flip—flops, or from 1/0 to flip—flop,
whichever is the greater. This parameter is only relevant when
you are using the standard timing model. If a clock file is
specified, then the Delay Target parameter will be ignored.

Minimum: 0
Maximum: 9999
Default: 50 (5ns)

Autolayout: Fanout controls the maximum fan—out of a net
which is included in the clustering. All the nets which have a
fan—out greater than this value are ignored during clustering.
Any nets ignored during clustering are more likely to have to
be globally routed.

Minimum: 1
Maximum: 100
Default: 2

Autolayout: Min Zone Delay controls the delay of segments
within a zone to be within a certain value. The delay is
specified in unit of 0.1ns. The smaller the delay is, the harder
the zone routing algorithm will work to reduce delays within the
zones.

Minimum: 0
Maximum: 9999
Default: 5 (0.5ns)

Advanced Autolayout: Seed Setting the seed for the
autolayout process lets you control the repeatability of the
autolayout. If you run the autolayout with a given seed value,

MOTOROLA MPA DATA — DL201 REV 2
4-165

1=]

AN1604

you can reproduce the same autolayout from the same circuit
simply by setting the same seed value.

Minimum: 0
Maximum: 9999
Default: 1

Several of the autolayout algorithms use stochastic
techniques similar to simulated annealing that require a
pseudo-random number generator. The Seed is used to set
the random number generator to a known point in the
sequence.

MPADS Layout Viewer

The MPA Design System provides a Layout Viewer tool
which gives a graphical view of the completed layout. This
view shows the instances of primitives in the design and the
routing that connects them together. Aspects of the device
architecture can also be viewed.

Multiple graphical and browser views may be created.
Moving about in the graphical view is made possible by
zooming and panning. Instances, nets and ports can be
selected. The mouse cursor changes according to the design
object under it, and the status bar gives more information
about the design object beneath the cursor.

Note that no changes to the layout are possible with the
Layout Viewer. Please refer to the on-line help facility for more
details.

MPADS Device Configuration

Device configuration is the process of translating a
completed layout into a stream of 1’s and 0’s used to program
the actual device. Pressing the device configuration button
launches this tool. Please refer to the on-line help facility for
more details.

MPADS Back Annotation

The MPA Design System has a back annotation tool that
incorporates the post place/route gate and net delay timing
into a structural netlist in Verilog (layout.vba) and for VHDL
1076 (layout.vhd) formats. These netlists are useful for
verifying worst case timing of a design with third party
simulators.

The Standard Delay Format (SDF) will be supported in
future releases of MPADS.

Verilog Simulation
The structural Verilog file that is produced by MPADS

assumes that you will be using a stimulus file (test bench), and
that the module name of your stimuli is stimulus. It is also
assumed that you instantiate your design within your stimulus
file with an instance name of ut, for example:

// Stimulus file, contains stimuli for circuit DESIGN

// the module name is stimulus

module stimulus;

reg IN, CLK, RESET;

// the instance name is u1

DESIGN u1(OUTPUT,IN,CLK,RESET);

<rest of declarations and stimuli>

In the Verilog back annotation file layout1.vba, the design is
instantiated with the name of the EDIF file that was passed
into the MPA Design System. If a stimulus file is not used (eg. if
the design is the root of the hierarchy), or if you choose to use
different names for your stimulus and instance names, then
edit the layout1.vba file and replace the term stimulus.u1 in the
file that says:

‘define module_name stimulus.u1

with your design name. For the example above, you would
enter:

‘define module_name DESIGN

The back annotation information that is produced by the
autolayout tool (as a by—product of the autolayout process) is
generated by a different method from the data generated by
the more accurate back annotation tool. Some values are
different for the two back annotation files (even though they
will both be called layout1.vba). It is recommended that you
post simulate the layouti.vba file generated by the back
annotation tool to simulate the true timing of the placed and
routed design. Please enter the line to your stimulus file when
you simulate files from the autolayout tool:

‘define source_autolayout

If you are performing a back annotation tool simulation, then
please enter the line into your stimulus file:

‘define source_back_annotation

Note that running back annotation will overwrite the
layout1.vba file with data from the back annotation tool, but
this is fine, since you should be post simulating from the back
annotation netlist.

To allow for the best cross—platform capability and flexibility,
MPADS has been designed not to be case sensitive. The
Verilog hardware description language, however, is case
sensitive. If a design is named in lower case, or a mixture of
lower case and upper case, then the name of the design will
be converted to all capitals in the Verilog back annotation file.
This will require you to change your signal names and module
name from lower to upper case within your test bench file,
stimulus.v.

Please note that it is not possible to infer the correct
ordering of a bus from the information contained in an EDIF
netlist and MPADS will arbitrarily order busses in big—endian
style (for example input [15:0]MYBUS;) in the input/output
declarations section of the Verilog back annotation file. If you
are writing a new stimulus file (or test bench) for use with the
MPA Design System, please use big—endian style. If you are
using the MPA Design System with a preexisting stimulus file
that has busses ordered in little—endian style (for example
input [0:15]MYBUS;) then you must re-order the bus
declarations either in the stimulus file or in the Verilog back
annotation file.

Leaving inputs unconnected (with no driver) is not a
supported method of dealing with unused inputs. It is
recommended that pre-layout simulation is performed to
detect any inputs unintentionally left unconnected.
Post-layout simulation may not show up unconnected inputs.
In the post-layout simulation, unconnected inputs may be
connected to logic high for simulation purposes.

M4

MOTOROLA MPA DATA — DL201 REV 2
4-166

There are some differences between Verilog simulators. If
you are having difficulty with the library, try disabling the line of
the library (c:/mpa/verilog/library.v) that reads:

‘define XL_comp
and enabling the line that reads:
// ‘define OVI_comp

The conditions under which you may need to do this are
explained more fully in the library itself.

VHDL Simulation

The VHDL Simulation Library is equivalent to the microlib
and iolib Technology Schematic and has been separated into
two files:

1. Technology Cell Simulation Models (see
c:/mpa/vhdl/modelmpa.vhd) Each model has a generic
map to provide a mechanism for passing timing
parameters from MPADS back annotation facility. The
functionality of each Technology Cell is described using
in house behavioral models. The VHDL Initiative
Towards ASIC Libraries (VITAL) is not yet supported.

2. Technology Cell Component Declarations (see
c:/mpa/vhdl/packmpa.vhd) provide the Component
Declarations necessary for you to instantiate
Technology Cells into your source designs and it is also
used by the MPADS back annotation tool. The file is split
into microlib and iolib MPA1000 technology libraries. To
make the libraries visible within your VHDL design code
include the statements:
library mpa; — — for Motorola MPA1000

use mpa.microlib.all;

AN1604

use mpa.iolib.all;

The VHDL Simulation Library has been extensively tested
using Model Technology V-System v4.2e simulator, although
it should be compatible with all other comprehensive VHDL
Simulators. Both files need to be compiled into a Specific
Technology Library:

library mpa; — for Motorola MPA1000

The VHDL Simulation Library requires visibility to the
following packages:

use Std.Standard.all;
use |[EEE.Std_logic_1164.all;

The MPADS Back Annotation tool provides a mechanism
for performing Post-Layout simulation of a
synthesized/structural VHDL design. The term back
annotation is used loosely with reference to the MPADS tool,
which generates a structural VHDL representation of the
whole design including:

1. Any Technology Cell optimizations which were made
during import.

2. Technology Cell intrinsic timing delays

3. Net routing timing delays

VHDL Post-layout Simulation can be applied to designs
which were not captured in VHDL. The VITAL Standard Delay
File Format (SDF) is not currently supported by the MPA
Design System.

A known problem exists with Bi-Directional Entity Ports,
where the Mode of a Entity Port Declaration is not set to ’inout’
if the port connects to the External port (device pin) of a
Bi—directional 1/0 Cell. The fix is to manually change port
mode from ’out’ to ’inout’

MOTOROLA MPA DATA — DL201 REV 2
4-167

AN1604

Appendix A - EDIF Netlist Example
(edif REFRESH
(edifversion 2 0 0) .
(edifLevel 0)
(keywordMap (keywordLevel 0))
(external extlib (edifLevel 0)
(technology (numberDefinition))
(cell INV (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port A (direction INPUT))
(port QN (direction OUTPUT)))))
(cell AN2 (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port B (direction INPUT))
(port A (direction INPUT))
(port Q (direction OUTPUT)))))
(cell OPBUF (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port O (direction INPUT))
(port EXTOUT (direction OUTPUT)))))
(cell IPBUF (cellType GENERIC)

(view netlist. (viewType NETLIST)

4 (interface
(port EXTIN (direction INPUT))

(port I (direction OUTPUT)))))
(cell DFE (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port E (direction INPUT))
(port D (direction INPUT))
(port CLK (direction INPUT))
(port Q (direction OUTPUT)))))
(cell DF (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port D (direction INPUT))
(port CLK (direction INPUT))
(port Q (direction OUTPUT))))))
(library REFRESH
(edifLevel 0)
(technology (numberDefinition))
(cell REFRESH (cellType GENERIC)
(view Synthesis (viewType NETLIST)
(interface
(port s_25mhz (direction INPUT))
(port timerclk (direction OUTPUT)))
(contents
(instance (rename il ”i315”) (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename i2 ”i320”) (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename i3 ”1325”) (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename i4 ”i330”) (viewRef netlist (cellRef INV (libraryRef extlib))))

(instance (rename i5 ”i335”) (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename i6 ”i340”) (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename 17 ”i341”) (viewRef netlist (cellRef AN2 (libraryRef extlib))))

(instance (rename i8 ”i336”) (viewRef netlist (cellRef AN2 (libraryRef extlib))))
(instance (rename 19 ”i331”) (viewRef netlist (cellRef AN2 (libraryRef extlib))))
(instance (rename 110 ”i326”) (viewRef netlist (cellRef AN2 (libraryRef extlib))))

/” / 7 i E@L MOTOROLA MPA DATA — DL201 REV 2

4-168

(joined

(portRef s_25mhz)

(portRef EXTIN

(net s_25mhz_int

(instanceRef 115))))

(joined
(portRef I (instanceRef i15)
(portRef CLK (instanceRef XMPLR_INST_29))
(portRef CLK (instanceRef XMPLR_INST 31)
(portRef CLK (instanceRef XMPLR_INST 33))
(portRef CLK (instanceRef XMPLR_INST 35)
(portRef CLK (instanceRef XMPLR_INST_37))
(portRef CLK (instanceRef XMPLR_INST_39))
(portRef CLK (instanceRef XMPLR_INST 41)
(portRef CLK (instanceRef XMPLR_INST 43))))
(net (rename n0 “timerclk”)

(joined

(portRef EXTOUT

(instanceRef 114))

(portRef timerclk)))
(net timerclk_int

(joined
(portRef Q (instanceRef XMPLR_INST_29)
(portRef A (instanceRef il))
(portRef O (instanceRef 114))))
(net (rename ref 6 "ref_6_")
(joined
(portRef Q (instanceRef XMPLR_INST 31))
(portRef A (instanceRef 1i2))
(portRef A (instanceRef 112))))
(net (rename ref 5 "ref 5_")
(joined
(portRef Q (instanceRef XMPLR_INST 33))
(portRef A (instanceRef 13))
(portRef A (instanceRef 111))))
(net (rename ref 4 "ref_4 ")
(joined
(portRef Q (instanceRef XMPLR_INST 35))
(portRef A (instanceRef I4))
(portRef A (instanceRef 110))))
(net (rename ref_3 "ref_3_")
(joined
(portRef Q (instanceRef XMPLR_INST 37)
(portRef A (instanceRef 1i5))
(portRef A (instanceRef 19))))
(net (rename ref_ 2 "ref _2_")

AN1604

(instance (rename ill ”i321”) (viewRef netlist (cellRef AN2 (libraryRef extlib))))

(instance (rename 112 ”1316”) (viewRef netlist (cellRef AN2 (libraryRef extlib))))

(instance (rename 113 ”i345”) (viewRef netlist (cellRef INV (libraryRef extlib))))

(instance (rename 10 “temp_0__0") (viewRef netlist (cellRef INV (libraryRef extlib))))

(instance (rename 114 ”i180”) (viewRef netlist (cellRef OPBUF (libraryRef extlib))))

(instance (rename 115 ”"IPBUF_s_25mhz_int”) (viewRef netlist (cellRef IPBUF (libraryRef
extlib))))

(instance XMPLR_INST_ 29 (viewRef netlist (cellRef DFE (libraryRef extlib))))

(instance XMPLR_INST 31 (viewRef netlist (cellRef DFE (libraryRef extlib))))

(instance XMPLR_INST 33 (viewRef netlist (cellRef DFE (libraryRef extlib))))

(instance XMPLR_INST_35 (viewRef netlist (cellRef DFE (libraryRef extlib))))

(instance XMPLR_INST 37 (viewRef netlist (cellRef DFE (libraryRef extlib))))

(instance XMPLR_INST 39 (viewRef netlist (cellRef DFE (libraryRef extlib))))

(instance XMPLR_INST 41 (viewRef netlist (cellRef DFE (libraryRef extlib))))

(instance XMPLR_INST_ 43 (viewRef netlist (cellRef DF (libraryRef extlib))))

(net s_25mhz

MOTOROLA MPA DATA — DL201 REV 2
4-169

AN1604

(joined
(portRef Q
(portRef A
(portRef A

(net (rename

(joined
(portRef Q
(portRef B
(portRef A

(net (rename

(joined
(portRef Q
(portRef A
(portRef E
(portRef A

(net (rename

(joined

(instanceRef XMPLR_INST_39))
(instanceRef 1i6))
(instanceRef i8))))

ref_1 "ref_1_7)

(instanceRef XMPLR_INST_41))
(instanceRef 1i7))
(instanceRef 1i13))))

ref_ 0 "ref 0_")

(instanceRef XMPLR_INST_43))
(instanceRef 17))
(instanceRef XMPLR_INST_41))
(instanceRef 10))))

nl “n315”")

(portRef QN (instanceRef il))

(portRef D
(net (rename
(joined

(instanceRef XMPLR_INST_29))))
n2 "n320")

(portRef QN (instanceRef i2))

(portRef D
(net (rename
(joined

(instanceRef XMPLR_INST 31))))
n3 “n325”")

(portRef QN (instanceRef 1i3))

(portRef D
(net (rename
(joined

(instanceRef XMPLR_INST 33))))
n4d “n3307)

(portRef QN (instanceRef i4))

(portRef D
(net (rename
(joined

(instanceRef XMPLR_INST_35))))
n5 “n335”")

(portRef QN (instanceRef i5))

(portRef D
(net (rename
(joined

(instanceRef XMPLR_INST_37))))
n6 "n340")

(portRef QN (instanceRef i6))

(portRef D
(net (rename
(joined
(portRef Q
(portRef B
(portRef E
(net (rename
(joined
(portRef Q
(portRef B
(portRef E
(net (rename
(joined
(portRef Q
(portRef B
(portRef E
(net (rename
(joined
(portRef Q
(portRef B
(portRef E
(net (rename

(instanceRef XMPLR_INST_ 39))))
n7 "n341")

(instanceRef
(instanceRef
(instanceRef
n8 “n336")

i7))
is8))
XMPLR_INST_39))))

(instanceRef
(instanceRef
(instanceRef
n9 ”"n331”)

is))
i9))
XMPLR_INST_37))))

i9))
i10))
XMPLR_INST_35))))

(instanceRef
(instanceRef
(instanceRef
nl0 "n326")

(instanceRef
(instanceRef
(instanceRef
nll "n321")

i10))
i11))
XMPLR_INST_33))))

MOTOROLA MPA DATA — DL201 REV 2

4-170

AN1604

(joined
(portRef Q (instanceRef il1))
(portRef B (instanceRef 112))
(portRef E (instanceRef XMPLR_INST_31))))
(net (rename nl2 “n316”)
(joined
(portRef Q (instanceRef i12))
(portRef E (instanceRef XMPLR_INST_29))))
(net (rename nl3 ”“n345")
(joined
(portRef QN (instanceRef 113))
(portRef D (instanceRef XMPLR_INST 41))))
(net (renamg temp_0 "temp_0_")
(joined
(portRef QN (instanceRef i0))
(portRef D (instanceRef XMPLR_INST_43))))))))
(design REFRESH
(cellRef REFRESH
(libraryRef REFRESH))))

Appendix B - Verilog Back Annotated Netlist Example
// Verilog delay model produced by MPA Design System 2.3.0
// on Thu Dec 05 08:04:30 1996
// prologue.vba start
‘timescale 100ps/100ps
// setup timescale to correct value for back annotated values
‘define post_layout
// controls the functionality of the library.v file to indicate
// that a post-layout simulation is being performed
‘define module_name stimulus.ul
// this assumes you are using a stimulus file, where the module
// name of the stimuli is stimulus and you have instantiated
// your design with an instance name of ul.
‘default_nettype wire
// implicitly declared nets are of type wire
// ‘define source_autolayout
‘define source_back_annotation
// If you have not already made one of these defines in your
// stimulus file, please enable one of the above statements.
‘ifdef source_autolayout
// If this file was written by the autolayout software, please
// define source_autolayout in your stimulus file, otherwise
// the values for back annotation will be used.
// The values written by the autolayout software for the
// parameters below are ignored in favour of the values below.
‘define TPHLCQ 15
‘define TPLHCQ 15
‘define TPHLRQ 15
‘define TPLHRQ 15
‘define TPHLSQ 15
‘define TPLHSQ 15
‘define TPHLDQ 35
‘define TPLHDQ 35
‘define TPHLEQ 25
‘define TPLHEQ 25
‘define TSUD 15
‘ifdef source_back_annotation
module display;
initial begin
$display (”Please use only one of ‘define source_autolayout”);
$display(”or ‘define source_back_annotation, not both.”);

MOTOROLA MPA DATA — DL201 REV 2
4-171

AN1604

end
endmodule
‘endif
module display_mode;
initial $display(”Autolayout values have been selected.”);
endmodule
‘else -
// If this file was written by the back annotation software, please
// define source_back_annotation in your stimulus file.
// The values written by the back annotation software for the
// parameters below are ignored in favour of the values below.
‘define TPHLCQ 13
‘define TPLHCQ 13
‘define TPHLRQ 13
‘define TPLHRQ 13
‘define TPHLSQ 13
‘define TPLHSQ 13
‘define TPHLDQ 13
‘define TPLHDQ 13
‘define TPHLEQ 13
‘define TPLHEQ 13
‘define TSUD 14
module display_mode;
initial $display(”Back Annotation values have been selected”);
endmodule
‘ifdef source_back_annotation
‘else
module display;
initial begin
$display (”The simulator does not know if your data has come from”);
$display(”the AutoLayout software or. the Back Annotation software.”);
$display(”Back Annotation software values have been used as default.”);
Sdisplay (”Please enter the statement ‘define source_autolayout or”);
$display (”‘define source_back_annotation in your stimulus file as”);
$display(“”appropriate.”);
end
endmodule
‘endif
‘endif
‘define tCLKMARK 15
// minimum time from CLK ~ to CLK v
‘define tCLKSPACE 15
// minimum time from CLK v to CLK "
‘define tRECOVERY 15
// minimum time from RN ~ or SN "~ to CLK "
‘define tRESETHOLD 15
// minimum time from RN v to RN *
‘define tSETHOLD 15
// minimum time from SN v to SN *
‘define tEMARK 15
// minimum time from E ~ to E v
‘define tESPACE 15
// minimum time from E v to E *
‘define tETOCLK 3
// minimum time from E v or E ~ to CLK "~
‘define tCLKTOE 15
// minimum time from CLK ~ to E v
‘define tSUD ‘TSUD
// minimum time from D ~ or D v to E v (latches) or CLK * (FlipFlops)
// There is no minimum hold time. Some of the above apply only to

ﬂl 7 i @ MOTOROLA MPA DATA — DL201 REV 2

4-172

AN1604

// latches, and some apply only to FlipFlops.
// Infringements of the above minimums should generate warning messages
// in most simulators, even though the simulation may perform correctly.
// It is unlikely that the real device will behave the same way as the
// simulation if any of the above warnings are encountered during
// post-layout simulation.
// prologue.vba end
module REFRESH(S_25MHZ, TIMERCLK) ;
input S_25MHZ;
output TIMERCLK;
wire S_25MHZ;
wire TIMERCLK;
wire N315;
wire N316;
wire N320;
wire N321;
wire N325;
wire N326;
wire N330;
wire N331;
wire N335;
wire N336;
wire N340;
wire N341;
wire N345;
wire S_25MHZ_INT;
wire TEMP_O0_;
IPCLK #(0, 0, 0, 0) IPBUF_S_25MHZ_INT
(.I(S_25MHZ_INT) ,
.EXTIN(S_25MHZ));
OPBUF #(0, 0, 21, 21) I180
(.EXTOUT (TIMERCLK) ,
.0(N315));
AN2 #(0, 0, 33, 29, 18, 14) 1316
(.Q(N316) ,
.A(N320) ,
.B(N321));
AN2 #(0, 0, 40, 36, 12, 8) I321
(.Q(N321) ,
.A(N325) ,
.B(N326));
AN2 #(0, O, 46, 43, 14, 9) 1326
(.Q(N326) ,
.A(N330) ,
.B(N331));
AN2 #(O, O, 13, 8, 12, 8) I331
(.Q(N331) ,
.A(N335) ,
.B(N336));
AN2 #(0, O, 26, 21, 23, 17) I336
(.Q(N336) ,
.A(N340) ,
.B(N341));
AN2 #(0, O, 13, 9, 13, 8) 1341
(.Q(N341) ,
.A(TEMP_O_) ,
.B(N345));
DFE #(0, 0, 21, 21, 24, 24, 6, 4) XMPLR_INST 29
(.Q(N315) ,
.CLK (S_25MHZ_INT) ,

MOTOROLA MPA DATA — DL201 REV 2
4-173

AN1604

.D(~N315) ,
.E(N316));
DFE #(0, 0, 21, 21, 23, 24, 22, 20) XMPLR_INST 31
(.Q(N320) ,
.CLK{S_25MHZ_INT) ,
.D(~N320) ,
.E(N321));
DFE #(0, 0, 21, 21, 21, 21, 6, 4) XMPLR_INST_33
(.Q(N325) ,
.CLK (S_25MHZ_INT) ,
.D(~N325) ,
.E(N326));
DFE #(0, 0, 21, 21, 23, 24, 19, 16) XMPLR_INST_35
(.Q(N330) ,
.CLK (S_25MHZ_INT) ,
.D(~N330) ,
.E(N331));
DFE #(0, 0, 21, 21, 21, 21, 33, 31) XMPLR_INST 37
(.Q(N335) ,
.CLK(S_25MHZ_INT) ,
.D(~N335) ,
.E(N336));
DFE #(0, 0, 21, 21, 24, 24, 23, 19) XMPLR_INST_ 39
(.Q(N340) ,
.CLK(S_25MHZ_INT) ,
.D(~N340) ,
.E(N341));
DFE #(0, 0, 21, 21, 21, 21, 7, 5) XMPLR_INST_ 41
(.Q(N345) ,
.CLK (S_25MHZ_INT) ,
.D(~N345) ,
.E(TEMP_O0_));
DF #(0, 0, 21, 21, 21, 22) XMPLR_INST_43
(.Q(TEMP_O0_) ,
.CLK(S_25MHZ_INT) ,
.D(~TEMP_0_));
endmodule
module annotate;
defparam
‘module_name.IPBUF_S_25MHZ_INT.TPLHIN = 19,
‘module_name.IPBUF_S_25MHZ_INT.TPHLIN 19,
‘module_name.I180.TPLHOUT = 50,
‘module_name.I180.TPHLOUT = 46,
‘mocule_name.I316.TPLH =
‘module _name.I316.TPHL =
‘module_name.I321.TPLH =
‘module_name.I321.TPHL =
‘module_name.I326.TPLH =
‘module_name.I326.TPHL =
‘module_name.I331.TPLH =
‘module_name.I331.TPHL =
‘module_name.I336.TPLH =
‘module_name.I336.TPHL =
‘module_name.I341.TPLH =
‘module_name.I341.TPHL = O,
‘module_name.XMPLR_INST_29.TSUD = 14,
‘module_name.XMPLR_INST_29.TPLHCQ = 13
‘module_name.XMPLR_INST_29.TPHLCQ = 13,
‘module_name.XMPLR_INST_31.TSUD = 14,
‘module_name.XMPLR_INST_31.TPLHCQ = 13,

i}

[« NeleNoNeoNeNoReoReh=2-]

W} ; i @ MOTOROLA MPA DATA — DL201 REV 2

4-174

‘module_name.
‘module_name.

‘module_name
‘module_name
‘module_name

‘module_name.
‘module_name.
‘module_name.
‘module_name.
‘module_name.
‘module_name.
‘module_name.

‘module_name
‘module_name

‘module_name.
‘module_name.

‘module_name

‘module_name

‘module_name
endmodule

XMPLR_INST_31
XMPLR_INST_33

XMPLR_INST_35

XMPLR_INST_35.

XMPLR_INST_37

XMPLR_INST_41

. TPHLCQ
.TSUD =
.XMPLR_INST_33.
.XMPLR_INST_33.
.XMPLR_INST_35.

TPLHCQ

TPHLCQ =

TSUD =

.TPLHCQ =
TPHLCQ =
.TSUD =
XMPLR_INST_37.
XMPLR_INST_37.
XMPLR_INST_39.
XMPLR_INST_39.
.XMPLR_INST_39.
.XMPLR_INST_41.
XMPLR_INST_41.

TPLHCQ

TPHLCQ =

TSUD =

TPLHCQ =

TPHLCQ
TSUD =

TPLHCQ =
. TPHLCQ
.XMPLR_INST_43.
.XMPLR_INST_43.
.XMPLR_INST_43.

TSUD =

TPLHCQ =
TPHLCQ =

Appendix C — VHDL Back Annotated Netlist Example
—— VHDL delay model produced by MPA Design
—— on Wed Dec 04 15:13:17 1996

library ieee;

use ieee.std_logic_1164.all;

—- Motorola MPA1000 FPGA Family

library mpa;
use mpa.iolib.all;
use mpa.microlib.all;
entity REFRESH is
port (
S_25MHZ : in

std_logic;

TIMERCLK : out std_logic);

end REFRESH;

architecture LAYOUT1 of REFRESH is

signal
N315,
nN315,
N316,
N320,
nN320,
N321,
N325,
nN325,
N326,
N330,
nN330,
N331,
N335,
nN335,
N336,
N340,
nN340,
N341,
N345,
nN345,
S_25MHZ_INT,
TEMP_O,

nTEMP_0 : std_logic;

System 2.3.0

AN1604

MOTOROLA MPA DATA — DL201 REV 2

4-175

AN1604

begin
IPBUF_S_25MHZ_INT : IPCLK

generic map (
TPLHIN
TPHLIN

port map (
I => S_25MHZ_INT,
EXTIN => S_25MHZ) ;

>1.9n
> 1.

9 ns,
9 ns)

I180 : OPBUF
generic map (

TPLHOUT => 5.0 ns,
TPHLOUT => 4.6 ns,
TPLHO => 2.1 ns,
TPHLO => 2.1 ns)
port map (
EXTOUT => TIMERCLK,
0 => N315);
1316 : AN2
generic map (
TPLH => 0.0 ns,
TPHL => 0.0 ns,
TPLHA => 3.3 ns,
TPHLA => 2.9 ns,
TPLHB => 1.8 ns,
TPHLB => 1.4 ns)
port map (
Q => N316,
A => N320,
B => N321);
I321 : AN2
generic map (
TPLH => 0.0 ns,
TPHL => 0.0 ns,
TPLHA => 4.0 ns,
TPHLA => 3.6 ns,
TPLHB => 1.2 ns,
TPHLB => 0.8 ns)
port map (
Q => N321,
A => N325,
B => N326);
I326 : AN2
generic map (.
TPLH => 0.0 ns,
TPHL => 0.0 ns,
TPLHA => 4.6 ns,
TPHLA => 4.3 ns,
TPLHB => 1.4 ns,
TPHLB => 0.9 ns)
port map (
Q => N326,
A => N330,
B => N331);
I331 : AN2

generic map (
TPLH => 0.0 ns,
TPHL => 0.0 ns,
TPLHA => 1.3 ns,
TPHLA => 0.8 ns,
TPLHB => 1.2 ns,

M} ; i E@n MOTOROLA MPA DATA — DL201 REV 2

4-176

I336 : AN2

1341 : AN2

XMPLR_INST_29

XMPLR_INST_31

port map

TPHLB => 0.8 ns)

generic map (

port map

generic map (

port map

DFE

(

Q => N331,

A => N335,

B => N336);

TPLH => 0.0 ns,
TPHL => 0.0 ns,
TPLHA => 2.6 ns,
TPHLA => 2.1 ns,
TPLHB => 2.3 ns,
TPHLB => 1.7 ns)
(

Q => N336,

A => N340,

B => N341);

TPLH => 0.0 ns,
TPHL => 0.0 ns,
TPLHA => 1.3 ns,
TPHLA => 0.9 ns,
TPLHB => 1.3 ns,
TPHLB => 0.8 ns)
(

Q => N341,

A => TEMP_O,

B => N345);

generic map (

port map

DFE

TSUD => 1.4 ns,
TPLHCQ => 1.3 ns,
TPHLCQ => 1.3 ns,

TPLHCLK => 2.1 ns,
TPHLCLK => 2.1 ns,
TPLHD => 2.4 ns,
TPHLD => 2.4 ns,
TPLHE => 0.6 ns,
TPHLE => 0.4 ns)

(

Q => N315,

CLK => S_25MHZ_INT,
D => nN315,

E => N316);

generic map (

port map

TSUD => 1.4 ns,
TPLHCQ => 1.3 ns,
TPHLCQ => 1.3 ns,

TPLHCLK => 2.1 ns,
TPHLCLK => 2.1 ns,
TPLHD => 2.3 ns,
TPHLD => 2.4 ns,
TPLHE => 2.2 ns,
TPHLE => 2.0 ns)

(

Q => N320,

CLK => S_25MHZ_INT,
D => nN320,

AN1604

MOTOROLA MPA DATA — DL201 REV 2

4-177

AN1604

E => N321);
XMPLR_INST_33 : DFE
generic map (
TSUD => 1.4 ns,
TPLHCQ => 1.3 ns,
| TPHLCQ => 1.3 ns,

TPLHCLK => 2.1 ns,

TPHLCLK => 2.1 ns,

TPLHD => 2.1 ns,

TPHLD => 2.1 ns,

TPLHE => 0.6 ns,

TPHLE => 0.4 ns)
port map (

Q => N325,

CLK => S_25MHZ_INT,

D => nN325,

E => N326);

XMPLR_INST_35 : DFE
generic map (
TSUD => 1.4 ns,
TPLHCQ => 1.3 ns,
TPHLCQ => 1.3 ns,

TPLHCLK => 2.1 ns,
TPHLCLK => 2.1 ns,
g TPLHD => 2.3 ns,

4 TPHLD => 2.4 ns,
L TPLHE => 1.9 ns,

TPHLE => 1.6 ns)

port map (

Q => N330,

CLK => S_25MHZ_INT,

D => nN330,

E => N331);

XMPLR_INST_37 : DFE
generic map (
TSUD => 1.4 ns,
TPLHCQ => 1.3 ns,
TPHLCQ => 1.3 ns,
TPLHCLK => 2.1 ns,
TPHLCLK => 2.1 ns,

TPLHD => 2.1 ns,

TPHLD => 2.1 ns,

TPLHE => 3.3 ns,

TPHLE => 3.1 ns)
port map (

Q => N335,

CLK => S_25MHZ_INT,

D => nN335,

E => N336);

XMPLR_INST_39 : DFE
generic map (
TSUD => 1.4 ns,
TPLHCQ => 1.3 ns,
TPHLCQ => 1.3 ns,

TPLHCLK => 2.1 ns,
TPHLCLK => 2.1 ns,
TPLHD => 2.4 ns,
TPHLD => 2.4 ns,
TPLHE => 2.3 ns,
TPHLE => 1.9 ns)

%} , i @ ‘ MOTOROLA MPA DATA — DL201 REV 2

4-178

XMPLR_INST_41

XMPLR_INST_43

AN1604

port map (
Q => N340,
CLK => S_25MHZ_INT,
D => nN340,
E => N341);
DFE

generic map (
TSUD => 1.4 ns,
TPLHCQ => 1.3 ns,
TPHLCQ => 1.3 ns,
TPLHCLK =>

2

TPHLCLK => 2.1 ns,

TPLHD => 2.1 ns,

TPHLD => 2.1 ns,

TPLHE => 0.7 ns,

TPHLE => 0.5 ns)
port map (

Q => N345,

CLK => S_25MHZ_INT,

D => nN345,

E => TEMP_O) ;

DF

-- Inverted Sense Nets

nN315
nN320
nN325
nN330
nN335
nN340
nN345
nTEMP
end LAYOUTI1;

<=

not

= not

not
not
not
not

= not

N315;
N320;
N325;
N330;
N335;
N340;
N345;

generic map (
TSUD => 1.4 ns,
TPLHCQ => 1.3 ns,
TPHLCQ => 1.3 ns,
TPLHCLK => 2.1 ns,
TPHLCLK => 2.1 ns,
TPLHD => 2.1 ns,
TPHLD => 2.2 ns)
port map (
Q => TEMP_O,
CLK => S_25MHZ_INT,
D => nTEMP_0);

0 <= not TEMP_O;

MOTOROLA MPA DATA — DL201 REV 2

4-179

4/97

AN1613
Application Note

Integrating Schematic Capture
and Verilog Synthesis When
Designing with the MPA

Prepared by
Rich Rejmaniak
Motorola Field Applications Engineer

© Motorola, Inc. 1997

4-180

@ MOTOROLA

REVO

AN1613

Integrating Schematic Capture and Verilog Synthesis When
Designing with the Motorola Programmable Array

Introduction

The FPGA tool environment is currently moving in a
direction where synthesis techniques are supplanting
schematic capture for design entry. While tool vendors in
almost all cases provide the means for complete development
within their respective environments, most engineering
departments must deal with legacy circuits developed using a
variety of tools as well as engineers with different levels of
expertise in various tool sets. The result is a situation where
the integration of different design methodologies can be
important to the success of a project. This application note
details the integration of a Verilog module, compiled with
Exemplar’s Galileo, instantiated into a schematic capture
using Viewlogic’s Workview Office. The resulting design is
placed into a Motorola Programmable Array compatible with
the Motorola MPA demo board revision 2.

Example Circuit

The circuit used as an example in this document is a simple
counter circuit. It uses the 2 MHz oscillator on the MPA demo
board as a clock source. The clock is divided down into the
visual range (one to four Hz) and drives a counter. The counter
mode can be set to binary or BCD. The result drives a seven
segment display.

The topmost level is entered using schematic capture, as is
the primary clock divider and the display driver section. The
counter, frequency selection, and mode control are
implemented in a compiled Verilog module.

Top level schematic

The overall design is contained in the schematic shown in
Schematic 1. It is composed of three modules, two of which
are schematic based. It also defines all of the 1/O for the
design.

/O cells

1/0 cells are defined throughout the design to specify the
type and functionality of each signal entry and exit point. While
all I/O signals terminate at the top level schematic, only two of
the signals have the I/O circuitry defined at this level. The
{CLK}, {DEBUG}, and {RADIX} input signals have their I/O
cells defined here. The {CLK} uses an “IPCLK” buffer that
specifies that this signal should be placed on the low skew
clock distribution network within the Motorola FPGA. The
{RADIX} signal (which selection binary vs. BCD mode) and the
{DEBUG} signal (which disables the prescaler and allows
faster simulation) enter through an “IPBUF” cell. The IPBUF
cell is a generic input buffer used for general signal input. The
{RESET-L} signal initializes the sequential elements of the
system.This signal is brought through an “IPRST” buffer that
places the signal on the high fanout clock distribution network
within the device. It should be noted that specifying 1/O is
probably the most common use of schematic capture in mixed
tool designs that otherwise rely heavily on synthesis.

Input signals {SWITCHO} and {SWITCH1} are used to
select the frequency of the counter. While they terminate at
this level, their I/O characteristics are specified within the
Verilog source code. This method of I/O instantiation is used in
completely synthesized designs, as well as designs that use a
synthesized module at the topmost level of the project (a
reversal of the design methodology used in this example).

Outputs {A} through {G} have their I/O cells specified using
schematic capture below the top of the hierarchy. Just as the
inputs {SWITCHO} and {SWITCH1} are specified in a sub
module, these outputs terminate at the top level schematic.

Clock divide

The clock divider in Schematic 2 is a 19 bit counter that
generates a one clock period wide enable pulse at terminal
count. With an input of 2.0 MHz, the output pulse will be 500 ns
wide every 262 ms, corresponding to a frequency of 3.8 Hz.
This division is disabled by driving the {DEBUG} signal high.
The purpose of th signal is to allow simulation at full speed
without the need to simulate millions of clock cycles to arrive at
a change in the system’s output.

Display driver

The display driver section in Schematic 3 drives the four bit
binary value generated by the counter out to the display device
on the demo board. The device is a seven segment numerical
display that will show the counter value from 0 to F. The value
is decoded using the Motorola macro library element
“HEX4-7S". The outputs are inverted for the common anode
display. Notice that the inverters are drawn with dashed
outlines, this is because inversion is a virtual function in the
Motorola FPGA, occurring at the location where the signal
terminates. After the inverters, the signals are driven off of the
device by I/O cells of type “OPBUF”. These are generic output
drives from the Motorola 1/O library. While the signals are fully
defined to the output of the device at this point, they are still
propagated up the hierarchy to be shown as outputs on the top

‘schematic page.

Verilog code

The counter circuit that generates the signals used as the
display information source as well as the frequency and mode
controls are implemented in a Verilog source file named
“control.v”, shown in [Listing 1].

Modules

The following code modules are used to create the control
circuit:

The “control” module is the top level module that passes the
input enable pulses through the “speed” module to the “count”
module. The input signals are routed to their appropriate
modules, the modules are connected together and output is
retrieved at this level. The “control” module is the top level
module that accepts all input from and pass all output to the
top page schematic. It is in this module that the input buffers
for the speed selection switches are instantiated. The IPBUF

MOTOROLA MPA DATA — DL201 REV 2
4-181

AN1613

functions specify the same input buffers as for the {RADIX}
input signal at the top level schematic. This is the mechansim
that would be used for all I/O if the top level of the design was
synthesized and contained all I/O specifications.

The “speed” module accepts the input clock, 3.8 Hz enable
pulses, and the speed selection switch inputs. The input signal
is divided by one, two, three, or four as specified by the
switches and a 500 ns wide enable pulse is passed back as
the output. This circuit could be constructed with no means of
initialization, causing the initial state to be indeterminate.
However, after the first cycle through the divider (four pulses
maximum) the circuit would stabilize. This would pose a
problem with the simulator, which propagates and retains
“unknown” states.

The “count” module accepts the output of the “speed”
module and the {RADIX} input. It produces the four bit vector
“count’ that is passed out to the top level schematic as
{RESULT_0} through {RESULT_3}.

Compiling to EDIF

The control.v file is compiled to the control.edf file using the
Exemplar Galileo compiler. The text shown in [Listing 2]
contains the results of the Galileo run, as well as all compiler
options as they were set for this file.

At this point the Verilog code has been reduced to a flat
EDIF file. The EDIF file is a basic text file specifying each
instance of the library primitives for the FPGA and their
interconnections. This can be accepted as input to most front
end tools as a library module, which is what we will do in our
next step.

Instantiating Verilog module

Like most front end tools, Workview Office uses an
internally defined file structure to maintain the schematics for a
particular project. Each module, schematic element, or
schematic (excluding device library components) is comprised
of one or more of the following files: WIR, SYM, and SCH.

The WIR file is the internal netlist for a particular circuit. It
can be considered the internal representation of an EDIF file.
The WIR files are hierarchical and track the schematic
structure. When a [Save & Check] is performed on a
schematic, a WIR file is generated. This file contains a list of all
of the modules on the schematic page and their
interconnections. It doesn’t contain the internal connections
within a module. The WIR file for each module contains its
particular internal connections. At the lowest level, all of the
modules referenced in a WIR file are library elements. To use
the result of our Galileo compile, we will need to convert the
compiled EDIF file into a WIR file using a Viewlogic utility.

The SYM file is the symbol that is used as a “handle” to
manipulate a module and place it into a schematic. A SYM file
must exist for the EDIF file that we plan to place into our
schematic. It is through this file that the schematic editor
knows how to draw the visual image of the module on the
screen and what ports (“pins”) are available for the connection
of nets and busses. The SYM file can be hand drawn or it can
be generated directly from EDIF file by a Viewlogic utility,
Viewgen, depending on the users Viewlogic license
restrictions. If it is generated by Viewgen, it can be edited to

change its appearance. In this application note we will
generate the symbol manually using the schematic editor.

The SCH file is the schematic file. It is from this file that the
WIR file is generated. While a WIR file contains a list of
interconnections, the SCH file also contains the information to
graphically draw the schematic on the ‘screen. This
information allows the schematic editor to remember where
the components are placed, as well as the visual routing of the
nets and busses as edited by the designer. An SCH file of a
particular module isn’t necessary to place that module into the
final schematic. In this example, no SCH file will exist for the
module created by the Verilog compile. As a result, we will be
unable to “push” down into the internals of our control module
from the schematic editor. Again, depending on the users
Viewlogic license restrictions, the Viewgen utility can create an
SCH file from an EDIF file. If this is done, the user can then
push down and view the schematic as generated by the
Verilog compiler. This feature can be very helpful when
learning synthesis, as the user can see exactly what circuit is
generated from the source code. The only shortcoming with
this feature is that the schematic generated is composed
entirely of primitive gates (AND, NAND, OR, NOR, XOR,
XNOR, INV, etc.) connected in a visually arbitrary maze. For
small circuits this isn’t a problem, for large or complex circuits
it basically appears as a sea of gates connected by
uncountable (and untraceable) nets.

It should be noted at this point that all of the files for a given
module have the same name, and are differentiated only by
their location in the project file structure. For example: the
schematic, wire, and symbol files for the display driver module
are all named “display.1”. (The “.1” indicates page number one
of that module. All of the modules in this design, and in most
hierarchical designs have only one page per module.) If these
files are moved to the same directory, they will overwrite each
other. If they are moved around and placed back into the
wrong subdirectories, errors will result when the files are
accessed by any of the Viewlogic tools.

Importing EDIF

In order to use our Verilog generated control module we
must have a WIR and an SYM file for the module. The EDIF
import utility will create the WIR file for us. We will then create
the SYM file using the schematic editor. The Viewgen symbol
and schematic generating utilities, if used, obtain their
information from the WIR file. Therefore the WIR file
generation is the first and necessary step in using our control
module.

In this application note, it is assumed that the user is using
the GUI interface for all tools and utilities. These tools also
have a command line interface for batch processing that is
covered in the documentation for each tool.

To begin, the user starts the “Edif interfaces” program from
the Viewlogic tool suite. (Note: If your display resolution is less
than 800x600, the entire “Edif interfaces” dialog box may not fit
on your screen.) The “EDIF Netlist Reader” tab is selected in
the dialog box. The “Browse” button is used to locate the input
EDIF file: This process will bring to light an issue with the
naming of EDIF files. Viewlogic is looking for EDIF files to have
the extension of “.edn”, whereas Galileo generates EDIF files
with the extension of “.edf”. This means the file “control.edf”

M -

MOTOROLA MPA DATA — DL201 REV 2
4-182

won'’t appear in the input file window when the proper directory
is located. The file type option must be changed to “*.*” to view
the file, which also fills the window with all files in the directory.
An alternative is to just type the full file and path name into the
main dialog box without browsing. When using the command
line version of the tools in a batch file, the user specifies the
correct extension in the input file specification.

When selecting the output directory, the user MUST specify
the WIR subdirectory in the Viewlogic project directory
structure. If not, then the user must move or copy the file into
this directory for it to be usable by Viewlogic. It should be
noted that the EDIF netlist reader does NOT point to this
directory by default, but instead starts out in the main project
directory, one level above the WIR subdirectory.

The “Apply” button is pressed and the tool performs its
magic, providing status in the dialog box window.

Creating the Symbol

At this point we have a WIR file for our Verilog module so
Viewlogic can now use the information to generate an overall
netlist. However, we need to create a SYM file so that we have
a symbol containing pins for the connection of nets on our
schematic page.

The symbol is created using the Viewdraw schematic
editor. “New” is selected from the “File” menu. When the dialog
box appears the “Symbol” option is selected (as opposed to
the default “Schematic” option). A name is specified, in this
case itis “control.1”. The name of the symbol MUST be exactly
the same as the name of the WIR file.

A symbol is created from lines, rectangles, arcs, etc. All of
these objects are used to create the visual appearance of the
symbol on the schematic. The only functional elements on the
symbol are the pins (placed using, you guessed it, the pin tool
from the tool bar). There must be one pin for each I/O
connection in the parameter list of the topmost Verilog module.
The names of the pins MUST exactly match the names of the
top module’s parameters, the only exception is that case is
ignored. When vectors are specified, as in the “result’
parameter in our control.v file, Galileo expands them to a
series of scalar connections. Each of these scalar values has
the name of the vector follows by an underscore and the bit
position. In our example, the vector “result” that was defined
as {[0:3]result} will expand to {RESULT_0} through
{RESULT_3}. Four pins were placed on the “control” symbol
with these names. The file is then saved. Viewdraw will create
a text window defining the properties of the symbol. This text
window and the editor window can be closed, assuming there
are no errors at this point.

Instantiating the Verilog module into the schematic

Our control module, as defined by the Verilog code, can
now be manipulated the same as any of the other
schematically drawn modules. The only exception to
manipulating this module is that the internal logic can't be
viewed by pushing down to the schematic level.

To place the module in our design, the user selects the
option of adding a component and chooses “control.1” from
the list of project modules. In our case, there is one
instantiation of this module. In other cases, such modules can

AN1613

be placed as many times as necessary into as many different
schematic pages as the user wants. It should be noted that
this results in a complete duplication of this module into the
FPGA for each instantiation.

The top schematic page is then saved using the “Save &
check” option. The resulting WIR file of the topmost schematic
now contains a reference to the “control” WIR file and it's
connections on that schematic page. Connections within the
“control” module are not in the topmost schematic file, but are
specified in the control module’s WIR file.

Generating the final net list

The final netlist used to present the design to the MPADS
tool for place and route into the Motorola FPGA must be
generated using the Viewlogic “Edif interfaces” utility. At this
stage the entire design is spread across a collection of files
under the control of the Viewlogic project manager. Just as the
Verilog code was distilled down to an EDIF file for processing
by Viewlogic, the entire design must now be reduced to a
single EDIF file for import into the Motorola back—end tool.

Again, the Viewlogic “Edif interfaces” utility is started. This
time the “EDIF Netlist Writer” tab is selected. Use the “browse”
button to locate the WIR file for the topmost schematic. In this
example the top schematic file is “top.1”. (Curiously enough,
when browsing for a WIR file for EDIF output, the tool does
default to the WIR subdirectory.) The output file will default to
the input filename with the “.edn” extension. (The Motorola
place and route tool will accept EDIF files with either “.edn” or
“.edf” file extensions.) In our case the output file defaults to
“top.edn”. The resulting EDIF file is placed one level above the
WIR subdirectory, into the main project directory. The fact that
the input and output files reside in different directories isn’t
obvious from the dialog box.

The contents of the “Author” field will be placed into the
EDIF file as a comment, and is optional. The “Level” field
MUST be specified as “micro”. This tells the tool to specify only
the micro gate level library in the resulting EDIF file. With this
option set to micro, the final EDIF file will not contain a
reference to the “HEX4-7S” used to drive the seven segment
display, but will instead specify the primitive gates that make
up this library element.

Leave “Inhibit Library Alias” unchecked. Allow the
“Configuration files” to default. The “Netlist options” must be
set to “Flatten without evaluation attributes”. This last option
causes the netlist tool to recursively descend the hierarchy
whenever a module is encountered until the primitive gate
level is reached. The final EDIF netlist will not contain any
hierarchy, but will instead be composed entirely of basic gates
and their interconnections. Pressing the “Apply” button
generates the final netlist.

MPADS interface

The EDIF file (top.edn) that we have created contains all of
the design information except for the FPGA pin number
specification for the 1/O signals. There are three methods of
resolving this issue:

First, we could allow the back—end tool to select our pins for
us. This is the easiest option. To download this design into the
Motorola demo board, the signals must match the LED and
switch connections already designated on that board. Even if

MOTOROLA MPA DATA — DL201 REV 2
4-183

AN1613

this is acceptable in an actual engineering project, it is only
acceptable during the initial design. Thereafter all design
modifications must track the original pin specifications.

The second option is to specify the pin numbers as
attributes to the 1/O signals in the front-end tool. This is
probably the most common method in schematic capture
environments.

The third, and the one used in this application note is to use
an external pattern file that is imported by the Motorola
back—end tool.

All three of these methods can be used on a particular
design. Unspecified pins are numbered automatically during
autoroute by MPADS. If a pin number is specified in the
front-end tool and in a pattern file, the pattern file takes
precedence.

Pattern file

The pattern file used in this design is shown in [Listing 3]. If
a pattern file is to be used, it MUST have the same name as
the input EDIF file with the extension “.pat”. In addition, it
MUST also reside in the same directory as the input EDIF file.
If either of these conditions is not met, then the MPADS tool
will assume that there is no pattern file and will quietly perform
pin selection on it's own. It is therefore important that the
designer check the port report file that is output by MPADS to
confirm that the required pin placement information was
processed.

Import results

[Listing 4] shows the results of the MPADS import of this
design. Just as Viewlogic had to read the EDIF file generated

by Galileo into a WIR file for its own use, MPADS has to read in
the final EDIF file into a “.net” file for its use. In addition, the
import process checks the specified EDIF file for errors or
design inconsistencies that would prevent the autorouter from
processing the netlist.

Autoroute results

The results of the autoroute are shown in [Listing 5]. At this
point we can check the port report file (“prp”) shown in
[Listing 6] to confirm proper pin placement.

Updating the design

The above process may be repeated many times in the
normal engineering design cycle. The opportunities to
introduce mistakes, such as recompiling the Verilog code but
forgetting to import the new EDIF file before netlisting the
schematic can waste time and energy. The most productive
method is use a batch file that runs the proper tools in
sequence, specifying the proper tool options and filenames

Conclusion

Dealing with the myriad number of front-end tools can be
an advantage if, by integrating them, you make use of their
individual strengths. The ftrick to doing this effectively is to
understand what each tool requires in order to pass
information to and from other tools. In most cases this isn’t a
very difficult procedure, but simply one in which there is little
direct documentation. It is usually possible to extrapolate the
information provided for the integration of front-end and
back—end tools to the task of multiple tool sets.

M -

MOTOROLA MPA DATA — DL201 REV 2
4-184

AN1613

[Listing 1]

// This file is the control circuit that interprets the dip switches
// on the demo board and produces the results for the display circuit

// Engineer Rich Rejmaniak / Phil Rauba

// Company Motorola SPS

// Date 01/06/96

// Revised 03/27/97 Rauba

// Revised 04/03/97 Rejmaniak

/7 - e e

module control (clk, enable, radix, reset_1l, switch_0, switch_1, result);
input clk; // Main system clock
input enable; // Main system clock enable
input radix; // Select count mode to hex or BCD
input reset_1; // Initialization signal (active low)
input switch_0; // Clock divider control switches
input switch_1;
output [3:0]result; // Final four bit result of the count

// Signal ‘tick’ connects the output of the prescale module to the
// input enable of the counting module

wire tick;

wire [1:0]scale;

wire reset; // Reset is active high internally
assign reset = ~reset_1;

// The inputs that specify the scaling divisor for the ‘speed’
// module have their I/0 buffers specified here. The ’'switch’
// variable connected to the .extin ports will appear as I/O
// to the final compiled module, just as the parameters specified
// in the list to this module.
ipbuf i0 (.extin(switch_0), .i(scale[0]));
ipbuf il (.extin(switch_1), .i(scale[l]));
// Divide the incomming clock enable frequency by one, two, three, or four
speed ul (clk, enable, reset, scale, tick);
// One count for every ’'tick’ enable clock pulse
count ul (clk, tick, radix, reset, result);
endmodule
// - -———= Bttt
// This is an isocrohrous module that will advance the output ‘count’
// on every enables clock pulse
module count (clk, enable, radix, reset, count);
// 'radix’ determines if the counter will terminate at '9’ or 'f’
input clk, enable, radix, reset;
output [3:0]count;

reg [3:0]count;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
count <= 0;
end // Reset condition
else
begin // non-reset or potential count event

// It’s only a count event if enable is true (isochronous vs.
synchronous)

count <= enable ? (count + 1) : count;

// When in BCD mode......

// Reset to zero on the next enabled clock pulse after ’9’

if ((count == 9) && (radix == 0) && enable)

begin

count <= 0;

MOTOROLA MPA DATA — DL201 REV 2
4-185

AN1613

end
end // non-reset condition
end // always block
endmodule
//

// Divide the clock enable frequency by 1, 2, 3, or 4

// as specified by the external ’‘switch’ inputs

module speed (clk, enable_in, reset, scale, enable_out);
input clk, enable_in, reset;

// The scaling signals entering through I/O buffers specified in the
// top module ’'control’

input [0:1]scale;

output enable_out;

reg enable_out;

reg [0:1]divide;

always @ (posedge clk or posedge reset)
begin

if (reset)

begin // reset condition
divide <= 0;
enable_out <= 0;

end // reset condition
else
begin // non-reset condition
if (enable_in) // only respond to enabled clock pulses
begin
if (divide == scale)
begin // Pass this enable out of the module
enable_out <= 1;
divide <= 0; // Restart dividing counter
end
else // Count and block this enable
begin

enable_out <= 0;
// Block this enable

divide <= divide + 1;
// But count it toward the enable count

end
end
else // input clock pulse isn’t enabled to begin with
begin
enable_out <= 0; // non-enabled clock pulse
end
end // non-reset condition
end // always block
endmodule
//-
module ipbuf (extin, 1i); // MPA library element
input extin;
output 1i;
endmodule

: W} 7 i E@ MOTOROLA MPA DATA — DL201 REV 2

4-186

AN1613

[Listing 2]

Galileo - V3.2.5
Copyright 1990-1994, Exemplar Logic, Inc. All rights reserved.
gcw —COM=D:\TEMP\xmplr2 D:\Projects\DemoBrd\Verilog\control.v
D:\Projects\DemoBrd\Verilog\control.edf

gcw Options:

Option Value

Input = D:\Projects\DemoBrd\Verilog\control.v
Output = D:\Projects\DemoBrd\Verilog\control.edf
pass = 1

parallel_case

encoding = ONEHOT

modgen_library = generic

report = DEVICE_UTIL

tristate_map

transformation

wire_tree = WORST

macro

effort = Standard

area

output_format = EDIF

input_format = Verilog

target = P_mpa

nocontrol

cwd = D: \EXEMPLAR\DEMO

com = D:\TEMP\xmplr2

The license on this copy of galileo will expire in 177 days.

If this is a newly licensed copy of galileo, please be sure to

install the long-term license before your temporary license expires.

If this is a permanent license, your maintenance contract has expired.

Please contact (510)337-3703 or license@exemplar.com to renew maintenance.

Reading library file ‘D:\EXEMPLAR\lib\gcprim23.syn'...

—— Reading file ’'D:\Projects\DemoBrd\Verilog\control.v’...

-— Loading module ipbuf

—- Loading module speed

—- Loading module count

—— Loading module control

—— Compiling root module ’‘control’

Warning, module ipbuf is empty.

—- Compiling module speed

—— Compiling module count

-— Verilog source successfully analyzed.

—- Info, performing high-level optimization...

-— Info, saving design to database..

Warning, Unknown gate ’ipbuf’ (instance i10) found. Treating as ‘noopt’.

Warning, Unknown gate ’‘ipbuf’ (instance il) found. Treating as ’'noopt’.

Info, infering module generator MODGEN_EQ(SIZE=>2,SIGNED=>FALSE) for instance u0/modgen_0
Info, infering module generator MODGEN_INC (SIZE=>2, SIGNED=>FALSE) for instance u0/modgen_1
Info, infering module generator MODGEN_INC (SIZE=>5,SIGNED=>FALSE) for instance ul/modgen_2
—— Starting module generation

-— Reading module generator description from file D:\EXEMPLAR\data\modgen\generic.vhd
—— Modgen File generic.vhd Version 3.7

Reading library file ‘D:\EXEMPLAR\1lib\p_mpa23.syn"'...

—— Resolving module generator MODGEN_INC (SIZE=>5, SIGNED=>FALSE) from file generic.vhd
-— Resolving module generator MODGEN_INC (SIZE=>2,SIGNED=>FALSE) from file generic.vhd
—— Resolving module generator MODGEN_EQ (SIZE=>2, SIGNED=>FALSE) from file generic.vhd
Library version = 2.10

Delays assume: Temp= 25.0 C Voltage=5.00 V Process=typical

Exemplar Logic’s Galileo Fri Apr 18 17:47:25 1997

MOTOROLA MPA DATA — DL201 REV 2

4-187

AN1613

Pass Area Delay --CPU--
(Gates) (ns) min:sec
1 29 13.2 00:01

Resource Use Estimate
Design: control
Technology: mpa
File: D:\Projects\DemoBrd\Verilog\control.v
Area: 29.0
Critical Path: 13.2 ns
gcw run complete.

[Listing 3]

I/0 Pin pattern specification file

Rich Rejmaniak, Motorola Semiconductor

04/18/97 .

Jumper specifications for clock divider

Jumper positions J7-8 (USERO = switchO) &
J7-6 (USER1 = switchl) on the demo board
port switchO attribute pad_place 16
port switchl attribute pad_place 15

Jumper controlling BCD vs. binary count

Jumper position J7-4 (USER2 = radix)

port radix attribute pad_place 14

Jumper controlling debug vs. normal operation
Jumper position J7-2 (USER3 = debug)

port radix attribute pad_place 13

Clock input pin uses the onboard 2MHz osc.
port clk attribute pad_place 84

Seven segment display

port a attribute pad_place 70
port b attribute pad_place 69
port c attribute pad_place 68
port d attribute pad_place 73
port e attribute pad_place 72
port f attribute pad_place 71
port g attribute pad_place 66
~Z

[Listing 4]

MPA Design System - Starting Import run on Fri May 02 12:09:55 1997
Logfile e:\Projects\DemoBrd\Top\board.log
Reading Device Architecture ’g:\mpads\SYSTEM\mpal0l6.dev’
Reading Libraries....
Reading Library ’‘e:\Projects\DemoBrd’
Reading Library ’‘g:\mpads\LIBS\MPALIB\MPA1016’
Reading Library ’‘g:\mpads\LIBS\MPALIB\IOLIB'
Reading Library ’g:\mpads\LIBS\MPALIB\MICROLIB'
Done reading libraries
Reading EDIF netlist ‘e:\Projects\DemoBrd\\Top.edn’
Written at 19:24:0 9/2/1997 by VIEWlogic’s edifnet Version 5.00
Creating temporary definition inv...
...definition inv is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition dfer...
...definition dfer is already in library microlib
Written at 16:6:30 9/2/1996 by

W} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

4-188

Creating temporary definition an2...
...definition an2 is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition zero...
...definition zero is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition one...
...definition one is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition opbuf...
...definition opbuf is already in library iolib
Written at 16:6:36 9/2/1996 by
Creating temporary definition nr2...
...definition nr2 is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition or2...
...definition or2 is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition xr2...
...definition xr2 is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition an2...
...definition an2 is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition nd2...
...definition nd2 is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition xn2...
...definition xn2 is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition or2...
...definition or2 is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition nr2...
...definition nr2 is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition inv...
...definition inv is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition ipbuf...
...definition ipbuf is already in library iolib
Written at 16:6:36 9/2/1996 by
Creating temporary definition dfe...
...definition dfe is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition d4f...
...definition df is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition ipbuf...
...definition ipbuf is already in library iolib
Written at 16:6:36 9/2/1996 by
Creating temporary definition ipclk...
...definition ipclk is already in library iolib
Written at 16:6:36 9/2/1996 by
Creating new definition top...
Written at 15:12:58 9/2/1997 by
Design root at cell top
EDIF 200 Level 0 File top(top)
Reading Netlist ‘g:\mpads\LIBS\MPALIB\MICROLIB\inv\inv.net’
Reading Netlist ’g:\mpads\LIBS\MPALIB\MICROLIB\dfer\dfer.net’

AN1613

MOTOROLA MPA DATA — DL201 REV 2
4-189

AN1613

Reading Netlist ’‘g:\mpads\LIBS\MPALIB\MICROLIB\an2\an2.net’
Reading Netlist ’‘g:\mpads\LIBS\MPALIB\MICROLIB\zero\zero.net’
Reading Netlist ’‘g:\mpads\LIBS\MPALIB\MICROLIB\one\one.net’
Reading Netlist ’‘g:\mpads\LIBS\MPALIB\IOLIB\opbuf\opbuf.net’
Reading Netlist ’g:\mpads\LIBS\MPALIB\MICROLIB\nr2\nr2.net’
Reading Netlist ‘g:\mpads\LIBS\MPALIB\MICROLIB\or2\or2.net’
Reading Netlist ‘g:\mpads\LIBS\MPALIB\MICROLIB\xr2\xr2.net’
Reading Netlist ‘g:\mpads\LIBS\MPALIB\MICROLIB\nd2\nd2.net’
Reading Netlist ‘g:\mpads\LIBS\MPALIB\MICROLIB\xn2\xn2.net’
Reading Netlist ’g:\mpads\LIBS\MPALIB\IOLIB\ipbuf\ipbuf.net’
Reading Netlist ’g:\mpads\LIBS\MPALIB\MICROLIB\dfe\dfe.net’
Reading Netlist ’g:\mpads\LIBS\MPALIB\MICROLIB\Af\df.net"
Reading Netlist ’g:\mpads\LIBS\MPALIB\IOLIB\ipclk\ipclk.net’

Flattening definition top...
Retargeter : Reading attribute file e:\Projects\DemoBrd\\Top.pat
Retargeting definition top
Reading Binary Retargeter Rules File ’‘g:\mpads\SYSTEM\mpalOOO.rrf’
Netlist Statistics before Retargeting:
13 instances of nr2
1 instances of one
14 instances of or2
2 instances of xn2
4 instances of xr2
1 instances of zero
35 instances of inv
51 instances of an2
instances of df
instances of dfe
instances of dfer
instances of ipbuf
instances of ipclk
instances of opbuf
instances of nd2
Total of 161 instances
Reading Netlist ‘g:\mpads\LIBS\MPALIB\MICROLIB\dfr\dfr.net’
37 instances removed
36 nets removed
20 instances added
19 nets added
Netlist Statistics after Retargeting:
13 instances of nr2
14 instances of or2
instances of xn2
instances of xr2
instances of zero
instances of an2
instances of df
instances of dfe
instances of dfer
instances of dfr
instances of ipbuf
instances of ipclk
instances of opbuf
instances of nd2
Total of 142 instances
Retargeter took 4s
Flattening definition top...
Splitting wired-or nets...
Checking netlist...
Reading Layout ‘g:\mpads\LIBS\MPALIB\MICROLIB\dfer\ed.lyt’

M

MOTOROLA MPA DATA — DL201 REV 2
4-190

Reading Layout
Reading Layout
Reading Layout
Reading Layout
Reading Layout
Reading Layout
Reading Layout
Reading Layout
Reading Layout
Reading Layout
Reading Layout
Reading Layout
Reading Layout
Writing Netlist
Import took 7s

:\mpads\LIBS\MPALIB\MICROLIB\an2\ab.lyt"’
:\mpads\LIBS\MPALIB\IOLIB\opbuf\out.lyt"’
:\mpads\LIBS\MPALIB\MICROLIB\nr2\ab.lyt’
:\mpads\LIBS\MPALIB\MICROLIB\or2\ab.lyt’
:\mpads\LIBS\MPALIB\MICROLIB\xr2\ab.lyt"’
:\mpads\LIBS\MPALIB\MICROLIB\nd2\ab.lyt"’
:\mpads\LIBS\MPALIB\MICROLIB\xn2\ab.lyt"’
:\mpads\LIBS\MPALIB\IOLIB\ipbuf\in.lyt’
:\mpads\LIBS\MPALIB\MICROLIB\dfe\ed.lyt’
:\mpads\LIBS\MPALIB\MICROLIB\df\d.1lyt"’
:\mpads\LIBS\MPALIB\IOLIB\ipclk\in.lyt"’
:\mpads\LIBS\MPALIB\MICROLIB\dfr\d.lyt’
: \mpads\LIBS\MPALIB\MICROLIB\zero\a.lyt"’
e:\Projects\DemoBrd\Top\Top.net’

Qe EaQEEQeQQQQ

MPA Design System — End of Import run on Fri May 02 12:10:03 1997

[Listing 5]

MPA Design System - Starting Autolayout run on Fri May 02 12:10:31 1997

Logfile e:\Projects\DemoBrd\Top\board.log

Reading Device Architecture ’‘g:\mpads\SYSTEM\mpalO0l6.dev’
Reading Libraries....

Reading Library ‘e:\Projects\DemoBrd’

Reading Library ‘g:\mpads\LIBS\MPALIB\MPA1016"

Reading Library ‘g:\mpads\LIBS\MPALIB\IOLIB’

Reading Library 'g:\mpads\LIBS\MPALIB\MICROLIB'

Done reading libraries

Reading Netlist ‘e:\Projects\DemoBrd\top\top.net’

Reading Netlist ’g:\mpads\LIBS\MPALIB\IOLIB\ipbuf\ipbuf.net’
\mpads\LIBS\MPALIB\IOLIB\ipclk\ipclk.net’

Reading Netlist ’g:

Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\dfr\dfr.net’
Reading Netlist ’g:

Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\an2\an2.net’
Reading Netlist ’g:\mpads\LIBS\MPALIB\MICROLIB\or2\or2.net’
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\nr2\nr2.net’
Reading Netlist ’‘g:
Reading Netlist ‘g:
Reading Netlist ’g:
Reading Netlist ‘g:
Reading Netlist ’g:
Reading Netlist ’g:

\mpads\LIBS\MPALIB\MICROLIB\nd2\nd2.net’
\mpads\LIBS\MPALIB\MICROLIB\xn2\xn2.net’
\mpads\LIBS\MPALIB\MICROLIB\xr2\xr2.net"’
\mpads\LIBS\MPALIB\MICROLIB\dfe\dfe.net’
\mpads\LIBS\MPALIB\MICROLIB\df\df.net’

Reading Netlist ‘g:\mpads\LIBS\MPALIB\MICROLIB\zero\zero.net’

Reading Package File 'g:\mpads\SYSTEM\m2plcc84.pkg’
MPA1016 84 - PLCC package selected

Package mode ‘Boot_From_ ROM _Mode’ selected

Reading Layout 'g:\mpads\LIBS\MPALIB\IOLIB\ipbuf\in.lyt’
Reading Layout ‘g:\mpads\LIBS\MPALIB\IOLIB\ipclk\in.lyt’
Reading Layout : \mpads\LIBS\MPALIB\MICROLIB\dfr\d.lyt"’
Reading Layout :\mpads\LIBS\MPALIB\MICROLIB\dfer\ed.lyt"’
Reading Layout :\mpads\LIBS\MPALIB\MICROLIB\an2\ab.lyt"’
Reading Layout :\mpads\LIBS\MPALIB\MICROLIB\or2\ab.lyt"
Reading Layout :\mpads\LIBS\MPALIB\MICROLIB\nr2\ab.lyt"’
Reading Layout : \mpads\LIBS\MPALIB\IOLIB\opbuf\out.lyt’
Reading Layout :\mpads\LIBS\MPALIB\MICROLIB\nd2\ab.lyt"
Reading Layout :\mpads\LIBS\MPALIB\MICROLIB\xn2\ab.lyt"
Reading Layout : \mpads\LIBS\MPALIB\MICROLIB\xr2\ab.lyt’
Reading Layout :\mpads\LIBS\MPALIB\MICROLIB\dfe\ed.lyt’
Reading Layout :\mpads\LIBS\MPALIB\MICROLIB\df\d.lyt’
Reading Layout :\mpads\LIBS\MPALIB\MICROLIB\zero\a.lyt’

Qe QQQeaQaQQq

\mpads\LIBS\MPALIB\MICROLIB\dfer\dfer.net’

\mpads\LIBS\MPALIB\IOLIB\opbuf\opbuf.net”’

AN1613

MOTOROLA MPA DATA — DL201 REV 2

4-191

AN1613

Context arguments
Min Zone
Back Off
Fanout 2

Context arguments done

Autolayout arguments
Start Temp 10

Delay 0.5ns
30

Effort 30
Attempts 1
Utilisation 80
Delay Cost 0.05
Autolayout arguments done

Clocks,

Resets and Wired-or Nets:

$1nl5 is a primary clock driven by instance $1i4

Net has

ntop_1 is a tertiary reset

Net has

27 clock ports
driven by instance
1 normal port

1 reset port,

top_1(zero)

Net ntop_2 is a tertiary reset driven by instance top_3(zero)
Net has 1 reset port, 1 normal port

Net ntop_3 is a tertiary reset driven by instance top_5(zero)
Net has 1 reset port, 1 normal port

Net ntop_4 is a tertiary reset driven by instance top_7(zero)
Net has 1 reset port, 1 normal port

Net ntop_5 is a tertiary reset driven by instance top_9 (zero)
Net has 1 reset port, 1 normal port

Net ntop_6 is a tertiary reset driven by instance top_11(zero)
Net has 1 reset port, 1 normal port

Net

Net

Net

Net

7 primary clock/reset pads free (consider using these for high fanout nets)

ntop_7 is a tertiary

Net has

ntop_8 is a tertiary

Net has

ntop_9 is a tertiary

Net has
ntop_10 is a
Net has
ntop_11 is a
Net has
ntop_12 is a
Net has
ntop_13 is a
Net has
ntop_14 is a
Net has
ntop_15 is a
Net has
ntop_16 is a
Net has
ntop_17 is a
Net has
ntop_18 is a
Net has
ntop_19 is a
Net has

Context summary
11 I/0 pads used (80 available on device)
11 I/0 pins used (60 available on package)
End of Context summary
131 core cells used by design

This is approximately 16.38203f the maximum device capacity

M

reset
port,
reset
port,

driven by instance
1 normal port
driven by instance
1 normal port

reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port
tertiary reset driven by instance
1 reset port, 1 normal port

1 reset

1 reset

top_13 (zero)

top_15(zero)

top_17 (zero)
top_19 (zero)
top_21(zero)
top_23(zero)
top_25 (zero)
top_27 (zero)
top_29 (zero)
top_31(zero)
top_33(zero)
top_35(zero)

top_37 (zero)

MOTOROLA MPA DATA — DL201 REV 2

4-192

AN1613

and corresponds to an autolayout Utilisation parameter of 17.

Clock Information at end of initialisation:

Name Frequency period phase

clk 2.0MHz 500.0ns 0.0ns

Clustering took 1ls - 48 clusters created

Writing Clustered context file ’‘e:\Projects\DemoBrd\top\board.cxt’

Partitioning 48 top level objects (total 48 objects)

Partitioning took 7s

Writing Partitioned context file ‘e:\Projects\DemoBrd\top\board.cxt’

Global Routing 52 segments

Global Routing took 2s

Writing Global Routed context file ’‘e:\Projects\DemoBrd\top\board.cxt’

Zone Routing 8 zones

Routing zone (4,4) (1 of 8): 33 instances, 14 zone ports, 74 segments of 39 nets
Writing Zone Routed context file ’‘e:\Projects\DemoBrd\top\board.cxt"’

Zone processing took 6s

Routing zone (4,3) (2 of 8): 32 instances, 14 zone ports, 72 segments of 38 nets
Writing Zone Routed context file ’‘e:\Projects\DemoBrd\top\board.cxt’

Zone processing took 8s

Routing zone (3,2) (3 of 8): 15 instances, 13 zone ports, 36 segments of 17 nets
Writing Zone Routed context file ’‘e:\Projects\DemoBrd\top\board.cxt’

Zone processing took 1ls

Routing zone (2,1) (4 of 8): 14 instances, 12 zone ports, 33 segments of 15 nets
Writing Zone Routed context file ‘e:\Projects\DemoBrd\top\board.cxt’

Zone processing took 0Os

Routing zone (3,3) (5 of 8): 12 instances, 11 zone ports, 29 segments of 14 nets
Writing Zone Routed context file ’‘e:\Projects\DemoBrd\top\board.cxt’

Zone processing took 0Os

Routing zone (3,4) (6 of 8): 13 instances, 9 zone ports, 31 segments of 18 nets
Writing Zone Routed context file ’e:\Projects\DemoBrd\top\board.cxt’

Zone processing took 1s

Routing zone (2,2) (7 of 8):. 6 instances, 7 zone ports, 15 segments of 8 nets
Writing Zone Routed context file ’‘e:\Projects\DemoBrd\top\board.cxt”’

Zone processing took Os

Routing zone (2,4) (8 of 8): 6 instances, 7 zone ports, 15 segments of 8 nets
Writing Zone Routed context file ’e:\Projects\DemoBrd\top\board.cxt”’

Zone processing took 0Os

Zone Routing took 18s — 8 zones processed (0 failures)
Clock Information at end of Zone Routing:

Name Frequency period phase

clk 14 .9MHz 67.1ns 0.0ns

All nets are complete

Writing Timing File ‘e:\Projects\DemoBrd\top\board.tim’

Writing layout file ’‘e:\Projects\DemoBrd\top\board.lyt’

Writing back annotation file to ‘e:\Projects\DemoBrd\top\board.dtb’
New usage ’‘ntop_18’ clashes with existing use ’'ntop_3"

Writing port report file ’e:\Projects\DemoBrd\top\board.prp’

MPA Design System - End of Autolayout run on Fri May 02 12:11:08 1997

[Listing 6]

I/0 Pin report file

This file is suitable for use as an External Attributes (.pat) file

Definition: top

Layout: board

Port switch0O, Net switchO, Position (0, 43), Package pin 16
port switchO attribute pad_place 16

Port switchl, Net switchl, Position (0, 45), Package pin 15
port switchl attribute pad_place 15

Port radix, Net radix, Position (0, 47), Package pin 14

MOTOROLA MPA DATA — DL201 REV 2
4-193

AN1613

port radix attribute pad_place 14

Port clk, Net . clk,
port clk attribute pad_place 84

Port g, Net g,
port g attribute pad_place 66

Port c, Net c,
port ¢ attribute pad_place 68

Port b, Net b,
port b attribute pad_place 69

Port a, Net a,
port a attribute pad_place 70

Port £, Net £,
port f attribute pad_place 71

Port e, Net e,
port e attribute pad_place 72

Port d, Net d,

port d attribute pad_place 73

Position

Position

Position

Position

Position

Position

Position

Position

29,

54,

54,

54,

54,

54,

54,

54,

54),

28),

36),

40),

42),

44),

46),

48),

Package
Package
Package
Package
Package
Package
Package

Package

pin
pin
pin
pin
pin
pin
pin

pin

84

66

68

69

70

71

72

73

M7 T

4-194

MOTOROLA MPA DATA — DL201 REV 2

AN1613

: 1 :
IPCLK Clock davider
LK 7 T T
e EXTINNAL L INT g eMHIE aHz
- / By 2719
1 7 e e 1
CLKaHZ
TPAUF { A
DLBUG T Q
- S SEX LN ™S~z . B)
> P e
\ L- oR2
2 2
System Control
O B AN RESULT_0 RESULTO
A RESULT .1 AESULTY
. NABLE
by . _LPBUF RESULT.2 __RESULTZ .
A I
— S | X1 LN —— I __rapTx RESULT .3 RESULT3 -
L
T e — SWITCH.O
SWITCHD ! SWITCH_1
o — RESET _L
3 3
SWITCH
'\,..rrfrf.v.", - et e —
IPAST
RESE T N
5y EXTIN e d S
[
RESULTLO 31
Display driver
RESULT[O 3]
4 4
A8 F_G
i L Aoy
| B
|
| c
h)
£
L] —t
5 L6 5
7
| R :
: Motarola OFP5S
Schematic 1
Top Page
L .. -
. | : _
Figure 1. Top Page

MOTOROLA MPA DATA — DL201 REV 2

4-195

AN1613

A 8
cen C8R
Q0 — ao —
a1 — Q1 —
b 02 F— az —
s 03— a3 |— N
04— Q41—
’ 05— as p—
| a6 | 06 —
2MHT 07 = 87
] —— 1r-- ——> CLK CLK —
———{RCI RCO ACI RCO
AN AN
¢ *— — ¢
' A
i 8 a_
- ANZ -
TFER
3 ol 3
CLK
£
AN
[X
4 447 4
a
cLK
5 £ 5
AN S S
- Motorola PS
Lo @ ,,_J Schematic 2
: Clock Davider
i | IS—
Lo A l 5

Figure 2. Clock Divider

M

MOTOROLA MPA DATA — DL201 REV 2
4-196

RESULTLO
,
Ie
3
Hoo x
-
|
i
|
4

3]

t

S

e

g

AN1613

men t

T
| B8
- 1
0PBUF
. 0
(SRS LT I K;EXIUUL ' |
BT Y L 2|
0PBUF .
. | N €
A, S~ 0Ng | EXTOUR
SNy 1%
OPBUF
c
Ao aNg N EXTOUT,
-7 INY L g
GPBUF
6
______ A \[> E%Exmur\
display decoder
4
5
Motorola P9
Schematic 3
Display DOriver
]

Figure 3. Display Driver

MOTOROLA MPA DATA — DL201 REV 2

4-197

4/97

AN1614
Application Note

Optimizing VHDL/Verilog Designs
for Speed for the MPA Family Using
Exemplar Galileo Synthesis

Prepared by
Claudia Colombini
Motorola Field Applications Engineer

@ MOTOROLA

© Motorola, Inc. 1997

4-198

REV O

AN1614

Optimizing VHDL/Verilog Design for Speed for Motorola MPA1000
Family Using Exemplar Galileo Synthesis

This Application Note is intended to show an easy way of Select the kind of modgen library. There are 5 possibilities:

producing good synthesis results in terms of speed for —_Auto
MPA1000 family when using Exemplar Galileo for synthesis. _Smallest
—Small
1. Galileo Options setting and results: — Fast
During synthesis the Galileo default module generation — Fastest
libraries (modgen) will be used. To select the kind of modgen On this small example of a 16-bit accumulator the different
library that will be used for the design select the Input Options results for these 5 possibilities are shown. These results will
from the Galileo Logic Explorer menu. For MPA1000 the help you make the right switches on Galileo Synthesis to
Module generation library should be set to default. produce the required results for your design.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity accul6 is
port (clk,rst :in std_logic;
d : in std_logic_vector (15 downto 0);
accu : out std_logic_vector (15 downto 0)

)
end acculé6;
architecture arch of acculé is
signal accu_int : std_logic_vector (15 downto 0);

begin
process (clk, rst)
begin
if rst = 0’ then
accu_int <= (others => ’0');
elsif clk’event and clk = ‘1’ then
accu_int <= accu_int + 4;
end if;

end process;
accu <= accu_int;
end arch;

The best results will always be optained when the Effort is set to exhaustive. This will cause the tool to run longer especially on
PC but the results will be the best. For delay optimization the Optimize option is set to Delay. For synthesis options: Mode is set to
Chip —this will automatically insert IO—-Buffers. None of the 11 paths is selected, this will make the synthesis run through all 11 paths
and then the tool will come up with different results from which the best speed can be selected. All other settings are set to default.
See the settings for all runs, the option changing will be select_modgen.

gc /home/claudia/exemplar/demo/accul6.vhd /home/claudia/exemplar/demo/accul6.edf -nocontrol
—-input_format=VHDL -target=p_mpa —-output_format=EDIF -delay -effort=Exhaustive -chip
-wire_tree=Worst -report=slack_table -report=cell_usage -report=device_util -encoding=OneHot
—VHDL_93 -modgen_library=generic -select_modgen=Smallest —-status_pipe=8
gc Options:
Option Value
Input /home/claudia/exemplar/demo/accul6.vhd

Output = /home/claudia/exemplar/demo/accul6.edf
status_pipe = 8

select_modgen =

modgen_library = generic

MOTOROLA MPA DATA — DL201 REV 2
4-199

AN1614

vhdl_93

encoding = OneHot

report = device_util
wire_tree = Worst
chip

effort = Exhaustive
delay

output_format = EDIF
target = _mpa
input_format = VHDL
nocontrol

1.1. select_modgen is set to smallest:

Here are the 11 paths with the different results, the last 2 paths do another speedup of the fastest paths:

Pass Area Delay --CPU--

(Gates) (ns) min:sec
1 150 38.6 00:03
2 150 38.6 01:58
3 150 38.6 00:03
4 150 38.6 00:03
5 150 38.6 00:03
6 150 38.6 00:03
7 150 38.6 00:03
8 150 38.6 00:03
9 168 94.0 00:05
10 252 51.8 00:30
11 255 69.8 00:09
1Spd 151 38.6 00:06
2Spd 151 38.6 00:05

Galileo will automatically choose the fastest implementation and save the edif file, but it is also possible to save other paths if
wanted.

Resource Use Estimate
Design: ACCUlé6
Technology: mpa
) File: /home/claudia/exemplar/demo/accul6.vhd
@ Area: 150.0
Critical Path: 38.6 ns
gc run complete.

W} ; i E@ MOTOROLA MPA DATA — DL201 REV 2

4-200

AN1614

1.2. select_modgen is set to smalil:

Here are the 11 paths with the different results.

Pass Area Delay --CPU--

(Gates) (ns) min:sec
1 150 38.6 00:04
2 150 38.6 02:01
3 150 38.6 00:03
4 150 38.6 00:03
5 150 38.6 00:03
6 150 38.6 00:03
7 150 38.6 00:03
8 150 38.6 00:03
9 168 94.0 00:05
10 252 51.8 00:32
11 255 69.8 00:09
1spd 151 38.6 00:06
2Spd 151 38.6 00:05

For this small example the resuit is not varying much to the option smailest.
This is the selected result:

Resource Use Estimate
Design: ACCUl6
Technology: mpa
File: /home/claudia/exemplar/demo/accul6.vhd
Area: 150.0
Critical Path: 38.6 ns
gc run complete.

1.3. select_modgen is set to fast:

Here are the 11 paths with the different results, the last 2 paths do another speedup of the fastest paths and include the
automatically selected result for the option fast:

Pass Area Delay --CPU--

(Gates) (ns) min:sec
1 162 33.8 00:05
2 188 37.4 00:04
3 192 33.8 00:04
4 186 37.4 00:04
5 i62 33.8 00:04
6 188 37.4 00:04
7 192 33.8 00:04
8 186 37.4 00:04
9 185 95.2 00:06
10 159 82.0 00:05
11 177 79.6 00:04
1Spd 162 31.4 00:08
2Spd 162 33.8 00:06

Resource Use Estimate
Design: ACCUl6
Technology: mpa
File: /home/claudia/exemplar/demo/accul6.vhd

MOTOROLA MPA DATA — DL201 REV 2
4-201

AN1614

Area: 162.0
Critical Path: 31.4 ns

1.4. Modgen_select is set to fastest:

Here are the 11 paths with the different results, the last 2 paths do another speedup of the fastest paths and includes the
automatically selected result for the option fastest:

Pass Area Delay --CPU--

(Gates) (ns) min:sec
1 168 26.6 00:05
2 194 30.2 00:05
3 198 26.6 00:04
4 192 30.2 00:05
5 168 26.6 00:04
6 194 30.2 00:04
7 198 26.6 00:05
8 192 30.2 00:05
9 191 96.4 00:06
10 165 86.8 00:05
11 182 83.2 00:05
1Spd 168 24.2 00:08
2Spd 168 26.6 00:07

Resource Use Estimate
Design: ACCUl6
Technology: mpa
File: /home/claudia/exemplar/demo/accul6.vhd
Area: 168.0
Critical Path: 24.2 ns

1.5. select_modgen is set to auto:

This option will cause the software to select the modgen library due to the optimization constraints. In this example the
optimization is set to delay therefore the Modgen_select is set to fast and the run will produce the same result as for the option fast.

2. MPADS implementation:

The MPA1000 family consists of 4 different arrays. For this example the MPA1016, the smallest device with about 3500
equivalent gates is chosen in the 84 PLCC package with the Boot from ROM programming mode. Before the IMPORT can be
started, the clock and reset signals of the design need to be tied to the primary clock network of the device. This will be done in the
External Attributes file, the .pat file.

Settings in the .pat file:

port CLK instance IPCLK
port RST instance IPRST

The settings for the autolayout is done in the Options — Autolayout menu. These settings can also influence the results of the
implementation.

For Autolayout Options the parameter group “Minimum Delay” is chosen. The settings in this parameter group are set to produce
the best implementation in terms of design speed. Important for this result is also the value which is put into the target delay. For this
example the target delay is set to 200 which means 20ns, a target frequency of 50MHz. In the advanced autolayout options panel,
be sure to enable tertiary clocks.

MOTOROLA MPA DATA — DL201 REV 2
4-202

i

AN1614

The results of the implementations of the different synthesis results of the 16-bit accumulator can be seen below.
Explanations of names:

accu_s:

select_modgen is set to small

accu_sm: select_modgen is set to smallest

accu_f:

select_modgen is set to fast

accu_fa: select_modgen is set to fastest

30

25

20

accu_s accu_sm accu_f accu_fa

Figure 1. results accu 16bit

Post Autolayout Resuit

Name MHz)
accu_s 17.30
accu_sm 17.30
accu_f 23.80
accu_fa 27.30

As these results show the selection of the select_modgen influences the performance of the design .The best implementation in
terms of speed will be produced be choosing the modgen library fastest. The 16 Bit Accumulator is able to be implemented with a
maximum frequency of 27.3 Mhz. This performance can be reached with a simple VHDL description and without any use of special
macros. Due to this it can be said that this performance of an 16 bit accumulator can also be reached within a big design where the
accumulator is just a part of it when the whole design is described using VHDL.

MOTOROLA MPA DATA — DL201 REV 2

4-203

AN1615
Application Note

An FPGA Primer for PLD Users

Prepared by
Terry Schaul
Motorola Technical Resource Manager

497 @ MOTOROLA

© Motorola, Inc. 1997 4-204 REV 0

AN1615

An FPGA Primer for PLD Users

Introduction

Welcome to the exciting world of Field Programmable
Arrays (FPGA). As the title suggests, the goal of this
application note is to familiarize the current Programmable
Logic Device (PLD) user with FPGA architecture, while also
introducing Motorola’s exciting new MPA (Motorola
Programmable Array). Digital system design is becoming
more complex as system requirements continue to push the
envelope of semiconductor technology. These demanding
requirements call for a digital logic solution optimized to meet
capacity, performance, cost and time—to—market constraints.
An FPGA solution meets these challenging requirements.

Programmable Logic Devices

As Figure 1 shows, logic devices can be classified into five
general types: standard logic, custom and fixed function logic,
PLD, Application Specific Integrated Circuit (ASIC), and
Microcontrollers.

Logic
Devices
|
| | I I]
Standard Custom & Fixed MPUs
Family Logic Function Logic PLDs ASICs CPUs

Figure 1. Logic Device Types

Of these five classifications, the PLD segment is the most
dynamic of these markets. The advantages of PLD’s are clear:
increased integration, improved reliability, lower cost, added
flexibility, and accelerated time to market. PLD’s can be further
classified into the following families: Program— mable Array
Logic (PAL), simple PLD (SPLD), complex PLD (CPLD) and
Field Programmable Gate Arrays (FPGA). Figure 2 displays
this classification along with the competing technologies.

PLD’s differ in structure from the traditional standard logic
devices. PLD’s allow the designer to program a specific logic
function into an uncommitted logic array after the device has
been fabricated. The uncommitted logic array differentiates
the PLD from the ASIC family. The size and complexity of the
logic targeted for a PLD differs among the various
classifications, and the actual dividing line between the
classifications is fuzzy.

PAL and SPLD are one in the same. They are both
array-oriented devices that have an AND-OR structure with a
wide—input AND gate feeding a narrower OR gate. This forms
a sum-of—products structure suitable to implementing
reduced Boolean equations. A limited number of registers are
made available at the the output of selected OR gates. This
architecture tends to be “logic rich” because the ratio of logic
gates to registers is on the order of 5 to 1. FPGA's, on the other
hand, tend to be “register rich”, with a logic—to—register ratio
closer to 2 to 1.

Programmable
Logic
<600 Gates >600 Gates

Continuous
Interconnect

High Capacity
PLDs
FPGAS CPLDs
1 [| 1 1
SRAM |An||luse| |EPROM ||EEFROM|| FLASH || SRAM |

Figure 2. Programmable Logic Market

Segemented
Interconnect

CPLD’s are sometimes referred to as “super PAL’s”. This
device typically consists of multiple optimized PAL blocks
interconnected by a programmable switching matrix. The
density and complexity of these devices can accommodate
significant logic, but not the density and complexity attainable
by FPGA’s.

FPGA’s consist of four key elements: logic cells, logic cell
interconnection, programming elements, and /O modules.
Figure 3 shows the configuration of a generic FPGA. Note that
each FPGA supplier packages these elements together
differently, and these elements will be examined in detail later.

0o oo oo oo gg\gl::g;ir::b'e
Point —+
Y
Cellllc;_bg El D D D EProgrammable
T=—"Logic Cell
o i
e 0
oo rDU oo oo Horizontal
" Interconnect
Vertical Lines
Interconnect
Lines

Figure 3. Generic FPGA Architecture

CPLD and FPGA differ in their interconnect structures.
Typically, CPLD’s use a continuous interconnect structure,
while FPGA's use a segmented interconnect structure. The
CPLD’s fixed interconnect structure implies that the designer
knows the delay between logic cells before any design work is
done. For FPGA's, however, these delays can only be

MOTOROLA MPA DATA — DL201 REV 2
4-205

AN1615

estimated until the place and route is complete. After place
and route, all delays inside an FPGA are known.

Besides the physical structure, the different PLD families
also vary greatly in the density of the devices. PAL and SPLD
contain fewer than 600 usable gates, and are technologically
limited in their growth potential. CPLD’s typically contain
between 500 and 10,000 usable gates, while FPGA’s offer the
most dense devices ranging from 2,000 to 50,000 usable
gates and beyond. Only the FPGA architecture will allow for
continuous density growth.

Development tools play a very important role in designing
with PLD’s. The development tool strategy differs among the
PLD families and their suppliers. PAL’'s and SPLD’s are less
complex and dense, and they usually require the use of a
single industry standard development tool such as ABEL or
PALASM to complete the PLD design cycle. CPLD’s and
FPGA’s, however, with their increased complexity and density,
require more sophisticated development tools. CPLD’s and
FPGA’s require both front— and back—end development tools.
Design capture can be in the form of schematic capture or a
Hardware Descriptive Language (HDL). Some suppliers have
a flexible front—end tool strategy that allows the use of popular
third party tools for design capture and netlist generation. Still
other suppliers offer their own proprietary front—end
development tools. Regardless of the front—end tool strategy,
all devices require a specific back—end tool that fits or places
and routes the design into the specific device. These
back—end tools are offered by the CPLD/FPGA suppliers for
their specific devices.

FPGA Attributes

The previous section summarized the different
classifications of PLD’s. The key elements of the the FPGA
elements that will now be examined are: physical structure,
granularity, interconnectivity and development tools.

Physical Structure

The physical structure of the FPGA memory element
comes in two flavors: SRAM and Anti-fuse. SRAM-based
FPGA's consist of programmable logic cells surrounded by a
programmable interconnect matrix where the function and
routing that is programmed into the device via the SRAM is
volatile. At each power—up, the program is downloaded into
the device from an off—chip, non-volatile memory or a
microprocessor. The reprogrammable capability is an obvious
benefit for the SRAM-based solution. Since FPGA designs
tend to be complex, several design iterations are usually
required to complete the design. The reprogrammable FPGA
can significantly reduce prototype costs. More importantly,
reprogrammability adds flexibility to a system by providing
easy field upgrades or on-the—fly reconfigurations by simply
changing the downloaded program. The volatility of
SRAM-based FPGA's requires some additional overhead for
power—up downloading. This is most often accomplished with
industry standard serial boot PROM’s. These devices connect
directly to the FPGA with a very simple 3-wire interface (chip
enable, clock and data).

SRAM-based architectures integrate well with CMOS
technology. This provides a roadmap for the technology—

savvy supplier to combine FPGA modules with other popular
CMOS cores such as: DSP, SRAM and MCUs.

Total system reliability is another benefit of SRAM-based
FPGA's. SRAM-based devices are fully tested before
shipping, so they require no pre—inspection. Since they are
volatile and programmed in—circuit, they can be placed directly
into the target system, avoiding additional pre—programming,
inventory, and testing that non SRAM-based devices require.

Anti-fuse, also referred to as one-time programmable
device, is a physical structure whereby the interconnect
between logic units is an irreversible fusible link. Configuring
the device is accomplished by placing a programming voltage
between two metal plates to cause an electric field. This
electric field then causes metal to melt and rush in, filling a pin
hole in the insulation. The filling of this pin—hole with metal
completes the circuit, hence the name “anti—fuse”.

While anti-fuse devices typically implement the same
register intensive logic functions as SRAM-based FPGA’s,
they cannot be reprogrammed. Anti-fuse devices also require
higher voltages and longer times to program the fuse. As
mentioned earlier, FPGA designs often require several design
iterations to complete, and an anti—fuse FPGA solution can
potentially increase engineering time and prototyping device
cost.

Reliability issues must be addressed with anti-fuse
devices. Since it is impossible to determine the resistance at
which the metal will melt during programming, test vectors
must be generated to prove programming accuracy. Even with
test vectors, the devices are not 100% testable. The extra
handling that occurs to program the devices before they are
placed in the target system introduces additional reliability
concerns. Additionally, anti-fuse technology has historically
proven to be a difficult process to control. Consistent fuse
formation and prevention of "healing” have been some of the
troublesome past issues. Recently at least one major vendor
has abandoned its anti-fuse efforts.

The anti—fuse structure provides few advantages over the
SRAM-based structure. While the anti—fuse itself is typically a
smaller element than a single SRAM cell, there is significant
overhead circuitry associated with high voltage programming
and testability features that largely negate this supposed
advantage. Anti—fuse devices are generally more secure than
SRAM-based devices. Anti-fuse devices provide a
mechanism to prevent the "read-back” of programming
information. This feature, coupled with the fact that there is no
external programming bitstream to intercept, makes anti—fuse
devices a natural choice for systems where security of the
processing algorithm is criticai.

Granularity

FPGA's, by definition, contain logic cells, and granularity
refers to logical capacity of these individual FPGA logic cells.
Granularity is generally referred to as “fine grain” or “coarse
grain”. Again, there is no clear dividing line between fine and
coarse grain, as FPGA suppliers offer nearly a continuous
spectrum of logic cell capacity. Fine grain indicates fewer logic
gates per logic cell . Coarse grain indicates greater logic gates
per logic cell . As a rule of thumb, fine grain logic cells contain
1-8 logic gates per logic cell, whereas coarse grain logic cells
contain 9-25 logic gates per logic cell.

M

MOTOROLA MPA DATA — DL201 REV 2
4-206

Granularity affects the designer both logically and
physically. Logically, when fitting a design into the logic cells of
a fine grain device, the design is less abstracted than when
placed into a coarse grain device. This lesser degree of
abstraction makes design adjustments easier. Physically, the
designer must understand the difference between raw gates
and usable gates. The actual capacity of the device is
described by raw gates. Raw gates per logic cell is equal to the
total raw gates divided by number of logic cells. Raw gates is
an idealistic number, and the coarser the granularity of the
device the less raw gates resembles usable gates. Usable
gates refers to the number of logic gates actually used in a
design. Usable gates depends heavily on the architecture of
the routing resources, on the device granularity, and on the
logic design fitted into the device. The disparity between raw
gates and usable gates comes from the fact that those logic
cell gates not used in mapping a product term into a particular
logic cell are wasted, or used for routing. Generally, a coarser
logic cell decreases the logic gate utilization efficiency. To
improve this logic gate utilization many FPGA suppliers are
migrating towards fine grain architectures.

Interconnectivity

Another key attribute of the FPGA architecture is the
interconnectivity between the logic cells. Channels of wire
segments are provided between the rows and columns of the
logic cells. These wire segments are connected at various
points throughout this wire matrix. While sufficient wiring
segments must be provided for good routability, excess wiring
segments may waste valuable chip area.

One of the most important aspects of an FPGA architecture
is the ability of the development tool to route a design into the
selected device without the designer having to spend time
manually placing and routing. Most anti—fuse devices achieve
maximum routability by providing a fully connected crossbar.
SRAM-based devices simply cannot afford to provide a fully
connected crossbar for die size reasons. Thus SRAM-based
devices typically provide a partially connected crossbar as
shown in Figure 4. Since SRAM based arrays often use
elements of otherwise unoccupied logic cells to participate in
routing, this apparent disadvantage is minimized.

Fully Connected Cross-
bar Switch

Partially Connected
Segments

Figure 4. Switch Connections

The segmentation of the routing tracks plays an important
role in the interconnectivity of an FPGA. The wire segments
span along the FPGA in routing channels between the logic
cells. The length of this wire segment span varies among
FPGA devices. FPGA segmentation allows for incremental
delays. As the number of interconnect segments increases,

AN1615

the interconnect delay also increases. Since the number of
segments required to interconnect signals is neither constant
nor exactly predictable, the routing delays can not be
determined precisely until place and routing has been
completed. Fine grained FPGA inherently use more logic
cells. This places a heavy burden on the interconnect
structure. A robust interconnect structure is required by fine
grain architectures to avoid a routing bottleneck. Varied length
or hierarchal segmentation approaches provide adequate
resources to avoid such bottlenecks.

Development Tools

Last, but certainly not least, an FPGA primer would not be
complete without examining the critical issue of FPGA
development tools. This is a very complex subject, and the
intent of this application note is to introduce the reader to
various FPGA tool strategies. No matter how efficient an
FPGA architecture is, its efficiency lies in the ability of the
development software to optimize for that specific
architecture. The development tools comprise the software
system that enables the designer to define the logic, capture it,
verify it and implement the logic into the FPGA device. These
tools are typically bundied as front-end tools and back—end
tools. Some software venders and FPGA suppliers offer both
front— and back—end tools as a complete toolset, while others
just offer a portion of the toolset.

Netlist Generation Front-End Tools

or Synthesis Tool

Simulation

Design Entry I
Schematic Capture
or HDL Statements

.-+_-_-__ —_

Timing Place and Map to
Verification Route Technology

l Back-End Tools
Implement
Design Into

FPGA

Figure 5. Front & Back End Tools

Front-end Tools

As shown in Figure 5, front-end tools facilitate design entry,
primary design verification and netlist generation. These
front—end tools allow for design entry via schematic capture or
a Hardware Description Language (HDL). Schematic capture
requires the designer to enter the design in the form of gates,
logic elements from libraries of primitive functions and macros.
VHDL is one such behavioral language that describes the
function and attributes of primitive components and macros in
the design. VHDL and Verilog are both gaining momentum as
the front—-end tools of choice for several reasons. Once a
designer is comfortable with an HDL, the time to enter a
design is generally reduced versus schematic capture,
especially for very large designs. HDL's are technology

MOTOROLA MPA DATA — DL201 REV 2
4-207

AN1615

independent, allowing for a more efficient design. However,
gate counts may increase over schematic captured designs
when downloading an HDL design into an FPGA. Some
popular third party Computer Aided Engineering (CAE)
development tools include: Viewlogic, Mentor, Synopsys,
Orcad, and Veribest.

Simulation takes place in two key places in the design flow.
Logical simulation just after netlist generation verifies the
functionality of the design. At this point the design has not
been fitted into a specific device, thus only estimated or unit
wire delays are used. The second place where simulation can
take place is following the place and routing of the design. This
is a functional simulation of the design and uses actual back
annotated routing delays.

Back—-end Tools

As shown in Figure 5, a back—end tool maps the design into
the specific FPGA device, provides timing verification, and
configures the downloadable program (a.k.a. configuration
bitstream). Mapping tools convert original design elements in
the netlist into logic elements available to the specific FPGA.
Place and route tools interconnect the logic cells to each other
and the 1/O blocks. Design requirements such as speed, delay
and skew are realized during this phase. Meeting these design
requirements depends heavily on the the efficiency and
robustness of the place and route tool as well as the device
architecture. Timing verification can be performed with a
timing analyzer or by functional simulation. Finally, the
back—end tool provides the configuration bitstream to
download the logic into the FPGA device. This step is called bit
stream generation. Back—end tools are specific for each
FPGA device -and thus offered by the individual FPGA
suppliers.

WHY MPA

Motorola enters the exciting FPGA market with its
MPA1000 family of Programmable Arrays. The MPA1000
products are SRAM-based, fine grained, high performance,
low cost solutions for reconfigurable logic applications.

The SRAM-based physical structure of the MPA1000 offers
significant advantages. First and foremost is the reprogram—
mability that SRAM-based products provide over the
one-time programmable anti—fuse products. With todays
iterative and complex design flows, reprogrammability allows
a flexible, cost—effective solution. Additionally, the most recent
logic system design methodologies depend on the
in—system-reprogrammability of the SRAM based FPGA's to
accommodate on-the—fly functionality changes, built-in—
self-test (BIST), field upgrades and other flexible system
features. FPGA's are no longer just another vehicle to
implement a fixed logic function. Their reprogrammability has
become a foundation for many new system designs.

Motorola is a broad-based semiconductor innovator, and
brings technology leadership unmatched by its FPGA
competitors. As mentioned earlier, SRAM-based structures
integrate well with CMOS technology. Motorola will lead the
effort in integrating a programmable array module with other
popular CMOS cores. This will allow Motorola to differentiate
itself from the crowded FPGA and processor markets by
offering exciting new products.

The MPA utilizes a hierarchal routing scheme which takes
advantage of the fine grained structure while avoiding the
routing bottienecks. Each MPA1000 family member is a
partitioned array of logic cells. At the highest level of hierarchy
each device is partitioned into 4 equal size quadrants. I/0 cells
surround this core of quadrants. Each quadrant is further
subdivided into zones. A zone consists of a 10x10 array of fine
grained logic cells, 20 port cells, and a clock distribution cell.
Each logic cell provides a nand gate or a secondary function
(Wired-Or, Exclusive-Or, D-Flip/Flop or latch) depending on
the position of the logic cell. The MPA interconnect structure is
partitioned into 3 hierarchal levels: global, medium and local.
Hierarchical routing resources provide routing flexibility that
enables the MPA devices to overcome bottlenecks associated
with other fine and course grain architectures.

Motorola’s development tool strategy provides flexibility for
the designer. Motorola accepts both schematic capture and
HDL design inputs from over ten front-end CAE development
tool venders. Motorola provides the Motorola Programmable
Array Design System back—end toolset at a nominal cost (free
for low—end devices). Motorola Programmable Array Design
System automatically analyzes, optimizes, transforms, and
places and routes a design into an MPA device. Full
incremental design support as well as complete on-line help
reduces design time in a user friendly environment.

In summary, Motorola’s MPA products are a high density,
high performance, low cost solution for reconfigurable logic
needs. Fine grain structure, abundant hierarchical
interconnection resources and automatic, timing driven, tools
work together to quickly provide design implementations that
meet timing constraints without sacrificing device utilization.

CONCLUSION

This FPGA primer highlighted PLD families, provided a
glimpse into the competing FPGA architectures, and
examined the MPA solution. The key FPGA attributes of
physical structure, granularity, interconnectivity and
development tools have been elegantly addressed by the
MPA devices. Today’s digital engineers face such critical
design issues as schedule, product requirements (per—
formance, size, cost, etc.) and tool compatibility. To ensure
design success, these issues need to be considered when
selecting an appropriate FPGA solution in this complex world
of digital design.

For additional information, please reference the URL:
http://sps.motorola.com/fpga

MOTOROLA MPA DATA — DL201 REV 2
4-208

5/97

AN1618
Application Note

Using JTAG Boundary Scan
with the Motorola MPA1000
Family of FPGAs

Prepared by
Marten L. Smith
Motorola Programmable Logic

© Motorola, Inc. 1997

4-209

@ MOTOROLA

REV 0

AN1618

Using JTAG Boundary Scan with the Motorola MPA1000 Family of FPGAs

INTRODUCTION

JTAG is a standardized boundary scan methodology used
for board-level testing to detect faults in package and board
connections, as well as internal circuitry. The MPA1000 JTAG
architecture is designed to meet the IEEE 1149.1 standard for
testability of integrated circuits and to offer our customers a
more effective way to test their circuit boards which use the
members of the MPA1000 family of FPGAs.

This application note gives the reader information on how
JTAG is implemented on Motorola’s MPA1000 family of
FPGAs. For more information on JTAG and |IEEE 1149.1 the
reader is encouraged to reference books and articles that
directly relate to these topics.

JTAG INTERFACE

The MPA1000 device contains dedicated JTAG IEEE
1149.1 boundary scan circuitry. JTAG can be used on
unconfigured devices using the BYPASS or IDCODE
instructions. Or JTAG can be used on configured devices
using any of the public instructions available.

The first step in setting up any of the MPA1000 family of
devices in JTAG mode is to set aside the five TAP signal pins.
This is done so that these pins are can be utilized as JTAG
pins during JTAG mode. These pins are set aside for JTAG
when the user first runs the MPA Design System (MPADS)
tool. The user should first push the Select Device button on
the main window of the MPADS tool. This will bring up the
Select Device window. The user should then select the JTAG
Mode option along with the desired configuration option. Then
the user should push the OK button. These pins can still be
used as /O for the user’s design configuration, but will revert
to the TAP (JTAG) signals when the device is in the JTAG
mode as outlined below.

The second step in order to enable JTAG is to raise the
MODE[3] pin HIGH after the device is configured and the user

Table 1. Mode[3:0] Pin Programming

is ready for the device to go into JTAG mode (see Figure 1 and
Table 1). When the MODEI[3] pin of the MPA1000 device is
HIGH, five user I/O pins become the TAP (JTAG) signals and
user mode operation of those pins is interrupted. After JTAG
testing, these pins can be programmed as normal 1/O pins by
deasserting the MODE[3] pin. The TAP controller can take
control of all device pins, but care must be used to prevent the
TAP controller from interfering with device user mode or
configuration operation (the configuration pins are the
RESETB, CLK, MODE[3:0],and F[4:0] pins). Note: the
MPA1000 family of FPGAs can not be configured using the
JTAG port.

External
Signals

RESET_B
CLK

DCLK
MODE [3:0]

CSB BFRB Fo]
RDB ERRB F[1]
WRB MEMCEB F[2
RS PWRUP Fi3]
BUSY END Fl4]

TCK
T™S
TDI
TRSTB
TDO

LT

Figure 1. JTAG and Configuration Interface Signals
With the exception of the JTAG signals, the rest of these
signals are dedicated and are never available for user I/O.

Bits
[3] [2] [1] [0] Description
0 X 0 Micro Mode — Microprocessor/controller interface circuitry with parallel (byte-wide) data
0 1 BFR Mode (1) — Boot From ROM, byte-wide data. MPA generates ROM addresses
0 1 0 BFR Mode (2) — Boot From ROM, serial data. (Low pin count serial EPROM generates own
addresses)
X 1 BFR Mode (3) — Boot From ROM, byte—wide data. MPA does not generate ROM addresses
1 X X Use external clock for configuration
1 X Enable JTAG circuitry and pins

MOTOROLA MPA DATA — DL201 REV 2
4-210

Instruction
Decoder

Instruction
TAP Register

AN1618

>
Boundary Scan Register
—
Device ID Register MUX
[
Bypass Register

Controller

(110)
TRSTB || ™S l l TCK

ﬁ
|

Array Core

1/O Periphery

(110))

DI TDO

Figure 2. MPA1000 JTAG Architecture

JTAG BOUNDARY SCAN

Architecture

Figure 2 shows a block diagram of the JTAG architecture of
an MPA1000 device.

TAP and I/O Signals

The TAP (Test Access Port) consists of five externally
accessible signals which are used to control and observe
boundary scan data. These five pins: TCK, TMS, TDI, TRSTB,
and TDO are multiplexed with normal I/O signal pins. After
JTAG testing, these pins can be programmed as normal /O
pins by deasserting the MODE[3] pin. Note: There are no
Boundary Scan Cells associated with the TAP signals.

The following is an explanation of the TAP signals

TCK - Test Clock. This clock input is used to synchronize
all of the JTAG functions. It is used for functions such as the
clock for the TAP controller and the shifting of test data
through the boundary scan cells. The maximum frequency
that can be used for TCK is 16 MHz.

TMS - Test Mode Select. This input controls the state
changes of the TAP controller. TMS determines whether the
TAP controller performs an Instruction Register function or a
function involving one of the data registers (See Figure 3).
TMS is sampled on the rising edge of TCK.

TDI - Test Data Input. Serial test data is received by this
input and sent to the Instruction Register or one of the data
registers according to the state of the TAP controller. TDI is
sampled on the rising edge of TCK.

TDO - Test Data Output. Serial test data is driven from this
output, having been sent from a selected data register or the
instruction register. Which data register TDO receives data
from is determined by the instruction loaded into the
Instruction Register. TDO changes on the falling edge of TCK.

TRSTB - Test Reset_Bar. This active low input
asynchronously initializes the TAP controller to the
Test-Logic—Reset state (see Figure 3). This state initializes all
of the test logic of the JTAG circuitry so that normal (i.e.
non-JTAG) operation of the MPA1000 device can continue.

JTAG Control and Registers

MPA1000 family JTAG TAP controller and registers are
shown in Figure 3. The JTAG architecture of an MPA1000
device consists of a TAP controller, an Instruction Register,
Instruction Decoder, a series of data registers, and a
Multiplexing function for the data register outputs. The data
registers consist of, a Bypass Register, an ID Register, and a
Boundary Scan Register. The JTAG circuitry in the MPA1000
family is hard-wired.

The following is an explanation of the controller and
registers in the MPA1000 JTAG circuitry:

TAP CONTROLLER - The TAP controller is a
synchronous, 16-state, finite state machine which selects the
mode of operation for the test circuitry. The state machine
diagram is shown in Figure 3. The state transitions of the TAP
controller occur based on the value of TMS at the time of a
rising edge of TCK. There are two general functions
performed by the TAP controller; one is the loading of test
instructions into the Instruction Register and the other is the
shifting of test data through the data registers.

MOTOROLA MPA DATA — DL201 REV 2
4-211

AN1618

TEST LOGIC RESET

© ="' STATE OF
TAP CONTROLLER

=LOGIC STATE OF TMS
“0” = OFFILOW
“1”= ONHIGH

ECT-DR-SCAN
‘ 0

SELECT-IR-SCAN
0

Figure 3. TAP Controller State Diagram

INSTRUCTION REGISTER - The Instruction Register is a
three—bit register which permits a test instruction (also called a
Public Instruction) to be shifted in, which selects the test to be
performed. The Instruction Decoder decodes the test
instruction and selects which data will be multiplexed into the

programmable logic products identification, and version
number. The bit assignment for the ID code is given in Table 3.

Table 3. Device Register ID Codes

data registers. Table 2 shows the basic Public Instructions Bit Number Code Use
supported by the MPA1000 family. o-11 Motorola Identification
12-21 Array Identification
22-27 Programmable Logic Products Identification
Table 2. Basic Public Instruction 28-31 Version Number
Three-Bit | Instruction | Code
! I Ip Public | Register s .
(mgb) (sb) |nstruction Selected i Thg ID codes for Motorola’s MPA1000 family of FPGAs are
listed in Table 4.
0 0 0 EXTEST | Boundary Scan
0 0 1| INTEST - fBoundary Scan Table 4. MPA1000 ID Codes
0 1 0 SAMPLE. | Boundary Scan
1 0 0 IDCODE | Device Register ID Code ID Code
1 1 1 BYPASS | Bypass Register Array (Binary) (Hex)
MPA1016 | 0001 001110 0100001110 000000011101 | 1 390E 01D
. MPA1036 | 0001 001110 0100011110 000000011101 | 1 391E 01D
BYPASS REGISTER - The Bypass Register is a single—bit MPA1064 | 0001001110 0100110100 000000011101 | 1 3934 01D
register. When selected, the Bypass Register provides the
shortest path, a single bit scan path, between TDI and TDO. MPA1100 | 0001 001110 0101000000 000000011101 | 1 3940 01D

The Bypass Register makes it possible to reduce the scan
path through devices that are not involved in the current
board-level test.

DEVICE IDENTIFICATION REGISTER - The Device

Identification Register is a 32—-bit shift register which holds the
Motorola identification code, array identification,

BOUNDARY SCAN REGISTER — The Boundary Scan
Register is the chain of JTAG boundary scan cells (BSC) that
are linked together to form a shift register around the periphery
of the array. The test data enters the Boundary Scan Register
through the TDI pin. The test data is then shifted around the

M4

- MOTOROLA MPA DATA — DL201 REV 2
4-212

array through each boundary scan cell in a counter—clockwise
direction and finally exits through the TDO pin (see Figure 4).

~ _’ Pin78
: DI
i MPA1016 -
| 128-Pin QFP .
I | |Pn76

D0
| A —— »

Figure 4. Direction Of Data Shift Around Package
This example is for a MPA1016 device in a 128-pin
QFP package, but the concept
is the same for all devices and packages.

/O Pin Boundary Scan Cells — Each /O pin is designed
as a bi—directional pin. Therefore, a boundary scan cell is
comprised of a two-bit shift register (see Figure 5). One of the
bits of this shift register is the bi—directional data control cell
and it is used to drive/receive a data bit to/from the device’s I/O
pad or monitor a data bit that may be on the device’s 1/O pad.
Going deeper into the data control cell, it is made up of a
capture latch and an update latch (See Figure 6. Note: these
two latches will be referred to several times in this application
note, so it is recommended that the reader be familiar with
these latches. See JTAG, Boundary Scan, or IEEE documents
for more details). The other bit of this shift register is the 1/0
control cell. The I/O control cell is used to either control the
internal enable of the three—state output buffer or to monitor
the status of the three—state output buffer (i.e. during the
SAMPLE instruction). The I/O control cell is also used to drive
a data bit to the next data control cell in the scan chain. When
the bit in the 1/0 control cell is at a logic 1 then that particular
1/0 pad’s three—state output buffer is enabled. Conversely,
when the bit in the 1/O control cell is at a logic 0 then that
particular I/O pad’s three—state output buffer is disabled (Note:
Even though the 1/O control cell controls whether or not the
output buffer is enabled, the MPA is a programmable device
so the I/0 pads must also be configured as an input or an
output in order to pass data). A boundary scan cell resides in
every 1/O pad with the exception of the TDI, TCK, TMS,
TRSTB, and TDO pins.

Control Pin Boundary Scan Cells — Boundary scan cells
are also associated with the control pins MODE [3:0], F [4:0],
RESETB, and CLK so these cells are included when counting
the number of cells in the scan chain, but have limited or no
use for parallel loading into or out from the scan chain during
JTAG (i.e. as a group, you can only do the SAMPLE instruction
because MODE [3:0], RESETB, and CLK are sense only cells
— See Figure 7). Also, the user should not attempt to change
signal level on one of the control pins. The levels on pins
MODE [3:0], RESETB, CLK, and F [4:0] shouid stay the same
in accordance with the requirements for operation found in the
MPA data book. Therefore only the SAMPLE test should be
used to test them.

AN1618

Ci [=
ontrol |
Signal Contl
Pad
10
Pad
110
Pad
10
Pad
o
Pad
TDO
Pad

Figure 5. Internal Boundary Scan Cell Chain
The BSC is the Boundary Scan Cell and is comprised of
the I/O Control and Data Control Cells. Note the dashed
arrows show that there are many more Boundary Scan

Cells, in the scan chain, than those pictured here.

Shifting Through Both Kinds of Boundary Scan Celis —
One important point to remember is that since each Boundary
Scan Cell is a two-bit shift register, the number of TCK clock
cycles needed to go around the entire scan chain is two times
the number of pins that have boundary scan cells associated
with them in the MPA device. Or in other words, it takes two
TCK clock cycles for the data to shift from one boundary scan
cell to another. For example, on an MPA1016, 128—Pin QFP
package, there are 80 1/0 pads on the integrated circuit die
and 80 I/O pins available on the package. Five of these are the
TAP signals and are not part of the scan chain therefore, there
are 75 /0O pads that have boundary scan cells (BSCs)
associated with them. There are also 11 control signals
(MODE[3:0], F[4:0], RESETB, and CLK) that have boundary
scan cells associated with them. This gives us the total
number of boundary scan cells, which is 75+11=86 boundary
scan cells on this MPA device and package. Because of this,
the data will need to be clocked 86 x 2 or 172 times in order to
go around the entire scan chain from TDI to TDO.

Another very important point to remember is that with
certain MPA1000 devices there are internal /O pads on the
integrated circuit die that are not brought out to external
package pins. These I/O pads are still part of the bounda
scan chain and must be taken into account while shifting data
around the scan chain (see Data Book, DL201/D, for
information on available pin—outs per package). For example,
there are 61 total I/O pins (including the TAP signals) on an
MPA1016 84-Pin PLCC package, but there are still 80 BSC
I/O pads on the MPA1016 integrated circuit die. Therefore the
same analysis will need to be performed to count the proper
number of boundary scan cells for this MPA device. Therefore,

MOTOROLA MPA DATA — DL201 REV 2
4-213

AN1618

80 I/O pads — 5 TAP pins = 75 I/O pads with BSCs associated
with them. 75 1/0 BSCs + 11 control signal BSCs = 86 total
BSCs. The data will need to be clocked 86 x 2 or 172 times in
order to go around the entire scan chain from TDI to TDO.

JTAG INSTRUCTIONS AND TESTS

There are five JTAG public instructions that have been
implemented for the MPA1000 family of FPGAs. As mentioned
previously, these instructions are: BYPASS, IDCODE,
SAMPLE, INTEST, and EXTEST.

INSTRUCTIONS

BYPASS — The BYPASS instruction selects the Bypass
Register to be connected between TDI and TDO. This
instruction allows serial data to be transferred through the
device from TDI to TDO without affecting the operation of the

device. When selected, the Bypass Register provides the
shortest path, a single bit scan path, between TDI and TDO.
The Bypass Register makes it possible to reduce the scan
path to a single register, thereby bypassing the devices that
are not involved in the current board-level test. The decoded
Public Instruction for BYPASS in the MPA is i2=1, i1=1, and
i0=1 (111 — see Table 2).

IDCODE - The IDCODE instruction selects the Device
Identification Register to be connected to the TDO output. The
Device Identification Register is a 32-bit shift register which
holds the Motorola identity code, array ID, product ID, and
version number (see Table 3 and Table 4). By selecting the
IDCODE instruction the Device Identification Register
contents will be shifted out the TDO output. The decoded
Public Instruction for IDCODE in the MPA is i2=1, i1=0, and
i0=0 (100 — see Table 2).

Mode_1 Shift_ DR
T T ————— 1 o
Oupit ! | S I / Control Cell
Control i 0 5 I
RS |
1
H |
| | |
!
L _L ______ A 0 D |
- ——— mL 0 D |
| P! ~— LE 0 | o
| MUX —| LE
l 3 || ‘ Capture oot I Pad
Output Data [Latch paate
From Array | lo 0 | Latch |
| I I 7t -
| B - .
| S | |
| ‘ o S |
e 0 Io |
| Ul - ® H 5 |
| MUX ! [ST ofb— |
| MUX | S |
| Capture |
Latch Update
| Latch i
| ' |
Input Data l ° lo I
npu -¢ } 0 |
toAnay !_ i _! S=Select
——— =t —_——————————t ————— Io,1=MUX Inputs
Mux \ Bi-Directional 0=Output
A A A A Data Control Cell ~ D=Latch Input
Mode2 From ClockDR UpdateDR LE=Latch Enable
LastBSC

Figure 6. General Structure of Boundary Scan Cell (BSC)
used for input or 3—state output on general I/O pads (Note: this is a general block diagram and should not be
construed to infer design details)

M7 O

MOTOROLA MPA DATA — DL201 REV 2

ShiftDR ShiftDR
From Input Data
1/0 Pad > > to Array
S

|

L) D

I 0
LE

MUX
Capture
Latch

From ClockDR
Last BSC

Figure 7. General Structure of Sense-Only Boundary
Scan Cell (BSC) used for Pins: CLK, RESETB,
MODE [3:0] (Note: this is a general block diagram and
should not be construed to infer design details)

(Note: For the SAMPLE, INTEST, and EXTEST com-
mands the MPA1000 device I/O pins are utilized to load
data from the inputs to the scan chain and/or to load
data from the scan chain to the outputs. In order to do
this the 1/O pins on the MPA1000 device must first be
configured as inputs or outputs using one of the config-
uration modes: Micro Mode or Boot From ROM (BFR)
Modes 1, 2, or 3 (See Table 1). After doing this, the
MPA1000 device can then be put into JTAG Mode for
test and the I/O pins can be utilized for the loading in to
or out of the scan chain).

Note: The user must also remember that there are
boundary scan cells which are associated with the pins
RESETB, CLK, MODE [3:0], and F [4:0] are included when
counting the number of cells in the scan chain for shifting
purposes, but can only be tested, as a group, using the
SAMPLE instruction.

SAMPLE — The SAMPLE instruction lets you take a sample
of the normal operation of the MPA1000 device pins which can
be shifted out to TDO. During the SAMPLE function the BSCs
take a sample of the functional data that exists on the /O and
control pins. The sample is taken regardless of the pins being
configured as inputs, outputs, or bi-directionals. The
functional data is entered into the BSC capture latches.
Typically the data is then shifted around the scan chain.

The BSCs for the control pins CLK, RESETB, and
MODE[3:0] are scan only cells. Because of this the SAMPLE
test is the only way to test these pins in JTAG mode (e.g. you
can not run an EXTEST test on the control pins that are set as
inputs due to a configuration mode, such as MODE [3:0]. See
MPA data book (DL201/D), Device Configuration section for
more details). Also, the user should not attempt to change a
signal level on one of the control pins. The levels should stay
the same in accordance with the requirements for operation
found in the MPA data book.

The SAMPLE instruction selects the Boundary Scan
Register to be connected between TDI and TDO. The

AN1618

decoded Public Instruction for SAMPLE in the MPA is i2=0,
i1=1, and i0=0 (010 — see Table 2).

EXTEST — The EXTEST instruction is generally used to
drive test data out of the MPA to another device on a printed
circuit board (it can also input data to the scan chain, but
SAMPLE is the instruction more often used to do this). The
EXTEST instruction places the device in an external boundary
test mode and selects the BSCs to be connected between TDI
and TDO. The outputs are tested by serially shifting data
through the BSC capture latches, loading them into the BSCs’
update latches, and driving them out through the 1/O pins. In
this way the printed circuit board connections can be tested
without the need for a physical test point on the printed circuit
board. The user must remember that in order to get data
loaded out from the scan chain all I/O pins must be configured
as outputs before running the EXTEST test. Data can also be
loaded into the scan chain during EXTEST by configuring the
desired I/O pins as inputs and loading the data on the inputs in
the CaptureDR state of the TAP Controller. The decoded
Public Instruction for EXTEST in the MPA is i2=0, i1=0, and
i0=0 (000 — see Table 2).

INTEST — The instruction is generally used to test the
internal logic that was designed and configured by the MPA
user. The INTEST instruction places the device in an internal
boundary test mode and selects the Boundary Scan Register
to be connected between TDI and TDO. Test data is typically
loaded from the I/O pads and goes into an input BSC cell.
From there the data goes into the user—configured internal
logic of the MPA1000. When the data reaches the
user—configured internal logic, it is manipulated by that logic,
and the manipulated data is latched onto an output BSC cell’s
capture latch. From the capture latch, the data can be shifted
out to TDO. The user must remember that in order to get data
loaded into the scan chain all 1/O pins must be configured as
inputs before running the INTEST test. The decoded Public
Instruction for INTEST in the MPA is i2=0, i1=0, and i0=1 (001
— see Table 2).

INSTRUCTION EXAMPLES

Below are generic examples for the MPA Public
Instructions. These are only simple examples and do not
necessarily show all of the functions of each instruction. The
MPA used in the examples is an MPA1016 in a 128 QFP
package. On this device and package all of the internal I/O
pads are brought out to external package pins. It is strongly
recommended that the reader refer to the MPA1000 pin
assignments page for the MPA1016 in order to follow along.
This is found in the MPA Data Book (DL201/D).

Although some semiconductor manufacturers have used
the INTEST instruction for internal testing of ICs, there is a
lack of interest by board and system manufacturers for this
instruction as well as a lack of commercially available software
to support it. For this reason, an INTEST example is not shown
here.

The examples will refer to the TAP controller state machine
diagram, Figure 3. The function of each state occurs when
leaving the state unless otherwise noted. The format for the
examples is as follows:

MOTOROLA MPA DATA — DL201 REV 2
4-215

AN1618

A0
-nwx

o
-

Where:
CLK =

T T T T T TCK = Test Clock

D D m R C 0= Logic Zero (0) for inputs

o I s s K 1= Logic One (1) for inputs

H 1 0 1 + / Comment / L= Logic LOW for outputs

H= Logic HIGH for outputs

Configuration Clock for MPA (see Figure 1). += Clock Transition LO-HI-LO
Used to clock in MPA configuration. X = Don’t Care
Remains at logic O (after configuration) for DR =

the purpose of these examples.

Data Register and IR = Instruction Register

/ Comment = A comment for that particular test

vector

Note: The TCK transition + occurs after the other signals in
the vector are setup. For example, when the comment for a
vector says, “In Run/Idle state. Setup Select-DR-scan state”
this means that the TAP controller is still in the Run/Idle state
even though the TMS signal has changed for the next state
(Select-DR-scan) because TCK is the last signal in the vector
that transitions.

BYPASS INSTRUCTION EXAMPLE
The following is a generic vector example for a BYPASS

test:

/ Non—JTAG state for tester setup (optional). /

/ Test-Logic—Reset (TLR) state (number of /

/ loops in this state is up to the programmer)./

/ In TLR state. Setup for Run/Idle (R/I) state. /

/ (Number of loops in the Run/Idle state is up to /

/ In R/l state. Setup for Select-DR-scan state /
/ In Select-DR-scan state. Setup for Select-IR- /

/ In Select-IR—scan. Setup for Capture—IR /
/ In Capture—IR-state. Setup for Shift-IR state. /
/ In Shift-IR state. TDI = i0 (LSB) of /

/ In Shift-IR state. TDI = i1 of instruction. /
/ In Shift-IR state. Setup for Exit—IR state. TDI /

/ In Exit-IR state. Setup for Update-IR /
/ In Update—IR state. Loads BYPASS /

/ Instruction (111) into IR. Setup for /

/ In R/l state. Setup for Select-DR-scan state. /

RST = Configuration Reset for MPA device (see
Figure 1). When this input is held to a logic
0 it clears the MPA’s configuration memory.
When this input is brought to a logic 1 then
the device will start re—configuring while
CLK is running. Remains at logic 1 (after
configuration) for the purpose of these
examples.
TDO = Test Data Out
TDI = Test Data In
TMS = Test Mode Select
TRS = Test Reset_Bar (Asserts on logic 0)
cC R T T T T T
L s D D M R C
K T O 1 S S K
0 1 X 0 1 0 0
0 1 X 0 1 1 + / Test-Logic—Reset (TLR) state. /
0 1 X 0 1 1 +
0 1 X 0 0 1 +
/ the programmer) /
0 1 X 0 1 1 +
0 1 X 0 1 1 +
/ scan state. /
01 X 0 0 1 +
/ state /
0 1 X 0 0 1. 4+
/ Shifts following instruction in. /
0 1 X 1 0 1 +
/ instruction. /
0 1 X 1 0 1 +
0 1 X 1 1 1 +
/ = i2 (MSB) of instruction. /
o 1 X o0 1 1 +
/ state. /
0 1 X 0 0 1 +
/ Run/Idle state. /
0 1 X 0 0 1 + / In Run/Idle state. /
0 1 X 0 1 1 +
0 1 X 0 0 1 +

/ In Select-DR~scan state. Setup for Capture— /
/ DR state. /

M ©

MOTOROLA MPA DATA — DL201 REV 2
4-216

AN1618

¢c R T T T T T

L S D D M R C

K T o 1 S § K

0 1 X 0 0 1 + / In Capture-DR state. Setup for Shift-DR /
/ state. /

0 1 X 1 0 1 + /In Shift-DR state. TDI set up for next /
/ vector. /

] 1 H 0 0 1 + / In Shift-DR state. TDI logic 1 from /
/ previous vector now at TDO output. /

0 1 L 1 0 1 + / In Shift-DR state. TDI logic 0 from /
/ previous vector now at TDO output. /

0 1 H 0 0 1 + / In Shift-DR state. TDI logic 1 from /
/ previous vector now at TDO output. /

0 1 L 1 0 1 + / In Shift-DR state. TDI logic 0 from /
/ previous vector now at TDO output. /

0 1 H 0 1 1 + / In Shift-DR state. TDI logic 1 from /
/ previous vector now at TDO output. /
/ Setup for Exit1-DR state. /

0 1 X 0 1 1 + / In Exit1-DR state. Setup for Update—/
/ DR state. /

0 1 X 0 0 1 + / In Update-DR state. Setup for Run/Idle /
/ state. /

0 1 X 0 0 1 + / In Run/ldle state. /
/End of BYPASS instruction example. /

IDCODE INSTRUCTION EXAMPLE the ID code that is output on TDO will be for a MPA1016-see
The following is a generic vector example for an IDCODE Table 3):
test (note: an MPA1016 is being used as an example here so

cC R T T T T T
L s D D M R C
K T 0 1 S s K
0 1 X 0 1 0 0 / Non—-JTAG state for tester setup (optional). /

-
x
o
-
-

/ Test-Logic—-Reset (TLR) state. /

0 1 X 0 1 1 + / Test-Logic—Reset (TLR) state (number of /
/ loops in this state is up to the programmer)./

0 1 X 0 0 1 + / In TLR state. Setup for Run/Idle (R/l) state. /
/ (Number of loops in the Run/ldle state is up to /
/ the programmer) /

0 1 X 0 1 1 + / In R/ state. Setup for Select-DR-scan state /

0 1 X 0 1 1 + / In Select-DR-scan state. Setup for Select-IR— /
/ scan state. /

0 1 X 0 0 1 + / In Select-IR-scan. Setup for Capture—IR /
/ state /

0 1 X 0 0 1 + / In Capture-IR-state. Setup for Shift-IR state. /
/ Shifts following instruction in. /

0 1 X 0 0 1 + / In Shift-IR state. TDI = i0 (LSB) of /
/ instruction. /

0 1 X 0 0 1 + / In Shift-IR state. TDI = i1 of instruction. /

0 1 X 1 1 1 + / In Shift-IR state. Setup for Exit-IR state. TDI /

/ = i2 (MSB) of instruction. /

MOTOROLA MPA DATA — DL201 REV 2
4-217

AN1618

/ In Exit-IR state. Setup for Update-IR /

/ In Update-IR state. Loads IDCODE /

/ Instruction (100) into [R. Setup for /

C R T T T T T
L S D D M R C
K T o 1 S S K
0 1 X 0 1 1 +
/ state. /
0 1 X 0 1 +
/ Run/Idle state. /
0 1 X 0 0 1 + / In Run/Idle state. /
0o 1 0o 1 1 +
0 1 X 0 0 1 +
0 1 X 0 0 1 +
0 1 H 0 0 1 +
0 1 L 0 0 1 +
0 H 0 0 1 +
0 1 H 0 0 1 +

At this point the rest of the ID code, Bits 4-31, will be output
in the same way (the ID code for the MPA1016 is 32 bits long).
Per Table 3, the ID code for an MPA1016 is 0001 001110
0100001110 00000001 1101 in binary or 139 OE 01D in hex.
As shown above, the four least significant digits (HHLH or

/ IN R/l state. Setup Select-DR-scan state /
/ In Select-DR state. Setup Capture-DR state /
/ In Capture-DR state. Setup Shift-DR state /

/ Shift-DR state. Bit 0 (LSB) of ID code on TDO /
/ Shift-DR state. Bit 1 of ID code on TDO /
/ Shift-DR state. Bit 2 of ID code on TDO /
/ Shift-DR state. Bit 3 of ID code on TDO /

1101) were output first starting with Bit 0, then Bit 1, then Bit 2,
and finally Bit 3. The next part of this example will show the
end of the example which is the output of the four most
significant bits of the ID code (Bits 28-31, which are 0001) and
the return of the TAP Controller to the Run/Idle state.

C R T T T T T
L S D D M R C
K T o 1 S S K
0 1 H 0 0 1 + / Shift-DR state. Bit 28 of |D code on TDO /
0 1 L 0 0 1 + / Shift-DR state. Bit 29 of ID code on TDO /
0 1 L 0 0 1 + / Shift-DR state. Bit 30 of ID code on TDO /
0 1 L 0 1 1 + / In Shift-DR state. Setup Exit-DR state. Bit 31
/ (MSB) of ID code on TDO /
0 1 X 0 1 1 + / In Exit1-DR state. Setup Update-DR
/ state /
0 1 X 0 0 1 + / In Update-DR state. Setup Run/Idle
/ state /
0 1 X 0 0 1 + / In Run/Idle state /

M

/ End of IDCODE instruction example /

MOTOROLA MPA DATA — DL201 REV 2
4-218

EXTEST INSTRUCTION EXAMPLE

The following is a generic vector example for a simple
EXTEST test. Note: an MPA1016 128—pin QFP is being used
as an example here in order to have access to all of the

AN1618

internal 1/0 pads from the external I/0 pins. Also a reminder
that in order to get data loaded out from the scan chain the
desired output I/O pins must be configured as outputs before
running the EXTEST test:

C R T T T T T
L S D D M R C
K T o | S S K
0 X 0 1 0 0 / Non—JTAG state for tester setup (optional). /
0 X 0 1 1 + / Test-Logic-Reset (TLR) state. /
0 1 X 0 1 + / Test-Logic—Reset (TLR) state (number of /
/ loops in this state is up to the programmer)./
0 1 X 0 0 1 + / In TLR state. Setup for Run/Idle (R/) state. /
/ (Number of loops in the Run/idle state is up to /
/ the programmer) /
0 1 X 0 1 1 + / In R/I state. Setup for Select-DR-scan state /
0 1 X 0 1 1 + / In Select-DR-scan state. Setup for Select-IR~- /
/ scan state. /
0 1 X 0 0 1 + / In Select-IR—scan. Setup for Capture—IR /
/ state /
0 1 X 0 0 1 + / In Capture—IR—state. Setup for Shift-IR state. /
/ Shifts following instruction in. /
0 1 X 0 0 1 + / In Shift-IR state. TDI = i0 (LSB) of /
/ instruction. /
0 1 X 0 0 1 / In Shift-IR state. TDI = i1 of instruction. /
0 1 X 0 1 1 + / In Shift-IR state. Setup for Exit—IR state. TDI /
/ = i2 (MSB) of instruction. /
0 1 X 0 1 1 + / In Exit-IR state. Setup for Update-IR /
/ state. /
0 1 X 0 0 1 + / In Update—IR state. Loads EXTEST /
/ Instruction (000) into IR. Setup for /
/ Run/ldle state. /
0 1 X 0 0 1 + / In Run/idie state. /
0 1 X 0 1 1 + / IN R/l state. Setup Select-DR-scan state /
0 1 X 0 0 1 + / In Select-DR state. Setup Capture-DR state /
0 1 X 0 0 1 + / In Capture-DR state. Setup Shift-DR state /

At this time all 1s will be shifted into the scan chain and then
parallel loaded out the configured output I/O pins and output
control signals

oooo
44 a
X X X X
o4 4o
oo oo
a4 oo
+ o+ o+ o+

/ Shift-DR state. 1 shifted into TDI. TCK 1. /
/ Shift-DR state. 1 shifted into TDI. TCK 2. /
/ Shift-DR state. 1 shifted into TD!. TCK 3. /
/ Shift-DR state. 1 shifted into TDI. TCK 4. /

MOTOROLA MPA DATA — DL201 REV 2

4-219

AN1618

To determine the number of TCK cycles we take the total
number of boundary scan cells in the MPA1016 which can be
equated to 80 I/O signals — 5 TAP signals + 11 control signals
x 2 cells per BSR = 172 total BSRs (See Boundary Scan

C R T T T T T
L S D D M R C
K T o S S K
0 1 X 1 0 1 +
/ times. TCK 168. /
0 1 X 1 0 1 +
0 1 X 1 0 1 +
0 1 X 1 0 1 +
0 1 H 1 0 1 +
0 1 H 1 0 1 +
0 1 H 1 0 1 +
0 1 H 1 0 1 +

Now that the scan chain is filled with 1s the user can output
the 1s from the scan chain out to the 1/O pins and the control
signal pins that are configured as outputs (also, remember

c R T T T T T
L S D D M R C
K T o 1)) K
0 1 H 1 1 1 +
0 1 X 1 1 1 +
0 1 X 1 0 1 +

Upon entering the Update-DR state all of the 1s that were
shifted into the scan chain, through TDI, are output on the
configured 1/O pins as Highs (H) as well as on the control pins

0 1 X 1 0 1 +

SAMPLE INSTRUCTION EXAMPLE

The following is a generic vector example for a simple
SAMPLE test. Note: an MPA1016 128—pin QFP is being used
as an example here in order to have access to all of the
internal I/0 pads from the external I/O pins. Again, it is strongly
recommended that the reader refer to the MPA1000 pin
assignments page for the MPA1016 in order to follow along.
This is found in the MPA Data Book (DL201/D).

The BSCs for the control pins CLK, RESETB, MODE[3:0],
and F[4:0] are scan only cells. They should never be changed
by the user. Because of this the SAMPLE test is the only way
to test these pins, as a group, in JTAG mode (e.g. you can not

Register section). In order to clock all Ones (1) through the
scan chain TCK will need to be clocked 172 times in order to
see all 1s coming out of TDO. So in the next vector we will
assume that we have clocked TCK 164 times so far.

/ Shift-DR state. Have already shifted TCK 164 /

/ Shift-DR state. 1 shifted into TDI. TCK 169. /
/ Shift-DR state. 1 shifted into TDI. TCK 170. /
/ Shift-DR state. 1 shifted into TDI. TCK 171. /
/ Shift-DR state. H shifted out TDO. TCK 172. /
/ Shift-DR state. H shifted out TDO. TCK 173. /
/ Shift-DR state. H shifted out TDO. TCK 174. /
/ Shift-DR state. H shifted out TDO. TCK 175. /

that the 1/O control cell portion of each BSR must have a 1
latched into it in order to enable the output buffer from the BSR
to the I/O pin).

/ Shift-DR state. Setup Exit1-DR. /
/ Exit1-DR state. Setup Update-DR. /
/ Update-DR state. Setup R/I state. /

that are currently set as outputs (depending on the
configuration mode: e.g. F1, F2, and F4 if in BFR).

/ In R/l state. End of EXTEST example /

run the output portion of EXTEST on the control pins that are
set as inputs due to a configuration mode. This is the case for
F[0] and F[3] in BFR mode. See MPA data book (DL201/D),
Device Configuration section for more details).

Also a reminder that all user I/O pins that are to be sampled
must be configured as inputs, outputs, or bi-directionals
before running the SAMPLE test. During the SAMPLE test the
/0 control cell portion of the BSC no longer controls, but
monitors the configuration of the pin to show whether the
configuration is that of an input or an output. The pins that are
configured as inputs will read a Low (L), on TDO, from the
BSC’s I/O control cell and the pins that are configured as

M T

MOTOROLA MPA DATA — DL201 REV 2
4-220

outputs will read a High (H), on TDO, from the BSC'’s I/O
control cell.

In this example, the right side of the MPA1016 128—pin QFP
is configured with inputs (roughly 1/O and control pins in the

AN1618

range of pins 67-75) and the left side of the MPA1016 128—pin
QFP is configured with outputs (roughly I/O and control pins in
the range of pins 4-31).

C R T T T T 7T

L S D D M R C

K T o 1 S S K

0 1 X 0 1 0 0 / Non-JTAG state for tester setup (optional). /
0 1 X 0 1 + / Test-Logic—Reset (TLR) state. /

0 1 X 0 1 + / Test-Logic—Reset (TLR) state (number of /

/ loops in this state is up to the programmer)./

/ In TLR state. Setup for Run/Idle (R/l) state. /

/ (Number of loops in the Run/Idle state is up to /

/ the programmer) /

/ scan state. /

/ state /

/ In R/l state. Setup for Select-DR-scan state /
/ In Select-DR-scan state. Setup for Select-IR— /

/ In Select-IR—scan. Setup for Capture-IR /

/ In Capture—IR—state. Setup for Shift-IR state. /

/ Shifts following instruction in. /

/ In Shift-IR state. TDI
/ instruction. /

/ In Shift-IR state. TDI

=i0 (LSB) of /

= i1 of instruction. /
/ In Shift-IR state. Setup for Exit—IR state. TDI /

/ =i2 (MSB) of instruction. /

/ state. /

/ In Exit-IR state. Setup for Update—IR /

/ In Update—IR state. Loads

/ SAMPLE Instruction (010) into IR.
/ Setup for Run/ldle state./

0 1 X 0 0 1 + / In Run/ldle state. /
All Zeros (0) will be shifted into the scan chain.

/ In R/l state. Setup Select-DR-scan state /
/ In Select-DR state. Setup Capture-DR state /
/ In Capture-DR state. Setup Shift-DR state /

C R T T T T 7T
L S D D M R C
K T o 1 S S K
0 1 X 0 1 1 +
0 1 X 0 0 1 +
0 1 X 0 0 1 +
0 1 X 0 0 1 + / Shift-DR state. TCK 1./
0 1 X 0 0 1 + / Shift-DR state. TCK 2. /
0 1 X 0 0 1 + / Shift-DR state. TCK 3. /
0 1 X 0 0 1 + / Shift-DR state. TCK 4. /

MOTOROLA MPA DATA — DL201 REV 2

4-221

AN1618

To determine the number of TCK cycles we take the total
number of boundary scan cells in the MPA1016 which can be
equated to 80 I/O signals — 5 TAP signals + 11 control signals
x 2 cells per BSR = 172 total BSRs (See Boundary Scan
Register section). In order to clock all the Zeros (or lows)

through the scan chain TCK will need to be clocked 172 times
in order to see all Lows (L) coming out of TDO. So in the next
vector we will assume that we have clocked TCK 164 times so
far.

/ Shift-DR state. Have already shifted TCK 164 /

/ Shift-DR state. L shifted out TDO. TCK 172. /
/ Shift-DR state. L shifted out TDO. TCK 173. /
/ Shift-DR state. L shifted out TDO. TCK 174. /
/ Shift-DR state. L shifted out TDO. TCK 175. /

cC R T T T T T
L S D D M R C
K T 0 1 S S K
0 1 X 0 0 1 +
/ times. TCK 168. /
0 1 X 0 0 1 + / Shift-DR state. TCK 169. /
0 1 X 0 0 1 + / Shift-DR state. TCK 170. /
0 1 X 0 0 1 + / Shift-DR state. TCK 171. /
0 1 L 0 0 1 +
0 1 L 0 0 1 +
0 1 L 0 0 1 +
0 1 L 0 0 1 +
0 1 L 1 1 1 + / Shift-DR state. Setup Exit1-DR. /
0 1 X 1 1 1 + / Exit1-DR state. Setup Update-DR. /
0 1 X 1 0 1 + / Update-DR state. Setup R/l state. /
0 1 X 1 0 1 + / In R/l state. /

Now that the scan chain is filled with the Lows (L), the user
can now go back through the data path of the TAP controller
and sample the 1/0O and control pins. Also, a reminder is that
when you SAMPLE you will sample whatever state is on the
MODE [3:0], F [4:0], RESETB, and CLK pins and those states
will be sampled into the scan chain (i.e. they will not

cC R T T T T T
L S b b M R C
K T o 1 S S K
0 1 X 0 1 1 +
0 1 X 0 0 1 +
0 1 X (o] 0 1 +

necessarily be the Highs that will be sampled in the following
part of this example).

By this point all Ones (1) should be put on the input pins and
Highs (H) should be put on the output pins in order to SAMPLE
them. They will be sampled in the Capture-DR state.

/ In R/l state. Setup Select-DR-scan state /
/ In Select-DR state. Setup Capture-DR state /
/ In Capture-DR state. Setup Shift-DR state /

M4

MOTOROLA MPA DATA — DL201 REV 2
4-222

At this time all the Ones (1) on the input pins (right side of
device) will be sampled into the scan chain. They will be read
out as Highs (H) on TDO. Note: remember that the pins that

c R T T T T T
L S D D M R C
K T o 1 S S K
0 1 X 0 1 1
0 1 L 0 0 1

AN1618

are configured as inputs will read a Low (L), on TDO, from the
BSC’s 1/O control cell.

/ In Shift-DR state. Then clock for shift out/
/ In Shift-DR state. TDO is the state of the /

/ 1/O control cell (input) for the BSC
/ associated with pin 75 (first out to TDO)./

/ (See Fig. 5)/

/ In Shift-DR state. TDO is the One (1) /

/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 75. /

/ (See Figure 5) /

/ In Shift-DR state. TDO is the state of the /

/ 1/O control cell (input) for the BSC
/ associated with pin 74 (See Fig. 5)/

/ In Shift-DR state. TDO is the One (1) /

/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 74.

/ (See Figure 5) /

The same pattern continues through all of the I/O inputs on
the right side of the MPA1016 128—pin QFP. Remember that
the CLK and Mode pins 3 and 2 are on the right side of this

package and will also show how they were configured from
their respective BSC 1/O control cells as well as what logic
state was on the pin when it was sampled.

cC R T T T T T

L S D D M R C

K T (o} S S K

] 1 L 0 1 + / In Shift-DR state. TDO is the state of the /
/ /O control cell (input) for the BSC
/ associated with pin 69 (CLK)./
/ (See Fig. 5)/

0 1 L 0 1 + / In Shift-DR state. TDO is the Zero (0) /
/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 69. /
/ (CLK is being held Low throughout these/
/ examples) /

cC R T T T 7T

L S D M R C

K T [o} S S K

0 1 L 0 1 + / In Shift-DR state. TDO is the state of the /
/ 1/0O control cell (input) for the BSC
/ associated with pin 68 (MODE [3])/

0 1 H 0 1 + / In Shift-DR state. TDO is the One (1) /

/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 68.

/ (MODE [3] is held High to keep the /

/ device in JTAG mode throughout these /

/ examples. See Table 1.) /

MOTOROLA MPA DATA — DL201 REV 2
4-223

AN1618

¢c R T T T T T
L s D b M R C
K T 0 1 S S K
0 1 L 0 0 1 +

/ In Shift-DR state. TDO is the state of the /

/ 1/O control cell (input) for the BSC
/ associated with pin 67 (MODE [2])/

/ In Shift-DR state. TDO is the Zero (0) /

/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 67. /
/ (MODE [2] is held Low because no /

/ external clock was used in BFR 2 config /
/ mode (Boot From ROM, serial data) when
/ the device was configured. See Table 1.) /

Now that we have gone through the right side (I/O
configured as inputs) of the device, we will skip the bottom
side of the device (which we did not configure for this example)
and go to the left side (I/O configured as outputs) of the device.
Starting with F[3] pin 28, remember that the control pins are

not configurable by the user. They are configured depending
on the configuration mode that the device is set in. Currently
the device is in BFR 2 mode so F[3] is an input and F[4] is an
output (See MPA Data Book, DL201/D).

C R T T T T

L S D M R C

K T [0} S S K

0 1 L 0 1 + / In Shift-DR state. TDO is the state of the /
/ /O control cell (input) for the BSC
/ associated with pin 28, F[3])./
/ (See Fig. 5)/

0 1 H 0 1 + / In Shift-DR state. TDO is the One (1) /
/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 28. /
/ F[3] is being held High throughout these/
/ examples) /

0 1 H 0 1 + / In Shift-DR state. TDO is the state of the /
/ 1/0 control cell (output) for the BSC
/ associated with pin 26, F[4] /

0 1 H 0 1 + / In Shift-DR state. TDO is the One (1) /

/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 26.

/ F[4] is held High throughout these

/ examples. /

M#

MOTOROLA MPA DATA — DL201 REV 2
4-224

AN1618

Finally, back to the I/O pins which the user configured as

outputs.

(o] R T T T T T
L S D D M R C
K T (o] I S S K

0 1 H 0 0 1 + / In Shift-DR state. TDO is the state of the /
/ 1/0 control cell (output) for the BSC
/ associated with pin 25, user I/O pin

0 1 H 0 0 1 + / In Shift-DR state. TDO is the One (1) /
/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 25. /

0 1 H 0 0 1 + / In Shift-DR state. TDO is the state of the /
/ /O control cell (output) for the BSC
/ associated with pin 24, user 1/O pin

0 1 H 0 0 1 + / In Shift-DR state. TDO is the One (1) /
/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 24. /

And through all of the user I/O pins until we reach the last of
the user 1/0 pins on the left side of the device.

C R T T T T T
L S D D M R C
K T o 1 S S K
0 1 H 0 0 1 + / In Shift-DR state. TDO is the state of the /

/ 1/O control cell (output) for the BSC
/ associated with pin 4, user 1/O pin

0 1 H 0 1 1 + / In Shift-DR state. TDO is the One (1) /
/ state that was loaded in to the data control/
/ cell of the BSC associated with pin 4. /

/ Setup Exit1-DR state. /
0 1 X 1 1 1 + / Exit1-DR state. Setup Update-DR. /
/ Update-DR state. Setup R/l state. /
0 1 X 1 0 1 + / In R/l state. End of SAMPLE example /

o
-
x
-
(=}
-

MOTOROLA MPA DATA — DL201 REV 2
4-225

6/97

AN1619
Application Note

MPA1000 Primer for
Schematic Designers

Prepared by
Doug M. Shade
Motorola Programmable Logic

© Motorola, Inc. 1997

4-226

@ MOTOROLA

REV O

AN1619

MPA1000 Primer for Schematic Designers

Introduction

This application note is designed to assist novice Motorola
Programmable Array (MPA) users who employ schematics as
their preferred design entry method. While the details of the
MPA architecture can largely be ignored for most of your
designs, achieving the most efficient packing of logic and
highest performance marks are facilitated by a better
understanding of the MPA internals presented here. You'll find
the MPA architecture accommodating to the most popular
design topologies, but biased to favor those designs that use
fewer non—gated clocks.

The reader is assumed to be familiar with the various
controls and options of the MPA Design System.

Internal Array Features

Cells in Tiles in Zones in Quadrants

At the lowest level, the MPA is built of very simple logic
building blocks called cells. Each of the four types of cells
contain a NAND function and secondary function. The four cell
types grouped together form a tile. The cell type numbers
(1-4) signify which secondary function is contained and the
relative location of the cell within the tile.

4 Medium Bus
Programmable Connections
/ Inversion CLK/
5 Local A RST ﬁj
2 M-Bus [
| |
I |
Second Local
] econdary
5 Local B Function I Interconnect
2 M-Bus B |
Input |
Multiplexer

Figure 1. Core Cell Structure

TYPE3 TYPE 4
DFF/Latch XOR
with reset
and enable
TYPE 1 TYPE 2
Wired-OR XOR

Figure 2. Core Cell Secondary Functions

The tiles are assembled in a 5 x 5 array to form the interior
of a zone. The zones are bounded on the top by vertical port
cells (routes entering and leaving through these ports run

vertical). The zones are bounded on the right by horizontal
port cells. Lastly, the upper right corner of the zone contains
the Clock/Reset selection cell (more on this special cell later).

= One Hot State Machine Design is Preferred

Designing your state machines as one hot is
usually the most efficient method for the register
rich MPA.

vertical port cells

CLK/RST
select cell

core
cells

horizontal port cells

Figure 3. Zone Structure

The zones are arrayed into quadrants. The number of
zones varies by MPA family member as shown in Figure 4.

MPA1016 MPA1036
i e
—I s 16 Zones I
HIH IR
—— I

L

MPA1064 MPA1100

[s
e sa— i

Figure 4. The MPA 1016, MPA1036, MPA1064
and MPA1100

Routing at Three Levels

The autolayout software has 3 levels of routing to choose
from to complete connections between cells: Local, Medium
and Global. Local routing connects the output of a cell to its 8
nearest orthogonal neighbors. Local routing is the fastest
connection available between two points.

MOTOROLA MPA DATA — DL201 REV 2
4-227

AN1619

Medium routing is used to complete inter-zone routes that
can not be made using local routing. Medium routes can also
connect points in different zones, intra—zone connections.

Global routing spans entire quadrants and with the use of
inter—quadrant switches can span the entire core array area.
Gilobal routing is the slowest of the 3 routing levels available to
the autolayout software.

Global
Medium Medium
Local
[— |
-- [celt][e[ce] -« [Cett][Port
Cell Cell

AZone
Figure 5. Three Levels of Routing Resources

A common question at this point is, “How do | control which
of my nets goes on what level or routing?”. The simple answer
is you can’t directly control this. The timing driven autolayout
software is designed to make these difficult decisions for you.
In the end, all you really need to specify is how fast you want
your design to go and let the autolayout software take it from
there. There are however things you can do to influence the
software. Attributes such as DPLD_CLUSTER_SEED and
DPLD_PLACE_PRIORITY can be used to bias the placement
and subsequent routing for specific portions of you design.
Please reference the on-line help of the MPA Design System
software for more detail on these attributes.

= Autolayout is a Pseudo-Random Process

With all the options available to the autolayout tool
to complete the place and route of your design,
you'd be correct in guessing that you can get
significantly different results with relatively minor
changes in design or in the pseudo—random seed.
This can be a disquieting characteristic if you
discover it on your own, however it can really be
quite advantageous. If your autolayout result just
missed the desired target, or you'd like a little more
margin, simply re-seeding the pseudo-random
number generator (from the “Tools — Options” pull
down menu) and re—running autolayout can give
you a significantly different result.

The routing within the MPA is fully buffered. There is never
a need to concern yourself with the loading effects of fan out.
This of course is a departure from ASIC and PCB level design
where fan out must be considered.

1z BUFF from the MICROLIB

There are quite a few trivial optimizations that get
made to your design during import, one of the most
common is getting rid of superfluous ‘buffers’.
Examples of which include INV (inverters), AN2
gates with both inputs tied together, AN2 gates with
one input tied high etc. (A more complete
description of this re-mapping process can be
found in the on-line help of the MPA Design
System under: “Help on Design — Logic

Optimisation — Summary of Optimisations”.)
Don’t panic at the above statement that inverters
are “gotten rid of”. They are simply mapped to the
correct sense on the core cell’s programmable
input multiplexers.

No delay penalty is incurred for inserting an INV.
BUFF is the only buffer available to the designer
that will not get mapped out on import. So with all
this effort to get rid of buffers, and no need to worry
about fanout loading effects, what is the BUFF
library element used for?

e Connecting a primary clock or reset signal
directly to an output pad is not allowed. Tapping
the clock network with a BUFF and then
connecting the output of BUFF to an output
macro however works fine.

BUFF can be used to build a delay line. It should

be noted however that asynchronous design is
strongly discouraged. Minimum delays are not
specified. Also, hard macros are not
accommodated by MPADS and as such the
delay through a string of BUFFs can vary
considerably from autolayout run to run.

BUFF can be used to break a single large net
into two (or more) smaller ones. This has been
employed to isolate a speed critical portion of a
net, by inserting a buff to feed the non-speed
critical portion of the net and assigning that
portion of the net the attribute
DPLD_IGNORE_TIMING.

e Another example where splitting a net may be
advantageous is using BUFF to break a
secondary clock net into two tertiary clock nets.
(More on clock networks latter.)

Tri-State drivers are not available internally

Because the MPA’s routing resources are fully
buffered (actively driven) there are no internal
tri-state buffers available. Designers accustomed
to using such elements to allow multiple drivers
access to a single data line, should instead
consider using multiplexers.

Wired-Or a.k.a. Open Drain

In some instances, it may be preferable to use a
collection of open drain drivers to drive a single
data line. The MPA library elements that
accommodate this type of connection include:
WINV, WOR2, WND2, and WBUF. Itis important to
remember that open drain drivers can only actively
pull a signal low, a passive pull up resistor is
required to pull the net high; that’s the job of the
WPUP library element. By default, instantiating a
WPUP element results in a single pull resistor
being attached to the net. Assigning the attribute
DPLD_PUP with a value of BOTH results in two
pull up resistors being added in parallel to the net.
Thelowto high transition time is thus improved, but
at the expense of more static current drain when
any of the attached drivers is holding the net low.

M7

MOTOROLA MPA DATA — DL201 REV 2
4-228

Besides lower speed, another draw back of using
open drain drivers in the MPA is the restriction that
all the open drain drivers within a zone must reside
on the same Wired-OR Bus, and that drivers in
other zones must also be placed in the same
relative horizontal position. The autolayout tool
handles all of this automatically, but it does tend to
reduce the number of valid solutions available to
the autolayout tool for the remainder of your
design.

Wide Inputs Add Delays

Although ASICs are sometimes referred to as
“sea—of-gates” devices, they are in reality
sea—of-transistors devices. If a designer specified
an 3 input AND gate, an ASIC compiler will simply
build one using the available transistors. The
resulting gate delay for an n—input ASIC AND gate
is very close to that of a two input ASIC AND gate.
Remember that the MPA architecture is largely
constructed of two input logic functions. Multiple
input gates are available to you in the MACROLIB,
but keep in mind that they are constructed from
cascading multiple two input gates. The higher the
number of inputs, the more levels of logic your
signal will have to pass through slowing it down. It
may be worth while to remember that not all logic
paths accumulate the same delay through a wide:
input. Figure 6 shows the descended hierarchy of
the construction of an AN3 gate. It would be best to
use the “C” input for the speed critical path as it has
roughly half the delay of the “A” and “B” inputs.

AN2
AF2

Figure 6. An AN3 Library Element Schematic

Delays in Routing

Both PCB and older ASIC designers share the
mind set that delay through a multi-level logic path
is principally a function of “gate delay”. In the ASIC
world, routing paths are as short as possible and
do not pass through multiple levels of pass gates,

muxes, and buffers. Similarly, a PCB trace is a !

simple and hopefully short run of metal, with most
of the “gate” delay happening as a function of
package input and output delays. A “logical” net in
an FPGA however may be a series of several
different electrical nodes, each being separated by
amux or switch of some type. The consequence of
this is that “routing delays” not gate delays are the
first order factor determining the resultant circuit's
speed.

~ ~
e L L

AN1619

Empirical analysis of several hundred sample
designs suggests that a multiplication factor of 2.4
can by applied to the sum of a path’s gate delays to
come up with a very rough estimate of what the
post autolayout total path delay might be. There
are many factors that influence that actual number,
so please consider this only as a very crude
estimate.

S-R Flops, Avoid the Temptation

RESET QBAR

SET

ND2B1

Figure 7. A Classic S-R Flop;
An Accident Waiting to Happen

The above construction of an asynchronous S-R
flip flop is familiar to all, but should be so for its
unfavorable characteristics. Remember that
routing delay in an FPGA is the highest order term
in delay equation. In the above construction, the
(active high) SET pulse width must be greater than
the ND2B1 propagation delay plus Q to A routing
plus another ND2B1 delay plus QBAR to A routing
delay. Without a detailed analysis of the post
autolayout path delays, the pulse width
specification can not be known. The same holds for
the RESET pulse width. A new autolayout run on
the same design may alter these path lengths
considerably. Additionally this sort of
asynchronous feedback loop will generally cause
back annotation, simulation and timing analysis
tools trouble.

Again, avoid asynchronous design.

Delay Lines, Avoid the Temptation

-\
I_)

r\

NON_DELAY_PATH

Figure 8. A Delay Line for Turning Edges
into Pulses, a Dangerous Proposal

Remember that in an FPGA routing is not just a
piece of wire. Routing is comprised of wire, muxes
and pass gates. In the above example, the intent is
to turn a rising or falling input edge into an output
pulse. The assumption is that the
“NON_DELAY_PATH” will have a shorter delay
than the “delay line” formed by the series of BUFF
elements. Again, the MPA design software does
not guarantee minimum delays and so itis possible
that the autolayout run might result in the

MOTOROLA MPA DATA — DL201 REV 2

4-229

A% =

AN1619

NON_DELAY_PATH to have a delay significantly
close the delay line path. The circuit may not work.

Avoid any design habit that makes assumptions
about minimum delays, even for just plain routes.

High Fan Out

As mentioned previously, the routing resources of
the MPA are fully buffered. There is no reason for
the designer to concern himself with loading
effects of high fan out net. However, high fan out
nets can have an undesirable impact on routing
resource consumption. Using only local routing, a
single driver could under the most ideal conditions
drive only 8 local neighbors. In real world designs
however, each of the destinations of a high fan out
net has its own downstream circuitry associated
with it; there is a vanishingly low probability that
they will be placed in the 8 local adjacent locations.
For fan outs greater than 8, exclusive local routing
is impossible, and both medium and global routes
will be used to complete the net. If the fan out is
large enough, and the circuitry placed sufficiently
far apart in the array, routing resource
consumption may become problematic.

The primary clock and reset distribution network
may be used to route high fan out signals. Driving
the high fan out net internally with an ACLK or
ARST buffer, or externally with an IPCLK or IPRST
buffer will put the signal on one of the 8 global
Clk/Rst distribution lines. The routing congestion
can thus be solved, but at the expense of reducing
the clock and reset routing solution space. Do not
route nets to I/O (other than Clk/Rst) on the primary
clock network. There is no mechanism for
completing such a route on the MPA devices.

For software versions 2.4 and later, ACLK and
ARST insertions for high fanout nets will be
automatic.

You Must Use All Macro Inputs, ONE and
ZERO

The autolayout tool insists that all MACROLIB and
MICROLIB inputs be used. If you don’t need a
particular input for your design, you are still
required to tie it to logic or a ONE or a ZERO (from
the MICROLIB). There is no routing consumed
when specifying a ONE or a ZERQO, the tie off is
made at the cell’s input selection mux. There is no
fan out restriction for a ONE or a ZERO.

Clock Architecture

The MPA architecture is biased toward efficient
accommodation of synchronous design topologies, though it
has flexibility enough to handle most design styles. One of the
most specialized architectural features of the MPA is its low
skew clock and reset distribution network. The Primary
Clock(/Reset) Distribution Network accepts inputs from two
specialized I/O locations on each edge of the die, for a total of
8 inputs. Access to these special inputs is accomplished with
IPCLK and IPRST buffers, when bringing an external signal in.
If you want to place an internally generated signal on the
Primary Clock Distribution Network, you may insert an ACLK
or ARST buffer.

7 ACLK & ARST Consume Clk/Rst I/O Sites

Each ACLK and ARST buffer used resides in one
of the 8 clock pad locations. Using an ACKL or
ARST consumes this pad location such that it is no
longer available to use as an I/O site. The designer
is allowed a total of 8 ACLK, ARST, IPCLK, IPRST
cells in their design.

Figure 9. Overview of Primary Clock/Reset
Distribution Network

Figure 9 depicts an overview of the primary Clock
Distribution Network of an MPA1016. Two specialized Clk/Rst
input pads are shown on each edge of the die feeding the
centralized Clk/Rst buffers. From there, the heaviest lines
represent the 8 lines of the primary Clock Distribution
Network. The medium lines represent 2 Clk/Rst pairs. The
lightest lines each represent a single Clk or Rst signal. Skew
across the entire die is held to less than 1nS on the primary
Clock Distribution Network.

MOTOROLA MPA DATA — DL201 REV 2
4-230

G2
Vertical Port Cell |

AN1619

Y

3 ’ Mux A | | Mux C |

LMuxA l l Mux C l

i

Zone Clk/Rst
Selection Cell
10 Horizontal
Column Clk Column Rst Port Cells
8
< ot
Central Clk/Rst From /O Cell

Distribution

Central Clk/Rst
Buffer

Figure 10. Upper Right-Hand Corner of a Zone, Detail of Primary Clock/Reset Selection Cell

Figure 10 shows the upper right-hand corner of a zone,
with more detail visible on how clocks are routed into a zone.
From this figure you should note that no more than two primary
clocks and two primary resets may be routed into a single
zone. There are however provisions for non—primary clock
and reset routes into a zone.

Note— Most of the following discussion refers to clock and
flops. It should be noted that this is short hand where flops
really refers to flops and latches, and clocks really refers to
clocks, resets and latch enables.

There are 10 columns in a zone, half of which each contain
5 Type 3 cells for a total of 25 flops. Each column’s flops share
common clock and reset lines sourced from the pair of vertical
port cells immediately above and just to the right of the
column.

Clocking at Three Levels

Primary Clocks

While the 8 lines of the primary Clock Distribution Network,
and the fact that no more than two primary Clk/Rst pairs may
be routed into a zone at a time may seem a bit limiting at first,
there are other ways to get clocks and resets into zone logic.

= Avoiding Layout Spread
The autolayout tool examines the imported netlist,
examines all primary clock and reset nets and
proceeds with a design partition that assumes
clocks and resets are for the most part paired.
Logic associated with each Clk/Rst pair is placed
into a zone fed by that pair. One primary clock net
feeding a set of flops with multiple primary resets
(or vice—versa) will resultin the flops getting spread

MOTOROLA MPA DATA — DL201 REV 2
4-231

AN1619

out over multiple zones when they might otherwise
have fit into a single zone.

= 1/O Cells Can Only Be Clocked From the
Primary Clock Distribution Network

Clocking /O macros via secondary or tertiary
clocks is prohibited. Reset is however permitted to
be sourced from the array or Peripheral Bus
(P-Bus).

Again referring to Figure 10, you'll note that the sense of the
clock fed to the column of flops is programmed in the column’s
vertical port cell. In a two phase design, it is not necessary to
route both senses of a clock on the primary Clock Distribution
Network; instead simply place an INV in front of clock input(s)
you wish to run off the inverted version of the clock. The
autolayout tool will do the rest of the job for you.

1> Clock Sense Selection is Made in the Vertical
Port Celi

Al flops within a column will have the same clock
and reset (or will lie unused).

= Do Not Use the Primary Clk/Rst Distribution
Network to Route Clock Enable Signals

Referring to Figure 10, note that a clock is paired
with a reset and brought down to all 5 of the Type 3
cells within a column. If the associated clock
enable (if used) is also on the primary clock
network, there would be no efficient route available
to get it down to the target flops. Do not use the
Primary Clock Distribution Network to route clock
enables. (Do use it for “Latch Enable” signals.)

Secondary Clocks

The autolayout software recognizes any network not on the
primary Clock Distribution Network with 5 or more Clk/Rst
loads on it as a “secondary clock (reset)” net. In order to
continue to guarantee low clock skew for even these
secondary networks, the autolayout software will construct a
secondary clock tree. Skew is held below 2nS with a
secondary clock tree. Construction of a secondary clock tree
is accomplished automatically with the use of horizontal global
bus switching to vertical global buses (G2 lines) as necessary
to connect to the clocked logic. Figure 10 shows the G2 line as
this secondary vertical route into the Clk/Rst resources of the
flops within a zone column.

= Secondary Clock Networks Consume
Routing Resources

The MPA architecture easily handles a fair number
of secondary clock networks, but networks with
large numbers of Clk/Rst loads are more efficiently
accommodated by moving onto the primary Clock
Distribution Network using ACLK or ARST buffers
mentioned previously. Version 2.4 will do this
automatically as an import option.

= Avoid Assigning Normal I/O to Clk/Rst Pads

Using an ACLK or ARST consumes the internal
circuitry of one of the 8 special Clk/Rst pads. If
these pads have been previously consumed by
(designer assigned) I/O signals, then they will not
be available for ACLK or ARST buffers.

= From Left to Right Only

The software currently restricts input buffers to
secondary clock nets to be on the left or right edge
of the die. This may change in latter revisions of the
autolayout software.

Tertiary Clocks

The autolayout software recognizes any network not on the
primary Clock Distribution Network with 1 to 4 Clk/Rst loads on
it as a “tertiary” clock (reset) net. Skew is not controlled nor is it
guaranteed on such networks. The unlabeled input into “Mux
C” of Figure 10 actually represents several of the normal
routing resources in the MPA including medium and global
buses that could be used for tertiary clock routing.

= Remember BUFF

BUFF may be inserted into the middle of a
secondary clock net in order to break it up into two
or more tertiary clock nets. Under rare
circumstances, heavy usage of secondary clocks
can cause routing congestion problems. It may be
beneficial to break a few of these up into tertiaries.

= Head Scratcher...

Suppose you have a design with three primary
clocks (C1, C2 & C3) and two primary resets (R1 &
R2). Suppose further that your design uses a
single flop for each of the following combinations of
clock and reset: C1R1, C1R2, C2R1, C2R2 and
C3R1. Because each of the clock and reset inputs
of the flops within a zone’s columns are hardwired
together, this design would require at ieast 5
columns worth of clock resources. Because all the
clocks and resets were specified as ‘primary’, and
since only two primary clocks and resets are
allowed per zone, the design would be fit into not
less than two zones. The fit of the design could be
improved by moving C3 off the primary clock
network. The now tertiary C3 could route into the
fifth available column containing Type 3 cells within
the single zone. Since the design only used a
single flop per Clk/Rst pair, there will be 4 unused
flops per column.

While the design is an obviously extreme and
contrived example, it does demonstrate how some
design styles may not fit efficiently into the MPA.

Synchronous Design

The MPA architecture is biased to accommodate
synchronous designs. The autolayout neither guarantees nor
reports “minimum” delays through any network so
asynchronous design techniques are strongly discouraged.
The “minimum” delays are not reported for two reasons, the

Mp B~

MOTOROLA MPA DATA — DL201 REV 2
4-232

first is that the autolayout software algorithms are designed
solely to beat maximum delay requirements, so the length of a
route may vary considerably from autolayout run to run (while
never exceeding the maximum number specified). The
second reason to not report minimum delays is that with
continuously improving process technologies, the trend is to
make the MPA silicon ever faster. Any design that is
constructed assuming some minimum delay can not
guaranteed to work in the future.

> Skipping Clocks, Strongly Discouraged

In some cases you might be tempted to constructa
“synchronous” circuit that employs the
questionable practice of “skipping clocks”. In this
(discouraged) design practice, the designer may
have a deep combinatorial circuit that takes much
longer than a single clock period to settle. The
practice of skipping clocks forces the assumption
that the combinatorial circuit takes more than one
clock period and less than two clock periods to
resolve. In this instance, the very first result is
ignored, but from then on the results are assumed
valid two clocks after the input changes.

While the design might be shown to work on a
given unit, Motorola does not guarantee minimum
delays so a subsequent process lot might leave the
designer with silicon that goes “too fast” and a
broken design. Also, subsequent autolayout runs
might result in a significant reduction in a
combinatorial path’s delay time also rendering the
original assumption of “more than one clock
period” invalid.

= Using Both Clock Edges

The autolayout software and architecture does
allow the designer to use both edges of a clock, but
as mentioned above the timing driven portion of the
software only knows about what clock is being’
used, not which edge of the clock it has to meet
timing for. If you're going to use both edges of a
50% duty cycle clock when going frem one flop to
the next, you'll have to halve your desired “Target
Delay” in the Tools — Options — Autolayout panel.
If your clock is not 50% duty cycle, you'll have to set
Target Delay to a value equal to the shorter of the
two states of the clock.

= Too Many Clocks

The MPA is best suited for designs with a few
primary clocks, but multiple clocks are supported.
The problem with tertiary and especially
secondary clock networks is that they consume a
fair amount of routing resources. An otherwise
easy to fit design may not be routable once multiple
secondary clocks are accommodated by the
software.

Further, because of the granularity of the clock
architecture (1 Clk/Rst pair per zone column of 5
flops, 2 primary and 2 secondary clocks per zone),

AN1619

multiple clocks in a design tends to limit how
“small” or how tightly packed the resultant layout
can be. Remember that of the three levels of
routing resources available, local routing is the
fastest. A design that gets “spread out” because it
uses multiple Clk/Rst pairs can not be routed with
the faster local routing resources and so may suffer
some performance loss.

= Gated Clocks, Avoid When Possible

Inserting anything but an INV in a clock path will
resultin the clock being pulled off the primary clock
network and placed either secondary or tertiary
routing (depending on the number of clock loads
downstream of the inserted gate). As mentioned
above, this tends to spread the resulting layout out
a bit more and consequently can slow things down
some. If a gated clock is desired, try instead using
register elements with clock enables.

TERTIARY CLOCK DE DFE
AVOID WHEN PRACTICAL __|

b a— —b q
A Q \
—_B_D—————> cLK > cLk
ANZ fazl e
CLOCK

CLOCK_ENABLE

Figure 11. A Standard Register with a Gated Clock
and the Preferred Clock Enabled Register

/0 and P-Bus Features

The MPA 1/O cell is sometime referred to as “Complex 1/0”
and for good reason. The flexibility of the I/O Cell in terms of
functionality and routing is enormous, but it comes at the cost
of being a difficult structure to fully understand. A good place
to begin is the on-line help “Help On Device — Functional
Description — 1/0 Cell”. Bookmark it; you'll be going there
again. The Complex 1/O is made even more flexible via its
association with the Peripheral Bus (P-Bus). The P-Bus is an
8 bit wide bus that runs around the entire chip, broken at each
of the chip’s four corners by programmable switches. The
corner switch structure also contains pull-up resistors for each
of the 32 P-Bus segments to support the optional open—drain
driving of the P—Bus.

The P-Bus is intended to make routing of common signals
from the interior of the MPA array to the /O Cells more
efficient. Such signals include tri-state enables, clock
enables, resets, even data. Instead of asking the autolayout
software to route a tri-state enable from the array to every T
(enable) pin of bank of OPTBUFs, the user should employ the
P-Bus by inserting an APBUF (from the MICROLIB) after the
logic sourcing the enable signal. The autolayout software will
place the enable signal from the array interior onto the P-Bus
and again tap off as required by the 1/Os; only a single route
from array interior to 1/O area will be required. Figure 12 shows
a similar situation; in this case the open—drain APWBUF driver
has been selected (for no good reason other than as an

MOTOROLA MPA DATA — DL201 REV 2
4-233

AN1619

example of how to use it). The P-Bus signal “ENABLE” can be
driven by either of the APWBUFs to its low state. A P-Bus
wired—or pull up (PWPUP) is required in order to ensure
ENABLE can go to a valid high state if not being otherwise

assigning drive strength to the PWPUP and closing corner
switches of the P-Bus signal to ensure that all of the
OPTBUFs get the required ENABLE signal, no matter which
chip edge they end up on after autolayout.

pulled low. The autolayout software handles all the issues of

INTERNAL_LOGIC

=1

4 T v OPTBUF
0 EXTIO

AN WO ENABLE v OPTBUF
L [EXTIO
APWBUF
OTHER_INTERNAL_LOGIC
= — AN | wo \V/ OPTBUF
L 0 EXTIO
APWBUF

Figure 12. Using the P-Bus with Open-Drain Drivers

A more common example of using the P-Bus is to use a
single APBUF to drive all the enables of a bank data bus
transceivers.

only for the purposes of forming a wired—and, not
for increasing total current sinking capacity.
Shorting or ‘twinning’ outputs together is not a
recommended method of increasing current

= Use the P-Bus to route enable signals source and sink capacity for a particular signal.
Whenever an enable signal goes to more than one The twinned outputs may not change state
I/O cell, it is recommended that the designer simultaneously and may as a result be in
employ the P-Bus (by inserting an APBUF). contention, putting undue stress on the device. If
Version 2.4 will do this automatically as an import you still feel compelled to twin outputs there are
option. some things you can do to mitigate the hazards.
Use clocked outputs and be sure they both use the
= Start Off Easy, Begin with IPBUF, OPBUF, same sense of the same clock. This will reduce the
IPCLK, IPRST possible contention period down to less than 1nS
The Complex /O can be a space and a time saver (assuming the PCB trace length is negligible
for your more critical designs, but you may want to between the two outputs). If possible, place the two
consider starting off slow and use the simpler /O clocked outputs in the same /O Zone. Clock skew
structures. within a single I/O Zone is down in the
pico—seconds, further reducing the possible time
> Enable and Reset Pins on Complex l/Os do in contention. (The Rev. 1 version of the databook
not have to be tied does not show 1/0O Zone information, this is being
. L amended in subsequent revisions.)
There are too many permutations possible in the
1/0 cell to make each available as a macrocell in) o
the IOLIB. Consequently a short cut has been Simultaneous Switching
made available to the designer using Complex I/O, The MPA was designed to accommodate no more
namely it is not necessary to tie reset or enable than 16 simultaneously switching outputs each
inputs high or low when using elements of the driving 6mA. Increasing the number of
IOLIB. (N.B. This is not true for elements from the simultaneously switching outputs beyond this
MICROLIB or MACROLIB. Each of these inputs number may result in ground bounce troubles
must be used or otherwise tied off.) The autolayout (though this is largely an effect of PCB design and
software will make the obvious assumptions about power supply capacity and bypassing conditions
how the unused input should be tied and make the as well).
tie off for you. One method to avoid such problems is to avoid
. putting wide output buses on clocked I/O. Avoiding
% Twinning I/Os, Not Recommended but...

M (-

The MPA does provide open—drain output drivers
that may be safely shorted together externally, but

clocked 1/O will tend to spread out the range of
clock—to—output arrival times, thus reducing the
instantaneous current demand.

4-234

MOTOROLA MPA DATA — DL201 REV 2

Another method available is to assign the attribute
DPLD_OPSLEW with a value of LOW to the output
port. The dt term of Ldi/dt gets larger, thus
lessening the tendency for voltage rise above
ground.

Bad Attribute Combinations

There are just a few combinations of I/O attributes
that are not recommended:

Using DPLD_OPSLEW=LOW and DPDL_
OPDRIVE=4mA on the same output. When an /O
cell is programmed for 4mA drive, only the first of
the pair of output drivers is connected. Only the
second of the pair (added in parallel when 6mA is
required) has programmable slew rate control.
Only 6mA outputs have the ability to modify slew
rate.

PULLUP=1 and PULLDOWN=1 would have the
(permitted, but discouraged) effect of enabling
both the pull-up and pull-down resistors for a
particular I/O. This would have the undesirable
effect of causing static current drain for no good
reason.

On a bi—-directional 1/0, assigning the attribute
combination of DPLD_IPLEVEL=CMOS and
DPLD_OPLEVEL=3V can leave the inputata level
close to threshold, possibly resulting in unwanted
through current.

Default I/O attributes are CMOS out but TTL
in

The default attributes for the MPA 1/Os are

DPLD_OPLEVEL=5V and DPLD_IPLEVEL=TTL;-

this ensures that without re—assigning attributes to

AN1619

the MPA’s 1/Os, that the resulting design will be
compatible with most logic signaling schemes,
however it may leave you with a lower than optimal
noise margin because of the lower threshold TTL
inputs.

= Don’tfix your I/O locations unnecessarily

Fixing your I/O locations using DPLD_PAD_
PLACE attribute may place an undue burden on
the autolayout tool. Most designs will route to a
higher performance level if the autolayout tool is
given as much freedom as possible with regards to
1/0 pin placement.

> Pull-Ups Not Intended for Open—Drair Buses

The pull-ups and pull-downs available on the I/O
cells are best classified as “very weak”. Their
intended use to pull an otherwise floating input to a
valid logic high or low. They are not intended to
drive any external loads such as an opendrain bus.

Summary

A little up front research into the MPA architecture specifics
and the appropriate adjustments to your current design style
can go a long way towards making your design fit fast and
efficiently in our MPAs. We've presented here all the most
popular design tips for working with the MPA. After reading this
application note we're confident you'll find designing with the
MPA to be a rewarding experience.

Don't forget help is never far away. Start with your MPA
representative or our web site at:

http://sps.motorola.com/fpga

Thank you for selecting MPA.

MOTOROLA MPA DATA — DL201 REV 2

4-235

6/97

AN1623
Application Note

HDL Techniques for Faster
Synthesized Counters

Prepared by
Marc Greenberg
Motorola Programmable Technology Centre

This application note contains information on how
HDL coding style can affect the size and speed of a
design.By describing the synthesised structure in the
HDL code, results can be achieved that rival sche-
matic capture in a lot less time.

© Motorola, Inc. 1997

4-236

@ MOTOROLA

REV 0

AN1623

HDL Techniques for Faster Synthesized Counters

Introduction

Synthesis tools and Hardware Description Languages
(HDLs) provide designers with a great number of benefits
compared with schematic capture tools. Designers using
HDLs are often more productive than they are with
schematic capture. HDL designs are much more portable,
easier to document, easier to partition, easier to modify and
easier to prototype than their schematic capture
counterparts. But schematic capture designs have two
important advantages over HDL designs: size and speed.
This report shows how to use HDL and still achieve circuit
size and speed on a par with schematic capture.

Counters, timers and frequency dividers are often on the
critical path in a design. By improving the speed of these
elements the performance of the entire design can be
improved, and this could make the difference between using
a faster speed grade of device or not. While the discussion
centres around counters, the principles involved can be
applied to many other circuit elements.

This application note discusses methods of building 16-bit
counters, both in schematic capture and through the
synthesis of Hardware Description Languages (HDLs). The
benefits of different counter architectures and HDL coding
styles are explored.

VHDL has been used in this study, however Verilog users
should be able to apply the same techniques to their code.
The Synario synthesis tool was used in this study. The
findings may differ slightly for users of other synthesis tools
but the principles involved are the same.

The VHDL written for this application note is intended for
Motorola MPA FPGAs, but it is not specific to MPA FPGAs.

No MPA components are instantiated, so it should be
possible to re—synthesise the VHDL and retarget it to any
FPGA or ASIC without modification. The schematics have
been designed with Synario Generic library elements, so the
schematics can also be re—used in any Synario device kit
that supports the Synario Generic library. This demonstrates
that it is possible to retain portability in an HDL design
without sacrificing too much circuit performance.

All the test cases have been placed and routed using the
fully automatic place—and-route in the MPA Design System
(MPA DS). Speed information is derived from static timing
information produced by MPA DS.

The Basics

All the counters in the study are synchronous, 16 bits wide
with clock enable and asynchronous reset. Counters with
and without data load inputs are explored. Three main
counter architectures are used: the very simple ripple
counter, the look ahead counter , and the prescaled counter.
Counters are described using schematic capture, behavioral
VHDL or structural VHDL.

Schematic Capture

The simple ripple counter is probably the most familiar. A
section of ripple counter is reproduced in Figure 1. The
simple ripple counter has the advantage that it is the simplest
possible synchronous counter and so it is smaller than other
counters. It is also one of the slowest architectures, as the
critical path ‘ripples’ through the counter, resulting in one
gate delay per bit width of the counter.

Q2] Q4]

| 1,63 161 159
=D
I_ 1_50 162 [160 L 158
—T af— HT Q | T o HT Q L Q'
ie —+ - - -
c c c c c
= J'LI_71 ﬁl 170 L 169 1 168 LI_67
[

Figure 1. The First Few Stages of the Simple Ripple Counter

MOTOROLA MPA DATA — DL201 REV 2

4-237

AN1623

The look ahead counter is a variation of the ripple counter. devices this works out to be at the 8th, 11th and 14th stages
The look ahead counter breaks up the ripple carry path by in the counter. In the schematic designs this resulted in a
precalculating what the ripple carry value should be at 40% speed improvement over the simple ripple counter.
certain points in the counter and injecting this value into the Figure 2 shows the ripple carry counter.

ripple carry path at these points. For 16 bit counters in MPA

: S S S < < ~—~-aED
B L
o—' 174 — 73
D Q8] Q[Q[10] Q1] Q[12) Q[13] Q[14] Q[15]
EN -9
0——-D'T 0——D—| q
1.38 1.36 1.32 1.30 .27 1.26
1 1)
139 |37 .35 133 l_ 131 L 129 IT' L 125
T Q TQ—JTQ—T T a—YHT1 a—~YHTt o~ YH1 af—
> - > —- - - >
C C C C C C C C
— 148 J JG PUE: J J J [
CLK
Figure 2. The Look Ahead Carry Counter, Showing the 11th and 14th Stage Look Aheads
The prescaled counter is another variation on the ripple account, so it reports a speed figure that is lower than the
carry counter. The two least significant bits of the counter true figure possible. Circuit analysis using the timing path
form their own counter which is capable of operating at high data provided by MPA DS shows a speed improvement of
speed. Once every 4 clock ticks, the clock enable for the 14 over 50% compared with the ripple carry counter. Prescaled
most significant bits in the counter is enabled, thus the ripple counters are not suitable for implementation in counters with
carry path has four clock ticks to complete the ripple carry data load. Figure 3 shows the first few stages of the
calculation. Note that the static timing analysis in the MPA prescaled counter.
Design System does not take circuit functionality into
W jﬁ ﬁ/ \ ﬁ/
Q[o] Q1] Q2 Q3] Q4] Q5]

EN ?
%’I:_D |_7sl "2% o«—-E)L‘SZ o——E}L'; *~—
162 - _L1:>—|
158

—
=

On;
I (=2

T oY1 aof— e 4t oY1 o H1 o
. - — - - -
c c c c c c
= 171 I P Jies | e | 168

CLK >

Figure 3. The first few stages of the prescaled counter.

%} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

4-238

Synthesis

The synthesis code that will be familiar to HDL users is the
very basic COUNT <= COUNT + 1; as shown in Figure 4.
This is the correct form to use when prototyping some HDL
code or making a test bench, but it doesn’t synthesise to a

architecture behv of vhdlée is

AN1623

very efficient structure. In fact, this produces a structure that
is more than 30% slower and almost twice as large as the
slowest schematic capture counter. So what went wrong?

signal COUNT : std_logic_vector (0 to 15);
begin
countl6: process (RST, CLK)
begin
if (RST = '1’) then
COUNT <= (others=>'0");
elsif (CLK'event and CLK = ‘1’) then
if (EN = 1’) then
if (COUNT = B~”1111111111111111”) then
COUNT <= (others=>'0");
else
COUNT <= COUNT + 1;
end if;
end if;
end if;
end process countl6;
Q <= COUNT;
end behv;

Figure 4. The Behavioral VHDL for a Ripple Carry Counter

The problem with the behavioral model of the counter is
that it gives the synthesis tool many degrees of freedom.
Most synthesis tools would produce a ripple carry counter
from the VHDL in Figure 4; it is unlikely that a look ahead or
a prescaled counter would be generated.

architecture struct of vhdlé6er is

We can improve upon the behavioral model for the counter
by specifying exactly what is wanted. For example, examine
the VHDL of Figure 5.)

signal RIPPLE std_logic_vector (0 to 15);
signal ENABLE std_logic_vector (0 to 15);
signal COUNT std_logic_vector (0 to 15);
signal 1 integer;
signal j integer;

component tflop port (

Q
end component ;
begin
Gl: for i in 0 to 15 generate
count_stage: tflop port map (
end generate;
RIPPLE(0) <= '1';
ENABLE(0) <= EN;
G2: for j in 1 to 15 generate
RIPPLE(j) <= (COUNT(j-1)
ENABLE(j) <= (RIPPLE(j) and EN)
end generate;
Q <= COUNT;

end struct;

RST, CLK, EN :
out std_logic);

in std_logic;

RST=>RST, CLK=>CLK,
Q=>COUNT (1),
EN=>ENABLE (1)) ;

and RIPPLE(j-1));

i

Figure 5. Structural VHDL Description of a Ripple Counter

MOTOROLA MPA DATA — DL201 REV 2
4-239

AN1623

The VHDL of Figure 5 uses the VHDL ‘generate’ statement
to instantiate 16 T-type flip flops. The T-type flip flops used
are architecture independent; the VHDL that describes these
flip flops is shown in Figure 6. Another generate statement is
used to describe the ripple carry path and the logic for the
enable input to the T-type flip flops. The VHDL of Figure 5 is

architecture rtl of tflop is

not that much more complicated than the basic counter, and
yet it is 23% faster and 46% smaller than the circuit
produced by the VHDL of Figure 4. The circuit produced by
the VHDL of Figure 5 is the same size as the schematic
capture version.

) then

signal Q_INT : std_logic;
begin
flop: process (RST, CLK)
begin
if (RST = ‘1’) then
Q_INT <= ’0’;
elsif (CLK’event and CLK = "1’
if (EN = 1’) then
Q_INT <= not Q_INT;
end if;
end if;
end process flop;
Q <= Q_INT;
end rtl;

Figure 6. The VHDL for the tflop Component Used in Figure 5

A slightly different arrangement of the VHDL used in
Figure 5 is shown in Figure 7. The VHDL is very similar,
except that the statement that ANDs the ripple and enable

architecture struct of vhdlé6era is
signal RIPPLE :
signal COUNT :
signal i : integer;
signal j : integer;

component tflopa port (RST, CLK, EN, RIN :
out std_logic);

Q :
end component;
begin
Gl: for i in 0 to 15 generate

count_stage: tflopa port map (

end generate;
RIPPLE(0) 1;
G2: for j in 1 to 15 generate
RIPPLE(j) <=
end generate;
Q <= COUNT;
end struct;

<=

signals together has been moved into the tflopa component.
This results in a ripple carry circuit that is 22% larger than the
schematic capture version, but just 1% slower.

std_logic_vector (0 to 15);
std_logic_vector (0 to 15);

in std_logic;

RST=>RST, CLK=>CLK,
Q=>COUNT (1) ,
EN=>EN,
RIN=>RIPPLE(i));

(COUNT (j-1) and RIPPLE(j-1));

Figure 7. Structural Ripple Carry VHDL that is Just 1% Slower than the Schematic Capture Version

M 0>

4-240

MOTOROLA MPA DATA — DL201 REV 2

Synthesis of the Advanced Counters

The behavioral version of the look—ahead counter is
shown in Figure 8. This complicated piece of VHDL is almost
40% faster and 13% larger than the behavioral VHDL version

architecture behv of vhdléla is

signal COUNT std_logic_vector (0 to 15);

AN1623

of the ripple carry counter. However, it is twice as large as
the schematic capture ripple counter and it is slower.

signal LAS8 std_logic;
signal LAll std_logic;
signal LAl4 std_logic;
begin
LA8 <= (COUNT(0) and COUNT(1l) and COUNT(2) and COUNT(3) and COUNT(4) and COUNT(5) and COUNT (6)
and COUNT (7)) ;
LAll <= (COUNT(8) and COUNT(9) and COUNT(10) and LA8);
LAl4 <= (COUNT(11l) and COUNT(12) and COUNT(13) and LAll);
countlé6: process (RST, CLK)
begin
if (RST = 1’) then
COUNT <= (others=>'0");
elsif (CLK’event and CLK = ‘1’) then
if (EN = '1’) then
if (COUNT(0 to 7) = B”11111111”) then
COUNT(0 to 7) <= (others=>'0");
else
COUNT(0 to 7) <= COUNT(0 to 7) + 1;
end if;
if (LA8 = 1’) then
if (COUNT(8 to 10) = B”111”) then
COUNT (8 to 10) <= (others=>'0’);
else
COUNT (8 to 10) <= COUNT(8 to 10) + 1;
end if;
end if;
if(LAll = '1’) then
if (COUNT(11l to 13) = B”111”) then
COUNT (11 to 13) <= (others=>'0");
else
COUNT (11 to 13) <= COUNT(11l to 13) + 1;
end if;
end if;
if (LAl4 = '1l') then
if (COUNT (14 to 15) = B”11”) then
COUNT (14 to 15) <= (others=>'0');
else
COUNT (14 to 15) <= COUNT (14 to 15) + 1;
end if;
end if;
end if;
end if;
end process countl6;
Q <= COUNT;
end behv;

Figure 8. The Behavioral VHDL for a Look-Ahead Counter — Faster than the Behavioral VHDL Ripple Carry Counter,

But Slower than (and twice the size of) the Schematic Capture Ripp

le Carry Counter

MOTOROLA MPA DATA — DL201 REV 2
4-241

AN1623

The structural VHDL for the look ahead counter is a lot size as the schematic capture version of the look ahead
more efficient. Figure 9 shows structural VHDL that the same counter and is less than 1% slower.

architecture struct of vhdlélaa is
signal COUNT : std_logic_vector (0 to 15);
signal RIPPLE : std_logic_vector (0 to 15);
signal LA8 : std_logic;
signal LAll : std_logic;
signal LAl4 : std_logic;

component tflopa port (RST, CLK, EN, RIN: in std_logic;

Q : out std_logic);

end component;

begin
LA8 <= (COUNT(0) and COUNT(1l) and COUNT(2) and COUNT(3) and COUNT (4)
and COUNT(5) and COUNT(6) and COUNT (7)) ;
LAll <= (COUNT(8) and COUNT(9) and COUNT(10) and LAS8);
LAl14 <= (COUNT(11l) and COUNT(12) and COUNT(13) and LAll);
Gl: for i in 0 to 15 generate
count_stage: tflopa port map (RST=>RST, CLK=>CLK,
Q=>COUNT (i),
EN=>EN,
RIN=>RIPPLE(i));
—— Note use of conditional generate statement

G2 : if ((i /= 0) and (i /= 1) and (i /= 8) and (i /= 11)
and (i /= 14)) generate
RIPPLE(i) <= (RIPPLE(i-1) and COUNT(i-1));
end generate;
end generate;
—— look ahead carries
RIPPLE(0) <= ’1’;
RIPPLE(1) <= COUNT(0);
RIPPLE(8) <= LAS8;
RIPPLE(11) <= LAll;
RIPPLE(14) <= LAl4;
Q <= COUNT;
end struct;

Figure 9. Structural VHDL for a Look—Ahead Counter — the Same Size and Speed as a Schematic Capture Version,
and Less Complicated than the Behavioral Version

The results are similar for the prescaled counter. The VHDL look ahead counter — and the VHDL is much simpler.
schematic capture version is the smallest and fastest as The structural VHDL version of the prescaled counter the
expected. The behavioral VHDL prescaled counter of same size as, and slightly slower than, the structural version
Figure 10 is 6% smaller and 47% faster than the behavioral of the look ahead counter.

architecture behv of vhdlépsb is
signal COUNT : std_logic_vector (0 to 15);
signal EN_INT : std_logic;
begin
prescale: process (RST, CLK)
begin
if (RST = ’1’) then
COUNT (0 to 1) <= (others=>'0");
elsif (CLK’event and CLK = ‘1’) then
if (EN = 1’) then

if (COUNT(0 to 1) = B”11”) then

COUNT(0 to 1) <= (others=>'0');
else

COUNT (0 to 1) <= COUNT(0 to 1) + 1;

%} 7 i @ MOTOROLA MPA DATA — DL201 REV 2

4-242

end if;
end if;
end if;
end process prescale;
EN_INT <= (COUNT(0) and COUNT(1l) and EN) ;

AN1623

countld: process (RST, CLK)
begin
if (RST = 1’) then
COUNT (2 to 15) <= (others=>'0');
elsif (CLK’event and CLK = ‘1’) then
if (EN_INT = ‘1’) then
if (COUNT(2 to 15) = B~”11111111111111”) then
COUNT (2 to 15) <= (others=>'0’);
else
COUNT (2 to 15) <= COUNT(2 to 15) + 1;
end if;
end if;
end if;
end process countld;
Q <= COUNT;
end behv;

Figure 10. The Behavioral VHDL Version of the Prescaled Counter — Smaller and Faster than the
Behavioral VHDL Version of the Look-Ahead Counter

Loadable Counters

Results for the loadable counters were similar to those for
the non-loadable types of counters, but the improvements
possible were less dramatic. Again, the schematic captured
counters are the smallest. All of the look-ahead carry
counters were faster than their ripple carry equivalents. One
of the look-ahead carry counters was faster than the
schematic capture version, although it was larger also. The
results for all of the counters explored in the study are
available in Table 1 and Table 2.

Results

All of the examples in the study were drawn in the Synario
schematic capture tool using Synario generic libraries or
compiled using the Synario synthesis tool. Each example
had 1/0 pads added to it as appropriate and was netlisted
into EDIF format.

Each example was imported into the MPA Design System.
Fully automatic place and route was performed on each
example, using fully automatic pushbutton autolayout and
the ‘minimum delay’ preset autolayout parameter set. On
some examples the utilisation target was reduced to 80% —
this is noted in table 10a. No advanced techniques of

reducing delays have been performed. The device used in
the study was the MPA1016FN, the smallest non-speed
graded device in the MPA family — this is the device that is
currently shipped with MPA evaluation boards.

The number of core cells is the number reported by the
autolayout tool, after all netlist optimisations have taken
place. The speed measurement is the number obtained from
the static timing analysis report from the MPA Design System
back annotation tool, except in the case of prescaled
counters where the maximum speed of operation was
determined from the detailed timing information contained in
the timing (.TIM) file.

While it is difficult to rate the relative ‘difficulty’ of a
particular implementation of a design, an attempt has been
made to do so. In the case of VHDL designs, the ‘effort’ to
create the design has been defined as the number of lines of
code in the architecture description of the element, including
signal and component declarations but not including
comments, white space or the code in any instantiated
component. In the case of schematic capture designs the
effort to create the design has been defined as the number of
instances in the design. This provides some kind of basis
with which to compare the difficulty of designs.

MOTOROLA MPA DATA — DL201 REV 2

4-243

AN1623

Table 1. Results for the Counters without the Data Load Function

Name Of Entry # of Core Speed Effort to
Example Method Cells (MHz) create Notes
App_note Schematic) 45 33.9 45 Utilisation target set to 80%
Appnote6 VHDL Behavioral 84 228 18 COUNT <= COUNT + 1;
Appnote8 VHDL Structural 45 28.1 22 Utilisation target set to 80%
Appnote9 VHDL Structural 58 33.7 20 Slightly different arrangement to Appnote8
Appnote4 Schematic 55 47.4 55 Look Ahead Carry
Appnot13 VHDL Behavioral 95 31.6 45 COUNT <= COUNT + 1;
with Look Ahead Carry
Appnot14 VHDL Structural 55 47.2 28 Look Ahead Carry
Appnot16 VHDL Structural 63 415 35 Look Ahead Carry, Different arrangement to Appnot14,
Utilisation target set to 80%
Appnote5 Schematic 44 51.3 44 2-stage Prescaled Counter, Utilisation target set to 80%
(Note 1.)
Appnot17 VHDL Behavioral 79 46.5 34 COUNT <= COUNT +1;
(Note 2.) with 2—stage Prescaled Counter
Appnot10 VHDL Structural 55 44.4 29 2-stage Prescaled Counter, Utilisation target set to 80%
(Note 3.)

1. Based on detailed timing information. MPADS static timing analysis reports 38.9MHz.
2. Based on detailed timing information. MPADS static timing analysis reports 19.5MHz.
3. Based on detailed timing information. MPADS static timing analysis reports 34.6MHz.

Table 2. Results for the Counters with Data Load

Interpretation of the Results

Some of the results of the study are not surprising; the
largest and slowest counters were produced with behavioral
VHDL, and the smallest and fastest counters were produced
with schematic capture.

What is more surprising is the range of results found.
Looking at the results for the counters without the data load
function, it can be seen that changing the architecture and
the coding style of a VHDL counter can result in a speed
improvement of over 100%. Similarly, the largest behavioral
VHDL counter is more than 100% larger than the smallest
structural VHDL version.

The size of the counter implementation is not necessarily

Name of Entry # of Core Speed Effort to Notes
Example Method Cells (MH2) create
Appnote7 VHDL Behavioral 160 23.9 20 COUNT <= COUNT + 1;
Appnote3 Schematic 119 35.5 119 Look Ahead Carry
Appnoti1 VHDL Behavioral 150 30.8 47 COUNT <= COUNT + 1;
with Look Ahead Carry
Appnot12 VHDL Structural 122 30.6 30 Look Ahead Carry
Appnoti5 VHDL Structural 127 39.2 37 Look Ahead Carry, Different arrangement to Appnot12
(Same as Appnot16)

related to the speed of the counter produced. Referring to
the graph in Figure 11, it can be seen that there is no strong
correlation between size and speed. Indeed, the smallest
counter is also the fastest and the second largest counter is
also the slowest.

What can also be seen from Figure 11 is that the three
behavioral VHDL counters are the largest by a significant
margin. It can also be seen that structural VHDL is almost
capable of matching schematic capture on the basis of size,
speed, or both. For the very best in size and speed, it is still
necessary to use schematic capture.

M4 T

MOTOROLA MPA DATA — DL201 REV 2

4-244

AN1623

Size vs Speed

MHz
60
50 4 -
[78 PN Key:
A
40 4 A u Schematic
Capture
] A
§ 30 4 * |4 Behavioral
& 4 VHDL
*
20 4 4 Structural
VHDL
10 T
0 t + + +
0 20 40 60 80 100 MPA
Core Cells
Size

Figure 11. Size Plotted Against Speed for the Counters in the Study Without the Data Load Feature.
Bigger is not necessarily faster.

The results are a little different if the effort to produce the
required solution is taken into account. The graph of
Figure 12 introduces two new terms: quality and effort. For
the purposes of this comparison the ‘quality’ of a counter is
defined as the speed of a counter divided by the number of
core cells required to implement that counter. The ‘effort’
required to produce the counter is defined as either the
number of lines of VHDL required to produce the counter or
the number of instances in a schematic captured counter.

Figure 12 shows some correlation between effort and

‘quality’ of the solution produced. As we showed in Figure 11,
schematic capture is capable of producing the highest
‘quality’ counters, but it also requires significant effort to
produce them. On the other hand, the very simple behavioral
VHDL counter requires little effort to produce, but results in a
poor ‘quality’ counter implementation. What is interesting to
note is that in most cases, structural VHDL is capable of
producing results of comparable ‘quality’ to schematic
capture, but with much less effort.

Quality of solution vs. Effort required to create solution

1.20
]
1.00 A
Key:
- .
0.80 1 [a Schematic
[] Capture
Fs
% 0.60 - . 4 . o Behavioral
g VHDL
0.40 4 a Stuctural
- VHDL
.
0.20 +1
0.00 t+ —t +- t +
0 10 20 30 40 50 60

Effort to create
(lines of code or number of instances)

Figure 12. ‘Quality’ of Counter Implementation Plotted Against the Effort Required to Produce It.
More effort does not always guarantee a better solution.

MOTOROLA MPA DATA — DL201 REV 2

4-245

AN1623

Conclusions

Two different VHDL code styles have been compared and
contrasted with schematic capture, and it has been shown
that using VHDL does not necessarily mean having to accept
a reduction in circuit performance. Three different counter
architectures have been explored, and it has been shown
that it is possible to gain significant performance benefits by
changing counter architecture, without a dramatic increase in
counter size or the effort required to generate the counter.

This study has shown that VHDL coding style and
selection of different circuit architectures can have a sizeable
effect on the quality of the solution produced. If you think
about the structural implications of your VHDL, you can

produce designs that rival the performance of schematic
capture in a lot less time.

The Synario — MPA Device Kit will be released with
version 2.4 of the MPA Design System. The kit supports
MPA-specific and Synario Generic schematic capture
libraries, VHDL and ABEL-HDL design entry, VHDL and
Verilog simulation. You can download a demonstration
version of the kit and a free version of the MPA Design
System from the Motorola MPA web site,

http://sps.motorola.com/fpga

M

MOTOROLA MPA DATA — DL201 REV 2
4-246

)

How to Reach Us

|
4

Motorola Programmable Arrays

Three Ways To Receive
Motorola Semiconductor Technical Information

Literature Distribution Centers

Printed literature can be obtained from the Literature Distribution Centers upon request. For those items that incur a cost, the
U.S. Literature Distribution Center will accept Master Card and Visa.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217.
Phone: 303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32—-1,
Nishi~Gotanda, Shinagawa—ku, Tokyo 141, Japan. Phone: 81-3-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road,

Tai Po, N.T., Hong Kong. Phone: 852-26629298

Mfax™ - Touch-Tone Fax

Mfax offers access to over 30,000 Motorola documents for faxing to customers worldwide. With menus and voice
instruction, customers can request the documents needed, using their own touch—tone telephones from any location, 7 days
a week and 24 hours a day. A number of features are offered within the Mfax system, including product data sheets,
application notes, engineering bulletins, article reprints, selector guides, Literature Order Forms, Technical Training
Information, and HOT DOCS (4—digit code identifiers for currently referenced promotional or advertising material).

A fax of complete, easy—to—-use instructions can be obtained with a first-time
phone call into the system, entering your FAX number and then, pressing 1.

How to reach us:

Mfax: RMFAX0 @email.sps.mot.com -TOUCH-TONE (602) 244-6609
USA & Canada ONLY 1-800-774-1848
or via the http://motorola.com/sps home page, select the Mfax Icon.

Motorola SPS World Marketing Internet Server

Motorola SPS'’s Electronic Data Delivery organization has set up a World Wide Web Server to deliver Motorola SPS’s
technical data to the global Internet community. Technical data such as the complete Master Selection Guide along with the
OEM North American price book are available on the Internet server with full search capabilities. Other data on the server
include abstracts of data books, application notes, selector guides, and textbooks. All have easy text search capability.
Ordering literature from the Literature Distribution Center is available on line. Other features of Motorola SPS’s Internet
server include the availability of a searchable press release database, technical training information, with on-line
registration capabilities, complete on—line access to the Mfax system for ordering faxes, an on—line technical support form to
send technical questions and receive answers through email, information on product groups, full search capabilities of
device models, a listing of the Domestic and International sales offices, and links directly to other Motorola world wide web
servers. For more information on Motorola SPS’s Internet server you can request BR1307/D from Mfax or LDC.

How to reach us:
After accessing the Internet, use the following URL:

http://motorola.com/sps

Motorola’s Programmable Array Group

How to reach us:
After accessing the Internet, use the following URL:
http://sps.motorola.com/fpga
Our toll free Support Access Line at:
1-800-449-3742

MOTOROLA MPA DATA — DL201 REV 2
5-2

MOTOROLA AUTHORIZED DISTRIBUTOR & WORLDWIDE SALES OFFICES
NORTH AMERICAN DISTRIBUTORS

UNITED STATES
ALABAMA
Huntsville
Arrow/Schweber Electronics (205)837-6955
FAL .o, .. (205)837-9209
Future Electronics (205)830-2322
HamiltonHallmark (205)837-8700
Newark (205)837-9091

Time Electronics 1-800-789-TIME

Wyle Electronics (205)830-1119
ARIZONA
Phoenix
FAL. ..o (602)731-4661
Future Electronics (602)968-7140
Hamilton/Hallmark (602)414-3000
Wyle Electronics (602)804-7000
Tempe
Arrow/Schweber Electronics (602)431-0030
Newark .. (602)966-6340
PENSTOCK (602)967-1620
Time Electronics 1-800-789-TIME
CALIFORNIA
Agoura Hills
Future Electronics (818)865-0040

Time Electronics Corporate ... 1-800-789-TIME
Belmont

Richardson Electronics (415)592-9225
Calabassas

Arrow/Schweber Electronics (818)880-9686

Wyle Electronics (818)880-9000
Chatsworth

Time Electionics 1-800-789-TIME
Costa Mesa

Hamilton/Hallmark (714)789-4100
Culver City

Hamilton/Hallmark (310)558-2000
Garden Grove

Newark (714-893-4909
Irvine

Arrow/Schweber Electronics ... (714)587-0404

FAL. ... (714)753-4778

Future Electronics (714)453-1515

Wyle Laboratories Corporate (714)753-9953

Wyle Electronics (714)863-9953
Los Angeles

FAL. ..o (818)879-1234

Wyle Electronics (818)880-9000
Manhattan Beach

PENSTOCK .. (310)546-8953
Mountain View

Richardson Electronics (415)960-6900
Newberry Park

PENSTOCK (805)375-6680
Palo Alto

Newark (415)812-6300
Riverside

Newarkooooiae (909)784-1101
Rocklin

Hamilton/Hallmark (916)632-4500

(916)782-7882
. (916)565-1760

Wyle Electronics (916)638-5282
San Diego
Arrow/Schweber Electronics ... (619)565-4800
FAl.......... .. (619)623-2888
Future Electronics . .. (619)625-2800
Hamilton/Hallmark . .. (619)571-7540
Newark (619)453-8211
PENSTOCK (619)623-9100
Wyle Electronics (619)565-9171
San Jose
Arrow/Schweber Electronics (408)441-9700
Arrow/Schweber Electronics (408)428-6400

FAL oo (408)434-0369
Future Electronics (408)434-1122
Santa Clara
Wyle EIectronics (408)727-2500
Sierra Madre
PENSTOCK (818)355-6775
Sunnyvale
Hamilton/Hallimark (408)435-3500
PENSTOCK (408)730-0300
Time Electronics 1-800-789-TIME
Thousand Oaks
Newark, (805)449-1480
Torrance
Time Electronics 1-800-789-TIME
Tustin
Time Electronics 1-800-789-TIME
Woodland Hills
Hamilton/Hallmark (818)594-0404
Richardson Electronics (615)594-5600
COLORADO
Lakewood
FAL .o (303)237-1400
Future Electronics (303)232-2008
Denver
Newarkooo.ooeen. (303)373-4540
Englewood
Arrow/Schweber Electronics (303)799-0258
Hamilton/Hallmark (303)790-1662
PENSTOCK (303)799-7845
Time Electronics 1-800-789-TIME
Thornton
Wyle Electronics (303)457-9953
CONNECTICUT
Bloomfield
Newarkc...... (203)243-1731
Cheshire
FAL.........o (203)250-1319

Future Electronics (203)250-0083

Hamilton/Hallmark (203)271-2844
Southbury

Time Electronics 1-800-789-TIME
Wallingfort

Arrow/Schweber Electronics (203)265-7741

FLORIDA

Altamonte Springs

Future Electronics (407)865~7900
Clearwater

FAL. ... (813)530-1665

Future Electronics (813)530-1222
Deerfield Beach

Arrow/Schweber Electronics (305)429-8200

Wyle Electronics (305)420-0500
Ft. Lauderdale

2 (305)428-9494

Future Electronics (305)436-4043

Hamiltor/Hallmark (305)484-5482

Newark (305)486-1151

Time Electronics 1-800-789-TIME
Lake Mary

Arrow/Schweber Electronics (407)333-9300
Largo/Tampal/St. Petersburg

Hamilton/Hallmark (813)547-5000

Newark (813)287-1578

Wyle Electronics (813)576-3004

Time Electronics 1-800-789-TIME
Orlando

FAL.......oo (407)865-9555
Tallahassee

Y (904)668-7772
Tampa

PENSTOCKc.ot (813)247-7556
Winter Park

Hamilton/Hallmark (407)657-3300

PENSTOCK (407)672-1114

Richardson Electronics (407)644-1453

GEORGIA
Atlanta
FAl
Time Electronics .
Wyle Electronics

... (404)447-4767
. 1-800-789-TIME
. (404)441-9045

Duluth
Arrow/Schweber Electronics (404)497-1300
Hamilton/Hallmark (404)623-4400
Norcross
Future Electronics ... (770)441-7676
Newark . (770)448-1300
PENSTOCK ... (770)734-9990
Wyle Electronics (770)441-9045
IDAHO
Boise
FAL.......ooooi (208)376-8080
ILLINOIS
Addison
Wyle Laboratories (708)620-0969
Bensenville
Hamilton/Hallmark (708)797-7322
Chicago
FAL. e (708)843-0034
Newark Electronics Corp. (312)784-5100
Hoffman Estates
Future Electronics (708)882—-1255
Itasca
Arrow/Schweber Electronics ... (708)250-0500
LaFox
Richardson Electronics (708)208-2401
Palatine
PENSTOCK (708)934-3700
Schaumburg
Newark (708)310-8980
Time Electronics ... 1-800-789-TIME
INDIANA
Indianapolis
Arrow/Schweber Electronics (317)299-2071
Hamilton/Hallmark (317)575-3500
FAL ..o ... (317)469-0441
Future Electronics (317)469-0447
Newark (317)259-0085
Time Electronics ... 1-800-789-TIME
Ft. Wayne
Newark (219)484-0766
PENSTOCK (219)432-1277
IOWA
Cedar Rapids
Newarkc..cooou.. (319)393-3800
Time Electronics 1-800-789-TIME
KANSAS
Kansas City
FAL....ooo (913)381-6800
Lenexa
Arrow/Schweber Electronics (913)541-9542
Hamilton/Hallmark (913)663-7900
Olathe
PENSTOCK (913)829-9330

Overland Park

Future Electronics (913)649-1531

Newark (913)677-0727
Time Electronics 1-800-789-TIME
MARYLAND
Baltimore
FAL ..o (410)312-0833
Columbia
Arrow/Schweber Electronics (301)596-7800
Future Electronics (410)290-0600
Hamilton/Hallmark ... (410)720-3400
Time Electronics ... 1-800-789-TIME
PENSTOCK ... (410)290-3746
Wyle Electronics ... (410)312-4844
Hanover
Newarkccoivvinnnn (410)712-6922

MOTOROLA MPA DATA — DL201 REV 2
5-3

AUTHORIZED DISTRIBUTORS - continued

UNITED STATES - continued

MASSACHUSETTS
Boston
Arrow/Schweber Electronics (508)658-0900
[(508)779-3111
Bolton
Future Corporate (508)779-3000
Burlington
PENSTOCK (617)229-9100
Wyle Electronics (617)271-9953
Norwell
Richardson Electronics (617)871-5162
Peabody
Time Electronics 1-800-789-TIME
Hamilton/Hallmark (508)532-9893
Woburn
Newarkcooovennnn (617)935-8350
MICHIGAN
Detroit
FAL ..o (313)513-0015
Future Electronics (616)698-6800
Grand Raplds
Newarkcocoounenn, (616)954-6700
Livonia
Arrow/Schweber Electronics (810)455-0850
Future Electronics (313)261-5270
Hamilton/Hallmark . .. (313)416-5800
Time Electronics 1-800-789-TIME
Troy
Newarkoooiviunns (810)583-2899
MINNESOTA
Bloomington
Wyle Electronics (612)853-2280
Burnsville
PENSTOCKoc..u. (612)882-7630
Eden Prairie
Arrow/Schweber Electronics (612)941-5280
FAL.oooiins . (612)947-0909

. (612)944-2200
. (612)881-2600

Future Electronics . .
Hamilton/Hallmark .

Time Electronics 1-800—-789—TIME
Minneapolis

Newarkcooeeeinnn. (612)331-6350
Earth Cit){

Hamilton/Hallmark (314)291-5350

MISSOURI

St. Louis

Arrow/Schweber Electronics (314)567-6888

Future Electronics (314)469-6805

FAl..... (314)542-9922

Newark (314)453-9400

Time Electronics 1-800—789—TIME

NEW JERSEY

Bridgewater

PENSTOCK (908)575-9490
Cherry Hill

Hamilton/Hallmark (609)424-0110
East Brunswick

Newarkcoontn (908)937-6600
Falrfleld

(201)331-1133

........................ (516)348-3700

Marlt

AI’I’O'W/SChWQbeI' Electronics (609)596-8000

FAL ... (609)988-1500

Future Electronics (609)596—4080
Pinebrook

Arrow/Schweber Electronics (201)227-7880

Wyle Electronics . (201)882-8358
Parsi

Future Electronics (201)299-0400

Hamilton/Hallmark . .. (201)515-1641
Wayne

Time Electronics 1-800-789-TIME

NEW MEXICO
Albuquerque
Alliance Electronics ...
Hamilton/Hallmark .

.. (505)292-3360
. (505)828-1058

Newark . (505)828-1878
NEW YORK

Bohemia

Newark . (516)567-4200
Hauppauge

Arrow/Schweber Electronics ... (516)231-1000

Future Electronics (516)234-4000

Hamilton/Hallmark .. (516)434-7400

PENSTOCK . (516)724-9580
Konkoma

Hamilton/Hallmark (516)737-0600
Melville

Wyle Laboratories (516)293-8446
Pittsford

NeWarkooveeennanns (716)381-4244
Rochester

Arrow/Schweber Electronics (716)427-0300

Future Electronics (716)387-9550
. (716)387-9600

Hamilton/Hallmark (716)272-2740

Richardson Electronics . (716)264-1100
Time Electronics 1—800—789—TIME
Rockville Centre
Richardson Electronics (516)872-4400
Syracuse
(315)451-4405
Future Electronics . .. (315)451-2371
Newark (315)457-4873
Time Electronics .. . 1-800-789-TIME
NORTH CAROLINA
Charlotte
FAL............ . (704)548-9503

Future Electronics . .. (704)547-1107

Richardson Electronics (704)548-9042
Raleigh

Arrow/Schweber Electronics (919)876-3132

.. (919)876-0088

.. (919)790-7111
(919)872-0712
........ (919)781-7677
1-800-789-TIME

Future Electronics .
Hamilton/Halimark ..
Newark

Time Electronics

OHIO
Centerville
Arrow/Schweber Electronics (513)435-5563
CIeveIand
(216)446-0061
(216)391-9330
Time Electronics 1-800-789-TIME
Columbus
NeWarkc.oveeneenns (614)326-0352
Time Electronics .. 1-800-789-TIME
Da ol
FAL. ot (513)427-6090
Future Electronics (513)426-0090
Hamilton/Hallmark . .. (613)439-6735
Newark (513)294-8980
Time Electronics 1-800-789-TIME
Mayfield Heights
Future Electronics (216)449-6996
Solon
Arrow/Schweber Electronics (216)248-3990
Hamilton/Hallmark (216)498-1100
Worthington
Hamilton/Hallmark (614)888-3313
OKLAHOMA
Tulsa
[R (918)492-1500
Hamilton/Hallmark (918)459-6000
Newarkc0 (918)252-5070
OREGON
Beaverton
Arrow/Almac Electronics Corp. .. (503)629-8090
Future Electronics (503)645-9454

Hamilton/Hallmark (503)526-6200
Wyle Electronics (503)643-7900
Portland
..... ... (503)297-5020
Newark P ... (503)297-1984
PENSTOCK (503)646-1670
Time Electronics 1-800-789-TIME
PENNSYLVANIA
Coatesville
PENSTOCK (610)383-9536
Ft. Washington
Newark ... (215)654—1434
Mt. Laurel
Wyle Electronics (609)439-9110
Montgomeryville
Richardson Electronics (215)628-0805
Philadelphia
Time Electronics 1-800-789-TIME
Wyle Electronics (609)439-9110
Pittsburgh
Arrow/Schweber Electronics (412)963-6807
Newarkooovviviann. (412)788-4790
Time Electronics 1-800-789-TIME
TENNESSEE
Franklin
Richardson Electronics (615)791-4900
Knoxville
Newark (615)588-6493
TEXAS
Austin
Arrow/Schweber Electronics (512)835-4180
(512)502-0991
... (512)346-6426
Hamilton/Hallmark ... (512)219-3700
Newark (612)338-0287
PENSTOCK (612)346-9762
Time Electronics .. . 1-800-789-TIME
Wyle Electronics (512)833-9953
Benbrook
PENSTOCK (817)249-0442
Carollton
Arrow/Schweber Electronics (214)380-6464
Dallas

........................ (214)231-7195
Future Electronics (214)437-2437

Hamilton/Hallmark (214)553-4300
Newark (214)458-2528
Richardson Electronics .. . (214)239-3680

Time Electronics 1-800-789-TIME
Wyle Electronics (214)235-9953

EI Paso
......................... (915)577-9531
Ft. Worth
Allied Electronics (817)336-5401
Houston
Arrow/Schweber Electronics (713)647-6868
FAL. oo (713)952-7088
Future Electronics (713)785-1155
Hamilton/Hallmark (713)781-6100
Newarkcovviiiniinnnn (713)894-9334
Time Electronics .. . 1-800-789-TIME
Wyle Electronics (713)879-9953
Richardson
PENSTOCKcuven (214)479-9215
San Antonio
......................... (210)738-3330
UTAH
Salt Lake City
Arrow/Schweber Electronics ... (801)973-6913
FAL..ooooviiiiin . (801)467-9696
Future Electronics . (801)467—-4448
Hamilton/Halimark . (801)266—2022
Newark . (801)261-5660
Wyle Electronics . (801)974-9953
West Valley City
Time Electronics . 1-800-789-TIME
Wyle Electronics . (801)974-9953

MOTOROLA MPA DATA — DL201 REV 2
5-4

AUTHORIZED DISTRIBUTORS - continued

UNITED STATES - continued CANADA Mississauga
ALBERTA PENSTOCK (905)403-0724
WASHINGTON Calgar Ottawa
Bellevue Electro Sonic Inc. (408)255-9550 Arrow Electronics (613)226-6903
Almac Electronics Corp. (206)643-9992 . (403)291-5333 Electro Sonic Inc. ... (613)728-8333
Newark (206)641-9800 BRITISH COLUMBIA FAL.....oool ... (613)820-8244
PENSTOCK (206)454-2371 Future Electronics . (403)250-5550 Future Electronics . (613)820-8313
Richardson Electronics (206)646-7224 HamiltorvHallmark . (800)663-5500 HamiltorvHallmark (613)226-1700
Bothell Toronto
Future Electronics (206)489-3400 . (403)438-5888 Arrow Electronics (905)670-7769
Redmond Future Electronics (403)438-2858 Electro Sonic Inc. ... (416)494-1666
Hamiton/Hallmark ... (206)882-7000 Hamilton/Halimark - (800)663-5500 FALL oo (905)612~9888
Time Electronics .. . 1-800-789-TIME gagkatchewan Future Electronics (905)612-9200
SW);IteI Electronics ... (206)881-1150 Hamilton/Hallmark (800)663-5500 HamiltorvHallmark ... (905)564-6060
eattle Vancouver
FAL o (206)485-6616 Arrow Electronics .. (604)421-2333 ';;ﬁ::ﬁs‘(;r; Electronics {gggg%‘;ﬁggg
Wyle Electronics (206)881-1150 Electro Sonic Inc. - (6042732911 oy e
WISCONSIN FAL. ... (604)654—-1050 Montreal
Brookfield Future Electronics . - (604)294-1166 Arrow Electronics (514)421-7411
Arrow/Schweber Electronics (414)792-0150 HamiltorvHallmark . (604)420-4101 FAL oo (514)694-8157
Future Electrqnics (414)879-0244 MA[‘IITQBA Future Electronics ... (514)694-7710
Wyle Electronics (414)521-9333 Winnipeg Hamilton/Hallmark (514)335-1000
Milwaukee Eleatro Sonic Inc. - (204)783-3105 Richardson Electronics (514)748-1770
FAL. ... (414)792-9778 .. (204)786-3075 Quebec City
Time Electronics 1-800~789-TIME Future Electronics . (204)944-1446 e lootinics (4188874231
New Berlin HamiltorvHallmark (800)663-5500 w
Hamilton/Hallmark (414)780-7200 ONTARIO FAL............ - (418)682-5775
"""""" Future Electronics (418)877-6666
Wauwatosa Kanata
Newark (414)453-9100 PENSTOCKovenne. (613)592-6088
INTERNATIONAL DISTRIBUTORS
AUSTRALIA Avnet E2000 . (49) 894511001 Arrow TahonicA/S (47)2237 8440
AVNET V8! Electronics (Australia) (61)2 878-1299 EBV Elektronik GmbH (49)8999114-0 Avnet Nortec A/S Norway (47) 66 846210
Veltek Australia Pty Ltd (61)3 9574-9300 Future Electronics GmbH (49) 89-957 270 PHILIPPINES
AUSTRIA Jermyn GmbH (49) 6431-5080 Alexan Commercial (63) 2241-9493
EBV Austria (43) 18941774 Newark (49)2154-70011 SINGAPORE
Elbatex GmbH (43) 1866420 SascoHED (49) 89-46110 Future Electronics (65) 479-1300
Spoerle Austria (43) 1 31872700 Spoerle Electronic (49) 6103-304-0 StrongPte. Ltd (65) 276-3996
BELGIUM HOLLAND Uraco Technologies Pte Ltd. (65)545-7811
Diode Spoerle (32) 2725 4660 EBV Holland (31) 3465 623 53 SPAIN
EBVBelgium (32)2716 0010 Diode Spoerle BV (31) 4054 5430 Amitron Arrow . .. (34) 1304 30 40
CHINA HONG KONG EBV Spain (34) 18043256
Advanced Electronics Ltd. (852)2 305-3633 AVNET WKK Components Ltd. . (852)2 3578888 SelcoS.A. ... (34) 163710 11
AVNET WKK Components Ltd. . (852)2 357-8888 Nanshing CIr. & Chem. Co. Ltd . (852)2333-5121 SWEDEN
China EI. App. Corp. Xiamen Co INDIA Arrow-This (48) 8 362970
(86)592 513-2489 Canyon Products Ltd (91) 80 558-7758 Avnet NorteCAB (48) 8 629 14 00
Nanco Electronics Supply Ltd. (852) 2 333-5121 INDONESIA SWITZERLAND
Qing Cheng Enterprises Ltd. . (852) 2 493-4202 PT.Ometraco (62) 21 619-6166 EBV Switzerland (41) 17456161
DENMARK ITALY Elbatex AG (41) 56 43751111
Arrow Exatec (45) 44 927000 Avnet Adelsy SpA (39) 238103100 Spoerle (41) 1 8746262
Avnet Nortec A/S .. (45) 44 880800 EBV ltaly . (39) 2 660961 S. AFRICA
EBVDenmark (45) 39690511 Silverstar SpA (39)266 1251 Advanced (27) 11 4442333
ESTONIA JAPAN Reuthec Components (27) 11 8233357
Arrow FieldEesti (372) 6503288 AMSC Co., Ltd. 81-422-54-6800 THAILAND
AvnetBaltronic (372) 6397000 Fuiji Electronics Co., Ltd. . 81-3-3814-1411 Shapiphat Ltd. . .. (66)2221-0432 or 2221-5384
FINLAND Marubun Corporation 81-3-3639-8951 TAIWAN
Arrow FieldOY (35) 807 775 71 Nippon Motorola Micro Elec. .. 81-3-3280-7300 Avnet-Mercuries Co., Ltd (886)2516-7303
Avnet NortecOY (35) 806 13181 OMRON Corporation 81-3-3779-9053 Solomon Technology Corp. (886)2 788-8989
FRANCE Tokyo Electron Ltd. 81-3-5561-7254 Strong Electronics Co. Ltd. ... (886)2917-9917
Arrow Electronique (33)149784978 KOREA UNITED KINGDOM
Avnet Components(33) 149652500 Jung Kwang Sa (82)2278-5333 Arrow Electronics (UK) Ltd .. (44) 1 234 270027
EBV France (33) 164 68 86 00 Lite—On Korea Ltd. . (82)2858-3853 Avnet/Access (44) 1 462 488500
Future Electronics (33)169821111 Nasco Co. Ltd. (82)23772-6800 Future Electronics Ltd. - (44) 1 753 763000
Newark (83)1-30954060 NEW ZEALAND Macro Marketing Ltd. .. (44) 1628 60600
SENScaiboininnn. (33) 169 19 89 00 AVNETVSI(NZ)Ltd (64)9 636-7801 Newark (44) 1420 543333
GERMANY NORWAY

MOTOROLA MPA DATA — DL201 REV 2
5-5

MOTOROLA WORLDWIDE SALES OFFICES

UNITED STATES
ALABAMA
Huntsville (205)464-6800
ALASKA (800)635-8291
ARIZONA
TOMPe . eveeeeieeaeanan (602)302-8056
CALIFORNIA
Calabasas (818)878-6800
Irvine (714)753-7360
Los Angeles .. (818)878-6800
San Diego (619)541-2163
Sunnyvaleiiiiia (408)749-0510
COLORADO
Denveroooeuiiannn (303)337-3434
CONNECTICUT
Wallingford (203)949-4100
FLORIDA
Clearwater (813)524-4177
Maitlando..e (407)628-2636

Pompano Beach/Ft. Lauderdale (305)351-6040
GEORGIA

Atlantal (770)729-7100
IDAHO

BOISEo'veeereinnnns (208)323-9413
ILLINOIS

Chicago/Schaumburg (847)413-2500
INDIANA

Indianapolis (317)571-0400

Kokomocuvenes (317)455-5100
IOWA

CedarRapids................ (319)378-0383
KANSAS

Kansas City/Mission (913)451-8555
MARYLAND

Columbia (410)381-1570
MASSACHUSETTS

Marlboroughe... (508)481-8100

Woburn ... (617)932-9700
MICHIGAN

Detroit ..ot (810)347-6800

Literature (800)392-2016
MINNESOTA

Minnetonka (612)932-1500
MISSOURI

St LOUIS + .o vveeinnnns (314)275-7380
NEW JERSEY

Fairfieldooovivinnnn. (201)808-2400
NEW YORK

Fairportco.oeuesn. (716)425-4000

Fishkill (914)896-0511

Hauppauge (516)361-7000
NORTH CAROLINA

Raleighcovvvviinns. (919)870-4355
OHIO

Cleveland (216)349-3100

Columbus/Worthington . .. (614)431-8492

DAYIONvieieniaiinnns (513)438-6800
OKLAHOMA

Tulsa ...oovviiiii (918)459-4565
OREGON

Portland (503)641-3681
PENNSYLVANIA

Colmar................. (215)997-1020
Philadelphia/Horsham (215)957-4100
TENNESSEE
Knoxville (423)584-4841
TEXAS
AUSHN ... (512)502-2100
. (713)251-0006
....................... (214)516-5100
VIRGINIA
Richmond (804)285-2100
UTAH
CSINC. .o (801)572-4010
WASHINGTON
Bellevuec.oiiii.n. (206)454-4160
Seattle Access . (206)622-9960
WISCONSIN
Milwaukee/Brookfield (414)792-0122

Field Applications Engineering Available
Through All Sales Offices

CANADA
BRITISH COLUMBIA
Vancouver (604)293-7650
ONTARIO
awa (613)226-3491
Toronto . (416)497-8181
QUEBEC
Montreal (514)333-3300
INTERNATIONAL
AUSTRALIA
Melbourne (61-3)98870711
Sydneyiiiieinl (61-2)29661071
BRAZIL
SaoPaulo 55(11)815-4200
CHINA
Beijingoooaiiii 86~10-8437222
Guangzhou .. 86-20~7537888
Shanghai 86-21-3747668
Tianjin ..o 86-22-5325072
DENMARK
Denmarko.ennn. (45) 43488393
FINLAND
Helsinki 358-0-351 61191
carphone 358(49)211501
FRANCE
Paris ..o 33134 635900
GERMANY
Langenhagen/Hanover 49(511)786880
Munich 4989 92103-0
Nuremberg49 911 96-3190
Sindelfingen 49703179710
Wiesbaden 49 611 973050
HONG KONG
KwaiFong 852-2-610-6888
TaiPo ..ot 852-2-666-8333
INDIA
Bangalore.................. 91-80-5598615
ISRAEL

Herzlia 972-9-590222
ITALY
Milan .o 39(2)82201
JAPAN
Kyusyu 81-92-725-7583
Gotanda 81-3-5487-8311
Nagoya 81-52-232-3500
Osaka 81-6-305-1801
Sendai 81-22-268-4333
Takamatsu 81-878-37-9972
TOKYO i 81-3-3440-3311
KOREA
PUSAN .+t 82(51)4635-035
82(2)554-5118
60(4)228-2514
MexicoCity 52(5)282-0230
Guadalajara 52(36)21-8977
Marketing 52(36)21-2023
Customer Service 52(36)669-9160
NETHERLANDS
Best...............l (31)4998 612 11
PHILIPPINES
Manila...................... (63)2 822-0625
PUERTO RICO
Sanduan.................... (809)282-2300
SINGAPORE (65)4818188
34(1)457-8204
34(1)457-8254
46(8)734~-8800
41(22)799 11 11
41(1)730-4074
886(2)717-7089
THAILAND
Bangkok ...t 66(2)254-4910
UNITED KINGDOM
Aylesbury 441 (296)395252

FULL LINE REPRESENTATIVES

CALIFORNIA, Loomis

Galena Technology Group (916)652-0268
NEVADA, Reno

Galena Tech. Group (702)746-0642
NEW MEXICO, Albuquerque

S&S Technologies, Inc. (602)414-1100
UTAH, Salt Lake City

Utah Comp. Sales, Inc. (801)561-5099
WASHINGTON, Spokane

DougKenley (509)924-2322

HYBRID/MCM COMPONENT SUPPLIERS
Chip SUPPIY ... veevenannn.. (407)298-7100
Elmo Semiconductor (818)768-7400
Minco Technology Labs Inc. ... (512)834-2022
SemiDiceInc. (310)594-4631

MOTOROLA MPA DATA — DL201 REV 2
5-6

3PHX32225-4 Printed in USA 8/97 BANTAISG S/F MOTO 51034 20,000 LITLOGIC

@ MOTOROLA

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1,
P.O. Box 5405, Denver, Colorado 80217. 303—675-2140 or 1-800-441-2447 Nishi-Gotanda, Shinagawa—ku, Tokyo 141, Japan. 81-3-5487-8488

Mfax™: RMFAX0 @ email.sps.mot.com — TOUCHTONE 602—-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

—US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
INTERNET.: http://motorola.com/sps

DL201/D

