
®MOTOROLA
DL201/D REV 2

iLJ. MOTOROLA
11 PROGRAMMABLE ARRAY DATA I

Motorola Programmable Arrays

General Information [j]

Product Specifications [2J

Packaging, Quality & Reliability []]

Application Notes []]

How to Reach Us [5J

The brands or product names mentioned are trademarks or registered trademarks of their respective holders.

Suggested References:

Packaging Manual for ASiC Arrays, Motorola Inc., 1993. Stock Code BR916/D

HOC Series Design Reference Guide, Motorola Inc., 1991. Stock Code HDCDM/D

Reliability and Quality Handbook, Motorola Inc., 1993. Stock Code BR518/D

H4CPlus Series Design Reference Guide, Motorola Inc., 1994. Stock Code H4CPDM/D

®MOTOROLA

Motorola
Programmable Array Data

This databook contains device specifications for Motorola's Programmable Arrays (MPAs).

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes
no warranty, representation or guarantee regarding the suitability of its products for any particular purpose,
nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifi
cally disclaims any and all liability, including without limitation consequential or incidental damages. ''Typical"
parameters can and do vary in different applications. All operating parameters, including "Typicals" must be
validated for each customer application by customer's technical experts. Motorola does not convey any
license under its patent rights nor the rights of others. Motorola products are not designed, intended, or autho
rized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products
for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part. Motorola and @ are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 1997
Previous Edition © February 1996
"All Rights Reserved'' Printed in U.S.A.

iii

CONTENTS

Ch 1. General Information
Introduction .. 1-2
MPA Product Briefs

MPA1000 Description and Features .. 1-3
MPA Design System Description and Features .. 1-4
MPA17000 Series Serial EPROMs ... 1-5

Ch 2. MPA Product Specifications
MPA1000 Product Description .. 2-2
Architectural Overview ... 2-5
Device Configuration ... 2-15
Configuration Data Format .. 2-33
JTAG Boundary Scan .. 2-35
MPA1000 Pin Definitions .. 2-38

Pin Assignments
MPA1016 .. 2-39
MPA1036 .. 2-41
MPA1064 .. 2-44
MPA1100 ... 2-48

Electrical Specifications ... 2-52
MPA17128 and MPA1765 Product Descriptions .. 2-54
MPA17C256 Product Description .. 2-64
Design System Product Description .. 2-76
Design System Product List ... 2-80

Ch 3. Packaging, Quality & Reliability
Packaging & Case Information .. 3-2
Motorola Quality and Reliability .. 3-13

Ch 4. Application Notes
68030 DRAM Controller Design Using Verilog HDL (AN1561/D) 4-2
Programming Multiple MPA1000 Devices Using Serial Peripheral Interface (SPI) (AN1562/D) 4-12
Effective Syntehsis Techniques for MPA 1000 Devices (AN1563/D) 4-25
Interfacing to the PowerPC™ with a Motorola Programmable Array (AN1564/D) 4-31
Using VIEWlogic's PROSeries 6.1 with the MPA Design System (AN1565/D) 4-83
In System Prototyping Using HDLs and FPGAs (AN1566/D) 4-93
Tuning the MPA Design System for Speed (AN1569/D) ... 4-96
Estimating Power in the MPA1000 Family (AN1587/D) ... 4-110
Using Mentor Graphics' Design Architect ver. A3 with the MPA Design System (AN1588/D) 4-113
Using OrCAD's Capture and Simulate with the MPA Design System (AN1589/D) 4-122
Using VIEWlogic's Workview Office 7.0 with the MPA Design System (AN1592/D) 4-133
Programming Large Configuration Files into Smaller Serial PROMs (AN1595/D) 4-145
Using Exemplar Logic's Galileo with the MPA Design System (AN1604/D) 4-158
Integrating Schematic Capture and Verilog Synthesis When Designing with the MPA (AN1613/D) ... 4-180
Optimizing VHDL/Verilog Designs for Speed for the MPA Family

Using Exemplar Galileo Synthesis (AN1614/D) 4-198
An FPGA Primer for PLD Users (AN1615/D) ... 4-204
Using JTAG Boundary Scan with the Motorola MPA1000 Family of FPGAs (AN1618/D) 4-209
MPA 1000 Primer for Schematic Designers (AN1619/D) . 4-226
HDL Techniques for Faster Synthesized Counters (AN1623/D) . 4-236

Ch 5. How to Reach Us
Three Ways to Receive Motorola Semiconductor Technical Information 5-2
Distributor and Worldwide Sales Offices .. 5-3

iv

General Information [j]

· Motorola Programmable Arrays

MOTOROLA
SEMICONDUCTOR GENERAL INFORMATION

INTRODUCTION TO
MOTOROLA PROGRAMMABLE ARRAYS

Field programmable logic . and in particular, field
programmable arrays, have become the solution of choice
for logic design implementation in applications where time to
market is a critical product development factor. In addition,
reconfigurable arrays have been used to enhance Customer
product flexibility in ways that no other technology can
match.

Microprocessors have traditionally been used to satisfy
time to market and end product flexibility needs. This solution
may not meet performance constraints and lacks the
concurrency possible in an unconstrained hardware design.
Typical design processes, therefore, reach a point where the
overall design is partitioned into hardware and software
components. An interface is defined and the design process
continues along two parallel paths. Sometime later, the
software and hardware components must be integrated.
Problems usually develop at this point because of interface
misinterpretation or partitioning that cannot meet design
requirements. This impacts the hardware, the software and
the schedule. If the hardware design is realized in
programmable logic, the hardware can be manipulated as
easily as the software.

Products which adapt to the end users particular
requirements through self directed or end user directed
reconfiguration are becoming more prevalent. As the number
of modes of operation increases, mode specific hardware
becomes a less cost effective solution. In the case where the
end user is truly directing the adaptation, predetermined
hardware solutions become untenable. Reconfigurable logic
enables design solutions where dynamic hardware-software
repartitioning is possible.

Programmable logic not only vastly improves the time
necessary to implement a static design, but significant time
to market and product feature benefits can be realized when
hardware can be dynamically altered as easily as software.

To reduce design cycles, designers have also turned
towards high level design languages. and logic synthesis
tools. Many programmable logic solutions are poorly suited
to this design methodology, however. An incompatibility
exists between logic synthesis algorithms originally
developed for gate level design and the block-like structures
found on many programmable logic devices. This can result
in significant under utilization or degraded performance. In
either case a more expensive device is required. Real gate
level programmable devices are ideally suited to this design
methodology.

When schematic based design methods are used, some
programmable logic solutions impose significant constraints
on design implementation to insure satisfactory results. This
imposition tends to bind the design to a particular
programmable device and requires a significant learning
investment. Any design specification changes which impact
design decisions made to fit this imposed structure can have
disastrous effects on utilization and performance and
potentially require a more expensive device or even a costly
redesign. Gate level programmable devices coupled with
sophisticated, timing driven, implementation tools minimize
device specific optimization.

Any design process includes a significant amount of
learning. Usually engineers spend most of this time learning
about product requirements or prototyping critical portions of
the design to prove implementation feasibility. Many
programmable logic solutions are not push button; time must
be spent learning programmable device architecture or
implementation tool quirks. Worse yet, the design may
require modification or manual component placement to
meet design targets. The cost? Time to market.

The reconfigurable Motorola Programmable Array (MPA)
and MPA design system maximize application flexibility and
minimize time to market by delivering a gate level, push
button, programmable logic solution.

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

MPA1000 Programmable Arrays
Motorola Programmable Array (MPA) products are a high density, high

performance, low cost, solution for your reconfigurable logic needs. When
used with our automatic high performance design tools, MPA delivers
custom logic solutions in minutes rather than weeks. And the low cost keeps
those solutions competitive throughout the product lifecycle.

The MPA architecture has solved the historical problems associated with
fine grain devices without sacrificing re-programmability, reliability, or cost.
MPA 1000 devices are reprogrammable SRAM based products
manufactured on a standard 0.43µ Leff CMOS process with logic capacities
from 3,500 to more than 22,000 equivalent FPGA gates. MPA Logic
resources hold a single gate or storage element providing a highly efficient,
adaptable, design implementation medium. Gate level logic resources,
abundant hierarchical interconnection resources and automatic, timing
driven, tools work together to quickly provide design implementations that
meet timing constraints without sacrificing device utilization.

Staying focused on end product design rather than implementation tools
or device architecture gets the design done faster and, unlike other
programmable solutions, without programmable logic device specificity to
impede future design migration efforts. The combination of automatic tools
and gate level architecture is ideal for traditional schematic driven or high
level language based design methodologies. In fact, logic synthesis tools
were originally designed for and produce the most efficient results when
targeting gate level devices.

High MPA1000 register count and controlled clock skew is ideal for
designs employing pipelining techniques such as communications. The
unique set of MPA1000 1/0 programming options make these devices
suitable for industrial and computer interfacing circuits.

MPA1000 Family Members

FPGA Part No. Logic Internal 1/0Cell
Gates* Cells Flip-Flops Flip-Flops

3500 MPA1016FN 1600 400 122
MPA1016DD 160

8000 MPA1036FN 3600 900 122
MPA1036DD 160
MPA1036DH 240
MPA1036HI 240

14200 MPA1064DH 6400 1600 240
MPA1064DK 320
MPA1064KE 320
MPA1064BG 320

22000 MPA1100DK 10000 2500 320
MPA1100HV 400
MPA1100BG 400

• Equivalent to Industry Standards, as supplied by most manufacturers.

MPA Family Overview

MPA1016
MPA1036
MPA1064
MPA1100

PROGRAMMABLE ARRAY
3,500 to 22,000 GATES

• Multiple 1/0 from 80-200 1/0 Pins

• Programmable 3V/5V 1/0 at Any Site
• Multiple Packaging Options
• Fine Grain Structure Is Optimized for

Logic Synthesis
• Programmable Output Drive,

4/6mA @ 5.0V and 3.3V
• High Register Count, with 560-2,900

Flip-Flops
• IEEE 1149.1 JTAG Boundary Scan

• Eight Low-Skew (<1ns) Clocks

Avail Packages Availability
110 Pins

61 84 PLCC NOW
80 128 POFP NOW

61 84 PLCC NOW
80 128 POFP NOW
120 160 POFP NOW
120 181 PGA NOW

120 160 POFP NOW
160 208 POFP NOW
160 224 PGA NOW
160 256 PBGA 3097

160 208 POFP NOW
200 299 PGA NOW
200 256 PBGA 3097

===============================M=O=T=O=R=O=LA==M=PA==D=AT=A=-==D=L=20=1=R=E=V=2==========================~
1-.'.3

rn

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

Motorola Programmable Array
Design System DESIGN

SYSTEM

The Motorola Programmable Array (MPA) design system is a bridge between a design capture environment and Motorola field
programmable array&. The MPA design &ystem automatically transforms designs into device configurations to realize a design,
when loaded into an MPA device. A design is automatically analyzed, optimized, transformed into MPA cells, partitioned, placed
and routed based on timing constraints for every path in the design. MPA design tools understand and optimally utilize the MPA
device architecture; thi& eliminates the need to learn a new set of rules and makes t.hese tools ideally suited for use with logic
synthesis. Full incremental design support reduces design implementation time and powerful library retargeting capabilities allow
you to reuse designs which may have been implemented on less capable devi.ces. The MPA design system operates on existing
hardware platforms and supports design capture and simulation tools from more than 10 vendors. All these features plus
on-line, hypermedia, help make the MPA design system a powerful, yet extremely easy to use, design implementation engine.

Features
• Push Button Implementation • Layout viewer
• Optimal Use of MPA Device Resources • Incremental design support
• Optimal Results with Gate Level Design Input
• Library of Common MSI Functions
• Design Flow Manager
• Design Retargeter

• On-line, hypermedia, documentation

• Supports all popular design capture and simulation tools

• Lowest cost FPGA development systems.

• Timing Driven with Integrated Static Timing Analysis • Instant access; Downloading via the internet (WWW, ftp).

• Layout Delay extraction for post layout simulation • Supports multiple speed grades

Design Importation
• Read Appropriate Rules File
• Retarget to MPA Primitives
• Macro Expansion
• Design Optimization

t==:::t:1t:t • Design Rule Checks

Constraint Generation
• Read User Constraints
• Path Enumeration
• Path Constraint Generation

Timing Driven Autolayout
• Partition Design Into Clusters
• Assign Clusters to Zones
• Global Place & Route
• Zonal Place & Route

~~~ ~~==================M=o=T=O=R=O=LA==M=P=A=D=A="A=-==D=L2=0=1=R=E=v=2=============================== 
1-4 



MOTOROLA 
SEMICONDUCTOR TECHNICAL DATA 

MPA17000 Serial EPROMs 
The MPA17128, MPA1765 serial OTP EPROMs provide a compact, low 

pin count, non-volatile configuration store for MPA1000 devices. 
MPA 17000 devices can be cascaded for increased memory capacity 

when needed. They are available in the standard 8-pin plastic DIP (N 
suffix), 8-pin SOIC (D suffix) and 20-pin PLCC (FN suffix) packages. 

• Configuration EPROM for MPA1000 Devices 
• Voltage Range - 4.5 to 6.0V 
• Maximum Read Current of 1 OmA 
• Standby Current of 1 OµA, Typical 
• Industry Standard Synchronous Serial Interface 
• Full Static Operation 
• 1 OMHz Maximum Clock Rate at 5.0V 
• Programmable Polarity on Hardware Reset 
• Programs With Industry Standard Programmers 
• Electrostatic Discharge Protection > 2000 Volts 
• 8-Pin PDIP and SOIC; 20-Pin PLCC Packages 
• Commercial (0 to +70°C) and Industrial (-40 to +85°C) 

NC 

NC 

Vee 

NC 

DATA 

NC 

CLK 

8-Lead Pinouts 
(Top View) 

20-Lead Plnout 
(Top View) 

NC NC CEO 

12 

11 

10 

NC RESET/ NC CE 
OE 

NC 

NC 

NC 

Vss 

NC 

MPA Family Overview 

MPA17128 
MPA1765 

128K, 64K SERIAL EPROM 

PSUFFIX 
PLASTIC PACKAGE 

CASE626-05 

DSUFFIX 
PLASTIC SOIC PACKAGE 

CASE751-05 

FNSUFFIX 
PLCC PACKAGE 

CASE775-02 

PIN NAMES 

Pins Function 

DATA Data 1/0 
CLK Clock 
RESET/OE Reset Input and Output Enable 
CE Chip Enable Input 
Vss Ground 
CEO Chip Enable Output 
Vpp Programming Voltage Supply 
Vee +4.5 to 6.0V Power Supply 
NC Not Connected 

=============1riill 
MOTOROLA MPA DATA- Dl201 REV 2 ~ 

1-5 

rn 



MOTOROLA 
SEMICONDUCTOR TECHNICAL DATA 

Advance Information 
MPA17000 Serial EEPROM 

The MPA 17C256 is an easy to use and cost effective serial configuration 
memory ideally suited for use with today's popular SRAM based FPGAs. 
The MPA17C256 is available in 8-pin PDIP and 20-pin SOIC and PLCC 
packages, adhering to industry standard pinouts. The device interfaces 
downstream FPGA(s) with a very simple enable, clock and data interface. 
The MPA17C256 is reprogrammable with no need for a higher 
programming "super voltage"; it may even be reprogrammed on board. The 
MPA17C256 also has user programmable RESET/OE polarity. 

• EE Programmable 262,144 x 1 bit Serial Memories Designed to Store 
Configuration Programs for FPGAs 

• Simple Interface to SRAM FPGAs 

• Cascadable to Support Additional Configurations or Future Higher Density 
FPGAs 

• Low Power CMOS EEPROM Process 

• Programmable Reset Polarity 

• Available in Space Efficient 8-Pin PDIP, 20-Pin SOIC and 20-Pin PLCC 
Packages 

• In-System Programmable via 2-Wire Bus 

Controlling the MPA17C256 Serial EEPROM 

Most connections between the FPGA device and the Serial EEPROM 
are simple and self-explanatory: 

• The DATA output of the MPA17C256 drives DIN of the FPGA devices 

• The master FPGA DCLK output drives the CLK input of the MPA 17C256 

• The CEO output of the first MPA 17C256 drives the CE input of the next 
MPA 17C256 in a cascade chain of EEPROMs. 

• SER_EN must be connected to Vee 
• CE enables the chip and is required to enable the DATA output pin 

• RESET/OE is chip reset and is part of the DATA output enable structure 

MPA17C256 

PSUFFIX 
8-LEAD PLASTIC PACKAGE 

CASE626-05 

OW SUFFIX 
20-LEAD PLASTIC SOIC WIDE PACKAGE 

CASE 7510-04 

• FNSUFFIX 
20-LEAD PLCC PACKAGE 

CASE775-02 

PIN NAMES 

Pins Function 

DATA Data 1/0 
CLK Clock 
RESET/OE Reset Input and Output Enable 
CE Chip Enable Input 
Vss Ground 
CEO Chip Enable Output 
SER_EN Programming Enable 
vcc +4.5 to 6.0V Power Supply 
NC Not Connected 

This document contains information on a new product. Specifications and information herein are subject to 
change without notice. 

~~.,'! ~i:::::=:=:=:=:=:=:=:==M=O=T=O=R=O=LA:=M=P=A=D=AT=A=-==D=L2=0=1=R=E=V=2:=:=:=:=:=:=:=:=:=:=:=:=:=:=:== 
1~ 



Product Specifications [2J 
Motorola Programmable Arrays 



MOTOROLA 
SEMICONDUCTOR TECHNICAL DATA 

MPA 1000 Product Description 

Motorola Programmable Array (MPA) products are a high 
density, high performance, low cost, solution for your 
reconfigurable logic needs. When used with our automatic 
high performance design tools, MPA delivers custom logic 
solutions in minutes rather than weeks. And the low cost 
keeps those solutions competitive throughout the product 
lifecycle. 

The MPA architecture has solved the historical problems 
associated with fine grain devices without sacrificing 
re'-programmability, reliability, or cost. MPA 1000 devices are 
reprogrammable SRAM based products manufactured on a 
standard 0.43µ Leff CMOS process with logic capacities from 
3,500 to more than 22,000 equivalent FPGA gates. MPA 
logic resources hold a single gate or storage element 
providing a highly efficient, adaptable, design implementation 
medium. Gate level logic resources, abundant hierarchical 
interconnection resources and automatic, timing driven, tools 
work together to quickly provide design implementations that 
meet timing constraints without sacrificing device utilization. 

Staying focused on end product design rather than 
implementation tools or device architecture gets the design 
done faster and, unlike other programmable solutions, 
without programmable logic device specificity to impede 

Table 2-1. MPA1000 Family Members 

FPGA Part No. Logic Internal 
Gates* Cells Flip-Flops 

3500 MPA1016FN 1600 400 
MPA1016DD 

8000 MPA1036FN 3600 900 
MPA1036DD 
MPA1036DH 
MPA1036HI 

14200 MPA1064DH 6400 1600 
MPA1064DK 
MPA1064KE 
MPA1064BG 

22000 MPA1100DK 10000 2500 
MPA1100HV 
MPA1100BG 

• Equivalent to Industry Standards, as supplied by most manufacturers. 

future design migration efforts. The combination of automatic 
tools and gate level architecture is ideal for traditional 
schematic driven or high level language based design 
methodologies. In fact, logic synthesis tools were originally 
designed for and produce the most efficient results when 
targeting gate level devices. 

High MPA 1000 register count and controlled clock skew is 
ideal for designs employing pipelining techniques such as 
communications. The unique set of MPA1000 1/0 
programming options make these devices suitable for 
industrial and computer Interfacing circuits. 

Features 

• Multiple 1/0 from 80-200 1/0 Pins 

• Programmable 3V/5V 1/0 at Any Site 

• Multiple Packaging Options 

• Fine Grain Structure Is Optimized for Logic Synthesis 

• Programmable Output Drive, 4/6mA @ 5.0V and 3.3V 

• High Register Count, with 560-2,900 Flip-Flops 

• IEEE 1149.1 JTAG Boundary Scan 

• Eight Low-Skew (<1ns) Clocks 

1/0 Cell Avail Packages Availability 
Flip-Flops 1/0 Pins 

122 61 84 PLCC NOW 
160 80 128 POFP NOW 

122 61 84 PLCC NOW 
160 80 128 POFP NOW 
240 120 160 POFP NOW 
240 120 181 PGA NOW 

240 120 160 POFP NOW 
320 160 208 POFP NOW 
320 160 224 PGA NOW 
320 160 256 PBGA 3097 

320 160 208 POFP NOW 
400 200 299 PGA NOW 
400 200 256 PBGA 3097 

~~'f'f ~~·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==D=L=2=01=R=E=V=2=============================== 
2-2 



MPA1000 Serial EPROM/EEPROM Family 

Capacity MPA Companion Part Number 

64K MPA1016 MPA1765P 
MPA1765D 

MPA1765FN 

128K MPA1036 MPA17128P 
MPA17128D 
MPA17128FN 

256K MPA1064 MPA17C256P 
MPA17C256DW 
MPA17C256FN 

MPA1000 Capacity 

Programmable logic gate capacity is difficult to ascertain 
because it is design and design tool dependent. 
Programmable logic capacities can only be meaningfully 
compared using identical designs and automatic tools. 
Figure 2-1 shows that under these circumstances, the 
MPA 1036 contains from 2.1 to 1.3 XC3190 devices. 

2.0 

Li i:: 

0 MPA c;; 

6 

ifi 1.5 1036 
0 
w 

6 

;:, 
X3190 ~ 

w X3195 
a: 1.0. 

I mean-I 
X4008 

0.5 ~---------------~ 

Figure 2-1. Equivalent Gate Capacity 

Table 2-1 on page 2-2 shows the members of the 
MPA1000 family and lists the 1/0, logic cell, flip flop and gate 
capacities for each device. To facilitate Customer device 
selection, Motorola rates MPA device capacity in FPGA 
equivalent gates. The equivalent gate counts shown were 
derived using identical designs and a push button 
implementation methodology. While this method is useful in a 
comparative sense, actual device capacity remains a design 
dependent quantity. Designs with· high register gate or XOR 
gate to total gate ratio will pack more efficiently than the 
averages shown in Figure 2-1. 

MPA1000 Performance 

Device performance is more design and design tool 
dependent than device capacity. Table 2-2 shows selected 
cell performance figures for a typical ungraded MPA1000 
device. Calculating MPA1000 DFF toggle rate from this 

MPA 1000 Product Description 

Packages Availability Notes 

8 DIP NOW OTP 
8SOIC 

20 PLCC 

8 DIP NOW OTP 
8SOIC 

20 PLCC 

8 DIP 3097 Eraseable 
20SOIC 
20 PLCC 

information yields an unrealistically high expectation for 
device performance. Some manufacturers publish 
specifications for small functional blocks like counters. While 
more useful than toggle rates, they are based on ideal 
placement and routing conditions seldom achievable without 
manual intervention. Industry benchmarks are useful for 
relative comparisons of benchmark design performance, but 
benchmark designs don't end up in products. In addition, the 
design methodology used requires, manual, architecture 
dependent, design optimization and expert level architectural 
and design tool experience. Using this design methodology 
for real designs means a costly learning curve, severe 
technology migration limitations and many hours of extra 
design effort for each end product. If the incentive to use a 
programmable solution is time to market and product 
flexibility, this is not the ideal approach. A push button, gate 
level, approach increases design flexibility and improves time 
to market. The MPA1000 and MPA design system have been 
engineered to deliver a high performance gate level solution. 
Gate level design is widely understood, technology 
independent and synthesis friendly. A library of common MSI 
functions with optimized gate level representations are 
provided to reduce design implementation time. 

Table 2-2. Selected MPA1000 Performance Figures 

MEDIUM BUS DELAY 

DFFCLKTOQ 

DFF SETUP TIME 

TYPICAL DFF TOGGLE RATE 
(25° e, Vee= 5V) 

Typical 

1.2ns 

0.6ns 

1.5ns 

256MHz 

If identical designs and timing constraints are used with 
automatic, timing driven, design tools, a more appropriate 
performance comparison can be made. Figure 2-2 
compares the MPA1036 vs. the XC4008 for 7 designs. The 
typical MPA1036 device is 48% faster than the XC4008-6 
and 28% faster than the XC4008-4 for 7 identical, complex, 
chip level designs. In real design situations, gate level 
flexibility and hierarchical routing coupled with sophisticated, 
timing driven, design tools results in significant performance 
gains and reduced time to market. 

======~r&il MOTOROLA MPA DATA- DL201 REV 2 ~ 
2-3 



MPA 1000 Product Description 

xCust1 xCust2 xCust3 xCust4 xCust5 xCust6 aCust7 

Figure 2-2. MPA1036 versus XC4008- 7 Push 
Button Designs 

If step and repeat style designs typical of industry 
benchmarks are used (Figure 2-3), MPA retains it's 
performance edge. While the performance gap shrinks by 
about 1 0%, absolute design performance increases 
dramatically compared to those shown in Figure 2-2. As 
critical path depth decreases, design performance increases 
as expected. In general these benchmarks tend to have 

narrowly distributed performance constraints and shallow 
path depths atypical of many real design implementations. In 
either case using benchmark information to estimate product 
performance for arbitrary designs is unlikely to yield reliable 
results. This information is intended to illustrate the range of 
performance enhancement possible when MPA is selected. 

Avg MPA vs Xc4008-6 38% 
100 Avg MPA vs Xc4008-415% 

• MPA-Typ 
!!I Xc4008-4 

BO 1111 Xc4008-6 

~ 60 

40 

20 

Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5 Circuit 6 Circuit 7 

Figure 2-3. MPA 1036 versus XC4008 - 7 Push Button, 
Step & Repeat Designs 

~~.,'/ ~~ll==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=D=L2==0=1=R=EV==2=============================== 
2-4 



MPA 1000 Product Description 

MPA 1000 Architectural Overview 

MPA1000 Architecture 

MPA1000 is a high density, high performance, low cost 
device family which maximizes application flexibility and 
minimizes time to market by delivering a gate level 
reprogrammable logic solution. Combined with automatic 
high performance design tools, the MPA1000 family is ideally 
suited to logic synthesis or gate level (gate array like) design 
methods. 

Logic resources in the MPA1000 are fine grained - each 
logic cell holds a single gate or a storage element. This 
provides a highly efficient, adaptable, design implementation 
medium. Gate level logic resources, abundant hierarchical 
interconnection resources and automatic, timing driven, tools 
work together to quickly provide design implementations that 
meet timing constraints without sacrificing device utilization. 

Peripheral Bus 
Joins and Pull-Ups 

Peripheral Bus 

The MPA1000 architecture has solved the historical 
problems associated with fine grain architectures without 
sacrificing re-programmability, reliability, or cost. Previous 
reprogrammable fine grain architectures utilized routing 
architectures substantially similar to that of coarse grained 
products. Other fine grained architectures resorted to 
antifuse programming elements to address performance 
issues, increasing cost, while reducing reliability and 
abandoning reconfigurability. MPA utilizes a new routing 
structure which takes advantage of fine logic block 
granularity to achieve superior design performance. 

MPA1000 devices are manufactured using a standard 
submicron CMOS process. SRAM cells comprise device 
configuration memory. MPA1000 devices can be quickly and 
infinitely reprogrammed. 

Zone 

Port Cells 

Clock Distribution 
Spines 

Central Clock Buffer 

Quadrant Switches 
and Bus Pull-Ups 

Figure 2-4. MPA Architectural Overview 

Partitioned Resources 

Each device is a multilevel partitioned array of cells. At the 
highest level of hierarchy each device is partitioned into 4 
equal sized sections called quadrants. 1/0 cells surround the 
quadrants. Each quadrant is further subdivided into zones. A 
zone consists of a 1 Ox1 O array of core cells, 20 port cells and 
a clock distribution cell (Figure 2--6). Zone core cells are 

organized into 2x2 groups called tiles. The number of zones 
per quadrant defines a particular device as shown in 
Figure 2-5. Partitioning the device in this manner minimizes 
bus loading and provides an opportunity to segment device 
level placement and routing. This speeds design 
implementation time, especially if multiple processors are 
used. Figure 2--4 is a synopsis of the overall MPA structure. 

==========~riiil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2-5 



MPA 1000 Product Description 

MPA1016 MPA1036 

1~1~1 EBIEB 

MPA1100 

RIM --
RIM 

Figure 2-5. The MPA 1016, MPA1036, MPA1064 
and MPA1100 

Hierarchical functionality complements the robust routing 
resource to deliver extremely efficient design realizations. 
While the look up table approach of non-gate level devices 
can provide any function of its inputs, this flexibility is costly 
when simple functions are required. In contrast the simplicity, 
small size, and hierarchical organization of the MPA1000 
delivers a more silicon efficient implementation. Logic blocks 
of arbitrary size and aspect ratio are automatically 
constructed, optimized and interconnected based on design 
constraints and gate level design representations. This 
capability complements logic synthesis technology and 
maximizes design migration potential. As FPGA device 
capacity increases, design diversity will also increase. The 
malleable granularity and adjustable routing resource of the 
MPA can accommodate this diversity with consistent silicon 
efficiency and performance. 

3 4 
1 2 

vertical port cells 

.11. 

..l..l 
++ 
core 
cells 

-CLK/RST 
select cell 

Figure 2-6. Zone Structure 

Core Cells 

Each core cell has 2 inputs, each input is configured to 
receive signals from 1 of 7 potential sources (Figure 2-7). 5 
sources are from local interconnect and 2 are from zone 
level interconnect. Each cell output connects to 8 other cells 
via local interconnect and is configured to connect to up to 4 
medium buses. Cells are sometimes used to provide 
additional routing resource. The ability to use a core cell as a 
routing resource or as logic provides a programmable means 
of adjusting routing resource to fit design specific 
requirements. 

Input 
Multiplexer 

Figure 2-7. Core Cell Structure 

4 Medium Bus 
Connections 

Each cell has three states; repowering buffer, primary 
function, and secondary function. In addition, all cell inputs 
have programmable input inversion. MPA1000 core cells are 
organized in 2x2 groups called tiles. Within a tile, each of the 
4 cells has a different secondary function (Figure 2-8). The 
core cell primary function is a 2 input NAND. Secondary 
functions include; XOR, register, and wired OR. The register 
element is configured as a DFF or latch with clock enable 
and set or reset. A special, 1 ns skew, network is provided to 
drive register clock and reset/set pins. High performance, 
gate level, cells necessitate controlled clock skew to avoid 
negative setup time situations. The MPA cell states were 
chosen based on a careful analysis of macrocell utilization 
statistics from a large number of ASIC designs implemented 
in Motorola's H4C array. 

TYPE3 
OFF/Latch 

with reset 
and enable 

TYPE 1 
Wired-OR 

1::41 
LJ 
1::21 
LJ 

Figure 2-8. Core Cell Secondary Function 

~~.,'! ~~·==================M=O~T~O~R~O=L=A=M~P=A=D=A=TA==-=D=L=2=01==RE=V=2================================ 
2-6 



117 One Hot State Machine Design is Preferred 

Designing your state machines as one hot is 
usually the most efficient method for the register 
rich MPA. 

117 BUFF from the MICROLIB 

BUFF is the only buffer available to the designer 
that will not get mapped out on import. 

There are quite a few trivial optimizations that get 
made to your design during import, one of the most 
common is getting rid of superfluous 'buffers'. 
Examples of which include INV (inverters), AN2 
gates with both inputs tied together, AN2 gates with 
one input tied high etc. (A more complete 
description of this re-mapping process can be 
found in the on-line help of the MPA Design 
System under: "Help on Design -t Logic 
Optimisation -t Summary of Optimisations".) 
Don't panic at the above statement that inverters 
are "gotten rid of". They are simply mapped to the 
correct sense on the core cell's programmable 
input multiplexers. No delay penalty is incurred for 
inserting an INV. 

117 Tri-State drivers are not available internally 

Because the MPA's routing resources are fully 
buffered (actively driven) there are no internal 
tri-state buffers available. Designers accustomed 
to using such elements to allow multiple drivers 
access to a single data line, should instead 
consider using multiplexers. 

117 Wired-Or a.k.a. Open Drain 

In some instances, it may be preferable to use a 
collection of open drain drivers to drive a single 
data line. The MPA library elements that 
accommodate this type of connection include: 
WINV, WOR2, WND2, and WBUF. It is importantto 
remember that open drain drivers can only actively 
pull a signal low, a passive pull up resistor is 
required to pull the net high; that's the job of the 
WPUP library element. By default, instantiating a 
WPUP element results in a single pull-up resistor 
being attached to the net. Assigning the attribute 
DPLD_PUP with a value of BOTH results in two 
pull up resistors being added in parallel to the net. 
The low to high transition time is thus improved, but 
at the expense of more static current drain when 
any of the attached drivers is holding the net low. 

Besides lower speed, another draw back of using 
open drain drivers in the MPA is the restriction that 
all the open drain drivers within a zone must reside 
on the same Wired-OR Bus, and that drivers in 
other zones must also be in placed in the same 
relative horizontal position. The autolayout tool 

MPA 1000 Product Description 

handles all of this automatically, but it does tend to 
reduce the number of valid solutions available to 
the autolayout tool for the remainder of your 
design. 

117 You Must Use All Macro Inputs, ONE and 
ZERO 
The autolayout tool insists that all MACROLIB and 
MICROLIB inputs be used. If you don't need a 
particular input for your design, you are still 
required to tie it to logic or a ONE or a ZERO (from 
the MICROLIB). There is no routing consumed 
when specifying a ONE or a ZERO, the tie off is [2J 
made at the cell's input selection mux. There is no 
fan out restriction for a ONE or a ZERO. 

l/Ocells 

1/0 cells are located at the device periphery surrounding 
the quadrants (Figure 2-4 on page 2-5). Besides direct 
input and output, each 1/0 cell can be configured to be; input, 
output, bidirectional, registered input, registered output, 
registered 1/0. The two registers can be independently 
configured as a latch or D-type flip flop. Input register setup 
time is adjustable to compensate for clock network input 
delay. Input buffer threshold adjustment provides either TIL 
or CMOS levels. Output buffer drive capability is 
programmable to 4mA or 6mA. And each output can be 
independently programmed to either 3V or 5V levels with 
slew rate control. The output buffer can be configured as an 
open drain to facilitate system level wired OR applications. 
Figure 2-10 sums up 1/0 cell structure. Dedicated, fully IEEE 
1149.1 compliant boundary scan is also provided. 

The output buffers of unused 1/0 cell outputs are 
·~urned-off' presenting a high impedance load to the external 
world. Similarly, input buffers of unused 1/0 cell inputs are 
also "turned-off'; there is no requirement to tie unused inputs 
high or low. 

The MPA's output drivers are actually composed of a pair 
of 4mA drivers, only the second of which has controllable 
slew rate. 

Default output configuration is the first 4mA driver. If the 
user attributes the 1/0 cell (or its formal port) with 
DPLD_OPDRIVE set to a value of 6mA, then the second 
4mA driver will be added in parallel. 

If the design calls for multiple 6mA drivers to be switched 
simultaneously, the designer should consider also attributing 
the outputs with DLPD_OPSLEW set to a value of "low''. 
Doing so decreases the di/dt term in the familiar V = L di/dt 
equation, thus reducing ground bounce. 

instance outbuff attribute dpld_opdrive 6ma 
instance outbuff attribute dpld_opslew low 

Figure 2-9. Sample .PAT Entries for a 6mA, Low Slew 
Rate Output Called "Outbuff" 

========~~~=======rilll MOTOROLA MPA DATA- DL201 REV 2 ~ 
2-7 



MPA 1000 Product Description 

Table 2-3. Slew Rates for the MPA1000 Family (Note 1.) 

Output Conditions Ir (ns) If (ns) Ir (ns) If (ns) 
at5V at5V at3.6V at3.6V 

DPLD_OPDRIVE=6mA & 1.7 2.0 0.9 1.2 DLPD_OPSLEW=high 

DPLD_OPDRIVE=6mA & 0.6 1.0 0.3 0.9 DLPD_OPSLEW=low 

DPLD_OPDRIVE=4mA & 
DLPD_OPSLEW=high 1.1 1.4 0.6 1.0 
(Note2.) 

1. Measurements taken between 10% and 90% of Voo at 25°C, CL= 
50pF. Note that DPLD_OPDRIVE = 4mA with DPLD_OPSLEW = 
low is an illegal combination. 

2. Default values. 

U Start Off Easy, Begin with IPBUF, OPBUF, 
IPCLK, IPRST . 

The Complex 1/0 can be a space a11d a time saver 
for your more critical designs, but you may want to 
co11sider starting off slow and use the simpler 1/0 
structures. 

u Enable and Reset Pins on Complex I/Os do 
not have to be tied 

·There are too many permutations possible in the 
110 cell to make each available as a unique 
macrocell in the IOLIB. Consequently a short cut 
has been made available to the designer using 
Complex 1/0, namely it is not necessary to tie reset 
or clock enable inputs high or low when using 
elements of the IOLIB. (N.B. This is IllllJrll§ for 
elements from the MICROLIB or MACROLIB. 
Each of these inputs must be used or otherwise 
tied off.) The autolayout software will make the 
obvious assumptions about how the unused input 
should be tied and make the tie off for you. 

u Don't fix your 110 locations unnecessarily 

Fixing your 1/0 locations using DPLD_PAD_ 
PLACE attribute may place an undue burden on 
the autolayout tool. Most designs will route to a 
higher performance level if the autolayout tool is 
given as much freedom as possible with regards to 
1/0 pin placement. 

u Twinning Outputs 

Two outputs can be connected in parallel to 
increase the the output drive current, however, to 
avoid contention between drivers, care must be 
taken to insure that output signals are 
synchronized. Use the following as guidelines: 

- Connected outputs must reside in the same 1/0 
zone. (The 1/0 pad ring is divided into zones 
each containing 5 1/0 cells and two primary 
clocks. To identify a zone in a packaged 
product, look for groups of 5 adjacent I/Os in the 
pinout assignment.) 

- Output signals must be gated through the 1/0 
flip-flop registers. 

- Output flip-flops must be clocked by a common 
primary clock signal via the clock distribution 
network, which is balanced and has a skew of 
<1 ns between any two registered clock inputs. 
(Primary clock signals are the only way in which 
the 1/0 flip-flop clocks. Clock signals may 
originate external to the device via library 
element IPCLK or from the array by routing the 
signal to the primary clock bus via APCLK.) 

- To reduce ground bounce, twinned outputs 
should be as close as possible to a VSSE pin. If 
ground bounce persists, alternate slew rate -
fast on one, slow on the other. 

- Using open drain output is a safer alternative, 
although, the speed will be limited by the 
pull-up resistor. 

Hierarchical Routing Resources 

The MPA interconnection structure is partitioned into 3 
levels; Global, Zonal (or medium), and Local. Local 
interconnection is used to connect a core cell to 8 of it's 
perpendicular neighbors (Figure 2-11). Zonal interconnect 
consists of the medium buses and connects groups of cells 
within a zone (Figure 2-12). Global interconnect includes 
global buses, x buses and interquadrant switches 
(Figure 2-4 on page 2-5). Global buses provide quadrant 
and chip level inter-zone and zone to 1/0 cell 
interconnections. Special interconnection resources are also 
present and consist of clock distribution, wired-OR and 
peripheral bus. Routing specialization provides an 
opportunity for level specific performance optimization. 
Specialization also diminishes the amount of interconnection 
options required at each core cell, reducing cell size and 
boosting silicon efficiency. 

Local Interconnect 

Local interconnect provides the fastest path between 8 
neighboring core cells. Local interconnect is continuous 
across the device and is not effected by zonal boundaries. 
Local interconnection favors frequently used connections, 
the cell to the immediate left and immediate right of the 
driving cell have 2 connections. Local connections are used 
for high performance lntrazone connections and are also 
used to cross zone boundaries when necessary. 

~~'f'I ~~·===================M=o=r=o=R=o=LA==M=P=A=D=A=rA==-=D=L2==0=1=R=Ev==2=============================== 
2-8 



Selected 
Array Signal 

Selected 
P-Bus Signal 

to En and 
Ast Muxes 

MPA 1000 Product Description 

3V/5V 

Figure 2-10. Input/Output Cell Structure 

Medium Interconnect 

Medium interconnect spans a single zone and provides 
intrazone connections beyond the span of local interconnect 
or for connection of zone cells to global signals through the 
port cells. There are 4 horizontal and 4 vertical medium 
buses per core cell. Medium bus connectivity to core cells is 
sparse to minimize loading and limit core cell input 
multiplexer size. This connectivity is arranged so that a tile 
can be fully connected to the 16 medium buses which 
cross it. 

Figure 2-11. Local Interconnect 

Port Cells 

At zone edges, port cells provide a bridge between global 
resources and zonal resources. Port cells transport signals 
into and out of a zone and are the only interface between 

zonal and global resources (Figure 2-13). All 4 medium 
buses, 4 global buses and the x bus in a given row or column 
connect to the port cell. 

D 

M1-4 

Figure 2-12. Medium Interconnect 

Port cells also provide connections to 4 of the 8 low skew 
clock distribution lines which span the device. Port cells also 
provide global to x bus access and serve as a pathway for 
zonal wired OR buses to connect to global busses. 

================================M=O=T=O=R=O=LA==M==PA=.=o=AT=A=-==D=l2==01==R=Ev==2==========================~~ 
2-9 



MPA1000Product Description 

G1 G2 M3 X M3 M4 X M4G3G4 G2 

M1 X M3 M4 M2 X CLK 

Figure 2-13. Vertical Port Cells 

Global Interconnect 

Global interconnect consists of global buses, x buses, 
interquadrant switches. There are 4 horizontal and 4 vertical 
global buses passing over each core cell. All Global buses 
only connect to the port cells, 110 cells and interquadrant 
switches. Global buses span a quadrant and are used to 
interconnect the zones within the quadrant together. . 
Between quadrants, interquadrant switches connect two 
global buses together to form a device level connection. 

Each core cell contains a x-bus switch (Figure 2-16) 
which is independent of cell logic or interconnect functions. A 
single vertical and a single horizontal x bus passes over 
each core cell and connects to this switch. Each x bus 
connects to all the core cells is a single zone column or row 
and terminates at the port cells on opposite edges of the 
zone. Each x bus has 10 connections inside the zone and 2 
port cell connections. Port cell connections are used to make 
x to global, x to x and medium to x connections. Medium to x 
connections are used to hop 'aver a single zone X buses are 
used to facilitate 90° global bus turns and provide a means 
for global bus fanout. 

u High Fan Out 
As mentioned previously, the routing resources of 
the MPA are fully buffered. There is no reason for 
the designer to concern himself with loading 
effects of high fan out net. However, high fan out 
nets can have an undesirable impact on routing 
resource consumption. Using only local routing, a 
single driver could under the most ideal conditions 
drive only 8 local neighbors. In real wo~d designs 
however, each of the destinations of a high fan out 
net has its own downstream circuitry associated 
with it; there is a vanishingly low probability that 
they will be placed in the 8 local adjacent locations. 
For fan outs greater than 8, exclusive local routing 
is impossible, and both medium and global routes 
will be used to complete the net. If the fan out is 
large enough, and the circuitry placed sufficiently 
far apart in the array, routing resource 
consumption may become problematic. 

The primary clock and reset distribution network 
may be used to route high fan out signals. Driving 
the high fan out net internally with an ACLK or 
ARST buffer, or externally with an IPCLK or IPRST 
buffer will put the signal on one of the 8 global 
Clk/Rst distribution lines. The routing congestion 
can thus be solved, but at the expense of reducing 
the clock and reset routing solution space. Do not 
route nets to 110 (other than Clk/Rst) on the primary 
clock network. There is no mechanism for 
completing such a route on the MPA devices. 
For software versions 2.4 and later, ACLK and 
ARST insertions for high fanout nets will be 
automatic. 

U Delays in Routing 
Both PCB and older ASIC designers share the 
mind set that delay through a multi-level logic path 
is principally a function of "gate delay''. In the ASIC 
world, routing paths are as short as possible and 
do not pass through multiple levels of pass gates, 
muxes, and buffers. Similarly, a PCB trace is a 
simple and hopefully short run of metal, with most 
of the "gate" delay happening as a function of 
package input and output delays. A "logical" net in 
an FPGA however may be a series of several 
different electrical nodes, each being separated by 
a mux or switch of some type. The consequence of 
this is that "routing delays" not gate delays are the 
first order factor determining the resultant circuit's 
speed. 
Empirical analysis of several hundred sample 
designs suggests that a multiplication factor of 2.4 
can by applied to the sum of a path's gate delays to 
come up with a very rough estimate of what the 
post autolayout total path delay might be. There 
are many factors that influence that actual number, 
so please consider this only as a very crude 
estimate. 

u S-R Flops, Avoid the Temptation 

ND2B1 

ND2B1 

Figure 2-14. A Classic S-R Flop; 
An Accident Waiting to Happen 

The above construction of an asynchronous S-R 
flip flop is familiar to all, but should be so for its 
unfavorable characteristics. Remember that 
routing delay in an FPGA is the highest order term 
in delay equation. In the above construction, the 
(active high) SET pulse width must be greaterthan 
the ND2B1 propagation delay plus Q to A routing 
plus another ND2B1 delay plus OBAR to A routing 

~~.,ti ~~·==================M=O=TO==R=O=LA==M=P=A=D=A=TA==-=o=L=2=0=1=R=Ev==2============================== 
2-10 



delay. Without a detailed analysis of the post 
autolayout path delays, the pulse width 
specification can not be known. The same holds for 
the RESET pulse width. A new autolayout run on 
the same design may alter these path lengths 
considerably. Additionally this sort of 
asynchronous feedback loop will generally cause 
back annotation, simulation and timing analysis 
tools trouble. 

Avoid asynchronous design. 

u Delay Lines, Avoid the Temptation 

NON_DELAY_PATH 

Figure 2-15. A Delay Line for Turning Edges into 
Pulses, a Dangerous Proposal 

Remember that in an FPGA routing is not just a 
piece of wire. Routing is comprised of wire, muxes 
and pass gates. In the above example, the intent is 
to turn a rising or falling input edge into an output 
pulse. The assumption is that the 
"NON_DELAY _PATH" will have a shorter delay 
than·the "delay line" formed by the series of BUFF 
elements. Again, the MPA design software does 
not guarantee minimum delays and so it is possible 
that the an autolayout run might result in the 
NON_DELAY _PATH to have a delay significantly 
close the delay line path. The circuit may not work. 

Avoid any design habit that makes assumptions 
about minimum delays, even for just plain routes. 

1/0 Cell Connections and Peripheral Bus 

1/0 cells are a pathway between array and bonding pads. 
Global buses, x buses and adjacent zone medium buses can 
be connected to 1/0 cells at quadrant edges. Each 1/0 cells is 
directly connected to the adjacent bonding pad. 

A specialized bus, called the peripheral bus, resides in the 
1/0 cell - quadrant interface (Figure 2-4 on page 2-5). The 
peripheral bus comprises 8 lines which are interrupted at 
device corners by a peripheral bus switch similar to the 
interquadrant switch. This switch joins peripheral bus 
segments to create connections spanning more than a single 
device edge. Peripheral buses carry 1/0 control signals 
common to two or more 1/0 cells such as a latch enable or 
tristate control signal. The 1/0 cells can also drive these 
buses with an open drain device. When combined with 
programmable pullups located in the corners of the device, 
the peripheral bus can be used to form wide gates for 
address decoding (Figure 2-17). 

MPA 1000 Product Description 

Use the P-Bus to route enable signals 

Whenever an enable signal goes to more than one 
1/0 cell, it is recommended that the designer 
employ the P-Bus (by inserting and APBUF). 

G2 G4 G2 G4 

X-Bus X-Bus 

Figure 2-16. Global Bus Turn Using the X-Bus 

Wired OR Nets 

Wired OR nets are constructed using type 1 core cells. 
When the type 1 secondary function is enabled, the NAND 
drives an open drain device directly connected to a special 
bus shared by all the type 1 cells in the same zone row. This 
bus, the zone wired OR bus, terminates in the port cell and 
has a single, dedicated, pullup. When this bus is used, the 
port cell wired OR to global bus connection and the global 
bus pullup located near the interquadrant switch are enabled. 
These resources can be used to map 3-state buses onto the 
MPA1000 device. 

Clock Distribution 

Clock distribution is implemented through a dedicated, low 
skew, network consisting of; 8 dedicated clock input lines 
connected to 2 1/0 cells on each device edge, a central clock 
buffer, a distribution comb structure, zone corner clock 
selection cells and the zone port cells along the top of each 
zone. The zone corner cell selects 2 of the 8 lines for zone 
clocks and 2 of the 8 lines for zone reset (Figure 2-18). Zone 
registers are connected to these clock and reset signals 
through the top row of port cells. The comb extends into the 
1/0 cells via a similar clock selection cell attached to each 
group of 5 1/0 cells. This group is called an 1/0 zone. All 8 
clock lines can be driven from the 1/0 bonding pad or the 
array. The distribution network is balanced and has a skew of 
< 1 ns between any two register clock inputs. 

=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:M=O=T=O=R=O=L=A=M=:PA=:D=AT=A=-==D=l2=:0=1=R=EV=:2=:=:=:=:=:=:=:=:=:=:=:=:=:~~ 
2-11 



MPA 1000 Product Description 

l/OCell 

NC~ 

1/0 Clock 

Programmable 
Pull-Up 

Wired-AND= 
A1AO Enable 

To Array 

Peripheral Bus Segment (1 of 8) 

Figure 2-17. Using the Peripheral Bus 
for Address Decoding 

Connections in the port cells allow the clock network to 
drive zone logic in addition to the register clock and reset 
inputs. Unused clock lines can be used for efficient 
distribution of any high fanout signal. If there are more clocks 
in the design than clock resources, the MPA design system 
automatically constructs a comb from global buses to 
generate a secondary clock network with a skew of < 3ns. 
Secondary clock construction is facilitated by a port cell 

connection which provides non-<:lock network access to 
zone register clock and reset inputs. 

u Secondary Clock Networks Consume 
Routing Resources 

The MPA easily handles a fair number of 
secondary clock networks, but networks with large 
numbers of Clk/Rst loads are more efficiently 
accommodated by moving onto the primary Clock 
Distribution Network using ACLK or ARST buffers 
mentioned previously. 

Tertiary clock (reset) networks are identified by the 
autolayout software as any net driving four or fewer clock 
(reset) inputs not on the primary clock distribution network. 
There is no skew guarantee on these tertiary clock nets; they 
are routed on normal resources. 

u Too Many Clocks 

The MPA is best suited for designs with a few 
primary clocks, but multiple clocks are supported. 
The problem with tertiary and especially 
secondary clock networks is that they consume a 
lair amount of routing resources. An otherwise 
easy to fit design may not be routable once multiple 
secondary clocks are accommodated. 

u Gated Clocks, Avoid When Possible 

Inserting anything but an INV in a clock path will 
result in the clock being pulled off the primary clock 
network and placed either secondary or tertiary 
routing (depending on the number of clock loads 
downstream of the inserted gate). As mentioned 
above, this tends to spread the resulting layout out 
a bit more and consequently can slow things down 
some. If a gated clock is desired, try instead using 
register elements with clock enables. 

~~.,'I ~c·===================M=O=T=O=R=O=L=A=M=P=A=D=A=T=A=-==D=L=20=1=R=E=v=2================================= 
2-12 



ColumnClk 

Central Clk/Rst 
Buffer 

G2 
Vertical Port Cell 

Column Ast 

MPA 1000 Product Description 

10 Horizontal 
Port Cells 

Figure 2-18. Clock Distribution Network Connectivity 

===============================M=O=T=O=R=O=LA==M=PA==DA=~=A=-==D=L2=0=1=R=E=V=2===========================i~ 
2-13 



M PA 1000 Product Description 

U ACLK & ARST Consume Clk/Rst 1/0 Sites 

Each ACLK and ARST buffer used resides in one 
of the 8 clock pad locations. Using an ACKL or 
ARST consumes this pad location such that it is no 
longer available to use as an .1/0 site. The designer 
is allowed a total of 8 ACLK, ARST, IPCLK, IPRST 
cells in his design. 

u 110 Cells Can Only Be Clocked From the 
Primary Clock Distribution Network 

Clocking 1/0 macros via secondary or tertiary 
clocks is prohibited. Reset is however permitted to 
be sourced from the array or Peripheral Bus 
(P-Bus). 

u Clock Sense Selection is Made in the Vertical 
Port Cell 

All flops within a column will have the same clock 
and reset (or will lie unused). 

u Do Not Use the Primary Clk/Rst Distribution 
Network to Route Clock Enable Signals 

Referring to Figure 2-18 on page 2-13, note that a 
clock is paired with a reset and brought down to all 
5 of the Type 3 cells within a column. If the 
associated clock enable (if used) is also on- the 
primary clock network, there would be no efficient 
route available to get it down to the target flops. Do 
not use the Primary Clock Distribution Network to 
route clock enables. (Do use it for "Latch Enable" 
signals.) 

~~"" ~~·==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=D=L=2=01=R=E=V=2=============================== 
2-14 



M PA 1000 Product Description 

MPA 1000 Device Configuration 

Configuration Overview 

MPA1000 devices have an SRAM configuration memory. 
Configuration memory contents completely define MPA 
device function. The MPA 1000 design system generates 
configurations from completed layouts. On chip control logic 
loads configurations in one of four modes automatically on 
power up or under external control. MPA 1000 devices have a 
very rapid configuration load cycle, infinite reload and are in 
system reconfigurable. The configuration modes are; Boot 
From ROM (BFR1 :3) and microprocessor peripheral or 
MICRO Mode. In either mode, multiple devices can be daisy 
chained to form a large programmable subsystem. 

In all BFR modes, the MPA device controls configuration 
and loads from either a byte wide or serial memory. In BFR 
mode 1 (Figure 2-20), the device generates 18 bits of 
address and reads 8 bits of configuration data. MPA devices 
generate 18 bits of address or 262K bytes (e.g., 17 
MPA1036 devices). If a larger address range is required, 
BFR mode 3 (Figure 2-26 on page 2-21) can be used. In 
BFR mode 3 an external address generator is used to extend 
the address space. BFR mode 2 is a special case of BFR 3. 
In this case the address generator is resident in the external 
serial EPROM and data is presented to the device 1 bit at a 
time. The MPA design system download POD and the 
MPA 17000 serial EPROMs are used with this mode. 

In MICRO Mode, the MPA1000 device becomes an 8 bit 
peripheral slave device. A microcontroller or microprocessor 
controls the configuration process. MICRO Mode provides 
more control over configuration and user mode device 
behavior than other modes. For example MICRO Mode can 
be used to both write and read configuration memory. 

RESET 
DATA[0:7] 

CLK 

DCLK 
ADD[0:17] 

MODE[3:0] 

MICRO BFR 
cs BFR F[O] 

RD ERR F[1] 

WR MEMCE F[2] 

RS PWRUP F[3] 

BUSY END F[4] 

TCK 

}n~ TMS 

TDI 

TRSTB 

TDO 

Figure 2-19. Configuration Interface Signals 

Configuration information generated by the MPA Design 
System includes Error Check Bytes (ECBs). ECBs are used 
to detect configuration data corruption while configurations 
are loaded into the device. The configuration process halts 
and error status is indicated if an ECB mismatch is detected 
anytime during the configuration process. ECB checks insure 
the integrity of configuration data and protect MPA devices 
from possible damage. 

Depending on the selected configuration mode, some user 
1/0 pins become unavailable for post configuration use. 
These pins are listed as "dedicated" in Table 2-7 on page 121 
2-25 and Table 2-5 on page 2-17. The system level ~ 
interface for MPA configuration is shown in Figure 2-19. 
Note that the meaning of the F[4:0] pins is mode specific, 
refer to Table 2-7 and Table 2-5 for detailed signal 
descriptions. 

Table 2-4. MODE[3:0] Pin Programming 

Mode Bits 

[3] [2] [1] [O] Description 

x x 0 0 MICRO Mode - Micro-processor/control-
lerinterface circuitry with parallel (byte wide) 
data. 

x x 0 1 BFR Mode (1) - Boot From ROM, byte 
wide data. MPA generates ROM addresses. 

x x 1 0 BFR Mode (2) - Boot From ROM, serial 
data. (Low pin count serial EPROM gener-
ates own addresses.) 

x x 1 1 BFR Mode (3) - Boot From ROM, byte 
wide data. MPA does not generate ROM 
addresses. 

x 1 x x Use external clock for configuration. 

1 x x x Enable JTAG circuitry and pins. 

Configuration Clock 

The MPA 1000 device has an internal oscillator. The 
internal configuration clock is derived from the oscillator and 
is presented at the CLK pin when MODE[2] is low. When 
MODE[2] is high, the internal clock is disconnected from the 
oscillator and an external clock must be presented on the 
CLK pin to configure the device. 

The configuration clock drives the configuration logic and 
its associated state machine. If using an external 
configuration clock, it is necessary to provide it always to 
ensure RESET, BFR and PWRUP signal transitions are 
detected and handled in the expected fashion by the 
configuration logic. 

Bootstrap Voltage 

Signal pathways in the MPA 1000 device are controlled 
with n-channel transistors. The gates of these transistors are 
connected to individual SRAM configuration memory cells. 
To pass a rail to rail signal through these transistors during 
user operation, the gate voltage must be elevated above VDD 

===============================M=O=TO==RO=LA==M==PA==DA=T=A=-==o=L2=0=1=R=E=v=2=========================i~ 
2-15 



MPA 1000 Product Description 

to compensate for transistor. threshold and body effect 
voltage drops. MPA1000 devices contain a charge pump to 
generate this elevated voltage, called the bootstrap voltage. 
The charge pump is connected to the supply line of each 
SRAM cell and is driven by the internal oscillator. 

Since configuration memory is generally not dynamically 
changing during user operation, the charge pump must only 
supply small leakage current losses and is not designed to 
supply sufficient current for SRAM write operations. During 
configuration, the charge pump (bootstrap) is internally 
disabled by shunting the SRAM supply to VDD through a 
large p-channel device. In order for the charge pump to 
operate properly, the internal oscillator as well as the 
bootstrap circuitry must be enabled. In MICRO Mode, the 
processor has control over these functions. In BFR modes, 
the on chip configuration controller insures proper 
sequencing of these controls. 

The MPA 1000 device is only guaranteed to function 
properly with bootstrap enabled. The internal oscillator must 
be running and bootstrap should be activated 1 OOµs before 
user inputs or outputs are enabled. If dynamic configuration 
modification is desired, the bootstrap voltage can be supplied 
externally on the Vpp pin and MICRO Mode can be used to 
disable bootstrap by shutting off the on-board oscillator. The 
bootstrap voltage should be VDD + 1.5V. At no time should 
Vpp exceed 6.5V. 

JTAG 

The MPA1000 device contains dedicated JTAG IEEE 
1149.1 boundary scan circuitry. JTAG can be used on 
configured devices. JTAG is enabled any time MODE[3] is 
raised. When MODE[3] is high, 5 user 1/0 pins become 
JTAG controls and user mode operation of those pins is 
interrupted. Since the TAP controller can take control of all 
device pins, care must be used to prevent the TAP controller 
from interfering with device user mode or configuration 
operation. 

Boot From ROM (BFR) Modes 

In BFR modes, the MPA device controls device 
configuration and assumes a memory-processor interface to 

the configuration store. The MPA device either asserts 
addresses directly (internal address generation) or issues 
address reset and increment pulses (external address 
generation). Data is read either serially or 8 bits at a lime. 
Table 2-5 describes BFR interface signal operation. 
ADD[17:0] are only used in BFR mode 1. DATA[7:1] are not 
used in BFR mode 2 (serial data). 

A BFR load sequence is initiated by; a falling edge of BFR, 
device power up or a rising edge of RESET. MEMCE falls to 
indicate the start of a configuration load sequence. On 
subsequent alternate rising edges of CLK, the data bus value 
is latched. The configuration process terminates when a 
complete configuration is successfully loaded and END is 
asserted or when a configuration error is detected and ERR 
is asserted. After END is asserted, the device will begin user 
mode operation 3 clocks after PWRUP is asserted or 3 
clocks after END if PWRUP was already high. All 
configuration timing is synchronous with the internal or 
externally supplied configuration clock. Figure 2-22 
describes BFR sequence timing details. 

All BFR sequences begin with an internal device reset 
sequence where the entire configuration memory is reset. 
The duration of this sequence depends on the size of the 
MPA device being . configured. A falling MEMCE edge 
indicates configuration commencement and data loads begin 
after 2 subsequent configuration clocks. The first positive 
edge of DCLK signals the external address generator to 
increment .the byte or bit address. Prior to MEMCE assertion, 
DCLK is tristated. 

The duration of the configuration process is also 
dependent on device size. Configuration duration can be 
estimated for BFR 1,3 by dividing the total number of 
configuration bytes by 1 /2 the configuration clock frequency. 
For example, the MPA 1036 device has 139 rows of 105 
bytes including the ECB or 14,595 bytes. If the configuration 
clock is 2MHz, configuration will take approximately 15ms. If 
BFR 2 is used, the configuration process will take 
approximately 8 times longer. See "Device Configuration 
Memory Organization" on page 2-33 for device specific 
configuration memory sizes. 

~~.,ti ~~·=================M=o=r=o=R=O=L=A=M=PA==D=AT=A=-==D=L2=0=1=R=Ev=2============================== 
2-16 



MPA 1000 Product Description 

Table 2-5. BFR Mode Configuration Control Pins 

Pin Name BFR uo Description 

MODE[3:0] MODE[3:0] I Dedicated• Configuration mode 

RESET RESET I Dedicated Configuration reset - Clear configuration memory. Configure when released. 

CLK CLK 1/0 Dedicated Configuration clock - II MODE[2] is low, the internal configuration clock is presented. If 
MODE[2] is high, an external clock must be supplied. 

FO BFR I Dedicated BFR initiate -A falling edge starts a reset and configure sequence. 

F1 ERR 0 Dedicated Error - Configuration checksum (ECB) or incorrect device ID error. Open drain output 

F2 MEMCE 0 Dedicated Memory Enable -Active low during configuration sequence. 

F3 PWRUP I Dedicated Power up-Alter configuration complete; enable bootstrap, enable user inputs, enable user 
outputs. Olten simply tied to VDD· 

F4 END 0 Dedicated Configuration completed -Asserted when a configuration has been successfully loaded 
into the device. 

DCLK DCLK 1/0 Dedicated Data clock- Each output pulse indicates current data bus value has been latched and data 
address should increment. Becomes an input alter configuration completes. 

DATA[7:0] DATA[7:0] I User/Data Data port 

ADD[17:0] ADD[17:0] 0 User/Address Address output - II internal address generation is selected. (BFR Mode 1) 

JTAG[4:0] 1/0 User/JTAG JTAG pins - Active when MODE[3] is asserted. 

• Dedicated - Pins used for configuration. Not available for user 1/0. 

-=-
RESET 
CLK 
PWRUP 
BFR 

MPA 
END 

CE DCLK ERR 

OE MEMCE 
STD 

8-BIT ADD 
A[17:0]/ 

EPROM USER 1/0 

Data 
DATA[7:0]/ 
USER 1/0 

Optional FPGA 
Status LEDs 

r-----., 
I I 
I ff ff: I 
I I 
L _.J 

Board Test 
Points 

Figure 2-20. BFR Mode 1: 8-Bit Data, Internal Address, External Clock 

BFR Mode 1 Operation: 8 bit data, Internal Address 
Generation 

In BFR 1, MPA configuration logic asserts an 18 bit 
address and reads data 8 bits at a time as shown in 
Figure 2-20 on page 2-17. A paging scheme could also be 
used where additional upper address bits were provided by 
an external page register. Multiple configurations could be 
accessed by writing the page register, asserting BFR, and 
self loading the referenced configuration. 

ADD[17:0] are tristated during device reset, asserted 
during configuration and released for user mode operation. 
DCLK is tristated until 1 clock prior to MEMCE assertion. The 

first address is asserted coincident with the falling edge of 
MEMCE and the data bus is latched 2 configuration clocks 
later. The internal address counter is incremented on each 
positive DCLK edge (Figure 2-21 ). This process proceeds 
until an entire row of configuration data is loaded into the 
internal row data register and the ECB is verified. ADD[17:0] 
(current address) and DCLK (=1) hold while the internal write 
cycle takes place. Start Access (SA) marks the beginning of 
the write cycle and End Access (EA) marks write completion 
(Figure 2-27). After the write completes, the address 
presentation and data latching process resumes. When the 
entire device configuration is loaded, END is asserted, DCLK 

================================M=O=T=O=R=O=LA==M==PA==D=AT=A=-==D=L=2=0=1=R=EV==2===========================~ 
2-17 



M PA 1000 Product Description 

is tri-stated and 2 clocks later user inputs are enabled and 
MEMCE is deasserted. One additional clock and user 
outputs are enabled and user mode operation commences. If 
the written ECB does not match the internally calculated 
value, ERR is asserted 2 clocks after the ECB is written. 
Once ERR is asserted, the configuration process halts and 
cannot be restarted until a new configuration process is 
initiated using BFR, RESET or a power down. When END is 

CLK 

MEMCE 
/USER 1/0 

ADD[17:0] 
/USER 1/0 

"1 

ADD 

"2 

DATA[7:1] 
/USER 1/0 

DATA[ OJ 
/USER 1/0 

HIGH-Z 

DCLK • t 

"1 - Internally generated Address 

"2 - Externally generated Address 

asserted, DCLK becomes an input and the internal address 
counter remains active until PWRUP is asserted. 
Figure 2-30 shows how this can be used in a multiple device 
subsystem. Because DCLK becomes an input, it must be 
tied high with a weak pullup when used in a single device 
configuration (Figure 2-20) to prevent a floating input 
condition. 

Figure 2-21. BFR Data Access Detail 

Number Characteristic Min Max Unit Notes 

1 Data Setup to DCLK 20 ns 

2 Data Hold after DCLK 0 ns 

3 DCLK Period (When Active) 2 2 CLK 

4 CLK to Address Valid (Internal Generator) 15 ns 

~~.,'I ~~·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA==-=D=L=2=01==RE=V==2=============================== 
2-18 



Input 

Input (MODE[2]=1) 
Output (MODE[2]=0) 

CLK 

Output 

Output END 

Output ERR 

Input PWRUP' 

Internal Enable_User_lnputs 

Internal Enable_User_Outputs 

• PWRUP can be, and usually is, tied to Voo internally. 

MPA 1000 Product Description 

\_ ________ _ 

Figure 2-22. BFR Sequence 

Number Characteristic Period Unit Notes 

5 BFR Low to MEMCE High 3 CLK If BFR reasserts durning a boot 

6 END High to MEMCE High 2 CLK 

7 PWRUP to MEMCE High 2 CLK 

8 BFR Low to END Low 3 CLK Note 3. 

9 BFR Low to Internal Disable 3 CLK Note3. 

10 BFR Pulse Width 50 ns Minimum 

11 Configuration Sequence Duration Configuration sequence dependent on 
device size 

12 END to Enable User Inputs 2 CLK If PWRUP asserted, Note 4. 

13 END to Enable User Outputs 3 CLK If PWRUP asserted, Note 4. 

14 PWRUP to Enable User Inputs 2 CLK Notes. 

15 PWRUP to Enable User Outputs 3 CLK Note 5. 

3. BFR is usually an asynchronous input, 4 CLKs assumes Tso BFR is met. 
4. PWRUP can be, and usually is, tied to VDD· -
5. PWRUP may be an asynchronous signal, 2,3 CLK, assumes Tso_PWRUP is met. 

==================~fill 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2-19 



M PA 1000 Product Description 

A Sample BFR Mode 2 Load Sequence 

The most common boot configuration for the MPA is the 
BFR Mode 2, using a serial boot (E)EPROM. The timing 
overview for such a boot load is given in Figure 2-23 and 
Figure 2-24, with timing notes in Table 2-6. 

In this example the CLK signal can either be sourced by 
the MPA or generated externally and received by the MPA 
(according to the state of the MODE[2] pin). BFR is usually 
asynchronous, Figure 2-23 assumes the falling edge of BFR 
meets the set-up requirement with respect to the rising edge 
of the CLK signal. Three CLKs later The END signal 
de-asserts and a reset sequence begins. The length of the 

reset sequence is a function of the array type as shown in 
Table 2--6. As the reset sequence ends DCLK (connected to 
the EPROMS clock input) goes high, then MEMCE asserts 
(connected to me EPROM's RESET/OE pin. The first bit of 
configuration data will appear at the EPROM's data pin after 
this falling MEMCE. Data is latched into the MPA as DCLK is 
raised. The next rising edge of DCLK causes the EPROM to 
shift out the second configuration bit, and so on. 

The internal configuration SRAM of the MPA is loaded up 
one row at a time. The number and width of the rows varies 
by array type. After a row's worth of data is read in to a 
configuration shift register, the MPA holds DCLK high for 12 

Table 2--6. BFR Mode 1 Sequence Timing for All MPA Family Members 

Number Characteristics CL Ks Notes 

1 BFR Low to MEMCE Low Internal SRAM Reset Sequence 
MPA1016 971 =21+(10*95), 95 SRAM Rows 
MPA1036 1411 =21+(10*139), 139 SRAM Rows 
MPA1064 1851 =21+(10*183), 183 SRAM Rows 
MPA1100 2291 =21+(10*227), 227 SAAM Rows 

2 Low to DCLK Hold Off Shifting in ID and first row of SRAM data 
MPA1016 1232 =80+(2*576), ID & data type then 576 bits/row 
MPA1036 1760 =80+(2*840), ID & data type then 840 bits/row 
MPA1064 2288 =80+(2*1104), ID & data type then 1104 bits/row 
MPA1100 2800 =80+(2*1360), ID & data type then 1360 bits/row 

3 Internal SRAM Row Load 12 All devices, every row 

4 Subsequent Row Sequence Shifting in row data 
MPA1016 1163 =12+(2*576)-1, 576 bits I row 
MPA1036 1691 =12+(2*840)-1, 840 bits I row 
MPA1064 2219 =12+(2*1104)-1, 1104 bits I row 
MPA1100 2731 =12+(2*1360)-1, 1360 bits I row 

BFR Low to User Outputs Enabled The complete BFR Sequence 
MPA1016 111,540 =971+ 1232+ 12+(1163*94)+3, reset+ 1st_row+rows+l/O 
MPA1036 236,544 =1411+ 1760+ 12+(1691 *138)+3 
MPA1064 408,012 =1851+2288+12+(2219*182)+3 
MPA1100 622,312 =2291+2800+12+(2731 *226)+3 

End 

Figure 2-23. Start of a Typical Serial Boot From ROM Sequence 
(Clock may be internal or external. BFR is an external asynchronous signal, Tsu_BFR is assumed to have been met.) 

CLK 

DCLK 

End 

IUUl.JU\ 
SLn .. 

Figure 2-24. Completion of a Serial Boot From ROM Sequence 

~~-t'I ~~•=:=:=:=:=:=:=:=:=:=M=O=T=O=R=O=L=A=M=P=A=:DA=T=A=-==D=L=2=01=:R=EV=:2=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:== 
2-20 



CLK cycles and transfers this data to the interal SRAM row. 
Provided no device ID or check-sum errors are detected, the 
load will continue in this row by row fashion until complete. 
As the last row of SRAM is written, the END signal asserts 
then user 1/0 is enabled as shown. 

BFR Mode 2 Operation: 1 bit (serial) data, External 
Address Generation 

BFR mode 2 is used for connecting MPA devices to a 
serial configuration memory. The MPA device provides an 
address increment signal (DCLK) rather than an internally 
generated address as in BFR mode 1. Low pin count serial 
memories, like the MPA 17128, contain address generation 
logic which responds to a single increment signal. 
Addressing is sequential starting at zero. Multiple MPA 17000 
devices can be daisy chained if a larger memory is required 
(See MPA17128 data sheet on page 1-6). Serial memories 
are programmed (written) in the opposite bit order from the 
way they are read. The MPA Design System configuration 
generation program will generate a correctly formatted 
PROM programming file by reflecting each configuration byte 
prior to writing the file. 

MEMCE is high until configuration commences. MEMCE is 
connected to the RST/OE pin of the MPA17128 holding its 
internal address counter at O and its outputs tristated. The 
falling edge of MEMCE enables the memory data pin and 2 

MPA 1000 Product Description 

clocks later a data bit is latched into the MPA 1 ooo device. 
The first rising edge of DCLK signals the memory to index its 
address register and present the next locations data bit. 
Each time 8 bits are accumulated by the MPA1000, they are 
written to the internal row data register. As in BFR 1, this 
process proceeds until a complete row is loaded and the 
ECB is verified. DCLK holds while the row data register is 
written to the current configuration memory row. After the 
write completes, additional bits are loaded until the next row 
boundary is reached. Configuration completion and error 
indications are identical to BFR 1. 

BFR Mode 3 Operation: 8 bit data, External Address 
Generation 

BFR mode 3 is identical to BFR mode 2 except that 8 bits 
of data are loaded rather than one. An external address 
generator is used and responds to the MPA address 
increment signal (DCLK). BFR mode 3 is useful because 
BFR 1 requires 18 user 1/0 signals (ADD[17:0]) during 
configuration. While these are subsequently released, it does 
impose restrictions on surrounding circuitry complicating 
overall system design. Secondly in applications requiring 
rapid configuration of a large number of M PA devices or 
many alternate configurations, the MPA 18 bit address space 
may not be large enough and an external counter (address 
generator) would required anyway. 

Optional FPGA 
Status LEDs 

-=- MODE[3:0] 
r-----, 
I I =----------1 RESET 

=----------1 CLK 
=----------IPWRUP 
=----------! BFR 

I ff ff I 
I I 
t.. _..1 

MPA17128 MPA END f-__J'---+-----------IXI 
CLK 1--~~--1 DCLK 

AST/OE MEMCE ERR 1-----'-----------D<I 
CE 

DATA[O]/ 
Data 1-------1 USER 1/0 

Figure 2-25. BFR Mode 2: 1-Bit (Serial) Data, External Address, External Clock 

COUNTER 
BANK 

CLK 

AST 

ADDA 

=--+--+-----+-+--<RESET 
c:>---+--1-----1--+--ICLK 
CJ--+--+-----+-+-~PWRUP 

c:::>---t---t-----+-+---1 BFR 

STD 
8-BIT 

EPROM 

MPA 

DCLK 
CED----'-----1MEMCE 

Data DATA[O]/ 
1----~,r USER 1/0 .._ ____ _, 

Optional FPGA 
Status LEDs r-----, 

I I 

I ff ff I 
I I 
t.. _ _J 

ENDf--'---1f-----------iXI 

ERRl-----"'----------;:x 

Figure 2-26. BFR Mode 3: 8-Bit Data, External Address, External Clock 

Board Test 
Points 

Board Test 
Points 

===============================M=O=TO==RO=LA==M==PA==DA=T=A=-==D=L2=0=1=R=E=V=2=========================1~ 
2-21 



MPA 1000 Product Description 

CLK 

DCLK 

DATA 

ADD 

~ =Start Row Access 

~ = End Row Access 

MPA17128 
CE 
OE 

CLK 

Data 

\ 
'--

Figure 2-27. End of Row Behavior 

"::" 

RESET END 
CLK 
PWRUP 
BFR 

MPA 
#1 ERR DCLK N/C 

MEMCE 

DATA[OV 
USER 1/0 

RESET END 
CLK 
PWRUP 
BFR 

MPA 
#2 ERR DCLK N/C 

N/C MEMCE 

DATA[OV 
USER 1/0 

Figure 2-28. Multiple Device Subsystem: BFR2; Serial Data, External Address, External Clock 

~~"' ~~=================M=O=T=O=R=O=LA==M=PA=D=A=I=A=-==DL2==01=R=E=V=2=============================== 
2-22 



BFR Multiple Device Subsystems 

If multiple devices are used together in BFR mode, the first 
device loads first and the END signal on each device is 
connected to the RESET pin of the next device. As an 
upstream device completes configuration, a configuration 
sequence is initiated on the next device. This daisy chain 
extends to the last device. This devices END is connected to 
the PWRUP pins of all subsystem MPA devices. All devices 
enter user mode when the last device successfully 
configures. 

Care must be taken to insure proper operation. BFR on all 
but the first device must be tied high and the subsystems 
composite DCLK line must be pulled up to eliminate spurious 
clock signals as one device tristates DCLK and the next 
device asserts it. Figure 2-29 illustrates the control signal 
hand off. 

n n n n 1---
CLK _J LJ LJ LJ LJ 

II i-----
ocLK #1 _J L__J 

MPA1000 Product Description 

When constructing a subsystem in which the first device 
asserts the 18 bit address (BFR mode 1), this device 
provides address generation for all devices in the subsystem. 
The DCLK pin of the first device becomes an input when it 
successfully configures and its internal counter remains 
active. Positive edges applied to this pin will increment the 
first devices internal address counter and present the 
resulting address on the first devices 18 bit address bus. 
Subsequent devices in this subsystem should use BFR 
mode 3 (external address, 8 bit data). 

Examples of multiple device boot configurations are shown 
in Figure 2-28, Figure 2-30 and Figure 2-31. The last 
device's END signal is fed back into the first device's []] 
PWRUP pin. Holding PWRUP low, holds the MEMCE output 
low. 

DCLK#2 u-

END#1 & 
RST#2 

~ =Start Row Access 

~ =End Row Access 

~ =Configuration Sequence End, Device #1 
~ =Configuration Sequence Initiate, Device #2 

____ _n _____ _ 

Figure 2-29. BFR Mode Daisy Chain Timing 

===============================M=O=T=O=R=o=LA==M=PA==D=AT=A=-==D=L2=0=1=R=E=v=2==========================riill 
2-23 ~ 



MPA 1000 Product Description 

-::-

* CE 
OE 

STD 
8-BIT ADD 

EPROM 

Data 

RESET 
CLK 
PWRUP 
BFR 

MPA 
#1 

DCLK 
MEMCE 

A[17:0]/ 
USER 1/0 

DATA[?:OV 
USER 1/0 

ERR N/C 

MPA 

~----< DCLK #2 ERR N/C 

N/C MEMCE 

DATA[?:O]/ 
USER 1/0 

' DCLK of first device driven by subsequent 
devices, after its configuration completes. 

" Subsequent devices held in reset until all 
prior devices configure. 

Figure 2-30. Multiple Device Subsystem: BFR1 and BFR3; 8 Bit Data, Internal Address, External Clock 

COUNTER 
BANK 

CLKi---~ 

RST 

ADDR 

c:::>---+-+----+--t-+-1----IRESET ENDl------+-1-----l 
c:::>---+-+----+--t-+-'----1 CLK 

PWRUP 
i:::>--+-+----+--1-----< BFR 

STD 
8-BIT 

EPROM 

MPA 

'----.--1 DCLK #1 ERR N/C 
OE n--~--+---< MEMCE 

1--------l--''- DATA[OV 
USERl/O 

DATA[O]/ 
USER 1/0 

ERR N/C 

Figure 2-31. Multiple Device Subsystem: BFR3, 2; 8 Bit Data, External Address, External Clock 

~~"" ~t·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==o=L=2=01=R=E=v=2=============================== 
2-24 



MPA 1000 Product Description 

MICRO Mode 

In MICRO Mode the MPA device behaves as an 
asynchronous microprocessor peripheral. Table 2-7 details 
MICRO Mode configuration pin function. A chip select (/CS) 
is derived from the processor address and enables a single 
MPA device. In a multiple device subsystem, a chip select for 
each MPA device is required. When a device is selected, the 
data bus is used to write commands, read status, write 
configuration data and read configuration data. There are 
two device configuration registers, the function register 
(RS=O) and the data/status register (RS=1). Configuration 
commands are written to the function register. Subsequent 
behavior is specific to the command issued and is 
documented in Table 2-8. The data register is either used to 
read device status, read device configuration data or write 
device configuration data. RS is normally connected to the 
least significant address line to map the function register to 
address A and the data/status register to address A+ 1 . 

"Device Configuration Data Format" section on page 2-33. 
Configuration data is generated by the MPA design system 
configuration generator alter a layout is complete. 

Sys_rst 

Sys_CLK 

cs 
MODE[3:0] -= A[19:1] 

AST 

Ready CLK 
Busy MPA 

MEMW WR 
MEMR RD 

A[O] RS 

D[7:0] DATA[7:0] 

Configuration data format information can be found in the 

Figure 2-32. MICRO Mode: Single Device With External 
Clock and Wait State Insertion 

Table 2-7. MICRO Mode Configuration Control Pins 

Pin Name Micro VO Description 

MODE[3:0] MODE[3:0] I Dedicated* Mode Pins 

RESET RESET I Dedicated General configuration reset 

CLK CLK 1/0 Dedicated Clock for configuration circuitry - if external clock is selected, pin is an input. If not 
selected internal configuration clock is used and output through this pin. 

FO cs I Dedicated Chip select for device in MICRO Mode. 

F1 RD I Dedicated Micro read signal 

F2 WR I Dedicated Micro write signal 

F3 RS I Dedicated Register select - Two register locations are active: Function Register (RS= O) and Data/ 
Status Register (RS = 1 ). 

F4 Busy 0 Dedicated Busy signal - Active high when device is not ready to accept data, i.e. while device is 
resetting data in array or a data register to array transfer is taking place. 

DATA[7:0] DATA[7:0] 1/0 Dedicated Micro data port - for configuration logic. 

JTAG[4:0] J [4:0] 1/0 User/JTAG JTAG pins -JTAG or User 1/0 is selected by MODE[3]. 

* Dedicated - Pins used for configuration. Not available for user 1/0. 

=========1riiil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2-25 

~ 



MPA 1000 Product Description 

Table 2-8. MICRO Mode Function Register (RS=O) 

DATA 

7 6 5 4 [3:0] 
Function 

0000 Normal operation - No function performed. 

0001 Reset Device - Entire device configuration is reset. BUSY is asserted until reset completes. 

0010 Load Configuration - After writing this command, an entire normal format device configuration is presented to 
the data register in a bit segments starting with the configuration header block. At any time during the loading 
process, a read from the data register will return status register contents. As complete rows including ECB are 
loaded, BUSY is temporarily asserted while ·row data is internally transferred from the internal data register to the 
currently addressed memory row. Once this write operation is complete, BUSY is deasserted and additional data 
can be written. Each time BUSY is deasserted, the status register should be checked for incorrect ID or row 
configuration data error(s). Once an error is detected, NO further write accesses to the data register will be accepted 
until the device is reset or another load configuration command is issued. 

0011 Reset Row- Indicates thatthe next data written to the data register will be a device row address. Afterthe address 
is written, the contents of that configuration memory row are reset. BUSY is asserted after the address is written 
and deasserted when the operation is complete. 

0100 Load Row - The next data written to the data register consists of a row address followed by configuration data 
for that row including the terminating ECB. After the ECB is written, BUSY will be asserted during internal write and 
deasserted when the write completes. Reading the data register returns status register contents. The status register 
should be checked for row configuration data error(s). Once an error has been detected, NO further write accesses 
to the data register will be accepted until the device is reset or a load configuration command is issued. 

0101 Read Row- The next data written to the data register will be interpreted as a row address. After the row address 
is written, BUSY is asserted while row data is read into the internal data register. BUSY is deasserted when the 
transfer is completed. Subsequent successive reads from the data register will return row configuration data. No 
ECB. is returned. The row data read back is in the same order as it is written, rightmost byte first. 

0110 Read Device ID -4 subsequent reads from the data register return device ID. The most significant ID byte is read 
first. Reier to "configuration data formaf' for individual device ID values. 

0111 Bits [3:0] - Reserved pattern. 

1XXX Bits [3:0] - Reserved pattern. 

1 User Outputs Enabled - Normally user outputs are enabled one or more clocks after user inputs are enabled to 
Insure valid Input values have propagated into the device. 

1 User Inputs Enabled - Normally user inputs are enabled after a configuration is successfully loaded into the 
device. 

1 Internal Oscillator Disabled - Normally always enabled. May be disabled if external clock and Vpp are user 
supplied. If internal configuration clock is used (Mode[2] = 0), oscillator cannot be disabled. Internal oscillator drives 
a charge pump that generates bootstrap Vpp. If turned off, then back on, allow 100µ.s restart time. 

1 Bootstrap Enabled (Vpp)-Should be enabled after configuration is completed and disabled during configuration. 
(Disable ties Vppto VDD·l Only a few package types bond out Vpptoa pin. The Vpp pin can be used to monitorVpp. 
The Vpp pin may be driven between VDD and 6.5V externally if Bootstrap is enabled aru!. internal oscillator is 
disabled. Vpp is applied to the pass gate transistors inside the array, to ensure the lowest possible RDON· 

Table 2-9. MICRO Mode Data/Status Register (RS=1) 

Bit Position 

[7] [6] [5] [4] [3] [2] [1] [O] Function 

R R R R R 1 Incorrect Device ID. 

R R R R R 1 Row configuration data error. ECB mismatch. 

R R R R R 1 Busy signal asserted. Allows software handshaking if hardware wait states are not to used. 

R = Uspecified, reserved for factory use. 

~~~ ~~===================M=O=T=O=R=O=LA==M=P=A==DA=~=A=-==D=L2==01=R=E=V==2================================ 
2-26

MPA 1000 Product Description

RS

DATA

BUSY

Figure 2-33. MICRO Mode External Timings (Write Cycle)

RS

DATA

BUSY

Figure 2-34. MICRO Mode External Timings (Read Cycle)

Number Characteristic Min Max Unit Notes

16 CS Setup before Read/Write Falling Edge 10 ns

17 RS Setup before Read/Write Falling Edge 10 ns

18 RS Hold after Read/Write Falling Edge 10 ns

19 Read/Write Pulse Width 50 ns

20 Data Setup to End of Write 20 ns

21 Data Hold after Write 10 ns

22 Busy Inactive before End of Read/Write 50 ns

23 Busy Active after Write 0 20 ns

24 Data Access lime 20 40 ns

25 Data Hold Time after Read 0 10 ns

The configuration clock is still used to drive the MPA's internal configuration logic in MICRO mode. The length of BUSY is, therefore, a function of
the configuration clock.

===============================M=O=TO==RO=L=A=M=P=A=D=A=~=A=-==D=L2=0=1=R=E=V=2=========================:~
2-27

MPA 1000 Product Description

MICRO Mode Maximum Data Transfer Rate

The maximum MICRO Mode data transfer rate is governed
by the R/W timing described in Figure 2-33 and Figure 2-34.
The processor must only write data when BUSY is inactive.
BUSY is only asserted when data cannot be accepted at the
maximum rate. The specific behavior of BUSY for each
MICRO Mode function is described in Table 2-8. When the
device is powered up, an internal reset sequence is initiated
and BUSY is asserted (see "Behavior During
Power-On-Reset"). BUSY will be deasserted when the
internal reset sequence completes. The processor can
monitor BUSY directly or the status register can be read.

If processor R/W cycles are faster than the timing shown,
external circuitry must be used to insert wait states.
Figure 2-32 and Figure 2-39 show an application circuit
consisting of one or more MPA devices and an optional wait
state insertion block used to lengthen R/W timing based on
CS, MEMW, MEMR, BUSY, and RESET using an externally
provided clock.

Using MICRO Mode to Read Configuration SRAM

An interesting side benefit of using MICRO mode is the
ability to go back to the MPA after the normal boot process
completes and read back out the configuration SRAM. While
under spec operating conditions, the is no possibility of
configuration SRAM corruption. Some applications, however,
may have out-of-spec operating conditions, such as
extreme noise on power rails or rails subject to power dips.
In such applications, system level health monitoring can be
augmented using this SRAM read out feature. Normal MPA
device operation is not disturbed during configuration SRAM
reads.

Multiple Devices in MICRO Mode

If multiple devices are used in MICRO Mode, external

logic is required to individually address each MPA device
using CS (chip select) signals. After configuration, the
processor must write bootstrap enable, enable inputs and
enable outputs commands to each device. A subsystem
BUSY signal can be derived by OR-ing the BUSY signals
from each individual device. Refer to Figure 2-39.

Internal Clock Specification

The internal ring oscillator is a clock source with possible
frequencies ranging from 1 OMHz to 40Mhz. This variation is
expected and does not present a problem for proper charge
pump or configuration operation. The internal configuration
clock is derived by dividing the oscillator frequency by 8. The
internal configuration clock can be used for user mode
operation and is presented on the CLK pin when MODE[2] is
low.

Figure 2-35. Internal Oscillator and Clock Specification

Num Characteristic Min Typ Max Unit

26 Ring Oscillator Low 10 25 50 ns

27 Ring Oscillator High 10 25 50 ns

28 Ring Oscillator Period 25 50 100 ns

29 Internal Config Clock Period 200 400 800 ns

~~.,'! ~~"=================M=O=T=O=R=O=LA==M=PA==D=AT=A=-==D=L2=0=1=R=EV==2=============================
2-28

Write Disable and Reset
Write 00000001 b to the Func
tion Register (RS=O) (Boot
strap off, internal oscillator on,
user inputs disabled, user out
puts disabled, initiate Reset
Device)

Write Load Configuration
Write 00000010b to the
Function Register (RS=O)
(Load Configuration)

Wrtte Data Byte
Write data byte to the Data
Register (RS=1)

Enable the Device
Write 1011 OOOOb to the
Function Register (RS=O)
(Enables user input, boot
strap voltage and user out
puts)

Busy? - There are two different ways
Busy can be checked. The first is to
examine the state of the physical
BUSY signal. The second is to read
the contents of the Data/Status Regis
ter (RS=1)

Note-The designer has a fairnumber
of options with regards to what code to
put in this "Status"test block. The code
may simply check that neither busy
nor any error flags have been set and
move on (this is what is shown) or the
code may be optimized for higher
speed.

To decrease the total load time, you
might want to only check for busy at
the end of the every row of data.
(When counting bytes to keep track of
where you are in the load, remember
that the first row has an additional 5
data bytes, the first four are JTAG ID
and the next is the Data Type tag.)

I ff or some reason you also shut off the
internal oscillator during this boot pro
cess, this would be the time to turn It
back on (preferably prior to enabling
the bootstrap; the oscillator drives the
charge pump that provides bootstrap
voltage). Start up time for the oscillator
is not greater than 1 OOµs.

Figure 2-36. MICRO Mode Configuration Load
Sequence Example

External Clock Specification

To improve configuration performance an external clock
can be connected to the CLK pin when MODE[2] is asserted.
The specifications for this clock are given in Figure 2-37.

The maximum external clock frequency is 40MHz. At this
frequency, boot time in the BFR modes will decrease by a
factor between 8 and 32 times.

MPA 1000 Product Description

CLK

Figure 2-37. External Clock Specification

Num Characteristic Min Max Unit

30 External Clock Low 10 ns

31 External Clock High 10 ns

32 External Clock Period 25 ns

Power On Reset Operation

The MPA 1000 devices contain circuitry to insure reliable
self configuration when power is applied to the device. An
counter clocked by the internal configuration clock and
triggered by an analog power on reset circuit delays
configuration until the power supply has been given sufficient
settling time (Figure 2-40). ·

The analog power on reset circuit provides a reliable signal
(APOR) to indicate that Voo is sufficient to reliably operate
device logic. While APOR is low a 17 bit counter is held
reset. When APOR is asserted, the counter is enabled and
POR occurs when the most significant counter bit reaches 1 .
Between APOR assertion and POR, the configuration
circuitry is continuously resetting configuration memory row
by row. When POR is asserted, a final internal reset
sequence is performed (Figure 2-40). If an external clock is
selected (by asserting MODE[2]) this final internal reset
sequence will begin four internal clocks after POR, and will
run using the external clock.

(Stage 1)

Analog
Power-011-
Reset Pulse

(Stage 2)
r----,

Delay/Counter Chain I I
I Internal I
I Ring I
I Oscillator I

I
lnternal_Clk 1.., ____ .J

POR

Figure 2-38. 2-Stage Power-On-Reset

External Reset

An external reset sequence can only be initiated by a
falling edge on RESET. If an external clock is selected (by
asserting MODE[2]), it must be active in order for the reset
sequence to complete successfully. Once a reset sequence
is initiated it cannot be terminated by a subsequent rising
edge of RESET.

If RESET is low when the internal reset sequence
completes, configuration will not commence until RESET is
deasserted (Figure 2-41). This feature can be used to hold
off configuration until other external events occur. This

========ri&ll
MOTOROLA MPA DATA- DL201 REV 2 ~

2-29

[}]

MPA1000 Product Description

feature is u11ed in conjunction with the multiple device daisy
chain. Figure 2-42 shows RESET effect on other

configuration mode, internal reset and internal configuration
signals.

s~_rstc::>---------.... ------------.
S~_CLK c::>---"-----------------+---.

Busy

A[19:1] cs cs

Ready RS'i' RS'i'
OLK MPA OLK MPA

MEMW WR #1 WR #2
MEMR RD RD

A[O] RS RS

D[7:0] OATA[7:0] DATA[7:0]

Figure 2-39. MICRO Mode: Multiple Device$ With External Clock and Wait State Insertion

SUPPLY

INTERNAL_ OLK
---"lJlJlJlJlJlJlJ1 " -

APOR

POR ~-=-I· ~___,_®_·J---,----_-~·I j
L. CONTINUOUSLYSEQUENCETHRUROW .. J__ FINALRESET r ADDRESSES ANO WRITE O's TO ADDRESSED ROW --r- SEQUENCE

Figure 2-40. PQwer-On-Reset Circuitry Timing

Number Characteristic Min Max Unit Notes

33 APOR 10 1000 µs

34 POR (Active) 13.2 52.4 ms

~~.,ti (Clic•==================M=o=r=o=R=O=LA==M=P=A=D=A=TA==-=o=L2==01=R=E=.v=2===============================
2--30

CLK lIUlflJUlflJUl _ -
1.

RESET~--

~ r-l~----

MPA 1000 Product Description

1-- INT. RESETSEQUE~C_'.' -=::fl-------------------
------------ --_Jl• CONFIGURATION SEQUENCE •I

2.

RESET I
~ -~n.....___
I RSE I l--1NT.RESETSEQUE~C: ~ - - -----------------

@I]
!_ ------.fl CONFIGURATION SEQUENCE •I

__ r--___ ~E~ICEINACTIVE ~ !.'"---------

~ = Reset Sequence Initiate l RSE l = Reset Sequence End @I] = Configuration Sequence Initiate

Figure 2-41. External Reset Behavior

===============================M=O=T=o=Ro==LA=M==PA==o~=~=A=-==o=L2=0=1=R=E=v=2========================~~
2-31

[2J

MPA 1000 Product Description

CLK

RESET

ENABLE_USER_INPUTS
ENABLE._ USER_ OUTPUTS
ENABLE_BOOTSTRAP

~

~

@]

BER MODE SIGNALS @
END

ERR @

MICRO Mode SIGNALS

BUSY

~ =Reset Sequence Initiate

~ = Reset Sequence End

@] = Configuration Sequence lnttiate

Figure 2-42. External Reset Timing

Number Characteristic Min Max Unit Notes

35 RESET Low to Reset Sequence 2 3 CLK

36 RESET Low to END Low 0 3 CLK

37 RESET Low to ERR High 0 3 CLK

38 RESET Pulse Width 50 ns

39 RESET Low to Internal Disable 0 3 CLK

40 RESET Low to Busy Active 0 3 CLK

41 RESET High to CSI Pulse 2 CLK RESET Released After RSE

42 RESET High to Busy Inactive 2 CLK RESET Released After RSE

In MICRO Mode, the busy signal remains high while the reset signal is asserted and until the internal reset sequence is completed.

~~.,'! ~~==================M=o=r=o=R=O=LA==M=P=A=D=A=TA=~==D=L2=0=1=R=E=v=2===============================
2-32

MPA 1000 Product Description

MPA 1000 Configuration Data Format

Device Configuration Memory Organization

The MPA1000 devices are programmed by loading
configuration data into on chip configuration memory
constructed of SRAM cells. This memory is organized
differently from standard memory products. The configuration
SRAM is distributed throughout the MPA device. Data is read
and written to the device 1 row at a time via the internal row
data register (RDR). Individual rows are addressed via the
row address register (RAR). Each device has a different size
RDR and RAR (Figure 2-43). The configuration logic is
responsible for the control of these resources.

I I
f

BitO

DDDDDDDDDDDD • • •ODD~ Row o

DDDDDDDDDDDD•••DDDD

DDDDDDDDDDDD•••DDDD

DDDDDDDDDDDD•••DDDD

DDDDDDDDDDDD•••DDDD

DDDDDDDDDDDD•••DDDD

DDDDDDDDDDDD•••DDDD

Row Cata Register

f
Filler Bits Real Bits

Total
#Real Row

Device #Rows Bits #Filler #ECB Bits

1016 95 562 6 8 576

1036 139 828 4 8 840

1064 183 1090 6 8 1104

1100 227 1352 0 8 1360

Figure 2-43. Device Memory Organization

A complete configuration image includes the total row bits
shown in Figure 2-43, prefaced by the 5 byte header block.
The total configuration imange size is given in Table 2-10.

Table 2-10. Configuration Image Size

Device Total Bits Declmal Bytes Hex Bytes

1016 54,760 6,845 1ABD

1036 116,800 14,600 3908

1064 202,072 25,259 62AB

1100 308,760 38,595 96C3

Configuration logic writes data to the leftmost (most
significant) RDR byte and reads from the rightmost (least
significant) RDR byte. Each of these transfers occurs in 8 bit

increments. When serial data is presented, the bits are
accumulated into a byte before RDR transfer. Each
configuration logic RDR write operation first shifts the RDR
eight 8 bits and transfers the new byte into the leftmost RDR
byte position. Configuration read operations transfer the
rightmost RDR byte to the configuration logic and then shifts
RDR contents right 8 bits.

The RAR enables a single configuration memory row. MPA
configuration logic writes a row addresses into the RAR.
Subsequent read or write operations are performed between
the RDR and the RAR selected row in parallel.

Filler bits are used to round the RDR up to the nearest
byte boundary. The ECB is not part of the RDR. During
configuration a single row data vector is written to the RDR
and an ECB is calculated from the data written. The
calculated value is compared to the ECB contained in the
data vector. If a mismatch is detected, ERR is asserted and
the configuration process terminates. The ECB mechanism
prevents data write disturbances from causing unpredictable
device function.

Device Configuration Data Formats

When whole configurations are loaded into a device, the
first 40 bits contain a 32 bit device ID followed by an 8 bit
data type field. The device ID is the same as the JTAG
device ID described in "JTAG Boundary Scan". If an incorrect
ID is presented, ERR is asserted and configuration stops.
Device ID comparison prevents incompatible configurations
from causing unpredictable device behavior. The data type
field identifies subsequent data format. Recognized data
types are shown in Table 2-11.

Table2-11.

[7:3] [2] [1J [OJ Data Type

00000 0 Sequential data (Normal data)

00000 1 Test data - Multiple row access

00000 0 Unencrypted data

00000 1 Encrypted data - Not supported on
first product. Reserved for future
implementations

00000 0 Uncompressed data

00000 1 Compressed data - Not supported
on first product. Reserved for future
implementations

Header Block

Device ID [3J

Device ID [2J

Device ID [1J

Device ID [OJ I
OOOOOOOOb = Normal

..__ ___ D_at_a_T ... yp._e __ __. 00000001 b =Test

==========1riil"l
MOTOROLA MPA DATA- DL201 REV 2 ~

2-33

MPA 1000 Product Description

Two data. formats are supported; Normal data and test
data. Normal data is generated by the MPA Design System
and is the only data type users are expected to use. Test
data is a special format developed to aid device testing
where many very regular configuration patterns must be
rapidly loaded during production test. Test mode data only
results in a memory savings when many rows of
configuration memory contain identical information. Since
this is unlikely for real designs, test mode data offers little or
no benefit for reducing user configuration memory storage
requirements.

Normal data consists of a series of configuration memory
row images including filler bits and ECB. Each device has a
different number of bytes per row and a different number of
rows. A generalized normal data representation is shown in
Figure 2-44. Bytes are presented to the device from left to
right and from top-most row (row 0) to bottom-most row.
The ECB is calculated by summing the row data byte by
byte, complementing the carry and using this as the carry
into the next addition.

Data O (Row 0) Data 1 (Row 0) ECBO

Data O (Row 1) Data 1(Row1) ECB1

Data O (Row x) Data 1 (Row x) ECBx

Data 0 (Row y) Data 1 (Row y) ECBy

Figure 2-44. Configuration Data Block (Normal Data)

Test data format is similar to normal data except that a row
count and address list follows the ECB. The RDR is loaded
and the ECB calculated normally. Each address is written to
the RAR, a write cycle initiated to transfer the· RDR to the
addressed configuration memory row, the expected address
count is decremented and the next address is loaded until
the expected address count reaches zero. The next byte is
assumed to be the first byte of a new row data vector.
Configuration ends when a row address of 255 is presented.
Figure 2-45 shows the generalized test data format.

I DataO I Data 1 I

I Datao I Data 1 I

I ECB M I No: Rows Row A

RowB

Rowe

RowD

ECB N No. Rows RowE

RowF

RowG

Row255

(Row 255 =Configuration Terminating Byte)

Figure 2-45. Test Data Configuration

~~~ ~~===================M=O=T=O=R=O=LA==M=P=A==DA=~=A=-==D=L2==01==R=EV==2================================ 
2-34 



MPA 1000 Product Description 

MPA1000 JTAG Boundary Scan 

JTAG Boundary Scan Functions 

JTAG is a standardized boundary scan methodology used 
for board level testing to detect faults in package and board 
connections, as well as internal circuitry. The MPA 1000 
JTAG boundary scan cell is designed to meet the IEEE std. 
1149.1 for testability test of an integrated circuit. 

IEEE 1149.1 Architecture 

Figure 2-46 shows the general diagram of the IEEE 
1149.1 MPA1000 JTAG system. Its design is compatible to 
Motorola H4C and H4C+ family of arrays. The MPA1000 
JTAG design is hard wired. 

A more detailed description of the MPA1000 JTAG system 
can be found in Motorola Application Note AN1618/0 Using 
JTAG Boundary Scan with the Motorola MPA 1000 Family of 
FPGAs in Ch 4. on page 4-209. 

TAP 
CONTROLLER 

INSTRUCTION 
REGISTER 

TAP and 1/0 Periphery Signals 
The TAP (Test Access Port) consists of five externally 

accessible signals which are used to control and observe 
boundary scan data. These five pins; TCK, TMS, TOI, 
TRSTB, and TOO are multiplexed with normal signal pins. 
After JTAG testing, these pins can be programmed as 
normal 1/0 pins when MOOE[3] is deasserted. The test clock 
pin, TCK, is used to synchronize all JTAG functions. The 
TCK, TMS and TRSTB control the TAP controller. TOI is the 
test data input pin and TOO is the test data output pin. 

JTAG Control and Test Register 

The TAP Controller is a synchronous, 16-state machine, 
which selects the mode of operation for the test circuitry. An 
example of the operation of the TAP controller is shown in 
Figure 2-47 where the TAP controller is sequenced through 
most of its test states. 

BOUNDARY SCAN 
REGISTER 

DEVICE ID 
REGISTER 

BYPASS 
REGISTER 

MUX 
A 
B x c 
D 

SL 

ARRAY CORE 

110 PERIPHERY 

JTAG CLOCK AND 
CONTROL SIGNALS 

Figure 2-46. JTAG System 

=============================M=O=T=O=R=O=LA==M=PA==DA=T=A=-==DL=2=0=1=RE=V=2=========================~ 
2-35 



[2J 

MPA1000 Product Description 

TEST LOGIC RESET 

0 © 
R/I 

1 
SELECT-DR-SCAN SELECT-IA-SCAN 

© (j) 0 © 
1 1 

© ® 

© © 
@ = 'D'' STATE OF 

TAP CONTROLLER CD @ 
0 = LOGIC STATE OFTMS 

'O' = OFF/LOW 
"1" =ON/HIGH 

DR =DATA REGISTER 

IR =INSTRUCTION REGISTER © © 
UPDATE-DR 

© ® 

+ + + + + + + + + + + TRSTB 

STATE 

RB 

+ + 
+ + SHIR 

+ + UDIR 

+ + CKDR 

+ SHOR 

UDDR 

+ + SL 

+ + EN 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 

Figure 2-47. TAP Controller and Test Cycle 

~~.t'f ~~·==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=D=L2==01==RE=V=2============:::::================= 
2-36 



The Instruction Register is a 3-bit shift register, which 
permits an instruction to be shifted into the design to select 
the test to be performed. The Instruction Decode translates 
the instruction into separate control signals. Table 2-12 
shows the basic public instructions supported by Motorola's 
FPGA: 

Table 2-12. Basic Public Instructions 

Public Register 
12 11 lo Instruction Selected 

0 0 0 EXT EST Boundary Scan Cell 
0 0 1 INTEST Boundary Scan Cell 
0 1 0 SAMPLE Boundary Scan Cell 
1 0 0 IDCODE Device Register 
1 1 1 BYPASS Bypass Register 

• EXTEST (external test) is the boundary scan testthat checks 
board interconnections between integrated circuits(l.C.s). 

• INTEST (internal test) checks the logic internal to l.C.s. 

• SAMPLE test samples data at the 1/0 pins of an l.C. during 
normal operating mode. 

• IDCODE instruction outputs the identification code of the I .C. 

• BYPASS instruction redirects the test data from TOI directly 
to TDO, effectively removing the l.C. from the boundary scan 
chain. 

The Bypass Register is a single-bit shift register used to 
provide a shortest path between TOI and TOO. 

Table 2-13. Device Register ID Codes 

Bit Number Code Use 

0-11 Motorola Identification 
12-21 Array Identification 
22-27 Programmable Logic Products Identification 
28-31 Version Number 

MPA 1000 Product Description 

The Device Identification Register is a 32-bit register 
which holds a manufacturer's identity code, part number and 
version code. The bit assignment for the ID code is given in 
Table2-13. 

For example, for MPA1036 & MPA1064, the ID codes are 
listed as follows: 

Array ID code (Binary) 

MPA1016 00010011100100001110 000000011101 

MPA1036 00010011100100011110 000000011101 

MPA1064 0001 001110 0100110100 000000011101 

MPA1100 0001 001110 0101000000 000000011101 

Array Hex ID code Hex ID Code 
(Bit Order Reversed) 

MPA1016 1390E01D CB0507 BB 

MPA1036 1391E01D CB BS 07 BB 

MPA1064 13934010 CB C502 BB 

MPA1100 1394001D CB2500 BB 

The JTAG ID code can easily be located when viewing a 
configuration file with a text editor. The ID code is always the 
first four data bytes. The bit order reversed version of the 
code shows up in configuration images targeted to serial 
EPROMs. 

The Boundary Scan Register is the chain of JTAG 
boundary scan cells that are linked together to form a shift 
register around the periphery of the array. The test data 
enters the boundary scan register through the TDI pin, the 
rising edge of CKDR when SHOR is asserted, then is shifted 
around the array through each 1/0 cell in a counter clockwise 
direction, and finally exits through the TDO pin. Since each 
1/0 pin is designed as a bidirectional pin, a 2-bit shift register 
resides in each 1/0 cell, one for monitor either the input or 
output, and the other to monitor the enable pin of the 3-state 
output buffer. For every two clock cycles, the data shifts from 
one 1/0 site to the other. The boundary scan cell resides in 
every 1/0 site with the exception of TDI, TCK, TMS, TRSTB 
and TOO pins. 

=============:::=;riliil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2-37 



MPA1000 Product· Description 

MPA 1000 Pin Definitions 

Table 2-14. MPA1000 Package Pinout Compatibility 

Device FN Suffix DD Suffix DH Suffix DK Suffix 
84-Pin PLCC 128-Pln QFP 160-Pln QFP 208-Pln QFP 

MPA1016 • • 

MPA1036 • • • 

MPA1064 • • 

MPA1100 . 

Table 2-15. Pin Definitions 

Pin Definition 

5V lntVdd Internal array power (Voo) 

5V ExtVdd Pad driver power for I/Os programmed to 5V 

3V ExtVdd Pad driver power for I/Os programmed to 3V. If no I/Os are programmed to 3V, tie to 5V l:xt 
Vdd. If 3V I/Os are used, connect is a 3.0V or 3.3V supply. These pins must be :5 5V Ext Vdd. 

Ext Vss Pad driver vss 

lntVss Internal array Vss 

1/0 User 1/0 

l/OClk User 1/0 with optional clock input 

~~.,'/ ~i::::================M=O=T=O=R=O=LA==M=PA==DA=~=A=-==o=L2=0=1=RE=v=2============================== 
2-38 



108 

MPA 1000 Pin Assignments 

72 
Pinouts for MPA1016 

E 
Pin Location 

E 
Pin Location 

d FN Suffix DD Suffix d FN Suffix DD Suffix 
g 84--Pin 128-Pln 
e Pad Pad Type PLCC QFP 

g 84--Pin 128-Pln 
e Pad Pad Type PLCC QFP 

1 5V Int Vdd 1 37 Ext Vss 

2 Ext Vss 38 Ext Vss 33 

3 3V Ext Vdd 12 2 39 5V ExtVdd 

4 5V Ext Vdd 40 RESET 33 34 

5 Ext Vss 3 41 3V Ext Vdd 35 

L 6 1/0 (A16) 13 4 42 F[1] 34 36 

L 7 1/0 (A15) 14 5 8 43 l/O(A4) 35 37 

L 8 l/O(A14) 15 6 8 44 l/O(A3) 36 38 

L 9 l/O(A13) 16 7 8 45 1/0 (A2) 37 39 

L 10 1/0 (A12) 17 8 8 46 1/0(A1) 38 40 

11 5V Ext Vdd 8 47 l/O(AO) 39 41 

t.;~:::1 12 l/O(A11) 18 9 

f~I 
13 1/0 10 

14 1/0 (A10) 19 11 

15 1/0 12 

16 l/OClk 20 13 

48 5V ExtVdd 40 42 

i··· 49 1/0 43 

1·:1 l·] 50 1/0 44 

i~;· 
51 l/O(D7) 41 45 

52 110 46 

17 lntVss 21 14 

······~······· 
53 1/0 Clk 42 47 

L 18 l/OClk 22 15 54 5V lntVdd 43 48 

L 19 l/O(A9) 23 16 8 55 1/0 Clk 44 49 

L 20 1/0 (AS) 24 17 8 56 1/0 50 

L 21 1/0 18 8 57 1/0 51 

L 22 1/0 (A7) 25 19 8 58 1/0 (D6) 45 52 

23 Ext Vss 26 20 8 59 1/0 53 

I\} 24 1/0 21 

25 1/0 (A6) 27 22 

~i' 
26 1/0 23 

27 1/0 (A5) 28 24 

28 1/0 25 

60 Ext Vss 46 54 

1:;! 61 1/0 (D5) 47 55 

62 l/O(D4) 48 56 

1•:: 63 1/0 (D3) 49 57 

64 l/O(D2) 50 58 

29 F[4] 29 26 
····· 

65 l/O(D1) 51 59 

30 lntVss 27 66 MODE[O] 52 60 

31 F[3] 30 28 67 Ext Vss 61 

32 Ext Vss 68 MODE[1] 53 62 

33 F[2] 31 29 69 3V Ext Vdd 

34 5V Ext Vdd 30 70 5V Ext Vdd 63 

35 F[O] 32 31 71 Probe Pad NOT BONDED 

36 3V Ext Vdd 32 72 Ext Vss 66 

Shaded areas indicate Alternate 1/0 Zones. 

==================~~ MOTOROLA MPA DATA - DL201 REV 2 ~ 
2-39 



MPA 1000 Product Description 

Pinouts for MPA1016 (continued) 

E 
Pin Location Pin Location 

E 
d FN Suffix DD Suffix d FN Suffix DD Suffix 
g 84-Pin 128-Pin 
e Pad Pad Type PLCC QFP 

g 84-Pin 128-Pin 
e Pad Pad Type PLCC QFP 

73 5V ExtVdd 111 5V ExtVdd 75 98 

74 MODE[2] 54 67 112 3V ExtVdd 99 

75 5V lntVdd 113 Ext Vss 

76 MODE[3] 55 ea T 114 1/0 76 100 

77 Vpp T 115 1/0 77 101 

78 Clk 56 69 T 116 110 78 102 

79 3V Ext Vdd 57 70 T 117 1/0 79 103 

80 Ext Vss 71 T 118 1/0 80 104 

R 81 l/O(DCLK) 58 72 119 Ext Vss 105 

R 82 1/0 73 120 1/0 81 106 

R 83 1/0 (DO) 59 74 121 1/0 82 107 

R 84 1/0 75 122 1/0 83 108 

R 85 l/O(TDO) 60 76 123 1/0 109 

86 Ext Vss 77 124 l/OClk 84 110 

!.1:11 87 l/O(TDI) 61 78 125 5V Int Vdd 1 111 

88 1/0(TMS) 62 79 T 126 1/0Clk 2 112 

89 1/0 80 T 127 1/0 113 

90 1/0 (TRSTB) 63 81 T 128 1/0 3 114 

91 1/0 Clk 64 82 T 129 1/0 4 115 

92 lntVss 65 83 T 130 1/0 5 116 

R 93 l/OClk 66 84 131 5V Ext Vdd 117 

R 94 1/0 85 132 1/0 6 118 

R 95 1/0 67 86 133 1/0 7 119 

R 96 1/0 87 134 1/0 8 120 

R 97 1/0 68 88 135 1/0 9 121 

98 Ext Vss 89 136 1/0 (A17) 10 122 

~!.lill 99 1/0 (TCK) 69 90 137 Ext Vss 123 

fil!il 1°0 1/0 70 91 138 5V ExtVdd 124 

I"' 1/0 71 92 

102 1/0 72 93 

103 1/0 73 94 

139 Ext Vss 11 125 

140 3V Ext Vdd 126 

141 lntVss 127 

104 5V ExtVdd NC 64,65,128 

105 3V Ext Vdd 

106 Ext Vss 74 95 

107 5V ExtVdd 

108 5V lntVdd 96 

109 lntVss 97 

110 Ext Vss 

Shaded areas indicate Alternate 1/0 Zones. 

~~1'1 ~c:=================M=O=T=o=R=O=LA==M=PA==D=AT=A=-==o=L=20=1=R=E=v=2=============================== 
2-40 



Pinouts for MPA 1036 

Pin Location Pin Location 
E DD DH 
d FN Suffix Suffix Suffix HI Suffix 

E DD DH 
d FNSuffix· Suffix Suffix HI Suffix 

g 84-Pin 128-Pln 160-Pin 181-Pln g 84-Pln 128-Pin 160-Pin 181-Pin 
e Pad Pad Type PLCC QFP OFP PGA e Pad Pad "fYpe PLCC QFP OFP PGA 

1 5V Int Vdd 1 A2 L 37 1/0 21 9 M1 

2 Ext Vss VSSE Ji• 38 l/O(A6) 27 22 8 L2 

3 3V ExtVdd 12 2 40 A1 

4 5V ExtVdd VDDE t~.j 39 1/0 23 7 N1 

40 l/O(AS) 28 24 6 J3 

5 ExtVss 3 VSSE p~~ 41 1/0 2S s P1 

L 6 l/O(A16) 13 4 39 82 42 F[4] 29 26 4 K3 

L 7 1/0 38 C2 43 lntVss 27 VSSI 

L 8 l/O(A15) 14 5 37 D4 44 F[3] 30 28 3 M2 

L 9 1/0 36 81 4S Ext Vss VSSE 

L 10 l/O(A14) 15 6 35 C3 46 F[2] 31 29 2 L3 

11 5V ExtVdd VDDE 47 SV ExtVdd 30 VDDE 

~ 12 l/O(A13) 16 7 34 D3 48 F[O] 32 31 1 M3 

13 1/0 33 C1 49 3V ExtVdd 32 P2 

14 l/O(A12) 17 8 32 D2 so Ext Vss VSSE 

15 1/0 31 D1 S1 Ext Vss VSSE 

16 1/0(A11) 18 9 30 E3 S2 Ext Vss 33 VSSE 

17 Ext Vss 29 VSSE S3 5V ExtVdd VDDE 

L 18 1/0 10 28 F3 S4 RESET 33 34 160 R1 

L 19 l/O(A10) 19 11 27 E1 SS 3V ExtVdd 35 N2 

L 20 1/0 26 E2 S6 F[1] 34 36 1S9 R2 

L 21 1/0 12 2S F1 8 S7 l/O(A4) 3S 37 1S8 N3 

L 22 1/0Clk 20 13 24 G3 8 SB 1/0 1S7 R3 

23 SV lntVdd 23 G1 8 S9 1/0(A3) 36 38 1S6 N4 

24 lntVss 21 14 22 VSSI 8 60 1/0 1SS R4 

-~;·, 2S l/OClk 22 1S 21 G2 8 61 l/O(A2) 37 39 154 P3 

L-F. 26 1/0 20 F2 

27 1/0 19 H1 

28 l/O(A9) 23 16 18 H3 

29 1/0 17 H2 
~-·· 

62 Ext Vss 153 VSSE 

163 
1/0 152 NS 

64 l/O(A1) 38 40 1S1 RS 

6S 1/0 1SO P4 -
30 SV ExtVdd 16 VDDE 66 l/O(AO) 39 41 149 R6 

L 31 1/0(AB) 24 17 1S J1 67 1/0 148 N6 

L 32 1/0 18 14 J2 68 SV Ext Vdd 40 42 147 VDDE 

L 33 1/0(A7) 2S 19 13 K1 8 69 1/0 43 146 PS 

L 34 1/0 12 K2 8 70 1/0 44 14S R7 

L 35 1/0 11 L1 8 71 1/0(D7) 41 4S 144 N7 

36 Ext Vss 26 20 10 VSSE 8 72 1/0 46 143 RB 

Shaded areas indicate Alternate 1/0 Zones. 

=============================M=O=T=O=R=O=LA=M==PA=D=A=T=A=-=D=L2==01=R=E=V=2========================1~ 
2--41 



MPA 1000 Product Description 

Pinouts for MPA 1036 (continued) 

Pin Location Pin Location 
E DD DH 
d FN Suffix Suffix Suffix HI Suffix 

E DD DH 
d FN Suffix Suffix Suffix HI Suffix 

g 84-Pin 12&-Pln 160-Pln 181-Pin g 84-Pln 12&-Pln 16G-Pln 181-Pln 
e Pad Pad Type PLCC QFP QFP PGA e Pad Pad Type PLCC QFP QFP PGA 

B 73 l/OClk 42 47 142 NB R 109 llO(Oclk) 58 72 116 L14 

74 lntVss 14.1 VSSI R 110 110 73 115 M13 

75 5V ln!Vdd 43 4B 140 PS R 111 1/0(00) 59 74 114 M15 

76 l/OClk 44 49 139 PB R 112 110 75 113 N14 

n 1/0 50 13B P7 R 113 1/0 (Tdo) 60 76 112 K14 

7B 1/0 51 137 R9 114 ExtVss n 111 VSSE 

79 1/0(06) 45 52 136 pg 115 l/O(Tdi) 61 78 110 L15 

BO 1/0 53 135 R10 116 1/0 109 K13 

B1 Ext Vss 46 54 134 VSSE 117 1/0 10B K15 

B B2 1/0(05) 47. 55 133 R11 11B 110 (Tms) 62 79 107 M14 

B B3 1/0 132 N9 119 1/0 106 J15 

B B4 1/0(04) 4B 56 131 R12 120 5VExtVdd 105 VOOE 

B B5 1/0 130 P10 R 121 110 80 104 H14 

B BS 1/0(03) 49 57 129 P11 R 122 110 (Trstb) 63 B1 103 J13 

B7 5V ExtVdd VOOE R 123 1/0 102 H15 

BB 1/0 12B R13 R 124 1/0 101 J14 

B9 1/0(02) 50 5B 127 N10 R 125 l/OClk 64 B2 100 G14 

90 1/0 126 R14 126 lntVss 65 B3 99 VSSI 

91 110(01) 51 59 125 N11 127 5V lntVdd 9B G15 

92 110 124 P13 128 l/OClk 66 84 97 H13 

93 MOOE[O] 52 60 123 P12 129 1/0 85 96 F15 

94 Ex!Vss 61 VSSE 130 1/0 67 86 95 G13 

95 MOOE[1] 53 62 122 N12 131 110 B7 94 E15 

96 3V ExtVdd 121 P14 132 110 6B BB 93 F14 

97 5V ExtVdd 63 VOOE 133 ExtVss B9 92 VSSE 

9B Probe Pad NOTBONOEO R 134 110 (Tck) 59· 90 91 F13 

99 Ext Vss VSSE R 135 110 90 015 

100 Ext Vss 66 VSSE R 136 110 70 B9 E14 

101 5V ExtVdd VOOE R 137 1/0 91 BB C15 

102 MOOE[2] 54 67 120 M12 R 13B 110 71 B7 E13 

103 5Vln!Vdd R15 139 5VExtVdd VOOE 

104 MOOE[3] 55 68 119 N13 140 110 92 BS 013 

105 Vpp P15 141 110 72 BS 014 

106 Clk 56 69 118 L13 142 110 93 B4 C13 

107 3V ExtVdd 57 70 117 N15 143 1/0 B3 815 

108 ExtVss 71 VSSE 144 1/0 73 94 B2 012 

Shaded areas indicate Alternate 1/0 Zones. 

~~.,'/ ~~=================M=O=T=O=R=O=LA=M==PA=O=A=~=A=-=O=L2==01=R=E=V=2============================:=: 
2-42 



MPA1000 Product Description 

Pinouts for MPA1036 (continued) 

Pin Location 
E DD DH 
d FN Suffix Suffix Suffix HI Suffix 
g 84-Pin 128-Pin 160-Pin 181-Pin 
e Pad Pad Type PLCC QFP QFP PGA 

145 Ext Vss VSSE 

146 3V ExtVdd C12 

147 Ext Vss 74 95 B1 VSSE 

14B 5V ExtVdd VDDE 

149 5V Int Vdd 96 C14 

150 lntVss 97 VSSI 

151 Ext Vss VSSE 

152 5V ExtVdd 75 9B BO VDDE 

153 3V ExtVdd 99 A15 

154 Ext Vss 79 VSSE 

T 155 1/0 76 100 7B 814 

T 156 1/0 77 C11 

T 157 1/0 77 101 76 813 

T 15B 1/0 75 812 

T 159 1/0 7B 102 74 A14 

160 5V ExtVdd 73 VDDE 

161 1/0 79 103 72 A13 

162 1/0 71 C10 

~; 163 1/0 BO 70 A12 

164 1/0 104 69 811 

1 ');:'. 165 1/0 B1 6B A11 

166 Ext Vss 105 67 VSSE 

T 167 1/0 82 106 66 A10 

T 16B 1/0 107 65 810 

T 169 1/0 B3 10B 64 A9 

T 170 1/0 109 63 C9 

T 171 1/0Clk B4 110 62 8B 

172 5V lntVdd 1 111 61 89 

173 lntVss 60 VSSI 

174 l/OClk 2 112 59 CB 

175 1/0 113 5B AB 

1~·] 176 1/0 3 114 57 87 

177 1/0 115 56 A7 

I!~ 17B 1/0 4 116 55 C7 

179 5V ExtVdd 117 VDDE 

T 1BO 1/0 5 54 86 

Shaded areas indicate Alternate 1/0 Zones. 

Pin Location 
E DD DH 
d FNSuffix Suffix Suffix HI Suffix 
g 84-Pin 128-Pln 160-Pln 181-Pin 
e Pad Pad Type PLCC QFP QFP PGA 

T 1B1 1/0 11B 53 A6 

T 1B2 1/0 6 52 C6 

T 1B3 1/0 51 A5 

T 1B4 1/0 7 119 50 85 

1B5 Ext Vss 49 VSSE 

IT. 1B6 1/0 B 120 4B C5 

1.-r 1B7 1/0 47 A4 

kt 1BB 1/0 9 121 46 84 

1~~ 
1B9 1/0 45 A3 

190 1/0(A17) 10 122 44 C4 

191 Ext Vss 123 43 VSSE 

192 5V ExtVdd 124 42 VDDE 

193 Ext Vss 11 125 VSSE 

194 3V Ext Vdd 126 41 83 

195 lntVss 127 VSSI 

NC 64,65, E5 
12B 

181PGA NOTES: 
VSSE Plane: G12, E12, K12, 010, M10, G4, E4, K4, 06, M6 
VSSI Plane: EB, LB, H11, M11, H5, 05 
VDDE Plane: DB, MB, H12, F12, J12, L12, 09, M9, 011, H4, F4, M4, 

J4, L4, 07, M7, M5 

===:=:=:=:=:=:=:=:=:=:=::=::=:=:=M=O=T=O=R=O=LA:=:M=PA:=:D=AT=A=-===D=L=20=1=R=E=V=2:=::=::=::=::=::=:=::=::=::=::=::=::::i~ 
2-43 



Pinouts for MPA 1064 

E 
Pin Location 

E 
Pin Location 

d DH Suffix DK Suffix KE Suffix d DH Suffix DK Suffix KE Suffix 
g 160-Pln 208-Pln 224-Pin g 160-Pln 208-Pln 224-Pln 
e Pad Pad'!Ype QFP QFP PGA e Pad Pad'!Ype QFP QFP PGA 

1 5V lntVdd VOOI 37 1/0 32 L1 

2 ExtVss VSSE 38 l/O(A9) 18 33 J3 

3 3V ExtVdd 40 E4 39 1/0 34 L2 

4 5V ExtVdd VOOE 40 1/0 17 35 K3 

5 Ext Vss VSSE 41 1/0 36 M1 

L 6 l/O(A16) 39 1 C4 42 5V ExtVdd 16 37 VOOE 

L 7 1/0 2 82 L 43 l/O(A8) 15 38 N1 

L 8 1/0 3 04 L 44 1/0 14 39 K2 

L 9 1/0 38 4 C2 L 45 l/O(A7) 13 40 P1 

L 10 1/0 5 C3 L 46 1/0 12 41 L3 

11 ExtVss 6 VSSE L 47 1/0 11 42 N2 

12 l/O(A15) 37 7 03 48 ExtVss 10 43 VSSE 

13 1/0 8 81 49 110 9 44 R1 

14 1/0 36 9 02 50 l/O(A6) 8 45 M3 

15 1/0 10 C1 51 1/0 7 46 T1 

16 l/O(A14) 35 11 G4 52 l/O(A5) 6 47 L4 

17 5V Ext Vdd 12 VOOE 53 1/0 5 48 R2 

L 18 l/O(A13) 34 13 E3 54 F[4] 4 49 N3 

L 19 1/0 33 14 01 55 lntVss VSSI 

L 20 l/O(A12) 32 15 E2 56 F[3] 3 50 P2 

L 21 1/0 31 16 E1 57 ExtVss VSSE 

L 22 l/O(A11) 30 17 F3 58 F[2] 2 51 P3 

23 ExtVss 29 18 VSSE 59 5V ExtVdd VOOE 

24 1/0 28 19 G3 60 F[O] 1 52 P4 

25 l/O(A10) 27 20 F1 61 3V ExtVdd N4 

26 1/0 26 21 G2 62 ExtVss VSSE 

27 1/0 25 22 G1 63 ExtVss 53 VSSE 

28 l/OClk 24 23 J4 64 5V ExtVdd VOOE 

29 5V lntVdd 23 24 VOOI 65 RESET 160 54 R3 

30 lntVss 22 25 VSSI 66 3V ExtVdd 55 PS 

L 31 l/OClk 21 26 H1 67 F[1] 159 56 T2 

L 32 1/0 27 H3 8 68 l/O(A4) 158 57 R4 

L 33 1/0 20 28 J2 8 69 1/0 58 T3 

L 34 1/0 29 H2 8 70 1/0 157 59 P6 

L 35 1/0 19 30 K1 8 71 1/0 60 U2 

36 ExtVss 31 VSSE 8 72 l/O(A3) 156 61 T4 

Shaded areas indicate Alternate 1/0 Zones. 

~~.,'!- ~c==================M=O=T=O=R=O=LA==M=P=A=O=AT=A=-==o=L2=0=1=R=E=v=2=============================== 
2-44 



MPA 1000 Product Description 

Pinouts for MPA1064 (continued) 

E 
Pin Location 

E 
Pin Location 

d DH Suffix DK Suffix KE Suffix d DH Suffix DK Suffix KE Suffix 
g 16G-Pin 20&-Pin 224-Pin g 16G-Pin 20&-Pln 224-Pin 
e Pad Pad Type QFP QFP PGA e Pad Pad Type QFP QFP PGA 

73 Ext Vss VSSE B 109 1/0 126 96 T13 

'f 74 1/0 62 R5 110 Ext Vss 97 VSSE 

e 75 1/0 155 63 U3 B 111 1/0 98 U15 

'a' 76 110 64 T5 

;if 77 llO(A2) 154 65 U4 

·~. 7B 110 66 P7 

l'lll 112 l/O(D1) 125 99 R13 

~'. 
113 1/0 100 U16 

114 1/0 124 101 T14 

79 Ext Vss 153 67 VSSE r·~ 115 1/0 102 T15 

B BO 1/0 152 6B RB 116 MODE[O] 123 103 R14 

B B1 llO(A1) 151 69 U5 117 Ext Vss VSSE 

B B2 1/0 150 70 R7 11B MODE[1] 122 104 R15 

B B3 1/0 (AO) 149 71 U6 119 3V ExtVdd 121 P12 

B B4 110 14B 72 PB 120 5V ExtVdd VDDE 

B5 5V ExtVdd 147 73 VDDE 121 Probe Pad NOT BONDED 

~~ B6 110 146 74 T7 122 Ext Vss VSSE 

l?ii'Jl B7 1/0 145 75 U7 123 5V ExtVdd 105 VDDE 

BB l/O(D7) 144 76 RB 124 MODE[2] 120 106 T16 

B9 1/0 143 77 UB 125 5V lntVdd P13 

fc~ 90 l/OClk 142 7B TB 126 MODE[3] 119 107 T17 

91 lntVss 141 79 VSSI 127 Vpp P14 

92 5V Int Vdd 140 BO VDDI 12B Clk 11B 10B P16 

B 93 llOClk 139 B1 T9 129 3V ExtVdd 117 109 N14 

B 94 1/0 13B B2 R9 130 Ext Vss 110 VSSE 

B 95 1/0 137 B3 U10 R 131 l/O(DCLK) 116 111 R16 

B 96 1/0 (DB) 136 B4 R10 R 132 1/0 112 R17 

B 97 1/0 135 B5 T10 R 133 1/0 115 113 L14 

9B Ext Vss 134 B6 VSSE R 134 1/0 114 N16 

t~i:': 99 l/O(D5) 133 B7 U11 
>· 1.tf 100 1/0 132 88 P10 1:: l/O(D4) 131 89 T11 

110 130 90 R11 

103 l/O(D3) 129 91 U12 

104 5V ExtVdd VDDE 

B 105 110 128 92 U13 

R 135 1/0(DO) 114 115 P15 

136 ExtVss VSSE 

Im 
1/0 113 116 N15 

138 1/0 117 P17 

139 1/0 11B M15 

140 1/0 119 N17 

141 l/O(TDO) 112 120 L15 

B 106 110 93 P11 142 ExtVss 111 121 VSSE 

B 107 l/O(D2) 127 94 U14 R 143 llO(TDI) 110 122 L16 

B 108 110 95 R12 R 144 1/0 109 123 M17 

Shaded areas indicate Alternate 1/0 Zones. 

=========lriiil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2-45 



MPA 1000 Product Description 

Pinouts for MPA1064 (continued) 

E 
Pin Location 

E 
Pin Location 

d DH Suffix DK Suffix KE Suffix d DH Suffix DK Suffix KE Suffix 
g 160-Pin 208-Pin 224-Pin g 160-Pin 208-Pin 224-Pin 
e l>ad Pad Type QFP QFP PGA e Pad Pad Type QFP QFP PGA 

R 145 1/0 108 124 K15 181 Ext Vss 81 VSSE 

R 146 1/0 (TMS) 107 125 L17 182 5V ExtVdd VOOE 

R 147 1/0 106 126 K16 183 5V Int Vdd VODI 

148 5V ExtVdd 105 127 VDOE 184 lntVss VSSI 

149 1/0 104 128 J15 185 Ext Vss 157 VSSE 

150 l/O(TRSTB) 103 129 K17 186 5V Ext Vdd 80 VOOE 

151 1/0 102 130 J14 187 3V ExtVdd 158 013 

UIJ!iJ 152 1/0 101 131 J16 188 Ext Vss 79 VSSE 

l:i!ili 153 l/OClk 100 132 H16 T 189 1/0 159 C14 

154 lntVss 99 133 VSSI T 190 1/0 78 160 815 

155 5V lntVdd 98 134 VOOI T 191 1/0 161 012 

R 156 l/OClk 97 135 H17 T 192 1/0 77 162 A16 

R 157 1/0 96 136 H15 T 193 110 76 163 C13 

R 158 1/0 95 137 G17 194 Ext Vss 164 VSSE 

R 159 1/0 94 138 G16 195 1/0 165 813 

R 160 1/0 93 139 F17 196 1/0 75 166 814 

161 Ext Vss 92 140 VSSE 197 1/0 167 011 

162 1/0 141 E17 198 1/0 74 168 A15 

163 1/0 142 G15 199 1/0 169 C12 

164 l/O(TCK) 91 143 017 200 5V Ext Vdd 73 170 VOOE 

~1~!11 165 1/0 90 144 F15 T 201 1/0 72 171 C11 

ll~ll:t 166 1/0 89 145 C17 T 202 1/0 71 172 A14 

167 5V Ext Vdd 146 VOOE T 203 1/0 70 173 811 

R 168 1/0 88 147 E16 T 204 1/0 69 174 A13 

R 169 1/0 148 G14 T 205 1/0 68 175 C10 

R 170 1/0 87 149 016 206 Ext Vss 67 176 VSSE 

R 171 1/0 86 150 E15 207 1/0 66 177 810 

R 172 1/0 85 151 817 208 1/0 65 178 A12 

173 Ext Vss VSSE 209 1/0 64 179 C9 

I"' 
1/0 84 152 C16 

175 1/0 153 015 

176 1/0 83 154 816 

177 1/0 155 014 

210 1/0 63 180 A11 

211 1/0 Clk 62 181 09 

212 5V Int Vdd 61 182 VOOI 

213 lntVss 60 183 VSSI 

liil;\lJ!I 178 1/0 82 156 C15 T 214 l/OClk 59 184 A10 

179 Ext Vss VSSE T 215 1/0 58 185 89 

180 3V ExtVdd E14 T 216 1/0 57 186 AB 

Shaded areas indicate Alternate 1/0 Zones. 

~~"" ~~·=================M=O=T=O=R=O=LA==M=PA==OA=I=A=-==OL2==0=1=RE=V=2============================== 
2-46 



E 
d DH Suffix 
g 160-Pin 
e Pad Pad Type QFP 

T 217 1/0 56 

T 21B 1/0 55 

219 5V ExtVdd 

l+I 
220 1/0 54 

221 1/0 53 

ti~~I 222 1/0 52 

223 1/0 51 

l~I 224 1/0 50 

225 Ext Vss 49 

T 226 1/0 

T 227 1/0 4B 

T 22B 1/0 

T 229 1/0 47 

T 230 1/0 46 

231 Ext Vss 

~ 232 1/0 

MPA 1000 Product Description 

Pinouts for MPA1064 (continued) 

Pin Location 

DK Suffix KE Suffix 
208-Pin 224-Pin 

QFP PGA 

1B7 BB 

1BB A7 

1B9 VDDE 

190 87 

191 CB 

192 A6 

193 C7 

194 A5 

195 VSSE 

196 A4 

197 D7 

19B 85 

199 C6 

200 A3 

VSSE 

201 84 

E 
Pin Location 

d DH Suffix DK Suffix KE Suffix 
g 160-Pln 208-Pin 224-Pin 
e Pad Pad Type QFP QFP PGA 

1: 233 1/0 45 202 D6 

234 1/0 203 A2 

r 235 1/0 (A17) 44 204 C5 

t 236 1/0 205 83 

237 Ext Vss 43 VSSE 

23B 5V ExtVdd 42 VDDE 

239 Ext Vss 206 VSSE 

240 3V ExtVdd 41 207 D5 

241 lntVss 20B VSSI 

224 PGA NOTES: 
VSSl Plane: EB, E10, HS, J13, K5, N9 
VSSE Plane: A1, A9, A17, E7, E9, E11, F4, F14, H13,J1, JS, J17, K13, 

M4,M14,N7,N11,P9,U1,U9,U17 
VDDI Plane: DB, D10, K4, K14, NB 
VDDE Plane: 86, 812, F2, F16, H4, H14, M2, M16, N10, T6, T12 

Shaded areas indicate Alternate 1/0 Zones. 

==================~rlil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2-47 



Pinouts for MPA 1100 

145 

E 
Pin Location 

E 
Pin Location 

d DK Suffix HV Suffix d DK Suffix HV Suffix 
g 208-Pin 299-Pin g 208-Pin 299-Pin 
e Pad Pad Type QFP PGA e Pad Pad Type QFP PGA 

1 5V lntVdd VDDI 37 l/OClk 26 L3 

2 Ext Vss VSSE 38 1/0 27 L1 

3 3V Ext Vdd F5 39 1/0 28 L4 

4 5V Ext Vdd VDDE 40 1/0 29 L2 

5 Ext Vss VSSE jj:, 41 1/0 30 M2 

L 6 1/0 C2 42 Ext Vss 31 VSSE 

L 7 1/0 03 L 43 1/0 32 M3 

L 8 l/O(A16) 1 81 L 44 110 (A9) 33 M1 

L 9 1/0 E3 L 45 1/0 34 M4 

L 10 1/0 2 C1 L 46 1/0 35 N1 

11 Ext Vss VSSE L 47 1/0 36 N2 

12 1/0 3 01 48 5V ExtVdd 37 VDDE 

13 1/0 F3 49 l/O(A8) 38 N3 

r.'t 
14 1/0 4 E2 

15 1/0 G4 

50 110 39 P1 

51 110 (Al) 40 N4 

!l* 16 1/0 5 E1 :tll! 52 110 41 P2 

17 Ext Vss 6 VSSE iii!~ 53 1/0 42 P3 

L 18 l/O(A15) 7 F2 54 Ext Vss 43 VSSE 

L 19 1/0 8 H4 L 55 1/0 44 P4 

L 20 1/0 9 F1 L 56 1/0 R1 

L 21 1/0 10 H3 L 57 l/O(A6) 45 R3 

L 22 1/0(A14) 11 G2 L 58 110 R2 

23 5V Ext Vdd 12 VDDE L 59 110 46 R4 

24 l/O(A13) 13 G1 60 Ext Vss VSSE 

25 1/0 14 J4 

i:s:: 26 l/O(A12) 15 H2 

111~~1 27 
1/0 16 J3 

28 l/O(A11) 17 H1 

IJ~,~ 61 
110 T3 

62 l/O(A5) 47 T1 

63 110 T4 

64 110 48 T2 

29 Ext Vss 18 VSSE 65 1/0 U3 

L 30 1/0 19 J1 66 F[4] 49 U1 

L 31 l/O(A10) 20 K4 67 lntVss VSSI 

L 32 1/0 21 K2 68 F[3] 50 V1 

L 33 1/0 22 K3 69 Ext Vss VSSE 

L 34 1/0Clk 23 K1 70 F[2] 51 W1 

35 5V Int Vdd 24 VDDI 71 5V ExtVdd VDDE 

36 lntVss 25 VSSI 72 F[O] 52 V2 

Shaded areas indicate Alternate 1/0 Zones. 

~~.t'f ~c:::================M=O=T=O=R=O=LA=M=P=A=D=A=T=A=-=D=l=2=01=R=E=V=2============================== 
2-48 



MPA 1000 Product Description 

Pinouts for MPA1100 (continued) 

E 
Pin Location 

E 
Pin Location 

d DK Suffix HV Suffix d DK Suffix HV Suffix 
g 208-Pin 299-Pin g 208-Pin 299-Pin 
e Pad Pad Type QFP PGA e Pad Pad Type QFP PGA 

73 3V Ext Vdd RS 

74 Ext Vss VSSE [: 
111 l/OClk 81 V11 

112 1/0 82 Y11 

7S Ext Vss 53 VSSE 

76 SV Ext Vdd VDDE 

77 RESET S4 V3 

r~ 113 1/0 83 U11 

[8> 114 l/O(D6) 84 W11 

I$/ 11S 1/0 BS W12 

78 3V ExtVdd SS T6 116 Ext Vss 86 VSSE 

79 F[1] S6 us B 117 1/0 (DS) 87 V12 

B 80 1/0 W2 B 118 1/0 88 Y12 

B 81 1/0 vs B 119 1/0 (D4) 89 U12 

B 82 l/O(A4) S7 Y2 B 120 1/0 90 Y13 

B 83 1/0 V6 B 121 1/0 (D3) 91 W13 

B 84 1/0 S8 Y3 122 SV Ext Vdd VDDE 

BS Ext Vss VSSE 

a· 86 1/0 S9 Y4 f,:i;: 
123 1/0 92 V13 

124 1/0 93 Y14 

87 1/0 60 U7 ~i 12S 1/0 (D2) 94 U13 

88 1/0 WS 

1:. 89 1/0 (A3) 61 V7 

90 1/0 YS 

f":F 
126 1/0 9S W14 

127 1/0 96 V14 

128 Ext Vss 97 VSSE 

91 Ext Vss VSSE B 129 1/0 98 U14 

B 92 1/0 62 Y6 B 130 1/0 Y1S 

B 93 1/0 63 us B 131 l/O(D1) 99 V1S 

B 94 1/0 64 W7 B 132 1/0 Y16 

B 9S l/O(A2) 6S VB B 133 1/0 100 U1S 

B 96 1/0 66 Y7 134 Ext Vss VSSE 

97 Ext Vss 67 VSSE 

lal 98 1/0 68 WB 

~·: 13S 1/0 V16 

~··· 136 

1/0 101 Y17 

lti 99 l/O(A1) 69 U9 

~~ 
100 1/0 70 YB 

101 l/O(AO) 71 V9 

102 1/0 72 W9 

:i 137 1/0 V17 

138 1/0 102 Y18 

.~::1 139 1/0 V18 

140 MODE[O] 103 Y19 

103 SV Ext Vdd 73 VDDE 141 Ext Vss VSSE 

B 104 1/0 74 Y9 142 MODE[1] 104 W19 

B 10S 1/0 7S U10 143 3V ExtVdd T16 

B 106 l/O(D7) 76 W10 144 SV Ext Vdd VDDE 

B 107 1/0 77 V10 14S Probe Pad NOT BONDED 

B 108 1/0 Clk 78 Y10 146 Ext Vss VSSE 

109 lntVss 79 VSSI 147 SV Ext Vdd 10S VDDE 

110 SVlntVdd 80 VDDI 148 MODE[2] 106 V19 

Shaded areas indicate Alternate 1/0 Zones. 

======================~rjil 
MOTOROLA MPA DATA - DL201 REV 2 ~ 

2-49 



MPA 1000 Product Description 

Pinouts for MPA1100 (continued) 

E 
Pin location 

E 
Pin location 

d DK Suffix HV Suffix d DK Suffix HVSuffix 
g 208-Pin 299-Pin g 208-Pin 299-Pin 
e Pad Pad Type QFP PGA e Pad Pad Type QFP PGA 

149 5V Int Vdd U17 :~!ii 187 1/0 136 K18 

150 MOOE[3] 107 W20 ii§ti~ 188 1/0 137 K19 

151 Vpp U18 

152 Clk 108 V20 
v~i,~~ 189 1/0 138 K17 

l~!i 190 1/0 139 J20 

153 3V Ext Vdd 109 R16 191 Ext Vss 140 VSSE 

154 Ext Vss 110 VSSE R 192 1/0 141 H20 

R 155 1/0 T17 R 193 1/0 142 J18 

R 156 1/0 U20 R 194 l/O(TCK) 143 H19 

R 157 l/O(OCLK) 111 T18 R 195 1/0 144 J17 

R 158 1/0 T19 R 196 1/0 145 G20 

R 159 1/0 112 R17 197 5V Ext Vdd 146 VOOE 

160 Ext Vss VSSE 198 1/0 147 G19 

[/~j::J 161 

1/0 113 R18 

162 1/0 114 T20 

:i~:; 163 1/0 R19 

'(~ 
164 1/0(00) 115 R20 

165 1/0 P17 

199 1/0 148 H18 

200 1/0 149 F20 

1:~:!~ 201 1/0 150 H17 

""~'i 202 1/0 151 F19 

203 Ext Vss VSSE 

166 Ext Vss VSSE R 204 1/0 152 E20 

R 167 1/0 116 P18 R 205 1/0 G17 

R 168 1/0 117 P19 R 206 1/0 153 E19 

R 169 1/0 118 N17 R 207 1/0 F18 

R 170 1/0 119 P20 R 208 1/0 154 020 

R 171 l/O(TOO) 120 N18 209 Ext Vss VSSE 

172 Ext Vss 121 VSSE 210 1/0 155 C20 

li:~)i 173 l/O(TOI) 122 N19 

174 1/0 123 N20 

211 1/0 E18 

212 1/0 820 

175 1/0 124 M17 213 1/0 156 018 

1:~ 176 l/O(TMS) 125 M20 ji; 214 1/0 C19 

"''iii 177 1/0 126 M18 215 Ext Vss VSSE 

178 5V Ext Vdd 127 VOOE 216 3V Ext Vdd F16 

R 179 1/0 128 M19 217 Ext Vss VSSE 

R 180 l/O(TRSTB) 129 L19 218 5V Ext Vdd VOOE 

R 181 1/0 130 L17 219 5V Int Vdd VOOI 

R 182 1/0 131 L20 220 lntVss VSSI 

R 183 l/OClk 132 L18 221 Ext Vss 157 VSSE 

184 lntVss 133 VSSI 222 5V Ext Vdd VOOE 

185 5V Int Vdd 134 VOOI 223 3V Ext Vdd 158 E15 

!:~~ 186 l/OClk 135 K20 224 Ext Vss VSSE 

Shaded areas indicate Alternate 1/0 Zones. 

~~'1'1 ~c::=================M=O=T=O=R=O=LA==M=PA==O=AT=A=-==O=L=20=1=R=E=V=2=============================== 
2-50 



MPA 1000 Product Description 

Pinouts for MPA1100 (continued) 

E 
Pin Location 

E 
Pin Location 

d DK Suffix 
g 208-Pin 
e Pad Pad Type QFP 

T 225 110 

T 226 1/0 159 

T 227 1/0 

T 22S 1/0 160 

T 229 1/0 

230 Ext Vss 

I~ 
231 110 161 

232 1/0 

233 1/0 162 

T 234 1/0 

T 235 1/0 163 

236 Ext Vss 164 

T 237 1/0 165 

T 23S 1/0 166 

T 239 1/0 167 

T 240 1/0 168 

T 241 1/0 169 

242 5V ExtVdd 170 

IT 243 1/0 171 

IT 244 1/0 172 

t; 245 110 173 

246 1/0 174 

I.~. 247 1/0 175 

24S Ext Vss 176 

T 249 1/0 177 

T 250 1/0 178 

T 251 1/0 179 

T 252 1/0 1SO 

T 253 1/0 Clk 1S1 

254 5V Int Vdd 1S2 

255 lntVss 1S3 

i.l\ 256 1/0 Clk 1S4 

IJ 257 1/0 1S5 

25S 1/0 1S6 

I 259 1/0 1S7 

•"[ 260 1/0 18S 

261 5V ExtVdd 1S9 

Shaded areas indicate Alternate 1/0 Zones. 

HV Suffix 
299--Pin 

PGA 

C1S 

819 

C17 

A19 

C16 

VSSE 

015 

A1S 

C15 

A17 

014 

VSSE 

C14 

A16 

013 

A15 

C13 

VDDE 

813 

A14 

012 

A13 

C12 

VSSE 

812 

A12 

011 

A11 

C11 

VDDI 

VSSI 

A10 

C10 

810 

010 

A9 

VDDE 

d DK Suffix HV Suffix 
g 208-Pin 299-Pin 
e Pad Pad Type QFP PGA 

T 262 1/0 190 89 

T 263 1/0 191 C9 

T 264 1/0 192 AS 

T 265 1/0 193 09 

T 266 110 194 8S 

267 Ext Vss 195 VSSE 

Iii 
26S 1/0 196 A7 

269 110 197 cs 
270 1/0 19S 87 

1~1 
271 1/0 199 DS 

272 1/0 200 A6 

273 5V ExtVdd VDDE 

T 274 1/0 201 A5 

T 275 1/0 C7 

T 276 1/0 202 85 

T 277 1/0 C6 

T 27S 1/0 203 A4 

279 Ext Vss VSSE 

l~~:i 
280 1/0 A3 

2S1 1/0 (A17) 204 C5 

I 2S2 1/0 A2 

2S3 1/0 C3 

2S4 1/0 205 82 

2S5 Ext Vss VSSE 

2S6 5V Ext Vdd VDDE 

287 Ext Vss 206 VSSE 

288 3V ExtVdd 207 E6 

2S9 lntVss 20S VSSI 

299 PGA NOTES: 
VSSE Plane: A1, A20, 83, 86, 814, 816, 81S, C4, 02, 05, 07, 016, 

019, E4, ES, E13, E17, G3, G1S, H5, H16, J2, J19, N5, 
N16, T5, TS, T13, U2, U6, U16, U19, V4, W3, W16, W1S, 
Y1, Y20 

VSSI Plane: E10, E12, J16, K5, L16, M5, T10, T12 
VDDE Plane: 84, 811, 815, 817, 04, 06, 017, E5, E7, E14, E16, F4, 

F17,G5,G16, P5, P16, T7, T14, U4, W4, W6, W15, W17 
VDDI Plane: E9, E11, J5, K16, L5, M16, T9, T11 

=======================rjjnl 
MOTOROLA MPA DATA - DL201 REV 2 ~ 

2-51 



MPA1000 Product Description 

MPA 1000 Electrical Specifications 

Absolute Maximum Ratings• 

Symbol Parameter Min Max Unit 

vdd· Vddo DC Supply Voltage --0.5 6.5 v 

Yout DC Output Voltage --0.5 Yoo +0.5 v 

Yin DC Input Voltage -0.5 Yoo+ o.5 v 

I DC Current Drain per Pin, Any Single Input or Output 50 mA 

TA Operating Temperature Range (In Free Air) Commercial 0 70 'C 
Industrial -40 85 

Ts_tg_ Storage Temperature Range -65 150 'C 
Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating 

Conditions. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions 
be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. 

Recommended Operating Conditions 

Symbol Parameter Min Max Unit 

vdd DC Supply Voltage Commercial 4.75 5.25 v 
Industrial 4.50 5.50 

vddo Output Supply Voltage 5V Output Supply (5V ext) vdd vdd v 
3V Output Supply, No I/Os Programmed to 3V vdd vdd 

'\ 3V Output Supply, 1 or more I/Os Programmed to 3V 3.0 3.6 

V1H High Level Input Voltage TTL 2.0 Vdd v 
CMOS 70 100 %Vddo 

V1L Low Level Input Voltage TTL 0 0.8 v 
CMOS 0 20 %Vddo 

DC Electrical Characteristics - Inputs 

Symbol Parameter Min Max Unit 

V1H High Level Input Voltage TTL 2.0 vdd v 
CMOS 70 100 %Vddo 

V1L Low Level Input Voltage TTL 0 0.8 v 
CMOS 0 20 %Vddo 

l1N Input Leakage Current -10 10 µA 

loz 3-State Leakage Current -10 10 µA 

lpo Pad Pull-Down (When Selected) at Yin = V ddo 40 110 µA 

lpu Pad Pull-Up (When Selected) at Yin = OV 20 200 µA 

C1N Input Capacitance (Sample Tested) PGA Package 15 pF 
Plastic Packages 10 

DC Electrical Characteristics - Outputs (4.5 < 5 Ext Vdd < 5.5; -40'C <TA< +85'C; Vdd = 5V; 3.0 < 3V Ext Vdd < 3.6) - - - -

Symbol Parameter Min Max Unit 

VoH High Level Output Voltage DPLD_OPLEVEL=5V; DPLD_OPDRIVE=high; low6mA 2.4 v 
DPLD_OPLEVEL=5V; DPLD_OPDRIVE=low; loH=4mA 2.4 

DPLD_OPLEVEL=3V; DPLD_OPDRIVE=high; loH=6mA 2.1 
DPLD_OPLEVEL=3V; DPLD_OPDRIVE=low; loH=4mA 2.1 

(Note6.) DPLD_OPLEVEL=5V; DPLD_OPDRIVE=high; loH=44mA 2.2 

VOL High Level Output Voltage DPLD_OPLEVEL=5V; DPLD_OPDRIVE=high; loH~6mA 0.4 v 
DPLD_OPLEVEL=5V; DPLD_OPDRIVE=low; low-4mA 0.4 

DPLD_OPLEVEL=3V; DPLD_OPDRIVE=high; low-6mA 0.4 
DPLD_OPLEVEL=3V; DPLD_OPDRIVE=low; IOH=-4mA 0.4 

(Note 6.) DPLD_OPLEVEL=5V; DPLD_OPDRIVE=high; loH~95mA 1.4 

6. Not available on all family members. Please ask your sales representative for more mformat1on. 

~~""" ~~l==================M=O=T=O=R=O=LA==M=P=A=D=A=JA==-=D=L=2=01=R=E=V=2=============================== 
2-52 



M PA 1000 Product Description 

MPA1000 Primary Clock Characteristics 

Symbol Parameter Min Typ 

Tckin Primary Clock Pad to Register Delay 5.6 

Tc ks Primary Clock Skew 

Tcwh Clock High Time 2.0 

Tcwl Clock Low Time 2.0 

MPA1000 JTAG Clock Characteristics 

Symbol Parameter Min Typ 

Shift Clock Frequency 

AC Characteristics (These are Maximum values based on worst case operating points for an MPA 1036.) 

Speed Grade 

Symbol Parameter 21 41 61 2 

Ten Core Cell AND (Note 7.) 1.1 1.3 1.4 1.0 

Tex Core Cell XOR (Note 7.) 1.7 2.0 2.2 1.6 

Tip Input Pad Delay 2.7 3.1 3.5 2.6 

Tii Local Interconnect (Note 8.) NEG NEG NEG NEG 

Tmb Medum Bus 0.8 0.9 1.0 

Tmbt Medium Bus Turn 2.1 2.4 2.7 

Tg Global Bus (Same Quadrant) 1.4 1.7 1.9 

Tgg Global Bus (Adjacent Quadrant) 3.3 3.8 4.3 

Txt X-Bus Turn 1.4 1.6 1.8 

Tpb Peripheral Bus (Generic) 6.2 7.2 8.1 

Tiwo Internal Wired-OR (Full Device) 8.1 9.5 10.6 

7. Includes routing. 
8. Value is negligible - value is lumped into core cell delays. 

Example Delay Paths (These are Maximum values based on worst case operating 
points for an MPA1036.) 

Speed Grade 

Path Parameter 21 41 61 2 4 6 Unit 

Path 1 Local 1.1 1.3 1.4 1.0 1.2 1.3 ns 

Path 2 Medium 1.9 2.2 2.4 1.8 2.1 2.3 ns 

Path 3 Medium Turn 3.1 3.6 4.0 3.0 3.5 3.8 ns 

Path 4 M-Port-M 3.0 3.5 3.9 2.9 3.4 3.7 ns 

Path 5 M-Xturn-M 6.1 7.1 7.7 5.9 6.6 7.4 ns 

Path 6 M-G-M 5.9 6.8 7.6 5.6 6.5 7.2 ns 

Path 7 M-G-IQ-G-M 7.6 8.8 9.8 7.2 8.3 9.3 ns 

Path 8 M-G-IQ--0-Xturn-G-IQ-G-M 14.4 16.8 18.8 13.8 15.8 17.8 ns 

M =Medium; G =Global; IQ= Inter-Quadrant Switch. All paths include 1 cell delay. Path is from cell input 
to next cell input. 

0.8 

2.0 

1.4 

3.2 

1.3 

5.9 

7.8 

4 

1.2 

1.8 

2.9 

NEG 

0.9 

2.2 

1.6 

3.6 

1.5 

6.7 

8.8 

Max Unit 

ns 

1.0 ns 

ns 

ns 

Max Unit 

16 MHz 

6 Unit 

1.3 ns 

2.1 ns 

3.3 ns 

NEG ns 

1.0 ns 

2.5 ns 

1.8 ns 

4.0 ns 

1.7 ns 

7.6 ns 

10.0 ns 

==================~fiil 
MOTOROLA MPA DATA - DL201 REV 2 ~ 

2-53 



MOTOROLA 
SEMICONDUCTOR TECHNICAL DATA 

MPA 17000 Serial EPROMs 
The MPA17128 and MPA1765 are serial OTP EPROMs. They provide a 

compact, low pin count, non-volatile configuration store for the MPA 1000 
devices. · 

MPA 17000 devices can be cascaded for increased memory capacity 
when needed. They are available in the standard 8-pin plastic DIP (P 
suffix), 8-pin SOIC (D suffix) and 2Q--pin PLCC (FN suffix) packages. 

• Configuration EPROM for MPA1000 Devices 

• Voltage Range - 4.5 to 6.0V 

• Maximum Read Current of 1 OmA 

• Standby Current of 10µA, Typical 

• Industry Standil.rd Synchronous Serial Interface 

• Full Static Operation 

• 1 OMHz Maximum Clock Rate at 5.0V 

• Programmable Polarity on Hardware Reset 

• Programs With Industry Standard Programmers 

• Electrostatic Discharge Protection > 2000 Volts 

• 8-Pin PDIP and SOIC; 20-Pin PLCC Packages 

• Commercial (Oto +70°C) and Industrial (-40 to +85°C) 

NC Vpp NC NC CEO 

NC 13 NC 

Vee 12 NC 

NC 
20-Lead Pinout 

NC (Top View) 11 

DATA 10 Vss 

NC 9 NC 

CLK NC RESET/ NC CE 
OE 

6197 

©Motorola, lnc.1997 2-54 

MPA17128 
MPA1765 

128K, 64K SERIAL EPROM 

PSUFFIX 
PLASTIC PACKAGE 

CASE626-05 

DSUFFIX 
PLASTIC SOIC PACKAGE 

CASE751-05 

FN SUFFIX 
PLCC PACKAGE 

CASE 775-02 

PIN NAMES 

Pins Function 

DATA Datal/O 
CLK Clock 
RESET/OE Reset Input and Output Enable 
CE Chip Enable Input 
Vss Ground 
CEO Chip Enable Output 
Vpp Programming Voltage Supply 
Vee +4.5 to 6.0V Power Supply 
NC Not Connected 

REV0.5 
®MOTOROLA 



MPA17128 MPA1765 

Table 2-16. MAXIMUM RATINGS* 

Parameter Value Unit 

Vee and Input Voltages W.R.T. Vss -6.0 to VDD + 0.6 v 

Vpp Voltage W.R.T. Vss During Programming -0.6 to +14.0 v 

Output Voltage W.R.T. Vss -o.6 to Vee+ o.6 v 

Storage Temperature Range -65 to +150 'C 

Ambient Temperature With Power Applied -65to+125 'C 

Soldering Temperature of Leads (10 Seconds) +300 'C 

ESD Protection on All Leads 2:2 kV 

NOTE: Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the 
Recommended Operating Conditions. 

Table 2-17. DC CHARACTERISTICS (Vee= 4.5 to 6.0V; Commercial (C) TA= 0 to +70°C; Industrial (I) TA= -40 to +85°C) 

Symbol Characteristic Min Max Unit Condition 

V1H Input Voltage High DATA, CE, CEO, Reset 2.0 Vee v 

V1L Input Voltage Low DATA, CE, CEO, Reset -0.3 0.8 v 

VoH Output Voltage High DATA, CE, CEO, Reset 3.86 v loH = -4rnA; Vee;:, 4.5V 
2.40 

VoL Output Voltage Low DATA, CE, CEO, Reset 0.32 v loL=4.0mA 

iu Input Leakage Current -10 10 µA V1N=0.1VtoVcc 

ILQ Output Leakage Current -10 10 µA VouT = o.1v to Vee 

C1NT Internal Capacitance (All Inputs/Outputs) 10 pF Vee= 5.ov (Note 1 ); 
TA = 25°C; fclk = 1 MHz 

ice Read Operating Current 10 mA Vee= 6.0V; CLK = 1 OMHz 

ices Standby Current 500 µA vcc=6.ov 

1. This parameter is initially characterized and not 100% tested. 

Applications Information 

DATA 

Three-state DATA output for reading and function as the 
input during programming. 

CLOCK 

Clock input. Used to increment the internal address and bit 
counters for reading and programing. 

RESET/OE 

Reset and Output Enable input. A Low level both the CE 
and RESET/OE inputs enables the data output driver. A High 
level on RESET/OE resets both the address and bit counters. 
In the MPA17128, the logic polarity of this input is 
programmable as either RESET/OE or OE/RESET. This 
document describes the pin as RESET/OE although the 
opposite polarity is also possible, this option is defined and set 
at device program time. 

Chip Enable input. Used for device selection. A Low level 
on both CE and OE enables the data output driver. A High 
level on CE disables both the address and bit counters and 
forces the device into a low power mode. 

Chip Enable Out output. This signal is asserted Low on the 
clock cycle following the last bit read from the memory. It will 
stay Low as long as CE and OE are both Low. It will then follow 
CE until OE goes High. Thereafter CEO will stay High until the 
entire PROM is read again. This pin also used to sense the 
status of RESET polarity when program mode is entered. 

Vpp 

Programming Voltage Supply. Used to enter programming 
mode (+10V) and to program the memory (+13V) Must be 
connected directly to Vee for normal Read operation. No 
overshoot above +15.5V permitted. 

===============================M=O=T=O=RO==LA=M==PA==DA=T=A=-==D=L=20=1=R=E=v=2==========================~ 
2-55 



MPA17128 MPA1765 

USING THE MPA17000 WITH MPA1000 DEVICES 

Connections between the MPA devices and the Serial 
EPROMs are: 

• The DATA output of the MPA 17000 drives DO (data in). 

• The CLK input of the MPA 17000 is driven by the data clock 
DCLK output. 

• MPA 17000s can be cascaded using the CEO output to drive 
the CE input of the next MPA 17000. 

• Fornormal Read operations Vpp must be connected to Vee. 

+5V 

BFR 

RESET RESET END 
___ _,__,.., PWRUP 
Optional: 

External Clock - - -~ CLK 

Do not leave Vpp open. 

The connections between an MPA device and an 
MPA17000 device are shown in Figure 2-48. The MPA D[O] 
line is connected to the MPA 17000 CLK. At power-up or upon 
reconfiguration, the MEMCE signal goes Low, enabling the 
MPA 17000 DATA output. During the configuration process, 
D[O] reads data from the MPA 17000 on every rising DCLK 
edge. The MEMCE signal goes High at the end of 
configuration and resets the internal address counters of the 
MPA17000. 

Optional: Additional 
MPA 1036 Devices r----, 

9 BFR I 
d RESET END 

I PWRUP I 
I I 
I DO 

M1 

MO 

M2 

M3 

+5V I DCLK 
L----..l 

Vee Vpp 

-=- DO DATA 

DCLK CLK 

MEMCE CE 

MPA1036 OE 

MPA17128 

Optional: 
Additional 
MPA17128 

Devices r---, 
I I 

DATA 

I CLK 

I 
I 
I 

C1 CE I 
OE I 

L---..l 

"33kQ 

Figure 2-48. MPA1036 Configuration Using MPA17128 Serial EPROM 

Cascading Serial Configuration PROMs 

Cascading MPA17000s provide additional memory for 
multiple MPA 1 OOOs or for MPA 1 OOOs requiring larger 
configuration memories. 

When the last bit from the first MPA 17000 is read, the next 
clock signal to the MPA 17000 asserts its CEO output Low and 
disables its DATA line. The second MPA 17000 recognizes the 
Low level on its CE input and enables its DATA output. (See 
Figure 2-48). 

Additional logic may be required if cascaded memories are 
so large that the rippled chip enable is not fast enough to 
activate successive M PA 17000s. 

STANDBY MODE 

The MPA17128 enters a low power standby mode 
whenever CE is High. In standby mode, the MPA17000 
consumes less than 500µA of current. The output will remain 
in a high impedance state regardless of the state of the OE 
input. 

PROGRAMMING MODE 

Programming mode is entered by holding Vpp High for at 
least two clock edges and is exited by removing power from 
the device or by a Low on both CE and OE. Figure 2-51 
through Figure 2-56 shows the programming algorithm. 

MPA17128 RESET POLARITY 

The MPA 17128 lets the user choose the reset polarity as 
either RESET/OE or OE/RESET. Any third-party commercial 
programmer should prompt the user for the desired reset 
polarity. 

The programming of the overflow word should be handled 
transparently by the PROM programmer; it is mentioned here 
as supplemental information only. 

The polarity is programmed into the first overflow word 
location, max address+ 1. 00000000 in these locations makes 
the reset active Low, FFFFFFFF in these locations makes the 
reset active High. The default condition is RESET active High. 

~~"I'! ~t:==================M=O=T=O=R=O=LA==M=PA==D=AT=A=-==o=L=20=1=R=E=v=2=============================== 
2-56 



MPA17128 MPA1765 

CE 

----TscE----~ 

RESET/OE -----+-----,. 

CLK 

ToE 

DATA 

ToH 

Figure 2-49. AC Characteristics Over Operating Conditions 

Table 2-18. AC OPERATING CONDITIONS 

Symbol Parameter 

ToE OE to Data Delay 

TcE CE to Data Delay 

TcAC CLK to Data Delay 

ToH Data Hold From OE, CE or CLK 

TDF OE or CE to Data Float Delay 

TLC CLK Low Time 

THC CLK High Time 

TscE CE Setup Time to CLK (To Guarantee Proper Counting) 

THCE CE Hold Time to CLK (To Guarantee Proper Counting) 

THOE OE High Time (Guarantees Counters are Reset) 

CLKmax Clock Frequency 

1 . Float delays are measured with minimum tester AC load and maximum DC load. 
2. Guarantee by design, not tested. 

MOTOROLA MPA DATA - DL201 REV 2 
2-57 

Limit 
4.5V :> V CC :> 6.0V 

Min Max Unit Condition 

45 ns 

50 ns 

60 ns 

0 ns 

50 ns Note 1 

25 ns Note 2 

25 ns Note 2 

25 ns 

0 ns Note 2 

20 ns Note 2 

10 MHz 



MPA17128 MPA1765 

RESET/OE 

CLK 

TcoF 

DATA FIRST BIT 

TocK TooE 

TocE 

Figure 2-50. 

Table 2-19. 

Limit 
4.5V,; Vee,; 6.0V 

Symbol Parameter Min Max Unit Condition 

TcDF CLK to Data Float Delay 50 ns 

TocK CLK to CEO Delay 40 ns 

TocE CE to CEO Delay 40 ns 

TooE RESET/OE to CEO Delay 40 ns 

~~'!'1 ~~=::=::=::=::=::=::=::=::=::M=O=T=O=R=O=LA=::M=P=A=D=AT=A=-==D=L=20=1=R=E=V=2=::=::=::=::=::=::=::=::=::=::=::=::=::=::=::= 
2-58 



MPA17128 MPA1765 

Table 2-20. PIN ASSIGNMENTS IN THE PROGRAMMING MODE 

Pin Name DIP PLCC VO Function 

DATA 1 2 1/0 The rising edge of the clock shifts a data word in or out of the PROM one bit at a time. 

CLK 2 4 I Clock input. Used to increment the internal address/word counter for reading and program· 
ming operation. 

RESET/OE 3 6 I The rising edge of CLK shifts a data word into the PROM when CE and OE are High; it shifts a 
data word out of the PROM when CE is Low and OE is High. The address/word counter is 
incremented on the rising edge of CLK while CE is held High and OE is held Low. Note: Any 
modified polarity of the RESET/OE pin is ignored in the programming mode. 

CE 4 8 I The rising edge of CLK shifts a data word into the PROM when CE and OE are High; it shifts a 
data word out of the PROM when CE is Low and OE is High. The address/word counter is 
incremented on the rising edge of CLK while CE is held High and OE is held Low. 

GND 5 10 - Ground pin. 

CEO 6 14 0 The polarity of the RESET/OE pin can be read by sensing the CEO pin. Note: The polarity of 
the RESET/OE pin is ignored while in the programming mode. In final verification, this pin 
must be monitored to go Low one clock cycle after the last data bit has been read. 

Vpp 7 17 - Programming Voltage Supply. Programming mode is entered by holding CE and OE High and 
Vpp at Vpp1 for two rising clock edges and then lowering Vpp to Vpp2 for one more rising clock 
edge. A word is programmed by strobing the device with Vppforthe duration TPGM Vpp must 
be tied to Vee for normal operation. 

Vee 8 20 - +5 V power supply input. 

Table 2-21. DC PROGRAMMING SPECIFICATIONS 

Limit 

Symbol Parameter Min Max Unit Condition 

Veep Supply Voltage During Programming 5.0 6.0 v 
V1L Input Voltage Low 0 0.5 v 
V1H Input Voltage High 2.4 Vee v 
VOL Output Voltage Low 0.4 v 
VoH Output Voltage High 3.7 v 
Vpp1 Programming Voltage 12.5 13.5 v Note 1 

Vpp2 Programming Mode Access Voltage Veep Veep+ 1 v 
lppp Supply Current in Programming Mode 100 mA 

IL Input or Output Leakage Current -10 10 µA 

VccL First Pass Supply Voltage Low for Final Verification 2.8 3.0 v 
VccH Second Pass Supply Voltage High for Final Verification 6.0 6.2 v 

1. No overshoot 1s permitted on this signal. Vpp must not be allowed to exceed Vpp1 max. 

======~riiil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2-59 



MPA17128 MPA1765 

Vee __) Veep 

Vpp 

I 

Vpp2 
I 
I 

Vpp i GND 
VeeP I 

Tsve 

Vee 
I I GND _, 1 ms ~ 

eLK ----~' CE I 
GND 

DATA 

RESET/OE 
GND 

eLK 

RESET/OE 
GND 

Figure 2-51. Enter Programming Mode Figure 2-52. Exit Programming Mode 

Table 2-22. AC PROGRAMMING SPECIFICATIONS 

Limit 

Symbol Parameter Min Max Unit Condition 

TRPP Rise Time of Vpp (10to90%) 50 ns 

TFPP Fall Time of Vpp (90to10%) 50 ns 

TPGM Vpp Programming Pulse Width 0.95 1.05 ms 

Tsvc Vpp Setup to CLK for Entering Programming Mode 100 ns 

THVC Vpp Hold from CLK for Entering Programming Mode 300 ns 

TsDP Data Setup to CLK for Programming 50 ns 

THDP Data Hold from CLK for Programming 0 ns 

Tscc CE Setup to CLK for Programming/Verifying 100 ns Note 1 

THCC CE Hold from CLK for Programming/Verifying 200 ns 

Tscv CE Setup to Vpp for Programming 100 ns 

THCV CE Hold from Vpp for Programming 50 ns 

Ts1c OE Setup to CLK for Incrementing Address Counter 100 ns 

THIC OE Hold from CLK for Incrementing Address Counter 0 ns 

TcAC CLK to Data Valid 400 ns 

ToH Data Hold from CLK 0 ns 7 

Tee CE Low to Data Valid 250 ns 

1. While in programming mode, CE should only be changed while CLK is High and has been High for 200ns. 

~~.,'{ ~~'==================M=o=r=o=R=O=LA==M=P=A=D=A=T=A=-=D=L2==0=1=R=Ev==2=============================== 
2-60 



Vee 

Vpp 

CLK 

ESETIOE 

Vpp 

CLK 

DATA 

RESET/OE 

MPA17128 MPA1765 

vcc=VccP 

1 ms 
PROGRAMMING 

PULSE 
VERIFY 

1ms Nx1ms 1ms Nx1ms 
PROGRAMMING OVERPROGRAMMING PROGRAMMING OVERPROGRAMMING 

PULSE PULSE PULSE PULSE 
(RETRY) VERIFY VERIFY 

HIGH IF RESET/OE CONFIGURED LOW IF RESET/OE CONFIGURED 

N = NUMBER OF ATIEMPTS REQUIRED TO PROGRAM THE DATA WORD 
'32CLOCKS 

Figure 2-53. Programming Cycle Overview 

Vpp1 

L
1 

READ CURRENT DEVICE WORD LOAD PROM INTERNAL __J TRPP ---1--- DATA LATCHES I 
I I 

Figure 2-54. Detalls of Read/ProgramNerify Cycle 

PROGRAM 
TFPP 

===========lri&il 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2--61 



MPA 17128 MPA 1765 

Vpp 

Vpp2 

CLK 

DATA 

RESET/OE 

Vp~1 T\, 
_....,.. ___________ ...,.. _________ _.,...,_, ~~,---~-

I I 

LAST BIT 

I ·------------1 
I 
I OVER-
1----- READ CURRENT DEVICE WORD ---.i.-- LOAD PROM INTERNAL ----.J-- PROGRAM 

DATA LATCHES PULSE 

Figure 2-55. Overprogramming Detail 

INCREMENT 
WORD 

COUNTER 

~~.,'! ~c:;::================M=O=T=o=R=O=LA=M=P=A=D=A=T=A=-=D=L2==01=R=E=v=2============================== 
2-62 



Increment Address 
Counter 

Start 

Enter Programming Mode 

1. Vee= Veep; Vpp = Vpp2; CE= OE= V1H 
2. Vpp = Vpp1 for 2 CLK Rising Edges 
3. Vpp = Vpp2 for 1 CLK Rising Edge 

No 

Device Passed 

Figure 2-56. MPA17128 Programming Spec 

MPA17128 MPA1765 

==============:jriilll 
MOTOROLA MPA DATA~ Dl201 REV 2 ~ 

2-63 



MOTOROLA 
SEMICONDUCTOR TECHNICAL DATA 

Advance Information 
MPA17000 Serial EEPROM 

The Mf'A 17C256 is an easy to use and cost effective serial configuration 
memory ideally suited for use with today's popular SRAM based FPGAs. 
The MPA17C256 is available in 8-pin PDIP and 20-pin SOIC and PLCC 
packages, adhering to industry standard pinouts. The device interfaces 
downstream FPGA(s) with a very simple enable, clock and data interface. 
The MPA17C256 is reprogrammable with no need for a higher 
programming "super voltage"; it may even be reprogrammed on board. The 
MPA17C256 also has user programmable RESET/OE polarity. 

• EE Programmable 262, 144 x 1 bit Serial Memories Designed to Store 
Configuration Programs for FPGAs 

• Simple Interface to SAAM FPGAs 

• Cascadable to Support Additional Configurations or Future Higher Density 
FPGAs 

• Low Power CMOS EEPROM Process 

• Programmable Reset Polarity 

• Available in Space Efficient 8-Pin PDIP, 20-Pin SOIC and 20-Pin PLCC 
Packages 

• In-System Programmable via 2-Wire Bus 

Controlling the MPA17C256 Serial EEPROM 

Most connections between the FPGA device and the Serial EEPROM 
are simple and self-explanatory: 

• The DATA output of the MPA 17C256 drives DIN of the FPGA devices 

• The master FPGA DCLK output drives the CLK input of the MPA 17C256 

• The CEO output of the first MPA 17C256 drives the CE input of the next 
MPA17C256 in a cascade chain of EEPROMs. 

• SER_EN must be connected to Vee 
• CE enables the chip and is required to enable the DATA output pin 

• RESET/OE is chip reset and is part of the DATA output enable structure 

MPA17C256 

PSUFFIX 
8-LEAD PLASTIC PACKAGE 

CASE626-05 

OW SUFFIX 
20-LEAD PLASTIC SOIC WIDE PACKAGE 

CASE 751 D--04 

• FNSUFFIX 
20-LEAD PLCC PACKAGE 

CASE 775--02 

PIN NAMES 

Pins Function 

DATA Datal/O 
CLK Clock 
RESET/OE Reset Input and Output Enable 
CE Chip Enable Input 

Vss Ground 
CEO Chip Enable Output 
SER_EN Programming Enable 

Vee +4.5 to 6.0V Power Supply 
NC Not Connected 

The simplest connection to a Motorola Programmable array (MPA) is shown below. In this configurations, the MEMCE output of 
the MPA enables the MPA17C256 and takes it out of reset. Shortly after, the first bit of configuration data will appear on DATA. 
Subsequent rising edges of DCLK bring out the next bits. For more complex connections, including cascading of EEPROMs and 
cascading of MPA devices, please consult the MPA databook (DL201/D). 

This document contains information on a new product. Specifications and information herein are subject to 
change without notice. 

6197 

© Motorola, Inc. 1997 2-64 REVO 
®MOTOROLA 



MPA17C256 

MODE[3:0] 
r::::>----------IRESET 
r::::>----------ICLK 
r::::>----------IPWRUP 
r::::>----------IBFR 

Optional FPGA 
Status LEDs 

r------, 
I I 

I ff ff I 
I I 
L _.J 

MPA17C256 MPA END l---''---t-----------1:>(! 
CLK 1------1 DCLK 

AST/OE MEMCE ERR 1----J...._---------f:>(l 
CE 

DATA[O]/ 
Data>------< USER 1/0 

Figure 2-57. BFR Mode 2: 1-Bit (Serial) Data, External Address, External Clock 

CLK RESET/OE 

Figure 2-58. Block Diagram 

Board Test 
Points 

===============lri&l 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2-65 



MPA17C256 

DATA 

RESET/OE 

CE 

0 

Figure 2-09. &-Lead DIP Pinout 

DATA 

NC 

CLK 

NC 

RESET/OE 

0 vcc 

NC 

NC 

SER_EN 

NC 

NC 

CEO 

NC 

NC 

NC 

Figure 2-eo. 20-Lead SOIC Pinout 

I~' NC en NC NC CEO 

NC NC 

VCC NC 

NC NC 

DATA GND 

NC NC 

CLK NC jgj NC CE 

Iii 
fil a: 

Figure 2-e1. 20-Lead PLCC Plnout 

~~.,'/' ~~·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==D=L=20=1=R=E=V=2=============================== 
2-66 



MPA17C256 

Table 2-23. PIN DESCRIPTIONS 

PLCC/ 
SOIC DIP Name 1/0 Description 

2 1 DATA 1/0 Three-State DATA output for reading. lnpul/Output pin for programming 

4 2 CLK I Clock Input. Rising edge used to increment the internal address and bit counter for read-
ing and programming 

6 3 RESET/OE I RESET/Output Enable input (when SER_EN is High). A Low level on both the CE and 
RESET/OE inputs enables the data output driver. A High level on RESET/OE resets both 
the address and bit counters. The logic polarity of this input is programmable as either 
RESET/OE or RESET/OE. This document describes the pin as RESET/OE. 

RESET Polarity I RESET Polarity Select Input. During programming, when CE is High, this input is used to 
Selected determine the polarity of the pin when SER_EN is High. 

WP I Write Protect (WP) input. When WP is Low, the entire memory can be written. When WP 
is enabled (High), the lowest 1 /4 of the memory cannot be written; i.e., 64K in 
MPA 17C256. Note that when WP is High, the chip will still acknowledge the receipt of 
data, but it will not write it into memory. 

8 4 CE I Chip Enable input. Used for device selection only when SER_EN is High. A Low level on 
both CE and OE enables the data output driver. A High level on CE disables both the 
address and bit counters and forces the device into a low power mode. Note this pin will 
not enable/disable the device in 2-wire Serial mode (i.e., when SER_EN is Low). 

During programming, and when CE is Low, the main array is read and written. When CE 
is High, the main array is deselected and a Serial WRITE operation will change the polar-
ity of the RESET pin. 

10 5 GND - Ground Pin 

14 6 CEO 0 Chip Enable Out output. This signal is asserted Low on the clock cycle following the last 
bit read from the memory. It will stay Low as long as CE and OE are both low. It will then 
follow CE until OE goes High. Thereafter, CEO will stay High until the entire PROM is 
read again and senses the status of RESET polarity. 

A2 I Device selection input, A2. Used to enable (select) the device during programming. When 
SER_EN is Low, this pin MUST be at either a logic level '1' or 'O' (i.e., not 3-state) and 
the A2 contents of the Device Address must match the condition of the pin for the device 
to be selected. 

17 7 SER_EN I Serial enable is normally high during FPGA loading operations. Bringing SER_EN Low, 
enables the two wire serial interface mode for programming. 

20 8 Vee - +5V Power Supply input 

Table 2-24. MAXIMUM RATINGS* 

Symbol Parameter Value Unit 

Vee DC Supply Voltage (Referenced to GND) -0.5to +7.0 v 
Voltage Applied to Output in High Output State -0.1 to Vcc+0.5V v 

TA Operating Temperature Range (In Free-Air) -55 to +125 "C 

Tsrn Storage Temperature Range -65 to +150 "C 

TsoL Maximum Soldering Temperature (10s@ 1/16in) 260 "C 

ESD RzAP = 1.5K, CzAP = 1 OOpF 2000 v 
•Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended 

Operating Conditions. 

Table 2-25. RECOMMENDED OPERATING CONDITIONS 

Symbol Parameter Min Max Unit 

Vee Supply Voltage Relative to Ground Commercial (-0 to +70°C) 4.75 5.25 v 
Industrial (-40 to +85°e) 4.50 5.50 

===============================M=O=T=O=RO==LA=M==PA==DA=T=A=-==D=L2=0=1=R=E=V=2========================~~ 
2-67 



MPA17C256 

Table 2-26. DC CHARACTERISTICS OVER OPERATING CONDITIONS 

Symbol Parameter Min Max Unit 

V1H High Level Input Voltage 2.0 Vee v 

V1L Low Level Input Voltage 0 0.8 v 

VoH High Level Output Voltage Commercial 3.86 v 
Industrial 3.76 

VOL Low Level Output Voltage Commercial 0.32 v 
Industrial 0.37 

iccA Supply Current, Active Mode 10 mA 

l1L Input/Output Leakage Current (Vin= Vee or GND) -10 10 µA 

ices Supply Current, Standby Mode Commercial 1 mA 
Industrial 2 

CE 

tsCE 
tsCE 

RESET/OE 

-tHOE 

CLK 

toF 

DATA 

Figure 2-62. AC Characteristics Over Operating Conditions 

Table 2-27. AC CHARACTERISTICS OVER OPERATING CONDITIONS (Note 1.) 

Com mare la I lndustrlal 

Symbol Parameter Min Max Min Max Unit 

toE OE to Data Delay 110 150 ns 

tcE CE to Data Delay 50 50 ns 

tcAC CLK to Data Delay 50 55 ns 

toH Data Hold from CE, OE, or CLK 0 0 ns 

toF CE or OE to Data Float Delay (Note 2.) 50 50 ns 

tLC CLKLowlime 30 35 ns 

tHC CLK High Time 30 35 ns 

ts CE CE Setup Time to CLK (To Guarantee Proper Counting) 45 50 ns 

tHCE CE Hold Time to CLK (To Guarantee Proper Counting) 0 5 ns 

tHOE OE High Time (Guarantees Counter Is Reset) 50 60 ns 

fmax Maximum Input Clock Frequency 10 10 MHz 

1. AC test load = 50pF. 
2. Float delays are measured with 5pF AC loads. Transition is measured ±SOOmV from steady state active levels. 

~~~ ~~1 ==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA==-=o=L2==01==RE=v=2=============================== 
2-68

MPA17C256

RESET/OE--------------------'!

CE ____________
1

FIRST BIT - -toCE

Figure 2-ea. AC Characteristics Over Operating Conditions When Cascading

Table 2-28. AC CHARACTERISTICS OVER OPERATING CONDITIONS WHEN CASCADING

Commercial Industrial

Symbol Parameter Min Max Min Max Unit

tcDF CLK to Data Float Delay 50 50 ns

to CK CLK to CEO Delay 65 75 ns

to CE CE to CEO Delay 55 60 ns

toOE RESET/OE to CEO Delay 55 55 ns

Table 2-29. DC CHARACTERISTICS (Vee = 5.0V ±5%)

Symbol Parameter Min Typ Max Unit Condition

Vee Supply Voltage 4.75 5.00 5.25 v

ice Supply Current 2.0 5.0 mA Vcc=5V

ILL Input Leakage Current 0.10 3.00 µA Vin= Vee or Vss

ILQ Output Leakage Current 0.05 3.00 µA Vout =Vee or Vss

V1H High Level Input Voltage Vccx0.7 vcc+o.5 v

V1L Low Level Input Voltage -0.5 0.4 v

VOL Output Low Level Voltage 0.4 v loL=3mA

Table 2-30. DC CHARACTERISTICS (Vee= 3.3V ±10%)

Symbol Parameter Min Typ Max Unit Condition

Vee Supply Voltage 3.0 3.3 3.6 v

ice Supply Current 2.0 3.0 mA Vcc=3.6V

ILL Input Leakage Current 0.10 3.00 µA Vin= Vee or Vss

ILQ Output Leakage Current 0.05 3.00 µA Vout =Vee or Vss

V1H High Level Input Voltage Vccx0.7 Vcc+o.5 v

V1L Low Level Input Voltage -0.5 0.2 v

VOL Output Low Level Voltage 0.4 v IOL=2.1mA

===============================M=O=TO==RO=L=A=M==PA=D=A=T=A=-==D=L2=0=1=R=E=V=2==========================1~
2-69

MPA17C256

Table 2-31. AC CHARACTERISTICS (Vee= 5.0V ±5%)

Symbol Parameter Min Max Unit

tciock Clock Frequency, Clock 400 kHz

!Low Clock Pulse Width Low 1.2 µs

!High Clock Pulse Width High 0.8 µs

IAA Clock Low to Data Out Valid 0.1 0.9 µs

taut lime the Bus Must Be Free Before a New Transmission Can Start 1.2 µs

IHST Start Hold lime 0.6 µs

tssT Start Setup lime 0.6 µs

IHDA Data In Hold lime 0 µs

ts DA Data In Setup lime 100 ns

tr Input Rise lime 0.3 µs

If Input Fall Time 300 ns

tssTP Stop Setup lime 0.6 µs

IDH Data Out Hold lime 50 ns

twR Write Cycle lime 10 ms

ILow IHigh

tssr 11 tso:--~h:STP
IHDA

,.-~~+-..1,-~~~-

''-+~..1-~~--I-'''-~~~

taut

IDH 1.-------

SCL

SDA_IN

SDA_OUT

Figure 2-64. Serial Data Timing Diagram

Table 2-32. AC CHARACTERISTICS (Vee= 3.3V ±10%)

Symbol Parameter Min Max Unit

tc1ock Clock Frequency, Clock 100 kHz

IL ow Clock Pulse Width Low 4.0 µs

!High Clock Pulse Width High 4.0 µs

IAA Clock Low to Data Out Valid 0.1 1.0 µs

IBuf lime the Bus Must Be Free Before a New Transmission Can Start 4.5 µs

IHST Start Hold lime 2.0 µs

tssT Start Setup Time 2.0 µs

IHDA Data In Hold lime 0 µs

ISDA Data In Setup lime 200 ns

Ir Input Rise lime 0.3 µs

If Input Fall lime 300 ns

tssTP Stop Setup lime 2.0 µs

~~.,'/ ~~·==================M=O=T=O=R=o=LA==M=P=A=D=A=TA==-=D=L2==01=R=e=v=2===============================
2-70

Table 2-32. AC CHARACTERISTICS (Vee = 3.3V ±10%)

Symbol Parameter

toH Data Out Hold Time

twR Write Cycle Time

Cascading Serial Configuration EEPROMs

For multiple FPGAs configured as a daisy--<:hain, or for
future FPGAs requiring larger configuration memories,
cascading MPA17C256s provides additional memory.

After the last bit from the first MPA 17C256 is read, the next
clock signal asserts its CEO output LOW and disables its
DATA line. The second MPA17C256 recognizes the LOW
level on its CE input and enables its DATA output.

Standby Mode

The MPA 17C256 enters a low power standby mode
whenever CE is asserted HIGH. In this mode, it consumes

MPA17C256

Min Max Unit

100 ns

20 ms

less than 1 .OmA of current. The output remains in a high
impedance state regardless of the state of the OE input.

MPA17C256 Reset Polarity

The MPA 17C256 lets the user choose the reset polarity as
either RESET/OE or RESET/OE.

Programming Mode

The programming mode is entered by bringing SER_EN
LOW. In this mode, the chip can be programmed by a 2-wire
interface. The programming is done at Vee supply only.
Programming (high) voltages are generated inside the chip.
For additional programming information, see the
Programmer's Guide section on page 2-71.

Programmer's Guide

Serial Bus Overview

The serial bus is a two wire bus; one wire (CLOCK)
functions as a clock and is provided by the programmer, the
second wire (DATA) is a bi-directional signal and is used to
provide data and control information.

Information is transmitted on the serial bus in messages.
Each MESSAGE is preceded by a START BIT and is ended
with a STOP BIT. The message consists of an integer number
of bytes, each byte consists of 8 bits of data and is followed by
a ninth ACKNOWLEDGE BIT. This ACKNOWLEDGE BIT is
provided by the recipient of the data, This is possible because
devices only drive DATA low, the system (in the programming
case the Programmer) provides a small pull-up current (1 k
Ohm equivalent) for the Data Pin.

The MESSAGE FORMAT consists of the bytes shown in
the Message Bytes table below. The MESSAGE FORMAT is
preceded by a start bit and ended by a stop bit.

The programmer provides all the bytes except for the data
bytes when the device is being read. Note that each byte is
individually acknowledged. This acknowledgment is provided
by the MPA 17C256 in all cases except for the data bytes in the
read mode, in which case the acknowledge is provided by the
programmer.

Bit Format

Data on the DATA pin may change only during CLOCK low
times.

Figure 2-65. Message Bytes

DEVICE
ADDRESS

1 ST ADDRESS 2ND ADDRESS
WORD WORD DATA BYTE(S)

Figure 2-66. Message Format

START DEVICE 1ST 2ND DATA
BIT ADDRESS ADDRESS ADDRESS

WORD WORD BYTE(S)

Start and Stop Bits

STOP
BIT

The START BIT is indicated by a high-to-low transition of
DATA when CLOCK is high. Similarly, the STOP BIT is
generated by a low-to-high transition of DATA when CLOCK
is high, as shown below.

Wordn -twR-
Start Stop

Condition Condition

Figure 2-67. Start and Stop Bits

Acknowledge Bit

The ACKNOWLEDGE BIT is shown in the above figure.
Note that the ACKNOWLEDGE BIT is provided by the device
receiving the byte. The receiving device can accept the byte,
by asserting a low value, on DATA or it can refuse the byte by
asserting (not driving the signal) a 1 on DATA. All bytes must
be terminated by either the ACKNOWLEDGE BIT or a STOP
BIT.

===========~ MOTOROLA MPA DATA- DL201 REV 2 ~
2-71

MPA17C256

Bit Ordering Protocol

The most significant bit is the first bit of a byte transmitted
on DATA tor the DEVICE ADDRESS ElYTE and the E:EPROM
ADDRESS BYTES. It is followed by the lesser significant bits
until the eighth bit, the least significant bit is transmitted. This
is followed by the acknowledge bit. However, tor DATA BYTES
(both writing and reading) the first bit transmitted is the least
significant bit. This protocol is shown in the tables below.

Device Address Byte

The contents of the Device Address Byte are shown below,
along with the order in which the bits are clocked into the
device. The A2 bit is provided to allow 2 devices to share a
common bus; when programming a single device, the A2. bit
must be forced to a logic 'O' or '1' level. It is recommended that
this pin be connected to OV using a 4.7K ohm resistor
pulldown

If Pl! iF})r::· =======::::::=M=o=T::O=R=o=LA=M=PA::::.=0A=:t=A=-=0L=2=0=1 =RE=v=2==================
2-72

Figure 2-68. Device Address Byte

MSB

1ST 2ND 3RD

Where: R/W = 1 Read
0 Write

A2 1 if CEO pin is at VCC
0 if CEO pin is at GROUND

EEPROM Address

4TH

The EE PROM address consists of two bytes, each of which
is followed by an acknowledge bit. These two bytes define a

Figure 2-69.

MSB LSB

1ST 2ND 3RD 4TH 5TH 6TH 7TH BTH

Data Byte

The organization of the Data Byte is shown below. Note that
in this case, the data byte is clocked into the device LSB first
and MSB last.

Writing

All writing takes place in pages. A page is 64-bytes long
and the page boundaries are addresses where A5-AO are all

Figure 2-70.

LSB

Do

1ST 2ND

A write action consists of
a Start Bit

D2

3RD

a Device Address with R/W = 0

4TH

An Acknowledge Bit From the device
First word of the Address

An Acknowledge Bit From the device
Second Word of the Address

An Acknowledge Bit From the device
One or more data bytes (sent to the device)

MPA17C256

LSB

Az

5TH 6TH 7TH BTH

15-bit address AE14 - AEO. The order in which each byte is 121
clocked into the device is also indicated. AE14 is MSB for ~
17C256.

MSB LSB

Ack

1 ST 2ND 3RD 4TH 5TH 6TH 7TH BTH

zero. Writing can start at any address within a page and the
number of bytes written must be 64. The first byte is written at
the transmitted address. The address is incremented in the
device following the receipt of each data word received, Only
the lower six bits of the address are incremented and if the
address is incremented after the 64th byte in the page is sent,
then the next byte to be written is the first byte of the page.

MSB

D5

5TH 6TH 7TH BTH

Each followed by an Acknowledge Bit From the device
a Stop Bit

WRITE POLLING: On receipt of the stop bit, the device
enters an internally timed write cycle. While the device is busy
with this write cycle it will not acknowledge any transfers. Thus
the programmer can start the next page write by sending the
Start Bit followed by the Device Address. If this is not
acknowledged, then the programmer should abandon the
transfer without asserting a stop bit. The programmer can then
repeat this until an acknowledge is received. When this is
received the write action can proceed, i.e., the next byte to be
sent is the device address.

Reading

Read operations are initiated the same way as write
operations with the exception that the RIW bit in the device
address is set to one. There are three read operations: current
address read, random read and sequential read.

CURRENT ADDRESS READ: The internal data word
address counter maintains the last address accessed during
the last read or write operation. incremented by one. This
address stays valid between operations as long as the chip

===============================M=O=T=O=R=O=LA=M==PA==DA=T=A=-==D=L2=0=1=R=E=V=2=.=========================~
2-73

MPA17C256

power is maintained and the device remains in 2-wire access
mode. If the last operation was a read at address n, then the
current address would be .n + 1. If the final operation was a
write at address n, then the current address would again be n
+ 1 with one exception. If address n was the 64th byte address
in the page, the incremented address n + 1 would "roll over" to
the first byte address on the next page.

Once the device address with the R/W select bit set is
clocked in and acknowledged by the device the current
address word is serially clocked out. The programmer does
not acknowledge the read but does generate a following stop
condition.

A current address read action consists of
a Start Bit
a Device Address with R/W = 1

An Acknowledge Bit From the device
a data byte from the device
a Stop Bit from the programmer

RANDOM READ: A random read requires a "dummy" byte
write sequence to load in the data word address. Once the
device address word and data word address are clocked in
and acknowledged by the device, the programmer must
generate another start condition. The programmer now
initiates a current address read by sending a device address
with the R/liii bit high. The device acknowledges the device
address and serially clocks out the data word. The
programmer does not acknowledge the read but does
generate a following stop condition.

A random address read action consists of
a Start Bit
a Device Address with R/W = 0

An Acknowledge Bit From the device
First Word of the Address

An Acknowledge Bit From the device
Second Word of the Address

An Acknowledge Bit From the device
a Start Bit
a Device Address with R/W = 1

An Acknowledge Bit From the device
a data byte from the device
a stop bit from the programmer

SEQUENTIAL READ: Sequential reads are initiated by
either a current address read or a random address read. After
the programmer receives a data word, it responds with an
acknowledge. As long as the device receives an
acknowledge, it will continue to increment the data word
address and serially clock out sequential data words. When
the memory address limit is reached, the data word address
will "roll over''. The sequential read operation is terminated
when the programmer does not respond with an acknowledge
but generates a stop condition.

Programming Pins

Eight pins are used to program the devices. These eight
pins, and their mapping to the package pins are shown in the
following table:

Table 2-33. Programming Pins

Pin 8-Pin Device 20-Pin Device

DATA 1 2

CLOCK 2 4

RESET/OE 3 6

CE 4 8

GROUND 5 10

A2(CEO) 6 14

SER_EN 7 17

Vee 8 20

Programmer Functions

The programmer needs to perform the following functions:

1. Check the Manufacturers Code and the
Device Code (Not necessary for In-System
Programming)

2. Program the device

3. Verify the device

4. Set the Reset Polarity option

In the order given above. They are performed in the following
manner.

Reading Manufacturers and Device Code

These two bytes are read from addresses O and 1,
respectively, by performing a "read' as specified in this spec,
with the following DC voltages set:

RESET/CE
CE

ov
11. 5 ± 0. sv

A2 (CEO) (Same as applied to A2 Pin,
usually OV)

SER_EN ov

The correct codes are (Note 1.)

Manufacturers Code - Byte
Device Code - Byte

lE
FF 17Cl28
7F 17C65
77 17C256

1. The Manufacturer's Code and Device Code are read using the
same byte ordering specified in the beginning of this document:
i.e., LSB first, MSB last.

Programming the Device

All the bytes in the device's 64-byte page must be written,
The order is not important but it is suggested that the device
be written sequentially from Byte 0. Writing is accomplished by
using the DATA and CLOCK pins and setting the other
programming pins as follows:

~~~ ~c·=================M=o=r=o=R=O=LA==M=PA=D=A=T=A=-==DL=2=0=1=RE=v=2============================== 
2-74 



RESET/CE 
CE 
A2 (CEO) 

SER EN 

Verifying the Device 

ov 
ov 
(Same as applied to A2 Pin, 
usually OV) 
av 

All bytes in the device must be read and compared to their 
intended values. Reading is done using the CLOCK and DATA 
pins with the other programming pins set to the same value as 
in programming: 

RESET/CE 
CE 
A2 (CEO) 

SER_EN 

av 
av 
(Same as applied to A2 Pin, 
usually OV) 
av 

MPA17C256 Setting the Polarity Option 

Setting the Polarity Option Active High 

Write a byte of data set to FF to address 3FFF, using the 
previously defined 2-wire write algorithm, with the other 
programming pins set to the following: 

RESET/CE 
CE 
A2 (CEO) 

SER_EN 

VCC ± a .25V 
VCC ± 0.25V 
(Same as applied to A2 Pin, 
usually OV) 
ov 

This will change RESET/OE pin functionality to RESET/OE, 
i.e., active high OE and active low RESET. 

Setting the Polarity Option Active Low: 

Write a byte of data set to FE to address 3FFF, using the 
previously defined 2-wire write algorithm, with the other 
programming pins set to the following: 

RESET/CE 
CE 
A2 (CEO) 

SER_EN 

av 
VCC ± 0.25V 
(Same as applied to A2 Pin, 
usually OV) 
av 

This will change RESET/OE functionality to RESET/OE i.e., 
active low OE and active high RESET (the default condition). 

MPA17C256 

After RESET polarity has been modified the MPA 17C256 
device must be powered down before the modified RESET 
polarity takes effect. 

Verifying the RESET/OE Polarity 

If a programmed (master) device is to be used as the 
source for the data to be programmed info some new devices, 
then the programmer can read the data from the master The 
polarity of the RESET/OE must be known before this can be 
done successfully for the MPA 17C256. Depending on the 
capabilities of the programming device, one of the following 
algorithms can be used to read the programmed polarity of the 
RESET/OE pin. 

1. It the programmer is able to sense a tn-state 
condition: 

Switch the power on with 

RESET/CE ov 
CE av 
A2 (CEO) Input to programmer (High Z) 
SER_EN vcc ± 0.25V 
CLOCK a 
INPUT Input to programmer 

In this condition, if the SDA pin is 3-stated then he 
RESET/OE fuse is active high: it the SDA pin reads a "O"or a 
"1'', then the RESET/OE fuse is active low. 

2. If the programmer is NOT able to sense a 3-state 
condition: 

Switch the power on with 

~SET/CE vcc ± a.25V 
CE av 
A2 (CEO) Input to programmer (High Z) 
SER_EN vcc ± a.25V 
CLOCK a 
INPUT Input to programmer 

Hold this configuration for twR time after Vee reaches 
nominal level. Then, set RESET/OE to low and pulse the clock 
262, 144 times for the MPA 17C256, reading the data provided 
at each clock pulse. After the last clock has been issued CEO 
should drop from high to low. If it does so then the polarity is 
RESET/OE (active low). If CEO remains high, then the polarity 
is RESET/OE (active high). In this latter case, none of the data 
read is reliable and it should be discarded. The procedure 
should be redone with RESET/OE = OV on power up and 
switched to Vee± 0.25V before starting the clock. The data 
read is now good data. 

================================M=O=T=O=R=O=L=A=M=P=A==D=AT=A=-==D=L=2=01==R=EV==2==========================1~ 
2-75 



MOTOROLA 
SEMICONDUCTOR TECHNICAL DATA 

MPA 1000 Design System Product Description 

Overview 

The Motorola Programmable Array (MPA) design system is a bridge between a design capture environment and Motorola field 
programmable arrays. The MPA design system automatically transforms designs into device configurations which, when loaded 
into an MPA device, realize a design. A design is automatically analyzed, optimized, transformed into MPA cells, partitioned, 
placed and routed based on timing constraints for every path in the design. MPA design tools understand and optimally utilize the 
MPA device architecture; this eliminates the need to learn a new set of rules and makes these tools ideally suited for use with 
logic synthesis. Full incremental design support reduces design implementation time and powerful library retargeting capabilities 
allow you to reuse designs which may have been implemented on less capable devices. The MPA design system operates on 
existing hardware platforms and supports design capture and simulation tools from more than 10 vendors. All these features plus 
on-line, hypermedia, help make the MPA design system a powerful yet extremely easy to use design implementation engine. 

Features 

• Push Button Implementation • Layout Delay extraction for post layout simulation 

• Optimal Use of MPA Device Resources • Layout viewer 

• Optimal Results with Gate Level Design Input • Incremental design support 

• Library of Common MSI Functions • On-line, hypermedia, documentation 

• Design Flow Manager • Supports all popular design capture and simulation tools 

• Design Retargeter • Lowest cost FPGA development systems. 

• Timing Driven with Integrated Static Timing Analysis • Instant access; Downloading via the internet (WWW, ftp). 

• Read Appropriate Rules File 
• Retarget to MPA Primitives 
• Macro Expansion 
• Design Optimization 
• Design Rule Checks 

Constraint Generation 
• Read User Constraints 
• Path Enumeration 
• Path Constraint Generation 

Timing Driven Autolayout 
• Partition Design Into Clusters 
• Assign Clusters to Zones 
• Global Place & Route 

~~.,'! ~t·==================M=O=T=O=R=O=LA==M=P=A=D=A=TA=-==D=L=2=01=R=E=V=2=============================== 
2-76 



MPA 1000 Design System Product Description 

Push Button Design Implementation 

The MPA design system minimizes training investment and 
automatically generates design implementations which meet 
timing constraints. 

The gate level logic and abundant hierarchical routing 
resources of the MPA device present a rich implementation 
media for design implementation. MPA design tools 
understand and optimally utilize the MPA device resources 
so there are no elaborate rules to learn or design 
modifications required to begin design capture. Staying 
focused on end product design rather than implementation 
tools or device architecture gets the design done faster and, 
unlike other programmable solutions, without programmable 
logic device specificity to impede future design migration 
efforts. The combination of automatic tools and gate level 
architecture is ideal for traditional schematic driven or high 
level language based design capture methods. In fact, logic 
synthesis tools were originally designed for and produce the 
most efficient results for targeting gate level devices. 

A design is analyzed, optimized, transformed into MPA 
cells, partitioned, placed and routed based on timing 
constraints for all paths in the design - automatically. A netlist 
from one of the popular design capture systems or an 
existing LPM netlist is imported into the MPA design system. 
The logic is mapped to a series of MPA cells and the entire 
resulting netlist is optimized and checked. Based on a simple 
clock specification, the MPA design system generates timing 
constraints for all paths in the design. During automatic 
partitioning, placement and routing path slack time is 
constantly redistributed insuring only the resources required 
to meet timing requirements are consumed. Because MPA 
tools implement the design according to constraints, tool 
induced design iterations are virtually eliminated. Completed 
layouts can be transformed into device configurations, as 
well as annotated simulation netlists. A layout browser is also 
available. 

The MPA design system also includes complete on-line, 
hypermedia, help covers the device, the design system and 
the integration kits. Integration kits for Viewlogic, Exemplar, 
Synopsys, VeriBest, Verilog-SDF, VITAL-SDF, VHDL (1076), 
Verilog (OVI) and OrCAD are included (contact your vendor 
for additional kits).All these features add up to a powerful yet 
extremely easy to use design implementation engine for the 
MPA product family. 

Design Importation 

Designs can be captured using schematics, a high level 
language, or a combination of these entry methods using 
commercially available design capture and logic synthesis 
software and the appropriate interface kit. Alternatively, 
existing designs can be retargeted from other programmable 
logic devices to the MPA device using commercial logic 
synthesis tools or the powerful retargetting capabilities 
provided with MPA design system. 

Design importation begins with a netlist and an optional 
clock specification file. The clock specification file provides a 
mechanism tor the user or design capture tools to document 
system level timing requirements. In addition, a rich set of 
attributes can be attached to specific components or nets 

within the design to specify timing and design pinout 
constraints. 

A retargetting rules file is read and the input netlist is 
transformed into a series of MPA cells and associated 
interconnections. Rules files provide a mechanism to perform 
attribute mapping, cell mapping and macro expansion. By 
creating custom rule files, the user can extend the 
importation process from arbitrary sources. The MPA design 
system comes with rules for it's native library/EDIF. The 
resulting netlist is optimized to clip unused logic and remove 
redundant logic. For example: each MPA cell has 
programmable input inversion capability. All Inverters or 
non-inverting buffers can be removed from the netlist and []] 
replaced with signal sense information attached to each 
input. 

A series of design rule checks are performed to insure 
design integrity before the layout process begins. 

Constraint Generation 

Timing constraints, the optimized MPA netlist and static 
timing analysis is used to generate path slack constraints for 
all paths in the design. Each unique signal pathway between 
a register output and a register input throughout the design 
are enumerated. The total logic and estimated or real wire 
delays along the path are summed. The time between the 
active upstream register clock edge and the next active 
downstream clock edge minus the downstream register 
setup time is subtracted from the total path delay. This 
difference is called path slack. If any path in the design has a 
negative slack value, the implementation will not function at 
the required clock rate(s). 

Path constraints are utilized throughout the layout process 
to insure that a design implementation which meets timing 
constraints is automatically generated. If no clock or timing 
specifications are provided, the MPA design system uses the 
fastest possible clock based on very small net delay 
estimates to generate the path constraints. This usually 
results in the best possible implementation, but may take 
longer than the time required to generate a satisfactory rather 
than best possible result. 

Contrast this to other programmable logic design tools 
which only provide manual net constraint annotation or net 
criticality assignment. In these cases significant effort is 
necessary to generate constraints and many costly iterations 
are required to tune these constraints for a given design. If 
any changes are made to the design, another costly round of 
iterations is required. 

Autolayout 

The autolayout process makes use of the hierarchical 
organization of the MPA device to minimize run time and 
deliver implementations that meet timing requirements. 
Designs which have diverse timing requirements are ideally 
implemented because path slack estimates are refined 
throughout the autolayout process insuring only the 
resources required to meet timing requirements are 
consumed. 

The process begins by flattening the design and 
partitioning it into small component groups of approximately 

====================r)il 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

2-77 



MPA 1000 Design System Product Description 

the same size called clusters. A cluster boundary delay 
estimation is applied to pull the most tightly constrained paths 
into a minimum number of clusters. The clusters are then 
assigned to zones talking into account zonal boundary delay 
cost and relative zone placement delay costs. Other costs 
like total number of port connections per zone and are also 
considered. As assignment proceeds, cluster and zone 
boundary delay costs are added to each path and slack is 
recomputed. 

Next global placement and routing is done. Global routes 
begin and end on either 1/0 cells or port cells. lntrazone 
placement and routing is deferred to a later phase. During 
global routing all the port cell and 1/0 cell locations are fixed 
and the connections between them established. High fanout 
nets are constructed in a highly regular manner to insure 
efficient resource utilization. As in partitioning, slack 
estimates are refined throughout global routing. 

Finally the intrazonal placement and routing is done. Cells 
assigned to a particular zone are placed and routed to other 
zone cells or zone port cells. Port cells and core cells are 
constructed to allow port swapping. Core cells can be routed 
through if necessary. Allowing core cells to act as routing 
cells allows dynamic adjustment of routing resources within 
the zone. Dynamic resource adjustment is a powerful design 
specific adaptation mechanism. 

This process produces a layout from which device 
configurations, delay back annotations, and chipviews can 
be generated. 

Incremental Design Support 

When specification changes necessitate design iterations, 
simply push the button again. Constraints are automatically 
recalculated and autolayout only reworks those portions of 
the design which have changed. Full incremental design 
support means simple design changes to facilitate design 
verification can be made quickly and easily. 

Delay Back Annotation 

Designs can be verified through numerous methods. One 
particularly useful method is the annotation of device and 
implementation specific delays back into the original 
simulation environment to improve system or device level 
simulation accuracy. A MPA device layout can be 
transformed into an appropriately formatted delay annotation 

file or annotated netlist quickly and easily. The annotated 
delay information represents the worst case delays for a 
given device speed grade. 

Chlpview 

While the MPA design system provides a rich set of reports 
describing the implementation of a design, a graphical view 
of the implementation can be indispensable for reviewing 
overall layout quality. Chipview provides a graphical view of a 
completed layout. Chipview can be useful during initial 
design iterations to visually verify 1/0 pin placements before 
commencing PCB layout, for example. 

Configuration 

A layout can be transformed into a device configuration 
which, when loaded into the appropriate MPA device, 
produces a physical design realization. Many formatting 
options are available. The MPA download pod can be used 
to emulate a serial PROM. Using the pod, device 
configuration files can be downloaded to a device directly 
from the PC or workstation development environment. 

Integration Kits 

The MPA design system can be used with a large number 
of commercial electronic design automation software. The 
Vendor Software List on page 2-79 shows the currently 
supported vendors and tools. For each supported vendor, an 
integration kit is provided which facilitates MPA design within 
that vendors' environment. Many of these kits are available 
from Motorola and included at no charge on the MPA design 
system CD-ROM. Other kits can be acquired directly from 
the vendor. Refer to the MPA Design System Product List for 
more information. 

Low Cost, Easy Access 

MPA Design systems are easy to use, competitively priced 
and widely available. Copies of MPA design system software 
supporting 1016 and 1036 can be downloaded from the 
World Wide Web (WWW) @ http://sps.motorola.com/fpga. 
Complete kits including download pod, evaluation board, 
MPA device, CD-ROM and documentation can be ordered 
from your local authorized Motorola distributor or Motorola 
sales representative (see Motorola Distributor and Worldwide 
Sales Office listings in Ch 5. on page 5-3). 

fMi, ~~I~ W~ H~ I-Ml~. 

T~'~ HPAI 

~~"" ~~"=================M=O=T=O=A=O=LA==M=P=A=D=AT=A=-==D=L2=0=1=R=EV==2============================= 
2-78 



MPA1000 Design System Product Description 

Vendor Software List 

Vendor Package, Revision Synthesis Schematic Simulation Timing Analysis 

Viewlogic Workview Office, 7.31 (7.4 Aug 97) 02-97 Yes Yes 03--97 

Viewlogic WorkviewOffice, 7.12 02-97 Yes Yes No 

Synopsys Design Compiler, 3.1 Yes Yes (Generated) Yes No 

Exemplar Galileo, 3.2.5 (4.1 Aug 97) Yes Yes (Generated) Yes No 

Exemplar Leonardo 4.0.3 (4.1 Aug 97) Yes Yes (Generated) Yes No 

Model Tech 3097 No No Yes Yes 

Datal/O Synario, 3.0 Yes Yes Yes No 

Cadence FPGA Designer, TBD No No Yes Yes 

OrCAD Capture, 7.0 No Yes Yes No 

OrCAD Express, TBD No Yes Yes No 

Protel Advanced Schematics, 3.23 No Yes No No 

VeriBest VeriBest, VB97 Yes Yes Yes No 

Mentor Graphics Design Architect, A3 02-97 02-97 02-97 02-97 

=============================M=O=T=O=R=O=LA==M=PA==DA=T=A=-==D=L2=0=1=RE=V=2========================~~ 
2-79 



MPA 1000 Design System Product Description 

Design System Product List 

Part 
Platform 

MPADS Supports Supports Eva I 
Number Description PC ws CD-ROM 1016/1036 All MPAs Board POD Maintenance S.R.P. 

MPA1E/P Entry Level x x x x x $295 
Kit 

MPA1E/W Entry Level x x x x x $595 
Kit 

MPA1S/P Standard x x x x x 1 Year $2,295 
Level Kit 

MPA1S/W Standard x x x x x 1 Year $3,995 
Level Kit 

MPA1CD/P Design Soft- x x x $12.95 
ware CD 

MPA1CD/W Design Soft- x x x $295 
ware CD 

MPA1/POD Download x x x x $195 
Pod 

MPA1/BRD Evaluation x x X(FN) x $145 
Board 

MPA1M12P Maintenance x 1 Year $595 

MPA1M12W Maintenance x 1 Year $795 

Motorola Programmable Design System Descriptions 

MPA1CD- Motorola Design System Software. Single CD-ROM containing MPADS software for both PC and 
workstation including MPA databook, application notes and all supported EDA vendor integration kits. MPA1CD/D 
is available from the Motorola Literature Distribution Center - Call 1-800-441-2447 or 303-675-2140. MPA 1 CD 
and software downloaded from our web site do not include maintenance. 

MPA1 E/P - PC Entry Kit. MPADS software with full support for MPA 1016 and MPA 1036 devices, download pod 
(MPA1/POD) and an evaluation board (MPA1/BRD), with an 84-pin MPA device, and a CD-ROM, at an attractive 
price. 

MPA1S/P- PC Standard Kit. MPADS software with support for all MPA devices, maintenance for 1 year, 
download pod (MPA1/POD) and evaluation board (MPA1/BRD). 

MPA1E/W-Workstation Entry Kit. MPA Entry kit for workstations - Sun OS V 4.1 (Now), HPUX V 8 (20/97). 

MPA1S/W-Workstation Standard Kit. MPA standard kit for workstations. 

MPA1/POD- Serial port download cable for both workstation and PC. Downloads configuration directly to a MPA 
device. 

MPA1/BRD- Evaluation board including EPROM socket and an MPA1000 device in the 84-pin PLCC package. 

MPA1 M12P, MPA1 M12W -1 year maintenance (Standard Level Kit includes 1 year of maintenance). 

~~"" (Cli~·=================M=O=T=O=R=O=L=A=M=P=A=D=AT=A=-==D=L2=0=1=R=EV==2============================= 
2--80 



MPA 1000 Design System Product Description 

Motorola Integrated Design System Packages for Windows '95/NT 

Kit Part Suggested 
Type Number Description Retail Price 

Basic MPA1WV/BSC • Schematic Entry & Simulation $749 
• MPA Design System Software (MPADS) for MPA1016, MPA1036 
• Note: Maintenance Is Not Included 

Basic Plus MPA1WV/BSCPL • Schematic Entry, Simulation & VHDL Editor/Compiler $1,049 
• MPA Design System Software (MPADS) for MPA1016, MPA1036 
• Note: Maintenance Is Not Included 

Standard MPA1WV/STD • Schematic Entry, Simulation & VHDL Editor/Compiler $3,149 
• MPA Design System Software (MPADS) for All MPA1000 Devices 
• One Year of Maintenance on All Software 
• Download Pod and Evaluation Board 

Deluxe MPA1WV/DLX • Schematic Entry, VHDL Editor/Compiler, Speedwave VHDL Simulator, $5,149 
Mixed Mode VHDUGate Level Simulator 

• MPA Design System Software (MPADS) for All MPA1000 Devices 
• One Year of Maintenance on All Software 
• Download Pod and Evaluation Board 

For additional information on Workview Office, visit the Viewlogic Web page at: http://www.viewlogic.com/products 

The Motorola Integrated Design System incorporates Viewlogic's Workview Office Tool Suite with Motorola's 
Programmable Array Design System (MPADS) providing an integrated, easy to use, complete design environment for 
MPA 1000 FPGAs. Support for other popular design capture and simulation tools, as well as stand-alone MPADS kits 
and accessories, are also available. 

The Motorola Integrated Design System includes: 

• Hierarchical Schematic Entry 

• Gate Level Simulation 

• Simulation Waveform Viewing 

• VHDL and Mixed Mode Simulation 

• VHDL Entry and VHDL Compilation 

• Schematic Generation 

• EDIF Netlist Writer 

• Design Optimization 

• Automatic, Timing Driven, Layout 

• Layout Viewing 

• Configuration Generation 

• Download Hardware and Demo Board 

A 30-day evaluation copy of the Integrated Design System with MPA 1016 and MPA 1036 support is available. Consult 
factory. 

================================M=O=T=O=R=O=L=A=M=P=A==D=AT=A=-==D=L=2=0=1=R=EV==2===========================~ 
2-81 



MPA1000 Design System Product Description 

~~.,ti ~c================MO=T=O=R=Q=LA=M=P=A=D=AT=A=-=D=L=2=01=R=E=V=2=========================== 
2-82 



Motorola Programmable Arrays 
Packaging, Quality & Reliability []] 



MOTOROLA 
SEMICONDUCTOR GENERAL INFORMATION 

MPA1000 Family 
Packaging & Case Information 

84-LEAD PLASTIC PLCC 
CASE 780A--01 

ISSUE A 
FN SUFFIX 

128-LEAD PLASTIC QFP 
CASE 862A--02 

ISSUE B 
OD SUFFIX 

160-LEAD PLASTIC QFP 
CASE 864A--03 

ISSUEC 
DH SUFFIX 

181-LEAD CERAMIC PGA 
CASE 768N--01 

ISSUEO 
HI SUFFIX 

PICTORIALS NOT TO SCALE 

208-LEAD PLASTIC QFP 
CASE 872A-01 

ISSUEO 
DK SUFFIX 

224-LEAD CERAMIC PGA 
CASE 860F-01 

ISSUEO 
KE SUFFIX 

256-LEAD PLASTIC BGA 
CASE 1208A--01 

ISSUEO 
BG SUFFIX 

299-LEAD CERAMIC PGA 
CASE 861 B-01 

ISSUEO 
HVSUFFIX 

~~.,ti m~•===============M=O=TO=R=O=LA==MP=A=D=M=A=-==DL=20=1=R=EV==2========================= 
3-2 



FNSUFFIX 
84-LEAD PLASTIC PLCC PACKAGE 

CASE 780A-01 
ISSUE A 

B 

Packaging & Case Information 

l$I o.18(0.007)@1rlN@-P@I L@-M@I 

u 
l$I o.10(0.007)@lrl N@-P®I L®-M®I 

D 

Z1 

I+------- A-------<~ 
l$I o.10(0.001)@lrl L@-M®I N®-P@I 

'""'------R~--------

1$1 o.10(0.007)@1rl L@-M@IN@-P@I 

i+------G1 

l$I o.25(0.01o)@lrl L®-M@I N@-P@I 

D 

E 

J + ~.100(0.004ll 
-T- SEATING 

PLANE 
DETAILS 

$ 0.18(0.007)@ T L@-M@ N@-P@ 

$ 0.18(0.007)@ T N@-P@ L@-M@ 

DETAILS 

x 
G1 

l$I 0.25(0.010)@ITIN@-P@I L@-M@I 

DETAILD-D 

NOTES: 
1. DATUMS-I.-, -M-, -N-, ANO -P- DETERMINED 

WHERE TOP OI' LEAD SHOULDER EXITS 
PACKAGE BODY AT GLASS PARTING LINE. 

2. DIMENSION G1, TRUE POSITION TO BE 
MEASUREQ AT OATUM-T-, SEATING PLANE. 

3. DIMENSIONS A ANO U DO NOT INCLUDE 
GLASS PROTRUSION. ALLOWABLE GLASS 
PROTRUSION IS 0.28 (0.010) PER SIDE. 

4. DIMENSIONING ANO TOLERANCING PER ANSI 
Y14.5M, 1982. 

5. CONTROLLING DIMENSION: INCH. 

INCHES lllWllETEAS 
DIM tiM: M4: :m :MA'x 
~ 1. 85 1.195 30.10 30.35 
_j_ 11 j.&;_ c-30:10 ~ 
~ 0.1 OJ.!!!_ 4.20 4.57 
_l 

_gj 1 
l.OJ.1.Q _ _m ~ 

F 0.021 0.33 0.53 
G WBSl: 
H 0.032 0.66 o:8i 
.l 0.51 

K 0. - _W -
...IL 1.1 1.156 29.21 29.36 
u 1.150 1.155 29.21 29A 
v 0.042 ~ 1.07 1.21 
w 0.042 ::9;048 1.07 1.21 
x 0.042 ~ 1.07 1.42 
y - ~ - ~ 

...1. _g_• 10° 2• 10° 
G1 1.fil 1J.i: 28.20 29:z1 
K1 ::_g;040 ~ -
Z1 2• JO:• 2• 10° 

=============================M=O=T=o=R=o=LA=·=M=PA==~=A"=A=-==o=L2=0=1=R=Ev==2========================~ 



Packaging & Case Information 

BASE 
METAL 

l$I 0.20(0.oos)®lcl A-B ®I o®I 
DETAILB 

DD SUFFIX 
128-LEAD PLASTIC QFP PACKAGE 

CASE 862A-02 
ISSUE B 

DETAILC 

Q 

~· 
~ 

DETAIL A 

NOTES: 
1. DIMENSIONING AND TOLERANCING PER ANSI 

Y14~M.1982. 
2. ODNTROU.JNG DIMENSION: MILLIMETER 
3. DATUM PLANE-H- IS LOCATED AT BOTIOM OF 

LEAD AND IS ODINClDENT WITH THE LEAD 
WHERE THE LEAD EXITS THE PLASTIC BODY AT 
THE BOTIOM OF THE PARTING LINE. 

4. DATUMS-A-, .£-AND -0-TO BE DETERMINED 
AT DATUM PLANE-Ii-. 

5. DIMENSIONS SAND V TO BE DETERMINED AT 
SEATING PLANE -C-. 

6. DIMENSIONS A AND B DO NOTINCLUDE MOLD 
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 
(0.010) PER SIDE. DIMENSIONS A AND B DO 
INCLUDE MOLD MISMATCH AND ARE 
DETERMINED AT DATUM PLANE-H-. 

7. DIMENSION D DOES NOT INCLUDE DAMBAR 
PROTRUSION. ALLOWABLE DAMBAR 
PROTRUSION SHALL BE 0.06 (0.003) TOTAL IN 
EXCESS OF THE D DIMENSION AT MAXIMUM 
MATERIAL CONDITION. DAMBAR CANNOT BE 
LOCATED ON THE LOWER RADIUS OF THE 
FOOT. 

MILLIMETERS INCHES 
Lm! MIN MAX MIN MAX 

A ~ ~o Llii6: t:!li[ 
B 27.90 28.10 1.098 1.106 
c - 4&l - 0.150 
D 0.30 0.45 0.012 0.018 
E 3.17 3.87 o,m_ 0.144 
'F 0.30 0.40 0.012 0.016 

::i: 0.50]§i: ii:@! BSC 
H 0.25 0.35 0.010 0.014 

0.13 ~2 w~ li.Oiili~ 
K 0.65 0.95 QJ!2!L 0.037 
L 4,.1!1 REF 0.97 REF 
M 50 10° ::§:o ii" 

::i o& 0.17 ~ :::2&iiZ 
p 0.40BSC 0.016BSC 

~If oo 70 0 70 
R 0.13 0.30 0.006 0.012 
s 30.95 31.45 1.219 1.m_ 
T 0.13 - 0.006 -
u oo - oo -v '30.95 Jj.45 1.219 1.238 
w 0.40 - 0.016 -
x 1.BOREF 0.063REF 
v ~ ~REF 

z 1.60REF 0.063REF 

~~.t'f ~~·==================M=o=r=o=R=O=LA==M=R=A=D=A=TA==-=o=L=2=01=R=E=v=2=============================== 
3-4 



z 

1 

DH SUFFIX 
160-LEAD PLASTIC QFP PACKAGE 

CASE 864A-03 
ISSUE C 

81 

§ 
e. 

0 0 

"' "' ci ci 

-$ ---i 

40 

A-B@ D@ 

l-E171 0.20(0.oos)@I cl A-B ®ID ®I 

Packaging & Case Information 

@ 
0 

@ 

! 

0 

"' ci 

-$ G 

DETAIL A 

JDETAILC 

~r----~-mm_mm_mm_mi1_,..._,i\) 00 l-E171 o.13(o.oo5)@1cl A-B @I o®I 

SECTION B-B 

Cl 0.10 (0.004) 

DETAILC 

NOTES: 
1. DIMENSIONING AND TOLERANCING PER ANSI 

Y14.5M, 1982. 
2. CONTROLLING DIMENSION: MILLIMETER. 
3. DATUM PLANE -H-18 LOCATED AT BOTIOM OF 

LEAD AND.IS COINCIDENT WITH THE LEAD WHERE 
THE LEAD EXITS THE PLASTIC BODY AT THE 
BOTTOM OF THE PARTING LINE 

4. DATUMS-A-, -B-AND-D- TO BE DETERMINED AT 
DATUM PLANE -H-. 

5. DIMENSIONS S AND V TO BE DETERMINED AT 
SEATING PLANE-C-. 

6. DIMENSIONS A AND B DO NOT INCLUDE MOLD 
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 
{0.010) PER SIDE. DIMENSIONS A AND B DO 
INCLUDE MOLD MISMATCH AND ARE DETERMINED 
AT DATUM PLANE -H-. 

7. DIMENSION D DOES NOT INCLUDE DAMBAR 
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION 
SHALL BE 0.08 {0.003) TOTAL IN EXCESS OF THE D 
DIMENSION AT MAXIMUM MATERIAL CONDITION. 
DAMBAR CANNOT BE LOCATED ON THE LOWER 
RADIUS OR THE FOOT. 

DIM 
A 
B 
c 
D 
E 
F 
G 
H 
J 
K 
L 
M 
N 
p 
Q 

R 
s 
T 
u 
v 
w 
x 
y 
z 

MILLIMETERS 
MIN MAX 

27.90 28.10 
27.90 29.10 
3.35 3.85 
0.22 0.38 
3.20 3.50 
0.22 0.33 

0.65BSC 
0.25_l 0.35 
0.11 0.23 
0.70 0.90 
25.35 REF 
5".J 16° 

0.11_1 0.19 
0.325 BSC 
oo 70 

0.13 0.30 
31.00 31.40 
0.13 -

oo -
31.00 31.40 
0.40 -

1.60 REF 
1.33 REF 
1.33 REF 

INCHES 
MIN MAX 

1.098 1.106 
1.09B 1.106 
0.132 0.152 
0.009 0.015 
0.126 0.138 
0.009 0.013 

0.026 REF 
0.010 0.014 
0.004 0.009 
0.028 0.035 

0.998 REF 
5°_j_ 16° 

0.004_1 0.007 
O.D13 BSC 
oo 70 

0.005 0.012 
1.220 1.236 
0.005 -

oo -
1.220 1.236 
O.o16 -

0.063 REF 
0.052 REF 
0.052 REF 

================================M=O=T=O=R=O=L=A=M=P=A==DA=~=A=-==D=L=2=01==R=EV==2===========================~ 
3-5 



Packaging & Case Information 

DK SUFFIX 
208-LEAD PLASTIC QFP PACKAGE 

CASE 872A-01 
ISSUE 0 

-------- L------~ 

yl16 15 
~~!Ullll!!Ullll!!Ullll!ll@~!U!lll!!U!lll!!U!lll!~~==1=M====~-----. 

r~ @ 
Cl 

v 

L ~~ 
, 208 -Fl~()iHliiiiiiiifjjjjiiifjjjjiiiiiiJiiiiiiiiiiiiiiiiiiiiiiiiiiiii~~_:j~--~======---$-0-·-~-·-~ 

[:·=A ~---D------""1
52 

z 

-$- 0.20 (0.008)@ H A-B@ D @ 

J_ 

---------s-------~ 

lfl710.20(0.oosJ@lcl A-B ®I o@I 

er I -A-, -B-, -o-1 

DETAIL A 

lfl71 o.oa(o.002)@lclA-B ®I o@I 
DETAILB 

SECTION B-B 
ROTATED 7 ° CCW 

@ 
Cl 

@ 

"' .J:: 
u 

® 
00 
0 
0 

8. 
0 
"l 
0 

-$-

NOTES: 
1. DIMENSIONING AND TOLERANCING PER ANSI 

Y14.5M, 1982. 
2. CONTROLLING DIMENSION: MILLIMETER. 
3. DATUM PLANE -H- IS LOCATED AT BOTIOM OF 

LEAD AND IS COINCIDENT WITH THE LEAD 
WHERE THE LEAD EXITS THE PLASTIC BODY AT 
THE BOTIOM OF THE PARTING LINE. 

4. DATUMS -A-, -8-AND -D- TO BE DETERMINED 
AT DATUM PLANE -H-. 

5. DIMENSIONS SAND V TO BE DETERMINED AT 
SEATING PLANE -C-. 

6. DIMENSIONS A AND B DO NOT INCLUDE MOLD 
PROTRUSION. ALLOWABLE PROTRUSION IS 
0.25 (0.010) PER SIDE DIMENSIONS A AND B DO 
INCLUDE MOLD MISMATCH AND ARE 
DETERMINED AT DATUM PLANE -H-. 

7. DIMENSION D DOES NOT INCLUDE DAMBAR 
PROTRUSION. DAMBAR PROTRUSION SHALL 
NOT CAUSE THE D DIMENSION TO EXCEED 
0.38 (0.015). 

MILLIMETERS INCHES 
DIM MIN MAX MIN MAX 
A 27.90 28.10 1.098 1.106 
B 27.90 28.10 1.098 1.106 
c 3.45 4.10 0.136 0.161 
D 0.14 0.30 0.005 0.012 
E 3.20 3.60 1.126 0.142 
F 0.14 0.26 0.005 0.010 
G O.SOBSC 0.020 BSC 
H 0.25 0.35 0.010 0.014 
J 0.09 0.20 0.003 0.008 

Ji_ 0.70 0.90 0.027 0.036 
L 25.50 REF 1.004 REF 
M 50 go 50 90 
N 0.09 0.18 0.003 0.007 
p 0.25BSC 0.010 BSC 
Q oo 70 oo 70 
R 0.13 0.30 0.005 0.012 
s 31.00 31.40 1.220 1.236 
T 0.13 - 0.005 
u oo - oo 
v 31.00 31.40 1.220 1.236 
w 0.40 -= 0.016 
x 1.60AEF 0.063 REF 
y 1.25 REF 0.049 REF 
z 1.25 REF 0.049 REF 

DETAILC 

~~.,'! ~~·=================M=O=T=O=R=O=LA==M=PA=D=A=I=A=-==DL=2=0=1=Re=v=2============================== 
3-6 



E 

.. 

I 
I 
I 
I 
I 

---+---
1 

I 
I 
I 
I 

VIEWM-M 

BG SUFFl~A PACKAGE PLASTIC B 
256-LEADCASE 1208A-01 

ISSUEO 

DETAILK\M 

/ '\ 
( ) 

/ 

Packagm Information . 9 & Case 

NOTES: ENSIONS ARE IN MILSL~:~~~~EAANCES 1. DIM ET D1MENS!ON 

~ ~~~~i~6'Ny~ii~·~i~REDA~TAr~~L'fox~~~~M ~DIMEN BALL DIAMETER, P 

SOLDER EFINED BY THE 
A p~~~ ~(SEATING PLA~~~~ ~OLDER BALLS. ~~~HERICAL CROWNS 0 

ROT AT EDo~!~~~O~KWISE 

==~~=~ DL201REV2 MOTOROLA MPA ~A;A 



Packaging & Case Information 

I 
I 

--+--
1 

I 

HI SUFFIX 
181-LEAD CERAMIC PGA PACKAGE 

CASE 768N-01 
ISSUE 0 

KE SUFFIX 
224-LEAD CERAMIC PGA PACKAGE 

CASE 860F-01 

B 

ISSUE 0 

c 

A 

Q 
SEATING 
PLANE 

NOTES: 

0.080 MAX 

1. DIMENSIONING AND TOLERANCJNG PEA ANSI 
Y14.5M, 1982. 

2. CONTROLLING DIMENSION: INCH 

INCHES MILLIMETERS 
DIM MIN MAX MIN MAX 
A 1.555 1.595 39.50 40.51 
B 1.555 1.595 39.50 40.51 
c 0.102 0.124 2.59 3.15 
D 0.016 0.020 0.41 0.51 
F 0.040 0.060 1.02 1.52 
G 0.100 BSC 2.54 BSC 
K 0.110 0.150 2.79 3.81 
L 0.043 0.057 1.09 1.45 
M 0.655 0.675 16.64 17.15 
N 0.090 0.110 2.29 2.79 

INCHES 
DIM MIN MAX 
A 0.070 0.145 
D 1.740 1.780 
E 1.740 1.780 
L 0.100 0.200 
Q 0.045 0.075 

~~.,'! ~~·=================M=O=T=O=R=O=LA==M=PA==DA=T=A=-==DL=2=0=1=RE=V=2============================== 
3-8 



I 
I 

--+--
1 

I 

HVSUFFIX 
299-LEAD CERAMIC PGA PACKAGE 

CASE 8618-01 

B 

--- w 

ISSUEO 

c 

A 

Q 
SEATING 
PLANE 

Packaging & Case Information 

O.OBOMAX 

l _i 
:1.:::::::::=_==F0=_=_==_=_=_=_=_=_=_=_~."'l~-..,00~1 20191817161514131211109. 1 •• ,,, 1 

- L224X0 K~~~ 

NOTES: 
1. DIMENSIONS ARE IN INCHES. 
2. INTERPRET DIMENSIONS AND TOLERANCES 

PERASMEY14.5M, 1994. 
3. MINIMUM SPACING BETWEEN CONDUCTORS 

SHALL BE 0.020. 

INCHES 
DIM MIN MAX 
A 0.070 0.145 
D 2.040 2.080 
E 2.040 2.080 
L 0.100 0.200 

_Q_ 0.045 0.075 
s 0.050 BSC 

=======riiiil 
MOTOROLA MPA DATA- Dl201 REV 2 ~ 

3-9 



Packaging & Case Information 

MPA 17000 EPROM/EEPROM 
Packaging & Case Information 

NOTE2 

PSUFFIX 
8-LEAD PLASTIC DIP PACKAGE 

CASE626-05 
ISSUEK 

~. 
l,...,,-$-.-l 0=-0.-13-(o-.oo-s)-=@.,..I r-.-1-A--=@,..,l-e-,@"""'I 

DSUFFIX 
8-LEAD PLASTIC SOIC PACKAGE 

CASE 751-05 
ISSUES 

NOTES: 
1. DIMENSION L TO CENTER OF LEAD WHEN 

FORMED PARALLEL. 
2. PACKAGE CONTOUR OPTIONAL (ROUND OR 

SQUARE CORNERS). 
3. DIMENSIONING AND TOLERANCING PER ANSI 

Y14.5M, 1982. 

MILLIMETERS INCHES 
DIM MIN MAX MIN :::i:AX 
A 9.40 10.16 0.370 0.400 
B 6.10 6.60 0.240 0.260 
c 3.94 4.45 0.155 0.175 
D 0.38 0.51 0.015 0.020 
F 1.02 1.78 0.040 0.070 
G 2.54BSC 0.100BSC 
H o.16I t21 0.030 0.050 
J 0.20 0.30 0.005 0.012 
K 2.92 3.43 0.115 0.135 
L 7.62BSC 0.3QOBSC 
M -I 100 - 10" 
N o.1sI to1 0.030 0.040 

NOTES: 
1. DIMENSIONING AND TOLERANCING PER ASME 

Y14.5M, 1994. 
2. DIMENSIONS ARE IN MIUIMETERS. 
3. DIMENSION D AND E DO NOT INCLUDE MOLD 

PROTRUSION. 
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 
5. DIMENSION B DOES NOT INCLUDE MOLD 

PROTRUSION. ALLOWABLE DAMBAR 
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS 
OF THE B DIMENSION AT MAXIMUM MATERIAL 
CONDITION. 

MILLIMETERS 
DIM MIN _!!M_ 
A !A 1.75 
li 0.10 !jg[ 
B !ill: 0.49 
c 0.1 :];25 
D ~ 5.00 

.L -"2_ 4.00 

• !21_BSC 
H _j,_80 6.20 
h 0.25 0.50 
L :];40 1.25 

::i_ o• 70 

~~.,'/ ~~·==================M=O=T=o=R=O=LA==M=P=A=D=A=TA==-=o=L2==0=1=Re=v==2============================== 
3-10 



-II- 2ox D 

Packaging & Case Information 

OW SUFFIX 
20-LEAD PLASTIC SOIC WIDE PACKAGE 

CASE 751 D--04 
ISSUE E 

NOTES: 
1. DIMENSIONING AND TOLERANCING PER 

ANSI Y14.5M, 1982. 
2. CONTROLLING DIMENSION: MILLIMETER. 
3. DIMENSIONS AAND B 00 NOT INCLUDE 

MOLD PROTRUSION. 
4. MAXIMUM MOLD PROTRUSION 0.150 

(0.006) PER SIDE. 
5. DIMENSION D DOES NOT INCLUDE 

DAMBAR PROTRUSION. ALLOWABLE 
DAMBAR PROTRUSION SHALL BE 0.13 
(0.005) TOTAL IN EXCESS OF D DIMENSION 
AT MAXIMUM MATERIAL CONDITION. 

MILLIMETERS INCHES 

l~$~j-o.o-10-(o-.2s-)@-M l~r~I A-®-s ~I B-®~s I D!!!. MIN MAX MIN rW 
A 12.65 12.95 0.499 0.510 
B 7.40 7.60 0.292 0.299 
c 2.35 2.65 0.093 0.104 
D 0.35 0.49 0.014 0.019 
F 0.50 0.90 0.020 0.035 
G 1.27BSC 0.050BSC 
J 0.25 0.32 0.010 0.012 
K 0.10 0.25 0.004 0.009 
M O' 7' O' 7' 
p 10.05 10.55 0.395 0.415 
R 0.25 0.75 0.010 0.029 

-.j l+-1ax G [ K 

=======:::;rifiil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

3-11 



Packaging & Case Information 

c 

FNSUFFIX 
20-LEAD PLASTIC PLCC PACKAGE 

CASE 775-02 
ISSUEC 

• 
e 1+1 o.001(0.1ao)®lrl L-M® IN® I 

i--D u 1+1 o.001(0.1ao)®lrl L-M® IN® I 

G11+1 o.010(0.25o)®lrl L-M® IN® I 
VIEWD-0 

-----Al+I o.001(0.1aoi@lrl L-M® IN® I 

H 1$1 o.001(0.1ao)®lrl L-M® IN® I 

t 
K 

K Q 0.004(0.100 
-T ~~~l~G 

VIEWS r-:J 1.-Fl+I o.001(0.1ao)®lrl L-M® IN@I 
VIEWS 

NOTES: 
1. DATUMS-L-, -M-, AND -N- DETERMINED WHERE 

TOP OF LEAD SHOULDER EXITS PLASTIC BODY 
AT MOLD PARTING LINE. 

2. DIM G1, TRUE POSITION TO BE MEASURED AT 
DATUM -T-, SEATING PLANE. 

3. DIM RAND U DO NOT INCLUDE MOLD FLASH. 
ALLOWABLE MOLID FLASH IS 0.010 (0.250) PER 
SIDE. 

4, DIMENSIONING ANO TOLERANCING PER ANSI 
Y14.5M, 1982. 

5. CONTROlllNG DIMENSION: INCH. 
6. THE PACKAGE TOP MAY BE SMAllER THAN THE 

PACKAGE BOTTOM BY UP TO 0.012 (0.300). 
DIMENSIONS RAND U ARE DETERMINED AT THE 
OUTERMOST EXTREMES OF THE PLASTIC BODY 
EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, 
GATE BURRS AND INTERLEAO FLASH, BUT 
INCLUDING ANY MISMATCH BETWEEN THE TOP 
ANO BOTTOM OF THE PLASTIC BODY. 

7. DIMENSION H DOES NOT INCLUDE DAMBAR 
PROTRUSION OR INTRUSION. THE DAMBAR 
PROTRUSION(S) SHALL NOT CAUSE THE H 
DIMENSION TO BE GREATER THAN 0.037 (0.940). 
THE DAMBAR INTRUSION($) SHALL NOT CAUSE 
THE H DIMENSION TO BE SMAllER THAN 0.025 
(0.635). 

DIM 
A 
B 
c 
E 
F 
G 
H 
J 
K 
R 
u 

i 
_!_ 

I 
G1 

31 

IN ES 
MIN MAX 
0.385 0.395 
0.385 0.395 
0.185 0.180 
Q.090 0.110 
0.013 0.019 

O.OSOBSC 
0.026 0.032 
0.020 
0.025 
0.350 0.356 
0.350 0.356 
0.042 0.048 
0.042 0.048 
0.042 0.056 

0.020 
20 10° 

0.310 0.330 
0.040 -

MILLI iiEillSl 
MIN MAX 
9.78 10.03 
9.78 10.03 
4,20 4.57 
2.29 2.79 
0.33 0.48 

1.27BSC 
0.66 0.81 
0.51 
0.64 
8.89 9.04 
8.89 9.04 
1.07 1.21 
1.07 1.21 
1.07 1.42 

0.50 
20 100 

300 8.38 
1.02 -

~~~ ~c1 ===================M=O=T=O=R=O=L=A=M=P=A=D=A=T=A=-==D=L2==01=R=E=v==2================================ 
3-12

Quality and Reliability

Quality and Reliability

Quality

The Motorola culture is a culture of quality. Throughout all
phases of product development, from defining and designing
to shipping the product, Motorola strives for total customer
satisfaction through "Six Sigma" and "On Time Delivery"
programs.

Designing Products

Extensive work was done on the 75% UDR CMOS
process to ensure a solid platform for quality products.
Process reliability studies were performed to uncover any
weaknesses in the initial process so that enhancements
could be made to strengthen ii before it was released to
production. In addition, comprehensive characterization and
correlation work was completed on the process to ensure the
utmost in modeling parameter accuracy.

The design of the products strictly adhered to the design
rules set forth by the process designers. Conservative,
manufacturable layout rules were followed to minimize the
performance variability due to a marginally manufacturable
product.

Manufacturing Process

Through SPC and continual engineering work, the
manufacture of the CMOS process is both monitored and
enhanced on a continuous basis. Statistical data is gathered
at both probe and final test through the device data collection
to monitor the distribution of a parameter to its specification
limits. In addition, final quality assurance gates are set up to
guarantee the quality of outgoing product.

Product Characterization

Products are both DC and AC characterized for all data
book environmental conditions prior to the release of the
product to production. The distributions of the parameters
are compared to their specification limits to ensure that
Motorola "manufactures" quality products as opposed to
"testing" quality products through distribution truncation. In
addition, ongoing AC characterization is performed to
enhance the distributions of the AC parameters of the
device. In doing so, as the distributions warrant, further
enhancements to the AC specifications can be achieved.

Reliability

To ensure the long term reliability of MPA products,
extensive accelerated life testing is performed prior to
production release. This qualification work is performed by
Logic Reliability Engineering, an organization specifically
dedicated to monitoring and guaranteeing the quality and
and reliability of logic products. The accelerated life test
consists of the following:

Operating Life Test: 145°C, 5.5V Man Supply
Temperature Cycle: -65°C to 150°C
Pressure, Temperature, Humidity (Hermeticity)

A minimum of 35 lots, 100 die per lot taken from seven [3J
different waters in the lot constitute a qualification sample.
Various intermediate readouts are taken to monitor the
performance more closely. In addition, the devices are tested
beyond the specification limits to determine where and how
they will fail.

Another responsibility of the reliability group is that of
failure analysis. This failure analysis service is supported for
both internal purposes and for servicing the needs of our
customers. Analysis entails every1hing from simple package
examination to internal microprobing to SEM analysis of IC
structures. The results of the analysis are returned to the
customer and if the analysis suggests a potential problem
with the device the information is also passed to the internal
product groups.

RAP: Reliability Audit Program

The Reliability Audit Program (RAP} devised in March
1977 is the Motorola internal reliability audit which is
designed to assess outgoing product performance under
accelerated stress conditions. Logic Reliability Engineering
has overall responsibility for RAP, including updating its
requirements, interpreting its results, administration at
offshore locations and monthly reporting of results. These
reports are available at all sales offices. Also available is the
"Reliability and Quality Handbook'' which contains data for all
Motorola semiconductors (BR518/D).

Rap is a system of environmental and electrical tests
performed periodically on randomly selected samples of
standard products. Each sample receives the tests specified
in Figure 3-1. Frequency of testing is specified per internal
document 12MRM15301 A.

===================riil
MOTOROLA MPA DATA- DL201 REV 2 ~

3-13

[3J

Quality and Reliability

PTHB
48HRS

ELECTRICAL
TEST

I
PTH

ADD48HRS

I
ELECTRICAL

TEST

45-116PCS'

PTH
96HRS

ELECTRICAL
TEST

I
PTH

ADD48HRS

I
ELECTRICAL

TEST

INITIAL SEAL'"

I
TEMP CYCLE
100CYCLES

I
SEAL'"

I
ELECTRICAL

TEST

I
THERMAL SHOCK
ADD 900 CYCLES

ELECTRICAL
TEST

I
TEMP CYCLE

ADD 1000 CYCLES

I
ELECTRICAL

TEST

SCRAP

116-328 PCS"

INITIAL SEAL"'

I
THERMAL SHOCK

100CYCLES

SEAL***
I

ELECTRICAL
TEST

I
THERMAL SHOCK
ADD 900 CYCLES

ELECTRICAL
TEST

76-116PCS

I
OPLIFE""
40HOURS

ELECTRICAL
TEST

OPLIFE
ADD210HRS.

I
ELECTRICAL

TEST

OPLIFE'""
ADD750HRS.

ELECTRICAL
TEST

J

Figure 3-1. Rellabil.lty Audit Program Test Flow

Notes:

PTH will be run as a substitute if PTHB sockets are not
available. Only required on plastics packages.

Thennal Shock will be run if Temp Cycle is not available.

Seal (fine and gross) only required on hermetic
packages.

All units for Op Life to be AC/DC tested before and after
being stressed. All units failing AC after stress will be
analyzed.

One sample per month

PTHB

15psig/121°C/100o/o RH at rated Vee or VEE - to be
performed on plastic encapsulated devices only.

Temp Cycle

Mil. Std. 883, Method 1010, Condition C, - 65°C to 150°C

Op Lite

Mil. Std. 883, Method 1005, Condition C (Power plus
Reverse Bias), TA= 145°C.

1. All standard 25°C DC and functional parameters will be measurad Go/NoGo al each readout.
2. Any indicated failure is first verttied and then submitted to the Product Analysis Lab for detailed analysis.
3. Sampling to include all package types routinely.
4. Device types sampled will be by generic type and will iAclude all assembly locations.
5. 16 hrs. PTHB Is equivalent to~ BOO hrs. of as°C/85% RH THB for Vee,; 1sv.
6. Only moisture related failures (like corrosion) are criteria for failure on PTHB test.
7. Special device specttications (48A's) for digital products will reference 12MRM15301A as a source of generic data for any customer requiring monthly audit

reports.

~~~ ~~11 ==================M=o=r=o=R=O=LA==M=R=A=D=A=~=A=-=D=L2==0=1=R=Ev==2============================== 
3-14 



Latch up 

Latch up will not a problem for most designs, but the 
designer should be aware of it, what causes it, and how to 
prevent it. 

Figure 3-3 shows the cross-section of a typical CMOS 
inverter and Figure 3-2 shows the parasitic bipolar devices. 
The circuit formed by the parasitic transistors and resistors is 
the basic configuration of a silicon controlled rectifier, or 
SCR. In the latch up condition, transistors 01 and 02 are 
turned ON, each providing the base current necessary for 
the other to remain in saturation, thereby latching the devices 
into the ON state. Unlike a conventional SCR, where the 
device is turned ON by applying a voltage to the base of the 
NPN transistor, the parasitic SCR is turned ON by applying a 
voltage to the emitter of either transistor. The two emitters 
that trigger the SCR are connected to the same point, the 
CMOS output. Therefore, to latch up the CMOS device, the 
output voltage must be greater than Voo+0.5V or less than 
Vss-0.5V and have sufficient current to trigger the SCR. The 
latch-up mechanism is similar for the inputs. 

voo--~ 

Figure 3-2. Latch-Up Circuit Schematic 

To reduce the current for triggering the SCR, guard rings 
are formed and act as dummy collectors to collect charges 

GND G VDD 

N-Well 

Quality and Reliability 

directly through Vee and ground, rather than through active 
circuitry, thereby shunting the parasitic transistors. The guard 
rings are connected to Vee and ground near the input and 
output diodes to short out the parasitic SCR. Guard ring 
diffusion also creates additional parasitic transistors and 
reduces effective substrate resistance which makes the SCR 
harder to turn on. 

Once a CMOS device is latched up, if the supply current is 
not limited, the device will be destroyed. Ways to prevent 
such occurrences are listed below: 

3. Insure that inputs and outputs are limited to the 
maximum rated values, as follows: -0.5V s Vin or 
Vout s Voo + 0.5V (referenced to Vssl llin or loutl s 
10mA (unless otherwise indicated on the data 
sheet). 

4. If voltage transients with sufficient energy to latch 
up the device is expected on the inputs or outputs, 
external protection diodes can be used to clamp the [3J 
voltage. Another method of protection is to use a 
series resistor to limit the expected worst case 
current to the maximum rating of 1 OmA. 

5. Sequence power supplies so that the inputs or 
outputs of CMOS devices are not active before the 
supply pins are powered up (e.g., recessed edge 
connectors and/or series resistors may be used in 
plug-in board applications). 

6. Voltage regulating or filtering should be used in 
board design and layout to insure that power supply 
lines are free of excessive noise. 

7. Limit the available power supply current to the 
devices that are subject to latch-up conditions. This 
can be accomplished with a power supply filtering 
network or a current limiting regulator. 

OUTPUT 

N-Well 

P-Substrate 

Figure 3-3. CMOS Wafer Cross-Section 

=======rii&il 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

3-15 



Quality and Reliability 

Electrostatic Discharge 
The gate electrode of a CMOS circuit is completely 

isolated from the substrate by a silicon dioxide layer, which 
forms the dielectric of the gate-to-substrate capacitor. The 
thickness of the oxide insulator between the gate and the 
substrate of a MOS device is about 1000A and has a typical 
breakdown voltage in the range of 100 to 120V. 

If a voltage higher than the breakdown voltage is applied 
to the gate, the silicon dioxide beneath the gate will rupture. 
This can result in permanent damage of the device, causing 
a short between gate metal and either the substrate or a P 
or N region. Because of the extremely high resistance of the 
gate oxide, even a very low energy source (i.e., stray 
electrostatic charges) is capable of developing this 
breakdown voltage. The possibility that a CMOS device will 
be destroyed by static overvoltage exists only during 
handling and testing. Once the device is mounted in a circuit, 
normal circuit impedances and voltages make this danger 
virtually impossible. In order to avoid destruction of CMOS 
devices by static discharge, various input protection circuits 
were developed. 

The protection system used for ESD is the Double Diode 
Plus Resistor Protection Circuit as shown in Figure 3-4. 

It consists of a series isolation resistor Rs, whose average 

value is 1.5kohm, and diodes D1 and D2 for clamping 
excess input voltages to the power supply pins, VDD or VSS. 
Diode D3 is a distributed parasitic structure resulting from the 
diffusion fabrication of Rs. 

r--------, 
I 
I 
I 

Input n.&. _ _.-'VV\.._.---4--<-----I 

I 
I 
I -L--------.J 

Added Protection Circuitry 
at Each External Input Lead 

NOTES: Rs = 1.5k!l Nominal 
Avalanche Voltages 

Vss 

BVD1 = 30V BVD2 = 30V 
BVD3 = aov BVD4 = 90V 

Figure 3-4. Double Diode Plus 
Resistor Protection Circuit 

D4 

~~'l'f ~c·==================M=O=T=O=R=O=LA==M=R=A=D=A=TA=-==o=L2==01=R=E=v=2=============================== 
3-16 



Motorola Programmable Arrays 

Application Notes [A] 



3196 

© Motorola, Inc. 1996 

AN1561 
Application Note 

68030 DRAM Controller 
Design Using Verilog HDL 

4-2 

Prepared by 
Phll Rauba 
Field Applications Engineer 

REVO 
® MOTOROLA 



AN1561 

68030 DRAM Controller Design Using Verilog HDL 

Purpose 

This article is intended to give a hardware engineer insight 
into the design methodology of using the Verilog Hardware 
Descriptive Language (HDL), targeting Motorola's field 
Programmable Array (MPA) and H4C gate array families. The 
advantage of using an HDL, such as Verilog, is the ability to 
retarget the design to other device technologies, by only 
resynthesizing the design description. A 68030 Dynamic Ram 
Controller design was used to demonstrate the portability of 
the Verilog language, and included all of the circuits necessary 
to interface DRAM to a 68030 microprocessor including: 
memory decoding, STERM generation, refresh request 
generation, CAS before RAS refresh, burst address 
sequencing, DRAM address multiplexing, and bus error 
time-out. 

Design Methodology 

The DRAM Logic was designed with a synchronous state 
machine design technique and described using the Verilog 
Hardware Descriptive Language, with the intent of providing a 
portable and easily maintainable design. The design tools 
used for this project are listed in Appendix A. The steps 
included in the design process include the system block 
diagram definition, state diagram generation, Verilog HDL 
logic definition, Verilog logic simulation, Verilog logic 
synthesis, place and route, and Verilog post simulation. 

Figure 1. Verllog Design Method 

The Verilog Design Methodology, Figure 1, illustrates the 
design flow beginning with the generation of the Verilog RTL 
source code. The DRAM design used a hierarchical module 
development methodology, which partitioned the design into 
eight submodules and instantiated each of the submodules 
into the design through a top module description designated 
as module glue68k. A stimulus module was also created that 
provided the test bench for verification of simulation code. The 
stimulus module included a 25MHz clock generator module, a 
behavioral 68030 bus controller module, and the instantiation 
of the top glue68k module, designated with the instance name 
of u1. As each Verilog submodule was written, the code was 
verified logically with the use of the stimulus module and the 
waveform capabilities of the Verilog simulator. 

Once the design was logically verified, the original Verilog 
source code, that was used for simulation, was also used for 
synthesis. Each module of the hierarchical design was 
synthesized separately so that if a module needed to change, 
only that module would have to be resynthesized, saving 
considerable time by not having to resynthesize the entire 
design. 

Since different tools were used for the logic synthesis, when 
targeting MPA and gate array, different methods were used 
during the synthesis process. For MPA development, the 
Exemplar tool was used for synthesizing each of the 
submodules individually. When synthesizing the top glue68k 
module, two passes were used with the Exemplar tools, one to 
generate submodule connectivity and the other to read and 
reformat the Verilog netiist. Empty submodules were 
instantiated in the design during the first pass of the Exemplar 
logic synthesizer with a Verilog netlist being generated. The 
Verilog glue68k netlist was then edited to add the links to the 
submodules by using the include command, referencing each 
of the submodule's file pathname. A final netlist was output 
from the second pass of the synthesizer, which read the eight 
Verilog netlists from the links in the top module, and 
reformatted the file to an EDIF netlist. 

For gate array development, Synopsys was used for 
synthesis of the design. Each of the eight submodules and the 
top module, glue68k were read ·into Synopsys and 
synthesized all at one time without having the need to use the 
include command. 

The EDIF netlist is used by the MPA and gate array place 
and route tools to generate the final design files. The MPA 
design procedure was to create a project, select the target 
device (MPA1036 181 pin PGA), input the EDIF netlist, place 
and route the design, and back-annotate into a structural 
Verilog netlist. 

After placing and routing the DRAM MPA design, the 
structural Verilog netlist was used for post simulation. The 
structural Verilog netlist generated by the place and route 
back-annotation tool, contains precise MPA1036 gate and 
path delays to accurately predict the timing behavior of the 
final placed and routed design. Post simulation is useful for 
verifying and altering the design, if needed, before a printed 
circuit board is required. For post simulation, a modified 
version of the presimulation stimulus file was written to reflect 
the net name changes that were incurred by use of the design 
tools, ·but included the same clock and 68030 bus controller 
test suites as before. Final simulation of the DRAM design 
required the structural Verilog netlist module, the stimulus 
module, and the Verilog MPA 1000 series gate primitive library, 
that was supplied with the MPA design system. 

System Description 
Bursting is a feature in the newer generation of CISC/RISC 

microprocessors that is comprised of a memory access of four 
long words of 32 bits each. The DRAM burst cycle is initiated 
by first generating a RAS cycle access and a CAS cycle 
access for the first ·1ong word, and then fetching the next three 
long words by generating only CAS cycles thereafter. The 
intention of the burst cycle is to divide the RAS cycle 

=======rii&il 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-3 



AN1561 

generation overhead of the first access amongst all four 
longword fetches; thereby, providing an overall access 
performance improvement as compared to single RAS 
generation for each longword. 

The system block diagram is shown in Figure 2 and 
includes a 68030 microprocessor, a 16MByte dram array 
using 4Mx4 DRAMs; data bus drivers, and the MPA (or gate 
array). The MPA provides all of the DRAM interface circuitry 
needed to support 68030 bursting. 

MPA Functional Description 
The block diagram functional description of the MPA is 

shown in Figure 3 and shows all of the modules within the 
design, including the refresh timing generator, the refresh 
request state machine, the address decoder, the RAS/CAS 
state machine, the RAS/CAS decoder logic, the burst control 
state machine, the burst address generator, the DRAM 
address multiplexer, ·and the bus error time-out state 
machine. 

MPA Timing Synchronization 
As indicated in the MPA functional block diagram Figure 2, 

the main clock for all the state machines is the inverted 25MHz 

d(31:0) 

a31:0 

siz 1:0 

as' 
ds' weO' 

r/w' ras1' 

cb . cas1' 

0 
we1* 

g If ras2' ... :::;;; 
cas2' 
we2' 
ras3' 

25mhz i_25mhz cas3' 
we3* 

sterm' 

clock to the 68030. Since all of the output timing out of the 
68030 is referenced to the falling edge of the processor's 
25MHz clock, the clock is inverted and is used for clocking the 
MPA's internal registers. A delay line (not shown) will be 
needed for moving the assertion point of the address strobe 
signal with respect to the internal clock skew within the target 
device to prevent llilJ'":llOp metastable conditions. The delay 
line value will be dependent on the actual clock skew within 
the MPA or gate array. 

Refresh Timing Generator 
The refresh timing generator provides a 97.656KHz refresh 

request square wave with a period of 10.24usec for the refresh 
request state.machine. The generator is comprised of a eight 
bit free running up counter with a 25MHz clock source. 

Refresh Request State Machine 
The refresh state machine receives the 97.656KHz refresh 

square wave and generates a rel_rq signal to the RAS/CAS 
state machine. The refresh state machine requests a refresh 
cycle only once when ref[7) is asserted high and inhibits the 
request after the RAS/CAS state machine has initiated a CAS 
before RAS refresh cycle. 

Figure 2. MPU-DRAM Controller Interfacing 

~~.t'f (QQ:~"==================M=O=TO=R=O=LA==M=P=A=D=At=A=-==o=L2=0=1=R=E=v=2============================= 
4-4 



25mhz 

l_a(31:24) 

i_as 

ref[7] 

i_as 

i_25mhz 

i_cbreq 

cpu_ok 

i_25mhz 

Refresh Timing 
Generator 

Clocked 
DRAM 

Address dram_rq 
Decoder 

Bus Error 
Timeout 

Burst 
Control 
State 

Machine 
count 

i_cback 

i_sterm 

Refresh Timing 
Generator 

Burst 
l_a(3:2) Addrs 

"'i_=-2 ... 5m_h._z__,~ Gen 

siz(1:0) 

l_a(1:0) 

i_as 
i_ds 

i_rw 

l~a(23:2) 

RAS 1---• i_ras(3:0) 
CAS 1---• i_cas(3:0) 
Logic i_we(3:0) 

m_a(10:0) 

AN1561 

Figure 3. MPA DRAM Controller Detail 

Figure 7 shows the refresh cycle that was initiated by the 
rising edge of ref[?] and by the assertion of ref_rq to the 
RAS/GAS Controller. The RAS/GAS Controller generates the 
timing for a GAS before RAS refresh cycle in synchronization 
with the refresh request state machine sequencing through 
the request operation. At the end of the refresh cycle the 
refresh request state machine is in the REFEND state waiting 
for negation of ref[7]. 

Figure 4. Refresh Request State Diagram 

Synchronized DRAM Address Decoder 

The DRAM Address decoder is used to decode the 68030 
address 01 xxxxxxh with qualification of address strobe to 
generate a access request to the RAS/GAS state machine. 
The dram_rq timing is shown in Figure 5: 

RAS/CAS State Machine 

The RAS/GAS State machine arbitrates between refresh 
requests and 68030 access requests via signals, ref_rq and 
dram_rq respectively. The arbitration between the two 
requests occurs in the IDLE state, where refresh has the 
highest priority. If a refresh request is pending the state 
machine will take the refresh branch and generate a CAS 
before RAS refresh timing sequence. 

If a DRAM request is pending from the 68030 and a refresh 
request is not present, the state machine will take the 68030 

access branch and generate the RAS, MUX, and GAS timing 
for a random access into the DRAM array. The assertion of [4J 
RAS latches the row address into the DRAMs, the MUX signal 
will present the column address to the DRAM array, and the 
GAS signal will then latch the column address into the 
DRAMs. The signal cpu_ok will indicate to the burst controller 
to start wait state generation. If a burst request sequence is 
requested by the burst controller via the sig"nal burst, the 
RAS/GAS state machine will sequence through the burst 
control states. For a full four long word burst, the burst address 
generator will provide the column addresses for each of the 
long word accesses. The RAS/GAS controller state machine 
will exit bursting upon the negation of address strobe, and has 
the capability of exiting a burst upon a premature ending of a 
full four long word burst 

RAS/CAS Logic 

The RAS/GAS logic is comprised of combinational logic 
that encodes the GAS signals for selecting which byte lanes of 
the DRAM array that are going to be accessed during a cycle. 
For a CPU write access, the logic supports the misalignment 
capabilities of the 68030, providing GAS signals only to the 
bytes of the DRAM array that will be accessed for the write 
operation. For a CPU read cycle all of the GAS signals will be 
asserted. During refresh cycles all of the GAS and RAS lines 
will be asserted. 

Burst Control State Machine 

The burst control state machine provides all of the bursting 
control for a 68030 DRAM access and is synchronized to the 
RAS/GAS controller. Upon the receipt of a dram_rq, the 
RAS/GAS controller will generate RAS and GAS timing to the 
DRAM array and will assert the signal cpu_ok, indicating to the 
burst controller state machine to start a burst cycle. The burst 
controller will leave an idle state and assert the i_cback signal 
indicating a synchronous burst access. The burst controller 
will then insert wait states during the burst operation and be 
responsible for asserting i_sterm indicating the availability of 

================================M=O=T=O=R=O=L=A=M=P=A==DA=T=A=-==D=L2==01==R=EV==2==========================1~ 
4-5 



AN1561 

DRAM data. The burst controller will also generate the 
counting and load controls for the burst address generator and 
provide the burst multiplexing control to the DRAM address 
multiplexer. 

Burst Address Generator 

The burst address generator provides the two least 
significant bits of the DRAM address during a 68030 burst 
cycle. The burst controller will initiate the loading of the first 
burst address into the burst address generator and then 
control the incrementing of the addresses for the next three 
long word accesses of the burst cycle. 

The burst address generator sequences through the long 
word addresses, which are generated from the ba(3:2) 
signals. Entry into the counter state machine can occur at any 
state and will be defined as the starting 68030 starting address 
plus one. During the first long word access of the burst, the 
first address will be supplied by the 68030; the next three long 
word addresses will be supplied by the burst address 
generator. After the first 68030 address, the address 
generator will enter the state of the next address from the load 
signal from the burst controller. The burst address generator 
will then be incremented two more times for the next two long 
word addresses. 

DRAM Address MUX 

The DRAM address MUX provides the row and column 
addresses on a eleven bit multiplexed address bus to the 
DRAM array. The 68030 provides the row address to the 
DRAM array, and the column address of the first long word 
access of a burst cycle. The two least significant bits of the 
column address will be supplied by the burst address 
generator for the next three long word accesses in the burst 

Signal 

. ul. i_2 Srnhz 

lus.ul.i_as 
l.i_sync_as 
lus.ul.i_ds 
.ul.dram_rq 
.ul.i_cbreq 

. ul . i_cback 

s.ul.cpu_ok 
ulus.ul.mux 
us.ul.burst 
.ul.i_sterrn 1 
lus.ul.i_oe 1 

ulus.ul.dir 1 

.ul.counten 
s.ul.i_rasO 1 

s.ul.i_casO 
ulus.ul.raz 
ulus.ul.caz O 

225ns 975ns 

cycle. Gating of the addresses onto the DRAM multiplexed 
address bus is controlled by both the burst controller and the 
RAS/CAS controller. The DRAM address MUX generates a 
68030 burst access to long word address locations 01 xxxxxOh 
to 01xxxxxCh, when the starting 68030 address is 01xxxxx0h. 

Bus Error Time-out 

A bus error watch dog time-out function is provided by the 
DRAM controller to keep the 68030 from locking up due to 
accesses into unused memory. The bus error time-out 
controller monitors the assertion of address strobe and will 
generate a bus error to the 68030 if it has kept address strobe 
asserted from 40.96 usec to 46.08 usec. This time-out may 
vary depending on where the 68030 started a memory access 
in relationship to ref[7] of the refresh timing generator. The bus 
error time-out controller monitors ref[7] for its state transitions, 
while watching the assertion of address strobe. If address 
strobe is negated before reaching the state NOACK of the bus 
error time-out state machine, a bus error will not generated. 

System Timing 

The system timing is shown in Figure 5 and gives the 
overall operation of the modules within the DRAM design for a 
DRAM array access. The diagram shows the logical 
implementation of the design with zero propagation delay and 
is meant to give a relationship of the signal handshaking 
between the submodules of the design. The system timing 
diagram shows a four long word burst read access to the 
DRAM array and is comprised of a 14-7-7-7 burst for a total 
of 35 cycles. The design has not been optimized for speed at 
this time, with the intent of generating a reasonable amount of 
logic for timing verification targeting lower cost designs using 
slower DRAMs. 

1475ns 1975ns 

Figure 5. ORAM Burst Timing 

~~~ ~~·==================M=o=r=o=R=O=L=A=M=P=A=D=A=TA==-=o=L=2=0,=R=e=v=2=============================== 
4-6

Signal

gic. i_2 5mhz 1

ic.ref[7:0] f4

ogic.ref [7]

ogic.ref [6]

ogic.ref[5]

ogic.ref [4]

ogic.ref [3]

ogic.ref[2]

ogic.ref [l]

ogic.ref [0]

50ns

AN1561

1050ns 2050ns

Figure 6. Refresh Counter Timing

Signal

gic. i_2 5mhz 0

ic. timerclk 0

ogic.ref_rq 0

c.ref_cycle 0

states[l:OJ

s.ul.i_rasO

s.ul.i_casO
_state[3:0} O

5115ns 5265ns 5365ns 5465ns

Figure 7. Refresh Timing

Figure 5, Figure 6 and Figure 7 timing diagrams are logical
simulations of the design copied from the Frontline waveform
timing analyzer and do not include final place and route
timings.

Verilog Coding Example
The following Verilog synthesis code describes the refresh

module:

module refresh (i_25mhz, ref_cycle,
timerclk, reCrq);

input i_25mhz;
output timerclk;
wire [7:0] temp;
reg [7:0] ref;

assign timerclk=ref[7);

assign temp[O) = -ref[O];
assign temp[1) = ref[1) " ref[O];
assign temp[2) = ref[2)" (&ref[1 :OJ);
assign temp[3) = ref[3)" (&ref[2:0));
assign temp[4) = ref[4)" (&ref[3:0));
assign temp[5] = ref[5]" (&ref[4:0));
assign temp[6] = ref[6)" (&ref[5:0));
assign temp[?) = ref[?)" (&ref[6:0));

always @ (posedge i_25mhz)
begin
ref[O) = temp[O);

ref[1] = temp[1];
ref[2] = temp[2];
ref[3] = temp[3];
ref[4] = temp[4];
ref[5] = temp[5];
ref[6] = temp[6];
ref[7] =temp[?];
end

II Refresh request state machine

input reCcycle;
reg [1 :OJ ret_states;
output ref_rq;
reg reCrq;

parameter IDLE = 'bOO; II idle state
parameter REFRQ = 'b01; II assert ref rqst
parameter REFEND = 'b1 O; II wait for end

always @ (posedge i_25mhz)
begin

case (ret_states)
IDLE: begin

if (ref[?))
begin
ret_states = REFRQ;
reCrq = 1;
end

if (-ref[7))

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==o=L2==0=1=R=Ev==2==========================~~
4-7

AN1561

begin
ret_states = IDLE;
ref_rq = O;
end

end
REFRQ:begin

if (ref_cycle)
begin
ref_states = REFEND;
ref_rq = O;
end

if (-ret_cycle)
begin
ref_states = REFRQ;
ref_rq = 1;
end

end
REFEND:begin

if (-ref[7])
begin
ref_states = IDLE;
ref_rq = O;
end

if (ref[7])
begin

end
endcase

ref_states = REFEND;
ref_rq = O;
end

end
endmodule

Figure 8. Simulation Model

MPA - Verilog Simulation

Figure 8 shows a block diagram of the Verilog stimulus
module used for logic simulation and includes the 25MHz
clock module for generating a system clock, the 68030 bus
controller module for generating the timing for a 68030 burst
cycle, and the glue68k DRAM Controller module. Figure 5 to
Figure 7 show the results of the simulation, which was run
from Ons to 1 O,OOOns. The stimulus module included the
vectors for generating the 68030 bus signal timing for a burst
read cycle. Once the simulation code was verified logically by
the simulator and waveform analyzer, the code was
determined to be free from syntax errors and matched the

expected timing for the design. Note that at this point, the
design has not been verified with the gate and path delays
generated from the final place and route tool.

MPA - Exemplar Synthesis
Prior to synthesis, the MPA 1000 libraries, that are supplied

with the MPA design system place and route software must be
properly installed into the directory pathname C:/exemplar/lib
and include the filenames p_mpa20.syn and p_mpa23.syn.
Exemplar will reference these libraries for gate type selection
when targeting a MPA1000 series part.

Although Exemplar has a graphical user interface, this
designer preferred to use DOS synthesis commands included
in (.bat) batch files. As the design was synthesized, the file
manager was used to navigate through the design's
subdirectories and to synthesize by double clicking on the
batch file contained in a submodule's directory.

The refresh submodule example is synthesized with the
DOS command '1pga refresh.v refresh.vg -target=p_mpa
-save -macro". The save option stores all the optimization
passes of the logic synthesizer allowing the user to select the
best pass based on timing and cell count size. The macro
option is used for inhibiting the assignment of 1/0 pads to the
inputs and outputs of the submodules, reserving 1/0 pad
assignments to the top module. Each submodule of the design
is synthesized separately using the same command, but with
different filenames that are identical to the submodule name.
The top module glue68k is synthesized with "fpga glue68k.v
glue68k,vg -target=p_mpa -pass=2" and uses a control file
within its directory called glue68k.ctr, which includes the
command:

BUFFER_SIG IPCLK i_25mhz

to assign the signal i_25mhz to a clock tree within the
MPA1036. The glue68k.vg Verilog netlist is edited manually,
adding include commands to the end of the file to read in all
the Verilog netlists into the top hierarchical module during the
Exemplar reformat pass. The include command:

'include "c:\fpga\refresh.vg"

reads in the refresh submodule into the glue68k.vg module
when the DOS command "fpga glue68k.vg glue68k.edif
-source=p_mpa -target=p_mpa -effort= reformat", is
executed in the fpga directory with the glue68k.ctr control file
removed. The final design resulted in 440 gates including 44
DFs, 40 inputs. and 25 outputs , when targeted to a Motorola
Programmable Array.

The types of gates that were synthesized by the Exemplar
tool for the DRAM Controller design included:

AN2 INV ONE
BUFF IPBUF IPCLK
OPBUF DF ND2
OR2
XN2

DFR
XR2

NR2

The synthesis times for the modules varied with the
complexity of the logic, but were relatively fast. For instance
the dram module, which is a fairly complex state machine
design, took seconds to synthesize as shown:

~~'I'! ~~l============:::::::====M=O=T=O=R=O=LA==M=P=A=D=A=T=A=-=D=L=2=0=1=R=EV==2====:::::::================:::::::=======
4-8

Pass Cells Delay (ns) Min:Sec

153 28.8 00:13

2 93 8.4 00:10

3 155 28.8 00:18

4 88 18.0 00:09

5 153 27.6 00:14

6 88 18.0 00:08

7 155 28.8 00:15

8 88 18.0 00:08

9 187 26.4 00:21

10 98 9.6 00:35

11 91 16.8 00:33

The passes of the Exemplar synthesizer are related to
eleven different types of optimization algorithms. The best
pass for the dram module, based upon timing, is pass 2, with
an estimated gate delay of 8.4ns. In general all of the modules
synthesized in this design, had pass two consistently generate
the least amount of level delays. One may save some CPU
time by specifying that a particular pass be executed by the
Exemplar tool.

MPA Design System Place and Route

The design was processed by five steps using the MPA
design system graphical user interface: Set Tool Options,
Import, Autolayout, Generate Configuration, and Generate
Back-Annotation. The input to the place and route tool is an
EDIF netlist and requires the Exemplar EDIF netlist file
glue68k.edi to be renamed to glue68k.edn to be imported.

MPA design system options that are required to be selected
prior to place and route include: part number, package type,
and mode. For this design the part was a MPA1036HI, which is
a Motorola 181 pin, 8000 MPA equivalent gates, 3600 cell
array. The mode determines how the device will be configured
upon power up and reserves programming pins on the device
to prevent the place and route tools from assigning them to
user 1/0. The mode selected for the design was "Boot From
ROM", where the MPA loads its program from a serial ROM.
The Autolayout place and route option was set to use default
settings and provided adequate delay timings at 25MHz.
Optional parameter settings for high utilization and for
minimum delay, which are intended for compact and high
speed designs respectively.

The Autolayout tools at default settings, generated a design
that used 376 cells, utilizing 20.9% of the device, with an
estimated maximum frequency of 30.7MHz. With the minimum
delay option selected, the design routed with an estimated
maximum frequency of 39.4MHz. The user may experiment
with different option settings to generate faster designs, but for
this application the 30.5MHz output was adequate and was
used for the final design.

Pin assignments for the design can be viewed in the pin
report file glue68k.prp with a small section of the report shown
here:

1/0 Pin report file
Definition: glue68k
Layout: glue68k

AN1561

Format: Port Name, Net Name, Device Coard, Internal
Pad No, Package Pin Name

Port i_25mhz, net i_25mhz @ (36, 0)
IOpad 15 pin n8

Port i_sterm, net i_sterm @ (20, 0)
IOpad 8 pin p4

Port siz1, net siz1 @ (78, 40)
IOpad 166pinh13

The Back-Annotation tool is used to generate a structural
Verilog netlist for post simulation and assigns the file
extension of .vba, which was renamed to .v for input into the
simulator. The designer can verify the final design with post
simulation or by viewing the timing report generated by the
Autolayout tool.

H4C Gate Array
The Verilog netlist files for the design were transferred on a

DOS disk to a Sun workstation. Synopsys was used to read in
the top hierarchical glue68k module and each of the [A]
submodules of the design. The design was synthesized and
targeted to the H4C gate array family without any errors. The
combinational area of the design was 446 and the
noncombinational area was 344 (43 flip-flops using 8 gates
per flip-flops) with a total used area of 790.

The types of gates generated by Synopsys include:
AND2 INV2 NOR8H
AND2H INVB OA211H
AND3 MUX2A OA21H
A022H MUX21 OA22H
AOl22H MUX21H OAl211H
DFFP NAN2 OAl22H
DFFRP NAN3 ONDAl22H
EX NORA NAN4 OR2
EX ORA NOR2B OR3
INV NOR2H OR4

One observation of the synthesized design was that the
Synopsys synthesizer added buffers to heavily loaded signals
to minimize the wire delays and edge rates in the design.
Another observation indicated that the gates that were
generated for the MPA and H4C gate array were quite similar
because of the fine grained nature of the MPA.

Final Simulation
The final placed and routed MPA design was post simulated

with the back-annotated structural Verilog netlist using the
Verilog simulator. Prior to post simulation, the MPA design
system Verilog library file, located in the path
C:\dpld\verilog\library.v was edited to enable Verilog XL
compliance with the command 'define XL_comp. Another
modification of the library needed to eliminate errors
encountered during post simulation was that the library
description of the module ONE was changed from:

:=:=:===:=======================M=O=T=O=R=O=l=A=M=P=A==DA=I=A=-==D=l=2=01:=RE=V==2============:=:=:=:===:===1~
4-9

AN1561

'ifdef Xlcomp
pullup (strong1 ,strongO) (PU);

'endif
to:
ifdef Xlcomp

pullup (strong1) (PU);
'endif

The structural Verilog netlist file glue68k.v was also edited
to declare the netlist as type back-annotated by enabling the
line: 'define source_back_annotation

The post stimulation file stimulus.v is similar to the
simulation file, but was edited to change input and output
names from lower case to upper case, caused by the
renaming of signals from the MPA design system
back-annotation tool. The following is a subset of Verilog
simulation module stimulus.v, that was used for the test bench
and includes a 25MHz free running clock:

'timescale 1 ns I 1 ps
module stimulus ;
wire 1_25MHZ;

wire DIR;

initial
begin

clk25 clockGen {1_25MHZ);
GLUE68K u1(1_25MHZ, l_AS, D_l_AS,

l_DS, l_RW, l_CBREQ, SIZ1,
SIZO, L_A31, L_A30, L_A29,
L_A28, L_A27, L_A26, L_A25,
L_A24,L_A23,L_A22,L_A21,
L_A20,L_A19,L_A18,L_A17,
L_A16,L_A15,L_A14,L_A13,
L_A12,L_A11,L_A10,L_A9,
L_A8, L_A7, L_A6, L_A5,
L_A4,L_A3,L_A2,L_A1,L_AO,
l_CBACK, l_STERM, BCYCLE,
M_A10, M_A9, M_A8, M_A7,
M_A6, M_A5, M_A4, M_A3,
M_A2, M_A1, M_AO, l_CASO,
l_CAS1, l_CAS2, l_CAS3, l_RASO,
l_RAS1, l_RAS2, l_RAS3,
l_BERR, l_OE, DIR);

u1.B_A3= O;
u1.B_A2 = O;

u1 .CONTROL_ VL8 = O;
end

II simulate a 68030 DRAM burst cycle
initial
begin
#5 u1 .L_A31 = O; u1 .L_A30 = O;

u1 .L_A29 = O; u1 .L_A28 = O;

end
endmodule
module clk25 {clock);
output clock;
reg clock;
initial

#5 clock= O;
always

#20 clock = -clock;
endmodule

Frontline's graphical user interiace was invoked and a
project called glue68k.dgn was created. Setup of the simulator
included setting directory pathnames to the locations of the
Verilog source files stimulus.v and glue68k.v and of the MPA
design system Verilog library file library.v. The simulator was
setup for maximum delay type and to use the +heirinstport
command line option to allow the use of hierarchical
pathnames used in the glue68k hierarchical design. The
simulation was run and the timing of the design was verified
with the waveform analyzer as illustrated in Figure 9 and
Figure 10. Note that timing waveforms show accurate gate
and path delays within the MPA1036.

Appendix A - Design Tools
The design tools were selected for a 486 PC Platform and

included Frontline Design Automation, Inc's PureSpeed
Verilog Simulator, Exemplar's CORE-TD-DOS PC Topdown
Verilog Synthesizer, and MPA design system. The PC was
upgraded to 24MBytes of DRAM memory, of which 16MBytes
were the minimum required to run the Exemplar software. A
CD-ROM drive was used for loading the MPA design system
software. Waveforms included in this application note were
captured from Frontline's waveform analysis tool for both
logical and post simulation figures.

For targeting H4C gate arrays, the design development tool
kit was Motorola's Open Architecture CAD System (OACS).
Synopsys was used for Verilog logic synthesis on a Sun
platform in one of Motorola's ASIC design centers.

~~~ ~oci===================M=O=T=O=R=O=LA==M==PA==D=AT=A=-==D=L2==01==R=EV==2================================ 
4-10 



Signal 

.ul.I 25MHZ 

lus.ul.I_AS 

lus.ul.I_DS 

.ul.DRAM_RQ 

.ul.I_CBREQ 1 

.ul.I_CBACK 

s.ul.CPU_OK 

us.ul.BURST 

.ul.I_STERM 1 

lus.ul.I_OE 

ulus.ul.DIR 

.ul.COUNTEN 

s.ul.I_RASO 

s.ul.I_CASO 

ulus.ul.CAZ 

s· 1gna 

.ul.I 25MHZ 1 -
lus. ul. I_AS 0 

lus.ul.I_DS 1 

.ul.DRAM_RQ 0 

.ul.I_CBREQ 1 

.ul.I_CBACK 1 

s. ul. CPU_ OK 0 

us.ul.BURST 0 

.ul.I STE RM 1 -
lus.ul.I_OE 1 

ulus.ul.DIR 1 

.ul.COUNTEN 0 

s.ul.I_RASO l 

s.ul.I_CASO 1 

ulus.ul.CAZ 0 

175ns 

1597ns 

r---i_ 

AN1561 

925ns 1425ns 1925ns 

Figure 9. DRAM Burst Timing Final Simulation 

1627ns 1647ns 1667ns 
..L i _L J. _L i _L J. _L J. _L i ..L 

J_ 
J_ 
I I 
I 

: 
T 

I 
I 

± 
I 

J: 

I 

Figure 10. DRAM Burst Timing Final Simulation - Delay Example 

================================M=O=T=O=R=O=LA==M==PA==D=AT=A=-==o=L=2=01==R=Ev==2==========================~~ 
4-11 



3196 

© Moton:ila, lnc.1996 

AN1562 
Application Note 

Programming Multiple MPA1000 Devices 
Using Serial Peripheral Interface (SPI) 

4-12 

Prepared by 
AJayMatanl 
Field Applications Engineer 

REVD 
® MOTOROLA 



AN1562 

Programming Multiple MPA 1000 Devices Using 
Serial Peripheral Interface (SPI) 

Introduction 

Serial Peripheral Interface (SPI) is an efficient on-board 
Serial Data Transfer mechanism supported by most of 
Motorola Microcontrollers. MPA 1000 series arrays offer 
various modes of loading "ConfigWARE" (Configuration data 
that defines MPA logic functionality and interconnect) data into 
the device. This application note details a microcontroller MPA 
configuration control interface using an SPI port. 

Why Use SPI for "ConfigWARE" Download? 

In-system programmability is not a new concept, as most 
SRAM based MPA's provide a mechanism for the 
Microprocessor to configure functionality. For embedded 
systems, Hardware and Firmware constitute a typical system. 
Sophisticated embedded systems like Laser Printers provide 
support for downloading "SoftWARE" (as Fonts, Printer 
Emulation etc.) for example; while FLASH EEPROMS allow 
for "FirmWARE" upgrade as is a case in many new 
PC-motherboards that have BIOS in FLASH. As shown in 
Figure 1, flexibility offered by these different layers decreases 
as we approach the HardWARE layer, which is quite fixed. 

High 

Low 

Figure 1. Programming Flexibility 

"ConfigWARE" provides the flexibility to use the same 
"HardWARE" to carry out different functionality. The time and 
resources required to download "ConfigWARE" into the MPAs 
becomes critical as device size and number of devices in a 
system increase. It is also beneficial to store "ConfigWARE" 
along with "FirmWARE" in non-volatile memory like FLASH, 
Floppy, HDD or download over a Network connection. 

Many of Motorola's highly integrated MCU devices have 
on-chip resources (such as RAM, PROM, serial ports etc.) 
that enable independent boot-up and loading of the 
"ConfigWARE". Considering that most of them also have SPI 
support, it is worthwhile to examine efficient use of SPI for 
downloading "ConfigWARE". 

MPA1000 Configuration Methods 

Four basic methods are available to download 
"ConfigWARE" into the MPA devices; one Micro Mode with 

typical peripheral bus interface and three BFR (Boot From 
ROM) modes. The Micro Mode, BFR Mode(1) and BFR 
Mode(3) support byte wide data transfer hence BFR Mode(2) 
which supports serial data transfer is the only one we consider 
for SPI interface. In fact, MPA configuration logic supports 
8-bits at a time and thus accumulates the serial stream into a 
byte before loading it in the internal RAM array. This 
arrangement matches well with the SPI support of byte data 
transfer at a time on the serial protocol. 

BFR Mode(2) operation is a very simple serial transfer 
mechanism that uses 3 signals, CLK(clock in), DCLK(clock 
out) and DO( data). This mode is intended to load from external 
serial PROM devices like MPA17128 (page 1-6). The signal 
relationships are as follows: 

CLK (up to 20Mhz) is the master clock used by configuration 
logic. This could also be generated from the MPA internal Ring 
Oscillator. 

DCLK is output from the MPA and can run as fast as 1/2 the 
CLK frequency. 

A simple way of looking at DCLK is to consider it as a Data 
Strobe and clock for an Address Counter, where DCLK low to 
high transition is the critical edge for both operations 
(Figure 2). As each transition of DCLK is generated by a rising 
edge of the CLK signal, manipulating CLK allows controlling 
DCLK operation. DO is data presented to the MPA. 

CLK 

DCLK 

DO 

idle I idle I active I recover I active I wait I recover 

1--Thold 

NOTE: During "idle" phase of CLK, internal Reset or Configuration 
Sequence logic is being exercised. At the end of "active" phase of 
CLK, new configuration data is read in. The ''waif' phase of CLK is 
created by stretching the CLK low phase of the active cycle. After 
every "active" or "wait" condition, a "recover' cycle of CLK is needed. 

Figure 2. ConfigWARE Download Timing 

By extending DCLK in its low state, wait states can be 
inserted in the access of serial data on DO. This can be easily 
achieved by keeping CLK in low state whenever needed. As 
CLK is used by the configuration logic also, the suggested 
clock stretching should be applied only during data access 
cycles denoted by DCLK low state. Since the configuration 
logic is a static design, there is no minimum operational 
frequency requirement allowing large number of wait states if 
needed. 

The window for which DO should be stable with valid data is 
defined by Figure 2-33, Figure 2-34 and the accompanying 
table on page 2-27. This relatively narrow window 
requirement is easily achievable. 

=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:M=O=T=O=R=O=LA=:M=:PA=:D=AT=A=-==D=L=2=01=:R=EV=:2=:=:=:=:=:=:=:=:=:=:=:=:=:~~ 
4-13 



AN1562 

Serial Peripheral Interface 

SPI operation as well, is quite straightforward. The SPI on a 
MCU can be configured as either a Master or a Slave. The 
serial transfer operation is carried out on four lines, SCK 
(Serial Clock), MOSI (Master Out Slave In), MISO (Master In 
Slave Out) and SS/(Slave Select) supporting synchronous 
bi-directional serial transfer of byte size data. 

The primary difference between the Master and Slave 
Mode is the source of SCK. Though transfers are 
synchronous, SPI circuit is required to be a static design which 
allows the SCK to have no maximum phase or period time 
requirement. In Master Mode, the MCU based SPI circuit 
sends a burst of 8-bits, synchronized to a prescaled internal 
CPU clock. 

The programmer's model of SPI consists of SPDR (8-bit 
SPI data register), SPCR (SPI control register) and SPSR 
(SPI status register). Refer to MC68HC11 RM/AD for detailed 
discussion of SPI operation. 

Once configured as a Master, writing to SPDR starts a 
transfer of the data byte uninhibited, on the MOSI signal. The 
data presented on MISO by the slave is de-serialized and 
made available in the SPDR at the end of byte transfer. As 
writing to the SPDR also starts a transfer sequence, there is 
no facility to carry out hand shake with the slave apriori to the 
transfer. 

When SPI on a MCU device is configured as a slave, the 
SCK supplied by the external master controls the flow of 
transfer. MOSI now becomes input and MISO becomes 
output. The SS/ signal plays an important role in this mode, 
acting as a gate to the SCK. This facilitates selective transfer 
to multiple slave using common SCK signal. 

DESIGN APPROACH 

This application note is based on a design implemented in a 
working system with multiple MPA 1036 devices daisy 
chained. The requirement of this system is to provide a flexible 
and efficient "ConfigWARE" download capability. The design 
uses MC68HC11 K4 MCU with external FLASH EE PROM to 
store the "ConfigWARE". 

Various possibilities were considered to establish the lower 
level handshake with MPA configuration logic. BFR Mode(2) 
was chosen as it sacrifices only one general purpose i/o signal 
for configuration, namely DCLK. 

The easiest, gluless and trivial method of interfacing an 
MCU to an MPA device in BFR[2] is a single, 8-bit 1/0 port and 
100% software controlled transfer. MCU software overhead 
results in a long MPA subsystem start-up time if this method is 
used. As the size of the MPA subsystem increases, this 
problem is compounded. Using the MCU SPI hardware in 
Slave Mode and a minimal amount of external logic, relatively 
fast configuration times xan be acheived using a serial data 
stream. 

FUNCTIONAL DESCRIPTION 

We have established the basic serial transfers in terms of 
MPA BFR Mode(2) and SPI in our discussion up to this point, 
but there are a few more functionalites that need to be 
examined at system level. Consider that there are n MPA 
devices daisy chained as shown in Figure 3. The MCU 
(MC68HC11 in this discussion) and PAL device constitute the 
controller. 

The controller requires only three outputs (CLK, DO and 
RESET1/) to carry out the task. The POWRUPn signal may be 
monitored to confirm the end of download sequence, though 
any error condition may be detected alternatively by making 
sure that exact number of bytes are downloaded. 

~~.,'! ~~==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA==-=D=L=2=01=R=E=V=2==============================::: 
4-14 



PWRUPn 

MCU 

Pl1 

P03 
P04 

MPA#1 

PWRUP1 MEMCE 

RESET1 
RESET1 END1 
BFR1 

ERR1 
DO 
CLK DCLK 

11 

f--=-=----~ CLK 

f-..,..,,.~----~12 

1--~~----~13 

f---==-~---~14 

SCK 

AN1562 

PAL 

Figure 3. Multiple Daisy Chained MPA Devices 

Let us look at all the signals in detail. 

Signals outside of the controller : 

CLK Derived from PAL External clock input. Used 
during reset and configuration sequence. Clock 
stretching is used in this application during the 
Configuration sequence to establish proper 
handshake between the MPA and program 
controlled sequence on the MCU. 

RESET1 Output from MCUReset to the First MPA in the 
daisy chain. The falling edge initiates reset 
sequence. At the end of reset sequence, if the 
signal is still asserted, configuration sequence is 
delayed till the rising edge of signal is recognized. 
Otherwise, the configuration sequence 
immediately follows the reset sequence. CLK 
must be active during these sequences. 

RESETn Connect ENDn-1 to RESETn as configuration 
logic keeps END low till the present device 
completes the configuration sequence and lets 
the next MPA device start its own reset and 
configuration sequence. 

Output from MCU. Active low signal initiates 
Reset and Configuration sequences. Acts same 
as RESET1 except that the Configuration 
sequence immediately follows the reset sequence 

regardless of the state of BRF1 signal. (The use of 
this signal is optional). 

These are pulled up. 

PWRUPn Last MPA END connects to all PWRUP signals. 
When this signal on the MPA is low, all the user 1/0 
are disabled (in tri-state). A desirable condition 
until all the devices are configured properly. 

MEMCE Not used. 

ERRn These output signal gets asserted during 
configuration sequence if Device ID mismatch or 
Checksum error is detected. They can be left 
open as such error condition stops configuration 
sequence and can be detected alternatively. 

DCLK Input to PAL. Is the wired-or signal (requires 
external pull-up) from all the MPA devices that 
gets pulled low by the currently configuring device 
during data transfer. 

DO Output from PAL. This is the data input to all the 
MPA devices. 

Signals inside the controller (between MCU and PAL) : 

E_CLK 

MISO 

Output from MCU. System clock. 

Output from MCU. SPI data out of MCU in Slave 
Mode. 

==================~riil MOTOROLA MPA DATA - DL201 REV 2 ~ 
4-15 



AN1562 

GO_SPI Output from MCU. Sequence Master Control 
output, resets and enables configuration 
sequence logic under program control. 

XFR8 Output from MCU. Byte Transfer Control output, 
initiates data transfer sequence logic under 
program control. Also acts as Slave Select for SPI 
logic with connection external to the MCU. 

SCK Output from PAL. SPI clock input from MCU. 
Controls bit data transfer out of SPI shift register. 

CONTROL LOGIC IMPLEMENTATION 
The MC6BHC11 K4 and a PAL22V10 device is used for the 

control logic. 
The base clock for the circuit is the "E" clock from MCU that 

is also used by the SPI logic internal to the MCU. Typical 
frequencies for 8-bit MC Us for the system clock "E" are 4 Mhz 
and as high as 25 Mhz for some 32-bit MCUs. 

The circuit uses four inputs, three outputs and four state bits 
on the PAL. One of the outputs, SCK is considered as a state 
variable too. Refer to Appendix A, where the PAL design in 
CUPL (need to check trade mark) source language is 
described. Appendix B lists the Boolean equations in 
AND-OR form for each of output and state variable as 
generated by CUPL assembler. 

Two general purpose Output Port bits (GO_SPI and XFRB) 
from the MCU are required besides the SPI signals. 
Considering that data is flowing from MCU to the MPAs, only 
data out signal (MISO in slave mode) of the SPI logic is used 
along with the SCK and SS signals. 

Appendix C lists the assembly source code for 
MC68HC11K4 MCU for the subroutines needed to carry out 
the ConfigWARE download. 

CONTROL FLOW 

For ease of understanding, let us follow the firmware in 
Appendix C to track the operation of control sequence. 

The calling function to "LD_FPGA" is assumed to have set 
the general purpose port bits to the correct direction and have 
made a call to "RST _FPGA" which forces RESET1 /. The first 
thing LD_FPGA does is to call "EN_FPGA" which makes the 
control logic ready by negating XFRB, correctly set up the SPI 
on MCU, assert GO_SPI and negate RESET1/. 

This forces the sequencer in the PAL to STATE SO and stay 
there till sequence begins when XFRB is asserted.(active low). 
The CLK output of PAL keeps on toggling while in STATE SO, 
defining the the "idle" phase of of CLK (Fig. 4). Negated XFRB 
also negates END state variable. 

Next, LD_FPGA makes sure that the correct ConfigWARE 
for the first device is made available (starting at address 
$4000) before it calls the "IM2FPGA" (Image to FPGA) 
function. IM2FPGA calls "BY2FPGA" for the exact number of 
times to download the complete image for a single FPGA 
device. For FPGA1036 for example, the number is 14600 
($3908) bytes as explained in Appendix D. 

BY2FPGA is the lowest level routine that directly controls 
the transfer of by1e to the current FPGA device. The data byte 
is written to the SPI data register and XFRB is made active to 
begin the transfer. While the sequencer in PAL and MPA 
synchronize and carry out the transfer, the program waits for 
SPI transfer to complete within a certain period of time. If the 
code times out, it returns with error condition set. As only the 
completion of SPI transfer is waited on, there is no need for 
any external signals to indicate error conditions. 

~~,'I ~~•:=:=:=:=:=:=:=:=:=:=M=O=T=O==R=O=LA:=M=P=A=D=A=T=A=-==D=L=2=0=1=R=E=V=2:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=== 
4-16 



AN1562 

idle active wait recover active recover active recover active wait recover 
abcdefghi j klmnopqrstug 

SO I SO SO I SO SO I S1 S1 I S2 S2 I Sodd I Sodd I Seven I Seven I SF SF I SO SO I SO SO I SO I S1 S1 I 

CLK 

DCLK 

XFR8 

NOTE: d ---> b SO>SO I as DCLK is 
b ---> c SO>SO I as DCLK is 

d SO>SO I as XFRB is 
d ---> e SO>SO I as XFRB is 
e ---> F SO>Sl I as DCLK and 
t ---> g Sl>SL as DCLK is 
g ---> h Sl>S2, as DCLK ,, ---> i S?.>S2, as DCLK is 
i ---> j S2>Sodd, as DCLK 
j ---> k Sodd>Sodd, as DCLK is 

high k ---> 1 
high 1 ---> m 

XFRB low 0 ---> p 
low p ---> q 
high q ---> r 

high 
low ---> t 
low 

u ---> g 

Sodd>Seven, as DCLK 

Sodd>Seven, as XFRB 
Seven>SF, as DCLK 

SF>SF, as DCLK 

SF>SO, as DCLK 

80>80 I DCLK 

SO>SO I as DCLK 

SO>SO I as DCLK 

80>80 / as DCLK 

SO>Sl I as DCLK 

catch the sequence at 

s high 
s high 
s low 
s low 
s high (END set) 
s high 
s low but END is high 
s low but END is high 
s low, END is low but XFRB is high 
s low, END is low and XFR8 is low 
g again 

Figure 4. System Training 

For the normal transfer, the sequencer in the PAL waits in 
STATE SO when MPA device is not ready for transfer as 
indicated by DCLK high. When FPGA is ready to receive data, 
it asserts DCLK low. State m/c responds by stopping the 
transitions on CLK signal, forcing wait condition till MCU holds 
XFRB signal high. When MCU program sequence catches up 
and asserts XFRB low, STATE S1 is entered. 

All odd numbered states are similar and correspond to the 
time when DCLK is high. Except for STATE SO, all even 
number states correspond to the time when DCLK is low. For a 
byte transfer, XFRB going low should run the sequencer from 
STATE SO to STATE SF in a sequence, and back to STATE 
SO. When the state m/c is in STATE SF, END state variable 
gets set on the next clock, indicating completion of a transfer. 
Until XFRB is negated by BY2MPA when it detects completion 
of SPI transfer, the END condition forces the state m/c to stay 
in STATE SO, even when the MPA is ready to receive the next 

bit, indicated by DCLK low. This mechanism ensures that one 
and only one byte is transferred on every MCU controlled 
cycle of XFRB. 

The new transfer will not start till program sequence makes 
a new call to BY2MPA, which in turn will begin with XFRB 
active. Timeout or SPI error condition, if any, makes 
BY2FPGA return a non zero value indicating error. The 
address value of the image byte of the erroneous transfer is 
saved in SPl_ERR variable. IM2FPGA passes the error back 
to LD_FPGA. 

If there is no error, LD_FPGA repeats the above process 
for additional devices, making sure that the correct 
ConfigWARE for that device is addressed. 

If an error ocurrs, the sample code jumps to "LD_FERR". 
The handling of error is left to the calling routine and user 
interface. 

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=0=1=R=EV==2==========================~~ 
4-17 



AN1562 

APPENDIX A. 

/***************************************************************************/ 
/* MPAlOOO series FPGA configuration logic with SPI 
/* HCll companion PAL 

*/ 
*I 

/***************************************************************************/ 
Device p22v101cc; 
/*** Pin Assignments 
/* Clock and Inputs 
PIN 2 MCEK; 
PIN 3 MISO; 

/* Input -
/* Input -
/* Input -
/* Input -

Register Clock 
Serial data, HCll 
Transfer control, HCll 
Master Control, HCll 

PIN 4 
PIN 11 
PIN 6 

XFR8; 
GO_SPI; 
DCLK; /* Input - CLK feedback from FPGA 

/* Outputs and State variables 
PIN 20 CLK; /* Output - clock to FPGA 
PIN 21 DO; /* Output - Data out to FPGA 
PIN 23 ST3; /* State - var 3 
PIN 24 ST2; /* State - var 2 
PIN 25 STl; /* State - var 1 
PIN 26 STO; /* Output - SPI elk to HCll 

/* State - var 0 (Dual function) 
PIN 27 END; /* State - End condition */ 

/*** Declarations and Intermediate variable Definitions 
field count= [ST3 .. OJ; /* declare counter bit field 
$define SO 'b'OOOO /* define counter states 
$define Sl 'b'OOOl 
$define S2 'b'0010 
$define S3 'b'0011 
$define S4 'b'OlOO 
$define SS 'b'OlOl 
$define S6 'b'OllO 
$define S7 'b'Olll 
$define SS 'b'lOOO 
$define S9 'b'1001 
$define SA 'b'l010 
$define SB 'b'l011 
$define SC 'b'llOO 
$define SD 'b'llOl 
$define SE 'b'lllO 
$define SF 'b'llll 

/*** Logic Equations 

CLK.d 

CLK.sp 
CLK.ar 

END.d 

END.ar 
END.sp 

DO 

# 

# 

# 

!CLK & DCLK 
/* High if idle or restore state 

!CLK & !DCLK & ! (!ST3 & !ST2 & !STl & !STO); 
/* High if data ready in active state 

'b'O; 
'b'O; 

ST3 & ST2 & STl & STO 
END & !XFR8; 

/* Count has expired but no new XFRS 
'b'O; 
'b' O; 

!GO_SPI & MISO 
GO_SPI & XFRS; 

/* active low GO_SPI 
/* Slave Select signal 

*/ 
*/ 
*I 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 

*I 
*/ 
*/ 

*/ 

*/ 

*/ 

*/ 

*/ 
*/ 

~~t'f ~~·==================M=o=r=o=R=O=LA==M=P=A=D=A=TA==-=o=L=2=0=1=RE=V==2============================== 
4-18 



STO.ar 
STl.ar 
ST2.ar 
ST3.ar 

STO.sp 
STl.sp 
ST2.sp 
ST3.sp 

STO .oe 

'b'O; 
'b'O; 
'b'O; 
'b'O; 

'b'O; 
'b' O; 
'b'O; 
'b'O; 

!GO_SPI; 

AN1562 

/* Master control */ 

sequence count /* free running counter */ 

present SO if !DCLK & !END & !XFRB 
next Sl; 

if DCLK 
# !DCLK & END 
# !DCLK & XFRB 

next SO; 

present Sl if !XFRB & DCLK 
next S2; 

if !XFRS & !DCLK 
next Sl; 

if XFRS 
next SO; 

present S2 if !XFRS & !DCLK 
next S3; 

if !XFRB & DCLK 
next S2; 

if XFRB 
next SO; 

present S3 if !XFRS & DCLK 
next S4; 

if !XFRB & !DCLK 
next S3; 

if XFRB 
next SO; 

present S4 if !XFRS & !DCLK 
next SS; 

if !XFRB & DCLK 
next S4; 

if XFRB 
next SO; 

present SS if !XFRB & DCLK 
next $6; 

if !XFRB & !DCLK 
next SS; 

if XFR8 
next SO; 

present S6 if !XFRB & !DCLK 
next S7; 

if !XFRB & DCLK 
next S6; 

if XFR8 
next SO; 

========rilil MOTOROLA MPA DATA- DL201 REV 2 ~ 
4-19 



AN1562 

present S7 if !XFR8 & DCLK 
next SS; 

if !XFRB & !DCLK 
next S7; 

if XFR8 
next SO; 

present SS if !XFR8 & !DCLK 
next S9; 

if !XFRS & DCLK 
next SS; 

if XFR8 
next SO; 

present S9 if !XFRB & DCLK 
next SA; 

if !XFRB & !DCLK 
next S9; 

if XFRS 
next SO; 

present SA if !XFRS & !DCLK 
next SB; 

if !XFRS & DCLK 
next SA; 

[]] 
if XFRS 

next SO; 

present SB if !XFR8 & DCLK 
next SC; 

if !XFR8 & !DCLK 
next SB; 

if XFR8 
next SO; 

present SC if !XFRS & !DCLK 
next SD; 

if !XFRS & DCLK 
next SC; 

if XFR8 
next SO; 

present SD if !XFR8 & PCLK 
next SE; 

if !XFRS & !DCLK 
next SD; 

if XFRB 
neict SO; 

present SE if !XFRS & !DCI,K 
J;J.ext SF; 

if !XFR8 & DCLK 
next SE; 

if XFRB 
next SO; 

present SF if !XFRB & DCLK 
next SO; 

if !XFRB & !PCLK 
next SF; 

if XFRB 
next SO; 

;e{Plf mu MOTOROLA MPA DATA~ Dl.201 REV 2 
4-20 



APPENDIXB. 

/***************************************************************************/ 
/* LOGIC reduced to AND-OR equations (LISTING) */ 
/***************************************************************************/ 

CLK.d => 

!CLK & DCLK 
# !CLK & !DCLK & ST3 
# !CLK & !DCLK & ST2 
# !CLK & !DCLK & STO 
# !CLK & !DCLK & STl 

DO => 
!GO SPI & MISO -

# GO SPI & XFRB -
END.d => 

STO & STl & ST2 & ST3 
# END & !XFR8 

STO.d => 

!DCLK & !END & !STO & !STl & !ST2 & !ST3 & !XFR8 
# !DCLK & !STO & STl & ST2 & ST3 & !XFRB 
# !DCLK & STO & !ST2 & !ST3 & !XFR8 
# !DCLK & !STO & STl & !ST3 & !XFR8 
# !DCLK & !STl & ST2 & !XFR8 
# !DCLK & STO & STl & ST2 & !XFR8 
# !DCLK & !ST2 & ST3 & !XFR8 

STl.d => 

!DCLK & STO & STl & !XFR8 
# DCLK & STO & !STl & !XFR8 
# !STO & STl & !XFR8 

ST2.d => 
!DCLK & STO & STl & ST2 & !XFR8 

# DCLK & STO & STl & !ST2 & !XFR8 
# !STO & STl & ST2 & !XFR8 
# !STl & ST2 & !XFR8 

ST3.d => 

!DCLK & STO & STl & ST2 & ST3 & !XFR8 
# DCLK & STO & STl & ST2 & !ST3 & !XFRB 
# STO & STl & !ST2 & ST3 & !XFR8 
# !STl & ST3 & !XFR8 
# !STO & STl & ST3 & !XFR8 

APPENDIXC. 

Code Excerpts for HCll using SPI to configure MPAlOOO series FPGA 

Define 

DDRD: equ REGBS+$09 
SPCR: equ REGBS+$28 
SPSR: equ REGBS+$29 
SPDR: equ REGBS+$2A 
PORTG: equ REGBS+$7E 
PORTH: equ REGBS+$7C 

CFGl: equ $11 
CFG2: equ $22 
; more or less depending 
CFGn: equ $ff 

port D Data Direction reg 
spi control reg 
spi status reg 
spi data reg 
port G data reg 
port H data reg 

Page 1 image for memory mapper 
Page 2 image for memory mapper 

on number of FPGA devices in chain 
; Page n image for memory mapper 

AN1562 

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=0=1=R=E=V=2==========================~~ 
4-21 



AN1562 

RAM 
*************** 

org $200 FLEXVAL ram area 
SPI_ER: ds .b 2 
;SEC_IMG: ds.b 1 

Address of failed transfer if any 
Sector image number for current 16K byte block 
in external FLASH EEPROM paged at address $4000 
Consider writing to this address for proper page 
selection of the ConfigWARE image. 

Enable FPGA Transfers via SPI 
Entry 
Exit : 

********** 
EN_FPGA: 

bset 
bclr 
ldaa 
staa 
bset 
bset 
rts 

none 
SPI is enabled as SLAVE 

GO_SPI is active 

PORTH,#$00 
PORTH,#$04 
#$44 
SPCR 
DDRD,#$04 
PORTG,#$40 

make sure XFR8 is inactive (high) 
assert GO_SPI 
SPE = 1 and CPHA = 1, rest 
to SPI control register 
MISO is made output PD[2] 
negate RESETl* at bit-6 

Disable FPGA Transfers via SPI 
Entry 
Exit : 

DI_FPGA; 
bset 
bset 
bclr 
ldaa 
staa 
rts 

none 
SPI is disabled 

GO_SPI is inactive 

PORTH,#$00 
PORTH,#$04 
DDRD,#$04 
#$04 
SPCR 

make sure XFRS is inactive (high) 
negate GO_SPI (high) 
MISO is made input again PD[2J 
SPE = 0 and CPHA = 1, rest 0 
to SPI control register 

Transfer byte to FPGA via SPI (ignore SPI errors if any) 
pointer to the byte Entry x 

Exit a O if o.k. 
a != 0 if time out 

********** 
BY2FPGA: 

ldaa 
staa 
bclr 
ldaa 

BY2 Fl: -
tst 
bmi 
de ca 
bne 

BY2 F9: -
stx 
ldaa 

BY2 F8: -
bset 
rts 

x 

O,x 
SPDR 
PORTH,#$01 
#$ff 

SPSR 
BY2 F2 

BY2 Fl -

SPI ERR -
#$ff 

PORTH,#$01 

x + 1 if o.k. else x is unchanged 

write to SPI data register 
XFR8 = low (active) 
time out counter 

check if spif is set 
jump if transfer complete 
not complete, decrement time out 
check for time out 

address at which error occurred 
indicate error condition 

XFRS = high (inactive) 

~~"" ~~·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA==-=D=L=2=0=1=R=EV==2==============================: 
4-22 



BY2 F2: -
tst SPDR dummy read to clear SPIF bit in SPSR 
ldaa SPSR 
bne BY2 F9 some error ? 
inx 
bra BY2 F8 normal exit -

Transfer image to single FPGA (MPA1036 case) 
Entry SEC IMG has the current sector 
Exit passes end condition of BY2FPGA to calling routine 
Notes MPA1036 has 116800 bits 

********** 
IM2FPGA: 

ldx 
IM2 Fl: -

jsr 
ts ta 
beq 
rts 

IM2 F2: -
cpx 
bne 
rts 

#$4000 

14600 bytes as follows 
5 bytes of header 

14595 bytes of data as follows 
139 rows containing 
105 bytes/row 

address of byte after end of image 
$3908 (when starting address is $0 
$7908 (in this code, as ConfigWARE image is at $4000 ) 

start of image in FLASH 

BY2FPGA 

IM2 F2 -

#$7908 
IM2 Fl -

jump if no error 
pass error up 

end of image 
keep looping 
return with a 0 

Reset 
Entry 
Exit : 

FPGAs 

RST_FPGA: 
bset 
bset 
bclr 
rts 

none 
FPGAs are forced into reset state 

PORTH,#$00 
PORTH,#$04 
PORTG,#$40 

make sure XFR8 is inactive (high) 
negate GO_SPI 
assert RESETl* at bit-6 

Program FPGAs 
Entry 
Exit 

made. 

none 
FPGAs are loaded and active unless error 

In error case, a jump to LD_FERR routine (not shown here) is 

; ********** 
LD_FPGA: 

jsr EN_FPGA 

LD_Fl: 
ldaa CFGl 
staa SEC IMG -
jsr IM2FPGA do transfer 
ts ta 
bne LD_FERR jump if error 

LD_F2: 

AN1562 

==================================rlil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-23 



AN1562 

ldaa CFG2 
staa SEC IMG 
jsr IM2FPGA 
ts ta 
bne LD_FERR jwnp if error 

more or less segments depending on number of FPGA devices in chain 

LD_Fn: 
ldaa CFGn 
staa SEC IMG -
jsr IM2FPGA 
ts ta 
bne LD_ FERR jump if error 

LD_END: 
jsr DI - FPGA 
rts 

APPENDIX D. 

ConfigWARE RAM Array Sizes for MPA1000 Device Family 

MPA1016 MPA1036 MPA1064 

HEADER (bytes) 5 5 5 

ROWS 95 139 183 

Bytes/Row 72 105 138 

Total Bytes 6845 14600 25259 

Total Bytes (Hex) 1ABD 3908 62AB 

RAM Array Size (Relative to MPA 1016) 1.00 2.13 3.69 

Number of Cells (Relative to MPA1016) 1.00 2.25 4.00 

MPA1100 

5 

227 

170 

38595 

96C3 

5.64 

6.25 

~~.t'f ~c·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA==-=D=L=2=01=R=E=v=2=============================== 
4-24 



3/96 

© Motorola, Inc. 1996 

AN1563 
Application Note 

Effective Synthesis Techniques 
for MPA1000 Devices 

4-25 

Prepared by 
Thomas G. Felske 
Wanhao Li 
Motorola Programmable Logic Products 

REVO 
® MOTOROLA 



AN1563 

Effective Synthesis Techniques for MPA 1000 Devices 

Introduction 

Logic synthesis has become an increasingly important 
issue in the FPGA design area due to the rapid growth of the 
FPGA design complexity. Many FPGA vendors offer synthesis 
design flows for designers who prefer synthesis over 
schematic design entry. This paper presents the critical 
architectural components of the MPA device and HDL 
techniques to achieve the best design performance from the 
MPA10000 synthesis design flow. The synthesis design flow 
includes Synopsys Design Compiler (Version 3.3b), Exemplar 
Galileo (Version 3.1), and Mentor Autologic which all map to 
the Motorola MPA1000 FPGA technology. Although this 
application note focuses on the Synopsys tool, most of the 
techniques are tool-independent and shall apply to the other 
synthesis tools. 

Direct Mapping For Design Compilers 

One of the biggest advantage of using the MPA 1000 
synthesis flow is that the MPA architecture requires a single 
mapping process for synthesis. The MPA 1000 architecture is 
fine-grained and each basic cell can be configured directly to 
logic gates such as AND, OR, XOR, and Multiplexer. Since the 
MPA technology mapping is very ASIC-like, the synthesis 
tools can map the design with regular ASIC logic optimization 
algorithms. Consequently, this provides an convenient FPGA 
synthesis environment for designers who have ASIC 
experience or want to retarget FPGA designs to an ASIC at a 
later time. This is important to Motorola to be able to use the 
same tool for both ASIC and FPGA design. It not only saves 
designers from buying another tool but also prevents them 
from having to learn another synthesis tool. 

To re-target Synopsys' Design Compiler from the FPGA 
technology to ASIC, Design Compiler's ".synopsys_dc.setup" 
file is modified to link to the ASIC target library. Upon startup, 
Design Compiler loads the library setup file to link to the 
desired synthesis library. The command lines in the setup file 
that link a target library are: 

technology = ASIC or FPGA technology name 

link_library = {technology + ".db" ........ } 

targeUbrary = {technology +".db") 

search_path = {Regular Synopsys path ASIC or FPGA 
library path} 

Logic Optimization and Technology Mapping 

MPA 1000 Architecture Resources 

When partitioning functional blocks at the system level, the 
design capacity of the MPA device must be known to calculate 
how many FPGAs may be required for the system design in 
order to distribute the logic amongst the FPGAs. The 
calculations are bound by the physical limitations of the MPA 
device. The following sections define the physical limitations 
of the MPA architecture for various design resources. The 
limitations are related to the routing resources available to 
connect to the clock and reset pins for IOBs, wire-or and 
wire-and bus limits, clock resources, and set/reset resources 
for registers. 

Although most of the logic optimization is done at the 
synthesis level, the MPA 1000 backend system further 
optimizes logic by stripping back logic of unused output pins or 
signals, and optimizing inverters by cancelling out or pushing 
the inversion into the driven macro's input signal (bubble 
pushing). 

Clock Signal Resources 

Clock resources can use up to eight dedicated clock pad 
sites to connect to the dedicated clock tree resource. 

The core array contains routing paths to go from primary 
clock resources to regular routing resources and vice versa. 
Therefore, the clock pins of tl)e registers located inside core 
array can be routed from either primary clock tree or 
secondary clock tree which are implemented by regular 
routing resources. However, the clock pins of the 1/0 registers 
can only be driven by primary clock resources. If a clock signal 
is generated inside the core array, it can only drive registers 
inside the core array unless the signal is connected to the 
primary clock tree. 

Regular routing signals inside the core array can be routed 
to primary clock resources and back, some high-fanout 
regular signals can be implemented with the primary clock tree 
and improve both routing congestion and routing delays. 
However, the designer must be aware of the limitation of the 
total number of primary clock trees. 

Due to potential routing resource limitation, the total 
number of clock and reset signals (primary and secondary) 
should not exceed 15. If the total number exceed 15, place 
and route is very likely to fail. 

Only five different clock/reset signals are allowed in each 
cell zone (1 Ox1 O cells) since each cell column is connected by 
the same clock signal. Among the five signals, only two can 
come from primary clock tree. In the 1/0 area, five 1/0 macros 
are aligned as an 1/0 segment and connected to a cell zone. 
Each 1/0 segment only allows 2 clock signals which need to 
come from primary clock trees. In general, place and route 
tools handle all the registers and clock signal placement to 
make sure no violations occur. However, if the designer 
changes or influences the cell or 1/0 placement manually by a 
control file, the clock signal limitation has to be followed. For 
instance, if all the 1/0 pins are fixed by a control "<design>.pat" 
file, it will cause partition failure if three of the 1/0 pins inside a 
1/0 segment are driving three different clock signals. 

Three-State/WOR Resource 

The MPA 1000 devices offer real three-state signals only in 
the 1/0 areas. Inside the core array, WOR structures are 
supported instead of an three-state structure. The 1/0 macros 
can utilize an WOR structure that connects to the P-bus 
resource. The internal WOR bus requires the designer to 
utilize the WPUP pull up macro with each bus and the PWPUP 
pull up macro for each P-bus WOR structure. 

/OB Resource 
When a designer assigns "port_is_pad" attributes and 

"insert_pads" to the top-level 1/0 "ports" that do not contain 
instantiated 1/0 macros, each 1/0 port will be inferred as an 1/0 
macro. The default 1/0 inference for MPA 1000 devices are: 

~~.,'! ~~·=================M=O~T~O=R=O=LA==M=PA==D=AT=A=-==o=L2=0=1=R=Ev=2============================== 
4-26 



clock input port IPCLK 

regular input port IPBUF 

regular output port OPBUF 

three-state port OPTBUF 

Each input macro (IPBUF) can be configured as TTL or 
CMOS levels. Each output macro (OPBUF) can be configured 
into 3V/5V, high drive or low drive, slow slew or fast slew rate. 
Those parameters can be inserted into the system through 
several different ways. The most convenient way is to use 
Design Compiler's "set attribute" command as follows: 

set attribute {1/0 instance name} attribute_name 
attribute_value -type string 

The 1/0 properties can also be inserted in a separate ASCII 
control (<design>.pat) file which will input those properties 
during the backend "import" stage. Refer to the on-line 
documentation for details of the "<design>.pat" control file. 

There are two 1/0 structures that cannot be inferred by an 
behavior description; the open-drain structure and the 
registers inside 1/0 macros. Designers who need to use these 
two structures need to instantiate the desired macros. The 
following is a VHDL example for an open-<lrain macro: 

U01: OPBUF port map (O=>internal_signal, 
EXTOUT =>output_port); 

A list of the special 1/0 macros with registers are in the 
on-line manual for more details on the available macros. 

Peripheral Bus Resources (to route to 108 clock/reset pins) 

The MPA 1000 architecture contains an eight bit bus that 
runs the lengths of the chip next to the IOBs. This is the 
peripheral bus or P-bus. This resource is used for an interface 
resource for the IOB pins and global routing. This resource is 
not automatically used by the routing tool and it is up to the 
designer to instantiate the special P-bus macros for access to 
and from the P-bus. The special buffers are the APBUF, 
PABUF, PWPUP, APWBUF, and APWINV. The prefix AP 
refers to an Array to P-bus connection and visa versa for PA. 
The W refers to the wire-or capability. 

Set/Reset Resources 

The internal core and the IOB registers have asynchronous 
set and reset capability that are mutually exclusive. The 
register contains a single pin that can be programmed for a set 
or reset function. The dedicated low skew reset tree is 
physically the same as the clock tree until the signal enters a 
zone. There the port cell(s) direct the signal to either a clock 
pin or reset/set pin. 

MPA1000 Design Resources 

The MPA 1000 synthesis library contains special macros 
that aid in the efficiency of the FPGA design. Efficiency shall 
be described as guiding critical routes of the design to special 
or dedicated routing resources, utilizing special function 
macros optimized for the MPA architecture, and utilizing MPA 
functional resources that can be only be structurally 
instantiated from the MPA synthesis library. The following 
sections describe the special types of macros that can be 
found in the MPA synthesis libraries. These macros are for 

AN1563 

specific design requirements. Please peruse the synthesis 
libraries for more macro specific details. 

Clock Tree macros 

The clock tree macro resource consists of the IPCLK clock 
pad macro and the ACLK internal clock buffer. The "ACLK" 
macro must be instantiated by the designer to connect 
internally generated clock signals to the primary clock tree. An 
example of a structural description applying an internal clock 
buffer signal to the primary clock tree. 

(VHDL) Buffer_instance_name: ACLK port map 
(A=>clk_input, O=>clk_output); 

(VERILOG) Buffer_instance_name ACLK 
(.A(clk_input), .Q(clk_output)); 

The "clk_output" signal will be driving register clock pins 
from the primary clock tree. 

There are only eight primary clock signals in a MPA 1000 
device. The total number of IPCLK and ACLK macros must 
not exceed eight. If it does, partitioning failure will occur. 

Three-state!WOR macros 

To use WOR structures in the MPA 1000 devices, There are 
several macro resources. They are WBUF, WINV, WND2, 
WOR2 for an internal WOR bus and there are several 10 ~ 
macros that have the WOR capability that utilize the P-bus 
resource. An example would be the IPWINV or APWBUF 
macros. For each WOR bus created, an pull up macro must be 
attached. The pull up resources are WPUP for the internal 
WOR bus, and PWPUP for the P-bus pull up. When creating 
an internal or P-bus WOR structure, both the WOR buffer and 
the pull up macros must be instantiated. Currently, there is not 
a method to inference an WOR structure when using 
Synopsys. The following is an VHDL example of an internal 
WOR instantiation : 

U01: WBUF port map (A=>Sig1, W=>worbus); 

U02: WBUF port map (A=>sig2, W=>worbus); 

U03: WBUF port map (A=>Sig3, W=>WOrbus); 

U04: WPUP port map (W=>Worbus); 
The "WPUP" macro is necessary to pull up the war bus 

signal. The on-line documentation has more information on 
how many "WPUP" macros should be placed on the wired-or 
bus. 

Three state functionality can be inferred in an HDL when it 
will be used in the 1/0 area of the FPGA. The "m" signal in this 
example needs to be an external 1/0 signal which is assigned 
"out port" " port is pad" attributes . A three-state inference: 

if (sli = '1 ') then 

m = e; else m = 'z'; 

IQ macros 

The MPA input output block (IOB) is a complex logic block 
with data registers on the input and output data signals. The 
registers cannot be inferred with RTL code, but can be 
accessed through a structural description. In general when the 
synthesis tool places pads onto the design's peripheral 
signals, the pad macros are simple pad buffers e.g. IPBUF 
and OPBUF. To utilize the registers in the IOB, an structural 
description must be used. There are more that seventy 

================================M=O=T=O=R=O=LA===M=PA==D=AT=A=-==D=L=2=0=1=R=E=V=2===========================~ 
4-27 



AN1563 

different IOB macros. The on-line help describes the many 
different types. 

Clock Signals/Clock Tree Generation 

Without careful attention, clock tree implementation can 
cause problems for both synchronous and asynchronous 
designs. There are several clock tree related issues, the HDL 
designer should know : 

• Design Compiler does have the capability to infer clock pads 
for those assigned clock signals. Internal clock buffers 
require a structural description. However, Design Compiler 
cannot insert internal clock buffers automatically. For 
instance, a gated clock signal which needs to drive the clock 
pins in 1/0 flip-flops will require an internal clock buffer to get 
onto the primary clock tree. This is an MPA 1000 architecture 
limitation since the 1/0 register clock pins can only be 
accessed from the dedicated clock tree. By structurally 
inserting an internal clock buffer, the gated clock signal will 
connect to the dedicated primary clock tree through the clock 
buffer. Since the number of primary clocks (buffers and pads) 
of MPA 1000 is eight, it is important to limit the total number 
of inferred clock pads/buffers and inserted clocks to eight. 

• If a signal is assigned as an "input port'' and as "clock'', 
Synopsys will map the signal into a "IPCLK". Even if the 
designer doesn't assign "clock" for an "input port" signal, if 
the input signal is driving a clock input of a register directly, 
it will also be assigned as an "IPCLK" macro automatically. 
All the IPCLK pads will connect to the primary clock tree by 
default. The designer must make sure that "don't touch" was 
assigned to all those primary clock trees. If Synopsys 
"optimize" or "balance" the clock tree, it might generate many 
secondary clock trees which ends up causing clock tree 
routing problems. 

• If an internally generated clock signals need to drive both 
primary clock tree and a regular output pad, a separate 
output macro "OPBUF" needs to be added to bring the signal 
to an output pad. The following is a VHDL example: 

clkbuf1: aclk port map (A=>internal_clock, 
O=>primary_clock); 

outbuf1: opbuf port map (O=>internal_clock, 
EXTOUT =>output_pad); 

General HDL Techniques 

The description of an design in an HDL is very important. 
The synthesis tool interprets the description and then maps 
the design to the target library. Performance of the design 
depends on the interpretation of the HDL description and the 
style of HDL coding. These influence the logic that will be 
mapped to the design. 

Synopsys does not optimize logic based on XOR logic 
reduction (Mueller-Reed). However, since 50% of the 
MPA1000 cells can be implemented as an "XOR", the 
designers can build macros based on XOR logic. The 
outcome of the XOR based logic can potentially be faster and 
use fewer number of cells. 

• Merge registers into the 1/0 macros. Registers that are 
directly connected to input macros or output macros with out 
feedback can be pulled into an 1/0 location by instantiating 

MPA 1/0 macros such as "OPDFR" and "OPDLR" in an HDL 
design. If specialized 1/0 macros are not used, the register 
resource will come from inside the core array area. 

• For rJ'.lUltiple clocks within a design, it is recommended to 
implement a clock enable signal for the various registers and 
have the registers all clocked with the top level clock. 

• For state machines, an important issue when compiling a 
state machine is that the one-hot state assignment 
approach is very viable for a fine-grained architecture such 
as the MPA 1000. In general, Design Compiler supports five 
types of state assignment: manual, auto, one-hot, binary, 
and gray. The one-hot state assignment assigns one unique 
flip-flop per state. In coarse-grained architectures such as 
Xilinx 3000/4000, there are large combinational circuits 
attached before the flip-flops in each block (CLB). One-hot 
state assignment will cause significant penalties of areas for 
3000/4000 architectures. On the other hand, the MPA 1000 
architecture has no combinational circuits attached to each 
flip-flop within a cell. The area penalty is, therefore, minimal. 
Since our both designs are utilizing less than 30% of the 
cells, In general, it is recommended to use the one-hot state 
assignment if timing is more critical than area. The "one-hot" 
mode in most cases achieves faster timing due to its much 
simplified combinational logic. 

Synchronous Design Style 

The synchronous design style is the preferred method of 
design recommended by synthesis tool and FPGA vendors. 
Few designers use the asynchronous design style since it can 
result in a little bit faster performance in an ASIC or custom 
design environment. In an FPGA environment, this 
assumption can be false. In general, asynchronous clock 
signals are not driven from primary clock resources and are 
therefore implemented in an "secondary clock tree" in 
MPA 1000. The secondary clock trees use the regular routing 
resources to route the signal and have significantly longer 
clock delays and clock skews. The extra clock signals also 
occupy routing resources such as ports and global busses that 
result in increased routing congestion. All those combined, the 
asynchronous design typically will not get the faster-speed 
advantage the designer might expect. 

The only asynchronous design styles suggested by 
Synopsys are designs with gated-dock and designs with 
asynchronous reset. Designers who use gated-clocks have to 
be aware of all the asynchronous clock tree problems that 
exist. 

The asynchronous reset, however, is a popular design style 
and generally will not cause serious design problem since it is 
usually implemented as a global signal and tends to be 
mapped into primary clock/reset tree. 

Area Estimation and Area Optimization 

The designer should do some rough area estimations 
before trying to fit the design into the target MPA device. The 
rule of thumb is : 

• The total number of cells (components) created by synthesis 
should not exceed 40% of the total raw cells of each device 
since some cells will be used as routing resources. The 
routability is usually design-specific. However, if there are 
more high-fanout nets, the routability usually decreases. 

~~"" ~~i:=:=:=:=:=:=:=:==M=O=T=O=R=O=LA:=M=PA:=DA=I=A=-==D=L2=0=1=R=EV:=2:=:=:=:=:=:=:=:=:=:=:=:=:=:== 
4-28 



There is still some chance to route designs with more than 
40% cell utilization. However, the performance usually is not 
as good and the probability of successful routing is much 
lower. 

• The total number of flip-flops should not exceed 80% of raw 
flip-flops. 

• The total number of clock/reset signals should not exceed 
15. 

• In general, device area is not a concern for FPGA unless it 
cannot be fitted into a device. There are some techniques to 
improve device areas: 

• Instantiate special 1/0 macros to utilize registers inside 1/0 
macros. There are two registers available inside each 1/0 
macro. It will reduce the device area, reduce the required 
routing resource, and help in synchronizing on/off-chip 
timing. 

• Use wired-Qr structure can reduce the number of gates. 
However, special attention should be given to timing and 
routability issues. 

• Using the primary clock tree to implement high-fanout net 
will not only improve the wiring delays but also save a lot of 
routing resources. However, an active primary clock tree will 
consume more power than an idle clock tree. If power 
consumption is an important issue, designers should do 
some calculations as to the trade offs of using the clock tree. 

• Use Synopsys techniques of resource sharing and area 
optimization options. 

Techniques for Timing Optimization 

In general, most of the timing improvement will come from 
the design and HDL code changes. By knowing the behavior 
of HDL compilers will generally lead to big improvements in 
device timing. the following describes some of the common 
timing optimization techniques used in HDL code structure 
and design synthesis: 

• Avoid long "if_elsif" or "case" statements. Each elsif or 
"when" statement usually will add at least one logic level to 
the circuit. A better technique would be to see if the 
statements can be broken down and inserted into different 
concurrent processes or blocks. The same thing applies to 
the other statements inside each process. Since they are all 
implemented sequentially, try to see if they can be 
implemented as concurrent statements outside of the 
process. 

• Be aware of the default inferred latches and registers. Make 
sure that the if/elsif statements always close with an "else" 
statement if no latch element is expected. 

• High-fanout nets usually cause very long wiring delays. Try 
to reduce the number of fanouts if possible. 

• Use clock file to differentiate slow clock and fast clock. It will 
help timing-driven layout to optimize and report the right 
critical paths. 

• Use Synopsys "timing optimization" option. 

Timing Analysis and Delay Estimation 

Since FPGA place & route can take a long time for larger 
designs, it is important to do timing analysis and delay 
estimation during the synthesis stage to avoid many design 

AN1563 

iterations. In general, accurate FPGA delay estimation is very 
difficult to achieve due to large metal wire delays and large 
switching element delays. However, by using component 
delays and wiring delays derived from statistical analysis, 
some obvious problems can be identified and avoided in the 
early design stages. 

Critical path analysis is the most popular way to estimate 
device frequency. The post-layout critical-path delays are 
reported in the '1iming file" (design.tim). The path delays in the 
timing file include both the component and wiring delays. Each 
level of logic in the critical path needs at least 1.2ns (0.7ns cell 
delay and 0.5ns direct interconnect delay). In general, for 
delay paths longer than 5 logic levels, the average delay for 
each level of logic is between 2.5ns to 3.5ns. 

To estimate the critical path delay, the designer should 
count the levels of logic of the critical path by using the 
"highlight_path" command to highlight the critical path. 
Assuming the number of logic levels for the critical path is N, 
the theoretical lower bound of the critical path delay (LD) can 
be calculated with the following equation: 

LO = 1.2 *N + setup + clk_to_q 

For the MPA1000 family, the setup time is about 1ns while 
the clk_to_q is about 1.5ns. 

In a real design, the average delay for each level of logic is []] 
around 3ns. Therefore, the expected delay (ED) for the critical 4 
path should be: 

ED = 3*N + setup + clk_to_q 

General timing analysis guidelines for MPA1000 synthesis 
designers are: 

• If timing budget is smaller than or only slightly more than LD, 
there is no chance to reach the timing goal. The designer 
should try to modify the design by modifying the HDL code 
structure, or modifying the timing budget to solve the 
problem. 

• If the timing budget is close to ED, the place&route tool has 
a good chance to reach the timing goal. The designer should 
utilize the timing optimization techniques in the Synopsys 
environment and use timing driven layout options for the 
place and route software. For a multiple clock system, the 
slower clock usually will not create a critical path. However, 
the software will not be able to differentiate the less critical 
clock signal unless the designer creates a timing group for 
each clock in the "clock file". Please refer to the online 
documentation for detailed information regarding the "clock 
file" format. 

• If the timing budget is far exceeding ED, the designer will 
have a large slack time for the critical path. Even though 
timing-driven layout is still suggested for place&route, the 
designer may have some flexibility in using a less aggressive 
timing goal to reduce run time and focus more on the area 
optimization when synthesizing the design. 

Behavioral vs. Structure Synthesis 

In an traditional synthesis flow, structure design is generally 
recommended at the top-level for constructing logic 
hierarchies. Behavioral design, however, is usually much 
easier and maintainable for designers. For example, in an 
FPGA design, critical portions of the design utilized the 
structural description method to capture specific logic 

==========lriiiiil MOTOROLA MPA DATA- DL201 REV 2 ~ 
4-29 



AN1563 

modules. One area that used an structural description was the 
1/0 logic module. Although some FPGA technology mappers 
have the capability to do special mapping processes for the 
1/0, such as mapping flip-flops into an 1/0, it is generally much 
more controllable to construct an 1/0 logic module with an 
structural description. It is also easier to insert attributes to the 
macros which are described structurally. The current 
MPA1000 synthesis library includes a large variety of 1/0 
macros which have many combinations of inpuVoutput, clock, 
flip-flop/latch, and delay elements. By instantiating 1/0 macros 
directly from the MPA 1000 library, the designer can avoid 
some potential problems caused by .the synthesis logic 

inference process. 

An interesting note when using an structural description is 
that Design Compiler is still capable of optimizing the 
structural description even it is supposed to be optimized by 
the designer already. It can be concluded that the software is 
usually capable of performing a much more thorough logic 
optimization search compared to human beings under a 
well-defined environment. In one example, an 20% 
improvement was achieved by running optimization on hand 
crafted structural modules. 

~~-,'I (tlloi:::::=:::=::=::=::=:::=:::=::==M=O=T=O=R=O=LA==M=P=A=D=A~TA=-==D=L2==01=R~E~V=2::=:::=::=::=::=::=::=::=::=::=::=::=::=::=::== 
4-30 



11/96 

AN1564 
Application Note 

Interfacing to the PowerPC™ with 
a Motorola Programmable Array 

Prepared by 
Rich Rejmaniak 
Field Applications Engineer 

PowerPC is a trademark of International Business Machines Corporation. 

© Motorola, Inc. 1996 4-31 REVO 
® MOTOROLA 



AN1564 

Interfacing to the PowerPC™ with a Motorola Programmable Array 

Introduction 

With the higher speeds and wider busses for modern RISC 
processors, designing bus peripherals can be a daunting task. 
The need to decode an ever expanding address range in an 
ever shrinking period of time can overwhelm many logic 
designers. In addition, the new generations of processors 
have far more complex bus protocols aimed at increasing 
overall bus throughput. The pressures on a particular design 
to meet performance specifications within economic 
boundaries are quickly outpacing standard design solutions. 
In the past, PALs or other small programmable logic devices 
were used to perform this function. Current processor bus 
complexity is now outdistancing the pinouts of these devices, 
let alone their logic functionality. The solution to these 
problems in high volume applications is through the use of 
ASICs. However, ASICs are not an economical solution for the 
small and medium production runs (<5000 units) which 
characterize the majority of processor designs. 

The solution to this problem is the FPGA. It sits between the 
PAL and the ASIC in both cost and complexity at this 
production scale. This article demonstrates the use of a 
Motorola Programmable Array as a bus peripheral to the 
PowerPC family of RISC microprocessors. The design 
contained herein is a bus cycle analyzer capable of triggering 
on a bus event and capturing a snapshot of 5 bus cycles. This 
device operates in two modes: One is a voyeuristic mode 
where the MPA is silently monitoring and recording bus cycles, 
waiting for the trigger event. The other is as an addressable 
bus device to allow the host processor to program the trigger 
event and retrieve the captured bus cycles. 

To accomplish this, the design must handle all aspects of 
the PowerPC bus protocol. The design is exhaustive in this 
sense, ignoring only two aspects of the bus: It does not 
monitor bus arbitration, nor does it support enveloped writes. It 
does not monitor bus arbitration because it never assumes 
address bus mastership. Enveloped write support was not 
implemented for complexity reasons, thus limiting this device 
in designs that have multiple caching bus masters. 

The PowerPC Bus 

To fully understand the design of a peripheral to a particular 
bus, it is first necessary to understand the bus itself. The 
PowerPC family of processors has a bus that is quite different 
from that of typical CISC processors. Most CISC processors 
have a single processor bus composed of address and data 
lines under the auspices of a single set of control signals. The 
PowerPC actually has two busses. This should not be 
confused with a Harvard Architecture, which has two data 
pathways. The PowerPC follows the standard single pathway 
design for instructions and data. What the PowerPC does that 
is different that older processors is to provide for independent 
mastership of the address and data buses. Each of these 
buses has its' own control lines and can operate with some 
degree of independence. The processors that conform to the 
bus model being studied are the MPC601, MPC603 (In 64 bit 
data bus mode), and the MPC604. The MPC620, MPC602, 

MPC5xx, and the MPCBxx processors have differing bus 
structures that are not applicable to this design. 

All control and timing signals on the PowerPC bus are 
active low and are designated in this text with a preceding 
exclamation point. i.e. Transfer Start is designated as !TS. The 
only exception to this is obviously the processor system clock, 
SYSCLK, which is symmetrical in time. 

All transaction control signals on the PowerPC bus are 
synchronous to the SYSCLK signal. All asserted signals are 
driven by the rising edge of the clock and their timing 
specifications are defined by this edge. Just as well, all 
sampled input signals are defined with their setup and hold 
times relative to the rising edge of SYSCLK. While the 
PowerPC bus allows most synchronous bus signals to occur 
at any number of clock edges in order to extend the length of a 
memory cycle, all signals must be stable in their active or 
inactive state during the rising edge of SYSCLK. 

The reader should be cautioned that this application note 
doesn't contain the full specification for the PowerPC bus. 
Described herein are only the bus signals needed to interface 
to this bus analyzer circuit. For the reader to properly design a 
PowerPC based processor system, the detailed electrical and 
architectural specifications must be referenced. These 
documents are available through the local Motorola 
Semiconductor sales offices. 

Bus Arbitration 
The arbitration of the PowerPC bus is done without the 

knowledge of the MPA devices used in this design. The only 
time a bus device needs to participate in the arbitration cycle, 
is when it intends to assume mastership of the address bus to 
initiate host (i.e. processor) to slave (i.e. memory) transfers. 
This device never initiates such transfers but simply monitors 
and responds to these transfers initiated by other bus masters. 

Address Bus Tenure 
There are two major classes of address bus cycles. Data 

bus preambles imply that a data bus cycle will follow the 
address bus cycle. Address only transactions are for cache 
synchronizing purposes. Enveloped writes are considered to 
be data bus preambles by the processor. This design treats 
them as address only transactions, limiting the ability to 
completely monitor them. 

An address bus tenure starts with the assertion of Transfer 
Start (!TS) and Address Bus Busy (!ABB) by the current bus 
master. These signals are asserted synchronously with the 
processor SYSCLK signal. All address and transfer control 
lines (TT[0:4], TBST, TSIZ[0:2], TC[0:2], and WT) become 
valid within ten nanoseconds (typical: plus or minus) of the 
control lines. 

The !TS signal is only asserted for one clock cycle, at the 
start of the address bus tenure. The !ABB signal remains 
asserted for the duration of the address tenure, signaling other 
masters in the arbitration phase that they are denied the bus, 
as well as for use by the memory subsystem to determine the 
stability of the address and transfer control signals. 

The final step in a successful address cycle is the assertion 
of Address Acknowledge (!AACK) by the address bus slave. 

~~.,'! ~~·==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=o=L=2=01==RE=v=2=============================== 
4-32 



This slave is usually the memory or 1/0 subsystem. When the 
bus master samples !AACK asserted on the rising edge of 
SYSCLK, it immediately negates !ABB and places all address 
and transfer control signals into the high impedance state. If 
the bus slave doesn't assert Address Retry (!ARTRY) on the 
next clock cycle, the address tenure is considered to be retired 
successfully. This bus analyzer circuit does not monitor the 
!ARTRY signal. If a bus slave asserts !ARTRY, the address 
tenure will be re-run, and will be captured again. 

Data Bus Preambles 

Data bus preambles are the start of a 'typical' processor 
bus cycle. It is the address phase of a data transfer action 
between a bus master and a bus slave. If the processor is 
initiating a single beat transfer, there will be a separate 
address bus cycle for each data bus cycle. In practice, most 
bus transactions on the PowerPC (indeed on most RISC 
processors) are burst transactions. Burst transaction involve 
the instigation of a number of data bus cycles (four on the 
PowerPC) from a single address bus cycle. 

Another type of data bus preamble is the enveloped write. 
The PowerPC uses this transaction to maintain horizontal 
cache synchronization among caching bus masters. 

Address Only Transactions 

Address only transactions are used by the PowerPC to 
maintain horizontal cache synchronization among multiple 
caching bus masters. An example of such a transaction is 
when a particular bus master updates an internal cache line 
that is flagged as write back and is in the 'shared' state. In this 
instance, the processor that is altering its' internal cache line 
must broadcast this action to any other processor that has the 
same data in its' cache. Such a notification is done with an 
address only transaction. This address only transaction can 
occur while the data bus is busy completing the data phase of 
a data bus preamble address cycle. This overlap can only 
occur when the system architecture supports a pipelined bus 
structure. 

Both data bus preambles and address only transactions 
differ only in the state of the Transfer Type (TT[0:4]) signals 
asserted during the cycles. The timing remains the same for 
both types of cycles. 

Data Bus Tenure 

The data bus is capable of operating under different bus 
mastership from the address bus. While systems that optimize 
cost over performance can avoid this feature, high 
performance systems will generally support this via SDRAMs. 
The processors supported by this design allow only one level 
of pipelining; that is, only one address bus cycle can be 
outstanding (waiting for corresponding data bus cycle) at a 
time. 

The data bus tenure timing is very similar to the address 
bus tenure timing with a few exceptions. The data bus has no 
Transfer Start signal as does the address bus. Instead, there 
is an infer transfer start during the first cycle of Data Bus Busy 
(!DBB). !DBB is preceded by a Data Bus Grant (!DBG) to the 
bus master from the arbitration logic. This device is not 
connected to the !DBG signal. Data Bus Busy is asserted by 
the bus master for one or more integral SYSCLK cycles until 

AN1564 

Transfer Acknowledge (!TA) is asserted by the bus slave. 
During a store operation (a.k.a. a bus write cycle), the bus 
master will drive the data lines for the duration of the assertion 
of the !DBB signal. During a load operation (a.k.a. a bus read 
cycle), the bus master assumes that the bus slave will have 
the data lines driven and stable for the rising edge of SYSCLK 
coincident with the assertion of !TA. The data bus also has a 
Data Retry (!DRTRY) signal that operates in the same manner 
as the !ARTRY signal on the address bus. 

Single Beat Transactions 

A single beat transaction occurs when there is only one 
data bus cycle for a particular address bus cycle. This is 
caused by the processor accessing a non-cacheable memory 
address. Single beat transactions can be from one to eight 
bytes in width. The width of the access is determined by the 
processor. The memory is assumed to be 64 bits wide and is 
expected to support byte lane write selection. Depending on 
the bus timing imposed by the system design engineer, the 
address may be present on the address bus for none, some, 
or all of the data bus cycle. 

The duration of a single beat transfer data bus tenure can 
be as short as one SYSCLK cycle. In this case, the bus master 
asserts !DBB (and drives the data bus on a write cycle) 
following the rising edge of SYSCLK that sampled the !DBG [!] 
signal. The bus slave responds within the constraints of one 4 
SYSCLK cycle and has either latched or driven the data bus 
and drives. !TA by the next rising clock edge. 

Burst Transactions 

A burst transaction is the result of a cache line push or fill. 
This type of access comprises the vast majority of bus cycles 
on a high performance design. The external memory system 
does not have the option of declining a burst transaction. The 
only way to protect a memory device from a burst notification 
from the processor is to designate the area as non-cacheable. 

A burst transaction can be pipelined or non-pipelined. 
Non-pipelined bursts provide an address bus cycle for each of 
the four data bus cycles. A pipelined burst will only post the 
address of the initial data bus cycle. The memory device is 
expected to latch and auto-increment the address provided by 
the processor. The address is modulo four (on a double word 
boundary) and can specify any double word in the cache line 
as the first transaction. 

In high performance systems, the piplined burst transaction 
will be the dominant type of bus cycle. The timing of a burst 
cycle is that of four back-to-back single beat transactions. In 
the case of a burst, ! DBB is asserted unbroken for the entire 
duration of the bus tenure. The bus master will drive or latch 
the data bus for the next data cycle as determined by the 
modulation of the !TA signal from the bus slave. The bus slave 
can cause the bus master to extend any of the four data 
transfer sub-cycles an arbitrary number of SYSCLK cycles. 
The Bus master will hold the data bus in the current transfer 
sub-cycle until it receives a !TA signal from the bus slave. At 
that time the master will proceed to the next sub-cycle or 
terminate bus ownership after the fourth transfer. 

Endianess 

It must be remembered that the PowerPC is a big endian 
machine, both in byte ordering and in bit ordering. On all 

==========lriiiil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-33 



AN1564 

busses and in all registers' bit [OJ is the most significant bit. 
This design follows this convention with one noticeable 
exception: the numbering of the register selection lines in the 
address decode logic. The address lines follow the big endian 
bit format, however, the write and read enable lines use the 
little endian (LSB = O) format. This was done to maintain the 
convention as marked on the multiplexers and demultiplexers 
in the component library. When data is routed to and from the 
internal registers, big endian alignment is maintained. 

The user must wire the device to the processor bus using 
big endian. bit ordering. While, in theory, reversing the bit 
ordering would carry through the entire pattern matching 
scheme, it would convolute the address decoding and the 
mapping of the internal setup and history registers. 

The Design 

This design demonstrates solutions to a number of 
PowerPC processor design criteria using the Motorola 
programmable array. This particular implementation is 
targeted to an MPA 1064. An MPA 1064 contains 6400 logic 
cells, providing 1600 internal flip-flops in addition to the 
flip-flops in each of the 1/0 cells. The MPA 1064 contains .160 
1/0 cells, each containing one flip-flop for input and one 
flip-flop for output. This design fiis into the MPA 1064 placed in 
a 160 pin QFP, which only bonds out 120 of the 160 1/0 pads. 
The remaining 80 flip-flops in the unbonded 40 1/0 pads are 
available for internal logic realization. This size MPA is 
necessary because of two aspects of the processor bus: 
signal count and bus speed. 

Bus Speed 

The bus speed supported on this design is 50MHz. When 
the MPA is acting as a bus slave, it responds with wait states 
to slow the bus down. This is because the only time that the 
device is addressed is for setup and result retrieval. Both of 
which are not time critical operations. 

When the MPA is monitoring the bus in voyeuristic mode, it 
must keep up with the bus at full speed. At 50 MHz, there can 
be at most three levels of logic between clock edges to 
maintain a reasonable design margin. This results in a heavily 
pipelined design. 

Pipelining 

Pipelining impacts this design in two ways: There is an 
element of latency in the reaction of this circuit to the triggering 
events. There is also a large consumption of register logic in 
the target device. 

As the monitored bus data flows through this device, it is 
processed in stages of a nine level pipeline. The first four 
stages process and synchronize the incoming data, 
compensating for bursting, split bus tenures, and address only 
transfers. The last five stages contain the triggering event, the 
two bus cycles prior to the trigger, and the two bus cycles alter. 

Latency 

The latency inherent in this device means that it is 
incapable of halting the processor on a trigger event as is 
common with a breakpoint feature of a development system. 
When a trigger event occurs, the processor can be interrupted 
to service the event, however, several bus cycles will have 

transpired between the trigger and the interrupt. It is for this 
reason that the circuit maintains a record of the two bus cycles 
preceding and following the trigger event. 

Register Consumption 

The captured data stream is 109 bits wide, multiplied by 
nine pipeline stages results in 981 register elements for 
pipelining alone. This does not include the various elements 
used for setup registers (218 bits) and state control. The MPA 
architecture is naturally rich in registers.making it extremely 
useful for pipelined designs. 

Bus Interface 

There are two basic types of signals on the PowerPC bus 
that connect to this design. The first group of signals are 
captured by the design when it is in voyeuristic mode. The 
second group are signals that interact with the device to 
provide timing and control. When the device is being 
addressed as a bus peripheral, some the signals that are part 
of the capture group become interactive with the device. 

Signals Captured 

The captured signals are the address bits, data bits, 
transfer type, transfer size, transfer control, write, and burst. 
Any of the captured signals can be used to construct the 
trigger event. All captured bits are present In the trace memory 
regardless as to their role in the trigger event. 

All of the signals mentioned in the preceding paragraph, 
with the exception of the data bits, are captured on the same 
clock edge. The data bits corresponding to the other signals 
may be captured at some indeterminate time alter the address 
cycle occurs. This design will synchronize the signals, aligning 
the data bus information with the proper address and control 
information. It should be noted, however, that if address only 
transactions are permitted, they will be synchronized with an 
arbitrary data bus capture result. In many cases, this captured 
data bus information will be data from a burst transaction. If 
the trigger event is set to detect an address only transaction, 
the data portion of the trigger should be masked off. 

Another caveat of allowing address only transactions, is 
that the address may be captured during a burst, thereby 
preventing the compare logic from seeing that particular burst 
address. In these cases the burst address will be internally 
generated, but will be obliterated by the captured address bus 
information. If the obliterated address bus cycle matches the 
trigger event, it will not be detected. 

As a result, this circuit should be programmed to trigger on 
address only transactions and ignore the data bus, or it should 
be programmed to disallow the capture of address only 
transactions. 

Signals Interacted 

Interacting signals are signals that provide timing and 
control to the design to allow it to capture the needed signals. 
The signals in this group are: Transfer start, Transfer 
acknowledge, Data bus busy, Address acknowledge, and Bus 
clock. 

These signals, with the exception of Bus clock, are 
generated by the bus master or the bus slave. Some of these 
signals are generated by this design when It is responding to a 
load or store from the processor. 

~~-1'1 ~i:::==:=:=:=:=:=:=:=:=M=O=T=O=R=O=LA=:M=PA=:D=AT.=A=-==D=L2=0=1=R=E=V=2=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:= 
4-34 



Transfer start (!TS) marks the beginning of an address 
tenure and is used by the analyzer to capture the address and 
control signals. After the address signals are captured, they 
start to pass through the monitoring pipeline while being 
simultaneously applied to the address decode logic. If a bus 
slave responds to the address tenure with an Address 
acknowledge (!AACK) signal prior to complete decoding, this 
design assumes that it is not the target of the address and 
stops the address decoding process. If a successful decode 
occurs, the analyzer will generate an !AACK signal and 
standby to respond to the corresponding data tenure. The 
analyzer never drives Transfer start. 

Data bus busy (!DBB) is generated by the data bus master 
to indicate the start and duration of a data bus tenure. It is used 
by this analyzer to communicate with the processor when the 
MPA is addressed as a bus peripheral. Transfer acknowledge 
(!TA) is used by the analyzer to latch the data from a bus 
transaction being monitored and is driven by the analyzer 
when it is acting as a bus slave. 

Address bus busy (!ABB), Bus request (!BR), Bus grant 
(!BG), Data retry (!DRTRY), and Address retry (!ARTRY) are 
not connected to this analyzer. 

The Implementation 

The elements used to construct the final circuit are brought 
together in the MPA. Each of the aforementioned criteria are 
met using the basic gates elements of this device. Again, the 
high register density and fine grained flexibility of the MPA 
device made it an ideal choice for this design. 

The design was done using Viewlogic schematic capture. 
It is a hierarchical design with each section of the circuit 
represented as components in the next higher level of the 
schematic. 

Compound Components 

The components constructed from the basic gate elements 
are the same type of functions found in most logic libraries. 
The main difference is that they are pipelined and therefore 
synchronous. 

This analyzer can be modified to operate at a higher bus 
speed, using more register elements, or at a lower speed, thus 
saving register elements by editing the pipeline depth of the 
lower level components. This will not change the overall 
structure of the design. 

Data Pipes 

A couple of new elements are synchronous pipeline chains. 
These have been constructed in both 45 bit and 64 bit widths. 
The pipeline chains are basically synchronous FIFO stages. 
Each will clock in data when an enable is present and provide 
the data and the enable bit at the output at the completion of 
the clocking operation. While the data will remain at the output 
until additional data is clocked in, the enable bit will last only 
one clock cycle at the output of this logic function. 

These pipelines are used to carry the data to be captured 
and compared while control signals are processed through 
their respective pipelines. They are used again to store the 
captured data during the comparison process. 

AN1564 

Pipelined Comparator 

The 109 bit width of the trigger event meant that the 
comparator had to be pipelined. The first stage masks off the 
bits that are not part of the trigger and does a 109 by 109 bit 
exclusive OR. The remaining stages reduce the 109 by 109 bit 
result by successive ORing down to a single bit. 

Each stage of the comparator uses three levels of logic 
between registers. The first stage that compares the 109 bit by 
109 bit values implements an XOR and an OR, considering 
the XOR to introduce two levels of logic delay. 

Monitoring Sections 

The most complex sections of this design are those that 
deal with the monitoring of the bus activity for the trigger event. 
The most pressing issue is that of synchronizing the split 
pipelined address and data transactions. The monitoring 
circuit must be able to retain and optionally increment the 
address that corresponds to the current data transaction while 
it latches and starts processing the current address bus cycles 
for later data bus activity. In addition, there may be an address 
only transaction on the address bus while current data bus 
activity is relying on a previous address bus cycle. 

Transfer Type Decoding 

This circuit decodes the transfer type to determine if the [1J 
current address cycle is a single beat, burst, or address only 4 
transaction. The complexity of the decoding has this circuit 
heavily pipelined. In most designs, address only transactions 
can be decoded with only one or two bits, but since this is a 
potential debug circuit, complete decoding is implemented. 

Burst Transaction Address Generation 

Burst transactions are always aligned and transfer 64 bits 
per data cycle. After the address is latched, decoded, and 
synchronized with the data bus cycle, it is incremented for 
future data bus cycles. The address counter uses modulo 
counting to maintain compatibility with the critical word first 
nature of cache line fills. 

Address Only Transaction Override 

Address only transactions produce a unique situation for 
the trigger event. In a pipelined bus system, a processor can 
issue and retire an address only transaction while the data bus 
is active using the contents of the previous address bus cycle. 
In fact, address only transactions can occur in situations 
where the data bus is active for all of the time surrounding the 
address only cycle. When the data bus is active, there is a 
corresponding address bus cycle inside of the MPA that is 
either captured off of the address bus, or is generated by the 
burst address generation logic. If the MPA device is generating 
the burst address internally while there is an external address 
only transaction, the MPA device is faced with deciding which 
address to use in its' comparison logic. For this reason, there 
is a bit in the control register that resolves this issue. When this 
bit is set, the processor will process the address only 
transaction. If this transaction happens to align itself with a 
data bus cycle, the address only transaction will be paired with 
the randomly occurring data cycle when presented to the 
trigger event comparator. In this case, when triggering on an 
address only transaction, the contents of the data bus should 
be masked out of the trigger event. When the address only 

=======riiil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-35 



AN1564 

transaction override bit is clear, address only transactions will 
be blocked from reaching the event trigger comparator stages. 

Bus Peripheral Sections 

In order for the processor to set up the trigger event and to 
retrieve the results of a trigger, the MPA device must behave 
as a slave memory device on the processor bus. During this 
time the setup and history registers are memory mapped into 
the processors address space. This design provides f!Jr two 
methods of placing these registers Into the appropriate 
address locations. In the chip select mode, a control line 
decodes the processor address externally to the MPA and 
provides an active low chip select to indicate that the device is 
being addressed by the processor. In the internal decode 
mode, the MPA decodes the address bus itself to determine if 
it's being addressed. In this case the chip select line is used to 
select one of two address locations for the MPA. In both 
modes, individual register addresses are decoded internally. 

Processor Store Cycles 

A store cycle from the processor to this design must be a 32 
bit word aligned on a 64 bit boundary. All internal setup 
registers are 32 bits wide, except for the control register. 

Processor Load Cycles 

A load cycle from the processor to this design must be a 32 
bit word aligned on a 64 bit boundary. All internal history 
registers are 32 bits wide, however, not all bits read will 
contain ·useful information. 

Schematics 

The schematics are drawn in a hierarchical topography. 
Figure 7 shows the structure of the schematics as they are 
assembled in the design. Pages that are shaded appear more 
than once in the design, due to the fact that a hierarchical 
design allows the use of a schematic page as design 
component. 

ANALYZER 

Figure 8 is the top ·page of the bus analyzer design. It 
provides the high level interconnect between the main 
operational sections of the design. 

l/O_PINS 

Figure 9 contains all of the external interface pins for the 
analyzer. They are grouped into three sections: Data bus 
interface, Address and transfer control, and timing and 
operational control. 

The top left corner of the page shows the data bus 
interface. The upper bits [0:31] are input only and the lower 
bits [32:63] are input and output pins. (Remember: the 
PowerPC uses big endian bit ordering with bit[O] as the MSB.) 
The reason for the difference in input and output types is that 
the device captures the full 64 bit data bus in voyeuristic mode, 
but responds as a 32 .bit peripheral in bus slave mode. 

The upper center and right areas of the schematic page are 
the timing and operational pins. These include the signals that 
regulate the bus. activity as well as the MODE, SELECT, 
!START, !STOP, and !RESET operational pins. 

The bottom left quarter of the page contains the interface to 
the address lines and the transfer type signal lines. These 
lines control the non-timing aspects of the transaction, such 
as data bus direction (WT), transaction size, and transaction 
type. 

The bottom of the page, just to the left of the title block 
contains the designation for the processor bus clock input pin. 

INVBIPAD 
Figure 10 is a bi-directional inverting 1/0 pin. This 

component was created by modifying the noninverting 
bi-<lirectional pad for use with active low control signals. 

INVINPAD 
Figure 11 is an inverting input pin. This component was 

created by modifying the noninverting input pad for use with 
active low control signals. 

PIN32BI 
Figure 12 shows the creation of a 32 bit wide array of 110 

pads used to interface to the low 32 bits of the data bus. Each 
pad is drawn independently, as opposed to an array of 
components, to allow individual pin assignments if it became 
necessary. 

PIN321N 
Shown in Figure 13, a 32 bit input only array of pins. Again, 

called out separately to allow individual pin assignment. They 
are used to monitor the address and upper data bus bits. 

IN_PROC 
The schematic in Figure 14 is the input processor of the bus 

monitoring section. The function of this section is to process 
and synchronize the address and data bus tenures. The 
resulting output is a unified 109 bit wide snapshot of an 
aggregate bus cycle. 

The incoming address cycle is stored in three 45 bit wide 
synchronous pipeline stages while the transfer type is 
decoded. Selected bits of the final pipeline stage can be taken 
from the burst counter to provide auto incrementing addresses 
for burst cycles. 

The signals captured from the data bus are stored in a three 
deep pipeline as well, this one being 64 bits wide. The data 
from the . data bus isn't processed during this time, but is 
pipelined to provide synchronization with the corresponding 
address signals. 

PIPE45 
The 45 bit wide pipeline stage shown in Figure 15 is 

comprised of a 45 bit wide data register and a single flag bit. 
The flag bit is present for one clock cycle following the latching 
of data into the register. 

REG45 
Figure 16 is a 45 bit wide register. It is composed of 8 bit 

wide standard library components as well as a 32 bit wide 
composite component. Logic trimming in the place and route 
software removes the unused logic from the second 8 bit wide 
register from the final circuit. 

This composite component is used as the data register in 
the 45 bit pipeline as well as a section. of the 109 bit wide pipe. 

~~~ ~c·===================M=O=T=O=R=O=LA==M=P=A=D=A=~=A=~==D=L2==01=R=E=v==2================================ 
4-36

REG32

The 32 bit wide register in Figure 24 is used wherever a
register of this width is needed in the design

PIPE64

Figure 17 is a 64 bit version of Pipe45. It is used to provide
a delay to the data bus signals for synchronization to the
address bus signals.

REG64

Figure 18 is a 64 bit register. It is used to construct the 64 bit
wide pipe component and it is used in conjunction with the 45
bit register to create the 1 09 bit registers.

TTDEC1

Figure 19 is the first stage of the transfer type decoding
circuitry. The balance of the decoding is performed discretely
at one level higher in the hierarchy, on the IN_PROC
schematic.

The only two cases that are decoded from the transfer type
are burst cycles and address only cycles. The user is free to
program the pattern detection circuitry to trap on other types of
transfers. This detection circuitry is independent of the trap
pattern and is used to control burst address generation and
blocking or passing of address only signals.

BURSTCTR

Figure 20 is the burst counter. It operates in parallel with the
third address pipeline stage. Its purpose is to latch the adders
bus signals, just as the third pipeline stage does. However, it
retains this information and increments the address bits that
are implied by the burst cycle. It is a modulo counter, as
required by the PowerPC specification to allow critical word
first loading of cache lines.

CNTCTRL

Figure 21 is the state machine to control the sequencing of
the burst counter. It is a three bit unary counter whose output is
true if any of the count bits are nonzero.

SELECTOR

The selector circuit shown in Figure 22 is a 45 bit by two
way gate. Its purpose is to determine if data from the third
stage of the address processing pipeline or data from the burst
counter should enter the pattern matching section of the
design.

REG109

The 109 bit register in Figure 23 is used throughout the
design to carry the full trigger pattern through its processing
stages.

TRC_CTRL

Figure 25 is the state machine that controls the operation of
the pattern matching section. It accepts input signals to start,
stop, reset, and to detect a trigger match. It outputs an all clear
signal and a run signal.

The reset signal is from an external pin to the MPA. It forces
a clear signal and places the pattern matching section in stop
mode.

ANt564

The start signal generates a pulse on the clear signal and
asserts the run signal. The clear pulse is one clock cycle in
length and is separated from the run signal by three clock
cycles. A start can be generated by an external pin or a bit in
the control register. The start signal is edge sensitive.

The stop signal halts the pattern matching logic and
suppresses any applied start signal. The stop signal must be
removed before the start signal will be accepted. Like the start
signal, the stop signal can be applied from the control register
or an external pin. The stop signal is edge sensitive.

A match signal halts the pattern matching section, but
doesn't affect the reception of a start signal as does the stop
signal. The match signal is generated by the trigger circuitry.

The clear signal is distributed to all registers in the
processing pipeline. It doesn't affect the contents of the setup
registers.

Run is an active low signal that allows the pattern matching
section to clock in unified data from the input processing
section.

REG_FILE
The schematic shown in Figure 26 is the setup register file.

It consists of the two 109 bit registers for the match pattern and
the pattern mask. It also contains the three bit setup register
which contains the start, stop, and address only control bits.
All of these registers are write only.

SETUPREG
Figure 27 is a 109 bit register used for storing the trigger

pattern and the trigger mask.

REG13
The 13 bit register in Figure 28 is used to store bits 96

through 108 in the 109 bit setup registers.

REG_SEL
Figure 29 is the schematic of the register selection logic.

This allow the contents of five 109 bit history registers to drive
the data bus in 32 bit blocks.

Selection bits [O, 1] break the 109 bit registers into four 32
bit sections, the last section containing 13 bits of valid data.
Selection bits [2, 4] are then used to determine which register
is chosen. These bits can select up to eight registers,
therefore not all values are meaningful.

Register selection bits are generated by the address
decoding logic.

109SEL32
Shown in Figure 30 is the logic that delivers the chosen 32

bit subset of the 1 09 bit history register. When the most
significant bits are selected, the Unused bits are driven to zero.

32SEL8
Figure 31 is used by the logic in Figure 30 to break down

the history registers.

MUX_BY32
Figure 32 is used to select one 32 bit history register slice

from the array of five presented to it.

MUX_BYB
The logic in Figure 33 is used by Figure 32 to break down

the history registers.

===============================M=O=T=O=RO==LA=M==PA==DA=T=A=-==o=L2=0=1=R=E=v=2==========================~
4-37

AN1564

MUX5T01

The five input muxes in Figure 34 are derived from the
library of parameterized modules entry for an eight to one
multiplexer.

BUS_SLV

Figure 35 is the control logic used to place the setup and
history register into the processor's address space.

The latches at the bottom of the page, the shift register, and
associated logic comprise a state machine that is continually
monitoring the processor buses. If no other bus slave
responds to an access before the address decode circuitry in
Figure 36 detects a hit, then either the write control in
Figure 38 or the read control in Figure 39 will transfer the data
to or from the proper registers and generate the proper control
signals to. complete the bus cycle.

This process can take up to 14 clock cycles to complete. It
was not considered critical to have this device respond quickly
to bus accesses.

ASYNCOEC

This schematic in Figure 36 is used to determine if the MPA
is being addressed by the processor, and which internal
register is being selected.

Address decoding can operate in one of two modes,
internal or external. Each mode has a different function
assigned to the select pin.

Internal decoding (mode = 1) uses the logic on this page to
decipher the address generated by the processor. The MPA
will reside at a base address of FFFF 0000 or FFOO 0000 as
determined by the select signal. The MPA reserves 256
addresses off of the base address for its' registers. Thus the
actual address that cause an access are FFFF OOXX or FFOO
OOXX. Note that there are not 256 registers in this device, so
not all of these addresses are legal.

If external addressing Is used (mode = 0), then the select
pin is used to indicate that the MPA has been addressed. In
both cases, the read addresses of the history registers and the
write address of the setup registers maintain the same offset
from the resulting MPA base address.

WHICH REG

Figure 37 is the address decoding section that generates
the individual register selection lines.

There are nine lines to select the setup registers. Four for
each of the mask and pattern registers, and one for the control
register.

There is a selection signal for reading each of the history
registers. The particular 32 bit word from each register is
determined in the schematic hierarchy starting at Figure 29.

WRITEREG

Figure 38 is the control for the writing of the setup registers.
After a launch signal is received from the master decode logic,
the system waits for a data bus busy to indicate that data is
present on the data bus. The logic then waits for six clocks to

latch the data and generate the transfer acknowledge. It then
generates an idle signal to reset the main state machine.

REAOREG

Figure 39 is the read register control. Upon receiving a
launch signal, it drives the data bus and then drives the data
bus busy. It holds these signals until the transfer acknowledge
is received.

MATCH

Figure 40 is the pattern matching logic. It is heavily
pipelined to compensate for the width and speed of the
processor bus. This circuit actually maintains two pipelines.
The first is the pattern matching pipe, and the second is a
parallel path for the captured data to be recalled later.

The first pipeline accepts the unified 109 bit wide bus data.
This data is AND'ed with the contents of the mask register.
The result of this AND is then XOR'ed with the contents of the
pattern register. The result is a 109 bit wide comparison of the
data bus and the trigger pattern for the selected bits. It should
be noted that the contents of the reference pattern is not
AND'ed with the mask register. It is up to the user to make sure
that there are no bit positions with a zero in the mask register
and a corresponding one in the pattern reference register.
Such a combination would preclude a trigger event from
occurring.

The resulting 109 bit wide result is successively ORed
down to a single bit, which is the unary addition of all of the bits
in the result of the XOR. This takes three clocks to work its way
through the pipeline. The final result is an active high match
signal.

The second pipeline is actually the history buffer register
file. It stores the result of the match at T _ZER0[0:108] with two
samples before and after the trigger. When a match occurs,
the logic in Figure 25 suppresses the enable signal, freezing
the contents of the pipelines.

REG_2

Figure 41 is a two bit wide register used in the pattern
comparison pipeline.

REG_14

Figure 42 is a fourteen bit wide register used in the pattern
comparison pipeline.

MASK

Figure 43 is a 109 bit wide array of AND gates. It is used as
a single component in Figure 40 to allow the contents of the
mask register to suppress bits captured from the processor
bus.

XOR

Figure 44 is a 109 bit wide array of XOR gates. It is used as
a single component in Figure 40 to compare the contents of
the captured data with the contents of the pattern reference
register.

OR109_14

Figure 45 OR's 109 bits down to 14 bits. It is the second of
three stages in the pattern matching pipeline shown in
Figure 40.

~~-1'1 ~~"==================M=O=T=O=R=O=LA==M=P=A=D=A=T=A=-==DL2==0=1=R=EV==2===============================
4-38

OR14_2

Figure 46 OR's 14 bits down to 2 bits. It is the third and final
stage in the pattern matching pipeline in Figure 40.

Usage

Control of the bus analyzer consists of programming the
mask and compare registers for the trigger event, followed by
the control register to set the environment for the trigger. The
monitoring of bus activity can be started or stopped either by
programming the control register or by activating external
control lines to the MPA.

This analyzer will attempt to monitor and trigger on
accesses to itself if it is in capture mode while it is being
accessed. This could result in unstable driving of the data bus
during a load operation or a false trigger during a store
operation. The control register can safely be written to while
the device is capturing in order to stop operation. The analyzer
will attempt to capture this bus cycle, however, it will shut down
before the aforementioned cycle reaches the history buffers.

Figure 5 shows the addresses of the internal setup and
history registers. The setup registers share the same
addresses as the history registers with a read or a write used
to differentiate accesses. ·

Compare Registers

The total trigger compare width is 109 bits. The compare
value is stored in four 32 bit registers. The first three registers
use all 32 bits, the fourth uses 13 bits. The remainder of the
bits in the fourth register are ignored. It is possible to program
a trigger pattern that cannot occur. An example of such a
pattern would be a burst access from an odd address. It is the
responsibility of the user to avoid programming to trigger on
such events.

The compare register resides at locations Ox10, Ox14,
Ox18, and Ox1C off of the base address of the MPA in the
processors memory map.

Mask Registers

The mask registers allow the user to exclude specific bits of
the captured bus signals from the comparison process. Each
bit in the compare registers has a corresponding bit in the
mask registers. Any bit masked off will not be considered in
the comparison, but will still be captured and recorded. If all
bits in the mask registers are set to zero, all bits in the
compare register will be ignored and a match will occur as
soon as the capture process is enabled.

The mask register resides at locations OxO, Ox4, Ox8, and
OxC off of the base address of the MPA in the processors
memory map.

Control Register

The control register consists of three bits. Bit Zero starts the
bus monitoring process, and is equivalent to applying the
!START signal to the MPA. Bit One stops the bus monitoring
process, and is equivalent to applying the !STOP signal to the
MPA. Bit Two is the address only override selection bit. When
this bit is set to a one, address only cycles are processed by
the bus analyzer. When it is set to a zero, address only cycles
are ignored.

AN1564

The control register resides at location Ox20 off of the base
address of the MPA in the processors memory map.

Input Control Signals

There are three input control signals: Start, Stop, and
Reset. Start and stop are falling edge triggered inputs. The
start signal causes the MPA to clear out its history buffers and
start capturing and comparing the processor bus cycles. The
stop signal has the effect of a trigger event becoming true. All
capturing stops and the contents of the history buffers are
frozen. Reset, which is active low level controlled, causes a
stop command to be executed as well as clearing all history
buffers and setup registers. It must remain low for one full bus
clock cycle.

Output Result Signals

Two output signals indicate the state of the capture control
logic: Run and match. Run indicates that the circuit is currently
capturing the processor bus. It is active low, a high indicates
that the circuit is stopped. The second signal is the match
signal. This signal is also active low and indicates that the
contents of the trigger history register matches the trigger
word. When a trigger occurs, the run signal becomes high
(inactive) and the match signal goes low (active). The match [4J
signal will remain low until a reset or a start command is
executed.

Trigger History Buffer

There is a five entry trigger history buffer. Each entry is 1 09
bits wide. The entries are named Tminus2 (Tm2), Tminus1
(Tm1), TZERO (TZ), Tplus1 (Tp1), and Tplus2 (Tp2). Entry
TZERO contains the trigger word. Tminus1 contains the bus
cycle immediately preceding the trigger event and Tminus2
contains the cycle preceding Tminus1. Tplus1 is the cycle
following the trigger event, and Tplus2 follows Tplus1. Thus,
the history buffer contains the bus cycle that caused the trigger
event and the two cycles preceding and the two cycles
following the event.

Programming bit fields

Table 1 through Table 5 shows meanings of the various
transfer control bit fields. Figure 6 provides the locations of the
bits as they are assigned in the trigger word. These bit
positions hold true for both setup registers and the history
buffers.

Summary

This application note attacks a number of PowerPC design
issues. The most significant being the speed and bus width
criteria.

This design shows that there is very little opportunity to
implement a great deal of external logic on a modern RISC
processor bus. While at the same time, a wide bus can require
a great deal of decoding.

It is hoped that it demonstrates that, while the design of a
RISC based system is not trivial, state of the art support
devices such as Motorola's Programmable Array can resolve
all design issues.

===================rfil
MOTOROLAMPADATA-DL201 REV2 ~

4-39

AN1564

SYSCLK

Qualified !BG

!TS (out)

!ABB(out)

ADDR+(out)

!AACK(in)

!ARTRY(in)

Figure 1. Address Bus Tenure

SYSCLK

!BG(in)

!TS(out)

!ABB(out)

ADDR+(out)

!AACK(in)

!ARTRY(in)

Figure 2. Address-Only Bus Transaction

SYSCLK

!DBG(in)

!DBB (out)

DATA(in)

!TA(in)

!DRTRY(IN)

Figure 3. Data Bus Read Cycle

~~.,'I ~~·==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=D=L=2=01==RE=V=2===============================
4-40

AN1564

SYSCLK

!DBB(out) ~'---~~---~-----""-~------''"'""----......,• ... ·;r-
DATA (in)

!TA(in)

!DRTRY (IN) -------
Figure 4. Data Bus Burst Cycle

Bit127

Bit 108

BitO

Mask Register OxOO Ox04 Ox08

Referemce Register Ox10 Ox14 Ox18

Control Register Ox20

Accessed when Writing

Accessed when Reading

HistoryT+2 OxOO Ox04 Ox08 OxOC

HistoryT+1 Ox10 Ox14 Ox18

History To Ox20 Ox24 Ox28

HistoryL1 Ox30 OX34 Ox38

HistoryL2 Ox40 Ox44 Ox48

Figure 5. Internal Register Addressing

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=0=1=R=EV==2==========================~~
4--41

~

AN1564

Address bus 31 Bit95
Transfer Type O Bit96

Transfer Type 4 Bit 100

TBST Bit 101

Transfer Size O Bit 102

Transfer Size 2 Bit 104
Transfer Control O Bit 105
Transfer Control 2 Bit 107

WT Bit 108

Figure 6. Bit Positions in Trigger Word

Table 1. Transfer T}'pe Encoding

TBST TSIZO TSIZ1 TSIZ2 Transfer Size

Asserted 0 0 0 Not Defined

Asserted 0 0 1 Not Defined

Asserted 0 1 0 Eight Word Burst

Asserted 0 1 1 Not Defined

Asserted 1 0 0 Not Defined

Asserted 1 0 1 Not Defined

Asserted 1 1 0 Not Defined

Asserted 1 1 1 Not Defined

Asserted 0 0 0 Not Defined

Asserted 0 0 1 Eight Bytes

Asserted 0 1 0 One Byte

Asserted 0 1 1 Two Bytes

Asserted 1 0 0 Three Bytes

Asserted 1 0 1 Four Bytes

Asserted 1 1 0 Five Bytes

Asserted 1 1 1 Six Bytes

~~~ ~~·===================M=O=T=o=R=o=LA==M==PA==D=AT=A=-==D=L=2=0=1=R=Ev==2================================ 
4-42 



Table 2. Transfer Type Encoding 

Bus Run Snoop Hit 
TT[0:4] Operation Transaction Transaction on Transaction 

00000 Clean Block Address only 601, 604 

00100 Flush Block Address only 601, 604 

01000 sync Address only 601, 604 

01100 Kill Block Address only 601, 603, 604 601, 603, 604 

10000 eieio Address only 604 

10100 ecowx SBW 601, 603, 604 

11000 TLB Invalidate Address only 601, 604 

11100 eciwx SBR 601, 603, 604 

00001 larx rsvr set Address only 604 

00101 (reserved) 

01001 tlbsync Address only 604 

01101 icbi Address only 604 

1xx01 (res for customer) 

00010 WRw/FLUSH SBWorBurst 601, 603, 604 601, 603, 604 

00110 WRw/Kill Burst 601, 603, 604 601, 603, 604 

01010 Read SBR or Burst 601, 603, 604 601, 603, 604 

01110 RWITM Burst 601, 603, 604 601, 603, 604 

100010 WR w/ Flush Atomic SBW 601, 603, 604 601, 603, 604 

10110 (reserved} 

11010 Read Atomic SBR or Burst 601, 603, 604 601, 603, 604 

11110 RWITM Atomic Burst 601, 603, 604 601, 603, 604 

OOx11 (reserved) 

01011 RWITMC SBR or Burst 603, 604 

01111 (reserved) 

1xx11 (res for customer) 

SBW = Single Beat Write; SBR = Single Beat Read; RWITM = Read With Intent to Modify; RWITM = Read With 
Intent to Modify Cache 

Table 3. Transfer Codes for MPC601 

TCx Function 

TCO On a read: 1 = Instruction fetch, O = Data operation 

On a write: 1 = Response to a snoop hit to modified data, O = Not a snoop push 

TC1 An operation to reload the other sector is queued 

Table 4. Transfer Codes for MPC603 

TC[0:1] Read Write 

00 Data Transfer Not Snoop Copyback 

01 Touch Load Reserved 

10 Instruction Fetch Snoop Copyback 

11 Reserved Reserved 

AN1564 

===============================M=O=T=O=RO==LA=M==PA==DA=~=A=-==D=L2=0=1=R=E=V=2=========================1~ 
4-43 



AN1564 

Table 5. Tranter Codes for MPC604 

TC[0:2] WT TT[0:4] Function 

100 1 00110 (WRITE w/ Kill) Cache Copyback 

100 0 00110 (WRITE w/ Kill) Block Invalidate (DCBF) 

000 0 00110 (WRITE w/ Kill) Block Clean (DCBST) 

010 1 00110 (WRITE w/ Kill) Snoop Push (READ) 

100 1 00110 (WRITE w/ Kill) Snoop Push (RWITM) 

000 1 00110 (WRITE w/ Kill) Snoop Push (CLEAN) 

100 1 00110 (WRITE w/ Kill) Snoop Push (FLUSH) 

100 Don't Care 01100 (Kill Ellock) Kill Block Deallocate (DCBI) 

000 1 01100 (Kill Block) Kill Block and Allocate no Castout Required (DCBZ) 

001 1 01100 (Kill Block) Kill Block and Allocate Castout Required (DCBZ) 

000 1 01100 (Kill Block) Kill Block (Allocate) Write to SH Block 

oxo Write through Bit Value x1x10 (READ) Data Read no Castout Required 

Ox1 Write through Bit Value x1x10 (READ) Data Read Castout Required 

1x0 Write through Bit Value x1x10 (READ) Instruction Read 

100 Don't Care 01101 (icbl) Kill Block Deallocate (icbi) 

~~.,'/ ~£==================M=o=T=o=R=O=LA==M=P=A=D=A="A==-=D=L20===1=R=Ev==2=============================== 
4-44 



INVBIPAD 

PIN32BI 

TIDEC1 1-+----1 BURSTCTR 
___ _. 

CNTCTRL 

109SEL32 

32SEL8 

ANALVZER 

BUS_SLV 

ASYNCDEC 

WHICH REG 

WRITEREG 

READ REG 

Figure 7. Schematic Hierarchy 

AN1564 

MATCH 

REG_2 

REG_14 

MASK 

XOR 

OR109_14 

OR14_2 

=========lriiiil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-45 



AN1564 

I-

__ .. _ - -

Ir=: 1 
~:. 

' l tfll~l----------+-1-+--' 

m 
0 

"' 

0 

<l 

" z ~I-

l "w 
~+-~+-~~~!-o'~~ 

0 0 0 

ig~~~ ~ '< 0 

1-1 

Figure 8. Analyzer 

~~.,'I ~oc·===================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=0=1=R=Ev==2================================ 
4-46 



32Bit 

D_OUT[32:63] 

;:: 
0 
d 
JJ 

~ !! ;:: Cl c } ii 
t~ !D 
-.J > 0 

I 1,, 
0 z 
~ UI 

AC[0:31] 

32Bit 

JJ 

!l! 
"' TTO 

M AC32 

TTl. 
"0""""" 

ENPAD AC33 

TT2 "'0""""'° 
!Nt'AO AC34 

TT3 ··o~'"TO 
rNr>AD AC3S 

TT4 l'AQlil"'ULT~C 3 6 

'I'BST 

AC37 

D_IN{ 0: 31-] 

D_IN(0:63] 

TSJ:ZO 

!¥.l. AC38 

TCO 

!¥!> AC41 

'I'Cl. o-ULTO 
PA AC42 

[NPAD 

TC2 o-ULTO "'" AC43 
ENPAD 

~ 
AC44 

MODE 

!TS 

~.., • ICTRL7 
~T°CTRL3 

~o ' ICTRLS ~T°CTRL4 

AC[0:44] 

• BCLK e:alSULTO CLK. 

~ 

CTRL{O:l.2] 

'START 

!TA 

~l"° • ICTRL9 

l:Z:'fi:!'Jlt'r<J I CTRLS 

CTRL6 

J:nput / Ouput Connections 

:I:O_P:tNS. l. 

)> 
z ...... 
01 

~ 



AN1564 

Figure 10. INVBIPAD 

Figure 11. INVINPAD 

PAD 
( ) 

~~~ ~oc·==================M=O=T=O=R=O=L=A=M=P=A=D=A=T=A=-=D=L=2=0=1=R=Ev==2=============================== 
4-48

;::
0

d
JJ
0
r .,,
)> cli" ;:: c
~ Ci!

t~
~

!"
<O)> ,,

I z
0 Ill
r (.:I

"'
II)

~ !!!
JJ

~
"'

~~... . ., . I I , .. o 00 :

! : ;:=::: m-··

II- DRIVE

r 1 1 LNAOCD PAD D2 •

OOTDATA2 '"~
1<1•0 JLTC> i I 1 •NMLL PAO

OUTDATA3 ""~
'!.E<.~. LT9

BJ;:PAD r 1 1 ENAOLE PAD 04 •

DUTDATM DA~
RP.. >LTO r 1 1 .N.. ••• PAD DS

OUTDATAS DA·~
H~---

0UTDATA6

OUTDATA7

OUTDA'l'AB

OUTDATA9

r 1 1 .. ~:::.AU PAD D1D.

OtJ'rOM'A10 ::~

I OUTOATAU

i I 1 ""'""" PAD D12.
OU"r'DATA12 DA~

R~<)_ i I 1 •••M PAD DU
OUTDATAU DA~

RR H.TO t I I PAD DU

OU'l'OATA14 QA~
<R LTO i I t :;;:.;;:~- PAD 015.

OUTDATA15 nA~
RE ILTO

~
~
~
~
~
~'"

~
~
~
~
~
~
~
~

rNDATAIO 111

~ 32 Bit Bidirectiona1 Pir

:B:e~ PINS32BX.1

~

~

)>
z
()1
O>
.j>.

~ ~
c:::::J

s:
0
d
JJ
0

> "Tl

s: ,g·

~
c
iii to ...

~~ !"
"O

I z
0 (.>
r- "' "' z '.:1
JJ

~II
"'

-°" <'A...V~ESUL"I'Q_ ___ l:NDATAf_ • _022

-Dl.O PA~=ULTO l'.NDATA10 I -026

~

PAcV'1<ESULTO J:NDATA22

P.,,J7'<J,BSULTO :tNDATA26

32 Bit Input Pins

PJ:N32IN.1

)>
z
01

~.

__._
' I --'-

AO_EN

1--

ADILUl[-0·4-4] l t!B AOR_SJ{O " ADR_SZ{O

I NPUTf o · 44 l I OUT PU rr o · 44 1 T Pu r o 4 4 J

-::· I 1 'Tu 'ihjf ::, .. 1 I ::· I 1 'Tu ##· ' n Bit Bit

II n"'-'"
s:

AO~-SJ{ 32 · 36]

TT D•oodo lb TT[0 • 4 l

TT0£C[0 · 6

,,

0 a
JJ ,,
0

> ~ s: c
~ ~ u· to

!:'.!~
~ CLk

I ,z
0 "ti
..- :u
"' 0
=i n

TTOEC:ro

i I I t I I~: ..

fDJ
~

JJ
m ,,
<
"'

11 u 111~
I))

AN02

CLR

--
9ATA_IN{ TP T 0·63]

k

EN

64Bit D,.TLS1C06Jl 64Bit DATLSZ[O·Sll 64Bit

]

~

I "
OA TA _SJ[0 · 63] A0R_S3[0 · 4 4 J

AOR_SJ[O 44]

A0[0·44

STA TE

DATA _SJ[0 63]

Moto,.ola Sa1111ca11clucto" Produces Inc.

0116 NAME

Address & Data Input Processor

a"d Bus Cycle Synchronizer

fd• N•u· IN _PAOC .1 l REV

NAME A 1 c:: h A• J 111 • ~,. • ~ SIZE· B

DATE· SHEET·

l

f-

f-

H

4

)>
z
01

~

AN1564

T

rl

H

~

"'"
i-- ~

..

0

~

f-

:::J

CL

z
H

T

~

0

f

:::J
(L

f

:::J

0

~ -'-' p
rl ~

o:i ~
LJ"l

~

~
<

~ 1--'

. ,.
::<'.'. cc
_Jz_J
uwu

T

<

"

.

T

' f

:::J

0

z
w

0 Q.
• u
• 0

~

.

I

.
;
:;,

H

-I

H

''.!1.)LJ. rm..~. ===========;;~~F~ig~ut~e~15~.P=IP7,E~:::::=~::===================== 1v1rt1 ~ MOTOROLAMPADATA:_DL201REV2
4-52

l

l

~ " ~ ~ :

" " " " ~

J_JJ_

=~~:~~~~
""""9~~~

I

I

rl

co
N

fYl

J_

l

' "' w
~

AN1564

.

f-

===================================F=ig=u=r=e=1=6.=R=E=G=_=4=5=============================!liiill
MOTOROLA MPA DATA- Dl201 REV 2 ~

4-53

AN1564

H

/-

H

]

D

=:J

Q_

z
H

I

UJ

T

• f-
[T)

=:J
UJ

D

:z
D w

f-

=:J

Q_

f-

=:J

D

I

T

~

T

.
"
• • >
..... .0 w ... :r.

~ ~~o
~ ~ . "' u ~

"' " ~
w
~

~ >
·o ~ .
"'

-~
'"' .

z

c z ~H

J//).LJ. ifrT\..~==============:;;;;:;;::;::;:::::F~lg~u~~~17.7~.=Pl~PE~674::=::::=;:::::========================= /Vf rt f w MOTOROLA MPA DATA- DL201 REV 2
4-54

,-----,
rl .µ r---'~

rl

co
ej N

rr1

~~,__,,

• •
I

AN1564

f-+-+-

1-1

f--1

l

===================================F=ig=u=r=e=1=8.=R=E=G=_=6=4============================~~ .. ·
MOTOROLA MPA DATA- DL201 REV 2 ~

4-55

AN1564

H

1 .
~ u
0 0

u ..
~D

:: . . .
n c
rl •

n c

N N }N [f N 0 0 0 0 0
z z z z z

«,--''r-c'h' <

~

~-~>o-H--+-H+-++-HH--+---++-+--H--+--HH--
" l

l

j

j

I

Jl!)LJ, FoJl.~•============;:;::~~Fig~u~re~19=.T=T~DE~C=1=:=====================
/Vf rt f ~ MOTOROLA MPA DATA - DL201 REV 2

4--56

;::
0 a
ll
0 ...
s;: .a

c ;:: iil j
1\:1

t~ ?
ID

.... "' c:
I :u

Ill 0 -I :;; ~ :1 :u
ll

~
"'

INPUT[O 4<1]

CCR . -

-- CL K

L 0

C NT

•

OU f PUT[0 4 4]

I P l40 TP T40

1--'-"'ClLLti__ 0 HA 1 0 1lt--~'-'-'-"-"-'-'------I
1--'-"-=-'-'----lo.H A 2 a 2,t----W""-"JLL'-'------I
.-==~-DATA3 03 NP 14 TPUT<ll

l-..UU'-LL1-'-'----iDAfA4 04 PUT 44 TPUT44

INPUT[Q 33] --~~~--'DAT AS 0 S•t----WLl..<JJ..Ll'-L-.1
--==-'-'--__jo Ar As a st----"-'LlLJJ..LlLL-1
9-..UU'-"-'--'-'L--JtOA TA 7 0 7t--~="-'-''-"-----I

·4
INPUT[0 · 2 6] IN PU r[zg · 33]

INPUT(0 · J 1

I
~J t:==i;, J L U J. l.

l
dUIPUT[O

0 LI f P LI T(0 • 2 6] , 0 LI T P LI T [2 9 · 3 3]

INPUT[27•28]

t;LH
r::=J_

0(0·1]
CLK

~-------j LOAD

NT 0·1

L___1 OUTPUT[27 · ZB]

~

Motor o 1 a Se 111 conductor Product & Inc.

OW6 NAME

Address & Transfer Attr1butes
Hold:ing Register with Burst
Counter for Address Generation

F~l .. N BUASTCTA. !_I REV·

NAME A 1.oti A., 1 ,. .. n 1a~ I sIZE B

DATE SHEET

)>
z
01
O>
.j:>.

AN1564

0

~

w

c .

~

w

:
~

, .
~

~

.
;

~ " .
0 c . ~

w ,
0

~u
~ . . . 0:

c .
" " ~ .
~ .
0 ~ .
"< ,.

~
z ~ " . , ~ ~ u l%l
cV> ~ z

J1'!),LJ. rfrn..c::::=:=:=:=:=:==;:;;~~F71g~u~~·~21~.=C=NT~C~T=RL:::::::;:::::::::==============:========== /Vf rt f ~ MOTOROLA MPA DATA- DL201 REV 2
4-58

f-

J

H

J_

''
""'

,.

I l

J_ l

m • . " .. '
• " 0

> u ' ; c_;_<-P

AN1564

=================================Fl=gu=re==2=2.=S=E=L=E=C=TO=R===========================riiiiiil.
MOTOROLA MPA DATA- DL201 REV 2 ~

4-59

AN1564

'-~-mI.,\.,--foUTPUTl64::l.081

OQTPUT{O; 63)

"64Bitj

1 I

Figure 23. REG109

-LL>

~ l v•=co

::_;:;_
ov"""'

·= ~=·=>

"""" lli<='

l ±
j..AoL•

JJ

~ L
'"~--'-

--"""""

-""'"""'
-"""''-'-

~ J J 32 Bit Regiat;.e;r

REG_32 .1

Figure 24. REG32

~~.,'/ ~~i::M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=o=L=~=o=1=R=Ev==2==:::::::::::::::::::::;:;::==
4-60

AN1564

~

~
. .
~

~

111 ' ~

"' ~
'"":
u

"' . ~

u . . :.:
%

~ ~

0 0

~
~

' ' ' % w "'
~

"' w ~ w u
~ ~ "'

:::::::::::::::::::::::::::::::::=::=F=ig=u=~::::::25=.=TR=C=_=C=T=R~L::=1riiiil
MOTOROLA MPA DATA- OL201 REY 2 ~

H1

AN1564

w
~

1

-W

QJ

'Ln

l

•

]

QJ

~Ln

Ill "

1

0 0

~' .
~~ ~

" .
"' 0 • c
~ .

JI!)~ frnl..~·===============;:;;~~Fi~gu~re;::=::26~.=R=EG=_~F~IL~E===:=:=========================
/Vf rt f ~ MOTOROLA MPA DATA - DL201 REV 2

4-62

H

~

z

l

r-~
r1

[IJ

F : N

fYl

~'f- n-" f---'

l

l

t
~

r1

[IJ

: N

fYl

·'f-w H

l

AN1564

~ .
00 " ;;, .
• 00

cr:.1-l~

~~
"N
;~

" r-~ (':
~

~--
~

"-' i--

r1 r1

[IJ [IJ r ~ N ~ fYl

fYl ." ~

·1'-L,-~.;; H

~1T
)--'

H

I-

l

Figure 27. SETUPREG

=:=:=:==========================M=O=T=O=R=O=LA==M==PA=:D=AT=A=~==D=L=2=0=1=R=EV=:2=:=:=:=:===============:::::::~
4-63

[]]

AN1564

J/f).;LJ, frn.,t::==============F=ig=u~=2=8.=R=EG=_1=3===================== 1v1rt1 w MOTOROLAMPADATA-DL201 REV2
4-64

" '
'"' .

m" •
o m"
~ " .

O'D ..
~a: (!I

~ '
0 0 0

"" ~ LD C: i..LJ
..., no <.n
~:c I e

w
"' <

AN1564

===================================F=ig=u=re=2=9=.=R=E=G=_S=E=L=============================rliiil
MOTOROLA MPA DATA- DL201 REV 2 ~

4~5

AN1564

H

H

w
~

00

0

;;;

~
" 0

;;; "' N

~

N

" " 0 0

._ ________ I,~

J

:I

1

" 0

,r0
L • ~

"' 0

:I . .
~

m

~
~ .

~ . ~ ·- . i 0 u
N

~ "' ~ ~

"' ~
"' . .

N

~ : "'
~ .

~ " " •00
0 c

~I-. z

H

]

J~J').JJ. frn..i:::=====================Fi=gu=re==30=.=1=09=S=E=L3=2===============================
/Vf rt f W MOTOROLA MPA DATA- DL201 REV 2

4-66

AN1564

l l l

H

I o

~

a "

H

~ '
~ $

~ ol'.: ol'.:

'--+-+~I~~~ r-1

Figure 31. 32SEL8

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=01==R=EV==2==========================~~
4--67 ~

AN1564

]

'.:;

I-

.

- t-
- I-mr
,;, lo
:;;; t;;
0 'o

I

~ ;;; m

~~

::r

~

<
0

I

J

m

'"
~

m

~

'"
=>

"
~

0

..
" " 00

"' .
~" ,
" ,
~o~~
u "
0 c 'I- r\I

-c 18 Q l'l"I
~

.µID.µ CC . " .
~~~ ~ IC 

I-

J~/)1/J. frn..~•==============::;:;;:::;:::;;:::=Fl7gu~~:::=;32~.=M~U=X_=B~Y~32:::;:::========================== /Vfrt I w MOTOFIOLAMPADATA-DL201 REV2 
4-68 



I I 

t-

' ' ' '~o rffi' < < < ~o 0 00000,_ OOOCIO .. 
.... <<<<<.., .... <<<<<"' 

.................... >< ............ ,_ .... "" 
.... <<<<<::I <<<<< ::> 
-' 00000 

H 

t-

l l 

I 

J_ 

~ " 
~ ~ :; ... 
~~ro~o 
' ~ 
" " ' < c 0 IX/ 

m ~ 

" " ~ 
m ' ' 

J;; .J..)Vl x 
~ . 

~ "' 

H 

H 

AN1564 

=================================F=lg=u=re==33=.=M=U=X=_=BY=8==========================:::::jriiiil. 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-69 



AN1564 

:'. 

n . ~ 
:::: 

:;; 
x 
~ 

0 

~ ~ 

x 

' n ' x . 
~ 

~ 0 

~ ' . " 
< 

' ' ' 0 0 
0 

~ < 
;:'; 

w w 
~ 

<\ 
~ ~ 

Q 

"'l 

J//)LJ,. ~~·============~~~F~ig~u=re~3~4.~M=U~X5~T~o71::::::::::======================== /Vf rt I ~ MOTOROLA MPA DATA- DL201 REV 2 
4-70 



0 

H 

I 
~ 

0 

~~-,-~ 'i ,~ 
.--."~.~-----~~~ 

. 
u 

.----~-~~o 
u . 

0 . . . 
~.,,.___..,.~-'\----~ ~ 

< 

~;; . 
u 

L--f-

•• • 

. . .. Ill::: ..... .--~·· _, .. : : 
" .. 

"' J: J: 

AN1564 

~ . 
0 " • . 

~ 

H 

"' 

Figure 35. BUSSLAVE ~ 

================I : 
MOTOROLA MPA DATA~ DL201 REV 2 

4-71 



AN1564 

~ 

0'4 NM"<l"lfl!OI"'-. 
UW WL.JULl 

<•<<<<<< 

~ 

H < 
~ w 

~ 

:: 
0 

0 . u 
0 

' u . 
w 
w 
0 

' z 
' u 

~ 
0 

~ ~ 

~ 

> L 
< u ' 0 

~ w u 
x q q 

'----~----1~ 

' 

. 

JI: Figure 36. ASYNCDEC 

1v~.,'f ~~·==================M=or=o=R=O=LA==M=P=A=D=AT=A=-==D=L2=0=1=R=~=v=2============================= 
4-72 



s:: 

~ 
JJ 
0 

> 
s:: 
~ 

~~ 
:i> 

I 
0 
:;; 
~ 
JJ 
m 
< 
"' 

"Tl .a· 
c: 
iil 
~ 
::e 
::c 
0 :c 
:ti 
m 
Cl 

-"-~~~~~~~_L_ 

ADR[Q,<14] 

AD A 2 9 
AD 
AD!L27 

-~--~- --------,-~------------,-------------~ 

\.IRITE[0-8] 

I 

READ[O 4) 

fl! o tor o 1 a Se rn 1 Go n duct or 

D\/G Nr-

T r- an 5 late 

Into Aeg:ister 

tL .... a·VJHICHREG 11 ~ 

R, ch R ~ J.,.,", ok 

~ 

)> 
z ...... 
(11 
0) 
.j:>. 



AN1564 

. 
0 

~ . 
0 . 

c: ~ 3 

~ , 

~ " 
w 

rn ~ . . H 

0 Q 
~ 

" . 0 3 

" " . . "' % " . 
; E; 

J/!)LJ, frlh..c•==============~~~F~ig~u~~~3~8~.W;:::=Rl~T~ER~E=G~:;::::========================= /Vfrt f !jyl' MOTOROLAMPADATA DL201 REV2 
4-74 



AN1564 

-·---------~----------~-----------,-------------, 

~-----·---+-----+-----------jlf ! 

u 
z 

==================================F=ig=u=r=e=3=9.=R=E=A=D=R=E=G==========================:::::::illiiiil . .. ·· 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-75 



AN1564 

~ 

c 
" " " 

. 
~ 
" ~ 
~ . u : . 
" 
~ . 

~~ 
u 
~ 

~ " < 

e ' "' . . 
.'.;"' 

~ < u . . . 
" c 

; a 
;~ 

J//)LJ.fr!n.~!===::===::::::::::::::::::=;;=:::~F~lgu~~~~~·M=M=CH==:::=================== 
1v1 rr, w MOTOROLA MPA DATA- DL201 REV 2 

4-76 



H 

H 

J_J__l__Ll_l_ 
w<> ..., "',., .,. "' <ll'"' 
uOOOOOCIOO 

~~3:~;~~= 
~~ ~tt-n n 

I 

AN1564 

l 

~H 

H 

~ 
• I 

I 

===================:=:=:=:=:=:=:=:F=lg=u=re=4=1=.=R=EG=_=2===========================:;:::jriiiiill 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-77 



AN1564 

I J 

H 

H 

I I 

J 

J 

~ . 
~ : 
' . 
~ ; 
w " 
~ . 

I-

Figure 42. REG_14 

~~"" ~c·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==D=L=2=01=R=E=v=2=============================== 
4-78 



I l 

H 

H 

f ~ .----

H 

-
:;: 
~ 

I I 

.1 

-
u 

: 
;: 

l 

' c mu z, 
< " • 

' 
··~ 0 • 

' , 
• ~ u 

• c ' 
I!:! '- Ill c 

.; ~cc::::£ ..t 

AN1564 

u 

H 

1-1 

Figure 43. MASK riiiilil 
===============================M=O=T=O=RO==LA==M=PA==DA=~=A=-==o=L2=0=1=R=E=v=2=========================1~ 

4-79 



AN1564 

::r J ] 

~ 

" a 

> " 
~ 

u ~ ' 0 . - ~ 
u 
rl ~ 
~ 0 

x 
~ . 
rl 

"' 
"' 0 

f- z ~ f---' 

' 

- -
g g 

:: ;;; 

I 1 

d~~~=====~~Figu~~~.~~OR============ 
/Vf rt I ~ MOTOROLA MPA DATA- DL201 REV 2 

4-80 



l l 

,-

f--

_J_ l 

I 

l 

• u 
u " 

"' 0 

AN1564 

===================================Fi=g=ur=e=4=5=.0==R=10=9=_=14============================~riilil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-81 



AN1564 

c 

I 

Ir -

I- . 

l 

J J 

i 
~-
-~ 

, 
~ 

l 

0 

.::. Ul QC :;: "' 

~ ~f--+-+-. 
~ ~ 

0 

i-

J/f)_LJ. FrFt..~===========:=:::=:::::::=:F~ig~u~~4~6~.0=R~14=~::======================= 1v1rt1 w MOTOROLAMPADATA-DL201 REV2 
4-82 



9/96 

AN1565 
Application Note 

Using VIEWlogic's PROSeries 6.1 
with the MPA Design System 

Prepared by 
Douglas M. Shade 
Motorola Programmable Logic Products 

© Motorola, Inc. 1996 4-83 REV1 
®MOTOROLA 



AN1565 

Using VIEWlogic's PROSeries 6.1 with the MPA Design System 

Introduction 
The Motorola family of MPA devices and supporting 

software provides system designers with a collection of 
flexible and powerful tools. This application note focuses on 
the use of VIEWlogic's PROSeries 6.1 schematic capture and 
simulation programs as front end design tools for the MPA 
Design System FPGA place and route software. A basic 
design flow is introduced followed by a more in depth 
discussion of parameters for place and route and concludes 
with a discussion on back annotation and simulation 
procedures. 

Basic Design Flow 
In this simplest example of using PROSeries, a straight 

path is taken from design entry through export to the MPA 
Design System. More detailed discussions on: place and route 
parameters, 1/0 parameters, hardware dependent macros, 
back annotation and simulation are deferred. The reader is 
assumed to be familiar with PROSeries and have casual 
knowledge of the MPA Design System. 

Libraries 

The EDIF net list reader of the MPA Design System is 
currently constrained to understand only those components 
passed to it from the MACROLIB, MICROLIB and IOLIB 
libraries provided. Only a very few other symbols from the 
BUILTIN library may be used directly in the schematic. These 
are: IN, OUT and Bl; their usage is explained more fully later. 
Your VIEWDRAW.INI file must contain lines similar to the 
following in order to steer PROSeries in the correct direction 
when adding components to your schematic. 

DIR [rm] C:\mpa\wvlibs\rnpalib\rnacrolib (macrolib) 
DIR [rm] C:\mpa\wvlibs\mpalib\microlib (microlib) 
DIR [rm] C:\mpa\wvlibs\mpalib\iolib (iolib) 
DIR [rm] C:\mpa\wvlibs\mpalib\builtin (builtin) 

When adding components to your FPGA schematic, be 
sure to use only components from these first 3 libraries and 
only the special hierarchical connectors IN, OUT and Bl from 
the BUILTIN. 

Capture 

There are just a few unique steps to take during schematic 
capture to ensure a valid MPA Design System EDIF netlist. 
The netlist importer of the MPA Design System needs to 
recognize your design's 1/0 pins. To accomplish this, you may 
either create a top level symbol for your completed schematic 
or you may opt to include VIEWlogic's hierarchical connectors. 

If you are going to instantiate your completed FPGA 
schematic into a larger board or system level schematic then 
generating a top level symbol is the more appropriate method 
to use. In order to do this, each of the IOLIB components used 
must have a named net stub attached to their 'external world' 
pins. Once this task is completed all that is left is to create a 
VIEWlogic symbol for the entire FPGA schematic. Each of the 
pin names on the symbol must match the net-stub names 
exactly. A pin is required for every 1/0 net-stub. 

SAMPLE! .1 (SCH) B-17 .. xl 1 .. G: 10 

Figure 1. Top Level Schematic, Named Net Stubs 

SAHPLE1 .1(SYH)->SAHPLE1 .1(SCH) Z-1.3 .. xl .. G:10 

Figure 2. Top Level Schematic's Symbol, 
Pin Names = Net Stub Names 

If on the other hand the schematic you are creating is stand 
alone for the FPGA, then a short cut method is available to 
you. As before, place the desired IOLIB components on your 
schematic. Then from the BUILTIN library select the IN, OUT 
or Bl hierarchical connector as appropriate. Connect this 
hierarchical connector with to the IOLIB component's 'external 
world' pin and name the net. 

SAMPLE2.1(SCH) B-17"x11" G:19 

$1119 

Figure 3. Top Level Schematic Using IN and OUT 
Symbols from BUILTIN. The OUT Symbol ls 

Highlighted (Boxed), Instance $1119. 

This name may now be referenced for stimulus/response in 
the VIEWlogic simulator. Additionally, this net name is passed 
in the exported EDIF netlist to the MPA Design System place 
and route tool. 

~~'1'1 ~t==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==D=L=2=01=R=E=V=2=============================== 
4-84 



Net List Export 

EDIFNETO is the VIEWlogic tool that translates your 
completed schematic into an EDIF file importable to the MPA 
Design System. While the PROSeries netlisting tool is 
generally available from the pull down menus, some of the 
requisite features of the tool tor MPA compatible netlisting are 
not. So from a DOS session in your current VIEWlogic design 
directory, run EDIFNETO. The following log shows the correct 
answers to EDIFNETO's questions. You need to generate a 
'11attened" netlist, at the level "micro". 

• WIRELIS!ER - U4.1.2; Uol"kview 4.1.2 032992, 3088 Series 
1985,1992 by Uiewlugic Syutens. Inc. 
:sa111Ple2 
a flatten1nl netlillt? [Ml : y 

raneterized attPihutes? [NJ : 

I GN'8Al1PLE2 • EDN J: 

nane IEDIPPTYP.CPGJ: 

Figure 4. EDIFNETO DOS Window Session 

You now have a .EON EDIF netlist ready for import to the MPA 
Design System. Give it a try. 

Attributes 
The MPA Design System's import process can accept a set 

of attributes to help the designer tune the layout and routing 
processes. The system also accepts 1/0 parameters to specify 
CMOS/TTL compatibility, 1/0 drive, package pin assignment 
and slew rate control. Declaring attributes in the schematic will 
result in their being passed into the EDIF netlist and then 
imported into the MPA Design System. Optionally the designer 
may prefer to include attributes in an external .PAT file of the 
same name as the design. The designer may choose to use 
the combination of the two methods, but is should be noted 
that attributes passed into the MPA Design System in .PAT 
files will always take precedence if declared in both places. 

Place and Route Layout Attributes 

The MPA Design System enables the tuning of place and 
route algorithms in three ways. The first is with the adjustment 
of the Auto Layout tool options such as annealing 
temperature, target delays, target zone utilization etc. 
Additional details on the available options and their use are 
available in the on-line help facility of the MPA Design 
System. The second method involves the construction of 
separate clock files. Here again, additional information is 
provided in the on-line help system and is not presented in 
this application note. The third method of influencing place and 
route results is the inclusion of the following attributes in the 
schematic, or in an external .PAT file. · 

AN1565 

Table 1. Valid Attributes 

Sch. Place and 1/0 Attributes 
Component Route Attributes 

Net DPLD_IGNORE_TIMING 

DPLD_CLUSTER_SEED 

l/OSymbol DPLD_IGNORE_TIMING PULLUP or PULLDOWN 

(instance) DPLD_PAD_PLACE DPLD_OPDRIVE 

or DPLD_OPLEVEL 

Formal Port DPLD_OPSLEW 

DPLD_IPLEVEL 

DPLD_PAD_PROPERTIES 

DPLD_IGNORE_ TIMING 

The DPLD_IGNORE_TIMING attribute is used to inform 
the tool which nets to ignore timing on. It may be set on a 
symbol (instance), a net or an external pin (formal port). If a 
net has the attribute set, then all delay paths associated with 
that net are ignored. If an instance has the attribute set, then 
all input delay paths driving and all delay paths being driven 
from that instance are ignored. Assigning the attribute to a 
formal port has exactly the same effects as assigning it to the 
1/0 instance itself. Once all of the objects to be ignored have []] 
been identified, their paths are propagated forward and 
backward through combinatorial gates until clocked objects 
(or top level circuit 1/0) are reached. The result is that 
additional segments other than those explicitly specified may 
be ignored for timing purposes as well. 

You are required to use a dummy value with this attribute, 
but the value stated is otherwise ignored. 

Assigning this attribute to a symbol, net or formal port frees 
the timing driven auto-layout algorithms to more optimally 
cluster, place and route the speed critical nets. 

DPLD_CLUSTER_SEED 

The DPLD_CLUSTER_SEED attribute is used to assign a 
cluster seed to a net. This will cause the clustering to treat all 
instances that connect to that net specially. The action taken 
depends on the value of the attribute, as follows: 

0 ignore this net during clustering. Setting this 
attribute on a net is likely to cause the net to be 
implemented in global interconnect. 

default operation 

<1000 weight this net by the given factor in the 
clustering 

DPLD_PLACE_PRIORITY 

The DPLD_PLACE_PRIORITY attribute can be applied to 
a net to force the software to lay out that net in a physically 
smaller area - in other words, to place the instances 
connected to that net closer together. The value of 
DPLD_PLACE_PRIORITY should be an integer in the range 1 
to 10 (1 is the default). Higher values of place priority let you 
prioritize nets relative to each other. 

DPLD_PAD_PLACE 

DPLD_PAD_PLACE- instructs the 1/0 pad to be allocated 
to the package pin number specified. Only one pad may be 

=========================!~ MOTOROLA MPA DATA- DL201 REV 2 ~ 
4-85 



AN1565 

allocated to any pin. Automatic placement of 1/0 pads usually 
results in a better layout, so this attribute should only be added 
when it is necessary. Example: DPLD_PAD_PLACE=C2 

VO Parameter Attributes 

DPLD_PUP 

DPLD_PUP - attaches to WPUP primitive cells only, to 
select either or both of the pull-up resistors available in a 
WPUP cell. Valid values are 1, 2 or BOTH. 

PULLUP or PULLDOWN 

PULLUP - set this to 1 if you want to enable the pull-up 
resistor on the external pin of an 1/0 pad. Default is 0 (resistor 
disabled). Example: PULLUP = O 

PULLDOWN - set this to 1 if you want to enable the 
pull-down resistor on the external pin of an 1/0 pad. Default is 
O (resistor disabled). Example: PULLDOWN = O 

DPLD_OPDRIVE 

DPLD_OPDRIVE - sets the output drive current of an 
output or bi-directional pad to either 6ma (default) or 12ma. 

DPLD_OPLEVEL 

DPLD_OPLEVEL - sets the output voltage level of an 
output or bi-directional pad to either 3v or 5v (default). 

DPLD_OPSLEW 

DPLD_OPSLEW - sets the output slew rate (transition 
speed) of an output or bi-directional pad to high (default) or 
low. 

DPLD_IPLEVEL 

DPLD_IPLEVEL - sets the input threshold voltage of an 
input or bi-directional pad to either CMOS or TTL (default). 

DPLD_PAD_PROPERTIES 

VIEWlogic permits the use of the combined attribute, 
DPLD_PAD_PROPERTIES which combines the following 

EXTIN 
INANO_A 

EXT IN 

INAND-B 

attributes into a single comma separated list: PULLUP, 
PULLDOWN, DPLD_IPLEVEL, DPLD_OPLEVEL, 
DPLD_OPDRIVE, DPLD_OPSLEW. This is especially useful 
when defining a block of 1/0 pins in an external attribute file. 
When prompted, answer NO to the "Expand Label?" prompt in 
VIEWlogic. Example: DPLD_PAD_PROPERTIES 
O,O,CMOS,5v, 12ma,high 

Defaults and Invalid Combinations 

The default 1/0 pad attributes have been selected so that 
they can connect to either TTL or 5v CMOS without 
adjustment. The default parameters may not be ideal for every 
design, and they should be matched to the application in order 
to achieve the best performance and noise immunity. 3v 
CMOS users should be especially careful to set 
DPLD_OPLEVEL to 3v, otherwise damage to peripheral IC's 
may result. 

The following combinations of user attributes are not 
permitted: 

DPLD_OPDRIVE = 6ma AND DPLD_OPSLEW = low. 
PULLUP = 1 AND PULLDOWN = 1 

The following combination of user attributes on a single 
bi-directional pad should be avoided, as it may produce 
unpredictable results: 

DPLD_IPLEVEL = CMOS AND DPLD_OPLEVEL = 3v 

Assigning Attributes in a Schematic 
Any of the attributes listed above can be assigned to pins, 

nets and macro symbols as appropriate. In PROSeries, the 
method of assigning attributes is straight forward. Select the 
desired net or symbol (its color will change or a bounding box 
will appear respectively, identifying it as being the currently 
selected object) then from the "Add" pull down menu, select 
"Object Attribute", the bottom of the screen (the text input 
area) will then prompt you with "Attribute Text String". Type in 
the attribute and the value (if appropriate) and hit enter. The 
attributes will then be included in the EDIF netlist once 
EDIFNETO is run. 

l.D p L D - p A D - p L A c E - c z I 
EXTDUT 

OUTAND_Q 

Figure 5. The Net "NETA" Atrributed With DPLD_CLUSTER_SEED=O. The "B" Input Pin of AN2 Attribu.ted With 
DPLD_IGNORE_TIMING. The Selected Component "OPBUF $114" and Its Attached Attributes are Boxed. 

~~.,t:I ~c::::=================M=O=T=O=R=O=LA==M=PA==D=At=A=-==D=L2=0=1=R=E=V=2=============================== 
4-a6 



Selecting a component pin is just a bit trickier. Left click on 
the desired component (in this example AN2) then right click 
on the desired input pin. "Add" - "Object Attribute" as 
described above. 

Assigning Attributes & Instances in an External .PAT File 

Assigning attributes to a long series of pins, or a variety of 
nets in the above manner can be time consuming and may be 
error prone. The MPA Design System gives the designer the 
option to enter all the valid attributes in an external .PAT file. 
Entries in the .PAT file take precedence over any attributes 
that may have also been instantiated in the EDIF netlist via 
schematic entry. The .PAT file must have the same name as 
the EDIF netlist .EDN file, and must reside in the same 
directory. 

The external attributes file supports three main operations: 

1) Insertion of attributes to specify pin placements and 
pad characteristics. 

2) Insertion of special pad cells, IPCLK/IPRST, to drive 
the primary clock/reset network. 

3) Insertion of special buffer primitives into a named net. 

This has two uses: 

a) Force a named net onto/off the peripheral bus, 
by inserting the primitives APBUF/PABUF 
respectively. 

b) Force a named net onto the primary 
clock/reset network, by inserting the primitives 
ACLK/ARST respectively. 

The external attributes file must exist in the same directory and 
with the same name as the EDIF netlist, with the file extension 
.PAT During import, the MPA Design System automatically 
checks for the existence of a .PAT file and uses it when one is 
found. 

Syntax of the External Attributes (.PAT) File 

The external attributes file contains a list of commands, one 
per line. Each command contains up to five fields, as follows: 

<object-class> <object-name> <operation> <name> [<Value>] 

where: 

<object-class> 

<object-name> 

<operation> 

<name> 

<value> 

is one of port, net, or instance. 

is the netlist name of the object (port, 
net or instance) being operated on. 

is one of attribute or instance. 

is the name of a definition or an 
attribute. 

is only used in attribute operations, 
and is the value to be given to the 
attribute. This field is only required 
when an attribute requires a value. 

/I This is a conunent 
# This is a comment as well 

port sega attribute dpld_pad_place 22 

AN1565 

The following are specific syntax forms of all valid attribute or 
instance assignments. 

port <name> attribute <name> <value> 

Attribute <name> with (optional} value <value> is added 
to the port instance (the instance driven by the formal 
port). Only works with input and ports. 

port <name> instance <name> 

The port instance (the instance driven by the formal 
port) is replaced by an instance of the given definition. 
The only valid definitions are IPCLK, IPRST. This syntax 
is limited input ports with 1 input pin and 1 output pin 
(IPBUF for example}. 

net <name> attribute <name> <value> 

Attribute <name> with (optional} value <Value> is added 
to the net. 

net <name> instance <name> 

Creates an instance of the given definition and inserts it 
into the named net. The only valid definitions are ACLK, 
ARST, APBUF and PABUF. 

instance <name> attribute <name> <value> 

Attribute <name> with (optional) value <value> is added 
to the instance 

Example .PAT File Entries 

The following sample .PAT file entries reference the simple 
schematic shown in Figure 6. 

ATTRIB.l(SCH) B-17""x11"" G,10 
IPBUF 

·~, 
, I ~:"'.':. 
~,._.E~L~D~LI~I--7; D 

IPBUF is $1i3, BUFF is $1i12, 
OPBUF ::i.;; $:1i~ 

Figure 6. The .PAT File Attributes Are Added to This 
Simple Schematic. Nets Are Named SEGA, SEGB, 

SEGC and SEGO. 

//This results in the IPBUF being placed on the pad associated with package 
//pin 22. 

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L2==0=1=R=EV==2==========================~~ 
4--87 



AN1565 

port sega attribute dpld_ignore_timing dumrny_arg 
//For place and route purposes, the design's timing parameters are ignored 
//for the net segment associated with the formal port sega. A dummy 

//argument is required for this attribute. 

port sega instance ipclk 
//This results in the IPBUF being replaced by an IPCLK, forcing the net onto 

Ila clock network. 

net segb attribute dpld_ignore_timing dummy_arg 
//For place and route purposes, the design's timing parameters are ignored 
//for the entire net "segb". A dununy argument is required for this 
//attribute. 

net segb attribute dpld_cluster_seed 1 
//The dpld_cluster_seed attribute and value shown get assigned to the net B 

//for evaluation during place and route. 

net segb attribute dpld_place_priority 1 
//The dpld__place__priority attribute and value shown get assigned to the net 

//B for evaluation during place and route. 

net segb instance aclk 

//This results in an ACLK buffer being inserted between IPBUF's output and 

//BUFF'S input. BUFF is now driven off the resulting clock routing 

//resource. 

instance $1I4 attribute dpld_opdrive 12ma 

//This results in the OPBUF getting 12m.a drive capability. 

instance $1Il2 attribute dpld_ignore_timing durnmy_arg 

//For place and route purposes, the design's timing parameters are ignored 

//for the all nets associated with the instance $1Il2. A dummy 
//argument is required for this attribute. 

All Valid Combinations of Attributes & Instances in an 
External .PAT File 

dpld_place_priority n (where 0 ,;; n ,;; 10, 1 
is default) 

The following show all the valid combinations of the 
attributes in the .PAT file. 

port <name> instance (name here can only refer to input 
instances with one input pin and one 
output pin) 

port <name> attribute 

net <name> attribute 

ipclk 

iprst 

dpld_ignore_timing dummy_arg 

dpld_pad_place <value, see data book for 
package being used> 

pullup 110 

pulldown 110 
dpld_opdrive 6mal12ma 

dpld_oplevel 3vl5v 

dpld_opslew highllow 

dpld_iplevel CMOSITTL 

dpld_pad_properties (see above 
paragraph describing this attribute) 

dpld_cluster_seed n (where 0 ,;; n ,;; 1000, 
1 is default, O means ignore net) 

net <name> instance 

aclk 
apbuf 
arst 
pabuf 

instance <name> attribute 

dpld_ignore_timing dummy _arg 
dpld_pad_place <Value, see data book for 
package being used> 
pullup 110 
pulldownllO 
dpld_opdrive 6mal12ma 
dpld_oplevel 3vl5v 
dpld_opslew highllow 
dpld_iplevel CMOSITTL 
dpld_pad_properties (see above 
paragraph describing this attribute) 

Library Elements Specific to MPA Hardware Features 
Most designs can be fit to the desired speed into the MPA 

family without the designer needing to know much about the 
details of the device's internal construction. However, to get 
the most out of the MPA, you should take some time to browse 
through the on-line help files thoroughly. The help files are rich 

~~.t'f ~t::==================M=O=c=O=R=O=LA==M=PA==D=AT=A=-==D=L=20=1=R=E=v=2=============================== 
4--88 



in detail regarding the hardware specific macros and routing 
resources macros inherent in the MPA design system. The 
following topics are presented as simple examples on most of 
these hardware specific features. For an exhaustive 
presentation, please refer to the on-line help facility. 

Logic One and Logic Zero 

It may at times be necessary to modify the functionality of a 
macro from the supplied libraries by tying one or more of its 
inputs to logic high or low. There are two special elements 
provided in MICROLIB for this purpose. ONE produces a logic 
high to all input pins tied to it; there are no fan-out restrictions 
for the signal. The ZERO element provides a logic low. An 
alternate method is to tie the input pins requiring a logic high to 
a net named VDD, and tie the output pins requiring a logic low 
to a net named GND. 

For all the above methods, the MPA Design System will 
recognize the logic as static and eliminate superfluous logic 
elements wherever possible during the place and route 
process. 

Wired-OR 

The MPA family allows for connecting many outputs to a 
single common signal line. The available macros for this 
function are: WND2, WINV, WOR2, WBUF. When using these 
macros, a WPUP component is required. The maximum 
number of connections to a single signal is given by 

~J# of core cells. 

Table 2. Maximum Drivers on a Wired-OR Signal 

MPA Family Member Max Drivers 
MPA1016 20 
MPA1036 30 
MPA1064 40 
MPA1100 50 

If the number of drivers on the Wired-OR net is below half 
of the maximum allowed, then only a single pull-up resistor is 
recommended. Adding a second pull-up resistor to a very 
large net, will help speed things up some, but at the cost of 
increased power consumption. The allowable values for the 
DPLD_PUP attribute are 1, 2 or BOTH. Resistors 1 & 2 are of 
equal value, so it makes no difference which one you select. 
BOTH ties resistors 1 & 2 in parallel and decreases the low to 
high transition time, but at the expense of extra power 
consumption. 

AN1565 

WP UP 

DPLD_PUP-BDTH 

WIRED_DR_SI5NH 
W ND Z 

W ND Z 

Figure 7. The Diamond Symbol Reminds the User That 
These Outputs Cannot Source a Logic HIGH, but Are 

Only Able to Pull the Output to a Logic LOW. 

Adding additional wired-or outputs to the net 
WIRED_OR_SIGNAL will slow it down. Adding additional 
inputs to the net has little effect on speed. Low to high 
transitions are typically slower than high to low transitions on a 
wired-or signal. 

Peripheral Bus 
The periphery of the MPA die is bordered with an 8 bit wide 

Peripheral Bus (P-Bus). The P-Bus can be broken at each 
corner of the array by switches. (Setting of the switches is [I] 
handled automatically in the MPA Design System software.) 
Each of the resulting 4 segments has two programmable pull 
up circuits, one at each end. The P-Bus is ideal for routing 
common signals to many 110 macros. 

It is easy to build a scenario where many 110 pins have a 
single or several control signals in common. In this instance 
you would want to place that signal on the P-Bus using a 
APBUF. Conversely, pulling a signal off the P-Bus back into 
the array is accomplished using the PABUF. 

The ability to construct Wired-OR nets is not limited to 
signals internal to the array. P-Bus Wired-OR nets can be 
constructed using APWBUF (or APWINV) and their 
associated pull-up structure PWPUP. However, using these 
features requires the user to be aware of the natural 
consequences of adding capacitance and pull-ups to a 
resistive bus. Adding additional segments of P-Bus (by 
assigning I/Os to different edges of the die) increases 
capacitance that effects rise and especially fall times. Also, the 
somewhat resistive nature of the P-Bus can cause Vol noise 
margin problems if the active low P-Bus driver is far from the 
pull-up element and driven element. 

The assignment of P-Bus pull-up resistors is automatic. 
On import, all PWPUP instances defined by the designer are 
removed from the netlist. The tool automatically balances the 
number of pull-up resistors against the P-Bus loading 
(incurred by the use of multiple die edges) by automatically 
inserting additional pull-up capacity for each P-Bus segment 
used. During autolayout, the MPA Design System re-attaches 
a single peripheral bus pull-up resistor per occupied die edge, 
for each unique P-Bus signal. For example, if several I/Os that 
use a P-Bus Wired-OR signal get split between 'top' and 
'right' edges of the die during autoplacement, the tool would 
assign two pull-up resistors to the net. 

===============================M=O=TO==RO=L=A=M=P=A=D=A=T=A=-==D=L2=0=1=R=E=V=2==========================~ 
4-89 



AN1565 

Low Skew, Clock and Reset Nets 

For a high fan out signal or for a signal where you would like 
to keep the skew limited to less than 1 nS, you should consider 
moving the signal onto a clock network using the ACLK or 
ARST macro (they both do the same thing). 

MPA UO Structures 

The standard 1/0 cell of the MPA array is very feature rich. 
The complexity of this structured is apparent in the large 
number of choices available in the 1/0 macro library IOLIB. 
(Here again, the reader is encouraged to invest some time in 
the on-line help facility, in particular "Help on Libraries - Input 
and Output Pads" and "Help on Device - Functional 
Description - 1/0 Cell". Defining a bookmark for these two 
particularly useful help sections will provide a short cut for 
referencing them in the future.) 

EXT-AD DFI 0 

EXT-AD Dfl1 

fl E5ETB 

ENABLE 
A PBU F IPCLK 

Each of the macros in the IOLIB fit in a single 1/0 cell. 
Couple these relatively complex functions with the availability 
of P-Bus routing resources (including the P-Bus Wired-OR 
resources previously mentioned) and it becomes clear that 
significant functionality can be achieved before ever using the 
normal internal resources of the array. 

In Figure 14, a three bit address decoder was implemented 
using only the resources available in the complex 1/0 Cells 
and the associated P-Bus. No internal logic or routing 
resources were consumed. The features used unique to the 
1/0 Cell and P-Bus include: input delay to synchronize 
external data with the buffered clock signal, APBUF used to 
bus a common enable to signal to several 1/0 sites, XNOR 
used to compare external and internal address values, and 
finally the Wired-OR P-Bus line. 

Of course, all of this functionality could be moved internal to 
the array, using only the simple 1/0 macros. 

P\if"UP 

Figure 8. A Three Bit Address Decoder, Only VO Cell and P-Bus Resources Used 

Simple UO Structures 
Your first designs for the MPA will probably only use the 

above 1/0 macros, with all the latching, decoding etc. being 
handled internal to the array. Soon though, you will probably 
encounter a real world design that constrains you to a specific 

clock-to-0 specification or some other requirement that will 
have you going back to re-examine the components available 
in the IOLIB. There are many variations of latched, registered, 
and Wired-OR inputs, outputs and bi-directional macros. 
Again, please invest some time with the on-line help 
descriptions of the device and the libraries. 

~~.,ti ~~==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=D=L2==01==RE=V=2=============================== 
4-90 



IPBUF IPCLI< 

EXT~EXT.1..~ 
OPBUF 

_Q_I:>-~TO UT 

Figure 9. The Three Most Commonly Used 110 Macros 

Back Annotation and Simulation 

It is assumed that the reader is familiar with the tools and 
procedures involved in using the VIEWlogic PROSim tools. 

The MPA Design System has a facility that provides post 
place and route back annotation data in a format compatible 
with the PROSim netlister. Briefly, a VIEWlogic format back 
annotation data table file (.DTB) can be generated after 
completion of a place and route. The .DTB file can be read in 
by VIEWlogic's VSM netlister tool, to provide an accurate 
simulation netlist of your completed design. 

Within the main window of the MPA Design system, select 
the Tool Options button (or use the pull down menu "Tools -
Options"). Select Back Annotation and select "VIEWlogic 
(.dtb)". Once your design has been imported, placed and 
routed, the back annotation button becomes selectable. 
Invoke the back annotation tool by pressing its button. A back 
annotation file will be placed in the same directory as the rest 
of the MPA Design System's output files. The files name will be 
the same as your .DSN file (visible in the title bar of the MPA 
Design System main window). Generally, this file needs to be 
moved up to your VIEWlogic design directory. 

Figure 10. VSM Netlister, and its Options sub-window. 
"BACKANO" is the design name. The back 

annotation file name is "layout2.dtb". 

Invoking the VSM netlister from the PROCapture is done in 
the normal way. Using the "Tools -- Link to PROSim" pull down 
menu, select "Options" in the PROSim Wirelister window. 
Enter the name of the desired back annotation file. (You may 
have several different valid layouts completed at this point, but 
you can only merge one back annotation file at a time into the 
simulation netlist.) In the example shown above, the 

AN1565 

schematic's name is "BACKANO" and the post place and 
route back annotation file is "layout2.dtb". The MPA Design 
System generated delays will now be included in the 
simulation net list. 

In Figure 12, ANDB goes high at time 45 and ripples 
through the AND tree (01, 02, 03) with the final output 
ANDOUT going high about 14nS later. When ANDB drops, the 
third AND gate (03) is the first to fall because in this 
implementation it happened to be placed c!oser to the ANDB 
input than AND gates 01 & 02. With ANDA held high, gate 
delay is the limiting factor for a rising ANDOUT and path delay 
is the limiting factor for a falling ANDOU r. 

Figure 11. Before back annotation. ANDB going 
high ripples through all three AND gates and 

the output instantaneously. 

Figure 12. After back annotation of place and route 
delays. A.NOB going high ripples through Q1 ,2 & 3, but 

going low happens to take Q3 low first. 

Back Annotation and Logic Reduction 

The MPA Design System does some "bubble pushing" 
during the retargeting I fitting of the logical design into the 
physical implementation. In some cased, redundant gates in 
the schematic design are eliminated in the physical layout. 
When this occurs, back annotation procoe.ds as before with 
the resulting delays being added only to the input pin of the 
most downstream logic element not eliminated in the 
retargeting I fitting process. 

In Figure 21, the 4 inverters are eliminated in the retarget I 
fitting process. The wire delay between the remaining IPBUF 
and _OPBUF gets back annotated to the OPBUF's input pin. 
The back annotated simulation netlist has 4 zero delay 
inverters oust as the pre back annotation netlist had) followed 
by the OPBUF with the real world delay. 

:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=M=O=T=O=R=O=LA==M=P=A:=DA=T=A=-==D=L2:=01=R=E=V:=2:=:=:=:=:=:=:=:=:=:=:=:===1~ 
4--91 



AN1565 

IP 8 UF 

AND Ii 

IP B UF 

Ii ND B 

Figure 13. A ll!ample elrcult to explore simulation before and after back annotation. 

EX TIN 

INVIN 

Figure 14. The string of Inverters will be removed during place and route. 

~~-,'/ ~t:::================M=o=T=o=R=O=LA=M=R=A=D=A=~=~=-=o=L2==01=R=E=v=2============================== 
4-92 



3/96 

© Motorola, Inc. 1996 

AN1566 
Application Note 

In System Prototyping 
Using HDLs and FPGAs 

4-93 

Prepared by 
Thomas G. Felske 
Doug Hergatt 
Motorola Programmable Logic Group 

REVO 
® MO'f"OROL.A 



AN1566 

In System Prototyping Using HDLs and FPGAs 

Introduction 

This paper describes the rapid prototyping method used in 
the development of the power control logic for a complex 
communication system. VHDL and SRAM based FPGAs were 
used to optimize the HDL code before it was merged into an 
existing ASIC~ This method will prove an effective way to verify 
the HDL code's functionality while reducing development time. 

Application 

A large state machine needed to be developed and verified 
to monitor and control the receiving and transmitting function 
of a commercial space communication system. The 
underlying goal of the design was to minimize overall system 
power consumption by intelligently managing the sequence 
(state events) of transmit, receive, and power up/down steps 
inherent to the system. Long system level simulation runs, 
typically two days per simulation would be required to verify an 
HDL modification. The use of an FPGA as an in system 
verification vehicle to model new HDL code gave instant real 
lime feedback of the design performance. 

Design Environment 

To develop the large scale communication system, a high 
level design environment for signal processing was chosen. 
The Signal Processing Worksystem (SPW) was used as the 
behavioral front end model for all logic in the system. The 
VHDL derived from the SPW tool was then the input to 
Synopsys for logic synthesis and technology mapping to the 

Receive 
Status 

MPA17128 Bit Stream MPA1036 
EPROM FPGA 

I 

LOGIC ANALYZER 
i-- Transmtt 

CURRENT PROBE Status 
WAVEFORM GENERATOR 

ASIC and FPGA architectures. For the FPGA, the Motorola 
SRAM based MPA 1036 was used. The Motorola FPGA place 
and route tools provided the bitstream to program an EPROM 
with the FPGA configuration. System level verification was 
completed in a test environment as shown in Figure 1, FPGA 
Prototyping Application. 

The system evaluation was controlled by the System Test 
Environment (STE) software that was resident on an HP 
workstation. The System Test Environment could exercise the 
desired receive and transmit function, while logic analyzers 
and current probes, monitored the system signals and current 
levels. With this data displayed graphically, the success of the 
power control logic was observed immediately. 

The initial state machine design and subsequent 
modifications went through the FPGA Design Flow as shown 
in Figure 2, FPGA Design Flow. The logic synthesis was 
controlled by user defined scripts and synthesis constraint 
files to produce an EDIF netlist. The Place and route tools 
imported the EDIF file and used minimal design constraints 
with fixed pin placements to generate the FPGA configuration 
bitstream. Each new bitstream was loaded into a new EPROM 
that replaced the one on the prototype board. Only the 
EPROM on the prototype board was replaced with each state 
machine modification. Retrieving and emulating an earlier 
design was as easy as replacing the EPROM on the prototype 
board with an alternate EPROM. In the future, download cable 
capability from the HP will further reduce the turn around time 
in configuring the FPGA. 

RECEIVE 
BOARD 

6-ASICs 4-D/As 

j Receive 
Power 
Control 

SYSTEM TEST 
ENVIRONMENT 

HP WORKSTATION 
lTransmit 

Power 
Control 

TRANSMIT 
BOARD 

5-ASICs 4-D/As 

Figure 1. FPGA Prototyping Application 

~~~ ~t•===================M=O=T=O=R=O=LA==M=P=A=D=A=~=A=-==D=L2=0=1=R=E=V==2================================ 
4-94

Synthesis
Constraints

Place/Route
Constraints

SPW
Behavioral
Modeling

JvHDLCode

SYNPOSYS
Logic

Synthesis

l EDIF Netlist

MPA1000
Mapping and
Place/Route

lBitStream

MPA17128
EPROM

MPA1000
Synthesis

Library

AN1566

Summary

The development of the complex state machine that
monitors and controls the power of the transmit and receiving
modules of the communications system would be extremely
time consuming and difficult to verify in a simulation
environment. The rapid prototyping and emulation approach
described offered a flexible design environment with quick
turn-around time. In this case, new RTL code could be
synthesized, placed and routed, and a new FPGA
configuration bitstream generated in less than two hours. The
advantages are the quick turn- around time for design
modifications and the real time system emulation and
verification. Down loading the FPGA configuration, performing
the system emulation, and observing the system signals and
current probe readings proved to be the quickest way to
evaluate the control logic. The alternative would be to make
several system level simulations that take typically two to
three days per simulation, then several hours to evaluate the
simulation data.

Choosing an SRAM based FPGA proved cost effective by
being able to reprogram the existing FPGA. The EPROM that
was used to hold the configuration bitstream costs
approximately $7.00. An equivalent antifuse FPGA that would
require a new part for every evaluation would cost
approximately $70.00.

Figure 2. FPGA Design Flow
For the solution that met the design requirements, the HDL

code was then merged into an existing ASIC HDL module
without any technology mapping issues.

MOTOROLA MPA DATA- DL201 REV 2
4-95

6196

©Motorola, lnc.1996

AN1569
Application Note

Tuning the MPA Design
System for Speed

4-96

Prepared by
Douglas M. Shade
Motorola Programmable Logic Products

REVO
®MOTOROLA

AN1569

Tuning the MPA Design System for Speed

Introduction

This application note covers methods for maximizing the
clock frequency of a given design using the MPA1000
generation of Motorola MPAs. The discussion is limited to
those areas specific to the MPA Design System: MPA library
components, pin, net and instance attributes, MPA Design
System Tool Options and clock files. Generic fast logic design
techniques such as look ahead carry and pipelined logic are
not covered in this note. A section which covers the progress
monitors of the tool is also included.

Front end techniques discussion is limited to schematic
entry however the basic concepts of each of the sections of
this application note apply to all design entry methods.

Taking Advantage of the Architecture

A very good investment of your design time is to spend a
while reviewing the data book section "MPA 1000 Architectural
Overview" and the extensive on line documentation included
with the MPA Design System. In particular use the pull down
menus: "Help > Help on Device", and "Help > Help on
Libraries". Read these sections thoroughly.

Clock Resources

Each member of the MPA 1000 family has an identical set of
clock distribution resources. Two pads on each edge of the die
may be dedicated to driving the 8 clock distribution lines.
These primary clock distribution lines roughly bisect the die
along the horizontal and vertical. From there, the lines branch
to form a load balanced distribution comb covering the entire
die. Skew is held to within 1 nS for the complete clock network.

Using these clock resources to distribute register clock and
latch enables is a conventional requirement of most designs.
These resources are mentioned in this application note
because they may also be used to distribute internal logic
(non-clock or reset) signals with high fanout or otherwise tight
skew requirements. Speeding up high fanout signals by
putting thern on one of the 8 available clock networks is
accomplished by appending the output of the source driver
with an ACLK or ARST buffer.

Similarly, external non-clock and non-reset signals can be
distributed throughout the array on the clock network by using
the IPCLK or IPRST input buffers at one of the 8 valid pad
locations. Using one of these buffers without specifying the
pad location will result in the MPA Design System
automatically assigning the buffer to one of these 8 valid pad
locations.

The MPA Design System treats ACLK and ARST
identically. The same holds IPCLK and IPRST. However, each
Zone is limited to two unique primary clock and two unique
primary reset signals. Since most designs have more clocks
than resets, it may be more prudent to use ARST and IPRST
macros for routing speed critical high fan out nets.

Taking Advantage of the 110 Cell
The standard 1/0 cell of the MPA array is very feature rich.

The complexity of this structure is apparent in the large
number of choices available in the 1/0 macro library IOLIB.
(Here again, the reader is encouraged to invest some time in
the on-line help facility, in particular "Help on Libraries > Input
and Output Pads" and "Help on Device > Functional
Description > 1/0 Cell". Defining a bookmark for these two
particularly useful help sections will provide a short cut for
referencing them in the future.)

Each of the macros in the IOLIB fit in a single 1/0 cell.
Couple these relatively complex functions with the availability
of P-Bus routing resources and it becomes clear that
significant functionality can be achieved before ever having to
slow down to use the normal internal resources of the array.
Another advantage to using the registers in the 1/0 cells is
guaranteed clock to out timing.

_____,y, , I
,;;"', v I

l.PBUF IPCLK

>-"w"F)?l ~>-'-__J
E}l_CLK~

Figure 1. A Three Bit Address Decoder, Only 1/0 Cell and
P-Bus Resources Used

In the example above, a three bit address decoder was
implemented using only the resources available in the
complex 1/0 Cells and the associated P-Bus. No internal logic
or routing resources were consumed. The features used
unique to the 110 Cell and P-Bus include: input delay to
synchronize external data with the buffered clock signal,
APBUF used to bus a common internal enable to signal to
several 1/0 sites, XNOR used to compare external and internal
address values, and finally the Wired-OR P-Bus line. The
P-Bus Wired-OR of Figure 1 is shown only for reference.
Wired-OR should be avoided on speed critical nets; explained
more fully in the next section.

MOTOROLA MPA DATA- DL201 REV 2
4-97

AN1569

Of course, all of this functionality could be moved internal to
the array, using only the simple 1/0 macros, but the design will
generally incur a slight speed penalty when doing so.

Wired-OR, Not the best choice
Several elements of the MPA library give you access to the

chip's Wired-OR (open drain) structures. While the high to low
transition time of such nets is generally acceptable, the low to
high 'drive' of such nets is provided only by pull-up resistors.
As such, the low to high transition time suffers and so such
structures should be avoided on speed critical nets.

The pull-up resistor structure is provided in the WPUP
component. The number of parallel pull-up resistors used in
the WPUP is under control of the DPLD_PUP attribute. If it
becomes necessary to use such a net on a speed critical path,
be sure to use the DPLD_PUP attribute set to BOTH.

The available macros for the internal Wired-OR functions
are: WND2, WINV, WOR2, WBUF. When using these macros,
exaclty one WPUP is required per Wired-OR net. The
maximum number of drivers of a single Wired-OR signal is
given by

~j # of core cells.

MPA Family Member Max Drivers

MPA1016 20
MPA1036 30
MPA1064 40
MPA1100 50

Figure 2. Maximum Drivers on a Wired-OR Signal

If the number of drivers on the Wired-OR net is below half
of the maximum allowed, then only a single pull-up resistor is
recommended for power conservation. The allowable values
for the DPLD_PUP attribute are 1, 2 or BOTH. Resistors 1 & 2
are of equal value, so it makes no difference which one you
select. BOTH ties resistors 1 & 2 in parallel and decreases the
low to high transition time, but at the expense of extra power
consumption.

w pup

WIRED_OR_SIGN/l.l
WNDZ

~)~
\.IND Z

Figure 3. The diamond symbol reminds the user that
these outputs can not source a logic high, but are only

able to pull the output to logic low.

Adding Wired-OR drivers to the net WIRED_OR_SIGNAL
will slow it down. Adding inputs to the net has little effect on
speed.

The ability to construct Wired-OR nets is not limited to
signals internal to the array. Peripheral Bus (P-Bus)
Wired-OR nets can be constructed using APWBUF (or
APWINV) and their associated pull-up structure PWPUP.
However, using these features requires the user to be aware
of the natural consequences of adding capacitance and
pull-ups to a resistive bus. Adding additional segments of
P-Bus {by assigning I/Os to different edges of the die)
increases capacitance that effects fall and especially rise
times. Also, the somewhat resistive nature of the P-Bus can
cause Vol noise margin problems if the active low P-Bus
driver is far from the pull-up element and driven element.

The assignment of P,-Bus pull-up resistors is automatic.
On import, all PWPUP instances defined by the designer are
removed from the netlist. The tool automatically balances the
number of pull-up resistors against the P-Bus loading
(incurred by the use of multiple die edges) by automatically
inserting additional pull-up capacity for each P-Bus segement
used. During autolayout, the MPA Design System re-attaches
a single peripheral bus pull-up resistor per occupied die edge,
for each unique P-Bus signal. For example, if several I/Os that
use a P-Bus Wired-OR signal get split between the 'top' and
'right' edges of the die during autoplacement, the tool would
assign two pull-up resistors to the net.

The Wired-OR resources are provided to help simplify
some logic designs, however, their use should be avoided on
speed critical paths.

Guiding Layout with Attributes

The MPA Design System's import process can accept a set
of attributes to help the front end designer tune the layout and
routing processes. The system also accepts 1/0 attributes to
specify CMOSffiL compatibility, 1/0 drive, package pin
assignment and slew rate control. Declaring attributes in the
schematic will result in their being passed into the EDIF netlist
and then imported into the MPA Design System. Optionally the
designer may prefer to include attributes in an external .PAT
file of the same root file name as the EDIF netlist. The
designer may otherwise choose to use the combination of the
two methods, but is should be noted that attributes passed into
the MPA Design System in .PAT files will always take
precedence if declared in both places.

Sch. Attached Place and Attached
Comp'nt Route Attribute VO Attribute

Net DPLD_IGNORE_TIMING

DPLD_CLUSTER_SEED

DPLD_PLACE_PRIORITY

Symbol DPLD_IGNORE_TIMING DPLD_PUP

(instance) DPLD_PAD_PLACE {I/Os only) PULLUP or PULLDOWN

DPLD_OPDRIVE

DPLD_OPLEVEL

DPLD_OPSLEW

DPLD_IPLEVEL

DPLD_PAD_PROPERTIES

Formal Port DPLD_IGNORE_TIMING

Figure 4. All Valid Attributes. Place and Route Attributes
can be used to affect a design speed up.

~~~ ~c·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==D=L=2=01=R=E=v=2=============================== 
4-98 



Place and Route Attributes 

Place and Route Attributes can be used to affect a design 
speed up by providing guidance to the autolayout tool about 
which are the unimportant nets, and which nets and should be 
clustered and placed tightly together. Absolute placement of 
I/Os and relative placement of instances are also used as 
autolayout guides. 

DPLD_IGNORE_ TIMING 

The DPLD_IGNORE_TIMING attribute is used to inform 
the tool which nets to ignore timing on. It may be set on an 
symbol (instance), a net or an external pin (formal port). If a 
net has the attribute set, then all delay paths associated with 
that net are ignored. If an instance has the attribute set, then 
all input delay paths driving and all delay paths being driven 
from that instance are ignored. Assigning the attribute to a 
formal port has exactly the same effects as assigning to the 
110 instance itself. Once all the objects to be ignored have 
been identified, their paths are propagated forwards and 
backwards through combinatorial gates until clocked objects 
(or top level circuit 1/0) are reached. The result is that 
additional segments other than those explicitly specified may 
be ignored for timing purposes as well. 

You are required to use a dummy value with this attribute, 
but the value stated is otherwise ignored. 

Assigning this attribute to a symbol, net or formal port frees 
the timing driven autolayout algorithms to more optimally 
cluster, place and route the speed critical nets. 

DPLD_CLUSTER_SEED 

Once a netlist import is complete, the first step of autolayout 
is clustering. During clustering the tool attempts to group 
related chunks of logic together. This helps simplify the place 
and route problem by reducing the total number of 'things' the 
place and route algorithm has to deal with. 

The DPLD_CLUSTER_SEED attribute is used to assign a 
cluster seed to a net. This will cause the clustering to treat all 
instances that connect to that net specially. The action taken 
depends on the value of the attribute, as follows: 

EXTIN 

INANO_A 

' ... . E x T I NM I p B u ~ I B 

I~_,,....-

AN1569 

O ignore this net during clustering. Setting this 
attribute on a net is likely to cause the net to be 
implemented in global interconnect. 

default operation 

<1000 weight this net by the given factor in the 
clustering 

Assigning a high value cluster seeds on your most speed 
critical nets results in a tighter clustering and consequently 
shorter delays for these nets. 

DPLD_PLACE_PRIORITY 

The DPLD_PLACE_PRIORITY attribute can be applied to 
a net to guide the software to lay out that net in a physically 
smaller area - in other words, to physically place the instances 
connected to that net closer together. The value of 
DPLD_PLACE_PRIORITY should be an integer in the range 1 
to 10 (1 is the default). Higher values of place priority let you 
prioritize nets relative to each other. 

DPLD _PAD _PLACE 

DPLD_PAD_PLACE- instructs the 1/0 pad to be allocated 
to the package pin number specified. Only one pad is 
allocated to any pin. Automatic placement of 1/0 pads usually []] 
results in a better layout, so this attribute should only be added 4 
when it is necessary to back fit an existing PCB layout. 
Example: DPLD_PAD_PLACE=C2 

Assigning Attributes in a Schematic 

In PROSeries, the method of assigning attributes is straight 
forward. With a left mouse click, select the desired net or 
symbol (instance). A net's color will change or a bounding box 
will appear around the instance, identifying it as the currently 
selected object. Then from the "Add" pull down menu, select 
"Object Attribute", the bottom of the screen (the text input 
area) will then prompt you with "Attribute Text String". Type in 
the attribute and the value (if appropriate) and hit enter. The 
attributes will then be included in the EDIF netlist once 
EDIFNETO is run. 

Figure 5. The net "NETA" attributed with DPLD_CLUSTER_SEED=O, The AN2 is attributed with DPLD_IGNORE_TIMING. 
The selected component "OPBUF $114" and its attached attributes are boxed. 

================================M=O=T=O=R=O=L=A=M=P=A::=:DA=T=A=-==D=L2==01=R=E=V==2==========================1~ 
4-99 



AN1569 

Assigning Attributes & Instances in an External 
.PAT File 

Assigning attributes to a long series of instances, or a 
variety of nets in the above manner can be time consuming 
and may be error prone. The MPA Design System gives the 
designer the option to enter all the valid attributes in an 
external .PAT file. Entries in the .PAT file take precedence over 
any attributes that may have also been instantiated in the 
EDIF netlist via schematic entry. 

The external attributes file supports four main operations: 

4) Insertion of attributes to specify pin placements and 
pad characteristics. 

5) Insertion of special pad cells, IPCLK/IPRST, to drive 
the primary clock/reset network. 

6) Insertion of special buffer primitives into a named net. 

This has two uses: 

c) Force a named net onto/off the peripheral bus, 
by inserting the primitives APBUF/PABUF 
respectively. 

d) Force a named net onto the primary 
clock/reset network, by inserting the primitives 
ACLK/ARST respectively. 

7) Attaching place and route attributes to existing nets, 
instances and formal ports. 

The external attributes file must exist in the same directory and 
with the same name as the EDIF netlist, with the file extension 
.PAT During import, the MPA Design System automatically 
checks for the existence of a .PAT file and uses it when one is 
found. 

Syntax of the External Attributes (.PAT) File 

The external attributes file contains a list of commands, one 
per line. Each command contains up to five fields, as follows: 

<object-class> <object-name> <operation> <name> [<value> I 

where: 

<object-dass> 

<object-name> 

<operation> 

<name> 

is one of port, net, or instance. 

is the netlist name of the object (port, 
net or instance) being operated on. 

is one of attribute or instance. 

is the name of a definition or an 
attribute. 

<value> is only used in attribute operations, 
and is the value to be given to the 
attribute. This field is only required 
when an attribute requires a value. 

The following are specific syntax forms of all valid attribute or 
instance assignments. 

port <name> instance 

(name here can only refer to input instances with one 
input pin and one output pin) 

ipclk 

iprst 

port <name> attribute 

dpid_ignore_timlng dummy _arg 
dpld_pad_place <value, sea data book for package being 

used> 
pullup 110 
pulldown 110 
dpld_opdrlve 6mal12ma 
dpld_oplevel 3v1Sv 
dpld_opslew bighllow 
dpld_iplevel CMOSITIL 
dpld_pad_properties 011, 011, CMOSITIL, 3v1Sv, 6mal12ma, 

bighllow 

net <name> attribute 

dpld_cluster_seed n (where, 1 is default, 0 means ignore net) 
dpld_place_priority n (where, 1 is default, 10 is highest priority) 

net <name> Instance 

aclk 
apbuf 
arst 

pabuf 

instance <name> attribute 

dpld_igriore_timing dummy_arg 
dpld_pad_place <value, see data book for package being 

used> 
pullup 110 
pulldown 110 
dpld_opdrive 6mal12ma 
dpld_oplevel 3v1Sv 
dpld_opslew bighllow 
dpld_iplevel CMOSITTL 
dpld_pad_properties 011, 011, CMOSITTL, 3v1Sv, 6mal12ma, 

bighllow 

The nomenclature of port, net and instance and their use 
can be a little confusing, I'll attempt to clarify a bit. A 'net' is 
simply the name of the net of interest. In Figure 6 the valid net 
names are SEG[O:B]. An 'instance' is the unique designator for 
the instantiated library macro. In Figure 6, $1146 is the 
instance of the OR gate. A 'port' refers to only formal ports 
(external 1/0 pins). 

Another point of confusion is that the valid attribute sets for 
"port <name> attribute" and "instance <name> attribute> are 
identical and each guides the MPA Design System to respond 
in an identical fashion. You may use either syntax, but for the 
sake of simplicity, stay consistent in your methodology. 

Example .PAT File Entries 
The following sample .PAT file entries reference the simple 

schematic shown in Figure 6. The entries of Figure 7 should 
be considered one at a time; considering them all to be part of 
the . same .PAT file, all operating on this simple circuit 
simultaneously is not the intended interpretation. 

~~.,'/ ~c·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==D=L2==01=R=E=v=2=============================== 
4-100 



SAMPLE2.1(SCH) B-17"X11" G:11J 
IPBUF 

Figure 6. A sample schematic to add .PAT file attributes to. Nets are named SEG[0:8]. 

I I This is a comment 
# This is a comment as well 
port segO instance ipclk 
//This results in the top IPBUF being replaced by an IPCLK, forcing the 
//net SEG3 onto a clock network. 
port segO attribute dpld_pad_place 22 
//This results in the top IPBUF being placed on the pad associated with 
//package pin 22. 
port seg2 attribute dpld_ignore_timing dummy_arg 
//For place and route purposes, the design's timing parameters are ignored 
//for the entire delay path driven from the formal port SEG2. A dununy 
//argument is required for this attribute. 
net seg5 attribute dpld_ignore_timing dummy_arg 
//For place and route purposes, the design's timing parameters are ignored 
//for the entire delay path associated with the net SEGS. For the design 
//of Figure 6, this statement has the same effect as the previous one. 
//A dummy argument is required for this attribute. 
net seg5 attribute dpld_cluster_seed 500 
//During clustering, the MPA Design System will strongly associate 
//the top and bottom OR2s. The resulting layout will likely have 
//these two instances in the same cluster. 
net seg5 attribute dpld_._place_priority 10 
//With the net SEGS attributed with a high place priority, the autolayout 
//tool will likely place the top and bottom OR2s physically adjacent to one 
//another. 
net segS instance aclk 
//This results in an ACLK buffer being inserted after the bottom OR2's output 
//and the top OR2's B input. The B input of the top OR2 will now be driven 
//off of a primary clock routing resource. 
instance $1I23 attribute dpld_opdrive 12ma 
//This results in the OPBUF getting 12m.a drive capability. 
instance $1I46 attribute dpld_ignore_timing dumrny_arg 
//For place and route purposes, the design's timing parameters are ignored 
//for the all nets associated with the instance $1I46. A dummy 
//argument is required for this attribute. 

AN1569 

Figure 7. Sample .PAT file entries showing the major syntax variations allowed. Consider each entry individually, this 
entire figure is not applicable as a .PAT file for the referenced design. 

==========riiill 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-101 



AN1569 

Tool Options - Autolayout 

Referring to Figure 8, clicking on the Tool Options button brings you to the Tool Options window of Figure 9. 

Figure 8. A sample tool context window. In this example, two design (.DSN) files are available. 

Figure 9. Almost all autolayout parameters are adjusted from this window. 'Seed' is available under the Advanced 
Autolayout tab. 

~~""' ~~1 ==================M=o=r=o=R=O=L=A=M=P=A=D=A=JA==-=D=L2==0=1=R=Ev==2============================== 
4-102 



The 'Parameter Group' roll down menu has a scrollable list 
of pre-defined tool settings to choose from: Default, High 
Utilisation, Minimum Delay, Try Harder, and Ignore Timing. 
Each of these parameter groups was established as a result of 
studying many sample designs, each with varying design 
styles and densities. These provided Parameter Groups are 
generally very good starting points tor guiding the MPA Design 
System through optimization of your designs. If after some 
experience, you find a new unique set of parameter settings 
that works better tor you, you may save your own custom 
parameter groups. (The changes are written to a file called 
PMEL.INI in the Windows installation directory.) 

Target Delay 

Minimum 1 Maximum 9999 Default 50 (5nS) 

Target delay is the most significant guiding parameter of the 
autolayout process. The 'delay' of a combinatorial network is 
calculated as the longest path from input to output. For 
synchronous circuits, path delays are calculated as 1/0 to 
clocked element (register), register to 1/0 and from register to 
register. 

Autolayout attempts to keep the delay of each of these 
paths types below the target delay value. For a single clock 
design, you set the target delay to the reciprocal of the desired 
operating frequency. 

The units are 1 o-1 Os. For example, 80 yields an 8ns delay 
target. (A screen shot of Version 2.2.3 of the MPA Design 
System is shown in Figure 9. The panel shows the units as 
"ns", this is incorrect and will be corrected on version 2.2.4 and 
later.) 

Utilisation 

Minimum 1 Maximum 150 Default 80 

The percentage of the recommended maximum number of 
core cells partitioning will attempt to use in a zone. Partitioning 
will exceed this number if necessary to complete. 

For the MPA 1000 family, the recommended number of cells 
per zone to use is around 50. Setting utilisation to 100% tells 
the partitioning tool to consume approximately 50 of the 100 
possible cell sites per zone. If the utilisation parameter is set 
too high, then the autolayout tool may spend a lot of effort on a 
few highly utilized zones, while other zones are left empty or 
underutilized. If the utilisation parameter is too low, then the 
autolayout tool will adjust the parameter upward until it is 
compatible with the design. Increasing the value of the 
utilisation parameter may increase the operating speed of the 
circuit, only at the cost of increased tool run time. Values 
greater than 100% are not recommended. 

Effort 

Minimum 1 Maximum 100 Default 30 

The relative amount of work applied to the partitioning 
phase. When setting utilisation high, effort should be set high 
as well. 

The two major phases of autolayout that typically consume 
the most time are partitioning and zone routing. The time taken 
in partitioning is directly related to effort. 

Start Temp 

Minimum 1 Maximum 100 

AN1569 

Default 10 

Partitioning and zone routing are performed using a 
simulated annealing algorithm. Setting the start temperature 
higher gives the partitioning and zone routing tools the 
freedom to make more aggressive moves in the search tor the 
optimal solution. With the start temp set low, the respective 
algorithms may only be free to find local minimum solutions 
whereas the best overall solution lies over some other cost 
hump that the tool was otherwise constrained from traversing. 
It is usually best to increase start temp in a highly utilized 
device. If increasing start temp, be sure to increase effort as 
well. 

Fanout 

Minimum 1 Maximum 100 Default 2 

This is the maximum fanout of a net which is still included in 
the clustering. All nets which have a fanout greater than the 
number specified are ignored in the clustering phase. Any nets 
ignored during clustering are more likely to be routed on global 
resources (typically a bit slower than medium or zonal routing 
resources). 

Attempts 

Minimum 1 Maximum 20 Default 1 

The number of runs through partitioning phase. More runs 
typically yield a better solution, only at the expense of 
extending tool run time. 

Min Zone Delay 

Minimum 1 Maximum 9999 Default 5 (0.5nS) 

The units are 1 o-1 Os. The zone router will attempt to keep 
the delay of all net segments within the zone being routed to 
less than the value specified. 

Back Off 

Minimum 0% Maximum 100% Default 30% 

Percentage of relaxation to apply if the target delay was 
unobtainable. Expressed as a percentage of the previously 
described Target Delay. 

Delay Cost 

Minimum 1 Maximum 100 Default 5 

This is the weighting given to timing during partitioning. If a 
particular partition includes a net that is failing to meet its 
timing target, then the cost of that partition will be artificially 
raised by an amount proportional to the delay cost. Increasing 
the delay cost is likely to trade off against achievable 
utilization. Setting delay cost to zero will result in much 
reduced tool run times and increased achievable utilization, 
however this is accomplished at the expense of lowering the 
design's maximum frequency. 

Seed 

A 'seed' value may be set in the Advanced Autolayout panel 
of the Tool Options window. The seed is as a starting point for 
the autolayout's pseudo-random number generator. Random 
numbers are used in several of the autolayout algorithms. 
Because it is note a true random number generator, two layout 
runs with identical settings will yield identical results. 

==================::::=:===:=:::~:::==:~~============lliil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-103 



AN1569 

Changing nothing but the seed value may yield significantly 
different solutions. The PC and Workstation versions of the 
MPA Design System have different pseudo-random 
generators and so solutions from each will always differ in 
spite of identical initial seed values. It is mentioned here only 
for completeness. Changing the seed value does not 
guarantee a faster place and route solution, only a different 
one. 

Clock Files 

In a simple single clock design, it is sufficient to declare a 
Target Delay value in the autolayout panel of the tool options 
window. The autolayout attempts to achieve a place and route 
solution in which all 1/0 to clocked element path delays and all 
clocked element to clocked element path delays are shorter 
than the target delay. 

However, more complex designs may have multiple clocks, 
each running at unrelated frequencies. In such instances it 
may be unwise to ask the autolayout tool to constrain every 
path of the design to the delay target of the fastest path 
required. 

Clock files provide a method of grouping related 
components of your design into unique timing groups. The 
timing groups may then each be assigned unique clock 
specifications, only as restrictive as required. This assists the 
autolayout tool by guiding it to complete the more speed 

critical nets using the more valuable placement, routing and 
switching resources as required. 

Clock files also provide a method of specifying target delays 
between such timing groups. The syntax presented below can 
be a bit daunting at first Please read through to the examples, 
and it should become a bit clearer on just how to use a clock 
file. 

Clock File Syntax 
The following meta-syntax conventions are used in this 

definition: 

: : = 

{ ... }+ 

{ ... } * 

["" . l 

introduces a rule 

terminates a rule 

Indicate one or more occurrences of 
the phrase inside the braces 

Indicates zero or more occurrences of 
the phrase inside the braces 

Indicates an optional single 
occurrence of the phrase inside the 
brackets 

Separates alternative choices 

Timing groups identify those portions of the design driven 
by a particular clock with a particular specification. The syntax 
for Timing Group Definitions is given as: 

timingGroupDefinitions : :=' {' 'timingGroupDefinitions' {timingGroup}+ ') '; 
where 
timingGroup .. '{' 'timingGroup' tirningGroupDef [clock] 

tirningGroupinstanceList ') '; 
where 
timingGroupDef ::= tirningGroupName; any string, ie my_timing_group 
clock '' = ' (' 'clock' period [phase] ') '; 

where 
period time_in_units_10-lO_seconds (50 = SnS), ie '50' 
phase : := time_in_units_10-lD_seconds 

tirningGroupinstanceList : :={allIOlallFlipFlopsjnetReflinstanceRef}+; 
where 
allIO ''= '(' 'allIO' ') '; 
allFlipFlops ::= '(' 'allFlipFlops' [clockinputSense] ') '; 

where 
clockinputSense : := 'INVERTED' I 'NONIVERTED' 

netRef : := ' (' 'netRef' netName [clockinputSense] ') ';' 
where 
netName any string, ie my_net_name 
clockinputSense ':= 'INVERTED' I 'NONIVERTED' 

instanceRef ::= '(' 'instanceRef'instanceName ') '; 
where 
instanceName ::= '"'any_instance '"', ie "$1I19" 

Intended Target Delay is the method used to limit the delay between the previously defined timing groups. 
The syntax for Intended Target Delay is given as: 

intendedTargetDelay : :=' (' 'intendedTargetDelay' targetDelay driverGroupRef 
drivenGroupRef ') '; 

where 
targetDelay ::= time_in_units_10-lO_seconds {50 SnS), ie '50' 
driverGroupRef timingGroupName; any string, ie my_timing_group 
drivenGroupRef ::= timingGroupName; any string, ie my_timing_group 

~~~ ~c:::==================M=O=T=O=R=O=L=A=M=P=A=D=A=T=A=-==D=L=20=1=R=E=V=2================================= 
4-104

AN1569

Clock File Examples
The syntax specification is for clock files is harder to read than it is to type, and it wasn't easy to type. So in an effort to clarify the

topic some, lets look at some clock file examples.

(timingGroupDefinitions
timingGroup My_Flip_Flops

clock 50 I
allFlipFlops)

timingGroup My_IO
allIO I

intendedTargetDelay 10000000 My_Flip_Flops My_IO
intendedTargetDelay 10000000 My_IO My_Flip_Flops

In the above example all of the flip-flops are intended to be clocked with a 5nS period clock. I'm further specifying that I don't
care how long it takes to get signals in and out of the design by defining a very large intendedTargetDelay between groups and not
specifying a target clock period set for "alllO",

(timingGroupDefinitions
timingGroup My_CLKl_Group
clock 200 I
netRef CLKl

timingGroup My_CLK2_Group

clock 100 I
netRef CLK2)

In the above example, two clock groups were specified: 'My_CLK1_Group' and 'My_CLK2_Group'. All instances driven with the
clock named CLK1 will be placed and routed to meet a 20nS delay criteria, and all instances driven with the clock named CLK2 will
accommodate a 1 OnS clock.

(timingGroupDefinitions
timingGroup My_Group

clock 200 I
instanceRef "$11*" }

In the above example, the wild card * is used to define the instances that are members of the timing group 'My_Group'.

{ timingGroupDefinitions
timingGroup My_CLKl_Group
clock 200 I
netRef CLKl

timingGroup My_CLK2_Group

clock 100 I
netRef CLK2)

intendedTargetDelay 100 My_CLKl_Group My_CLK2_Group
intendedTargetDelay 100 My_CLK2_Group My_CLKl_Group

In the above example, two clock groups were specified: 'My_CLK1_Group' and 'My_CLK2_Group'. All data paths between these
two groups are constrained to meet the more restrictive of the two timing requirements.

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=0=1=R=EV==2==========================~~
4-105

AN1569

Tool Progress Monitoring

As the you gain experience and the density of your designs
starts to increase, and our your speed requirements become
more restrictive, you may find the MPA Design System
working longer on your designs. As such, this section is
included to give you a clear explanation of all the status
windows and displays the system gives you during the course
of design importation and auto layout.

Import

Reading II 100

Reading Hetlist · c: \mpa\libs\mpalib\iolib\ipbuf\ipbu
Reading Hetlist · c :\mpa\libs\'1palib\iolib\ipclk\ipcl
Reading Hetlist 'c :\'1pa\libs\'1palib\iolib\iprst\iprs
Flattening definition example2 •••
Retargeting definition example2
Reading Binary Retargeter Rules File · c: \MPA\SYSTEM\

Figure 10. Importing and Retargeting

During the import and retarget phase, the MPA Design
System takes the EDIF netlist in, checks it for compatability
and errors. The macro elements of the EDIF netlist are
mapped to the cell definitions available to the MPA family. If
there are no problems found, the import phase concludes with
the output of a .NET file, the native netlist format of the tool.

Autolayout

eading Netlist 'c :\mpa\libs\mpalib\iolib\ipclk\ipcl
eading Hetlist 'c :\mpa\libs\mpalib\iolib\iprst\iprs
eading Hetlist 'c :\mpa\libs\mpalib\iolib\ipbuf\ipbu
eading Netlist 'c :\mpa\libs\mpalib\microlib\one\one
eading Hetlist 'c :\mpa\libs\J11palib\microlib\zero\ze

ading Package File • c :\MPA\SYSTEH\'10pga181.pkg.
1036 181-PGA package selected
kage rqade • Boot_From_ROM_Mode' selected
ding Layout 'c :\mpa\libs\mpalib\microlib\or2\ab .1

Figure 11. The beginning of Autolayout

During the brief initialization period of the autolayout
process, the previously mapped component nets are read in,
the package information is read in, 1/0 pads are counted along
with core cells. A figure of utilization is echoed back and the
tool proceeds to the clustering phase. No status bars are
presented in this step.

Clustering

problem •••••c::::::=:::::::i101
index

pass

primary clock/reset pads free (consider using thes
O 1/0 pads used (120 auailable on deuice)
9 1/0 pins used (119 auailable on package)
20 core cells used by design
his is apprmcimately 51~11% of the maximum deuice c
nd corresponds to an autolayout Utilisation paramet
lock Information at end of initialisation:
ame Frequency period phas
lk 200.0MHz 5.0ns o.on

Figure 12. The Clustering Status

Clustering combines groups of related logic together to help
break up the place and route problem into more manageable
chunks. In Figure 12: Problem refers to the number of root
level clustering problems to be solved. A root level clustering
problem is a cluster containing sub-clusters or and 1/0. Index
refers to the 3 phases of clustering for that problem. Phase 1 is
the stage where the clustering algorithm decides which
clusters are root level clusters, and is already complete.
Therefor the progress bar starts on 2 and finishes on 3. Pass
refers to the estimated number of items per root level problem.

Partitioning and Pre-Placement

About half of the tool's time is spent in the partitioning
phase. During this phase, the MPA Design System places the
clusters formed in the previous process into zones.
Pre-placement refers to the placement of 1/0 sites that were
optionally fixed via the DPLD_PAD_PLACE attribute.

~~-1'1 ~~1 ==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=D=L=2=01=R=E=V=2===============================
4-106

pa:s:s:es

objects ••••m.J1[]2~2====::J 281

20 core cells used by design
his is appt·oxiroately 51 .11% of the maxiroum deuice c
nd corresponds to an autoljlyout Utilisation paramet
lock Information at end of initialisation:
ame Frequency period phas
lk 200.0MHz 5.0ns O.On
lustering took ltOs - 281 clusters created
iting Clustered context file • C :\MPA\EXA.MPLE\examp
rtitioning 281 top leuel objects (total 281 object

Figure 13. The Initial Partitioning Phase

The first part of the partitioning algorithm completes the
initial placement tasks. Passes refers the fixed number of
passes at the placement problem. The first pass yield an initial
placement of clusters, the remaining 4 passes are refinements
of this initial placement. Objects refers to the number of
clusters created in the previous clustering phase.

attempts

steps 0 ·~---~3~3~7 ____ ~1 8340

cost 3122
area •••••oPEJl[iJ•IC::===::::JI uo2

20 core cell's used by design
his is approximately 51.11% of the maximum deuice c
nd corresponds to an autolayout Utilisation paramet
lock Information at end of initialisation:
ame Frequency period phas
lk 200. OMHz 5. Ons 0. On
lustering took 37s - 281 clusters created
riting Clustered context file 'C:\MPR\EXAMPLE\examp
artitioning 281 top leuel objects (total 281 object

Figure 14. The Second Partitioning Phase

This phase takes the initial placement results and refines it
by assigning specific zones and routing ports to the clusters.
Attempts refers to the number of times this entire phase

AN1569

will/has run. Attempts is set as a autolayout tool option
'Attempts'. Partitioning is the niost important phase of the
autolayout process. If you are looking tor more speed from
your design this is a good place to experiment. Increasing
'Attempts' in the autolayout tool options will generally yield
improved results, but at the expense of extending the tool's
run time of course. Steps refers to the number of steps the tool
must take to complete the partitioning. The step rate increases
as the tool proceeds. This is the indicator to watch to get the
best feel tor how long partitioning will take. Cost refers to the
total cost of the design (the sum of the cost of the nets plus the
cost of the cost of the parts). Cost generally starts off high and
proceeds in a downward trend as a solution is approached. It
gives you an indication of the quality of the partition in the
current stage, whether or not the tool is converging to a
solution, how good that solution is, and how sensitive the
design is to changes in the way the clusters are placed. Area
is proportional to the sum of the number of instances in the
zones in excess of the number specified in the utilisation
parameter. 10 refers to number of over congested areas in the
10 zones.

Global Routing

attempts

:=====~===~ 1000 passes

segments
360 -

483

ock Information at end of initialisation:
me Frequency period phas

lk 200.0MHz 5.0ns O.On
lustering took 37s - 281 clusters created
riting Clustered conteMt file · C :\MPR\EXRMPLE\exarnp
artitioning 281 top leuel objects (total 281 object
rtitioning took 5:57m
·ting Partitioned context file 'C :\MPA\EXAMPLE\exa
bal Routing 483 segments

Figure 15. Global Routing Phase

After partitioning has assigned all the clusters to zones,
global routing assigns signals to zone port cells and routes
these ports to one another as required. Attempts refers to the
number of attempts to route all segments. If global router fails
to complete the routes on the fifth iteration it will give up.
Passes refers to the number of attempts per segment to route
globally (1000 per segment). Segments refers to the total
number of segments to be routed.

====================~riil
MOTOROLA MPA DATA- DL201 REV 2 ~

4-107

AN1569

Zone Routing

Zones:

Attempts

Object -------.,,----~---. 31

Writing Zone Routed context file 'C :\HPA\EXAHPLE\ex
Zone processing took 8s
Routing zone (1, 1) (11 of 36): 27 instances, 18 zon
Writing Zone Routed context file 'C:\HPA\EXAHPLE\exa
Zone processing took 5s
Routing zone (1 ,2) (12 of 36): 21 instances, 24 zon
Writing Zone Routed context file 'C :\MPA\EXAMPLE\exa

one processing took 4s
outing zone (2~3) (13 of 36): 27 instances, 20 zon

Figure 16. Simple Zone Routing Example

Zone routing is the final major step in completing the
autolayout problem. The tool can often spend more than half
of its time completing this task. Partitioning has placed
clusters into zones, and global routing has assigned and
routed signals from zone to zone and zone to 1/0. Now the
zone routing tool must complete the connections at the lowest
level of hierarchy. Zones refers to which zone is currently
being processed. Attempts is the number of attempts taken at
completing the zone routing. If the zone router fails to route the
zone on the fifth iteration, it will give up on the current
placement solution and attempt to replace instances within the
zone as described in Figure 17. Object refers to the total
number of objects to be placed and routed in the zone.

Zones

AH empts

Ueration

Step

1111111111111c:::==:::::::J 36

,-------""":"-----, 10

~----~1~2 ____ ~1 500

riting Zone Routed context file 'C :,\HPA\EXAHPLE\exa
one processing took 5s
outing zone (4,6) (21 of 36): 24 inste1nces, 20 zon
riting Zone Routed context file 'c :\MPR\EKRMPLE\exa
one processing took 6s
outing zone (5 ,5) (22 of. 36): 24 instances, 20 zon
ri ting Zone Routed context file 'C: \MPA\EXAMPLE\exa

Zone processing took 5s
Routing zone (1,4) (23 of 36): 26 instances, 18 zon

Figure 17. Complex Zone Routing Problem

If the instance placement solution provided by partitioning
can not be zone routed, the tool (zone router) gives up on the
process described in Figure 16 and moves to a second phase
of zone routing. In this phase the tool discards the placer's
solution and provides new possible solutions to try. In this
case, Zones refers to the zone currently being processed.
Attempts is the number of attempts taken at completing the
zone routing. Iteration is the number of attempts to take to
achieve the targets for zone routing. Step refers to the
maximum number of steps (per iteration) to obtain the zone
routing targets.

Back Annotation

13 985

100

'c: \rnpa\libs\rnpalib\iolib\ipclk\in. ly
'c :\rnpa\libs\rnpalib\iolib\iprst\in .ly
'c: \rnpa\libs\rnpalib\iolib\ipbuf\in .ly
'c: \rnpa\libs\rnpalib\rnicrolib\one\a .ly

Layout 'c :\11tpa\libs\11tpalib\1dcrolib\zero\a.
eading Package File 'C :\HPA\SYSTEM\rn0pga181 .pkg'
PA1036 181-PGR package selected
ackage 111ode 'Boot_From_ROM_Mode' selected
eading back annotation architecture file:
: \HPA\SYSTEM\rnpal 036. baa
eading back annotation intrinsic delay File 'C:\MPA
eading back annotation lookup table file:
: \MPA\SYSTEM\rnpal 036. bal

Figure 18. Back Annotation Status

Once you've successfully completed a layout, you may
want to generate a back annotation file so timing data can be
passed back to your simulator. In this process the estimated
RC and routing switch delays are compiled and passed back
to a netlist format of your choosing. Output ports refers to the
every driving pin of the design. Input ports (expressed as a
percentage) refers to all the inputs that could possibly affect
the output port being considered.

~~"" ~~·=================M=o=r=o=R=O=LA::::M=PA::::DA=T=A=-==DL=2=0=1=R=Ev=2========================:::::====
4-108

Summary

Figure 19 is a matrix that shows how each of the methods
discussed in this application note interacts with the various
phases of the autolayout process. You can see from this
matrix that the most critical phase of the autolayout process is
partitioning. If you are having trouble meeting a restrictive
timing requirement, this is where you should concentrate your
efforts.

The number of different combination of design styles, tool
settings and use of attributes is very large and so it is
impossible to give exact guidance on how to use the MPA
Design System to get the absolute best possible speed
solution for your particular design. However, the MPA Design
System and the MPA1000 architecture were co-developed
and as such should provide you with a total system ready to
implement your requirements quickly and easily with no need
to adjust the parameters and attributes as described in this
note. If however your timing requirements are not met on your
first pass through the tool, hopefully you have been provided
with enough information in this note to start experimentation in
an informed manner.

AN1569

1:"
8. ~ c E ..

~
0 ;. a: @ ii ii

0. ~
,, .. ::J .2 c

u .. 0 :;; Q, Q, ~ N

Front End Design

Macro Selection x
PIN Attribute

DPLD_IGNORE_ TIMING x x x x
INSTANCE Attribute

DPLD_IGNORE_ TIMING x x x x
NET Attributes

DPLD_IGNORE_ TIMING x x x x
DPLD_CLUSTER_SEED x

DPLD_PLACE_PRIORITY x
DPLD_PAD_PLACE x

Tool Options

Target Delay x x x x
Utilization x

Effort x
Start Temp x

Fan Out x
Attempts x

Min Zone Delay x
Back Off x x x

Delay Cost x x x
Seed x x x x

Figure 19. Effected Modules for Macros, Attributes, and
Tool Option Settings

===============================M=O=TO==RO=LA==M==PA==DA=~=A=-==D=l2=0=1=R=E=V=2==========================1~
4-109

Estimating Power
in the MPA1000 Family

10/96

© Motorola, Inc. 1996 4-110

Prepared by
Paul Butler

REVO

AN1587
Application Note

®MOTOROLA

AN1587

Estimating Power in the MPA1000 Family

This application note is intended to provide the users of
Motorola's MPA 1000 family a method of quickly estimating the
worst case power consumption of a completed design.

MPA1000 power consumption is dependent on the size,
physical structure, logical structure and timing behavior of a
Customer design. MPA Design System software is used to
automatically transform an input design into a physical
implementation or layout. From this representation a bitstream
is derived which when loaded into a MPA1000 device
produces the desired design behavior.

MPA1000 power consumption has four components:
internal or array power (Pa), clock network power (Pc),
intrinsic 1/0 power (Pioi) and output load power (Pol). The
major factors affecting MPA1000 power consumption are:
array size, number of simultaneous switching cells and I/Os,
1/0 capacitive loading, supply voltage, and the switching
frequency of cells and I/Os.

The switching frequency of a cell or 1/0 is not the same as
the system or applied clock frequency. For synchronous
designs each individual cell or 1/0 in may switch at a rate
related to the applied clock frequency, but the actual switching
frequency depends on the logical structure and timing
behavior of the design. Similarly, the number of simulta
neously switching nodes is also related to design structure
and timing behavior. Manually calculating switching
frequencies of each node in a design is typically not practical.
Some commercially available tools utilize static timing
analysis techniques coupled with device specific nodal
capacitances to make very accurate power calculations.

This application note provides a simplified method for
estimating worst case MPA 1000 power consumption based on
simplifying assumptions concerning switching frequencies
and simultaneous switching behavior.

A worst case switching frequency assumption might be to
consider all nodes switch once per clock period assuming a
single system clock. If any knowledge concerning design
structure and timing behavior can be applied a much more
realistic power consumption estimate can be obtained,
however.

Simultaneous switching estimation rules of thumb used by
various ASIC vendors varies from 15% to 25% Since FPGAs
tend to have routing delays which approach logic delays, a
significant amount of signal skew can occur. This skew can
effectively lower the amount of simultaneous switching one
might expect when reviewing the design alone. While applying
knowledge about design timing behavior improves accuracy,
variable routing delays can significantly alter actual behavior.

Array Power Consumption (Pa)

In MPA1000 devices core cells are used to implement logic
functions and are also used to implement routing functions
under certain circumstances. In addition, many routing
resources are self buffering and also contribute to overall
power consumption. To simplify power consumption
estimation, typical resource usage has been taken into

account and an effective power consumption for a single logic
cell has been derived.

Under the assumption of a single system clock frequency
and a single estimate for logic cell simultaneous switching, the
worst case internal array power consumption can be
estimated by:

Pa = #cells • cellp • ssw% • f • 1 Oe-6

Where:
Pa Total internal power in watts.

#cells Total number of logic cells used by the
design as reported by the MPA Design
System Autolayout tool.

cellp Effective cell power in micro watts per
MHz(µW/MHz). For the MPA1000 device
this has been derived as 33 µW/MHz when
Vdd = 5.0v.

ssw% Estimated percentage of cells which switch
simultaneously.

Switching frequency in MHz.

For a more accurate internal power estimate, the total
number of cells consumed by the design could be partitioned
into several groups each with its own switching frequency. The
power consumed for each group could then be calculated and
the total internal power obtained by summing the results. A
very pessimistic result can be obtained by using the input or
system clock frequency as the switching frequency. If multiple
clocks are used, partitioning and summing can also be used to
improve accuracy.

Clock Power Consumption - Pc
The MPA1000 has 8 dedicated low skew resources. These

resources have a large capacitive load and can contribute
significantly to overall power consumption. Power
consumption for a single dedicated clock is given by:

Pc= clockp • f • 10e-6 • 2

Where:

Pc

clockp

Clock power in watts.

Effective clock power in micro watts per
MHz (µW/MHz) MPA1000 Clock power is a
function of the device size. Clock power for
each MPA1000 device is:

MPA1016

MPA1036
MPA1064

MPA1100

600µW/MHz

1050µW/MHz
1650µW/MHz

2380µW/MHz

Clock frequency in MHz. Note the factor of 2
is required because clock nodes switch
twice per clock period. Nodal switching
frequency not the clock period determines
power consumption.

The power consumed by multiple clocks is calculated by
summing the power consumption of each clock used. This

================================M=O=T=O=R=O=LA==M==PA==D=AT=A=-==D=L2==01==R=EV==2===========================~
4-111

'[A]

AN1587

gives the worst case power consumption for all clocks
assuming they are related and frequently have common
simultaneous transitions.

VO Power Consumption - Pioi & Pol
Total 1/0 power consumption is the summation of 1/0

intrinsic power requirements and power required to drive
external loads. When calculating 1/0 power an average load
capacitance can be calculated based on actual output pin
loading and applied to all active outputs. Optionally, the power
consumed by each 1/0 could be calculated individually based
on specific external loading conditions and summed.

The total intrinsic power consumed is given by:

Pioi = #ios * ioip * ssw% * f * 10e-6

Where:

Pioi

#ios

ioip

ssw"/o

Total 1/0 intrinsic power in watts.

The total number of 1/0 pads used by the
design. This is reported by the MPA Design
System Autolayout tool.

Intrinsic 1/0 pad power in micro watts per
MHz (µW/MHz) For the MPA1000 device
this is 200µW/MHz.

Estimated percentage of 1/0 pads which
switch si.multaneously.

Switching frequency in MHz.

If outputs are not latched and tied to a common output
clock, it is unlikely that they will simultaneously switch due to
path skews induced by routing delays. Because I/Os consume
significant power very general assumptions of 1/0 switching
frequency and simultaneous switching behavior can make
resultant power estimates very inaccurate.

If multiple clocks are used, a closer estimate could be
obtained by dividing #ios into groups, calculating power for
each group and summing the results.

Sample Data 1500

1000

~
.s
a:
w

~
0..

500

0

Output load power consumption is given by:

Pol = #out * ssw"/o * Cload * Vdd**2 * f * 1 Oe-6

Where:

Pol Total output load related power in watts.

#out · The total number of outputs used by the
design. This is the subset of total I/Os which
are used to drive external loads.

SSW% Estimated percentage of outputs which
switch simultaneously.

Cload

Vdd

Average load capacitance in pf.

Supply voltage in volts

Output switching frequency in MHz.

Total 1/0 power is given by:

Piot = Pioi + Pol

Example Power Consumption Calculation

For an MPA1036 with:

#cells
ssw% (cells)
#clocks
f (clock)
f (cells) = f (io) = f (clock)
#io
#out
ssw% (io)
Cload

1500
20%
1
70MHz
Pessimistic Est.
100
50
10%
50pf

Pa= 1500 * 33 * .20 * 70 * 10e-6 =

Pc = 1050 * 70 * 10e-6 * 2 =

Pioi = 100 * 200 * .10 * 70 * 10e-6 =

Pol = 50 * .10 * 50 * 25 * 70 * 10e-6 =

Ptotal = Pa + Pc + Pioi + Pol =

0 0
0

0
0
0

0

y = 15.340x + 2.062

693mW

147mW

140mW

437.5mW

1.42W

0 25 50

FREQUENCY (MHz)

75 100

The data from the above graph is a collection of 125 sample designs flt into an MPA 1036. Pol is net included in this sample data set. Power consumption for the MPA1036 is roughly 15mW/MHz.

~~~ ~c·==================M=o=r=o=R=O=LA==M=P=A=D=A=TA=-==o=L=2=01=R=E=v=2=============================== 
4-112 



10/96 

AN1588 
Application Note 

Using Mentor Graphics' 
Design Architect ver. A3 
with the MPA Design System 

Prepared by 
Claudia Colombini 
Motorola Programmable Logic Products 

© Motorola, Inc. 1996 4-113 REVO 
®MOTOROLA 



AN1588 

Using Mentor Graphics' Design Architect ver. A3 with the MPA Design System 

Introduction 
The Motorola family of MPA devices and supporting 

software provides hardware designers with a wide selection of 
design methodologies. This application note is intended to 
demonstrate a valid design flow for Motorola MPA series field 
programmable gate arrays using Mentor Graphics' Design 
Architect environment. 

The reader should be familiar with the Mentor Design 
Architect tool suite. The reader should also have access to the 

Motorola MPA Design System software and the Mentor 
integration kit libraries supporting the MPA1000 family. This 
application note was written using version A3 of Design 
Architect and version 2.2.3 of the MPA Design System. 

Schematic Entry Flow 
Figure 1 shows the recommended flow for moving your 

Design Architect schematic through export and into the MPA 
Design system and Quicksim simulation. 

SCHEMATIC ENTRY 

DESIGN ARCHITECT SYMBOL 

enwrite 
FUNCTIONAL SIMULATION 

Quicksim QuickVHDL VHDL 

REALTIME SIMULATION 

MPA 
DESIGN SYSTEM 

Figure 1. General Design Flow Using Design Architect 

The complete functional schematic is moved from Design 
Architect via the EDIF netlist writer "enwrite". The MPA Design 
System imports the resulting EDIF netlist. 

The implementation into the MPA1000 device is completed 
using the Motorola MPA Design System place and route tool. 
After completion of autolayout, a backannotated VHDL gate 

level netlist can optionally be generated and exported to the 
Mentor simulation environment. The VHDL timing 
representation is used as input for the real time simulation with 
Quicksim. The whole flow will be explained with the help of a 
small example. A 4 bit carry look ahead adder with 
synchronous inputs and outputs shown in Figure 2. 

~~~ ~c•==================M=O=T=O=R=O=LA==M=P=A=D=A=TA=-==D=L2==01=R=E=V=2=============================== 
4-114

EXTIN

a2
b2

a3
b3

RN

E
D
CLK

RN

E

D
CLK EXTQ

RN

E
D
CLK

AN1588

SUMO

SUM1

SUM2

Figure 2. A Simple 4 Bit Adder

Schematic Entry Setup

1. Install the libraries for Motorola FPGA on your workstation

2. Add the following line to your mgc_location_map file:

$MPA_SYMBOLS -t LIBRARY
<path_to_Motorola_library>/library/symbols

By adding this line to ihe mgc_location_map file, the Design
Architect will be able to locate the Motorola MPA symbol
library and the symbols can be used for drawing schematics.

3. Create a directory for your design:
mkdir <design_dir_name>

All design related data will be located in this directory.

Schematic Entry Rules
Please refer to Figure 2 for help.

1. Generate a top level sheet containing:

- symbol of the core design

- 110 pads

- Mentor GENLIB portin, portout, portbi symbols ("aO" is
a portin, "sumo" is a portout)

2. Use special 110 pads for clock and reset pins:

For external clock signals the 1/0 macro IPCLK and for
external reset signals the 1/0 macro IPRST should be used.
This will force the external clock and reset signals to the clock
distribution network during MPA place and route and increase
the speed of the design. There are 8 clock/reset pads
available in the MPA 1000 series.

3. Use 110 macros for buffered I/Os:

In the example all 1/0 signals are synchronous. Best
performance for area and speed in the MPA1000 series can
be obtained using the macrocells targeted specifically for the
MPA's feature rich 1/0 pad sites. For the registered I/Os the
IPDFR and OPDFR macros are used as inputs and outputs
respectively. The use of these special 1/0 macros in the design
entry will force the place and route tool to automatically take
the flip-flops available in each 1/0 cell and not consume
internal flip-flop resources for mapping. For more information
on the 1/0 macro elements please refer to the online help of
the MPA Design System tool. The Motorola library contains
more than 70 different 1/0 symbols covering all available
possibilities.

=======~ MOTOROLA MPA DATA- DL201 REV 2
4-115

[]]

AN1588

4. Use special macros for Ones and Zeros

In the example schematic a "One" symbol from the
$MPA 1000 library was used to tie high the enable inputs of the
flops. The library also contains a "Zero" macro for similar use.
Do not attempt to tie unused inputs to anything but One or
Zero. Do not leave unused macro inputs floating.

5. Fix 110 placement:

To specify the 1/0 placement, pin numbers are attached to
the 1/0 symbols:

Commands:

- select 1/0 symbol

- attach attribute: name: DPLD_PAD_PLACE

value: <pin_number>

Refer to the Motorola MPA databook for pin number
information for the different packages. For this example the
MPA1016 in the 84 PLCC package is used. While assigning
pins in this fashion keeps all the design documentation in a
single place, it can be tedious and error prone on larger
designs.

The MPA Design System gives the designer the option to
enter all the valid attributes in an external .PAT file. Entries in
the .PAT file take precedence over any attributes that may
have also been instantiated in the EDIF netlist via schematic
entry. The .PAT files must have the same root file name as the
EDIF netlist .EDN files, and must reside in the same directory
during import to the MPA Design System. See the addendum
on .PAT files for further details.

6. Generate a symbol out of the top level schematic

The symbol can be generated automatically out of the top
level schematic in the Design Architect with the generate
symbol command.

This symbol is needed for the EDIF netlist writer to
recognize the 1/0 interfaces. Without this symbol the port
directions will not be written correctly into the EDIF netlist,

which will cause problems during place and route in the MPA
design system tool.

Functional simulation setup:

1.cd <design_dir>

2.qvmap mpa <path_to
Motorola_lib>/library/mpa

This command will copy the Mentor quickvhdl.ini file into the
<design_dir_name> directory and attach the path to the
Motorola VHDL simulation library to the VHDL library name
map. The quickvhdl.ini file will be accessed during simulation
start and simulation.

~qvlib <qvpro_lib_name>

This creates a library where the qvpro simulator will put the
VHDL code for the design. During qvpro startup a VHDL
representation will be generated automatically and the
compiled entity and architecture will be put into the
<qvpro_lib_name> directory.

Functional Simulation with Quicksim
Start the simulator with the command:

qvpro <design_siro_toplevel> -lib <qvpro_lib_name>

Qvpro is the Mentor simulation environment which allows
cosimulation of of VHDL and Quicksim simulation models with
Quicksim or QuickVHDL simulator. For schematic entry the
Quicksim simulator will allow the probing of the signals which
should be traced in the schematic. The qvpro command
initializes the design for Quicksim and QuickVHDL
cosimulation. The functional simulation can be done using the
Quicksim tool as known to the user.

This application note describes the use of qvpro with
Quicksim as the master. Prerequisite for this configuration is a
schematic as top level simulation view. For other use of the
qvpro simulator please refer to the Mentor documentation,
Simulating with qvpro.

~~~ ~c·==================M=O=T=O=R=O=LA==M=P=A=D=AT=A=-==D=L=20=1=R=E=v=2=============================== 
4--116 



AN1588 

elk 

res 

cin + + + + + + + + + + + + + 

cout + + + + + + + + + + + + + 

a D + +XE + + XF + + + + + + + + + 

+ + + + + + + 0 + + + 21- + + 

sum JO + xi!- + XF + + X9::3(1 + +Xo + XF+ + XP- + 

forces@ @/res + + + + + + + + + + + + + 

forces@ @/cin + + + + + + + + + + + + + 

forces@ @a(3:0) D + + E + + + + + + + + + + + 

forces@@b(3:0) + + + + + + + 0 + + + 21- + + 

0 140 280 420 560 700 840 
TIME (ns) 

Figure 3. A Functional Simulation Run of the Example Circuit 

cin + + + + + + + + + + 

a ~5 + + XF + + + + + Xo + + 

b ~3 + + X1 + + + + + X2 + + 

sum -f!J..o + + x&t- + ~H- + x()t- + + ~ 
cout + + + + + + + + + + 

forces@ @/res + + + + + + + + + + + 

forces@@/cin + + + + + + + + + + 

forces@@a(3:0) ~ 5 + + XF + + + + + Xo + + 

forces@@b(3:0) ~ 3 + + X1 + + + + + X2 + + 

0 100 200 300 400 500 
TIME (ns) 

Figure 4. A Simulation Run with Back Annotated Timing Data 

=::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;::M=O=T=O=R=O=LA:;::M:;::PA:;::D=AT=A=-:;::D=L=2=0=1=R=E=V=2:;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;::~~ 
4-117 

[]] 



AN1588 

Interface to the Motorola MPA Place & Route Tool 

Input for the MPA Design System software is an EDIF 2.0 
netlist which is generated by the Mentor EDIF netlist writer 
"enwrite". To have all hierarchical information available in the 
MPA design software for automatic design partitioning, it is 
recommended to produce a hierarchical netlist. 

~-IM_P_o_RT_;-------1•"'11 AUTOLAYOUT 

1. EDIF NETLIST READING 
2. MAP TO DEVICE 

PART+ PACKAGE 

1. INITIALIZATION 
2. CLUSTERING 
3. PARTITIONING 

Command: 
enwrite <top_level_design> <designname.edn> 

Implement the Design Into the Motorola FPGA 
Figure 4 shows the steps during the implementation of the 

design into the Motorola MPA using the MPA Design System 
software. 

1------~•"'ll ___ sA_c_K_A_NN_o_1_AT_1o_N_~ 

1. WRITE TIMING FILE 
2. WRITE PIN REPORT FILE 
3. WRITE BACKANNOTATION FILE 

3. WRITE INTERNAL NETLIST 
FORMAT 

4. GLOBAL ROUTING 
5. ZONE ROUTING 

Figure 5. The Basic Place and Route Flow 

Implementation of the design in the MPA 1000 family device 
is a straightforward two step process. 

1. Import: 

Reads the EDIF netlist of the design, maps it to the selected 
device and generates an internal netlist representation (a 
.NET file). 

2. Auto/ayout: 

All steps during autolayout will be reported in the .LOG file. 
In the .LOG file all information about device usage and 
estimated maximum frequency after each step is reported. 

Using default parameters for import and autolayout will 
produce satisfying results in most cases. Nevertheless it is 
possible to modify the results by changing the autolayout 
options and re-running. For more information please refer to 
the MPA Design System online help or the application note 
AN1569 Tuning the MPA Design System for Speed. The 
necessary backannotation format for timing simulation with 
Mentor is VHDL. Therefore VHDL must be chosen as 
backannotation format from the Tools -> Options pull down 
menu. 

Setup for Timing Simulation: 

1. Copy the backannotated vhdl file to 
<design_dir_name> 

2.qvlib <compile_dir_name> 

creates a directory where the backannotated vhdl will be 
compiled to 

3.qvmap <compile_lib_name> 
<path_to_compile_dir_name> 

adds the path to the <compile_dir_name> to the 
quickvhdl.ini file 

4.qvcom <backannotated_vhdl_file_name> -work 
<compile_dir_name> 

compiles the backannotated vhdl file 

5. Create a symbol and instantiate it in a new schematic. 

To be able to use the Quicksim environment also for timing 
simulation, a symbol has to be created out of the 
backannotated vhdl file and instantiated in a new schematic. 

Steps: 

1. start Design Architect 

2. generate symbol 

settings: 

- source: entity 

- quickvhdl.ini file : <design_dir_name>/quickvhdl.ini 

- library logical name: <compile_lib_name> 

With these settings in the generate symbol window, the entity 
and architecture of the vhdl file will be found when clicking on 
entity and architecture 

3. check symbol and save 
4. generate new schematic <backannotated_top_level> and 
instantiate the symbol generated out of the backannotated 
VHDL. 

Start Timing Simulation 
Start the qvpro cosimulation environment for simulating 

with Quicksim: 
qvpro <backannotated_top_level> -lib 
<qvpro_lib_name> 

Quicksim simulation can be started. 

Results of the timing simulation from the example see 
Figure 5. 

Comment: 
The Quickvhdl simulator can also be used for timing 

simulation. Just compile the backannotated design and start 
the Quickvhdl simulator: qvsim <compile_dir_name> 

~~~ ~~l===================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=01==R=EV==2================================ 
4-118

Addendum - .PAT External Attribute Files
The external attributes .PAT file supports three main
operations:

1) Insertion of attributes to specify pin placements and
pad characteristics.

2) Insertion of special pad cells, IPCLK/IPRST, to drive
the primary clock/reset network.

3) Insertion of special buffer primitives into a named net.

This has two uses:

a) Force a named net onto/off the peripheral bus,
by inserting the PMeL primitives
APBUF/PABUF respectively.

b) Force a named net onto the primary
clock/reset network, by inserting the PMeL
primitives ACLK/ARST respectively.

The external attributes file must exist in the same directory and
with the same name as the EDIF netlist, with the file extension
.PAT During import, the MPA Design System automatically
checks for the existence of a .PAT file and uses it when one is
found.

Syntax of the External Attributes (.PAT) File
The external attributes file contains a list of commands, one

per line. Each command contains up to five fields, as follows:

<object-class> <object-name> <operation> <name> [<Vfllue>]

where:

<object-class>

<object-name>

<operation>

is one of port, net, or instance.

is the netlist name of the object (port,
net or instance) being operated on.

is one of attribute or instance.

AN1588

<name> is the name of a definition or an
attribute.

<value> is only used in attribute operations,
and is the value to be given to the
attribute. This field is only required
when an attribute requires a value.

The following are specific syntax forms of all valid attribute or
instance assignments.

port <name> attribute <name> <value>

Attribute <name> with (optional) value <value> is added
to the port instance (the instance driven by the formal
port). Only works with input and ports.

port <name> instance <name>

The port instance (the instance driven by the formal
port) is replaced by an instance of the given definition.
The only valid definitions are IPCLK, IPRST. This syntax
is limited to input ports with 1 input pin and 1 output pin
(IPBUF for example).

net <:name> attribute <name> <value>

Attribute <name> with (optional) value <value> is added
to the net.

net <name> instance <name>

Creates an instance of the given definition and inserts it
into the named net. The only valid definitions are ACLK,
ARST, APBUF and PABUF.

instance <name> attribute <name> <value>

Attribute <name> with (optional) value <value> is added
to the instance

=================================~riiil
MOTOROLA MPA DATA- DL201 REV 2 ~

4-119

AN1588

Example .PAT File Entries

II This is a comrnent
This is a comment as well

port sega attribute dpld_pad_place 22

//This results in the IPBUF being placed on the pad associated with package //pin 22.

port sega attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design's timing parameters are ignored

//for the net segment associated with the formal port sega. A dummy

//argument is required for this attribute.

port sega instance ipclk

//This results in the IPBUF being replaced by an IPCLK, forcing the net onto

Ila clock network.

net segb attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design's timing parameters are ignored

//for the entire net "segb". A dummy argument is required for this

//attribute.

net segb attribute dpld_cluster_seed 1

//The dpld_cluster_seed attribute and value shown get assigned to the net B

//for evaluation during place and route.

net segb attribute dpld_place_priority 1

//The dpld_place_priority attribute and value shown get assigned to the net

//B for evaluation during place and route.

net segb instance aclk
//This results in an ACLK buffer being inserted between IPBUF's output and
//BUFF's input. BUFF is now driven off the resulting clock routing

//resource.

instance $1I4 attribute dpld_opdrive 12ma

//This results in the OPBUF getting 12rna drive capability.

instance $1I12 attribute dpld_ignore_timing dununy_arg

//For place and route purposes, the design's timing parameters are ignored

//for the all nets associated with the instance $1Il2. A dummy

//argument is required for this attribute.

~~.,'{ ~~·=================M=O=T=O=R=O=LA==M=PA==DA=T=A=-==D=L2=0=1=RE=V=2==============================
4-120

All Valid Combinations of Attributes & Instances in
an External .PAT File

The following show all the valid combinations of the
attributes in the .PAT file.

port <name> instance (name here can only refer to input
instances with one input pin and one
output pin)

port <name> attribute

ipclk
iprst

dpld_ignore_timing dummy_arg

dpld_pad_place <value, see data book for
package being used>
dpld_pup 1121BOTH
pullup 110
pulldown 110
dpld_opdrive 6mall2ma
dpld_oplevel 3vl5v
dpld_opslew highllow
dpld_iplevel CMOSITTL
dpld_pad_properties Oil, 011, CMOSITTL,
3vl5v, 6mall2ma, highllow

net <name> attribute

net <name> instance

AN1588

dpld_cluster_seed n (where D,; n,; 1 DOD,
1 is default, D means ignore net)
dpld_place_priority n (where 1 ,; n,; 10, 1
is default)

aclk
apbuf
arst
pabuf

instance <name> attribute

dpld_ignore_timing dummy _arg

dpld_pad_place <value, see data book for
package being used>
dpld_pup 1121BOTH
pullup 110
pulldown 110
dpld_opdrive 6mall2ma
dpld_oplevel 3vl5v
dpld_opslew highllow
dpld_iplevel CMOSITTL
dpld_pad_properties Oil, Oil, CMOSITTL,
3vl5v, 6mall2ma, highllow

================================M=O=T=O=R=O=LA==M=P=A==DA=~=A=-==D=l=2=01==R=EV==2========================:::::::::1~
4-121

10/96

Using OrCAD's
Capture and Simulate

AN1589
Application Note

with the MPA Design System

Prepared by
Derrick H.J. Klotz
Motorola Field Applications Engineer

© Motorola, Inc. 1996 4-122 REVO
®MOTOROLA

AN1589

Using OrCAD's Capture and Simulate with the MPA Design System

Introduction
The Motorola family of MPA devices and supporting

software provides system designers with a collection of
flexible and powerful tools. This application note focuses on
the use of OrCAD's Capture and Simulate programs as the
front end schematic capture and logic simulation design tools
for the MPA Design System FPGA place and route software. A
general overview of the following topics is provided:

• Libraries
• File Naming Convention
• Schematic Capture
• MPA Software Attributes
• Timing Control
• MPA Hardware Features
• Nellis! Export
• Functional Simulation
• EDIF Nellis! Import
• MPA Autolayout
• Layout Viewer
• Device Configuration
• Back Annotation and Simulation

This application note is intended to be used as an overall
MPA design reference. Much of the information here is also
available via the on-line help but has been included here in
order to be complete.

The reader is assumed to be familiar with OrCAD Capture
and Simulate and have casual knowledge of the MPA Design
System. More detailed coverage of the above topics can be
found in the appropriate documentation and on-line help.

LJ orcadwin

LJ capture

L:l[~ra~pa
§!) macrolib.olb t §!) microlib.olb

§!) mpa1000.olb
§!) capsym.olb

LJ nettorms
LJ simulate

LL:J library
LL:J mpa

f §!) microlib.vhd

§!) mpa1000.vhd

§!) orcomp. vhd
§!) packmpa.vhd

Figure 1. MPA Library Files

Libraries
The EDIF netlist reader of the MPA Design System is

currently constrained to understand only those components
passed to it from the MACROLIB, MICROLIB and MPA1000
libraries provided. It is recommended that these library files be
located within an "MPA" subdirectory under OrCAD's Capture
library and Simulate library directories, as shown in Figure 1.

Only components from these three libraries can be used for
MPA schematic design. The only other symi"ols which may be
utilized directly in the schematic are the hierarchical ports and
off-page connectors found in OrCAD's CAPSYM library. Refer
to the appropriate OrCAD reference documP.ntation regarding
the proper use of these components.

File Naming Convention
One important consideration that the d')signer must be

aware of is the file and directory naming conventions which
are used by OrCAD and the MPA Design System. By default,
OrCAD Capture uses the ".dsn" extension for schematic
design files. This is the same extension used for MPA design
context files.

In order to avoid confusion, a recommended user's file
naming convention is illustrated in Figure 2. All user provided
files are named "project.xxx" and are located in a subdirectory
called "example". The OrCAD Capture schematic design file,
"project.dsn", and VHDL netlist file used by OrCAD Simulate,
"project.vhd", are not directly required by the MPA Design
System and, hence, don't need to be in the "example"
subdirectory, but are shown here as a matter of convenience.

L:J example

LJ project
§!) project.net

§!) layout1 .ext

§!) layout1 .log

§!) layout1.lyt

§!) layout1 .prp

§!) layout1 .tim

81 §!) layout1. vhd
EJ project.dsn
§!) project.elk

§!) project.edn

§!) project.pat

§!l project.vhd

§!l layout1 .dsn

Figure 2. MPA Design Flies

=======riiiil MOTOROLA MPA DATA- DL201 REV 2 ~
4-123

[]]

AN1589

A brief description of each file follows. More details
regarding each file can be found in the MPA Design System
on-line help facility. Note that the "projecf' subdirectory and
"project. nef' file are not provided by the user but are created
by the MPA Design System.

Files provided by the designer:

project.dsn (optional) OrCAD Schematic

project.elk (optional) MPA-DS Timing Control

project.edn EDIF Nellis! (from OrCAD to MPA-DS)

project.pat (optional) MPA-DS External Attributes

project. vhd (optional) OrCAD VHDL (simulation)

Files and directories created by the MPA Design System:

layout1 .dsn Design Context

project Autolayout Results Subdirectory

project.net MPA-DS Nellis!

layout1 .ext Context

layout1 . log Log

layout1.lyt Layout

layout1 .prp Port Report

layout1 .tim Timing Report

layout1 .vhd VHDL Back Annotation

Schematic Capture
There are just a few unique steps to take during schematic

capture to ensure a valid MPA Design System EDIF netlist.
Components placed in a schematic will have their OrCAD
Primitive property set to "Default". To assure that netlist
generation descends properly to the MPA primitive level,
hierarchy for parts as well as hierarchical blocks must be set to
"Nonprimitive". This is achieved in OrCAD Capture via the
Hierarchy tab on the Design Template dialog box, which is
accessed by choosing Design Properties from the design
manager's Option menu.

The power and ground power connectors supplied with
OrCAD must not be used in MPA schematics. Instead, "ONE"
must be used for logical one connections and "ZERO" must be
used for logic zero connections. For resistive pull-ups on
wired-or nets, "WPUP" is employed. These components are
found in the MPA MICROLIB library. "PWPUP" is put to use as
a resistive pull-up on wired-or peripheral bus nets, and can be
found in the MPA1000 library.

The provided macro library elements must not be changed.
If they are altered, the elements may not perform as described
in the documentation help for the MPA Design System. Library
elements are marked "LIBRARY COPY - DO NOT MODIFY''
for identification. If accidentally modified, a library element can
be retrieved by re.-installing the MPA Design System libraries.

The netlist importer of the MPA Design System needs to
recognize the design's 1/0 pins. To accomplish this,
hierarchical ports must be added to the MPA1000 1/0
components, as shown in Figure 3. The hierarchical port type
must also be of the correct type (i.e., "inpur, "outpur, etc.).
Running the Design Rules Check will verify conformance to
the electrical rules required for netlist generation.

INA

INB

EXTI U1
N 2

IPBUF

Fig11re 3. VO Pin Hierarchical Port Example

MPA Software Attributes
The MPA Design System's import process can accept a set

of attributes to help the designer tune the layout and routing
processes. The system also accepts 1/0 parameters to specify
CMOS/TTL compatibility, 1/0 drive, package pin assignments
and slew rate control. Declaring attributes in the schematic will
result in their being passed into the EDIF netlist and then
imported into the MPA Design System. Optionally, the
designer may prefer to include attributes in an External
Attributes file (".par) of the same name as the design. The
designer may choose to use the combination of the two
methods, but it should be noted that attributes passed into the
MPA Design System in ".paf' files will always take precedence
if declared in both places.

The MPA Design System, for historical reasons, will accept
attribute names with or without a "DPLD~' prefix. For example,
IGNORE_ TIMING can also be written as DPLD_IGNORE_
TIMING.

Place and Route Layout Attributes

The MPA Design System enables the tuning of place and
route algorithms in three ways. The first is with the adjustment
of the Auto Layout tool options such as annealing temperature,
target delays, target zone utilization, etc. Additional details on
the available options and their use are available in the on-line
help facility of the MPA Design System.

The second method .involves the construction of separate
clock files. Here again, additional information is provided in the
on-line help system and is not presented in this application
note. The third method of influencing place and route results is
the inclusion of the following attributes in the schematic, or in
an external ".paf' file.

Table 1. Valid Attributes

Schematic Attached Place and Attached
Component Route Attribute VO Attribute

Net DPLD_IGNORE_TIMING

DPLD_CLUSTER_SEED

DPLD_PLACE_PRIORITY

Symbol DPLD_IGNORE_TIMING PULLUP or PULLDOWN

DPLD_PAD_PLACE DPLD_OPDRIVE

DPLD_OPLEVEL

DPLD_OPSLEW

DPLD_IPLEVEL

DPLD_PAD_PROPERTIES

Formal Port IGNORE_ TIMING

~~-t'I ~~1 ==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=o=L2==01=R=E=v=2===============================
4-124

IGNORE_ TIMING
The IGNORE_ TIMING attribute is used to inform the tool

which nets to ignore timing on. It may be set on a symbol
(instance), a net or an external pin (formal port). If a net has
the attribute set, then all delay paths associated with that net
are ignored. If an instance has the attribute set, then all input
delay paths driving and all delay paths being driven from that
instance are ignored. Assigning the attribute to a formal port
has exactly the same effects as assigning to the 1/0 instance
itself. Once all the objects to be ignored have been identified,
their paths are propagated forwards and backwards through
combinatorial gates until clocked objects (or top level circuit
1/0) are reached. The result is that additional segments other
than those explicitly specified may be ignored for timing
purposes as well.

You are required to use a dummy value with this attribute,
but the value stated is otherwise ignored.

Assigning this attribute to a symbol, net or formal port frees
the timing driven autolayout algorithms to more optimally
cluster, place and route the speed critical nets.

CLUSTER_ SEED
CLUSTER_ SEED is used to assign a cluster seed to a net.

This will cause the autolayout clustering algorithm to treat all
instances that connect to that net specially. The action taken
depends on the value of the attribute, as follows:

0 Ignore this net during clustering. Setting this
attribute on a net is likely to cause the net to be
implemented in global interconnect.

Default operation

>1 Weight this net by the given factor in the
clustering.

The maximum value for the CLUSTER_SEED attribute is
1000. Example: CLUSTER_SEED = 2 .

PLACE_PRIORITV
The PLACE_PRIORITY attribute can be applied to a net to

increase the chance that the autolayout algorithm will route the
net more efficiently and with less delay in a physically smaller
area, at the possible expense of surrounding nets. The value
assigned to PLACE_PRIORITY should be an integer in the
range of 1 (default) to 10 inclusive. Higher values of place
priority allow the designer to prioritize nets relative to each
other. Example: PLACE_PRIORITY = 2.

PUP
PUP attaches to WPUP primitive cells only, to select either

or both of the pull-up resistors available in a WPUP cell. Valid
values are 1, 2, or BOTH. Example: PUP = BOTH.

VO Parameter Attributes
The following attributes can be applied to 1/0 cells only:

PAD_PLACE
PAD_PLACE instructs the 1/0 pad to be allocated to the

package pin number specified. Only one pad may be allocated
to any pin. Automatic placement of 1/0 pads usually results in
a better layout, so this attribute should only be added when it is
necessary. Example: PAD_PLACE = 1.

AN1589

PULLUP
Setting PULLUP to 1 will enable the pull-up resistor on the

external pin of the 1/0 pad. Default is O (resistor disabled).
Example: PULLUP = 1 .

PULLDOWN
Setting PULLDOWN to 1 will enable the pulldown resistor

on the external pin of the 1/0 pad. Default is O (resistor
disabled).
Example: PULLDOWN = 1 .

DPLD_OPDRIVE
DPLD_OPDRIVE sets the output drive current of an output

or bi-directional pad to either 6mA (default) or 12mA.
Example: DPLD_OPDRIVE = 12mA.

DPLD_OPLEVEL
DPLD_OPLEVEL sets the output voltage level of an output

or bi-directional pad to either 5v (default) or 3v.
Example: DPLD_OPLEVEL = 3v.

DPLD_OPSLEW
DPLD_OPSLEW sets the output slew rate (transition

speed) of an output of bi-directional pad to high (default, slew
rate limiting off) or low (slew rate limiting on).
Example: DPLD_OPSLEW = high.

DPLD_IPLEVEL
DPLD_IPLEVEL sets the input threshold voltage of an input

or bi-directional pad to either TTL (default) or CMOS.
Example: DPLD_IPLEVEL = CMOS.

DPLD_PAD_PROPERTIES
OrCAD Capture allows the use of a combined attribute,

DPLD_PAD_PROPERTIES, that combines the following
attributes into a single comma separated list: PULLUP,
PULLDOWN, DPLD_IPLEVEL, DPLD_OPLEVEL,
DPLD_OPDRIVE, DPLD_OPSLEW. Example:
DPLD_PAD_PROPERTIES = 0,0,CMOS,5v,12mA,high.

Defaults and Invalid Combinations
The default 1/0 pad attributes have been selected so that

they can be connected to either TTL or 5v CMOS without
adjustment. The default parameters may not be ideal for every
design, and they should be matched to the application in order
to achieve the best performance and noise immunity. 3v
CMOS users should be especially careful to set OPLEVEL to
3v, otherwise damage to peripheral IC's may result.

The following combinations of user attributes are not
permitted:

DPLD_OPDRIVE = 6mA
and

DPLD_OPSLEW = low.

PULLUP = 1 and PULLDOWN = 1 •

The following combination of user attributes on a single
bi-directional pad should be avoided, as it may produce
unpredictable results:

DPLD_IPLEVEL CMOS

and
DPLD_OPLEVEL 3v.

Assigning Attributes In a Schematic
Any of the attributes listed above can be assigned to pins,

nets and macro symbols as appropriate. With OrCAD

=======ri&il
MOTOROLA MPA DATA- DL201 REV 2 ~

4-125

AN1589

Capture, the method of assigning attributes is straight forward
by adding user-defined properties.

The Edit Part dialog appears after double clicking on the
object with the mouse, or by selecting the object and choosing
Properties from the Edit menu (or "Ctrl+E"). Choosing the User
Properties button and, in the User Properties dialog box that
displays, picking the New button activates the New Property
dialog box. The attribute name and its value can then be
entered (as above, case insensitive). Choosing OK completes
the task and the attribute will be included in the EDIF netlist.
OrCAD Capture also allows the attribute to be visible if
desired.

Multiple objects can be edited simultaneously by using the
spreadsheet editor in OrCAD's Capture. In this case, the
desired objects are all selected together and Properties is
chosen from the Edit menu (or ''Ctrl+E"). The spreadsheet
editor eases the process of assigning the same user property
to all selected objects. Make sure these objects are all the
same type (i.e., nets, symbols, etc.).

After a property has been assigned, it can be modified later
with either of the above methods. Viewing and changing the
same property across multiple objects is greatly simplified and
accelerated by using the spreadsheet editor.

Assigning Attributes in an External ".pat" File
Assigning attributes to a long series of pins, or a variety of

nets directly to the schematic can be time consuming and may
be error prone. The MPA Design System gives the designer
the option to enter all the valid attributes in an external
attributes text file (extension ".pat"). Entries in the •.paf' file
take precedence over any attributes that may have also been
instantiated in the EDIT netlist via schematic entry.

The external attributes file supports three main operations:

1) Insertion of attributes to specify pin placements and
pad characteristics.

2) Insertion of special pad cells, IPCLK/IPRST, to drive
the primary clock/reset network.

3) Insertion of special buffer primitives into a named net.
This has two uses:

a) Force a named net onto/off the peripheral bus,
by inserting the primitives APBUF/PABUF
respectively.

b) Force a named net onto the primary
clock/reset network, by inserting the primitives
ACLK/ARST respectively.

The external attributes file must exist in the same directory
and with the same name as the corresponding EDIF netlist,
with the file extension ".pat". During import, the system
automatically checks for the existence of a ".paf' file and uses
it when one is found.

Syntax of the External Attributes (".pat") File
The external attributes file contains a list of commands, one

per line. Each command contains up to five fields, as follows:

<object-dass> <object-name> <operation> <name> [<value>]

where:

<object-class>

<object-name>

<operation>

<name>

is one of port, net or instance.

is the netlist name of the object (port,
net or instance) being operated on.

is one of attribute or instance.

is the name of a definition or an
attribute.

[<value>] is only used in attribute operations,
and is the value to be given to the
attribute. This field is only required
when an attribute requires a value.

The following are specific syntax forms of all valid attributes
or instance assignments:

port <name> attribnte <name> [<valne> I

Attribute <name> with (optional) value <value> is added
to the port instance (the instance driven by the formal
port). Only works with input and ports.

port <name> instance <name>

The port instance (the instance driven by the formal
port) is replaced by an instance of the given definition.
The only valid definitions are IPCLK and IPRST. This
syntax is limited to input ports with 1 input pin and 1
output pin (IPBUF for example).

net <name> attribnte <name> [<value> I

Attribute <name> with (optional) value <value> is added
to the net.

net <name> instance <name>

Creates an instance of the given definition and inserts it
into the named net. The only valid definitions are ACLK,
ARST, APBUF, and PABUF.

instance <name> attribute <name> [<value> I

Attribute <name> with (optional) value <value> is added to
the instance.

Figure 4. The ".pat" File Attributes are Added to this
Simple Schematic

Example ".pat" File Entries
The following sample ".paf' file entries reference the simple

schematic shown in Figure 4.

~~-!'11 ~~i===================M=O=T=O=R=O=LA==M=P=A==D=AT=A=-==D=L2==01==R=EV==2================================
4-126

AN1589

I I This is a comment

This is a comment as well
port sega attribute pad_place 22

II This results in the IPBUF being placed on the pad associated with package
II pin 22_

port sega attribute ignore_timing dummy_arg

II For place and route purposes, the design's timing parameters are ignored
II for the net segment associated with the formal port sega. A dummy
II argument is required for this attribute.
port sega instance ipclk

II This results in the IPBUF being replaced by an IPCLK, forcing the net onto
II a clock network.
net segb attribute cluster_seed 1

II The cluster_seed attribute and value shown get assigned to the net B for
II evaluation during place and route.
net segb attribute place_priority 1

II The place_priority attribute and value shown get assigned to the net B for
II evaluation during place and route.
net segb instance aclk

II This results in an ACLK buffer being inserted between IPBUF's output and
II BUFF's input. BUFF is now driven off the resulting clock routing resource.
instance OPBUFl attribute opdrive 12mA

II This results in the OPBUF getting 12mA drive capability.
instance BUFFl attribute ignore_timing durnrny_arg
II For place and route purposes, the design's timing parameters are ignored
II for all nets associated with the instance BUFFl. A dummy argument is
II required for this attribute.

All Valid Combinations of Attributes & Instances in
an External ".pat" File

The following show all the valid combinations of the
attributes in the .PAT file.

port <name> instance (name here can only refer to input
instances with one input pin and one
output pin)

port <name> attribute

net <name> attribute

net <name> instance

ipclk
iprst

ignore_timing dummy _arg
dpld_pad_place <value> (refer to data
book for package being used)
pullup 110
pulldown 110
dpld_opdrive 6mA112mA
dpld_oplevel 3vl5v
dpld_opslew highllow
dpld_iplevel CMOSITTL
dpld_pad_properties (see above
paragraph describing this attribute)

dpld_cluster_seed n (where 0,; n,; 1000,
1 is default, 0 means ignore net)
dpld_place_priority n (where 0,; n,; 10,
1 is default)

a elk
apbuf
arst
pabuf

instance <name> attribute

Timing Control

dpld_ignore_timing dummy _arg
dpld_pad_place <value> (refer to data
book for package being used)
pullup 110
pulldown 110
dpld_opdrive 6mAl12mA
dpld_oplevel 3vl5v
dpld_opslew highllow
dpld_iplevel CMOSITTL
dpld_pad_properties (see above
paragraph describing this attribute)

The MPA clock frequency determines or is determined by
the performance of the design_ Any signal starting at an input
or flip-flop, propagating through some combinatorial logic,
and arriving at an output of a flip-flop, must arrive within one
clock cycle.

There are two clocking strategies employed by the MPA
Design System. Design critical clocking signals should be
implemented via the primary clocking network for guaranteed
low skew. This network encourages the use of synchronous
design techniques and, combined with the flip-flip rich
architecture, eases the inclusion of internal scan paths in the
design. Note that the 1/0 flip-flop clocks and 1/0 latch enables
can only be driven by the primary clock network.

Secondary clocks are those signals not implemented via
the primary clocking structure and will be routed as a tree
structure so as to minimize any skew between the clock inputs
driven by the net

More control over individual clock net speeds can be
obtained by specifying a Clock File ("_elk")- A Clock File (also
referred to as a "Timing Group File") must have one Timing

==================~riil MOTOROLA MPA DATA - DL201 REV 2 ~
4-127

AN1589

Group Definition and may have one or more Intended Target
Delays. The liming Group Definition must have at least one
liming Group.

Each liming Group must have a unique name and may be
a clocked timing group. A liming Group Instance List consists
of individual reference statements defining the instances
assigned to each timing group. Each statement is one of either
"instanceRef", "netRef', "allFlipFlop", or "alllO". There is no
limit to how many statements can be assigned to each liming
Group.

timingGroupDefinitions
(timingGroup timingGroupDef

[(clock [phase] period)]

)

(instanceRef instanceName
I (netRef netName [clockinputSense]
I (allFlipFlops [clockinputSense])
I (allIO)

An Intended Target Delay is a guide to the approximate
delay intended by the user between two timing groups. If both
timing groups are clocked, the MPA Design System will adjust
this value to take into account skew. Otherwise, the intended
value will be the actual value.

The Clock File syntax is summarized in the following listing.
Please refer to the available on-line help facility for a more
in--<lepth description.

ll
[(intendedTargetDelay targetDelay driverGroupRef drivenGroupRef)] ...

where,
timingGroupDef
phase
period
instanceName
netName
clockinputSense
targetDelay
driverGroupRef
drivenGroupRef

- is a text string identifying a timing group.
- is an integer defining the clock phase shift in units of 1 Oops.
- is an integer defining the clock period in units of 1 OOps.
- is a text string identifying an instance or a group of instances.
- is a text string identifying a net or a group of nets.
- is either "NONINVERTING" or "INVERTING".
- is an integer defining the intended target delay in units of 1 OOps.
- is a text string identifying a source timing group.
- is a text string identifying a destination timing group.

convention explanation:

normal - indicates keywords to be entered as shown.
italics - indicates variable information specified by the user.
[] - square brackets enclose an optional symbol or symbols.
I - a vertical bar indicates a choice between alternatives.

- an ellipsis indicates a repetitive structure.

MPA Hardware Features

Most designs can be fit to the desired speed into the MPA
family without the designer needing to know much about the
details of the device's internal construction. However, to get
the most out of the MPA, some time should be taken to browse
through the on-line help files thoroughly. The help files are rich
in detail regarding the hardware specific macros and routing
resources macros inherent in the MPA Design System. The
following topics are presented as simple exampies on most of
these hardware specific features. For an exhaustive
presentation, please refer to the on-line help facility.

For all the above methods, the MPA Design System will
recognize the logic as static and eliminate superfluous logic
elements wherever possible during the place and route
process.

Logic One and Logic Zero

It may at times be necessary to modify the functionality of a
macro from the supplied libraries by tying one or more of its
inputs to logic high or low. There are two special elements
provided in MICROLIB for this purpose. ONE produces a logic
high to all input pins tied to it. The ZERO element provides a
logic low. There are no fan-out restrictions for these signals.
An alternate method is to tie the input pins requiring a logic
high to a net named VDD, and tie the input pins requiring a
logic low to a net named GND.

Wired-OR
The MPA family allows for connecting many outputs to a

single common signal line. The available macros for this
function are: WND2, WINV, WOR2, and WBUF. When using
these macros, a WPUP component is required. The maximum
number of connections to a single signal is given by:

~J# of core cells.

Table 2. Maximum Drivers on a Wired-Or Signal

MPA Family Member Max. Drivers

MPA1016 20
MPA1036 30
MPA1064 40
MPA1100 50

If the number of drivers on the Wired-OR net is below half
of the maximum allowed, then only a single WPUP element is

~~.,'! ~~·===================M=O=T=O=R=O=L=A=M=P=A=D=A=T=A=-==D=L2=0=1=R=E=V=2=================================
4-128

recommended. Adding a second WPUP to a very large net,
will help speed things up some, but at the cost of increased
power consumption. The allowable values for the WPUP
attribute are 1, 2, or BOTH. Resistors 1 & 2 are of equal value,
so it makes no difference which one you select. BOTH ties
resistors 1 & 2 in parallel and decreases the low to high
transition time, but at the expense of extra power
consumption.

2
3

U3
WPUP

DPLD_PUP=BOTH
WN W

):>-.!..1 -+1!...--C:::> WIRED_OR_SIGNAL
WND2

WND2

Figure 5. Simple Wired-OR Net

Adding additional Wired-OR outputs to the net
WIRED_OR_SIGNAL will slow it down. Adding additional
inputs to the net has little effect on speed. Low to high
transitions are typically slower than high to low transitions on a
Wired-OR signal.

Peripheral Bus
The periphery of the MPA die is bordered with an 8 bit wide

Peripheral Bus (P-Bus). The P-Bus can be broken at each
corner of the array by switches. (The setting of these switches
is handled automatically in the MPA Design System software.)
Each of the resulting 4 segments has two programmable pull
up circuits, one at each end. The P-Bus is ideal for routing
common signals to many 1/0 macros.

It is easy to build a scenario where many 1/0 pins have a
single or several control signals in common. In this instance,
that signal can be placed on the P-Bus by using an APBUF.
Conversely, pulling a signal off of the P-Bus back into the
array is accomplished by using the PABUF.

The ability to construct Wired-OR nets is not limited to
signals internal to the array. P-Bus Wired-OR nets can be
constructed using APWBUF (or APWINV) and their
associated pull-up structure PWPUP. However, using these
features requires the user to be aware of the natural
consequences of adding capacitance and pull-ups to a
resistive bus. Adding additional segments of P-Bus (by
assigning I/Os to different edges of the die) increases
capacitance that effects rise and especially fall times. Also, the
somewhat resistive nature of the P-Bus can cause Vol noise
margin problems if the active low P-Bus driver is far from the

AN1589

pull-up element and driven element. The assignment of
P-Bus pull-up resistors is automatic.

On import, all PWPUP instances defined by the designer
are removed from the netlist. The tool automatically balances
the number of pull-up resistors against the P-Bus loading
(incurred by the use of multiple die edges) by automatically
inserting additional pull-up capacity for each P-Bus segment
used. During autolayout, the MPA Design System re-attaches
a single peripheral bus pull-up resistor per occupied die edge,
for each unique P-Bus signal. For example, if several I/Os that
use a P-Bus Wired-OR signal get split between the 'top' and
'right' edges of the die during autoplacement, the tool would
assign two pull-up resistors to the net.

The Wired-OR resources are provided to help simplify
some logic designs, however, their use should be avoided on
speed critical paths.

Low Skew, Clock, and Reset Nets
For a high fan out signal or for a signal with a desired skew

limited to less than 1 ns, the signal can be moved onto a clock
network using the ACLK or ARST macro (they both do the
same thing).

MPA VO Structures
The standard 1/0 cell of the MPA array is very feature rich. '41

The complexity of this structure is apparent in the large ~
number of choices available in the 1/0 macro library MPA 1000.
(Here again, the reader is encouraged to invest some time in
the on-line help facility, in particular "Help on Libraries - Input
and Output Pads" and "Help on Device - Functional
Description - 1/0 Cell". Defining a bookmark for these two
particularly useful help sections will provide a short cut for
referencing them in the future.)

Each of the macros in the MPA 1000 library fit in a single 1/0
cell. Couple these relatively complex functions with the
availability of P-Bus routing resources (including the P-Bus
Wired-OR resources previously mentioned) and it becomes
clear that significant functionality can be achieved before ever
using the normal internal resources of the array.

In Figure 6, a three bit address decoder was implemented
using only the resources available in the complex 1/0 Cells
and the associated P-Bus. No internal logic or routing
resources were consumed. The features used which are
unique to the 1/0 Cell and P-Bus include: input delay to
synchronize external data with the buffered clock signal,
APBUF used to bus a common enable to signal to several 1/0
sites, XNOR used to compare external and internal address
values, and finally the Wired-OR P-Bus line.

Of course, all of this functionality could be moved internal to
the array, using only the simple 1/0 macros.

================================M=O==TO=R=O==LA==M=PA==D=AT=A=-==D=L=2=0=1=R=E=V=2===========================~
4--129

[]]

AN1589

U?
PWPUP

U1
A IPDDFRWX
4 WO

EXTD 2

EXT_ADDRO 6
D ADDR_DETECT a

CLKE 1
3

CLK

5
E

RN

7

U2
A IPDDFRWX

~ WO
2

EXT_ADDR1 D a
1

CLK

E
RN

U3
A IPDDFRWX
4

~ WO

EXTD 2

EXT_ADDR2 6
D a a

CLKE 1
3

CLK ADDR[0:2]

E
RN

RESETB

ENABLE

APBUF EXTIN
us

EXT_CLK
2

IPCLK

Figure 6. A Three Bit Address Decoder, Only 1/0 Cell and P-Bus Resources Used

Net List Export
The OrCAD Create Nellis! tool in the design manager's Tool

menu is used to translate a completed schematic into an EDIF
file (".edn") which is then importable to the MPA Design
System. Unlike some other netlist formats available and
supported by OrCAD, creating an EDIF 2 O O netlist will work
properly in either logical or physical view, regardless of
whether the design is flat or hierarchical.

Selecting the EDIF 2 O O tab in the Create Netlist dialog box
presents the user with various options. Part Value must be
specified as {Value} (the default) and PCB Footprint is
inconsequential. "Allow nonEDIF characters" must not be

enabled as the MPA Design System Import tool will only
accept EDIF characters. All other options should be enabled
to allow any special attributes to be included in the netlist. The
selected options are:

• Output pin names (instead of pin numbers)
• Do not create "external" library declaration
• Output net properties
• Output part properties
• Output pin properties

Successful execution of the netlist tool will generate a file
with an ".edn" extension; for example: "project.edn". This is the
file that gets imported into the MPA Design System.

~~.,'/ ~r·==================M=O=T=O=R=O=LA==M=P=A=D=A=TA=-==D=L2==01=R=E=v=2================::::=============
4-130

Functional Simulation
Prior to creating an EDIF netlist for importing to the MPA

Design System, the designer should verify circuit operation.
Generating a VHDL netlist (".vhd") is required for functional
simulation with OrCAD's Simulate. Both netlists will describe
the circuit as required and can be produced at the same time
in the design flow if desired. Please refer to the appropriate
documentation for a details.

MPA Netlist Import
Netlist import is the process used by the MPA Design

System to import a design produced from a front-end design
capture package into the Autolayout Tool. The Netlist Import
tool runs in a standard Tool Execution Window. Any errors
encountered during netlist import will be output to this window.

When a netlist is first imported into the system, it is
processed through the following phases to prepare the circuit
for autolayout:

• LPM Instantiation
• Addition of External Attributes
• Netlist Checking
• Retargeting
• Wired-or Net Splitting

A more detailed description of each phase is provided in the
MPA Design System on-line help facility. When comparing the
original schematic with the final chip layout, the designer
should be aware that the MPA Design System does some
"bubble pushing" during the retargeting/fitting of the logical
design into the physical implementation. In some cases,
redundant gates in the schematic design are eliminated in the
physical layout.

Once the netlist has been imported into the system,
Autolayout can be applied to the netlist repeatedly without
having to re-import.

MPA Autolayout
The Autolayout Tool performs fully automatic timing driven

layout for the current design. The Autolayout Tool runs in a
Tool Execution Window. Any errors encountered during layout
will be output to this window.

Control over the autolayout process is provided through the
autolayout parameters and attributes that can be added to the
netlist. Before the autolayout process begins the layout, the
system performs definition checking to make sure that the
definition is suitable for autolayout.

The autolayout process goes through several distinct
phases and generates a context file after each phase is
complete. When autolayout is complete, the following files are
generated:

• A timing report file (".trm") to allow for further
analysis of the timing aspects of the layout,

• A port report file (".prp") is also generated giving the
pinout of the resulting autolayout,

• A back-annotation file, giving delay information for
the layout suitable for input to a logic simulator, and,
of course,

• A layout file (".lyt"), containing the final layout. This
layout is used as the input to the configuration

AN1589

generator to create a configuration bit-stream for
the target device.

. The area of the chip the layout will use is determined by the
circuit size and the autolayout parameters specified for the
design.

Autolayout Options
Autolayout options are set using the Autolayout pane of the

Tool Options dialog. The choices available are outlined here:

Parameter Groups
Autolayout Parameter groups are used to reference a

particular set of parameter settings. Any number of Autolayout
Parameter Groups can be set up for easy access to commonly
used parameter settings. These parameter groups can be
selected from the Autolayout options dialog.

Utilization
This parameter controls the number of functional cells that

the partitioning operation will attempt to place in a 100 core
cell area (i.e., a zone). Its value is the percentage of functional
core cells in the imported design against the recommended
maximum number of usable core cells (= 50). Autolayout will
automatically exceed this limit if it has to.

Minimum: 1 ~
Maximum: 150 4
Default: 80

Effort
This parameter controls the amount of work applied to the

partitioning operation. A larger value will generally produce a
better result in the partitioning for high utilization circuits. The
time taken for partitioning is directly related to Effort. Effort
must be balanced by the Start Temp parameter for optimum
results.

Minimum:

Maximum: 100

Default: 30

Start Temp
Partitioning is performed using a simulated annealing

technique. The Start Temp parameter controls the start
temperature for that process. A higher temperature allows the
average cost of a move during partitioning to be greater.
Increasing the start temperature may result in a better
partition, especially in high Utilization designs. Note that a high
value of Start Temp may result in a bad partition if not used in
conjunction with a larger value for the Effort parameter.

Minimum: 1

Maximum: 100

Default: 10

Simulated annealing is a software technique used for
combinatorial optimization. It simulates the relaxation of
stresses during the repeated heating and cooling of materials,
where the temperature that the material is heated to each time
is gradually reduced. Simulated annealing is a stochastic
technique, and will produce different results for different sets
of starting conditions (such as layout parameters, seed
values, etc.). Simulated annealing is used by the MPA Design

=======~ MOTOROLA MPA DATA- DL201 REV 2 ~
4-131

AN1589

System during the Partitioning and Zone Routing phases of
autolayout.

Attempts
This parameter controls the number of runs through the

partitioning phase. More runs should deliver a better partition.

Minimum: 1

Maximum: 20

Default:

Back off
This parameter controls the percentage relaxation of the

target delay if the initial target is not obtainable. This i.s
expressed as a percentage of the previous target delay.

Minimum: 0%

Maximum: 100%

Default: 30%

Increasing this parameter makes the next attempt at
autolayout use a new Delay Target further away from the
maximum possible delay thus making it easier to complete.
This is expressed as a percentagj:l increase in the optimum
target delay.

Delay Cost
This parameter is the weighting given to timing during

partitioning. If a particular partition includes a net that is failing
to meet its timing target, then the cost of that partition will be
artificially raised by an amount proportional to the delay cost.
Increasing the delay cost is likely to trade off against
achievable Utilization.

Minimum: O

Maximum: 100

Default: 5

Delay Target
This parameter is the desired maximum delay target for the

autolayout process to achieve, in steps of 0.1 ns. For
combinatorial circuits, the maximum delay is calculated from
the longest path from input to output. For synchronous circuits,
the maximum delay is calculated from the longest path
between flip-flops, or from 1/0 to flip-flop, whichever is the
greater. This parameter is only relevant when you are using
the standard timing model. If a clock file is specified, then the
Delay Target parameter will be ignored.

Minimum: O

Maximum: 9999

Default: 50 (5ns)

Fanout
This parameter is the maximum fan-out of a net which is

included in the clustering. All the nets which have a fan-out
greater than this value are ignored during clustering. Any nets
ignored during clustering are more likely to have to be globally
routed.

Minimum:

Maximum: 100

Default: 2

Min Zone Delay
This parameter forces the delay of segments within a zone

to be within a certain value. The delay is specified in unit of
0.1 ns. The smaller the delay is, the harder the zone routing
algorithm will work to reduce delays within the zones.

Minimum: O

Maximum: 9999

Default: 5 (0.5ns)

Seed
Setting the seed for the autolayout process lets you control

the repeatability of the autolayout. If you run the autolayout
with a given seed value, you can reproduce the same
autolayout from the same circuit simply by setting the same
seed value.

Minimum: O

Maximum: 9999

Default:

Several of the autolayout algorith.ms use stochastic
techniques similar to simulated annealing that require a
pseudo-random number generator. The Seed is used to set
the random number generator to a known point in the
sequence.

Layout Viewer
The MPA Design System provides a Layout Viewer tool

which gives a graphical view of the completed layout. This
view shows the instances of primitives in the design and the
routing that connects them together. Aspects of the device
architecture are also shown.

Multiple graphical and browser views may be created.
Moving about in the graphical view is made possible by
zooming and panning. Instances, nets and ports can be
selected. The mouse cursor changes according to the design
object under it, and the status bar gives more Information
about the design object beneath the cursor.

Note that no changes to the layout are possible with the
Layout Viewer. Please refer to the on-line help facility for more
details.

Device Configuration
Device configuration is the process of translating a

completed layout into a stream of 1 's and O's used to program
the actual device. Pressing the device configuration button
launches this tool. Please refer to the on-line help facility for
more details.

Back Annotation and Simulation
The MPA Design System has a facility that provides post

place and route back annotation data in a VHDL format
(".vhd"). This file has some regular VHDL constructs which
unfortunately are not currently supported by OrCAD's
Simulate. Back annotation with OrCAD's Simulate is planned
for support in the near future.

~~~ ~~==================M=o=r=o=R=O=LA==M=P=A=D=A=TA==-=D=L2==01==RE=v=2=============================== 
4-132 



Using VIEWlogic's 
Workview Office 7 .o 

AN1592 
Application Note 

with the MPA Design System 

10/96 

©Motorola, lnc.1996 4-133 

Prepared by 
Marten L. Smith 
Motorola Programmable Logic 

REVO 
®MOTOROLA 



AN1592 

Using VIEWlogic's Workview Office 7.0 with the MPA Design System 

Introduction 
The Motorola family of MPA devices and supporting 

software provide system designers with a collection of flexible 
and powerful tools. This application note focuses on the use of 
VIEWlogic's Workview Office 7.0 schematic capture and 
simulation programs as front end design tools for the MPA 
Design System's FPGA place and route software. A basic 
design flow is introduced followed by more in depth discussion 
of parameters for place and route and concludes with a 
discussion on back annotation and simulation procedures. 

Basic Design Flow 
In this simplest example of using Workview Office, a 

straight path is taken from design entry through export to the 
MPA Design System. More detailed discussions on: place and 
route parameters, 1/0 parameters, hardware dependent 
macros, back annotation and simulation are deferred. The 
reader is assumed to be familiar with Workview Office and 
have casual knowledge of the MPA Design System. 

Libraries 

The EDIF net list reader of the MPA Design System is 
currently constrained to understand only those instances 
passed to it from the MACROLIB, MICROLIB and IOLIB 
libraries provided. Only a very few other symbols from the 
BUILTIN library may be used directly in the schematic. These 
are: IN, OUT and Bl; their usage is explained more fully later. 
Your VIEWDRAW.INI file must have the following lines 
appended to the end of the file in order to steer Workview 
Office in the correct direction when adding instances to your 
schematic. Typically the VIEWDRAW.INI file will be located at 
C:\wvoffice\standard\viewdraw.ini. 

DIR [rm] C:\mpa\wvlibs\mpalib\macrolib (macrolib) 
DIR [rm] C:\mpa\wvlibs\mpalib\microlib (microlib) 
DIR [rm] C:\mpa\wvlibs\mpalib\iolib (iolib) 
DIR [rm] C:\mpa\wvlibs\mpalib\builtirt (builtin) 

When adding instances to your FPGA schematic, be sure 
to use only instances from these first 3 libraries and only the 
special hierarchical connectors IN, OUT and Bl from the 
BUILTIN library. 

Starting a New Profect 

Before starting the schematic capture process you must 
first set up a project with the Viewlogic Project Manager. First 
pull down the Viewlogic Project Manager "File" menu and 
select "New'' for a new project. Then by selecting the "Browse" 
button you can point Workview Office to the primary directory 
in which you will be placing your project in (see Figure 1). 

Vlewdraw Ubrarles 

Figure 1. Viewloglc Project Manager Window 
with Project Path 

The next step is to select the MPA libraries for the project. 
This can be done in two ways. One method is to pull down the 
"Projecf' menu, select "Libraries", and manually select the 
paths for the MPA libraries using the "Browse" and then "Add" 
buttons. The other method is to pull down the "Project" menu 
and select "Import Existing Searchorder." This will give you a 
window that asks for an .INI file name. Put in the :!YI! path name 
of the VIEWDRAW.INI file, that you modified earlier, in the "File 
Name:" space. This will automatically bring in the MPA 
libraries' path names for your project. The resulting Viewlogic 
Project Manager window should have the MPA libraries as 
shown in Figure 2. 

Viewdraw Libraries 

~
• c:\mpa\wvllbs\mpalib\macrolib (macrollb) 
+ c:\mpa\wVllbE:\mpallb\mlcrollb (mlcrollbJ 
+ c:\mpo\wvlibs\mp•lib\lolib (iollb) 

• c;\mpa\wvlibs\mpallb\bulhln (bulltln) 

Figure 2. MPA Libraries Selected 

After selecting the libraries, the final project step is to save 
the new project. At this point you will be asked to type in the 
name of the Viewlogic project file in the "File Name" space. 
The name of the file will be <your filename> with the .VPJ file 
extension (see Figure 3). After pressing the "OK'' button 
Viewlogic Project Manager saves the .VPJ file to your project 
directory. Viewlogic Project Manager also saves a copy of the 
VIEWDRAW.INI file in your project directory. 

~~.,'(- ~c::::=================M=o=r=o=R=O=LA==M=PA==D=AT=A=-==D=L2=0=1=R=E=v=2====::::::========================= 
4-134 



Figure 3. Saving the .VPJ File 

Capture 

There are just a few unique steps to take during schematic 
capture to ensure a valid MPA Design System EDIF netlist. 
The netlist importer of the MPA Design System needs to 
recognize your design's 1/0 ports. To accomplish this, you may 
either create a top level symbol for your completed schematic 
or you may opt to include VI EWlogic's hierarchical connectors. 

If you are going to instantiate your completed FPGA 
schematic into a larger board or system level schematic then 
generating a top level symbol is the more appropriate method 
to use. In order to do this, each of the IOLIB instances used 
must have a named net stub attached to their 'external world' 
pins (see Figure 4). Once this task is completed all that is left is 
to create a VIEWlogic symbol for the entire FPGA schematic. 
Each of the pin names on the symbol must match the net-stub 
names exactly. A pin is required for every 1/0 net-stub (see 
Figure 5). 

Figure 4. Top Level Schematic, Named Net Stubs 

!NAN 0 _A 

OUT AN C 

.jrNANO_B 

Figure 5. Top Level Schematic's Symbol, 
Pin Names = Net Stub Names 

If on the other hand the schematic you are creating is stand 
alone for the FPGA, then a short cut method is available to 
you. As before, place the desired IOLIB instances on your 
schematic. Then from the BUILTIN library select the IN, OUT 
or Bl hierarchical connector as appropriate. Connect this 

AN1592 

hierarchical connector to the IOLIB instance's 'external world' 
pin and name the net (see Figure 6). This name may now be 
referenced for stimulus/response in the VIEWlogic simulator. 
Additionally, this net name is passed in the exported EDIF 
netlist to the MPA Design System place and route tool. 

- - -
(h\',,\MPI 1 

$1131 

Figure 6. Top Level Schematic Using IN and OUT Sym
bols from BUILTIN. The OUT Symbol ls Highlighted 

(boxed), Instance $1131 

The final step before ending your ViewDraw session is to 
pull down the "File" menu and select "Save + Check." This not 
only saves the current version of your schematic, but it also 
checks for minor connectivity violations as well as creates a 
file in the WIR directory which will be used later to create a 
simulation netlist. 

Net List Export 

The EDIF netlist writer is the VIEWlogic tool that translates 
your completed schematic into an EDIF file importable to the 
MPA Design System. The Workview Office netlisting tool is 
called EDIFGRAF.EXE and it can be put into your Workview 
Office toolbar by using Workview Office's "customize toolbar" 
option. 

When you execute Workview Office's EDIF program you 
will have the choices shown in Figure 7. Select "EDIF Netlist 
Writer" and press the "OK" button. 

Figure 7. EDIF Interfaces Window 

This will give you the "EDIF Netlist Writer" window (see 
Figure 8). Use the "Browse• button to select the schematic file 
that you want to generate the EDIF netlist for. Type "micro" in 
the Level box and select "Flatten without evaluating 
attributes." Press the "OK" button and the EDIF Netlist Writer 
will generate a .EDN EDIF netlist file ready for import to the 
MPA Design System. 

========::::::jriiiil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-135 



AN1592 

Figure 8. EDIF Netlist Writer Window 

Attributes 

The MPA Design System's import process can accept a set 
of attributes to help the designer tune the layout and routing 
processes. The system also accepts 110 parameters to specify 
CMOSmL compatibility, 1/0 drive, package pin assignment 
and slew rate control. Declaring attributes in the schematic will 
result in their being passed into the EDIF netlist and then 
imported into the MPA Design System. Optionally the designer 
may prefer to include attributes in an external .PAT file of the 
same root file name as the design's EDIF netlist. The designer 
may choose to use the combination of the two methods, but it 
should be noted that attributes passed into the MPA Design 
System in .PAT files will always take precedence if declared in 
both ·places. 

Table 1. Valid Attributes 

Sch. Attached Place and Attached 1/0 Attribute 
Component Route Attribute 

Net DPLD_IGNORE_TIMING 

DPLD_CLUSTER_SEED 

DPLD_PLACE_PRIORITY 

1/0 Symbol DPLD_IGNORE_TIMING DPLD_PAD_PROPERTIES 

(Instance) DPLD_PAD_PLACE PULLUP or PULLDOWN 

or DPLD_OPDRIVE 

Formal Port DPLD_OPLEVEL 

DPLD_OPSLEW 

DPLD_IPLEVEL 

Place and Route Layout Attributes 

The MPA Design System enables the tuning of place and 
route algorithms in three ways. The first is with the adjustment 
of the Auto Layout tool options such as start temperature, 
target delays, utilization etc. Additional details on the available 
options and their use are available in the on-line help facility of 
the MPA Design System. The second method involves the 
construction of a separate clock file. Here again, additional 
information is provided in the on-line help system and is not 
presented in this application note. The third method of 
influencing place and route results is the inclusion of the 
following attributes in the schematic or in an external .PAT file. 

DPLD_IGNORE_ TIMING 

The DPLD_IGNORE_ TIMING attribute is used to ignore 
certain paths for timing purposes. It may be set on an instance, 
a formal port, or a net. If a net has the attribute set, then the 
timing on all segments within that net are ignored. If an 
instance has the attribute set, then the timing on all inputs and 
output net segments from that instance are ignored. Assigning 
the attribute to a formal port has the same effect as assigning it 
to the associated 1/0 instance. 

The effect of ignoring a net, a formal port, or an instance for 
timing purposes is to cause the autolayout to ignore all paths 
between clocked objects which the net, formal port, or 
instance lies on. Once all the objects to be ignored have been 
identified, their paths are propagated forwards and backwards 
through combinatorial gates until clocked objects are reached. 
The result is that additional segments other than those 
explicitly specified will be ignored for timing purposes as well. 

You are required to use a dummy value with this attribute, 
but the value stated is otherwise ignored. Also, assigning this 
attribute to an instance or a net frees the timing driven 
autolayout algorithms to more optimally cluster, place, and 
route the speed critical nets. 

DPLD_CLUSTER_SEED 

The DPLD_CLUSTER_SEED attribute is used to assign a 
cluster seed to a net. This will cause the clustering to treat all 
instances that connect to that net differently and it increases 
the chance that the net and surrounding nets will be 
implemented in local or medium interconnect. 

The action taken depends on the value of the attribute as 
follows: 

0 ignore this net during clustering. Setting this 
attribute on a net is likely to cause the net to be 
implemented in global interconnect. 

default operation 

<1000 weight this net by the given factor in the 
clustering 

DPLD _PLACE_PRIORITY 

The DPLD_PLACE_PRIORITY attribute can be applied to 
a net to force the software to lay out that net in a physically 
smaller area, in other words, to place the instances connected 
to that net closer together. The value of 
DPLD_PLACE_PRIORITY should be an integer in the range 1 
to 10 (1 is the default). Higher values of place priority let you 
prioritize nets relative to each other. 

~~'1'1 ~~l==================M=O=T=O~R=O=L=A=M=P=A=D=A~T=A=-=D~L=2=0=1=R=Ev===2==============================: 
4-136 



DPLD _PAD _PLACE 

DPLD_PAD_PLACE- instructs the 1/0 pad to be allocated 
to the package pin number specified. Only one pad may be 
allocated to any pin. Automatic placement of 1/0 pads usually 
results in a better layout, so this attribute should only be added 
when it is necessary. Example: DPLD_PAD_PLACE=C2 

110 Parameter Attributes 

DPLD_PUP 

DPLD_PUP - attaches to WPUP primitive cells only, to 
select either one or both of the pull-up resistors available in a 
WPUP cell. Valid values are 1, 2 or BOTH. 

PULLUP or PULLDOWN 

PULLUP - set this to 1 if you want to enable the pull-up 
resistor on the external pin of an 1/0 pad. Default is O (resistor 
disabled}. Example: PULLUP = o 

PULLDOWN - set this to 1 if you want to enable the 
pull-down resistor on the external pin of an 1/0 pad. Default is 
0 (resistor disabled). Example: PULLDOWN = o 

DPLD _ OPDRIVE 

DPLD_OPDRIVE - sets the output drive current of an 
output or bi-directional pad to either 6ma (default} or 12ma. 

DPLD_OPLEVEL 

DPLD_OPLEVEL - sets the output voltage level of an 
output or bi-directional pad to either 3V or 5V (default). 

DPLD_OPSLEW 

DPLD_OPSLEW - sets the output slew rate (transition 
speed} of an output or bi-directional pad to high (default) or 
low. 

DPLD_IPLEVEL 

DPLD_IPLEVEL - sets the input threshold voltage of an 
input or bi-directional pad to either CMOS or TTL (default). 

DPLD_PAD_PROPERTIES 

Workview Office permits the use of the combined attribute, 
DPLD_PAD_PROPERTIES which combines the following 

AN1592 

attributes into a single comma separated list: PULLUP, 
PULLDOWN, DPLD_IPLEVEL, DPLD_OPLEVEL, 
DPLD_OPDRIVE, DPLD_OPSLEW. This is especially useful 
when defining a block of 1/0 pins in an external attribute file 
such as a .PAT file. Example: DPLD_PAD_PROPERTIES = 

o,o,cMos,sv,12MA,HIGH (Also, see Figure 11 for an 
example}. 

.Defaults and Invalid Combinations 

The default 1/0 pad attributes have been selected so that 
they can connect to either TTL or 5V CMOS without 
adjustment. The default parameters may not be ideal for every 
design, and they should be matched to the application in order 
to achieve the best performance and noise immunity. 3V 
CMOS users should be especially careful to set 
DPLD_OPLEVEL to 3V, otherwise damage to peripheral IC's 
may result. 

The following combinations of user attributes are not 
permitted: 

DPLD_OPDRIVE = 6ma AND DPLD_OPSLEW = low. 
PULLUP = 1 AND PULLDOWN = 1 

The following combination of user attributes on a single 
bi-directional pad should be avoided, as it may produce 
unpredictable results: 

DPLD_IPLEVEL = CMOS AND DPLD_OPLEVEL = 3V 

Assigning Attributes in a Schematic 

The attributes listed above can be assigned to nets and 
macro symbols (also referred to as, "instances" or 
components) as appropriate. In Workview Office, the method 
of assigning attributes is straight forward. 

To assign an attribute to a net, select that desired net (its 
color will change identifying it as being the currently selected 
net) and then double-click on that net (or you can just 
double-click to begin with ). The Net window will appear. 
Select the "Attributes" tab and then type the attribute in the 
"Name" box. Finally, press the "Set" button and the "OK" 
button (see Figure 9). The attributes will then be included in 
the EDIF netlist once the EDIF Nellis! Writer is run. 

Figure 9. The Net Properties Box, Used to Assign Net Attributes 

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=0=1=R=EV==2===========================~ 
4-137 



AN1592 

To assign an attribute to an instance, select that desired 
instance (a bounding box will appear identifying it as being the 
currently selected instance) and then double-click on that 
instance (or you can just double-click to begin with). The 
Component Properties window will appear. Select the 

"Attributes" tab and then type the attribute in the "Name" box. 
Finally, press the "Set" button and the "OK" button (see Figure 
10). The attributes will then. be included in the EDIF netlist 
once the EDIF Netlist Writer is run. 

Figure 10. The Component Properties Box, Used Here to Assign Instance Attributes 

Figure 11. The Net "NETA" Attributed with DPLD_CLUSTER_SEED=O. 
The Selected Instance "OPBUF $114" and its Attached Attributes are Boxed. 

Assigning Attributes & Instances in an External .PAT File 
Assigning attributes to a long series of instances, ports, or 

nets in the above manner can be time consuming and may be 
error prone. The MPA Design System gives the designer the 
option to enter all the valid attributes in an external .PAT file. 
Entries in the .PAT file take precedence over any attributes 
that may have also been instantiated in the EDIF netlist via 
schematic entry. The .PAT file must have the same root file 
name as the EDIF netlist .EDN file, and must reside in the 
same directory. 
The external attributes file supports three main operations: 

4) Insertion of attributes to specify pin placements and 
pad characteristics. 

5) Insertion of special pad cells, IPCLK/IPRST, to drive 
the primary clock/reset network. 

6) Insertion of special buffer primitives into a named net. 

This has two uses: 

c) Force a named net onto/off the peripheral bus, 
by inserting the primitives APBUF/PABUF 
respectively. 

d) Force a named net onto the primary 
clock/reset network, by inserting the primitives 
ACLK/ARST respectively. 

The external attributes file must exist in the same directory and 
with the same name as the EDIF netlist, with the file extension 
.PAT During import, the MPA Design System automatically 
checks for the existence of a .PAT file and uses it when one is 
found. 

~~~ ~c===================M=O=T=O=R=O=LA==M=P=A=D=A=T=A=-==D=L=20=1=R=E=v=2================================= 
4-138

AN1592

Syntax of the External Attributes (.PAT) File

The external attributes file contains a list of commands, one
per line. Each command contains up to five fields, as follows:

Attribute <name> with (optional) value <value> is added
to the net.

net <name> instance <name>

<object-class> <object-name> <operation> <name> [<value>]

where:

Creates an instance of the given definition and inserts it
into the named net. The only valid definitions are ACLK,
ARST, APBUF and PABUF.

<object-class> is one of port, net, or instance.
instance <name> attribute <name> <value>

<object-name> is the netlist name of the object (port,
net or instance) being operated on.

Attribute <name> with (optional) value <value> is added
to the instance

<operation> is one of attribute or instance.
Example .PAT File Entries

<name> is the name of a definition or an
attribute.

<value> is only used in attribute operations,
and is the value to be given to the
attribute. This field is only required
when an attribute requires a value.

The following sample .PAT file entries reference the simple
schematic shown in Figure 12.

The following are specific syntax forms of all valid attribute or
instance assignments.

port <name> attribute <name> <value>

Attribute <name> with (optional) value <value> is added
to the port instance (the instance driven by the formal
port). Only works with input and output ports.

port <name> instance <name>

SEGC

IPBUF

9 E GB

OPBUF 9 E Gi D

Cl UT

The port instance (the instance driven by the formal
port) is replaced by an instance of the given definition.
The only valid definitions are IPCLK, IPRST. This syntax
is limited to input ports with 1 input pin and 1 output pin
(IPBUF for example).

IP BU F

OPBUF

$:1 :i :1 BUFF i - $:1 :i 3,

net <name> attribute <name> <value>

I I This is a comment
This is a conunent as well

port sega attribute dpld_pad_place 22

$:1 :i 2

Figure 12. The .PAT Fiie Attributes Are Added to This
Simple Schematic. Nets Are Named SEGA, SEGB,

SEGC and SEGO.

//This results in the IPBUF being placed on the pad associated with package
//pin 22.

port sega attribute dpld_ignore_timing dummy_arg
//For place and route purposes, the design's timing parameters are ignored
//for the instance associated with the formal port sega. A durruny
//argument is required for this attribute.

port sega instance ipclk
//This results in the IPBUF being replaced by an IPCLK, forcing the net onto
//a clock network.

net segb attribute dpld_ignore_timing durnmy_arg
//For place and route purposes, the design's timing parameters are ignored
//for the entire net "segb". A dummy argument is required for this
//attribute.

net segb attribute dpld_cluster~seed 1
//The dpld_cluster_seed attribute and value shown get assigned to the net B
//for evaluation during place and route.

net segb attribute dpld_place_priority 1
//The dpld__place__priority attribute and value shown get assigned to the net
//B for evaluation during place and route.

================================M=O=T=O=R=O=LA==M=P=A=D=A=T=A=-==D=L=2=01=R=E=V==2===========================1~
4-139

AN1592

net segb instance ac-lk
//This results in an ACLK buffer being inserted between IPBUF's output and
//BUFF's input. BUFF is now driven off the resulting clock routing
//resource.

instance $1!4 attribute dpld_opdrive 12ma
//This results in the OPBUF getting 12ma drive capability.

instance $1I12 attribute dpld_ignore_timing dumrny_arg
//For place and route purposes, the design's timing parameters are ignored
//for the all nets associated with the instance $1Il2. A dununy
//argument is required for this attribute.

All Valid Combinations of Attributes & Instances in an
External .PAT File

The following show all the valid combinations of the
attributes in the .PAT file.

port <name> instance (name here can only refer to input
instances with one input pin and one
output pin)

port <name> attribute

net <name> attribute

net <name> instance

ipclk
iprst

dpld_ignore_timing dummy _arg
dpld_pad_place <value, see data book for
package being used>
pullup 110

pulldown 110
dpld_opdrive 6mall2ma
dpld_oplevel 3vl5v
dpld_opslew highllow
dpld_iplevel CMOSITTL

dpld_pad_properties (see above
paragraph describing this attribute)

dpld_cluster_seed n (where 0 ,,; n,,; 1000,
1 is default, O means ignore net)
dpld_place_priority Ii (where 1 ,; n,; 10, 1
is default)
dpld_ignore_timing dummy_arg

aclk
apbul
arst
pabul

instance <name> attribute

dpld_ignore_timiog dummy _arg
dpld_pad_place <Value, see data book for
package being used>
pullup 110
pulldown 110
dpld_opdrive 6mall2ma
dpld_oplevel 3vl5v
dpld_opslew highllow
dpld_iplevel CMOSITTL

dpld_pad_properties (see above
paragraph describing this attribute)

Library Elements Specific to MPA Hardware Features
Most designs can be fit to the desired speed into the MPA

family without the designer needing to know much about the
details of the device's internal construction. However, to get
the most out of the MPA, you should take some time to browse
through the on-line help files thoroughly. The help files are rich
in detail regarding the hardware specific macros and routing
resources macros inherent in the MPA design system. The
following topics are presented as simple examples on most of
these hardware specific features. For an exhaustive
presentation, please refer to the on-line help facility.

Logic One and Logic Zero
It may at times be necessary to modify the functionality of a

macro from the supplied libraries by tying one or more of its
inputs to logic high or low. There are two special elements
provided in MICROLIB for this purpose. The ONE element
produces a logic high to all input pins tied to it The ZERO
element provides a logic low. There are no fan-out restrictions
for either of these elements. An alternate method is to tie the
input pins requiring a logic high to a net named VDD, and tie
the output pins requiring a logic low to a net named GND.

For all the above methods, the MPA Design System will
recognize the logic as static and eliminate superfluous logic
elements wherever possible during the place and route
process.

Wired-OR
The MPA family allows for connecting many outputs to a

single common signal line. The available macros for this
function are: WND2, WINV, WOR2, WBUF. When using these
macros, a WPUP instance is required. The maximum number
of connections to a single signal is given by

~j# of core cells.

Table 2. Maximum Drivers on a Wired-OR Signal

MPA Family Member Max. Drivers on .a Wired-OR Signal

MPA1016 20
MPA1036 30
MPA1064 40
MPA1100 50

If the number of drivers on the Wired-OR net is below half
of the maximum allowed, then only a pull-up resistor is
recommended. Adding a second WPUP to a very large net,

~~t'f ~c==================M=O=T=O=R=O=LA==M=P=A=D=AT=A=-==D=L=20=1=R=E=v=2===============================
4-140

will help speed things up some, but at the cost of increased
power consumption. The allowable values for the DPLD_PUP
attribute are 1, 2 or BOTH. Resistors 1 & 2 are of equal value,
so it makes no difference which one you select. BOTH ties
resistors 1 & 2 in parallel and decreases the low to high
transition time, but at the expense of extra power
consumption.

!HU P

Figure 13. The Diamond Symbol Reminds the User
That These Outputs Cannot Source a Logic HIGH, but

Are Only Able to Pull the Output to a Logic LOW.

Adding additional wired-or outputs to the net
WIRED_OR_SIGNAL will slow it down. Adding additional
inputs to the net has little effect on speed. Low to high
transitions are typically slower than high to low transitions on a
wired-or signal.

Peripheral Bus

The periphery of the MPA is bordered with an 8 bit wide
Peripheral Bus (P-Bus). The P-Bus can be broken at each
corner of the array by switches. (Setting of the switches is
handled automatically in the MPA Design System software.)
Each of the resulting 32 segments has two programmable pull
up circuits, one at each end. The P-Bus is ideal for routing
common signals to many 1/0 macros.

It is easy to build a scenario where many 1/0 pins have a
single or several control signals in common. In this instance
you would want to place that signal on the P-Bus using the
APBUF. Conversely, pulling a signal off the P-Bus back into
the array is accomplished using the PABUF.

The ability to construct Wired-OR nets is not limited to
signals internal to the array. P-Bus Wired-OR nets can be

AN1592

constructed using APWBUF (or APWINV) and their
associated pull-up structure PWPUP. However, using these
features require the user to be aware of the natural
consequences of adding capacitance and pull-ups to a
resistive bus. Adding additional segments of P-Bus (by
assigning I/Os to different edges of the die) increases
capacitance that effects rise and especially fall times. Also, the
somewhat resistive nature of the P-Bus can cause Vol noise
margin problems if the active low P-Bus driver is far from the
pull-up element and driven element.

The assignment of P-Bus pull-up resistors is automatic.
On import, all PWPUP instances defined by the designer are
removed from the netlist. The tool automatically balances the
number of pull-up resistors against the P-Bus loading
(incurred by the use of multiple die edges) by automatically
inserting additional pull-up capacity for each P-Bus segment
used. During autolayout the MPA Design System re-attaches
a single peripheral bus pull-up, per occupied die edge, for
each unique P-Bus signal. For example, if several I/Os that
use a P-Bus Wired-OR signal get split between the 'top' and
'right' edges of the die during autoplacement, the tool would
assign two pull-up resistors to the net.

Low Skew, Clock and Reset Nets

For a high fan out signal or for a signal where you would like
to keep the skew limited to less than 1 nS, you should consider
moving the signal onto a clock network using the ACLK or
ARST macro (they both do the same thing).

MPA UO Structures

The standard 1/0 cell of the MPA array is very feature rich.
The complexity of this structure is apparent in the large
number of choices available in the 1/0 macro library IOLIB
(Here again, the reader is encouraged to invest some time in
the on-line help facility, in particular "Help on Libraries - Input
and Output Pads" and "Help on Device - Functional
Description - 1/0 Cell". Defining a bookmark for these two
particularly useful help sections will provide a short cut for
referencing them in the future.).

Each of the macros in the IOLIB fit in a single 1/0 cell.
Couple these relatively complex functions with the availability
of P-Bus routing resources (including the P-Bus Wired-OR
resources previously mentioned) and it becomes clear that
significant functionality can be achieved before ever using the
normal internal resources of the array.

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=01==R=EV==2===========================~
4-141

AN1592

EXT-llDDRO

ADDR-DET ECT

EXl-ADDR1

EXl-ADDAZ

ADDR[Z • 0]

RESETB

JPCLK

Figure 14. A Three Bit Address Decoder, Only 1/0 Cell and P-Bus Resources Used

In Figure 14, a three bit address decoder was implemented
using only the resources available in the complex 1/0 Cells
and the associated P-Bus. No internal logic or routing
resources were consumed. The features that were used which
are unique to the 1/0 Cell and P-Bus include: input delay to
synchronize ex1ernal data with the buffered clock signal,
APBUF used to bus a common enable signal to several 1/0
sites, XNOR used to compare ex1ernal and internal address
values, and finally the Wired-OR P-Bus line. Of course, all of
this functionality could be moved internal to the array, using
only the simple 1/0 macros.

Simple VO Structures

IPBUF IPCLK

EXT~EXT~
OPBUF

~TOUT

Figure 15. The Three Most Commonly Used 1/0 Macros

Your first designs for the MPA will probably only use the
above 1/0 macros, with all the latching, decoding etc. being
handled internal to the array. Soon though, you will probably
encounter a real world design that constrains you to a specific
clock-to-Q specification or some other requirement that will
have you going back to re-examine the instances available in
the IOLIB. There are many variations of latched, registered,
and Wired-OR inputs, outputs and bi-<lirectional macros.

Again, please invest some time with the on-line help
descriptions of the device and the libraries.

Back Annotation and Simulation

It is assumed that the reader is familiar with the tools and
procedures involved in using the Workview Office ViewSim
tools. As mentioned earlier, when the schematic capture
(ViewDraw) session is complete you should create a wirelist
file in the WIR directory. You do this, in ViewDraw, by pulling
down the "File" menu and selecting "Save + Check." Having
created the wirelist file, the nex1 step is to create a simulation
netllst. This is done with VIEWlogic's VSM netlist tool. Running
VSM from one of VIEWlogic's window-based programs only
gives you a functional simulation without any timing data.

The MPA Design System has a facility that provides post
place and route timing data in a format compatible with the
VIEWlogic VSM netlist tool. The VIEWlogic format back
annotation data table file (.DTB) can be generated after
completion of a place and route. The .OTB file can be read in
by the VIEWlogic VSM netlist tool to provide an accurate
simulation netlist of your completed design.

After the MPA Design System generates the .DTB file, it will
need to be moved up one level to your Workview Office design
directory. In order to use the timing data in the .OTB file the
VSM netlist program must be run from a DOS command
prompt. It is run by entering the command line: vsm
<schematic name> -<l <.DTB filename>.

~~.,'I ~~·=================M=O=T=o=R=O=LA==M=PA==DA=~=A=-==D=L2=o=r=R=Ev=2==============================
4-142

rll Command Prompt
C:,srriith,wusirri>usrri hackano -d la~out1.dth

~ 1 ~~~~~i~~~Em~~~.;5 u~;; 3 ul!w~~!i!0l~~t~~=- <}~~'.95 >
Using initialization file 'C:,WUOPPICE,STANDARD,usm.ini'

Using 24 attribute f ilter(s)
Rea.ding design hierarchy • . .

Long forrriat UIEWSIH file for project BACHANO

aiil
II

Using back-annotation file 'C:,srriith,wusim,layouti.dtb'
Found G component .. 5 pin .. and 0 net records in layouti.d

Wi:relisting project BACKANO into file backano.usm

Completed file hackano .usn
24 module<s> .. 2? net<s> .. 16 net equiualence(s)
5 delay hlock<s> added to netlist.

0 error(s) and 0 warning(s) in file hackaoo.usrri

C: 'srriith,wus i111>

~ -------------- - - - --- - -

Figure 16. VSM Netlist Tool. The Schematic Name is
"backano" and the back annotation file name is "lay

out1.dtb."

By running VSM, a ".VSM" file is created. The ".VSM" file
must be loaded into the ViewSim program. This is done in

IP B UF

EXT IN

AND A .. ,
EXT IN

AND B

1 •

AN1592

ViewSim, by pulling down the "Find" menu and selecting "Load
ViewSim Nellis!". Then enter the name of the desired ".VSM"
tile (see Figure 17). In this example, the ViewSim netlist file is
called "backano.vsm." The MPA Design System generated
delays will now be included in the simulation net list.

Figure 17. Load ViewSim Netlist Menu.

aPBUF
2 • .. , .. ,

Figure 18. The Sample Circuit, "backano" Used to Ex
plore Simulation Before and After Back Annotation.

Figure 19. Before Back Annotation. ANDB Going
High Ripples Through All Three AND Gates and

the Output Instantaneously.

==================~riil MOTOROLA MPA DATA- DL201 REV 2 ~
4-143

AN1592

Figure 20. After Back Annotation of Place and Route
Delays. ANDB Going High Ripples Through Q1,2 & 3

with Delays, and When Going Low, Takes Q3 Low First.

In Figure 20, ANDB goes high at time 20 and ripples
through the AND tree (01, 02, 03) with the final output
ANDOUT going high about 16nS later. When ANDB drops, the
third AND gate (03) is the first to fall because in this
implementation it happened to be placed closer to the ANDB
input than AND gates 01 & 02. With ANDA held high, gate
delay is the limiting factor for a rising ANDOUT and path delay
is the limiting factor for a falling ANDOUT.

Back Annotation and Logic Reduction
The MPA Design System does some "bubble pushing"

during the retargeting I fitting of the logical design into the
physical implementation. In some cases, redundant gates in
the schematic design are eliminated in the physical layout.
When this occurs, back annotation proceeds as before with
the resulting delays being added only to the input pin of the
most downstream logic element not eliminated in the
retargeting I fitting process.

It 1"' ~::)!.~.2.J :< 0. N
• ••I NV '•,-I NV 0 p B U F

~
A•" .. :-<~ ><"~ v ~ INvaU1

1" .. lN\' i INV ·

Figure 21; The String of Inverters will be Removed During Place and Route.

In the example above, the 4 inverters are eliminated in the
retarget I fitting process. The wire delay betWeen the
remaining IPBUF and OPBUF gets.back .annotated to the

OP13UF's input pin. The back annotated simulation netlist has
4 zero delay inverters oust as the pre-back annotation netlist
had) followed by the OPBUF with the real world delay.

~~~ ~t==================M=O=T=O=R=O=LA==M=P=A=D=A=TA=-==D=L2=0=1=R=E=V=2=============================== 
4-144 



11/96 

© Motorola, Inc. 1996 

AN1595 
Application Note 

Programming Large Configuration 
Files into Smaller Serial PROMs 

4-145 

Prepared by 
Douglas M. Shade 
Motorola Programmable Logic Products 

REVO 
®MOTOROLA 



AN1595 

Programming Large Configuration Files into Smaller Serial EPROMs 

Introduction 
This application riote describes methods for programming 

large configuration files inta lower capacity serial PROMs. 
Three source file formats are demonstrated along with three 
target PROM programmers. BP Microsystems BP-1200 
programmer with version 3.19 software, Data 10 Unisite at 
software version 5.20, and Logical Devices ALLPRQ--88 
programmer at version 2.70 are all demonstrated. While your 
programmer and software version numbers may be different, 
the concepts demonstrated here are generally applicable. The 
reader is assumed to have some familiarity with the 
programmer of interest. 

An MPA1064KE was selected as the target FPGA device. 
Configuration files in Intel Hex format (1064.IHD), Motorola S 
Record format (1064.MS1) and a generic ASCII Hex format 
(1064.AHF) were all generated from the source design. Serial 
PROMs have the characteristic of reading out the bits of a byte 
in the opposite order from which they were programmed in. To 
accommodate this behavior, it is required that you select 
"Serial PROM (reverse bit ordering)" in the Tools -> Options 
-> Configuration panel of the MPA Design System Software, 
Figure 1. 

The MPA 17128 Serial PROM was selected as the target 
PROM. The MPA1064 was selected as the target array and 
requires a total of 202072 bits for a complete configuration 
image. Since an MPA17128 has a capacity of only 128k bits, 
two will be required. For more details on the data formats and 
device sizes, please reference the Motorola Programmable 
Array data book (DL201), the section MPA1000 Configuration 
Data Format. 

Using the BP Microsystems BP-1200 
Once you select the desired PROM using the "Select" 

pull-down menu, in this case an MPA17128 in a DIP package, 
you should set the programmable reset polarity to the desired 
value as shown in Figure 2. Use the Device -> ResetPol 
menu. 

Using the Device -> Options menu as shown in Figure 3, 
set the "Data path width" to 1, the "Number of banks" to 2, and 
the "Programming mode" to SET. 

Figure 1. Select "Serial PROM" When Bulldlng a 
Configuration File for the MPA 

or Other Families of Serial PROMs 

~~~ ~~"=.=·================M=O=T=O=R=O=LA==M=P=A=D=A=~=A=-=o=L2==0=1=R=Ev==2============================== 
4-146

F'~~~~~~~ \J3.19 DOS (CJ 1996 BP MicrosysteMs, Ille.
AFS Buffer Configure ~ Info JobMaster Macro Pause Quit Select
Blank CoMpare Handler Mark Options PrograM Read ~ SuM Verify

Use i.his screen to cont•·ul Um optionH lhi~l wjll bf.~
progratrut1ed into your device with the Prografl'I c0Mtt1and.
Reset Pol11ritH iH acti1,,,e: lJIBl]LOW

~CANCEL

Buffe:r: E.-.pty
.Dt~vicE!: Motorola MPA17128 Size: 400Bx8H Pius: B
Config' BP-1200/32/SM48D LPTl Test-Twice Blank-Check Verify-Twice Check-IDs

ili)ielp ~hen done iml)lext field mro cancel

Figure 2. Selecting the Programmable Reset Polarity to Be "High"

r===·~·~·~=~~~ U3.19 DOS (Cl 1996 BP MicrosysteMs, Inc.
Buffer Configure ~ Info JobMaster Macro Pause Quit Select

Lank CoMpare Handler~ PrograM Read ResetPol SuM Uerify

-------------------- Buffer Settings --------------------
Buf-fer offset: 0
Clear buffer before
----------------· Sets

NO~
El'ROMH

EPROMsl: Data path width (nuMher of
NuMhHr of lHrnks : 2
PrograMMing Mode: SINGLE iiJ

Cofl'lfrldnd Execution
Blank check before prograMffiing DISABLE iifmjlJ1
Um- ifH afh~X' proyraMMl ny ~ NONE ONCE iiUW
-------------------- Insertion Test ----------------------
Cont irm test: DISABLE ~
Check e identifiers' DISABLE iil1'!l1m AUTO-SELECT
DECIMAL ~CANCEL

Buffer: El"lpty
Device: Motorola MPA17128 Size: 40BBxBH Pins: 8
Config: BP-1200/32/SM4BD LPTl Test-Twice Blank-Check Verify-Twice ChecJ.:-IDs

ili)ieip ~hen done iml)lext field mro cancel

Figure 3. Setting the "Buffer Settings" to Correctly Handle Multiple Serial PROMs

AN1595

The next step is to read in the source configuration file. For
this example the ASCII Hex format file was selected,
1064.AHF. The final step is to program as normal. The
programmer will prompt you to insert a blank device 'O'. Alter
successful programming and verification of the first PROM,
the programmer will then prompt for device '1 '.

That's all there is to it. The BP-1200 handles the chore
easily. If this is something you intend to do on a regular basis
with your programmer, you might consider writing a macro
using the Macro menu. A sample macro for this procedure is
shown in Figure 4.

================~ilil MOTOROLA MPA DATA- DL201 REV 2 ~
4--147

AN1595

;Macro file V3.19 for BP-1200 generated 10/08/96 11:08:11.

/Select
Device selector: Motorola MPA17128
Package type: DIP
Family shown: All
: ACCEPT

/Device/ResetPol
Reset Polarity is active: HIGH
: ACCEPT

/Device/Options
Buffer offset: OxO
Clear buffer before reading: YES
Data path width (number of EPROMs) : Oxl
Number of banks: Ox2
Programming mode: SET
Blank check before progranuning: ENABLE
Verify after programming: TWICE
Continuity test: ENABLE

Check electronic identifiers: ENABLE
: HEX
: ACCEPT

/Buffer/Load
Directory: c:\sch\twosite\top*.ahf
File to load: 1064.AHF
Type: STRAIGHT
Clear buffer before loading: YES
Lowest address to load: OxO
Highest address to load: Ox7fffff
Load address in buffer: OxO
: HEX
: ACCEPT

/Device/Program
: ACCEPT
: ACCEPT

;End of file
Figure 4. TWOPROM.PGM, A Sample BP-1200 Macro File

The BP-1200 software does a good job of automatically
detecting the configuration file formats automatically once a
file has been selected. There are some limitations to be aware
of however. The MPA Design System allows you to specify
"Line Length" when using the ASCII Hex file format. A line
length of 0 causes an .AHF file to be written out with no
"newline" characters inserted anywhere in the '111e. This fools
the BP-1200 soflware into thinking it is looking at a "binary" file
type, which is incorrect. Setting the line length option to 40,
results in an .AHF Ille in which 40 configuration bytes are
represented on each line of the file (80 ASCII characters
followed with a •newline" character). This setting seems to
work well with the BP-1200's automatic file type detection
(and most text editors as well).

Using Logical Device$ ALLPR0-88
Using the ALLPRQ...88 to perform this task is only slightly

more complicated. Select the device and the source file type
and name as you normally would. In this example an
MPA17128 DIP was used. The source file selected was an
Intel Hex format file, 1064.IHD. After selecting the source file,
the ALLPRO prompts you for additional input into the
"Download Parameter Editor" window, Figure 5. Unlike the BP
Microsystems software there is no direct entry for specifying
"Banks": One method then of splitting the configuration file
between two PROMs is to read in the source file once,
ignoring all data extending past the upper physical address
range of the PROM and programming the clevice; then read in
the source Ille a second time, this time skipping past the
previously programmed data.

Figure 5 shows the appropriate settings for "start file
adclress" ancl "end file adclress for the bank'O' serial PROM.
Figure 6 likewise shows the settings for the second or bank'1'
serial PROM.

~~"" ~c:;:====:::::;===========M=O=T=o=R=O=L=A=M=P=A=D=A=TA=-==o=l2=0=1=R=E=v=2===============================
4-148

AN1595

+--+
!+--------------------------Download Parameter Editor-------------------------+ I

11

I I # of devices in set 1

11 current device 0
I I start file address

11 end file address 3fff

I I start device address

I I nibble to download

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

l+----------------------------C,\PROMFILE\1064.IHD----------------------------+I

!+------------Message Center------------++-----------Operator Input-----------+!

11 11 11
I I Use cursor keys to move highlight I I I I

11 Type in a new value and press Enter I I 11

11 11 11
I I Press Fl for help 11 I I

11 Press FlO when done. 11 > 11

11 11> 11
l+--------------------------------------++------------------------------------+I

+------------------IALLPRO 88 Universal Programmer - v2.70I--------------------+

Figure 5. "Start" and "End" File Addresses for the First MPA17128, Bank 'O'

+--+
+--------------------------Download Parameter Editor-------------------------+ I

of devices in set

current device

start file address 4000

end file address 7fff

start device address 0

nibble to download

11

11

11

11

11

11

11

11

11

11

11

11

l+----------------------------c,\PROMFILE\1064.IHD----------------------------+I

!+------------Message Center------------++-----------Operator Input-----------+I

11 11 11
11 Use cursor keys to move highlight 11 11

11 Type in a new value and press Enter 11 11

11 11 11
I I Press Fl for help I I I I

11 Press FlO when done. 11 > 11

11 11 > 11
l+--------------------------------------++------------------------------------+I
+------------------IALLPRO 88 Universal Programmer - v2.70I--------------------+

Figure 6. "Start" and "End" File Addresses for the Second MPA17128, Bank '1'

MOTOROLA MPA DATA- DL201 REV 2
4-149

AN1595

+--+
!+-------------------------------Fuse

I 4000 - 1

I
I
I
I
I
I
I
I
I
I
I

Map Editor------------------------------+!

11

11

11

11

11

11

11

11

11

11

11

11
l+-Addr: 4000 ---Reset Polarity-+!

!+------------Message Center------------++-----------Operator Input-----------+!

11 Help Screen 2 I I 11

11 11 11

11 Fl help I I 11

11 F3 fill 11 11

11 F5 goto F6 search I I 11

I I F7 prev array I I > I I
11 F9 search next FlO done 11 > 11

l+--------------------------------------++------------------------------------+I

+------------------IALLPRO 88 Universal Programmer v2.70)--------------------+

Figure 7. Setting the Programmable Reset Polarity to Be Active High

As always, the user should be certain that the
programmable reset polarity is set to the desired level. When
using the ALLPRO, edit the data, then use F8 for access to
"next array". Setting location 4000 of the MPA17128 to a 1
programs reset polarity to be active high. Figure 7 shows how
the "Fuse Map Editor'' should look.

same as described above. The basic steps begin with the
selection of a device, again the MPA 17128 DIP was used. The
next item to select is the file translation format. In this example
a Motorola S Record format configuration file was used,
1064.MS1. For this particular version of the Unisite software,
the appropriate translation code is 95.

Using the DATA-10 Unisite

The Unisite's large feature set can make the user interface
a bit cumbersome to navigate, however the task is much the

The next step is to "download" the configuration file for the
first (bank 'O') PROM. Figure 8 shows the appropriate settings.
In this example the Unisite is connected to a PC and the
"Transfer'' command was used.

FILENAME: RAM AVAIL: 1024 OF 1024KB REV: 5.20

MANUFACTURER:Motorola

I/O FORMAT: Motorola S3

PART #: 17128 FAMILY/PIN CODE:

- Data transfer complete. Data sum = 000063EB (8-bit)

TRANSFER MENU

Download data

Upload data

Compare data

Format select
Input from disk

Output to disk

Serial output

DOWNLOAD DATA FROM HOST

Source (Remote,Terminal)

Destination (RAM, Disk)

I/O Translation Format

I/0 addr offset

Memory begin address

User data size

Download host command

transfer c:\promfile\1064.msl

T

R

95

0

62AB

5.20 EMl

206 I 226

PFl: Main menu PF2: Prev menu

Num

PF3 or ?: Help

Bin

Figure 8. No "1/0 Addr Offset" Is Required for Reading in the Configuration File for the Bank 'O' PROM
Note the "User data size" hex 62AB is considerably larger

than the physical capacity of the MPA 17128 (hex 4000 byte locations = 128K bits)

~~.,'/' ~c=================M=O=T=O=R=O=LA=M==PA=D=A=T=A=-=D=L2==01=R=E=V=2::::============================
4-150

AN1595

Once the entire configuration file has been read in, program
the PROM as you normally would. The only out of the ordinary
message you should see in Figure 9 is that the PROM was

recognized as receiving only a "partial set". The "User data
size" exceeds the "Device block size".

FILENAME'
MANUFACTURER:Motorola

I/O FORMAT: Motorola 83

RAM AVAIL' 1024 OF 1024KB REV' 5.20

PART #' 17128 FAMILY/PIN CODE'

I OPERATION COMPLETE. Partial Set Sumcheck 00005EE5 I 8-bit)

5.20 EMl
206 I 226

MAIN MENU PROGRAM MEMORY DEVICE (non-default)

Select device Source (RAM,Disk) R

Set auto-increment N
Quick copy

Load device

Program device

Verify device
More commands

Data word width
Next device
Total set size

User data size
Next operation begins at

62AB

0

4004

PF4: Select mode/options

Device block size
Return: Execute

PFl: Main menu PF2: Prev menu PF3 or ?: Help

Num Bin

Figure 9. After Programming the First (Bank 'O') PROM, the Unisite Returns
a "Partial Set Sumcheck" Message; There Is More Data Than the PROM Can Hold

The next step after successful programming of the bank 'O'
PROM is to read in the source configuration file once again;
this time using an "1/0 addr offset" as shown in Figure 10. In
this case, the offset used was equal to the capacity of the
previously programmed serial PROM, 4000x by1e locations.
(The Unisite reports that the "Device block size" as being

4004. The first 4000 locations of an MPA 17128 are available
for user data, with the last 4 by1es reserved for programming
the reset polarity.) After the second read of the configuration
file, the Unisite recognizes that less data was read in than the
selected PROM has room for and issues an appropriate
warning to the user "Partial or no transfer performed".

FILENAME'
MANUFACTURER:Motorola

I/0 FORMAT: Motorola S3

RAM AVAIL, 1024 OF 1024KB REV' 5.20

PART #, 17128 FAMILY/PIN CODE'

5.20

206

WARNING: Partial or no transfer performed. Data sum 000063EB (8-bit)

TRANSFER MENU DOWNLOAD DATA FROM HOST
Download data
Upload data

Compare data

Format select

Input from disk
Output to disk
Serial output

Source (Remote,Terminal)
Destination (RAM, Disk)

I/O Translation Format

I/0 addr offset

Memory begin address
User data size

Download host command
transfer c:\promfile\1064.rnsl

T

R

95

4000

0

22AB

EMl

226

PFl: Main menu PF2: Prev menu

Num

PF3 or ?: Help

Bin

Figure 10. Setting "1/0 Addr Offset", After Reading in the Larger File, the Unisite Warns You About a "Partial ... Transfer"

Now that the second half of the configuration data set has
been read in, you're almost ready to program the bank '1'
PROM. Note that the "PROGRAM MEMORY DEVICE"
window of Figure 11 shows the "User data size" to be less than

the "Device block size". Attempting to program with these
parameters will result in the "OPERATION FAILED" error
shown Figure 12.

======================~riil MOTOROLA MPA DATA- DL201 REV 2 ~
4-151

AN1595

FILENAME'
MANUFACTURER:Motorola

I/O FORMAT: Motorola S3

RAM AVAIL' 1024 OF 1024KB REV' 5.20
PART#' 17128 FAMILY/PIN CODE'

5.20 EMl
206 I 226

MAIN MENU

Select device

PROGRAM MEMORY DEVICE (non-default}

Quick copy

Load device

Program device

Verify device

More commands

Source (RAM,Disk)

Data word width

Next device

Total set size

User data size

R

Set auto-increment N

Next operation begins at

22AB
0

Device block size

Return: Execute

PFl: Main menu

4004
PF4: Select mode/options

PF2: Prev menu PF3 or ?· Help

Num Bin

Figure 11. After Reading in the Partial (Second Part) Configuration File, Note the
"User Data Size" Is Reported to Be Something Less Than the Capacity of the PROM

FILENAME: RAM AVAIL' 1024 OF 1024KB REV' 5.20
MANUFACTURER:Motorola PART#' 17128 FAMILY/PIN CODE'
I/O FORMAT: Motorola S3

\ OPERATION FAILED: Partial device operation is not allowed

5.20 EMl
206 I 226

MAIN MENU PROGRAM MEMORY DEVICE (non-default)
Select device

Quick copy

Load device

Program device

Verify device

More commands

Source (RAM, Disk)

Data word width

Next device

Total set size

User data size

R

Set auto-increment N

Next operation begins at

22AB
0

Device block size

Return: Execute

PFl: Main menu

4004
PF4: Select mode/options

PF2: Prev menu PF3 or ?: Help

Num Bin

Figure 12. Attempting to Program the Device With the "User Data Size" Less Than the "Device Block Size"
Results in an "OPERATION FAILED". The Unisite Will Normally Refuse to Program Just a Portion of a Device

~~'I'!" ~c:::=================M=O=T=O=R=O=LA==M=PA==D=AT=A=-==D=L=20=1=R=E=V=2===============================
4-152

FILENAME: RAM AVAIL: 1024 OF 1024KB REV: 5.20 5.20 EMl

206 I 226 MANUFACTURER:Motorola

I/O FORMAT: Motorola S3

PART #: 17128 FAMILY/PIN CODE:

\ OPERATION COMPLETE: Sumcheck = 000010B4 (8-bit)

MAIN MEND PROGRAM MEMORY DEVICE

Select device

Quick copy

Load device

Program device

Verify device

More commands

Source (RAM,Disk)

Data word width
Next device

Total set size

User data size

Next operation begins at

R

1

4004

0

4004

(non-default)

Set auto-increment N

Device block size
Return: Execute
PFl: Main menu

PF4: Select mode/options
PF2: Prev menu

Num Bin
PF3 or ?: Help

AN1595

Figure 13. Hand Editing the "User Data Size" to Match the "Device Block Size" is a Simple Work Around;
Allowing You to Program the Bank '1' or Second PROM

Figure 13 shows the completion of a successful
programming of the bank '1' PROM; after the hand edit of the
"User data size" to match the "Device block size".

are set appropriately.

The configuration data for the second (bank '1 ') PROM only
occupied the first 22AB locations. Hand editing the "User data
size" to 4004 results in programming the addresses 22AB and
above with whatever happened to be in the Unisite's RAM at
the time. This will cause no problems for the MPA at
configuration time, so long as addresses 4000-4003 inclusive

As always, the user should be cautious about how the
programmable reset polarity is being set prior to programming
both the bank 'O' and '1' devices. When using the Unisite, the
user is required to go in and manually edit the locations
appropriate to the particular PROM. For the MPA17128, the
programmable reset polarity is controlled by the contents of
4000-4003 as shown in Figure 14.

CURSOR AT LOCATION: 00004005 8 BIT ADDRESSING

ADDRESS

OOG04000

00004010

00004020

00004030

00004040

00004050

00004060

00004070

00004080

00004090

000040AO

000040BO

000040CO

000040DO
000040EO

000040FO

HEXADECIMAL

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 oc 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

"E: Exchange with

ASCII

0123456789ABCDEF

"P: Prev block
"N: Next block
'D: Delete byte

"T: Start/stop

"F: Search pattern "U: Restore block
"B: Jump to address 4000 PF2: Exit editor
insert Tab: Toggles between Hex/ASCII mode

Num Bin

Figure 14. Programming the Locations 400<1-4003 Inclusive With FF sSelects Active High
Reset Polarity. Setting These Locations to 00 Would Yield Active Low Reset Polarity

================================M=O=T=O=R=O=LA==M==PA==D=AT=A=-==D=L=2=0=1=R=EV==2===========================~
4-153

AN1595

The Unisite's user interface is a bit more cumbersome than
the others described, but it is an extremely robust and capable
machine. With the help of this application note you should be
able to work your way through programming a large
configuration file into smaller serial PROM devices with the
Unisite or any other programmer using any one of the file
formats available to you from the MPA Design System.

Appendix - Sample File Formats
The heads and tails of all the available configuration file

formats from the MPA Design System version 2.3 are
presented in this appendix. The target device for each of these
files was the MPA 1064 array. "Serial PROM (reverse bit
ordering)" was selected for each of these formats. An
excellent detailed reference for these and other generic file
formats can be found in the documentation for the Data 1/0
Unisite programmer.

Intel Hex (./HD)
:020000020000FC
: 2 0.0 00 OOOC8C902B8 000 00000 00 000 00 0000000 00 000 000 0 0 0 000 0 0 0 00 000 00 00 0 00000009 5
:20002000CO
:2000400000000000000000000020004000040000000000000000000000000000000000003C
[center of file deleted]
:2062600000000000004000000400DA
:20628000FE
:OB62A00000000000000000000000559E
:OOOOOOOlFF

Looking at the first line of the .IHD format file:
:020000020000FC
: <- is the start character
02 <- is the byte count

0000 <- is the address for the data
02 <- is the record type of Extended Address

0000 <- is the offset address
FC <- is the line's checksum

Looking at the second line:
:20000000C8C902B80095
: <- is the start character
20 <- is the byte count

0000 <- is the address for the data
00 <- is the record type of Data

C8C902B8 <- represents the MPA1064's JTAG ID (bit order reversed)
00 <- is the data type record for the following config data

"95" is the line's checksum-> 95
Looking at the last line:

:OOOOOOOlFF
: <- is the start character
00 <- is the byte count

0000 <- is the address for the data
01 <- is the record type of End Record

FF <- is the line's checksum

Motorola 51 (16 bit address, .MS1)
Sl230000C8C902B80091
S123002000BC
Sl230040000000000000000000200040000400000000000000000000000000000000000038
[center of file deleted]
Sl23626000000000004000000400D6
S123628000FA
SlOE62A000000000000000000000559A
S9030000FC

Looking at the first line of the .MS1 format flle:
Sl230000C8C902B80091
Sl <- is the start character specifying the address field has 4 characters (16 bits)

23 <- is the byte count (35 decimal) for data, address and line's checksum
0000 <- is the address for the data

C8C902B8 <- represents the MPA1064's JTAG ID (bit order reversed)
00 <- is the data type for the following data (00 = Sequential)

~g1s is the line's checksum -> 91

~~~ ~c:==================M=o="=o=R=O=LA==M=PA==D=AT=A=-==D=l2=0=1=R=E=v=2=============================== 
4-154 



Looking at the last line: 
S9030000FC 

89 <- is the start character specifying end of file 

03 <- is the byte count for data, address and line's checksum 

0000 <- is the address field 
FC <- is the line's checksum 

Motorola S2 (24 bit address, .MS2) 
S224000000C8C902B80000000000000000000000000000000000000000000000000000000090 

S2240000200000000000000000000000000000000000000000000000000000000000000000BB 

S224000040000000000000000000200040000400000000000000000000000000000000000037 

[center of file deleted] 
S2240062600000000000400000040000000000000000000000000000000000000000000000D5 

S2240062800000000000000000000000000000000000000000000000000000000000000000F9 

S20F0062A0000000000000000000005599 

S9030000FC 

Looking at the first line of the .MS2 format file: 
S224000000C8C902B80000000000000000000000000000000000000000000000000000000090 

82 <- is the start character specifying the address field has 6 characters (24 bits) 

24 <- is the byte count (36 decimal) for data, address and line's checksum 

000000 <- is the address for the data 

C8C902B8 <- represents the MPA1064's JTAG ID (bit order reversed) 

00 <- is the data type for the following data 
ugon is the line's checksum-> 90 

Looking at the last line: 
S9030000FC 

S9 <- is the start character specifying end of file 

03 <- is the byte count for data, address and line's checksum 

0000 <- is the address field 

FC <- is the line's checksum 

ASCII Hex (.AHF) 
C8C902B8000000000000000000000000000000000000000000000000000000000000000000000000 

00000000000000000000000000000000000000000000000000000000000000000020004000040000 

00000000000000000000000000000000000000000000000000000000000000000000000000000000 

[center of file deleted] 
00000000000000000000000000000000000000000000000000000000004000000400000000000000 

00000000000000000000000000000000000000000000000000000000000000000000000000000000 

00000000000000000000000000000000000055 

AN1595 

This file format contains only the data intended to be 
transferred to the MPA array during the configuration process. 
No file specific items such as starting addresses, file 

checksums or record types are included. Each byte of 
configuration data is represented in Hex format by two ASCII 
characters. 

Looking at the first line of the .AHF format file: 
C8C902B8000000000000000000000000000000000000000000000000000000000000000000000000 

C8C902B8 <- represents the MPA1064's jTAG ID (bit order reversed) 

00 <- is the data type for the following data (00 ; Sequential) 

0000 ... <-the remainder of the file is all config data and ECBs 

ASCII Binary (.ABF) 
11001000110010010000001010111000000000000000000000000000000000000000000000000000 

00000000000000000000000000000000000000000000000000000000000000000000000000000000 

00000000000000000000000000000000000000000000000000000000000000000000000000000000 

[center of file deleted] 

00000000000000000000000000000000000000000000000000000000000000000000000000000000 

00000000000000000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000001010101 

=======ri&il 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-155 



AN1595 

Like the .AHF format above, the .ABF format contains only 
data to be transferred to the MPA array. The ASCII Binary file 
is not a readable format for many programmers, but is offered 
as a convenient file format for any custom post processing you 

Looking at the first line of the .ABF format file: 

may want to do to a configuration file. Instead of representing 
8 bits as two ASCII Hex characters as the .AHF file does, each 
bit is represented as an ASCII '1' or 'O'. 

11001000110010010000001010111000000000000000000000000000000000000000000000000000 

1100 <- hex 'C' 

1000 <-hex '8' 
1100 <- hex 1 C 1 

1001 <- hex '9' 

0000 <- hex '0' 
0010 <- hex '2' 

1011 <- hex 'B' 

1000 <- hex '8' 

Bit Order Reversing 
When targeting a serial PROM, it is important to select 

"Serial PROM (bit order reversing)" from the Tools -> Options 
-> Configuration menu (Figure 1). This option reverses the 
order of the bits within each byte. A common 'gotcha' for 
novice users is to forget to take this option and program a 
serial PROM with a 'standard' PROM file. If this should 
happen, the MPA will fail to boot. The first 4 bytes of 
configuration data will be read in by the MPA, and the MPA will 
not recognize those first 4 bytes as matching the expected 
Device ID. The MPA will assert the error line and halt 
configuration. 

Standard 

If in doubt; a quick visual check of your configuration file will 
tell you whether or not bit order reversing was selected. The 
two examples below show the first lines of a standard and a bit 
order reversed .AHF format configuration file. In the standard 
version, the JTAG ID (also referred to as the Device ID) for an 
MPA 1064 is clearly seen as 1393401 D. The Serial PROM 
version for the same device is bit order reversed. The Device 
ID's for the entire family of MPA devices are listed in the data 
book (DL201). 

13934010000000000000000000000000000000000000000000000000000000000000000000000000 

Serial PROM, Bit Order Reversed 
C8C902B8000000000000000000000000000000000000000000000000000000000000000000000000 

Configuration Data Checksums vs. Configuration File Checksums · 
Another point of confusion when examining configuration 

files in detail is the topic of checksums or ECBs (Error Check 
Bytes). Most configuration file formats have some facility to 
ensure that the entire file was transferred to the programmer 
without error. Usually in the form of checksums, these bytes 
are normally appended to each line of the configuration file or 
may be appended to the end of the file. 

The MPA family of FPGAs includes a similar safety feature 
in its raw configuration data as well. The MPA design system 
calculates an ECB for each physical row of configuration data. 
When the configuration data is read into the array, the MPA 
itself re-calculates an ECB based on the data read. This 
calculated ECB is compared to the 'read' ECB. If there is a 
match, the configuration is allowed to continue. If any errors 

are detected the configuration process halts immediately, 
protecting the MPA. This system of ECBs ensures that valid 
data is passed from the PROM to the MPA much in the same 
way that checksums ensure that data is passed from a file to a 
device programmer. 

Each of the 183 rows of configuration SAAM of the 
MPA1064 requires 1096 bits (137 bytes). An additional ECB 
byte is calculated and added to the configuration data by the 
MPA Design System software for each of the rows. In the 
annotated Serial PROM ASCII Hex file shown below, these 
end of row ECBs are shown as bold characters for the first 4 
rows of an MPA1064's configuration SAAM. They are located 
at addresses (modulo 138) + 4. 

~~~ ~c:::=================M=O=T=o=R=O=LA==M=PA==D=A"=A=-==o=L2=0=1=R=E=v=2=============================== 
4-156

C8C902B800 <- These are (4) Device (JTAG) ID and (1) Data Type bytes

The array's configuration data begins here
-> 00

0020004000040000

00

00750000000000000000000000000000000000

00

00

00

1100
00

00

00000000000000000000000000000000000011000000000000000000000000000000000000020000

00000000000000000000000000004000000000000000000000000000000008000000000000000000
00

0000000000000000000000000000000002000000000000000000000000000000000000009s_ ...

Figure 15. A Sample Serial PROM ASCII Hex File Targeted to an MPA1064.
End of Configuration SRAM Row ECBs Are Shown in Bold

Additional details on configuration data for each of the
members of the MPA family can be found in the Motorola
Programmable Array data book (DL201/D).

AN1595

==========lriiiil
MOTOROLA MPA DATA- DL201 REV 2 ~

4-157

3197

© Motorola, Inc. 1997

AN1604
Application Note

Using Exemplar Logic's Galileo
with the MPA Design System

4-158

Prepared by
Philip J. Rauba
Motorola Field Applications Engineer

REVO
® MOTOROLA

AN1604

Using Exemplar Logic's Galileo with the MPA Design System

Purpose

The goal of this application note is to guide a Field
Programmable Gate Array (FPGA) designer on the use of
Exemplar Logic's Galileo synthesis tool in conjunction with the
Motorola Programmable Array Design System (MPADS) when
targeting a FPGA project to the Motorola Program- mable
Array (MPA) family. Exemplar Logic's Galileo Logic Explorer is
a powerful synthesis tool that supports the Verilog and VHDL
Hardware Description Languages (HDL). The advantages of
using HDL design entry along with a synthesis tool such as
Galileo, as opposed to using schematic capture based tools,
include faster time to market, portability to other technologies,
and reuseability of designs. The Motorola fine grain
architecture is very synthesis friendly and takes advantage of
the same type of optimizing algorithms used for gate arrays,
yielding designs with higher utilization and faster speeds as
opposed to coarse grain architectures.

Prior knowledge of coding with Verilog or VHDL HDLs and
of using the MPADS place and route tools is assumed. Note
that file and directory syntax mentioned within this application
note are in reference to a DOS based PC platform. Reference
to directory paths assume that Galileo and MPADS was
installed at the default directories of c:/exemplar and c:/mpa
respectively. Within the DOS environment file names are
limited to eight characters with a three character file extension
identifying the file type. The HDL design file names mentioned
in this article are recommendations and are named using the
design convention that Verilog, VHDL, and EDIF source
filenames match the Verilog module name or VHDL entity
name instantiated within the design's file. Text enclosed within
brackets like <design>.v indicates that the user should provide
a name to substitute for the text included within the brackets,
but not including the brackets themselves.

HDL Design Environment

Figure 1 shows the HDL design flow for the Galileo
synthesis tool and the MPADS place and route tool. Designs
typically start with the development of HDL source code with
the suggested filenames designated as design.v for Verilog or
design.vhd for VHDL As the source code grows in size, it is
often necessary to verify that the code is logically performing
as intended through the use of a Verilog or VHDL simulator.
Simulators are highly recommended and are readily available
from third party vendors, such as the Model Technology
Incorporated V-System VHDL simulator from Exemplar Logic.
When verifying HDL code with a simulator, test bench code is
commonly developed that can provide system clock sources
with test vectors and is designated with the suggested
filename stimulus.v for Verilog or stimulus.vhd for VHDL The
HDL test bench code will include the instantiation of the HDL
source code under test with the instance name of "u1" and
module (Verilog) or entity name (VHDL) of "design". Please
refer to the section entitled Verilog Simulation for more
clarification.

Once the source code has been verified through simulation,
it can be synthesized with Galileo producing an EDIF 2.0.0
netlist with the filename designated as design.edf. Galileo

processes the design through three steps including:
synthesis, architecture specific optimization, and technology
mapping. MPADS is then used for importing the EDIF netlist,
automatic timing driven place and route, bitstream generation
(configuration), and back annotation to a structural Verilog
(layout1 .v) or VHDL 1076 (layout1 .vhd) netlist.

HDL Test Code

___ _,_ ___ d_esign.edf

layout1 .vba or
layout1.vhd

Figure 1. HDL Design Flow

Structural netlists can be used by a simulation tool to post
simulate the final placed and routed design and include the
intrinsic gate and path delays of the MPA device. Post
simulations will show the true timing of the device, which are
based upon highly accurate RC spice models.

Hierarchical Designs

When starting a new Verilog or VHDL design, the designer
has a choice of using a flat or a hierarchical design
methodology. If the design is relatively small, it may be easier
to enter the source as one flat design file; however, as a
design gets larger, one should consider using a hierarchical
approach.

The advantages of using a hierarchical design
methodology are: One, the design will be more manageable in
terms of file and directory structures. Two, the reuse of
commonly used pieces of code such as modules in Verilog
and entities in VHDL, will result in code efficient design. Three,
the designer has control on how each module of the code will
be synthesized. Four, the synthesis of individual modules of
the design will put less demand on your computer system
memory, speeding up compile times. Five, design changes will
require only the modules that changed to be resynthesized,
instead of the whole design, again speeding up compile times.

Essentially the top module or entity of a design instantiates
the individual pieces of the design with all of the appropriate
interconnections. The submodules will be referenced in the
top module and contain empty code sections with just
declarations of inputs and outputs. These submodules will
then be redeclared within individual files that contain the actual
code of the design. File names must be the same names as
the modules or entities.

When working with hierarchical designs, the designer
should not use vector or bus syntax for input or output signals

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==o=L=2=0=1=R=E=v=2===========================~
4-159

AN1604

between modules .. If a bus or vectors are used, Galileo will
separate and rename them into individual signals, causing
possible interconnection problems, when imported into the
MPADS place and route tools.

The hierarchical design methodology as described above
requires the top module and each submodule of the design to
be individually synthesized, producing multiple EDIF netlists.
The Motorola place and route tool requires the type EDIF 2.0.0
netlist and has multiple netlist reader capability. For designs
with multiple netlists the MPADS reader requires that each
EDIF file name matches the module name and will search the
design directory for modules which are referenced within the
top module's EDIF netlist. If you are going to use multiple EDIF
netlists for your design, you will need to set up MPADS to
enable this feature. By using your favorite editor, open the
DOS text file:

c:/windows/pmel.ini

Change the line from:

#DPLD_MULTI= TRUE

To:

DPLD_MULTI= TRUE

Note that if you are not going to use a hierarchical
methodology, you will not have to modify the pmel.ini file, since
after installation the MPADS tool defaults to read in a single flat
EDIF netlist.

Galileo MPA Library Setup

After Galileo and the MPA Design System (MPADS) has
been installed, Galileo will need to be setup before synthesis is
invoked. First, copy the MPADS supplied synthesis libraries
from c:/mpa/exemplar/p_mpa20.syn and p_mpa23.syn to
c:/exemplar/lib. Second, create a file called
c:/exemplar/data/exemplar.rc which includes the line:

Technology: 10 p_mpa none none Motorola MPA1000

You do have the option of adding this line to Galileo's
supplied file called c:/exemplar/data/master.rc, but this file will
be overwritten whenever a new version of Galileo is installed.

Galileo synthesizes a design using the gate primitives that
are referenced within the Motorola supplied libraries.
Descriptions of the MPA gate primitives are available within
MPADS by invoking Help on Libraries. If Galileo's graphical
user interface (GUI) is being used to invoke the synthesizer,
the exemplar.re file is used for enabling the listing of
Motorola's MPA library in the menu of the available target
technologies.

Galileo Control File

Galileo has the capability for the designer to guide the
synthesis through an optional control file designated as
<inpuUile>.ctr. When synthesis is invoked, Galileo will search
for the control file with the same filename as the input design
(by default) and will execute the commands contained within
the file.

The control file is particularly useful for assigning clocks
and resets to the eight low skew networks that are available in

the MPA family. Clock and reset pad inputs can be assigned to
the low skew network with the ipclk (input pad clock) and iprst
(input pad reset) MPA primitives using the control file
comman.ds:

buffer_sig ipclk <clock_name>

buffer_sig iprst <reseLname>

Assignment of internally generated clocks and resets may
also be connected to the low skew network with the aclk (array
clock) and arst (array reset) MPA primitives using the control
file commands:

buffer_sig aclk <clock_net>

buffer_sig arst <reset_net>

Note that these assignments will use up one of the MPA
clock 1/0 pads for each command.

Another resource that is available in the MPA architecture is
an eight bit peripheral bus, that runs around the outside 1/0
boundary. The peripheral bus is a resistive path, slower than
the low skew network, but useful for assigning tristate 1/0
buffer output enable signals. Connections to the bus are made
through the apbuf (array to peripheral bus buffer) primitive and
can be assigned using the control file command:

buffer_sig apbuf <oe_net>

A sample control file is available after MPADS installation,
which can be used as a template for new designs, and is
called c:/mpa/exemplar/control.txt.

It is clearly important to assign clocks and resets to the low
skew network in order to achieve a high speed design, but it
may be unclear why the control file is needed. When writing
HDL source code, the inclusion of complex 1/0, clock buffers,
or reset buffers specific to one vendor is not often desirable,
since it makes the code lose portability. The Galileo control file
is an attractive mechanism for instantiating the vendor specific
primitives into the design without touching the original source
code; thus, maintaining portability.

The Galileo control file, however, is not the only method of
configuring the clocks and resets within a design. MPADS has
a similar capability through a pin attribute file that is
designated as <design>.pat and will be discussed in detail
later. The decision on using the Galileo control file, the MPADS
attribute file, or possibly both, rests upon the designer. When a
design is synthesized, signal names are commonly replaced
by cryptic names such as N$1000. To make sure clock and
reset primitives get instantiated and hooked up correctly when
undergoing signal name changes during synthesis, the control
file is recommended. In cases of internally generated resets or
clocks, the designer may find that a signal name has changed
because of optimization with no way of identifying the correct
signal name within a control file. Here the designer should use
the MPADS pin attribute file.

Please refer to the Galileo Reference manual for additional
control file commands.

Galileo Synthesis Recommendations

A designer has the option of running Galileo from its
graphical user interface (GUI) or from a DOS batch command

~~~ ~c·===================M=O=T=O=R=O=LA==M=P=A=D=A=~=A=-==D=L2=0=1=R=E=v==2==============================:::;:: 
4-160 



file. For those unfamiliar to DOS batch commands, this 
method requires a file to be created with the file extension .bat, 
such as synth.bat, that contains a list of DOS commands that 
the user wishes to execute. When double clicking on the batch 
command file icon from the Windows Explorer, the list of 
commands within the file are executed. Note that running 
Galileo from a batch command is no longer supported on 
Windows 3.X and only available to Windows 95 and Windows 
NT users. The advantages of using a DOS batch command 
file over a GUI when invoking Galileo are: One, the user can 
execute multiple synthesize commands. Two, the user has a 
documented step by step record on how a design is 
synthesized and what Galileo synthesis options were used for 
a particular design or module. Three, the user can save time 
during design iteration by not having to set up the GUI each 
time synthesis is required. 

HDL designers should be aware of the type of gates that 
are being generated by the synthesizer from the source code 
they have written. This is particularly important to users who 
are trying to optimize their design for speed. For example, in 
the Boolean equation d=a• (b•c), the input a is specified as the 
last gating term in order to meet timing requirements. During 
synthesis, Galileo's optimization algorithms, if used, may 
juggle the equation to d=(a•b)•c. Logically the equation is the 
same, but timing wise it is not. To let the designer see the type 
of gates that are generated and how they are connected, it is 
helpful to generate structural Verilog or VHDL netlists in 
addition to the EDIF netlist, needed by MPADS. These 
structural netlists are far easier to read than an EDIF netlist 
and review of them will give the designer insight on the critical 
paths and structures of his circuit. Examples of the EDIF, 
Verilog, and VHDL netlists are shown in Appendix A, B, and C 
respectively. 

Instead of reviewing netlists for critical paths, the user may 
prefer to use the graphical timing analysis tools available in 
Galileo. Exemplar Logic's Galileo Time Explorer includes 
timing analysis, schematic viewing, and back annotation. A flat 
pre-place and route MPA EDIF netlist can be analyzed by 
Timescope and the critical timing paths can be graphically 
reviewed by the designer using the Netscape schematic 
generator and viewer. 

Galileo Synthesis 

Galileo requires a Verilog or VHDL source file designated 
with the file name extensions .v or .vhd, respectively and an 
optional control file with the file name extension .ctr. For ease 
of discussion, the use of Galileo will be described from the 
DOS batch command file perspective, instead of the Galileo 
graphical user interlace. The Verilog (line one) and VHDL (line 
two) synthesis commands for the top module of a hierarchical 
or flat HDL source are: 

gc design.v net.v -target=p_mpa -save 

-edif_file=design.edf 

gc design.vhd net.vhd -target=p_mpa -save 

-edif_file=design.edf. 

AN1604 

The commands generate Verilog (net.v) or VHDL (net.vhd} 
and EDIF (design.edf) netlists using eleven optimization 
algorithms for the MPA family. The save option stores the 
output of each of the eleven passes and records the results in 
a log file designated as design.log. A sample UART design file 
is provided during the installation of Galileo designated as 
c:/exemplar/demo/uart.v and when synthesized produced the 
following log: 

Area Delay CPU 
Pass (Gates) (ns) min:sec File 

1 176 14.6 00:32 uart_1.vg 

2 198 13.6 00:29 uart_2.vg 

3 180 13.6 00:27 uart_3.vg 

4 180 13.6 00:30 uart_4.vg 

5 178 13.6 00:25 uart_5.vg 

6 177 14.6 00:24 uart_6.vg 

7 180 13.6 00:25 uart_7.vg 

8 180 13.6 00:26 uart_8.vg 

9 179 13.6 00:35 uart_9.vg 

10 208 13.4 00:29 uart_ 10.vg 

11 201 21.8 00:29 uart_ 11.vg 

Note that the area is the number of MPA core cells and delay is 
the worst case path core cell delay, not including the worst 
case net delays. It is recommended to use the save option in 
order to select the desired output based upon the design's 
needs. When optimizing a design for speed, it is not true that 
selecting the optimization pass that has the smallest delay will 
result in the fastest design. In most cases the opposite is true 
in that the smallest area will produce the fastest design. The 
smallest area will have fewer interconnections, thus less net 
delays. In FPGA architectures the net delays have a far 
greater effect on the speed of a design than the gate delays. 
So select the optimization pass that has the smallest area, in 
this case pass one will be the best candidate with a core cell 
area of 176. The designer may find themselves selecting 
several of the lowest area design outputs, trying them through 
place and route, and picking the best at the end. 

Getting back to the original synthesis commands, Galileo 
uses default options when compiling a design targeting the 
MPA family. The descriptions of these are explained in detail in 
the Options and Switches section of Galileo's RGference 
Manual, but are listed here for completeness. 

-area 
-chip 
-complex_ios 
-control=<input_filename>.ctr 
-effort=standard 
-latch_detect 
-report=slack_table 
-wire_tree=worst 

If you are involved in a hierarchical design, the synthesis of 
individual submodules is needed and can be accomplished 
with the following commands: 

MOTOROLA MPA DATA- DL201 REV 2 
4-161 



AN1604 

gc sub.v subnet.v -target=p_mpa -save -macro 

-edif_file=sub.edf 

gc sub.vhd subnet.vhd -target=p_mpa -save -macro 

-edif_file=design.edf. 

The primary difference with these commands versus the 
top module synthesis commands, listed earlier, is that the 
-macro option is used to specify that this module or entity is 
part of a hierarchical design. It implies that inputs and outputs 
of the module or entity are not I/Os and are replaced by 
internal buffers. Please note that the name "sub" is only a 
suggestion and the naming of file with module or entity names 
should be maintained. 

As discussed earlier in synthesis recommendations, it was 
stated that control over critical timing paths may be needed. In 
these cases, consider the use of the remap option capabilities 
of Galileo. This option does not use optimization in the 
synthesis of the design, but merely maps the circuitry into MPA 
primitives as specified within the HDL source code. Thus the 
timing critical specification of the Boolean equation d=a• (b•c), 
will be retained. Again, emphasizing the fact that the designer 
has to be aware of the output of the synthesizer and take into 
consideration that careful processing of a design is needed for 
speed critical design. When using the remap option, Galileo 
will ignore the save option if it is also specified. With synthesis 
complete, we proceed onto place and route setup. 

MPADS .pat File Setup 

The EDIF netlist produced by Galileo HDL development will 
typically not include pin attributes for configuring the electrical 
characteristics of the 1/0 or timing attributes for optimizing the 
design for speed. MPADS provides a method for doing these 
via an attributes file designated as design.pat. During the 
import of the EDIF netlists, MPADS will search for the .pat file 
for preprocessing of the design. Attributes assigned in the .pat 
file will be inserted into an internally generated netlist 
designated as design.net and will override any attributes 
contained in the EDIF netlist. The attributes that can be 
assigned to a design are listed in Table 1 . 

Don't be overwhelmed by all of these attributes, they are 
simply provided to give you control over your design. Take a 
few moments to get acquainted with the MPADS design 
environment, invoking the graphical user interface. One of the 
features of MPADS is its extensive on line help utility. Launch 
help from the top help menu and select index. Follow the help 
linking sequence: Reference Topic: Libraries, Input and 
Output Pads, 1/0 Pads: Attributes, and then Attributes: 
Attribute Glossary. Get familiar with these and then read on. 

Table 1. Valid Attributes 

Design Attached Place and Attached 
Component Route Attributes 1/0 Attributes 

Net IGNORE_ TIMING 

CLUSTER_SEED 

PLACE_PRIOR!TY 

Symbol IGNORE_ TIMING DPLD_PAD PLACE 

or PULLUP or PULLDOWl'if 

Formal Port DPLD_OPbRIVE 

DPLD_OPLEVEL 

DPLD_OPSLEW 

DPLD_IPLEVEL 

DPLD_PAD_PROPERTIES 

MPADS .pat File Setup -1/0 Setup 

Using your favorite text editor or MPADS View Text File 
editor, we are going to start configuring your 1/0. Open your 
HDL top module design file and select all of your input and 
output declarations and copy them into a new file called 
<design>.pat, which must be located in the same file directory 
as your EDIF netlists <design>.edf. Start assigning your input 
clocks and resets to ipclk and iprst instance primitives 
respectively, only if you have not already assigned them 
through Galileo's control file, by adding the .pat commands: 

port <Clock> instance ipclk 

port <reset> instance iprst 

If you mistakenly assigned ipclk and iprst primitives through 
both the .ctr and .pat files, double assignment may occur, 
adding an extra buffer delay within your design. Remember 
that the ipclk and iprst primitives assign clocks and resets from 
their input pads to the low skew networks within the MPA 
family. 

Assignment of inputs in the MPA family are on an individual 
basis as TIL or CMOS level, so assign them accordingly 
adding the .pat commands: 

port <Clock> attribute dpld_iplevel cmos 

port <reset> attribute dpld_iplevel ttl 

Note that TIL input level is the default input pin attribute, 
but really should be specified for completeness. 

Assignment of outputs, including bi-directional 1/0, in the 
MPA family are also on an individual basis and can be 
configured with the attributes pullup, pulldown, iplevel (cmos 
or ttl input level), oplevel (3V or SV output level), opdrive (6ma 
or 12mA ouput drive), and opslew (low or high slew output for 
12mA drive only). It is recommended to use the pin attribute 
pad_properties to assign all of the above mentioned 
properties all at once with the following statement: 

port <Signal> attribute dpld_pad_properties 
0,0,cmos,SV, 12mA,high 

The above command specifies that the output named signal 
has the attributes of no pullup, no pulldown, cmos input level, 
SV output level, 12mA source/sink, and high slew rate. For 

~~~ ~~·===================M=O=T=O=R=O=LA==M=P=A==DA=T=A=-==D=L=2=01=·=R=EV==2================================ 
4-162

good design technique, configure all of your 1/0 by assigning a
pin attribute command for each one of your pad signals.

User attribute assignments of the following are not
permitted:

opdrive 6ma and opslew low.

pullup 1 and pulldown 1 .

The opdrive 6ma and opslew low selection is not permitted,
because slew control is only available on 12mA drive.

The following combination of user attributes on a single
bi-<lirectional pad should be avoided, as it may produce
unpredictable results:

iplevel cmos and oplevel 3V.

Pad_place is another attribute that can be used for
configuring the 1/0 to specify the pin assignment of a signal.
For new designs it is recommended that the pad_place
attribute should not be used and let MPADS select the pin
assignments during place and route, allowing for an optimal
design output. Pad_place attributes can be used for
production designs that require minor changes by copying
these attributes from the layout.prp file that is created by
MPADS.

MPADS .pat File Setup - Timing Control

MPADS is a timing driven automatic place and route tool
that includes capabilities for the user to specify how a design
will perform in terms of the frequency of operation. This is
based on the maximum worst case delay within the design.
For combinatorial logic the worst delay is the longest path from
an input pad to an output pad. For synchronous logic the worst
case delay is the longest path, which may be from flip-flop to
flip-flop, flip-flop to 1/0, or 1/0 to flip-flop. The user can guide
the timing driven algorithms of MPADS in three ways.

The first is with the adjustment of Auto Layout tool options,
through the MPADS graphical user interface, with controls
such as annealing temperature, target delays, target zone
utilization, etc. The target delay function allows the user to
specify the overall frequency of operation in terms of its period
with resolution in increments of 0.1 ns. Additional details on the
available options and their use are available in the on-line
help facility of the MPA Design System.

The second method involves the use of a separate clock
file, designated as design.elk and is recommended for
advanced users. Here again, additional information is
provided in the on-line help system and is not presented in
this application note.

The third method of influencing the timing driven place and
route algorithms is through the use of the attributes file. Start
off assigning your internally generated clocks and resets to the
low skew networks with the aclk and arst instance primitives
respectively, by adding the .pat commands:

net <int_clock> instance aclk

net <int_reset> instance arst

Note that you will probably need to review your structural
netlists in order to correctly identify the nets that need to be

AN1604

assigned to the low skew networks and that you are limited to
eight for the entire design. You are now ready to assign timing
attributes to nets to control the MPADS timing driven
algorithms. There are basically three attributes that you will
need to review:

The ignore_timing attribute is used to inform the tool which
nets to ignore timing on. If during place and route a signal is
identified as causing the worst case delay within a design
(from the MPADS timing report layout.tim) and its timing is non
critical, it should be assigned the attribute ignore_timing. The
attribute may be set on an symbol (instance), a net, or an
external pin (formal port). If a net has the attribute set, then all
delay paths associated with that net are ignored. If an instance
has the attribute set, then all input and output delay paths from
that instance are ignored. Assigning the attribute to a formal
port has exactly the same effects as assigning it to the 1/0
instance itself. Once all the objects to be ignored have been
identified, their paths are propagated forwards and backwards
through combinatorial gates until clocked objects (or top level
circuit 1/0) are reached. The result is that additional segments
other than those explicitly specified may be ignored for timing
purposes as well.

You are required to use a dummy value with this attribute,
but the value stated is otherwise ignored. Assigning this
attribute to a symbol, net, or formal port frees the timing driven
autolayout algorithms to more optimally cluster, place, and
route the speed critical nets. Examples include:

net <signal> attribute ignore_timing dummy_arg

port <signal> attribute ignore_timing dummy_arg

instance <inst> attribute ignore_timing dummy_arg

The cluster_ seed attribute is used to assign a cluster seed
to a net. This will cause the autolayout clustering algorithm to
treat all instances that connect to that net specially. The action
taken depends on the value of the attribute, as follows:
0 ignore this net during clustering. Setting this

attribute on a net is likely to cause the net to be
implemented in global interconnect.

default operation
> 1 weight this net by the given factor in the

clustering
The maximum value for the cluster_seed attribute is 1000.

Example:

net <signal> attribute cluster_seed 2

The place_priority attribute can be applied to a net to
increase the chance that the autolayout algorithm will route the
net more efficiently and with less delay in a physically smaller
area, at the possible expense of surrounding nets. The value
assigned to place_priority should be an integer in the range of
1 (default) to 10 inclusive. Higher values of place priority allow
the designer to prioritize nets relative to each other. Example:

net <signal> attribute place_priority 2

It is really only through experience that MPADS users will
learn how to fine tune their designs through the timing driven
algorithms with the three timing control methods provided by
the tools. A suggested methodology for high speed design is

==================~rlil
MOTOROLA MPA DATA - DL201 REV 2 ~

4-163

AN1604

to first assign critical clocks to the low skew networks by using
the Galileo .ctr or MPADS .pat control files that instantiate the
ipclk and aclk primitives within the design. Try running the
design through MPADS and if the design is not meeting the
target speed goals, start assigning the ignore_timing attributes
within the .pat file to those nets or pads that are not critical
timing paths. Run MPADS again and if timing is not met,
proceed with assigning critical logic sections using the
cluster seed attribute and critical nets using the place_priority
attribute. These attributes will place and route these logic
sections as high priority with critical timing algorithms. If more
control over critical nets and instances is needed, proceed to
the use of the MPADS .elk control file. ·

MPADS

The Motorola Programmable Array Design System
(MPADS) is a push button automatic timing driven place and
route tool set for MPA development. MPADS provides the
capabilities to import multiple EDIF netlists, to place and route
the design, to generate a configuration file for device
programming, to back annotate a structural netlist for post
simulation, and to view the layout of a completed chip design.
The design files generated by a HDL designer include:

design.elk MPADS timing control (optional)
design.edf Top EDIF netlist (Galileo)
sub.edf Hierarchical submodule EDIF netlist
design.pat MPADS attributes file (optional)
design.v Verilog source code
sub.v Hierarchical Verilog submodule
test.v Verilog test bench code (simulation)
design.vhd VHDL source code
sub.vhd Hierarchical VHDL sub-entity
test.vhd VHDL test bench code (simulation)

Note that the filenames are recommendations, but the
extensions are required. If a hierarchical design is used, the
name "sub" should be replaced with the module or entity's
name.

The files and directories created by MPADS include:

layout1 .dsn
design
design.net
layout1.log
layout1 .ext
layout1 .lyt
layout1 .prp
layout1 .tim
layout1 .vba
layout1 . vhd

Design context
Autolayout results subdirectory
MPA-DS netlist
MPADS design log
Context
Layout
Port report
Timing report
Verilog back annotation
VHDL back annotation

Note that the name "layoutl .xxx" is only a suggestion and is
only used as an example within this article for consistimcy.

MPADS Import

Netlist import is the process used by MPADS to import a
single flat EDIF netlist or multiple EDIF netlists produced from
Galileo into the Autolayout Tool. The Nellis! Import tool runs in
a standard Tool Execution Window and any errors

encountered during netlist import will be output to this window
and to the c:/design/design/layout.log file. The import
performs a reader function where it will open up the design.edf
file and, if other unresolved modules are referenced in this
netlist and the multiple reader option is enabled, import will
search and open the other required EDIF files.

Once the netlist is read, import will proceed to search and
read the attributes file design.pat. It will instantiate ipclk, iprst,
aclk, arst, apbuf, and pabuf primitives if required .and assign
the additional attributes to nets, ports, and instances as
specified in the .pat file.

The next retargeting stage involves checking for unused
inputs and if any are detected the tool will fail import. The user
must go back to the original HDL source code and remove the
unused inputs from the design and resynthesize. Unused
output signals are then searched, resulting in them being
stripped from the design with all the associated u.nused logic.
Bubble pushing is then executed where INV inverter primitives
are stripped out, assigning them into the programmable input
and output inverters within the MPA core cells.

Wired-OR splitting occurs next, where output drivers are
separated from the input loads by the assignment of an
intermediate buffer preparing the design for place and route.

The import process concludes by creating an intermediate
netlist designated with the file name design.net. If errors are
encountered during import, the design.net file name will not be
generated. If you make changes to the .pat file after running
import, you will need to rerun import to make sure that the
changes get incorporated into the intermediate netlist.

MPADS Autolayout
The Autolayout Tool performs fully automatic timing driven

layout for the current design. The Autolayout Tool runs in a
Tool Execution Window and any errors that are encountered
during layout will be output to this window and to the file
c:/design/design/layout.log, Control over the autolayout
process is provided through the autolayout option switches
and attributes assigned through the .pat file.

The autolayout process first performs definition checking
to make sure that the design definition is suitable for
autolayout. It proceeds to a clustering phase, where sections
of interconnected logic are grouped together, dividing the
design into smaller pieces called clusters. Partitioning is then
executed to assign clusters of logic into specific zones within
the chip. Preplacement is executed assigning 1/0 to specific
pin assignments automatically or to specific pin assignments
specified by the user through the .pat file. Global routing is
executed routing the global nets to the ports cells of the zones
and routing the low skew network clocks. Zone routing is then
executed routing each zone using local and medium bus
interconnections for its cluster assignments. The autolayout
process concludes with the generation of the following files:

layout.Um - A timing report file which includes a list of
the critical path nets, allowing the user to
analyze the timing aspects of the layout

layout.prp - A port report file which contains the pin
out assignments of the resulting layout,

layout.lyt - A layout file containing the final layout.
This layout is used as the input to the
configuration generator to create a

~~.,'/ ~~l==:::::::==============M=O=T~O~R~O=LA==M~P~A=D~A~TA==-=D~L2=:=01==RE=V72::=========::::::::::::::=================
4-164

configuration bit-stream for the target
device.

layout.ext - A context file which contains the
complete data base generated from each
phase of autolayout.

MPADS Autolayout Options

Autolayout options are set using the MPADS graphical user
interface Tool Options button. The choices available are
outlined here:

Autolayout: Parameter Group is used to reference a
particular set of parameter settings. Any number of Autolayout
Parameter Groups can be set up and saved under user
specified group names for easy access to commonly used
parameter settings. These parameter groups can be selected
from the Autolayout options dialog. It is recommended for the
new MPADS designer to start using the predefined parameter
groups that are available. For high speed designs the
Minimum Delay parameter group should be selected.

Autolayout: Utilization controls the number of functional
cells that the partitioning phase will attempt to place within a
zone, that consist of a 100 core cell area. Its value is the
percentage of functional core cells in the imported design
against the recommended maximum number of 50 usable
core cells. Autolayout will automatically exceed this limit if it is
required.

Minimum:
Maximum: 150
Default: 80

(0.5 % or 1 core cell)
(75% or 75 core cells)
(40% or 40 core cells)

Autolayout: Effort controls the amount of work applied to the
partitioning operation. A larger value will generally produce a
better result in the partitioning for high utilization circuits. The
time taken for partitioning is directly related to Effort. Effort
must be balanced by the Start Temp parameter for optimum
results.

Minimum:
Maximum: 100
Default: 30

Autolayout: Start Temp controls the start temperature for the
partitioning process, using a simulated annealing technique. A
higher temperature allows the average cost of a move during
partitioning to be greater. Increasing the start temperature
may result in a better partition, especially in high utilization
designs. Note that a high value of Start Temp may result in a
bad partition if not used in conjunction with a larger value for
the Effort parameter.

Minimum: 1
Maximum: 100
Default: 10

Simulated annealing is a software technique used for
combinatorial optimization. It simulates the relaxation of
stresses during the repeated heating and cooling of materials,
where the temperature that the material is heated to each time
is gradually reduced. Simulated annealing is a stochastic
technique, and will produce different results for different sets
of starting conditions (such as layout parameters, seed
values, etc.). Simulated annealing is used by MPADS during
the Partitioning and Zone Routing phases of autolayout.

AN1604

Autolayout: Attempts controls the number of runs through
the partitioning phase. More runs should deliver a better
partition.

Minimum:
Maximum: 20
Default:

Autolayout: Backoff controls the percentage relaxation of
the target delay if the initial target is not obtainable. This is
expressed as a percentage of the previous target delay.

Minimum: 0%
Maximum: 100%
Default: 30%

Increasing this parameter makes the next attempt at
autolayout to use a new Delay Target further away from the
maximum possible delay thus making it easier to complete.
This is expressed as a percentage increase in the optimum
target delay.

Autolayout: Delay Cost controls the weighting given to
timing during partitioning. If a particular partition includes a net
that is failing to meet its timing target, then the cost of that
partition will be artificially raised by an amount proportional to
the delay cost. Increasing the delay cost is likely to trade off
against achievable utilization.

Minimum: O
Maximum: 100
Default: 5

Autolayout: Delay Target controls the desired maximum
delay target for the autolayout process to achieve, in steps of
0.1ns. For combinatorial circuits, the maximum delay is
calculated from the longest path from input to output. For
synchronous circuits, the maximum delay is calculated from
the longest path between flip-flops, or from 1/0 to flip-flop,
whichever is the greater. This parameter is only relevant when
you are using the standard timing model. If a clock file is
specified, then the Delay Target parameter will be ignored.

Minimum: O
Maximum: 9999
Default: 50 (5ns)

Autolayout: Fanout controls the maximum fan-out of a net
which is included in the clustering. All the nets which have a
fan-out greater than this value are ignored during clustering.
Any nets ignored during clustering are more likely to have to
be globally routed.

Minimum: 1
Maximum: 100
Default: 2

Autolayout: Min Zone Delay controls the delay of segments
within a zone to be within a certain value. The delay is
specified in unit of 0.1 ns. The smaller the delay is, the harder
the zone routing algorithm will work to reduce delays within the
zones.

Minimum: O
Maximum: 9999
Default: 5 (0.5ns)

Advanced Autolayout: Seed Setting the seed for the
autolayout process lets you control the repeatability of the
autolayout. If you run the autolayout with a given seed value,

===============================M=o=TO==RO=L=A=M==PA==DA=T=A=-==D=L2=0=1=R=E=v=2==========================1~
4-165

AN1604

you can reproduce the same autolayout from the same circuit
simply by setting the same seed value.

Minimum: O
Maximum: 9999
Default: 1

Several of the autolayout algorithms use stochastic
techniques similar to simulated annealing that require a
pseudo-random number generator. The Seed is used to set
the random number generator to a known point in the
sequence.

MPADS Layout Viewer

The MPA Design System provides a Layout Viewer tool
which gives a graphical view of the completed layout. This
view shows the instances of primitives in the design and the
routing that connects them together. Aspects of the device
architecture can also be viewed.

Multiple graphical and browser views may be created.
Moving about in the graphical view is made possible by
zooming and panning. Instances, nets and ports can be
selected. The mouse cursor changes according to the design
object under it, and the status bar gives more information
about the design object beneath the cursor.

Note that no changes to the layout are possible with the
Layout Viewer. Please refer to the on-line help facility for more
details.

MPADS Device Configuration

Device configuration is the process of translating a
completed layout into a stream of 1 's and O's used to program
the actual device. Pressing the device configuration button
launches this tool. Please refer to the on-line help facility for
more details.

MPADS Back Annotation

The MPA Design System has a back annotation tool that
incorporates the post place/route gate and net delay timing
into a structural netlist in Verilog (layout.vba) and for VHDL
1076 (layout.vhd) formats. These netlists are useful for
verifying worst case timing of a design with third party
simulators.

The Standard Delay Format (SDF) will be supported in
future releases of MPADS.

Verilog Simulation

The structural Verilog file that is produced by MPADS
assumes that you will be using a stimulus file (test bench), and
that the module name of your stimuli is stimulus. It is also
assumed that you instantiate your design within your stimulus
file with an instance name of u1, for example:

II Stimulus file, contains stimuli for circuit DESIGN
II the module name is stimulus
module stimulus;
reg IN, CLK, RESET;
II the instance name is u1
DESIGN u1 (OUTPUT,IN,CLK,RESET);
<rest of declarations and stimuli>

In the Verilog back annotation file layout1 .vba, the design is
instantiated with the name of the EDIF file that was passed
into the MPA Design System. If a stimulus file is not used (eg. if
the design is the root of the hierarchy), or if you choose to use
different names for your stimulus and instance names, then
edit the layout1 .vba file and replace the term stimulus.u1 in the
file that says:

'define module_name stimulus.u1

with your design name. For the example above, you would
enter:

'define module_name DESIGN

The back annotation information that is produced by the
autolayout tool (as a by-product of the autolayout process) is
generated by a different method from the data generated by
the more accurate back annotation tool. Some values are
different for the two back annotation files (even though they
will both be called layout1 .vba). It is recommended that you
post simulate the layout1 .vba file generated by the back
annotation tool to simulate the true timing of the placed and
routed design. Please enter the line to your stimulus file when
you simulate files from the autolayout tool:

'define source_autolayout

If you are performing a back annotation tool simulation, then
please enter the line into your stimulus file:

'define source_back_annotation

Note that running back annotation will overwrite the
layout1 .vba file with data from the back annotation tool, but
this is fine, since you should be post simulating from the back
annotation netlist.

To allow for the best cross-platform capability and flexibility,
MPADS has been designed not to be case sensitive. The
Verilog hardware description language, however, is case
sensitive. If a design is named in lower case, or a mixture of
lower case and upper case, then the name of the design will
be converted to all capitals in the Verilog back annotation file.
This will require you to change your signal names and module
name from lower to upper case within your test bench file,
stimulus.v.

Please note that it is not possible to infer the correct
ordering of a bus from the information contained in an EDIF
netlist and MPADS will arbitrarily order busses in big-endian
style (for example input [15:0]MYBUS;) in the inpuVoutput
declarations section of the Verilog back annotation file. II you
are writing a new stimulus file (or test bench) for use with the
MPA Design System, please use big-endian style. If you are
using the MPA Design System with a preexisting stimulus file
that has busses ordered in little-endian style (for example
input [O: 15JMYBUS;) then you must re-order the bus
declarations either in the stimulus file or in the Verilog back
annotation file.

Leaving inputs unconnected (with no driver) is not a
supported method of dealing with unused inputs. It is
recommended that pre-layout simulation is performed to
detect any inputs unintentionally left unconnected.
Post-layout simulation may not show up unconnected inputs.
In the post-layout simulation, unconnected inputs may be
connected to logic high for simulation purposes.

~~"" ~c·==================M=O=T=O=R=O=LA==M=P=A=D=AT=A=-==D=L2=0=1=R=E=v=2===============================
4-166

There are some differences between Verilog simulators. If
you are having difficulty with the library, try disabling the line of
the library (c:/mpa/verilog/library.v) that reads:

'define XL_comp

and enabling the line that reads:

II 'define OVl_comp

The conditions under which you may need to do this are
explained more fully in the library itself.

VHDL Simulation
The VHDL Simulation Library is equivalent to the microlib

and iolib Technology Schematic and has been separated into
two files:

1. Technology Cell Simulation Models (see
c:/mpa/vhdl/modelmpa.vhd) Each model has a generic
map to provide a mechanism for passing timing
parameters from MPADS back annotation facility. The
functionality of each Technology Cell is described using
in house behavioral models. The VHDL Initiative
Towards ASIC Libraries (VITAL) is not yet supported.

2. Technology Cell Component Declarations (see
c:/mpa/vhdl/packmpa.vhd) provide the Component
Declarations necessary for you to instantiate
Technology Cells into your source designs and it is also
used by the MPADS back annotation tool. The file is split
into microlib and iolib MPA1000 technology libraries. To
make the libraries visible within your VHDL design code
include the statements:

library mpa; - -for Motorola MPA1000

use mpa.microlib.all;

AN1604

use mpa.iolib.all;

The VHDL Simulation Library has been extensively tested
using Model Technology V-System v4.2e simulator, although
it should be compatible with all other comprehensive VHDL
Simulators. Both files need to be compiled into a Specific
Technology Library:

library mpa; - for Motorola MPA 1000

The VHDL Simulation Library requires visibility to the
following packages:

use Std.Standard.all;

use IEEE.Std_logic_1164.all;

The MPADS Back Annotation tool provides a mechanism
for performing Post-Layout simulation of a
synthesized/structural VHDL design. The term back
annotation is used loosely with reference to the MPADS tool,
which generates a structural VHDL representation of the
whole design including:

1. Any Technology Cell optimizations which were made
during import.

2. Technology Cell intrinsic timing delays

3. Net routing timing delays

VHDL Post-layout Simulation can be applied to designs , 4 ,
which were not captured in VHDL. The VITAL Standard Delay
File Format (SDF) is not currently supported by the MPA
Design System.

A known problem exists with Bi-Directional Entity Ports,
where the Mode of a Entity Port Declaration is not set to 'inout'
if the port connects to the External port (device pin) of a
Bi-directional 1/0 Cell. The fix is to manually change port
mode from 'out' to 'inout'

====:::============1riiiil
MOTOROLA MPA DATA- DL201 REV 2 ~

4-167

AN1604

Appendix A - EDIF Netlist Example
(edif REFRESH
(edifVersion 2 0 0)
(edifLevel O)
(keywordMap (keywordLevel 0))
(external extlib (edifLevel 0)
(technology (numberDefinition))
(cell INV (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port A (direction INPUT))
(port QN (direction OUTPUT)))))

(cell AN2 (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port B (direction INPUT))
(port A (direction INPUT))
(port Q (direction OUTPUT)))))

(cell OPBUF (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port O (direction INPUT))
(port EXTOUT (direction OUTPUT)))))

(cell IPBUF (cellType GENERIC)
(view netlist. (viewType NETLIST)
(interface
(port EXTIN (direction INPUT))
(port I (direction OUTPUT)))))

(cell DFE (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port E (direction INPUT))
(port D (direction INPUT))
(port CLK (direction INPUT))
(port Q (direction OUTPUT)))))

(cell DF (cellType GENERIC)
(view netlist (viewType NETLIST)
(interface
(port D (direction INPUT))
(port CLK (direction INPUT))
(port Q (direction OUTPUT))))))

(library REFRESH
(edifLevel 0)
(technology (numberDefinition))
(cell REFRESH (cellType GENERIC)

(view Synthesis (viewType NETLIST)
(interface
(port s_25mhz (direction INPUT))
(port timerclk (direction OUTPUT)))

(contents
(instance (rename il "i315") (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename i2 "i320") (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename i3 "i325") (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename i4 "i330") (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename i5 "i335") (viewRef netlist (cellRef INV (libraryRef extlib))))

(instance (rename i6 "i340") (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename i7 "i341") (viewRef netlist (cellRef AN2 (libraryRef extlib))))
(instance (rename i8 "i336") (viewRef netlist (cellRef AN2 (libraryRef extlib))))
(instance (rename i9 "i331") (viewRef netlist (cellRef AN2 (libraryRef extlib))))
(instance (rename ilO "i326") (viewRef netlist (cellRef AN2 (libraryRef extlib))))

~~.,ti ~~·=:=:=:=::=:=::=::=:=:M=O=TO==R=O=LA==M=P=A=D=A=TA=-==D=l=2=01=R=E=V=2=======::=::=::=::=::=::=::=::=::=::=::=::=
4-168

AN1604

(instance (rename ill "i321") (viewRef netlist (cellRef AN2 (libraryRef extlib))))
(instance (rename il2 "i316") (viewRef netlist (cellRef AN2 (libraryRef extlib) I I I
(instance (rename il3 "i345") (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename iO "temp_O_O") (viewRef netlist (cellRef INV (libraryRef extlib))))
(instance (rename il4 "i180") (viewRef netlist (cellRef OPBUF (libraryRef extlib) I I I
(instance (rename il5 "IPBUF_s_25mhz_int") (viewRef netlist (cellRef IPBUF (libraryRef

extlibl I I I
(instance XMPLR_INST_29
(instance XMPLR_INST 31
(instance XMPLR_INST_33
(instance XMPLR INST 35
(instance XMPLR_INST 37
(instance XMPLR_INST 39
(instance XMPLR_INST_41
(instance XMPLR_INST 43
(net s 25mhz
(joined
(portRef s_25mhz)

(viewRef net list
(viewRef net list
(viewRef netlist
(viewRef net list
(viewRef netlist
(viewRef net list
(viewRef netlist
(viewRef netlist

(portRef EXTIN (instanceRef il5)) I I
(net s 25mhz int
(joined
(portRef I (instanceRef il5 I l

(cellRef
(cellRef
(cellRef
(cellRef
(cellRef
(cellRef
(cellRef
(cellRef

(portRef CLK (instanceRef XMPLR_INST_29))
(portRef CLK (instanceRef XMPLR_INST_3 l))
(port Ref CLK (instanceRef XMPLR_INST_3 3))
(portRef CLK (instanceRef XMPLR_INST_3 5))
(portRef CLK (instanceRef XMPLR_INST_3 7))
(portRef CLK (ins tanceRef XMPLR_INST_3 9))
(portRef CLK (ins tanceRef XMPLR_INST_41))
(portRef CLK (instanceRef XMPLR_INST_43))))

(net (rename no "timerclk")
(joined
(portRef EXTOUT (instanceRef il4))
(portRef timerclk) I)

(net tirnerclk int
(joined
(portRef Q

(portRef A

(portRef 0
(net (rename
(joined
(portRef Q

(portRef A

(portRef A

(net (rename
(joined
(portRef Q

(portRef A

(portRef A

(instanceRef XMPLR_INST_29))
(instanceRef ill I
(instanceRef il4))) I
ref_6 "ref_6_")

(instanceRef XMPLR_INST_31))
(instanceRef i2))
(instanceRef il2) II I
ref_S "ref_S_")

(instanceRef XMPLR_INST_33))
(instanceRef i3) I
(instanceRef ill))) I

(net (rename ref_4 "ref_4_")
(joined
(portRef Q (instanceRef XMPLR_INST_35))
(portRef A (instanceRef I4))

(portRef A (instanceRef ilO) II I
(net (rename ref_3 "ref_3_")
(joined
(portRef Q (instanceRef XMPLR_INST_37))
(portRef A (instanceRef iS))
(portRef A (instanceRef i9))) I

(net (rename ref 2 "ref_2_")

DFE (libraryRef extlib) I I I
DFE (libraryRef extlib)) I)
DFE (1 ibr aryRe f extlib) I I I
DFE (libraryRef extlib)) I I
DFE (libraryRef extlib))) I
DFE (libraryRef extlib) I) I
DFE (libraryRef extlib))) I
DF (libraryRef extlib) I I I

===============================M=O=T=O=RO=L=A=M==PA==DA=T=A=-==D=L2=0=1=R=E=V=2=========================1~
4-169

~

AN1604

(joined
(portRef Q
(portRef A

(portRef A

(net (rename
(joined
(portRef Q
(portRef B

(portRef A

(net (rename
(joined
(portRef Q
(portRef A

(portRef E

(portRef A

(instanceRef XMPLR_INST_39))
(instanceRef i6))
(instanceRef i8))))
ref_l "ref_l_")

(instanceRef XMPLR_INST_41))
(instanceRef i7))
(instanceRef i13))))
ref_O "ref_O_")

(instanceRef XMPLR_INST_43))
(instanceRef i7))
(instanceRef XMPLR_INST_41))
(instanceRef iO))))

(net (rename nl "n315")
(joined
(portRef QN (instanceRef il))
(portRef D (instanceRef XMPLR_INST_29))))

(net (rename n2 "n320")
(joined
(portRef QN (instanceRef i2))
(portRef D (instanceRef XMPLR_INST_31))))

(net (rename n3 "n325")
(joined
(portRef QN (instanceRef i3))
(portRef D (instanceRef XMPLR_INST_33))))

(net (rename n4 "n330")
(joined
(portRef QN (instanceRef i4))
(portRef D (instanceRef XMPLR_INST_35))))

(net (rename n5 "n335")
(joined
(portRef QN (instanceRef i5))
(portRef D (instanceRef XMPLR_INST_37))))

(net (rename n6 "n340")
(joined
(portRef QN (instanceRef i6))
(portRef D (instanceRef XMPLR_INST_39))))

(net (rename n7 "n341")
(joined
(portRef Q
(portRef B
(portRef E

(net (rename
(joined
(portRef Q
(portRef B
(portRef E

(net (rename
(joined

(portRef Q
(portRef B
(portRef E

(net (rename
(joined
(portRef Q
(portRef B
(portRef E

(net (rename

(instanceRef
(instanceRef
(instanceRef
n8 "n336")

(instanceRef
(instanceRef
(instanceRef
n9 "n331")

(instanceRef
(instanceRef
(instanceRef
nlO "n326")

(instanceRef
(instanceRef
(instanceRef
nll "n321")

i 7))
i8))
XMPLR_INST_39))))

i8))
i9))
XMPLR_INST_37))))

i9))
ilO))
XMPLR_INST_35))))

ilO))
ill))
XMPLR_INST_33))))

~~~ ~~•=:=:=:=:=:=:=:=:=:M=O=T=O=R=O=LA=:M=P=A=D=A=TA=:-=D=L=2=0=1=R=EV=:2=:=:=:=:=:=:=:=:=:=:=:=:=:=:== 
4-170 



I joined 
(portRef Q ( instanceRef ill)) 
(portRef B ( instanceRef i12)) 
(portRef E (instanceRef XMPLR_INST_31) )) ) 

(net (rename n12 "n316") 
(joined 
(portRef Q ( instanceRef i12)) 
(portRef E (instanceRef XMPLR_INST_29) )) ) 

(net (rename n13 "n345") 
(joined 
(portRef QN (instanceRef i13)) 
(portRef D (instanceRef XMPLR_INST_41)))) 

(net I renam<; temp_O "temp_O_") 
(joined 
(portRef QN (instanceRef iO)) 
(portRef D (instanceRef XMPLR_INST_43)))) )) ) ) 

(design REFRESH 
(cellRef REFRESH 
(libraryRef REFRESH)))) 

Appendix B - Verilog Back Annotated Netlist Example 
II Verilog delay model produced by MPA Design System 2.5.0 
II on Thu Dec 05 08:04:30 1996 
II prologue.vba start 
'timescale lOOpsllOOps 
II setup timescale to correct value for back annotated values 
'define post_layout 
II controls the functionality of the library.v file to indicate 
II that a post-layout simulation is being performed 
'define module_narne stimulus.ul 
II this assumes you are using a stimulus file, where the module 
II name of the stimuli is stimulus and you have instantiated 
II your design with an instance name of ul. 
'default_nettype wire 
II implicitly declared nets are of type wire 
II 'define source_autolayout 
'define source_back_annotation 
II If you have not already made one of these defines in your 
II stimulus file, please enable one of the above statements. 
'ifdef source_autolayout 
II If this file was written by the autolayout software, please 
II define source_autolayout in your stimulus file, otherwise 
II the values for back annotation will be used. 
II The values written by the autolayout software for the 
II parameters below are ignored in favour of the values below. 
'define 'I'PHLCQ 15 
'define TPLHCQ 15 
'define TPHLRQ 15 
'define TPLHRQ 15 
'define TPHLSQ 15 
'define TPLHSQ 15 
'define TPHLDQ 35 
'define TPLHDQ 35 
'define TPHLEQ 25 
'define TPLHEQ 25 
'define TSUD 15 

'if def source_back_annotation 
module display; 

initial begin 
$display("Please use only one of 'define source_autolayout"); 
$display("or 'define source_back_annotation, not both."); 

AN1604 

=============================M=O=T=O=R=O=LA==M=PA==DA=T=A=-==DL=2=0=1=RE=V=2=========================~ 
4-171 



AN1604 

'endif 

end 
endrnodule 

module display_mode; 
initial $display("Autolayout values have been selected."); 

endrnodule 
'else 
II If this file was written by the back annotation software, please 
II define source_back_annotation in your stimulus file. 
II The values written by the back annotation software for the 
II parameters below are ignored in favour of the values below. 
'define TPHLCQ 13 
'define TPLHCQ 13 
'define TPHLRQ 13 
'define 
'define 
'define 
'define 
'define 
'define 

TPLHRQ 
TPHLSQ 
TPLHSQ 
TPHLDQ 
TPLHDQ 
TPHLEQ 

13 
13 
13 
13 
13 
13 

'define TPLHEQ 13 
'define TSUD 14 

module display_mode; 
initial $display("Back Annotation values have been selected"); 

endrnodule 
'ifdef source_back_annotation 
'else 

module display; 
initial begin 

$display( "The simulator does not know if your data has come from"); 
$display("the AutoLayout software or the Back Annotation software."); 
$display("Back Annotation software values have been used as default."); 
$display("Please enter the statement 'define source_autolayout or"); 
$display("'define source_back_annotation in your stimulus file as"); 
$display("appropriate."); 

'endif 
'endif 

end 
endrnodule 

'define tCLKMARK 15 
II minimum time from CLK A to CLK v 
'define tCLKSPACE 15 
II minimum time from CLK v to CLK A 
'define tRECOVERY 15 
II minimum time from RN A or SN A to CLK A 

'define tRESETHOLD 15 
II minimum time from RN v to RN A 
'define tSETHOLD 15 
II minimum time from SN v to SN A 
'define tEMARK 15 
II minimum time from EA to Ev 
'define tESPACE 15 
II minimum time from Ev to EA 
'define tETOCLK 3 
II minimum time from Ev or EA to CLK A 
'define tCLKTOE 15 
II minimum time from CLK A to Ev 
'define tSUD 'TSUD 
II minimum time from DA or D v to Ev (latches) or CLK A (FlipFlops) 
II There is no minimum hold time. Some of the above apply only to 

~~.,'! ~c::=================M=o=r=o=R=O=LA==M=P=A=D=AT=A=-==D=L2=0=1=R=E=v=2=.============================== 
4-172 



II latches, and some apply only to FlipFlops. 
II Infringements of the above minimums should generate warning messages 
II in most simulators, even though the simulation may perform correctly. 
II It is unlikely that the real device will behave the same way as the 
II simulation if any of the above warnings are encountered during 
II post-layout simulation. 
II prologue.vba end 
module REFRESH(S_25MHZ, TIMERCLK); 

input S_25MHZ; 
output TIMERCLK; 
wire S_25MHZ; 
wire TIMERCLK; 
wire N315; 
wire N316; 
wire N320; 
wire N321; 
wire N325; 
wire N326; 
wire N330; 
wire N331; 
wire N335; 
wire N336; 
wire N340; 
wire N341; 
wire N345; 
wire S_25MHZ_INT; 
wire TEMP_O_; 
IPCLK #(0, 0, 0, 0) IPBUF_S_25MHZ INT 

(.I(S_25MHZ_INT) , 
.EXTIN(S_25MHZ) ) ; 

OPBUF #(0, 0, 21, 21) I180 
(.EXTOUT(TIMERCLK) 
.O(N315) ) ; 

AN2 #(0, 0, 33, 29, 18, 14) I316 
( .Q(N316) , 
.A (N320) , 
.B(N321) ) ; 

AN2 #(0, 0, 40, 36, 12, 8) I321 
( .Q(N321) , 
.A(N325) , 
.B(N326) ) ; 

AN2 #(0, 0, 46, 43, 14, 9) I326 
( .Q(N326) , 
.A(N330) , 
.B(N331) ) ; 

AN2 #(0, 0, 13, 8, 12, 8) I331 
(.Q(N331) , 
.A(N335) , 
.B(N336) ) ; 

AN2 #(0, 0, 26, 21, 23, 17) I336 
( .Q(N336) , 
.A(N340) , 
.B(N341) ) ; 

AN2 #(0, 0, 13, 9, 13, 8) I341 
( .Q(N341) , 
.A(TEMP_O_) , 
.B(N345) ) ; 

DFE #(0, 0, 21, 21, 24, 24, 6, 4) XMPLR_INST_29 
( ,Q(N315) , 
.CLK(S_25MHZ_INT) , 

AN1604 

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=01==R=EV==2==========================1~ 
4-173 



AN1604 

.D(-N315) , 

.E(N316) ) ; 
DFE #(0, 0, 21, 21, 23, 24, 22, 20) XMPLR_INST_31 

(.Q(N320) , 
.CLK(S_25MHZ_INT) 
.D(-N320) , 
.E(N321) ) ; 

DFE #(0, 0, 21, 21, 21, 21, 6, 4) XMPLR_INST_33 
( .Q(N325) , 
.CLK(S_25MHZ_INT) 
.D(-N325) , 
.E(N326) ); 

DFE #(0, 0, 21, 21, 23, 24, 19, 16) XMPLR_INST_35 
(.Q(N330) , 
.CLK(S_25MHZ_INT) 
.D(-N330) , 
.E(N331) ) ; 

DFE #(0, 0, 21, 21, 21, 21, 33, 31) XMPLR_INST_37 
(.Q(N335) , 
.CLK(S_25MHZ_INT) 
.D(-N335) , 
.E(N336) ) ; 

DFE #(0, 0, 21, 21, 24, 24, 23, 19) XMPLR_INST_39 
(.Q(N340) , 
.CLK(S_25MHZ_INT) 
.D(-N340) , 
.E(N341) ) ; 

DFE #(0, 0, 21, 21, 21, 21, 7, 5) XMPLR_INST_41 
(.Q(N345) , 
.CLK(S_25MHZ_INT) 
.D(-N345) , 
.E(TEMP_O_) ) ; 

DF #(0, 0, 21, 21, 21, 22) XMPLR_INST_43 
( .Q(TEMP_O_) , 
.CLK(S_25MHZ_INT) 
.D(-TEMP_O_) ) ; 

endmodule 
module annotate; 
defparam 

'module_name.IPBUF_S_25MHZ_INT.TPLHIN 19, 
'module_name.IPBUF_S_25MHZ_INT.TPHLIN 19, 
'module_name.!180.TPLHOUT = 50, 
'module_name.!180.TPHLOUT = 46, 
'mocule~name.I316.TPLH 0, 
'module_name.I316.TPHL 0, 
'module_name.I321.TPLH 0, 
'module_name.!321.TPHL 0, 
'module_name.I326.TPLH 0, 
'module_name.I326.TPHL 0, 
'module_name.I331.TPLH 0, 
'module_name.!331.TPHL Q, 
'module_name.1336.TPLH 0, 
'module_name.!336.TPHL 0, 
'module_name.!341.TPLH 0, 
'module_name.I341.TPHL 0, 
'module_name.XMPLR_INST_29.TSUD 
'module_name.XMPLR_INST_29.TPLHCQ 
'module_name.XMPLR_INST_29.TPHLCQ 
'module_name.XMPLR_INST_31.TSUD = 
'module_name.XMPLR_INST_31.TPLHCQ 

14, 
= 13, 
= 13, 
14, 
= 13, 

~~"I'/ ~c==================M=O=T=O=R=O=LA==M=P=A=D=AT=A=-==o=L2=0=1=R=E=v=2=============================== 
4-174 



endrnodule 

'module_name.XMPLR_INST_31.TPHLCQ = 13, 
'module_name.XMPLR_INST_33.TSUD = 14, 
'module_name.XMPLR_INST_33.TPLHCQ = 13, 
'module_name.XMPLR_INST_33.TPHLCQ = 13, 
'module_name.XMPLR_INST_35.TSUD = 14, 
'module_name.XMPLR_INST_35.TPLHCQ = 13, 
'module_name.XMPLR_INST_35.TPHLCQ = 13, 
'module_name.XMPLR_INST_37.TSUD = 14, 
'module_name.XMPLR_INST_37.TPLHCQ = 13, 
'module_name.XMPLR_INST_37.TPHLCQ = 13, 
'module_name.XMPLR_INST_39.TSUD = 14, 
'module_name.XMPLR_INST_39.TPLHCQ = 13, 
'module_name.XMPLR_INST_39.TPHLCQ = 13, 
'module_name.XMPLR_INST_41.TSUD = 14, 
'module_name.XMPLR_INST_41.TPLHCQ = 13, 
'module_name.XMPLR_INST_41.TPHLCQ = 13, 
'module name.XMPLR_INST_43.TSUD = 14, 
'module_name.XMPLR_INST_43.TPLHCQ 13, 
'module_name.XMPLR_INST_43.TPHLCQ = 13; 

Appendix C - VHDL Back Annotated Netlist Example 
-- VHDL delay model produced by MPA Design System 2.3.0 
-- on Wed Dec 04 15:13:17 1996 
library ieee; 
use ieee.std_logic_1164.all; 
-- Motorola MPA1000 FPGA Family 
library mpa; 
use mpa.iolib.all; 
use mpa.microlib.all; 

entity REFRESH is 
port ( 

S_25MHZ : in std_logic; 
TIMERCLK : out std_logic); 

end REFRESH; 
architecture LAYOUTl of REFRESH is 

signal 
N315, 
nN315, 
N316, 
N320, 
nN320, 
N321, 
N325, 
nN325, 
N326, 
N330, 
nN330, 
N331, 
N335, 
nN335, 
N336, 
N340, 
nN340, 
N341, 
N345, 
nN345, 
S_25MHZ_INT, 
TEMP_O, 
nTEMP_O : std_logic; 

AN1604 

=====================================:jiii1 
MOTOROLA MPA DATA - DL201 REV 2 ~ 

4-175 



AN1604 

begin 
IPBUF_S_25MHZ INT : IPCLK 

generic map 

1180 OPBUF 

I316 AN2 

I321 AN2 

I326 AN2 

I331 AN2 

TPLHIN => 1.9 ns, 
TPHLIN => 1.9 ns) 

port map ( 
I => S_25MHZ_INT, 
EXTIN => S_25MHZ) ; 

generic map ( 
TPLHOUT => 5.0 ns, 
TPHLOUT => 4.6 ns, 
TPLHO => 2.1 ns, 
TPHLO => 2.1 ns) 

port map ( 
EXTOUT => TIMERCLK, 
0 => N315); 

generic map ( 

port map 

TPLH => 0 . 0 ns' 
TPHL => 0 . 0 ns, 
TPLHA => 3 . 3 ns' 
TPHLA => 2. 9 ns, 
TPLHB => 1. 8 ns, 
TPHLB => 1. 4 ns) 
( 

Q => N316, 
A => N320, 
B => N321); 

generic map ( 

port map 

generic 

TPLH => 0. 0 ns' 
TPHL => 0. 0 ns, 
1'PLHA => 4 . 0 ns, 
TPHLA => 3.6 ns, 
TPLHB => 1.2 ns, 
TPHLB => 0.8 ns) 
( 

Q => N321, 
A => N325, 
B => N326); 

map ( 

TPLH => 0.0 ns, 
TPHL => 0. 0 ns' 
TPLHA => 4.6 ns, 
TPHLA => 4.3 ns, 
TPLHB => 1.4 ns, 
TPHLB => 0.9 ns) 

port map ( 
Q => N326, 
A=> N330, 
B => N331); 

generic map ( 
TPLH => 0 . 0 ns, 
TPHL => 0 . 0 ns, 
TPLHA => 1.3 ns, 
TPHLA => 0.8 ns, 
TPLHB => 1.2 ns, 

~~.,ti ~~·=================M=O=T=O=R=O=LA==M=PA==DA=T=A=-==D=l2=0=1=RE=V=2============================== 
4-176 



port map 

I336 AN2 
generic 

port map 

I341 AN2 
generic 

port map 

XMPLR_INST_29 DFE 

TPHLB => 0.8 ns) 

Q => N331, 
A => N335, 
B => N336); 

map ( 

TPLH => 0 . 0 ns, 
TPHL => 0 . 0 ns, 
TPLHA => 2.6 ns, 
TPHLA => 2 . 1 ns, 
TPLHB => 2.3 ns, 
TPHLB => 1. 7 ns) 
( 

Q => N336, 
A => N340, 
B => N341); 

map ( 

TPLH => 0.0 ns, 
TPHL => 0.0 ns, 
TPLHA => 1 . 3 ns, 
TPHLA => 0.9 ns, 
TPLHB => 1.3 ns, 
TPHLB => 0.8 ns) 
( 

Q => N341, 
A => TEMP_O, 
B => N345); 

generic map { 

port map 

XMPLR_INST_31 DFE 

TSUD => 1 . 4 ns, 
TPLHCQ => 1.3 ns, 
TPHLCQ => 1.3 ns, 
TPLHCLK => 2.1 ns, 
TPHLCLK => 2 .1 ns, 
TPLHD => 2.4 ns, 
TPHLD => 2.4 ns, 
TPLHE => 0.6 ns, 
TPHLE => 0.4 ns) 

Q => N315, 
CLK => S_25MHZ_INT, 
D => nN315, 
E => N316); 

generic map ( 

port map 

TSUD => 1.4 ns, 
TPLHCQ => 1.3 ns, 
TPHLCQ => 1.3 ns, 
TPLHCLK => 2.1 ns, 
TPHLCLK => 2 .1 ns, 
TPLHD => 2.3 ns, 
TPHLD => 2.4 ns, 
TPLHE => 2.2 ns, 
TPHLE => 2. 0 ns) 
( 

Q => N320, 
CLK => S_25MHZ_INT, 
D => nN320, 

AN1604 

==================~fiil MOTOROLA MPA DATA - DL201 REV 2 ~ 
4-177 



AN1604 

E => N321) ; 
XMPLR_INST_33 DFE 

generic map ( 
TSUD => 1.4 ns, 
TPLHCQ => 1.3 ns, 
TPHLCQ => 1.3 ns, 
TPLHCLK => 2.1 ns, 
TPHLCLK => 2.1 ns, 
TPLHD => 2.1 ns, 
TPHLD => 2 .1 ns, 
TPLHE => 0.6 ns, 
TPHLE => 0.4 ns) 

port map ( 

XMPLR_INST_35 DFE 

Q => N325, 
CLK => S_25MHZ_INT, 
D => nN325, 
E => N326); 

generic map ( 
TSUD => 1.4 ns, 
TPLHCQ => 1.3 ns, 
TPHLCQ => 1.3 ns, 
TPLHCLK => 2.1 ns, 
TPHLCLK => 2.1 ns, 
TPLHD => 2.3 ns, 
TPHLD => 2 .4 ns, 
TPLHE => 1.9 ns, 
TPHLE => 1.6 ns) 

port map ( 

XMPLR_INST_37 DFE 

Q => N330, 
CLK => S_25MHZ_INT, 
D => nN330, 
E ;:> N331); 

generic map ( 
TSUD => 1 . 4 ns' 
TPLHCQ => 1.3 ns, 
TPHLCQ => 1.3 ns, 
TPLHCLK => 2.1 ns, 
TPHLCLK => 2.1 ns, 
TPLHD => 2.1 ns, 
TPHLD => 2.1 ns, 
TPLHE => 3.3 ns, 
TPHLE => 3.1 ns) 

port map ( 

XMPLR_INST_39 DFE 

Q => N335, 
CLK => S_25MHZ_INT, 
D => nN335, 
E => N336); 

generic map ( 
TSUD => 1.4 ns, 
TPLHCQ => 1.3 ns, 
TPHLCQ => 1.3 ns, 
TPLHCLK => 2.1 ns, 
TPHLCLK => 2.1 ns, 
TPLHD => 2.4 ns, 
TPHLD => 2.4 ns, 
TPLHE => 2.3 ns, 
TPHLE => 1.9 ns) 

~~-,'/ ~~·==================M=o=T=O=R=O=LA==M=P=A=D=A="A==-=o=L2==01==RE=v=2=============================== 
4-178 



end 

port map 
Q => N340, 
CLK => S_25MHZ_INT, 
D => nN340, 
E => N341); 

XMPLR_INST_41 DFE 
generic map I 

port map 

TSUD => 1.4 ns, 
TPLHCQ => 1.3 ns, 
TPHLCQ => 1.3 ns, 
TPLHCLK => 2.1 ns, 
TPHLCLK => 2.1 ns, 
TPLHD => 2.1 ns, 
TPHLD => 2 .1 ns, 
TPLHE => 0.7 ns, 
TPHLE => 0.5 ns) 
I 

Q => N345, 
CLK => S_25MHZ_INT, 
D => nN345, 
E => TEMP_O); 

XMPLR_INST_43 DF 

Inverted Sense Nets 
nN315 <= not N315; 
nN320 <= not N320; 
nN325 <= not N325; 
nN330 <= not N330; 
nN335 <= not N335; 
nN340 <= not N340; 
nN345 <= not N345; 

generic map I 
TSUD => 1.4 ns, 
TPLHCQ => 1.3 ns, 
TPHLCQ => 1.3 ns, 
TPLHCLK => 2.1 ns, 
TPHLCLK => 2.1 ns, 
TPLHD => 2.1 ns, 
TPHLD => 2 . 2 ns) 

port map I 
Q => TEMP_O, 
CLK => S_25MHZ_INT, 
D => nTEMP_O); 

nTEMP - <= not TEMP_O; 
LAYOUTl; 

AN1604 

=========================~fliil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-179 



4197 

© Motorola, Inc. 1997 

AN1613 
Application Note 

Integrating Schematic Capture 
and Verilog Synthesis When 
Designing with the MPA 

4-180 

Prepared by 
Rich Rejmaniak 
Motorola Field Applications Engineer 

REVO 
@_MOTOROLA 



AN1613 

Integrating Schematic Capture and Verilog Synthesis When 
Designing with the Motorola Programmable Array 

Introduction 

The FPGA tool environment is currently moving in a 
direction where synthesis techniques are supplanting 
schematic capture for design entry. While tool vendors in 
almost all cases provide the means for complete development 
within their respective environments, most engineering 
departments must deal with legacy circuits developed using a 
variety of tools as well as engineers with different levels of 
expertise in various tool sets. The result is a situation where 
the integration of different design methodologies can be 
important to the success of a project. This application note 
details the integration of a Verilog module, compiled with 
Exemplar's Galileo, instantiated into a schematic capture 
using Viewlogic's Workview Office. The resulting design is 
placed into a Motorola Programmable Array compatible with 
the Motorola MPA demo board revision 2. 

Example Circuit 

The circuit used as an example in this document is a simple 
counter circuit. It uses the 2 MHz oscillator on the MPA demo 
board as a clock source. The clock is divided down into the 
visual range (one to four Hz) and drives a counter. The counter 
mode can be set to binary or BCD. The result drives a seven 
segment display. 

The topmost level is entered using schematic capture, as is 
the primary clock divider and the display driver section. The 
counter, frequency selection, and mode control are 
implemented in a compiled Verilog module. 

Top level schematic 

The overall design is contained in the schematic shown in 
Schematic 1. It is composed of three modules, two of which 
are schematic based. It also defines all of the 1/0 for the 
design. 

110 cells 

1/0 cells are defined throughout the design to specify the 
type and functionality of each signal entry and exit point. While 
all 1/0 signals terminate at the top level schematic, only two of 
the signals have the 1/0 circuitry defined at this level. The 
{CLK}, {DEBUG}, and {RADIX} input signals have their 1/0 
cells defined here. The {CLK} uses an "IPCLK" buffer that 
specifies that this signal should be placed on the low skew 
clock distribution network within the Motorola FPGA. The 
{RADIX} signal (which selection binary vs. BCD mode) and the 
{DEBUG} signal (which disables the prescaler and allows 
faster simulation) enter through an "IPBUF" cell. The IPBUF 
cell is a generic input buffer used for general signal input. The 
{RESET-L} signal initializes the sequential elements of the 
system.This signal is brought through an "IPRST" buffer that 
places the signal on the high fanout clock distribution network 
within the device. It should be noted that specifying 1/0 is 
probably the most common use of schematic capture in mixed 
tool designs that otherwise rely heavily on synthesis. 

Input signals {SWITCHO} and {SWITCH1} are used to 
select the frequency of the counter. While they terminate at 
this level, their 1/0 characteristics are specified within the 
Verilog source code. This method of 1/0 instantiation is used in 
completely synthesized designs, as well as designs that use a 
synthesized module at the topmost level of the project (a 
reversal of the design methodology used in this example). 

Outputs {A} through {G} have their 1/0 cells specified using 
schematic capture below the top of the hierarchy. Just as the 
inputs {SWITCHO} and {SWITCH1} are specified in a sub 
module, these outputs terminate at the top level schematic. 

Clock divide 

The clock divider in Schematic 2 is a 19 bit counter that 
generates a one clock period wide enable pulse at terminal 
count. With an input of 2.0 MHz, the output pulse will be 500 ns 
wide every 262 ms, corresponding to a frequency of 3.8 Hz. 
This division is disabled by driving the {DEBUG} signal high. 
The purpose of th signal is to allow simulation at full speed 
without the need to simulate millions of clock cycles to arrive at 
a change in the system's output. 

Display driver 

The display driver section in Schematic 3 drives the four bit 
binary value generated by the counter out to the display device 
on the demo board. The device is a seven segment numerical 
display that will show the counter value from Oto F. The value 
is decoded using the Motorola macro library element 
"HEX4-7S". The outputs are inverted for the common anode 
display. Notice that the inverters are drawn with dashed 
outlines, this is because inversion is a virtual function in the 
Motorola FPGA, occurring at the location where the signal 
terminates. After the inverters, the signals are driven off of the 
device by 1/0 cells of type "OPBUF". These are generic output 
drives from the Motorola 1/0 library. While the signals are fully 
defined to the output of the device at this point, they are still 
propagated up the hierarchy to be shown as outputs on the top 
schematic page. 

Verilog code 
The counter circuit that generates the signals used as the 

display information source as well as the frequency and mode 
controls are implemented in a Verilog source file named 
"control.v", shown in [Listing 1]. 

Modules 

The following code modules are used to create the control 
circuit: 

The "control" module is the top level module that passes the 
input enable pulses through the "speed" module to the "counf' 
module. The input signals are routed to their appropriate 
modules, the modules are connected together and output is 
retrieved at this level. The "control" module is the top level 
module that accepts all input from and pass all output to the 
top page schematic. It is in this module that the input buffers 
for the speed selection switches are instantiated. The IPBUF 

==:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=M=O=T=O=R=O=LA:=M:=PA:=D=AT=A=-==D=L=2=0=1=R=EV:=2:=:=:=:=:=:=:=:=:=:=:=:=:=~~ 
4-181 



AN1613 

functions specify the same input buffers as for the {RADIX} 
input signal at the top level schematic. This is the mechansim 
that would be used for all 1/0 if the top level of the design was 
synthesized and contained all 1/0 specifications. 

The "speed" module accepts the input clock, 3.8 Hz enable 
pulses, and the speed selection switch inputs. The input signal 
is divided by one, two, three, or four as specified by the 
switches and a 500 ns wide enable pulse is passed back as 
the output. This circuit could be constructed with no means of 
initialization, causing the initial state to be indeterminate. 
However, after the first cycle through the divider (four pulses 
maximum) the circuit would stabilize. This would pose a 
problem with the simulator, which propagates and retains 
"unknown" states. 

The "count" module accepts the output of the "speed" 
module and the {RADIX} input. It produces the four bit vector 
"count" that is passed out to the top level schematic as 
{RESULT _O} through {RESULT _3}. 

Compiling to ED/F 

The control.v file is compiled to the control.edf file using the 
Exemplar Galileo compiler. The text shown in (Listing 2] 
contains the results of the Galileo run, as well as all compiler 
options as they were set for this file. 

At this point the Verilog code has been reduced to a flat 
EDIF file. The EDIF file is a basic text file specifying each 
instance of the library primitives for the FPGA and their 
interconnections. This can be accepted as input to most front 
end tools as a library module, which is what we will do in our 
next step. 

Instantiating Verilog module 
Like most front end tools, Workview Office uses an 

internally defined file structure to maintain the schematics for a 
particular project. Each module, schematic element, or 
schematic (excluding device library components) is comprised 
of one or more of the following files: WIR, SYM, and SCH. 

The WI R file is the internal netlist for a particular circuit. It 
can be considered the internal representation of an EDIF file. 
The WI R files are hierarchical and track the schematic 
structure. When a [Save & Check] is performed on a 
schematic, a WIR file is generated. This file contains a list of all 
of the modules on the schematic page and their 
interconnections. It doesn't contain the internal connections 
within a module. The WIR file for each module contains its 
particular internal connections. At the lowest level, all of the 
modules referenced in a WIR file are library elements. To use 
the result of our Galileo compile, we will need to convert the 
compiled EDIF file into a WIR file using a Viewlogic utility. 

The SYM file is the symbol that is used as a "handle" to 
manipulate a module and place it into a schematic. A SYM file 
must exist for the EDIF file that we plan to place into our 
schematic. It is through this file that the schematic editor 
knows how to draw the visual image of the module on the 
screen and what ports ("pins") are available for the connection 
of nets and busses. The SYM file can be hand drawn or it can 
be generated directly from EDIF file by a Viewlogic utility, 
Viewgen, depending on the users Viewlogic license 
restrictions. If it is generated by Viewgen, it can be edited to 

change its appearance. In this application note we will 
generate the symbol manually using the schematic editor. 

The SCH file is the schematic file. It is from this file that the 
WIR file is generated. While a WIR file contains a list of 
interconnections, the SCH file also contains the information to 
graphically draw the schematic on the screen. This 
information allows the schematic editor to remember where 
the components are placed, as well as the visual routing of the 
nets and busses as edited by the designer. An SCH file of a 
particular module isn't necessary to place that module into the 
final schematic. In this example, no SCH file will exist for the 
module created by the Verilog compile. As a result, we will be 
unable to "push" down into the internals of our control module 
from the schematic editor. Again, depending on the users 
Viewlogic license restrictions, the Viewgen utility can create an 
SCH file from an EDIF file. If this is done, the user can then 
push down and view the schematic as generated by the 
Verilog compiler. This feature can be very helpful when 
learning synthesis, as the user can see exactly what circuit is 
generated from the source code. The only shortcoming with 
this feature is that the schematic generated is composed 
entirely of primitive gates (AND, NANO, OR, NOR, XOR, 
XNOR, INV, etc.) connected in a visually arbitrary maze. For 
small circuits this isn't a problem, for large or complex circuits 
it basically appears as a sea of gates connected by 
uncountable (and untraceable) nets. 

It should be .noted at this point that all of the files for a given 
module have the same name, and are differentiated only by 
their location in the project file structure. For example: the 
schematic, wire, and symbol files for the display driver module 
are all named "display.1". (The ".1" indicates page number one 
of that module. All of the modules in this design, and in most 
hierarchical designs have only one page per module.) If these 
files are moved to the same directory, they will overwrite each 
other. If they are moved around and placed back into the 
wrong subdirectories, errors will result when the files are 
accessed by any of the Viewlogic tools. 

Importing EDIF 

In order to use our Verilog generated control module we 
must have a WIR and an SYM file for the module. The EDIF 
import utility will create the WIR file for us. We will then create 
the SYM file using the schematic editor. The Viewgen symbol 
and schematic generating utilities, if used, obtain their 
information from the WIR file. Therefore the WIR file 
generation is the first and necessary step in using our control 
module. 

In this application note, it is assumed that the user is using 
the GUI interface for all tools and utilities. These tools also 
have a command line interface for batch processing that is 
covered in the documentation for each tool. 

To begin, the user starts the "Edi! interfaces" program from 
theViewlogic tool suite. (Note: If your display resolution is less 
than 800x600, the entire "Edi! interfaces" dialog box may not fit 
on your screen.) The "EDIF Nellis! Reader" tab is selected in 
the dialog box. The "Browse" button is used to locate the input 
EDIF file; This process will bring to light an issue with the 
naming of EDIF files. Viewlogic is looking for EDIF files to have 
the extension of ".edn", whereas Galileo generates EDIF files 
with the extension of ".edf'. This means the file "control.edf" 

~~.,'/ ~~·=================M=O=T=O=R=O=LA==M=PA==OA=T=A=-==OL=2=0=1=RE=V=2============================== 
4-182 



won't appear in the input file window when the proper directory 
is located. The file type option must be changed to"*.*" to view 
the file, which also fills the window with all files in the directory. 
An alternative is to just type the full file and path name into the 
main dialog box without browsing. When using the command 
line version of the tools in a batch file, the user specifies the 
correct extension in the input file specification. 

When selecting the output directory, the user MUST specify 
the WIR subdirectory in the Viewlogic project directory 
structure. If not, then the user must move or copy the file into 
this directory for it to be usable by Viewlogic. It should be 
noted that the EDIF netlist reader does NOT point to this 
directory by default, but instead starts out in the main project 
directory, one level above the WIR subdirectory. 

The "Apply" button is pressed and the tool performs its 
magic, providing status in the dialog box window. 

Creating the Symbol 

At this point we have a WIR file for our Verilog module so 
Viewlogic can now use the information to generate an overall 
netlist. However, we need to create a SYM file so that we have 
a symbol containing pins for the connection of nets on our 
schematic page. 

The symbol is created using the Viewdraw schematic 
editor. "New" is selected from the "File" menu. When the dialog 
box appears the "Symbol" option is selected (as opposed to 
the default "Schematic" option). A name is specified, in this 
case it is "control.1 ".The name of the symbol MUST be exactly 
the same as the name of the WIR file. 

A symbol is created from lines, rectangles, arcs, etc. All of 
these objects are used to create the visual appearance of the 
symbol on the schematic. The only functional elements on the 
symbol are the pins (placed using, you guessed it, the pin tool 
from the tool bar). There must be one pin for each 1/0 
connection in the parameter list of the topmost Verilog module. 
The names of the pins MUST exactly match the names of the 
top module's parameters, the only exception is that case is 
ignored. When vectors are specified, as in the "result" 
parameter in our control.v file, Galileo expands them to a 
series of scalar connections. Each of these scalar values has 
the name of the vector follows by an underscore and the bit 
position. In our example, the vector "result" that was defined 
as {[0:3]result} will expand to {RESULT _OJ through 
{RESULT _3}. Four pins were placed on the "control" symbol 
with these names. The file is then saved. Viewdraw will create 
a text window defining the properties of the symbol. This text 
window and the editor window can be closed, assuming there 
are no errors at this point. 

Instantiating the Veri/og module into the schematic 

Our control module, as defined by the Verilog code, can 
now be manipulated the same as any of the other 
schematically drawn modules. The only exception to 
manipulating this module is that the internal logic can't be 
viewed by pushing down to the schematic level. 

To place the module in our design, the user selects the 
option of adding a component and chooses "control.1" from 
the list of project modules. In our case, there is one 
instantiation of this module. In other cases, such modules can 

AN1613 

be placed as many times as necessary into as many different 
schematic pages as the user wants. It should be noted that 
this results in a complete duplication of this module into the 
FPGA for each instantiation. 

The top schematic page is then saved using the "Save & 
check" option. The resulting WIR file of the topmost schematic 
now contains a reference to the "control" WIR file and it's 
connections on that schematic page. Connections within the 
"control" module are not in the topmost schematic file, but are 
specified in the control module's WIR file. 

Generating the final net list 
The final netlist used to present the design to the MPADS 

tool for place and route into the Motorola FPGA must be 
generated using the Viewlogic "Edit interfaces" utility. At this 
stage the entire design is spread across a collection of files 
under the control of the Viewlogic project manager. Just as the 
Verilog code was distilled down to an EDIF file for processing 
by Viewlogic, the entire design must now be reduced to a 
single EDIF file for import into the Motorola back-end tool. 

Again, the Viewlogic "Edif interfaces" utility is started. This 
time the "EDIF Netlist Writer" tab is selected. Use the "browse" 
button to locate the WIR file for the topmost schematic. In this 
example the top schematic file is "top.1 ". (Curiously enough, 
when browsing for a WIR file for EDIF output, the tool does [I] 
default to the WIR subdirectory.) The output file will default to 
the input filename with the ".edn" extension. (The Motorola 
place and route tool will accept EDIF files with either ".edn" or 
".edf" file extensions.) In our case the output file defaults to 
'1op.edn". The resulting EDIF file is placed one level above the 
WIR subdirectory, into the main project directory. The fact that 
the input and output files reside in different directories isn't 
obvious from the dialog box. 

The contents of the "Author" field will be placed into the 
EDIF file as a comment, and is optional. The "Level" field 
MUST be specified as "micro". This tells the tool to specify only 
the micro gate level library in the resulting EDIF file. With this 
option set to micro, the final EDIF file will not contain a 
reference to the "HEX4-7S" used to drive the seven segment 
display, but will instead specify the primitive gates that make 
up this library element. 

Leave "Inhibit Library Alias" unchecked. Allow the 
"Configuration files" to default. The "Netlist options" must be 
set to "Flatten without evaluation attributes". This last option 
causes the netlist tool to recursively descend the hierarchy 
whenever a module is encountered until the primitive gate 
level is reached. The final EDIF netlist will not contain any 
hierarchy, but will instead be composed entirely of basic gates 
and their interconnections. Pressing the "Apply" button 
generates the final netlist. 

MPADS interface 
The EDIF file (top.edn) that we have created contains all of 

the design information except for the FPGA pin number 
specification for the 1/0 signals. There are three methods of 
resolving this issue: 

First, we could allow the back-end tool to select our pins for 
us. This is the easiest option. To download this design into the 
Motorola demo board, the signals must match the LED and 
switch connections already designated on that board. Even if 

=::=::=::=::=::=::=::=::=::=::=::=::=::=::=::=M=O=TO=::RO=L=A=M=P=A=D=A=T=A=-==D=L2=0=1=R=E=V=2=::=::=::=::=::=::=::=::=::=::=::=::==1~ 
4-183 



AN1613 

this is acceptable in an actual engineering project, it is only 
acceptable during the initial design. Thereafter all design 
modifications must track the original pin specifications. 

The second option is to specify the pin numbers as 
attributes to the 1/0 signals in the front-end tool. This is 
probably the most common method in schematic capture 
environments. 

The third, and the one used in this application note is to use 
an external pattern file that is imported by the Motorola 
back-end tool. 

All three of these methods can be used on a particular 
design. Unspecified pins are numbered automatically during 
autoroute by MPADS. If a pin number is specified in the 
front-<md tool and in a pattern file, the pattern file takes 
precedence. 

Pattern file 

The pattern file used in this design is shown in [Listing 3]. If 
a pattern file is to be used, it MUST have the same name as 
the input EDIF file with the extension ".pat". In addition, it 
MUST also reside in the same directory as the input EDIF file. 
If either of these conditions is not met, then the MPADS tool 
will assume that there is no pattern file and will quietly perform 
pin selection on it's own. It is therefore important that the 
designer check the port report file that is output by MPADS to 
confirm that the required pin placement information was 
processed. 

Import results 

[Listing 4] shows the results of the MPADS import of this 
design. Just as Viewlogic had to read the EDIF file generated 

by Galileo into a WIR file for its own use, MPADS has to read in 
the final EDIF file into a ".net" file for its use. In addition, the 
import process checks the specified EDIF file for errors or 
design inconsistencies that would prevent the autorouter from 
processing the netlist. 

Autoroute results 

The results of the autoroute are shown in [Listing 5]. At this 
point we can check the port report file (".prp") shown in 
[Listing 6] to confirm proper pin placement. 

Updating the design 

The above process may be repeated many times in the 
normal engineering design cycle. The opportunities to 
introduce mistakes, such as recompiling the Verilog code but 
forgetting to import the new EDIF file before netlisting the 
schematic can waste time and energy. The most productive 
method is use a batch file that runs the proper tools in 
sequence, specifying the proper tool options and filenames 

Conclusion 

Dealing with the myriad number of front-end tools can be 
an advantage if, by integrating them, you make use of their 
individual strengths. The trick to doing this effectively is to 
understand what each tool requires in order to pass 
information to and from other tools. In most cases this isn't a 
very difficult procedure, but simply one in which there is little 
direct documentation. It is usually possible to extrapolate the 
information provided for the integration of front-end and 
back-end tools to the task of multiple tool sets. 

~~'1'1 ~~·=================M=O=T=O=R=O=L=A=M=PA==DA=T=A=-==D=L2=0=1=R=EV=2============================== 
4-184 



[Listing 1] 

II This file is the control circuit that interprets the dip switches 
II on the demo board and produces the results for the display circuit 
II 
II Engineer Rich Rejmaniak I Phil Rauba 
II Company Motorola SPS 
II Date 01106196 
II Revised 03127197 Rauba 
II Revised 04103197 Rejmaniak 
11--------------------------------------------------------------------------
module control (elk, enable, 

input elk; 
input enable; 
input radix; 
input reset_l; 
input switch_O; 
input switch _l; 
output [3:0Jresult; 

radix, reset_l, switch_O, switch_l, result); 
II Main system clock 
II Main system clock enable 
II Select count mode to hex or BCD 

II Initialization signal (active low) 
II Clock divider control switches 

II Final four bit result of the count 
II Signal 'tick' connects the output of the prescale module to the 
II input enable of the counting module 
wire 
wire 

tick; 
[l:O]scale; 

wire reset; //Reset is active high internally 
assign reset ~ -reset_l; 
II The inputs that specify the scaling divisor for the 'speed' 
II module have their IIO buffers specified here. The 'switch' 
II variable connected to the .extin ports will appear as IIO 
II to the final compiled module, just as the parameters specified 
II in the list to this module. 
ipbuf iO (.extin(switch_O), .i(scale[O] )) ; 
ipbuf il (.extin(switch_l), .i(seale[l])); 
II Divide the incomming clock enable frequency by one, two, three, or four 
speed uO (elk, enable, reset, scale, tick); 
II One count for every 'tick' enable clock pulse 
count ul (elk, tick, radix, reset, result); 

endmodule 
11--------------------------------------------------------------------------
11 This is an isocrohrous module that will advance the output 'count' 
II on every enables clock pulse 
module count (elk, enable, radix, reset, count); 

II 'radix' determines if the counter will terminate at '9' or 'f' 
input 
output 

elk, enable, radix, reset; 
[3:0Jcount; 

reg [3:0]count; 
always @ (posedge elk or posedge reset) 
begin 

if (reset) 
begin 

count <= 0; 
end II Reset condition 
else 
begin /I non-reset or potential count event 

AN1613 

II It's only a count event if enable is true (isochronous vs. 
synchronous) 

count <= enable ? (count + 1) : count; 
II When in BCD mode ..... . 
II Reset to zero on the next enabled clock pulse after '9' 
if ((count== 9) && (radix== 0) && enable) 
begin 

count <= O; 

================================M=O=T=O=R=O=LA==M=P=A==DA=T=A=-==D=L=2=01==RE=V==2==========================1~ 
4-185 



AN1613 

end 
end II non-reset condition 

end II always block 
endmodule 
11--------------------------------------------------------------------------
11 Divide the clock enable frequency by 1, 2, 3, or 4 
II as specified by the external 'switch' inputs 
module speed (elk, enable_in, reset, scale, enable_out); 

input elk, enable_in, reset; 

II The scaling signals entering through IIO buffers specified in the 
II top module 'control' 
input [O:l]scale; 
output enable_out; 
reg enable_out; 
reg [O:l]divide; 
always @ (posedge elk or posedge reset) 
begin 

if (reset) 
begin II reset condition 

divide <= O; 
enable_out <= O; 

end II reset condition 
else 
begin II non-reset condition 

if (enable_in) 
begin 

II only respond to enabled clock pulses 

II Block this enable 

if (divide == scale) 
begin 

end 
else 
begin 

II Pass this enable out of the module 
enable_out <= l; 
divide <= 0; II Restart dividing counter 

II Count and block this enable 

enable_out <= O; 

divide <= divide + l; 
II But count it toward the enable count 

end 
end 
else 
begin 

end 

II input clock pulse isn't enabled to begin with 

enable_out <= O; II non-enabled clock pulse 

end II non-reset condition 

end II always block 
endmodule 
11---------------------------------------------------------------------------
module ipbuf (extin, i); 

input extin; 
output i; 

endmodule 

II MPA library element 

~~~ ~~·===================M=O=T=O=R=O=LA==M==PA==DA=T=A=-==D=L2==01==R=EV==2================================= 
4-186

[Listing 2]

Galileo - V3.2.5
Copyright 1990-1994, Exemplar Logic, Inc. All rights reserved.
gcw -COM;D:\TEMP\xmplr2 D:\Projects\DemoBrd\Verilog\control.v
D:\Projects\DemoBrd\Verilog\control.edf

Option
Input
Output
pass
parallel_case
encoding ;
modgen_library
report
tristate_map
transformation
wire_ tree
macro
effort
area
output_format
input_format
target
nocontrol
cwd
com

gcw Options:
Value
D:\Projects\DemoBrd\Verilog\control.v
D:\Projects\DemoBrd\Verilog\control.edf
1

ONEHOT
generic

DEVICE_UTIL

Standard

P_mpa

WORST

EDIF
Verilog

D:\EXEMPLAR\DEMO
D: \ TEMP\xmplr2

The license on this copy of galileo will expire in 177 days.
If this is a newly licensed copy of galileo, please be sure to
install the long-term license before your temporary license expires.
If this is a permanent license, your maintenance contract has expired.
Please contact (510)337-3703 or license@exemplar.com to renew maintenance.
Reading library file 'D:\EXEMPLAR\lib\gcprim23.syn' ...

Reading file 'D:\Projects\DemoBrd\Verilog\control.v' ...
Loading module ipbuf
Loading module speed
Loading module count
Loading module control
Compiling root module 'control'

Warning, module ipbuf is empty.
Compiling module speed
Compiling module count
Verilog source successfully analyzed.
Info, performing high-level optimization ...
Info, saving design to database ..

Warning, Unknown gate 'ipbuf' (instance iO) found. Treating as 'noopt'.
Warning, Unknown gate 'ipbuf' (instance il) found. Treating as 'noopt'.

AN1613

Info, infering module generator MODGEN_EQ(SIZE;>2,SIGNED;>FALSE) for instance uO/modgen_O
Info, infering module generator MODGEN_INC(SIZE;>2,SIGNED;>FALSE) for instance uO/modgen_l
Info, infering module generator MODGEN_INC(SIZE;>5,SIGNED;>FALSE) for instance ul/modgen_2

Starting module generation
-- Reading module generator description from file D:\EXEMPLAR\data\modgen\generic.vhd
-- Modgen File generic.vhd Version 3.7
Reading library file 'D:\EXEMPLAR\lib\p_mpa23.syn' ...

Resolving module generator MODGEN_INC(SIZE;>5,SIGNED;>FALSE) from file generic.vhd
-- Resolving module generator MODGEN_INC(SIZE;>2,SIGNED;>FALSE) from file generic.vhd
-- Resolving module generator MODGEN_EQ(SIZE;>2,SIGNED;>FALSE) from file generic.vhd
Library version; 2.10
Delays assume: Temp; 25.0 C Voltage;5.00 v Process;typical
Exemplar Logic's Galileo Fri Apr 18 17:47:25 1997

================================M=O=T=O=R=O=LA==M=P=A==DA=~=A=-==D=L2==01==R=EV==2==========================1~
4-187

AN1613

Pass

1

Area
(Gates)

29

Delay --Cl?U-
(ns) min:sec
13.2 00:01

Resource Use Estimate
Design: control

Technology: mpa
File: D:\l?rojects\DemoBrd\Verilog\control.v
Area: 29.0

Critical Path: 13.2 ns
gcw run complete.

[Listing 3]

I/O !?in pattern specification file
Rich Rejmaniak, Motorola Semiconductor
04/18/97
Jumper specifications for clock divider
Jumper positions J7-8 (USERO = switchO) &
J7-6 (USERl switchl) on the demo board
port switchO attribute pad_place 16
port switchl attribute pad_place 15
Jumper controlling BCD vs. binary count
Jumper position J7-4 (USER2 = radix)
port radix attribute pad_place 14
Jumper controlling debug vs. normal operation
Jumper position J7-2 (USER3 = debug)
port radix attribute pad_place 13
Clock input pin uses the onboard 2MHz osc.
port elk attribute pad_place 84
Seven segment display
port a
port b
port c
port d
port e
port f
port g
AZ

[Listing 4]

attribute
attribute
attribute
attribute
attribute
attribute
attribute

pad_place 70
pad_place 69
pad_place 68
pad_place 73
pad_place 72
pad_place 71
pad_place 66

Ml?A Design System - Starting Import run on Fri May 02 12:09:55 1997
Logfile e:\l?rojects\DemoBrd\Top\board.log
Reading Device Architecture 'g:\mpads\SYSTEM\mpa1016.dev'
Reading Libraries
Reading Library 'e:\l?rojects\DemoBrd'
Reading Library 'g:\mpads\LIBS\Ml?ALIB\Ml?A1016'
Reading Library 'g:\mpads\LIBS\Ml?ALIB\IOLIB'
Reading Library 'g:\mpads\LIBS\Ml?ALIB\MICROLIB'
Done reading libraries
Reading EDIF netlist 'e:\l?rojects\DemoBrd\\Top.edn'
Written at 19:24:0 9/2/1997 by VIEWlogic's edifnet Version 5.00
Creating temporary definition inv ...

... definition inv is already in library microlib
Written at 16:6:30 9/2/1996 by
Creating temporary definition dfer ...

. . . definition dfer is already in library microlib
Written at 16:6:30 9/2/1996 by

~~~ ~~·===================M=O=T=O=R=O=LA==M=P=A=D=A=I=A=-==D=L2=0=1=R=E=V==2================================ 
4-188 



Creating temporary definition an2 ... 
. . . definition an2 is already in library microlib 

Written at 16:6:30 9/2/1996 by 
Creating temporary definition zero ... 

. .. definition zero is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition one ... 

... definition one is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition opbuf ... 

.. . definition opbuf is already in library iolib 
Written at 16:6:36 9/2/1996 by 
Creating temporary definition nr2 ... 

.. . definition nr2 is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition or2 ... 

. . . definition or2 is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition xr2 ... 

. . . definition xr2 is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition an2 ... 

. . . definition an2 is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition nd2 ... 

. . . definition nd2 is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition xn2 ... 

. .. definition xn2 is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition or2 ... 

.. . definition or2 is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition nr2 ... 

.. . definition nr2 is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition inv ... 

.. . definition inv is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition ipbuf ... 

. . . definition ipbuf is already in library iolib 
Written at 16:6:36 9/2/1996 by 
Creating temporary definition dfe ... 

. . . definition dfe is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition df ... 

... definition df is already in library microlib 
Written at 16:6:30 9/2/1996 by 
Creating temporary definition ipbuf ... 

... definition ipbuf is already in library iolib 
Written at 16:6:36 9/2/1996 by 
Creating temporary definition ipclk ... 

... definition ipclk is already in library iolib 
Written at 16:6:36 9/2/1996 by 
Creating new definition top ... 
Written at 15:12:58 9/2/1997 by 
·Design root at cell top 
EDIF 200 Level 0 File top(top) 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\inv\inv.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\dfer\dfer.net' 

AN1613 

===============================~ 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-189 



[I] 

AN1613 

Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\an2\an2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\zero\zero.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\one\one.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\IOLIB\opbuf\opbuf.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\nr2\nr2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\or2\or2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\xr2\xr2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\nd2\nd2.net' 
Reading 
Reading 
Reading 
Reading 
Reading 

Netlist 
Netlist 
Net list 
Netlist 
Netlist 

'g:\mpads\LIBS\MPALIB\MICROLIB\xn2\xn2.net' 
'g:\mpads\LIBS\MPALIB\IOLIB\ipbuf\ipbuf.net' 
'g:\mpads\LIBS\MPALIB\MICROLIB\dfe\dfe.net' 
'g:\mpads\LIBS\MPALIB\MICROLIB\df\df.net' 
'g:\mpads\LIBS\MPALIB\IOLIB\ipclk\ipclk.net' 

Flattening definition top ... 
Retargeter : Reading attribute file e:\Projects\DemoBrd\\Top.pat 
Retargeting definition top 
Reading Binary Retargeter Rules File 'g:\mpads\SYSTEM\mpalOOO.rrf' 
Netlist Statistics before Retargeting: 

1 
14 

2 
4 
1 

35 
51 

5 
2 

19 
3 
1 

13 instances of nr2 
instances of one 
instances of or2 
instances of xn2 
instances ·of xr2 
instances of zero 
instances of inv 
instances of an2 
instances of df 
instances of dfe 
instances of dfer 
instances of ipbuf 
instances of ipclk 

7 instances of opbuf 
3 instances of nd2 

Total of 161 instances 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\dfr\dfr.net' 

37 instances removed 
36 nets removed 
20 instances added 
19 nets added 

Netlist Statistics after"Retargeting: 
13 instances of nr2 
14 instances of or2 

2 instances of xn2 
4 instances of xr2 

19 instances of zero 
50 instances of an2 

5 instances of df 
2 instances of dfe 

18 instances of df er 
1 instances of dfr 

instances of ipbuf 
1 instances of ipclk 
7 instances of opbuf 
3 instances of nd2 

Total of 142 instances 
Retargeter took 4s 
Flattening definition top .. . 
Splitting wired-or nets .. . 
Checking netlist ... 
Reading·Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\dfer\ed.lyt' 

~~.,'! ~~·==================M=O=T=O=R=O=LA==M=P=A=D=A="A=-==D=L2==01=R=E=V=2==.============================= 
4-190 



Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\an2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\IOLIB\opbuf\out.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\nr2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\or2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\xr2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\nd2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\xn2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\IOLIB\ipbuf\in.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\dfe\ed.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\df\d.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\IOLIB\ipclk\in.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\dfr\d.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\zero\a.lyt' 
Writing Netlist 'e:\Projects\DemoBrd\Top\Top.net' 
Import took 7s 
MPA Design System - End of Import run on Fri May 02 12:10:03 1997 

[Listing 5] 

MPA Design System - Starting Autolayout run on Fri May 02 12:10:31 1997 
Logfile e:\Projects\DemoBrd\Top\board.log 
Reading Device Architecture 'g:\mpads\SYSTEM\mpa1016.dev' 
Reading Libraries .... 
Reading Library 'e:\Projects\DemoBrd' 
Reading Library 'g:\mpads\LIBS\MPALIB\MPA1016' 
Reading Library 'g:\mpads\LIBS\MPALIB\IOLIB' 
Reading Library 'g:\mpads\LIBS\MPALIB\MICROLIB' 
Done reading libraries 
Reading Netlist 'e:\Projects\DemoBrd\top\top.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\IOLIB\ipbuf\ipbuf.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\IOLIB\ipclk\ipclk.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\dfr\dfr.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\dfer\dfer.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\an2\an2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\or2\or2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\nr2\nr2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\IOLIB\opbuf\opbuf .net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\nd2\nd2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\xn2\xn2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\xr2\xr2.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\dfe\dfe.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\df\df.net' 
Reading Netlist 'g:\mpads\LIBS\MPALIB\MICROLIB\zero\zero.net' 
Reading Package File 'g:\mpads\SYSTEM\m2plcc84.pkg' 
MPA1016 84 - PLCC package selected 
Package mode 'Boot_From_ROM_Mode' selected 
Reading Layout 'g:\mpads\LIBS\MPALIB\IOLIB\ipbuf\in.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\IOLIB\ipclk\in.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\dfr\d.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\dfer\ed.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\an2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\or2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\nr2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\IOLIB\opbuf\out.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\nd2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\xn2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\xr2\ab.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\dfe\ed.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\df\d.lyt' 
Reading Layout 'g:\mpads\LIBS\MPALIB\MICROLIB\zero\a.lyt' 

AN1613 

==========1ri&il 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-191 



[]] 

AN1613 

Context arguments 
Min Zone Delay 0.5ns 
Back Off 30 
Fanout 2 

Context arguments done 
Autolayout arguments 

Start Temp 10 
Effort 30 
Attempts 1 
Utilisation 80 
Delay Cost 0.05 

Autolayout arguments done 
Clocks, Resets and Wired-or Nets: 

Net $1n15 is a primary clock driven by instance $1i4 
Net has 27 clock ports 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

Net 

ntop_l is a tertiary reset driven by instance top_l(zero) 
Net has 1 reset port, 1 normal port 

ntop_2 is a tertiary reset driven by instance top_3(zero) 
Net has 1 reset port, 1 normal port 

ntop_3 is a tertiary reset driven by instance top_5(zero) 
Net has 1 reset port, 1 normal port 

ntop_4 is a tertiary reset driven by instance top_7(zero) 
Net has 1 reset port, 1 normal port 

ntop_5 is a tertiary reset driven by instance top_9(zero) 
Net has 1 reset port, 1 normal port 

ntop_6 is a tertiary reset driven by instance top_ll(zero) 
Net has 1 reset port, 1 normal port 

ntop_7 is a tertiary reset driven by instance top_13(zero) 
Net has 1 reset port, 1 normal port 

ntop_8 is a tertiary reset driven by instance top_l5(zero) 
Net has 1 reset port, 1 normal port 

ntop_9 is a tertiary reset driven by instance top_17(zero) 
Net has 1 reset port, 1 normal port 

ntop_lO is a tertiary reset driven by instance top_l9(zero) 
Net has 1 reset port, 1 normal port 

ntop_ll is a tertiary reset driven by instance top_2l(zero) 
Net has 1 reset port, 1 normal port 

ntop_12 is a tertiary reset driven by instance top_23(zero) 
Net has 1 reset port, 1 normal port 

ntop_l3 is a tertiary reset driven by instance top_25(zero) 
Net has 1 reset port, 1 normal port 

ntop_l4 is a tertiary reset driven by instance top_27(zero) 
Net has 1 reset port, 1 normal port 

ntop_15 is a tertiary reset driven by instance top_29(zero) 
Net has 1 reset port, 1 normal port 

ntop_16 is a tertiary reset driven by instance top_3l(zero) 
Net has 1 reset port, 1 normal port 

ntop_17 is a tertiary reset driven by instance top_33(zero) 
Net has 1 reset port, 1 normal port 

Net ntop_l8 is a tertiary reset driven by instance top_35(zero) 
Net has 1 reset port, 1 normal port 

Net ntop_l9 is a tertiary reset driven by instance top_37(zero) 
Net has 1 reset port, 1 normal port 

7 primary clock/reset pads free (consider using these for high fanout nets) 
Context summary 
11 I/O pads used (80 available on device) 
11 I/0 pins used (60 available on package) 
End of Context summary 
131 core cells used by design 
This is approximately 16.38203f the maximum device capacity 

~~""' ~~·===================M=O=T=O=R=O=LA==M=P=A==DA=~=A=-==D=l2==01=R=E=V==2================================ 
4-192 



and corresponds to an autolayout Utilisation parameter of 17. 
Clock Information at end of initialisation: 
Name Frequency period 
elk 2.0MHz 500.0ns 
Clustering took ls ~ 48 clusters created 

phase 
O.Ons 

Writing Clustered context file 'e:\Projects\DemoBrd\top\board.cxt' 
Partitioning 48 top level objects (total 48 objects) 
Partitioning took 7s 
Writing Partitioned context file 'e:\Projects\DemoBrd\top\board.cxt' 
Global Routing 52 segments 
Global Routing took 2s 
Writing Global Routed context file 'e:\Projects\DemoBrd\top\board.cxt' 
Zone Routing 8 zones 
Routing zone (4,4) (1 of 8): 33 instances, 14 zone ports, 74 segments of 39 nets 
Writing Zone Routed context file 'e:\Projects\DemoBrd\top\board.cxt' 
Zone processing took 6s 
Routing zone (4,3) (2 of 8): 32 instances, 14 zone ports, 72 segments of 38 nets 
Writing Zone Routed context file 'e:\Projects\DemoBrd\top\board.cxt' 
Zone processing took 8s 
Routing zone (3,2) (3 of 8): 15 instances, 13 zone ports, 36 segments of 17 nets 
Writing zone Routed context file 'e:\Projects\DemoBrd\top\board.cxt' 
Zone processing took ls 
Routing zone (2,1) (4 of 8): 14 instances, 12 zone ports, 33 segments of 15 nets 
Writing Zone Routed context file 'e:\Projects\DemoBrd\top\board.cxt' 
Zone processing took Os 
Routing zone (3,3) (5 of 8): 12 instances, 11 zone ports, 29 segments of 14 nets 
Writing Zone Routed context file 'e:\Projects\DemoBrd\top\board.cxt' 
Zone processing took Os 
Routing zone (3,4) (6 of 8): 13 instances, 9 zone ports, 31 segments of 18 nets 
Writing Zone Routed context file 'e:\Projects\DemoBrd\top\board .. cxt' 
Zone processing took ls 
Routing zone (2,2) (7 of 8): 6 instances, 7 zone ports, 15 segments of 8 nets 
Writing Zone Routed context file 'e:\Projects\DemoBrd\top\board.cxt' 
Zone processing took Os 
Routing zone (2,4) (8 of 8): 6 instances, 7 zone ports, 15 segments of 8 nets 
Writing Zone Routed context file 'e:\Projects\DemoBrd\top\board.cxt' 
Zone processing took Os 
Zone Routing took 18s - 8 zones processed (0 failures) 
Clock Information at end of Zone Routing: 
Name 
elk 

Frequency 
14.9MHz 

All nets are complete 

period 
67.lns 

phase 
O.Ons 

Writing Timing File 'e:\Projects\DemoBrd\top\board.tim' 
Writing layout file 'e:\Projects\DemoBrd\top\board.lyt' 
Writing back annotation file to 'e:\Projects\DemoBrd\top\board.dtb' 
New usage 'ntop_l8' clashes with existing use 'ntop_3' 
Writing port report file 'e:\Projects\DemoBrd\top\board.prp' 
MPA Design System - End of Autolayout run on Fri May 02 12:11:08 1997 

[Listing 6] 

# I/0 Pin report file 
#This file is suitable for use as an External Attributes (.pat) file 
# Definition: top 
# Layout: board 
# Port 
port switchO 
# Port 
port switchl 
# Port 

switchO, Net 
attribute pad_place 

switchl, Net 
attribute pad_place 

radix, Net 

switchO, Position 0, 43)' Package 
16 

switchl, Position 0, 45)' Package 
15 

radix, Position 0, 47)' Package 

pin 16 

pin 15 

pin 14 

AN1613 

=========1ri&il 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-193 



AN1613 

port radix attribute pad__:place 14 
# Port elk, Net elk, Position 29, 54)' Package pin 84 
port elk attribute pad__:place 84 
# Port g, Net g, Position 54, 28)' Package pin 66 
port g attribute pad__:place 66 
# Port C, Net c, Position 54, 36)' Package pin 68 
port c attribute pad__:place 68 
# Port b, Net b, Position 54, 40)' Package pin 69 
port b attribute pad__:place 69 
# Port a, Net a, Position 54, 42)' Package pin 70 
port a attribute pad__:place 70 
# Port f, Net f, Position 54, 44)' Package pin 71 
port f attribute pad__:place 71 
# Port e, Net e, Position 54, 46)' Package pin 72 
port e attribute pad__:place 72 
# Port d, Net d, Position 54, 48)' Package pin 73 
port d attribute pad__:place 73 

~~~ ~c·==================M=O=T=O=R=O=LA==M=P=A=D=A=TA=-==D=L2==01=R=E=v=2=============================== 
4-194

I
I
L_

CLK
r---

AN1613

----··-··---··- -·"----------·· ·---·--

~~:--~~~:=~-=~--------~r-------

IP CL K
c 1 0 c k djvjder

F x T llfw--{>-1_-

IP BU F

D>~U U G _ _LX_J _ __~ I

HA ll [X

>--·

c_; W I I C ~i 0

>--

'"di ITCH 1

l_
s~ C o n t r o l

CL.K RF SUL T _ 0 RESULTQ __ _

IP 8 U F

AES ULT_ 1
EN ABLE

RESULT_2

_____ fi.ESULT1

f----~"~-~
RADIX RESULT_ 3

RES U L..~1~3 ___ __

5 WI TC H _ 0 r---------·----. ---·-·-
SWITCH-1

-_ __J RESET _ L

RESULT[O 3}

RESULT[O 3]
Display driver

_________ _L_ __ ,

~-t----t---+--t-t---- ---- ____ §_---7

~-r----r-r---t-- ______ (_)

~-r----r---c-------------Y

--------__L__;
--____L__-;

____ G __)

_______ _B~::,: ,;,~,,;:ry_
-~--------------·

Figure 1. Top Page

=======riiil MOTOROLA MPA DATA- DL201 REV 2 ~
4-195

AN1613

1-

I' I
11

?. M H l

>-----·

I

! 4

-=I=-------------
C 8 A C 8 A

1-
Q 0 0 0

01 Q 1

Q2 I Q 2

Q 3 Q 3

0 4 Q 4

0 5 I 0 5

06 0 6 -
07 --rl 0 7

Cl K CL K

RCI RCO RC! HCO
AN AN

I

c~
---'---vCLK

CLK J
=r-

i
I

'Do r--:Ll_ LN_2
I TF EA

LL_[-:
c E AN

. 2 Clock Divider Figure •

MOTOROLA MPA DATA
4-196

Dl.201 REV2

4 HZ
··-·- ---)

Schematic 2

c 1 0 r. k D i v J d t~ r

r-·

I

I

\' I

i

RfSULT[O ::l}

.f:l~2Jl....LLQ_ __

RESULT_~

HEX4-75

D 0

D 1

A E.~Jl...1..U __ Dz

-~-~- 'DLL13-.__ o 3

AN1613

OPBlJr

II " x t 0 s e g m e n t d 2 s p l a y d e c a d e r

M o t o r o J a 5 fl S

SchBmat1c

0 i s p l a y D r :1 v €! r

-~~-- -- ·---------·--

------ ---~·-·

Figure 3. Display Driver

=========lfiBil
MOTOROLA MPA DATA- DL201 REV 2 ~

4-197

4/97

© Motorola, Inc. 1997

AN1614
Application Note

Optimizing VHDLNerilog Designs
for Speed for the MPA Family Using
Exemplar Galileo Synthesis

4-198

Prepared by
Claudia Colombini
Motorola Field Applications Engineer

REVO
® MOTOROL.A

AN1614

Optimizing VHDUVerilog Design for Speed for Motorola MPA 1000
Family Using Exemplar Galileo Synthesis

This Application Note is intended to show an easy way of
producing good synthesis results in terms of speed for
MPA1000 family when using Exemplar Galileo for synthesis.

1. Galileo Options setting and results:

During synthesis the Galileo default module generation
libraries (modgen) will be used. To select the kind of modgen
library that will be used for the design select the Input Options
from the Galileo Logic Explorer menu. For MPA1000 the
Module generation library should be set to default.

library ieee;
use ieee.std_logic_l164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity accu16 is

port (clk,rst :in std_logic;

Select the kind of modgen library. There are 5 possibilities:

-Auto

-Smallest

-Small

- Fast

- Fastest

On this small example of a 16-bit accumulator the different
results for these 5 possibilities are shown. These results will
help you make the right switches on Galileo Synthesis to
produce the required results for your design.

d : in std_logic_vector(15 downto 0);
accu : out std_logic_vector(l5 downto 0)

);

end accu16;
architecture arch of accu16 is

signal accu_int : std_logic_vector(15 downto 0);
begin
process (elk, rst)
begin

if rst = '0' then
accu_int <= (others=> '0 1);

elsif clk'event and elk= '1' then
accu_int <= accu_int + d;

end if;
end process;

accu <= accu_int;
end arch;

The best results will always be optained when the Effort is set to exhaustive. This will cause the tool to run longer especially on
PC but the results will be the best. For delay optimization the Optimize option is set to Delay. For synthesis options: Mode is set to
Chip -this will automatically insert 10.-Buffers. None of the 11 paths is selected, this will make the synthesis run through all 11 paths
and then the tool will come up with different results from which the best speed can be selected. All other settings are set to default.
See the settings for all runs, the option changing will be select_modgen.

gc /home/claudia/exemplar/demo/accu16.vhd /home/claudia/exemplar/demo/accu16.edf -nocontrol
-input_format=VHDL -target=p_mpa -output_format=EDIF -delay -ef fort=Exhaustive -chip
-wire_tree=Worst -report=slack_table -report=cell_usage -report=device_util -encoding=OneHot
-VHDL_93 -modgen_library=generic -select_modgen=Smallest -status_pipe=8

Option
Input
Output
status_pipe
select_modgen
modgen_library

gc Options:
Value
/home/claudia/exemplar/demo/accu16.vhd
/home/claudia/exemplar/demo/accu16.edf

8

generic

=======~ MOTOROLA MPA DATA- DL201 REV 2 ~
4-199

~

AN1614

vhdl 93
encoding
report
wire tree
chip
effort
delay
output_format
target
input_format
nocontrol

OneHot
device_util

Worst

Exhaustive

EDIF
p_mpa

VHDL

1.1. select_modgen is set to smallest:

Here are the 11 paths with the different results, the last 2 paths do another speedup of the fastest paths:

Pass Area Delay --CPU--
(Gates) (ns) min:sec

1 150 38.6 00:03
2 150 38.6 01:58
3 150 38.6 00:03
4 150 38.6 00:03
5 150 38.6 00:03

150 38.6 00:03
7 150 38.6 00:03
8 150 38.6 00:03

168 94.0 00:05
10 252 51. 8 00:30
11 255 69.8 00:09
lSpd 151 38.6 00:06
2Spd 151 38.6 00:05

Galileo will automatically choose the fastest implementation and save the edif file, but it is also possible to save other paths if
wanted.

Resource Use Estimate
Design: ACCU16

Technology: mpa
File: /home/claudia/exemplar/demo/accul6.vhd

• Area: 150.0
Critical Path: 38.6 ns

gc run complete.

/~~.,'! ~~·==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=D=L=2=01=R=E=V=2===============================
4-200

1.2. select_modgen is set to small:

Here are the 11 paths with the different results.

Pass Area Delay --CPU--
(Gates) (ns) min:sec

150 38.6 00:04
2 150 38.6 02:01

150 38.6 00: 03
4 150 38.6 00:03

150 38.6 00: 03
150 38.6 00:03

7 150 38.6 00: 03
8 150 38.6 00:03
9 168 94.0 00:05
10 252 51. 8 00:32
11 255 69.8 00:09
lSpd 151 38.6 00:06
2Spd 151 38.6 00:05

For this small example the result is not varying much to the option smallest.

This is the selected result:

Resource Use Estimate
Design: ACCU16

Technology: mpa
File: /home/claudia/exemplar/demo/accu16.vhd
Area: 150.0

Critical Path: 38.6 ns
gc run complete.

1.3. select_modgen is set to fast:

AN1614

Here are the 11 paths with the different results, the last 2 paths do another speedup of the fastest paths and include the
automatically selected result for the option fast:

Pass Area
(Gates)

1 162
2 188
3 192
4 186
5 162
6 188
7 192
8 186
9 185
10 159
11 177
lSpd 162
2Spd 162

Resource
Design: ACCU16

Technology: mpa

Delay --CPU--
(ns) min:sec
33.8 00:05
37.4 00:04
33.8 00:04
37.4 00:04
33.8 00:04
37.4 00:04
33.8 00:04
37.4 00:04
95.2 00:06
82.0 00:05
79.6 00:04
31. 4 00:08
33.8 00:06

Use Estimate

File: /home/claudia/exemplar/demo/accu16.vhd

================================M=O=T=O=R=O=L=A=M=P=A==DA=T=A=-==D=L=2=01==RE=V==2========================::::::::j~
4-201

[I]

AN1614

Area: 162.0
Critical Path: 31.4 ns

1.4. Modgen_select is set to fastest:

Here are the 11 paths with the different results, the last 2 paths do another speedup of the fastest paths and includes the
automatically selected result for the option fastest:

Pass Area
(Gates)

1 168
2 194
3 198
4 192
5 168
6 194
7 198
8 192
9 191
10 165
11 182
lSpd 168
2Spd 168

Resource
Design: ACCU16
Technology: mpa

Delay --CPU--
(ns) min:sec
26.6 00:05
30.2 00:05
26.6 00:04
30.2 00:05
26.6 00:04
30.2 00:04
26.6 00:05
30.2 00:05
96.4 00:06
86.8 00:05
83.2 00:05
24.2 00:08
26.6 00:07

Use Estimate

File: /home/claudia/exemplar/demo/accu16.vhd
Area: 168.0

Critical Path: 24.2 ns

1.5. select_modgen is set to auto:

This option will cause the software to select the modgen library due to the optimization constraints. In this example the
optimization is set to delay therefore the Modgen_select is set to fast and the run will produce the same result as for the option fast.

2. MPADS implementation:

The MPA 1000 family consists of 4 different arrays. For this example the MPA 1016, the smallest device with about 3500
equivalent gates is chosen in the 84 PLCC package with the Boot from ROM programming mode. Before the IMPORT can be
started, the clock and reset signals of the design need to be tied to the primary clock network of the device. This will be done in the
External Attributes file, the .pat file.

Settings in the .pat file:

port CLK instance IPCLK
port RST instance IPRST

The settings for the autolayout is done in the Options --; Autolayout menu. These settings can also influence the results of the
implementation.

For Autolayout Options the parameter group "Minimum Delay" is chosen. The settings in this parameter group are set to produce
the best implementation in terms of design speed. Important for this result is also the value which is put into the target delay. For this
example the target delay is set to 200 which means 20ns, a target frequency of 50MHz. In the advanced autolayout options panel,
be sure to enable tertiary clocks.

~~.,'! ~~·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA==-=D=L=2=01==RE=V=2===============================
4-202

AN1614

The results of the implementations of the different synthesis results of the 16-bit accumulator can be seen below.

Explanations of names:

accu_s: select_rnodgen is set to small
accu_sm: select_modgen is set to smallest
accu_f: select_modgen is set to fast
accu_fa: select_modgen is set to fastest

~

25

20

15

10

accu_s accu_sm accuJ accu_fa

Figure 1. results accu 16bit

Post Autolayout Result
Name (MHz)

accu_s 17.30

accu~sm 17.30

accu_f 23.80

accu_fa 27.30

As these results show the selection of the select_modgen influences the performance of the design .The best implementation in
terms of speed will be produced be choosing the modgen library fastest. The 16 Bit Accumulator is able to be implemented with a
maximum frequency of 27.3 Mhz. This performance can be reached with a simple VHDL description and without any use of special
macros. Due to this it can be said that this performance of an 16 bit accumulator can also be reached within a big design where the
accumulator is just a part of it when the whole design is described using VHDL.

======================~rjil MOTOROLA MPA DATA - DL201 REV 2 ~
4-203

4197

© Motorola, Inc. 1997

AN1615
Application Note

An FPGA Primer for PLD Users

4-204

Prepared by
Terry Schaul
Motorola Technical Resource Manager

REVO
®MOTOROLA

AN1615

An FPGA Primer for PLO Users

Introduction

Welcome to the exciting world of Field Programmable
Arrays (FPGA). As the title suggests, the goal of this
application note is to familiarize the current Programmable
Logic Device (PLO) user with FPGA architecture, while also
introducing Motorola's exciting new MPA (Motorola
Programmable Array). Digital system design is becoming
more complex as system requirements continue to push the
envelope of semiconductor technology. These demanding
requirements call for a digital logic solution optimized to meet
capacity, performance, cost and time-to-market constraints.
An FPGA solution meets these challenging requirements.

Programmable Logic Devices

As Figure 1 shows, logic devices can be classified into five
general types: standard logic, custom and fixed function logic,
PLO, Application Specific Integrated Circuit (ASIC), and
Microcontrollers.

Standard
Family Logic

Custom & Fixed
Function Logic

Figure 1. Logic Device Types

Of these five classifications, the PLO segment is the most
dynamic of these markets. The advantages of PLO's are clear:
increased integration, improved reliability, lower cost, added
flexibility, and accelerated time to market. PLD's can be further
classified into the following families: Program- mable Array
Logic (PAL), simple PLO (SPLO), complex PLO (CPLD) and
Field Programmable Gate Arrays (FPGA). Figure 2 displays
this classification along with the competing technologies.

PLO's differ in structure from the traditional standard logic
devices. PLD's allow the designer to program a specific logic
function into an uncommitted logic array after the device has
been fabricated. The uncommitted logic array differentiates
the PLO from the ASIC family. The size and complexity of the
logic targeted for a PLO differs among the various
classifications, and the actual dividing line between the
classifications is fuzzy.

PAL and SPLD are one in the same. They are both
array-oriented devices that have an AND-OR structure with a
wide-input AND gate feeding a narrower OR gate. This forms
a sum-of-products structure suitable to implementing
reduced Boolean equations. A limited number of registers are
made available at the the output of selected OR gates. This
architecture tends to be "logic rich" because the ratio of logic
gates to registers is on the order of 5 to 1 . FPGA's, on the other
hand, tend to be "register rich", with a logic-to-register ratio
closer to 2 to 1 .

Programmable
Logic

Figure 2. Programmable Logic Market

CPLO's are sometimes referred to as "super PAL's". This
device typically consists of multiple optimized PAL blocks
interconnected by a programmable switching matrix. The
density and complexity of these devices can accommodate
significant logic, but not the density and complexity attainable
by FPGA's.

FPGA's consist of four key elements: logic cells, logic cell
interconnection, programming elements, and 1/0 modules.
Figure 3 shows the configuration of a generic FPGA. Note that
each FPGA supplier packages these elements together
differently, and these elements will be examined in detail later.

D
D

110_0
Cells D

D
D

D
D

DD DD DD DD

D D
D D
D D
D D
DD t DD

Vertical
Interconnect

Lines

D D
D D
D [3

D D
DD DD

D
D

D
D

Vo
D

D
D

Programmable
Connection
Point+

Programmable
Logic Cell

I
Horizontal

Interconnect
Lines

Figure 3. Generic FPGA Architecture

CPLD and FPGA differ in their interconnect structures.
Typically, CPLD's use a continuous interconnect structure,
while FPGA's use a segmented interconnect structure. The
CPLD's fixed interconnect structure implies that the designer
knows the delay between logic cells before any design work is
done. For FPGA's, however, these delays can only be

================================M=O=T=O=R=O=L=A=M==PA==D=AT=A=-==D=L=2=01==R=EV==2===========================~
4-205

AN1615

estimated until the place and route is complete. After place
and route, all delays inside an FPGA are known.

Besides the physical structure, the different PLD families
also vary greatly in the density of the devices. PAL and SPLD
contain fewer than 600 usable gates, and are technologically
limited in their growth potential. CPLD's typically contain
between 500 and 10,000 usable gates, while FPGA's offer the
most dense devices ranging from 2,000 to 50,000 usable
gates and beyond. Only the FPGA architecture will allow for
continuous density growth.

Development tools play a very important role in designing
with PLD's. The development tool strategy differs among the
PLD families and their suppliers. PAL's and SPLD's are less
complex and dense, and they usually require the use of a
single industry standard development tool such as ABEL or
PALASM to complete the PLD design cycle. CPLD's and
FPGA's, however, with their increased complexity and density,
require more sophisticated development tools. CPLD's and
FPGA's require both front- and back-end development tools.
Design capture can be in the form of schematic capture or a
Hardware Descriptive Language (HDL). Some suppliers have
a flexible front-end tool strategy that allows the use of popular
third party tools for design capture and netlist generation. Still
other suppliers offer their own proprietary front-end
development tools. Regardless of the front-end tool strategy,
all devices require a specific back-end tool that fits or places
and routes the design into the specific device. These
back-end tools are offered by the CPLD/FPGA suppliers for
their specific devices.

FPGA Attributes

The previous section summarized the different
classifications of PLD's. The key elements of the the FPGA
elements that will now be examined are: physical structure,
granularity, interconnectivity and development tools.

Physical Structure

The physical structure of the FPGA memory element
comes in two flavors: SAAM and Anti-fuse. SAAM-based
FPGA's consist of programmable logic cells surrounded by a
programmable interconnect matrix where the function and
routing that is programmed into the device via the SAAM is
volatile. At each power-up, the program is downloaded into
the device from an off--<:hip, non-volatile memory or a
microprocessor. The reprogrammable capability is an obvious
benefit for the SAAM-based solution. Since FPGA designs
tend to be complex, several design iterations are usually
required to complete the design. The reprogrammable FPGA
can significantly reduce prototype costs. More importantly,
reprogrammability adds flexibility to a system by providing
easy field upgrades or on-the-fly reconfigurations by simply
changing the downloaded program. The volatility of
SAAM-based FPGA's requires some additional overhead for
power-up downloading. This is most often accomplished with
industry standard serial boot PROM's. These devices connect
directly to the FPGA with a very simple 3-wire interface (chip
enable, clock and data).

SAAM-based architectures integrate well wiih CMOS
technology. This provides a roadmap for the technology-

sawy supplier to combine FPGA modules with other popular
CMOS cores such as: DSP, SAAM and MCUs.

Total system reliability is another benefit of SAAM-based
FPGA's. SAAM-based devices are fully tested before
shipping, so they require no pre-inspection. Since they are
volatile and programmed in--<:ircuit, they can be placed directly
into the target system, avoiding additional pre-programming,
inventory, and testing that non SAAM-based devices require.

Anti-fuse, also referred to as one-time programmable
device, is a physical structure whereby the interconnect
between logic units is an irreversible fusible link. Configuring
the device is accomplished by placing a programming voltage
between two metal plates to cause an electric field. This
electric field then causes metal to melt and rush in, filling a pin
hole in the insulation. The filling of this pin-hole with metal
completes the circuit, hence the name "anti-fuse".

While anti-fuse devices typically implement the same
register intensive logic functions as SAAM-based FPGA's,
they cannot be reprogrammed. Anti-fuse devices also require
higher voltages and longer times to program the fuse. As
mentioned earlier, FPGA designs often require several design
iterations to complete, and an anti-fuse FPGA solution can
potentially increase engineering time and prototyping device
cost.

Reliability issues mtist be addressed with anti-fuse
devices. Since it is impossible to determine the resistance at
which the metal will melt during programming, test vectors
must be generated to prove programming accuracy. Even with
test vectors, the devices are not 100% testable. The extra
handling that occurs to program the devices before they are
placed in the target system introduces additional reliability
concerns. Additionally, anti-fuse technology has historically
proven to be a difficult process to control. Consistent fuse
formation and prevention of "healing" have been some of the
troublesome past issues. Recently at least one major vendor
has abandoned its anti-fuse efforts.

The anti-fuse structure provides few advantages over the
SAAM-based structure. While the anti.:..fuse itself is typically a
smaller element than a single SAAM cell, there is significant
overhead circuitry associated with high voltage programming
and testability features that largely negate this supposed
advantage. Anti-fuse devices are generally more secure than
SRAM..,based devices. Anti-fuse devices provide a
mechanism to prevent the "read-back" of programming
information. This feature, coupled with the fact that there is no
external programming bitstream to intercept, makes anti-fuse
devices a natural choice for systems where security of the
processing algorithm is critical.

Granularity
FPGA's, by definition, contain logic cells, and granularity

refers to logical capacity of these individual FPGA logic cells.
Granularity is generally referred to as "fine grain" or "coarse
grain". Again, there is no clear dividing line between fine and
coarse grain, as FPGA suppliers offer nearly a continuous
spectrum of logic cell capacity. Fine grain indicates fewer logic
gates per logic cell . Coarse grain indicates greater logic gates
per logic cell . As a rule of thumb, fine grain logic cells contain
1-8 logic gates per logic cell, whereas coarse grain logic cells
contain 9-25 logic gates per logic cell.

~~~ ~11::::::::::::::::::::::::::;:::::;:::::;:::::;:::::;::M=O=T=O=R=O=LA==M==PA:::::D=Ac=A=-==D=L2==0=1=R=Ev:::;::2:::;:::::;:::::;:::::;:::::;:::::;:::::;:::::;:::::;:::::;:::::;:::::;:::::;:::::;:::::;::== 
4-206 



Granularity affects the designer both logically and 
physically. Logically, when fitting a design into the logic cells of 
a fine grain device, the design is less abstracted than when 
placed into a coarse grain device. This lesser degree of 
abstraction makes design adjustments easier. Physically, the 
designer must understand the difference between raw gates 
and usable gates. The actual capacity of the device is 
described by raw gates. Raw gates per logic cell is equal to the 
total raw gates divided by number of logic cells. Raw gates is 
an idealistic number, and the coarser the granularity of the 
device the less raw gates resembles usable gates. Usable 
gates refers to the number of logic gates actually used in a 
design. Usable gates depends heavily on the architecture of 
the routing resources, on the device granularity, and on the 
logic design fitted into the device. The disparity between raw 
gates and usable gates comes from the fact that those logic 
cell gates not used in mapping a product term into a particular 
logic cell are wasted, or used for routing. Generally, a coarser 
logic cell decreases the logic gate utilization efficiency. To 
improve this logic gate utilization many FPGA suppliers are 
migrating towards fine grain architectures. 

Interconnectivity 

Another key attribute of the FPGA architecture is the 
interconnectivity between the logic cells. Channels of wire 
segments are provided between the rows and columns of the 
logic cells. These wire segments are connected at various 
points throughout this wire matrix. While sufficient wiring 
segments must be provided for good mutability, excess wiring 
segments may waste valuable chip area. 

One of the most important aspects of an FPGA architecture 
is the ability of the development tool to route a design into the 
selected device without the designer having to spend time 
manually placing and routing. Most anti-fuse devices achieve 
maximum mutability by providing a fully connected crossbar. 
SAAM-based devices simply cannot afford to provide a fully 
connected crossbar for die size reasons. Thus SAAM-based 
devices typically provide a partially connected crossbar as 
shown in Figure 4. Since SAAM based arrays often use 
elements of otherwise unoccupied logic cells to participate in 
routing, this apparent disadvantage is minimized. 

Fully Connected Cross
bar Switch 

Partially Connected 
Segments 

Figure 4. Switch Connections 

The segmentation of the routing tracks plays an important 
role in the interconnectivity of an FPGA. The wire segments 
span along the FPGA in routing channels between the logic 
cells. The length of this wire segment span varies among 
FPGA devices. FPGA segmentation allows for incremental 
delays. As the number of interconnect segments increases, 

AN1615 

the interconnect delay also increases. Since the number of 
segments required to interconnect signals is neither constant 
nor exactly predictable, the routing delays can not be 
determined precisely until place and routing has been 
completed. Fine grained FPGA inherently use more logic 
cells. This places a heavy burden on the interconnect 
structure. A robust interconnect structure is required by fine 
grain architectures to avoid a routing bottleneck. Varied length 
or hierarchal segmentation approaches provide adequate 
resources to avoid such bottlenecks. 

Development Tools 
Last, but certainly not least, an FPGA primer would not be 

complete without examining the critical issue of FPGA 
development tools. This is a very complex subject, and the 
intent of this application note is to introduce the reader to 
various FPGA tool strategies. No matter how efficient an 
FPGA architecture is, its efficiency lies in the ability of the 
development software to optimize for that specific 
architecture. The development tools comprise the software 
system that enables the designer to define the logic, capture it, 
verify it and implement the logic into the FPGA device. These 
tools are typically bundled as front-end tools and back-end 
tools. Some software venders and FPGA suppliers offer both 
front- and back-end tools as a complete toolset, while others 
just offer a portion of the toolset. 

Implement 
Design Into 

FPGA 

Figure 5. Front & Back End Tools 

Front-end Tools 
As shown in Figure 5, front-end tools facilitate design entry, 

primary design verification and netlist generation. These 
front-end tools allow for design entry via schematic capture or 
a Hardware Desciiption Language (HDL). Schematic capture 
requires the designer to enter the design in the form of gates, 
logic elements from libraries of primitive functions and macros. 
VHDL is one such behavioral language that describes the 
function and attributes of primitive components and macros in 
the design. VHDL and Verilog are both gaining momentum as 
the front-end tools of choice for several reasons. Once a 
designer is comfortable with an HDL, the time to enter a 
design is generally reduced versus schematic capture, 
especially for very large designs. HDL:s are technology 

===================rjll 
MOTOROLAMPADATA-DL201 REV2 ~ 

4-207 



AN1615 

independent, allowing for a more efficient design. However, 
gate counts may increase over schematic captured designs 
when downloading an HDL design into an FPGA. Some 
popular third party Computer Aided Engineering (CAE) 
development tools include: Viewlogic, Mentor, Synopsys, 
Orcad, and Veribest. 

Simulation takes place in two key places in the design flow. 
Logical simulation just after netlist generation verifies the 
functionality of the design. At this point the design has not 
been fitted into a specific device, thus only estimated or unit 
wire delays are used. The second place where simulation can 
take place is following the place and routing of the design. This 
is a functional simulation of the design and uses actual back 
annotated routing delays. 

Back-end Tools 
As shown in Figure 5, a back-end tool maps the design into 

the specific FPGA device, provides timing verification, and 
configures the downloadable program (a.k.a. configuration 
bitstream). Mapping tools convert original design elements in 
the netlist into logic elements available to the specific FPGA. 
Place and route tools interconnect the logic cells to each other 
and the 1/0 blocks. Design requirements such as speed, delay 
and skew are realized during this phase. Meeting these design 
requirements depends heavily on the the efficiency and 
robustness of the place and route tool as well as the device 
architecture. Timing verification can be performed with a 
timing analyzer or by functional simulation. Finally, the 
back-end tool provides the configuration bitstream to 
download the logic into the FPGA device. This step is called bit 
stream generation. Back-end tools are specific for each 
FPGA device and thus offered by the individual FPGA 
suppliers. 

WHYMPA 
Motorola enters the exciting FPGA market with its 

MPA 1000 family of Programmable Arrays. The MPA 1000 
products are SAAM-based, fine grained, high performance, 
low cost solutions for reconfigurable logic applications. 

The SAAM-based physical structure of the MPA 1000 offers 
significant advantages. First and foremost is the reprogram
mability that SAAM-based products provide over the 
one-time programmable anti-fuse products. With todays 
iterative and complex design flows, reprogrammability allows 
a flexible, cost-effective solution. Additionally, the most recent 
logic system design methodologies depend on the 
in-system-reprogrammability of the SAAM based FPGA's to 
accommodate on-the-fly functionality changes, built-in
self-test (BIST), field upgrades and other flexible system 
features. FPGA's are no longer just another vehicle to 
implement a fixed logic function. Their reprogrammability has 
become a foundation for many new system designs. 

Motorola is a broad-based semiconductor innovator, and 
brings technology leadership unmatched by its FPGA 
competitors. As mentioned earlier, SAAM-based structures 
integrate well with CMOS technology. Motorola will lead the 
effort in integrating a programmable array module with other 
popular CMOS cores. This will allow Motorola to differentiate 
itself from the crowded FPGA and processor markets by 
offering exciting new products. 

The MPA utilizes a hierarchal routing scheme which takes 
advantage of the fine grained structure while avoiding the 
routing bottlenecks. Each MPA1000 family member is a 
partitioned array of logic cells. At the highest level of hierarchy 
each device is partitioned into 4 equal size quadrants. 110 cells 
surround this core of quadrants. Each quadrant is further 
subdivided into zones. A zone consists of a 1 Ox1 O array of fine 
grained logic cells, 20 port cells, and a clock distribution cell. 
Each logic cell provides a nand gate or a secondary function 
(Wired-Or, Exclusive-Or, D-'Flip/Flop or latch) depending on 
the position of the logic cell. The MPA interconnect structure is 
partitioned into 3 hierarchal levels: global, medium and local. 
Hierarchical routing resources provide routing flexibility that 
enables the MPA devices to overcome bottlenecks associated 
with other fine and course grain architectures. 

Motorola's development tool strategy provides flexibility for 
the designer. Motorola accepts both schematic capture and 
HDL design inputs from over ten front-end CAE development 
tool venders. Motorola provides the Motorola Programmable 
Array Design System back-end toolset at a nominal cost (free 
for low-end devices). Motorola Programmable Array Design 
System automatically analyzes, optimizes, transforms, and 
places and routes a design into an MPA device. Full 
incremental design support as well as complete on-line help 
reduces design time in a user friendly environment. 

In summary, Motorola's MPA products are a high density, 
high performance, low cost solution for reconfigurable logic 
needs. Fine grain structure, abundant hierarchical 
interconnection resources and automatic, timing driven, tools 
work together to quickly provide design implementations that 
meet timing constraints without sacrificing device utilization. 

CONCLUSION 

This FPGA primer highlighted PLO families, provided a 
glimpse into the competing FPGA architectures, and 
examined the MPA solution. The key FPGA attributes of 
physical structure, granularity, interconnectivity and 
development tools have been elegantly addressed by the 
MPA devices. Today's digital engineers face such critical 
design issues as schedule, product requirements (per
formance, size, cost, etc.) and tool compatibility. To ensure 
design success, these issues need to be considered when 
selecting an appropriate FPGA solution in this complex world 
of digital design. 

For additional information, please reference the URL: 

http://sps.motorola.com/fpga 

~~~ ~~·===================M=O=T=O=R=O=LA==M=P=A==DA=~=A=-==D=l2==01=R==EV==2================================ 
4-208

5197

© Motorola, Inc. 1997

AN1618
Application Note

Using JTAG Boundary Scan
with the Motorola MPA1000
Family of FPGAs

4-209

Prepared by
Marten L. Smith
Motorola Programmable Logic

REVO
®MOTOROLA

AN1618

Using JTAG Boundary Scan with the Motorola MPA1000 Family of FPGAs

INTRODUCTION

JTAG is a standardized boundary scan methodology used
for board-level testing to detect faults in package and board
connections, as well as internal circuitry. The MPA 1000 JTAG
architecture is designed to meet the IEEE 1149.1 standard for
testability of integrated circuits and to offer our customers a
more effective way to test their circuit boards which use the
members of the MPA1000 family of FPGAs.

This application note gives the reader information on how
JTAG is implemented on Motorola's MPA1000 family of
FPGAs. For more information on JTAG and IEEE 1149.1 the
reader is encouraged to reference books and articles that
directly relate to these topics.

JTAG INTERFACE

The MPA1000 device contains dedicated JTAG IEEE
1149.1 boundary scan circuitry. JTAG can be used on
unconfigured devices using the BYPASS or IDCODE
instructions. Or JTAG can be used on configured devices
using any of the public instructions available.

The first step in setting up any of the MPA1000 family of
devices in JTAG mode is to set aside the five TAP signal pins.
This is done so that these pins are can be utilized as JTAG
pins during JTAG mode. These pins are set aside for JTAG
when the user first runs the MPA Design System (MPADS)
tool. The user should first push the Select Device button on
the main window of the MPADS tool. This will bring up the
Select Device window. The user should then select the JTAG
Mode option along with the desired configuration option. Then
the user should push the OK button. These pins can still be
used as 1/0 for the user's design configuration, but will revert
to the TAP (JTAG) signals when the device is in the JTAG
mode as outlined below.

The second step in order to enable JTAG is to raise the
MODE[3] pin HIGH after the device is configured and the user

Table 1. Mode[3:0] Pin Programming

Bits

[3] [2] [1] [O]

is ready for the device to go into JTAG mode (see Figure 1 and
Table 1). When the MODE[3] pin of the MPA1000 device is
HIGH, five user 1/0 pins become the TAP (JTAG) signals and
user mode operation of those pins is interrupted. After JTAG
testing, these pins can be programmed as normal 1/0 pins by
deasserting the MODE[3] pin. The TAP controller can take
control of all device pins, but care must be used to prevent the
TAP controller from interfering with device user mode or
configuration operation (the configuration pins are the
RESETS, CLK, MODE[3:0],and F[4:0] pins). Note: the
MPA 1000 family of FPGAs can not be configured using the
JTAG port.

External
Signals~--------~

RESET_B
CLK
DCLK
MODE[3:0]

CS_B BFR_B F[O]
RD_B ERR_B F[1]
WR_B MEMCE_B F[2]
RS PWRUP F[3]
BUSY END F[4]

TCK
TMS
TOI
TRSTB
TOO

Figure 1. JTAG and Configuration Interface Signals
With the exception of the JTAG signals, the rest of these

signals are dedicated and are never available for user 1/0.

Description

0 x 0 0 Micro Mode- Microprocessor/controller interface circuitry with parallel (byte-wide) data

0 x 0 1 BFR Mode (1) - Boot From ROM, byte-wide data. MPA generates ROM addresses

0 x 1 0 BFR Mode (2) - Boot From ROM, serial data. (Low pin count serial EPROM generates own
addresses)

0 x 1 1 BFR Mode (3) - Boot From ROM, byte-wide data. MPA does not generate ROM addresses

0 1 x x Use external clock for configuration

1 x x x Enable JTAG circuitry and pins

~~.,'{ ~~·==================M=O=T=O=R=O=LA==M=P=A=D=A=JA==-=D=L2==01==RE=V=2===============================
4-210

TAP
Controller

(1/0)

Instruction
Register

(1/0) (1/0)

Instruction
Decoder

AN1618

~MUX

Array Core

1/0 Periphery

(1/0) (1/0)

Figure 2. MPA1000 JTAG Architecture

JTAG BOUNDARY SCAN

Architecture

Figure 2 shows a block diagram of the JTAG architecture of
an MPA1000 device.

TAP and VO Signals

The TAP (Test Access Port) consists of five externally
accessible signals which are used to control and observe
boundary scan data. These five pins: TCK, TMS, TDI, TRSTB,
and TDO are multiplexed with normal 1/0 signal pins. After
JTAG testing, these pins can be programmed as normal 1/0
pins by deasserting the MODE[3] pin. Note: There are no
Boundary Scan Cells associated with the TAP signals.

The following is an explanation of the TAP signals

TCK - Test Clock. This clock input is used to synchronize
all of the JTAG functions. It is used for functions such as the
clock for the TAP controller and the shifting of test data
through the boundary scan cells. The maximum frequency
that can be used for TCK is 16 MHz.

TMS - Test Mode Select. This input controls the state
changes of the TAP controller. TMS determines whether the
TAP controller performs an Instruction Register function or a
function involving one of the data registers (See Figure 3).
TMS is sampled on the rising edge of TCK.

TOI - Test Data Input. Serial test data is received by this
input and sent to the Instruction Register or one of the data
registers according to the state of the TAP controller. TDI is
sampled on the rising edge of TCK.

TOO - Test Data Output. Serial test data is driven from this
output, having been sent from a selected data register or the
instruction register. Which data register TDO receives data
from is determined by the instruction loaded into the
Instruction Register. TDO changes on the falling edge of TCK.

TRSTB - Test Reset_Bar. This active low input
asynchronously initializes the TAP controller to the
Test-Logic-Reset state (see Figure 3). This state initializes all
of the test logic of the JTAG circuitry so that normal (i.e.
non.JTAG) operation of the MPA1000 device can continue.

JTAG Control and Registers

MPA1000 family JTAG TAP controller and registers are
shown in Figure 3. The JTAG architecture of an MPA1000
device consists of a TAP controller, an Instruction Register,
Instruction Decoder, a series of data registers, and a
Multiplexing function for the data register outputs. The data
registers consist of, a Bypass Register, an ID Register, and a
Boundary Scan Register. The JTAG circuitry in the MPA1000
family is hard-wired.

The following is an explanation of the controller and
registers in the MPA1000 JTAG circuitry:

TAP CONTROLLER - The TAP controller is a
synchronous, 16--state, finite state machine which selects the
mode of operation for the test circuitry. The state machine
diagram is shown in Figure 3. The state transitions of the TAP
controller occur based on the value of TMS at the time of a
rising edge of TCK. There are two general functions
performed by the TAP controller; one is the loading of test
instructions into the Instruction Register and the other is the
shifting of test data through the data registers.

================================M=O==TO=R=O==LA==M=PA==D=AT=A=-==D~L=2=0=1~R~E~V~2==========================~
4-211

AN1618

TESTLOGICRESET -------------------------..

o©
R/I SELECT-DR...SCAN 1-------..i SELECT-IA-SCAN

© 1
CV o

1
© 0

@ = 'D' STATE OF
TAP CONTROLLER

=LOGIC STATE OF TMS
"O' = OFF/LOW
"1' =ON/HIGH

UPDATE-DR

0 @

Figure 3. TAP Controller State Diagram

INSTRUCTION REGISTER - The Instruction Register is a
three-bit register which permits a test instruction (also called a
Public Instruction) to be shifted in, which selects the test to be
performed. The Instruction Decoder decodes the test
instruction and selects which data will be multiplexed into the
data registers. Table 2 shows the basic Public Instructions
supported by the MPA1000 family.

Table 2. Basic Public Instruction

Three-Bit Instruction Code

12 11 lo Pub lie Register
(msb) (lsb) Instruction Selected

0 0 0 EXT EST Boundary Scan
0 0 1 INTEST Boundary Scan
0 1 0 SAMPl..E Boundary Scan
1 0 0 IDCODE Device Register
1 1 1 BYPASS Bypass Regi,ster

BYPASS REGISTER - The Bypass Register is a single-bit
register. When selected, the Bypass Register provides the

. shortest path, a single bit scan path, between TOI and TOO.
The Bypass Register makes it possible to reduce the scan
path through devices that are not involved in the current
board-level test.

DEVICE IDENTIFICATION REGISTER - The Device
Identification Register is a 32-bit shift register which holds the
Motorola identification code, array identification,

programmable logic products identification, and version
number. The bit assignment for the ID code is given in Table 3.

Table 3 Device Register ID Codes

Bit Number Code Use

0--11 Motorola Identification
12-21 Array Identification
22-27 Programmable Logic Products Identification
28--31 Version Number

The ID codes for Motorola's MPA 1000 family of FPGAs are
listed in Table 4.

Table 4. MPA1000 ID Codes

ID Code ID Code
Array (Binary) (Hex)

MPA1016 0001 001110 0100001110 000000011101 1390E010

MPA1036 0001 001110 0100011110 000000011101 1 391E01D

MPA1064 0001001110 0100110100 000000011101 1 3934010

MPA1100 0001 001110 0101000000 000000011101 1 3940010

BOUNDARY SCAN REGISTER - The Boundary Scan
Register is the chain of JTAG boundary scan cells (BSC) that
are linked together to form a shift register around the periphery
of the array. The test data enters the Boundary Scan Register
through the TOI pin. The test data is then shifted around the

~~~ ~~i==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=D=L2==01=R=E=V=2::::============================= 
4-212 



array through each boundary scan cell in a counter-clockwise 
direction and finally exits through the TOO pin (see Figure 4). 

i+--------. 
I I 
I 
I 
I 

MPA1016 
128-Pin QFP 

I I 
L _______ .J 

Pin 78 
TOI 

--· Pin 76 
TOO 

Figure 4. Direction Of Data Shift Around Package 
This example is for a MPA 1016 device in a 128-pin 

QFP package, but the concept 
is the same for all devices and packages. 

1/0 Pin Boundary Scan Cells - Each 1/0 pin is designed 
as a bi-directional pin. Therefore, a boundary scan cell is 
comprised of a two-bit shift register (see Figure 5). One of the 
bits of this shift register is the bi-directional data control cell 
and it is used to drive/receive a data bit to/from the device's 1/0 
pad or monitor a data bit that may be on the device's 1/0 pad. 
Going deeper into the data control cell, it is made up of a 
capture latch and an update latch (See Figure 6. Note: these 
two latches will be referred to several times in this application 
note, so it is recommended that the reader be familiar with 
these latches. See JTAG, Boundary Scan, or IEEE documents 
for more details). The other bit of this shift register is the 1/0 
control cell. The 1/0 control cell is used to either control the 
internal enable of the three-state output buffer or to monitor 
the status of the three-state output buffer (i.e. during the 
SAMPLE instruction). The 1/0 control cell is also used to drive 
a data bit to the next data control cell in the scan chain. When 
the bit in the 1/0 control cell is at a logic 1 then that particular 
1/0 pad's three-state output buffer is enabled. Conversely, 
when the bit in the 1/0 control cell is at a logic 0 then that 
particular 1/0 pad's three-state output buffer is disabled (Note: 
Even though the 1/0 control cell controls whether or not the 
output buffer is enabled, the MPA is a programmable device 
so the 1/0 pads must also be configured as an input or an 
output in order to pass data). A boundary scan cell resides in 
every 1/0 pad with the exception of the TOI, TCK, TMS, 
TRSTB, and TOO pins. 

Control Pin Boundary Scan Cells - Boundary scan cells 
are also associated with the control pins MODE [3:0], F [4:0], 
RESETS, and CLK so these cells are included when counting 
the number of cells in the scan chain, but have limited or no 
use for parallel loading into or out from the scan chain during 
JTAG (i.e. as a group, you can only do the SAMPLE instruction 
because MODE [3:0], RESETS, and CLK are sense only cells 
- See Figure 7). Also, the user should not attempt to change 
signal level on one of the control pins. The levels on pins 
MODE [3:0], RESETS, CLK, and F [4:0] should stay the same 
in accordance with the requirements for operation found in the 
MPA data book. Therefore only the SAMPLE test should be 
used to test them. 

AN1618 

Figure 5. Internal Boundary Scan Cell Chain 
The BSC is the Boundary Scan Cell and is comprised of 
the 1/0 Control and Data Control Cells. Note the dashed 
arrows show that there are many more Boundary Scan 

Cells, in the scan chain, than those pictured here. 

Shifting Through Both Kinds of Boundary Scan Cells -
One important point to remember is that since each Boundary 
Scan Cell is a !w.Q-bit shift register, the number of TCK clock 
cycles needed to go around the entire scan chain is two times 
the number of pins that have boundary scan cells associated 
with them in the MPA device. Or in other words, it takes two 
TCK clock cycles for the data to shift from one boundary scan 
cell to another. For example, on an MPA1016, 128-Pin QFP 
package, there are 80 1/0 pads on the integrated circuit die 
and 80 1/0 pins available on the package. Five of these are the 
TAP signals and are not part of the scan chain therefore, there 
are 75 1/0 pads that have boundary scan cells (BSCs) 
associated with them. There are also 11 control signals 
(MODE[3:0], F[4:0], RESETS, and CLK) that have boundary 
scan cells associated with them. This gives us the total 
number of boundary scan cells, which is 75+ 11 =86 boundary 
scan cells on this MPA device and package. Because of this, 
the data will need to be clocked 86 x 2 or 172 times in order to 
go around the entire scan chain from TOI to TOO. 

Another very important point to remember is that with 
certain MPA 1000 devices there are internal 1/0 pads on the 
integrated circuit die that are not brought out to external 
package pins. These 1/0 pads are still part of the boundary 
scan chain and must be taken into account while shifting data 
around the scan chain (see Data Book, DL201/D, for 
information on available pin-outs per package). For example, 
there are 61 total 1/0 pins (including the TAP signals) on an 
MPA1016 84-Pin PLCC package, but there are still 80 BSC 
1/0 pads on the MPA 1016 integrated circuit die. Therefore the 
same analysis will need to be performed to count the proper 
number of boundary scan cells for this MPA device. Therefore, 

=======================Fiil 
MOTOROLA MPA DATA - DL201 REV 2 ~ 

4-213 



AN1618 

80 1/0 pads - 5 TAP pins= 75 1/0 pads with BSCs associated 
with them. 75 1/0 BSCs + 11 control signal BSCs = 86 total 
BSCs. The data will need to be clocked 86 x 2 or 172 times in 
order to go around the entire scan chain from TOI to TDO. 

JTAG INSTRUCTIONS AND TESTS 

There are five JTAG public instructions that have been 
implemented for the MPA 1000 family of FPGAs. As mentioned 
previously, these instructions are: BYPASS, IDCODE, 
SAMPLE, INTEST, and EXTEST. 

INSTRUCTIONS 

BYPASS - The BYPASS instruction selects the Bypass 
Register to be connected between TDI and TOO. This 
instruction allows serial data to be transferred through the 
device from TDI to TOO without affecting the operation of the 

device. When selected, the Bypass Register provides the 
shortest path, a single bit scan path, between TDI and TOO. 
The Bypass Register makes it possible to reduce the scan 
path to a single register, thereby bypassing the devices that 
are not involved in the current board-level test. The decoded 
Public Instruction for BYPASS in the MPA is i2=1, i1 =1, and 
i0=1 (111 - see Table 2). 

IDCODE - The IDCODE instruction selects the Device 
Identification Register to be connected to the TOO output. The 
Device Identification Register is a 32-bit shift register which 
holds the Motorola identity code, array ID, product ID, and 
version number (see Table 3 and Table 4). By selecting the 
IDCODE instruction the Device Identification Register 
contents will be shifted out the TDO output. The decoded 
Public Instruction for IDCODE in the MPA is i2=1, i1=0, and 
i0=0 (100 - see Table 2). 

Mode_1 Shift_DR 

r 

Output 
Control 

I 
------------.., 1/0 

S I/ Control Cell 

lo o1--e-------+-------------r'---. 

I 
I 
L 

r----
1 

I 
Output Data I ------1 8 Update 
From Array I lo 0 -~-+->----+--+------<>------+---L-at_ch __ ~~ I _____ _J 

I 
I 
I L __ --.., 

I 
I 
I 
I 
I 

s 

------.., 

Update 
Latch 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Input Data 
to Array 

-----+---<9-l 0 
lo~>----+-----+------>-----+--<----~ 

I 11 
L------

MUX 

Mode_2 From 
LastBSC 

ClockDR 

______ _J 

UpdateDR 

' Bi-Directional 
Data Control Cell 

Figure 6. General Structure of Boundary Scan Cell (BSC) 

S=Select 
lo 1=MUX Inputs 
O~Output 
D=Latch Input 
LE=Latch Enable 

used for input or 3-state output on general 1/0 pads (Note: this is a general block diagram and should not be 
construed to infer design details) 

~~.,'{ ~c===================M=O=T=O=R=O=L=A=M=P=A=D=A=T=A=-==D=L2=0=1=R=E=V=2================================= 
4-214 



From 
Last BSC 

ShiftDR 

ClockDR 

ShittDR 

Input Data 
to Array 

Figure 7. General Structure of Sense-Only Boundary 
Scan Cell (BSC) used for Pins: CLK, RESETS, 

MODE [3:0] (Note: this is a general block diagram and 
should not be construed to infer design details) 

(Note: For the SAMPLE, INTEST, and EXTEST com
mands the MPA 1000 device 1/0 pins are utilized to load 
data from the inputs to the scan chain and/or to load 
data from the scan chain to the outputs. In order to do 
this the 1/0 pins on the MPA 1000 device must first be 
configured as inputs or outputs using one of the config
uration modes: Micro Mode or Boot From ROM (BFR) 
Modes 1, 2, or 3 (See Table 1 ). After doing this, the 
MPA1000 device can then be put into JTAG Mode for 
test and the 1/0 pins can be utilized for the loading in to 
or out of the scan chain). 

Note: The user must also remember that there are 
boundary scan cells which are associated with the pins 
RESETS, CLK, MODE [3:0], and F [4:0] are included when 
counting the number of cells in the scan chain for shifting 
purposes, but can only be tested, as a group, using the 
SAMPLE instruction. 

SAMPLE- The SAMPLE instruction lets you take a sample 
of the normal operation of the MPA 1000 device pins which can 
be shifted out to TOO. During the SAMPLE function the BSCs 
take a sample of the functional data that exists on the 1/0 and 
control pins. The sample is taken regardless of the pins being 
configured as inputs, outputs, or bi-directionals. The 
functional data is entered into the SSC capture latches. 
Typically the data is then shifted around the scan chain. 

The BSCs for the control pins CLK, RESETS, and 
MODE[3:0] are scan only cells. Because of this the SAMPLE 
test is the only way to test these pins in JTAG mode (e.g. you 
can not run an EXTEST test on the control pins that are set as 
inputs due to a configuration mode, such as MODE [3:0]. See 
MPA data book (DL201/D), Device Configuration section for 
more details). Also, the user should not attempt to change a 
signal level on one of the control pins. The levels should stay 
the same in accordance with the requirements for operation 
found in the MPA data book. 

The SAMPLE instruction selects the Boundary Scan 
Register to be connected between TOI and TOO. The 

AN1618 

decoded Public Instruction for SAMPLE in the MPA is i2=0, 
i1 =t, and i0=0 (01 O - see Table 2). 

EXTEST - The EXTEST instruction is generally used to 
drive test data out of the MPA to another device on a printed 
circuit board (it can also input data to the scan chain, but 
SAMPLE is the instruction more often used lo do this). The 
EXTEST instruction places the device in an external boundary 
test mode and selects the BSCs to be connected between TOI 
and TOO. The outputs are tested by serially shifting data 
through the SSC capture latches, loading them into the BSCs' 
update latches, and driving them out through the 1/0 pins. In 
this way the printed circuit board connections can be tested 
without the need for a physical test point on the printed circuit 
board. The user must remember that in order to get data 
loaded out from the scan chain all 1/0 pins must be configured 
as outputs before running the EXTEST test. Data can also be 
loaded into the scan chain during EXTEST by configuring the 
desired 1/0 pins as inputs and loading the data on the inputs in 
the CaptureDR state of the TAP Controller. The decoded 
Public Instruction for EXTEST in the MPA is i2=0, i1=0, and 
i0=0 (000 - see Table 2). 

INTEST - The instruction is generally used to test the 
internal logic that was designed and configured by the MPA 
user. The INTEST instruction places the device in an internal [!] 
boundary test mode and selects the Boundary Scan Register 
to be connected between TOI and TOO. Test data is typically 
loaded from the 1/0 pads and goes into an input SSC cell. 
From there the data goes into the user-configured internal 
logic of the MPA 1000. When the data reaches the 
user-configured internal logic, it is manipulated by that logic, 
and the manipulated data is latched onto an output SSC cell's 
capture latch. From the capture latch, the data can be shifted 
out to TOO. The user must remember that in order to get data 
loaded into the scan chain all 1/0 pins must be configured as 
inputs before running the INTEST test. The decoded Public 
Instruction for INTEST in the MPA is i2=0, i1 =0, and i0=1 (001 
- see Table 2). 

INSTRUCTION EXAMPLES 

Below are generic examples for the MPA Public 
Instructions. These are only simple examples and do not 
necessarily show all of the functions of each instruction. The 
MPA used in the examples is an MPA1016 in a 128 QFP 
package. On this device and package all of the internal 1/0 
pads are brought out to external package pins. It is strongly 
recommended that the reader refer to the MPA 1000 pin 
assignments page for the MPA 1016 in order to follow along. 
This is found in the MPA Data Book (DL201/D). 

Although some semiconductor manufacturers have used 
the INTEST instruction for internal testing of ICs, there is a 
lack of interest by board and system manufacturers for this 
instruction as well as a lack of commercially available software 
to support it. For this reason, an INTEST example is not shown 
here. 

The examples will refer to the TAP controller state machine 
diagram, Figure 3. The function of each state occurs when 
leaving the state unless otherwise noted. The format for the 
examples is as follows: 

MOTOROLA MPA DATA- DL201 REV 2 
4-215 



[I] 

AN1618 

C R 
L S 
K T 

0 
Where: 

T T 
D D 
0 I 

H 

T T 
M R 
s s 

0 

T 
c 
K 

+ I Comment I 

TCK = Test Clock 

O = Logic Zero (0) for inputs 

1 = Logic One (1) for inputs 

L= Logic LOW for outputs 

H = Logic HIGH for outputs 

CLK = Configuration Clock for MPA (see Figure 1 ). + = Clock Transition LO-HI-LO 

Used to clock in MPA configuration. 
Remains at logic 0 (after configuration) for 
the purpose of these examples. 

X = Don't Care 

DR = Data Register and IR = Instruction Register 

RST = Configuration Reset for MPA device (see 
Figure 1 ). When this input is held to a logic 
0 it clears the MPA's configuration memory. 
When this input is brought to a logic 1 then 
the device will start re-configuring while 
CLK is running. Remains at logic 1 (after 
configuration) for the purpose of these 
examples. 

I Comment = A comment for that particular test 
vector 

Note: The TCK transition + occurs after the other signals in 
the vector are setup. For example, when the comment for a 
vector says, "In Run/Idle state. Setup Select-DR-scan state" 
this means that the TAP controller is still in the Run/Idle state 
even though the TMS signal has changed for the next state 
(Select-DR-scan) because TCK is the last signal in the vector 
that transitions. 

TOO= 

TOI = 

TMS = 

TRS = 

c R 
L s 
K T 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Test Data Out 

Test Data In 

Test Mode Select 
BYPASS INSTRUCTION EXAMPLE 

Test Reset_Bar (Asserts on logic 0) 
The following is a generic vector example for a BYPASS 

test: 

T T T T 
D D M R 
0 I s s 

x 0 0 

x 0 

x 0 

x 0 0 

x 0 

x 0 

x 0 0 

x 0 0 

x 0 

x 0 

x 

x 0 

x 0 0 

x 0 0 

x 0 

x 0 0 

T 
c 
K 

0 

+ 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 

+ 

I Non-JTAG state for tester setup (optional). I 
I Test-Logic-Reset (TLR) state. I 
I Test-Logic-Reset (TLR) state (number of I 
I loops in this state is up to the programmer)./ 

I In TLR state. Setup for Run/Idle (R/I) state. I 
I (Number of loops in the Run/Idle state is up to I 
I the programmer) I 
I In R/1 state. Setup for Select-DR-scan state I 
I In Select-DR-scan state. Setup for Select-IR- I 
I scan state. I 
I In Select-JR-scan. Setup for Capture-IA I 
I state I 
I In Capture-IA-state. Setup for Shift-IR state. I 
I Shifts following instruction in. I 
I In Shift-IR state. TOI = iO (LSB) of I 
I instruction. I 
I In Shift-IR state. TOI = i1 of instruction. I 
I In Shift-IR state. Setup for Exit-IR state. TOI I 
I = i2 (MSB) of instruction. I 
I In Exit-IR state. Setup for Update-JR I 
I state. I 
I In Update-JR state. Loads BYPASS I 
I Instruction (111) into IR. Setup for I 
I Run/Idle state. I 
I In Run/Idle state. I 
I In R/1 state. Setup for Select-DR-scan state. I 
I In Select-DR-scan state. Setup for Capture- I 
I DR state. I 

~~.,ti ~c·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==D=L=2=01=R=E=v=2=============================== 
4-216 



AN1618 

c R T T T T T 
L s D D M R c 
K T 0 I s s K 

0 x 0 0 + I In Capture-DR state. Setup for Shift-DR I 
I state. I 

0 x 0 + I In Shift-DR state. TOI set up tor next I 
I vector. I 

0 H 0 0 + I In Shift-DR state. TOI logic 1 from I 
I previous vector now at TOO output. I 

0 L 0 + I In Shift-DR state. TOI logic O from I 
I previous vector now at TOO output. I 

0 H 0 0 + I In Shift-DR state. TOI logic 1 from I 
I previous vector now at TOO output. I 

0 L 0 + I In Shift-DR state. TOI logic O from I 
I previous vector now at TOO output. I 

0 H 0 + I In Shift-DR state. TOI logic 1 from I 
I previous vector now at TOO output. I 
I Setup for Exit1-DR state. I 

0 x 0 + / In Exit1-DR state. Setup tor Update-/ 
I DR state. I 

0 x 0 0 + I In Update-DR state. Setup tor Run/Idle I 
I state. I 

0 x 0 0 + I In Run/Idle state. I 
/End of BYPASS instruction example. I 

IDCODE INSTRUCTION EXAMPLE 
The following is a generic vector example for an IDCODE 

test (note: an MPA 1016 is being used as an example here so 

the ID code that is output on TOO will be for a MPA 1016--see 
Table3): 

c R T T T T T 
L s D D M R c 
K T 0 I s s K 

0 x 0 0 0 I Non--JTAG state for tester setup (optional). I 
0 x 0 + I Test-Logic-Reset (TLR) state. I 
0 x 0 + I Test-Logic-Reset (TLR) state (number of I 

I loops in this state is up to the programmer)./ 

0 x 0 0 + I In TLR state. Setup for Run/Idle (R/1) state. I 
I (Number of loops in the Run/Idle state is up to I 
I the programmer) I 

0 x 0 + I In R/I state. Setup tor Select-DR-scan state I 
0 x 0 + I In Select-DR-scan state. Setup for Select-IA- I 

I scan state. I 
0 x 0 0 + I In Select-IA-scan. Setup tor Capture-IA I 

I state I 
0 x 0 0 + I In Capture-IR--state. Setup for Shift-IA state. I 

I Shifts following instruction in. I 
0 x 0 0 + I In Shift-IA state. TOI = iO (LSB) of I 

I instruction. I 
0 x 0 0 + I In Shift-IA state. TOI = i1 of instruction. I 
0 x + I In Shift-IA state. Setup for Exit-IR state. TOI I 

I = i2 (MSB) of instruction. I 

~ MOTOROLA MPA DATA- DL201 REV 2 
4-217 

Ci] 



AN1618 

c R T T T T T 
L s D D M R c 
K T 0 I s s K 

0 x 0 + · I In Exit-IA state. Setup for Update-IA I 
I state. I 

0 x 0 + I In Update-IA state. Loads IDCODE I 
I Instruction (100) into IR. Setup for I 
I Run/Idle state. I 

0 x 0 0 + I In Run/Idle state. I 
0 0 1 + I IN R/1 state. Setup Select-DR-scan state I 
0 x 0 0 + I In Select-DR state. Setup Capture-DR state I 
0 x 0 0 + I In Capture-DR state. Setup Shift-DR state I 

0 H 0 0 + I Shift-DR state. Bit 0 (LSB) of ID code on TOO I 
0 L 0 0 + I Shift-DR state. Bit 1 of ID code on TOO I 
0 H 0 0 + I Shift-DR state. Bit 2 of ID code on TOO I 
0 H 0 0 + I Shift-DR state. Bit 3 of ID code on TOO I 

At this point the rest of the ID code, Bits 4-31, will be output 
in the same way (the ID code for the MPA1016 is 32 bits long). 
Per Table 3, the ID code for an MPA1016 is 0001 001110 
0100001110 00000001 1101 in binary or 139 OE 010 in hex. 
As shown above, the four least significant digits (HHLH or 

1101) were output first starting with Bit 0, then Bit 1, then Bit 2, 
and finally Bit 3. The next part of this example will show the 
end of the example which is the output of the four most 
significant bits of the ID code (Bits 28-31, which are 0001) and 
the return of the TAP Controller to the Run/Idle state. 

c· R T T T T T 
L s D D M R c 
K T 0 I s s K 

0 H 0 0 + I Shift-DR state. Bit 28 of ID code on TOO I 
0 L 0 0 + I Shift-DR state. Bit 29 of ID code on TOO I 
0 L 0 0 + I Shift-DR state. Bit 30 of ID code on TOO I 
0 L 0 + I In Shift-DR state. Setup Exit-DR state. Bit 31 

I (MSB) of ID code on TOO I 
0 x 0 + I In Exit1-DR state. Setup Update-DR 

I state I 
0 x 0 0 + I In Update-DR state. Setup Run/Idle 

I state I 
0 x 0 0 + I In Run/Idle state I 

I End of IDCODE i~struction example I 

~~~ ~~·==================M=O=T=O=R=O=LA==M=P=A=D=A=TA==-=D=L2==01=R=E=V=2=============================== 
4-218

AN1618

EXTEST INSTRUCT/ON EXAMPLE internal 1/0 pads from the external 1/0 pins. Also a reminder
The following is a generic vector example for a simple that in order to get data loaded out from the scan chain the

EXTEST test. Note: an MPA 1016 128-pin QFP is being used desired output 1/0 pins must be configured as outputs before
as an example here in order to have access to all of the running the EXTEST test:

c R T T T T T
L s D D M R c
K T 0 I s s K

0 x 0 0 0 I Non-JTAG state for tester setup (optional). I
0 x 0 1 + I Test-Logic-Reset (TLR) state. I
0 x 0 + I Test-Logic-Reset (TLR) state (number of I

I loops in this state is up to the programmer)./

0 x 0 0 + I In TLR state. Setup for Run/Idle (R/1) state. I
I (Number of loops in the Run/Idle state is up to I
I the programmer) I

0 x 0 + I In R/I state. Setup for Select-DR-scan state I
0 x 0 + I In Select-DR-scan state. Setup for Select-IR- I

I scan state. I
0 x 0 0 + / In Select-IR-scan. Setup for Capture-IR I

I state I
0 x 0 0 + I In Capture-IR-state. Setup for Shift-IR state. I

I Shifts following instruction in. I
0 x 0 0 + I In Shift-IR state. TOI = iO (LSB) of I

I instruction. I
0 x 0 0 + / In Shilt-IR state. TOI = i1 of instruction. I
0 x 0 + I In Shift-IR state. Setup for Exit-IR state. TOI I

I = i2 (MSB) of instruction. I
0 x 0 + /In Exit-IR state. Setup for Update-IR I

I state. I
0 x 0 0 + /In Update-JR state. Loads EXTEST I

I Instruction (000) into IR. Setup for I
I Run/Idle state. I

0 x 0 0 + I In Run/Idle state. I
0 x 0 + I IN R/I state. Setup Select-DR-scan state I
0 x 0 0 + I In Select-DR state. Setup Capture-DR state I
0 x 0 0 + I In Capture-DR state. Setup Shilt-DR state I

At this time all 1 swill be shifted into the scan chain and then
parallel loaded out the configured output 1/0 pins and output
control signals

0
0

0

0

x
x
x
x

0

0
0

0

+

+

+
+

I Shilt-DR state. 1 shifted into TOI. TCK 1. I
I Shilt-DR state. 1 shifted into TOI. TCK 2. I
I Shilt-DR state. 1 shifted into TOI. TCK 3. I
I Shilt-DR state. 1 shifted into TOI. TCK 4. I

:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=M=O=T=O=R=O=LA:=M:=PA:=D=A"=A=-==D=l2:=01:=R=EV:=2:=:=:=:=:=:=:=:=:=:=:=:====~
4-219

~

AN1618

To determine the number of TCK cycles we take the total
number of boundary scan cells in the MPA 1016 which can be
equated to 80 1/0 signals - 5 TAP signals+ 11 control signals
x 2 cells per BSA = 172 total BSRs (See Boundary Scan

c R T T T T T
L s D D M R c
K T 0 s s K

Register section). In order to clock all Ones (1) through the
scan chain TCK will need to be clocked 172 times in order to
see all 1s coming out of TOO. So in the next vector we will
assume that we have clocked TCK 164 times so far.

0 x 0 + I Shift-DR state. Have already shifted TCK 164 I
I times. TCK 168. I

0 x 0 + I Shift-DR state. 1 shifted into TOI. TCK 169. I
0 x 0 + I Shift-DR state. 1 shifted into TOI. TCK 170. I
0 x 0 + I Shift-DR state. 1 shifted into TOI. TCK 171. I
0 H 0 + I Shift-DR state. H shifted out TOO. TCK 172. I
0 H 0 + I Shift-DR state. H shifted out TOO. TCK 173. I
0 H 0 + I Shift-DR state. H shifted out TOO. TCK 174. I
0 H 0 + I Shift-DR state. H shifted out TOO. TCK 175. I

Now that the scan chain is filled with 1 s the user can output
the 1 s from the scan chain out to the 1/0 pins and the control
signal pins that are configured as outputs (also, remember

c R T T T T T
L s D D M R c
K T 0 I s s K

that the 1/0 control cell portion of each BSR must have a 1
latched into it in order to enable the output buffer from the BSR
to the 1/0 pin).

0 H + I Shift-DR state. Setup Exit1-DR. I
0 x + I Exit1-DR state. Setup Update-DR. I
0 x 0 + I Update-DR state. Setup R/I state. I

Upon entering the Update-DR state all of the 1 s that were
shifted into the scan chain, through TOI, are output on the
configured 1/0 pins as Highs (H) as well as on the control pins

that are currently $et as outputs (depending on the
configuration mode: e.g. F1, F2, and F4 if in BFR).

0 x 0 + I In R/1 state. End of EXTEST example I

SAMPLE INSTRUCTION EXAMPLE

The following is a generic vector example for a simple
SAMPLE test. Note: an MPA1016 128-pin QFP is being used
as an example here in order to have access to all of the
internal 1/0 pads from the external 1/0 pins. Again, it is strongly
recommended that the reader refer to the MPA1000 pin
assignments page for the MPA1016 in order to follow along.
This is found in the MPA Data Book (DL201/D).

The BSCs for the control pins CLK, RESETS, MODE[3:0],
and F[4:0] are scan only cells. They should never be changed
by the user. Because of this the SAMPLE test is the only way
to test these pins, as a group, in JTAG mode (e.g. you can not

run the output portion of EXTEST on the control pins that are
set as inputs due to a configuration mode. This is the case for
F[O] and F[3] in BFR mode. See MPA data book (DL201/D),
Device Configuration section for more details).

Also a reminder that all user 1/0 pins that are to be sampled
must be configured as inputs, outputs, or bi-directionals
before running the SAMPLE test. During the SAMPLE test the
1/0 control cell portion of the BSC no longer controls, but
monitors the configuration of the pin to show whether the
configuration is that of an input or an output. The pins that are
configured as inputs will read a Low (L), on TOO, from the
BSC's 1/0 control cell and the pins that are configured as

~~.,'/ ~~·==================M=o=r=o=R=O=LA==M=P=A=D=A=TA=-==o=L2==01=R=E=v=2===============================
4-220

AN1618

outputs will read a High (H), on TOO, from the BSC's 1/0 range of pins 67-75) and the left side of the MPA 1016 128-pin
control cell. QFP is configured with outputs (roughly 1/0 and control pins in

In this example, the right side of the MPA 1016 128-pin QFP the range of pins 4-31).
is configured with inputs (roughly 1/0 and control pins in the

c R T T T T T
L s D D M R c
K T 0 I s s K

0 x 0 0 0 I Non-JTAG state for tester setup (optional). I
0 x 0 + I Test-Logic-Reset (TLR) state. I

0 x 0 + I Test-Logic-Reset (TLR) state (number of I
I loops in this state is up to the programmer)./

0 x 0 0 + I In TLR state. Setup for Run/Idle (R/I) state. I
I (Number of loops in the Run/Idle state is up to I
I the programmer) I

0 x 0 + I In R/I state. Setup for Select-DR-scan state I

0 x 0 + I In Select-DR-scan state. Setup for Select-IR- I
I scan state. I

0 x 0 0 + I In Select-IR-scan. Setup for Capture-IA I
I state I

0 x 0 0 + I In Capture-IR-state. Setup for Shift-IR state. I
I Shifts following instruction in. I

0 x 0 0 + I In Shift-IR state. TOI = iO (LSB) of I
I instruction. I

0 x 0 + I In Shift-IR state. TOI = i1 of instruction. I
0 x 0 + I In Shift-IR state. Setup for Exit-IR state. TOI I

I = i2 (MSB) of instruction. I
0 x 0 + I In Exit-IR state. Setup for Update-IR I

I state. I
0 x 0 0 + I In Update-IR state. Loads

I SAMPLE Instruction (010) into IR.
I Setup for Run/Idle state./

0 x 0 0 + I In Run/Idle state. I
All Zeros (0) will be shifted into the scan chain.

c R T T
L s D D
K T 0 I

0 x 0

0 x 0

0 x 0

0 x 0

0 x 0

0 x 0

0 x 0

T T
M R
s s

1

0

0

0

0

0

0

T
c
K

+
+
+
+
+
+
+

I In R/I state. Setup Select-DR-scan state I
I In Select-DR state. Setup Capture-DR state I
I In Capture-DR state. Setup Shift-DR state I
I Shift-DR state. TCK 1. I
I Shift-DR state. TCK 2. I
I Shift-DR state. TCK 3. I
I Shift-DR state. TCK 4. I

MOTOROLA MPA DATA- DL201 REV 2
4-221

[4J

[I]

AN1618

To determine the number of TCK cycles we take the total
number of boundary scan cells in the MPA 1016 which can be
equated to 80 1/0 signals - 5 TAP signals+ 11 control signals
x 2 cells per BSR = 172 total BSRs (See Boundary Scan
Register section). In order to clock all the Zeros (or lows)

through the scan chain TCK will need to be clocked 172 times
in order to see all Lows (L) coming out of TDO. So in the next
vector we will assume that we have clocked TCK 164 times so
far.

c R T T T T T
L s D D M R c
K T 0 I s s K

0 x 0 0 + I Shift-DR state. Have already shifted TCK 164 I
I times. TCK 168. I

0 x 0 0 + I Shilt-DR state. TCK 169. I
0 x 0 0 + I Shift-DR state. TCK 170. I
0 x 0 0 + I Shift-DR state. TCK 171. I
0 L 0 0 + I Shift-DR state. L shifted out TDO. TCK 172. I
0 L 0 0 + I Shilt-DR state. L shifted out TDO. TCK 173. I
0 L 0 0 + I Shift-DR state. L shifted out TDO. TCK 174. I
0 L 0 0 + I Shift-DR state. L shifted out TDO. TCK 175. I
0 L 1 + I Shift-DR state. Setup Exit1-DR. I
0 x + I Exit1-DR state. Setup Update-DR. I
0 x 0 + I Update-DR state. Setup R/I state. I
0 x 0 + I In R/1 state. I

Now that the scan chain is filled with the Lows (L), the user
can now go back through the data path of the TAP controller
and sample the 1/0 and control pins. Also, a reminder is that
when you SAMPLE you will sample whatever state is on the
MODE [3:0], F [4:0], RESETB, and CLK pins and those states
will be sampled into the scan chain (i.e. they will not

necessarily be the Highs that will be sampled in the following
part of this example).

By this point all Ones (1) should be put on the input pins and
Highs (H) should be put on the output pins in order to SAMPLE
them. They will be sampled in the Capture-DR state.

c R T T T T T
L s D D M R c
K T 0 I s s K

0 x 0 1 + I In R/1 state. Setup Select-DR-scan state I
0 x 0 0 + I In Select-DR state. Setup Capture-DR state I
0 x 0 0 + I In Capture-DR state. Setup Shift-DR state I

~~t'I ~~========:=:=:=:===M=O=T=O=R=O=LA==M=PA==D=AT=A=-==D=L=20=1=R=E=V=2===============================
4-222

AN1618

At this time all the Ones (1) on the input pins (right side of
device) will be sampled into the scan chain. They will be read
out as Highs (H) on TDO. Note: remember that the pins that

are configured as inputs will read a Low (L), on TDO, from the
BSC's 1/0 control cell.

c
L
K

0

0

0

0

0

R
s
T

T
D
0

x
L

H

L

H

T
D
I

0

0

0

0

0

T T
M R
s s

1

0

0

0

0

T
c
K

+

+

+

+

+

I In Shift-DR state. Then clock for shift out/

I In Shift-DR state. TDO is the state of the I
I 110 control cell (input) for the BSC
I associated with pin 75 (first out to TDO)./
I (See Fig. 5)/

I In Shift-DR state. TDO is the One (1) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 75. I
I (See Figure 5) I

I In Shift-DR state. TDO is the state of the I
I 110 control cell (input) for the BSC
I associated with pin 74 (See Fig. 5)/

I In Shift-DR state. TDO is the One (1) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 7 4.
I (See Figure 5) I

The same pattern continues through all of the 1/0 inputs on
the right side of the MPA1016 128-pin QFP. Remember that
the CLK and Mode pins 3 and 2 are on the right side of this

package and will also show how they were configured from
their respective BSC 1/0 control cells as well as what logic
state was on the pin when it was sampled.

c R T T T T T
L s D D M R c
K T 0 I s s K

0 L 0 0 + I In Shift-DR state. TDO is the state of the I
I 110 control cell (input) for the BSC
I associated with pin 69 (CLK)./
I (See Fig. 5)/

0 L 0 0 + I In Shift-DR state. TDO is the Zero (0) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 69. I
I (CLK is being held Low throughout these/
I examples) I

c R T T T T T
L s D D M R c
K T 0 I s s K

0 L 0 0 + I In Shift-DR state. TDO is the state of the I
I 110 control cell (input) for the BSC
I associated with pin 68 (MODE [3])/

0 H 0 0 + I In Shift-DR state. TDO is the One (1) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 68.
I (MODE [3] is held High to keep the I
I device in JTAG mode throughout these I
I examples. See Table 1.) I

~ MOTOROLA MPA DATA- DL201 REV 2
4-223

[4J

AN1618

c
L
K

0

0

R
s
T

T
D
0

L

L

T
D
I

0

0

T T
M R
s s

0

0

T
c
K

+

+

I In Shift-DR state. TDO is the state of the I
I 110 control cell (input) for the BSC
I associated with pin 67 (MODE [2])/

I In Shilt-DR state. TDO is the Zero (0) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 67. I
I (MODE [2] is held Low because no I
I external clock was used in BFR 2 config I
I mode (Boot From ROM, serial data) when
I the device was configured. See Table 1.) I

Now that we have gone through the right side (1/0
configured as inputs) of the device, we will skip the bottom
side of the device (which we did not configure for this example)
and go to the left side (1/0 configured as outputs) of the device.
Starting with F[3] pin 28, remember that the control pins are

not configurable by the user. They are configured depending
on the configuration mode that the device is set in. Currently
the device is in BFR 2 mode so F[3] is an input and F[4] is an
output (See MPA Data Book, DL201/D).

c R T T T T T
L s D D M R c
K T 0 I s s K

0 L 0 0 + I In Shilt-DR state. TDO is the state of the I
I 110 control cell (input) for the BSC
I associated with pin 28, F[3])./
I (See Fig. 5)/

0 H 0 0 + I In Shift-DR state. TDO is the One (1) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 28. I
I F[3] is being held High throughout these/
I examples) I

0 H 0 0 + I In Shilt-DR state. TDO is the state of the I
I 110 control cell (output) for the BSC
I associated with pin 26, F[4] I

0 H 0 0 + I In Shilt-DR state. TDO is the One (1) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 26.
I F[4] is held High throughout these
I examples. I

~~.,'! ~~o==================M=O=T=O=R=O=LA==M=P=A=D=A=T=A=-=D=L=2=0=1=R=EV==2===============================
4-224

Finally, back to the 1/0 pins which the user configured as
outputs.

c R T T T T T
L s D D M R c
K T 0 s s K

0 H 0 0 + I In Shift-DR state. TOO is the state of the I
I 110 control cell (output) for the BSC
I associated with pin 25, user 1/0 pin

0 H 0 0 + I In Shift-DR state. TOO is the One (1) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 25. I

0 H 0 0 + I In Shift-DR state. TOO is the state of the I
I 110 control cell (output) for the BSC
I associated with pin 24, user 1/0 pin

0 H 0 0 + I In Shift-DR state. TDO is the One (1) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 24. I

And through all of the user 1/0 pins until we reach the last of
the user 1/0 pins on the left side of the device.

c
L
K

0

0

0

0

0

R
s
T

T
D
0

H

H

x
x
x

T
D
I

0

0

T T
M R
s s

0

1

0

0

T
c
K

+

+

+
+

+

I In Shift-DR state. TOO is the state of the I
I 110 control cell (output) for the BSC
I associated with pin 4, user 1/0 pin

I In Shift-DR state. TOO is the One (1) I
I state that was loaded in to the data control/
I cell of the BSC associated with pin 4. I

I Setup Exit1-DR state. I
I Exit1-DR state. Setup Update-DR. I
I Update-DR state. Setup R/1 state. I
I In R/I state. End of SAMPLE example I

AN1618

======================~r'jil
MOTOROLA MPA DATA- DL201 REV 2 ~

4-225

6197

© Motorola, Inc. 1997

AN1619
Application Note

MPA1000 Primer for
Schematic Designers

4-226

Prepared by
Doug M. Shade
Motorola Programmable Logic

REVO
®MOTOROLA

AN1619

MPA 1000 Primer for Schematic Designers

Introduction

This application note is designed to assist novice Motorola
Programmable Array (MPA) users who employ schematics as
their preferred design entry method. While the details of the
MPA architecture can largely be ignored for most of your
designs, achieving the most efficient packing of logic and
highest performance marks are facilitated by a better
understanding of the MPA internals presented here. You'll find
the MPA architecture accommodating to the most popular
design topologies, but biased to favor those designs that use
fewer non-gated clocks.

The reader is assumed to be familiar with the various
controls and options of the MPA Design System.

Internal Array Features

Cells in Tiles in Zones in Quadrants

At the lowest level, the MPA is built of very simple logic
building blocks called cells. Each of the four types of cells
contain a NANO function and secondary function. The four cell
types grouped together form a tile. The cell type numbers
(1-4) signify which secondary function is contained and the
relative location of the cell within the tile.

Input
Multiplexer

Figure 1. Core Cell Structure

TYPE3

G OFF/Latch
with reset

R

and enable

TYPE 1

G Wired-OR R

4 Medium Bus
Connections

Figure 2. Core Cell Secondary Functions

The tiles are assembled in a 5 x 5 array to form the interior
of a zone. The zones are bounded on the top by vertical port
cells (routes entering and leaving through these ports run

vertical). The zones are bounded on the right by horizontal
port cells. Lastly, the upper right corner of the zone contains
the Clock/Reset selection cell (more on this special cell later).

u One Hot State Machine Design is Preferred

Designing your state machines as one hot is
usually the most efficient method for the register
rich MPA.

vertical port cells

..:.
3 4
1 2

core
cells

llil!I

:J

-CLK/RST
select cell

Figure 3. Zone Structure

The zones are arrayed into quadrants. The number of
zones varies by MPA family member as shown in Figure 4.

MPA1016 MPA1036

MPA1064 MPA1100

lm1m1
EIE

Figure 4. The MPA 1016, MPA1036, MPA1064
and MPA1100

Routing at Three Levels

The autolayout software has 3 levels of routing to choose
from to complete connections between cells: Local, Medium
and Global. Local routing connects the output of a cell to its 8
nearest orthogonal neighbors. Local routing is the fastest
connection available between two points.

MOTOROLA MPA DATA - DL201 REV 2
4-227

AN1619

Medium routing is used to complete inter-zone routes that
can not be made using local routing. Medium routes can also
connect points in different zones, intra-zone connections.

Global routing spans entire quadrants and with the use of
inter-quadrant switches can span the entire core array area.
Global routing is the slowest of the 3 routing levels available to
the autolayout software.

A Zone

Figure 5. Three Levels of Routing Resources

A common question at this point is, "How do I control which
of my nets goes on what level or routing?". The simple answer
is you can't directly control this. The timing driven autolayout
software is designed to make these difficult decisions for you.
In the end, all you really need to specify is how fast you want
your design to go and let the autolayout software take it from
there. There are however things you can do to influence the
software. Attributes such as DPLD_CLUSTER_SEED and
DPLD_PLACE_PRIORITY can be used to bias the placement
and subsequent routing for specific portions of you design.
Please reference the on-line help of the MPA Design System
software for more detail on these attributes.

u Autolayout is a Pseudo-Random Process

With all the options available to the autolayout tool
to complete the place and route of your design,
you'd be correct in guessing that you can get
significantly different results with relatively minor
changes in design or in the pseudo-random seed.
This can be a disquieting characteristic if you
discover it on your own, however it can really be
quite advantageous. If your autolayout result just
missed the desired target, or you'd like a little more
margin, simply re-seeding the pseudo-random
number generator (from the "Tools --> Options" pull
down menu) and re-running autolayout can give
you a significantly different result.

The routing within the MPA is fully buffered. There is never
a need to concern yourself with the loading effects of fan out.
This of course is a departure from ASIC and PCB level design
where fan out must be considered.

U BUFF from the MICROLIB

There are quite a few trivial optimizations that get
made to your design during import, one of the most
common is getting rid of superfluous 'buffers'.
Examples of which include INV (inverters), AN2
gates with both inputs tied together, AN2 gates with
one input tied high etc. (A more complete
description of this re-mapping process can be
found in the on-line help of the MPA Design
System under: "Help on Design --> Logic

Optimisation --> Summary of Optimisations".)
Don't panic at the above statement that inverters
are "gotten rid of". They are simply mapped to the
correct sense on the core cell's programmable
input multiplexers.
No delay penalty is incurred for inserting an INV.
BUFF is the only buffer available to the designer
that will not get mapped out on import. So with all
this effort to get rid of buffers, and no need to worry
about fanout loading effects, what is the BUFF
library element used for?

• Connecting a primary clock or reset signal
directly to an output pad is not allowed. Tapping
the clock network with a BUFF and then
connecting the output of BUFF to an output
macro however works fine.

• BUFF can be used to build a delay line. It should
be noted however that asynchronous design is
strongly discouraged. Minimum delays are not
specified. Also, hard macros are not
accommodated by MPADS and as such the
delay through a string of BUFFs can vary
considerably from autolayout run to run.

• BUFF can be used to break a single large net
into two (or more) smaller ones. This has been
employed to isolate a speed critical portion of a
net, by inserting a buff to feed the non-speed
critical portion of the net and assigning that
portion of the net the attribute
DPLD_IGNORE_ TIMING.

• Another example where splitting a net may be
advantageous is using BUFF to break a
secondary clock net into two tertiary clock nets.
(More on clock networks latter.)

u Tri-State drivers are not available internally

Because the MPA's routing resources are fully
buffered (actively driven) there are no internal
tri-state buffers available. Designers accustomed
to using such elements to allow multiple drivers
access to a single data line, should instead
consider using multiplexers.

u Wired-Or a.k.a. Open Drain
In some instances, it may be preferable to use a
collection of open drain drivers to drive a single
data line. The MPA library elements that
accommodate this type of connection include:
WINV, WOR2, WND2, and WBUF. It is important to
rememberthat open drain drivers can only actively
pull a signal low, a passive pull up resistor is
required to pull the net high; that's the job of the
WPUP library element. By default, instantiating a
WPUP element results in a single pull resistor
being attached to the net. Assigning the attribute
DPLD_PUP with a value of BOTH results in two
pull up resistors being added in parallel to the net.
The low to high transition time is thus improved, but
at the expense of more static current drain when
any of the attached drivers is holding the net low.

~~.,'/ ~~l================M=O=T=O=R=O=LA=M=P=A=D=A=TA=-==D=~=0=1=R=EV==2===========================:
4-228

Besides lower speed, another draw back of using
open drain drivers in the MPA is the restriction that
all the open drain drivers within a zone must reside
on the same Wired-OR Bus, and that drivers in
other zones must also be placed in the same
relative horizontal position. The autolayout tool
handles all of this automatically, but it does tend to
reduce the number of valid solutions available to
the autolayout tool for the remainder of your
design.

u Wide Inputs Add Delays

::

Although ASICs are sometimes referred to as
"sea-of-gates" devices, they are in reality
sea--0f-transistors devices. If a designer specified
an 3 input AND gate, an ASIC compiler will simply
build one using the available transistors. The
resulting gate delay for an n-input ASIC AND gate
is very close to that of a two input ASIC AND gate.
Remember that the MPA architecture is largely
constructed of two input logic functions. Multiple
input gates are available to you in the MACROLIB,
but keep in mind that they are constructed from
cascading multiple two input gates. The higher the
number of inputs, the more levels of logic your
signal will have to pass through slowing it down. It
may be worth while to remember that not all logic
paths accumulate the same delay through a wide
input. Figure 6 shows the descended hierarchy of
the construction of an AN3 gate. It would be best to
use the "C" input for the speed critical path as it has
roughly half the delay of the "A" and "B" inputs.

~,__ __ .., ... Q

ANZ
AF2

Figure 6. An AN3 Library Element Schematic

u Delays in Routing

Both PCB and older ASIC designers share the
mind set that delay through a multi-level logic path
is principally a function of "gate delay". In the ASIC
world, routing paths are as short as possible and
do not pass through multiple levels of pass gates,
muxes, and buffers. Similarly, a PCB trace is a
simple and hopefully short run of metal, with most
of the "gate" delay happening as a function of
package input and output delays. A "logical" net in
an FPGA however may be a series of several
different electrical nodes, each being separated by
a mux or switch of some type. The consequence of
this is that "routing delays" not gate delays are the
first order factor determining the resultant circuit's
speed.

AN1619

Empirical analysis of several hundred sample
designs suggests that a multiplication factor of 2.4
can by applied to the sum of a path's gate delays to
come up with a very rough estimate of what the
post autolayout total path delay might be. There
are many factors that influence that actual number,
so please consider this only as a very crude
estimate.

u S-R Flops, Avoid the Temptation

ND2B1

Figure 7. A Classic S-R Flop;
An Accident Waiting to Happen

The above construction of an asynchronous S-R
flip flop is familiar to all, but should be so for its
unfavorable characteristics. Remember that
routing delay in an FPGA is the highest order term
in delay equation. In the above construction, the
(active high) SET pulse width must be greater than
the ND2B1 propagation delay plus Q to A routing
plus another ND2B1 delay plus OBAR to A routing
delay. Without a detailed analysis of the post
autolayout path delays, the pulse width
specification can not be known. The same holds for
the RESET pulse width. A new autolayout run on
the same design may alter these path lengths
considerably. Additionally this sort of
asynchronous feedback loop will generally cause
back annotation, simulation and timing analysis
tools trouble.

Again, avoid asynchronous design.

u Delay Lines, Avoid the Temptation

NON_DELAY_PATH

Figure 8. A Delay Line for Turning Edges
into Pulses, a Dangerous Proposal

Remember that in an FPGA routing is not just a
piece of wire. Routing is comprised of wire, muxes
and pass gates. In the above example, the intent is
to turn a rising or falling input edge into an output
pulse. The assumption is that the
"NON_DELAY _PATH" will have a shorter delay
than the "delay line" formed by the series of BUFF
elements. Again, the MPA design software does
not guarantee minimum delays and so it is possible
that the autolayout run might result in the

================================M=O=T=O=R=O=LA===M=PA==D=AT=A==-=D=L=2=0=1=R=E=V=2==========================~~
4-229

AN1619

NON_DELAY _PATH to have a delay significantly
close the delay line path. The circuit may not work.

Avoid any design habit that makes assumptions
about minimum delays, even for just plain routes.

u High Fan Out

As mentioned previously, the routing resources of
the MPA are fully buffered. There is no reason for
the designer to concern himself with loading
effects of high fan out net. However, high fan out
nets can have an undesirable impact on routing
resource consumption. Using only local routing, a
single driver could under the most ideal conditions
drive only 8 local neighbors. In real world designs
however, each of the destinations of a high fan out
net has its own downstream circuitry associated
with it; there is a vanishingly low probability that
they will be placed in the 8 local adjacent locations.
For fan outs greater than 8, exclusive local routing
is impossible, and both medium and global routes
will be used to complete the net. If the fan out is
large enough, and the circuitry placed sufficiently
far apart in the array, routing resource
consumption may become problematic.

The primary clock and reset distribution network
may be used to route high fan out signals. Driving
the high fan out net internally with an ACLK or
ARST buffer, or externally with an IPCLK or IPRST
buffer will put the signal on one of the 8 global
Clk/Rst distribution lines. The routing congestion
can thus be solved, but at the expense of reducing
the clock and reset routing solution space. Do not
route nets to 1/0 (other than Clk/Rst) on the primary
clock network. There is no mechanism for
completing such a route on the MPA devices.

For software versions 2.4 and later, ACLK and
ARST insertions for high fanout nets will be
automatic.

u You Must Use All Macro Inputs, ONE and
ZERO

The autolayout tool insists that all MACROLIB and
MICROLIB inputs be used. If you don't need a
particular input for your design, you are still
required to tie it to logic or a ONE or a ZERO (from
the MICROLIB). There is no routing consumed
when specifying a ONE or a ZERO, the tie off is
made at the cell's input selection mux. There is no
fan out restriction for a ONE or a ZERO.

Clock Architecture

The MPA architecture is biased toward efficient
accommodation of synchronous design topologies, though it
has flexibility enough to handle most design styles. One of the
most specialized architectural features of the MPA is its low
skew clock and reset distribution network. The Primary
Clock(/Reset) Distribution Network accepts inputs from two
specialized 1/0 locations on each edge of the die, for a total of
8 inputs. Access to these special inputs is accomplished with
IPCLK and IPRST buffers, when bringing an external signal in.
If you want to place an internally generated signal on the
Primary Clock Distribution Network, you may insert an ACLK
or ARST buffer.

U ACLK & ARST Consume Clk/Rst 1/0 Sites

Each ACLK and ARST buffer used resides in one
of the 8 clock pad locations. Using an ACKL or
ARST consumes this pad location such that it is no
longer available to use as an 1/0 site. The designer
is allowed a total of 8 ACLK, ARST, IPCLK, IPRST
cells in their design.

~1:~1 :. n 1· •i 1: ,1 : ,

I ;I '.I ; ' .I 11 I
··TiIT'"" .. 'I' !. •,,.,I .. ~., ··.' i •••··.•.•· .. : ;···· 1·1· ! 111 ,I Ii! 11

'1, .. I, ' ' I

~,~I

Figure 9. Overview of Primary Clock/Reset
Distribution Network

Figure 9 depicts an overview of the primary Clock
Distribution Network of an MPA1016. Two specialized Clk/Rst
input pads are shown on each edge of the die feeding the
centralized Clk/Rst buffers. From there, the heaviest lines
represent the 8 lines of the primary Clock Distribution
Network. The medium lines represent 2 Clk/Rst pairs. The
lightest lines each represent a single Clk or Rst signal. Skew
across the entire die is held to less than 1 nS on the primary
Clock Distribution Network.

~~.,'! ~~·=================M=O=T=O=R=O=LA==M=PA==DA=I=A=-==D=L2=0=1=R=EV=2============================:::=
4-230

Column Clk

Central Clk/Rst
Buffer

G2
Vertical Port Cell

Column Rst
1 O Horizontal

Port Cells

AN1619

Figure 10. Upper Right-Hand Corner of a Zone, Detail of Primary Clock/Reset Selection Cell

Figure 1 O shows the upper right-hand corner of a zone,
with more detail visible on how clocks are routed into a zone.
From this figure you should note that no more than two primary
clocks and two primary resets may be routed into a single
zone. There are however provisions for non-primary clock
and reset routes into a zone.

Note- Most of the following discussion refers to clock and
flops. It should be noted that this is short hand where flops
really refers to flops and latches, and clocks really refers to
clocks, resets and latch enables.

There are 10 columns in a zone, half of which each contain
5 Type 3 cells for a total of 25 flops. Each column's flops share
common clock and reset lines sourced from the pair of vertical
port cells immediately above and just to the right of the
column.

Clocking at Three Levels

Primary Clocks
While the 8 lines of the primary Clock Distribution Network,

and the fact that no more than two primary Clk/Rst pairs may
be routed into a zone at a time may seem a bit limiting at first,
there are other ways to get clocks and resets into zone logic.

u Avoiding Layout Spread
The autolayout tool examines the imported netlist,
examines all primary clock and reset nets and
proceeds with a design partition that assumes
clocks and resets are for the most part paired.
Logic associated with each Clk/Rst pair is placed
into a zone fed by that pair. One primary clock net
feeding a set of flops with multiple primary resets
(or vice-versa) will result in the flops getting spread

================================M=O=T=O=R=O=LA===M=PA==D=A=TA==-=D=l=2=0=1=R=E=V=2==========================~~
4-231

AN1619

out over multiple zones when they might otherwise
have fit into a single zone.

u 1/0 Cells Can Only Be Clocked From the
Primary Clock Distribution Network

Clocking 1/0 macros via secondary or tertiary
clocks is prohibited. Reset is however permitted to
be sourced from the array or Peripheral Bus
(P-Bus).

Again referring to Figure 10, you'll note that the sense of the
clock fed to the column of flops is programmed in the column's
vertical port cell. In a two phase design, it is not necessary to
route both senses of a clock on the primary Clock Distribution
Network; instead simply place an INV in front of clock input(s)
you wish to run off the inverted version of the clock. The
autolayout tool will do the rest of the job for you.

u Clock Sense Selection is Made in the Vertical
Port Cell

All flops within a column will have the same clock
and reset (or will lie unused).

ltJF Do Not Use the Primary Clk/Rst Distribution
Network to Route Clock Enable Signals

Referring to Figure 10, note that a clock is paired
with a reset and brought down to all 5 of the Type 3
cells within a column. If the associated clock
enable (if used) is also on the primary clock
network, there would be no efficient route available
to get it down to the target flops. Do not use the
Primary Clock Distribution Network to route clock
enables. (Do use it for "Latch Enable" signals.)

Secondary Clocks

The autolayout software recognizes any network not on the
primary Clock Distribution Network with 5 or more Clk/Rst
loads on it as a "secondary clock (reset)" net. In order to
continue to guarantee low clock skew for even these
secondary networks, the autolayout software will construct a
secondary clock tree. Skew is held below 2nS with a
secondary clock tree. Construction of a secondary clock tree
is accomplished automatically with the use of horizontal global
bus switching to vertical global buses (G2 lines) as necessary
to connect to the clocked logic. Figure 10 shows the G2 line as
this secondary vertical route into the Clk/Rst resources of the
flops within a zone column.

ltJF Secondary Clock Networks Consume
Routing Resources

The MPA architecture easily handles a fair number
of secondary clock networks, but networks with
large numbers of Clk/Rst loads are more efficiently
accommodated by moving onto the primary Clock
Distribution Network using ACLK or ARST buffers
mentioned previously. Version 2.4 will do this
automatically as an import option.

u Avoid Assigning Normal 110 to Clk/Rst Pads

Using an ACLK or ARST consumes the internal
circuitry of one of the 8 special Clk/Rst pads. If
these pads have been previously consumed by
(designer assigned) 1/0 signals, then they will not
be available for ACLK or ARST buffers.

u From Left to Right Only

The software currently restricts input buffers to
secondary clock nets to be on the left or right edge
of the die. This may change in latter revisions of the
autolayout software.

Tertiary Clocks

The autolayout software recognizes any network not on the
primary Clock Distribution Network with 1 to 4 Clk/Rst loads on
it as a "tertiary" clock (reset) net. Skew is not controlled nor is it
guaranteed on such networks. The unlabeled input into "Mux
C" of Figure 1 O actually represents several of the normal
routing resources in the MPA including medium and global
buses that could be used for tertiary clock routing.

u RememberBUFF

BUFF may be inserted into the middle of a
secondary clock net in order to break it up into two
or more tertiary clock nets. Under rare
circumstances, heavy usage of secondary clocks
can cause routing congestion problems. It may be
beneficial to break a few of these up into tertiaries.

u Head Scratcher ...

Suppose you have a design with three primary
clocks (C1, C2 & C3) and two primary resets (R1 &
R2). Suppose further that your design uses a
single flop for each of the following combinations of
clock and reset: C1R1, C1R2, C2R1, C2R2 and
C3R 1 . Because each of the clock and reset inputs
of the flops within a zone's columns are hardwired
together, this design would require at least 5
columns worth of clock resources. Because all the
clocks and resets were specified as 'primary', and
since only two primary clocks and resets are
allowed per zone, the design would be fit into not
less than two zones. The fit of the design could be
improved by moving C3 off the primary clock
network. The now tertiary C3 could route into the
fifth available column containing Type 3 cells within
the single zone. Since the design only used a
single flop per Clk/Rst pair, there will be 4 unused
flops per column.

While the design is an obviously extreme and
contrived example, it does demonstrate how some
design styles may not fit efficiently into the MPA.

Synchronous Design

The MPA architecture is biased to accommodate
synchronous designs. The autolayout neither guarantees nor
reports "minimum" delays through any network so
asynchronous design techniques are strongly discouraged.
The "minimum" delays are not reported for two reasons, the

~~t'f ~r·=================M=O=T=O=R=O=LA==M=PA=D=A=I=A=-==DL=2=01=R=E=v=2==============================
4-232

first is that the autolayout software algorithms are designed
solely to beat maximum delay requirements, so the length of a
route may vary considerably from autolayout run to run (while
never exceeding the maximum number specified). The
second reason to not report minimum delays is that with
continuously improving process technologies, the trend is to
make the MPA silicon ever faster. Any design that is
constructed assuming some minimum delay can not
guaranteed to work in the future.

u Skipping Clocks, Strongly Discouraged

In some cases you might be tempted to construct a
"synchronous" circuit that employs the
questionable practice of "skipping clocks". In this
(discouraged) design practice, the designer may
have a deep combinatorial circuit that takes much
longer than a single clock period to settle. The
practice of skipping clocks forces the assumption
that the combinatorial circuit takes more than one
clock period and less than two clock periods to
resolve. In this instance, the very first result is
ignored, but from then on the results are assumed
valid two clocks after the input changes.

While the design might be shown to work on a
given unit, Motorola does not guarantee minimum
delays so a subsequent process lot might leave the
designer with silicon that goes "too fast" and a
broken design. Also, subsequent autolayout runs
might result in a significant reduction in a
combinatorial path's delay time also rendering the
original assumption of "more than one clock
period" invalid.

u Using Both Clock Edges

The autolayout software and architecture does
allow the designer to use both edges of a clock, but
as mentioned above the timing driven portion of the
software only knows about what clock is being
used, not which edge of the clock it has to meet
timing for. If you're going to use both edges of a
50% duty cycle clock when going from one flop to
the next, you'll have to halve your desired "Target
Delay" in the Tools__., Options__., Autolayout panel.
If your clock is not 50% duty cycle, you'll have to set
Target Delay to a value equal to the shorter of the
two states of the clock.

u Too Many Clocks

The M PA is best suited for designs with a few
primary clocks, but multiple clocks are supported.
The problem with tertiary and especially
secondary clock networks is that they consume a
fair amount of routing resources. An otherwise
easy to fit design may not be mutable once multiple
secondary clocks are accommodated by the
software.

Further, because of the granularity of the clock
architecture (1 Clk/Rst pair per zone column of 5
flops, 2 primary and 2 secondary clocks per zone),

AN1619

multiple clocks in a design tends to limit how
"small" or how tightly packed the resultant layout
can be. Remember that of the three levels of
routing resources available, local routing is the
fastest. A design that gets "spread out" because it
uses multiple Clk/Rst pairs can not be routed with
the iaster local routing resources and so may suffer
some performance loss.

Gated Clocks, Avoid When Possible

Inserting anything but an INV in a clock path will
result in the clock being pulled off the primary clock
network and placed either secondary or tertiary
routing (depending on the number of clock loads
downstream of the inserted gate). As mentioned
above, this tends to spread the resulting layout out
a bit more and consequently can slow things down
some. If a gated clock is desired, try instead using
register elements with clock enables.

TERTIARY CLOCK OF DFE
AVOID WHEN

CLK

ANZ tl3
CLOCK

CLOCK ENABLE

Figure 11. A Standard Register with a Gated Clock
and the Preferred Clock Enabled Register

1/0 and P-Bus Features

The MPA 1/0 cell is sometime referred to as "Complex 1/0"
and for good reason. The flexibility of the 1/0 Cell in terms of
functionality and routing is enormous, but it comes at the cost
of being a difficult structure to fully understand. A good place
to begin is the on-line help "Help On Device __., Functional
Description -c> 1/0 Cell". Bookmark it; you'll be going there
again. The Complex 1/0 is made even more flexible via its
association with the Peripheral Bus (P-Bus). The P-Bus is an
8 bit wide bus that runs around the entire chip, broken at each
of the chip's four corners by programmable switches. The
corner switch structure also contains pull-up resistors for each
of the 32 P-Bus segments to support the optional open-drain
driving of the P-Bus.

The P-Bus is intended to make routing of common signals
from the interior of the MPA array to the 1/0 Cells more
efficient. Such signals include tri-state enables, clock
enables, resets, even data. Instead of asking the autolayout
software to route a tri-state enable from the array to every T
(enable) pin of bank of OPTBUFs, the user should employ the
P-Bus by inserting an APBUF (from the MICROLIB) after the
logic sourcing the enable signal. The autolayout software will
place the enable signal from the array interior onto the P-Bus
and again tap off as required by the I/Os; only a single route
from array interior to 1/0 area will be required. Figure 12 shows
a similar situation; in this case the open-drain APWBUF driver
has been selected (for no good reason other than as an

=======================~ MOTOROLA MPA DATA - DL201 REV 2 ~
4-233

AN1619

example of how to use it). The P-Bus signal "ENABLE" can be
driven by either of the APWBUFs to its low state. A P-Bus
wired-or pull up (PWPUP) is required in order to ensure
ENABLE can go to a valid high state if not being otherwise
pulled low. The autolayout software handles all the issues of

APWBUF

APWBUF

assigning drive strength to the PWPUP and closing corner
switches of the P-Bus signal to ensure that all of the
OPTBUFs get the required ENABLE signal, no matter which
chip edge they end up on after autolayout.

PWRUP

Figure 12. Using the P-Bus with Open-Drain Drivers

A more common example of using the P-Bus is to use a
single APBUF to drive all the enables of a bank data bus
transceivers.

u Use the P-Bus to route enable signals

Whenever an enable signal goes to more than one
1/0 cell, it is recommended that 'the designer
employ the P-Bus (by inserting an APBUF).
Version 2.4 will do this automatically as an import
option.

U Start Off Easy, Begin with IPBUF, OPBUF,
IPCLK, IPRST

The Complex 1/0 can be a space and a time saver
for your more critical designs, but you may want to
consider starting off slow and use the simpler 1/0
structures.

u Enable and Reset Pins on Complex I/Os do
not have to be tied

There are too many permutations possible in the
1/0 cell to make each available as a macrocell in
the IOLIB. Consequently a short cut has been
made available to the designer using Complex 1/0,
namely it is not necessary to tie reset or enable
inputs high or low when using elements of the
IOLIB. (N.B. This is not true for elements from the
MICROLIB or MACROLIB. Each of these inputs
must be used or otherwise lied off.) The autolayout
software will make the obvious assumptions about
how the unused input should be tied and make the
tie off for you.

U Twinning I/Os, Not Recommended but ...

The MPA does provide open-drain output drivers
that may be safely shorted together externally, but

only for the purposes of forming a wired-and, not
for increasing total current sinking capacity.
Shorting or 'twinning' outputs together is not a
recommended method of increasing current
source and sink capacity for a particular signal.
The twinned outputs may not change state
simultaneously and may as a result be in
contention, putting undue stress on the device. If
you still feel compelled to twin outputs there are
some things you can do to mitigate the hazards.

Use clocked outputs and be sure they both use the
same sense of the same clock. This will reduce the
possible contention period down to less than 1 nS
(assuming the PCB trace length is negligible
between the two outputs). If possible, place the two
clocked outputs in the same 1/0 Zone. Clock skew
within a single 1/0 Zone is down in the
pico-seconds, further reducing the possible time
in contention. (The Rev 1 version of the databook
does not show 1/0 Zone information, this is being
amended in subsequent revisions.)

u Simultaneous Switching

The MPA was designed to accommodate no more
than 16 simultaneously switching outputs each
driving 6mA. Increasing the number of
simultaneously switching outputs beyond this
number may result in ground bounce troubles
(though this is largely an effect of PCB design and
power supply capacity and bypassing conditions
as well).

One method to avoid such problems is to avoid
putting wide output buses on clocked 1/0. Avoiding
clocked 1/0 will tend to spread out the range of
clock-to-output arrival times, thus reducing the
instantaneous current demand.

~~~ ~ci==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==D=L=20=1=R=E=v=2=============================== 
4-234 



Another method available is to assign the attribute 
DPLD _ OPSLEW with a value of LOW to the output 
port. The di term of Ldi/dt gets larger, thus 
lessening the tendency for voltage rise above 
ground. 

u Bad Attribute Combinations 

There are just a few combinations of 1/0 attributes 
that are not recommended: 

Using DPLD_OPSLEW=LOW and DPDL_ 
OPDRIVE=4mA on the same output. When an 1/0 
cell is programmed for 4mA drive, only the first of 
the pair of output drivers is connected. Only the 
second of the pair (added in parallel when 6mA is 
required) has programmable slew rate control. 
Only 6mA outputs have the ability to modify slew 
rate. 

PULLUP=1 and PULLDOWN=1 would have the 
(permitted, but discouraged) effect of enabling 
both the pull-up and pull-down resistors for a 
particular 1/0. This would have the undesirable 
effect of causing static current drain for no good 
reason. 

On a bi-directional 1/0, assigning the attribute 
combination of DPLD_IPLEVEL=CMOS and 
DPLD _ OPLEVEL=3V can leave the input at a level 
close to threshold, possibly resulting in unwanted 
through current. 

u Default 1/0 attributes are CMOS out but TTL 
in 

The default attributes for the MPA I/Os are 
DPLD_OPLEVEL=5Vand DPLD_IPLEVEL= TIL; 
this ensures that without re-assigning attributes to 

AN1619 

the MPA's I/Os, that the resulting design will be 
compatible with most logic signaling schemes, 
however it may leave you with a lower than optimal 
noise margin because of the lower threshold TTL 
inputs. 

u Don't fix your 1/0 locations unnecessarily 

Fixing your 1/0 locations using DPLD_PAD_ 
PLACE attribute may place an undue burden on 
the autolayout tool. Most designs will route to a 
higher performance level if the autolayout tool is 
given as much freedom as possible with regards to 
1/0 pin placement. 

u Pull-Ups Not Intended for Open-Drain Buses 

The pull-ups and pull-downs available on the 1/0 
cells are best classified as "very weak". Their 
intended use to pull an otherwise floating input to a 
valid logic high or low. They are not intended to 
drive any external loads such as an open drain bus. 

Summary 

A little up front research into the MPA architecture specifics 
and the appropriate adjustments to your current design style 
can go a long way towards making your design fit fast and [!] 
efficiently in our MPAs. We've presented here all the most 
popular design tips for working with the MPA. After reading this 
application note we're confident you'll find dPsigning with the 
MPA to be a rewarding experience. 

Don't forget help is never far away. Start 1•rith your MPA 
representative or our web site at: 

http://sps.motorola.com/fpga 

Thank you for selecting MPA. 

::=::=::=::=::=::=::=::=::=::=::=::=::===::=::=M=O=T=O=R=O=LA::=M::=PA::=D=AT=A=-==D=l=2=01::=R=EV::=2::===::===::=::=::=::=::=::=::=::====~ 
4-235 



6197 

© Motorola, Inc. 1997 

AN1623 
Application Note 

HDL Techniques for Faster 
Synthesized Counters 

4-236 

Prepared by 
Marc Greenberg 
Motorola Programmable Technology Centre 

This application note contains information on how 
HDL coding style can affect the size and speed of a 
design.By describing the synthesised structure in the 
HDL code, results can be achieved that rival sche
matic capture in a lot less time. 

REVO 
®MOTOROLA 



AN1623 

HDL Techniques for Faster Synthesized Counters 

Introduction 
Synthesis tools and Hardware Description Languages 

(HDLs) provide designers with a great number of benefits 
compared with schematic capture tools. Designers using 
HDLs are often more productive than they are with 
schematic capture. HDL designs are much more portable, 
easier to document, easier to partition, easier to modify and 
easier to prototype than their schematic capture 
counterparts. But schematic capture designs have two 
important advantages over HDL designs: size and speed. 
This report shows how to use HDL and still achieve circuit 
size and speed on a par with schematic capture. 

Counters, timers and frequency dividers are often on the 
critical path in a design. By improving the speed of these 
elements the performance of the entire design can be 
improved, and this could make the difference between using 
a faster speed grade of device or not. While the discussion 
centres around counters, the principles involved can be 
applied to many other circuit elements. 

This application note discusses methods of building 16-bit 
counters, both in schematic capture and through the 
synthesis of Hardware Description Languages (HDLs). The 
benefits of different counter architectures and HDL coding 
styles are explored. 

VHDL has been used in this study, however Verilog users 
should be able to apply the same techniques to their code. 
The Synario synthesis tool was used in this study. The 
findings may differ slightly for users of other synthesis tools 
but the principles involved are the same. 

The VHDL written for this application note is intended for 
Motorola MPA FPGAs, but it is not specific to MPA FPGAs. 

0(0] 0(1] 

c c c 

No MPA components are instantiated, so it should be 
possible to re-synthesise the VHDL and retarget it to any 
FPGA or ASIC without modification. The schematics have 
been designed with Synario Generic library elements, so the 
schematics can also be re-used in any Synario device kit 
that supports the Synario Generic library. This demonstrates 
that it is possible to retain portability in an HDL design 
without sacrificing too much circuit performance. 

All the test cases have been placed and routed using the 
fully automatic place-and-route in the MPA Design System 
(MPA DS). Speed information is derived from static timing 
information produced by MPA DS. 

The Basics 
All the counters in the study are synchronous, 16 bits wide 

with clock enable and asynchronous reset. Counters with 
and without data load inputs are explored. Three main 
counter architectures are used: the very simple ripple 
counter, the look ahead counter , and the prescaled counter. 
Counters are described using schematic capture, behavioral 
VHDL or structural VHDL. 

Schematic Capture 

The simple ripple counter is probably the most familiar. A 
section of ripple counter is reproduced in Figure 1. The 
simple ripple counter has the advantage that it is the simplest 
possible synchronous counter and so it is smaller than other 
counters. It is also one of the slowest architectures, as the 
critical path 'ripples' through the counter, resulting in one 
gate delay per bit width of the counter. 

0[2] 0(3] 0[4] 

c c 
RST'>---l-~---~~4-~e-~~-1-~e-~~-1---<9-~~+---11-~~

CLK>-..... ~~~--41--~~~ ... ~~~--4,__~~~._~~~~ 

Figure 1. The First Few Stages of the Simple Ripple Counter 

=========:jriilil 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-237 



AN1623 

The look ahead counter is a variation of the ripple counter. 
The look ahead counter breaks up the ripple carry path by 
precalculating what the ripple carry value should be at 
certain points in the counter and injecting this value into the 
ripple carry path at these points. For 16 bit counters in MPA 

c c c 

devices this works out to be at the 8th, 11th and 14th stages 
in the counter. In the schematic' designs this resulted in a 
40% speed improvement over the simple ripple counter. 
Figure 2 shows the ripple carry counter. 

c c c c 
I_ 42 

RST>--t---4t-~-t~ ..... ~~t---.1--~-t-~._~~t-----~~-+-~._~--t~_.~~-t----' 
1_41 

CLK)-..._~~~~---~~~~.._~~~~--~~~--<a-~~~~._~~~--41--~~~---' 

Figure 2. The Look Ahead Carry Counter, Showing the 11th and 14th Stage Look Aheads 

The prescaled counter is another variation on the ripple 
carry counter. The two leasi significant bits of the counter 
form their own counter which is capable of operating at high 
speed. Once every 4 clock ticks, the clock enable for the 14 
most significant bits in the counter is enabled, thus the ripple 
carry path has four clock ticks to complete the ripple carry 
calculation. Note that the static timing analysis in the MPA 
Design System does not take circuit functionality into 

Q[O] 

c c c 

account, so it reports a speed figure that is lower than the 
true figure possible. Circuit analysis using the timing path 
data provided by MPA OS shows a speed improvement of 
over 50% compared with the ripple carry counter. Prescaled 
counters are not suitable for implementation in counters with 
data load. Figure 3 shows the first few stages of the 
prescaled counter. 

Q[2] Q[3] Q[4] Q[S] 

c c c 
RST)--l-~ ..... ~~-1-~---~~~~~~~-1-~--~~+---<a-~~-1--~._~~+----41--~~~ 
CLK>--..... ~~~--.1--~~~~~~~ ..... ~~~--< .... ~~~ ..... ~~~--4t-~~~~-

Figure 3. The first few stages of the prescaled counter. 

~~.t'f ~t==================M=O=T=O=R=O=LA==M=PA==D=A"=A=-==o=L2=0=1=R=E=v=2=============================== 
4-238 



AN1623 

Synthesis 
The synthesis code that will be familiar to HDL users is the 

very basic COUNT <= COUNT + 1; as shown in Figure 4. 
This is the correct form to use when prototyping some HDL 
code or making a test bench, but it doesn't synthesise to a 

very efficient structure. In fact, this produces a structure that 
is more than 30% slower and almost twice as large as the 
slowest schematic capture counter. So what went wrong? 

architecture behv of vhd16e is 
signal COUNT : std_logic_vector ( 0 to 15 ) ; 

begin 
count16: process (RST, CLK) 

begin 
if ( RST = '1' ) then 

COUNT<= (others=>'O'); 
elsif ( CLK'event and CLK = '1' ) then 

if ( EN= '1' ) then 

end if; 

if ( COUNT = B"llllllllllllllll" ) then 
COUNT<= (others=>'O'); 

else 
COUNT <= COUNT + 1; 

end if; 

end if; 
end process count16; 
Q <= COUNT; 
end behv; 

Figure 4. The Behavioral VHDL for a Ripple Carry Counter 

The problem with the behavioral model of the counter is 
that it gives the synthesis tool many degrees of freedom. 
Most synthesis tools would produce a ripple carry counter 
from the VHDL in Figure 4; it is unlikely that a look ahead or 
a prescaled counter would be generated. 

We can improve upon the behavioral model for the counter 
by specifying exactly what is wanted. For example, examine 
the VHDL of Figure 5. 

architecture struct of vhd16er is 

begin 

signal RIPPLE : std_logic_vector ( O to 15 ) ; 
signal ENABLE : std_logic_vector ( 0 to 15 ); 
signal COUNT : std_logic_vector ( O to 15 ) ; 
signal i : integer; 
signal j : integer; 
component tflop port RST, CLK, EN : in std_logic; 

Q : out std_logic); 
end component; 

Gl: for i in 0 to 15 generate 
count_stage: tflop port map ( 

end generate; 
RIPPLE(O) <= '1'; 
ENABLE(O) <= EN; 
G2: for j in 1 to 15 generate 

RST=>RST, CLK=>CLK, 
Q=>COUNT ( i) , 
EN=>ENABLE(i)); 

RIPPLE(j) <= (COUNT(j-1) and RIPPLE(j-1)); 
ENABLE(j) <= (RIPPLE(j) and EN); 

end generate; 
Q <= COUNT; 
end struct; 

Figure 5. Structural VHDL Description of a Ripple Counter 

=======ri&l 
MOTOROLA MPA DATA- DL201 REV 2 ~ 

4-239 



AN1623 

The VHDL of Figure 5 uses the VHDL 'generate' statement 
to instantiate 16 T-type flip flops. The T -type flip flops used 
ate architecture independent; the VHDL that describes these 
flip flops is shown in Figure 6. Another generate statement is 
used to describe the ripple carry path and the logic for the 
enable input to the T-type flip flops. The VHDL of Figure 5 is 

architecture rtl of tflop is 
signal Q_INT : std_logic; 

begin 
flop: process (RST, CLK) 

begin 
if ( RST = '1' ) then 

Q_INT <= '0'; 

not that much more complicated than the basic counter, and 
yet it is 23% faster and 46% smaller than the circuit 
produced by the VHDL of Figure 4. The circuit produced by 
the VHDL of Figure 5 is the same size as the schematic 
capture version. · 

elsif ( CLK'event and CLK = '1' ) then 
if ( EN= '1' ) then 

Q_INT <= not Q_INT; 
end if; 

end if; 
end process flop; 
Q <= Q_INT; 
end rtl; 

Figure 6. The VHDL for the tflop Component Used in Figure 5 

A slightly different arrangement of the VHDL used in 
Figure 5 is shown in Figure 7. The VHDL is very similar, 
except that the statement that ANDs the ripple and enable 

signals together has been moved into the tflopa component. 
This results in a ripple carry circuit that is 22% larger than the 
schematic capture version, but just 1% slower. 

architecture struct of vhd16era is 

begin 

signal RIPPLE : std_logic_vector ( O to 15 ) ; 
signal COUNT : std_logic_vector ( 0 to 15 ); 
signal i : integer; 
signal j : integer; 
component tfl.opa port RST, CLK, EN, RIN : in std_logic; 

Q : out std_logic); 
end component; 

Gl: for i in 0 to 15 generate 
count_stage: tflopa port map ( 

end generate; 
RIPPLE(O) <= '1'; 
G2: for j in 1 to 15 generate 

RST=>RST, CLK=>CLK, 
Q=>COUNT ( i) , 
EN=>EN, 
RIN=>RIPPLE(i)); 

RIPPLE(j) <= (COUNT(j-1) and RIPPLE(j-1)); 
end generate; 

Q <= COUNT; 
end struct; 

Figure 7. Structural Ripple Carry VHDL that is Just 1% Slower than the Schematic Capture Version 

~~~. ~c:==::=::=::=::=::=::=::=::=::M=O=T=O=R=O=LA==M=P=A=D=A=T=A=-==D=L2=0=1=R=E=V=2=::=::=::=::=::===::=::=::=::=::=::=::=::=::=::= 
4-240

AN1623

Synthesis of the Advanced Counters
The behavioral version of the look-ahead counter is

shown in Figure 8. This complicated piece of VHDL is almost
40% faster and 13% larger than the behavioral VHDL version

of the ripple carry counter. However, it is twice as large as
the schematic capture ripple counter and it is slower.

architecture behv of vhdl6la is

begin

signal COUNT : std_logic_vector (O to 15) ;
signal LAB : std_logic;
signal LAll std_logic;
signal LA14 : std_logic;

LAS <= (COUNT(O) and COUNT(l) and COUNT(2) and COUNT(3) and COUNT(4) and COUNT(5) and COUNT(6)
and COUNT (7)) ;
LAll <= (COUNT(8) and COUNT(9) and COUNT(lO) and LAS);
LA14 <= (COUNT(ll) and COUNT(l2) and COUNT(l3) and LAll);
countl6: process (RST, CLK)
begin

if (RST = 'l') then
COUNT<= (others=>'O');

elsif (CLK'event and CLK = 'l') then
if (EN= 'l') then

end if;
end if;

if (COUNT(O to 7) = B"llllllll") then
COUNT(O to 7) <= (others=>'0');

else
COUNT(O to 7) <= COUNT(O to 7) + l;

end if;
if (LAS = 'l') then

end if;

if (COUNT(8 to 10) = B"lll") then
COUNT(8 to 10) <= (others=>'O');

else
COUNT(8 to 10) <= COUNT(8 to 10) + l;

end if;

if(LAll = 'l') then

end if;

if (COUNT(ll to 13) = B"lll") then
COUNT(ll to 13) <= (others=>'O');

else
COUNT(ll to 13) <= COUNT(ll to 13) + l;

end if;

if (LA14 = 'l') then

end if;

if (COUNT(l4 to 15) = B"ll") then
COUNT(l4 to 15) <= (others=>'O');

else
COUNT(l4 to 15) <= COUNT(l4 to 15) + 1;

end if;

end process countl6;
Q <= COUNT;
end behv;

Figure 8. The Behavioral VHDL for a Look-Ahead Counter - Faster than the Behavioral VHDL Ripple Carry Counter,
But Slower than (and twice the size of) the Schematic Capture Ripple Carry Counter

=======IUiill
MOTOROLA MPA DATA- Dl201 REV 2 ~

4-241

AN1623

The structural VHDL for the look ahead counter is a lot
more efficient. Figure 9 shows structural VHDL that the same

architecture struct of vhd161aa is

size as the schematic capture version of the look ahead
counter and is less than 1 % slower.

signal COUNT : std_logic_vector (0 to 15);
signal RIPPLE : std_logic_vector (0 to 15) ;
signal LAB : std_logic;
signal LAll : std_logic;
signal LA14 : std_logic;

component tflopa port (RST, CLK, EN, RIN: in std_logic;
Q : out std_logic);

end component;

begin
LAB <= (COUNT(O) and COUNT(l) and COUNT(2) and COUNT(3) and COUNT(4)

and COUNT(5) and COUNT(6) and COUNT(7));
LA11 <= (COUNT(8) and COUNT(9) and COUNT(10) and LAS);
LA14 <= (COUNT(ll) and COUNT(12) and COUNT(l3) and LAll);

Gl: for i in O to 15 generate
count_stage: tflopa port map RST=>RST, CLK=>CLK,

Q=>COUNT{i),
EN=>EN,
RIN=>RIPPLE(i));

Note use of conditional generate statement
G2 : if ((i /= 0) and (i /= 1) and (i /= 8) and (i /= 11)

and (i /= 14)) generate
RIPPLE(i) <= (RIPPLE(i-1) and COUNT(i-1));

end generate;
end generate;
-- look ahead carries

RIPPLE(O) <= '1';
RIPPLE(l) <= COUNT(O);
RIPPLE(8) <= LAS;
RIPPLE(ll) <= LA11;
RIPPLE(14) <= LA14;
Q <= COUNT;
end struct;

Figure 9. Structural VHDL for a Look-Ahead Counter - the Same Size and Speed as a Schematic Capture Version,
and Less Complicated than the Behavioral Version

The results are similar for the prescaled counter. The
schematic capture version is the smallest and fastest as
expected. The behavioral VHDL prescaled counter of
Figure 10 is 6% smaller and 47% faster than the behavioral

VHDL look ahead counter - and the VHDL is much simpler.
The structural VHDL version of the prescaled counter the
same size as, and slightly slower than, the structural version
of the look ahead counter.

architecture behv of vhd16psb is

begin

signal COUNT : std_logic_vector (0 to 15);
signal EN_INT : std_logic;

prescale: process (RST, CLK)
begin

if (RST = '1') then
COUNT(O to 1) <= (others=>'O');

elsif (CLK'event and CLK = '1') then
if (EN= '1') then

if (COUNT(O to 1) = B"ll") then
COUNT(O to 1) <= (others=>'0');

else
COUNT(O to 1) <= COUNT(O to 1) + l;

~~~ ~~·==================M=O=T=O=R=O=L=A=M=P=A=D=A=TA=-==o=L2=0=1=R=E=v=2=============================== 
4-242 



end if; 
end process prescale; 

end if; 
end if; 

EN_INT <= (COUNT(O) and COUNT(l) and EN); 
count14: process (RST, CLK) 

begin 
if ( RST = '1' ) then 

AN1623 

COUNT(2 to 15) <= (others=>'O'); 
elsif ( CLK'event and CLK = '1' ) then 

if ( EN_INT '1' ) then 

if COUNT(2 to 15) = B"11111111111111" ) then 
COUNT(2 to 15) <= (others=>'O'); 

else 
COUNT(2 to 15) <= COUNT(2 to 15) + l; 

end if; 
end process count14; 
Q <= COUNT; 
end behv; 

end if; 
end if; 

Figure 1 O. The Behavioral VHDL Version of the Prescaled Counter - Smaller and Faster than the 
Behavioral VHDL Version of the Look-Ahead Counter 

Loadable Counters 
Results for the loadable counters were similar to those for 

the non-loadable types of counters, but the improvements 
possible were less dramatic. Again, the schematic captured 
counters are the smallest. All of the look-ahead carry 
counters were faster than their ripple carry equivalents. One 
of the look-ahead carry counters was faster than the 
schematic capture version, although it was larger also. The 
results for all of the counters explored in the study are 
available in Table 1 and Table 2. 

Results 
All of the examples in the study were drawn in the Synario 

schematic capture tool using Synario generic libraries or 
compiled using the Synario synthesis tool. Each example 
had 1/0 pads added to it as appropriate and was netlisted 
into EDIF format. 

Each example was imported into the MPA Design System. 
Fully automatic place and route was performed on each 
example, using fully automatic pushbutton autolayout and 
the 'minimum delay' preset autolayout parameter set. On 
some examples the utilisation target was reduced to 80% -
this is noted in table 10a. No advanced techniques of 

reducing delays have been performed. The device used in 
the study was the MPA 1016FN, the smallest non-speed 
graded device in the MPA family - this is the device that is 
currently shipped with MPA evaluation boards. 

The number of core cells is the number reported by the 
autolayout tool, after all netlist optimisations have taken 
place. The speed measurement is the number obtained from 
the static timing analysis report from the MPA Design System 
back annotation tool, except in the case of prescaled 
counters where the maximum speed of operation was 
determined from the detailed timing information contained in 
the timing (.TIM) file. 

While it is difficult to rate the relative 'difficulty' of a 
particular implementation of a design, an attempt has been 
made to do so. In the case of VHDL designs, the 'effort' to 
create the design has been defined as the number of lines of 
code in the architecture description of the element, including 
signal and component declarations but not including 
comments, white space or the code in any instantiated 
component. In the case of schematic capture designs the 
effort to create the design has been defined as the number of 
instances in the design. This provides some kind of basis 
with which to compare the difficulty of designs. 

=======riiiil MOTOROLA MPA DATA- DL201 REV 2 ~ 
4-243 



AN1623 

Table 1. Results for the Counters without the Data Load Function 

Name Of Entry #of Core Speed Effort to 
Example Method Cells (MHz) creste Notes 

App_note Schematic 45 33.9 45 Utilisation target set to 80% 

Appnote6 VHDL Behavioral 84 22.8 18 COUNT <= COUNT+ 1; 

Appnote8 VHDL Structural 45 28.1 22 Utilisation target set to 80% 

Appnote9 VHDL Structural 58 33.7 20 Slightly different arrangement to Appnote8 

Appnote4 Schematic 55 47.4 55 Look Ahead Carry 

Appnol13 VHDL Behavioral 95 31.6 45 COUNT <= COUNT+ 1; 
with Look Ahead Carry 

Appnot14 VHDL Structural 55 47.2 28 Look Ahead Carry 

Appnot16 VHDL Structural 63 41.5 35 Look Ahead Carry, Different arrangement to Appnot14, 
Utilisation target set to 80% 

Appnote5 Schematic 44 51.3 44 2-stage Prescaled Counter, Utilisation target set to 80% 
(Note 1.) 

Appnot17 VHDL Behavioral 79 46.5 34 COUNT<= COUNT + 1; 
(Note2.) with 2-stage Prescaled Counter 

Appnot10 VHDL Structural 55 44.4 29 2-stage Prescaled Counter, Utilisation target set to 80% 
(Note3.) 

1. Based on detailed timing information. MPADS static timing analysis reports 38.9MHz. 
2. Based on detailed timing information. MPADS static timing analysis reports 19.5MHz. 
3. Based on detailed timing information. MPADS static timing analysis reports 34.6MHz. 

Table 2. Results for the Counters with Data Load 

Name of Entry #of Core Speed 
Example Method Cells (MHz) 

Appnote7 VHDL Behavioral 160 23.9 

Appnote3 Schematic 119 35.5 

Appnot11 VHDL Behavioral 150 30.8 

Appnot12 VHDL Structural 122 30.6 

Appnot15 VHDL Structural 127 39.2 

Interpretation of the Results 
Some of the results of the study are not surprising; the 

largest and slowest counters were produced with behavioral 
VHDL, and the smallest and fastest counters were produced 
with schematic capture. 

What is more surprising is the range of results found. 
Looking at the results for the counters without the data load 
function, it can be seen that changing the architecture and 
the coding style of a VHDL counter can result in a speed 
improvement of over 100%. Similarly, the largest behavioral 
VHDL counter is more than 100% larger than the smallest 
structural VHDL version. 

The size of the counter implementation is not necessarily 

Effort to Notes 
create 

20 COUNT <= COUNT + 1; 

119 Look Ahead Carry 

47 COUNT<= COUNT+ 1; 
with Look Ahead Carry 

30 Look Ahead Carry 

37 Look Ahead Carry, Different arrangement to Appnot12 
(Same as Appnon 6) 

related to the speed of the counter produced. Referring to 
the graph in Figure 11, it can be seen that there is no strong 
correlation between size and speed. Indeed, the smallest 
counter is also the fastest and the second largest counter is 
also the slowest. 

What can also be seen from Figure 11 is that the three 
behavioral VHDL counters are the largest by a significant 
margin. It can also be seen that structural VHDL is almost 
capable of matching schematic capture on the basis of size, 
speed, or both. For the very best in size and speed, It is still 
necessary to use schematic capture. 

~~.,'/ ~c·==================M=o=r=o=R=O=LA==M=P=A=D=A=TA=-==D=L2=0=1=R=E=v=2=============================== 
4-244 



AN1623 

Size vs Speed 

MHz 
60 

50 • ... • Key: 
A 

A •Schematic 
Capture 

40 

• A • + Behavioral 
A VHDL 

• 6 Structural 
VHDL 

20 

10 

0 
0 20 40 60 80 100 MPA 

Core Cells 
Size 

Figure 11. Size Plotted Against Speed for the Counters In the Study Without the Data Load Feature. 
Bigger is not necessarily faster. 

The results are a little different if the effort to produce the 
required solution is taken into account. The graph of 
Figure 12 introduces two new terms: quality and effort. For 
the purposes of this comparison the 'quality' of a counter is 
defined as the speed of a counter divided by the number of 
core cells required to implement that counter. The 'effort' 
required to produce the counter is defined as either the 
number of lines of VHDL required to produce the counter or 
the number of instances in a schematic captured counter. 

Figure 12 shows some correlation between effort and 

'quality' of the solution produced. As we showed in Figure 11, 
schematic capture is capable of producing the highest 
'quality' counters, but it also requires significant effort to 
produce them. On the other hand, the very simple behavioral 
VHDL counter requires little effort to produce, but results in a 
poor 'quality' counter implementation. What is interesting to 
note is that in most cases, structural VHDL is capable of 
producing results of comparable 'quality' to schematic 
capture, but with much less effort. 

Quality of solution vs. Effort required to create solution 
1.20 • 
1.00 

Key: 
A • 

A • Schematic 
• Capture 

0.80 

A 
A 

+ Behavior al 
A • VHDL 

~ 1 0.60 
0 

6 Structural 

• VHDL 
0.40 

• 
0.20 

0.00 

0 10 20 30 40 50 60 

Effort to create 
[lines of code or number of instances) 

Figure 12. 'Quality' of Counter Implementation Plotted Against the Effort Required to Produce It. 
More effort does not always guarantee a better solution. 

================1r.il MOTOROLA MPA DATA- DL201 REV 2 ~ 
4-245 



AN1623 

Conclusions 
Two different VHDL code styles have been compared and 

contrasted with schematic capture, and it has been shown 
that using Vl-jDL does not necessarily mean having to accept 
a reduction in circuit performance. Three different counter 
architectures have been explored, and it has been shown 
that it is possible to gain significant performance benefits by 
changing counter architecture, without a dramatic increase in 
counter size or the effort required to generate the counter. 

This study has shown that VHDL coding style and 
selection of different circuit architectures can have a sizeable 
effect on the quality of the solution produced. If you think 
about the structural implications of your VHDL, you can 

produce designs that rival the performance of schematic 
capture in a lot less time. 

The Synario - MPA Device Kit will be released with 
version 2.4 of the MPA Design System. The kit supports 
MPA-specific and Synario Generic schematic capture 
libraries, VHDL and ABEL-HDL design entry, VHDL and 
Verilog simulation. You can download a demonstration 
version of the kit and a free version of the MPA Design 
System from the Motorola MPA web site, 

http:l/sps.motorola.com/fpga 

~~~ ~~===================M=O=T=O=R=O=LA==M=P=A=D=A=T=A=-==D=L=20=1=R=E=V=2================================= 
4-246

Motorola Programmable Arrays

How to Reach Us [5J

Three Ways To Receive
Motorola Semiconductor Technical Information

Literature Distribution Centers
Printed literature can be obtained from the Literature Distribution Centers upon request. For those items that incur a cost, the
U.S. Literature Distribution Center will accept Master Card and Visa.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217.

JAPAN:

ASIA/PACIFIC:

Phone: 303-675-2140or1-800-441-2447

Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1,
Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. Phone: 81-3-5487-8486

Motorola Semiconductors H.K. Ltd.; 88 Tai Ping Industrial Park, 51 Ting Kok Road,
Tai Po, N.T., Hong Kong. Phone: 652-26629296

Mfax™ - Touch-Tone Fax
Mfax offers access to over 30,000 Motorola documents for faxing to customers worldwide. With menus and voice
instruction, customers can requestthe documents needed, using their own touch-tone telephones from any location, 7 days
a week and 24 hours a day. A number of features are offered within the Mfax system, including product data sheets,
application notes, engineering bulletins, article reprints, selector guides, Literature Order Forms, Technical Training
Information, and HOT DOCS (4-digit code identifiers for currently referenced promotional or advertising material).

A fax of complete, easy-to-use instructions can be obtained with a first-time
phone call into the system, entering your FAX number and then, pressing 1.

How to reach us:

Mfax: RMFAXO@email.sps.mot.com -TOUCH-TONE (602) 244-6609
USA & Canada ONLY 1--1300-774-1848

or via the http://motorola.com/sps home page, select the Mfax Icon.

Motorola SPS World Marketing Internet Server
Motorola SPS's Electronic Data Delivery organization has set up a World Wide Web Server to deliver Motorola SPS's
technical data to the global Internet community. Technical data such as the complete Master Selection Guide along with the
OEM North American price book are available on the Internet server with full search capabilities. Other data on the server
include abstracts of data books, application notes, selector guides, and textbooks. All have easy text search capability.
Ordering literature from the Literature Distribution Center is available on line. Other features of Motorola SPS's Internet
server include the availability of a searchable press release database, technical training information, with on-line
registration capabilities, complete on-line access to the Mfax system for ordering faxes, an on-line technical support form to
send technical questions and receive answers through email, information on product groups, full search capabilities of
device models, a listing of the Domestic and International sales offices, and links directly to other Motorola world wide web
servers. For more information on Motorola SPS's Internet server you can request BR1307/D from Mfax or LDC.

How to reach us:

After accessing the Internet, use the following URL:

http://motorola.com/sps

Motorola's Programmable Array Group

How to reach us:

After accessing the Internet, use the following URL:

http://sps.motorola.com/fpga

Our toll free Support Access Line at:

1-SOD-449-3742

=======================rliil
MOTOROLA MPA DATA- Dl201 REV 2 ~

5-2

MOTOROLA AUTHORIZED DISTRIBUTOR & WORLDWIDE SALES OFFICES
NORTH AMERICAN DISTRIBUTORS

UNITED STATES

ALABAMA
Huntsville

Arrow/Schweber Electronics
FAl
Future Electronics .
Hamilton/Hallmark
Newark.

(205)837-6955
(205)837-9209
(205)83()-2322
(205)837-8700
(205)837-9091

Time Electronics .
Wyle Electronics ..

.... 1-800--789-TlME
. . (205)830--1119

ARIZONA
Phoenix

FAl.
Future Electronics .
Hamilton/Hallmark
Wy!e Electronics .

Tempe
Arrow/Schweber Electronics

(602)731-4661
(602)968-7140

.. (602)414--BOOO
(602)804-7000

(602)431-0030
(602)966-6340
(602)967-1620

Newark.
PENSTOCK.
Time Electronics 1-800-789-TlME

CALIFORNIA
Agoura Hills

Future Electronics . (818)865-0040
Time Electronics Corporate ... 1-800-789-TIME

Belmont
Richardson Electronics

Calabassas
Arrow/Schweber Electronics
Wyle Electronics

Chatsworth
Time Electronics ..

Costa Mesa
Hamilton/Hallmark

Culver City
Hamilton/Hallmark .

(415)592-9225

(818)880-9686
(818)880--9000

. 1-800--789-TlME

(714)789-4100

(310)558-2000
Garden Grove

Newark. (714-893-4909
Irvine

Arrow/Schweber Electronics
FAl.
Future Electronics .
Wyle Laboratories Corporate .
Wyle Electronics

Los Angeles
FAl.
Wyle Electronics

Manhattan Beach
PENSTOCK ..

Mountain View
Richardson Electronics

Newberry Park
PENSTOCK

Palo Alto
Newark ..

Riverside
Newark.

Rocklin
Hamilton/Hallmark

Sacramento
FAl ..
Newark.
Wyle Electronics .

San Diego

(714)587-0404
(714)753-4778
(714)453-1515
(714)753-9953
(714)863-9953

(818)879-1234
(818)880-9000

(310)546-8953

(415)960-6900

(805)375-6680

(415)812-6300

(909)784-1101

(916)632-4500

(916)782-7882
(916)565-1760
(916)638-5282

Arrow/Schweber Electronics (619)565-4800
FAl (619)623-2888
Future Electronics . (619)625-2800
Hamilton/Hallmark (619)571-7540
Newark . . . (619)453-8211
PENSTOCK. (619)623-9100
Wyle Electronics . . (619)565-9171

San Jose
Arrow/Schweber Electronics
Arrow/Schweber Electronics

(408)441-9700
(408)428-6400

FAl.
Future Electronics .

Santa Clara
Wyle Electronics .

Sierra Madre
PENSTOCK.

Sunnyvale
Hamilton/Hallmark
PENSTOCK.
Time Electronics .

Thousand Oaks
Newark .

Torrance
Time Electronics .

Tustin
Time Electronics

Woodland Hills
Hamilton/Hallmark
Richardson Electronics

COLORADO
Lakewood

FAl.
Future Electronics ..

Denver
Newark ..

Englewood
Arrow/Schweber Electronics
Hamilton/Hallmark
PENSTOCK .

(408)434-0369
(408)434-1122

(408)727-2500

(818)355-6775

(408)435-3500
(408)730-0300

1-800--789-TlME

(805)449-1480

1-800-789-TlME

. 1-800-789-TlME

(818)594-0404
(615)594-5600

(303)237-1400
(303)232-2008

(303)373-4540

(303)799-0258
(303)790-1662
(303)799-7845

Time Electronics 1-800-789-TlME

Thornton
Wyle Electronics .

CONNECTICUT
Bloomfield

Newark.

Cheshire
FAl
Future Electronics
Hamilton/Hallmark

Southbury
Time Electronics .

Wallingfort
Arrow/Schweber Electronics

FLORIDA
Altamonte Springs

Future Electronics
Clearwater

FAl
Future Electronics

Deerfield Beach
Arrow/Schweber Electronics
Wyle Electronics

Ft. Lauderdale
FAl.
Future Electronics
Hamilton/Hallmark
Newark.
Time Electronics ..

Lake Mary

(303)457-9953

(203)243-1731

(203)250-1319
(203)250-0083
(203)271-2844

. 1-800-789-TlME

(203)265-7741

(407)865-7900

(813)530-1665
(813)530-1222

(305)429-8200
(305)420-0500

(305)428-9494
(305)436-4043
(305)484-5482
(305)486-1151

1-800-789-TlME

Arrow/Schweber Electronics (407)333-9300
Largo!Tampa/St. Petersburg

Hamilton/Hallmark (813)547-5000
Newark (813)287-1578
Wyle Electronics . (813)576-3004
Time Electronics . 1-800-789-TlME

Orlando
FAl ...

Tallahassee
FAl

Tampa
PENSTOCK ...

Winter Park
Hamilton/Hallmark
PENSTOCK ..
Richardson Electronics

(407)865-9555

(904)668-7772

(813)247-7556

(407)657-3300
. (407)672-1114
(407)644-1453

GEORGIA
Atlanta

FAl.
Time Electronics
Wyle Electronics .

Duluth
Arrow/Schweber Electronics
Hamilton/Hallmark

Norcross
Future Electronics .
Newark.
PENSTOCK.
Wyle Electronics .

IDAHO
Boise

FAl

ILLINOIS
Addison

Wyle Laboratories .

Bensenville
Hamilton/Hallmark

Chicago
FAl
Newark Electronics Corp.

Hoffman Estates
Future Electronics .

Itasca

(404)447-4767
1-800-789-TlME

(404)441-9045

(404)497-1300
(404)623-4400

(770)441-7676
(770)448-1300
(770)734-9990
(770)441-9045

(208)376-8080

(708)620-0969

(708) 797-7322

(708)843-0034
(312)784-5100

Arrow/Schweber Electronics

La Fox

(708)882-1255

(708)250-0500

(708)208-2401

(708)934-3700

(708)310-8980

Richardson Electronics

Palatine
PENSTOCK.

Schaumburg
Newark ..
Time Electronics .

INDIANA
Indianapolis

Arrow/Schweber Electronics
Hamilton/Hallmark
FAl.
Future Electronics ..
Newark
Time Electronics .

Ft. Wayne
Newark ...
PEN STOCK

IOWA

1-800-789-TlME

(317)299-2071
(317)575-3500
(317)469-0441
(317)469-0447
(317)259-0085

1-800-789-TlME

(219)484-0766
(219)432-1277

Cedar Rapids
Newark
Time Electronics .

(319)393-3800
. 1-800-789-TlME

KANSAS
Kansas City

FAl.
Lenexa

Arrow/Schweber Electronics
Hamilton/Hallmark

Olathe
PENSTOCK ..

Overland Park
Future Electronics ..
Newark
Time Electronics .

MARYLAND
Baltimore

FAl.
Columbia

Arrow/Schweber Electronics
Future Electronics .
Hamilton/Hallmark
Time Electronics ..
PENSTOCK ..
Wyle Electronics ..

Hanover
Newark.

(913)381-6800

(913)541-9542
(913)663-7900

(913)829-9330

(913)649-1531
(913)677-0727

.. 1-800-789-TlME

(410)312-0833

(301)596-7800
(410)290-0600
(410)720-3400

... 1-800-789-TlME
(410)290-3746
(410)312-4844

(410)712-6922

====================================~ MOTOROLA MPA DATA - DL201 REV 2 ~
5-3

[5J

AUTHORIZED DISTRIBUTORS - continued

UNITED STATES - continued

MASSACHUSETTS
Boston

Arrow/Schweber Electronics
FAI

Bolton
Future Corporate ..

Burlington
PENSTOCK
Wyle Electronics ..

Norwell
Richardson Electronics

Peabody
Time Electronics ...
Hamilton/Hallmark

Woburn
Newark

MICHIGAN
Detroit

FAI.
Future Electronics .

Grand Rapids
Newark.

Livonia
Arrow/Schweber Electronics
Future Electronics
Hamilton/Hallmark
Time Electronics

Troy
Newark.

MINNESOTA
Bloomington

Wyle Electronics ..
Burnsville

PENSTOCK

Eden Prairie
Arrow/Schweber Electronics
FAI ..
Future Electronics
Hamilton/Hallmark
Time Electronics ..

Minneapolis
Newark ..

Earth City
Hamilton/Hallmark

MISSOURI
St. Louis

Arrow/Schweber Electronics
Future Electronics ...
FAI
Newark ...
Time Electronics

NEW JERSEY
Bridgewater

PENSTOCK ..

Cherry Hill
Hamilton/Hallmark

East Brunswick
Newark

Fairfield
FAI.

Long Island
FAI

Marlton
Arrow/Schweber Electronics
FAI
Future Electronics

Pinebrook
Arrow/Schweber Electronics
Wyle Electronics

Parsippany
Future Electronics
Hamilton/Hallmark

Wayne
Time Electronics ..

(508)658-0900
(508)779--3111

(508)779--3000

(617)229-9100
(617)271-9953

(617)871-5162

1-600-789-TIME
(508)532-9893

(617)935-8350

(313)513-0015
(616)698-6800

(616)954-6700

(810)455-0850
(313)261-5270
(313)416-5800

1-800-789-TIME

(810)583-2899

.. (612)853-2280

(612)882-7630

(612)941-5280
(612)947--0909
(612)944-2200
(612)881-2600

. .. 1-600-789-TIME

(612)331-6350

.... (314)291-5350

(314)567-6888
(314)469-6805
(314)542-9922
(314)453-9400

1-800-789--TIME

(908)575-9490

(609)424--0110

(908)937-6600

(201)331-1133

(516)348-3700

(609)596-6000
(609)988-1500
(609)596-4080

(201)227-7880
(201)882-8358

(201)299--0400
(201)515-1641

. .. 1-600-789-TIME

NEW MEXICO
Albuquerque

Alliance Electronics
Hamilton/Hallmark
Newark.

NEW YORK
Bohemia

Newark

Hauppauge
Arrow/Schweber Electronics
Future Electronics
Hamilton/Hallmark
PENSTOCK ..

Konkoma
Hamilton/Hallmark

Melville
Wyle Laboratories

Pittsford
Newark.

Rochester
Arrow/Schweber Electronics
Future Electronics
FAI ...
Hamilton/Hallmark
Richardson Electronics
Time Electronics

Rockville Centre
Richardson Electronics

Syracuse
FAI
Future Electronics
Newark.

(505)292-3360
(505)828-1058
(505)828-1878

(516)567-4200

.... (516)231-1000
(516)234-4000
(516)434-7400
(516)724-9580

(516)737--0600

(516)293-8446

(716)381-4244

(716)427--0300
(716)387-9550
(716)387-9600
(716)272-27 40
(716)264-1100

... 1-800-789-TIME

(516)872-4400

(315)451-4405
(315)451-2371
(315)457-4873

Time Electronics

NORTH CAROLINA
. 1-600-789--TIME

Charlotte
FAI
Future Electronics .
Richardson Electronics

Raleigh
Arrow/Schweber Electronics
FAI
Future Electronics .
Hamilton/Hallmark
Newark

(704)548-9503
(704)547-1107
(704)548-9042

(919)876-3132
(919)876-0088

.... (919)790-7111
.. (919)872-0712

.... (919)781-7677
Time Electronics 1-600-789--TIME

OHIO
Centerville

Arrow/Schweber Electronics

Cleveland
FAI.
Newark
Time Electronics .. .

Columbus
Newark
Time Electronics ..

Dayton
FAI
Future Electronics ...
Hamilton/Hallmark
Newark
Time Electronics

Mayfield Heights
Future Electronics ...

Solon
Arrow/Schweber Electronics
Hamilton/Hallmark

Worthington
Hamilton/Hallmark

OKLAHOMA
Tulsa

FAI
Hamilton/Hallmark
Newark

OREGON
Beaverton

(513)435-5563

(216)446-0061
(216)391-9330

. . . 1-800-789-TIME

(614)326--0352
1-600-789--TIME

(513)427-6090
(513)426--0090
(513)439-6735
(513)294-8980

1-800-789-TIME

(216)449-6996

(216)248-3990
(216)498-1100

(614)888-3313

(918)492-1500
(918)459-6000

. . . (918)252-5070

Arrow/Almac Electronics Corp. (503)629--8090
(503)645-9454 Future Electronics

Hamilton/Hallmark ..
Wyle Electronics ..

Portland
FAI
Newark
PENSTOCK
Time Electronics

PENNSYLVANIA
Coatesville

PENSTOCK.
Ft. Washington

Newark

Mt. Laurel
Wyle Electronics .

Montgomeryville
Richardson Electronics

Philadelphia

(503)526-6200
(503)643-7900

(503)297-5020
(503)297-1984
(503)646-1670

. 1-600-789-TIME

(610)383-9536

(215)654-1434

(609)439-9110

(215)628-0805

Time Electronics
Wyle Electronics ..

.... 1-600-789-TIME
(609)439--9110

Pittsburgh
Arrow/Schweber Electronics
Newark.
Time Electronics ...

TENNESSEE
Franklin

Richardson Electronics

Knoxville
Newark

TEXAS
Austin

Arrow/Schweber Electronics
Future Electronics
FAI
Hamilton/Hallmark
Newark.
PENSTOCK
Time Electronics .. .
Wyle Electronics

Benbrook
PENSTOCK

Carollton
Arrow/Schweber Electronics

Dallas
FAI
Future Electronics .
Hamilton/Hallmark
Newark.

(412)963-6807
(412)788-4790

. .. 1-800-789-TIME

(615)791-4900

(615)588-6493

(512)835-4180
(512)502--0991
(512)346-6426
(512)219-3700
(512)338-0287
(512)346-9762

1-600-789-TIME
(512)833-9953

(817)249-0442

(214)380-6464

(214)231-7195
(214)437-2437
(214)553-4300
(214)458-2528
(214)239--3680 Richardson Electronics

Time Electronics .
Wyle Electronics .

.... 1-600-789-TIME
(214)235-9953

El Paso
FAI .

Ft. Worth
Allied Electronics .

Houston
Arrow/Schweber Electronics
FAI
Future Electronics ..
Hamilton/Hallmark
Newark
Time Electronics
Wyle Electronics

Richardson
PENSTOCK

San Antonio
FAI

UTAH
Salt Lake City

Arrow/Schweber Electronics
FAI
Future Electronics
Hamilton/Hallmark
Newark
Wyle Electronics .

West Valley City

(915)577-9531

(817)336-5401

(713)647-6868
(713)952-7088
(713)785-1155
(713)781-6100
(713)894-9334

1-800-789-TIME
(713)879--9953

(214)479--9215

(210)738-3330

(801)973-6913
(801)467-9696
(801)467-4448
(801)266-2022
(801)261-5660
(801)974-9953

Time Electronics
Wyle Electronics .. .

. ... 1-801}-789-TIME
(801)974-9953

====:==:==:==:==:==:==:==:==:==:==:==:==:=M~O=T=O~R~O=LA==M~PA==:DA=I=A=-==D=L2=0=1=R=EV=2==:==:==:==:==:==:==:==:==:==:==:==rijiiil
5-4 ~

AUTHORIZED DISTRIBUTORS - continued

UNITED STATES - continued CANADA Mississauga
ALBERTA PENSTOCK. (905)403--0724

WASHINGTON Calgary Ottawa
Bellevue Electro Sonic Inc. (403)256-9550 Arrow Electronics (613)226-6903

Almac Electronics Corp. (206)643-9992 FAI ... (403)291-5333 Electro Sonic Inc. (613)726-6333
Newark. (206)641-9600 BRITISH COLUMBIA FAI. (613)620-6244
PENSTOCK. (206)454-2371 Future Electronics . (403)25()-5550 Future Electronics .. (613)620-6313
Richardson Electronics (206)646-7224 Hamilton/Hallmark (600)66:J.-5500 Hamilton/Hallmark (613)226-1700

Bothell Edmonton Toronto
Future Electronics . (206)489-3400 FAI. (403)436--5666 Arrow Electronics (905)67()-7769

Redmond Future Electronics . (403)436--2856 Electro Sonic Inc. (416)494-1666
Hamilton/Hallmark (206)682-7000 Hamilton/Hallmark (800)663-5500 FAI .. (905)612-9666
Time Electronics 1-80()-769-TIME Saskatchewan Future Electronics .. (905)612-9200
Wyle Electronics . (206)881-1150 Hamilton/Hallmark (800)663--5500 Hamilton/Hallmark (905)564-6060

Seattle Vancouver Newark. (905)670-2686
FAI. (206)486-6616 Arrow Electronics (604)421-2333 Richardson Electronics (905)795-6300
Wyle Electronics .. (206)881-1150 Electro Sonic Inc. (604)273--2911

QUEBEC
WISCONSIN FAI. (604)654-1050 Montreal

Brookfield Future Electronics (604)294-1166 Arrow Electronics (514)421-7411
Arrow/Schweber Electronics (414)792-0150 Hamilton/Hallmark (604)420-4101 FAI. (514)694-8157
Future Electronics .. (414)879-0244 MANITOBA Future Electronics . (514)694-7710
Wyle Electronics (414)521-9333 Winnipeg Hamilton/Hallmark (514)335-1000

Milwaukee Electro Sonic Inc. (204)763-3105 Richardson Electronics (514)748-1770
FAI. (414)792-9776 FAI. (204)766-3075

Quebec City Time Electronics . 1-800-789-TIME Future Electronics . (204)944-1446 Arrow Electronics .. (418)687-4231
New Berlin Hamilton/Hallmark (800)663--5500 FAI. (418)662-5775

Hamilton/Hallmark (414)780-7200 ONTARIO Future Electronics .. (418)677-6666
Wauwatosa Kanata

Newark. (414)453--9100 PENSTOCK. (613)592-6068

INTERNATIONAL DISTRIBUTORS

AUSTRALIA
AVNET VSI Electronics (Australia) (61)2878-1299
Veltek Australia Pty Ltd .. (61)39574-9300

AUSTRIA
EBV Austria .
Elbatex GmbH
Spoerle Austria

BELGIUM
Diode Spoerle
EBV Belgium .

CHINA

(43) 1 8941774
(43) 1 866420

(43) 1 31872700

.. (32) 2 725 4660

.. (32) 2 716 0010

Advanced Electronics Ltd (852)2 306-3633
AVNET WKK Components Ltd .. (852)2 357-8888
China El. App. Corp. Xiamen Co

..... (86)592 513--2489
Nance Electronics Supply Ltd. (852) 2 333--5121
Qing Cheng Enterprises Ltd. (652) 2 493-4202

DENMARK
Arrow Exatec
Avnet Nortec A/S
EBV Denmark ..

ESTONIA
Arrow Field Eesti .
Avnet Baltronic

FINLAND
Arrow Field OY
Avnet Nortec OY ..

FRANCE

(45) 44 927000
(45) 44 680800

. (45) 39690511

.. (372) 6503288
.... (372) 6397000

(35) 807 775 71
(35) 80613181

Arrow Electronique (33) 1 49 78 49 78
Avnet Components (33) 1 49 65 25 00
EBV France . . (33) 1 64 66 66 oo
Future Electronics. . . (33)169821111
Newark (33)1-30954060
SEl/Scaib (33) 1 69 19 89 00

GERMANY

Avnet E2000
EBV Elektronik GmbH
Future Electronics GmbH
Jermyn GmbH .
Newark.
Sasco HED

(49) 69 4511001
(49) 89 99114-0
(49) 69-957 270

. ... (49) 6431-5080
(49)2154-70011

..... (49) 89-46110
Spoerle Electronic (49) 6103--304-0

HOLLAND
EBV Holland
Diode Spoerle BV

HONG KONG

... (31) 3465 623 53
(31) 4054 5430

AVNET WKK Components Ltd .. (852)2 357-8868
Nanshing Cir. & Chem. Co. Ltd. (852)2333-5121

INDIA
Canyon Products Ltd (91) 80 558-7758

INDONESIA
P.T. Ometraco (62) 21 619-6166

ITALY
Avnet Adelsy SpA. (39) 2 38103100
EBV Italy (39) 2 660961
Silverstar SpA (39) 2 6612 51

JAPAN
AMSC Co., Ltd.
Fuji Electronics Co., Ltd.
Marubun Corporation ..
Nippon Motorola Micro Elec.
OMRON Corporation .
Tokyo Electron Ltd ..

KOREA
Jung Kwang Sa .
Lite-On Korea Ltd.
Nasca Co. Ltd ..

NEW ZEALAND
AVNET VSI (NZ) Ltd .

NORWAY

61-422-54-6800
61-3-3814-1411
81-3-3639-8951
81-:J.-328()-7300
81-:J.-3779-9053
81-3-5561-7254

(82)2278-5333
(62)2656-3853

(82)23772-6800

(64)9 636-7601

Arrow Tahonic NS
Avnet Nortec A/S Norway .

.. (47)2237 8440
(47) 66 846210

PHILIPPINES
Alexan Commercial

SINGAPORE
Future Electronics ..
Strong Pte. Ltd

....... (63) 2241-9493

Uraco Technologies Pte Ltd.

. .. (65)479-1300
. (65) 276-3996
. (65) 545-7611

SPAIN
Amitron Arrow
EBV Spain
Selca S.A.

SWEDEN
Arrow-Th:s
Avnet Nortec AB

SWITZERLAND
EBV Switzerland ..
ElbatexAG.
Spoerle

S.AFRICA
Advanced ..
Reuthec Components

THAILAND

(34) 1 304 30 40
(34) 1 804 32 56
(34) 16371011

(48) 8 362970
(46) 8 62914 00

(41) 17456161
....... (41) 56 43751111

(41) 1 6746262

(27) 11 4442333
(27) 11 6233357

Shapiphat Ltd (66)2221-0432 or 2221-5384
TAIWAN

Avnet-Mercuries Co., Ltd (686)2 516-7303
Solomon Technology Corp. . (686)2 786-8989
Strong Electronics Co. Ltd (886)2 917-9917

UNITED KINGDOM
Arrow Electronics (UK) Ltd .. (44) 1 234 270027
Avnet/Access. . (44) 1 462 488500
Future Electronics Ltd. (44) 1 753 763000
Macro Marketing Ltd. . (44) 1 628 60600
Newark (44) 1 420 543333

===============================M=O=T=O=RO==LA=M==PA==DA=T=A=-==D=L2=0=1=R=E=v=2========================:::::l~
5-5

MOTOROLA WORLDWIDE SALES OFFICES
UNITED STATES

ALABAMA
Huntsville ..

ALASKA ..
ARIZONA

Tempe
CALIFORNIA

Calabasas.
Irvine
Los Angeles ..
San Diego .. .
Sunnyvale

COLORADO
Denver ..

CONNECTICUT
Wallingford ..

FLORIDA
Clearwater
Maitland .
Pompano Beach/Ft. Lauderdaie

GEORGIA
Atlanta .

IDAHO

(205)464-6800
(800)635-8291

(602)302-8056

(818)878-6800
(714)753-7360
(818)878-6800
(619)541-2163
(408)749-0510

(303)337-3434

(203)949-4100

(813)524-4177
(407)628-2636
(305)351-6040

(770)729-7100

Boise . (208)323-9413
ILLINOIS

Chicago/Schaumburg (847)413-2500
IN DIANA

Indianapolis . . (317)571-0400
Kokomo (317)455-5100

IOWA
Cedar Rapids (319)378-0383

KANSAS
Kansas City/Mission (913)451-6555

MARYLAND
Columbia (410)381-1570

MASSACHUSETIS
Manborough (508)481-6100

Woburn (617)932-9700
MICHIGAN

Detroit (810)347-6800
Literature . . . (800)392-2016

MINNESOTA
Minnetonka

MISSOURI
St. Louis ..

NEW JERSEY
Fairlield

NEW YORK
Fairport
Fishkill ..
Hauppauge

NORTH CAROLINA
Raleigh ..

OHIO

(612)932-1500

(314)275-7380

(201)808-2400

(716)425-4000
(914)896-0511

.... (516)361-7000

Cleveland ..
Columbus/Worthington
Dayton

(919)870-4355

(216)349-3100
(614)431-6492
(513)438-6800

OKLAHOMA
Tulsa

OREGON
Portland

PENNSYLVANIA

(918)459-4565

... (503)641-3681

Colmar (215)997-1020
Philadelphia/Horsham (215)957-4100

TENNESSEE
Knoxville (423)584-4841

TEXAS
Austin
Houston ..
Plano

.. (512)502-2100
. (713)251-0006

(214)516-5100
VIRGINIA

Richmond ...
UTAH

CSI Inc ...
WASHINGTON

Bellevue
Seattle Access .

WISCONSIN
Milwaukee/Brookfield

(804)285-2100

(801)572-4010

(206)454-4160
(206)622-9960

(414)792-0122

Field Applications Engineering Available
Through All Sales Offices

CANADA

BRITISH COLUMBIA
Vancouver

ONTARIO
Ottawa .
Toronto .

QUEBEC
Montreal.

INTERNATIONAL

AUSTRALIA
Melbourne ..
Sydney ..

BRAZIL
Sao Paulo

CHINA
Beijing
Guangzhou
Shanghai
Tianjin

DENMARK
Denmark ...

FINLAND
Helsinki
car phone .

FRANCE
Paris

GERMANY
Langenhagen/Hanover ..
Munich ..
Nuremberg
Sindettingen
Wiesbaden

HONGKONG
Kwai Fong.
Tai Po.

INDIA
Bangalore

IS RAEL

(604)293-7650

(613)226-3491
(416)497-8181

(514)333-3300

. (61-3)98870711

. (61-2)29661071

55(11)815-4200

86-10-6437222
86-20-7537888
86-21-3747668
86-22'"'5325072

. .. (45) 43488393

... 358-Q-351 61191
358(49)211501

. . 33134 635900

49(511)786880
.. 49 89 92103-0

.... 49 911 96-3190

.. .. 49 7031 79 710
... 49 611 973050

852-2-610-6888
. . . 852-2-666-8333

91-60-5598615

Herzlia
ITALY

...... 972-9-590222

Milan 39(2)82201
JAPAN

Kyusyu ..
Gotanda
Nagoya .. .
Osaka
Sendai
Takamatsu
Tokyo

KOREA
Pusan .. .
Seoul

MALAYSIA
Penang ...

MEXICO
Mexico City
Guadalajara
Marketing ..
Customer Service

NETHERLANDS
Best

PHILIPPINES
Manila.

PUERTO RICO
San Juan

SINGAPORE ..
SPAIN

Madrid
or

SWEDEN
Solna

SWITZERLAND
Geneva .. .
Zurich

TAIWAN
Taipei ...

THAILAND
Bangkok

UNITED KINGDOM
Aylesbury .

81-92-725-7583
81-3-5487-6311
81-52-232-3500

. . 81-6-305-1801
81-22-268-4333
81-678-37-9972
81-3-3440-3311

. 82(51)4635-035
82(2)554-5118

60(4)228-2514

52(5)282-0230
52(36)21-8977
52(36)21-2023

. 52(36)669-9160

(31)4998 61211

.. (63)2 822-0625

(809)282-2300
(65)4818188

34(1)457-6204
34(1)457-8254

. . 46(8)734-8800

41(22)7991111
41(1)730-4074

886(2)717-7089

. . 66(2)254-4910

. 44 1 (296)395252

FULL LINE REPRESENTATIVES
CALIFORNIA, Loomis

Galena Technology Group (916)652-0268
NEVADA, Reno

Galena Tech. Group (702)746-0642
NEW MEXICO, Albuquerque

S&S Technologies, Inc (602)414-1100
UTAH, Salt Lake City

Utah Comp. Sales. Inc. (801)561-5099
WASHINGTON, Spokane

Doug Kenley . (509)924-2322

HYBRID/MCM COMPONENT SUPPLIERS
Chip Supply (407)298-7100
Elmo Semiconductor (818)768-7400
Minco Technology Labs Inc (512)834-2022
Semi Dice Inc (310)594-4631

:=:=:=:=:=:=:=:=:=:=:=:=:=:=:==M=O=TO=R=O=L=A=M=P=A=D=A=~=A=-==D=L2=0=1=R=E=V=2:=:=:=:=:=:=:=:=:=:=:=:==~
!HJ

3PHX32225-4 Printed in USA 8/97 BANTA ISG S/F MOTO 51034 20,000 LITLOGIC

®MOTOROLA

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 303-67!>-2140or1-8CJ0-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, S1rategic Planning Office, 4-<32-1,
Nishi-Gotanda, Shinagawa--l<u, Tokyo 141 , Japan. 81-3--5487-8488

Mfax' ": RMFAXO @email.sps.mot.com - TOUCHTONE 602-244-<>609 ASIA/PACIAC: Motorola Semicondl.dors H.K. Ltd.; 88 Tai Ping Industrial Palk,
-US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: http://motorola.com/sps

DL201/D

..::

