
MOTOROLA

DL156/D REV 1

Fast Static RAM BiCMOS, CMOS, and Module Data

DATA CLASSIFICATION

Product Preview

This heading on a data sheet indicates that the device is in the formative stages or in design (under development). The disclaimer at the bottom of the first page reads: "This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice."

Advance Information

This heading on a data sheet indicates that the device is in sampling, preproduction, or first production stages. The disclaimer at the bottom of the first page reads: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

Fully Released

A fully released data sheet contains neither a classification heading nor a disclaimer at the bottom of the first page. This document contains information on a product in full production. Guaranteed limits will not be changed without written notice to your local Motorola Semiconductor Sales Office.

BurstRAM, DSPRAM, and ParityRAM are trademarks of Motorola, Inc. SPARC is a registered trademark of SPARC International, Inc. i486 is a trademark of Intel Corp.

Fast Static RAM BiCMOS, CMOS, and Module Data

Motorola offers a broad range of fast SRAMs for virtually any digital data processing system application. This data book contains complete specifications for individual FSRAM circuits in data sheet form, as well as an explanation of Motorola's reliability and quality program and an applications section.

For information on Dynamic RAM devices, please refer to DL155/D. For information on Military Memory devices, please refer to DL144/D.

New Motorola memories are being introduced continually. For the latest releases, additional technical information, and pricing, please contact your nearest authorized Motorola distributor or Motorola Sales Office. A complete listing of distributors and sales offices is included at the back of this book.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 1993 Previous Edition © 1992 "All Rights Reserved"

Printed in U.S.A.

MOTOROLA FAST SRAM DATA

TABLE OF CONTENTS

ALPHANUMERIC IN	DEX		viii
CHAPTER 1 — SELE	CTOR GUIDE A	AND CROSS REFERENCE	
CHAPTER 2 — BICM	OS STATIC RA	Ms	
MCM6705A	32K x 9	10/12 ns, evolutionary pinout	2-3
MCM6706A	32K x 8	8/10/12 ns, use for new quals and designs, evolutionary pinout	2-9
MCM6706R	32K x 8	6/7/8 ns, use for new guals and designs, revolutionary pinout	2-15
MCM6708A/6709A	64K x 4	8/10/12 ns, use for new guals and designs	
MCM6709R	64K x 4	6/7/8 ns, revolutionary pinout, output enable	2-27
MCM6726	128K x 8	10/12/15 ns, revolutionary pinout	2-33
MCM6726A	128K x 8	8/10/12/15 ns, revolutionary pinout	2-39
MCM6728	256K x 4	10/12/15 ns, revolutionary pinout	2-45
MCM6728A	256K x 4	8/10/12/15 ns, revolutionary pinout	2-51
MCM6729	256K x 4	10/12/15 ns, output enable, revolutionary pinout	2-57
MCM6729A	256K x 4	8/10/12/15 ns, output enable, revolutionary pinout	2-63
MCM101520	4M x 1	10/12/15 ns, 100K ECL compatible at - 5.2 V	2-69
MCM101524	1M x 4/2M x 2	10/12/15 ns, 100K ECL compatible at - 5.2 V	2-74
CHAPTER 3 CMO	S STATIC RAM	S	
MCM6205C	32K x 9	15/17/20/25/35 ns	3-3
MCM6205D	32K x 9	15/20/25 ns	
MCM6206C	32K x 8	15/17/20/25/35 ns	3-15
MCM6206D	32K x 8	12/15/20/25 ns	3-21
MCM62V06D	32K x 8	25/35 ns, first 3.3 V fast SRAM	
MCM6208C	64K x 4	15/20/25/35 ns	3-33
MCM6209C	64K x 4	15/20/25/35 ns, output enable	3-39
MCM6226A	128K x 8	20/25/35/45 ns	3-45
MCM6226B	128K x 8	15/17/20/25/35 ns	3-51
MCM6227A	1M x 1	20/25/35/45 ns, separate I/O	3-58
MCM6227B	1M x 1	15/17/20/25/35 ns	3-64
MCM6229A	256K x 4	20/25/35/45 ns, output enable	3-71
MCM6229B	256K x 4	15/17/20/25/35 ns	3-77
MCM6246	512K x 8	20/25/35 ns	
MCM6249	1M x 4	20/25/35 ns	3-90
MCM6264C	8K x 8	12/15/20/25/35 ns	3-96
MCM6265C	8K x 9	12/15/20/25/35 ns	3-102
MCM6287B	64K x 1	12/15/20/25/35 ns	3-108
MCM6288C	16K x 4	12/15/20/25/35 ns	3-115
MCM62996	16K x 16	12/15/20/25 ns, choice of 5 V or 3.3 V power supplies for output buffers	3-121

TABLE OF CONTENTS (Continued)

CHAPTER 4 — APPLICATION SPECIFIC STATIC RAMs

MCM56824A	8K x 24	20/25/35 ns, DSPRAM for DSP56001 applications
MCM56824AZP	8K x 24	20/25/35 ns, OMPAC version of DSPRAM for DSP56000 4-10
MCM62110	32K x 9	15/17/20 ns, dual I/Os for 88110 and others 4-18
MCM62X308	8K x 8	synchronous line buffer 4-28
MCM62Y308	8K x 8	synchronous line buffer 4-49
MCM62T316	8K x 16	12 ns synchronous cache tag with comparators
MCM62486A	32K x 9	11/12/14/19/24 ns, i486 synchronous BurstRAM cache 4-67
MCM62486B	32K x 9	11/12/14/19/24 ns 4-76
MCM62940A	32K x 9	11/12/14/19/24 ns, 68040 synchronous BurstRAM cache 4-85
MCM62940B	32K x 9	11/12/14/19/24 ns 4-93
MCM62963A	4K x 10	30 ns, output registers 4-101
MCM62973A	4K x 12	18/20 ns, output registers 4-106
MCM62980	64K x 4	15/20 ns, registered address 4-111
MCM62981	64K x 4	15/20 ns, ParityRAM, synchronous, registered address
MCM62990A	16K x 16	12/15/20/25 ns, designed for advanced RISC-CISC applications 4-123
MCM62995A	16K x 16	12/15/20/25 ns, DSP96000 and MIPS R3000 applications
MCM67A518	32K x 18	12/15/20 ns, asynchronous, latched address 4-142
MCM67B518	32K x 18	9/12/18 ns, i486/Pentium BurstRAM
MCM67C518	32K x 18	7/9 ns, pipelined i486/Pentium BurstRAM 4-162
MCM67H518	32K x 18	9/12/18 ns, i486/Pentium BurstRAM, supports address pipelining 4-171
MCM67J518	32K x 18	7/9 ns, pipelined i486/Pentium BurstRAM, supports address pipelining 4-180
MCM67M518	32K x 18	9/11/14/19 ns. 68040/PowerPC BurstRAM
MCM67W518	32K x 18	12/15/20 ns, asynchronous with byte enable 4-197
MCM67A618	64K x 18	12/15/20 ns, asynchronous, latched address 4-207
MCM67B618	64K x 18	11/14/19 ns, i486/Pentium BurstRAM
MCM67C618	64K x 18	9 ns, pipelined i486/Pentium BurstRAM 4-227
MCM67H618	64K x 18	9/12/18 ns, i486/Pentium BurstRAM, supports address pipelining 4-236
MCM67J618	64K x 18	7/9 ns, pipelined i486/Pentium BurstRAM, supports address pipelining 4-245
MCM67M618	64K x 18	11/14/19 ns. 68040/PowerPC BurstRAM 4-254
MCM67W618	64K x 18	12/15/20 ns, asynchronous with byte enable 4-262
MCM67D709	128K x 9	16/20 ns, dual I/O or separate I/O
MCM67Q709	128K x 9	10/12 ns. separate I/O
MCM67F804	256K x 4	12/15 ns, secondary cache RISC, 3.3 V output levels
MCM67P804	256K x 4	10/12 ns, secondary cache RISC, 3.3 V output levels
MCM67Q804	256K x 4	10/12 ns, secondary cache RISC, 3.3 V output levels
	LUUINA	

CHAPTER 5 — FAST STATIC RAM MODULES

MCM32A32	128KB	cache module with tag for 486 processor	5-3
MCM32A64	256KB	cache module with tag for 486 processor	
MCM32AB32	128KB	cache module with tag, valid, dirty for 486 processor	5-12
MCM32AB64	256KB	cache module with tag, valid, dirty for 486 processor	5-12
MCM32AB128	512KB	cache module with tag, valid, dirty for 486 processor	5-12
MCM32128	128K x 32	20/25/35 ns, JEDEC standard module	5-15
MCM32257	256K x 32	20/25/35 ns, 1M byte module	5-22
MCM3264A	64K x 32	15/20 ns, perfect for 32-bit system, JEDEC standard.	5-29
MCM4464	64K x 44	12/15/17 ns, 256K byte R4000 cache module	5-36
MCM44256	256K x 44	12/15/17 ns, 1M byte R4000 cache module	5-44
MCM72BA32	256K	BurstRAM cache module for Pentium	5-52
MCM72BA64	512KB	BurstRAM cache module for Pentium	5-52
CHAPTER 6 — MIL	ITARY		6-1

CHAPTER 7 — RELIABILITY

Reliability Information	7-3

TABLE OF CONTENTS (Concluded)

CHAPTER 8 — APPLICATIONS

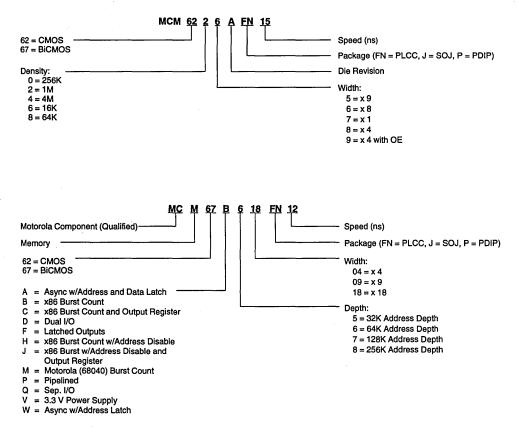
) Curves									
APPLICATIONS	NOTES									
AN971	Avoiding Bus Contention in Fast Access RAM Designs	8-11								
AN1209	The Motorola BurstRAM	8-15								
AN1210	A Protocol Specific Memory for Burstable Fast Cache Memory Applications	8-19								
AN1223	A Zero Wait State Secondary Cache for Intel's Pentium™	8-25								
AR354	Novel Overmolded Pad-Array Carrier May Obsolete Plastic Quad Flat Packs	8-33								
Thermal Performance of FSRAM Packages 8 APPLICATIONS NOTES 8 AN971 Avoiding Bus Contention in Fast Access RAM Designs 8- AN1209 The Motorola BurstRAM 8- AN1210 A Protocol Specific Memory for Burstable Fast Cache Memory Applications 8- AN1223 A Zero Wait State Secondary Cache for Intel's Pentium™ 8- AR354 Novel Overmolded Pad-Array Carrier May Obsolete Plastic Quad Flat Packs 8- CHAPTER 9 — MECHANICAL 8- Case Outlines 8-										
Case Outlines		9-3								
TRMEM		9-13								

SALES OFFICES

ALPHANUMERIC INDEX

Device	Org	Access Time (ns)	Comments	Page
MCM32A32	128KB	15/20	Cache module with tag for 486 processor	5-3
MCM32A64	256KB	15/20	Cache module with tag for 486 processor	5-3
MCM32AB32	128KB	33/50 MHz	Cache module with tag, valid, dirty for 486 processor	5-12
MCM32AB64	256KB	33/50 MHz	Cache module with tag, valid, dirty for 486 processor	5-12
MCM32AB128	512KB	33/50 MHz	Cache module with tag, valid, dirty for 486 processor	5-12
MCM3264A	64K x 32	15/20	Perfect for 32-bit system; JEDEC standard	5-29
MCM4464	64K x 44	12/15/17	256K byte R4000 cache module	5-36
MCM6205C	32K x 9	15/17/20/25/35		3-3
MCM6205D	32K x 9	15/20/25		3-9
MCM6206C	32K x 8	15/17/20/25/35		3-15
MCM6206D	32K x 8	12/15/20/25		3-21
MCM62V06D	32K x 8	25/35	First 3.3 V fast SRAM	3-27
MCM6208C	64K x 4	15/20/25/35		3-33
MCM6209C	64K x 4	15/20/25/35	Output enable	3-39
MCM6226A	128K x 8	20/25/35/45		3-45
MCM6226B	128K x 8	15/17/20/25/35		3-51
MCM6227A	1M x 1	20/25/35/45	Separate I/O	3-58
MCM6227B	1M x 1	15/17/20/25/35		3-64
MCM6229A	256K x 4	20/25/35/45	Output enable	3-71
MCM6229B	256K x 4	15/17/20/25/35		3-77
MCM6246	512K x 8	20/25/35		3-84
MCM6249	1M x 4	20/25/35		3-90
MCM6264C	8K x 8	12/15/20/25/35		3-96
MCM6265C	8K x 9	12/15/20/25/35		3-102
MCM6287B	64K x 1	12/15/20/25/35		3-108
MCM6288C	16K x 4	12/15/20/25/35		3-115
MCM6705A	32K x 9	10/12	Evolutionary pinout	2-3
MCM6706A	32K x 8	8/10/12	Use for new quals and designs; evolutionary pinout	2-9
MCM6706R	32K x 8	6/7/8	Use for new quals and designs; revolutionary pinout	2-15
MCM6708A	64K x 4	8/10/12	Use for new quals and designs	2-21
MCM6709A	64K x 4	8/10/12	Use for new quals and designs	2-21
MCM6709R	64K x 4	6/7/8	Revolutionary pinout; output enable	2-27
MCM6726	128K x 8	10/12/15	Revolutionary pinout	2-33
MCM6726A	128K x 8	8/10/12/15	Revolutionary pinout	2-39
MCM6728	256K x 4	10/12/15	Revolutionary pinout	2-45
MCM6728A	256K x 4	8/10/12/15	Revolutionary pinout	2-51
MCM6729	256K x 4	10/12/15	Output enable, revolutionary pinout	2-57
MCM6729A	256K x 4	8/10/12/15	Output enable, revolutionary pinout	2-63
MCM72BA32	256KB		BurstRAM cache module for Pentium	5-52
MCM72BA64	512KB		BurstRAM cache module for Pentium	5-52
MCM32128	128K x 32	20/25/35	JEDEC standard module	5-15
MCM32257	256K x 32	20/25/35	1M byte module	5-22
MCM44256	256K x 44	12/15/17	1M byte R4000 cache module	5-44

Device	Org	Access Time (ns)	Comments	Page
MCM56824A	8K x 24	20/25/35	DSPRAM for DSP56001 applications	4-3
MCM56824AZP	8K x 24	20/25/35	OMPAC version of DSPRAM for DSP560010	4-10
MCM62110	32K x 9 15/17/20		Dual I/Os for 88110 and others	4-18
MCM62X308 8K x 8 S			Synchronous line buffer	4-28
MCM62Y308	8K x 8		Synchronous line buffer	4-49
MCM62T316	T316 8K x 16 12 5		Synchronous Cache Tag with Comparators	4-65
MCM62486A	32K x 9	11/12/14/19/24	i486 synchronous BurstRAM cache	4-67
MCM62486B	32K x 9	11/12/14/19/24	i486 synchronous BurstRAM cache	4-76
MCM62940A	32K x 9	11/12/14/19/24	68040 synchronous BurstRAM cache	4-85
MCM62940B	32K x 9	11/12/14/19/24	68040 synchronous BurstRAM cache	4-93
MCM62963A	4K x 10	30	Synchronous, output registers	4-101
MCM62973A	4K x 12	18/20	Synchronous, output registers	4-106
MCM62980	64K x 4	15/20	Synchronous, registered address	4-111
MCM62981	64K x 4	15/20	ParityRAM, synchronous, registered address	4-117
MCM62990A	16K x 16	12/15/20/25	Designed for advanced RISC-CISC applications	4-123
MCM62995A	16K x 16	12/15/20/25	DSP96000 and MIPS R3000 applications	4-130
MCM62996	16K x 16	12/15/20/25	Choice of 5 V or 3.3 V power supplies for output buffers	3-121
MCM67A518	32K x 18	12/15/20	Asynchronous, latched data	4-142
MCM67B518	32K x 18	9/12/18	i486/Pentium BurstRAM	4-153
MCM67C518	32K x 18	7/9	Pipelined i486/Pentium BurstRAM	4-162
MCM67H518	32K x 18	9/12/18	i486/Pentium BurstRAM, supports address pipelining	4-171
MCM67J518	32K x 18	7/9	Pipelined i486/Pentium BurstRAM, supports address pipelining	4-180
MCM67M518	32K x 18	9/11/14/19	68040/PowerPC BurstRAM	4-189
MCM67W518	32K x 18	12/15/20	Asynchronous with byte enable	4-197
MCM67A618	64K x 18	12/15/20	Asynchronous, latched address	4-207
MCM67B618	64K x 18	11/14/19	i486/Pentium BurstRAM	4-218
MCM67C618	64K x 18	9	Pipelined i486/Pentium BurstRAM	4-227
MCM67H618	64K x 18	9/12/18	i486/Pentium BurstRAM, supports address pipelining	4-236
MCM67J618	64K x 18	7/9	Pipelined i486/Pentium BurstRAM, supports address pipelining	4-245
MCM67M618	64K x 18	11/14/19	68040/PowerPC BurstRAM	4-254
MCM67W618	64K x 18	12/15/20	Asynchronous with byte enable	4-262
MCM67D709	128K x 9	16/20	Dual I/O or separate I/O	4-272
MCM67Q709	128K x 9	10/12	Separate I/O	4-281
MCM67F804	256K x 4	12/15	Synchronous, secondary cache RISC, 3.3 V output levels	4-291
MCM67P804	256K x 4	10/12	Synchronous, secondary cache RISC, 3.3 V output levels	4-297
MCM67Q804	256K x 4	10/12	Secondary cache RISC, 3.3 V output	4-302
MCM101520	4M x 1	10/12/15	100K ECL compatible at - 5.2 V	2-69
MCM101524	1M x 4/ 2M x 2	10/12/15	100K ECL compatible at - 5.2 V	2-74


ALPHANUMERIC INDEX x

Selector Guide and Cross Reference

; ;

MOTOROLA FAST SRAM DATA

DEVICE/PART NUMBER DESIGNATORS

NOTE: There are some exceptions to these device numbering schemes, i.e., MCM62990A is a CMOS 16K x 16 and NOT a 512K x 90 device.

≤	
Ō	
–	
O.	
Ť	
õ	
ř	
≻	
-	
×.	
Ś	
-	
S	
Ť	
×	
2	
-	
õ	
2	
5	
-	

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
8M	256K x 36	12	_	Motorola	MCM44256	80		SIMM			[0	٥
		15		Motorola	MCM44256	80		SIMM					\$
		17	_	Motorola	MCM44256	80		SIMM				o	0
	256K x 32	20	_	Motorola	MCM32257	64		ZIP				0	
		20	-	AT&T	ATTM32257								
		20	-	Micron	MT8S25632								
		20	1	IDT	IDT7MP4045					· · · · · · · · · · · · · · · · · · ·			
		25	_	Motorola	MCM32257	64		ZIP				<u>ہ</u>	
		25	—	AT&T	ATTM32257							<u> </u>	
		25	-	Micron	MT8S25632								
		25	_	IDT	IDT7MP4045								
		35	_	Motorola	MCM32257	64		ZIP	1			0	
		35	_	AT&T	ATTM32257	1							
		35	_	Micron	MT8S25632								
4M	64K x 72	_	15	Motorola	MCM72BA64	136		SIMM		0		0	0
		_	16.6	Motorola	MCM72BA64	136		SIMM		0		<u>ہ</u>	٥
	128K x 32		20	Motorola	MCM32AB128	112		SIMM	1		0		0
			30	Motorola	MCM32AB128	112		SIMM			0	0	0
		20	_	Motorola	MCM32128	64		ZIP, SIMM				0	
		20	_	AT&T	ATTM32128								
		20	-	Micron	MT4S12832				1				
		25	_	Motorola	MCM32128	64		ZIP, SIMM				0	
		25	—	AT&T	ATTM32128	1							
		25	_	Micron	MT4S12832	1							
		35		Motorola	MCM32128	64		ZIP, SIMM	1			0	
		35	_	AT&T	ATTM32128								
		35	_	Micron	MT4S12832								
	512K x 8	25		Motorola	MCM6246	36	400	SOJ	0				
		25	_	Micron	MT5C512K8A1	32	400	SOJ		_			
		25		Micron	MT5C512K8B2	36	400	SOJ, TSOP	0				
		25		Micron	MT5LC512K8C3	32	400	SOJ					
		25	_	Micron	MT5LC512K8D4	36	400	SOJ, TSOP	0				
		25	_	NEC	µPD434008	32/36	400	SOJ	0				
		30	_	Motorola	MCM6246	36	400	SOJ	0				
		30	-	Micron	MT5C512K8A1	32	400	soj					

SELECTOR GUIDE/CROSS REFERENCE

SELECTOR GUIDE 1-3

ł

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		30		Micron	MT5C512K8B2	36	400	SOJ, TSOP	0				
		30	_	Micron	MT5LC512K8C3	32	400	SOJ	<u> </u>				
		30	_	Micron	MT5LC512K8D4	36	400	SOJ, TSOP	0				
		35	_	Motorola	MCM6246	36	400	SOJ	0				
		35	· _	Micron	MT5C512K8A1	32	400	SOJ					_
		35		Micron	MT5C512K8B2	36	400	SOJ, TSOP	0				
		35	—	Micron	MT5LC512K8C3	32	400	SOJ					
		35	_	Micron	MT5LC512K8D4	36	400	SOJ, TSOP	0				
ľ	2M x 2	10	-	Motorola	MCM101524	36	400	SOJ, SOP	0				ECL
		12	—	Motorola	MCM101524	36	400	SOJ, SOP	0				ECL
		15	—	Fujitsu	MBM100C524	32/36	*	SOJ, TSOP	0				
		15	—	Fujitsu	MBM101C524	32/36	*	SOJ, TSOP	0				
		15	—	Fujitsu	MBM10C524	32/36	•	SOJ, TSOP	0			1	-
		15	-	Motorola	MCM101524	36	400	SOJ, SOP	0				ECL
Ĩ	1M x 4	20	—	Motorola	MCM6249	32	400	SOJ	0				
		20	_	Micron	MT5C1M4A1	32	400	SOJ	1				-
		20	-	Micron	MT5C1M4B2	32	400	SOJ, TSOP	0				
		20	—	Micron	MT5LC1M4C3	32	400	SOJ					-
		20	—	Micron	MT5LC1M4D4	32	400	SOJ, TSOP	• •				
		20	_	NEC	μPD434004	32/36	400	SOJ	0	_			
		25	-	Hitachi	HM624100	32	400	SOJ, TSOP II	0				
		25	—	Fujitsu	MB82B206	36	400	SOJ	0				
		25	_	Motorola	MCM6249	32	400	SOJ	0				
		25		Micron	MT5C1M4A1	32	400	SOJ					
		25	-	Micron	MT5C1M4B2	32	400	SOJ, TSOP	0				
		25	-	Micron	MT5LC1M4C3	32	400	SOJ			_		
		25	_	Micron	MT5LC1M4D4	32	400	SOJ, TSOP	0				
		25	—	NEC	μPD434004	32/36	400	SOJ	0				
		30	-	Motorola	MCM6249	32	400	SOJ	0				
		30	-	Hitachi	HM624100	32	400	SOJ, TSOP II	0				
		35	_	Motorola	MCM6249	32	400	SOJ	0				
		35	—	Hitachi	HM624100	32	400		0				
		35	-	Fujitsu	MB82B206	36	400	SOJ	0				
		35	_	Micron	MT5C1M4A1	32	400	SOJ					
		35	_	Micron	MT5C1M4B2	32	400	SOJ, TSOP	0				

SELECTOR GUIDE 1-4

<	
ō	ļ
ㅋ	
0	
עב	Ì
0	
	ļ
2	
- "	Í
ώ	
S	ļ
Ω,	
≥	
\leq	
σ	ĺ
Đ,	1
H	
-	

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		35		Micron	MT5LC1M4C3	32	400	SOJ					
		35	-	Micron	MT5LC1M4D4	32	400	SOJ, TSOP	0				
ľ	4M x 1	10	—	Motorola	MCM101520	36	400	SOJ, SOP, TAB	0				ECL
		12	_	Motorola	MCM101520	36	400	SOJ, SOP, TAB	0			[ECL
		15	—	Motorola	MCM101520	36	400	SOJ, SOP, TAB	0				ECL
		15	-	Fujitsu	MBM100C520	32/36		SOJ, TSOP	0				
		15		Fujitsu	MBM101C520	32/36		SOJ, TSOP	0				
		15		Fujitsu	MBM10C520	32/36		SOJ, TSOP	<u> </u>				
2M	32K x 72		15	Motorola	MCM72BA32	1		SIMM		0		<u>ہ</u>	0
	1	-	16.6	Motorola	MCM72BA32			SIMM		0		0	0
ĺ	64K x 44	12	-	Motorola	MCM4464	80		SIMM					
		15	—	Motorola	MCM4464	80		SIMM					
		17		Motorola	MCM4464	80		SIMM	· · .			0	
		17-5	_	Motorola	MCM4464SG	80		SIMM					
2M	64K x 32	-	20	Motorola	MCM32AB64	112		SIMM			٥		0
		_	30	Motorola	MCM32AB64	112		SIMM			0	0	<u> </u>
		15	-	Motorola	MCM3264A	64		ZIP				\$	
		15	-	Micron	MT8S6432Z						_		
1		15	—	IDT	IDT7MP4036B				•				
		20	—	Motorola	MCM3264A	64		ZIP				\$	
		20	-	AT&T	ATTM3264								
		20	—	Micron	MT8S6432Z								
		20	—	IDT	IDT7MP4036B								
		15	-	Motorola	MCM32A64	128		SIMM				<u>ہ</u>	
1		20		Motorola	MCM32A64	128		SIMM				0	
1M	32K x 32	—	20	Motorola	MCM32AB32	112		SIMM			0		0
			30	Motorola	MCM32AB32	112		SIMM			0		٥
ľ	64K x 18	12	—	Motorola	MCM67A618	52		PLCC			<u>ہ</u>	0	
		15		Motorola	MCM67A618	52		PLCC			0	0	
		20	-	Motorola	MCM67A618	52		PLCC			0		
		9	15	Motorola	MCM67B618	52		PLCC		٥		<u>ہ</u>	٥
		10	12.5	Cypress	CY7C1031								
		9	15	IC Works	ICW73B596	1							
		12	20	Motorola	MCM67B618	52		PLCC	1	0		<u>ہ</u>	0
		12	15	Cypress	CY7C1031	<u> </u>				-		[-

SELECTOR GUIDE 1-5

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
	····	12	20	IC Works	ICW73B596		(
		18	25	Motorola	MCM67B618	52		PLCC		0		•	0
		14	20	Cypress	CY7C1031								
		7	12.5	Motorola	MCM67C618	52		PLCC		<u>ہ</u>		0	
		9	15	Motorola	MCM67C618	52		PLCC		<u>ہ</u>		0	0
		9	15	Motorola	MCM67H618	52		PLCC		\$		٥	٥
		12	20	Motorola	MCM67H618	52		PLCC				0	0
		18	25	Motorola	MCM67H618	52		PLCC		<u>ہ</u>		0	0
		7	12.5	Motorola	MCM67J618	52		PLCC		0		0	<u>ہ</u>
		9	15	Motorola	MCM67J618	52		PLCC		0		0	0
1		9	12.5	Motorola	MCM67M618	52		PLCC		0		0	0
		11	15	Motorola	MCM67M618	52 -		PLCC		<u>ہ</u>		0	0
		10	15	Cypress	CY7C1032								
		14	20	Motorola	MCM67M618	52		PLCC		\$		0	٥
		19	25	Motorola	MCM67M618	52		PLCC		\$		0	0
		12		Motorola	MCM67W618	52		PLCC			0		
		15	-	Motorola	MCM67W618	52		PLCC			0		
		20	_	Motorola	MCM67W618	52		PLCC			0		
		20	-	Sharp	LH521028	52							
. 1	128K x 8	20	_	Motorola	MCM6226A	32	400	SOJ				0	
		20	_	AT&T	ATT7C109J								
		20	-	IDT	IDT711024S								
		20		Micron	MT5C1008DJ				1				
		20	_	NEC	μPD431008								
		20	-	Sharp	LH521007K								
		20		Sony	CXK581120J								
		20	-	Samsung	KM681001								
		25	_	Motorola	MCM6226A	32	400	SOJ				0	
		25	-	AT&T	ATT7C109J								
		25	_	Cypress	CY7C109								
		25	-	IDT	IDT711024S				1				
		25	-	Micron	MT5C1008DJ								
		25	-	Samsung	KM681001								
		25	-	Sharp	LH521007K								
		35		Motorola	MCM6226A	32	400	SOJ				0	

SELECTOR GUIDE

MOTOROLA FAST SRAM DATA

≤	
ō	
Ē	
<u>o</u>	
2	
Ч	
≻	ļ
Ξ.	i
≥	
പ്പ	
~	
ч Ч	
5	
ź	
Ē	
¥	
Э	
م	

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		35	_	Cypress	CY7C109	1							
		35		Micron	MT5C1008DJ		<u>├</u>		<u> </u>				
		35		Samsung	KM681001								
		35		Sharp	LH521007K								
		35	-	Sony	CXK581020SJ								
		45		Motorola	MCM6226A	32	400	SOJ				0	
		45		Cypress	CY7C109								
		45	-	Micron	MT5C1008DJ								
		45	_	Sony	CXK581020SJ								
		15	_	Motorola	MCM6226B	32	300/400	SOJ				0	
1		15		AT&T	ATT7CC108		11						
		15	—	Quality	QS812880							-	
1		17		Motorola	MCM6226B	32	300/400	soj	<u> </u>			0	
		20	-	Motorola	MCM6226B	32	300/400	SOJ				0	
		20	_	Quality	QS812880							-	
		25	_	Motorola	MCM6226B	32	300/400	SOJ				0	
		25		Quality	QS812880								
		35		Motorola	MCM6226B	32	300/400	SOJ			·	<u>ہ</u>	
ļ		8	-	Motorola	MCM6726A	32	400	soj	0			0	
		10		Motorola	MCM6726	32	400	soj	0			0	
		10	-	Motorola	MCM6726A	32	400	SOJ	0			0	
		10	-	IDT	IDT71B124								
		10	-	Samsung	KM68B1002		11						
		12	-	Motorola	MCM6726	32	400	SOJ	0			<u>ہ</u>	
		12	-	Motorola	MCM6726A	32	400	SOJ	0			0	
		12	—	IDT	IDT71B124								
		15	-	Motorola	MCM6726	32	400	SOJ	0			٥	
		15		Motorola	MCM6726A	32	400	SOJ	0			0	
		15	—	IDT	IDT71B124			·					
	128K x 9	16	_	Motorola	MCM67D709	52		PLCC	0	٥			
		20	—	Motorola	MCM67D709	52		PLCC	0	0		0	
		5	10	Motorola	MCM67Q709				0	0		[
		6	12	Motorola	MCM67Q709				0	0		[
	256K x 4	20		Motorola	MCM6229A	28	400	SOJ				0	
1		20		AT&T	ATT7C106J		1				· · · · · ·		

1

SELECTOR GUIDE 1-7

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		20		Hitachi	HM624256AJ	1							
		20	·	IDT	IDT71028S	1				_			
		20	·	Micron	MT5C1008DJ				-			[_
		20		Samsung	KM641001	-						<u> </u>	
		20		Sharp	LH521002				1				
		20	_	NEC	μ431004					<u> </u>			
		25	_	Motorola	MCM6229A	28	400	SOJ				\$	
		25	-	AT&T	ATT7C106J	1							
		25	_	Cypress	CY7C106								
		25	_	Fujitsu	MB82B005								
		25		IDT	IDT71028S	1							
		25		Micron	MT5C1005DJ	1							
		25	_	Mitsubishi	M5M51004P	1							
		25		NEC	μ431004								
		25	-	Samsung	KM641001								
		25	-	Sharp	LH521002K								
		35	_	Motorola	MCM6229A	28	400	SOJ				<u>ہ</u>	
		35		Cypress	CY7C106								
		35	_	Fujitsu	MB82B005								
- 1		35		Micron	MT5C1005DJ								
		35		Mitsubishi	M5M51004P								
		35	_	NEC	μ431004								
1		35		Samsung	KM641001	1							
1		35	_	Sharp	LH521002K								
		45	_	Motorola	MCM6229A	28	400	SOJ				<u> </u>	
[45	_	Cypress	CY7C106							[
		45		Micron	MT5C1005DJ				1				
		45	- 1	Mitsubishi	M5M51004P								
		15		Motorola	MCM6229B	28	300/400	SOJ				<u> </u>	
		17		Motorola	MCM6229B	28	300/400	SOJ				<u>ہ</u>	
		20		Motorola	MCM6229B	28	300/400	SOJ				0	
		25	-	Motorola	MCM6229B	28	300/400	SOJ				0	
		35		Motorola	MCM6229B	28	300/400	SOJ				0	
		8		Motorola	MCM6728A	28	400	SOJ	0				
		10	_	Motorola	MCM6728	28	400	SOJ					

SELECTOR GUIDE 1-8

2	
3	
9	
~	
2	
ų,	
0	
Ē	
≻	1
Т	
×	
ίΩ	
	ì
~	
4	ļ
J.	
≥	Ì
Z	
Ξ.	
R	
₽.	ļ
	I
-	

													·
Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		10	_	Motorola	MCM6728A	28	400	SOJ	0				
		10	-	Samsung	KM64B1002	1							
		12	_	Motorola	MCM6728	28	400	SOJ	0				
		12	_	Motorola	MCM6728A	28	400	SOJ	0				
		12		Samsung	KM64B1002								
		12	_	Toshiba	TC55B4256P								
		15	_	Motorola	MCM6728	28	400	SOJ	0				
		15	<u> </u>	Motorola	MCM6728A	28	400	SOJ	0				
		15		IDT	IDT71BB028								
		15	-	Toshiba	TC55B4256P								
		8	_	Motorola	MCM6729A	32	400	SOJ	0			<u>ہ</u>	
		10	_	Motorola	MCM6729	32	400	SOJ	0			0	
		10	_	Motorola	MCM6729A	32	400	SOJ	0			0	
		10	_	Samsung	KM64B1003						1		
		12	_	Motorola	MCM6729	32	400	SOJ	0		-	<u>ہ</u>	
		12	_	Motorola	MCM6729A	32	400	SOJ	0			\$	
		12	-	Samsung	KM64B1003								
		12	_	Toshiba	TC55B4257P								
		15		Motorola	MCM6729	32	400	SOJ	0		_	<u>ہ</u>	
		15	_	Motorola	MCM6729A	32	400	SOJ	0			<u>ہ</u>	
		15	-	IDT	IDT71B028								
		_	12	Motorola	MCM67F804	32	400	SOJ	0	0	0	<u> </u>	
		_	15	Motorola	MCM67F804	32	400	SOJ	0	0	<u>ہ</u>	0	
		6	10	Motorola	MCM67P804	32	400	SOJ	0	<u>ہ</u>		٥	
		7	12	Motorola	MCM67P804	32	400	SOJ	0	0		0	
		5	10	Motorola	MCM67Q804	36	400	SOJ	0	<u>ہ</u>		<u>ہ</u>	
		6	12	Motorola	MCM67Q804	36	400	SOJ	0	0		<u> </u>	
	1M x 1	20		Motorola	MCM6227A	28	400	SOJ					
		20	-	AT&T	ATT7C107J								
		20	_	Hitachi	HM621100A						_		
		20	—	Micron	MT5C1001DJ								
		20	_	NEC	μ431001								
		20	_	Samsung	KM611001			l					
		25	_	Motorola	MCM6227A	28	400	SOJ					
		25	-	AT&T	ATT7C107J								

SELECTOR GUIDE 1-9

L

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		25	_	Cypress	CY7C107	1				i			
		25		Fujitsu	MB82B001	1							
		25	-	Hitachi	HM621100A								
		25	-	Micron	MT5C1001DJ	1		· · · · · · · · · · · · · · · · · · ·					
		25		NEC	μ431001								
		25	·	Samsung	KM611001 -	<u> </u>							
		35	_	Motorola	MCM6227A	28	400	SOJ					
ĺ		35	-	Cypress	CY7C107				-				
Į		35	_	Fujitsu	MB82B001	1							
1		35	_	Hitachi	HM621100A	1							
		35	_	Micron	MT5C1001DJ								
		35	_	NEC	μ431001	1							
		35	-	Samsung	KM611001								
		45	-	Motorola	MCM6227A	28	400	SOJ					
		45	_	Cypress	CY7C107								
		45	_	Micron	MT5C1001DJ	T							
		15	-	Motorola	MCM6227B	28	300/400	SOJ				· · ·	
ſ		17	_	Motorola	MCM6227B	28	300/400	SOJ					
		20	_	Motorola	MCM6227B	28	300/400	SOJ					
		25	-	Motorola	MCM6227B	28	300/400	SOJ					
		35	-	Motorola	MCM6227B	28	300/400	SOJ					
512K	32K x 18	12		Motorola	MCM67A518	52		PLCC			0	0	
		15	_	Motorola	MCM67A518	52		PLCC			0	0	
		20	_	Motorola	MCM67A518	52		PLCC			<u>ہ</u>	0	
		9	15	Motorola	MCM67B518	52		PLCC		0		0	
		10	12.5	Cypress	CY7C175								
1		9	15	IC Works	ICW73B586								
		12	20	Motorola	MCM67B518	52		PLCC		0		0	
		12	15	Cypress	CY7C175								
		12	20	IC Works	ICW73B586								
		18	25	Motorola	MCM67B518	52		PLCC		0		<u>ہ</u>	<u> </u>
		14	20	Cypress	CY7C175								
		7	12.5	Motorola	MCM67C518	52		PLCC		٥		0	٥
		9	15	Motorola	MCM67C518	52		PLCC		<u> </u>		<u> </u>	\$
		9	15	Motorola	MCM67H518	52		PLCC		0		. 0	0

SELECTOR GUIDE 1-10

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
	··	12	20	Motorola	MCM67H518	52		PLCC	<u> </u>	0		0	0
		18	25	Motorola	MCM67H518	52		PLCC	1	<u>ہ</u>	i	0	0
		7	12.5	Motorola	MCM67J518	52		PLCC		0		0	0
		9	15	Motorola	MCM67J518	52		PLCC	1	0		0	0
		9	12.5	Motorola	MCM67M518	52		PLCC	1	0		0	0
		11	15	Motorola	MCM67M518	52		PLCC	1	<u>ہ</u>		0	0
		14	20	Motorola	MCM67M518	52		PLCC		<u>ہ</u>		0	<u>ہ</u>
		19	25	Motorola	MCM67M518	52		PLCC	1	0		0	0
		12	-	Motorola	MCM67W518	52		PLCC	1		0	<u> </u>	
		15	-	Motorola	MCM67W518	52		PLCC			0		
		20		Motorola	MCM67W518	52		PLCC					
256K	16K x 16	15	-	Motorola	MCM62990A	52		PLCC		0	<u>ہ</u>	0	0
		15	-	Micron	MT58C1616EJ								
		20	-	Motorola	MCM62990A	52		PLCC		<u>ہ</u>	0	0	0
		20	-	Micron	MT58C1616EJ								
		25		Motorola	MCM62990A	52		PLCC		0	0	0	\$
		25	-	Micron	MT58C1616EJ								
		15	-	Motorola	MCM62995A	52		PLCC			0	0	0
		15	_ 1	Micron	MT5C2516EJ								
		20	-	Motorola	MCM62995A	52		PLCC			0	0	<u>ہ</u>
		20	-	Micron	MT5C2516EJ	1							
		25	-	Motorola	MCM62995A	52		PLCC			0	0	0
		25	-	Micron	MT5C2516EJ								
		15		Motorola	MCM62996	52		PLCC				0	
		20	_	Motorola	MCM62996	52		PLCC				\$	
		25	_	Motorola	MCM62996	52		PLCC				<u> </u>	
	32K x 9	15	_	Motorola	MCM6205C	32	300	SOJ				<u> </u>	
		15	-	Motorola	MCM6205D	32	300	SOJ				<u> </u>	
		15	-	Micron	MT5C2889			· · · · · · · · · · · · · · · · · · ·					
		15	-	Mitsubishi	M5M5279								
		15	—	NEC	μ43259								
		15	-	Sony	CXK59288	1							
		17	_	Motorola	MCM6205C	32	300	SOJ				0	
		17	_	Motorola	MCM6205D	32	300	SOJ				0	
		17	_	Micron	MT5C2889								

MOTOROLA FAST SRAM DATA

SELECTOR GUIDE 1-11

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		17		Sony	CXK59288								
		17		Toshiba	TC55329			· · · · · · · · · · · · · · · · · · ·					
		20		Motorola	MCM6205C	32	300	SOJ					
		20		Motorola	MCM6205D	32	300	SOJ				0	
		20		IDT	IDT71259								
		20		Micron	MT5C2889								
		20	-	Mitsubishi	M5M5279								
		20	_	NEC	μ43259								
		20		Sony	CXK59288								
		20	_	Toshiba	TC55329								
		25	_	Motorola	MCM6205C	32	300	SOJ				0	
		25	_	Motorola	MCM6205D	32	300	SOJ				<u>ہ</u>	
		25		Fujitsu	MB8299								
		25	_	IDT	IDT71259			••••••					
		25	_	Micron	MT5C2889								
Í		25	_	Mitsubishi	M5M5279	1							
		25		NEC	μ43259								
1		25		Sony	CXK59288								
		25		Toshiba	TC55329								
		35	—	Motorola	MCM6205C	32	300	SOJ				0	
		35	_	Motorola	MCM6205D	32	300	SOJ				<u>ہ</u>	
		35	- 1	Fujitsu	MB8299								
		35	_	IDT	IDT71259								
		35		Mitsubishi	M5M5279								
		35	_	Toshiba	TC55329								
		10		Motorola	MCM6705A	32	300	SOJ					
		10	_	Mitsubishi	M5M52B79P								
		10	-	IDT	IDT71B259								
Í		10	_	Toshiba	TC55B329P								
		10		Samsung	KM69B257A								
		12]	Motorola	MCM6705A	32	300	SOJ	1				
		12		Mitsubishi	M5M52B79P								
		12		IDT	IDT71B259			· · · · ·					
		12	—	Toshiba	TC55B329P								
		12		Samsung	KM69B257A								

	NOTO:
	NOT OF
2	>

	SEL
	ECTO
	RGU
- <u>-</u>	DE

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		15		Motorola	MCM62110	52		PLCC	+	0	<u>ہ</u>	0	0
1		17	—	Motorola	MCM62110	52		PLCC	1	<u> </u>	0	0	0
l		20		Motorola	MCM62110	52		PLCC	1	0	0	0	0
ł		11	15	Motorola	MCM62486A	44		PLCC		0		0	0
ļ		11	15	Cypress	CY7B173A	1							
		10	15	IC Works	ICW79B586								
		11	15	IDT	IDT71B590S	T							
		12	20	Motorola	MCM62486A	44		PLCC		0		0	0
1		12	20	Cypress	CY7B173A								
ļ		12	20	IC Works	ICW79B586	†	[]		1		[
ĺ		14	20	Motorola	MCM62486A	44		PLCC		0		0	
		19	25	Motorola	MCM62486A	44		PLCC		0		0	\$
		19	25	SGS-Thomson	MK62486Q19				1				
1		24	30	Motorola	MCM62486A	44		PLCC		\$		0	0
		25	30	SGS-Thomson	MK62486Q25								
1		11	15	Motorola	MCM62486B	44		PLCC				0	0
		11	15	Cypress	CY7B173A								
		10	15	IC Works	ICW79B586	1							
1		11	15	IDT	IDT71B590S								
		12	20	Motorola	MCM62486B	44		PLCC		<u> </u>			<u> </u>
1		12	20	Cypress	CY7B173A	1							
		12	20	IC Works	ICW79B586								
1		14	20	Motorola	MCM62486B	44		PLCC		<u>ہ</u>		0	0
ļ		19	25	Motorola	MCM62486B	44		PLCC					<u> </u>
1		19	25	SGS-Thomson	MK62486Q19								
		24	30	Motorola	MCM62486B	44		PLCC					0
1		25	30	SGS-Thomson	MK62486Q25								
l l		11	15	Motorola	MCM62940A	44		PLCC		<u>ہ</u>		0	0
1		12	20	Motorola	MCM62940A	44		PLCC		<u>ہ</u>			0
		14	20	Motorola	MCM62940A	44		PLCC		<u>ہ</u>		٥	<u>ہ</u>
		19	25	Motorola	MCM62940A	44		PLCC		0		0	\$
		19	25	SGS-Thomson	MK62940Q19								
		24	30	Motorola	MCM62940A	44		PLCC		0		0	0
		25	30	SGS-Thomson	MK62940Q25	1							
l l		11	15	Motorola	MCM62940B	44		PLCC		0		<u>ہ</u>	<u> </u>

1-14	SELECTOR
	GUIDE

Density	Config- uration	Access (ns)	Cycie (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		12	20	Motorola	MCM62940B	44		PLCC		0		٥	\$
		14	2	Motorola	MCM62940B	44		PLCC		0		<u> </u>	<u> </u>
		19	25	Motorola	MCM62940B	44		PLCC		<u>ہ</u>		0	<u>ہ</u>
		19	25	SGS-Thomson	MK62940Q19								
		24	30	Motorola	MCM62940B	44		PLCC		<u>ہ</u>		0	<u>ہ</u>
		25	30	SGS-Thomson	MK62940Q25								
	32K x 8	15	—	Motorola	MCM6206C	28	300	PDIP, SOJ				0	
		15	-	Motorola	MCM6206D	28	300	PDIP, SOJ				0	
		15	_	AT&T	ATT7C199								
		15	—	Hitachi	HM62832								
		15	_	IDT	IDT71256								
		15	_	Micron	MT5C2568								
		15	_	Mitsubishi	M5M5278								[
		15	-	NEC	μ43258A								
		15	_	Paradigm	PDM51256								
		15	-	Quality	QS83280					1			
		15	-	Samsung	KM68257B								[
		15	_	Sharp	LH52258A								
		15		Sony	CXK58258A								
		17	-	Motorola	MCM6206D	28	300	PDIP, SOJ					
		17	-	IDT	IDT71256								
		17	—	Toshiba	TC55328P								
		20		Motorola	MCM6206C	28	300	PDIP, SOJ				<u> </u>	
		20	_	Motorola	MCM6206D	28	300	PDIP, SOJ				0	
		20	_	AT&T	ATT7C199								
		20	_	Hitachi	HM62832				1				[
		20	-	IDT	IDT71256								
		20		Micron	MT5C2568								
		20		Mitsubishi	M5M5278								
		20	-	NEC	µ43258A							_	
		20	-	Paradigm	PDM51256								
		20	-	Performance	P4C1256								
		20	_	Quality	QS83280			· · · · · · · · · · · · · · · · · · ·					
		20	_	Samsung	KM68257B								
		20	_	Sharp	LH52258				1				

	Š
N N	
0 0	5 H D
INAR	

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		20	_	Sony	CXK58258				1				
		20	_	Toshiba	TC55328						<u> </u>		
		25	-	Motorola	MCM6206C	28	300	PDIP, SOJ			<u> </u>	0	
		25	-	Motorola	MCM6206D	28	300	PDIP, SOJ			<u> </u>	 	
		25		AT&T	ATT7C199				1				
		25	_	Cypress	CY7C199								
		25	-	Fujitsu	MB8298								
		25	_	Hitachi	HM62832								
		25	_	IDT	IDT71256								
[25	_	Micron	MT5C2568								
		25	_	Mitsubishi	M5M5278						<u> </u>		
		25		NEC	µ43258								
		25	_	Paradigm	PDM51256				1				
		25		Performance	P4C1256								
		25	-	Quality	QS83280								
		25	_	Samsung	KM68257				1				
		25	_	Sharp	LH52253				1		<u> </u>		
		25	_	Sony	CXK58258								
		25	_	Toshiba	TC55328								
		35	_	Motorola	MCM6206C	28	300	PDIP, SOJ				<u>ہ</u>	
		35		Motorola	MCM6206D	28	300	PDIP, SOJ				o	
		35	_	Cypress	CY7C199								
		35	—	Fujitsu	MB8298						-		
		35	-	IDT	IDT71256				1				
		35	_	Micron	MT5C2568		· ·		1				
		35	-	Mitsubishi	M5M5278P						———		
		35	—	NEC	µ43258								
		35	—	Sharp	LH52258				1				
		35	_	Sony	CXK58258		· · · · ·						
		35	-	Toshiba	TC55328								
		25		Motorola	MCM62V06D	28	300	PDIP, SOJ					
		25		Mitsubishi	M5M5278FP								
		35		Motorola	MCM62V06D	28	300	PDIP, SOJ					
		35	-	Mitsubishi	M5M5278FP		-		1				
		8	_	Motorola	MCM6706A	28	300	SOJ	1			0	1

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		8	_	Samsung	KM68B257A							· · · ·	
		10	_	Motorola	MCM6706A	28	300	SOJ	1			0	
		10	_	Samsung	KM68B257A								
		10	_	Toshiba	TC55B328				-				
		10		Mitsubishi	M5M52B78				1				
		10	-	IDT	IDT71B256								
		10		Hitachi	HM67832								
		12	_	Motorola	MCM6706A	28	300	SOJ				0	
		12		Samsung	KM68B257A	1							
		12	_	Toshiba	TC55B328			·					
		12	_	Mitsubishi	M5M52B78				-				
		12	_	IDT	IDT71B256								
		12	_	Hitachi	HM67832								
		12	_	Cypress	CY7B199								
		6		Motorola	MCM6706R	32	300	SOJ	0			0	
		7		Motorola	MCM6706R	32	300	SOJ	0			0	
		8		Motorola	MCM6706R	32	300	SOJ				0	
		8	_	Mitsubishi	M5M52B88								
	64K x 4	15		Motorola	MCM6208C	24	300	PDIP, SOJ					
		15	-	AT&T	ATT7C194	1							
		15	-	Micron	MT5C2564								
		15	_	Mitsubishi	M5M5258								
		15	_	NEC	μ43254B	1							
		15		Paradigm	PDM41258								
		15	_	Quality	QS86440	1							
		15		Sharp	LH52252								
{		20	_	Motorola	MCM6208C	24	300	PDIP, SOJ	<u> </u>				
		20		AT&T	ATT7C194	1	_						
		20	—	Micron	MT5C2564								
		20	_	Mitsubishi	M5M5258								
		20	_	NEC	μ43254B								
		20	-	Paradigm	PDM41258	1							
		20		Performance	P4C1258								
		20	_	Quality	QS86440	<u> </u>		· · · · · ·					
		20	_	Sharp	LH52252				1				

MOTOROLA FAST SRAM DATA

	S	ł
	SE	ł
		l
	M	l
	요.	l
	Ó	Į
	Я	ł
	D	Į
-	9	ł
<u></u>	6	I
7	m	ł
		I
		1

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		20	-	Toshiba	TC55464				+				-
		25		Motorola	MCM6208C	24	300	PDIP, SOJ	1		<u> </u>	'	
		25		AT&T	ATT7C194	<u> </u>							
		25	_	Cypress	CY7C194	<u> </u>							
Į		25		Fujitsu	MB81C84A				+		<u> </u>		
		25	_	Hitachi	HM6208				+				
		25		Micron	MT5C2564	<u> </u>			<u> </u>			<u> </u>	
		25	_	SGS-Thompson	IMS1820D3								
		25	-	Mitsubishi	M5M5258						<u> </u>		
1		25	-	NEC	μ43254B	<u> </u>					<u>├</u> ────		
		25		Paradigm	PDM41258				+				
		25		Performance	P4C1258	<u> </u>			<u> </u>		<u> </u>	'	
		25	_	Samsung	KM64257A								
		25		Sharp	LH52252				+				
		25		Toshiba	TC55464	<u>†</u>							
		15	_	Motorola	MCM6209C	28	300	PDIP, SOJ	+		<u>├───</u> ─	<u>ہ</u>	
1		15		AT&T	ATT7C196				1		<u>├</u>		
1		15	-	IDT	IDT61298	<u> </u>			<u> </u>				
		15	_	Micron	MT5C2565				1				
		15		Mitsubishi	M5M5259	<u> </u>			+		t		
[15		NEC	μ43253				1				
		15	_	Paradigm	PDM41259				<u> </u>		<u> </u>		
		15		Quality	QS86446	<u> </u>			1		i		
		15	_	Sharp	LH52253	<u> </u>			1		·		
		15		Samsung	KM64258B	1			<u>† </u>		<u> </u>		
		20		Motorola	MCM6209C	28	300	PDIP, SOJ				0	
		20		AT&T	ATT7C196		i				<u> </u>		
l l		20	-	IDT	IDT61298				1				
		20		Micron	MT5C2565	[+	[<u> </u>		
		20		Mitsubishi	M5M5259								
		20	_	NEC	μ43253B	1			1		<u> </u>	1	i
		20	_	Paradigm	PDM41259				1		<u> </u>	t)
1		20		Performance	P4C1298	<u> </u>	· · · · · ·		1	<u> </u>	t		1
		20		Quality	QS86446	1			1		<u> </u>		
Į		20		Samsung	KM64258B	1			1		<u>├</u> ──		<u> </u>

л

	10	
÷	SE	
÷	Ë.	
8	in,	
	Ô,	Ł
	-	1
	<u>o</u>	1
	Л	Ł
	Q	
	C	L
	Ξ	
	щ	1

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		20	_	Sharp	LH52253			· <u></u>					
		20	_	Toshiba	TC55465								
		25	_	Motorola	MCM6209C	28	300	PDIP, SOJ				0	
[25	_	AT&T	ATT7C196	1		·····	1	[[
1		25		Cypress	CY7C195			· · · · · · · · · · · · · · · · · · ·					
		25	_	IDT	IDT61298								
		25		Micron	MT5C2565	1			1				
		25	_	Mitsubishi	M5M5259								
ĺ		25	—	NEC	μ43253								
		25		Paradigm	PDM41259								
ł		25	-	Performance	P4C1298								
		25	_	Quality	QS86446								
		25	-	Samsung	KM64258B	<u> </u>							
		25	_	Sharp	LH52253								
		25	_	Toshiba	TC55465								
		8	_	Motorola	MCM6708A	24	300	SOJ			• •		
		10	-	Motorola	MCM6708A	24	300	SOJ					
		10		Toshiba	TC55B464								
1		10	_	Hitachi	HM6708SH					[
		12	-	Motorola	MCM6708A	24	300	SOJ					
		12	-	Cypress	CY7B194				1				
		12	-	Hitachi	HM6708SH	1							
		12		Toshiba	TC55B464								
		8		Motorola	MCM6709A	28	300	soj					
		8	- 1	Samsung	KM64B258A				1				
		10	_	Motorola	MCM6709A	28	300	SOJ					
1		10	_	Samsung	KM64B258A								
		10		Toshiba	TC55B465								
		10		IDT	IDT61B298								
		10		Hitachi	HM6709SH		-						
		12	-	Motorola	MCM6709A	28	300	SOJ					
		12		Samsung	KM64B258A								
		12	-	Toshiba	TC55B465								
		12		IDT	IDT61B298								
		12	_	Hitachi	HM6709SH			<u> </u>					

Σ
9
2
R
Ĕ
7
Ъ́ST
SRAM
I DATA

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		12	_	Cypress	CY7B194	+			+				
		6	-	Motorola	MCM6709R	28	300	SOJ	0			0	
		7	-	Motorola	MCM6709R	28	300	SOJ	0			0	
1		8	_	Motorola	MCM6709R	28	300	SOJ	0			0	
		15	_	Motorola	MCM62980	28	300	SOJ		0		<u>ہ</u>	
		20	_	Motorola	MCM62980	28	300	SOJ	<u>+</u>	<u>ہ</u>		0	
		15		Motorola	MCM62981	32	300	SOJ				[
		20	_	Motorola	MCM62981	32	300	SOJ	1				
192K	8K x 24	20		Motorola	MCM56824A	52		PLCC	1			ō	0
		20	_	Motorola	MCM56824AZP	86		OMPAC	1			0	0
		25		Motorola	MCM56824A	52		PLCC	1			<u>ہ</u>	\$
		25		Motorola	MCM56824AZP	86		OMPAC	1			0	<u>ہ</u>
		35	_	Motorola	MCM56824A	52		PLCC			·	0	0
		35	_	Motorola	MCM56824AZP	86		OMPAC				0	0
128K	8K x 16	12	20	Motorola	MCM62T316	44		PLCC	<u> </u>	0			<u>ہ</u>
64K	8K x 9	12		Motorola	MCM6265C	28	300	PDIP, SOJ				0	
		15	_	Motorola	MCM6265C	28	300	PDIP, SOJ				0	
		15	_	IDT	IDT7169S	<u> </u>							
		15	_	Mitsubishi	M5M5179	1		· · · · · · · · · · · · · · · ·	1				
		15	-	NEC	μ4369								
		15	_	SGS-Thompson	IMS1695				<u>+</u>				
		15	_	Sony	CXK5972	<u> </u>							
		15		Toshiba	TC5589	1			<u> </u>				
		20	_	Motorola	MCM6265C	28	300	PDIP, SOJ	<u>+</u>			0	
		20		Mitsubishi	M5M5179	<u> </u>			<u>+</u>			<u> </u>	
		20		NEC	μ4369	1			<u> </u>				
		20	_	Performance	P4C163				<u> </u>				
		20	_	SGS-Thompson	IMS1695				1				
		20	_	Sony	CXK5972				<u> </u>				
		20	_	Toshiba	TC5589								
		25	_	Motorola	MCM6265C	28	300	PDIP, SOJ				0	
Ì		25	_	IDT	IDT7169S	1							
		25	_	Mitsubishi	M5M5179	1			1				
		25		Sony	CXK5972	<u> </u>			1				
		25	_	Toshiba	TC5589	<u> </u>							

SELECTOR GUIDE 1-19

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		35	_	Motorola	MCM6265C	28	300	PDIP, SOJ				<u>ہ</u>	
		35	_	Fujitsu	MB81C79	<u> </u>		·					
		35	_	IDT	IDT7169S				1				
		35		Mitsubishi	M5M5179				1		<u> </u>		
		35	-	Sony	CXK5972							<u> </u>	
1		35	_	Toshiba	TC5589								
	8K x 8	12	_	Motorola	MCM6264C	28	300	PDIP, SOJ				0	
		12	_	AT&T	ATT7C185			· · ·	1				
		12	_	Micron	MT5C6408				1				
		12	_	Samsung	KM6865								
		12	_	Toshiba	TC5588			· · · · ·				[
		15	_	Motorola	MCM6264C	28	300	PDIP, SOJ				<u>ہ</u>	
		15	·	AT&T	ATT7C185							<u> </u>	
		15	_	Cypress	CY7C185	<u> </u>							
		15		IDT	IDT7164S								
		15	_	Micron	MT5C6408								
		15	_	Mitsubishi	M5M5178	1							
		15	-	NEC	μ4368								
		15	-	Performance	P4C164								
		15	_	Samsung	KM6865				— —				[
		15	_	SGS-Thompson	IMS1635				1				
		15		Toshiba	TC5588								
		20	_	Motorola	MCM6264C	28	300	PDIP, SOJ				0	
		20	-	AT&T	ATT7C185								
		20	—	Cypress	CY7C185	1							
		20	_	IDT	IDT7164							[
		20		Micron	MT5C6408	<u> </u>							
		20	_	Mitsubishi	M5M5178				1				
		20	_	NEC	μ4368							<u> </u>	
		20	-	Performance	P4C164								
		20	_	Samsung	KM6865				1				
		20		SGS-Thompson	IMS1635	1		· · · · ·					
		20	-	Sony	CXK5863	1							
		20	_	Toshiba	TC5588	[[
		25		Motorola	MCM6264C	28	300	PDIP, SOJ				0	

SELECTOR GUIDE 1-20

MOTOROLA FAST SRAM DATA

		16
SELECTOR GUIDE 1-21		

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		25		AT&T	ATT7C185								
		25	_	Cypress	CY7C185				1				
		25	_	IDT	IDT7164				1				[
		25		Micron	MT5C6408				1				
		25	—	Mitsubishi	M5M5178								
		25	—	Performance	P4C164								
		25	—	Samsung	KM6865								
		25	_	SGS-Thompson	IMS1635								
(25	—	Sony	CXK5863								(
		25	—	Toshiba	TC5588								
		35	—	Motorola	MCM6264C	28	300	PDIP, SOJ				o	
1		35	—	Fujitsu	MB81C78								
		35		IDT	IDT7164								
		35	-	Micron	MT5C6408						[
1		35	-	Mitsubishi	M5M5178								
Ì		35	-	Sony	CXK5863								
		35	—	Toshiba	TC5588								
		_	—	Motorola	MCM62X308	28	300	SOJ		<u> </u>			<u> </u>
			—	Motorola	MCM62Y308	32	300	SOJ		<u> </u>			0
	16K x 4	10	_	Motorola	MCM6288C	22	300	PDIP					
]		10	_	AT&T	ATT7C164								
		10	—	Micron	MT5C6404								
1		10	—	Quality	Q\$8888A								
1		12	-	Motorola	MCM6288C	22	300	PDIP	1				[
		12	—	AT&T	ATT7C164				1				
		12	—	Cypress	CY7C164				1				
		12	-	Micron	MT5C6404								
		12	—	NEC	μ4362B								
		12	_	Performance	P4C188				1				
		12	_	Quality	QS8888A				T				
		12	-	Samsung	KM6465B								
		15	—	Motorola	MCM6288C	22	300	PDIP	1				
4		15	-	AT&T	ATT7C164			·					
ł		15	—	Cypress	CY7C164				\square				
		15		Fujitsu	MB81C74	1			1				

÷	SE	
Ś	LEC	ļ
	TOR	
	GUI	
	DE	

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		15	-	IDT	IDT7188S							[
		15	_	Micron	MT5C6404								
		15		Mitsubishi	M5M5188				1				
,		15	_	NEC	μ4362B								
		15	-	Performance	P4C188								
		15	_	Quality	QS8888A								
		15	_	Samsung	KM6465B				-				
		15	—	SGS-Thompson	IMS1625								
		15	_	Sony	CXK5466								
		15	_	Toshiba	TC55416								
		20	—	Motorola	MCM6288C	22	300	PDIP				[
		20	_	AT&T	ATT7C164								
		20	_	Cypress	CY7C164	[
		20	_	Fujitsu	MB81C74		·····						
i		20	-	IDT	IDT7188S								
		20		Micron	MT5C6404	<u> </u>			1			[
		20	-	Mitsubishi	M5M5188							<u> </u>	
l		20	-	NEC	μ4362B								
		20	_	Performance	P4C188								
		20	_	Quality	QS8888								
		20	-	Samsung	KM6465								
		20	—	SGS-Thompson	IMS1625				1				
		20	_	Sony	CXK5466				1				
1		20	_	Toshiba	TC55416								
		25	_	Motorola	MCM6288C	22	300	PDIP	1				
		25	_	AT&T	ATT7C164								
		25	_	Cypress	CY7C164							[
		25	_	Fujitsu	MB81C74								
		25	_	Hitachi	HM6288H								
		25	_	IDT	IDT7188S				1			[
	i	25	_	Micron	MT5C6404								
		25	_	Mitsubishi	M5M5188				+		i	t	
		25		Performance	P4C188				+			t	
		25		Quality	QS8888				1		·		
		25		Samsung	KM6465				+			1	

MOTOROLA FAST SRAM DATA

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		25		SGS-Thompson	IMS1625								[
		25		Sony	CXK5464								
		25		Toshiba	TC55416			·					
		35		Motorola	MCM6288C	22	300	PDIP				<u> </u>	
		35		Fujitsu	MB81C74				1				
		35		Hitachi	HM6288H								
		35		IDT	IDT7188S								
		35	_	Micron	MT5C6404	<u> </u>							
		35		Mitsubishi	M5M5188				1				
[35		Quality	QS8888				1				
		35	_	Samsung	KM6465A	<u> </u>			1				
		35		Sony	CXK5464								
		35		Toshiba	TC55416							<u>}</u>	
	64K x 1	12		Motorola	MCM6287B	22/24	300	PDIP, SOJ	1				
		12		AT&T	ATT7C187								
		12	_	Micron	MT5C6401			······································					
		12		NEC	μ4361B								
		12		Performance	P4C187								
		15	_	Motorola	MCM6287B	22/24	300	PDIP, SOJ					
		15	—	AT&T	ATT7C187								
		15	_	IDT	IDT7187				<u> </u>				
		15		Micron	MT5C6401								
		15		Mitsubishi	M5M5187								[
		15		NEC	μ4361B								
		15	_	Performance	P4C187								
		15		SGS-Thompson	IMS1605				1			<u> </u>	
		20	_	Motorola	MCM6287B	22/24	300	PDIP, SOJ					
		20	-	AT&T	ATT7C187								
		20		Cypress	CY7C187								
		20		IDT	IDT7187S								
		20		Micron	MT5C6401				1				
		20		Mitsubishi	M5M5187				1				
		20	_	NEC	μ4361B				1				
		20	—	Performance	P4C187			· · · · · · · · · · · · · · · · · · ·	<u>+</u>				
		20	_	SGS-Thompson	IMS1605								

Density	Config- uration	Access (ns)	Cycle (ns)	Supplier	Part Number	No. Pins	Width (mils)	Package	Revol. Pinout	Syn- chronous	Latches	Output Enable	Special Function
		25	-	Motorola	MCM6287B	22/24	300	PDIP, SOJ					
		25	_	AT&T	ATT7C187								
		25	_	Cypress	CY7C187								
		25	-	Fujitsu	MB81C71A								
		25	-	IDT	IDT7187S				1				
		25	—	Micron	MT5C6401								
		25	_	Mitsubishi	M5M5187								
		25	_	Performance	P4C187				1				
		25	_	Samsung	KM6165				1				
		25	_	SGS-Thompson	IMS1605				1				
		25	-	Sony	CXK5164								
48K	4K x 12	18	_	Motorola	MCM62973A	44		PLCC	1	0			0
		20	_	Motorola	MCM62973A	44		PLCC	1	<u>ہ</u>		0	0
	4K x 10	30	_	Motorola	MCM62963A	44		PLCC	1	0			0

BiCMOS Fast Static RAMs

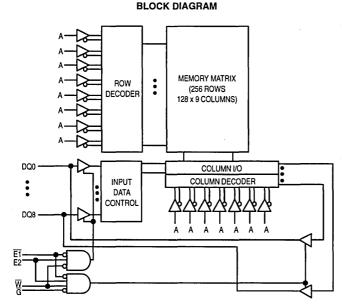
TTL I/O

MCM6705A	2-3
MCM6706A	2-9
MCM6706R 2-	·15
MCM6708A/6709A 2-	·21
MCM6709R 2-	·27
MCM6726 2-	-33
MCM6726A 2-	-39
MCM6728 2-	45
MCM6728A 2-	-51
MCM6729 2-	·57
MCM6729A 2-	·63
CL I/O	

MCM101520	 2-69
MCM101524	 2-74

CHAPTER 2 2-2 .

MOTOROLA SEMICONDUCTOR


32K x 9 Bit Static Random Access Memory

The MCM6705A is a 294,912 bit static random access memory organized as 32,768 words of 9 bits, fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.

The MCM6705A is available in a 300 mil, 32 lead surface-mount SOJ package.

- Single 5.0 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: MCM6705A-10 = 10 ns MCM6705A-12 = 12 ns

MCM6705A

PIN		IGNMENT
ИС [1•	32 0 VCC
NC [2	31 🛛 A14
A8 [3	30 🛛 E2
A7 [4	29 🛛 ₩
A6 [5	28 A13
A5 [6	27] A9
A4 [7	26 A10
A3 [8	25 A11
A2 [9	24 1 G
A1 [10	23 A12
A0 [11	22 D E1
DQ0 [12	21 DQ8
DQ1 [13	20 DQ7
DQ2	14	19 DQ6
DQ3 [15	18 DQ5
v _{ss} C	16	17] DQ4

PIN NA	MES
A0 - A14 W E1, E2 G DQ0 - DQ8 VCC VSS NC	Write Enable Chip Enable Output Enable . Data Input/Output • 5 V Power Supply Ground

TRUTH TABLE (X = Don't Care)

E1	E2	Ğ	W	Mode	V _{CC} Current	Output	Cycle
н	X	X	х	Not Selected	ISB1, ISB2	High-Z	_
X	L	X	X	Not Selected	ISB1, ISB2	High-Z	-
L	н	н	н	Output Disabled	ICCA	High-Z	_
L	н	L	н	Read	ICCA	Dout	Read Cycle
L	н	X	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 30	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = $5.0 \text{ V} \pm 10\%$, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2		V _{CC} + 0.3*	v
Input Low Voltage	VIL	- 0.5**	_	0.8	v

* VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 2.0 ns) or I \leq 30.0 mA.

** V_{IL} (min) = -0.5 V dc @ 30.0 mA; V_{IL} (min) = -2.0 V ac (pulse width \leq 2.0 ns) or I \leq 30.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	likg(l)	-	± 1.0	μA
Output Leakage Current ($\overline{E1} = V_{IH}$ or $E2 = V_{IL}$ or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	llkg(O)	—	±1.0	μA
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	—	V
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	MCM6705A-10	MCM6705A-12	Unit
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = max, f = f _{max})	ICCA	195	185	mA
AC Standby Current ($\overline{E1}$ = V _{IH} or E2 = V _{IL} , V _{CC} = max, f = f _{max})	ISB1	125	120	mA
CMOS Standby Current (V _{CC} = max, f = 0 MHz, $\overline{E1} \ge V_{CC} - 0.2 V$, or E2 $\le V_{SS} + 0.2 V$, V _{in} $\le V_{SS} + 0.2 V$ or $\ge V_{CC} - 0.2 V$)	ISB2	55	55	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit
Address Input Capacitance	C _{in}	5	pF
Control Pin Input Capacitance (E1, E2, G, W)	C _{in}	6	pF
I/O Capacitance	CI/O	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.	5 V
Input Pulse Levels 0 to 3.	0 V 0.
Input Rise/Fall Time 2	2 ns

Output Timing Measurement Reference Level 1.5 V Output Load See Figure 1A

READ CYCLE (See Notes 1, 2, and 3)

	Syn	Symbol		MCM6705A-10		MCM6705A-12		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	10	- 1	12	-	ns	4
Address Access Time	tavqv	tAA	_	10	-	12	ns	
Chip Enable Access Time	^t ELQV	tACS		10	<u> </u>	12	ns	T T
Output Enable Access Time	^t GLQV	tOE	_	5	- 1	6	ns	
Output Hold from Address Change	tAXQX	tон	3	-	3	-	ns	
Chip Enable Low to Output Active	^t ELQX	tLZ	1	- 1	1	-	ns	5, 6, 7
Chip Enable High to Output High-Z	tEHQZ	tHZ	0	6	0	7	ns	5, 6, 7
Output Enable Low to Output Active	tGLQX	t∟z	0	-	0	- 1	ns	5, 6, 7
Output Enable High to Output High-Z	tGHQZ	tHZ	0	5	0	6	ns	5, 6, 7

NOTES:

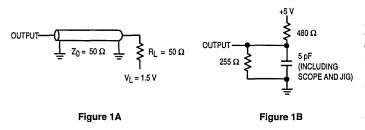
1. \overline{W} is high for read cycle.

Product sensitivites to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. E1 is represented by E in this table. E2 would require a transition opposite of E1.

4. All read cycle timing is referenced from the last valid address to the first transitioning address.

5. At any given voltage and temperature, tEHQZ max < tELQX min, and tGHQZ max < tGLQX min, both for a given device and from device to device.

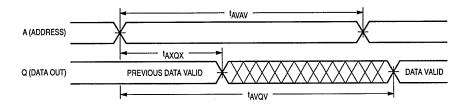

6. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

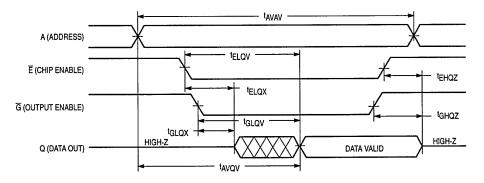
8. Device is continuously selected ($\overline{E1} = V_{IL}, \underline{E2} = V_{IH}, \overline{G} = V_{IL}$).

9. Addresses valid prior to or coincident with E going low.

AC TEST LOADS



TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note 8)

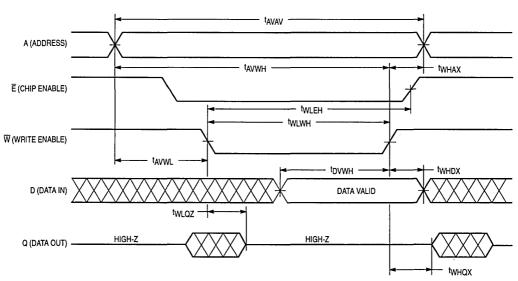
WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Syn	Symbol		MCM6705A-10		MCM6705A-12		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10	1 –	12	-	ns	4
Address Setup Time	tAVWL	tas	0		0	-	ns	1
Address Valid to End of Write	tavwh	tAW	9		10	—	ns	
Write Pulse Width	twLwH, twLEH	tWP	9	-	10	-	ns	
Data Valid to End of Write	tDVWH	tDW	5	-	6	_	ns	
Data Hold Time	twhdx	^t DH	0	-	0	-	ns	
Write Low to Data High-Z	twlqz	twz	0	5	0	6	ns	5, 6, 7
Write High to Output Active	twhox	tow	3		3	-	ns	5, 6, 7
Write Recovery Time	twhax	twn	0		0		ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivites to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.


3. E1 is represented by E in this table. E2 would require a transition opposite of E1.

4. All write cycle timings are referenced from the last valid address to the first transitioning address.

5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. Parameter is sampled and not 100% tested.

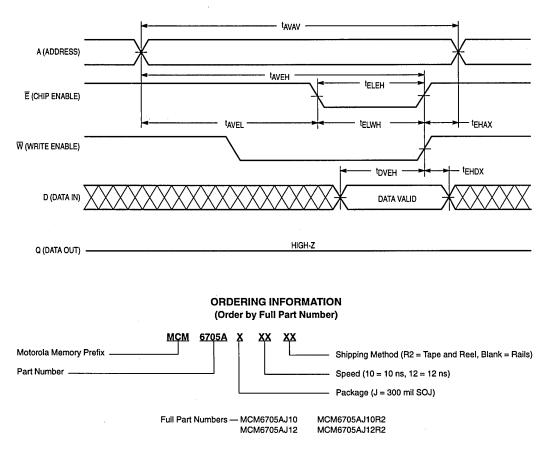
7. At any given voltage and temperature, twLQZ max is < twHQX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

	Syn	Symbol		MCM6705A-10		MCM6705A-12		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10	- 1	12	—	ns	4
Address Setup Time	tAVEL	tAS	0	-	0	_ ·	ns	
Address Valid to End of Write	^t AVEH	tAW	9	- 1	10		ns	
Chip Enable to End of Write	^t ELWH, ^t ELEH	tcw	8	-	9		ns	5, 6
Data Valid to End of Write	^t DVEH	tDW	5	-	6	—	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	—	ns	
Write Recovery Time	^t EHAX	twn	0	·	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivites to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. E1 is represented by E in this table. E2 would require a transition opposite of E1.

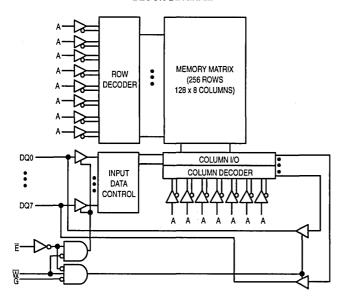
4. All write cycle timing is referenced from the last valid address to the first transitioning address.

5. If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.

6. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

32K x 8 Bit Static Random Access Memory


The MCM6706A is a 262,144 bit static random access memory organized as 32,768 words of 8 bits, fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.

The MCM6706A is available in a 300 mil, 28-lead surface-mount SOJ package.

- Single 5.0 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: MCM6706A-8 = 8 ns
 - MCM6706A-10 = 10 ns MCM6706A-12 = 12 ns

MCM6706A

PI	N ASSI	GNMENT	
A14 [1 •	28 VCC	
A12 [2	27 🛛	
A7 🛛	3	26 🛛 A13	
A6 🛛	4	25 🛛 A8	
A5 [5	24 🛛 A9	
A4 [6	23 🛛 A11	
A3 [7	22] G	
A2 [8	21 A10	
A1 [9	20 D E	
A0 [10	19 DQ7	
DQ0 [11	18 DQ6	
DQ1 [12	17 DQ5	
DQ2 [13	16 DQ4	
v _{ss} C	14	15 DQ3	

A0 – A14 Address Input W Write Enable E Chip Enable G Output Enable DQ0 – DQ7 Data Input/Output V _{CC} + 5.0 V Power Supply VSS Ground	PIN NAMES	
	W Write E Chip G Output DQ0 – DQ7 Data Input V _{CC} + 5.0 V Power	Enable Enable Enable /Output Supply

TRUTH TABLE (X = Don't Care)

Ē	G	W	Mode	I/O Pin	Cycle
н	х	х	Not Selected	High-Z	
L	н	н	Read	High-Z	_
L	L	н	Read	Dout	Read Cycle
L	x	L	Write	Din	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 30	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	Tstg	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V ± 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3*	v
Input Low Voltage	VIL	- 0.5**		0.8	v

*VIH (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 2.0 ns) or I \leq 30.0 mA.

** V_{IL} (min) = -0.5 V dc @ 30.0 mA; V_{IL} (min) = -2.0 V ac (pulse width ≤ 2.0 ns) or I ≤ 30.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(l)	_	± 1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	l _{lkg(O)}	_	± 1.0	μA
Output High Voltage (I _{OH} = - 4.0 mA)	V _{OH}	2.4	-	V
Output Low Voltage (I _{OL} = + 8.0 mA)	V _{OL}	_	0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	6706A-8	6706A-10	6706A-12	Unit
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = max, f = f _{max})	ICCA	195	185	175	mA
AC Standby Current ($\vec{E} = V_{IH}, V_{CC} = \max, f = f_{max}$)	ISB1	130	120	115	mA
CMOS Standby Current (V _{CC} = max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2$ V, V _{in} $\le V_{SS}$, or $\ge V_{CC} - 0.2$ V)	ISB2	50	50	50	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit
Address Input Capacitance	Cin	5	pF
Control Pin Input Capacitance (Ē, G, W)	Cin	6	pF
I/O Capacitance	Cout	6	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = $5.0 \text{ V} \pm 10\%$, T_A = 0 to + 70° C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5	V
Input Pulse Levels 0 to 3.0	V
Input Rise/Fall Time 2	ns

READ CYCLE (See Notes 1 and 2)

	Syn	nbol	ol MCM6706		16706A-8 MCM6706A-		MCM6	706A-12		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	^t RC	8	-	10		12	- 1	ns	3
Address Access Time	tavov	taa	-	8	- 1	10	-	12	ns	
Chip Enable Access Time	tELQV	tACS	—	8	- 1	10		12	ns	
Output Enable Access Time	tGLQV	^t OE		4		5	_	6	ns	
Output Hold from Address Change	tAXQX	tон	3	- 1	3	-	3	-	ns	
Chip Enable Low to Output Active	^t ELQX	t∟z	1	-	1	-	1	-	ns	4 ,5, 6
Chip Enable High to Output High-Z	^t EHQZ	tHZ	0	4.5	0	5	0	6	ns	4, 5, 6
Output Enable Low to Output Active	tGLQX	tLZ	0	-	0	-	0		ns	4, 5, 6
Output Enable High to Output High-Z	tGHQZ	tHZ	0	4	0	5	0	6	ns	4, 5, 6

NOTES:

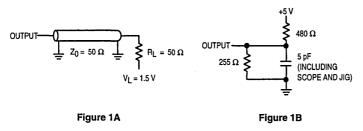
1. W is high for read cycle.

2. Product sensitivites to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All read cycle timing is referenced from the last valid address to the first transitioning address.

4. At any given voltage and temperature, tEHQZ max < tELQX min, and tGHQZ max < tGLQX min, both for a given device and from device to device.

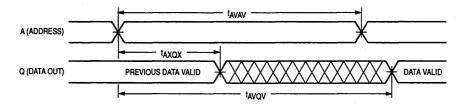
NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

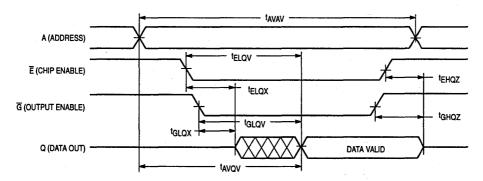

5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

7. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).

8. Addresses valid prior to or coincident with E going low.


AC TEST LOADS


TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Note 7)

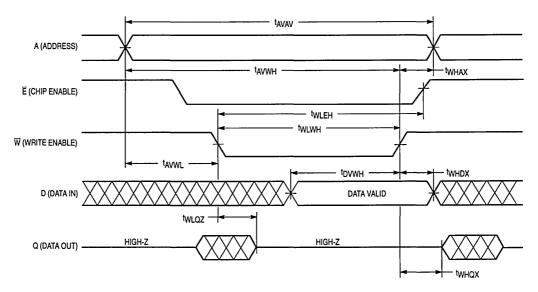
2

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	nbol	MCM6	MCM6706A-8		MCM6706A-10		MCM6706A-12		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	8	-	10	-	12	-	ns	3
Address Setup Time	tAVWL	tAS	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	taw	8	-	9	-	10	-	ns	
Write Pulse Width	twLwH, twLEH	tWP	8	-	9	-	10	-	ns	
Data Valid to End of Write	tDVWH	tDW	4	- 1	5	-	6	- 1	ns	
Data Hold Time	twhdx	^t DH	0	-	0	—	0	—	ns	
Write Low to Data High-Z	twLQZ	twz	0	4	0	5	0	6	ns	4, 5, 6
Wirte High to Output Active	twhox	tow	3	- 1	3	- 1	3	- 1	ns	4, 5, 6
Write Recovery Time	twhax	twn	0	- 1	0	-	0		ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivites to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

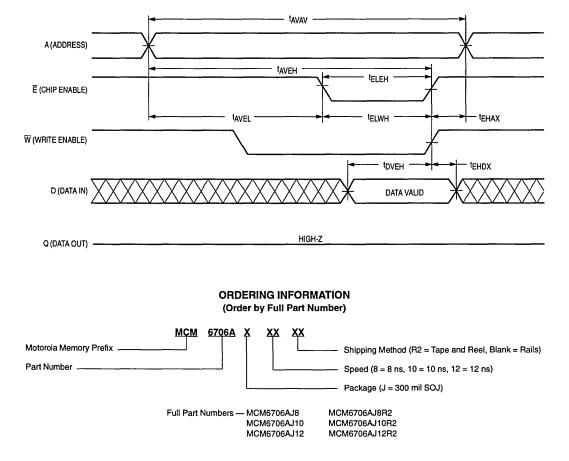
4. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

5. Parameter is sampled and not 100% tested.

6. At any given voltage and temperature, tWLQZ max is < tWHQX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Syn	nbol	MCM6706A-8		MCM6706A-10		MCM6706A-12			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	8	-	10		12	-	ns	3
Address Setup Time	tAVEL	tas	0	-	0		0	-	ns	
Address Valid to End of Write	tAVEH	tAW	8	-	9	-	10	-	ns	
Chip Enable to End of Write	tELWH, tELEH	tcw	7	-	8	-	9	-	ns	4,5
Data Valid to End of Write	^t DVEH	tDW	4	-	5	—	6	_	ns	
Data Hold Time	^t EHDX	tDH	0		0	- 1	0	T —	ns	
Write Recovery Time	^t EHAX	twR	0	-	0	—	0	—	ns	


NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivites to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All write cycle timing is referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

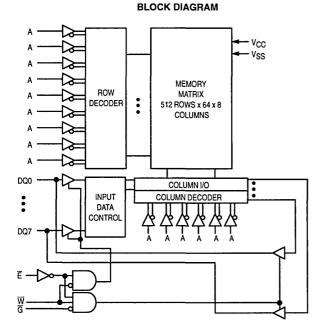
MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Product Preview 32K x 8 Bit Static Random Access Memory

The MCM6706R is a 262,144 bit static random access memory organized as 32,768 words of 8 bits, fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.

The MCM6706R meets JEDEC standards and is available in a revolutionary pinout 300 mil, 32-lead surface-mount SOJ package.


- Single 5.0 V ± 10% Power Supply
- Fully Static --- No Clock or Timing Strobes Necessary
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs

MOTOROLA FAST SRAM DATA

Fast Access Times: MCM6706R-6 = 6 ns

MCM6706R-7 = 7 ns MCM6706R-8 = 8 ns

Center Power and I/O Pins for Reduced Noise

MCM6706R

PIN	I ASSI	GNME	ENT
A0 [1•	32	р ис
A1 [2	31] A14
A2 [3	30] A13
A3 [4	29	A12
ĒC	5	28] <u>G</u>
000	6	27] DQ7
DQ1 [7	26	DQ6
v _{cc} [8	25	D v _{ss}
v _{ss} D	9	24	l v _{cc}
DQ2 [10	23	DQ5
DQ3 [11	22	DQ4
₩d	12	21] A11
A4 [13	20	A10
A5 [14	19] A9
A6 🛙	15	18	J A8
A7 🛙	16	17	ј ис
-			

PIN NAMES
A0 - A14 Address W Write Enable E Chip Enable G Output Enable DQ0 - DQ7 Data Input/Output V _{CC} + 5 V Power Supply VSS Ground NC No Connection

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē	Ğ	W	Mode	I/O Pin	Cycle
н	X	x	Not Selected	High-Z	_
L	° H ≦	н	Read	High-Z	_
L	L	н	Read	Dout	Read Cycle
1 L	X	L	Write	D _{in}	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 30	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3*	V
Input Low Voltage	VIL	- 0.5**	-	0.8	V

*VIH (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 2.0 ns) or I \leq 30.0 mA.

** V_{IL} (min) = -0.5 V dc @ 30.0 mA; V_{IL} (min) = -2.0 V ac (pulse width ≤ 2.0 ns) or I ≤ 30.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	llkg(l)	. —	± 1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	l _{lkg(O)}		± 1.0	μA
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	—	V
Output Low Voltage (I _{OL} = + 8.0 mA)	VoL		0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	6706R-6	6706R-7	6706R-8	Unit
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = max, f = f _{max})	ICCA	205	200	195	mA
AC Standby Current ($\overline{E} = V_{IH}, V_{CC} = max, f = f_{max}$)	ISB1	95	90	85	mA
CMOS Standby Current (V _{CC} = max, f = 0 MHz, $\overline{E} \ge$ V _{CC} – 0.2 V, V _{in} \le V _{SS} , or \ge V _{CC} – 0.2 V)	I _{SB2}	20	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit
Address Input Capacitance	C _{in}	5	pF
Control Pin Input Capacitance (E, G, W)	C _{in}	6	pF
I/O Capacitance	Cout	6	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ T}_{A} = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5	v
Input Pulse Levels 0 to 3.0	V
Input Rise/Fall Time 2	ns

Output Timing Measurement Reference Level 1.5 V Output Load See Figure 1A

READ CYCLE (See Notes 1 and 2)

	Symbol		MCM6706R-6		MCM6706R-7		MCM6706R-8			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	6	- 1	7	-	8		ns	3
Address Access Time	tAVQV	tAA	-	6	-	7	-	8	ns	
Chip Enable Access Time	^t ELQV	tACS	-	6	—	7	- 1	8	ns	ĺ
Output Enable Access Time	tGLQV	^t OE	_	4	- 1	4		4	ns	
Output Hold from Address Change	tAXQX	tон	3	-	3		3	-	ns	
Chip Enable Low to Output Active	^t ELQX	t∟z	3	-	3	-	3	-	ns	4 ,5, 6
Chip Enable High to Output High-Z	^t EHQZ	ţнz	0	3	0	3.5	0	4	ns	4, 5, 6
Output Enable Low to Output Active	^t GLQX	tLZ	0	-	0	-	0	-	ns	4, 5, 6
Output Enable High to Output High-Z	tGHQZ	tнz	0	3	0	3.5	0	4	ns	4, 5, 6

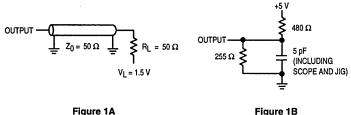
NOTES:

1. W is high for read cycle.

2. Product sensitivites to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All read cycle timing is referenced from the last valid address to the first transitioning address.

4. At any given voltage and temperature, tEHQZ max <tELQX min, and tGHQZ max <tGLQX min, both for a given device and from device to device.


5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

7. Device is continuously selected ($\overline{E} = V_{|L}, \overline{G} = V_{|L}$).

8. Addresses valid prior to or coincident with E going low.

AC TEST LOADS

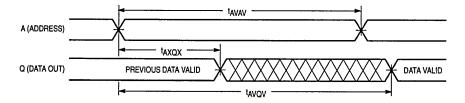
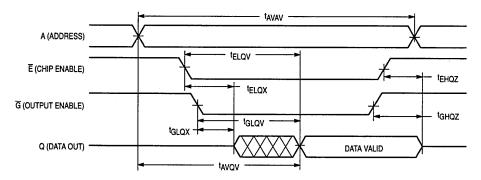


Figure 1B


TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

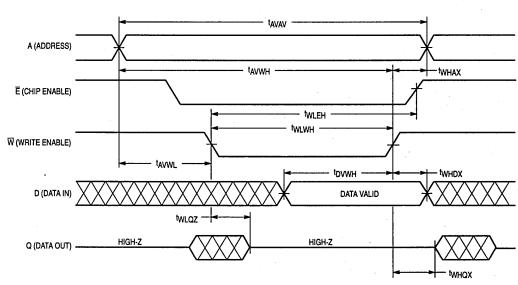
READ CYCLE 1 (See Note 7)

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	Symbol		MCM6706R-6 MCM6706R-7		MCM6706R-8				
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	6	-	7	-	8	-	ns	3
Address Setup Time	^t AVWL	tAS	0	-	0	- 1	0	-	ns	
Address Valid to End of Write	tavwh	tAW	6	-	7	-	8	-	ns	
Write Pulse Width	twLwH, twLEH	tWP	6	-	7	-	8	-	ns	
Data Valid to End of Write	^t DVWH	tDW	3	-	3.5	- 1	4	-	ns	
Data Hold Time	twhdx	^t DH	0	-	0	-	0	<u> </u>	ns	
Write Low to Data High-Z	twloz	twz	0	3.5	0	3.5	0	4	ns	4, 5, 6
Wirte High to Output Active	twhox	tow	3	- 1	3	-	3	- 1	ns	4, 5, 6
Write Recovery Time	twHAX	twR	0	-	0	—	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivites to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

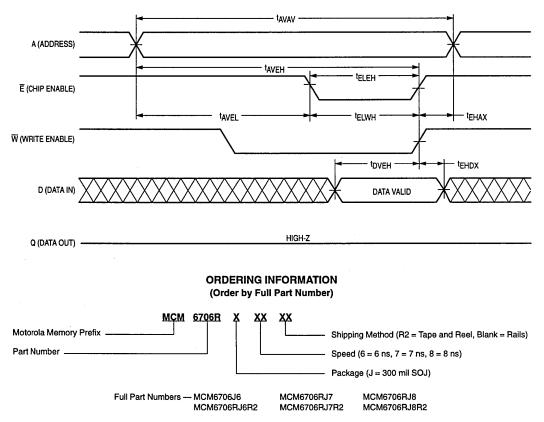
4. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

5. Parameter is sampled and not 100% tested.

6. At any given voltage and temperature, t_{WLQZ} max is < t_{WHQX} min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Syn	Symbol		MCM6706R-6		MCM6706R-7		MCM6706R-8		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	6	-	7	-	8	-	ns	3
Address Setup Time	tAVEL	tAS	0	-	0	-	0	-	ns	
Address Valid to End of Write	tAVEH	tAW	6	-	7	-	8	-	ns	
Chip Enable to End of Write	^t ELWH, ^t ELEH	^t CW	5	-	6		7	-	ns	4,5
Data Valid to End of Write	^t DVEH	tDW	3	- 1	3.5	-	4	-	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	-	ns	
Write Recovery Time	^t EHAX	twR	0	-	0	-	0		ns	

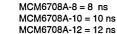

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivites to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All write cycle timing is referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.


MOTOROLA SEMICONDUCTOR TECHNICAL DATA 64K x 4 Bit Static RAM

The MCM6708A and the MCM6709A are 262,144 bit static random access memories organized as 65,536 words of 4 bits, fabricated using high-performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}), a special control feature of the MCM6709A, provides increased system flexibility and eliminates bus contention problems.

The MCM6708A is available in a 300 mil, 24 lead plastic surface-mount SOJ package. The MCM6709A is available in a 300 mil, 28 lead plastic surface-mount SOJ package.

- Single 5 V ± 10% Power Supply
- Fully Static --- No Clock or Timing Strobes Necessary
- · All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Fast Access Times:

J PACKAGE 300 MIL SOJ CASE 810A

MCM6708A

MCM6709A

PIN	ASSIGN	MENT
	MCM6708	BA
A0 [1.	24 VCC
A1 7	2	23 A15
A2	3	22 A14
A3 🛛	4	21 🗍 A13
A4 [5	20 A12
A5 [6	19 🛛 A11
A6 [7	18 A10
A7 []	8	17 DQ0
A8 []	9	16 DQ1
A9 🖸	10	15 DQ2
Ē	11	14 🗋 DQ3
v _{ss} [12	13 🛛 ₩
	MCM6709	A
ΝСЦ	1.	28 VCC
A0 🗌	2	27 🗗 A15
A1 [3	26 🗍 A14
A2 [4	25 🗋 A13
A3 [5	24 🗍 A12
A4 [6	23 🗍 A11
A5 [7	22 🗍 A10
A6 [8	21 🗍 NC
A7 []	9	20 🗍 NC
A8 []	10	19 🛛 DQ0
A9 🛛	11	18 DQ1
Ē	12	17 DQ2
ច	13	16 DQ3
v _{ss} [14	15 ↓ ₩

MEMORY MATRIX RÓW : 256 ROWS x 256 x 4 DECODER COLUMNS DQ0 COLUMN I/O INPUT COLUMN DECODER : DATA CONTROL DQ3 (MCM6709A ONLY) DIN NAMES

FIN NAMES									
Write Enable									
+ 5 V Power Supply No Connection									

TRUTH TABLE (X = Don't Care)

Ē	Ğ	W	Mode	Output	Cycle
н	х	х	Not Selected	High-Z	
L	н	н	Read	High-Z	_
L	L	н	Read	Dout	Read Cycle
L	х	L	Write	D _{in}	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3*	V
Input Low Voltage	VIL	- 0.5**	_	0.8	V

*VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 2.0 ns) or I \leq 30.0 mA.

** V_{IL} (min) = -0.5 V dc @ 30.0 mA; V_{IL} (min) = -2.0 V ac (pulse width ≤ 2.0 ns) or I ≤ 30.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(l)		± 1.0	μA
Output Leakage Current ($\overline{E} = V_{1H}$, $V_{out} = 0$ to V_{CC})	l _{lkg} (O)	_	± 1.0	μΑ
Output High Voltage (IOH = - 4.0 mA)	VOH	2.4	-	V
Output Low Voltage (I _{OL} = 8.0 mA)	VOL		0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	MCM6708A-8 MCM6709A-8		MCM6708A-12 MCM6709A-12	Unit
AC Active Supply Current (Iout = 0 mA, V _{CC} = max, f = f _{max})	ICCA	185	175	165	mA
AC Standby Current ($\overline{E} = V_{IH}$, $V_{CC} = max$, $f = f_{max}$)	ISB1	120	110	105	mA
$\begin{array}{l} \mbox{CMOS Standby Current (V_{CC} = max, f = 0 MHz, \\ \mbox{$\overline{E} \ge V_{CC} - 0.2 $ V$, $V_{in} \le V_{SS}$, or $\ge V_{CC} - 0.2 $ V$)} \end{array}$	ISB2	50	50	50	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Мах	Unit
Address Input Capacitance	C _{in}	5	pF
Control Pin Input Capacitance (E, G, W)	C _{in}	5	pF
Input/Output Capacitance	C _{I/O}	6	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

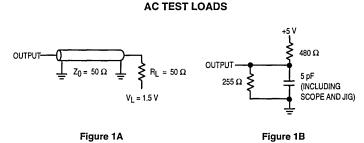
Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V
Input Rise/Fall Time	2 ns

READ CYCLES 1 AND 2 (See Notes 1 and 2)

	Symbol		MCM6708A-8 MCM6709A-8		MCM6708A-10 MCM6709A-10		MCM6708A-12 MCM6709A-12			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	8	- 1	10	—	12		ns	3
Address Access Time	tAVQV	tAA	-	8	-	10	—	12	ns	
Chip Enable Access Time	^t ELQV	tACS		8	- 1	10	-	12	ns	
Output Enable Access Time	^t GLQV	tOE	-	4	- 1	5	-	6	ns	
Output Hold from Address Change	tAXQX	tон	3	- 1	3	- 1	3		ns	
Chip Enable Low to Output Active	^t ELQX	t∟z	1	- 1	1	-	1	—	ns	4, 5, 6
Output Enable Low to Output Active	tGLQX	t∟z	0	- 1	0	-	0	- 1	ns	4, 5, 6
Chip Enable High to Output High-Z	^t EHQZ	tHZ	0	4.5	0	5	0	6	ns	4, 5, 6
Output Enable High to Output High-Z	^t GHQZ	^t HZ	0	4	0	5	0	6	ns	4, 5, 6

NOTES:

1. \overline{W} is high for read cycle.

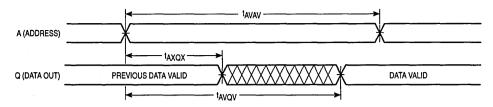

Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All read cycle timings are referenced from the last valid address to the first transitioning address.

 At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GLQX} min, both for a given device and from device to device.

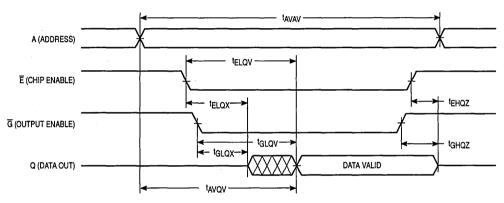
5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.



TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.


NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note)

NOTE: Device is continuously selected ($\overline{E} = V_{IL}, \overline{G} = V_{IL}$).

READ CYCLE 2 (See Note)

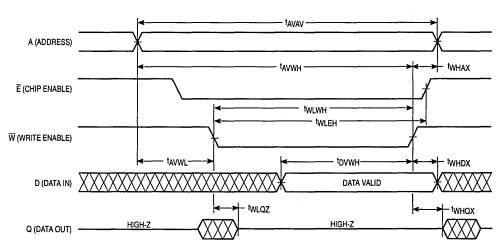
NOTE: Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Symbol		MCM6708A-8 MCM6709A-8		MCM6708A-10 MCM6709A-10		MCM6708A-12 MCM6709A-12			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	8	-	10	-	12	-	ns	3
Address Setup Time	tAVWL	tAS	0	- 1	0	-	0	_	ns	
Address Valid to End of Write	tavwh	tAW	8	-	9	-	10	-	ns	
Write Pulse Width	twlwh twleh	tWP	8	-	9	-	10	-	ns	
Data Valid to End of Write	tDVWH	tDW	4	- 1	5	-	6	-	ns	
Data Hold Time	twhdx	^t DH	0	-	0	—	0	-	ns	
Write Low to Data High-Z	twLQZ	twz	0	4	0	5	0	6	ns	4, 5, 6
Write High to Output Active	twhox	tow	3	- 1	3	-	3	-	ns	4, 5, 6
Write Recovery Time	twhax	twn	0	-	0	-	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All write cycle timing is referenced from the last valid address to the first transitioning address.

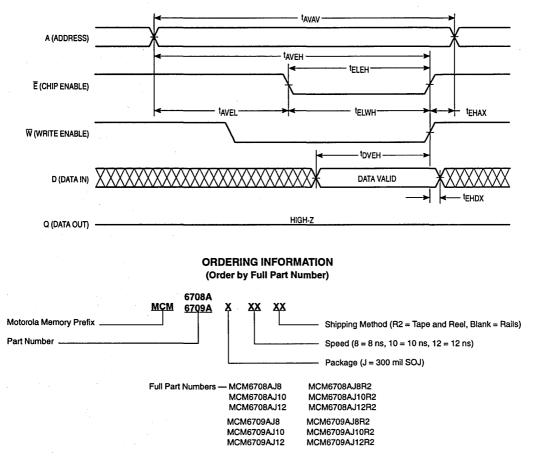
4. Transition is measured 200 mV from steady state voltage with load of Figure 1B.

5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, tWLQZ max is less than tWHQX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Syn	Symbol		MCM6708A-8 MCM6709A-8		MCM6708A-10 MCM6709A-10		MCM6708A-12 MCM6709A-12		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	8	-	10	—	12	-	ns	3
Address Setup Time	^t AVEL	tAS	0		0		0	-	ns	
Address Valid to End of Write	tAVEH	tAW	8	-	9	-	10	—	ns	
Chip Enable to End of Write	tELEH, tELWH	tcw	7	-	8	-	9	-	ns	4, 5
Data Valid to End of Write	^t DVEH	tDW	4	- 1	5	-	6		ns	
Data Hold Time	^t EHDX	^t DH	0	- 1	0	<u> </u>	0		ns	
Write Recovery Time	^t EHAX	twn	0	- 1	0		0		ns	


NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

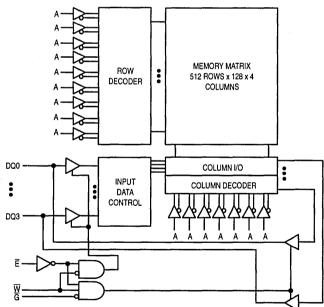
2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All write cycle timing is referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview 64K x 4 Bit Static RAM


The MCM6709R is a 262,144 bit static random access memory organized as 65,536 words of 4 bits, fabricated using high-performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.

The MCM6709R meets JEDEC standards and is available in a revolutionary pinout 300 mil, 28 lead plastic surface-mount SOJ package.

- Single 5 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- · All Inputs and Outputs are TTL Compatible
- Center Power and I/O Pins for Reduced Noise
- Three State Outputs
 - Fast Access Times: MCM6709R-6 = 6 ns MCM6709R-7 = 7 ns MCM6709R-8 = 8 ns

MCM6709R

1	

PIN	ASSIGN	IME	N	т
A0 C	1•	28	þ	A15
A1 [2	27	þ	A14
A2 [3	26	þ	A13
A3 [4	25	þ	A12
Ē	5	24	þ	G
DQ0 [6	23	þ	DQ3
V _{CC} [7	22	þ	VSS
v _{ss} C	8	21	þ	V _{CC}
DQ1 [9	20	þ	DQ2
W C	10	19	9	A11
A4 [11	18	þ	A10
A5 [12	17	þ	A9
A6 [13	16	þ	A8
A7 [14	15	þ	NC

PIN NAMES						
W G E DQ0 - DQ3 V _{CC} V _{SS}	Address Inputs Write Enable Output Enable Chip Enable Data Input/Output 5 V Power Supply Ground No Connection					

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

Ē	G	W	Mode	Output	Cycle
н	X .	х	Not Selected	High-Z	
L	н	н	Read High-Z		—
L	L	н	Read	Read Dout	
L	х	L	Write	Write D _{in}	

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature			°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3*	V
Input Low Voltage	VIL	- 0.5**	_	0.8	V

*VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 2.0 ns) or I \leq 30.0 mA.

** V_{IL} (min) = -0.5 V dc @ 30.0 mA; V_{IL} (min) = -2.0 V ac (pulse width ≤ 2.0 ns) or I ≤ 30.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(i)		± 1.0	μΑ
Output Leakage Current ($\overline{E} = V_{IH}, V_{out} = 0$ to V_{CC})	likg(O)		± 1.0	μA
Output High Voltage (I _{OH} = - 4.0 mA)	V _{OH}	2.4	-	V
Output Low Voltage (IOL = 8.0 mA)	V _{OL}		0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	MCM6709R-6	MCM6709R-7	MCM6709R-8	Unit
AC Active Supply Current (Iout = 0 mA, V _{CC} = max, f = f _{max})	ICCA	195	190	185	mA
AC Standby Current ($\vec{E} = V_{IH}$, $V_{CC} = max$, $f = f_{max}$)	ISB1	85	80	75	mA
$\begin{array}{l} CMOS \ Standby \ Current \ (V_{CC} = max, f = 0 \ MHz, \\ \overline{E} \geq V_{CC} - 0.2 \ V, \ V_{in} \leq V_{SS}, \ or \geq V_{CC} - 0.2 \ V) \end{array}$	ISB2	20	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit
Address Input Capacitance	C _{in}	5	pF
Control Pin Input Capacitance (E, G, W)	C _{in}	6	pF
Input/Output Capacitance	C _{I/O}	6	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.	.5 V
Input Pulse Levels 0 to 3.	0 V 0.
Input Rise/Fall Time	2 ns

READ CYCLES 1 AND 2 (See Notes 1 and 2)

	Symbol		MCM6	MCM6709R-6		MCM6709R-7		MCM6709R-8		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	^t AVAV	tRC	6		7	-	8	-	ns	3
Address Access Time	^t AVQV	tAA	_	6	—	7	-	8	ns	
Chip Enable Access Time	^t ELQV	tACS	1	6	—	7	—	8	ns	
Output Enable Access Time	tGLQV	tOE	_	4	- 1	4	—	4	ns	
Output Hold from Address Change	†AXQX	tон	3		3	- 1	3	-	ns	1
Chip Enable Low to Output Active	^t ELQX	t∟z	3		3	—	3		ns	4, 5, 6
Output Enable Low to Output Active	^t GLQX	tLZ	0		0	-	0	—	ns	4, 5, 6
Chip Enable High to Output High-Z	^t EHQZ	tHZ	0	3	0	3.5	0	4	ns	4, 5, 6
Output Enable High to Output High-Z	tGHQZ	tHZ	0	3	0	3.5	0	4	ns	4, 5, 6

NOTES:

1. W is high for read cycle.

Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. .All read cycle timings are referenced from the last valid address to the first transitioning address.

 At any given voltage and temperature, tEHQZ max is less than tELQX min, and tGHQZ max is less than tGLQX min, both for a given device and from device to device.

5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

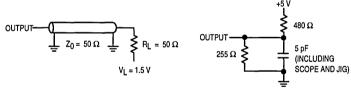


Figure 1A

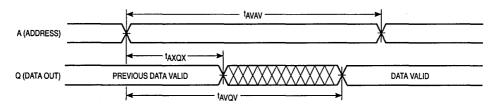
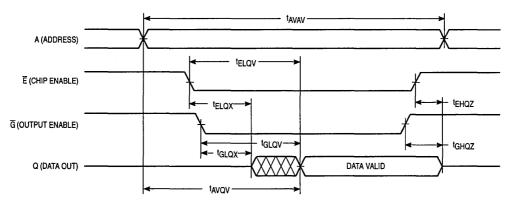

-<u>-</u>-

Figure 1B

TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Note)

NOTE: Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).

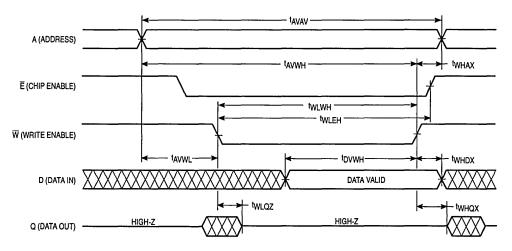
NOTE: Addresses valid prior to or coincident with \overline{E} going low.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	Symbol		MCM6709R-6		MCM6709R-7		MCM6709R-8		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	6	—	7		8	-	ns	3
Address Setup Time	tAVWL	tAS	0		0	—	0		ns	1
Address Valid to End of Write	tavwh	tAW	6	-	7	_	8	-	ns	
Write Pulse Width		twp	6	-	7	-	8	-	ns	
Data Valid to End of Write	tDVWH	tDW	3		3.5		4		ns	
Data Hold Time	twhox	t _{DH}	0	-	0	-	0	-	ns	
Write Low to Data High-Z	twlqz	twz	0	3.5	0	3.5	0	4	ns	4, 5, 6
Write High to Output Active	twhax	tow	3		3	-	3	_	ns	4, 5, 6
Write Recovery Time	twhax	twR	0	_	0	—	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All write cycle timing is referenced from the last valid address to the first transitioning address.

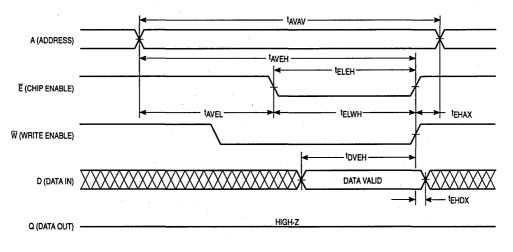
4. Transition is measured 200 mV from steady state voltage with load of Figure 1B.

5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, twLoz max is less than twHox min both for a given device and from device to device.

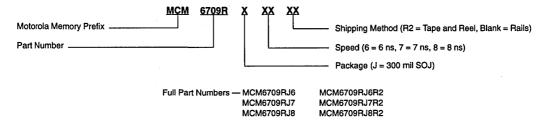
WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

Parameter	Syn	Symbol		MCM6709R-6		MCM6709R-7		MCM6709R-8		
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	6		7	-	8	-	ns	3
Address Setup Time	tAVEL	tAS	0	—	0	· —	0	. —	ns	
Address Valid to End of Write	tAVEH	tAW	6	-	7	-	8	- 1	ns	
Chip Enable to End of Write	tELEH, tELWH	tcw	5	-	6	-	7	-	ns	4, 5
Data Valid to End of Write	tDVEH	tDW	3		3.5		4	-	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	-	ns	
Write Recovery Time	^t EHAX	twR	0	-	0		0	—	ns	


NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

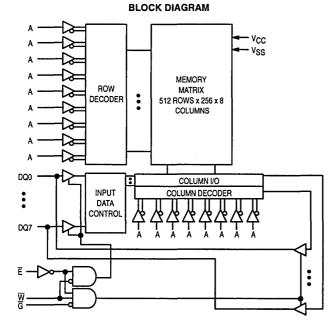

3. All write cycle timing is referenced from the last valid address to the first transitioning address.

4. If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 5. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

WRITE CYCLE 2

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


128K x 8 Bit Fast Static Random Access Memory

The MCM6726 is a 1,048,576 bit static random access memory organized as 131,072 words of 8 bits. This device is fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.

This device meets JEDEC standards for functionality and revolutionary pinout, and is available in a 400 mil plastic small-outline J-leaded package.

- Single 5 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: 10, 12, 15 ns
- Center Power and I/O Pins for Reduced Noise

MCM6726

PIN	I ASSIG	NME	ENT
٨C	1•	32	b ∧
A (2	31	j ∧
A [3	30	j a
A [4	29	þ 🔺
ĒC	5	28	៤
і DOO [6	27	DQ7
DQ1 [7	26] DQ6
Vcc 🛙	8	25) v _{ss}
v _{ss} (9	24] vcc
DQ2 [10	23] DQ5
DQ3 [11	22] DQ4
. 🗑 🖸	12	21	
A [13	20	D A C
۸C	14	19	D A D
٨C	15	18	D A
٨C	16	17	þ 🔺
			-

PIN NAMES							
A0 – A16 E W G DQ0 – DQ7 V _{CC} V _{SS}	Chip Enable Write Enable Output Enable . Data Input/Output + 5 V Power Supply						

TRUTH TABLE (X = Don't Care)

Ē	Ĝ	Ŵ	Mode	V _{CC} Current	Output	Cycle
н	х	х	Not Selected	ISB1, ISB2	High-Z	-
L	н	н	Output Disabled	ICCA	High-Z	-
L	L	н	Read	ICCA	Dout	Read Cycle
L	х	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to V_{SS} for Any Pin Except V_{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 30	mA
Power Dissipation	PD	1.2	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	_	0.8	V

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 2.0 ns) for I ≤ 20.0 mA.

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2 V ac (pulse width \leq 2.0 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(i)	-	± 1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)	_	± 1.0	μA
Output Low Voltage (IOL = + 8.0 mA)	Vol	—	0.4	V
Output High Voltage (IOH = - 4.0 mA)	Voh	2.4	-	v

POWER SUPPLY CURRENTS

Parameter	Symbol	MCM6726-10	MCM6726-12	MCM6726-15	Unit
AC Active Supply Current (I _{out} = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	175	165	155	mA
Active Quiescent Current ($\overline{E} = V_{IL}$, $V_{CC} = max$, f = 0 MHz)	ICC2	100	100	100	mA
AC Standby Current ($\vec{E} = V_{IH}$, $V_{CC} = max$, $f = f_{max}$)	ISB1	60	60	60	mA
CMOS Standby Current (V _{CC} = max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2$ V, V _{in} $\le V_{SS} + 0.2$ V, or $\ge V_{CC} - 0.2$ V)		20	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address Input Capacitance	C _{in}	-	6	pF
Control Pin Input Capacitance	C _{in}	—	6	pF
Input/Output Capacitance	CI/O		8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to \pm 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V
Input Rise/Fall Time	. 2 ns

Output Timing Measurement Reference Level 1.5 V Output Load See Figure 1A

READ CY	CLE TIMI	NG (See Note:	s 1 and 2)

	Syn	Symbol MCM6726-10 MCM6726		726-12	MCM6	726-15				
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	^t RC	10	-	12		15	—	ns	3
Address Access Time	tAVQV	tAA	1	10	-	12	—	15	ns	
Enable Access Time	^t ELQV	tACS	-	10	-	12	-	15	ns	
Output Enable Access Time	tGLQV	tOE	-	5	—	6	-	7	ns	
Output Hold from Address Change	tAXQX	tон	3	—	3		3	—	ns	
Enable Low to Output Active	^t ELQX	^t CLZ	3	- 1	3	-	3	- 1	ns	4,5,6
Output Enable Low to Output Active	tGLQX	^t OLZ	0	- 1	0	-	0	—	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	5	0	6	0	7	ns	4,5,6
Output Enable High to Output High-Z	^t GHQZ	tohz	0	5	0	6	0	7	ns	4,5,6

NOTES:

1. W is high for read cycle.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All read cycle timings are referenced from the last valid address to the first transitioning address.

4. At any given voltage and temperature, tEHQZ max < tELQX min, and tGHQZ max < tGHQX min, both for a given device and from device to device.

5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

7. Device is continuously selected ($\overline{E} = V_{|L}$, $\overline{G} = V_{|L}$).

8. Addresses valid prior to or coincident with E going low.

AC TEST LOADS

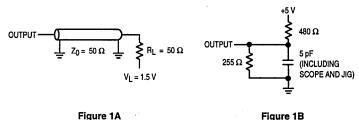
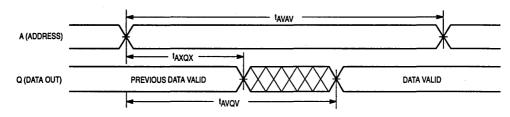
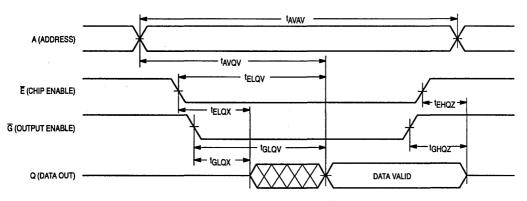



Figure 1B


TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Note 7)

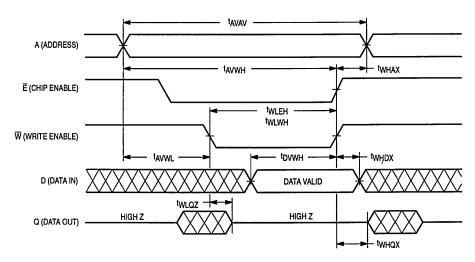
- Outention avourd Write access - otherwise power issue. -reads not a real issue.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

Parameter	Symbol		MCM6726-10		MCM6726-12		MCM6726-15			
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10	—	12	-	15	-	ns	3
Address Setup Time	tAVWL	tAS	0	-	<u> </u>	, —	0	—	ns	
Address Valid to End of Write	tavwh	taw	9	-	(10)	-	12	—	ns	
Address Valid to End of Write, $\overline{\mathbf{G}}$ High	^t AVWH	taw	8	- 1	C .	Q -	10	—	ns	1
Write Pulse Width	^t WLWH ^t WLEH	twp twp	9	-	20)	-	12	-	ns	
Write Pulse Width, G High	^t WLWH ^t WLEH	twp twp	8	-	9	-	10	_	ns	
Data Valid to End of Write	tdvwh	tDW	5	- 1	6	-	7	—	ns	
Data Hold Time	twhdx	^t DH	0	—	0	- 1	0	- 1	ns	
Write Low to Data High-Z	twlqz	twz	0	5	0	6	0	7	ns	4,5,6
Write High to Output Active	twhox	tow	3	-	3	-	3	-	ns	4,5,6
Write Recovery Time	twhax	twn	0		0		0	—	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

4. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

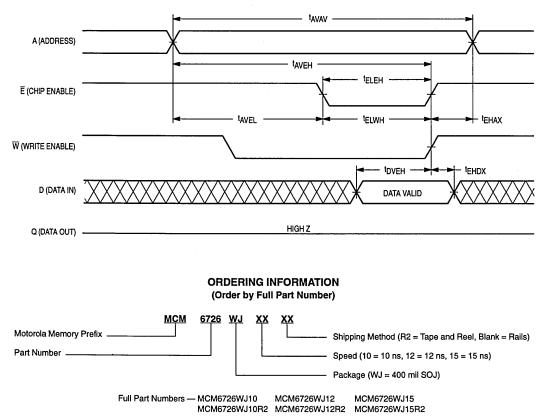
5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, tWLQZ max < tWHQX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

Parameter	Syn	Symbol		MCM6726-10		MCM6726-12		MCM6726-15		
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10	-	12	—	15	-	ns	3
Address Setup Time	tAVEL	tas	0	-	0		0	_	ns	
Address Valid to End of Write	tAVEH	tAW	8	- 1	9	.—	10	-	ns	
Enable to End of Write	^t ELEH ^t ELWH	tcw tcw	8	-	9	-	10	-	ns	4,5
Data Valid to End of Write	^t DVEH	tow	5	-	6	—	7	-	ns	
Data Hold Time	^t EHDX	^t DH	0	—	0	—	0	-	ns	
Write Recovery Time	^t EHAX	twr	0	- 1	0.	-	0		ns	

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

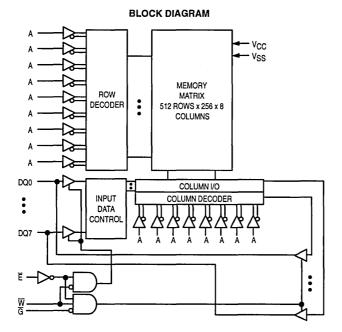
2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

4. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.

5. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


Product Preview 128K x 8 Bit Fast Static Random Access Memory

The MCM6726A is a 1,048,576 bit static random access memory organized as 131,072 words of 8 bits. This device is fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.

This device meets JEDEC standards for functionality and revolutionary pinout, and is available in a 400 mil plastic small-outline J-leaded package.

- Single 5 V ± 10% Power Supply
- Fully Static --- No Clock or Timing Strobes Necessary
- · All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: 8, 10, 12, 15 ns
- Center Power and I/O Pins for Reduced Noise

MCM6726A

PIN	IASS	IGNME	13	١T
۸d	1•	32	ի	A
٨C	2	31	þ	A
٨Ľ	3	30	þ	A
۸Ľ	4	29	þ	A
ĒC	5	28	þ	G .
DQ0 [6	27	þ	DQ7
DQ1 [7	26	þ	DQ6
Vcc 🛛	8	25	þ	V _{SS}
Vss 🛙	9	24	þ	V _{CC}
DQ2 [10	23	þ	DQ5
гоз [11	22	þ	DQ4
₩d	12	21	þ	Α
٨Ľ	13	20	þ	A
АĽ	14	19	þ	A
۸C	15	18	þ	Α
٨C	16	17	þ	A
•				

AMES
Address Input Chip Enable Write Enable Output Enable Data Input/Output + 5 V Power Supply Ground

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

Ē	Ğ	W	Mode	V _{CC} Current	Output	Cycle
н	X	х	Not Selected	ISB1, ISB2	High-Z	-
L.	н	н	Output Disabled	ICCA	High-Z	-
L	L	н	Read	ICCA	Dout	Read Cycle
L	х	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 30	mA
Power Dissipation	PD	1.2	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	Tstg	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2		V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*	-	0.8	v

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 2.0 ns) for I ≤ 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 2.0 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(i)	-	± 1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)	_	± 1.0	μA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	· · ·	V

POWER SUPPLY CURRENTS

Parameter	Symbol	6726A-8	6726A-10	6726A-12	6726A-15	Unit
AC Active Supply Current (I _{out} = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	185	175	165	155	mA
Active Quiescent Current ($\overline{E} = V_{IL}$, $V_{CC} = max$, f = 0 MHz)	ICC2	100	100	100	100	mA
AC Standby Current ($\overline{E} = V_{IH}, V_{CC} = max, f = f_{max}$)	ISB1	60	60	60	60	mA
CMOS Standby Current (V _{CC} = max, f = 0 MHz, $\vec{E} \ge V_{CC} - 0.2$ V, V _{in} $\le V_{SS} + 0.2$ V, or $\ge V_{CC} - 0.2$ V)	ISB2	20	20	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address Input Capacitance	C _{in}	-	6	pF
Control Pin Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	CI/O	-	8	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ T}_{A} = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.	5 V
Input Pulse Levels 0 to 3.	0 V 0
Input Rise/Fall Time 2	ns

READ CYCLE TIMING (See Notes 1 and 2)

	Symbol		672	5 A-8	6726A-10		6726A-12		6726A-15			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	8	-	10	—	12	-	15	-	ns	3
Address Access Time	tAVQV	taa	-	8		10		12	-	15	ns	[
Enable Access Time	t ELQV	tACS		8	-	10	-	12	-	15	ns	
Output Enable Access Time	tGLQV	tOE	—	4	-	5	-	6	-	7	ns	
Output Hold from Address Change	tAXQX	tон	3		3	-	3	-	3	-	ns	
Enable Low to Output Active	^t ELQX	^t CLZ	3	-	3	-	3	-	3	-	ns	4,5,6
Output Enable Low to Output Active	tGLQX	tolz	0		0		0	-	0	-	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	tCHZ	-	4	0	5	0	6	0	7	ns	4,5,6
Output Enable High to Output High-Z	tGHQZ	tohz	-	4	0	5	0	6	0	7	ns	4,5,6

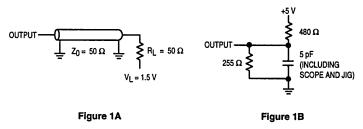
NOTES:

1. W is high for read cycle.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All read cycle timings are referenced from the last valid address to the first transitioning address.

 At any given voltage and temperature, t_{EHQZ} max < t_{ELQX} min, and t_{GHQZ} max < t_{GHQX} min, both for a given device and from device to device.

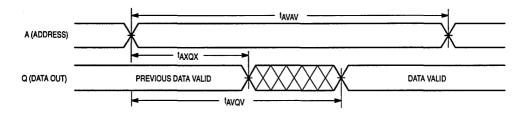

5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

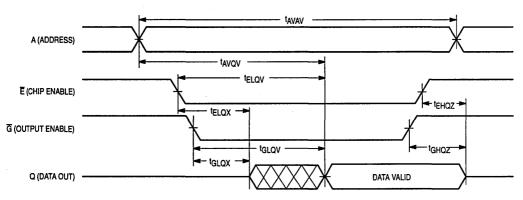
7. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).

8. Addresses valid prior to or coincident with E going low.

AC TEST LOADS



TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note 7)

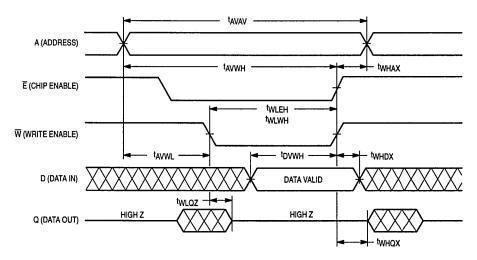
READ CYCLE 2 (See Note 8)

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	nbol	672	6 A- 8	6726	A-10	6726A-12		6726A-15			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	8	-	10	-	12		15	-	ns	3
Address Setup Time	tavwl	tAS	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	tAW	8	-	9	-	10	-	12	-	ns	
Address Valid to End of Write, G High	tavwh	tAW	7	-	8	-	9	-	10	-	ns	
Write Pulse Width	^t WLWH ^t WLEH	twp twp	8	-	9	-	10	-	12	-	ns	
Write Pulse Width, G High	^t WLWH ^t WLEH	tWP tWP	7	-	8	-	9	-	10	-	ns	
Data Valid to End of Write	^t DVWH	tDW	4	-	5	-	6	- 1	7	-	ns	
Data Hold Time	twhdx	^t DH	0		0	-	0	-	0		ns	
Write Low to Data High-Z	twLQZ	twz	0	4	0	5	0	6	0	7	ns	4,5,6
Write High to Output Active	twhox	tow	3	—	3	-	3	-	3	-	ns	4,5,6
Write Recovery Time	twhax	twR	0	—	0	—	0	-	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

4. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

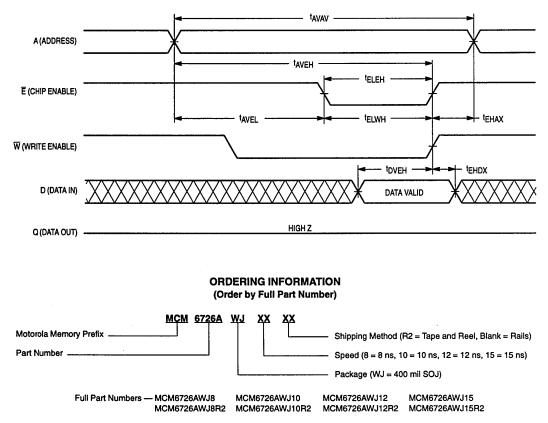
5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, twLQZ max < twHQX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Syn	nbol	672	6726A-8 6726A-10		6726A-12		6726A-15				
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	8	-	10	-	12	-	15	-	ns	3
Address Setup Time	tAVEL	tAS	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	^t AVEH	taw	7	-	8		9	-	10	-	ns	
Enable to End of Write	tELEH tELWH	tcw tcw	7	-	8	-	9	-	10	-	ns	4,5
Data Valid to End of Write	^t DVEH	tDW	4	—	5	-	6	-	7	-	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	-	0	-	ns	
Write Recovery Time	^t EHAX	twn	0	-	0	-	0		0	-	ns	

NOTES:

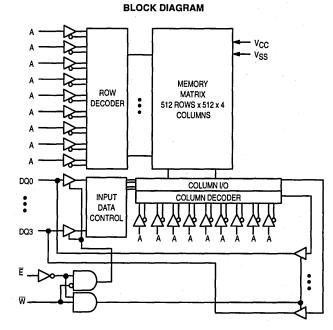

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

4. If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.

5. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

256K x 4 Bit Fast Static Random Access Memory

The MCM6728 is a 1,048,576 bit static random access memory organized as 262,144 words of 4 bits. This device is fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

This device meets JEDEC standards for functionality and revolutionary pinout, and is available in a 400 mil plastic small-outline J-leaded package.

- Single 5 V ± 10% Power Supply
- Fully Static --- No Clock or Timing Strobes Necessary
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: 10, 12, 15 ns
- Center Power and I/O Pins for Reduced Noise

MCM6728

Pil	N ASS	IGNMI	ENT
۸C	1•	28	p 🔺
• A [2	27	
۸C	3	26	
A C	4	25	J A
ĒC	5	24	
DQ0 [6	23] DQ3
V _{CC} [7	22] v _{ss}
v _{ss} D	8	21] vcc
DQ1 [9	20] DQ2
₩d	10	19] A
۸C	11	18	
۸C	12	17	D A .
۸Ľ	13	16	
۸C	14	15] A

PIN NAMES							
E W DQ0 – DQ3 V _{CC} V _{SS}	Address Input Chip Enable Write Enable Data Input/Output + 5 V Power Supply 						

TRUTH TABLE (X = Don't Care)

Ē	W	Mode	V _{CC} Current	Output	Cycle
н	X	Not Selected	ISB1, ISB2	High-Z	_
L	н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 30	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature—Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*		0.8	v

* VIL (min) = -0.5 V dc; VIL (min) = -2.0 V ac (pulse width ≤ 2.0 ns) for $1 \le 20.0$ mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 2.0 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	lkg(l)	·	± 1.0	μΑ
Output Leakage Current ($\vec{E} = V_{IH}, V_{out} = 0$ to V_{CC})	l _{lkg(O)}		± 1.0	μΑ
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL		0.4	V
Output High Voltage (IOH = - 4.0 mA)	VOH	2.4	- 1	V

POWER SUPPLY CURRENTS

Parameter	Symbol	MCM6728-10	MCM6728-12	MCM6728-15	Unit
AC Active Supply Current (I _{out} = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	165	155	145	mA
Active Quiescent Current ($\overline{E} = V_{IL}$, $V_{CC} = max$, f = 0 MHz)	ICC2	90	90	90	mA
AC Standby Current ($\overline{E} = V_{IH}$, $V_{CC} = max$, $f = f_{max}$)	ISB1	60	60	60	mA
$\begin{array}{l} \mbox{CMOS Standby Current} (V_{CC} = \max, f = 0 \mbox{ MHz}, \overline{E} \geq V_{CC} - 0.2 \mbox{ V}, \\ \mbox{V}_{in} \leq V_{SS} + 0.2 \mbox{ V}, \mbox{ or } \geq V_{CC} - 0.2 \mbox{ V}) \end{array}$	ISB2	20	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address Input Capacitance	C _{in}	-	6	pF
Control Pin Input Capacitance	C _{in}		6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.	.5 V
Input Pulse Levels 0 to 3.	.0 V 0.
Input Rise/Fall Time 2	2 ns

Output Timing Measurement Reference Level 1.5 V Output Load See Figure 1A

READ CYCLE TIMING (See Notes 1 and 2)

	Syn	nbol	MCM6728-10		MCM6728-12		MCM6728-15			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	10	-	12	- 1	15	—	ns	3
Address Access Time	tAVQV	tAA	_	10	-	12	-	15	ns	
Enable Access Time	^t ELQV	^t ACS	_	10	— —	12	- 1	15	ns	
Output Hold from Address Change	tAXQX	tон	3		3	-	3	-	ns	
Enable Low to Output Active	^t ELQX	tCLZ	3	—	3	- 1	3	-	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	5	0	6	0	7	ns	4,5,6

NOTES:

1. W is high for read cycle.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All read cycle timings are referenced from the last valid address to the first transitioning address.

4. At any given voltage and temperature, tEHQZ max < tELQX min, for a given device.

5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

7. Device is continuously selected ($\overline{E} = V_{II}$).

8. Addresses valid prior to or coincident with E going low.

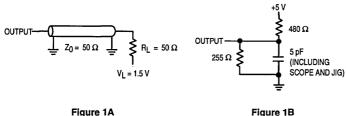
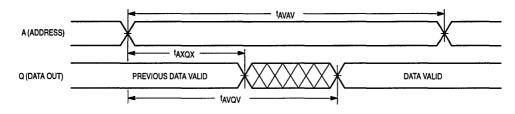
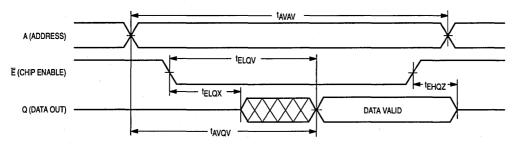



Figure 1B


TIMING LIMITS

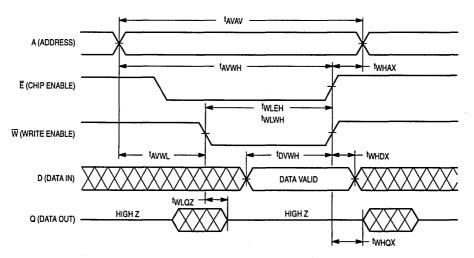
The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Note 7)

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	nbol	MCM6	5728-10	MCM6	728-12	МСМе	728-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10	-	12	-	15	-	ns	3
Address Setup Time	tAVWL	tAS	0	- 1	0	-	0	—	ns	
Address Valid to End of Write	tavwh	taw	9		10	. –	12	-	ns	
Write Pulse Width		tWP tWP	9	-	10	-	12	-	ns	
Data Valid to End of Write	tDVWH	tow	5	—	6	-	7	—	ns	
Data Hold Time	twhdx	^t DH	0	—	0	-	0	- 1	ns	
Write Low to Data High-Z	twLQZ	twz	0	5	0	6	0	7	ns	4,5,6
Write High to Output Active	twhax	tow	3	-	3	-	3	-	ns	4,5,6
Write Recovery Time	twhax	twn	0	-	0	-	0	-	ns	

NOTES:


A write occurs during the overlap of E low and W low.
 For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

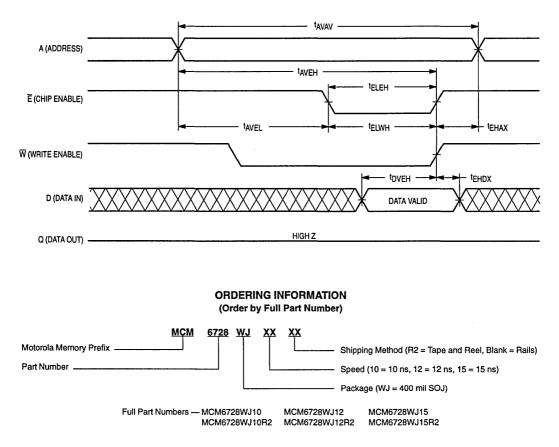
4. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, twLoz max < twHox min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Sym		Symbol MCM6728-10		MCM6	728-12	мсме	728-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	10	- 1	12		15	- 1	ns	3
Address Setup Time	^t AVEL	tAS	0		0	-	0		ns	
Address Valid to End of Write	tAVEH	taw	8	-	9	-	10	—	ns	
Enable to End of Write	^t ELEH	tcw	8		9	—	10	- 1	ns	4,5
Enable to End of Write	tELWH	tcw	8	_	9	—	10	-	ns	4,5
Data Valid to End of Write	^t DVEH	tDW	5	_	6	—	7	-	ns	
Data Hold Time	^t EHDX	^t DH	0	_	0	—	0	-	ns	
Write Recovery Time	^t EHAX	twn	0		0	—	0	-	ns	

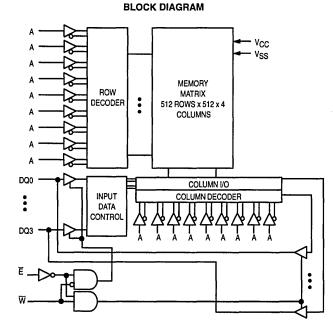

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview 256K x 4 Bit Fast Static Random Access Memory

The MCM6728A is a 1,048,576 bit static random access memory organized as 262,144 words of 4 bits. This device is fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

This device meets JEDEC standards for functionality and revolutionary pinout, and is available in a 400 mil plastic small-outline J-leaded package.

- Single 5 V ± 10% Power Supply
- Fully Static -- No Clock or Timing Strobes Necessary
- · All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: 8, 10, 12, 15 ns
- Center Power and I/O Pins for Reduced Noise

MCM6728A

PIN	ASSIG	INM	ENT
۸d	1.	28	D A
۸C	2	27] A
٨d	3	26] A [
A [4	25] A
ĒC	5	24] A
DC0 [6	23] DQ3
V _{CC} [7	22) v _{ss}
v _{ss} [8	21] vcc
DQ1 [9	20] DQ2
⊽d	10	19] A [
×C	11	18] A [
۸C	12	17	DA
۸C	13	16	D A
٨đ	14	15	D A

PIN NAMES	
A0 – A17 Address Inj E Chip Enal W Write Enal DQ0 – DQ3 Data Input/Outj VCC + 5 V Power Sup VSS Grou NC No Connect	ble ble put ply ind

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

Ē	W	Mode	V _{CC} Current	C Current Output			
н	x	Not Selected	ISB1, ISB2	High-Z	—		
L	н	Read	ICCA	Dout	Read Cycle		
L	L	Write	ICCA	High-Z	Write Cycle		

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 30	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature—Plastic	Tstg	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*		0.8	v

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 2.0 ns) for I ≤ 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 2.0 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	l _{lkg(l)}		±1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)		± 1.0	μA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	-	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	V

POWER SUPPLY CURRENTS

Parameter	Symbol	6728A-8	6728A-10	6728A-12	6728A-15	Unit
AC Active Supply Current (Iout = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	175	165	155	145	mA
Active Quiescent Current ($\vec{E} = V_{IL}, V_{CC} = \max, f = 0 \text{ MHz}$)	ICC2	90	90	90	90	mA
AC Standby Current ($\overline{E} = V_{IH}, V_{CC} = max, f = f_{max}$)	ISB1	60	60	60	60	mA
CMOS Standby Current (V _{CC} = max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2$ V, V _{in} $\le V_{SS} + 0.2$ V, or $\ge V_{CC} - 0.2$ V)	ISB2	20	20	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address Input Capacitance	Cin	_	6	pF
Control Pin Input Capacitance	C _{in}	_	6	pF
Input/Output Capacitance	CI/O	-	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.	5 V
Input Pulse Levels 0 to 3.	0 V 0
Input Rise/Fall Time 2	ns

READ CYCLE TIMING (See Notes 1 and 2)

	Syn	Symbol		6728A-8 6		6728A-10		6728A-12		6728A-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	8	. —	10		12	-	15	-	ns	3
Address Access Time	tavqv	tAA	-	8	—	10	—	12	-	15	ns	
Enable Access Time	^t ELQV	tACS	-	8	-	10	—	12	—	15	ns	
Output Hold from Address Change	†AXQX	tон	3	_	3	-	3	-	3	-	ns	
Enable Low to Output Active	^t ELQX	tCLZ	3	—	3	-	3	-	3	-	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	4	0	5	0	6	0	7	ns	4,5,6

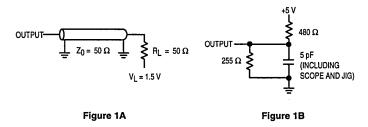
NOTES:

1. W is high for read cycle.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All read cycle timings are referenced from the last valid address to the first transitioning address.

4. At any given voltage and temperature, tEHQZ max < tELQX min, for a given device.

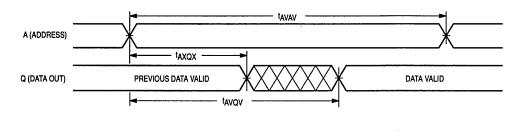

5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

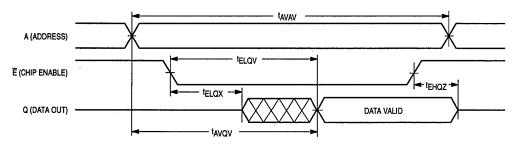
7. Device is continuously selected ($\overline{E} = V_{IL}$).

8. Addresses valid prior to or coincident with E going low.

AC TEST LOADS



TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note 7)

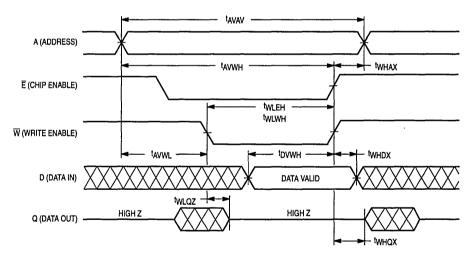
READ CYCLE 2 (See Note 8)

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	Symbol		6728A-8 6728A-10		6728A-12		6728A-15				
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	8	-	10	—	12		15	-	ns	3
Address Setup Time	tAVWL	tAS	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	tAW	8	-	9	—	10	-	12	-	ns	
Write Pulse Width	twlwh twleh	tWP tWP	8	-	9	-	10	-	12	-	ns	
Data Valid to End of Write	tDVWH	tDW	4	-	5	-	6	-	7	—	ns	
Data Hold Time	twhdx	^t DH	0	-	0	—	0	-	0	-	ns	
Write Low to Data High-Z	twloz	twz	0	4	0	5	0	6	0	7	ns	4,5,6
Write High to Output Active	twhox	tow	3		3	—	3	-	3	-	ns	4,5,6
Write Recovery Time	twhax	twR	0	—	0	-	0	_	0	—	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

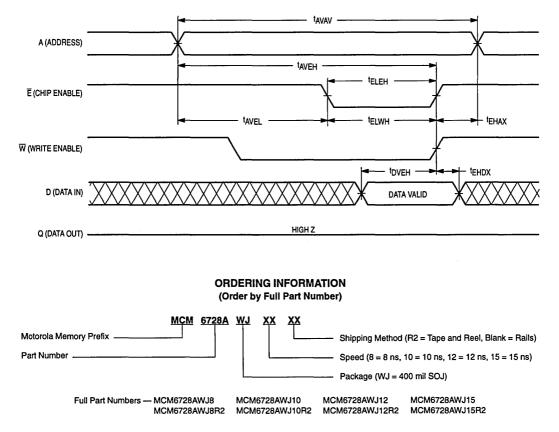
4. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, twLQZ max < twHQX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

· · · · · · · · · · · · · · · · · · ·	Syn	nbol	672	8A-8	6728	A-10	6728	A-12	6728	A-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	8	- 1	10	-	12	- 1	15	-	ns	3
Address Setup Time	^t AVEL	tAS	0	-	0	-	0	- 1	0		ns	
Address Valid to End of Write	tAVEH	taw	7	—	8	-	9	-	10		ns	
Enable to End of Write	^t ELEH	tcw	7	-	8	-	9	—	10	—	ns	4,5
Enable to End of Write	^t ELWH	tcw	7	-	8	-	9	-	10	-	ns	4,5
Data Valid to End of Write	^t DVEH	tDW	4	-	5	- T	6	-	7	—	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0		0	-	0		ns	
Write Recovery Time	^t EHAX	twR	0	- 1	0	—	0	- 1	0	-	ns	


NOTES:

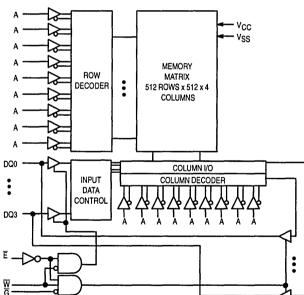
1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

MOTOROLA SEMICONDUCTOR **TECHNICAL DATA**


256K x 4 Bit Fast Static Random **Access Memory**

The MCM6729 is a 1,048,576 bit static random access memory organized as 262.144 words of 4 bits. This device is fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.

This device meets JEDEC standards for functionality and revolutionary pinout, and is available in a 400 mil plastic small-outline J-leaded package.

- Single 5 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- All Inputs and Outputs Are TTL Compatible •
- · Three State Outputs
- Fast Access Times: 10, 12, 15 ns •
- Center Power and I/O Pins for Reduced Noise

BLOCK DIAGRAM

WJ PACKAGE

MCM6729

400 MIL SOJ **CASE 857A**

PIN	ASSI	GNME	INT
ис р	1.	32	D A
∧ (2	31] A
× d	3	30	D A
× (4	29	P ∧
∧ [5	28	
ĒĊ	6	27	٥
D00 [7	26	003
v _{cc} d	8	25	D v _{ss}
v _{ss} D	9	24	l vcc
DQ1 [10	23	
₩d	11	22	
A []	12	21	þ,
٨Ç	13	20	
∧ D	14	19	P ▲
۸d	15	18	þ _A
NC [16	17	Лис
-			•

PIN NAMES					
A0 - A17 E G DQ0 - DQ3 VCC + VSS NC	Chip Enable Write Enable Output Enable Data Input/Output 5 V Power Supply Ground				

TRUTH TABLE (X = Don't Care)

Ē	G	Ŵ	Mode	V _{CC} Current	Output	Cycle
н	х	х	Not Selected	ISB1, ISB2	High-Z	-
L	н	н	Output Disabled	ICCA	High-Z	_
L	L	н	Read	ICCA	Dout	Read Cycle
L	х	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	±30	mA
Power Dissipation	PD	1.2	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2		V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	- 1	0.8	v

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width \leq 2.0 ns) for I \leq 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 2.0 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	¹ lkg(l)	-	± 1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)	-	± 1.0	μA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL		0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	V

POWER SUPPLY CURRENTS

Parameter	Symbol	MCM6729-10	MCM6729-12	MCM6729-15	Unit
AC Active Supply Current (I _{out} = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	165	155	145	mA
Active Quiescent Current ($\overline{E} = V_{IL}$, $V_{CC} = max$, f = 0 MHz)	ICC2	90	90	90	mA
AC Standby Current ($\overline{E} = V_{IH}$, $V_{CC} = max$, f = f _{max})	ISB1	60	60	60	mA
CMOS Standby Current (V _{CC} = max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2 V$, V _{in} $\le V_{SS} + 0.2 V$, or $\ge V_{CC} - 0.2 V$)	ISB2	20	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address Input Capacitance	C _{in}	-	6	pF
Control Pin Input Capacitance	C _{in}	-	6	pF
Input/Output Capacitance	CI/O	_	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5	v
Input Pulse Levels 0 to 3.0	۷
Input Rise/Fall Time 2 r	۱S

Output Timing Measurement Reference Level 1.5 V Output Load See Figure 1A

READ CYCLE TIMING (See Notes 1 and 2)

	Symbol		MCM6729-10		MCM6729-12		MCM6729-15			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	10	-	12	- 1	15		ns	3
Address Access Time	tAVQV	tAA	_	10	-	12	_	15	ns	
Enable Access Time	^t ELQV	tACS	_	10	_	12	-	15	ns	
Output Enable Access Time	tGLQV	tOE	_	5	_	6		7	ns	
Output Hold from Address Change	tAXQX	tон	3	-	3	-	3		ns	
Enable Low to Output Active	^t ELQX	tCLZ	3		3	-	3	-	ns	4,5,6
Output Enable Low to Output Active	^t GLQX	tolz	0	- 1	0	-	0	-	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	5	0	6	0	7	ns	4,5,6
Output Enable High to Output High-Z	tGHQZ	tонz	0	5	0	6	0	7	ns	4,5,6

NOTES:

1. W is high for read cycle.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All read cycle timings are referenced from the last valid address to the first transitioning address.

4. At any given voltage and temperature, tEHQZ (max) < tELQX (min), and tGHQZ (max) < tGHQX (min), both for a given device and from device to device.

5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

7. Device is continuously selected ($\overline{E} = V_{II}$, $\overline{G} = V_{II}$).

8. Addresses valid prior to or coincident with E going low.

AC TEST LOADS

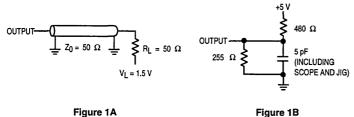
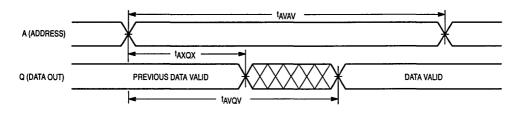
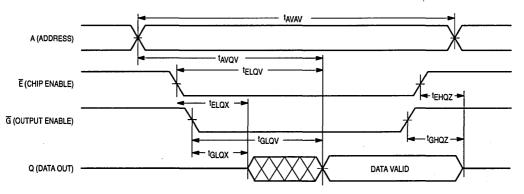



Figure 1B


TIMING LIMITS

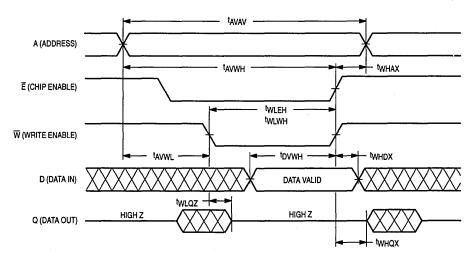
The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Note 7)

	Syn	nbol	MCM	MCM6729-10		MCM6729-12		729-15	1	
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10		12		15	—	ns	3
Address Setup Time	tAVWL	tAS	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	taw	9	-	10	-	12	—	ns	
Address Valid to End of Write, G High	tavwh	tAW	8	-	9	-	10	-	ns	
Write Pulse Width		twp twp	9	-	10	-	12	-	ns	
Write Pulse Width, G High		twp twp	8	-	9	-	10	-	ns	
Data Valid to End of Write	tovwh	tDW	5		6	- 1	7	-	ns	-
Data Hold Time	twhdx	^t DH	0	—	0		0	-	ns	
Write Low to Data High-Z	twLQZ	twz	0	5	0	6	0	7	ns	4,5,6
Write High to Output Active	twhox	tow	3	- 1	3		3	-	ns	4,5,6
Write Recovery Time	twhax	twR	0		0	I —	. 0	—	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

4. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

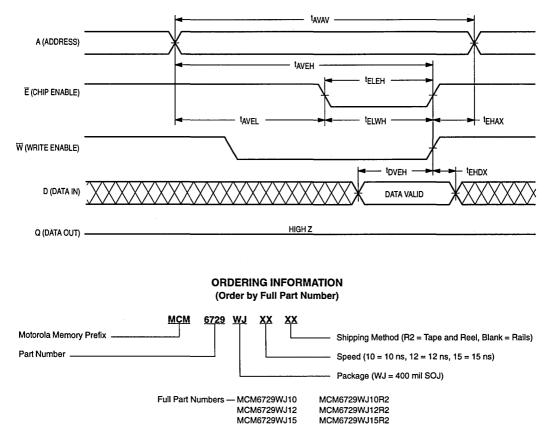
5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, twLQZ max < twHQX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Syn	Symbol		MCM6729-10		MCM6729-12		MCM6729-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10		12	—	15	—	ns	3
Address Setup Time	TAVEL	tAS	0	—	0	-	0	-	ns	
Address Valid to End of Write	tAVEH	tAW	8	-	9		10	-	ns	
Enable to End of Write	^t ELEH	tcw	8		9	-	10	-	ns	4,5
Enable to End of Write	^t ELWH	tcw	8	-	9	-	10	—	ns	4,5
Data Valid to End of Write	t DVEH	tDW	5	-	6	—	7	—	ns	
Data Hold Time	^t EHDX	tDH	0	-	0	-	0	-	ns	
Write Recovery Time	^t EHAX	twn	0		0	-	0	- T	ns	

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

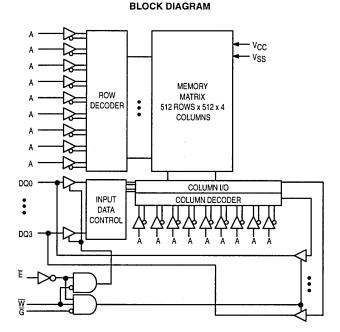
2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

4. If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.

5. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


Product Preview 256K x 4 Bit Fast Static Random Access Memory

The MCM6729A is a 1,048,576 bit static random access memory organized as 262,144 words of 4 bits. This device is fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.

This device meets JEDEC standards for functionality and revolutionary pinout, and is available in a 400 mil plastic small-outline J-leaded package.

- Single 5 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- · All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: 8, 10, 12, 15 ns
- Center Power and I/O Pins for Reduced Noise

MCM6729A

PIN	ASSIC	ANME	INT
ис [1.	32	þ∧
ΑC	2	31	D∧
A [3	30	DA
∧ [4	29	₽A
∧ d	5	28	
ĒD	6	27	٥ā
0,000	7	26	DQ3
vcc 🛙	8	25] v _{ss}
vss D	9	24] v _{cc}
	10	23	DQ2
₩d	11	22	D A C
∧ [12	21	₽A
٨Ū	13	20	1 ▲
∧ [14	19	₽A
٨Ū	15	18	Þ₄
ис [16	17	лс П
			-

PIN NAMES
A0 – A17 Address Input Ē Chip Enable W Write Enable G Output Enable DQ0 – DQ3 Data Input/Output VCC + 5 V Power Supply VSS Ground NC No Connection

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

Ē	G	W	Mode	V _{CC} Current	Output	Cycle
н	х	х	Not Selected	ISB1, ISB2	High-Z	-
L	н	н	Output Disabled	ICCA	High-Z	-
L	L	н	Read	ICCA	Dout	Read Cycle
L	х	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	±30	mA
Power Dissipation	PD	1.2	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	[`]	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*		0.8	V

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width \leq 2.0 ns) for I \leq 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 2.0 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{In} = 0 to V _{CC})	l _{lkg(l)}	—	± 1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}, V_{out} = 0$ to V_{CC})	likg(O)	—	± 1.0	μΑ
Output Low Voltage (IOL = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Voh	2.4		V

POWER SUPPLY CURRENTS

Parameter	Symbol	6729A-8	6729A-10	6729A-12	6729A-15	Unit
AC Active Supply Current (Iout = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	175	165	155	145	mA
Active Quiescent Current ($\overline{E} = V_{IL}$, $V_{CC} = max$, f = 0 MHz)	ICC2	90	90	90	90	mA
AC Standby Current ($\overline{E} = V_{IH}$, $V_{CC} = max$, f = f _{max})	ISB1	60	60	60	60	mA
CMOS Standby Current (V _{CC} = max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2$ V, V _{in} $\le V_{SS} + 0.2$ V, or $\ge V_{CC} - 0.2$ V)	ISB2	20	20	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address Input Capacitance	C _{in}	-	6	рF
Control Pin Input Capacitance	C _{in}		6	pF
Input/Output Capacitance	CI/O	-	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V ±10%, T_A = 0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5	V i
Input Pulse Levels 0 to 3.0	V I
Input Rise/Fall Time	ns

READ CYCLE TIMING (See Notes 1 and 2)

	Symbol		672	9A-8	6729A-10		6729A-12		6729A-15			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	8	-	10	—	12	—	15	[—	ns	3
Address Access Time	tAVQV	tAA	-	8		10	—	12	-	15	ns	
Enable Access Time	^t ELQV	tACS	—	8	—	10		12	—	15	ns	
Output Enable Access Time	tGLQV	tOE	-	4	·	5	—	6	—	7	ns	
Output Hold from Address Change	tAXQX	tон	3	-	3		3	-	3	-	ns	
Enable Low to Output Active	^t ELQX	^t CLZ	3	-	3	-	3	-	3		ns	4,5,6
Output Enable Low to Output Active	tGLQX	tolz	0	-	0	-	0	-	0	-	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	4	0	5	0	6	0	7	ns	4,5,6
Output Enable High to Output High-Z	tGHQZ	tонz	0	4	0	5	0	6	0	7	ns	4,5,6

NOTES:

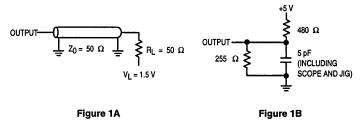
1. W is high for read cycle.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All read cycle timings are referenced from the last valid address to the first transitioning address.

 At any given voltage and temperature, t_{EHQZ} (max) < t_{ELQX} (min), and t_{GHQZ} (max) < t_{GHQX} (min), both for a given device and from device to device.

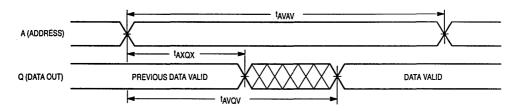
NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

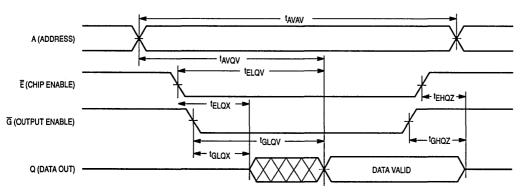

5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

7. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).

8. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.


AC TEST LOADS


TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. 2

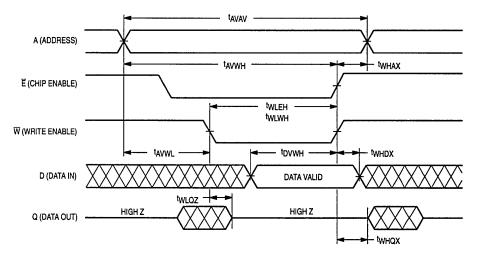
READ CYCLE 1 (See Note 7)

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	nbol	672	6729A-8		6729A-10		6729A-12		A-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	8	-	10	-	12	-	15	-	ns	3
Address Setup Time	tAVWL	tAS	0	—	0	-	0	-	0	-	ns	
Address Valid to End of Write	tAVWH	taw	8	-	9		10	-	12	-	ns	
Address Valid to End of Write, G High	tavwh	tAW	7	—	8	-	9	-	10	-	ns	
Write Pulse Width	twlwh twleh	twp twp	8	-	9	-	10	-	12	-	ns	
Write Pulse Width, G High		twp twp	7	-	8	-	9	-	10	-	ns	
Data Valid to End of Write	tDVWH	tDW	4	-	5	-	6	-	7	-	ns	
Data Hold Time	twhdx	^t DH	0	-	0	-	0	-	0	-	ns	
Write Low to Data High-Z	twLQZ	twz	0	4	0	5	0	6	0	7	ns	4,5,6
Write High to Output Active	twhox	tow	3	-	3	-	3	-	3	-	ns	4,5,6
Write Recovery Time	twhax	twn	0		0	-	0	-	0	- 1	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

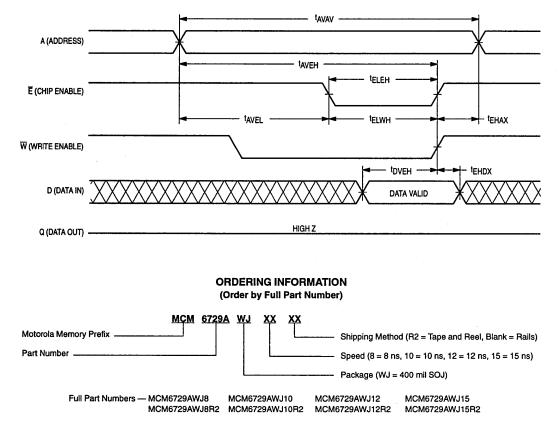
4. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, tWLQZ max < tWHQX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Syn	nbol	672	9A-8	6729	A-10	6729	A-12	6729	A-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Мах	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	8	-	10	-	12		15	-	ns	3
Address Setup Time	tAVEL	tAS	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	tAVEH	taw	7	-	8	-	9	-	10	-	ns	
Enable to End of Write	^t ELEH	tcw	7	-	8	-	9	- 1	10	-	ns	4,5
Enable to End of Write	^t ELWH	tcw	7	-	8	-	9	-	10		ns	4,5
Data Valid to End of Write	^t DVEH	tDW	4	-	5	-	6	-	7	-	ns	
Data Hold Time	^t EHDX	tDH	0		0	-	0	—	0	-	ns	
Write Recovery Time	^t EHAX	twR	0	-	0	-	0	-	0	—	ns	

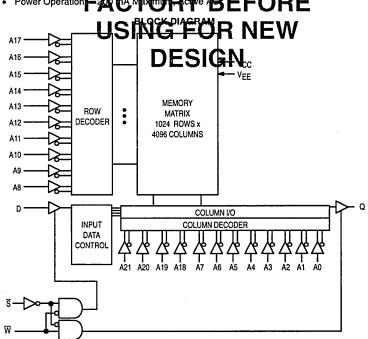

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview 4M x 1 Bit Fast Static Random Access Memory with ECL I/O

The MCM101520 is a 4,194,304 bit static random access memory organized as 4,194,304 words of 1 bit. This circuit is fabricated using high performance silicongate BiCMOS technology. Asynchronous design eliminates the need for external clocks or timing strobes. This device operates across a supply voltage range of -4.94 V to -5.46 V. Inputs and outputs are voltage and temperature 100K ECL compensated.

The MCM101520 meets JEDEC standards for functionality and revolutionary pinout. It is available in 400 mil, 36 lead surface mount TSOP package as well as 36 lead TAB.

- Fast Access Time 1, 1E1ASE CONSULT
 Equal Address and Chip Select Access Time
- Equal Address and Crip Select Access Time
 Power Operation

	MMMMM TS PACKAGE
N.M.M.	TS PACKAGE 400 MIL TSOP CASE TBD

MCM101520

THE PACKAGE 400 MIL TAB CASE TED

PIN	ASSI	GNMENT
NC D	1•	36] NC
A10 D	2	35 🛛 A1
A11 🛛	3	34 🛛 A2
A12 [4	33 🏽 A3
A13 [5	32 🛛 A19
A14 🕻	6	31 🗍 A20
A8 🛛	7	30 🛛 A21
ទ 🛙	8	29 D NC
v _{cc} [9	28 VEE
V _{EE} (10	27 🕽 V _{CC}
DΟ	11	26 🛛 Q
₩ C	12	25 🛛 A9
A0 [13	24 🛛 A4
A15 🛛	14	23 🗍 A5
A16 [15	22 🗍 A6
A17 [16	21 🗍 A7
A18 [17	20 NC
NC D	18	19 J NC
		i

PIN N	AMES
S Chip Select Q Data Output	W

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

S	W	Data	Current	Output	Cycle
н	х	х	IEE	L	Not Enabled
L	н	х	IEE	Q	Read Cycle
L	L	X	IEE	L	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
VEE Pin Potential (to Ground)	VEE	- 7.0 to + 0.5	V
Voltage Relative to V _{CC} for Any Pin Except V _{EE}	V _{in} , V _{out}	$V_{EE} = 0.5 \text{ to } + 0.5$	V
Output Current (per I/O)	lout	- 50	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	T _{bias}	- 30 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the OPERATING CONDI-TIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 0 V, V_{EE} = -5.2 V ±5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

DC OPERATING CONDITIONS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Тур	Max	Unit	
Supply Voltage (Operating Voltage Range)	VEE	- 5.46	5.2	- 4.94	V	
Input High Voltage	VIH	- 1165		- 880	mV	
Input Low Voltage	VIL	- 1810	—	- 1475	mV	
Output High Voltage	VOH	- 1025	-	- 880	mV	
Output Low Voltage	VOL	- 1810	-	- 1620	mV	
Output High Corner Voltage	VOHC	- 1035		-	mV	
Output Low Corner Voltage	VOLC		-	- 1610	mV	
Input Low Current	hL.	- 50		-	μΑ	
Input High Current	Чн	_	-	220	μA	
Chip Select Input Low Current	liL(CS)	0.5	_	170	μΑ	
Operating Power Supply Current (AVAV = 20 ns, All Outputs Open)	IEE	-	—	- 195	mA	
Quiescent Power Supply Current ($f_0 = 0$ MHz (All Inputs and Outputs Open)	IEEQ	-	_	- 150	mA	
Voltage Compensation (VOH)	ΔVOH/ΔVEE	± 35	± 35 mV/V @ - 4.94 to - 5.46			
Voltage Compensation (VOL)	ΔVOL/ΔVEE	± 60 mV/V @ - 4.94 to - 5.46				

RISE/FALL TIME REQUIREMENTS

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Rise Time	tr	20% to 80%	0.5	1.0	1.5	ns
Output Fall Time	tf	20% to 80%	0.5	1.0	1.5	ns

CAPACITANCE (f = 1.0 MHz, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

	Parameter	Symbol	Тур	Max	Unit
Input Capacitance	Address and Data $\overline{S}, \overline{W}$	C _{in} C _{ck}	3.5 4	7 7	pF
Output Capacitance	Q	Cout	4	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(VEE = $-5.2 \text{ V} \pm 5\%$, V_{CC} = 0 V, T_A = 0 to +70°C, Unless Otherwise Noted)

 Input Pulse Levels
 - 1.7 V to - 0.9 V (See Figure 1)

 Input Rise/Fall Time
 1 ns

 Input Timing Measurement Reference Level
 50%

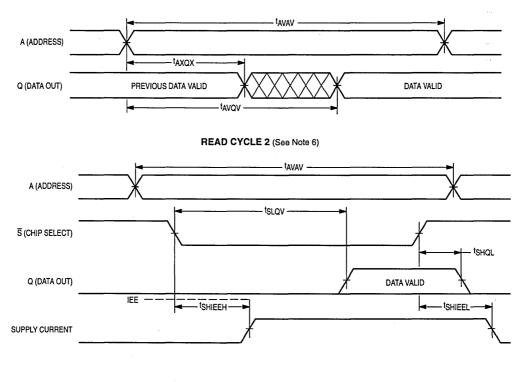
READ CYCLE TIMING (See Notes 1 and 2)

	Symbol		MCM101520-10		MCM101520-12		MCM101520-15			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	10		12	I —	15		ns	2, 3
Address Access Time	tAVQV	tAA	-	10	-	12	-	15	ns	
Chip Select Access Time	tSLQV	tACS	-	10	- 1	12	_	15	ns	6
Select High to Output Low	tSHQL	tRCS	0	7	0	8	0	9	ns	
Output Hold from Address Change	tAXQX	tон	4		4	-	4	-	ns	
Power Up Time	^t SLIEEH	tPU	0	<u> </u>	0	I —	0	-	ns	4
Power Down Time	^t SHIEEL	^t PD	_	10	_	12	_	15	ns	4

NOTES:

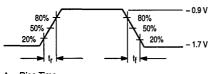
1. \overline{W} is high for read cycle.

2. Product sensitivites to noise require proper grounding and decoupling of power supplies during read and write cycles.


3. All read cycle timings are referenced from the last valid address to the first transitioning address.

4. This parameter is sampled and not 100% tested.

5. Device is continuously selected ($\overline{S} \leq V_{1L}$).


6. Addresses valid prior to or coincident with S going low.

READ CYCLE 1 (See Notes 1, 2, and 5)

2

AC TEST CONDITIONS

 $t_r = \text{Rise Time} \\ t_f = \text{Fall Time} \\ 50\% = \text{Timing Reference Levels}$

Figure 1. Input Levels

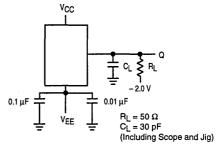
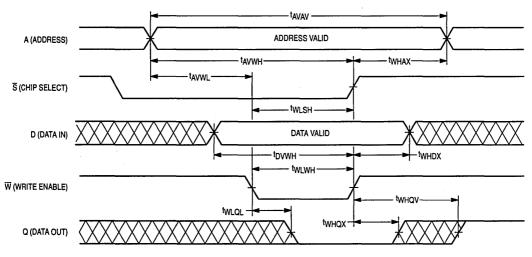


Figure 2. AC Test Circuit

WRITE CYCL	.E 1	W Controlled	, See Notes	1 and 2)
------------	------	--------------	-------------	----------

	Syn	nbol	MCM101520-10		MCM101520-12		MCM101520-15			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	10	- 1	12		15	_	ns	3
Address Setup Time	tAVWL	tAS	1	- 1	1	_	1	-	ns	
Address Valid to End of Write	tavwh	tAW	7	-	8	-	9	- 1	ns	
Write Pulse Width	twLwH twLSH	tWP	7	-	8		9	-	ns	
Data Valid to End of Write	^t DVWH	tDW	7	-	8	- T	9	-	ns	
Data Hold Time	twhox	^t DH	1	<u> </u>	1		1		ns	
Write High to Output Active	twhax	tow	4	-	4	-	4		ns	4
Write High to Output Valid	twhav	tAW	-	11	_	13		16	ns	
Write Recovery Time	tWHAX	twR	1	-	1	-	1	- 1	ns	
Write Low to Output Low	twlql	tws	0	7	0	8	0	9	ns	

NOTES:


1. A write occurs during the overlap of \overline{S} low and \overline{W} low.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies during read and write cycles.

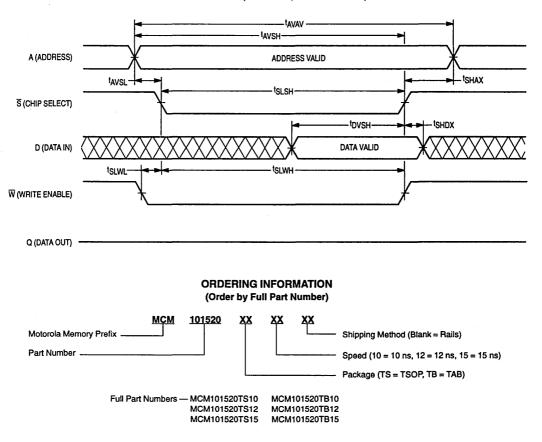
3. All write cycle timings are referenced from the last valid address to the first transitioning address.

4. This parameter is sampled and not 100% tested.

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

MCM101520 2-72

WRITE CYCLE 2 (S Controlled, See Notes 1 and 2)


Parameter	Symbol		MCM101520-10		MCM101520-12		MCM101520-15			
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10	<u> </u>	12	-	15	—	ns	3
Address Setup Time	tAVSL	tAS	1		1		1	—	ns	
Address Valid to End of Write	tavsh	taw	7	-	8	-	9	-	ns	
Write Pulse Width	^t SLSH ^t SLWH	tcw	7	-	8	-	9	-	ns	
Data Valid to End of Write	t _{DVSH}	tow	7	-	8	-	9	-	ns	
Chip Select Set-Up Time	tSLWL	tcs	0		0		0	—	ns	
Data Hold Time	tSHDX	tDH	1	-	1	-	1	—	ns	
Write Recovery Time	^t SHAX	twn	1	- 1	1	<u> </u>	1	<u> </u>	ns	

NOTES:

1. A write occurs during the overlap of \overline{S} low and \overline{W} low.

2. Product sensitivites to noise require proper grounding and decoupling of power supplies during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

WRITE CYCLE 2 (S Controlled, See Notes 1 and 2)

MOTOROLA SEMICONDUCTOR

Product Preview 1M x 4 / 2M x 2 Bit Fast Static Random Access Memory with ECL I/O

The MCM101524 is a 4,194,304 bit static random access memory that can be electrically reconfigured as 1,048,576 words of 4 bits or 2,097,152 words of 2 bits. The 2M x 2 operation is achieved by applying VEE voltage to the D1/Mode select pin. The 1M x 4 option features separate data inputs and outputs. The 2M x 2 mode features complimentary outputs. This circuit is fabricated using high performance silicon-gate BiCMOS technology. Asynchronous design eliminates the need for external clocks or timing strobes.

The MCM101524 is available in a 400 mil, 36 lead surface-mount TSOP package as well as 36 lead TAB.

MEMORY MATRIX

1024 ROWS x

4096 COLUMNS

46

Δ5

COLUMN I/O

COLUMN DECODER

Å3

BLOCK DIAGRAM

Fast Access Times: 10, 12, 15 ns

A17

A16

A15

A13

A12

A11 A10 A9 A8

MODE

• Q1 Q3 Q1

x4 x2 D0 D0

D1

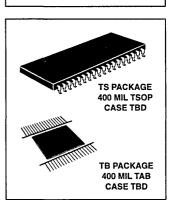
D3 A20

Q0 Q0

- Equal Address and Chip Select Access Time
- · Power Operation: 200 mA Maximum, Active AC

ROW

DECODER


INPUT

DATA

CONTROL

:

Ais

MCM101524

PIN ASSIGNMENT								
A10 [1•	36 🕽 A1						
A11 [2	35 🛛 A2						
A12 [3	34 🛛 A3						
A13 [4	33 🕽 A8						
A14 [5	32 🗍 A19						
ទ ជ	6	31 D NC						
D0 [7	30 🕽 D3/A20						
လ [8	29 🕽 Q3/Q1						
v _{cc} d	9	28 0 V _{EE}						
V _{EE} [10	27 🕽 V _{CC}						
Q1/ <u>Q0</u> [11	26 🛛 Q2/Q1						
D1/MODE	12	25 D2/D1						
w C	13	24 🛛 NC						
A0 C	14	23 🕽 A9						
A15 [15	22 🗍 A4						
A16 [16	21 🗍 A5						
A17 C	17	20 🛛 A6						
A18 [18	19 A7						

PIN NAMES							
A0 – A20	Address Inputs	W Write Enable					
<u>s</u>	Chip Select	D0 – D3 Data Input					
Q0 - Q3	Data Output	Q0 and Q1 Data Output					
NC	No Connection	VFF Power Supply					
Vcc	Ground	Mode Reconfigures for x2 Operation					

Q0

٧_{EE}

Vcc

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

ŝ	W	Mode	Config	Operation	Data	Output	Current
Н	×	X	X	Not Enabled	×	L	-
L	н	H/L	x4	Read	X	Q	IEE
L	L	H/L	x4	Write	×	L	IEE
L	н	VEE	x2	Read	X	Q	IEE
L	L	VEE	x2	Write	X	L	IEE

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
VEE Pin Potential (to Ground)	VEE	- 7.0 to + 0.5	V
Voltage Relative to V _{CC} for Any Pin Except V _{EE}	Vin, Vout	VEE - 0.5 to + 0.5	V
Output Current (per I/O)	lout	- 50	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	Tbias	- 30 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	Tstg	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the OPERATING CONDI-TIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 0 V, V_{EE} = -5.2 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

DC OPERATING CONDITIONS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	VEE	- 5.46	- 5.2	- 4.94	V
Input High Voltage	VIH	- 1165	-	- 880	mV
Input Low Voltage	VIL	- 1810	-	- 1475	mV
Mode Select for 2Meg x 2 Configuration	V _{M1}	VEE	VEE	V _{EE} + 0.5	V
Mode Select for 1Meg x 4 Configuration	V _{M2}	V _{EE} + 1.5	VIL/VIH	- 0.88	V
Output High Voltage	Voн	- 1025	-	- 880	mV
Output Low Voltage	VOL	- 1810	_	- 1620	mV
Input Low Current	Ι _Ι Γ	- 50	-	-	μA
Input High Current	ЧН	_	_	220	μA
Chip Select Input Low Current	IL(CS)	0.5	-	170	μΑ
Operating Power Supply Current: AVAV = 20 ns (All Outputs Open)	IEE	-	_	- 195	mA
Quiescent Power Supply Current: f ₀ = 0 MHz (All Inputs and Outputs Open)	IEEQ	-		- 150	mA
Voltage Compensation (VOH)	ΔVOH/ΔVEE	± 35	5 mV/V @ - 4	1.94 to - 5.46	•
Voltage Compensation (VOL)	ΔV _{OL} /ΔV _{EE}	± 60 mV/V @ - 4.94 to - 5.46			

RISE/FALL TIME REQUIREMENTS

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Rise Time	tr	20% to 80%	0.5	1.0	1.5	ns
Output Fall Time	tf	20% to 80%	0.5	1.0	1.5	ns

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter		Symbol	Тур	Max	Unit
Input Capacitance	Address and Data S, W	C _{in} C _{ck}	3.5 4	7 7	pF
Output Capacitance	Q	Cout	4	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(VEE = $-5.2 \text{ V} \pm 5\%$, V_{CC} = 0 V, T_A = 0 to +70°C, Unless Otherwise Noted)

Input Pulse Levels 1.7 V to - 0.9 V (See Figure 1)
Input Rise/Fall Time 1 ns
Input Timing Measurement Reference Level 50%

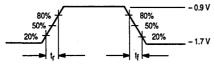
READ CYCLE TIMING (See Notes 1 and 2)

	Syn	nbol	MCM10	1524-10	MCM10	1524-12	MCM10	1524-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	10	-	12	-	15	-	ns	2, 3
Address Access Time	tAVQV	tAA	-	10	-	12	-	15	ns	
Chip Select Access Time	tSLQV	tACS	_	10	—	12	-	15	ns	6
Select High to Output Low	^t SHQL	tRCS	0	7 -	0	8	0	9	ns	
Output Hold from Address Change	tAXQX	tон	4	-	4	-	4	_	ns	
Power Up Time	t SLIEEH	tPU	0	-	0	-	0	_	ns	4
Power Down Time	tSHIEEL.	tPD	-	10	-	12	—	15	ns	4

NOTES:

1. \overline{W} is high for read cycle.

2. Product sensitivites to noise require proper grounding and decoupling of power supplies during read and write cycles.


3. All read cycle timings are referenced from the last valid address to the first transitioning address.

4. This parameter is sampled and not 100% tested.

5. Device is continuously selected ($\overline{S} \leq V_{IL}$).

6. Addresses valid prior to or coincident with S going low.

AC TEST CONDITIONS

t_r = Rise Time t_f = Fall Time 50% = Timing Reference Levels

Figure 1. Input Levels

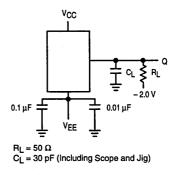
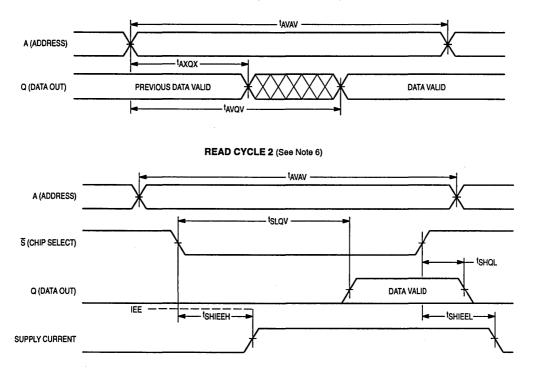



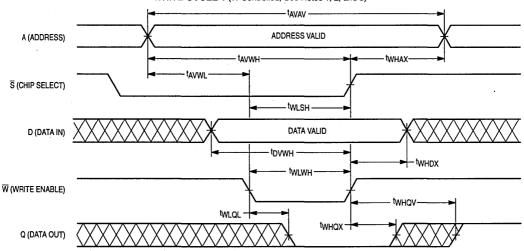
Figure 2. AC Test Circuit

READ CYCLE 1 (See Notes 1, 2, and 5)

2

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	Symbol		СМ101524-10 МСМ101524-12 МС		MCM101524-15				
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10	_	12	_	15		ns	3
Address Setup Time	tAVWL	tAS	1		1		1	-	ns	
Address Valid to End of Write	tavwh	tAW	7	-	8	-	9	-	ns	
Write Pulse Width	twLwH twLSH	twp	7	-	8	-	9	-	ns	
Data Valid to End of Write	tDVWH	tDW	7	—	8	- 1	9		ns	
Data Hold Time	twhdx	tDH	1	-	1	-	1	—	ns	
Write High to Output Active	tWHQX	tow	4	·	4	- 1	4	- 1	ns	4
Write High to Output Valid	twhqv	taw	_	11	-	13	—	16	ns	
Write Recovery Time	twhax	twR	1		1	—	1	_	ns	
Write Low to Output Low	twLQL	tws	0	7	0	8	0	9	ns	


NOTES:

1. A write occurs during the overlap of \overline{S} low and \overline{W} low.

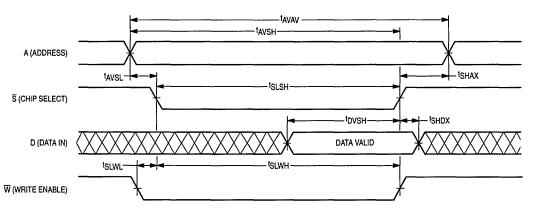
2. Product sensitivites to noise require proper grounding and decoupling of power supplies during read and write cycles.

3. All write cycle timings are referenced from the last valid address to the first transitioning address.

4. This parameter is sampled and not 100% tested.

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

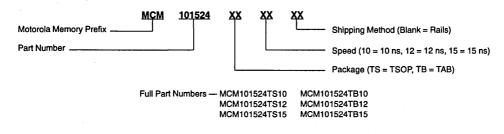
WRITE CYCLE 2 (S Controlled, See Notes 1 and 2)


	Syn	nbol	MCM10	1524-10	MCM10	1524-12	MCM10	1524-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10	- 1	12	- 1	15	- 1	ns	3
Address Setup Time	tAVSL	tAS	1	- 1	1	_	1	-	ns	
Address Valid to End of Write	tAVSH	taw	7		8	-	9	-	ns	
Write Pulse Width	^t SLSH ^t SLWH	tcw	7	-	8	-	9	-	ns	
Data Valid to End of Write	tDVSH	tow	7	_	8	-	9	-	ns	
Chip Select Set-Up Time	tSLWL	tcs	0	—	0	- 1	0	- 1	ns	
Data Hold Time	tSHDX	^t DH	1		1	-	1	—	ns	
Write Recovery Time	^t SHAX	twn	1	- 1	1	-	1		ns	[

NOTES:

1. A write occurs during the overlap of \overline{S} low and \overline{W} low.

2. Product sensitivites to noise require proper grounding and decoupling of power supplies during read and write cycles.


3. All write cycle timings are referenced from the last valid address to the first transitioning address.

WRITE CYCLE 2 (S Controlled, See Notes 1 and 2)

Q (DATA OUT)

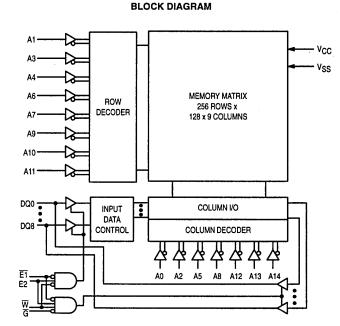
ORDERING INFORMATION (Order by Full Part Number)

CMOS Fast Static RAMs

3.3 Volt Supply

MCM62V06D	3-27
5 Volt Supply	
MCM6205C	3-3
MCM6205D	3-9
MCM6206C	3-15
MCM6206D	3-21
MCM6208C	3-33
MCM6209C	3-39
MCM6226A	3-45
MCM6226B	3-51
MCM6227A	3-58
MCM6227B	3-64
MCM6229A	3-71
MCM6229B	3-77
MCM6246	3-84
MCM6249	3-90
MCM6264C	3-96
MCM6265C	3-102
MCM6287B	3-108
MCM6288C	3-115
MCM62996	3-121

MOTOROLA FAST SRAM DATA


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

32K x 9 Bit Fast Static RAM

The MCM6205C is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

This device meets JEDEC standards for functionality and pinout, and is available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ± 10% Power Supply
- Fully Static -- No Clock or Timing Strobes Necessary
- Fast Access Times: 15, 17, 20, 25 and 35 ns
- Equal Address and Chip Enable Access Times
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems
- Low Power Operation: 140 170 mA Maximum AC
- Fully TTL Compatible --- Three State Output

MCM6205C

3

PIN ASSIGNMENT								
ис [1.	32	Vcc					
NC [2	31	A14					
A8 [3	30] E2					
A7 [4	29	D₩					
A6 [5	28	A13					
A5 [6	27	D A9					
A4 [7	26	A10					
A3 [8	25	A11					
A2 [9	24	<u>]</u>					
A1 [10	23	A12					
A0 [11	22) हा					
DQ0 [12	21						
DQ1 [13	20	DQ7					
DQ2 [14	19	DQ6					
раз [15	18	DQ5					
v _{ss} (16	17						
		_						

PIN NAMES
A0 – A14 Address Input DQ0 – DQ8 Data Input/Data Output W Write Enable G Output Enable E1, E2 Chip Enable NC No Connection VCC Power Supply (+ 5 V) VSS Ground

.

TRUTH TABLE (X = Don't Care)

EĨ	E2	G	W	Mode	V _{CC} Current	Output	Cycle
H.	X	X	X	Not Selected	ISB1, ISB2	High-Z	_
X	L	X	X	Not Selected	ISB1, ISB2	High-Z	—
L	н	н	н	Output Disabled	ICCA	High-Z	_
L.	н	L	н	Read	ICCA	Dout	Read Cycle
L	н	х	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} For Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current	fout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-

ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3**	v	
Input Low Voltage	VIL	- 0.5*		0.8	v	

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns)

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(i)	. —	±1	μA
Output Leakage Current ($\overline{E1} = V_{IH}$ or $\overline{G} = V_{IH}$ or $E2 = V_{IL}$, $V_{out} = 0$ to V_{CC})	l _{lkg} (O)	_	±1	μA
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	V
Output Low Voltage (I _{OL} = 8.0 mA)	VOL	-	0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	- 15	- 17	- 20	- 25	- 35	Unit
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = Max, f = f _{max})	ICCA	170	160	155	145	140	mA
AC Standby Current ($\overline{E1} = V_{IH}$, or $E2 = V_{IL}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	50	45	45	40	40	mA
CMOS Standby Current (V _{CC} = Max, f = 0 MHz, $\overline{E1} \ge V_{CC} - 0.2$ V or E2 $\le V_{SS}$ + 0.2 V, $V_{in} \le V_{SS}$ + 0.2 V, or $\ge V_{CC} - 0.2$ V)	ISB2	20	20	20	20	20	mA

CAPACITANCE (f = 1 MHz, dV = 3 V, T_A = 25°C, Periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Address Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance (E1, E2, G, W)	C _{in}	8	pF
I/O Capacitance	CI/O	8	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.	.5 V
Input Pulse Levels 0 to 3.	0 V 0.
Input Rise/Fall Time	i ns

 Output Timing Measurement Reference Level
 1.5 V

 Output Load
 Figure 1A Unless Otherwise Noted

READ CYCLE (See Notes 1 and 2)

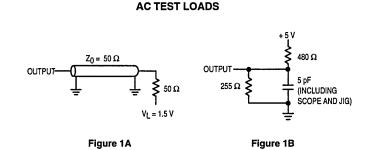
	Sym	bol		15		17	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Read Cycle Time	†AVAV	^t RC	15	—	17		20	-	25	—	35	—	ns	3
Address Access Time	tAVQV	tAA	-	15	—	17	-	20	-	25	-	35	ns	
Enable Access Time	[†] ELQV	tACS	-	15	-	17	-	20	-	25	-	35	ns	4
Output Enable Access Time	^t GLQV	tOE	—	8	—	9	—	10		12	-	15	ns	
Output Hold from Address Change	^t AXQX	tон	4	-	4		4	-	4	-	4	-	ns	
Enable Low to Output Active	^t ELQX	^t CLZ	4	-	4	—	4	-	4	-	4	—	ns	5,6,7
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	8	0	8	0	9	0	10	0	11	ns	5,6,7
Output Enable Low to Output Active	^t GLQX	tolz	0	-	0	-	0	-	0	-	0	—	ns	5,6,7
Output Enable High to Output High-Z	^t GHQZ	tohz	0	7	0	8	0	8	0	10	0	11	ns	5,6,7
Power Up Time	^t ELICCH	tPU	0	-	0	—	0		0	-	0	—	ns	
Power Down Time	^t EHICCL	tPD	—	15	-	17	-	20	-	25	1	35	ns	

NOTES:

1. \overline{W} is high for read cycle.

2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. All timings are referenced from the last valid address to the first transitioning address.

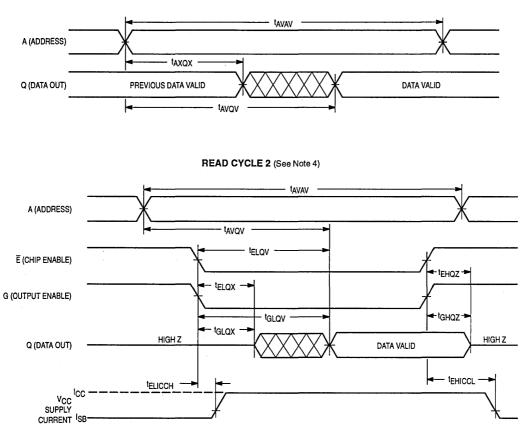

4. Addresses valid prior to or coincident with \overline{E} going low.

 At any given voltage and temperature, t_{EHQZ} (max) is less than t_{ELQX} (min), and t_{GHQZ} (max) is less than t_{GLQX} (min), both for a given device and from device to device.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E1} = V_{IL}$, $E2 = V_{IH}$, $\overline{G} = V_{IL}$).



TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note 8)

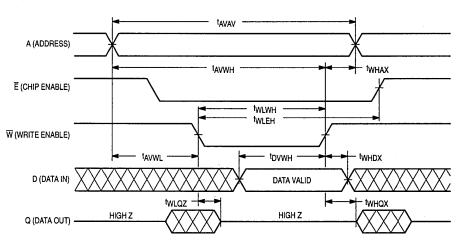
WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Syn	bol		- 15		- 17		20	-:	25	:	35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	tŵc	15	-	17	—	20		25	—	35		ns	4
Address Setup Time	tAVWL	tAS	0	-	0		0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	taw	12	-	14	-	15	-	20	-	30	-	ns	
Write Pulse Width	twlwh, twleh	tWP	12		14	_	15	—	20	-	30	-	ns	
Write Pulse Width, G High	^t WLWH [,] ^t WLEH	tWP	10		11	-	12	-	15		20		ns	5
Data Valid to End of Write	^t DVWH	tDW	7		8	-	8		10		12		ns	
Data Hold Time	twhdx	^t DH	0	-	0	-	0	-	0		0	-	ns	
Write Low to Output High-Z	twloz	twz	0	7	0	8	0	8	0	10	0	11	ns	6,7,8
Write High to Output Active	^t WHQX	tow	4	-	4	-	4	-	4	-	4	-	ns	6,7,8
Write Recovery Time	twhax	twR	0		0	—	0	-	0	-	0	—	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. E1 and E2 are represented by \vec{E} in this data sheet. E2 is of opposite polarity to \vec{E} .


3. If G goes low coincident with or after W goes low, the output will remain in a high impedance state.

4. All timings are referenced from the last valid address to the first transitioning address.

5. If $\overline{G} \ge V_{1H}$, the output will remain in a high impedance state.

At any given voltage and temperature, t_{WLOZ} (max) is less than t_{WHOX} (min), both for a given device and from device to device.
 Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

8. This parameter is sampled and not 100% tested.

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

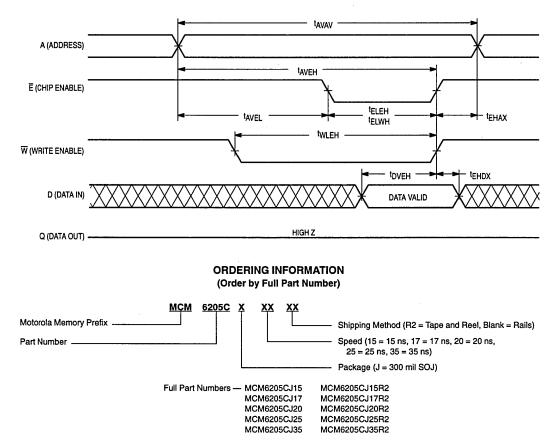
3

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Symbol		- 15		- 17		- 20		- 25		- 35			1
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tavav	twc	15	-	17	-	20	-	25	-	35	-	ns	3
Address Setup Time	^t AVEL	tAS	0	-	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	^t AVEH	tAW	12	-	14	-	15	-	20	-	25	-	ns	
Enable to End of Write	^t ELEH [,] tELWH	tCW	10	-	11	—	12	-	15	-	25	—	ns	4,5
Data Valid to End of Write	^t DVEH	tDW	7	-	8	-	8	-	10	-	11	-	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	-	0	-	0	—	ns	
Write Recovery Time	^t EHAX	twR	0	-	0	-	0		0	-	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

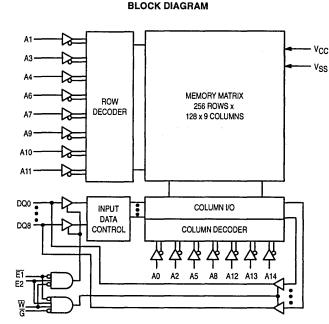

2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. All timings are referenced from the last valid address to the first transitioning address.

4. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

5. If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

32K x 9 Bit Fast Static RAM

The MCM6205D is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

This device meets JEDEC standards for functionality and pinout, and is available in a plastic small-outline J-leaded package.

- Single 5 V ± 10% Power Supply
- Fully Static -- No Clock or Timing Strobes Necessary
- · Fast Access Times: 15, 20, and 25 ns
- Equal Address and Chip Enable Access Times
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems
- Low Power Operation: 130 140 mA Maximum AC
- Fully TTL Compatible Three State Output

MCM6205D

PI	N ASSIGN	IME	NT
NC [1.	32] v _{cc}
ис [2	31] A14
A8 [3	30] E2
A7 [4	2 9	D₩
A6 [5	28	A13
A5 [6	27] ∧9
A4 [7	26	A10
АЗ [8	25	A11
A2 [9	24] ច
A1 [10	23	A12
A0 [11	22] គ
DQ0 [12	21] DQ8
DQ1 [13	20	DQ7
DQ2 [14	19	DQ6
DQ3 [15	18	DQ5
v _{ss} [16	17	DQ4

PIN NAMES	
A0 – A14 Address Input/Data Output/Data Output/Data DQ0 – DQ8 Data Input/Data Output/Data Output/Data G Output Enable E1, E2 Chip Enable NC No Connection V _{CC} Power Supply (+ 5 N V _{SS} Ground	را را ال

MOTOROLA FAST SRAM DATA

TRUTH TABLE (X = Don't Care)

E1	E2	Ğ	W	Mode	V _{CC} Current	Output	Cycle
н	х	х	х	Not Selected	ISB1, ISB2	High-Z	_
X	L	X	х	Not Selected	ISB1, ISB2	High-Z	-
L	н	н	н	Output Disabled	ICCA	High-Z	
L	н	1°L -	н	Read	ICCA	Dout	Read Cycle
L	ΓH	X	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to V _{SS} For Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	v _{IH}	2.2		V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	-	0.8	V

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns)

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(i)	÷	±1	μA
Output Leakage Current ($\overline{E1} = V_{IH}$ or $\overline{G} = V_{IH}$ or $E2 = V_{IL}$, $V_{out} = 0$ to V_{CC})	^l ikg(O)	_	±1	μA
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4	-	V
Output Low Voltage (I _{OL} = 8.0 mA)	VOL		0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	- 15	- 20	- 25	Unit
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = Max, f = f _{max})	ICCA	140	135	130	mA
AC Standby Current ($\overline{E1} = V_{IH}$, or $E2 = V_{IL}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	40	40	35	mA
$\begin{array}{l} CMOS Standby Current\left(V_{CC}=Max, f=0 \;MHz, \overline{E1} \geq V_{CC}-0.2 \;V \; or \\ E2 \leq V_{SS}+0.2 \;V, \; \; V_{in} \leq V_{SS}+0.2 \;V, \; or \geq V_{CC}-0.2 \;V \right) \end{array}$	ISB2	20	20	20	mA

CAPACITANCE (f = 1 MHz, dV = 3 V, T_A = 25°C, Periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Address Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance (E1, E2, G, W)	C _{in}	8	pF
I/O Capacitance	C _{I/O}	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	5 ns

READ CYCLE (See Notes 1 and 2)

	Sym	abol	MCM62	05D-15	MCM62	05 D-20	MCM62	205D-25		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	15	—	20	—	25		ns	3
Address Access Time	tavqv	tAA	-	15	_	20	-	25	ns	
Enable Access Time	^t ELQV	^t ACS	—	15	-	20	—	25	ns	4
Output Enable Access Time	tGLQV	^t OE	- 1	8	-	10		12	ns	
Output Hold from Address Change	tAXQX	tон	4	-	4	-	4	-	ns	
Enable Low to Output Active	^t ELQX	^t CLZ	4	-	4	—	4	-	ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	8	0	9	0	10	ns	5, 6, 7
Output Enable Low to Output Active	tGLQX	tolz	0	-	0	-	0	-	ns	5, 6, 7
Output Enable High to Output High-Z	tGHQZ	tohz	0	7	0	8	0	10	ns	5, 6, 7
Power Up Time	^t ELICCH	tPU	0	-	0	—	0		ns	
Power Down Time	^t EHICCL	tPD	-	15	-	20	—	25	ns	

NOTES:

1. W is high for read cycle.

2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. All timings are referenced from the last valid address to the first transitioning address.

4. Addresses valid prior to or coincident with \overline{E} going low.

5. At any given voltage and temperature, tEHQZ (max) is less than tELQX (min), and tGHQZ (max) is less than tGLQX (min), both for a given device and from device to device.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E1} = V_{IL}$, $E2 = V_{IH}$, $\overline{G} = V_{IL}$).

AC TEST LOADS

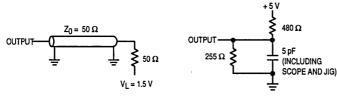
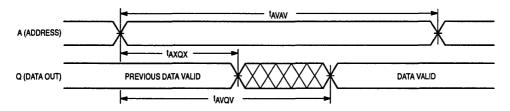
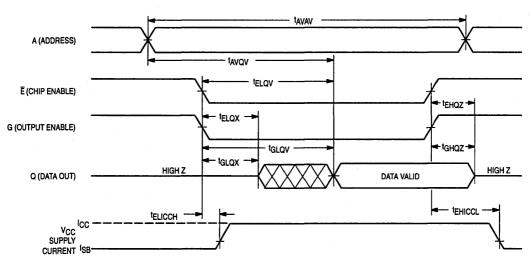



Figure 1A


Figure 1B

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. READ CYCLE 1 (See Note 8)

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Sym	lodi	MCM62	205D-15	MCM62	205D-20	MCM62	205 D-25]]
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Units	Notes
Write Cycle Time	tavav	twc	15		20	-	25	-	ns	4
Address Setup Time	tavwl.	tAS	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	tAW	12	-	15	-	20	-	ns	
Write Pulse Width	^t WLWH, ^t WLEH	twp	12	-	15	-	20	-	ns	
Write Pulse Width, G High	^t WLWH, ^t WLEH	tWP	10	-	12	-	15	-	ns	5
Data Valid to End of Write	tDVWH	tDW	7	-	8	-	10	-	ns	
Data Hold Time	twhdx	^t DH	0		0	-	0	-	ns	
Write Low to Output High-Z	twlqz	twz	0	7	0	8	0	10	ns	6, 7, 8
Write High to Output Active	twhox	tow	4	-	4	- 1	4	-	ns	6, 7, 8
Write Recovery Time	^t WHAX	tWR	0		0	-	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. E1 and E2 are represented by \vec{E} in this data sheet. E2 is of opposite polarity to \vec{E} .


3. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

4. All timings are referenced from the last valid address to the first transitioning address.

5. If $\overline{G} \ge V_{1H}$, the output will remain in a high impedance state.

6. At any given voltage and temperature, tWLOZ (max) is less than tWHOX (min), both for a given device and from device to device. 7. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

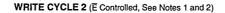
8. This parameter is sampled and not 100% tested.

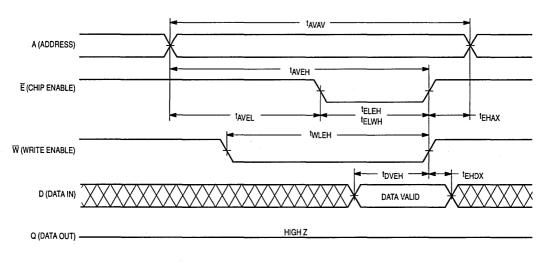
WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

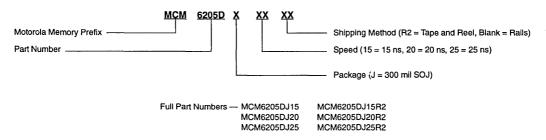
	Sym	Symbol		MCM6205D-15		205D-20	MCM6205D-25			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	15	-	20	_	25	- 1	ns	3
Address Setup Time	^t AVEL	tAS	0	<u> </u>	0	-	0	-	ns	
Address Valid to End of Write	tAVEH	tAW	12		15	-	20	-	ns	
Enable to End of Write	teleh, telwh	tCW	10	-	12	-	15	-	ns	4, 5
Data Valid to End of Write	^t DVEH	tDW	7	-	8	-	10		ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	_	0	-	ns	
Write Recovery Time	^t EHAX	twn	0	_	0		0		ns	

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

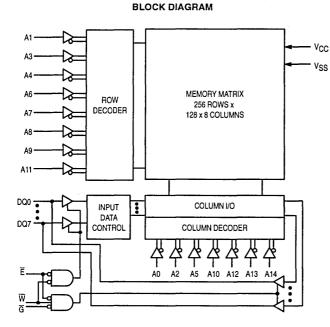

2. E1 and E2 are represented by \dot{E} in this data sheet. E2 is of opposite polarity to E.

3. All timings are referenced from the last valid address to the first transitioning address.

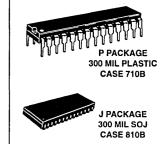

4. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

5. If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

ORDERING INFORMATION (Order by Full Part Number)


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

32K x 8 Bit Fast Static RAM


The MCM6206C is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

This device meets JEDEC standards for functionality and pinout, and is available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ± 10% Power Supply
- Fully Static -- No Clock or Timing Strobes Necessary
- Fast Access Times: 15, 17, 20, 25 and 35 ns
- Equal Address and Chip Enable Access Times
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems
- Low Power Operation: 135 165 mA Maximum AC
- Fully TTL Compatible --- Three State Output

MCM6206C

3

PII	N ASSIGN	IME	NT
A14 [1.	28	b v _{cc}
A12	2	27	þ₩
A7 [3	26	A13
A6 [4	25	D ∧8
A5 [5	24] A9
A4 [6	23	A11
A3 [7	22] <u></u>
A2 [8	21	A10
A1 [9 -	20	þε
AO [10	19	007
DQ0	11	18	
DQ1 [12	17	DQ5
DQ2 [13	16	
v _{ss} C	14	15	р раз

PIN NAMES
A0 – A14 Address Input DQ0 – DQ7 Data Input/Data Output W Write Enable G Output Enable E Chip Enable VCC Power Supply (+ 5 V) VSS Ground

TRUTH TABLE (X = Don't Care)

Ē	Ğ	Ŵ	Mode	V _{CC} Current	Output	Cycle
н	X	х	Not Selected	ISB1, ISB2	High–Z	-
L	н	н	Output Disabled	ICCA	High–Z	-
L	L	н	Read	ICCA	Dout	Read Cycle
L	x	L	Write	ICCA	HighZ	Write Cycle

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} For Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature—Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-

ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2		V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*	-	0.8	v

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns)

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)	<u> </u>	±1	μA
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	[‡] lkg(O)		± 1	μA
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	V
Output Low Voltage (I _{OL} = 8.0 mA)	VOL	_	0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	- 15	- 17	- 20	- 25	- 35	Unit
AC Active Supply Current ($I_{out} = 0 \text{ mA}$, $V_{CC} = Max$, $f = f_{max}$)	^I CCA	165	155	150	140	135	mA
AC Standby Current ($\overline{E} = V_{IH}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	50	45	45	40	40	mA
$\begin{array}{l} \mbox{CMOS Standby Current} (V_{CC} = Max, \ f = 0 \ \mbox{MHz}, \ \overline{E} \geq V_{CC} - 0.2 \ \ V \\ \mbox{V}_{in} \leq V_{SS} + 0.2 \ \ \ \ v_{CC} - 0.2 \ \ \ v_{CC} - 0.2 \ \ \ \ v_{CC} \end{array}$	ISB2	20	20	20	20	20	mA

CAPACITANCE (f = 1 MHz, dV = 3 V, T_A = 25°C, Periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Address Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance (E, G, W)	C _{in}	8	pF
I/O Capacitance	C _{I/O}	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Liming Measurement Reference Level	1.5 V
Input Pulse Levels 0 to 3	3.0 V
Input Rise/Fall Time	5 ns

READ CYCLE (See Note 1)

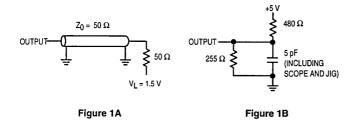
	Sym	ıbol		15	•	17	- :	20	- :	25	-:	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Read Cycle Time	t _{AVAV}	^t RC	15	-	17	-	20	—	25	—	35		ns	2
Address Access Time	†AVQV	tAA	—	15		17	-	20	_	25	—	35	ns	
Enable Access Time	^t ELQV	^t ACS	—	15	-	17	-	20	—	25	—	35	ns	3
Output Enable Access Time	^t GLQV	tOE	—	8	—	9	-	10	-	12	—	15	ns	
Output Hold from Address Change	^t AXQX	tон	4	-	4	-	4	-	4	_	4	-	ns	4,5,6
Enable Low to Output Active	^t ELQX	^t CLZ	4		4	—	4	—	4	—	4		ns	4,5,6
Enable High to Output High-Z	^t EHQZ	tCHZ	0	8	0	8	0	9	0	10	0	11	ns	4,5,6
Output Enable Low to Output Active	^t GLQX	^t OLZ	0	-	0	-	0	-	0	-	0		ns	4,5,6
Output Enable High to Output High-Z	^t GHQZ	tohz	0	7	0	8	0	8	0	10	0	11	ns	4,5,6
Power Up Time	^t ELICCH	^t PU	0	-	0	—	0	—	0	—	0		ns	
Power Down Time	tEHICCL	t _{PD}	—	15	-	17	—	20	-	25	-	35	ns	

NOTES:

1. W is high for read cycle.

2. All timings are referenced from the last valid address to the first transitioning address.

3. Addresses valid prior to or coincident with E going low.

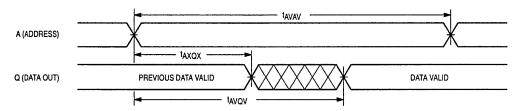

 At any given voltage and temperature, t_{EHQZ} (max) is less than t_{ELQX} (min), and t_{GHQZ} (max) is less than t_{GLQX} (min), both for a given device and from device to device.

5. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.

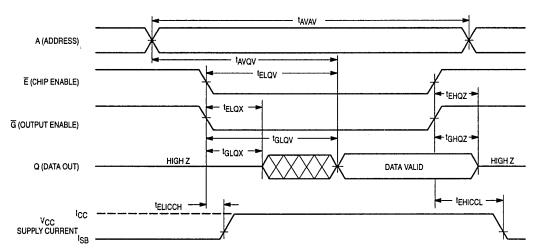
6. This parameter is sampled and not 100% tested.

7. Device is continuously selected ($\overline{E} = V_{IL}, \overline{G} = V_{IL}$).

AC TEST LOADS



TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note 7)

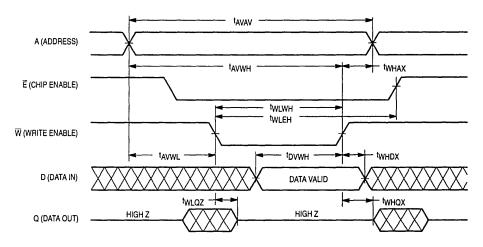
WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Sym	bol	-	15	•	17	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tavav	twc	15	-	17	—	20	-	25	-	35	-	ns	3
Address Setup Time	^t AVWL	tAS	0	-	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	tAW	12	-	14	-	15	-	20	—	30	-	ns	
Write Pulse Width	twLwH, twLEH	tWP	12	-	14	-	15		20	-	30	-	ns	
Write Pulse Width, G High	^t WLWH [,] ^t WLEH	tWP	10	-	11	-	12	-	15	-	20	-	ns	4
Data Valid to End of Write	tDVWH	tDW	7	-	8	-	8	-	10	-	12	-	ns	
Data Hold Time	tWHDX	^t DH	0	-	0	-	0	-	0	-	0	—	ns	
Write Low to Output High-Z	^t WLQZ	twz	0	7	0	8	0	8	0	10	0	11	ns	5,6,7
Write High to Output Active	^t WHQX	tow	4	-	4	-	4	-	4		4	-	ns	5,6,7
Write Recovery Time	^t WHAX	twR	0	-	0	-	0	-	0	-	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. If G goes low coincident with or after W goes low, the output will remain in a high impedance state.


3. All timings are referenced from the last valid address to the first transitioning address.

4. If $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state.

At any given voltage and temperature, t_{WLOZ} (max) is less than t_{WHOX} (min), both for a given device and from device to device.
 Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.

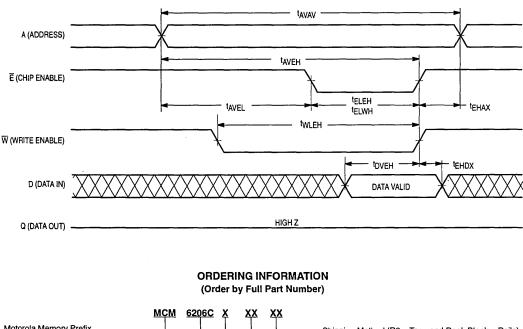
7. This parameter is sampled and not 100% tested.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

WRITE CYCLE 2 (E Controlled, See Note 1)

	Sym	ibol	•	15	-	17	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tAVAV	twc	15	-	17	-	20	-	25	-	35	-	ns	[
Address Setup Time	tAVEL	tAS	0	-	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	t AVEH	tAW	12	-	14	-	15		20	-	25	_	ns	
Enable to End of Write	^t ELEH, ^t ELWH	tcw	10	-	11	-	12	-	15	-	25	-	ns	3,4
Data Valid to End of Write	^t DVEH	tDW	7	-	8	-	8	-	10	-	11	-	ns	
Data Hold Time	^t EHDX	^t DH	0		0	-	0	-	0	-	0		ns	
Write Recovery Time	^t EHAX	twR	0	-	0	-	0	-	0	-	0	-	ns	

WRITE CYCLE 2 (E Controlled, See Note 1)

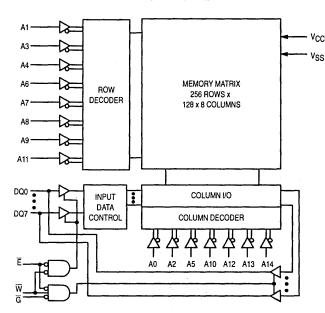

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. All timings are referenced from the last valid address to the first transitioning address.

3. If E goes low coincident with or after W goes low, the output will remain in a high impedance state.

4. If E goes high coincident with or before W goes high, the output will remain in a high impedance state.


MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

32K x 8 Bit Fast Static RAM

The MCM6206D is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

This device meets JEDEC standards for functionality and pinout, and is available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ± 10% Power Supply
- Fully Static -- No Clock or Timing Strobes Necessary
- Fast Access Times: 12, 15, 20, and 25 ns
- Equal Address and Chip Enable Access Times
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems
- Low Power Operation: 125 140 mA Maximum AC
- Fully TTL Compatible Three State Output

BLOCK DIAGRAM

300 MIL SOJ CASE 810B 3

PIN ASSIGNMENT									
A14 [1.	28] v _{cc}						
A12 [2	27] 🛛						
A7 [3	26	A13						
A6 🛛	4	25] A8						
A5 [5	24] A9						
A4 [6	23	A11						
аз [7	22] ច						
A2 [8	21	A10						
A1 [9	20] E						
A0 [10	19] DQ7						
j opa	11	18							
DQ1	12	17	DQ5						
DQ2 [13	16	DQ4						
DQ2 V _{SS} [14	15	DQ3						

PIN NAMES							
DQ0 – DQ7 Da G E V _{CC}	Address Input ata Input/Data Output Write Enable Output Enable Chip Enable Power Supply (+ 5 V) Ground						

TRUTH TABLE (X = Don't Care)

Ē	G	W	Mode	V _{CC} Current	Output	Cycle
н	X	X	Not Selected	SB1, SB2	High–Z	-
L	н	н	Output Disabled	ICCA	High–Z	-
L	L	÷Н	Read	ICCA	Dout	Read Cycle
L	х	L	Write	ICCA	High–Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	0.5 to + 7.0	v
Voltage Relative to V _{SS} For Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature-Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*		0.8	v

* VIL (min) = -0.5 V dc; VIL (min) = -2.0 V ac (pulse width ≤ 20 ns)

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(l)		± 1	μA
Output Leakage Current ($\vec{E} = V_{IH}$ or $\vec{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)		±1	μA
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4		V
Output Low Voltage (I _{OL} = 8.0 mA)	VoL	_	0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	- 12	- 15	- 20	- 25	Unit
AC Active Supply Current (Iout = 0 mA, VCC = Max, f = fmax)	ICCA	(140)	135	130	125	mA
AC Standby Current ($\overline{E} = V_{IH}, V_{CC} = Max, f = f_{max}$)	ISB1	40	35	35	30	mA
CMOS Standby Current (V _{CC} = Max, f = 0 MHz, $\vec{E} \ge V_{CC} - 0.2$ V V _{in} \le V _{SS} + 0.2 V, or \ge V _{CC} - 0.2 V)	ISB2	20	20	20	20	mA

CAPACITANCE (f = 1 MHz, dV = 3 V, TA = 25°C, Periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Address Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance (E, G, W)	C _{in}	8	pF
I/O Capacitance	C _{I/O}	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 5 ns

READ CYCLE (See Note 1)

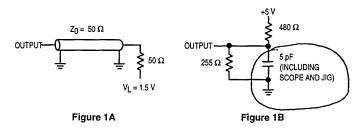
	Sym	bol	- 12		- 15		- 20		- 25			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	^t AVAV	tRC	12	_	15	-	20		25	_	ns	2
Address Access Time	tAVQV	tAA	-	12	-	15	-	20	-	25	ns	
Enable Access Time	^t ELQV	tACS	-		-	15	- 1	20	-	25	ns	3
Output Enable Access Time	^t GLQV	tOE	-	6	-	8		10	-	12	ns	
Output Hold from Address Change	tAXQX	tон	(3)	-	4	-	4	-	4	-	ns	4,5,6
Enable Low to Output Active	^t ELQX	tCLZ	4	-	4	-	4	—	4	-	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	\overline{O}	0	8	0	9	0	10	ns	4,5,6
Output Enable Low to Output Active	^t GLQX	^t OLZ	0	-	0	-	0	-	0	-	ns	4,5,6
Output Enable High to Output High-Z	^t GHQZ	tOHZ	0	6	0	7	0	8	0	10	ns	4,5,6
Power Up Time	^t ELICCH	tPU	0	-	0		0	-	0	-	ns	
Power Down Time	tEHICCL	t _{PD}	-	12	—	15	-	20	-	25	ns	

NOTES:

1. \overline{W} is high for read cycle.

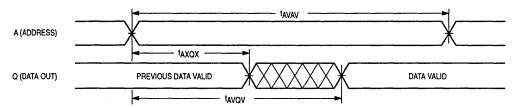
2. All timings are referenced from the last valid address to the first transitioning address.

3. Addresses valid prior to or coincident with E going low.

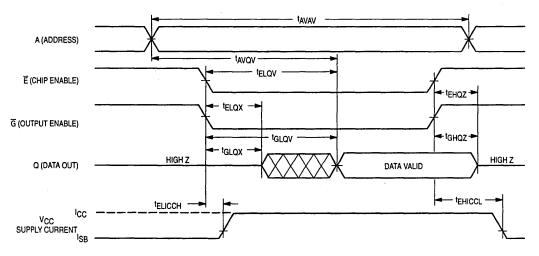

At any given voltage and temperature, t_{EHQZ} (max) is less than t_{ELQX} (min), and t_{GHQZ} (max) is less than t_{GLQX} (min), both for a given device and from device to device.

5. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.


7. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).

AC TEST LOADS



TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. READ CYCLE 1 (See Note 7)

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

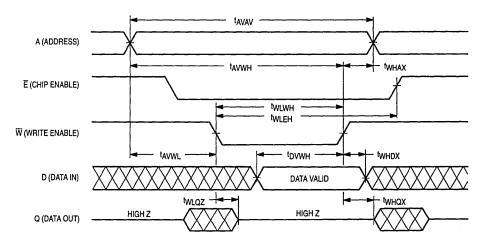
	Syn	Symbol		- 12		- 15		20	- 25			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	12		15	-7	20	-	25	-	ns	3
Address Setup Time	tAVWL	tAS	0	—	R	7	0	-	0	-	ns	
Address Valid to End of Write	tAVWH	tAW	10	-	12	7	15	—	20	-	ns	
Write Pulse Width	^t WLWH, ^t WLEH	tWP	10	-	(12)	<u>N</u> -	15	-	20	-	ns	
Write Pulse Width, G High	^t WLWH, ^t WLEH	tWP	10	-	10	$\left(+ \right)$	12	-	15	-	ns	4
Data Valid to End of Write	^t DVWH	tDW	6	—	7	-1	8	-	10	-	ns	
Data Hold Time	twhdx	^t DH	0	-	0/	-	0		0	-	ns	
Write Low to Output High-Z	twLQZ	twz	0	6	1	7	0	8	0	10	ns	5,6,7
Write High to Output Active	twhox.	tow	0	—	4	-	4		4		ns	5,6,7
Write Recovery Time	^t WHAX	twR	0)	-	10		0	-	0		ns	

×

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. If G goes low coincident with or after W goes low, the output will remain in a high impedance state.

3. All timings are referenced from the last valid address to the first transitioning address.


4. If $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state.

5. At any given voltage and temperature, twLOZ (max) is less than twHOX (min), both for a given device and from device to device.

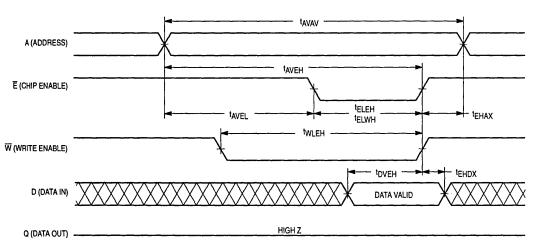
6. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

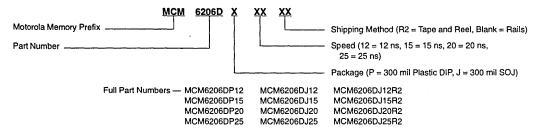
WRITE CYCLE 2 (E Controlled, See Note 1)

	Syn	Symbol		- 12		- 15		- 20		- 25		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	12	-	15	-	20	-	25	-	ns	
Address Setup Time	tAVEL	tAS	0	-	0	—	0	-	0		ns	
Address Valid to End of Write	t AVEH	tAW	10	-	12	-	15	-	20	-	ns	
Enable to End of Write	^t ELEH, ^t ELWH	tCW	9	-	10	-	12	-	15	-	ns	3,4
Data Valid to End of Write	^t DVEH	tDW	6	-	7	-	8	-	10		ns	
Data Hold Time	^t EHDX	^t DH	0	- 1	0	-	0	-	0	-	ns	
Write Recovery Time	^t EHAX	twR	0		0	_	0	-	0		ns	


NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

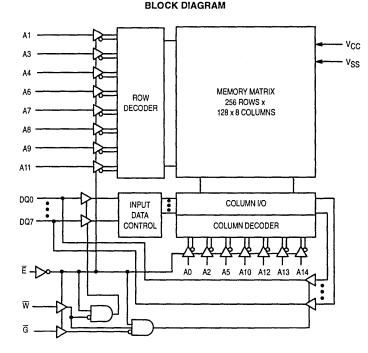
2. All timings are referenced from the last valid address to the first transitioning address.


3. If E goes low coincident with or after W goes low, the output will remain in a high impedance state.

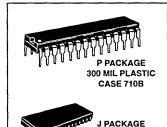
4. If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

WRITE CYCLE 2 (E Controlled, See Note 1)

ORDERING INFORMATION (Order by Full Part Number)


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview 32K x 8 Bit 3.3 Volt Fast Static RAM


The MCM62V06D is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

This device meets JEDEC standards for functionality and pinout, and is available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 3.3 V ± 0.3 V Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- Fast Access Times: 20, 25, and 35 ns
- Equal Address and Chip Enable Access Times
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems
- Low Power Operation: 50 mA Maximum AC
- Fully 3.3 V CMOS Three State Output
- 100 μA Standby Mode

MCM62V06D

300 MIL SOJ CASE 810B 3

PIN										
A14 [1.	28 VCC								
A12 [2	27 🛛 🗑								
A7 [3	26 🛛 A13								
A6 🕻	4	25 A8								
A5 [5	24 🛛 A9								
A4 [6	23 🗍 A11								
АЗ [7	22] G								
A2 [8	21 🗍 A10								
A1 [9	20 🛛 Ē								
A0 []	10	19 DQ7								
D 000	11	18 DQ6								
DQ1 [12	17 DQ5								
DQ2 [13	16 DQ4								
v _{ss} [14	15 DQ3								
•										

PIN NAMES						
A0 – A14 Address Input DQ0 – DQ7 Data Input/Data Output W Write Enable G Output Enable E Chip Enable VCC Power Supply (+ 3.3 V) VSS Ground						

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

Ē	Ğ	W	Mode	V _{CC} Current	Output	Cycle
н	X	Х	Not Selected	ISB1, ISB2	High-Z	
L	н	н	Output Disabled	ICCA	HighZ	- 1
L	L	H	Read	ICCA	Dout	Read Cycle
L	X	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to VSS For Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} + 0.5*	V
Input or Output Current	lin, lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	Tstg	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board in still air.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

* V_{CC} + 2.0 V ac to V_{SS} – 2.0 V ac (Pulse width \leq 20 ns).

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 3.3 V \pm 0.3 V, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	3.0	3.3	3.6	v
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	_	0.8	V

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width $\leq 10\%$ t_{AVAV} (min))

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 10% t_{AVAV} (min))

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit	
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(i)		± 1	μA	
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)	-	±1	μA	
TTL Output High Voltage (I _{OH} = - 4.0 mA)	V _{OH}	2.4	_	V	
TTL Output Low Voltage (IOL = 8.0 mA)	V _{OL}	-	0.4	V	
CMOS Output High Voltage (I _{OH} = - 100 µA)	V _{OH2}	V _{CC} -0.1	_	V	
CMOS Output Low Voltage (I _{OL} = 100 µA)	V _{OL2}		0.1	v	

POWER SUPPLY CURRENTS

Parameter	Symbol	-20	-25	-35	Unit
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = Max, f = f _{max})	ICCA	50	45	40	mA
AC Standby Current ($\vec{E} = V_{IH}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	12	8	6	mA
CMOS Standby Current (V _{CC} = Max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2 V$)	I _{SB2}	100	100	100	μA

CAPACITANCE (f = 1 MHz, dV = 3 V, T_A = 25°C, Periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Address Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance (Ĕ, G, Ŵ)	C _{in}	8	pF
I/O Capacitance	C _{I/O}	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = $3.3 \text{ V} \pm 0.3 \text{ V}$, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5	v
Input Pulse Levels 0 to 3.0	V
Input Rise/Fall Time 5 r	IS

 Output Timing Measurement Reference Level
 1.5 V

 Output Load
 Figure 1A Unless Otherwise Noted

READ CYCLE (See Note 1)

	Sym	lodi	-20		-25		-35			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	20	[_	25	_	35	-	ns	2
Address Access Time	tAVQV	tAA	-	20		25	—	35	ns	
Enable Access Time	t ELQV	tACS	-	20	—	25		35	ns	3
Output Enable Access Time	tGLQV	tOE	-	10	-	12	—	15	ns	
Output Hold from Address Change	tAXQX	tон	4	- I	4	—	4	-	ns	6
Enable Low to Output Active	^t ELQX	^t CLZ	4	-	4		4	-	ns	4, 5, 6
Enable High to Output High-Z	^t EHQZ	tCHZ	0	9	0	10	0	11	ns	4, 5, 6
Output Enable Low to Output Active	tGLQX	toLZ	0	-	0	-	0	-	ns	4, 5, 6
Output Enable High to Output High-Z	tGHQZ	tohz	0	8	0	10	0	11	ns	4, 5, 6
Power Up Time	^t ELICCH	tPU	0	-	0		0	-	ns	
Power Down Time	^t EHICCL	^t PD	-	20	-	25		35	ns	

NOTES:

1. W is high for read cycle.

2. All timings are referenced from the last valid address to the first transitioning address.

3. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.

At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} (min), and t_{GHQZ} (max) is less than t_{GLQX} (min), both for a given device and from device to device.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

Device is continuously selected (E = VIL, G = VIL).

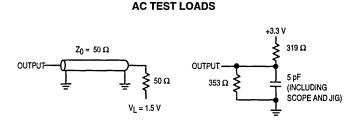
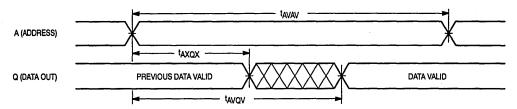
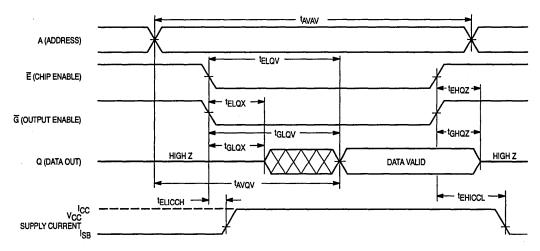



Figure 1A


Figure 1B

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. READ CYCLE 1 (See Note 7)

READ CYCLE 2 (See Note 3)

DATA RETENTION CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
V_{CC} for Data Retention ($\overline{E} \ge V_{CC} - 0.2 V$)	VDR	2	-	-	ns
Data Retention Current ($\vec{E} \ge V_{CC}$ - 0.2 V, V_{CC} = 3.0 V, CMOS Levels on Other Inputs)	ICCDR	-	-	50	μA
Chip Disable to Data Retention Time	^t CDR	0	-	-	ns
Operation Recovery Time	trec	tavav*		-	ns

* tAVAV = Read Cycle Time

DATA RETENTION MODE

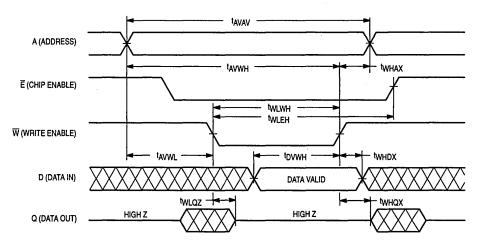
WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Sym	Symbol		20	-25		-35			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	-	25	-	35	-	ns	3
Address Setup Time	tAVWL	tAS	0	-	0	-	0	-	ns	
Address Valid to End of Write	tAVWH	taw	15	-	20	-	30	-	ns	
Write Pulse Width	twlwh, twleh	twp	15	-	20	-	30	-	ns	
Write Pulse Width, G High	twLwH, twLEH	tWP	12	-	15	-	20	-	ns	4
Data Valid to End of Write	tDVWH	tDW	8	—	10	-	12	-	ns	
Data Hold Time	twhdx	tDH	0	—	0	-	0	-	ns	
Write Low to Output High-Z	twlqz	twz	0	8	0	10	0	11	ns	5,6,7
Write High to Output Active	twhox	tow	4	-	4	—	4	-	ns	5,6,7
Write Recovery Time	twhax	twR	0	-	0	_	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.


3. All timings are referenced from the last valid address to the first transitioning address.

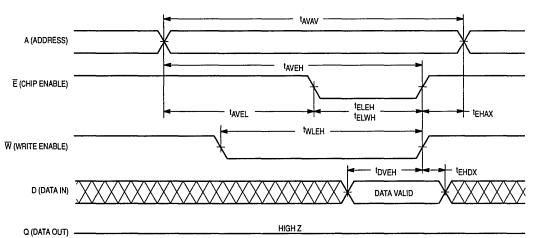
4. If $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state.

5. At any given voltage and temperature, W_{LQZ} max is less than t_{WHQX} min, both for a given device and from device to device. 6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

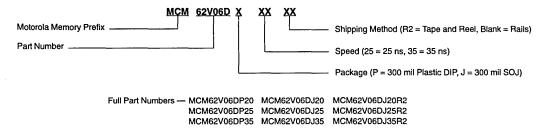
WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

WRITE CYCLE 2 (E Controlled, See Note 1)


	Sym	bol	-20		-25		-35			1
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20	—	25		35	_	ns	2
Address Setup Time	^t AVEL	tAS	0	-	0	-	0	—	ns	
Address Valid to End of Write	^t AVEH	tAW	15	-	20	_	25	—	ns	
Enable to End of Write	^t ELEH, ^t ELWH	tCW	12	-	15	-	25	-	ns	3,4
Data Valid to End of Write	^t DVEH	tDW	8	-	10	- 1	11		ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	-	ns	
Write Recovery Time	^t EHAX	twR	0	—	0	-	0		ns	

NOTES:

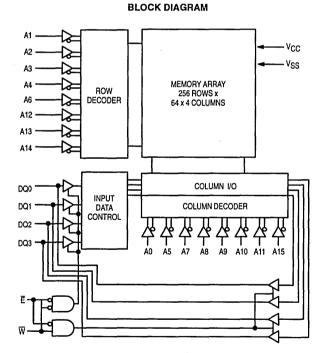
1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. All timings are referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance state.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

WRITE CYCLE 2 (E Controlled, See Note 1)

ORDERING INFORMATION (Order by Full Part Number)


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information 64K x 4 Fast Static RAM

The MCM6208C is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

This device meets JEDEC standards for functionality and provides to greater reliability. plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ± 10% Power Supply
- Fully Static -- No Clock or Timing Strobes Necessary
- Fast Access Times: 12, 15, 20, 25, and 35 ns
- Equal Address and Chip Enable Access Times
- Low Power Operation: 135 –165 mA Maximum AC
- Fully TTL Compatible Three-State Output

P PACKAGE 300 MIL PLASTIC

MCM6208C

J PACKAGE 300 MIL SOJ

CASE 724A

CASE 810A

PIN ASS	IGNMENT
A0 [1 •	24 0 VCC
A1 [2	23 🕽 A15
A2 [3	22 🗍 A14
A3 [4	21 🗋 A13
A4 🖸 5	20 🗍 A12
A5 [6	19 🗍 A11
A6 🛛 7	18 A10
A7 [8	17 DQ0
A8 [] 9	16 DQ1
A9 🛛 10	15 DQ2
Ē [11	14 DQ3
V _{SS} [12	13 D W

PIN N	IAMES
DQ0 – DQ3 Da W E V _{CC} V _{SS}	Address Input ata Input/Data Output Write Enable Chip Enable Power Supply (+ 5 V) Ground No Connection

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TRUTH TABLE (X = Don't Care)

Ē	W	Mode	V _{CC} Current	Output	Cycle
н	х	Not Selected	ISB1, ISB2	High-Z	-
L	н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS For Any Pin Except VCC	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	±20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 V \pm 10\%, T_A = 0 \text{ to } 70^{\circ}C, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	—	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*		0.8	v

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns)

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Mín	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)		±1	μA
Output Leakage Current ($\overline{E1} = V_{IH}$ or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	ⁱ ikg(O)	_	±1	μA
Standby Current ($\vec{E} \ge V_{CC} - 0.2 V^*$, $V_{in} \le V_{SS} + 0.2 V$, or $\ge V_{CC} - 0.2 V$, $V_{CC} = Max$, f = 0 MHz)	ISB2		20	mA
Output Low Voltage (I _{OL} = 8.0 mA)	VOL	_	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	V

*For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

POWER SUPPLY CURRENTS

Parameter	Symbol	- 12	- 15	- 20	- 25	- 35	Unit
AC Supply Current (I _{out} = 0 mA, V _{CC} = Max, f = f _{max})	ICCA	165	155	145	135	135	mA
Standby Current ($\vec{E} = V_{IH}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	55	50	45	40	40	mA

CAPACITANCE (f = 1 MHz, dV = 3 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Max	Unit
Address Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance (Ē, G, W)	C _{in}	6	pF
I/O Capacitance	CI/O	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	5 ns

READ CYCLE (See Notes 1 and 2)

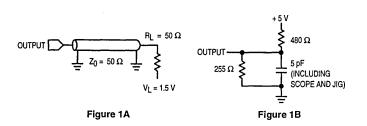
	Symt	ol	-	12	-	15		20	- :	25	;	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Read Cycle Time	tavav	tRC	12	-	15	-	20	—	25	-	35	-	ns	3
Address Access Time	tAVQV	tAA	-	12	-	15	-	20	—	25	-	25	ns	
Enable Access Time	^t ELQV	tACS	—	12	-	15	-	20	—	25	-	25	ns	4
Output Enable Access Time	^t GLQV	tOE	-	6	—	8	-	10	-	12	-	-	ns	
Output Hold from Address Change	tAXQX	tон	4	—	4	—	4	—	4	—	4	-	ns	
Enable Low to Output Active1	^t ELQX	^t CLZ	4	—	4	_	4	-	4	-	4	-	ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	6	0	8	0	9	0	10	0	10	ns	5, 6, 7
Output Enable Low to Output Active	^t GLQX	tolz	0	-	0	-	0	-	0	-	0	-	ns	5, 6, 7
Output Enable High to Output High-Z	^t GHQZ	tohz.	0	6	0	7	0	8	0	10	0		ns	5, 6, 7
Power Up Time	^t ELICCH	tPU	0		0		0		0		0		ns	
Power Down Time	^t EHICCL	tPD	-	12	—	15	—	20	—	25	—	35	ns	

NOTES:

1. \overline{W} is high for read cycle.

2. For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. All timings are referenced from the last valid address to the first transitioning address.

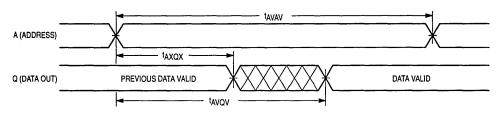

4. Addresses valid prior to or coincident with \overline{E} going low.

5. At any given voltage and temperature, tEHQZ max is less than tELQX min, and tGHQZ max is less than tGLQX min, both for a given device and from device to device.

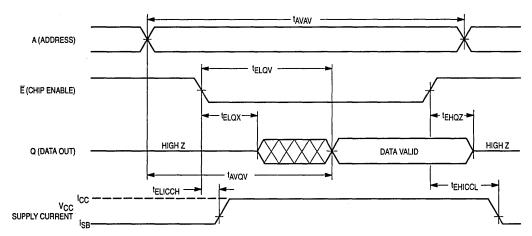
6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E1} \leq V_{IL}, \overline{G} \leq V_{IL}$).


AC TEST LOADS


TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note 8)

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

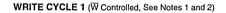
	Symb	ol	-	12	-	15		20	-	25	- 35			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	12	—	15	—	20	-	25	-	35	-	ns	4
Address Setup Time	tAVWL	tAS	0	—	0	-	0	—	0	-	0	—	ns	
Address Valid to End of Write	tAVWH	tAW	10	-	12	—	15	—	20	-	20	-	ns	
Write Pulse Width	twLwH, twLEH	twp	10	-	12	-	15	-	20	-	20	_	ns	
Write Pulse Width, G High	^t WLWH, ^t WLEH	twp	8		10	-	12	-	15	-	15		ns	5
Data Valid to End of Write	tDVWH	tDW	6	-	7	-	8	—	10	-	10	—	ns	
Data Hold Time	tWHDX	^t DH	0	-	0	-	0		0	-	0		ns	
Write Low to Output High-Z	twlgz	twz	0	7	0	7	0	8	0	10	0	10	ns	6, 7, 8
Write High to Output Active	twhax	tow	4	-	4	—	4	-	4	-	4	-	ns	6, 7, 8
Write Recovery Time	tWHAX	twR	0		0	_	0	_	0	-	0		ns	

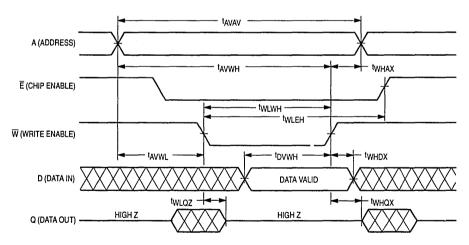
NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. For devices with multiple chip enables, $\overline{E1}$ and E2 are represented by \overline{E} in this data sheet. E2 is of opposite polarity to \overline{E} .

3. For Output Enable devices, if G goes low coincident with or after W goes low, the output will remain in a high impedance state.


4. All timings are referenced from the last valid address to the first transitioning address.


5. For Output Enable devices, if $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state

6. At any given voltage and temperature, tWLOZ max is less than tWHOX min, both for a given device and from device to device.

7. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

8. This parameter is sampled and not 100% tested.

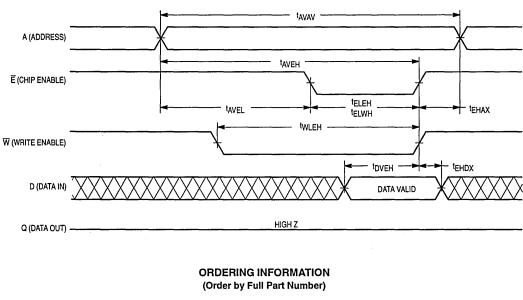
WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

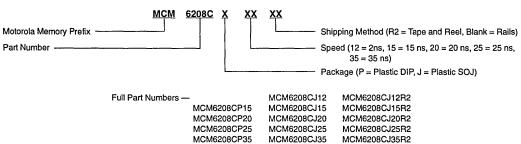
	Symbol		-	12	-	15	- :	20	- :	25	- 35			
Parameter	Std	Ait	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note s
Write Cycle Time	tavav	twc	12	-	15	-	20		25	-	35	-	ns	4
Address Setup Time	t AVEL	tAS	0	-	0	- 1	0		0	-	0	-	ns	
Address Valid to End of Write	t AVEH	tAW	10	-	12	-	15	- 1	20	-	20		ns	
Enable to End of Write	^t ELEH, ^t ELWH	tcw	8	-	10	-	12	-	15	-	15	-	ns	5,6
Data Valid to End of Write	^t DVEH	tow	6	-	7	-	8		10	-	10	-	ns	
Data Hold Time	^t EHDX	tDH	0	-	0	-	0	-	0		0	-	ns	
Write Recovery Time	^t EHAX	tWR	0	-	0	- 1	0		0	-	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

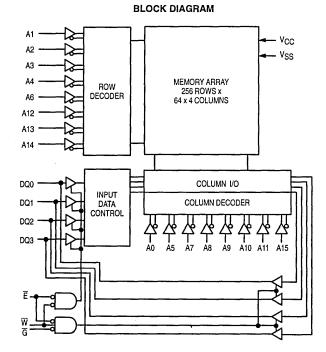

3. For Output Enable devices, if G goes low coincident with or after W goes low, the output will remain in a high impedance state.


WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

4. All timings are referenced from the last valid address to the first transitioning address.

5. If \vec{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

6. If E goes high coincident with or before W goes high, the output will remain in a high impedance state.


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information 64K x 4 Bit Fast Static RAM With Output Enable

The MCM6209C is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes,

while CMOS circuitry reduces power consumption and provides for greater reliability. This device meets JEDEC standards for functionality and pinout, and is available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ± 10% Power Supply
- Fully Static --- No Clock or Timing Strobes Necessary
- · Fast Access Times: 12, 15, 20, 25, and 35 ns
- Equal Address and Chip Enable Access Times
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems
- Low Power Operation: 135 165 mA Maximum AC
- Fully TTL Compatible --- Three-State Output

MCM6209C

J PACKAGE 300 MIL SOJ CASE 810B

PIN	ASSIGN	MEN	т
ис [1•	28	Vcc
A0 [2	27	A15
A1 [3	26	A14
A2 [4	25	A13
A3 [5	24	A12
A4 [6	23	A11
A5 [7	22	A10
A6 🛛	8	21	NC
A7 🕻	9	20	NC
A8 [10	19	DQ0
A9 🕻	11	18	DQ1
Ē	12	17	DQ2
ਰ [13	16	DQ3
v _{ss} [14	15	\overline{W}

PIN NAMES
A0 – A15 Address Input DQ0 – DQ3 Data Input/Data Output W Write Enable G Output Enable E Chip Enable NC No Connection VCC Power Supply (+ 5 V) VSS Ground

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TRUTH TABLE (X = Don't Care)

	Ē	Ğ	Ŵ	Mode	V _{CC} Current	Output	Cycle
-	н	X	X	Not Selected	ISB1, ISB2	High-Z	_
I	L	н	н	Output Disabled	ICCA	High-Z	-
1	L	(L	н	Read	ICCA	Dout	Read
	L	X	L	Write	ICCA	High-Z	Write

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS For Any Pin Except VCC	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	ТА	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Тур	Max	Unit	
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2		V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	—	0.8	v

* VIL (min) = -0.5 V dc; VIL (min) = -2.0 V ac (pulse width ≤ 20 ns)

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit	
Input Leakage Current (Ali Inputs, Vin = 0 to V _{CC})	likg(l)	_	± 1	μA	
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)		± 1	μA	
Standby Current ($\overline{E} \geq V_{CC} - 0.2$ V*, $V_{in} \leq V_{SS}$ + 0.2 V, or $\geq V_{CC} - 0.2$ V, V_{CC} = Max, f = 0 MHz)	ISB2	_	20	mA	
Output Low Voltage (IOL = 8.0 mA)	VOL		0.4	v	
Output High Voltage (IOH = - 4.0 mA)	VOH	2.4		V	

*For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

POWER SUPPLY CURRENTS

Parameter	Symbol	- 12	- 15	- 20	- 25	- 35	Unit
AC Supply Current ($I_{out} = 0$ mA, $V_{CC} = Max$, $f = f_{max}$)	ICCA	165	155	145	135	130	mA
Standby Current ($\overline{E} = V_{IH}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	55	50	45	40	35	mA

CAPACITANCE (f = 1 MHz, dV = 3 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Max	Unit	
Address Input Capacitance	C _{in}	6	pF	
Control Pin Input Capacitance (E, G, W)	C _{in}	6	pF	
I/O Capacitance	C _{I/O}	8	pF	

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	
Input Pulse Levels 0 to 3.0 V	
Input Rise/Fall Time 5 ns	

READ CYCLE (See Notes 1 and 2)

	Symbol		-	12	-	15	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Мах	Unit	Notes
Read Cycle Time	tavav	tRC	12	-	15	-	20	-	25	-	35		ns	3
Address Access Time	†AVQV	tAA	—	12	—	15	-	20	—	25		35	ns	
Enable Access Time	^t ELQV	tACS	-	12		15	-	20	-	25	—	35	ns	4
Output Enable Access Time	tGLQV	tOE	—	6	-	8	-	10	—	12	—	15	ns	
Output Hold from Address Change	tAXQX	tон	4	_	4	—	4	-	4	-	4	-	ns	
Enable Low to Output Active	^t ELQX	^t CLZ	4	-	4	_	4	-	4	-	4	-	ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	6	0	8	0	9	0	10	0	10	ns	5, 6, 7
Output Enable Low to Output Active	tGLQX	tolz	0	-	0	-	0	-	0	-	0	-	ns	5, 6, 7
Output Enable High to Output High-Z	^t GHQZ	tohz	0	6	0	7	0	8	0	10	0	-	ns	5, 6, 7
Power Up Time	^t ELICCH	tPU	0		0		0		0	—	0	-	ns	
Power Down Time	^t EHICCL	tPD	—	12	—	15	—	20		25	—	35	ns	

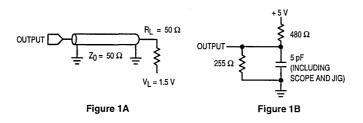
NOTES:

1. \overline{W} is high for read cycle.

2. For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. All timings are referenced from the last valid address to the first transitioning address.

4. Addresses valid prior to or coincident with E going low.

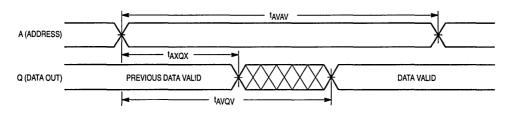

 At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GLQX} min, both for a given device and from device to device.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

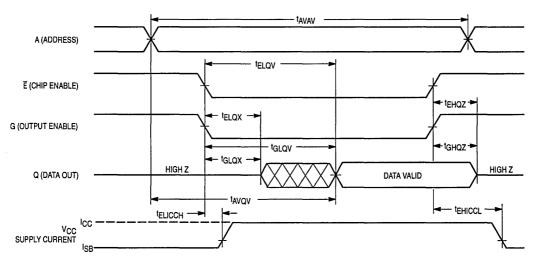
7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E} = V_{|L}$, $E2 = V_{|H}$, $\overline{G} \le V_{|L}$).

AC TEST LOADS



TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note 8)

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

······································	Sym	bol	-	12		15	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tAVAV	twc	12		15		20	-	25	—	35	—	ns	4
Address Setup Time	tAVWL	tAS	0	-	0	-	0	—	0	-	0		ns	
Address Valid to End of Write	tAVWH	tAW	10	-	12	-	15		20	—	20	-	ns	
Write Pulse Width	^t WLWH, ^t WLEH	twp	10	-	12	-	15	-	20	-	20	-	ns	
Write Pulse Width, G High	^t WLWH, ^t WLEH	twp	8	-	10	-	12	-	15	-	15	-	ns	5
Data Valid to End of Write	^t DVWH	tDW	6	-	7	—	8	—	10	-	10		ns	
Data Hold Time	twhdx	tDH	0	—	0	—	0	—	0		0		ns	
Write Low to Output High-Z	twlqz	twz	0	6	0	7	0	8	0	10	0	10	ns	6, 7, 8
Write High to Output Active	twhox	tow	4	-	4	-	4	-	4	—	4	—	ns	6, 7, 8
Write Recovery Time	tWHAX	twR	0		0		0	—	0	—	0	—	ns	

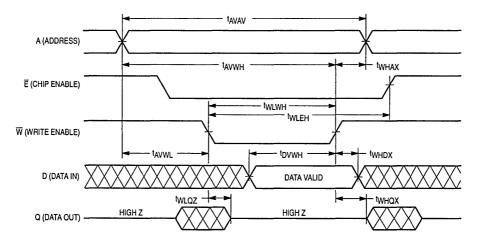
NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. For Output Enable devices, if G goes low coincident with or after W goes low, the output will remain in a high impedance state.

4. All tirnings are referenced from the last valid address to the first transitioning address.


5. For Output Enable devices, if $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state

6. At any given voltage and temperature, twLQZ max is less than tWHQX min, both for a given device and from device to device.

7. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

8. This parameter is sampled and not 100% tested.

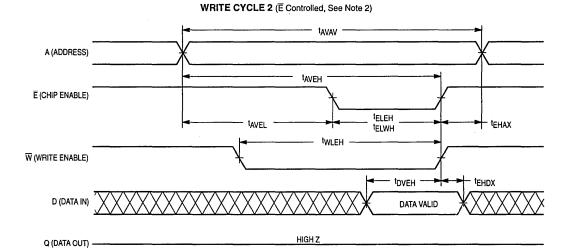
WRITE CYCLE 1 (W Controlled, See Note 2)

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

	Sym	Symbol		- 12		- 15		- 20		25	- 35			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note s
Write Cycle Time	tavav	twc	12	-	15		20	1	25		35		ns	4
Address Setup Time	tAVEL	tAS	0	-	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	^t AVEH	tAW	10	-	12	-	15	-	20	-	20	-	ns	
Enable to End of Write	^t ELEH, tELWH	tcw	8	-	10	-	12	-	15	-	15	-	ns	5,6
Data Valid to End of Write	^t DVEH	tDW	6	-	7	-	8		10	-	10	-	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	-	0	-	0	-	ns	
Write Recovery Time	^t EHAX	twn	0		0	-	0	-	0	-	0	-	ns	

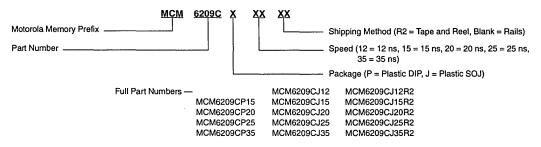
NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. For Output Enable devices, if \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

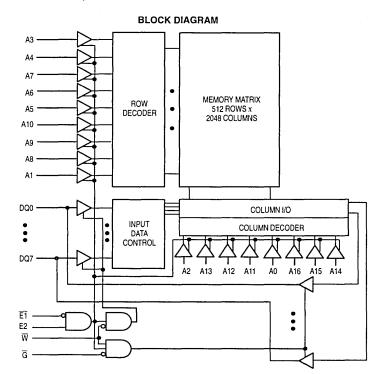
4. All timings are referenced from the last valid address to the first transitioning address.


5. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

6. If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

ORDERING INFORMATION

(Order by Full Part Number)


MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

128K x 8 Bit Static Random Access Memory

The MCM6226A is a 1,048,576 bit static random access memory organized as 131,072 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM6226A is equipped with both chip enable ($\overline{E1}$ and E2) and output enable (\overline{G}) pins, allowing for greater system flexibility and eliminating bus contention problems. The MCM6226A is available in 400 mil, 32 lead surface-mount SOJ packages.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 20, 25, 35, and 45 ns
- Equal Address and Chip Enable Access Times
- All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Low Power Operation: 180/160/150/140 mA Maximum, Active AC

MCM6226A

PIN	ASSIGNME	NT	r
	• 32	þ	VCC
A0 [] 2	2 31	þ	A16
A1 [] 3	30	þ	E2
A2 [4	29	þ	W
АЗ [] 5	5 28	þ	A15
A4 [] 6	5 27	þ	A14
A5 [7	26	þ	A13
A6 [] 8	25	þ	A12
A7 🛛 9	24	þ	G
A8 []1	0 23	þ	A11
A9 [] 1	1 22	þ	ĒĨ
A10 []1:	2 21	þ	DQ7
DQ0 []1	3 20	p	DQ6
DQ1 []1	4 19	þ	DQ5
DQ2 [] 1	5 18	þ	DQ4
Vss [1	6 17	p	DQ3

PIN NAMES	
A0 - A16 Addre W Writ G Output E1, E2 Chip DQ0 - DQ7 Data Inputs NC No Cc VCC + 5 V Power VSS VSS	e Enable ut Enable Enables Outputs onnection er Supply

MOTOROLA FAST SRAM DATA

TRUTH TABLE

ĒĨ	E2	G	W	Mode	I/O Pin	Cycle	Current
н	х	х	х	Not Selected	High-Z	-	ISB1, ISB2
х	L	х	X	Not Selected	High-Z	-	ISB1, ISB2
L	н	Н	н	Output Disabled	High-Z	-	ICCA
L	н	L	н	Read	Dout	Read	ICCA
L	н	х	L	Write	D _{in}	Write	ICCA

H = High, L = Low, X = Don't Care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to V_{SS}	Vcc	- 0.5 to 7.0	v
Voltage Relative to V_{SS} for Any Pin Except V_{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.1	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	V
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*	0.8	V

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns).

** V_{IH} (max) = V_{CC} to 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns).

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter		Symbol	Min	Typ**	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})		likg(l)		-	±1	μA
Output Leakage Current ($\overline{E}^* = V_{IH}$, $V_{out} = 0$ to V_{CC})		likg(O)	-	-	± 1	μA
AC Active Supply Current (I _{Out} = 0 mA, V _{CC} = max)	MCM6226A-20: t _{AVAV} = 20 ns MCM6226A-25: t _{AVAV} = 25 ns MCM6226A-35: t _{AVAV} = 35 ns MCM6226A-45: t _{AVAV} = 45 ns	ICCA		150 135 125 120	180 160 150 140	mA
AC Standby Current ($V_{CC} = max$, $\overline{E}^* = V_{IH}$, f = f _{max})		ISB1	-	7	20	mA
$\begin{array}{l} CMOS \mbox{ Standby Current} \ (\overline{E}^{\star} \geq V_{CC} - 0.2 \ V, \ V_{in} \leq \ V_{SS} + \\ or \geq V_{CC} - 0.2 \ V, \ V_{CC} = max, \ f = 0 \ MHz) \end{array}$	0.2 V	ISB2	-	4	15	mA
Output Low Voltage (IOL = + 8.0 mA)		VOL	-		0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)		Vон	2.4	—		V

*E1 and E2 are represented by \overline{E} in this data sheet. E2 is of opposite polarity to $\overline{E1}$.

**Typical values are measured at 25°C, V_{CC} = 5 V.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

	Characteristic	Symbol	4 6 p 5 8				
Input Capacitance	All Inputs Except Clocks and DQ E1, E2, G, and W	C _{in} C _{ck}	4 5	6 8	pF		
I/O Capacitance	DQ	C _{I/O}	5	8	рF		

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	2 ns
Input Timing Measurement Reference Level	1.5 V

READ CYCLE TIMING (See Notes 1, 2, and 3)

	Syn	Symbol		6A-20	6226	SA-25	6226	A-35	6226A-45			
Parameter	Standard	Alternate	Min	Max	Min	Мах	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	^t RC	20	—	25		35		45		ns	4
Address Access Time	^t AVQV	tAA	-	20	-	25		35	—	45	ns	
Enable Access Time	^t ELQV	^t ACS		20	-	25	—	35	—	45	ns	5
Output Enable Access Time	^t GLQV	^t OE	—	8	-	10	—	15	-	15	ns	
Output Hold from Address Change	†AXQX	tон	5	_	5	-	5	-	5	—	ns	
Enable Low to Output Active	^t ELQX	tLZ	5	—	5	-	5	—	5		ns	6, 7, 8
Output Enable Low to Output Active	^t GLQX	tLZ	0		0	—	0	—	0	—	ns	6, 7, 8
Enable High to Output High-Z	^t EHQZ	tHZ	0	9	0	10	0	12	0	15	ns	6, 7, 8
Output Enable High to Output High-Z	^t GHQZ	tнz	0	9	0	10	0	12	0	15	ns	6, 7, 8
Power Up Time	tELICCH	tPU	0	-	0	-	0	—	0	-	ns	
Power Down Time	tEHICCL	tPD	—	20	-	25		35	-	45	ns	

NOTES:

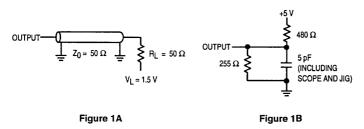
1. \overline{W} is high for read cycle.

Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E1.

4. All timings are referenced from the last valid address to the first transitioning address.

5. Addresses valid prior to or coincident with \overline{E} going low.

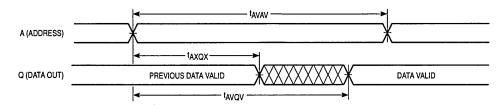

 At any given voltage and temperature, tEHQZ max is less than tELQX min, and tGHQZ max is less than tGLQX min, both for a given device and from device to device.

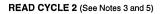
7. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

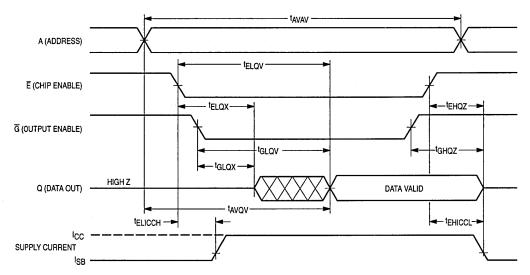
8. This parameter is sampled and not 100% tested.

9. Device is continuously selected ($\overline{E} \leq V_{|L}, \overline{G} \leq V_{|L}$).

AC TEST LOADS




TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Notes 1, 2, 3, and 9)

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, 3, and 4)

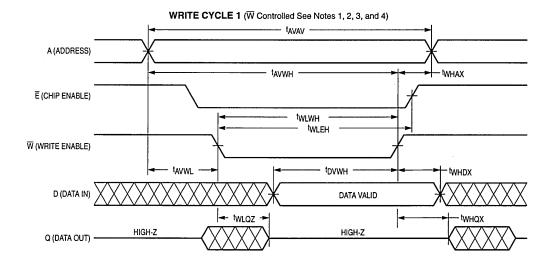
	Syn	nbol	6226	A-20	6226	A-25	6226	26A-35 6220		A-45		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20	-	25	-	35	-	45		ns	5
Address Setup Time	tAVWL	tAS	0	- 1	0	—	0	_	0	_	ns	
Address Valid to End of Write	tavwh	tAW	15	- 1	17	—	20	_	25	_	ns	
Write Pulse Width	twLwH	tWP	15	-	17	-	20	—	25	-	ns	
Data Valid to End of Write	t DVWH	tDW	10	<u> </u>	10	—	15	—	20	-	ns	
Data Hold Time	twhdx	^t DH	0		0	-	0	—	0	-	ns	
Write Low to Data High-Z	twlqz	twz	0	9	0	10	0	15	0	20	ns	6, 7, 8
Write High to Output Active	twhax	tow	5	-	5		5		5		ns	6, 7, 8
Write Recovery Time	twhax	tWR	0	—	0	—	0	—	0	—	ns	

NOTES:

1. A write occurs during the overlap of $\overline{\mathsf{E}}$ low and $\overline{\mathsf{W}}$ low.

Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. $\overline{E1}$ and E2 are represented by \overline{E} in this data sheet. E2 is of opposite polarity to $\overline{E1}$.


4. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

5. All timings are referenced from the last valid address to the first transitioning address.

6. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. At any given voltage and temperature, twLoz max is less than twHox min both for a given device and from device to device.

3

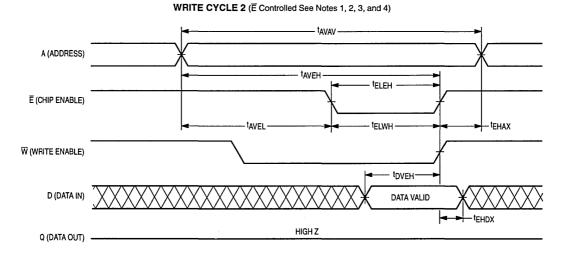
WRITE CYCLE 2 (E Controlled, See Notes 1, 2, 3, and 4)

	Syn	nbol	6226	A-20	6226A-25		6226A-35		6226A-45			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	_	25		35	-	45		ns	5
Address Setup Time	tAVEL	tas	0		0	-	0	-	0	-	ns	
Address Valid to End of Write	^t AVEH	tAW	15	—	17	-	20	—	25	-	ns	
Enable to End of Write	^t ELEH	tcw	15		17	—	20		25	_	ns	6, 7
Enable to End of Write	^t ELWH	tcw	15	—	17	-	20	—	25		ns	
Write Pulse Width	tWLEH	twp	15		17	—	20		25	-	ns	
Data Valid to End of Write	t DVEH	tDW	10	-	10	-	15	—	20	-	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	—	0	—	0	-	ns	
Write Recovery Time	^t EHAX	twR	0	-	0	_	0	_	0	-	ns	

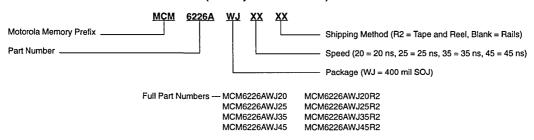
NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.


3. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E1.

4. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

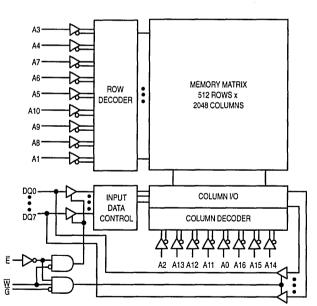

5. All timings are referenced from the last valid address to the first transitioning address.

6. If E goes low coincident with or after W goes low, the output will remain in a high-impedance state.

7. If E goes high coincident with or before W goes high, the output will remain in a high-impedance state.

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA


Product Preview 128K x 8 Bit Static Random Access Memory

The MCM6226B is a 1,048,576 bit static random access memory organized as 131,072 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes while CMOS circuitry reduces power consumption and provides for greater reliability.


The MCM6226B is equipped with both chip enable ($\overline{E1}$ and $\overline{E2}$) and output enable (\overline{G}) pins, allowing for greater system flexibility and eliminating bus contention problems.

The MCM6226B is available in 300 mil and 400 mil, 32 lead surface-mount SOJ packages.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 15/17/20/25/35 ns
- Equal Address and Chip Enable Access Times
- All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Low Power Operation: 130/125/120/115/110 mA Maximum, Active AC

BLOCK DIAGRAM

PIN A	ASSIGNME	N7	г
	• 32	þ	VCC
A0 🛛 2	31	þ	A16
A1 🛛 3	30	þ	E2
A2 [4	29	þ	W
A3 [5	28	þ	A15
A4 🛛 6	27	þ	A14
A5 🛛 7	26	þ	A13
A6 🛛 8	25	þ	A12
A7 🛛 9	24	þ	G
A8 []10	23	þ	A11
A9 []11	22	þ	Ē1
A10 [12	21	þ	DQ7
DQ0 []13	20	þ	DQ6
DQ1 [14	19	þ	DQ5
DQ2 🛛 15	18	þ	DQ4
VSS [16	17	þ	DQ3

PIN N	NAMES
	Address Inputs
	Write Enable
E1, E2	Chip Enables
	Data Inputs/Outputs
	. + 5 V Power Supply
V _{SS}	Ground

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

E1	E2	G	W	W Mode I/O Pin Cycl		Cycle	Current	
н	х	х	х	Not Selected	High-Z	-	ISB1, ISB2	
Х	L	х	х	Not Selected	High-Z	- 1	ISB1, ISB2	
L	н	н	н	Output Disabled	High-Z	—	ICCA	
L	н	L	н	Read	Dout	Read	ICCA	
L	н	x	L	Write	D _{in}	Write	ICCA	

H = High, L = Low, X = Don't Care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to VSS	Vcc	- 0.5 to 7.0	V
Voltage Relative to VSS for Any Pin Except V_{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.1	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

 V_{IL} (min) = - 0.5 V dc; V_{IL} (min) = - 2.0 V ac (pulse width \leq 20 ns).

**VIH (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns).

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})		likg(I)		±1	μA
Output Leakage Current ($\overline{E}^* = V_{IH}$, $V_{out} = 0$ to V_{CC})		likg(O)	—	±1	μA
AC Active Supply Current ($I_{out} = 0 \text{ mA}, V_{CC} = \text{max}$)	MCM6226B-15: t _{AVAV} = 15 ns MCM6226B-17: t _{AVAV} = 17 ns MCM6226B-20: t _{AVAV} = 20 ns MCM6226B-25: t _{AVAV} = 25 ns MCM6226B-35: t _{AVAV} = 35 ns	ICCA		130 125 120 115 110	mA
AC Standby Current (V _{CC} = max, \overline{E}^* = V _{IH} , f = f _{max})	MCM6226B-15: t _{AVAV} = 15 ns MCM6226B-17: t _{AVAV} = 17 ns MCM6226B-20: t _{AVAV} = 20 ns MCM6226B-25: t _{AVAV} = 25 ns MCM6226B-35: t _{AVAV} = 35 ns	ISB1	- - - -	35 35 30 25 20	mA
CMOS Standby Current ($\overline{E}^* \ge V_{CC} - 0.2 \text{ V}, V_{in} \le V_{SS} + \text{or} \ge V_{CC} - 0.2 \text{ V}, V_{CC} = \text{max}, f = 0 \text{ MHz}$)	0.2 V	ISB2	-	5	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		VOL	_	0.4	V
Output High Voltage (IOH = - 4.0 mA)		Voн	2.4	-	V

*E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E1.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Input Capacitance	All Inputs Except Clocks and DQs E1, E2, G, and W	C _{in} C _{ck}	4 5	6 8	pF		
I/O Capacitance	DQ	CI/O	5	8	ρF		

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Pulse Levels 0 to 3.0 V	
Input Rise/Fall Time 2 ns	
Input Timing Measurement Reference Level 1.5 V	

Output Timing Measurement Reference Level	1.5 V
Output Load	See Figure 1A

READ CYCLE TIMING (See Notes 1, 2, and 3)

	Syn	nbol	6226	B-15	6226	B-17	6226	B-20	6226	B-25	6226	B-35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Read Cycle Time	^t AVAV	tRC	15	-	17	-	20	—	25		35	—	ns	4
Address Access Time	^t AVQV	tAA	-	15		17	—	20	—	25	-	35	ns	
Enable Access Time	^t ELQV	tACS	-	15		17	—	20		25	—	35	ns	5
Output Enable Access Time	^t GLQV	tOE	-	6	-	7	-	7	-	8	-	8	ns	
Output Hold from Address Change	^t AXQX	tон	5	-	5	-	5	-	5	-	5	-	ns	
Enable Low to Output Active	^t ELQX	tLZ	5	-	5		5	-	5	-	5	-	ns	6, 7, 8
Output Enable Low to Output Active	^t GLQX	tLZ	0	-	0	-	0	-	0	-	0		ns	6, 7, 8
Enable High to Output High-Z	^t EHQZ	tHZ	0	6	0	7	0	7	0	8	0	8	ns	6, 7, 8
Output Enable High to Output High-Z	^t GHQZ	tHZ	0	6	0	7	0	7	0	8	0	8	ns	6, 7, 8

NOTES:

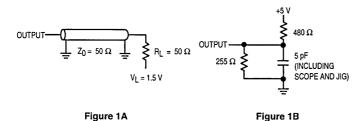
1. W is high for read cycle.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. E1 and E2 are represented by \vec{E} in this data sheet. E2 is of opposite polarity to $\vec{E1}$.

4. All timings are referenced from the last valid address to the first transitioning address.

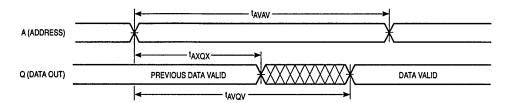
5. Addresses valid prior to or coincident with \overline{E} going low.

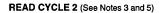

 At any given voltage and temperature, tEHQZ max is less than tELQX min, and tGHQZ max is less than tGLQX min, both for a given device and from device to device.

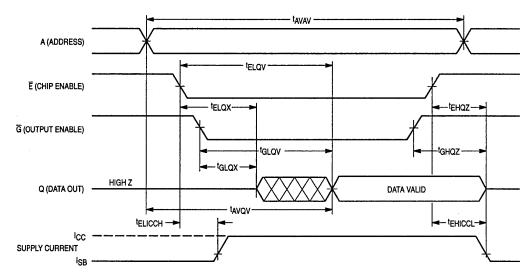
7. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.

8. This parameter is sampled and not 100% tested.

9. Device is continuously selected ($\overline{E} \leq V_{|L}, \overline{G} \leq V_{|L}$).






TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Notes 1, 2, 3, and 9)

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, 3, and 4)

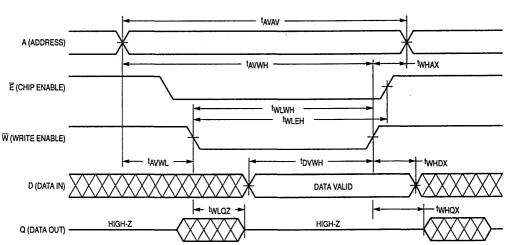
	Symbol		6226B-15		6226B-17		6226B-20		6226B-25		6226	B-35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	15	- 1	17	-	20	-	25	-	35	-	ns	5
Address Setup Time	^t AVWL	tAS	0	-	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	^t AVWH	tAW	12	-	14	-	15	-	17	—	20	-	ns	
Write Pulse Width	twlwh	twp	12	-	14	-	15	-	17	-	20	-	ns	
Data Valid to End of Write	t _{DVWH}	tDW	7	-	8	-	8	-	10		11	-	ns	
Data Hold Time	^t WHDX	tDH	0	-	0	-	0	-	0	-	0		ns	
Write Low to Data High-Z	twLQZ	twz	0	6	0	7	0	7	0	8	0	8	ns	6, 7, 8
Write High to Output Active	twhox	tow	5		5	-	5	-	5	-	5	-	ns	6, 7, 8
Write Recovery Time	twhax	twn	0	-	0	-	0	_	0	—	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

 Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E1.


4. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

5. All timings are referenced from the last valid address to the first transitioning address.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. At any given voltage and temperature, tWLQZ max is less than tWHQX min both for a given device and from device to device.

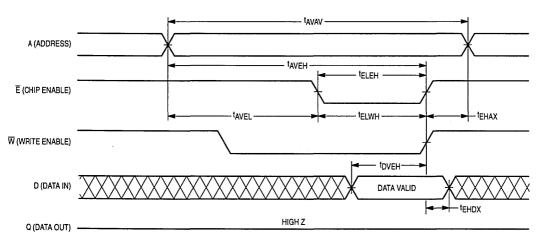
WRITE CYCLE 1 (W Controlled See Notes 1, 2, 3, and 4)

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, 3, and 4)

	Syn	lodr	6226	6B-15	6226	B-17	6226	B-20	6226	B-25	6226	B-35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	15	-	17	-	20	_	25	-	35	—	ns	5
Address Setup Time	^t AVEL	tAS	- 0	-	0	-	0	-	0	-	0	—	ns	
Address Valid to End of Write	^t AVEH	tAW	12	-	14	-	15	-	17	-	20	-	ns	
Enable to End of Write	^t ELEH	tcw	10	-	11	-	12	-	15	-	20	-	ns	6, 7
Enable to End of Write	^t ELWH	tcw	10	-	11	-	12	-	15	-	20	-	ns	
Data Valid to End of Write	^t DVEH	tDW	7	-	8		8	-	10	-	11	—	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	—	0	-	0	-	ns	
Write Recovery Time	^t EHAX	twn	0	-	0	-	0	-	0	-	0	—	ns	

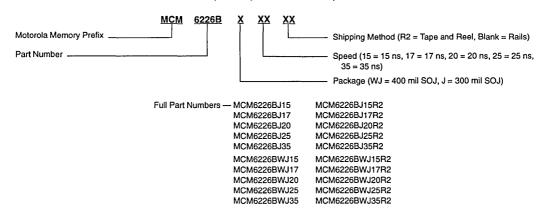
NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E1.

4. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high-impedance state.

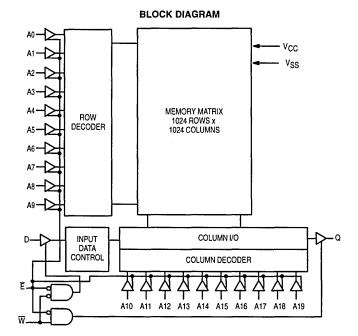

5. All timings are referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high-impedance state.
 If E goes high coincident with or before W goes high, the output will remain in a high-impedance state.

WRITE CYCLE 2 (E Controlled See Notes 1, 2, 3, and 4)

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


1M x 1 Bit Static Random Access Memory

The MCM6227A is a 1,048,576 bit static random-access memory organized as 1,048,576 words of 1 bit, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM6227A is equipped with a chip enable (\overline{E}) pin. In less than a cycle time after \overline{E} goes high, the part enters a low-power standby mode, remaining in that state until \overline{E} goes low again.

The MCM6227A is available in 400 mil, 28-lead surface-mount SOJ packages.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 20, 25, 35, and 45 ns
- Equal Address and Chip Enable Access Times
- Input and Output are TTL Compatible
- Three-State Output
- Low Power Operation: 160/140/130/120 mA Maximum, Active AC

MCM6227A

PI	N ASSIGN	MEN	т
A0 [1•	28	V _{CC}
A1	2	27	A19
A2	3	26	A18
A3 [4	25	A17
A4 [5	24	A16
A5 [6	23	A15
NC [7	22	A14
A6 [8	21	NC
A7 [9	20	A13
A8 [10	19	A12
аэ [11	18	A11
۵ [12	17	A10
w [13	16	D
v _{ss} [14	15	Ē

PIN NAMES									
A0 - A19 Address Inpu W Write Enab E Chip Enab D Data Inp Q Data Outp NC No Connectit V _{CC} + 5 V Power Supp VSS Group	le le ut ut n								

R

MCM6227A TRUTH TABLE

Ē	Ŵ	Mode	I/O Pin	Cycle	Current
н	X	Not Selected	High-Z	-	ISB1, ISB2
L	н	Read	Dout	Read	ICCA
L	L	Write	High-Z	Write	ICCA

H = High, L = Low, X = Don't Care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to VSS	Vcc	- 0.5 to 7.0	V
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 20	mA
Power Dissipation	PD	1.1	W
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 150	. ∘C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ T}_{A} = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	V
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*	0.8	V

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns).

**VIH (max) = V_{CC} = 0.3 V dc; VIH (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns).

DC CHARACTERISTICS AND SUPPLY CURRENTS

Symbol	Min	Тур*	Max	Unit
likg(i)		-	±1	μA
likg(O)		- 1	± 1	μA
ICCA		120 110 100 90	160 140 130 120	mA
ISB1	_	7	20	mA
ISB2	_	4	15	mA
VOL		- 1	0.4	V
Voн	2.4		_	V
	Ikg(I) Ikg(O) ICCA ISB1 ISB2 VOL	Ikg(I) Ikg(O) ICCA ISB1 ISB2 VOL	Ilkg(I) Ilkg(O) ICCA 120 110 100 90 ISB1 7 ISB2 4 VOL	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* Typical values are measured at 25°C, V_{CC} = 5 V.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Char	acteristic	Symbol	Тур	Max	Unit
Input Capacitance	All Inputs Except Clocks and D, Q \overline{E} and \overline{W}	C _{in}	4 5	6 8	pF
Input and Output Capacitance	D, Q	C _{in} , C _{out}	5	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{T}_{A} = 0 \text{ to} + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	2 ns
Input Timing Measurement Reference Level	1.5 V

Output Timing Measurement Reference Level 1.	5 V
Output Load See Figure	1A

READ CYCLE TIMING (See Notes 1 and 2)

	Syn	nbol	6227	7A-20	6227	A-25	6227	'A-35	6227	'A-45		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	^t AVAV	^t RC	20	-	25	-	35	-	45	- 1	ns	2,3
Address Access Time	tAVQV	tAA	-	20	-	25	-	35	-	45	ns	1
Enable Access Time	^t ELQV	tACS	—	20	-	25	_	35	—	45	ns	4
Output Hold from Address Change	tAXQX	tон	5	-	5	-	5	-	5	-	ns	
Enable Low to Output Active	^t ELQX	tLZ	5	-	5	-	5	-	5	-	ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	tHZ	0	9	0	10	0	12	-	18	ns	5, 6, 7
Power Up Time	^t ELICCH	tPU	0	-	0	-	0	-	0	-	ns	
Power Down Time	^t EHICCL	tPD	-	20	_	25	_	35	-	45	ns	1

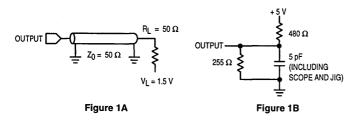
NOTES:

1. W is high for read cycle.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All timings are referenced from the last valid address to the first transitioning address.

4. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.

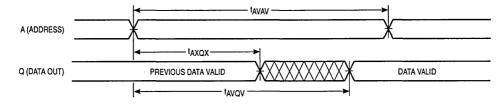

5. At any given voltage and temperature, tEHQZ max is less than tELQX min, both for a given device and from device to device.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

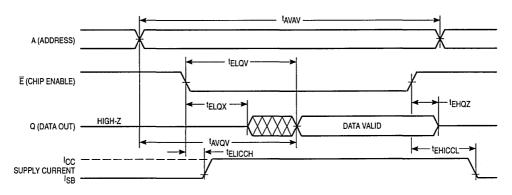
7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E} \le V_{IL}$).

AC TEST LOADS



TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

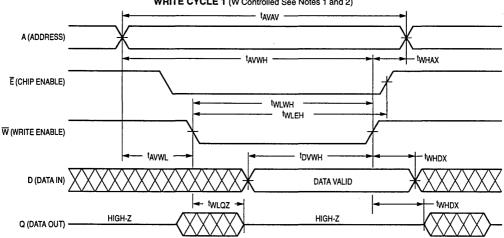
READ CYCLE 1 (See Notes 1, 2, and 8)

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	nbol	6227	7A-20	6227	'A-25	6227	'A-35	6227	'A-45		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	-	25	-	35	-	45	- 1	ns	3
Address Setup Time	tAVWL	tAS	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	tAW	15	-	17	-	20	- 1	25	-	ns	
Write Pulse Width	twLWH	twp	15	-	17	—	20	-	25	-	ns	
Data Valid to End of Write	t DVWH	tow	10	- 1	10	-	15	-	20	-	ns	
Data Hold Time	twhox	^t DH	0	-	0	-	0		0	—	ns	
Write Low to Data High-Z	twLQZ	twz	0	9	0	10	0	15	0	20	ns	4, 5, 6
Write High to Output Active	twhox	tow	5	- 1	5	-	5	-	5	-	ns	4, 5, 6
Write Recovery Time	twhax	twR	0	-	0		0	_	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All timings are referenced from the last valid address to the first transitioning address.

4. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

5. This parameter is sampled and not 100% tested.

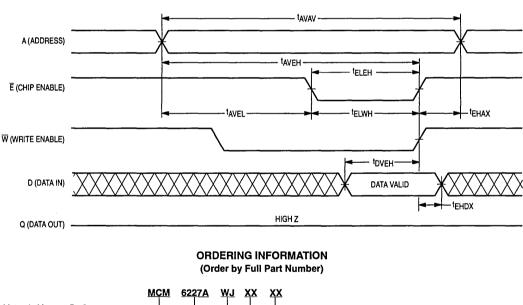
6. At any given voltage and temperature, tWLQZ max is less than tWHQX min both for a given device and from device to device.

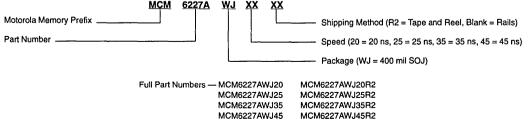
WRITE CYCLE 1 (W Controlled See Notes 1 and 2)

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

;	Syn	Symbol		6227A-20		6227A-25		6227A-35		6227A-45		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	-	25	-	35	- 1	45	-	ns	3
Address Setup Time	tAVEL	tAS	0	- 1	0	-	0	- 1	0	—	ns	
Address Valid to End of Write	tAVEH	taw	15	-	17	-	20	- 1	25	-	ns	
Enable to End of Write	^t ELEH	tcw	15		17	-	20	-	25	-	ns	4, 5
Enable to End of Write	^t ELWH	tcw	15	-	17	—	20	-	25	-	ns	
Write Pulse Width	tWLEH	twp	15	-	17	-	20	-	25	-	ns	
Data Valid to End of Write	^t DVEH	tDW	10	-	10	- 1	15	-	20	-	ns	
Data Hold Time	^t EHDX	tDH	0	-	0		0	-	0	-	ns	
Write Recovery Time	^t EHAX	twR	0	-	0	- 1	0		0	-	ns	

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

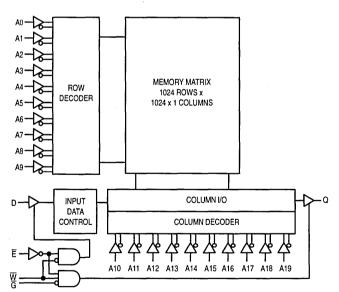
3. All timings are referenced from the last valid address to the first transitioning address.

4. If E goes low coincident with or after W goes low, the output will remain in a high-impedance state.

5. If E goes high coincident with or before W goes high, the output will remain in a high-impedance state.

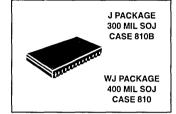
WRITE CYCLE 2 (E Controlled See Notes 1 and 2)

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA


Product Preview 1M x 1 Bit Static Random Access Memory

The MCM6227B is a 1,048,576 bit static random-access memory organized as 1,048,576 words of 1 bit, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM6227B is each equipped with a chip enable (\overline{E}) pin. This feature provides reduced system power requirements without degrading access time performance.


The MCM6227B is available in 300 mil and 400 mil, 28-lead surface-mount SOJ packages.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 15/17/20/25/35 ns
- Equal Address and Chip Enable Access Times
- Input and Output are TTL Compatible
- Three-State Output
- Low Power Operation: 115/110/105/100/95 mA Maximum, Active AC

BLOCK DIAGRAM

MCM6227B

PIN	I ASSIGN	MEI	NT
A0 [1•	28	Vcc
` A1 [2	27	A19
A2 [3	26	A18
A3 [4	25	A17
A4 [5	24	A16
A5 [6	23	A15
NC [7	22	A14
A6 [8	21	NC*
A7 [9	20	A13
A8 [10	19	A12
A9 [11	18	A11
۵ [12	17	A10
w (13	16	D
vss [14	15] E

A0 – A19 Address Inputs
W Write Enable E Chip Enable D Data Input Q Data Output NC No Connection VCC + 5 V Power Supply VSS Ground

*If not used for no connect, then do not exceed voltages of – 0.5 to V_{CC} + 0.5 V. This pin is used for manufacturing diagnostics.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē	Ŵ	Mode	I/O Pin	Cycle	Current
н	x	Not Selected	High-Z	-	ISB1, ISB2
L	н	Read	Dout	Read	ICCA
L	L	Write	High-Z	Write	ICCA

H = High, L = Low, X = Don't Care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to V_{SS}	Vcc	- 0.5 to 7.0	V
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 20	mA
Power Dissipation	PD	1.1	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	ТА	0 to + 70	°C
Storage Temperature	Tstg	- 55 to + 150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	v
Input High Voltage	VIH	2.2	V _{CC} +0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width \leq 20 ns).

**VIH (max) = V_{CC} + 0.3 \overline{V} dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns).

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)	_	±1	μA
Output Leakage Current (E = VIH, Vout = 0 to VCC)	l _{lkg} (O)	_	±1	μA
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = max) MCM6227B-15: t _{AVAV} = 15 ns MCM6227B-71: t _{AVAV} = 17 ns MCM6227B-20: t _{AVAV} = 20 ns MCM6227B-25: t _{AVAV} = 25 ns MCM6227B-35: t _{AVAV} = 35 ns	ICCA		115 110 105 100 95	mA
AC Standby Current (V _{CC} = max, Ē = V _{IH} , f = f _{max}) MCM6227B-15: t _{AVAV} = 15 ns MCM6227B-71: t _{AVAV} = 17 ns MCM6227B-20: t _{AVAV} = 20 ns MCM6227B-25: t _{AVAV} = 25 ns MCM6227B-35: t _{AVAV} = 35 ns	ISB1		35 35 30 25 20	mA
CMOS Standby Current ($\overline{E} \ge V_{CC} - 0.2 \text{ V}$, $V_{in} \le V_{SS} + 0.2 \text{ V}$ or $\ge V_{CC} - 0.2 \text{ V}$, $V_{CC} = max$, $f = 0 \text{ MHz}$)	I _{SB2}	_	-	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4		v

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

CI	naracteristic	Symbol	Тур	Max	Unit
Input Capacitance	All Inputs Except Clocks and D, Q \overline{E} and \overline{W}	C _{in}	4 5	6 8	pF
Input and Output Capacitance	D, Q	C _{in} , C _{out}	5	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 2 ns

 Input Timing Measurement Reference Level
 1.5 V

READ CYCLE TIMING (See Notes 1 and 2)

	Sym	nbol	6227	B-15	6227	'B-17	6227	B-20	6227	B-25	6227	B-35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	^t AVAV	tRC	15	-	17	-	20		25	—	35	-	ns	2, 3
Address Access Time	tAVQV	t _{AA}	-	15	-	17	—	20	-	25	-	35	ns	
Enable Access Time	^t ELQV	^t ACS	- 1	15	-	17	—	20	—	25	-	35	ns	4
Output Hold from Address Change	†AXQX	tон	5	-	5	-	5	-	5	-	5	-	ns	
Enable Low to Output Active	^t ELQX	t∟z	5	-	5	-	5		5	-	5	—	ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	tHZ	0	6	0	7	0	7	0	8	0	8	ns	5, 6, 7

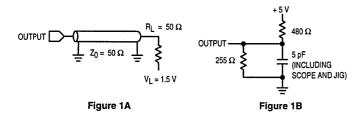
NOTES:

1. W is high for read cycle.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All timings are referenced from the last valid address to the first transitioning address.

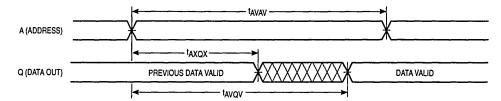
4. Addresses valid prior to or coincident with E going low.

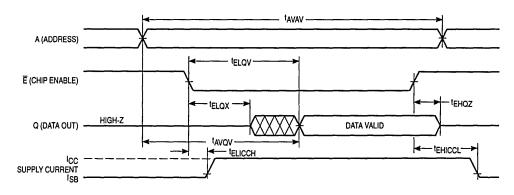

5. At any given voltage and temperature, tFHQZ max is less than tFI QX min, both for a given device and from device to device.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E} \leq V_{IL}$).


AC TEST LOADS


TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

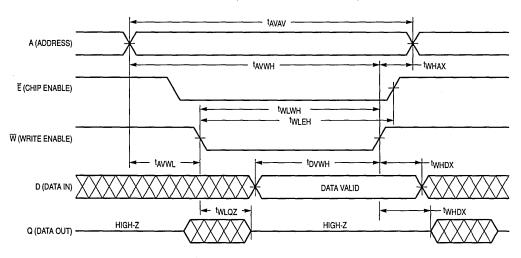
READ CYCLE 1 (See Notes 1, 2, and 8)

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	ibol	6227	B-15	6227	B-17	6227	B-20	6227	B-25	6227	B-35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tavav	twc	15	-	17	-	20	-	25	-	35	-	ns	3
Address Setup Time	tAVWL.	tAS	0	-	0	-	0		0	-	0	-	ns	
Address Valid to End of Write	tavwh	tAW	12		14	-	15	-	17	-	20	-	ns	
Write Pulse Width	twLWH	twp	12	-	14	-	15		17	-	20	-	ns	
Data Valid to End of Write	tDVWH	tDW	7	-	8		8		10		11	-	ns	
Data Hold Time	twhdx	^t DH	0	-	0		0		0		0	-	ns	
Write Low to Data High-Z	twlqz	twz	0	6	0	7	0	7	0	8	0	8	ns	4, 5, 6
Write High to Output Active	twhox	tow	5	-	5	-	5	. —	5	-	5	-	ns	4, 5, 6
Write Recovery Time	^t WHAX	tWR	0	_	0	-	0	-	0		0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All timings are referenced from the last valid address to the first transitioning address.

4. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, twLoz max is less than twHox min both for a given device and from device to device.

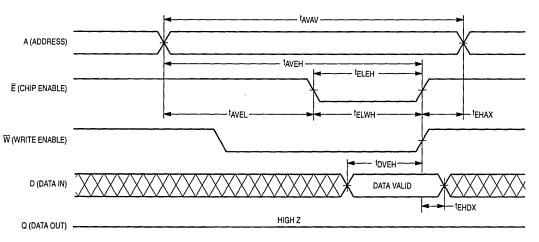
WRITE CYCLE 1 (W Controlled See Notes 1 and 2)

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

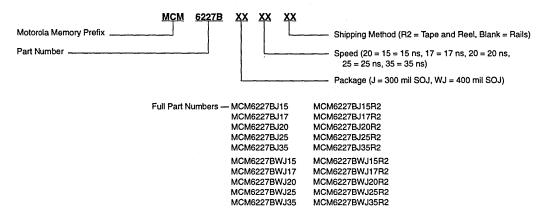
	Syn	lodr	6227	B-15	6227	B-17	6227	'B-20	6227	B-25	6227	B-35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	15		17	-	20	-	25	-	35	—	ns	3
Address Setup Time	tAVEL	tas	0	-	0	-	0		0	-	0	—	ns	
Address Valid to End of Write	tAVEH	taw	12	-	14	-	15	-	17	-	20		ns	
Enable to End of Write	TELEH	tcw	10	-	11	-	12		15	-	20	-	ns	4,5
Enable to End of Write	^t ELWH	tcw	10		11	_	12	-	15	-	20	-	ns	
Data Valid to End of Write	^t DVEH	tDW	7		8	—	8	-	10	-	11	-	ns	
Data Hold Time	^t EHDX	^t DH	0		0	-	0	-	0		0	—	ns	
Write Recovery Time	^t EHAX	twR	0	-	0		0	- 1	0	-	0		ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All timings are referenced from the last valid address to the first transitioning address.

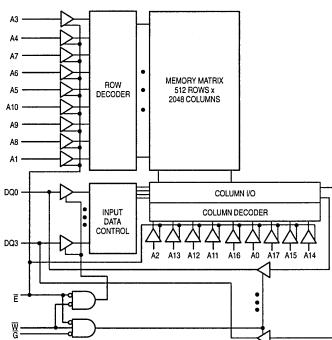

4. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high-impedance state.

5. If \overline{E} goes high coincident with or before \overline{W} goes high, the output will remain in a high-impedance state.

WRITE CYCLE 2 (E Controlled See Notes 1 and 2)

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


256K x 4 Bit Static Random Access Memory

The MCM6229A is a 1,048,576 bit static random access memory organized as 262,144 words of 4 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM6229A is equipped with both chip enable (\overline{E}) and output enable (\overline{G}) pins, allowing for greater system flexibility and eliminating bus contention problems.

The MCM6229A is available in 400 mil, 28-lead surface-mount SOJ packages.

- Single 5 V \pm 10% Power Supply
- Fast Access Times: 20, 25, 35, and 45 ns
- Equal Address and Chip Enable Access Times
- All Inputs and Outputs are TTL Compatible
- Three-State Outputs
- Low Power Operation: 170/150/140/130 mA Maximum, Active AC

BLOCK DIAGRAM

Pil	N ASSIGI	MEN.	т
A0 [1.	28]	Vcc
A1 [2	27	A17
A2 [3	26	A16
A3 [4	25]	A15
A4 [5	24	A14
A5 [6	23	A13
A6 [7	22	A12
A7 [8	21	A11
A8 [9	20	NC
A9 [10	19 🛛	DQ3
A10 [11	18	DQ2
E [12	17	DQ1
<u>ਫ</u> [13	16	DQ0
v _{ss} [14	15	W

PIN NAMES								
A0 - A17 W G E DQ0 - DQ3 NC VCC VSS	Write Enable Output Enable Chip Enable Data Inputs/Outputs No Connection + 5 V Power Supply							

TRUTH TABLE

Ē	Ğ	W	Mode	I/O Pin	Cycle	Current	
н	x	x	Not Selected	High-Z	-	ISB1, ISB2	
L	н	н	Output Disabled	High-Z —		ICCA	
L	L	н	Read	Dout	Read	ICCA	
L	X	L	Write	D _{in}	Write	ICCA	

H = High, L = Low, X = Don't Care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to VSS	Vcc	- 0.5 to 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V.
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.1	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	V
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	V

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns).

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns).

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter		Symbol	Min	Тур*	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})		likg(l)		-	± 1	μA
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	·· <u>·</u> ·································	l _{lkg} (O)	—	-	±1	μA
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = max)	MCM6229A-20: t _{AVAV} = 20 ns MCM6229A-25: t _{AVAV} = 25 ns MCM6229A-35: t _{AVAV} = 35 ns MCM6229A-45: t _{AVAV} = 45 ns	ICCA		140 120 110 100	170 150 140 130	mA
AC Standby Current ($V_{CC} = max$, $\overline{E} = V_{IH}$, $f = f_{max}$)		ISB1	-	7	20	mA
CMOS Standby Current ($\vec{E} \ge V_{CC} - 0.2 \text{ V}, V_{in} \le V_{SS} + 0 \text{ or } \ge V_{CC} - 0.2 \text{ V}, V_{CC} = \max, f = 0 \text{ MHz}$)).2 V	ISB2	_	4	15	mA
Output Low Voltage (IOL = + 8.0 mA)		VOL	-	-	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)		Vон	2.4	_	_	v

*Typical measurements are taken at 25°C, V_{CC} = 5 V.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Ch	aracteristic	Symbol	Тур	Max	Unit
Input Capacitance	All Inputs Except Clocks and DQ $\overline{E}, \overline{G},$ and \overline{W}	C _{in} C _{ck}	4 5	6 8	pF
Input/Output Capacitance	DQ	CI/O	5	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 V \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Pulse Levels 0 to 3.	.0 V
Input Rise/Fall Time	2 ns
Input Timing Measurement Reference Level 1.	5 V

Output Timing Measurement Reference Level	1.5 V
Output Load §	See Figure 1A

READ CYCLE TIMING (See Notes 1 and 2)

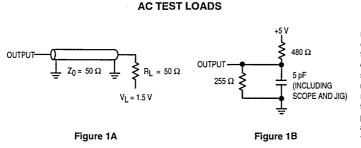
	Syn	Symbol		6229A-20		6229A-25		A-35	6229A-45			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	20	-	25		35	-	45	—	ns	2,3
Address Access Time	tAVQV	t _{AA}	-	20	—	25	—	35	-	45	ns	
Enable Access Time	^t ELQV	tACS	—	20	—	25	—	35	-	45	ns	4
Output Enable Access Time	tGLQV	^t OE		8	-	10	—	15	-	15	ns	
Output Hold from Address Change	tAXQX	tон	5		5	—	5	—	5	—	ns	
Enable Low to Output Active	^t ELQX	^t ELZ	5	-	5	-	5	-	5	-	ns	5,6,7
Output Enable Low to Output Active	tGLQX	^t GLZ	0	_	0	_	0	—	0	—	ns	5,6,7
Enable High to Output High-Z	^t EHQZ	^t EHZ	0	9	0	10	0	12	0	15	ns	5,6,7
Output Enable High to Output High-Z	tGHQZ	^t ELZ	0	9	0	10	0	12	0	15	ns	5,6,7
Power Up Time	^t ELICCH	tPU	0	-	0	—	0	—	0	—	ns	
Power Down Time	^t EHICCL	tPD	-	20	-	25	-	35	-	45	ns	

NOTES:

1. W is high for read cycle.

Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All timings are referenced from the last valid address to the first transitioning address.

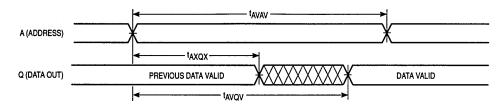

4. Addresses valid prior to or coincident with E going low.

 At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GLQX} min, both for a given device and from device to device.

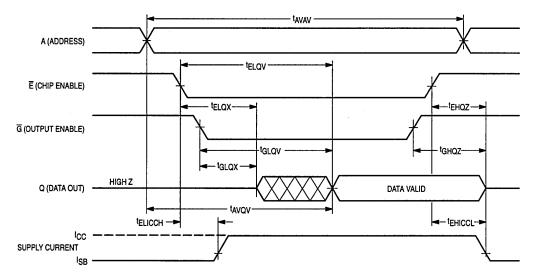
6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E} \leq V_{IL}$, $\overline{G} \leq V_{IL}$).



TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Notes 1, 2, and 8)

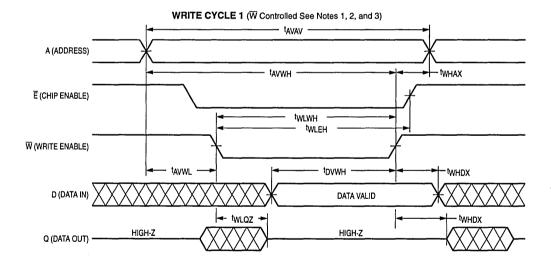
WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Symbol		6229	6229A-20 6229/		9A-25 6229		A-35	6229A-45			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	- 1	25	-	35	_	45		ns	4
Address Setup Time	tAVWL	tAS	0	-	0	-	0	- 1	0	-	ns	
Address Valid to End of Write	tavwh	tAW	15	- 1	17		20	-	25	_	ns	
Write Pulse Width	^t WLWH	tWP	15	-	17	- 1	20	-	25	-	ns	
Data Valid to End of Write	^t DVWH	tDW	10	-	10	-	15		20	-	ns	
Data Hold Time	tWHDX	tDH	0	-	0		0	-	0	—	ns	
Write Low to Data High-Z	twLQZ	twz	0	9	0	10	0	15	0	20	ns	5,6,7
Write High to Output Active	twhox	tow	5	- 1	5	-	5	-	5	-	ns	5,6,7
Write Recovery Time	twhax	twn	0	-	0		0	-	0		ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.


3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

4. All timings are referenced from the last valid address to the first transitioning address.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

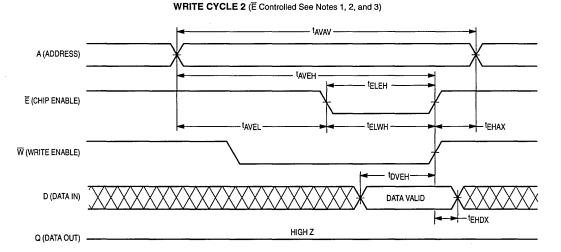
7. At any given voltage and temperature, tWLOZ max is less than tWHOX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

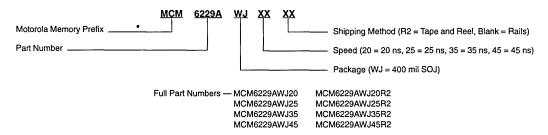
	Symbol		6229	229A-20 6229A-		A-25	25 6229A-35		6229A-45			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	-	25		35	-	45	-	ns	4
Address Setup Time	tAVEL	tAS	0		0	-	0		0	-	ns	
Address Valid to End of Write	tAVEH	tAW	15		17	-	20	-	25	-	ns	
Enable to End of Write	tELEH	tcw	15	-	17	-	20	—	25		ns	5,6
Enable to End of Write	tELWH	tcw	15	-	17	-	20	-	25	-	ns	
Write Pulse Width	tWLEH	tWP	15	-	17	- 1	20	- 1	25	-	ns	
Data Valid to End of Write	^t DVEH	tDW	10	-	10	-	15	-	20		ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	-	0	-	ns	
Write Recovery Time	^t EHAX	tWR	0	—	0		0	-	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

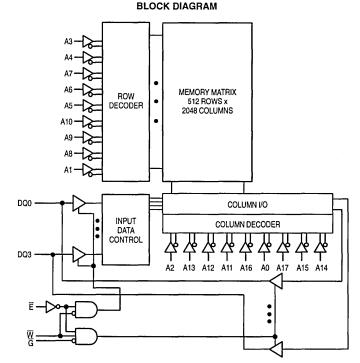

4. All timings are referenced from the last valid address to the first transitioning address.

5. If E goes low coincident with or after W goes low, the output will remain in a high-impedance state.

6. If E goes high coincident with or before W goes high, the output will remain in a high-impedance state.

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


Product Preview 256K x 4 Bit Static Random Access Memory

The MCM6229B is a 1,048,576 bit static random access memory organized as 262,144 words of 4 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM6229B is equipped with both chip enable (\overline{E}) and output enable (\overline{G}) pins, allowing for greater system flexibility and eliminating bus contention problems. Either input, when high, will force the outputs to high impedance.

The MCM6229B is available in 300 mil and 400 mil, 28-lead surface-mount SOJ packages.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 15/17/20/25/35 ns
- Equal Address and Chip Enable Access Times
- All Inputs and Outputs are TTL Compatible
- Three-State Outputs
- Low Power Operation: 120/115/110/105/100 mA Maximum, Active AC

Μ	CM	 62	29	B

PIN	PIN ASSIGNMENT						
A0	1•	28] VCC					
A1 [2	27 A17					
A2 [3	26 🗍 A16					
A3 [4	25 🗍 A15					
A4 [5	24 🗍 A14					
A5 [6	23 🗍 A13					
A6 [7	22 🛛 A12					
A7 [8	21 🛛 A11					
A8 [9	20 🗍 NC*					
A9 [10	19 🗍 DQ3					
A10 [11	18 DQ2					
Ē	12	17 DQ1					
<u></u> 6	13	16 DQ0					
v _{ss} [14	15 🛛					

PIN NAMES					
A0 - A17 G E DQ0 - DQ3 I VCC VSS NC	Write Enable Output Enable Chip Enable Data Inputs/Outputs + 5 V Power Supply Ground				

*If not used for no connect, then do not exceed voltages of -0.5 to V_{CC} + 0.5 V. This pin is used for manufacturing diagnostics.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē	Ğ	W	Mode	I/O Pin	Cycle	Current
н	X	X	Not Selected	High-Z		ISB1, ISB2
L	н	н	Output Disabled	High-Z		ICCA
L	L	н	Read	Dout	Read	ICCA
L	X	L	Write	Din	Write	ICCA

H = High, L = Low, X = Don't Care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to VSS	Vcc	0.5 to 7.0	V
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.1	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 V \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	V
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*	0.8	v

 V_{IL} (min) = - 0.5 V dc; V_{IL} (min) = - 2.0 V ac (pulse width \leq 20 ns).

**VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns).

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})		likg(l)	-	±1	μA
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})		l _{ikg} (O)		±1	μΑ
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = max)	MCM6229B-15: t _{AVAV} = 15 ns MCM6229B-17: t _{AVAV} = 17 ns MCM6229B-20: t _{AVAV} = 20 ns MCM6229B-25: t _{AVAV} = 25 ns MCM6229B-35: t _{AVAV} = 35 ns	ICCA		120 115 110 100 95	mA
AC Standby Current (V _{CC} = max, $\overline{E} = V_{IH}$, f = f _{max})	MCM6229B-15: tAVAV = 15 ns MCM6229B-17: tAVAV = 17 ns MCM6229B-20: tAVAV = 20 ns MCM6229B-25: tAVAV = 25 ns MCM6229B-35: tAVAV = 35 ns	^I SB1		35 35 30 25 20	mA
$\begin{array}{l} CMOS \ Standby \ Current \ (\overline{E} \geq V_{CC} - 0.2 \ V, \ V_{in} \leq \ V_{SS} + \\ or \geq V_{CC} - 0.2 \ V, \ V_{CC} = max, \ f = 0 \ MHz) \end{array}$	0.2 V	ISB2	-	15	mA
Output Low Voltage (IOL = + 8.0 mA)		VOL	-	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	<u></u>	Voн	2.4	-	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Ch	aracteristic	Symbol	Тур	Max	Unit
Input Capacitance	All Inputs except Clocks & DQs $\overline{E},\overline{G},\text{and}\overline{W}$	C _{in} C _{ck}	4 5	6 8	pF
Input/Output Capacitance	DQ	CI/O	5	8	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	2 ns
Input Timing Measurement Reference Level	1.5 V

Output Timing Measurement Reference Level	1.5 V
Output Load See Fig	ure 1A

READ CYCLE TIMING (See Notes 1 and 2)

	Syn	nbol	6229	B-15	6229	B-17	6229	B-20	6229	B-25	6229	B-35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Read Cycle Time	tavav	tRC	15	-	17	-	20	—	25	-	35	-	ns	2, 3
Address Access Time	tAVQV	tAA	-	15	-	17	-	20		25	-	35	ns	
Enable Access Time	^t ELQV	tACS		15	—	17	—	20	—	25		35	ns	4
Output Enable Access Time	^t GLQV	tOE	-	6		7	_	7	-	8	-	8	ns	
Output Hold from Address Change	tAXQX	tон	5	-	5	-	5	-	5	-	5	-	ns	
Enable Low to Output Active	^t ELQX	^t ELZ	5	-	5	-	5	—	5	-	5	-	ns	5, 6 ,7
Output Enable Low to Output Active	^t GLQX	^t GLZ	0	-	0	-	0		0	-	0	_	ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	^t EHZ	0	6	0	7	0	7	0	8	0	8	ns	5, 6, 7
Output Enable High to Output High-Z	tGHQZ	^t ELZ	0	6	0	7	0	7	0	8	0	8	ns	5, 6, 7

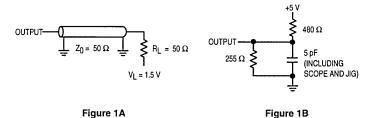
NOTES:

1. \overline{W} is high for read cycle.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All timings are referenced from the last valid address to the first transitioning address.

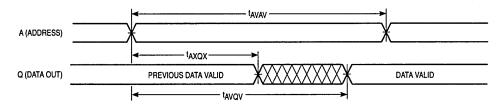
4. Addresses valid prior to or coincident with \vec{E} going low.

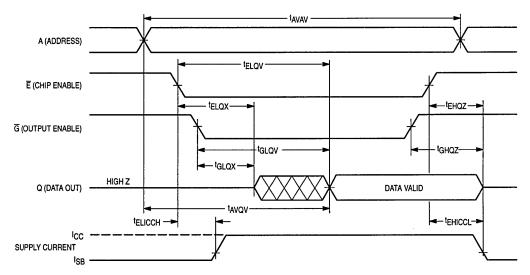

 At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GLQX} min, both for a given device and from device to device.

6. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E} \leq V_{IL}$, $\overline{G} \leq V_{IL}$).


AC TEST LOADS


TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

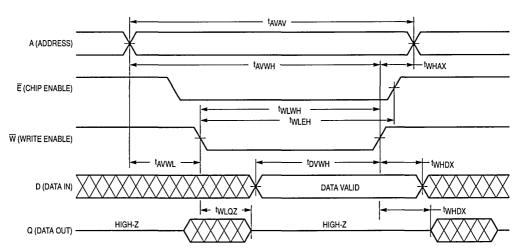
READ CYCLE 1 (See Notes 1, 2, and 8)

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Sym	nbol	6229	B-15	6229	B-17	6229	B-20	6229	B-25	6229	B-35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tavav	twc	15	—	17	—	20	—	25		35	—	ns	4
Address Setup Time	^t AVWL	tAS	0	—	0	-	0	—	0	-	0		ns	
Address Valid to End of Write	^t AVWH	tAW	12	-	14	-	15		17	-	20	-	ns	
Write Pulse Width	^t wLwH	twp	12		14	_	15	—	17	-	20	—	ns	
Data Valid to End of Write	^t DVWH	tDW	7	—	8	-	8	-	10	-	11		ns	
Data Hold Time	twhdx	^t DH	0	—	0	-	0	—	0	—	0		ns	
Write Low to Data High-Z	twlqz	twz	0	6	0	7	0	7	0	8	0	8	ns	5, 6, 7
Write High to Output Active	^t WHQX	tow	5	—	5		5		5	—	5	—	ns	5, 6, 7
Write Recovery Time	^t WHAX	twR	0		0		0	-	0	—	0	—	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles. 3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

4. All timings are referenced from the last valid address to the first transitioning address.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

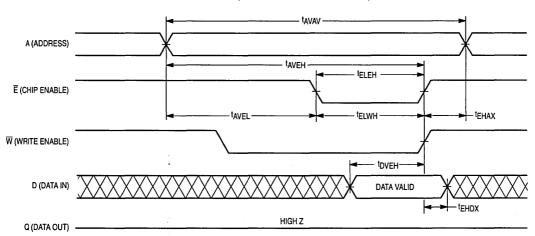
7. At any given voltage and temperature, tWLQZ max is less than tWHQX min both for a given device and from device to device.

WRITE CYCLE 1 (W Controlled See Notes 1, 2, and 3)

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

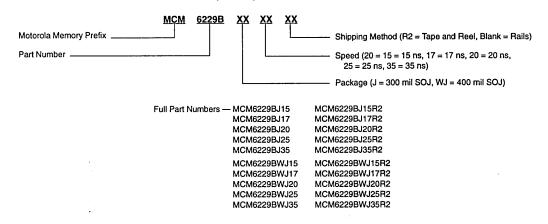
	Symbol		6229	9B-15	6229)B-17	6229	B-20	6229	B-25	6229	B-35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	15		17	-	20	- 1	25		35	-	ns	4
Address Setup Time	tAVEL	tAS	0	-	0	-	0		0	—	0	-	ns	
Address Valid to End of Write	^t AVEH	tAW	12	-	14	-	15	-	17	-	20	-	ns	
Enable to End of Write	TELEH	tcw	10		11	- 1	12	-	15		20	-	ns	5,6
Enable to End of Write	^t ELWH	tcw	10	-	11	-	12	-	15	- 1	20	- 1	ns	
Data Valid to End of Write	^t DVEH	tDW	7	-	8	-	8		10	-	11	-	ns	
Data Hold Time	t _{EHDX}	^t DH	0	-	0	-	0	-	0	-	0	-	ns	
Write Recovery Time	^t EHAX	twn	0	-	0		0	-	0	-	0	-	ns	

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

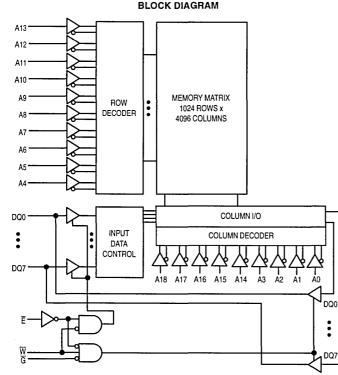

4. All timings are referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high-impedance state.
 If E goes high coincident with or before W goes high, the output will remain in a high-impedance state.

WRITE CYCLE 2 (E Controlled See Notes 1, 2, and 3)

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA


Product Preview 512K x 8 Bit Static Random Access Memory

The MCM6246 is a 4,194,304 bit static random access memory organized as 524,288 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM6246 is equipped with chip enable (\overline{E}) and output enable (\overline{G}) pins, allowing for greater system flexibility and eliminating bus contention problems. Either input, when high, will force the outputs into high impedance.

The MCM6246 is available in a 400 mil, 36-lead surface-mount SOJ package.

- Single 5 V ± 10% Power Supply
- Fast Access Time: 20/25/35 ns
- · Equal Address and Chip Enable Access Time
- · All Inputs and Outputs are TTL Compatible
- Three-State Outputs
- · Power Operation: 190/170/150 mA Maximum, Active AC

MCM6246

PIN	ASSIG	NME	NT
A6 🛛	1•	36	J NC
A7 [2	35	J A1
A8 [3	34	J A0
A9 [4	33	A 5
A17 [5	32] A4
ĒD	6	31] <u></u>
DQ0 [7	30] DQ7
DQ1 [8	29	DQ6
v _{cc} [9	28] v _{SS}
v _{ss} C	10	27	J V _{CC}
	11	26] DQ5
раз [12	25	DQ4
₩d	13	24	J A16
A18 🕻	14 .	23	A15
A10 [15	22	A14
A11 🛛	16	21] A3
A12 🛛	17	20] A2
A13 [18	19	NC
•			

PIN NAMES	
A0 – A18 Address Inputs W Write Enable G Output Enable E Chip Enable DQ0 – DQ7 Data Input/Output NC No Connection VCC + 5 V Power Supply VSS Ground	

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

Ĕ	Ğ	W	Mode	I/O Pin	Cycle	Current
н	х	х	Not Selected	High-Z	_	ISB1, ISB2
L	н	н	Output Disabled	High-Z	_	ICCA
L	L	н	Read	Dout	Read	ICCA
L	х	L	Write	High-Z	Write	ICCA

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to VSS	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	T _{stg}	- 55 to + 150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	_	0.8	V

 V_{IL} (min) = - 0.5 V dc; V_{IL} (min) = - 2.0 V ac (pulse width \leq 2.0 ns).

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 2.0 ns).

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})	llkg(l)	—	± 1.0	μΑ
Output Leakage Current (E = VIH, Vout = 0 to VCC)	likg(O)	-	± 1.0	μA
Output Low Voltage (IOL = + 8.0 mA)	VOL	-	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	V

POWER SUPPLY CURRENTS

Paramete	r	Symbol	Min	Тур	Max	Unit
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = max)	MCM6246-20: t _{AVAV} = 20 ns MCM6246-25: t _{AVAV} = 25 ns MCM6246-35: t _{AVAV} = 35 ns	Icc		170 145 130	190 170 150	mA
AC Standby Current (V_{CC} = max, $\vec{E} = V_{IH}$, No other restrictions on other inputs)	^I SB1	— — —	55 45 35	60 50 40	mA	
CMOS Standby Current ($\overline{E} \ge V_{CC} - 0.2$ V $\ge V_{CC} - 0.2$ V) (V _{CC} = max, f = 0 MHz		ISB2		10	15	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter			Тур	Max	Unit
Input Capacitance	All Inputs Except Clocks and DQs E, G, W	C _{in} C _{ck}	4 5	6 8	pF
Input/Output Capacitance	DQ	CI/O	5	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ T}_{A} = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	2 ns
Input Timing Measurement Reference Level	1.5 V

 Output Timing Measurement Reference Level
 1.5 V

 Output Load
 See Figure 1A

READ CYCLE TIMING (See Note 1)

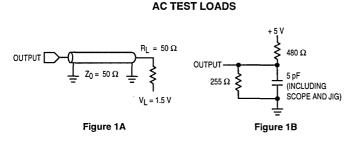
	Syn	lodr	MCM6	246-20	мсм6	246-25	MCM6	246-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	t _{AVAV}	^t RC	20	-	25	-	35	_	ns	2, 3
Address Access Time	tAVQV	tAA	_	20	-	25		35	ns	
Enable Access Time	^t ELQV	^t ACS	-	20	-	25	-	35	ns	4
Output Enable Access Time	^t GLQV	^t OE	_	6	—	8	-	10	ns	
Output Hold from Address Change	taxqx	tон	5	-	5		5	-	ns	
Enable Low to Output Active	^t ELQX	^t LZ	5	-	5	_	5		ns	5, 6, 7
Output Enable Low to Output Active	^t GLQX	t∟z	0	—	0	_	0	_	ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	tHZ	0	9	0	10	0	12	ns	5, 6, 7
Output Enable High to Output High-Z	tGHQZ	tHZ	0	9	0	10	0	12	ns	5, 6, 7
Power Up Time	^t ELICCH	tPU	0		0	-	0	_	ns	
Power Down Time	^t EHICCL	t _{PD}	—	20	—	25	-	35	ns	

NOTES:

1. W is high for read cycle.

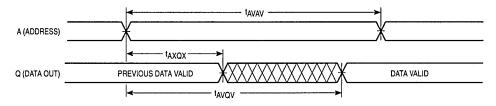
2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

3. All read cycle timings are referenced from the last valid address to the first transitioning address.

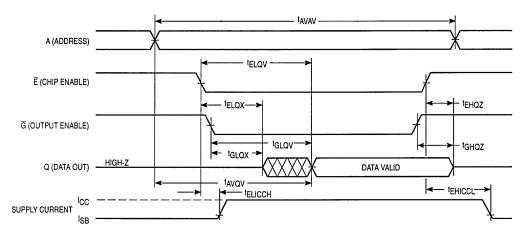

4. Addresses valid prior to or coincident with E going low/E going high.

5. At any given voltage and temperature, tEHQZ max < tELQX min, and tGHQZ max < tGLQX min, both for a given device and from device to device.

6. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.


7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E} \le V_{IL}$, $\overline{G} \le V_{IL}$).



TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. READ CYCLE 1 (See Note 8)

NOTE: Addresses valid prior to or coincident with \overline{E} going low/ \overline{E} going high.

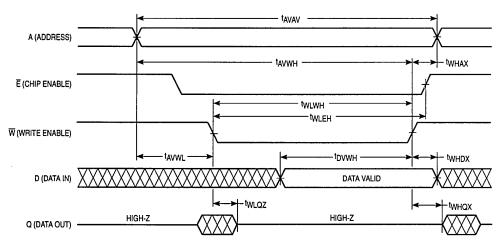
WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Syn	Symbol		MCM6246-20		MCM6246-25		MCM6246-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20	- 1	25	-	35	-	ns	4
Address Setup Time	tAVWL	tAS	0	—	0	—	0	—	ns	
Address Valid to End of Write	tavwh	tAW	15	_	17	—	20	—	ns	
Write Pulse Width	twlwh	twp	15	- 1	17	-	20	_	ns	
Data Valid to End of Write	tDVWH	tDW	10	_	10	-	15	_	ns	
Data Hold Time	twhdx	^t DH	0	- 1	0	-	0	-	ns	
Write Low to Data High-Z	twLQZ	twz	0	9	0	10	0	15	ns	5,6,7
Write High to Output Active	twhox	tow	5	- 1	5	—	5	-	ns	5,6,7
Write Recovery Time	twhax	twn	0	- 1	0	-	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.


3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

4. All write cycle timings are referenced from the last valid address to the first transitioning address.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

7. At any given voltage and temperature, t_{WLQZ} max < t_{WHQX} min both for a given device and from device to device.

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

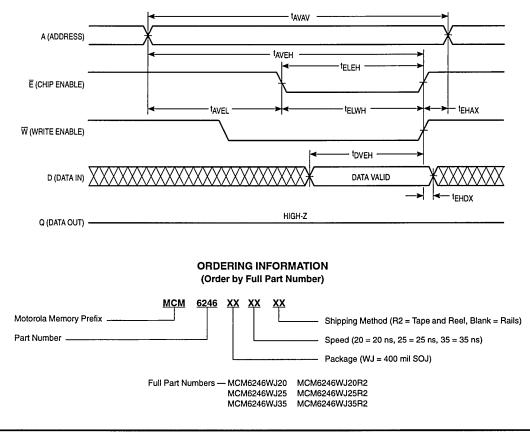
WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

	Syn	Symbol		MCM6246-20		MCM6246-25		MCM6246-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	-	25		35	-	ns	4
Address Setup Time	tAVEL	tAS	0	—	0	-	0	—	ns	
Address Valid to End of Write	tAVEH	taw	15	—	17	—	20	-	ns	
Enable Pulse Width	teleh	tCP	15		17	_	20	—	ns	5,6
Enable to End of Write	^t ELWH	tcw	15		17		20	_	ns	
Write Pulse Width	^t WLEH	twp	15	-	17	—	20	_	ns	
Data Valid to End of Write	^t DVEH	tDW	10	-	10		15	—	ns	
Data Hold Time	tehdx	^t DH	0	-	0	-	0	_	ns	
Write Recovery Time	^t EHAX	twn	0	-	0	—	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

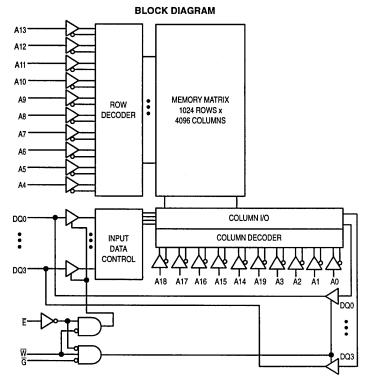

3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

4. All write cycle timing is referenced from the last valid address to the first transitioning address.

5. If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.

6. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)


Product Preview 1M x 4 Bit Static Random Access Memory

The MCM6249 is a 4,194,304 bit static random access memory organized as 1,048,576 words of 4 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM6249 is equipped with chip enable (\overline{E}) and output enable (\overline{G}) pins, allowing for greater system flexibility and eliminating bus contention problems. Either input, when high, will force the outputs into high impedance.

The MCM6249 is available in a 400 mil, 32-lead surface-mount SOJ package.

- Single 5 V ± 10% Power Supply
- Fast Access Time: 20/25/35 ns
- Equal Address and Chip Enable Access Time
- All Inputs and Outputs are TTL Compatible
- Three-State Outputs
- · Power Operation: 180/160/140 mA Maximum, Active AC

MCM6249

PI	N ASSIG	NMENT
A7 [1•	32] A1
A8 [2	31 🛛 A0
A9 [3	30 🛛 A5
A17 [4	29 🛛 A4
A6 [5	28] A19
ĒC	6	27] G
DQ0 [7	26 DQ3
V _{CC} [8	25 🛛 V _{SS}
v _{ss} C	9	24 0 VCC
DQ1 [10	23 DQ2
₩c	11	22 A2
A13 [12	21 A16
A18 🛙	13	20 A15
A10 [14	19 🛛 A14
A11 [15	18 A3
A12 [16	17] NC

A0 – A19 Address Inputs
W Write Enable G Output Enable E Chip Enable DQ0 – DQ3 Data Input/Output NC No Connection V _{CC} + 5 V Power Supply

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

Ē	Ğ	W	Mode	I/O Pin	Cycle	Current
н	х	х	Not Selected	High-Z		ISB1, ISB2
L	н	н	Output Disabled	High-Z	-	ICCA
L	L	н	Read	Dout	Read	ICCA
L	х	L	Write	High-Z	Write	ICCA

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to VSS	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	—	V _{CC} + 0.3	v
Input Low Voltage	VIL	- 0.5*	— <u>,</u>	0.8	V

*VIL (min) = -0.5 V dc; VIL (min) = -2.0 V ac (pulse width ≤ 2.0 ns).

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	likg(I)	-	± 1.0	μA
Output Leakage Current ($\vec{E} = V_{IH}, V_{out} = 0$ to V_{CC})	l _{lkg(O)}	_	± 1.0	μA
Output Low Voltage (I _{OL} = + 8.0 mA)	V _{OL}	-	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	V _{OH}	2.4	_	V

POWER SUPPLY CURRENTS

Paramete	Symbol	Min	Тур	Max	Unit	
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = max)	MCM6249-20: t _{AVAV} = 20 ns MCM6249-25: t _{AVAV} = 25 ns MCM6249-35: t _{AVAV} = 35 ns	lcc		165 135 120	180 160 140	mA
AC Standby Current (V_{CC} = max, $\overline{E} = V_{ H}$, No other restrictions on other inputs)	MCM6249-20: t _{AVAV} = 20 ns MCM6249-25: t _{AVAV} = 25 ns MCM6249-35: t _{AVAV} = 35 ns	^I SB1	- -	50 40 35	60 50 40	mA
CMOS Standby Current ($\overline{E} \ge V_{CC} - 0.2$ V $\ge V_{CC} - 0.2$ V) (V _{CC} = max, f = 0 MH;		I _{SB2}	—	10	15	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter		Symbol	Тур	Max	Unit
Input Capacitance	All Inputs Except Clocks and DQs E, G, W	C _{in} C _{ck}	4 5	6 8	pF
Input/Output Capacitance	DQ	CI/O	5	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	2 ns
Input Timing Measurement Reference Level	1.5 V

READ CYCLE TIMING (See Note 1)

	Syn	lodr	MCM6	249-20	MCM6	16249-25 MCM62		6249-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	^t RC	20	-	25	—	35		ns	2, 3
Address Access Time	tAVQV	tAA	-	20		25		35	ns	
Enable Access Time	^t ELQV	tACS	-	20	—	25	—	35	ns	4
Output Enable Access Time	tGLQV	tOE		6	—	8	—	10	ns	
Output Hold from Address Change	tAXQX	tон	5		5	-	5	-	ns	
Enable Low to Output Active	^t ELQX	t∟z	5	-	5	—	5	-	ns	5, 6, 7
Output Enable Low to Output Active	tGLQX	tLZ	0	—	0	—	0		ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	tHZ	0	9	0	10	0	12	ns	5, 6, 7
Output Enable High to Output High-Z	tGHQZ	tHZ	0	9	0	10	0	12	ns	5, 6, 7
Power Up Time	^t ELICCH	tPU	0	-	0	—	0		ns	
Power Down Time	^t EHICCL	t _{PD}	—	20	—	25	—	35	ns	

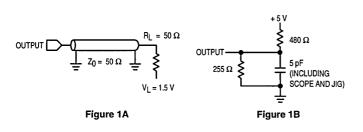
NOTES:

1. W is high for read cycle.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

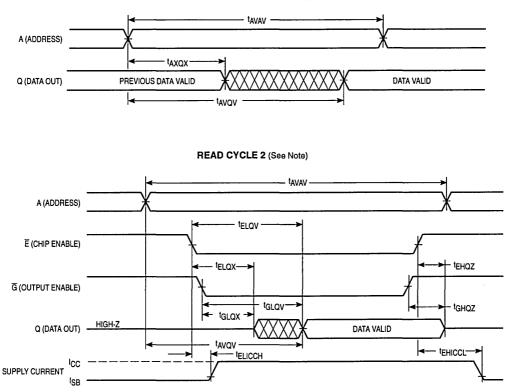
3. All read cycle timings are referenced from the last valid address to the first transitioning address.

AC TEST LOADS


4. Addresses valid prior to or coincident with E going low/E going high.

 At any given voltage and temperature, t_{EHQZ} max < t_{ELQX} min, and t_{GHQZ} max < t_{GLQX} min, both for a given device and from device to device.

6. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.


7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E} \leq V_{IL}$, $\overline{G} \leq V_{IL}$).

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. READ CYCLE 1 (See Note 8)

NOTE: Addresses valid prior to or coincident with \overline{E} going low/ \overline{E} going high.

3

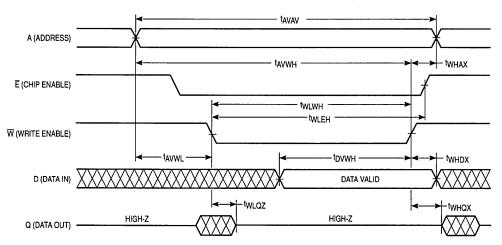
WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Syn	Symbol		MCM6249-20		MCM6249-25		MCM6249-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20	-	25	-	35	_	ns	4
Address Setup Time	tAVWL	tAS	0	- 1	0	-	0		ns	
Address Valid to End of Write	tavwh	tAW	15	—	17		20	- 1	ns	
Write Pulse Width	twlwh	twp	15	—	17	—	20	-	ns	
Data Valid to End of Write	tD/WH	tDW	10		10	-	15	-	ns	
Data Hold Time	twhdx	t _{DH}	0	-	0		0	—	ns	
Write Low to Data High-Z	^t WLQZ	twz	0	9	0	10	0	15	ns	5,6,7
Write High to Output Active	twhox	tow	5	- 1	5	-	5	-	ns	5,6,7
Write Recovery Time	twhax	twR	0	<u> </u>	0		0	- 1	ns	<u> </u>

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.


3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

4. All write cycle timings are referenced from the last valid address to the first transitioning address.

5. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

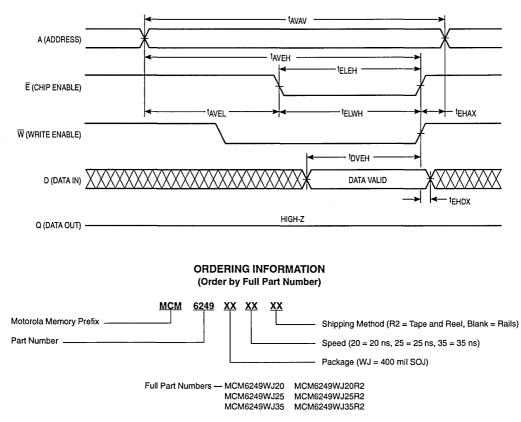
7. At any given voltage and temperature, tWLQZ max < tWHQX min both for a given device and from device to device.

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

	Syn	nbol	MCM6	MCM6249-20 MCM62		249-25	MCM6249-35			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20		25		35	-	ns	4
Address Setup Time	tAVEL	tAS	0		0	-	0		ns	
Address Valid to End of Write	tAVEH	taw	15	_	17	-	20		ns	
Enable Pulse Width	teleh	tCP	15		17	-	20	_	ns	5,6
Enable to End of Write	^t ELWH	tcw	15	-	17	—	20	-	ns	
Write Pulse Width	twleh	twp	15	—	17	-	20	-	ns	
Data Valid to End of Write	^t DVEH	tDW	10	—	10		15	-	ns	
Data Hold Time	^t EHDX	t _{DH}	0	<u> </u>	0		0	-	ns	
Write Recovery Time	^t EHAX	twR	0	-	0	-	0	-	ns	

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.

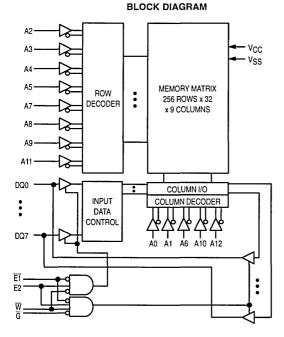
3. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high-impedance state.

4. All write cycle timing is referenced from the last valid address to the first transitioning address.

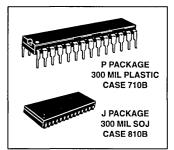
If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

6


MOTOROLA SEMICONDUCTOR TECHNICAL DATA

8K x 8 Bit Fast Static RAM


The MCM6264C is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

This device meets JEDEC standards for functionality and pinout, and is available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ± 10% Power Supply
- Fully Static --- No Clock or Timing Strobes Necessary
- Fast Access Times: 12, 15, 20, 25, and 35 ns
- Equal Address and Chip Enable Access Times
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems
- Low Power Operation: 110 150 mA Maximum AC
- Fully TTL Compatible Three State Output

MCM6264C

PIN	ASSIGN	IME	NT
NC E	1•	28] v _{cc}
A12 [2	27) w
A7 [3	26] E2
A6 [4	25] A8
A5 🕻	5	24] A9
A4 [6	23] A11
A3 [7	22] <u>G</u>
A2 [8	21	A 10
A1 [9	20] E1
ao E	10	19	DQ7
DQ0 [11	18	DQ6
DQ1 [12	17	DQ5
DQ2 [13	16	DQ4
v _{ss} C	14	15] DQ3

PIN NAMES
A0 – A12 Address Input DQ0 – DQ7 Data Input/Data Output W Write Enable G Output Enable E1, E2 Chip Enable V _{CC} Power Supply (+ 5 V) V _{SS} Ground

	-	
MOTOROLA	FAST SRAM	1 DATA

ĒĪ	E2	G	W	Mode	V _{CC} Current	Output	Cycle
н	Х	Х	X	Not Selected	ISB1, ISB2	High-Z	_
X	L	X	X	Not Selected	ISB1, ISB2	High-Z	—
L	н	н	н	Output Disabled	ICCA	High-Z	—
L	н	L	н	Read	ICCA	Dout	Read Cycle
L	н	X	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	ТА	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	—	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	-	0.8	V

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width \leq 20 ns)

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	likg(l)	-	± 1	μA
Output Leakage Current ($\overline{E1} = V_{IH}$, $E2 = V_{IL}$, or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	l _{lkg(O)}	-	±1	μA
Output Low Voltage (IOL = 8.0 mA)	VOL	-	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	∨он	2.4	—	V

POWER SUPPLY CURRENTS

Parameter	Symbol	- 12	- 15	- 20	- 25	- 35	Unit
AC Active Supply Current (Iout = 0 mA, V _{CC} = Max, f = f _{max})	ICCA	150	140	130	120	110	mA
AC Standby Current ($\overline{E1} = V_{IH}$ or $E2 = V_{IL}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	45	40	35	30	30	mA
$ \begin{array}{l} \mbox{Standby Current} (\overline{E1} \geq V_{CC} - 0.2 \ \mbox{V or } E2 \leq V_{SS} + 0.2 \ \mbox{V}, \\ \mbox{V}_{in} \leq V_{SS} + 0.2 \ \mbox{V or } \geq V_{CC} - 0.2 \ \mbox{V}) \end{array} $	ISB2	20	20	20	20	20	mA

CAPACITANCE (f = 1 MHz, dV = 3 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Мах	Unit
Address Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance ($\overline{E1}$, $E2$, \overline{G} , \overline{W})	C _{in}	6	pF
I/O Capacitance	C _{I/O}	7	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 5 ns

READ CYCLE (See Notes 1 and 2)

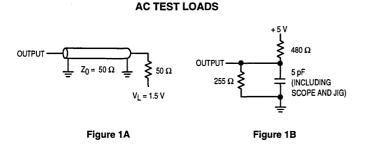
	Sym	bol	-	12	- 15		- 20		- 25		- 35			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	12	-	15	-	20	-	25	-	35	-	ns	3
Address Access Time	t AVQV	taa		12	-	15	—	20		25	-	35	ns	
Enable Access Time	^t ELQV	tACS	- 1	12	—	15		20	—	25	-	35	ns	4
Output Enable Access Time	^t GLQV	tOE	-	6	—	8	-	10		11	-	12	ns	
Output Hold from Address Change	taxox	tон	4	-	4	-	4	-	4	_	4	-	ns	
Enable Low to Output Active	^t ELQX	^t CLZ	4	-	4	-	4	-	4		4		ns	5, 6 ,7
Enable High to Output High-Z	t EHQZ	tCHZ	0	6	0	8	0	9	0	10	0	11	ns	5, 6, 7
Output Enable Low to Output Active	^t GLQX	^t OLZ	0	-	0	-	0	-	0	-	0	-	ns	5, 6, 7
Output Enable High to Output High-Z	^t GHQZ	tohz	0	6	0	7	0	8	0	9	0	10	ns	5, 6, 7
Power Up Time	^t ELICCH	tPU	0	-	0	-	0	—	0		0	-	ns	
Power Down Time	^t EHICCL	^t PD	—	12	—	15	—	20	—	25		35	ns	

NOTES:

1. W is high for read cycle.

2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. All timings are referenced from the last valid address to the first transitioning address.

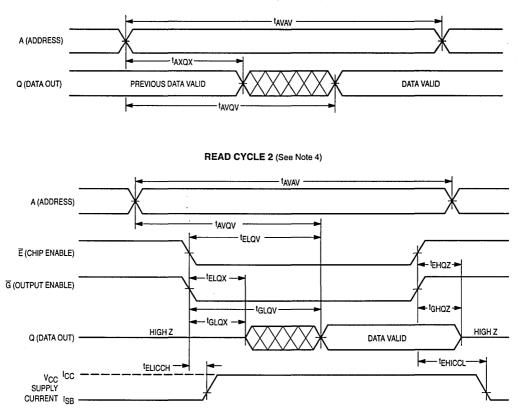

4. Addresses valid prior to or coincident with \overline{E} going low.

5. At any given voltage and temperature, tEHQZ (max) is less than tELQX (min), and tGHQZ (max) is less than tGLQX (min), both for a given device and from device to device.

6. Transition is measured $\pm\,500$ mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E1} = V_{IL}$, $E2 = V_{IH}$, $\overline{G} = V_{IL}$).



TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

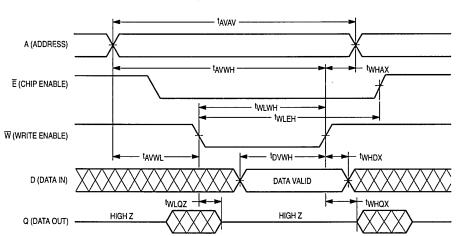
READ CYCLE 1 (See Note 8)

3

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Symbol		- 12		- 15		- 20		- 25		- 35			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	12	-	15	-	20	-	25		35		ns	4
Address Setup Time	^t AVWL	tAS	0	-	0	-	0	-	0	-	0	_	ns	
Address Valid to End of Write	tavwh	tAW	10	-	12	-	15	-	17	-	20	<u> </u>	ns	
Write Pulse Width	tWLWH, tWLEH	tWP	10		12	-	15	-	17	-	20	-	ns	
Write Pulse Width, $\overline{\mathbf{G}}$ High	twlwh, twleh	tWP	8	-	10	-	12	-	15	-	17	—	ns	5
Data Valid to End of Write	^t DVWH	tDW	6	-	7	-	8	-	10	-	12	—	ns	
Data Hold Time	tWHDX	tDH	0	-	0	-	0	-	0	-	0		ns	
Write Low to Output High-Z	twlqz	twz	0	6	0	7	0	8	0	10	0	12	ns	6, 7, 8
Write High to Output Active	twhox	tow	4	—	4	—	4	-	4	—	4	—	ns	6, 7, 8
Write Recovery Time	twhax	twn	0		0		0	-	0	—	0		ns	

NOTES:


A write occurs during the overlap of E low and W low.
 E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

4. All timings are referenced from the last valid address to the first transitioning address. 5. If $\overline{G} \ge V_{|H}$, the output will remain in a high impedance state.

6. At any given voltage and temperature, t_{WLOZ} (max) is less than t_{WHOX} (min), both for a given device and from device to device. 7. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

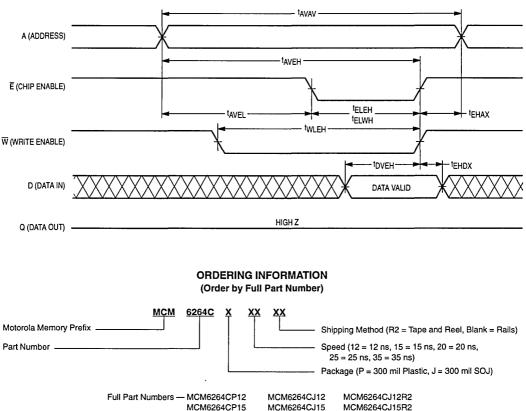
8. This parameter is sampled and not 100% tested.

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

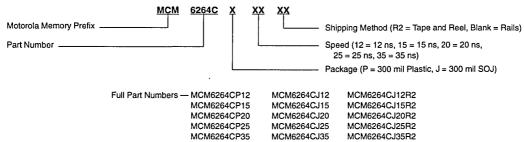
WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Sym	bol	-	12	-	15	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tAVAV	twc	12	-	15	-	20	-	25	-	35	—	ns	3
Address Setup Time	TAVEL	tAS	0		0	-	0	-	0	- 1	0		ns	
Address Valid to End of Write	^t AVEH	tAW	12	-	12	-	15	-	20	-	25	-	ns	
Enable to End of Write	^t ELEH [,] ^t ELWH	tcw	10	-	10		12		15	-	25	-	ns	4, 5
Data Valid to End of Write	^t DVEH	tDW	7	-	7	-	8	-	10	-	15	-	ns	
Data Hold Time	^t EHDX	tDH	0		0	- 1	0	—	0	-	0	—	ns	
Write Recovery Time	^t EHAX	tWR	0	—	0	-	0	_	0	—	0	—	ns	

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

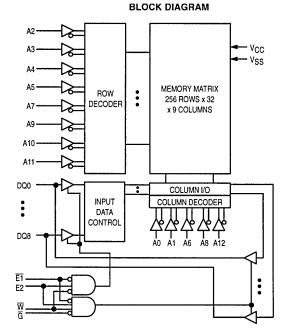
2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.


3. All timings are referenced from the last valid address to the first transitioning address.

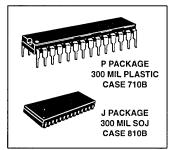
4. If E goes low coincident with or after W goes low, the output will remain in a high impedance state.

5. If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)


MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

8K x 9 Bit Fast Static RAM


The MCM6265C is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

This device meets JEDEC standards for functionality and pinout, and is available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- Fast Access Times: 12, 15, 20, 25, and 35 ns
- Equal Address and Chip Enable Access Times
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems
- Low Power Operation: 110 150 mA Maximum AC
- Fully TTL Compatible Three State Output

MCM6265C

PIN	ASSIGN	ME	NT
A8 [1•	28	ի _{vcc}
A7 [2	27	þw
A6 [3	26	D E2
A5 [4	25	D A9
A4 [5	24	A10
A3 [6	23	D A11
A2 [7	22	þ G
A1 [8	21	A12
A0 [9	20	० हा
DQ0 [10	19	800 [
DQ1 [11	18	
DQ2 [12	17	D DQ6
DQ3 [13	16	DQ5
V _{SS} [14	15	DQ4

PIN NAMES
A0 – A12 Address Input DQ0 – DQ8 Data Input/Data Output W Write Enable G Output Enable E1, E2 Chip Enable VCC Power Supply (+ 5 V) VSS Ground

TRUTH TABLE (X = Don't Care)

ĒĨ	E2	G	Ŵ	Mode	V _{CC} Current	Output	Cycle
н	Х	х	Х	Not Selected	ISB1, ISB2	High-Z	_
X I	L	X	х	Not Selected	ISB1, ISB2	High-Z	
L	н	н	н	Output Disabled	ICCA	High-Z	—
L L	н	L	н	Read	ICCA	Dout	Read Cycle
L	н	х	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to V_{SS} for Any Pin Except V_{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	—	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*		0.8	V

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width \leq 20 ns)

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)	-	±1	μA
Output Leakage Current ($\overline{E1} = V_{IH}$, $E2 = V_{IL}$, or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	^l lkg(O)	_	± 1	μA
Output Low Voltage (IOL = 8.0 mA)	VOL		0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	V

POWER SUPPLY CURRENTS

Parameter	Symbol	- 12	- 15	- 20	- 25	- 35	Unit
AC Active Supply Current (I _{out} = 0 mA, V _{CC} = Max, f = f _{max})	ICCA	150	140	130	120	110	mA
AC Standby Current ($\overline{E1} = V_{IH}$ or $E2 = V_{IL}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	45	40	35	30	30	mA
$ \begin{array}{l} \mbox{Standby Current} (\overline{E1} \geq V_{CC} - 0.2 \ \mbox{V or } E2 \leq V_{SS} + 0.2 \ \mbox{V}, \\ \mbox{V}_{in} \leq V_{SS} + 0.2 \ \mbox{V or } \geq V_{CC} - 0.2 \ \mbox{V}) \end{array} $	ISB2	20	20	20	20	20	mA

CAPACITANCE (f = 1 MHz, dV = 3 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Мах	Unit
Address Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance (E1, E2, G, W)	C _{in}	6	pF
I/O Capacitance	C _{I/O}	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 5 ns

Output Timing Measurement Reference Level $\ldots \ldots 1.5~V$ Output Load $\ldots \ldots$ See Figure 1A Unless Otherwise Noted

READ CYCLE (See Notes 1 and 2)

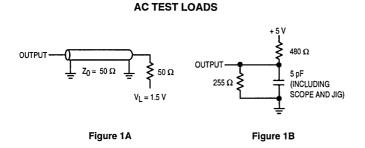
	Sym	lodi	-	12		15	- :	20	- :	25	- :	35		
Parameter	Std	Ait	Min	Max	Unit	Notes								
Read Cycle Time	tAVAV	tRC	12	-	15	-	20	—	25	—	35		ns	3
Address Access Time	tAVQV	tAA	-	12		15	—	20		25	—	35	ns	
Enable Access Time	^t ELQV	tACS	-	12		15	—	20		25	—	35	ns	4
Output Enable Access Time	^t GLQV	tOE	-	6	-	8		10	—	11		12	ns	
Output Hold from Address Change	taxox	tон	4	-	4	-	4		4	—	4		ns	
Enable Low to Output Active	^t ELQX	^t CLZ	4	-	4	-	4		4		4	-	ns	5,6,7
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	6	0	8	0	9	0	10	0	11	ns	5,6,7
Output Enable Low to Output Active	tGLQX	tolz	0	-	0	-	0	-	0	—	0	-	ns	5,6,7
Output Enable High to Output High-Z	^t GHQZ	tohz	0	6	0	7	0	8	0	9	0	10	ns	5,6,7
Power Up Time	^t ELICCH	tPU	0	-	0		0	—	0	-	0		ns	
Power Down Time	^t EHICCL	tPD		12	—	15		20	_	25		35	ns	

NOTES:

1. W is high for read cycle.

2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. All timings are referenced from the last valid address to the first transitioning address.

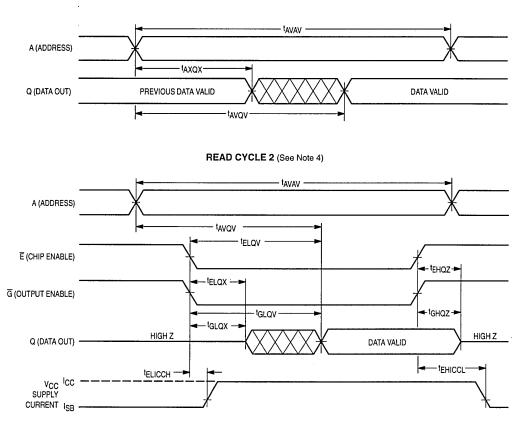

4. Addresses valid prior to or coincident with E going low.

 At any given voltage and temperature, t_{EHQZ} (max) is less than t_{ELQX} (min), and t_{GHQZ} (max) is less than t_{GLQX} (min), both for a given device and from device to device.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E1} = V_{IL}$, $E2 = V_{IH}$, $\overline{G} = V_{IL}$).



TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note 8)

3

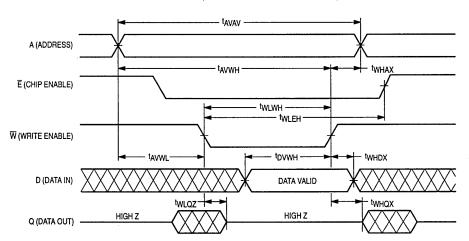
WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Sym	lodi	-	12	-	15	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	12	-	15	-	20	-	25	-	35	-	ns	4
Address Setup Time	tAVWL	tAS	0	-	0	-	0	—	0	-	0	-	ns	
Address Valid to End of Write	tavwh	tAW	10	-	12	-	15	-	17	-	20	—	ns	
Write Pulse Width	^t WLWH [,] ^t WLEH	tWP	10	-	12	-	15	_	17	-	20		ns	
Write Pulse Width, $\overline{\mathbf{G}}$ High	^t WLWH [,] ^t WLEH	tWP	8	-	10	-	12	-	15	-	17	-	ns	5
Data Valid to End of Write	tDVWH	tDW	6	-	7	-	8		10	-	12	—	ns	
Data Hold Time	^t ₩HDX	tDH	0	- 1	0	-	0	-	0	-	0	-	ns	
Write Low to Output High-Z	twloz	twz	0	6	0	7	0	8	0	10	0	12	ns	6, 7, 8
Write High to Output Active	twhox.	tow	4	-	4		4	-	4	-	4		ns	6, 7, 8
Write Recovery Time	tWHAX	twR	0	- 1	0	-	0	-	0	—	0	—	ns	

NOTES:

1. A write occurs during the overlap of $\overline{\mathsf{E}}$ low and $\overline{\mathsf{W}}$ low.

2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.


3. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

4. All timings are referenced from the last valid address to the first transitioning address. 5. If $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state.

6. At any given voltage and temperature, tWLOZ (max) is less than tWHOX (min), both for a given device and from device to device.

7. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

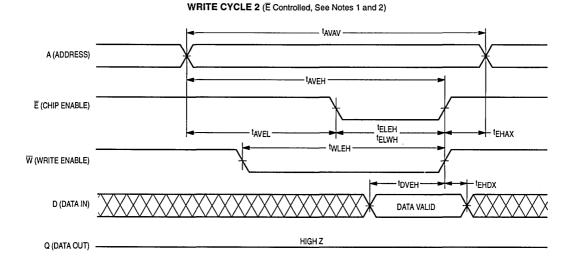
8. This parameter is sampled and not 100% tested.

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

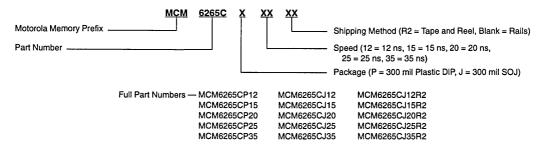
	Sym	bol	-	12	-	15	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tavav	twc	12	-	15	-	20	-	25	-	35	-	ns	3
Address Setup Time	tAVEL	tAS	0	-	0		0	- 1	0	-	0	-	ns	
Address Valid to End of Write	^t AVEH	tAW	12	-	12	- 1	15	-	20	-	25	-	ns	
Enable to End of Write	^t ELEH, ^t ELWH	tCW	10	-	10	-	12	-	15	-	25	-	ns	4, 5
Data Valid to End of Write	^t DVEH	tDW	7	-	7	-	8	- 1	10	—	15	—	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	-	0	-	0	—	ns	
Write Recovery Time	^t EHAX	twR	0	-	0	-	0	-	0	-	0	—	ns	-

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

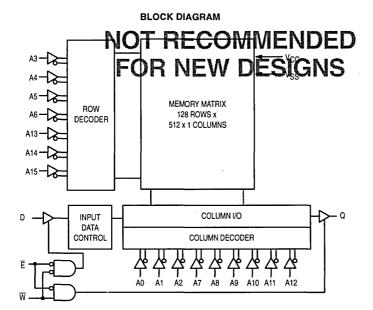
3. All timings are referenced from the last valid address to the first transitioning address.


4. If E goes low coincident with or after W goes low, the output will remain in a high impedance state.

5. If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

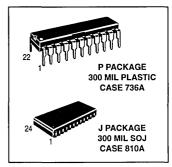
ORDERING INFORMATION

(Order by Full Part Number)


MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

64K x 1 Bit Fast Static RAM

The MCM6287B is fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.


This device meets JEDEC standards for functionality and pinout, and is available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ± 10% Power Supply
- Fully Static -- No Clock or Timing Strobes Necessary
- Fast Access Times: 12, 15, 20, 25, and 35 ns
- Equal Address and Chip Enable Access Times
- Low Power Operation: 110 150 mA Maximum AC
- Fully TTL-Compatible --- Three-State Output
- · Separate Data Input and Output

PIN NA	PIN NAMES										
Ē Chip Enable	Q Data Output										
W Write Enable	V _{CC}										

MCM6287B

PIN /	ASSIGI	MENT	s
D	JAL-IN	-LINE	
A0 0	1•	22 🛛	Vcc
A1 [2	21	A15
A2 [3	20	A14
АЗ [4	19	A13
A4 [5 .	18 🛛	A12
A5 [6	17 🛛	A11
A6 🛙	7	16 🏻	A10
A7 🕻	8	15 🏻	A9
۵Ľ	9	14 🏻	A8
wd	10	13	D
v _{ss} q	11	12	Ē
	so	J	
AO 🛙	1•	24	V _{CC}
A1 [2	23 🛛	A15
A2 [3	22 🏻	A14
A3 [4	21	A13
A4 [5	20 🏻	A12
A5 [6	19 🛛	NC
NC E	7	18	A11
A6 [8	17 🛛	A10
A7 [9	16	A9
٩Ľ	10	15	A8
WC	11	14 🛛	D
v _{ss} C	12	13 🛛	Ē

TRUTH TABLE (X = Don't Care)

Ē1	Ŵ	Mode	V _{CC} Current	Output	Cycle
н	X	Not Selected	ISB1, ISB2	High-Z	_
L	н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to VSS	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 30	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	—	0.8	V

* VIL (min) = -0.5 V dc; VIL (min) = -2.0 V ac (pulse width ≤ 20 ns)

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)	-	± 1.0	μA
Output Leakage Current ($\vec{E} = V_{IH}$ or $G = V_{IH}$, $V_{out} = 0$ to V_{CC})	l _{lkg} (O)	- 1	± 1.0	μA
CMOS Standby Current (V _{CC} = Max, f = 0 MHz, $\vec{E} \ge V_{CC} - 0.2$ V, V _{in} $\le V_{SS} + 0.2$ V, or $\ge V_{CC} - 0.2$ V)	I _{SB2}	-	15	mA
Output Low Voltage (I _{OL} = 8.0 mA)	VOL	—	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	V

POWER SUPPLY CURRENTS

Parameter	Symbol	- 12	- 15	- 20	- 25	- 35	Unit
AC Active Supply Current ($I_{out} = 0 \text{ mA}$, $V_{CC} = Max$, $f = f_{max}$)	ICCA	150	140	130	120	110	mA
AC Standby Current ($\vec{E} = V_{IH}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	45	40	35	30	30	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit
Address and Data Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance (Ē, W)	C _{in}	6	pF
Output Capacitance	Cout	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3 V

 Input Rise/Fall Time
 5 ns

READ CYCLE (See Note 1)

	Sym	bol		12		15	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Read Cycle Time	tavav	^t RC	12	-	15		20	-	25	-	35	-	ns	2
Address Access Time	tAVQV	tAA	-	12		15	_	20		25	—	35	ns	
Enable Access Time	^t ELQV	tAC	-	12	-	15		20	-	25		35	ns	3
Output Hold from Address Change	^t AXQX	tон	4	-	4	-	4	-	4	-	4	-	ns	4
Enable Low to Output Active	^t ELQX	tCLZ	4	-	4	_	4	-	4	-	4	-	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	tCHZ	0	6	0	8	0	9	0	10	0	15	ns	4,5,6
Power Up Time	^t ELICCH	tPU	0	-	0		0	- 1	0	-	0	-	ns	
Power Down Time	^t EHICCL	tPD		12	—	15	-	20	—	25	_	35	ns	

NOTES:

1. W is high for read cycle.

2. All timings are referenced from the last valid address to the first transitioning address.

3. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.

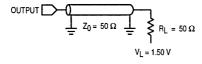
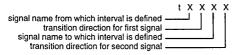
4. This parameter is sampled and not 100% tested.

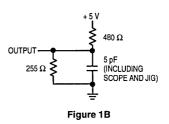
5. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.

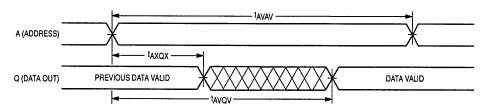
6. At any given voltage and temperature, tEHQZ max < tELQX min both for a given device and from device to device.

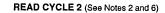
7. Device is continuously selected $\overline{E} \leq V_{|L}$.

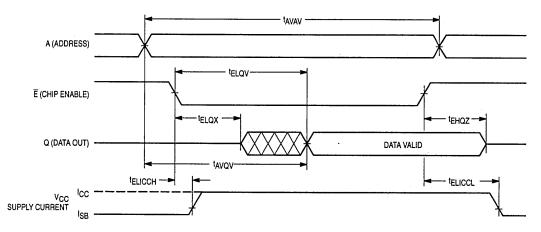
AC TEST LOADS


Figure 1A


The transition definitions used in this data sheet are:


- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)



TIMING LIMITS

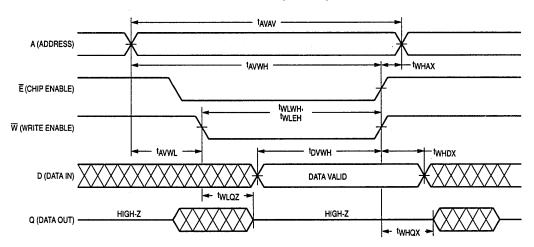
The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. READ CYCLE 1 (See Note 7)

3

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Sym	bol	-	12		15	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tavav	twc	12	-	15	-	20	—	25	-	35	—	ns	2
Address Setup Time	tAVWL	tAS	0	-	0	-	0	—	0	-	0		ns	
Address Valid to End of Write	tavwh	taw	10	-	12		15	-	20	-	25	—	ns	
Write Pulse Width	^t WLWH, ^t WLEH	twp	10	-	12	-	15	-	20	—	25	-	ns	
Data Valid to End of Write	tDVWH	tDW	6	- 1	7	-	8		10	—	15	—	ns	
Data Hold Time	twhox	tDH	0	- 1	0	—	0	—	0	—	0	-	ns	
Write Low to Output High-Z	twLQZ	twz	0	6	0.	7	0	8	0	10	0	15	ns	3, 4, 5
Write High to Output Active	twhox	tow	4	-	4	-	4	-	4	-	4	—	ns	3, 4, 5
Write Recovery Time	twнax	twn	0	-	0		0	—	0	- 1	0	—	ns	3, 4, 5

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

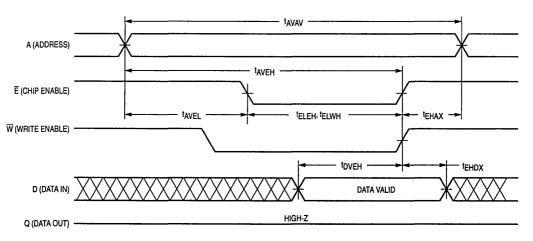
2. All timings are referenced from the last valid address to the first transitioning address.

3. At any given voltage and temperature, t_{WLO2} max < t_{WHOX} min, both for a given device and from device to device. 4. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

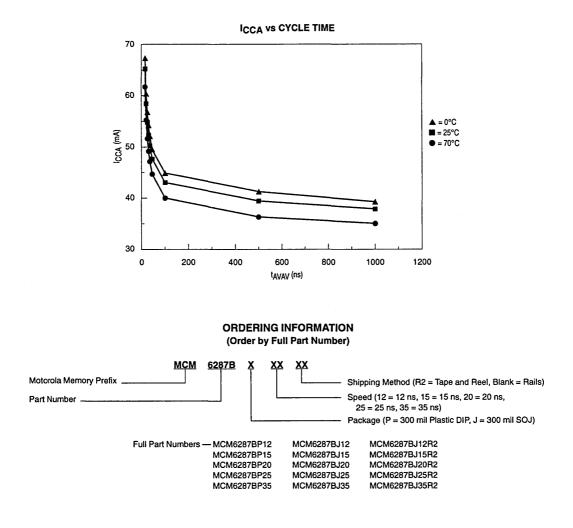
5. This parameter is sampled and not 100% tested.

WRITE CYCLE 1 (See Note 2)

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)


	Sym	bol	•	12		15	- :	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Write Cycle Time	tAVAV	twc	12	-	15		20	-	25	-	35	-	ns	2
Address Setup Time	tAVEL	tAS	0	-	0	-	0		0	-	0	-	ns	
Address Valid to End of Write	^t AVEH	tAW	10	-	12		15	-	20	-	25	-	ns	
Enable to End of Write	^t ELEH, ^t ELWH	tcw	10	-	12	-	15	-	20	-	25	-	ns	4, 5
Data Valid to End of Write	^t DVEH	tDW	6	-	7	-	8	—	10	- 1	15	-	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	—	0	-	0	-	0	- 1	ns	
Write Recovery Time	^t EHAX	twR	0	—	0		0	-	0	-	0	-	ns	

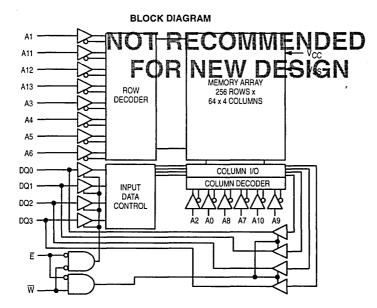
NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

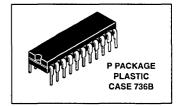
2. All timings are referenced from the last valid address to the first transitioning address.

At any given voltage and temperature, twild a way to the output will remain in a high-impedance state.
 If E goes low coincident with or after W goes low, the output will remain in a high-impedance state.
 If E goes high coincident with or before W goes high, the output will remain in a high-impedance state.

WRITE CYCLE 2 (See Note 2)



MOTOROLA SEMICONDUCTOR I TECHNICAL DATA


16K x 4 Bit Static RAM

The MCM6288C is a 65,536 bit static random access memory organized as 16,384 words of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption for greater reliability.

- Single 5 V ± 10% Power Supply
- · Low Power Operation: 120 mA Maximum, Active AC
- Fully Static No Clock or Timing Strobes Necessary
- Fast Access Times: 12, 15, 20, 25, 35 ns
- Two Chip Controls:
- E for Automatic Power Down
 - $\overline{\mathbf{G}}$ for Fast Access to Data and Elimination of Bus Contention Problems
- Fully TTL-Compatible Three-State Output

MCM6288C

PIN	I ASSIG	NMENT	
AOD	1•	22] V _{CC}	
A1 [2	21 A13	
A2 [3	20 A12	
АЗЦ	4	190 A11	
A4 🛙	5	18D A10	
A5 🛛	6	17] A9	
A6 [7	16] DQ0	
A7 [8	15] DQ1	
A8 [9	14 DQ2	
ĒC	10	13) DQ3	
vssq	11	12D W	

PIN NAMES	
A0 – A13 Address Inpu DQ0 – DQ3 Data Input/Data Outpu W Write Enable E Chip Enable NC No Connection V _{CC} Power Supply (+ 5 V VSS Groun	at e n /)

TRUTH TABLE (X = Don't Care)

Ē	W	Mode	V _{CC} Current	Output
н	x	Not Selected	ISB1, ISB2	High-Z
Į L	н	Read	ICCA	Dout
(L	(L	Write	ICCA	High-Z

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 V \pm 10\%, T_A = 0 \text{ to } 70^{\circ}C, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*		0.8	V

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width \leq 20 ns)

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(I)	-	± 1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)		± 1.0	μA
Standby Current (E \geq V_CC $-$ 0.2 V, Vin \leq V_SS + 0.2 V, or \geq V_CC $-$ 0.2 V, V_CC = Max, f = 0 MHz)	ISB2	-	10	mA
Output Low Voltage (IOL = 8.0 mA)	VOL		0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4	-	V

POWER SUPPLY CURRENTS

Parameter	Symbol	- 12	- 15	- 20	- 25	- 35	Unit
AC Active Supply Current (I _{out} = 0 mA)	ICCA	120	120	110	110	110	mA
AC Standby Current (TTL Levels, V _{CC} = Max)	ISB1	45	40	35	30	30	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit
Address and Control Input Capacitance	C _{in}	6	pF
I/O Capacitance	CI/O	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 5 ns

READ CYCLE (See Notes 1 and 2)

	Symb	ol	-	12	-	15	- :	20	- 2	25	- :	35		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Read Cycle Time	tavav	^t RC	12	-	15	—	20	—	25	-	35	—	ns	3
Address Access Time	tAVQV	tAA	—	12	—	15		20	-	25	—	35	ns	
Enable Access Time	^t ELQV	t ACS	-	12	-	15	_	20		25	-	35	ns	4
Output Enable Access Time	^t GLQX	^t OE	-	6	—	8	-	10	-	12	_	15	ns	
Output Hold from Address Change	tAXQX	tон	4	-	4	—	4	-	4	-	4		ns	5, 6, 7
Enable Low to Output High-Z	^t ELQX	^t CLZ	4	-	4	—	4	-	4	-	4	—	ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	6	0	8	0	8	0	10	0	15	ns	5, 6, 7
Output Enable Low to Output Active	^t GLQX	to∟z	0	-	0	-	0	-	0	-	0	-	ns	5, 6, 7
Output Enable High to Output High-Z	^t GHQZ	tонz	0	6	0	7	0	8	0	10	0	15	ns	5, 6, 7
Power Up Time	^t ELICCH	tPU	0	-	0		0	-	0	-	0		ns	
Power Down Time	^t EHICCL	tPD		12	-	15		20	_	25	-	35	ns	
IOTES:												•	•	

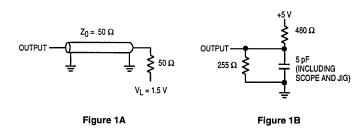
NOTES:

1. W is high for read cycle.

2. For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. All timings are referenced from the last valid address to the first transitioning address.

4. Addresses valid prior to or coincident with \overline{E} going low.

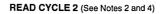

5. At any given voltage and temperature, tEHOZ max is less than tELOX (min), and tGHOZ (max) is less than tGLOX (min), both for a given device and from device to device.

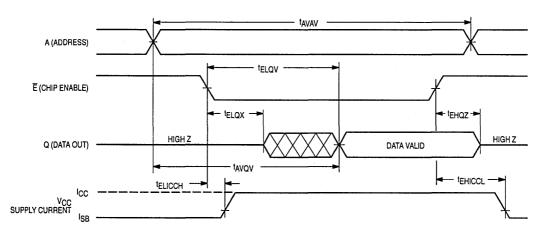
6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).

AC TEST LOADS


TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE 1 (See Note 8)

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Symb	ol	- '	12		15	- 2	20	- :	25	- :	35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	12	-	15	—	20	—	25	—	35	—	ns	4
Address Setup Time	tAVWL	tAS	0	-	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	taw	10	—	12	<u> </u>	15		20	—	30		ns	
Write Pulse Width	twlwh, twleh	twp	10	-	12	<u> </u>	15	-	20	_	30	-	ns	
Write Pulse Width, G High	twLwH, twLEH	tWP	8	-	10	-	12		15	-	25	-	ns	5
Data Valid to End of Write	tDVWH	tDW	6	-	7	—	8	-	10		15	-	ns	
Data Hold Time	twhdx	^t DH	0	-	0	-	0	—	0	-	0	-	ns	
Write Low to Output High-Z	twlqz	twz	0	6	0	7	0	8	0	10	0	15	ris	6, 7, 8
Write High to Output Active	twhax	tow	4	-	4	—	4	-	4	-	4	-	ns	6, 7, 8
Write Recovery Time	^t WHAX	twR	0	—	0	—	0	—	0		0	—	ns	

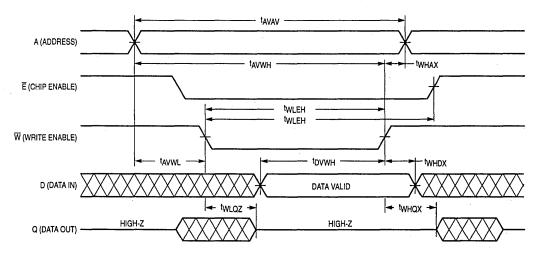
NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. For Output Enable devices, if G goes low coincident with or after W goes low, the output will remain in a high impedance state.

4. All timings are referenced from the last valid address to the first transitioning address.


5. For Output Enable devices, if $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state.

6. At any given voltage and temperature, tWLOZ max is less than tWHQX min, both for a given device and from device to device.

7. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.

8. This parameter is sampled and not 100% tested.

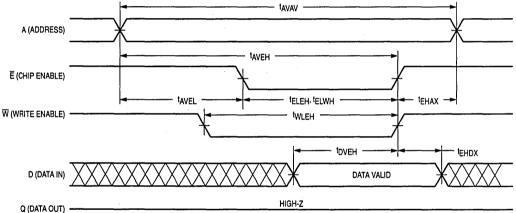
WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

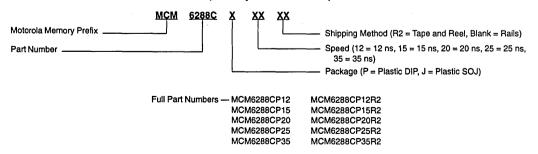
	Symt	Symbol		12	- 15		- 20		- 25		- 35			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	12	-	15	-	20	-	25	-	35	-	ns	4
Address Setup Time	tAVEL	tAS	0	-	0	_	0	-	0	-	0	—	ns	
Address Valid to End of Write	^t AVEH	taw	8	-	12	-	15	-	20	-	25	-	ns	
Enable to End of Write	tELEH, tELWH	tcw	8	-	10	-	12	-	15	-	25	-	ns	5,6
Data Valid to End of Write	^t DVEH	tow	6	-	7	-	8	-	10	-	15		ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	-	0	-	0	-	0		ns	
Write Recovery Time	^t EHAX	twR	0	- 1	0	-	0	-	0	—	0	—	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


2. For devices with multiple chip enables, E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E.

3. For Output Enable devices, if G goes low coincident with or after W goes low, the output will remain in a high impedance state.


4. All timings are referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance state.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

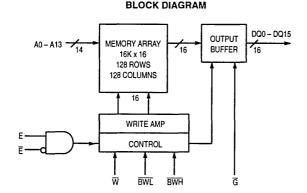
WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

16K x 16 Bit Asynchronous Fast Static RAM

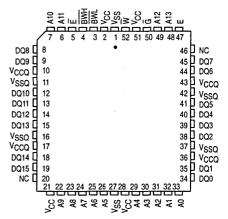
The MCM62996 is a 262,144 bit static random access memory organized as 16,384 words of 16 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 16K x 16 SRAM core with active high and active low chip enables, separate upper and lower byte write strobes, and a fast output enable. This device has increased output drive capability supported by multiple power pins. In addition, the output levels can be either 3.3 V or 5 V TTL compatible by choice of the appropriate output upper.


Dual write strobes (\overline{BWL} and \overline{BWH}) are provided to allow individually writeable bytes. \overline{BWL} controls DQ0 – DQ7 (the lower bits), while \overline{BWH} controls DQ8 – DQ15 (the upper bits).

Additional power supply pins have been utilized and placed on the package for maximum performance. In addition, the output buffer power pins are electrically isolated from the other two and supply power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state thereby allowing simplified transmission line terminations.

The MCM62996 will be available in a 52-pin plastic leaded chip carrier PLCC.

This device is ideally suited for systems that require wide data bus widths, cache memory, and tag RAMs.


- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Buffers
- Fast Access Times: 12/15/20/25 ns Max
- · Byte Writeable via Dual Write Strobes with Abort Write Capability
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- High Board Density 52-Lead PLCC Package

MCM62996

PIN ASSIGNMENT

PIN NAM	IES
A0 - A13 W BWL Byt BWH Byte E Activ G Activ DQ0 - DQ15 Activ VCC Activ VSS Output B VSSQ Output C	Write Enable e Write Strobe Low b Write Strobe High a High Chip Enable e Low Chip Enable Data Input/Output - 5 V Power Supply uffer Power Supply Ground tput Buffer Ground

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

TRUTH TABLE (See Notes)

Ē	w	BWL	BWH	Ğ	Mode	Supply Current	I/O Status
F	X	Х	Х	х	Deselected Cycle	ISB	High-Z
Т	н	Х	Х	н	Read Cycle	lcc	High-Z
Т	н	X	X	L	Read Cycle	lcc	Data Out
T	L	L	L	х	Write Cycle All Bits	lcc	High-Z
Т	L	н	н	х	Aborted Write Cycle	lcc	High-Z
Т	L	L	н	х	Write Cycle Lower 8 Bits	lcc	High-Z
Т	L	н	L	Х	Write Cycle Upper 8 Bits	ICC	High-Z

NOTE: True (T) is E = 1 and $\overline{E} = 0$. E, \overline{E} , and addresses satisfy the specified setup and hold times for the falling edge of LE. Data-in satisfies the specified setup and hold times for falling edge of DL.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = V_{SSQ} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS/VSSQ for Any Pin Except VCC and VCCQ	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	2.0	W
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	Tstg	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = V_{CCQ} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC} *	4.5	5.0	5.5	V
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccq	4.5 3.0	5.0 3.3	5.5 3.6	V
Input High Voltage	ViH	2.2		V _{CC} + 0.3	V
Input Low Voltage	VIL	- 0.5*	_	0.8	V

 $V_{IL}(min) = -3.0 \text{ V ac} (pulse width \le 20 \text{ ns})$

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	^l lkg(l)	_	-	± 1.0	μA
Output Leakage Current (G = VIH)	likg(O)		-	± 1.0	μA
AC Supply Current (I _{Out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, Cycle Time \geq t _{AVAV} min)	ICCA12 ICCA15 ICCA20 ICCA25		295 275 265 255	350 330 320 310	mA
$ \begin{array}{l} \text{Standby Current} \ (E=V_{IL}, \overline{E}=V_{IH}, I_{out}=0 \ \text{mA}, \ \text{All Inputs}=V_{IL} \ \text{and} \ V_{IH}, \\ V_{IL}=0 \ V \ \text{and} \ V_{IH} \geq 3.0 \ V, \ \text{Cycle Time} \geq t_{AVAV} \ \text{min}) \end{array} $	ISB	-	40	50	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL			0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4	-	-	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ15)	C _{in}	4	6	pF
Input/Output Capacitance (DQ0 – DQ15)	Cout	8	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCQ} = 3.3 \text{ V or } 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	3 ns

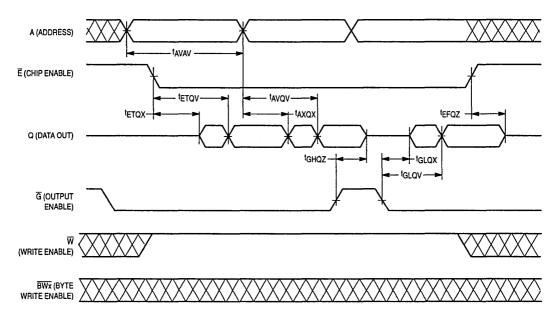
Output Timing Reference Le	evel	/
Output Load	See Figure 1A Unless Otherwise Noted	t

READ CYCLE TIMING (See Notes 1, 2, 3, and 4)

		MCM62	2996-12	MCM62	996-15	MCM6	2996-20	MCM62	2996-25		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	tAVAV	15	-	15	-	20	-	25	-	ns	4
Access Times: Address Valid to Output Valid E, Ē "True" to Output Valid Output Enable Low to Output Valid	tAVQV tETQV tGLQV	=	12 12 5	-	15 15 6		20 20 8		25 25 10	ns	5
Output Hold from Address Change	taxqx	4	-	4	-	4	—	4		ns	
Output Buffer Control: E, Ē "True" to Output Active G Low to Output Active E, Ē "False" to Output High-Z G High to Output High-Z	^t ETQX ^t GLQX ^t EFQZ ^t GHQZ	2 2 2 2	 9 5	2 2 2 2	 9 6	2 0 0 0	 	2 2 2 2		ns	6
Power Up Time	^t ETICCH	0	-	0	-	0		0	-	ns	

NOTES:

1. Write Enable is equal to V_{IH} for all read cycles.


2. ET is defined by E going low coincident with or after E goes high, or E going high coincident with or after E goes low.

3. EF is defined by E going high or E going low.

4. All read cycle timing is referenced from the last valid address to the first transitioning address.

5. Addresses valid prior to or coincident with E going low or E going high.

 Transition is measured ± 500 mV from steady state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEFOZ is less than tETOX and tGHOZ is less than tGLOZ for a given device.

READ CYCLE

WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4)

		MCM62996-12 MCM62996-15 MCM62996-20				2996-20	MCM62	2996-25			
Parameter	Symbol	Min	Max	Min	Мах	Min	Max	Min	Max	Unit	Notes
Write Cycle Times	t _{AVAV}	15	-	15	-	20	-	25	—	ns	5
Setup Times: Address Valid to End of Write Address Valid to End of Write Address Valid to W Low Address Valid to E, E "True" Data Valid to W High Data Valid to E or E "False" Byte Write Low to W High Byte Write Low to E, E "False"	tavwh tavef tavef tavwl tavet tovef tbwxlwh tbwxlwh tbwxlwh tbwxlef	10 10 0 5 6 6 0 6		13 13 0 6 6 6 0 6		15 15 0 8 8 8 8 0 8		20 20 0 10 10 10 10 0 10		ns	
Hold Times: W High to Address Invalid E, E "False" to Address Invalid W High to Data Invalid E, E "False" to Data Invalid W High to Byte Write Invalid E, E "False" to Byte Write Invalid	[†] WHAX [†] EFAX [†] WHDX [†] EFDX [†] WHBWxX [†] EFBWxX	0 0 0 2 2		0 0 0 2 2		0 0 0 2 2	- - - -	0 0 0 2 2		ns	
Write Pulse Width: Write Pulse Width Write Pulse Width Enable to End of Write Enable to End of Write	^t WLWH ^t WLEF ^t ETWH ^t ETEF	12 12 12 12 12	 	13 13 13 13		15 15 15 15	 	20 20 20 20		ns	6 7 6, 7
Output Buffer Control: W High to Output Valid W High to Output Active W Low to Output High-Z	twhqv twhqx twlqz	12 5 0	 9	10 5 0	 9	20 5 0	 9	25 5 0	 10	ns	8 8, 9

NOTES:

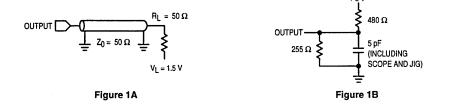
1. A write occurs during the overlap of ET, W low and BWx low. An aborted write occurs when BWx remains at VIH while W is low.

2. Write must be equal to VIH for all address transitions.

3. ET is defined by E going low coincident with or after E goes high, or E going high coincident with or after E goes low.

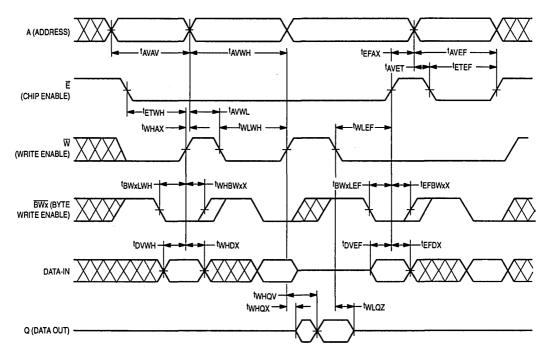
4. EF is defined by E going high or E going low.

5. All write cycle timing is referenced from the last valid address to the first transitioning address.

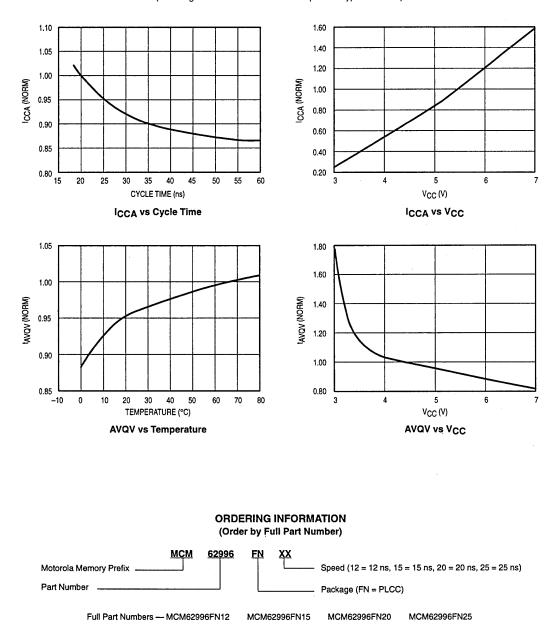

6. If E or E goes false coincident with or before W goes high the output will remain in a high-impedance state.

7. If E and \vec{E} go true coincident with or after \overline{W} goes low the output will remain in a high-impedance state.

8. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, twLQZ is less than twHQX for a given device.


9. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.

AC TEST LOADS



NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

WRITE CYCLE

DERATING CURVES (Derating Curves Are Based On Component Typical Values)

Application Specific Fast Static RAMs

Processor Specific

MCM56824A 4-3
MCM56824AZP 4-10
MCM62110 4-18
MCM62486A 4-67
MCM62486B 4-76
MCM62940A 4-85
MCM62940B 4-93
MCM67B518 4-153
MCM67C518 4-162
MCM67H518 4-171
MCM67J518 4-180
MCM67M518 4-189
MCM67B618 4-218
MCM67C618 4-227
MCM67H618 4-236
MCM67J618 4-245
MCM67M618 4-254
MCM67Q709 4-281

Latched Address

MCM62995A	4-130
MCM67A518	4-142
MCM67W518	4-197
MCM67A618	4-207
MCM67W618	4-262

Line Buffers

MCM62X308	•				•		 •	•	 •	•	•	•	•	•	•	•	4-28
MCM62Y308				 			 •	•	 •	•	•	•			•	•	4-49

Synchronous

MCM62T316 4-65
MCM62963A 4-101
MCM62973A 4-106
MCM62980 4-111
MCM62981 4-117
MCM62990A 4-123
MCM67D709 4-272
MCM67F804 4-291
MCM67P804 4-297
MCM67Q804 4-302

CHAPTER 4 4-2

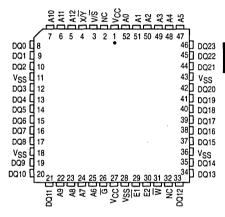
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

DSPRAM[™] 8K x 24 Bit Fast Static RAM

The MCM56824A is a 196,608 bit static random access memory organized as 8,192 words of 24 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates an 8K x 24 SRAM core with multiple chip enable inputs, output enable, and an externally controlled single address pin multiplexer. These functions allow for direct connection to the Motorola DSP56001 Digital Signal Processor and provide a very efficient means for implementation of a reduced parts count system requiring no additional interface logic.

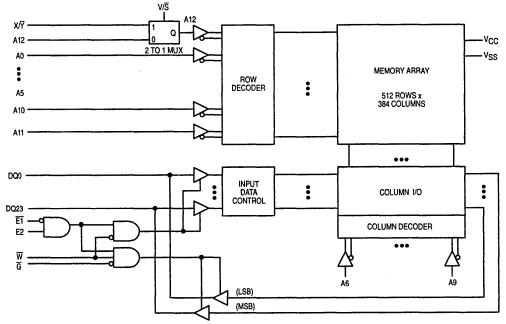
The availability of multiple chip enable ($\overline{E1}$ and $\overline{E2}$) and output enable (\overline{G}) inputs provides for greater system flexibility when multiple devices are used. With either chip enable input unasserted, the device will enter standby mode, useful in low-power applications. A single on-chip multiplexer selects A12 or $X\overline{Y}$ as the highest order address input depending upon the state of the V/S control input. This feature allows one physical static RAM component to efficiently store program and vector or scalar operands by dynamically repartitioning the RAM array. Typical applications will logically map vector operands into upper memory with scalar operands being stored in lower memory. By connecting DSP56001 address A15 to the VECTOR/SCALAR (V/S) MUX control pin, such partitioning can occur with no additional components. This allows efficient utilization of the RAM resource irrespective of operand type. See application diagrams at the end of this document for additional information.

Multiple power and ground pins have been utilized to minimize effects induced by output noise.


The MCM56824A is available in a 52 pin plastic leaded chip-carrier (PLCC).

- Single 5 V ± 10% Power Supply
- Fast Access and Cycle Times: 20/25/35 ns Max
- Fully Static Read and Write Operations
- Equal Address and Chip Enable Access Times
- Single Bit On-Chip Address Multiplexer
- Active High and Active Low Chip Enable Inputs
- Output Enable Controlled Three State Outputs
- High Board Density PLCC Package
- Low Power Standby Mode
- Fully TTL Compatible

PIN ASSIGNMENT



PIN NA	PIN NAMES						
A0 – A11 A12, X/V M V/S Address W E1, E2 G DQ0 – DQ23 VCC VCS NC	Aultiplexed Address Multiplexer Control Write Enable Ohip Enable Output Enable Data Input/Output +5 V Power Supply Ground						

For proper operation of the device, all V_{SS} pins must be connected to ground.

DSPRAM is a trademark of Motorola, Inc.

BLOCK DIAGRAM

TRUTH TABLE

Eĩ	E2	Ğ	w	v/s	Mode	Supply Current	I/O Status
н	х	х	X	X	Not Selected	ISB	High-Z
X	L	х	х	х	Not Selected	ISB	High-Z
L	н	н	н	x	Output Disable	lcc	High-Z
L	н	L	н	н	Read Using X/Y	lcc	Data Out
L	н	L	н	L	Read Using A12	lcc	Data Out
L	н	х	L	н	Write Using X/Y	¹ CC	Data In
L	н	х	L	L	Write Using A12	^I CC	Data In

NOTE: X=don't care.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS for Any Pin Except V_{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.75	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is assumed to be in a test socket or mounted on a printed circuit board with at least 300 LFPM of transverse air flow being maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	ViH	2.2	-	V _{CC} + 0.3	V
Input Low Voltage	VIL	- 0.5*	_	0.8	V

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

* V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	llkg(i)	-	± 1.0	μA
Output Leakage Current ($\overline{G} = V_{IH}$, $\overline{E1} = V_{IH}$, $E2 = V_{IL}$, $V_{out} = 0$ to V_{CO}	c) ^I lkg(O)	—	± 1.0	μA
MCM56824A	-20 Cycle Time: ≥ 20 ns -25 Cycle Time: ≥ 25 ns -35 Cycle Time: ≥ 35 ns		260 220 180	mA
Standby Current ($\overline{E1}$ = V _{IH} , E2 = V _{IL} , All Inputs = V _{IL} or V _{IH})	ISB1		15	mA
CMOS Standby Current ($\overline{E1} \ge V_{CC} - 0.2 \text{ V}$, $E2 \le 0.2 \text{ V}$, All Inputs $\ge V_{CC}$	C – 0.2 V or ≤ 0.2 V) ISB2	-	10	mA
Output Low Voltage (IOL = + 8.0 mA)	VOL	-	0.4	V .
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4		V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

	Parameter	Symbol	Тур	Max	Unit
Input Capacitance	All Pins Except DQ0 – DQ23	C _{in}	4	6	pF
Input/Output Capacitance	DQ0 – DQ23	Cout	6	8 -	рF

AC TEST LOADS

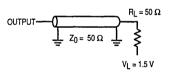
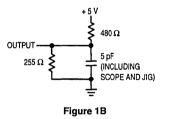



Figure 1A

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

AC OPERATING CONDITIONS AND CHARACTERISTICS

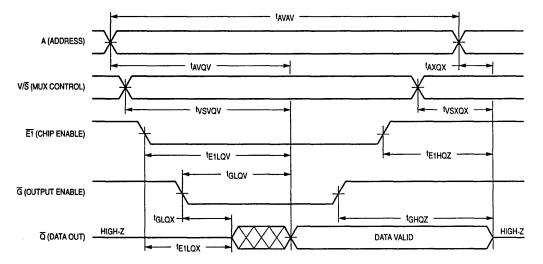
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ T}_{A} = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level	.5 V
Input Pulse Levels 0 to 3	.0 V 0.
Input Rise/Fall Time	3 ns

READ CYCLE TIMING (See Notes 1, 2, and 3)

	Syn	nboi	MCM56	824A-20	MCM56824A-25		MCM56824A-35			
Parameter	Standard	Alternate	Min	Max	Min	Мах	Min	Max	Unit	Notes
Read Cycle Time	t AVAV	tRC	20	-	25	—	35	- 1	ns	
Address Access Time	tavqv	tAA	-	20	-	25	—	35	ns	
MUX Control Valid to Output Valid	tvsvqv	tAA	—	20	_	25	-	35	ns	
Chip Enable to Output Valid	p Enable to Output Valid tE1LQV tAC1 tE2HQV tAC2			20		25	—	35	ns	4
Output Enable to Output Valid	tGLQV	tOE	—	8	—	10	-	15	ns	
Output Active from Chip Enable	tE1LQX tE2HQX	^t CLZ	2	-	2		0	-	ns	4,5
Output Active from Output Enable	tGLQX	tolz	0		0	-	0	—	ns	5
Output Hold from Address Change	tAXQX	tон	4	-	5	-	5	—	ns	
Output Hold from MUX Control Change	tvsxqx	tvsoh	4	-	5	—	5	—	ns	
Chip Enable to Output High Z	tE1HQZ tE2LQZ	^t CHZ	0	10	0	15	0	15	ns	4,5
Output Enable High to Output High Z	tGHQZ	tohz	0	8	0	15	0	15	ns	5

NOTES:


1. A read cycle is defined by \overline{W} high.

2. All read cycle timings are referenced from the last valid address or vector/scalar transition to the first address or vector/scalar transition.

3. Addresses valid prior to or coincident with E1 going low or E2 going high.

4. E1 in the timing diagrams represents both E1 and E2 with E1 asserted low and E2 asserted high.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tE1HQZ max is less than tE1LQX min, tE2LQZ max is less than tE1LQX min, and tGHQZ max is less than tGLQX min for a given device and from device to device.

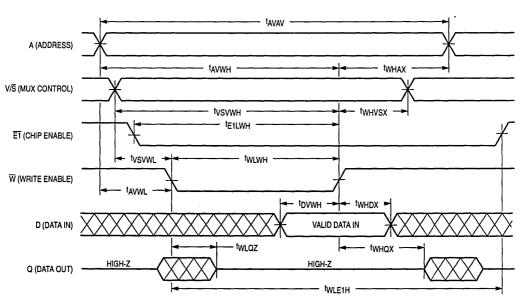
READ CYCLE

	Symbol		MCM56	824 A-2 0	MCM56824A-25		MCM56824A-35			1
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Мах	Unit	Notes
Write Cycle Time	tAVAV	twc	20		25		35	—	ns	
Address Setup Time	tAVWL	tAS	0	-	0	-	0	_	ns	2
MUX Control Setup Time	tvsvwl	tvss	0	-	0	—	0		ns	
Address Valid to End of Write	tavwh	tAW	15	-	20	— —	30	—	ns	
MUX Control Valid to End of Write	tvsvwh	tvsw	15		20	-	30	—	ns	
Write Pulse Width	[‡] WLWH	tWP	15	_	15	-	20		ns	3
Write Enable to Chip Enable Disable	tWLE1H tWLE2L	tcw	15	-	15	-	20	-	ns	3, 4
Chip Enable to End of Write	^t E1LWH ^t E2HWH	tcw	15	-	15	-	20	—	ns	3,4
Data Valid to End of Write	tDVWH	tow	8	-	10	—	15	—	ns	
Data Hold Time	tWHDX	^t DH	0	- 1	0	—	0		ns	5
Write Recovery Time	tWHAX	twR	0	- 1	0	-	0	-	ns	2
MUX Control Recovery Time	twnvsx	tvsR	0	-	0	-	0	_	ns	
Write High to Output Low Z	twhox	twlz	4		5		5	-	ns	6
Write Low to Output High Z	twLQZ	twnz	0	15	0	15	0	15	ns	6

WRITE CYCLE TIMING (Write Enable Initiated, See Note 1)

NOTES:

1. A write cycle starts at the latest transition of E1 low, W low, or E2 high. A write cycle ends at the earliest transition of E1 high, W high, or E2 low.


2. Write must be high for all address transitions.

3. If \overline{W} goes low coincident with or prior to $\overline{E1}$ low or E2 high the outputs will remain in a high-impedance state.

4. $\overline{E1}$ in the timing diagrams represents both $\overline{E1}$ and E2 with $\overline{E1}$ asserted low and E2 asserted high.

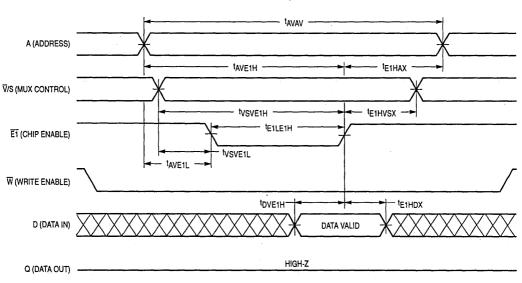
5. During this time the output pins may be in the output state. Signals of opposite phase must not be applied to the outputs at this time.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tE1HQZ max is less than tE1LQX min, tE2LQZ max is less than tE1QQX min, and tGHQZ max is less than tGLQX min for a given device and from device to device.

WE INITATED WRITE CYCLE

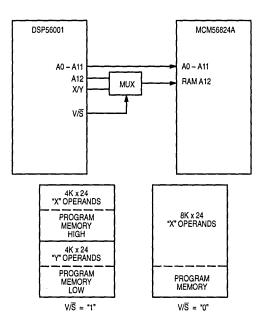
WRITE CYCLE TIMING (Chip Enable Initiated, See Note 1)

	Syn	nbol	MCM56	824A-20	MCM56	B24A-25	MCM56	824A-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	-	25	-	35	-	ns	
Address Setup Time	tAVE1L tAVE2H	tAS	0	-	0	-	0	-	ns	2
MUX Control Setup Time	[†] VSVE1L [†] VSVE2H	tvss	0	-	0	-	0	-	ns	2
Address Valid to End of Write	^t AVE1H ^t AVE2L	tsw	15	-	20		30	-	ns	2
MUX Control Valid to End of Write	^t VSVE1H ^t VSVE2L	tvsw	15	-	20	-	30	-	ns	.2
Chip Enable to End of Write	^t E1LE1H ^t E2HE2L	tcw	12	-	15	-	20		ns	2, 3
Data Valid to End of Write	^t DVE1H ^t DVE2L	tDW	8	-	10	-	15	-	ns	2
Data Hold Time	^t E1HDX ^t E2LDX	tDH	0	-	0	-	0	-	ns	2, 4
Write Recovery Time	^t E1HAX ^t E2LAX	tWR	0	-	0	-	0	-	ns	2
MUX Control Recovery Time	^t E1HVSX ^t E2LVSX	tvsr	0	-	0	-	0	-	ns	2

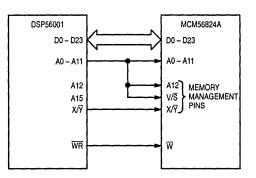

NOTES:

1. A write cycle starts at the latest transition of E1 low, W low, or E2 high. A write cycle ends at the earliest transition of E1 high, W high, or E2 low.

2. E1 in the timing diagrams represents both E1 and E2 with E1 asserted low and E2 asserted high.


3. If W goes low coincident with or prior to E1 low or E2 high the outputs will remain in a high-impedance state.

4. During this time the output pins may be in the output state. Signals of opposite phase must not be applied to the outputs at this time.



E1 OR E2 INITIATED WRITE CYCLE

DSPRAM Multiplexed Vector/Scalar Address Maps

8K x 24 DSPRAM Used in Typical Application

4

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Product Preview DSPRAM[™] 8K x 24 Bit Fast Static RAM

The MCM56824AZP is a 196,608 bit static random access memory organized as 8,192 words of 24 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates an 8K x 24 SRAM core with multiple chip enable inputs, output enable, and an externally controlled single address pin multiplexer. These functions allow for direct connection to the Motorola DSP56001 Digital Signal Processor and provide a very efficient means for implementation of a reduced parts count system requiring no additional interface logic.

The availability of multiple chip enable ($\overline{E1}$ and E2) and output enable (\overline{G}) inputs provides for greater system flexibility when multiple devices are used. With either chip enable input unasserted, the device will enter standby mode, useful in lowpower applications. A single on-chip multiplexer selects A12 or X/Y as the highest order address input depending upon the state of the V/S control input. This feature allows one physical static RAM component to efficiently store program and vector or scalar operands by dynamically re-partitioning the RAM array. Typical applications will logically map vector operands into upper memory with scalar operands being stored in lower memory. By connecting DSP56001 address A15 to the VECTOR/ SCALAR (V/S) MUX control pin, such partitioning can occur with no additional components. This allows efficient utilization of the RAM resource irrespective of operand type. See application diagrams at the end of this document for additional information.

Multiple power and ground pins have been utilized to minimize effects induced by output noise.

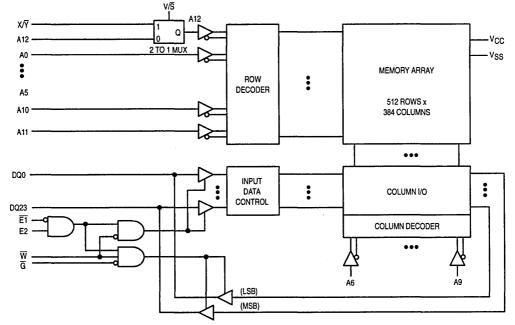
The MCM56824AZP is available in a 9 x 10 grid, 86 bump surface mount OMPAC.

- Single 5 V ± 10% Power Supply
- · Fast Access and Cycle Times: 20/25/35 ns Max
- · Fully Static Read and Write Operations
- Equal Address and Chip Enable Access Times
- Single Bit On-Chip Address Multiplexer
- · Active High and Active Low Chip Enable Inputs
- Output Enable Controlled Three State Outputs
- High Board Density PLCC Package
- Low Power Standby Mode
- Fully TTL Compatible

MCM56824AZP



PIN NAMES					
A0 – A11 Address inputs A12, XĪY Multiplexed Address V/S Address Multiplexer Control W Write Enable E1, E2 Chip Enable G Output Enable DQ0 – DQ23 Data Input/Output VCC +5 V Power Supply VSS Ground NC No Connection					


For proper operation of the device, all V_{SS} pins must be connected to ground.

DSPRAM is a trademark of Motorola, Inc.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM

TRUTH TABLE

ĒĨ	E2	G	w	v/s	Mode	Supply Current	I/O Status
н	х	х	х	х	Not Selected	ISB	High-Z
X	L	Х	х	x	Not Selected	ISB	High-Z
L	н	н	н	X	Output Disable	lcc	High-Z
L	н	L	н	н	Read Using X/Y	ICC	Data Out
L	н	L	н	L	Read Using A12	lcc	Data Out
L	н	х	L	н	Write Using X/Y	lcc	Data In
L	н	х	L	L	Write Using A12	lcc	Data In

NOTE: X = don't care.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS for Any Pin Except V_{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current (per 1/O)	lout	±20	mA
Power Dissipation)	PD	1.75	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is assumed to be in a test socket or mounted on a printed circuit board with at least 300 LFPM of transverse air flow being maintained.

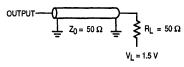
DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3	V
Input Low Voltage	VIL	- 0.5*	-	0.8	V

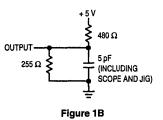
RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

* V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)


DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit	
Input Leakage Current (All Inputs, Vin = 0 to VCC)	^l lkg(i)	-	± 1.0	μA	
Output Leakage Current ($\overline{G} = V_{IH}$, $\overline{E1} = V_{IH}$, $E2 = V_{II}$	likg(O)	-	± 1.0	μA	
AC Supply Current ($\overline{G} = V_{IH}$, $\overline{E1} = V_{IL}$, $E2 = V_{IH}$, I_{out} All Other Inputs $\geq V_{IL} = 0.0$ V and $V_{IH} \geq 3.0$ V)	= 0 mA, MCM56824A-20 Cycle Time: ≥ 20 ns MCM56824A-25 Cycle Time: ≥ 25 ns MCM56824A-35 Cycle Time: ≥ 35 ns	ICCA		260 220 180	mA
Standby Current ($\overline{E1} = V_{IH}$, $E2 = V_{IL}$, All Inputs = V_{IL}	or VIH)	ISB1	-	15	mA
CMOS Standby Current ($\overline{E1} \ge V_{CC} - 0.2 V$, $E2 \le 0.2 V$	V, All Inputs \geq V _{CC} – 0.2 V or \leq 0.2 V)	ISB2	-	10	mA
Output Low Voltage (IOL = + 8.0 mA)		VOL	_	0.4	V
Output High Voltage (IOH = - 4.0 mA)	∨он	2.4	_	V	

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)


Parameter			Тур	Max	Unit
Input Capacitance	All Pins Except DQ0 - DQ23	C _{in}	4	6	pF
Input/Output Capacitance	DQ0 - DQ23	Cout	6	8	pF

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

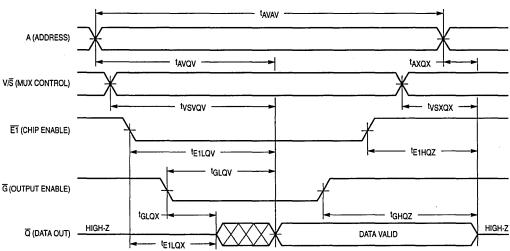
AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

READ CYCLE TIMING (See Notes 1, 2, and 3)

	Syr	nbol	MCM568	24AZP-20	MCM568	24AZP-25	MCM568	24AZP-35		
Parameter	Stndard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	t AVAV	tRC	20	-	25	-	35	-	ns	
Address Access Time	tavqv	tAA	—	20	_	25	—	35	ns	
MUX Control Valid to Output Valid	tvsvqv	tAA	-	20	-	25	-	35	ns	
Chip Enable to Output Valid	^t E1LQV ^t E2HQV	tAC1 tAC2	-	20	-	25	-	35	ns	4
Output Enable to Output Valid	tGLQV	tOE	-	8		10	-	15	ns	
Output Active from Chip Enable	^t E1LQX ^t E2HQX	^t CLZ	2		2	-	0	-	ns	4, 5
Output Active from Output Enable	tGLQX	tolz	0		0	-	0	-	ns	5
Output Hold from Address Change	tAXQX	tон	4		5	_	5	-	ns	
Output Hold from MUX Control Change	tvsxqx	^t ∨soн	4	-	5	-	5		ns	
Chip Enable to Output High Z	^t E1HQZ ^t E2LQZ	^t CHZ	0	10	0	15	0	15	ns	4, 5
Output Enable High to Output High Z	^t GHQZ	tohz	0	8	0	15	0	15	ns	5

NOTES:


1. A read cycle is defined by \overline{W} high.

2. All read cycle timings are referenced from the last valid address or vector/scalar transition to the first address or vector/scalar transition.

3. Addresses valid prior to or coincident with $\overline{E1}$ going low or E2 going high.

4. $\overline{E1}$ in the timing diagrams represents both $\overline{E1}$ and E2 with $\overline{E1}$ asserted low and E2 asserted high.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tE1HQZ max is less than tE1LQX min, tE2LQZ max is less than tE1LQX min, and tGHQZ max is less than tGLQX min for a given device and from device to device.

4-14

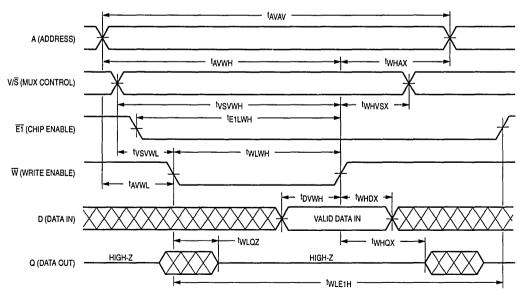
WRITE CYCLE TIMING	i (Write Enable Initiated, See Note 1)
--------------------	--

	Syn	nbol	MCM568	24AZP-20	MCM5682	24AZP-25	MCM5682	24AZP-35		ł
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	-	25	—	35	_	ns	
Address Setup Time	tAVWL	tAS	0	—	0	-	0		ns	2
MUX Control Setup Time	tvsvwl	tvss	0	_	0	—	0	-	ns	
Address Valid to End of Write	tavwh	taw	15	_	20	-	30	—	ns	
MUX Control Valid to End of Write	^t vsvwh	tvsw	15	_	20	_	30	-	ns	
Write Pulse Width	twLwH	twp	15		15	-	20		ns	3
Write Enable to Chip Enable Disable	tWLE1H tWLE2L	tcw	15	-	15	-	20	-	ns	3, 4
Chip Enable to End of Write	tE1LWH tE2HWH	tcw	15	-	15		20	-	ns	3, 4
Data Valid to End of Write	^t DVWH	tDW	8		10	—	15		ns	
Data Hold Time	tWHDX	^t DH	0	_	0	-	0	—	ns	5
Write Recovery Time	twhax	twR	0	—	0		0	—	ns	2
MUX Control Recovery Time	twnvsx	tvsR	0	—	0	-	0	-	ns	
Write High to Output Low Z	twhax	twLZ	4	-	5	-	5	—	ns	6
Write Low to Output High Z	twLQZ	twnz	0	15	0	15	0	15	ns	6

NOTES:

1. A write cycle starts at the latest transition of E1 low, W low, or E2 high. A write cycle ends at the earliest transition of E1 high, W high, or E2 low.

2. Write must be high for all address transitions.


3. If W goes low coincident with or prior to E1 low or E2 high the outputs will remain in a high-impedance state.

4. $\overline{E1}$ in the timing diagrams represents both $\overline{E1}$ and E2 with $\overline{E1}$ asserted low and E2 asserted high.

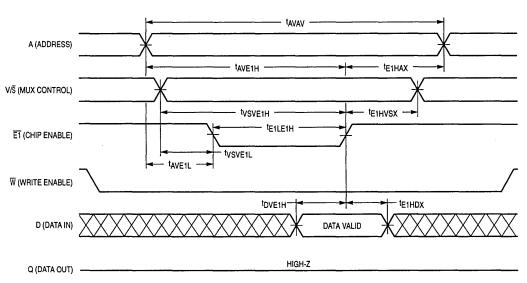
5. During this time the output pins may be in the output state. Signals of opposite phase must not be applied to the outputs at this time.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tE1HQZ max is less than tE1LQX min, tE2LQZ max is less than tE1LQX min, and tGHQZ max is less than tGLQX min for a given device and from device to device.

WE INITATED WRITE CYCLE

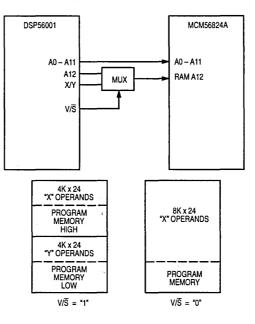
4

WRITE CYCLE TIMING (Chip Enable Initiated, See Note 1)

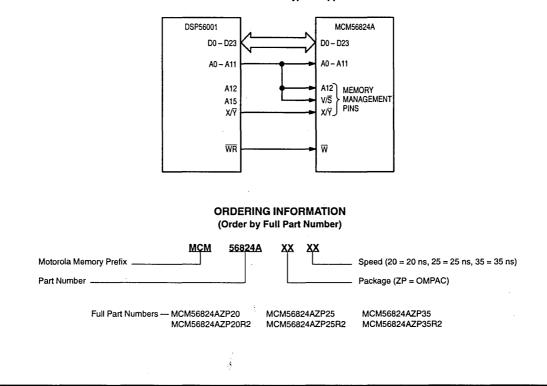

	Syn	nbol	MCM5682	24AZP-20	MCM5682	24AZP-25	MCM568	24AZP-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20		25		35	-	ns	
Address Setup Time	^t AVE1L ^t AVE2H	tAS	0		0	—	0	—	ns	2
MUX Control Setup Time	^t VSVE1L ^t VSVE2H	tvss	0		0	-	0	-	ns	2
Address Valid to End of Write	tAVE1H tAVE2L	tsw	15	-	20	-	30	-	ns	2
MUX Control Valid to End of Write	^t VSVE1H ^t VSVE2L	tvsw	15	—	20	-	30	-	ns	2
Chip Enable to End of Write	tE1LE1H tE2HE2L	tCW	12	-	15	—	20	<u> </u>	ns	2, 3
Data Valid to End of Write	^t DVE1H ^t DVE2L	tDW	8	-	10	-	15	-	ns	2
Data Hold Time	^t E1HDX ^t E2LDX	tон	0		0	—	0		ns	2, 4
Write Recovery Time	tE1HAX tE2LAX	twr	0	-	0	-	0	-	ns	2
MUX Control Recovery Time	^t E1HVSX ^t E2LVSX	^t VSR	0	—	0		0		ns	2

NOTES:

1. A write cycle starts at the latest transition of E1 low, W low, or E2 high. A write cycle ends at the earliest transition of E1 high, W high, or E2 low.


E1 in the timing diagrams represents both E1 and E2 with E1 asserted low and E2 asserted high.
 If W goes low coincident with or prior to E1 low or E2 high the outputs will remain in a high-impedance state.

4. During this time the output pins may be in the output state. Signals of opposite phase must not be applied to the outputs at this time.



E1 OR E2 INITIATED WRITE CYCLE

DSPRAM Multiplexed Vector/Scalar Address Maps

8K x 24 DSPRAM Used in Typical Application

MOTOROLA FAST SRAM DATA

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

32K x 9 Bit Synchronous Dual I/O or Separate I/O Fast Static RAM with Parity Checker

The MCM62110 is a 294,912 bit synchronous static random access memory organized as 32,768 words of 9 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 32K x 9 SRAM core with advanced peripheral circuitry consisting of address registers, two sets of input data registers, two sets of output latches, active high and active low chip enables, and a parity checker. The RAM checks odd parity during RAM read cycles. The data parity error (\overline{DPE}) output is an open drain type output which indicates the result of this check. This device has increased output recapability supported by multiple power pins. In addition, the output levels can be either 3.3 V or 5 V TTL compatible by choice of the appropriate output bus power supply.

The device has both asynchronous and synchronous inputs. Asynchronous inputs include the processor output enable (POE), system output enable (SOE), and the clock (K).

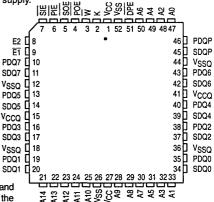
The address (A0 – A14) and chip enable ($\overline{E1}$ and E2) inputs are synchronous and are registered on the falling edge of K. Write enable (\overline{W}), processor input enable (\overline{PIE}) and system input enable (\overline{SIE}) are registered on the rising edge of K. Writes to the RAM are self-timed.

All data inputs/outputs, PDQ0 – PDQ7, SDQ0 – SDQ7, PDQP, and SDQP have input data registers triggered by the rising edge of the clock. These pins also have three-state output latches which are transparent during the high level of the clock and latched during the low level of the clock.

This device has a special feature which allows data to be passed through the RAM between the system and processor ports in either direction. This streaming is accomplished by latching in data from one port and asynchronously output enabling the other port. It is also possible to write to the RAM while streaming.

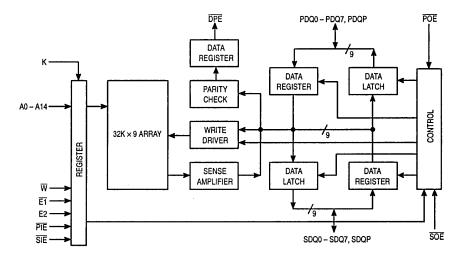
Additional power supply pins have been utilized for maximum performance. The output buffer power (V_{CCQ}) and ground pins (V_{SSQ}) are electrically isolated from V_{SS} and V_{CC}, and supply power and ground only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state thereby allowing simplified transmission line terminations.

The MCM62110 is available in a 52-pin plastic leaded chip carrier (PLCC).


This device is ideally suited for pipelined systems and systems with multiple data buses and multi-processing systems, where a local processor has a bus isolated from a common system bus.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Level Compatibility
- Fast Access and Cycle Times: 15/17/20 ns Max
- · Self-Timed Write Cycles
- Clock Controlled Output Latches
- Address, Chip Enable, and Data Input Registers
- Common Data Inputs and Data Outputs
- Dual I/O for Separate Processor and Memory Buses
- Separate Output Enable Controlled Three-State Outputs
- Odd Parity Checker During Reads
- Open Drain Output on Data Parity Error (DPE) Allowing Wire-ORing of Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- High Board Density 52 Lead PLCC Package
- Active High and Low Chip Enables for Easy Memory Depth Expansion
- Can be used as Separate I/O x9

MCM62110



PIN ASSIGNMENT

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

BLOCK DIAGRAM

FUNCTIONAL TRUTH TABLE (See Notes 1 and 2)

W	PIE	SIE	POE	SOE	Mode	Memory Subsystem Cycle	PDQ0 – PDQ7, PDQP Output	SDQ0 – SDQ7, SDQP Output	DPE	Notes
_1	1	1	0	1	Read	Processor Read	Data Out	High-Z	Parity Out	3, 4
1	1	1	1	0	Read	Copy Back	High-Z	Data Out	Parity Out	3, 4
1	1	1	0	0	Read	Dual Bus Read	Data Out	Data Out	Parity Out	3, 4
1	Х	Х	1	1	Read	NOP	High-Z	High-Z	1	
х	0	0	X	Х	N/A	NOP	High-Z	High-Z	1	2, 5
0	0	1	1	1	Write	Processor Write Hit	Data In	High-Z	1	2, 6
0	1	0	1	1	Write	Allocate	High-Z	Data In	1	2
0	0	1	1	0	Write	Write Through	Data In	Stream Data	1	2, 7
0	1	0	0	1	Write	Allocate With Stream	Stream Data	Data In	1	2, 7
1	0	1	1	0	N/A	Cache Inhibit Write	Data In	Stream Data	1	2, 7
1	1	0	0	1	N/A	Cache Inhibit Read	Stream Data	Data In	1	2, 7
0	1	1	Х	Х	N/A	NOP	High-Z	High-Z	1	5
х	0	1	0	0	N/A	Invalid	Data In	Stream	1	2, 8
х	0	1	0	1	N/A	Invalid	Data In	High-Z	1	2, 8
Х	1	0	0	0	N/A	Invalid	Stream	Data In	1	2, 8
X	1	0	1	0	N/A	Invalid	High-Z	Data In	1	2, 8

NOTES:

1. A '0' represents an input voltage $\leq V_{|L}$ and a '1' represents an input voltage $\geq V_{|H}$. All inputs must satisfy the specified setup and hold times for the falling or rising edge of K. Some entries in this truth table represent latched values. This table assumes that the chip is selected (i.e., $\overline{E1} = 0$ and E2 = 1) and V_{CC} current is equal to I_{CCA} . If this is not true, the chip will be in standby mode, the V_{CC} current will equal I_{SB1} or I_{SB2} \overline{DPE} will default to 1 and all RAM outputs will be in High-Z. Other possible combinations of control inputs not covered by this note or the table above are not supported and the RAM's behavior is not specified.

2. If either IE signal is sampled low on the rising edge of clock, the corresponding OE is a don't care, and the corresponding outputs are High-Z.

3. A read cycle is defined as a cycle where data is driven on the internal data bus by the RAM.

4. DPE is registered on the rising edge of K at the beginning of the following clock cycle

5. No RAM cycle is performed.

7. Data is driven on the internal data bus by one I/O port through its data input register and latched into the data output latch of the other I/O port.

8. Data contention will occur.

A write cycle is defined as a cycle where data is driven onto the internal data bus through one of the data I/O ports (PDQ0 – PDQ7 and PDQP or SDQ0 – SDQ7 and SPDQ), and written into the RAM.

PARITY CHECKER

Parity Scheme	DPE
$\overline{E1} = V_{IH}$ and/or $E2 = V_{IL}$	1
RAMP = RAM0 @ RAM1 @ @ RAM7	1 1
RAMP ≠ RAM0 ⊕ RAM1 ⊕ ⊕ RAM7	0

NOTE: RAMP, RAMO, RAMT . . . , refer to the data that is present on the RAMs internal bus, not necessarily data that resides in the RAM array. DPE is always delayed one clock, and is registered on the rising edge of K at the beginning of the following clock cycle (see AC CHARACTERISTICS).

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = V_{SSQ} = 0 V)

Rating	Symbol	Value	Unit
Power Supply	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS/VSSQ for Any Pin Except VCC and VCCQ	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.2	w
Temperature Under Blas	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

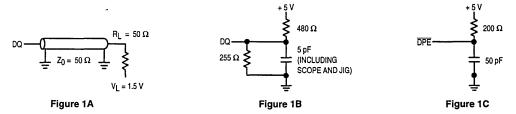
DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Parameter	Symbol	Min	Max	Unit	
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	v	
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccq	4.5 3.0	5.5 3.6	V	
Input High Voltage	VIH	2.2	V _{CC} + 0.3	v	
Input Low Voltage	VIL	- 0.5*	0.8	v	

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V)

*V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)


DC CHARACTERISTICS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})		likg(i)		± 1.0	μA
Output Leakage Current (POE, SOE = VIH)		likg(O)		± 1.0	μA
AC Supply Current (All Inputs = V _{IL} or V _{IH} ,V _{IL} = 0.0 V I_{out} = 0 mA, Cycle Time \geq t _{KHKH} min)	V and V _{IH} ≥ 3.0 V, MCM62110-15: tKHKH = 15 ns MCM62110-17: tKHKH = 17 ns MCM62110-20: tKHKH = 20 ns	ICCA		190 190 190	mA
TTL Standby Current ($V_{CC} = Max$, $\overline{E1} = V_{IH}$ or $E2 = V_{IH}$	VIL)	ISB1	_	40	mA
$\begin{array}{l} \mbox{CMOS Standby Current} (V_{CC} = \mbox{Max}, \mbox{f} = 0 \mbox{ MHz}, \overline{E1} = \\ V_{in} \leq V_{SS} + 0.2 \mbox{ V or } \geq V_{CC} - 0.2 \mbox{ V}) \end{array}$	= V _{IH} or E2 ≕ V _{IL} ,	ISB2	_	30	mA
Output Low Voltage (IOL = + 8.0 mA, DPE: IOL = + 23	3.0 mA)	VOL		0.4	V
Output High Voltage (IOH = - 4.0 mA)		Vон	2.4	—	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except I/Os)	C _{in}	2	3	pF
Input/Output Capacitance (PDQ0 - PDQ7, SDQ0 - SDQ7, PDQP, SDQP)	Cout	6	7	pF
Data Parity Error Output Capacitance (DPE)	C _{out(DPE)}	6	7	pF

AC SPEC LOADS

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V ± 10%, V_{CCQ} = 5.0 V or 3.3 V ± 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5	v
Input Pulse Levels 0 to 3.0	v
Input Rise/Fall Time	าร

READ CYCLE (See Note 1)

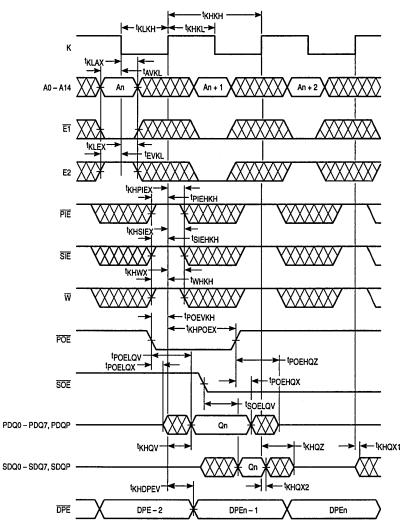
		MCM6	2110-15	MCM62	2110-17	MCM62	2110-20		Notes
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
Read Cycle Time Clock High to Clock High	tкнкн	15	-	17	-	20	-	ns	1, 2
Clock Low Pulse Width	^t KLKH	5	-	5	-	5		ns	
Clock High Pulse Width	^t KHKL	7	-	7	-	7	-	ns	
Clock High to DPE Valid	^t KHDPEV	-	7	-	8	—	10	ns	5
Clock High to Output Valid	tkhov	—	7	-	7.5	-	10	ns	4, 3
Clock (K) High to Output Low Z After Write	tKHQX1	8	-	8	-	8	- 1	ns	
Output Hold from Clock High	tKHQX2	5	-	5	—	5	-	ns	4,6
Clock High to Q High-Z ($\overline{E1}$ or E2 = False)	tkhoz	- 1	8	-	9	-	10	ns	6
Setup Times: ET, E PI SII POI SOI SOI		2.5	_	2.5		2.5		ns	7 7
Hold Times: 또 편1, E 위미 SII POI SOI SOI SOI SOI		2	-	2	-	2	-	ns	77.
Output Enable High to Q High-Z	^t POEHQZ ^t SOEHQZ	0	8	0	9	0	9	ns	6
Output Hold from Output Enable High	^t POEHQX ^t SOEHQX	5	-	5	-	5	-	ns	6
Output Enable Low to Q Active	^t POELQX ^t SOELQX	0	-	0	-	0	-	ns	6
Output Enable Low to Output Valid	^t POELQV tSOELQV	-	5	-	6	-	8	ns	

NOTES:

1. A read is defined by \overline{W} high for the setup and hold times.

2. All read cycle timing is referenced from K, SOE, or POE.

3. Access time is controlled by tKLQV if the clock low pulse width is less than (tKLQV-tKHQV); otherwise it is controlled by KHQV.


4. K must be at a high level for outputs to transition.

5. DPE is valid exactly one clock cycle after the output data is valid.

6. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ is less than tKHQX, tPOEHQZ is less than tPOELQX for a given device, and tSOEHQZ is less than tSOELQX for a given device.

7. These read cycle timings are used to guarantee proper parity operation only.

READ CYCLE (See Notes)

NOTES:

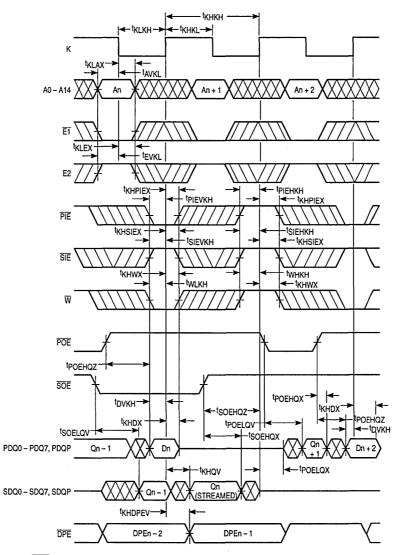
1. DPE is valid exactly one clock cycle after the output data is valid.

WRITE CYCLE (See Note 1)

		MCM6	2110-15	MCM62	2110-17	MCM62	2110-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Times	^t КНКН	15	- 1	17	- 1	20	—	ns	1, 2
Clock Low Pulse Width	^t KLKH	5	-	5	-	5		ns	
Clock High Pulse Width	^t KHKL	7	_	7		7	-	ns	
Clock High to Output High-Z (\overline{W} = V _{IL} and \overline{SIE} = \overline{PIE} = V _{IH})	^t KHQZ	-	8	-	9	_	10	ns	3, 4
Setup Times: A W ET, E2 PIE SIE SDQ0 – SDQ7, SDQP, PDQ0 – PDQ7, PDQP	^t AVKL ^t WLKH ^t EVKL ^t PIEVKH ^t SIEVKH ^t DVKH	2.5	_	2.5		2.5		ns	
Hold Times: A W ET, E2 FIE SDQ0 – SDQ7, SDQP, PDQ0 – PDQ7, PDQP	^t KLAX ^t KHWX ^t KLEX ^t KHPIEX ^t KHSIEX ^t KHSIEX ^t KHDX	2	_	2	_	2	_	ns	
Write with Streaming ($\overline{PIE} = \overline{SOE} = V_{IL}$ or $\overline{SIE} = \overline{POE} = V_{IL}$) Clock High to Output Valid	^t KHQV	-	7	-	7.5	_	8	ns	5
Output Enable High to Q High-Z	^t POEHQZ ^t SOEHQZ	0	8	0	9	0	9	ns	6
Output Hold from Output Enable High	^t POEHQX tSOEHQX	5	-	5	-	5	-	ns	
Output Enable Low to Q Active	^t POELQX ^t SOELQX	0	-	0		0	-	ns	6
Output Enable Low to Output Valid	^t POELQV ^t SOELQV	-	5	-	6	-	8	ns	

NOTES:

1. A write is performed with $\overline{W} = V_{IL}$, $\overline{E1} = V_{IL}$, $E2 = V_{IH}$ for the specified setup and hold times and either $\overline{PIE} = V_{IL}$ or $\overline{SIE} = V_{IL}$. If both $\overline{PIE} = V_{IL}$ and $\overline{SIE} = V_{IL}$ or $\overline{PIE} = V_{IH}$ and $\overline{SIE} = V_{IH}$, then this is treated like a NOP and no write is performed.


2. All write cycle timings are referenced from K.

3. K must be at a high level for the outputs to transition.

4. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHQZ} is less than t_{KHQX} for a given device.

5. A write with streaming is defined as a write cycle which writes data from one data bus to the array and outputs the same data onto the other data bus.

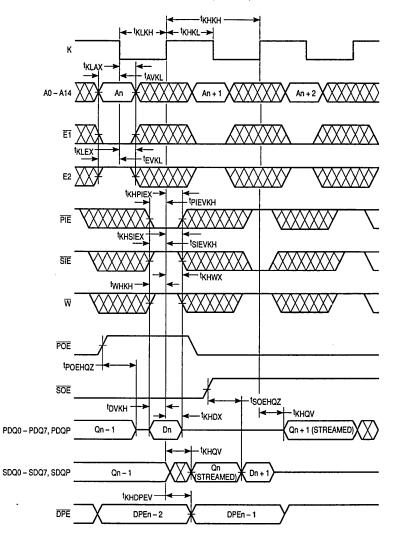
6. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ is less than tKHQX, tPOEHQZ is less than tPOELQX for a given device, and tSOEHQZ is less than tSOELQX for a given device.

NOTE: DPE is valid exactly one clock cycle after the output data is written.

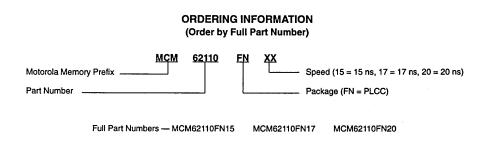
4

STREAM CYCLE (See Note 1)

		MCM62	2110-15	MCM62	110-17	MCM6	2110-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Stream Cycle Time	^t кнкн	15	_	17	-	20		ns	1, 2
Clock Low Pulse Width	^t KLKH	5	-	5	-	5	-	ns	
Clock High Pulse Width	^t KHKL	7	·	7	-	7	-	ns	
Stream Access Time	^t KHQV	-	7	_	7.5	-	8	ns	
Setup Times: A W ET, E2 PIE SIE SDQ0 – SDQ7, SDQP, PDQ0 – PDQ7, PDQP	^t AVKL ^t WHKH ^t EVKL ^t PIEVKH ^t SIEVKH ^t DVKH	2.5		2.5		2.5	-	ns	
Hold Times: A W ET, E2 PIE SIE SDQ0 – SDQ7, SDQP, PDQ0 – PDQ7, PDQP	^t KLAX ^t KHWX ^t KLEX ^t KHPIEX ^t KHSIEX ^t KHDX	2		2		2	_	ns	
Output Enable High to Q High-Z	^t POEHQZ ^t SOEHQZ	0	8	0	9	0	9	ns	3
Output Enable Low to Q Active	^t POELQX ^t SOELQX	0	—	0	·	0		ns	3
Output Enable Low to Output Valid	^t POELQV ^t SOELQV	-	5	- 1 -	6	-	8	ns	


NOTES:

1. A stream cycle is defined as a cycle where data is passed from one data bus to the other data bus.


2. All stream cycle timing is referenced from K.

 Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tPOEHQZ is less than tPOELQX, tSOEHQZ is less than tSOELQX, and tKHQZ is less than tKHQX for a given device.

STREAM CYCLE (See Note)

NOTE: DPE is valid exactly one clock cycle after the output data is valid.

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview Synchronous Line Buffer: 8K X 8 Bit Fast Static Dual Ported Memory With IEEE Standard 1149.1 Test Access Port and Boundary-Scan (JTAG)

The MCM62X308 is a synchronous, dual ported memory organized as 8,192 words of 8 bits each, fabricated using Motorola's double-metal, double-poly, 0.65 μm CMOS process. It is intended for high speed video or other applications which process data on a line-by-line basis. Through the use of a single clock and port control inputs, separate read and write data ports provide simultaneous access to a common memory array. Simultaneous read/write access to the same address location is also allowed, with old data being read followed by a write of the new data. This allows multiple devices to be cascaded with the output of one directly driving the input of another. In this configuration the data stream can be tapped at strategic interconnect points to perform various digital filtering functions.

Since there are no external address inputs, separate internal Read and Write Address Counters are provided as a means of indexing the memory array. These counters are preloaded and then selectively incremented or decremented by asserting Read Enable (RE) and Write Enable(WE) inputs, allowing cycle to cycle control. The address counters can be reloaded back to their initial values through the use of the Read Reload (RR) and Write Reload (WR) control inputs. These inputs initiate the transfer of Address Reload Register values into the Address Counters which index the memory array. When an address counter reaches 0000 (on down count) or FFFF (on up count), it will roll over on the next count. The TDI input is used to write the Reload Registers using special Test Access Port instructions.

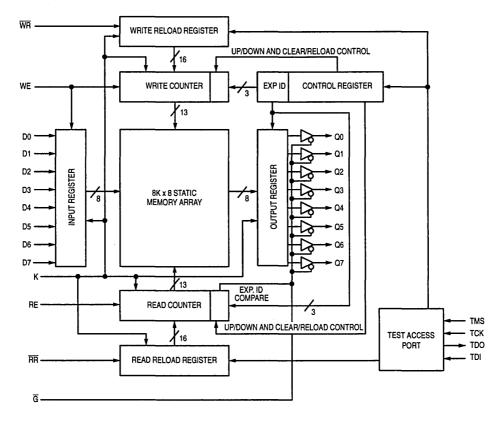
The Address Counters are 16 bits long, and only 13 of the 16 bits are required to index the 8K deep memory array. The remaining three bits are used for depth expansion. These three bits are compared to the lower three bits in the control register and as long as they are equal that port will remain active. If the bits do not compare the port will become inactive, however the counter will continue to count on the rising edge of K as long as the port enable signal (RE or WE) is asserted. The TDI input is used to write the Control Register using special Test Access Port instructions.

The Output Enable Input can be programmed to be either synchronous or asynchronous through the Control Register.

The MCM62X308 is available in a 28 pin SOJ package.

- 8K x 8 Fast Access Static Memory Array
- Single 5 V Power Supply MCM62X308-15-5: ± 5%
 - MCM62X308-17: ± 10%
- Synchronous, Simultaneous Read/Write Memory Access
- 50 MHz Maximum Clock Cycle Time, < 15 ns Read Access
- Single Clock Operation
- Separate Read/Write Address Counters with Reload Control
- Separate Up/Down Counter Control for Both Read and Write
- Programmable Output Enable Control (Synchronous or Asynchronous)
- Cascadable I/O Interface
- IEEE Standard 1149.1 Test Port (JTAG)
- · Expand ID Register for Depth Expansion
- High Board Density SOJ Package
- Fully TTL Compatible

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.


MCM62X308

PIN	ASSIGN	IME	INT
D7 [1•	28	D 07
D6 🛛	2	27] Q6
D5 🛛	3	26] Q5
D4 🛛	4	25] Q4
D3 [5	24] Q3
D2 🛛	6	23] Q2
D1 [7	22] Q1
D 00	8	21	00
v _{DD} C	9	20	D v _{ss}
кC	10	19	ם <u>ה</u>
WE [11	18] RE
WRC	12	17	1 ਜਜ
то О	13	16	О ТОО
тск 🛛	14	15	1 тмз
		15	F ™S

PIN NAMES
K Clock Input
WE Write Enable Input
WR Write Address Reload Input
RE Read Enable Input
RR Read Address Reload Input
G Output Enable Input
D0 – D7 Data Inputs
Q0 – Q7 Data Outputs
TCK Test Clock Input
TMS Test Mode Select
TDI Test Data Input
TDO Test Data Output
V _{DD} ······+ 5 V Power Supply
V _{SS} Ground

BLOCK DIAGRAM

TRUTH TABLE (X = Don't Care)

WE	WR	RE	RR	G	Match EXP ID (Read/Write)	Mode (Read/Write)	Supply Current	Q0 – 7 Status
х	L	х	L	L	Match Read/Match Write	Reload, Read/Reload, Write Disable	lcc	Data Out
н	н	н	н	L	Match Read/Match Write	Count then Read/Write then Count	^I CC	Data Out
L	н	L	н	L	Match Read/Match Write	Read Count Disable/Write Disable	^I CC	Data Out
н	н	н	н	н	Match Read/Match Write	Count, Read/Count, Write	ICC	High-Z
н	н	н	н	х	No Match Read/Match Write	Count, No Read/Count, No Write	ISB	High-Z
н	н	L	н	х	No Match Read/Match Write	Count, No Read/Count, Write	ISB	High-Z

MAXIMUM RATINGS* (Voltages Referenced to V_{SS} = 0)

Rating	Symbol	Value	Unit	
Power Supply Voltage	V _{DD}	- 0.5 to + 7.0	v	
Voltage Relative to VSS	Relative to V _{SS} V _{in} , V _{out} - 0.5 to V _D		v	
Output Current (per I/O)	Current (per I/O) Iout		mA	
Power Dissipation	PD	1.0	w	
Temperature Under Bias	T _{bias}	- 10 to + 85	°C	
Operating Temperature	TA	T _A 0 to + 70		
Storage Temperature	re T _{stg} - 55 to + 125		°C	

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISITICS

(T_A = 0 to 70 °C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter		Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	MCM62X308-15-5	VDD	4.75	5.0	5.25	v
	MCM62X308-17		4.50	5.0	5.50	1
Input High Voltage		VIH	2.2	-	V _{DD} + 0.3	V
Input Low Voltage		VIL	- 0.5*	—	0.8	V

 V_{IL} (min) = - 3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VDD)	likg(i)	_	± 1.0	μA
Output Leakage Current (G = VIH, Vout = 0 to VDD)	likg(O)		± 1.0	μA
AC Supply Current (G = V _{IH} , I _{out} = 0 mA, All Inputs \geq V _{IL} = 0.0 V and V _{IH} \geq 3.0, Cycle Time = 20 ns)	ICCA		150	mA
AC Standby Current (When Expand ID Bits Do Not Match the Read Address Counter, Cycle Time = 20 ns)	ISB		100	mA
Output Low Voltage (I _{OL} = + 4.0 mA)	VOL		0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Vон	2.4		V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	4	6	pF
Output Capacitance (Q0 – Q7, TDO)	Cout	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	3 ns
Input Timing Measurement Reference Level	1.5 V

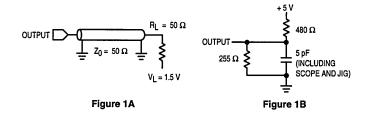
READ/WRITE CYCLE TIMING

	Syn	nbol	MCM62X308-15-5		MCM62X308-17		T	
Parameter	Std	Alt	Min	Max	Min	Max	Unit	Notes
Cycle Time	tкнкн	tcyc	20	-	22	-	ns	
Clock High Time	^t KHKL	tскн	8	—	9	—	ns	
Clock Low Time	^t KLKH	^t CKL	8	-	9	-	ns	1
Clock High to Output Valid	^t KHQV	tCD	5	15	5	17	ns	
Clock High to Output High-Z	tkhqz	tcz	5	15	5	15	ns	1
Output Enable Low to Output Valid	^t GLQV	tOLV	3	10	3	10	ns	2,4
Output Enable High to Output High-Z	tGHQZ	tohz	0	5	0	5	ns	2, 3, 4
Setup Times: RE WE WR G RR Data In	^t REVKH ^t WEVKH ^t WRVKH ^t GVKH ^t RRVKH ^t DVKH	ts	2 3 1	-	2 3 1	 	ns	5 6 5 5
Hold Times: RE WE RR WR G Data In	^t KHREX ^t KHWEX ^t KHRRX ^t KHWRX ^t KHGX ^t KHDX	ţΗ	2	_	2	_	ns	5

NOTES:

1. The outputs High-Z from a clock high edge when the upper three bits of the Read Address Counter do not match the 3 ID Expansion bits.

2. G is a don't care when the three ID expansion bits do not match the upper three bits of the Read Address Counter.


3. tGLOV and tGHOZ only apply when G is programmed as Asynchronous. (See TAP LDCONT instruction).

4. Transition is measured ± 500 mV from steady-state voltage. This parameter is sampled and not 100% tested. At any given voltage and temperature, tGHQZ max is less than tGLQV min for a given device and from device to device.

5. This is a synchronous device. All inputs must meet the specified setup and hold times for ALL rising edges of Clock except for G when it is programmed to be asynchronous.

6. tGVKH and tKHGX only apply when G is programmed as synchronous.

AC TEST LOADS

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

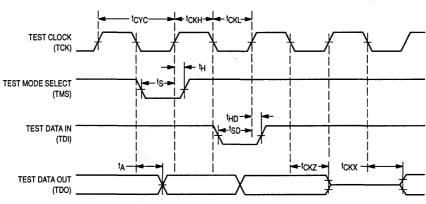
READ/WRITE CYCLE TIMING DIAGRAM

AC OPERATING CONDITIONS AND CHARACTERISTICS FOR THE TEST ACCESS PORT (IEEE 1149.1)

(TA = 0 to + 70°C, Unless Otherwise Noted)

Input Pulse Levels () to 3.0 V
Input Rise/Fall Time	3 ns
Input Timing Measurement Reference Level	1.5 V

TAP CONTROLLER TIMING


		MCM62X308-15-5		MCM62X308-17			
Parameter	Symbol	Min	Max	Min	Мах	Unit	Notes
Cycle Time	tcyc	30	<u> </u>	30	_	ns	· ·
Clock High Time	tскн	12	-	12	-	ns	
Clock Low Time	tCKL	12	-	12	—	ns	
Clock Low to Output Valid	tA	5	9	5	9	ns	
Clock Low to Output High-Z	tскz	0	9	0	9	ns	1
Clock Low to Output Active	tскх	0	9	0	9	ns	2, 3
Setup Time, Test Mode Select	ts	2	—	2	-	ns	
Setup Time, Test Data In	tsp	2	-	2	—	ns	
Hold Time, Test Mode Select	t _H	2	-	2	_	ns	
Hold Time, Test Data In	tHD	2	—	2 ·	-	ns	

NOTES:

1. Test Data Out will High-Z from a clock low edge depending on the current state of the TAP state machine.

2. Test Data Out is active only in the SHIFT-IR and SHIFT-DR state of the TAP state machine.

3. Transition is measured ± 500 mV from steady-state voltage. This parameter is sampled and not 100% tested.

TAP CONTROLLER TIMING DIAGRAM

PIN DESCRIPTIONS

K --- CLOCK INPUT

System clock input pin accepting a minimum 8 ns clock high or clock low pulse at a minimum 20 ns clock cycle. All other synchronous inputs excluding the Test Access Port are captured on the rising edge of this signal.

WE --- WRITE ENABLE INPUT

Write Enable is captured on K leading edge. When asserted this causes the input data D0 - D7 to be written into the RAM address controlled by the Write Address Counter and increments the counter for the next write.

RE — READ ENABLE INPUT

Read Enable is captured on K leading edge. When asserted this causes a RAM read access from address controlled by the Read Address Counter to be inserted in the output register Q0 – Q7 and increments the counter for the next read operation.

WR - WRITE RELOAD INPUT

Write Reload is captured on K leading edge. When asserted this causes the Write Address Counter to be initialized to the contents of the Write Reload Register or "cleared" as specified by Control Register bit 3. See Control Register Bit 4 for "cleared" description.

RR — READ RELOAD INPUT

Read Reload is captured on K leading edge. When asserted this causes the Read Address Counter to be initialized to the contents of the Read Reload Register or "cleared" as specified by Control Register bit 5. See Control Register Bit 6 for "cleared" description.

G --- OUTPUT ENABLE INPUT

When asserted low causes the outputs Q0 - Q7 to become active and when deasserted high causes them to High-Z. This pin can be either synchronous with K leading edge or asynchronous as specified by Control Register Bit 7.

D0 - D7 --- DATA INPUTS

The levels on these pins is captured on the K leading edge. The value captured will be written into the RAM if WE is also asserted and the Expand ID bits match the upper three bits of the Write Address Counter.

Q0 - Q7 - DATA OUTPUTS

Data outputs are available from the Read Output Register < 15 ns from the rising edge of K when RE or \overline{RR} is asserted. Outputs are disabled when the upper three bits of the Read Address Counter do not match the three Expand ID bits of the Control Register. \overline{G} will also control the disabling of the outputs either synchronously or asynchronously. See \overline{G} description.

TEST ACCESS PORT PIN DESCRIPTIONS

The Test Access Port conforms with the IEEE Standard 1149.1. It is also used to load device specific registers used to configure the MCM62X308.

TCK - TEST CLOCK INPUT

Samples and clocks all TAP events. All inputs are captured on TCK rising edge and all outputs propagate from TCK falling edge. It also can take the place of K in device operation in certain test conditions.

TMS - TEST MODE SELECT INPUT

Sampled on the rising edge of TCK. Determines the movement through the TAP state machine (Figure 2). This circuit is designed in such a way that an undriven input will produce a response identical to the application of a logic 1.

TDI — TEST DATA IN INPUT

Sampled on the rising edge of TCK. This is the input side of the serial register placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP state machine and what instruction is active in the TAP instruction register. This circuit is designed in such a way that an undriven input will produce a response identical to the application of a logic 1.

TDO - TEST DATA OUT OUTPUT

Output that is active depending on the state of the TAP state machine. Output changes off the trailing edge of TCK. This is the output side of the serial register placed between TDI and TDO.

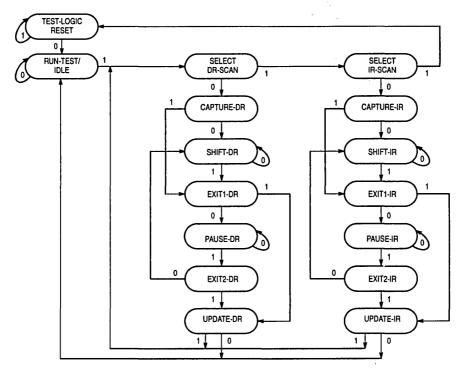


Figure 2. TAP Controller State Diagram

TEST ACCESS PORT DESCRIPTIONS

INSTRUCTION SET

A four pin IEEE Standard 1149.1 Test Port (JTAG) is included on this device. There are two classes of instructions; standard instructions as defined in the IEEE 1149.1 standard and device specific, or public, instructions that are used to control the functionality of the device. When the TAP (Test Access Port) controller is in the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired instruction would be serially loaded through the TDI input (while 0101 will be shifted out of TDO). The TAP instruction set for this device is listed in Table 1.

TAP STANDARD INSTRUCTION SET

NOTE: The descriptions in this section are not intended to be used without the supporting IEEE 1149.1-1993 Standard.

SAMPLE/PRELOAD TAP INSTRUCTION

The SAMPLE/PRELOAD TAP instuction is used to allow scanning of the boudary-scan register without causing interference to the normal operation of the chip logic. The 21 bit boundary scan register contains bits for all device signal and clock pins and associated control signals (Table 2). This register is accessible when the SAMPLE/PRELOAD TAP instruction is loaded into the TAP instruction register in the Shift-IR state. When the TAP controller is then moved to the Shift-DR state, the boundary scan register is placed between TDI and TDO. This scan register can then be used prior to the EXTEST instruction to preload the output pins with desired values so that these pins will drive the desired state when the EXTEST instruction is loaded. See the EXTEST instruction explanation below. It could also be used prior to the INTEST instruction to preload values into the input pins. As data is written into TDI, data also streams out of TDO which can be used to pre-sample the inputs and outputs. SAMPLE/PRELOAD would also be used prior to the CLAMP instruction to preload the values on the output pins that will be driven out when the CLAMP instruction is loaded.

Table 2 shows the boundary-scan bit definitions. The first column defines the bit's ordinal position in the boundary-scan register. The shift register bit nearest TDO (i.e., first to be shifted out) is defined as bit 0; the last bit to be shifted is 21. The second column is the pin name and the third column is the pin type.

EXTEST TAP INSTRUCTION

The EXTEST instruction is intended to be used in conjunction with the SAMPLE/PRELOAD instruction to assist in testing board level connectivity. Normally, the SAMPLE/PRE-LOAD instruction would be used to preload all output pins (i.e., Q0 - Q7). The EXTEST instruction would then be loaded. During EXTEST the boundary-scan register is placed between TDI and TDO in the Shift-DR state of the TAP controller (Table 2). Once the EXTEST instruction is loaded, the TAP controller would then be moved to the Run-Test/Idle state. In this state one cycle of TCK would cause the preloaded data on the ouput pins to be driven while the values on the input pins would be sampled (Q0 – Q7 will be active only if \overline{G} is preloaded with a zero). Note that TCK, not the Clock pin, K, is used as the clock input while K is only sampled during EXTEST. After one clock cycle of TCK, the TAP controller would then be moved to the Shift-DR state where the sampled values would be shifted out of TDO (and new values would be shifted in TDI). These values would normally be compared to expected values to test for board connectivity.

THE INTEST TAP INSTRUCTION

The INTEST instruction is intended to be used to assist in testing internal device functionality. When the INTEST instruction is loaded the boundary-scan register is placed between TDI and TDO in the Shift-DR state of the TAP controller (Table 2). While in the Shift-DR state, all input pins would be preloaded via the boundary scan register to set up the desired mode (i.e., read, write, reload, etc.). The TAP controller would then be moved to the Run-Test/Idle state. In this state one or more cycles of TCK would cause the preloaded data in the boundary-scan register to be driven while the values of Q0 - Q7 would be sampled (Q0 - Q7 will be active only if \overline{G} is preloaded with a zero, however the values of Q0 - Q7 will

Table 1	۱.	TAP	Instruction Set	t
---------	----	-----	-----------------	---

Instruction	Code (Binary)	Description
Standard Instructions:		
BYPASS	1111*	Bypass Instruction
INTEST	0111	Intest Instruction
SAMPLE/PRELOAD	1100	Sample and/or Preload Instruction
EXTEST	0000	Extest Instruction
HIGHZ	1010	High-Z all Output pins while bypass reg. is between TDI and TDO
CLAMP	1001	Clamp Output pins while bypass reg. is between TDI and TDO
Device Specific (Public) Instructions:		
LDRREG	0001	Load Read Address Reload Register
LDWREG	0100	Load Write Address Reload Register
LDBREG	0101	Load both Address Reload Registers (Write then Read)
LDCONT	0010	Load Control Register
RDCOUNT	1000	Read the values of the Read and Write Address Counters
EZWRITE	0011	Serial Write (using Write Address Counter)
EZREAD	0110	Serial Read (using Read Address Counter)
EZREADZ	1110	Serial Read, outputs High-Z

*Default state at power-up.

be sampled regardless of \overline{G}). Only one action will be performed in the Run-Test/Idle state no matter how many clock cycles are input. Note that TCK, not the Clock pin(K), is used as the clock input while K is ignored during INTEST. After one or more clock cycles of TCK, the TAP controller would then be moved to the Shift-DR state where the sampled values would be shifted out of TDO (and new values would be shifted in TDI). These values would normally be compared to expected values to test for device functionality.

Since device functionality can only be verified through sampling the outputs of the device, the most likely use of INTEST would be to first load up the boundary-scan register for a Write Reload and execute the reload in the Run-Test/Idle state. Then a write of the first address would be performed again using the boundary scan register to load up the input registers and executing the write in the Run-Test/Idle state. Lastly, a Read Reload would be executed in the same manner so that the data that had just been written in the first address would be read from the memory array and written into the output registers which would then be shifted out of TDO in the Shift-DR state.

CLAMP TAP INSTRUCTION

The CLAMP instruction is provided to allow the state of the signals driven from the output pins to be determined from the boundary-scan register while the bypass register is selected as the serial path between TDI and TDO. The signals driven from the output pins will not change while the CLAMP instruction is selected. EXTEST could also be used for this purpose but CLAMP shortens the board scan path by inserting only the bypass register between TDI and TDO. To use CLAMP, the SAMPLE/PRELOAD instruction would be used first to scan in the values to be driven on the output pins when the CLAMP instruction is active. Q0 - Q7 will be active only if \overline{G} is preloaded with a zero.

HIGH-Z TAP INSTRUCTION

The High-Z instruction is provided to allow all the outputs to be placed in an inactive drive state (High-Z). During the High-Z instruction the bypass register is connected between TDI and TDO.

BYPASS TAP INSTRUCTION

The Bypass instruction is the default instruction loaded in at power up. This instruction will place a single shift register between TDI and TDO during the Shift-DR state of the TAP controller. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.

Table	2.	Samp	e/Pre	load	Bound	ary S	Scan
		Regis	ter Bit	Def	initions	•	

Bit Number	Pin Name	Pin Type
0	RR	Input
1	RE	Input
2	Ğ	Input
3	Q0	Output
4	Q1	Output
5	Q2	Output
6	Q3	Output
7	Q4	Output
8	Q5	Output
9	Q6	Output
10	Q7	Output
11	D7	Input
12	D6	Input
13	D5	Input
14	D4	Input
15	D3	Input
16	D2	Input
17	D1	Input
18	D0	Input
19	К	Input
20	WE	Input
21	WR	Input

NOTE: K is a sample-only scan bit. It cannot be preloaded for control purposes.

LDCONT INSTRUCTION

The Control Register is an eight bit register that contains the control bits for the Address Registers and Counters and the Output Enable pin. When the LDCONT TAP instruction is loaded into the Instruction Register, the Control Register is placed between TDI and TDO when the TAP controller is in the Shift-DR state (Table 10). The power-up/preload state and function of the Control bits are found in Table 3.

The Expand ID bits provide system depth expansion. These three bits are compared to the upper three bits in the address counters. As long as the three Expand-ID bits match the three upper bits in the address counters the port will stay active. If they do not match, the port will deactivate (i.e., outputs will High-Z or write will be disabled); however, the counters will continue counting as long as RE and WE remain asserted (i.e., high) at the rising edge of Clock.

The Reload Control bits (3 and 5) are used to control either reloading the Read and Write Address Counters from the Reload Registers or clearing the counter when \overline{RR} or \overline{WR} is asserted. If these bits are set low the counters they control will be cleared to all zeroes if the appropriate reload signal (\overline{RR} or \overline{WR}) is asserted and any value in the Reload Register is ignored. This means that if the initial address value desired is address 0000 (or FFFF when counting down) then there is no need to load the Address Reload Registers using the LDRREG, LDWREG, or the LDBREG instructions in the following description. If these bits are set high the counters are loaded up with the values in the Reload Registers when the appropriate reload signal (\overline{RR} or \overline{WR}) is asserted.

The Up/Down count bits (4 and 6) determine the direction in which the respective Address Counter will count; if the bit is set low the counter will count up and if set high the counter will count down. If the counters are set to count down and the Reload control is set to the clear counter mode, then the initial value in the counters will be FFFF. To ensure that the counter will function properly, a reload (using \overline{RR} or \overline{WR}) is required after the count direction is switched.

The Output Enable control bit (7) determines the functionality of the Output Enable pin, \overline{G} . When the bit is low, \overline{G} functions asynchronously. When set high, \overline{G} functions synchronously and must meet the specified setup and hold times to the Clock K.

The Control Register will also be preloaded. When the instruction 0010 (LDCONT) is in the Instruction Register and the controller is in the Capture-DR state the above preload values (all zeroes) will be loaded into the Control Register. All zeroes will also be loaded in the Control Register at power-up.

While new values are shifted in from TDI in the Shift-DR state, all zeroes will be output on TDO for the first eight bits.

LDRREG, LDWREG, AND LDBREG TAP INSTRUCTIONS

There are three instructions that may be used to load the 16 bit address reload registers: LDRREG (Load Read Address Reload Register), LDWREG (Load Write Address Reload Register), and LDBREG (Load both Address Reload Registers, Write followed by Read). Figure 3 illustrates how the Reload registers are placed between TDI and TDO. Tables 7, 8, and 9 describe each register. These instructions would be used only if the user needed to load the Reload Registers with a non-zero value. If the Address Counters are to always be reset to zeroes (or all 1s if counting down) then only the Control Register need be loaded to affect a reset of the counters.

The TAP controller has been set up to make it easier for the user to serially load the Reload Registers. When the TAP controller is clocked into the Capture-IR state (see state diagram) the instruction for loading both registers (0101) will be preloaded into the shift register. This allows the user to go directly to the Update-IR instead of having to serially shift this instruction in through the TDI port. Once the load instruction has been entered the user can then clock over to the Capture-DR state where the value for the reload register(s) is serially loaded (see Figure 3).

RDCOUNT TAP INSTRUCTION

The RDCOUNT scan register is accessible after the RDCOUNT instruction is loaded into the TAP instruction register in the Shift-IR state and the TAP controller is then moved to the Shift-DR state. This scan register can then be used to shift out the values of the Read and Write Address Counters The RDCOUNT scan-register is a sample only register and can not be used to load values into the counters. See Table 4.

EZWRITE TAP INSTRUCTION AND SCAN PATH

The EZWRITE TAP instruction is provided to allow the user to more easily and quickly write a large number of bytes to the device serially through the TDI port. EZWRITE shortens the scan path for a serial write to just the 8 bit Data in register (see Table 5).

The most likely use of this instruction is as follows: the user would first load the Control Register using the LDCONT instruction. This would initialize the Expand ID bits and the Write Counter. The Write Reload Register will need to be

Bit No.	Power Up and Preload State	Function
0-2	000	Expand ID bits for comparison with the upper 3 bits of the Read and Write Address counters
3	0	Reload Control of Write Address Counter (0 = clear counter, 1 = reload)
4	0	Up/Down count bit for Write Address Counter (0 = count up, 1 = count down)
5	0	Reload Control of Read Address Counter (0 = clear counter, 1 = reload)
6	0	Up/Down count bit for Read Address Counter (0 = count up, 1 = count down)
7	0	G Control (0 = asynchronous, 1 = synchronous)

Table 3. Control Register Bit Description

loaded using the LDWREG instruction if a non-zero starting address is desired. If 0000 was the first desired count, setting up the Control Register to "clear" the Write counter is all that is required (Bit 3 set to zero). A reload cycle using SAMPLE/ PRELOAD (WR preloaded low) and INTEST would also have to be run in order to initialize the counter. While still in the INTEST instruction at the Shift-DR state, the proper values of WE and WR would then need to be preloaded for proper operation of EZWRITE (WE high and WR high). After all this initializing is done, the EZWRITE instruction would be loaded into the TAP instruction register in the Shift-IR state. When the TAP controller is then moved to the Shift-DR state the EZWRI-TE scan path would be inserted between TDI and TDO. This scan path is composed of the 8 bit Data In register (see Table 5). The 8 bits to be written into the first address would be scanned in (sampled values from the Data In pins would be streaming out of TDO at the same time), then the TAP controller would be moved to the Run-Test/Idle state where one cycle of TCK would write the 8 bits into the address and increment the counter. The TAP controller would then move back to the Shift-DR state so that the next byte to be written can be serially loaded and the process would be repeated until all desired bytes were written. During EZWRITE the Q0 - Q7 pins will be in a High-Z state.

EZREAD TAP INSTRUCTION AND SCAN PATH

The EZREAD TAP instruction is provided to allow the user to more easily and quickly read a large number of bytes from the device serially through the TDO port. EZREAD shortens the scan path for a serial read to just the 8 bit Data Out register (see Table 6).

To serially read the device the following would occur: initialization would be much like EZWRITE except that the Read Address Counter should be reladed with the count BEFORE the first one desired. So, if the first read needed to be address 0000 (and the counter is counting up), the Read Reload Register would have to be preloaded with FFFF using the LDRREG instruction. Again, SAMPLE/PRELOAD and INTEST instructions would need to be run to perform a reload cycle followed by another Boundary-scan that set RE and RR high in anticipation of the EZREAD instruction. Also, WE should be set low to prevent any unintended writes while reading. After this initializing, the EZREAD instruction would be loaded into the TAP instruction register in the Shift-IR state. The TAP controller would move to the Run-Test/Idle state where one cycle of TCK would increment the counter, read the 8 bits from that address, and load them into the Data Output register. The TAP controller would then move to the Shift-DR state and the EZ-READ scan path would be inserted between TDI and TDO. This scan path is composed of the 8 bit Data Out register (see Table 6). In the Shift-DR state the Data Out register would be serially scanned out of the TDO port. This sequence through the TAP state machine would then be repeated until all desired bytes were read. EZREAD keeps the Q0 - Q7 pins active (if G is preloaded low) to allow parallel reading of the data out if desired.

EZREADZ TAP INSTRUCTION AND SCAN PATH

The EZREADZ TAP instruction behaves exactly like the EZREAD instruction except that the all outputs are held in a High-Z mode once the instruction is loaded.

DISABLING THE TEST ACCESS PORT AND BOUNDARY SCAN

It is possible to use this device without utilizing the four pins used for the IEEE 1149.1 Test Access Port. To circuit disable the TAP controller without interfering with normal operation of the device TCK must be tied to VSS to preclude midlevel inputs. Although TDI and TMS is designed in such a way that an undriven input will produce a response identical to the application of a logic 1, it is still advisable to the these inputs to VDD through a 1 k resistor. TDO should remain unconnected.

With the four Test Access Port pins disabled, the device can only be used in its default power-up state. At power up, the device is configured to count up starting at address 0, the reload pins (\overline{RR} and \overline{WR}) will clear the counters, the Expand ID bits are set to 000, and the Output Enable pin (\overline{G}) is configured as an asynchronous input.

Bit Number	Bit/Pin Name*	Bit/Pin Type
0	RAC0	Input
1	RAC1	Input
2	RAC2	Input
3	RAC3	Input
4	RAC4	Input
5	RAC5	Input
6	RAC6	Input
7	RAC7	Input
8	RAC8	Input
9	RAC9	Input
10	RAC10	Input
11	RAC11	Input
12	RAC12	Input
13	RAC13#	Input
14	RAC14#	Input
15	RAC15#	Input
16	WAC0	Input
17	WAC1	Input
18	WAC2	Input
19	WAC3	Input
20	WAC4	Input
21	WAC5	Input
22	WAC6	Input
23	WAC7	Input
24	WAC8	Input
25	WAC9	Input
26	WAC10	Input
27	WAC11	Input
28	WAC12	Input
29	WAC13#	Input
30	WAC14#	Input
31	WAC15#	Input

Table 4. RDCOUNT Scan Register Bit Definitions

* RAC = Read Address Counter WAC = Write Address Counter

- # These register bits are compared to the three Expand ID bits in the Control Register. (EX0 – 2). Only when there is a match is the read or write allowed to occur.
- NOTE: Bit 0 closest to TDO.

Table 5. EZWRITE Scan Path Bit Definitions

Bit Number	Pin Name	Pin Type
0	D7	Input
1	D6	Input
2	D5	Input
3	D4	Input
4	D3	Input
5	D2	Input
6	D1	Input
7	D0	Input

Table 6. EZREAD and EZREADZ Scan Path Bit Definitions

Bit Number	Bit/Pin Name	Bit/Pin Type
0	QO	Output
1	Q1	Output
2	Q2	Output
3	Q3	Output
4	Q4	Output
5	Q5	Output
6	Q6	Output
7	Q7	Output

Table 7. LDRREG Scan Path Bit Definitions

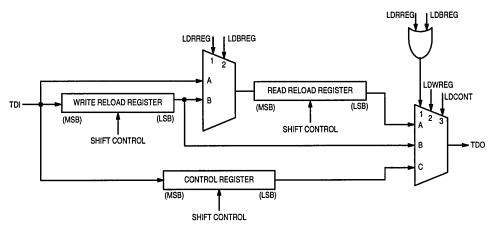
Bit Number	Bit/Pin Name*	Bit/Pin Type
0	RRR0	Register bit
1	RRR1	Register bit
2	RRR2	Register bit
3	RRR3	Register bit
4	RRR4	Register bit
5	RRR5	Register bit
6	RRR6	Register bit
7	RRR7	Register bit
8	RRR8	Register bit
9	RRR9	Register bit
10	RRR10	Register bit
- 11	RRR11	Register bit
• 12	RRR12	Register bit
13	RRR13	Register bit
14	RRR14	Register bit
15	RRR15	Register bit

* RRR = Read Reload Register

Bit	EG Scan Path Bit/Pin	Bit/Pin
Number	Name*	Туре
0	RRR0	Register bit
1	RRR1	Register bit
2	RRR2	Register bit
3	RRR3	Register bit
4	RRR4	Register bit
5	RRR5	Register bit
6	RRR6	Register bit
7	RRR7	Register bit
8	RRR8	Register bit
9	RRR9	Register bit
10	RRR10	Register bit
11	RRR11	Register bit
12	RRR12	Register bit
13	RRR13	Register bit
14	RRR14	Register bit
15	RRR15	Register bit
16	WRR0	Register bit
17	WRR1	Register bit
18	WRR2	Register bit
19	WRR3	Register bit
20	WRR4	Register bit
21	WRR5	Register bit
22	WRR6	Register bit
23	WRR7	Register bit
24	WRR8	Register bit
25	WRR9	Register bit
26	WRR10	Register bit
27	WRR11	Register bit
28	WRR12	Register bit
29	WRR13	Register bit
30	WRR14	Register bit
31	WRR15	Register bit

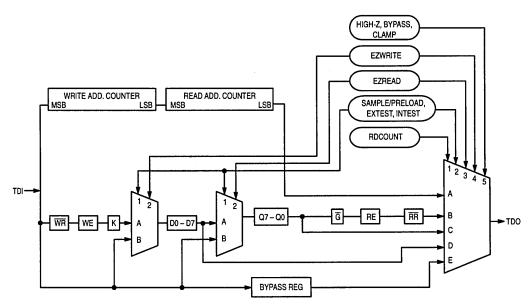
* RRR = Read Reload Register WRR = Write Reload Register NOTE: Bit 0 closest to TDO.

Table 9. LDWREG Scan Path Bit Definitions


Bit Number	Bit/Pin Name*	Bit/Pin Type
0	WRR0	Register bit
1	WRR1	Register bit
2	WRR2	Register bit
3	WRR3	Register bit
4	WRR4	Register bit
5	WRR5	Register bit
6	WRR6	Register bit
7	WRR7	Register bit
8	WRR8	Register bit
9	WRR9	Register bit
10	WRR10	Register bit
11	WRR11	Register bit
12	WRR12	Register bit
13	WRR13	Register bit
14	WRR14	Register bit
15	WRR15	Register bit

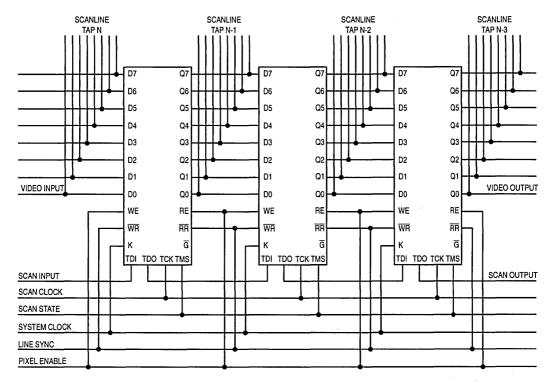
* WRR = Write Reload Register

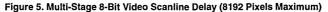
Table 10. LDCONT Scan Path Bit Definitions


able to. Eboowi Scall Facilibit Delinition		
Bit Number	Bit/Pin Name	Bit/Pin Type
0	EX0	Register bit
1	EX1	Register bit
2	EX2	Register bit
3	WCC	Register bit
4	UDW	Register bit
5	RCC	Register bit
6	UDR	Register bit
7	G CONT	Register bit

4

THE LEFT MOST CONTROL SIGNAL ENTERING THE MUX FROM THE TOP(1) SELECTS THE UPPER MOST INPUT ON THE LEFT SIDE OF THE MUX(A). THE RIGHT MOST CONTROL SIGNAL SELECTS THE BOTTOM MOST INPUT.


Figure 3. Register Load Paths



THE LEFT MOST CONTROL SIGNAL ENTERING THE MUX FROM THE TOP(1) SELECTS THE UPPER MOST INPUT ON THE LEFTSIDE OF THE MUX(A). THE RIGHT MOST CONTROL SIGNAL SELECTS THE BOTTOM MOST INPUT.

Figure 4. Boundary Scan Paths

APPLICATIONS

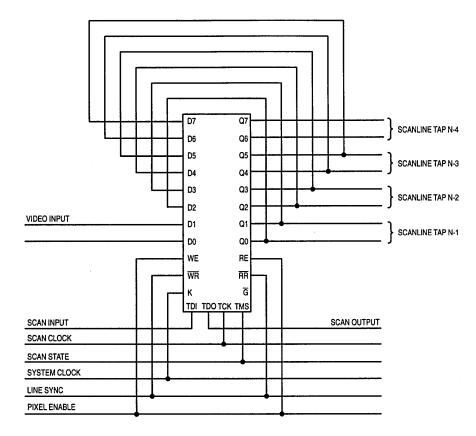


Figure 6. Multi-Stage 2-Bit Video Scanline Delay (8192 Pixels Maximum)

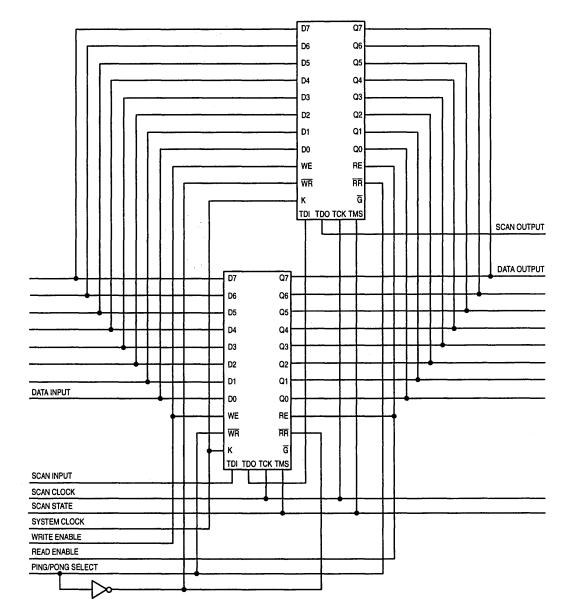




Figure 7. Multi-Stage 1-Bit Video Scanline Delay (8192 Pixels Maximum)

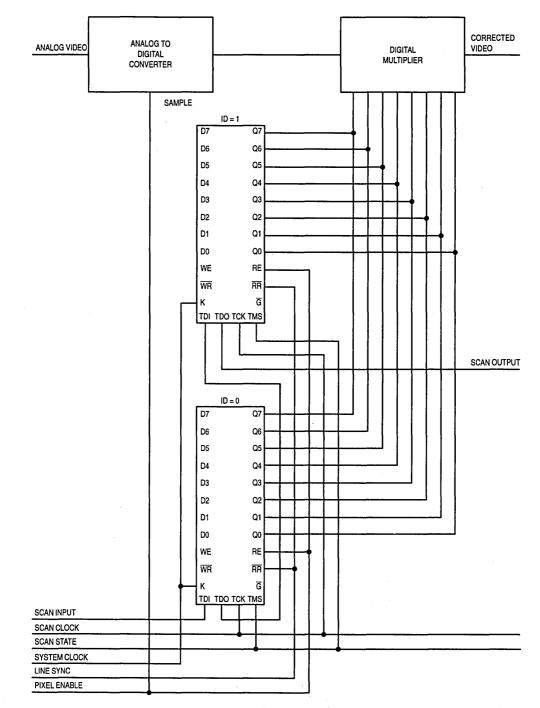


Figure 9. CCD Gain Correction, Buffer Written From Scan Input (16384 Pixels Maximum)

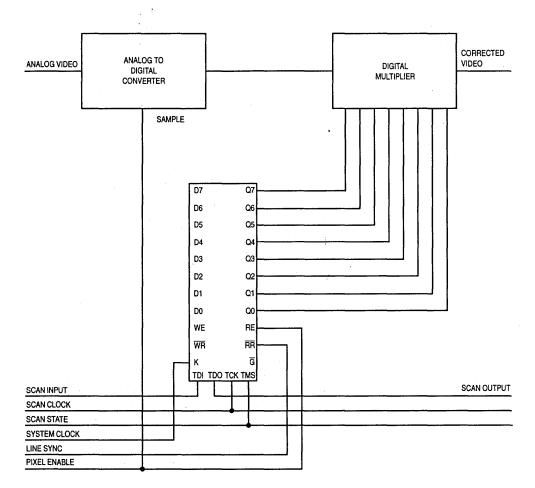
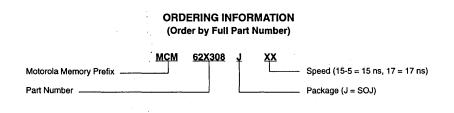



Figure 10. CCD Gain Correction, Buffer Written From Scan Input (8192 Pixels Maximum)

Full Part Numbers --- MCM62X308J15-5 MCM62X308J17

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

Synchronous Line Buffer: 8K X 8 Bit Fast Static Dual Ported Memory With IEEE Standard 1149.1 Test Access Port and Boundary-Scan (JTAG)

The MCM62Y308 is a synchronous, dual ported memory organized as 8,192 words of 8 bits each, fabricated using Motorola's double-metal, double-poly, $0.65 \,\mu m$ CMOS process. It is intended for high speed video or other applications which process data on a line-by-line basis. Through the use of a single clock and port control inputs, separate read and write data ports provide simultaneous access to a common memory array. Simultaneous read/write access to the same address location is also allowed, with old data being read followed by a write of the new data. This allows multiple devices to be cascaded with the output of one directly driving the input of another. In this configuration the data stream can be tapped at strategic interconnect points to perform various digital filtering functions.

Since there are no external address inputs, separate internal Read and Write Address Counters are provided as a means of indexing the memory array. These counters are preloaded and then selectively incremented or decremented by asserting Read Enable (RE) and Write Enable(WE) inputs, allowing cycle to cycle control. The address counters can be reloaded back to their initial values through the use of the Read Reload (RR) and Write Reload (WR) control inputs. These inputs initiate the transfer of Address Reload Register values into the Address Counters which index the memory array. When an address counter reaches 0000 (on down count) or FFFF (on up count), it will roll over on the next count. The roll over condition will cause the Roll-Over Flag (WRF or RRF) to assert high. The Roll-Over Flag outputs are cleared when their associated Roll-Over Reset pin is asserted low. The TDI input is used to write the Reload Registers using special Test Access Port instructions.

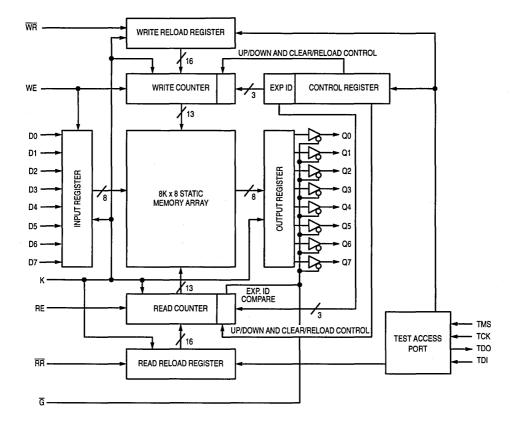
The Address Counters are 16 bits long, and only 13 of the 16 bits are required to index the 8K deep memory array. The remaining three bits are used for depth expansion. These three bits are compared to the lower three bits in the control register and as long as they are equal that port will remain active. If the bits do not compare the port will become inactive, however the counter will continue to count on the rising edge of K as long as the port enable signal (RE or WE) is asserted. The TDI input is used to write the Control Register using special Test Access Port instructions.

The Output Enable Input can be programmed to be either synchronous or asynchronous through the Control Register.

The MCM62Y308 is available in a 32 pin SOJ package.

- 8K x 8 Fast Access Static Memory Array
- Single 5 V Power Supply MCM62Y308-15-5: ± 5% MCM62Y308-17: ± 10%
- Synchronous, Simultaneous Read/Write Memory Access
- 50 MHz Maximum Clock Cycle Time, < 15 ns Read Access
- Single Clock Operation
- Separate Read/Write Address Counters with Reload Control
- · Separate Up/Down Counter Control for Both Read and Write
- Separate Roll-Over Flag Outputs for Read and Write
- Programmable Output Enable Control (Synchronous or Asynchronous)
- Cascadable I/O Interface
- IEEE Standard 1149.1 Test Port (JTAG)
- Expand ID Register for Depth Expansion
- High Board Density SOJ Package

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.


MCM62Y308

PIN ASSIGNMENT						
WRR C	1•	32	WRF			
D7 (2	31] Q7			
D6 [3	30] Q6			
D5 [4	29	D Q5			
D4 🕻	5	28	<u>1</u> Q4			
D3 [6	27	D Q3			
D2 [7	26] Q2			
D1 [8	25	D Q1			
D0 [9	24	<u>]</u> 00			
V _{DD} C	10	23	₽ v _{ss}			
КĊ	11	22	២ ច			
WE (12	21	D RE			
WR (13	20				
1 ומד	14	19	р тро			
тск [15	18	р тмз			
RRR	16	17] RRF			

PIN NAMES					
K Clock Input					
WE Write Enable Input					
WR Write Address Reload Input					
RERead Enable Input					
RR Read Address Reload Input					
RRF Read Roll-Over Flag Output					
WRF Write Roll-Over Flag Output					
RRR Read Roll-Over Reset Input					
WRR Write Roll-Over Reset Input					
G Output Enable Input					
D0 - D7 Data Inputs					
Q0 – Q7 Data Outputs					
TCK Test Clock Input					
TMS Test Mode Select					
TDI Test Data Input					
TDO Test Data Output					
V _{DD} + 5 V Power Supply					
V _{SS} Ground					

BLOCK DIAGRAM

TRUTH TABLE (X = Don't Care)

WE	WR	RE	RR	G	Match EXP ID (Read/Write)	Mode (Read/Write)	Supply Current	Q0 – 7 Status
Х	L	х	L	L	Match Read/Match Write	Reload, Read/Reload, Write Disable	l Icc	Data Out
Н	н	н	н	L	Match Read/Match Write	Count then Read/Write then Count	lcc	Data Out
L	° H	L	н	L	Match Read/Match Write	Read Count Disable/Write Disable	lcc	Data Out
Н	н	н	н	н	Match Read/Match Write	Count, Read/Count, Write	¹ CC	High-Z
н	н	н	н	X	No Match Read/Match Write	Count, No Read/Count, No Write	ISB	High-Z
н	н	L	н	х	No Match Read/Match Write	Count, No Read/Count, Write	ISB	High-Z

MAXIMUM RATINGS* (Voltages Referenced to V_{SS} = 0)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{DD}	- 0.5 to + 7.0	v
Voltage Relative to VSS	Vin, Vout	- 0.5 to V _{DD} + 0.5	v
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are

 exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISITICS

(TA = 0 to 70 °C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter		Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	MCM62Y308-15-5	V _{DD}	4.75	5.0	5.25	V
	MCM62Y308-17		4.50	5.0	5.50	1
Input High Voltage		VIH	2.2		V _{DD} + 0.3	V
Input Low Voltage		VIL	- 0.5*	-	0.8	V

* V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Мах	Unit
Input Leakage Current (All Inputs, Vin = 0 to VDD)	likg(i)		± 1.0	μA
Output Leakage Current ($\overline{G} = V_{IH}, V_{out} = 0$ to V_{DD})	likg(O)	_	± 1.0	μΑ
AC Supply Current (\overline{G} = V _{IH} , I _{OUt} = 0 mA, All Inputs \geq V _{IL} = 0.0 V and V _{IH} \geq 3.0, Cycle Time = 20 ns)	ICCA	_	150	mA
AC Standby Current (When Expand ID Bits Do Not Match the Read Address Counter, Cycle Time = 20 ns)	ISB	_	100	mA
Output Low Voltage (IOL = + 4.0 mA)	VOL		0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4	—	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	4	6	pF
Output Capacitance (Q0 – Q7, TDO, WRF, RRF)	Cout	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 3 ns

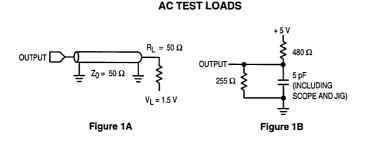
 Input Timing Measurement Reference Level
 1.5 V

READ/WRITE CYCLE TIMING

		Sym	lod	MCM62Y	308-15-5	MCM62	Y308-17		
Parameter		Std	Alt	Min	Max	Min	Max	Unit	Notes
Cycle Time		^t кнкн	tCYC	20		22	_	ns	
Clock High Time		^t KHKL	^t СКН	8	—	9		ns	1
Clock Low Time		^t KLKH	^t CKL	8		9	—	ns	
Clock High to Output Valid		^t KHQV	tCD	5	15	5	17	ns	
Clock High to Roll-Over Flag Valid		^t KHRFV		5	11	5	11	ns	
Clock High to Output High-Z		^t KHQZ	tcz	5	15	5	15	ns	1
Output Enable Low to Output Valid		tGLQV	tolv	3	10	3	10	ns	2, 4
Output Enable High to Output High-Z		tGHQZ	^t OHZ	0	5	0	5	ns	2, 3, 4
Setup Times:	RE WE WR RRR WRR G RR Data In	^t REVKH ^t WEVKH ^t RRRVKH ^t RRRVKH ^t WRRVKH ^t GVKH ^t RRVKH ^t RRVKH	ts	2 3 1		2 3 1	_	ns	5 6 5
Hold Times:	RE WE RR WR RRR G Data In	^t KHREX ^t KHWEX ^t KHRRX ^t KHWRX ^t KHRRX ^t KHWRRX ^t KHQX ^t KHDX	ţΗ	2	_	2		ns	5

NOTES:

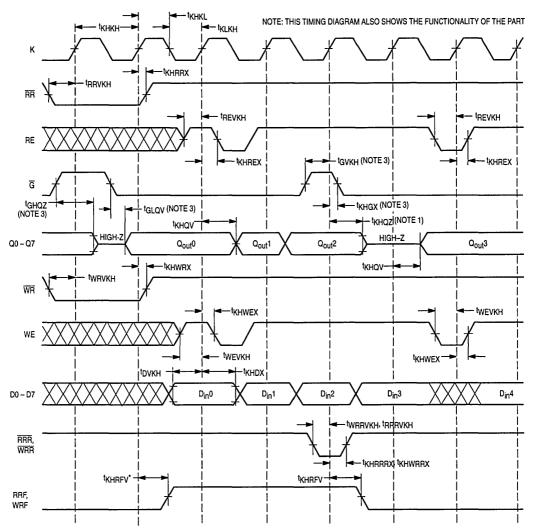
1. The outputs High-Z from a clock high edge when the upper three bits of the Read Address Counter do not match the 3 ID Expansion bits.


2. G is a don't care when the three ID expansion bits do not match the upper three bits of the Read Address Counter.

3. tGLQV and tGHQZ only apply when \overline{G} is programmed as Asynchronous. (See TAP LDCONT instruction.)

4. Transition is measured ± 500 mV from steady-state voltage. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{GHQZ} max is less than t_{GLQV} min for a given device and from device to device.

5. This is a synchronous device. All inputs must meet the specified setup and hold times for ALL rising edges of Clock except for G when it is programmed to be asynchronous.


6. tGVKH and tKHGX only apply when \overline{G} is programmed as synchronous.

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ/WRITE CYCLE TIMING DIAGRAM

*Roll-Over Outputs assert high when counters reach their initial value. This timing diagram shows the relationship between the roll-over output and reset pin only.

AC OPERATING CONDITIONS AND CHARACTERISTICS FOR THE TEST ACCESS PORT (IEEE 1149.1)

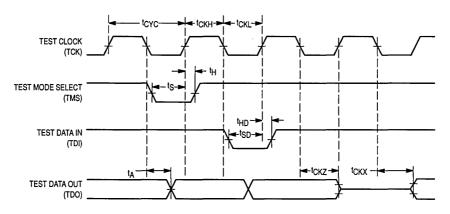
 $(T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	3 ns
Input Timing Measurement Reference Level	1.5 V

 Output Timing Reference Level
 1.5 V

 Output Load
 50 Ohm Transmission Line

TAP CONTROLLER TIMING


		MCM62	/308-15-5	MCM62	Y308-17		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Cycle Time	tCYC	30	- 1	30	-	ns	<u> </u>
Clock High Time	tскн	12	—	12	-	ns	1
Clock Low Time	tCKL	12	-	12	_	ns	
Clock Low to Output Valid	tA	5	9	5	9	ns	1
Clock Low to Output High-Z	tCKZ	0	9	0	9	ns	1
Clock Low to Output Active	tскх	0	9	0	9	ns	2, 3
Setup Time, Test Mode Select	ts	2	_	2		ns	
Setup Time, Test Data In	tSD	2	_	2	-	ns	
Hold Time, Test Mode Select	tH	2	-	2	-	ns	1
Hold Time, Test Data In	tHD	2		2	1 _	ns	1

TAP CONTROLLER TIMING DIAGRAM

1. Test Data Out will High-Z from a clock low edge depending on the current state of the TAP state machine.

3. Transition is measured ± 500 mV from steady-state voltage. This parameter is sampled and not 100% tested.

2. Test Data Out is active only in the SHIFT-IR and SHIFT-DR state of the TAP state machine.

PIN DESCRIPTIONS

K - CLOCK INPUT

System clock input pin accepting a minimum 8 ns clock high or clock low pulse at a minimum 20 ns clock cycle. All other synchronous inputs excluding the Test Access Port are captured on the rising edge of this signal.

WE - WRITE ENABLE INPUT

Write Enable is captured on K leading edge. When asserted this causes the input data D0 – D7 to be written into the RAM address controlled by the Write Address Counter and increments the counter for the next write.

RE — READ ENABLE INPUT

Read Enable is captured on K leading edge. When asserted this causes a RAM read access from address controlled by the Read Address Counter to be inserted in the output register Q0– Q7 and increments the counter for the next read operation.

WR — WRITE RELOAD INPUT

Write Reload is captured on K leading edge. When asserted this causes the Write Address Counter to be initialized to the contents of the Write Reload Register or "cleared" as specifiedby Control Register bit 3. See Control Register Bit 4 for "cleared" description.

RR — READ RELOAD INPUT

Read Reload is captured on K leading edge. When asserted this causes the Read Address Counter to be initialized to the contents of the Read Reload Register or "cleared" as specified by Control Register bit 5. See Control Register Bit 6 for "cleared" description.

G — OUTPUT ENABLE INPUT

When asserted low causes the outputs Q0 - Q7 to become active and when deasserted high causes them to High-Z. This pin can be either synchronous with K leading edge or asynchronous as specified by Control Register bit 7.

D0 - D7 --- DATA INPUTS

The levels on these pins is captured on the K leading edge. The value captured will be written into the RAM if WE is also asserted and the Expand ID bits match the upper three bits of the Write Address Counter.

Q0 - Q7 - DATA OUTPUTS

Data outputs are available from the Read Output Register < 15 ns from the rising edge of K when RE or RR is asserted.

Outputs are disabled when the upper three bits of the Read Address Counter do not match the three Expand ID bits of the Control Register. \overline{G} will also control the disabling of the outputs either synchronously or asynchronously. See \overline{G} description.

RRF, WRF — ROLL-OVER FLAG OUTPUTS

These signals are asserted high on the clock cycle where the Address Counters (Write Address Counter for WRF and Read Address Counter for RRF) roll-over to 0000 (or FFFF when counting down). They will remain asserted until cleared with the Roll-Over Reset Inputs (RRR and WRR).

RRR, WRR - ROLL-OVER RESET INPUTS

The level on these pins is captured on the K leading edge. When asserted low, each will reset their associated Roll-Over Flag output.

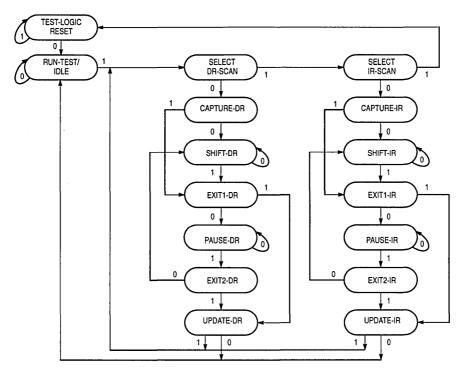
TEST ACCESS PORT PIN DESCRIPTIONS

The Test Access Port conforms with the IEEE Standard 1149.1. It is also used to load device specific registers used to configure the MCM62Y308.

TCK — TEST CLOCK INPUT

Samples and clocks all TAP events. All inputs are captured on TCK rising edge and all outputs propagate from TCK falling edge. It also can take the place of K in device operation in certain test conditions.

TMS --- TEST MODE SELECT INPUT


Sampled on the rising edge of TCK. Determines the movement through the TAP state machine (Figure 2). This circuit is designed in such a way that an undriven input will produce a response identical to the application of a logic 1.

TDI — TEST DATA IN INPUT

Sampled on the rising edge of TCK. This is the input side of the serial register placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP state machine and what instruction is active in the TAP instruction register. This circuit is designed in such a way that an undriven input will produce a response identical to the application of a logic 1.

TDO — TEST DATA OUT OUTPUT

Output that is active depending on the state of the TAP state machine. Output changes off the trailing edge of TCK. This is the output side of the serial register placed between TDI and TDO.

NOTE: The value adjacent to each state transition represents the signal present at TMS at the rising edge of TCK.

Figure 2. TAP Controller State Diagram

INSTRUCTION SET

A four pin IEEE Standard 1149.1 Test Port (JTAG) is included on this device. There are two classes of instructions; standard instructions as defined in the IEEE 1149.1 standard and device specific, or public, instructions that are used to control the functionality of the device. When the TAP (Test Access Port) controller is in the Shift-IR state the Instruction Register is placed between TDI and TDO, least significant bit closest to TDO. In this state the desired instruction would be serially loaded through the TDI input (while the previous instruction would be shifted out of TDO). The TAP instruction set for this device is listed in Table 1.

TAP STANDARD INSTRUCTION SET

NOTE: The descriptions in this section are not intended to be used without the supporting IEEE 1149.1-1993 Standard.

SAMPLE/PRELOAD TAP INSTRUCTION

The SAMPLE/PRELOAD TAP instuction is used to allow scanning of the boudary-scan register without causing interference to the normal operation of the chip logic. The 26 bit boundary scan register contains bits for all device signal and clock pins and associated control signals (Table 2). This register is accessible when the SAMPLE/PRELOAD TAP instruction is loaded into the TAP instruction register. When the TAP controller is then moved to the Shift-DR state, the boundary scan register is placed between TDI and TDO. This scan register can then be used prior to the EXTEST instruction to preload the output pins with desired values so that these pins will drive the desired state when the EXTEST instruction is loaded. It would be used prior to the INTEST instruction to preload values into the input pins. As data is written into TDI, data also streams out of TDO which can be used to pre-sample the inputs and outputs. SAMPLE/PRELOAD would also be used prior to the CLAMP instruction to preload the values on the output pins that will be driven out when the CLAMP instruction is loaded.

Table 2 shows the boundary-scan bit definitions. The first column defines the bit's ordinal position in the boundary-scan register. The shift register bit nearest TDO (i.e., first to be shifted out) is defined as bit 0; the last bit to be shifted is 25. The second column is the pin name and the third column is the pin type.

EXTEST TAP INSTRUCTION

The EXTEST instruction is intended to be used in conjunction with the SAMPLE/PRELOAD instruction to assist in testing board level connectivity. Normally, the SAMPLE/PRE-LOAD instruction would be used to preload all output pins (i.e., Q0-Q7, RRF, and WRF). The EXTEST instruction would then be loaded. During EXTEST the boundary-scan register is placed between TDI and TDO in the Shift-DR state of the TAP controller. Once the EXTEST instruction is loaded, the TAP controller would then be moved to the Run-Test/Idle state. In this state one cycle of TCK would cause the preloaded data on the ouput pins to be driven while the values on the input pins would be sampled (Q0 – Q7 will be active only if \overline{G} is preloaded with a zero). Note that TCK, not the Clock pin, K, is used as the clock input while K is only sampled during EXTEST. After one clock cycle of TCK, the TAP controller would then be moved to the Shift-DR state where the sampled values would be shifted out of TDO (and new values would be shifted in TDI). These values would normally be compared to expected values to test for board connectivity.

THE INTEST TAP INSTRUCTION

The INTEST instruction is intended to be used to assist in testing internal device functionality. When the INTEST instruction is loaded the boundary-scan register is placed between TDI and TDO in the Shift-DR state of the TAP controller (Table 2). While in the Shift-DR state, all input pins would be preloaded via the boundary scan register to set up the desired mode (i.e., read, write, reload, etc.). The TAP controller would then be moved to the Run-Test/Idle state. In this state one or more cycles of TCK would cause the preloaded data in the boundary-scan register to be driven while the values of QO - QT would be sampled (QO - QT will be active only if \overline{G} is preloaded with a zero, however the values of QO - QT will

Instruction	Code (Binary)	Description
Standard Instructions:		
BYPASS	1111*	Bypass Instruction
INTEST	0111	Intest Instruction
SAMPLE/PRELOAD	1100	Sample and/or Preload Instruction
EXTEST	0000	Extest Instruction
HIGHZ	1010	High-Z all Output pins while bypass reg. is between TDI and TDO
CLAMP	1001	Clamp Output pins while bypass reg. is between TDI and TDO
Device Specific (Public) Instructions:		
LDRREG	0001	Load Read Address Reload Register
LDWREG	0100	Load Write Address Reload Register
LDBREG	0101	Load both Address Reload Registers (Write then Read)
LDCONT	0010	Load Control Register
RDCOUNT	1000	Read the values of the Read and Write Address Counters
EZWRITE	0011	Serial Write (using Write Address Counter)
EZREAD	0110	Serial Read (using Read Address Counter)
EZREADZ	1110	Serial Read, outputs High-Z

Table 1. TAP Instruction Set

*Default state at power-up.

be sampled regardless of \overline{G}). Only one action will be performed in the Run-Test/Idle state no matter how many clock cycles are input. Note that TCK, not the Clock pin(K), is used as the clock input while K is ignored during INTEST. After one or more clock cycles of TCK, the TAP controller would then be moved to the Shift-DR state where the sampled values would be shifted out of TDO (and new values would be shifted in TDI). These values would normally be compared to expected values to test for device functionality.

THE INTEST TAP INSTRUCTION

The INTEST instruction is intended to be used to assist in testing internal device functionality. When the INTEST instruction is loaded the boundary-scan register is placed between TDI and TDO in the Shift-DR state of the TAP controller (Table 2). While in the Shift-DR state, all input pins would be preloaded via the boundary scan register to set up the desired mode (i.e., read, write, reload, etc.). The TAP controller would then be moved to the Run-Test/Idle state. In this state one or more cycles of TCK would cause the preloaded data in the boundary-scan register to be driven while the values of Q0 – Q7 would be sampled (Q0 – Q7 will be active only if \overline{G} is preloaded with a zero, however the values of Q0 - Q7 will be sampled regardless of \overline{G}). Only one action will be performed in the Run-Test/Idle state no matter how many clock cycles are input. Note that TCK, not the Clock pin(K), is used as the clock input while K is ignored during INTEST. After one or more clock cycles of TCK, the TAP controller would then be moved to the Shift-DR state where the sampled values would be shifted out of TDO (and new values would be shifted in TDI). These values would normally be compared to expected values to test for device functionality.

Since device functionality can only be verified through sampling the outputs of the device, the most likely use of INTEST would be to first load up the boundary-scan register for a Write Reload and execute the reload in the Run-Test/Idle state. Then a write of the first address would be performed again using the boundary scan register to load up the input registers and executing the write in the Run-Test/Idle state. Lastly, a Read Reload would be executed in the same manner so that the data that had just been written in the first address would be read from the memory array and written into the output registers which would then be shifted out of TDO in the Shift-DR state. The values of the roll-over flags (RRF and WRF) would also be sampled and shifted out at the same time for comparison to expected values.

There are easier ways to serially read and write the memory array. See the EZREAD and EZWRITE TAP instruction explanation.

CLAMP TAP INSTRUCTION

The CLAMP instruction is provided to allow the state of the signals driven from the output pins to be determined from the boundary-scan register while the bypass register is selected as the serial path between TDI and TDO. The signals driven from the output pins will not change while the CLAMP instruction is selected. EXTEST could also be used for this purpose but CLAMP shortens the board scan path by inserting only the

bypass register between TDI and TDO. To use CLAMP, the SAMPLE/PRELOAD instruction would be used first to scan in the values to be driven on the output pins when the CLAMP instruction is active. Q0 – Q7 will be active only if \overline{G} is preloaded with a zero.

HIGH-Z TAP INSTRUCTION

The High-Z instruction is provided to allow all the outputs (except TDO) to be placed in an inactive drive state (High-Z), including the Read Roll-Over Flag and the Write Roll-Over Flag outputs. During the High-Z instruction the bypass register is connected between TDI and TDO.

BYPASS TAP INSTRUCTION

The Bypass instruction is the default instruction loaded in at power up. This instruction will place a single shift register between TDI and TDO during the Shift-DR state of the TAP controller. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.

Table 2. Boundary Scan Register Bit Definitions

Bit Number	Pin Name	Pin Type
0	RRF	Output
1	RR	Input
2	RE	Input
3	G	Input
4	Q0	Output
5	Q1	Output
6	Q2	Output
7	Q3	Output
8	Q4	Output
9	Q5	Output
10	Q6	Output
11	Q7	Output
12	WRF	Output
13	WRR	Input
14	D7	Input
15	D6	Input
16	D5	Input
17	D4	Input
18	D3	Input
19	D2	Input
20	D1	Input
21	D0	Input
22	к	Input
23	WE	Input
24	WR	Input
25	RRR	Input

NOTE: K is a sample-only scan bit. It cannot be preloaded for control purposes.

LDCONT TAP INSTRUCTION

The Control Register is an eight bit register that contains the control bits for the Address Registers and Counters and the Output Enable pin. When the LDCONT TAP instruction is loaded into the Instruction Register, the Control Register is placed between TDI and TDO when the TAP controller is in the Shift-DR state (see Figure 2 and Table 10). The power-up/pre-load state and function of the Control bits are found in Table 3.

The Expand ID bits provide system depth expansion. These three bits are compared to the upper three bits in the address counters. As long as the three Expand-ID bits match the three upper bits in the address counters the port will stay active. If they do not match, the port will deactivate (i.e., outputs will High-Z or write will be disabled); however, the counters will continue counting as long as RE and WE remain asserted (i.e., high) at the rising edge of Clock.

The Reload Control bits (3 and 5) are used to control either reloading the Read and Write Address Counters from the Reload Registers or clearing the counter when \overline{Rr} or \overline{Wr} is asserted. If these bits are set low the counters they control will be cleared to all zeroes if the appropriate reload signal (\overline{Rr} or \overline{WR}) is asserted and any value in the Reload Register is ignored. This means that if the initial address value desired is address 0000 (or FFFF when counting down) then there is no need to load the Address Reload Registers using the LDRREG, LDWREG, or the LDBREG instructions in the following description. If these bits are set high the counters are loaded up with the values in the Reload Registers when the appropriate reload signal (\overline{Rr} or \overline{WR}) is asserted.

The Up/Down count bits (4 and 6) determine the direction in which the respective Address Counter will count; if the bit is set low the counter will count up and if set high the counter will count down. If the counters are set to count down and the Reload control is set to the clear counter mode, then the initial value in the counters will be FFFF. To ensure that the counter will function properly, a reload (using \overline{RR} or \overline{WR}) is required after the count direction is switched.

The Output Enable control bit (7) determines the functionality of the Output Enable pin, \overline{G} . When the bit is low, \overline{G} functions asynchronously. When set high, \overline{G} functions synchronously and must meet the specified setup and hold times to the Clock K.

The Control Register will also be preloaded. When the instruction 0010 (LDCONT) is in the Instruction Register and the controller is in the Capture-DR state the above preload values (all zeroes) will be loaded into the Control Register. All zeroes will also be loaded in the Control Register at power-up.

While new values are shifted in from TDI in the Shift-DR state, all zeroes will be output on TDO for the first eight bits.

LDRREG, LDWREG, AND LDBREG TAP INSTRUCTIONS

There are three instructions that may be used to load the 16 bit address reload registers: LDRREG (Load Read Address Reload Register), LDWREG (Load Write Address Reload Register), and LDBREG (Load both Address Reload Registers, Write followed by Read). Figure 2 illustrates how the Reload registers are placed between TDI and TDO. Tables 7, 8, and 9 describe each register. These instructions would be used only if the user needed to load the Reload Registers with a non-zero value. If the Address Counters are to always be reset to zeroes (or all 1s if counting down) then only the Control Register need be loaded to affect a reset of the counters.

The TAP controller has been set up to make it easier for the user to serially load the Reload Registers. When the TAP controller is clocked into the Capture-IR state (see state diagram) the instruction for loading both registers (0101) will be preloaded into the shift register. This allows the user to go directly to the Update-IR instead of having to serially shift this instruction in through the TDI port. Once the load instruction has been entered the user can then clock over to the Capture-DR state where the value for the reload register(s) is serially loaded (see Figure 2).

RDCOUNT TAP INSTRUCTION

The RDCOUNT scan register is accessible after the RDCOUNT instruction is loaded into the TAP instruction register in the Shift-IR state and the TAP controller is then moved to the Shift-DR state. This scan register can then be used to shift out the values of the Read and Write Address Counters The RDCOUNT scan-register is a sample only register and can not be used to load values into the counters. See Table 4.

EZWRITE TAP INSTRUCTION AND SCAN PATH

The EZWRITE TAP instruction is provided to allow the user to more easily and quickly write a large number of bytes to the device serially through the TDI port. EZWRITE shortens the scan path for a serial write to just the 8 bit Data in register (see Table 5).

The most likely use of this instruction is as follows: the user would first load the Control Register using the LDCONT instruction. This would initialize the Expand ID bits and the Write Counter. The Write Reload Register will need to be

Bit No.	Power Up and Preload State	Function
0 – 2	000	Expand ID bits for comparison with the upper 3 bits of the Read and Write Address counters
3	0	Reload Control of Write Address Counter (0 = clear counter, 1 = reload)
4	0	Up/Down count bit for Write Address Counter (0 = count up, 1 = count down)
5	0	Reload Control of Read Address Counter (0 = clear counter, 1 = reload)
6	0	Up/Down count bit for Read Address Counter (0 = count up, 1 = count down)
7	0	G Control (0 = asynchronous, 1 = synchronous)

Table 3. Control Register Bit Description

loaded using the LDWREG instruction if a non-zero starting address is desired. If 0000 was the first desired count, setting up the Control Register to "clear" the Write counter is all that is required (Bit 3 set to zero). A reload cycle using SAMPLE/ PRELOAD (WR preloaded low) and INTEST would also have to be run in order to initialize the counter. While still in the INTEST instruction at the Shift-DR state, the proper values of WE and WR would then need to be preloaded for proper operation of EZWRITE (WE high and WR high). After all this initializing is done, the EZWRITE instruction would be loaded into the TAP instruction register in the Shift-IR state. When the TAP controller is then moved to the Shift-DR state the EZWRI-TE scan path would be inserted between TDI and TDO. This scan path is composed of the 8 bit Data In register (see Table 5). The 8 bits to be written into the first address would be scanned in (sampled values from the Data In pins would be streaming out of TDO at the same time), then the TAP controller would be moved to the Run-Test/Idle state where one cycle of TCK would write the 8 bits into the address and increment the counter. The TAP controller would then move back to the Shift-DR state so that the next byte to be written can be serially loaded and the process would be repeated until all desired bytes were written. During EZWRITE the Q0 - Q7 pins will be in a High-Z state.

EZREAD TAP INSTRUCTION AND SCAN PATH

The EZREAD TAP instruction is provided to allow the user to more easily and quickly read a large number of bytes from the device serially through the TDO port. EZREAD shortens the scan path for a serial read to just the 8 bit Data Out register (see Table 6).

To serially read the device the following would occur: initialization would be much like EZWRITE except that the Read Address Counter should be reladed with the count BEFORE the first one desired. So, if the first read needed to be address 0000 (and the counter is counting up), the Read Reload Register would have to be preloaded with FFF using the LDRREG instruction. Again, SAMPLE/PRELOAD and INTEST instructions would need to be run to perform a reload cycle followed by another Boundary-scan that set RE and RR high in anticipation of the EZREAD instruction. Also, WE should be set low to prevent any unintended writes while reading. After this initializing, the EZREAD instruction would be loaded into the TAP instruction register in the Shift-IR state. The TAP controller would move to the Run-Test/Idle state where one cycle of TCK would increment the counter, read the 8 bits from that address, and load them into the Data Output register. The TAP controller would then move to the Shift-DR state and the EZ-READ scan path would be inserted between TDI and TDO. This scan path is composed of the 8 bit Data Out register (see Table 6). In the Shift-DR state the Data Out register would be serially scanned out of the TDO port. This sequence through the TAP state machine would then be repeated until all desired bytes were read. EZREAD keeps the Q0 - Q7 pins active (if G is preloaded low) to allow parallel reading of the data out if desired.

EZREADZ TAP INSTRUCTION AND SCAN PATH

The EZREADZ TAP instruction behaves exactly like the EZREAD instruction except that the all outputs are held in a High-Z mode once the instruction is loaded.

DISABLING THE TEST ACCESS PORT AND BOUNDARY SCAN

It is possible to use this device without utilizing the four pins used for the IEEE 1149.1 Test Access Port. To circuit disable the TAP controller without interfering with normal operation of the device TCK must be tied to V_{SS} to preclude midlevel inputs. Although TDI and TMS is designed in such a way that an undriven input will produce a response identical to the application of a logic 1, it is still advisable to tie these inputs to V_{DD} through a 1 k resistor. TDO should remain unconnected.

With the four Test Access Port pins disabled, the device can only be used in its default power-up state. At power up, the device is configured to count up starting at address 0, the reload pins (\overline{RR} and \overline{WR}) will clear the counters, the Expand ID bits are set to 000, and the Output Enable pin (\overline{G}) is configured as an asynchronous input.

Sie 4. RDCOUN	i ocali negis			
Bit Number	Bit/Pin Name*	Bit/Pin Type		
0	RAC0	Input		
1	RAC1	Input		
2	RAC2	Input		
3	RAC3	Input Input		
4	RAC4			
5	RAC5	Input		
6	RAC6	Input		
7	RAC7	Input		
8	RAC8	Input		
9	RAC9	Input		
10	RAC10	Input		
11	RAC11	Input		
12	RAC12	Input		
13	RAC13#	Input		
14	RAC14#	Input		
15	RAC15#	Input		
16	WAC0	Input		
17	WAC1	Input		
18	WAC2	Input		
19	WAC3	Input		
20	WAC4	Input		
21	WAC5	Input		
22	WAC6	Input		
23	WAC7	Input		
24	WAC8	Input		
25	WAC9	Input		
26	WAC10	Input		
27	WAC11	Input		
28	WAC12	Input		
29	WAC13#	Input		
30	WAC14#	Input		
31	WAC15#	Input		
RAC = Read Address Counter				

Table 4. RDCOUNT Scan Register Bit Definitions

RAC = Read Address Counter WAC = Write Address Counter

These register bits are compared to the three Expand ID bits in the Control Register. (EX0 – 2). Only when there is a match is the read or write allowed to occur.

NOTE: Bit 0 closest to TDO.

Table 5. EZWRITE Scan Path Bit Definitions

Bit Number	Pin Name	Pin Type
0	D7	Input
1	D6	Input
2	D5	Input
3	D4	Input
4	D3	Input
5	D2	Input
6	D1	Input
7	D0	Input

Table 6. EZREAD and EZREADZ Scan Path Bit Definitions

Bit Number	Bit/Pin Name	Bit/Pin Type
0	Q0	Output
1	Q1	Output
2	Q2	Output
3	Q3	Output
4	Q4	Output
5	Q5	Output
6	Q6	Output
7	Q7	Output

Table 7. LDRREG Scan Path Bit Definitions

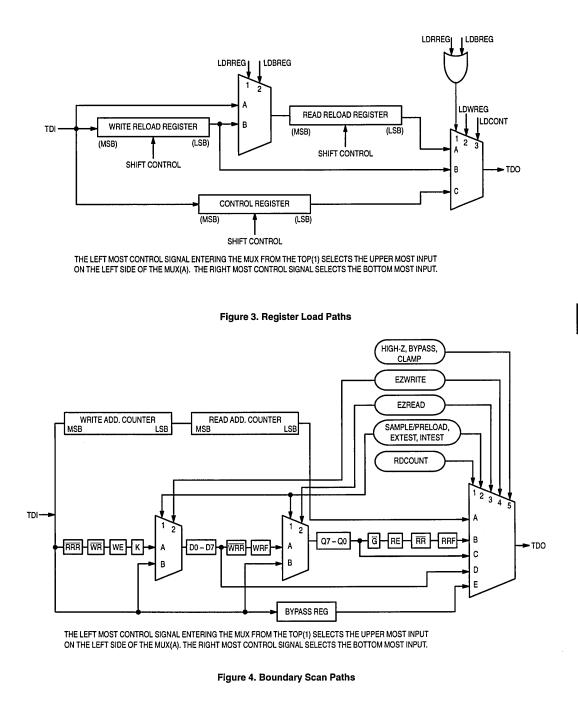
Bit Number	Bit/Pin Name*	Bit/Pin Type	
0	RRR0	Register bit	
1	RRR1	Register bit	
2	RRR2	Register bit	
3	RRR3	Register bit	
4	RRR4	Register bit	
5	RRR5	Register bit	
6	RRR6	Register bit	
7	RRR7	Register bit	
8	RRR8	Register bit	
9	RRR9	Register bit	
10	RRR10	Register bit	
11	RRR11	Register bit	
12	RRR12	Register bit	
13	RRR13	Register bit	
14	RRR14	Register bit	
15	RRR15	Register bit	

* RRR = Read Reload Register

Bit Number	Bit/Pin Name*	Bit/Pin Type
0	RRR0	Register bit
1	RRR1	Register bit
2	RRR2	Register bit
3	RRR3	Register bit
4	RRR4	Register bit
5	RRR5	Register bit
6	RRR6	Register bit
7	RRR7	Register bit
8	RRR8	Register bit
9	RRR9	Register bit
10	RRR10	Register bit
11	RRR11	Register bit
12	RRR12	Register bit
13	RRR13	Register bit
14	RRR14	Register bit
15	RRR15	Register bit
16	WRR0	Register bit
17	WRR1	Register bit
18	WRR2	Register bit
19	WRR3	Register bit
20	WRR4	Register bit
21	WRR5	Register bit
22	WRR6	Register bit
23	WRR7	Register bit
24	WRR8	Register bit
25	WRR9	Register bit
26	WRR10	Register bit
27	WRR11	Register bit
28	WRR12	Register bit
29	WRR13	Register bit
30	WRR14	Register bit
31	WRR15	Register bit

* RRR = Read Reload Register WRR = Write Reload Register

NOTE: Bit number zero is closest to TDO.


Table 9. LDWREG Scan Path Bit Definitions

able 9. LOWREG Scan Path Bit Definitions			
Bit Number	Bit/Pin Name*	Bit/Pin Type	
0	WRR0	Register bit	
1	WRR1	Register bit	
2	WRR2	Register bit	
3	WRR3	Register bit	
4	WRR4	Register bit	
5	WRR5	Register bit	
6	WRR6 WRR7 WRR8 WRR9	Register bit Register bit	
7			
8		Register bit	
9		Register bit	
10	WRR10	Register bit	
11	WRR11	Register bit	
12	WRR12 WRR13	Register bit Register bit	
13			
14	WRR14	Register bit	
15	WRR15	Register bit	
WRR = Write	Reload Register		

WRR = Write Reload Register

Table 10. LDCONT Scan Path Bit Definitions

Bit Number	Bit/Pin Name	Bit/Pin Type
0	EX0	Register bit
1	EX1	Register bit
2	EX2	Register bit
3	wcc	Register bit
4	UDW	Register bit
5	RCC	Register bit
6	UDR	Register bit
7	G CONT	Register bit

MOTOROLA FAST SRAM DATA

ORDERING INFORMATION (Order by Full Part Number)

	МСМ	<u>62Y308</u>	Ţ	<u>XX</u>	
Motorola Memory Prefix				L	Speed (15-5 = 15 ns, 17 = 17 ns)
Part Number]	L		Package (J = SOJ)

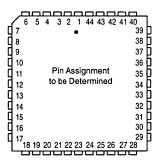
Full Part Numbers --- MCM62Y308J15-5 MCM62Y308J17

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview 8K x 16 Bit Synchronous Cache Tag With Comparator

The MCM62T316 is a 131,072 bit synchronous static random access memory organized as 8,192 words of 16 bits, fabricated using Motorola's double-metal, double-poly, 0.65 μ m CMOS process. Each word contains a 15-bit address tag and a valid bit.

The MCM62T316 compares the specified RAM address tag with the current input data. The result is either an active high MATCH level for a valid cache hit, or an active low level for a cache miss. The valid bit of the address tag must be set for a valid cache hit. The entire tag memory can be invalidated by holding the INVAL pin low for four consecutive cycles.


The MCM62T316 is available in a 44 pin PLCC package.

- 8K x 16 Fast Access Static Memory Array
- Single 5 V ± 10% Power Supply
- Fast Match Access Time: 12 ns Max
- Fast Clock Cycle Time: 20 ns Max
- · Registered Address, Data, and Control Inputs
- · Valid Bit on Each Word to Qualify a Valid Hit
- · Four Cycles to Invalidate the Entire Tag Memory
- · Cascadable to Two Cache Tags with No External Logic

MCM62T316

PIN ASSIGNMENT

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

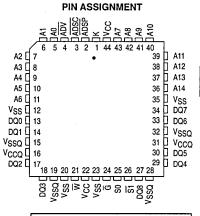
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

32K x 9 Bit BurstRAM[™] Synchronous Static RAM With Burst Counter and Self-Timed Write

The MCM62486A is a 294,912 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the i486 and Pentium™ microprocessors. It is organized as 32,768 words of 9 bits, fabricated with Motorola's high-performance silicon-gate CMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – \overline{A} 14), data inputs (D \overline{D} – D8), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive-edge-triggered noninverting registers.

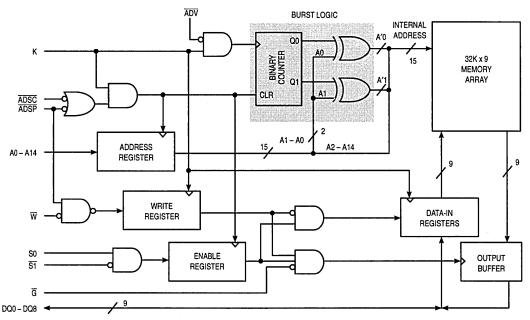
Bursts can be initiated with either address status processor (ADSP) or address status cache controller (ADSC) input pins. Subsequent burst addresses can be generated internally by the MCM62486A (burst sequence imitates that of the i486 and Pentium) and controlled by the burst address advance (ADV) input pin. The following pages provide more detailed information on burst controls.


Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

The MCM62486A will be available in a 44-pin plastic leaded chip carrier (PLCC). Multiple power and ground pins have been utilized to minimize effects induced by output noise. Separate power and ground pins have been employed for DQ0 – DQ8 to allow user-controlled output levels of 5 volts or 3.3 volts.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Level Compatibility
- Fast Access Times: 11/12/14/19/24 ns Max and Cycle Times: 15/20/25/30 ns Min
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- High Output Drive Capability: 85 pF per I/O
- High Board Density PLCC Package
- Fully TTL-Compatible
- · Active High and Low Chip Select Inputs for Easy Depth Expansion

MCM62486A



PIN NAMES
A0 – A14 Address Inputs K Clock W Write Enable G Output Enable S0, S1 Chip Selects ADV Burst Address Advance ADSP, ADSC Address Status DQ0 – DQ8 Data Input/Output V _{CCQ} Output Buffer Power Supply V _{SSQ} Output Buffer Ground

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the new external address. Chip selects (S0, S1) are sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is advanced prior to the operation. When ADV is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See **BURST SEQUENCE TABLE**.

External Address	A14 – A2	A1	A0
1st Burst Address	A14 – A2	A1	ĀO
2nd Burst Address	A14 - A2	Āī	A0
3rd Burst Address	A14 – A2	Āī	ĀŌ

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, 3, and 4)

s	ADSP	ADSC	ADV	W	к	Address Used	Operation
F	L	x	x	x	L-H	N/A	Deselected
F	x	L	х	x	L-H	N/A	Deselected
т	L	x	х	X	L-H	External Address	Read Cycle, Begin Burst
т	н	L	х	L	L-H	External Address	Write Cycle, Begin Burst
т	н	L	х	н	L-H	External Address	Read Cycle, Begin Burst
x	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
x	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
х	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. S represents S0 and $\overline{S1}$. T implies $\overline{S1}$ = L and S0 = H; F implies $\overline{S1}$ = H or S0 = L.

4. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	Ğ	I/O Status
Read	L	Data Out (DQ0 - DQ8)
Read	н	High-Z
Write	x	High-Z — Data In (DQ0 – DQ8)
Deselected	x	High-Z

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	v
Output Power Supply Voltage	Vccq	- 0.5 to V _{CC}	v
Voltage Relative to VSS	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	ТА	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to VSS = 0)

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_{A} = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	v
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	VCCQ	4.5 3.0	5.5 3.6	V
Input High Voltage	VIH	2.2	V _{CC} + 0.3	V
Input Low Voltage	VIL	- 0.5*	0.8	v

* V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)	_	± 1.0	μA
Output Leakage Current (\overline{G} , $\overline{S1} = V_{IH}$, S0 = V_{IL} , $V_{out} = 0$ to V_{CCQ})	likg(O)		± 1.0	μA
AC Supply Current ($\overline{0}$, $\overline{S1} = V_{ L}$, $S0 = V_{ H}$, All Inputs = $V_{ L} = 0.0 V$ and $V_{ H} \ge 3.0 V$, $I_{out} = 0 mA$, Cycle Time $\ge t_{KHKH}$ min)	ICCA		175	mA
Standby Current (S1 = V _{IH} , S0 = V _{IL} , All Inputs = V _{IL} and V _{IH} , Cycle Time \geq tKHKH min)	I _{SB1}	_	40	mA
CMOS Standby Current (ST \ge V _{CC} – 0.2 V, S0 \le 0.2 V, Ail Inputs \ge V _{CC} – 0.2 V or \le 0.2 V, Cycle Time \ge t _{KHKH} min)	ISB2		30	mA
Output Low Voltage (IOL = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	v

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486 bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ8)	C _{in}	2	3	pF
Input/Output Capacitance (DQ0 – DQ8)	C _{I/O}	7	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC}, V_{CCQ} = 5.0 V \pm 5\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ for device MCM62486A-11})$ $(V_{CC} = 5.0 V \pm 10\%, V_{CCQ} = 5.0 V \text{ or } 3.3 V \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ for all other devices})$

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 3 ns

Output Timing Reference Level 1.5 V Output Load Figure 1A Unless Otherwise Noted

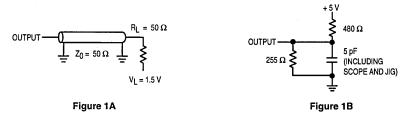
READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)

	Symt	Symbol 62486A-			1 62486A-12 62486A-14 62486A-19					6248	5A-24			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time	tкнкн	tCYC	15	-	20	-	20	-	25	—	30	-	ns	
Clock Access Time	^t KHQV	tCD	-	11	-	12	—	14	-	19	-	24	ns	4
Output Enable Access	tGLQV	tOE	-	5	-	5	-	6	-	7		7	ns	
Clock High to Output Active	tKHQX1	tDC1	6	-	6	—	6	-	6	—	6	-	ns	
Clock High to Q Change	tKHQX2	^t DC2	3	-	3		4	-	4	—	4	-	ns	
Output Enable to Q Active	tGLQX	tolz	0	- 1	0	-	0	-	0		0	-	ns	
Output Disable to Q High-Z	tGHQZ	tohz	-	6	-	6	—	6	1	7	-	7	ns	5
Clock High to Q High-Z	^t KHQZ	tcz	-	6	-	6	-	6	-	6	-	6	ns	
Clock High Pulse Width	^t KHKL	tСН	5.5	—	7	—	8	_	6	—	6	_	ns	
Clock Low Pulse Width	tKLKH	tCL	5.5		7	—	8	—	6	—	6	-	ns	
Setup Times: Address Address Status Data In Write Address Advance Chip Select	^t AVKH ^t ADSVKH ^t DVKH ^t WVKH ^t ADVVKH ^t S0VKH ^t S1VKH	tas tss tDs tws	2	—	2		3		3		3	-	ns	6
Hold Times: Address Address Status Data In Write Address Advance Chip Select	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHS0X ^t KHS1X	tAH tSH tDH tWH	2	-	2	_	2	_	2	_	2		ns	6

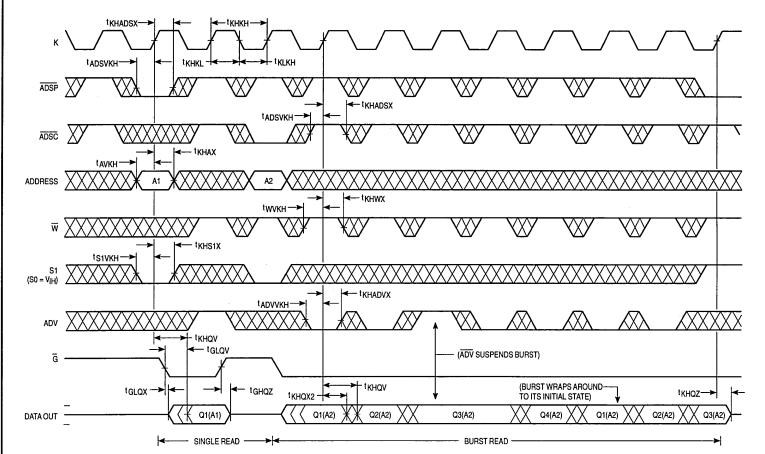
NOTES:

1. A read cycle is defined by W high or ADSP low for the setup and hold times. A write cycle is defined by W low and ADSP high for the setup and hold times.

2. All read and write cycle timings are referenced from K or G.

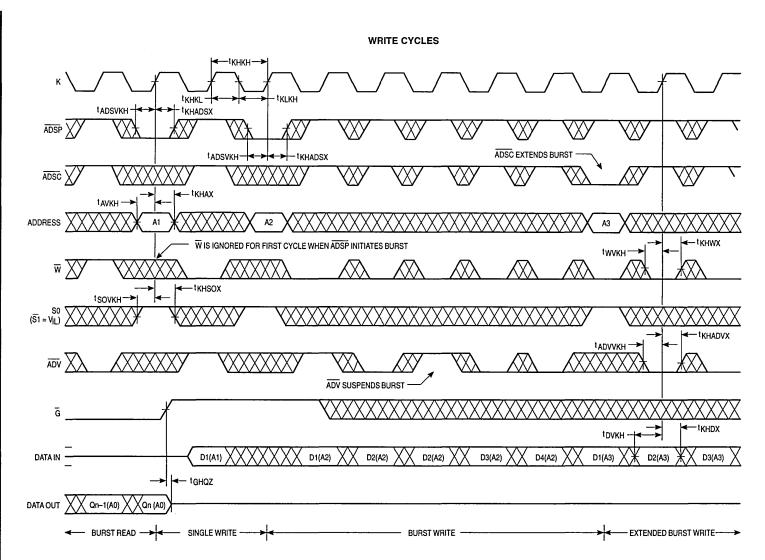

3. \overline{G} is a don't care when \overline{W} is sampled low.

4. The MCM62486A-19 and MCM62486A-24 will meet all 33 MHz specifications, even when K is running at 66 MHz.

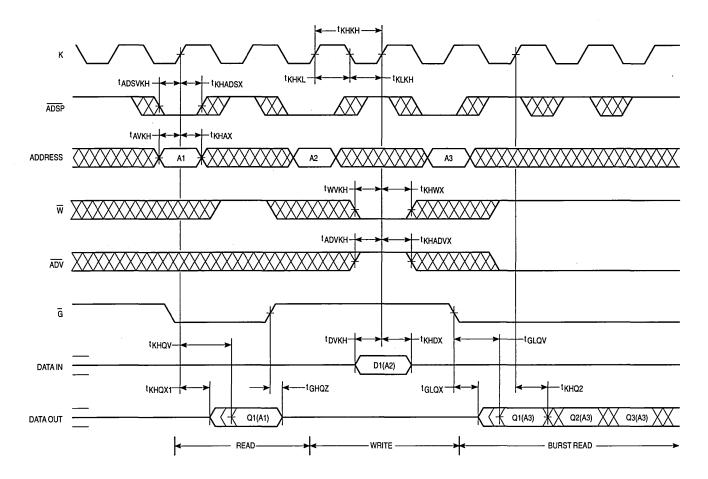

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHQZ} max is less than t_{KHQX1} min for a given device and from device to device.

6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of clock (K) whenever ADSP and ADSC are low and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. Chip select must be true (S1 low and S0 high) at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled. Timings for S1 and S0 are similar.

AC TEST LOADS

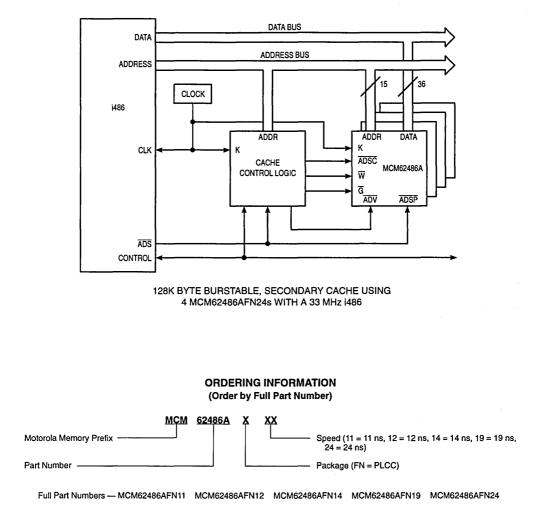


NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.



READ CYCLES

NOTE: Q1(A2) represents the first output data from the base address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.



COMBINATION READ/WRITE CYCLE

MCM62486A 4-74 4

APPLICATION EXAMPLE

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

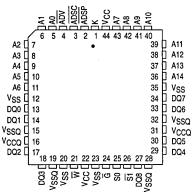
Advance Information 32K x 9 Bit BurstRAM[™] Synchronous Static RAM With Burst Counter and Self-Timed Write

The MCM62486B is a 294,912 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the i486 and Pentium™ microprocessors. It is organized as 32,768 words of 9 bits, fabricated with Motorola's high-performance silicon-gate CMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A14), data inputs (D0 – D8), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive-edge-triggered noninverting registers.

Bursts can be initiated with either address status processor (ADSP) or address status cache controller (ADSC) input pins. Subsequent burst addresses can be generated internally by the MCM62486B (burst sequence imitates that of the i486 and Pentium) and controlled by the burst address advance (ADV) input pin. The following pages provide more detailed information on burst controls.

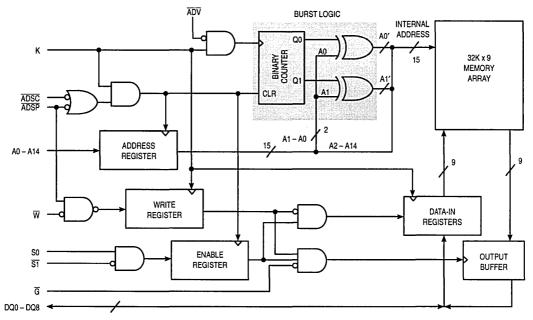
Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.


The MCM62486B will be available in a 44-pin plastic leaded chip carrier (PLCC). Multiple power and ground pins have been utilized to minimize effects induced by output noise. Separate power and ground pins have been employed for DQ0 – DQ8 to allow user-controlled output levels of 5 volts or 3.3 volts.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Level Compatibility
- Fast Access Times: 11/12/14/19/24 ns Max and Cycle Times: 15/20/25/30 ns Min
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- · Common Data Inputs and Data Outputs
- High Output Drive Capability: 85 pF per I/O
- High Board Density PLCC Package
- Fully TTL-Compatible
- Active High and Low Chip Select Inputs for Easy Depth Expansion

MCM62486B

PIN ASSIGNMENT


PIN NAMES					
$\begin{array}{cccccc} A0-A14 & & Address Inputs \\ K & & Clock \\ \overline{W} & & Write Enable \\ \overline{G} & & Output Enable \\ S0, \overline{S1} & & Chip Selects \\ \overline{ADV} & Burst Address Advance \\ \overline{ADSP, \overline{ADSC}} & Address Status \\ DQ0-DC8 & Data Input/Outpu \\ V_{CC} & + 5 V Power Supply \\ V_{CCQ} & Output Buffer Power Supply \\ V_{SSQ} & Output Buffer Ground \\ \end{array}$	k e e s e s t y y d				

All power supply and ground pins must be connected for proper operation of the device. $V_{CCQ} \ge V_{CCQ}$ at all times including power up.

BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The \overline{ADSC} or \overline{ADSP} signals control the duration of the burst and the start of the next burst. When \overline{ADSP} is sampled low, any ongoing burst is interrupted and a read (independent of \overline{W} and \overline{ADSC}) is performed using the new external address. When \overline{ADSC} is sampled low (and \overline{ADSP} is sampled high), any ongoing burst is interrupted and a read or write (dependent on \overline{W}) is performed using the new external address. Chip selects (SO, $\overline{S1}$) are sampled only when a new base address is loaded. After the first cycle of the burst, \overline{ADV} controls subsequent burst cycles. When \overline{ADV} is sampled low, the internal address is advanced prior to the operation. When \overline{ADV} is sampled high, the internal address advanced with start into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See **BURST SEQUENCE TABLE**.

BURST SEQUENCE TABLE (See Note)

External Address 1st Burst Address 2nd Burst Address 3rd Burst Address

~		ee note)	
	A14 - A2	A1	A0
	A14 – A2	A1	ĀÖ
	A14 – A2	A1	A0
i	A14 – A2	A1	ĀÖ

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, 3, and 4)

S	ADSP	ADSC	ADV	W	ĸ	Address Used	Operation
F	L	x	×	x	L-H	N/A	Deselected
F	x	L	x	x	L-H	N/A	Deselected
Т	L	x	x	x	L-H	External Address	Read Cycle, Begin Burst
т	н	L	x	L	L-H	External Address	Write Cycle, Begin Burst
Т	н	L	x	н	L-H	External Address	Read Cycle, Begin Burst
Х	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
Х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
Х	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. S represents S0 and $\overline{S1}$. T implies $\overline{S1} = L$ and S0 = H; F implies $\overline{S1} = H$ or S0 = L.

4. Wait states are inserted by suspending burst.

Operation	G	I/O Status
Read		Data Out (DQ0 – DQ8)
Read	н	High-Z
Write	X	High-Z — Data In (DQ0 – DQ8)
Deselected	x	High-Z

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	- 0.5 to 7.0	v	
Output Power Supply Voltage	Vccq	- 0.5 to V _{CC}	V	
Voltage Relative to VSS	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V	
Output Current (per I/O)	lout	± 20	mA	
Power Dissipation	PD	1.0	w	
Temperature Under Bias	T _{bias}	- 10 to + 85	°C	
Operating Temperature	TA	0 to + 70	°C	
Storage Temperature	T _{stg}	- 55 to + 125	°C	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter		Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)		Vcc	4.5	5.5	v
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)		Vccq	4.5 3.0	5.5 3.6	v
Input High Voltage		VIH	2.2	V _{CC} + 0.3	V
Input Low Voltage	· · · ·	VIL	- 0.5*	0.8	v

* VIL (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit	
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	likg(l)	_	± 1.0	μA	
Output Leakage Current (\overline{G} , $\overline{S1} = V_{IH}$, S0 = V_{IL} , $V_{out} = 0$ to V_{CCQ})	likg(O)	_	± 1.0	μA	
AC Supply Current (\overline{G} , $\overline{S1}$ = V _{IL} , S0 = V _{IH} , All Inputs = V _{IL} = 0.0 V and V _{IH} \ge 3.0 V, I _{out} = 0 mA, Cycle Time \ge t _{KHKH} min)	ICCA	_	150	mA	
Standby Current ($\overline{S1} = V_{IH}$, $S0 = V_{IL}$, All Inputs = V_{IL} and V_{IH} , Cycle Time $\ge t_{KHKH}$ min)	ISB1		40	mA	
$\begin{array}{l} \mbox{CMOS Standby Current} (\overline{S1} \geq V_{CC} - 0.2 \ V, \ S0 \leq 0.2 \ V, \ All \ \mbox{Inputs} \geq V_{CC} - 0.2 \ V \\ \mbox{or} \leq 0.2 \ V, \ \mbox{Cycle Time} \geq t_{KHKH} \ \mbox{min}) \end{array}$	ISB2	_	20	mA	
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	0.4	V	
Output High Voltage (IOH = - 4.0 mA)	VOH	2.4	_	V	

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible 1486 bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ8)	C _{in}	2	3	pF
Input/Output Capacitance (DQ0 – DQ8)	C _{I/O}	7	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC}, V_{CCQ} = 5.0 V \pm 5\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ for device MCM62486A-11})$ $(V_{CC} = 5.0 V \pm 10\%, V_{CCQ} = 5.0 V \text{ or } 3.3 V \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ for all other devices})$

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 3 ns

Output Timing Reference Level 1.5 V Output Load Figure 1A Unless Otherwise Noted

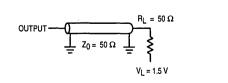
READ/WRITE CYC	CLE TIMING	i (See Notes 1,	2, and 3)
----------------	------------	-----------------	-----------

	Symt	nbol 62		62486B-11		62486B-12		62486B-14		62486B-19		62486B-24		
Parameter	Std	Alt	Min	Max	Unit	Notes								
Cycle Time	tкнкн	tCYC	15	-	20	-	20	_	25	—	30	—	ns	
Clock Access Time	^t KHQV	tCD	-	11	—	12	-	14		19	-	24	ns	4
Output Enable Access	tGLQV	tOE	- 1	5	-	5	—	6	—	7		7	ns	
Clock High to Output Active	tKHQX1	^t DC1	6	-	6	—	6	-	6	-	6	—	ns	
Clock High to Q Change	tKHQX2	tDC2	3	-	3		4	-	4	—	4		ns	
Output Enable to Q Active	tGLQX	tolz	0	-	0	—	0	—	0	-	0	—	ns	
Output Disable to Q High-Z	tGHQZ	tonz		6	-	6	-	6	-	7	-	7	ns	5
Clock High to Q High-Z	tKHQZ	tcz	-	6		6	—	6	_	6		6	ns	
Clock High Pulse Width	^t KHKL	tСН	5.5	-	7	-	8	-	6	_	6	_	ns	
Clock Low Pulse Width	^t KLKH	tCL	5.5	-	7	—	8		6		6		ns	
Setup Times: Address Address Status Data In Write Address Advance Chip Select	^t AVKH ^t ADSVKH ^t DVKH ^t WVKH ^t ADVVKH ^t S0VKH ^t S1VKH	tas tss tDs tws	2	_	2		3		3		3		ns	6
Hold Times: Address Address Status Data In Write Address Advance Chip Select	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHS0X ^t KHS1X	tah tsh tDh twh	2		2	_	2	—	2	_	2		ns	6

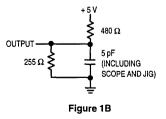
NOTES:

1. A read cycle is defined by W high or ADSP low for the setup and hold times. A write cycle is defined by W low and ADSP high for the setup and hold times.

2. All read and write cycle timings are referenced from K or \overline{G} .

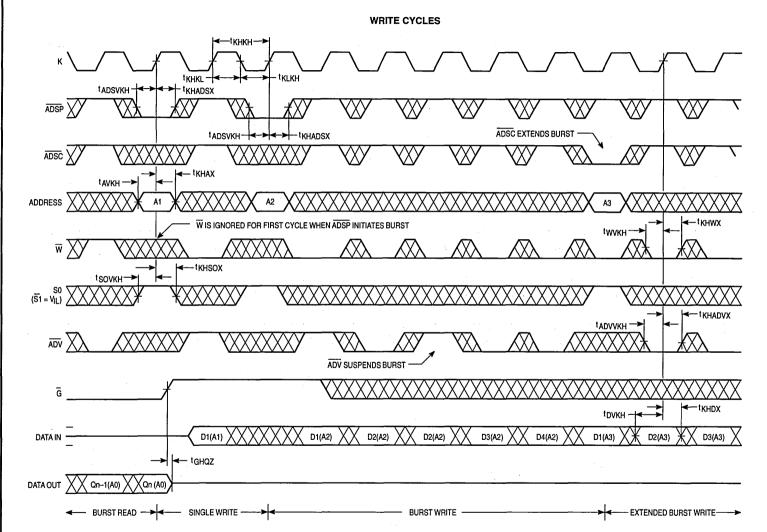

3. \overline{G} is a don't care when \overline{W} is sampled low.

4. The MCM62486A-19 and MCM62486A-24 will meet all 33 MHz specifications, even when K is running at 66 MHz.


5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQX1 min for a given device and from device to device.

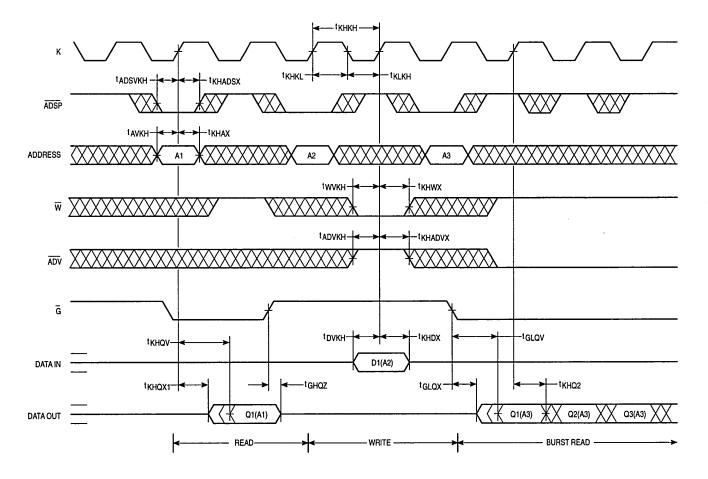
6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of clock (K) whenever ADSP and ADSC are low and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ADSP or ADSC is low) to remain enabled. Timings for ST and SO are similar.

AC TEST LOADS

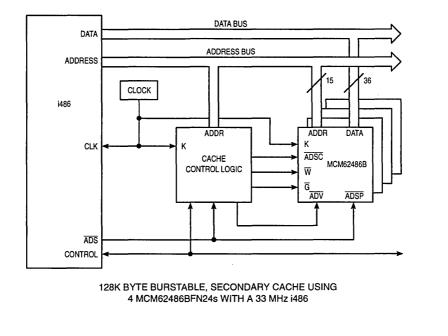

MOTOROLA FAST SRAM DATA

tKHADSX--tкнкнк tADSVKH-[†]KHKL **tKLKH** \bigotimes ∞ ADSP (X)Ϋ́ X tADSVKH----7 ADSC KHAX **tAVKH** ADDRESS A2 twvkh- $\langle X \rangle$ Ŵ -- tKHS1X tS1VKH-> S1 (S0 = VIH) - tKHADVX tADVVKH-(XXXXX χ ADV ^tKHQV - tGLQV (ADV SUSPENDS BURST) G (BURST WRAPS AROUND-TO ITS INITIAL STATE) tGLQX --> ----> ⊢ tghqz tKHQZtKHQX2-+ Q1(A2) Q2(A2) Q2(A2) Q1(A2) DATA OUT Q1(A1) Q3(A2) Q4(A2) Q3(A2) SINGLE READ -BURST READ ->|<

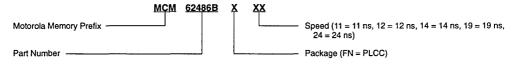
READ CYCLES


NOTE: Q1(A2) represents the first output data from the base address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.

4



MCM62486B 4-82


COMBINATION READ/WRITE CYCLE

APPLICATION EXAMPLE

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers --- MCM62486BFN11 MCM62486BFN12 MCM62486BFN14 MCM62486BFN19 MCM62486BFN24

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

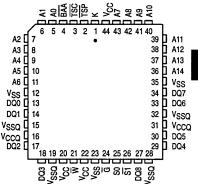
32K x 9 Bit BurstRAM[™] Synchronous Static RAM With Burst Counter and Self-Timed Write

The MCM62940A is a 294,912 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the MC68040 and PowerPC[™] microprocessors. It is organized as 32,768 words of 9 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A14), data inputs (DQ0 – DQ8), and all control signals, except output enable (\overline{G}), are clock (K) controlled through positive-edge-triggered noninverting registers.

Bursts can be initiated with either transfer start processor (\overline{TSP}) or transfer start cache controller (\overline{TSC}) input pins. Subsequent burst addresses are generated internally by the MCM62940A (burst sequence imitates that of the MC68040) and controlled by the burst address advance (\overline{BAA}) input pin. The following pages provide more detailed information on burst controls.

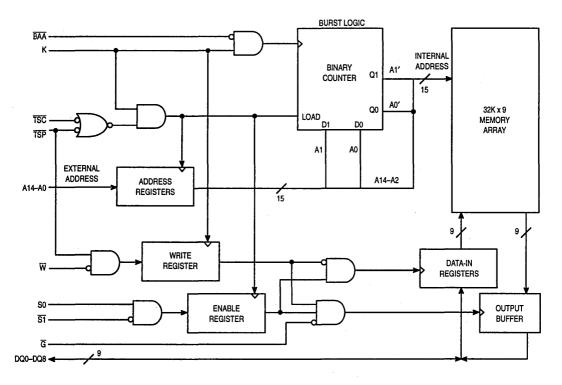
Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.


The MCM62940A is packaged in a 44-pin plastic-leaded chip carrier (PLCC). Multiple power and ground pins have been utilized to minimize effects induced by output noise. Separate power and ground pins have been employed for DQ0 – DQ8 to allow user-controlled output levels of 5 volts or 3.3 volts.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V \pm 10% Power Supplies for Output Level Compatibility
- Fast Access Times: 11/12/14/19/24 ns Max, Cycle Times: 15/20/20/25/30 ns Min
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- TSP, TSC, and BAA Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- High Output Drive Capability: 85 pF per I/O
- High Board Density PLCC Package
- Fully TTL-Compatible
- Active High and Low Chip Select Inputs for Easy Depth Expansion

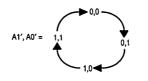
MCM62940A

PIN ASSIGNMENT



PIN NAMES
$\begin{array}{ccccc} A0-A14 & & Address Inputs \\ K & & Clock \\ \overline{W} & & Synchronous Write \\ \overline{G} & & Output Enable \\ S0, \overline{S1} & & Chip Selects \\ \overline{BAA} & & Burst Address Advance \\ \overline{TSP}, \overline{TSC} & & Transfer Start \\ DQ0-DQ8 & Data Input/Output \\ V_{CC} & + 5 V Power Supply \\ V_{CQ} & Output Buffer Power Supply \\ V_{SSQ} & & Output Buffer Ground \\ \end{array}$

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.


BurstRAM is a trademark of Motorola, Inc. PowerPC is a trademark of IBM Corp.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The TSC or TSP signals control the duration of the burst and the start of the next burst. When TSP is sampled low, any ongoing burst is interrupted and a read (independent of \overline{W} and TSC) is performed using the new external address. When TSC is sampled low (and TSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on \overline{W}) is performed using the next external address. Chip selects (S0, $\overline{S1}$) are sampled only when a new base address is loaded. After the first cycle of the burst, BAA controls subsequent burst cycles. When BAA is sampled low, the internal address is advanced prior to the operation. When BAA is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE GRAPH.

BURST SEQUENCE GRAPH (See Note)

NOTE: The external two values for A1 and A0 provide the starting point for the burst sequence graph. The burst logic advances A1 and A0 as shown above.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, 3, and 4)

S	TSP	TSC	BAA	W	к	Address	Operation	
F	L	x	x	X	L-H	N/A	Deselected	
F	x	L	X	X	L-H	N/A	Deselected	
т	L	x	x	x	L-H	External Address	Read Cycle, Begin Burst	
Т	н	L	x	L	L-H	External Address	Write Cycle, Begin Burst	
Т	н	L	X	н	L-H	External Address	Read Cycle, Begin Burst	
х	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst	
х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst	
х	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst	
х	н	н	н	н	L-Н	Current Address	Read Cycle, Suspend Burst	

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. S represents S0 and $\overline{S1}$. T implies S0 = H and $\overline{S1}$ = L; F implies S0 = L or $\overline{S1}$ = H.

4. Wait states are inserted by suspending burst.

Operation	G	I/O Status
Read	L	Data Out (DQ0–DQ8)
Read	н	High-Z
Write	X	High-Z Data In (DQ0-DQ8)
Deselected	x	High-Z

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data requird setup time and held high throughout the input data hold time.

	•		
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	v
Output Power Supply Voltage	Vccq	- 0.5 to V _{CC}	v
Voltage Relative to VSS	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = 0)

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Parameter	Symbol	Min	Тур	Max	Unit					
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v					
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccq	4.5 3.0	5.0 3.3	5.5 3.6	V					
Input High Voltage	ViH	2.2	—	V _{CC} + 0.3	V					
Input Low Voltage	VIL	0.5*		0.8	V					

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

* V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	l _{lkg(l)}	—	± 1.0	μA
Output Leakage Current (\overline{G} , $\overline{S1} = V_{IH}$, S0 = V_{IL} , $V_{out} = 0$ to V_{CCQ})	llkg(O)	-	± 1.0	μA
AC Supply Current (\overline{G} , $\overline{S1}$ = V _{IL} , S0 = V _{IH} , All Inputs = V _{IL} = 0 V and V _{IH} \ge 3.0 V, I _{out} = 0 mA, Cycle Time \ge t _{KHKH} min)	ICCA		165	mA
Standby Current ($\overline{S1} = V_{IH}$, S0 = V_{IL} , All Inputs = V_{IL} and V_{IH} , Cycle Time $\ge t_{KHKH}$ min)	ISB1		40	mA
CMOS Standby Current ($\overline{S1} \ge V_{CC} - 0.2$ V, S0 \le 0.2 V, All Inputs $\ge V_{CC} - 0.2$ V or \le 0.2 V, Cycle Time \ge tKHKH min)	ISB2	_	30	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL		0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	·	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible MC68040 bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ8)	Cin	2	3	pF
Input/Output Capacitance (DQ0 – DQ8)	C _{I/O}	7	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCO} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

 Output Timing Reference Level
 1.5 V

 Output Load
 See Figure 1A Unless Otherwise Noted

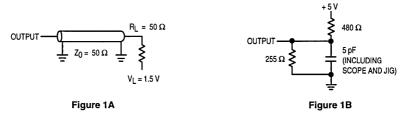
READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)

	Symbol		6294	DA-11	6294	0A-12	6294	DA-14	6294	DA-19	62940)A-24		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time	^t кнкн	tCYC	15	_	20		20	—	25	—	30		ns	
Clock Access Time	^t KHQV	tCD	-	11	-	12	-	14	-	19	—	24	ns	4
Output Enable to Output Valid	^t GLQV	tOE	—	5	—	5		6	—	7	-	7	ns	
Clock High to Output Active	tKHQX1	tDC1	6	-	6	_	6	-	6	-	6	-	ns	
Clock High to Output Change	tKHQX2	^t DC2	3	-	3	-	5	-	5	—	5	—	ns	
Output Enable to Output Active	^t GLQX	tolz	0	-	0	-	0	_	0	-	0	-	ns	
Output Disable to Q High-Z	^t GHQZ	tohz		6	—	6	-	6	—	7		7	ns	5
Clock High to Q High-Z	^t KHQZ	tcz	—	6	—	6	—	6		6	—	6	ns	5
Clock High Pulse Width	^t KHKL	tСН	5.5	-	7	—	8	—	9	-	11	-	ns	
Clock Low Pulse Width	^t KLKH	tCL	5.5	-	7	- 1	8		9	-	11	—	ns	
Setup Times: Address Address Status Data In Write Address Advance Chip Select	tavkh trsvkh tovkh twvkh tbavkh tsovkh ts1vkh	tAS tSS tDS tWS	2	_	2		3	-	3	—	3	_	ns	6
Hold Times: Address Address Status Data In Write Address Advance Chip Select	^t KHAX ^t KHTSX ^t KHDX ^t KHWX ^t KHBAX ^t KHS0X ^t KHS1X	tah tsh tDh twh	2		2	_	2	_	2		2	—	ns	6

NOTES:

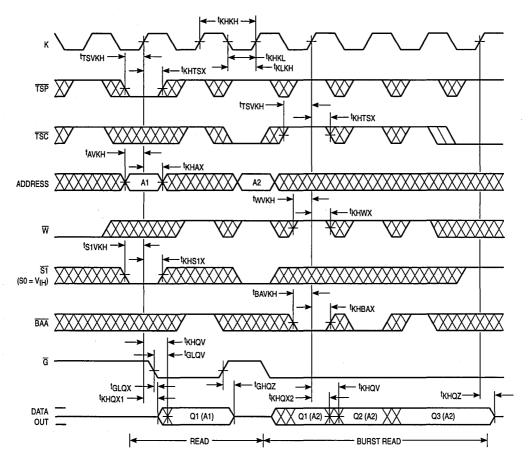
1. A read cycle is defined by W high or TSP low for the setup and hold times. A write cycle is defined by W low and TSP high for the setup and hold times.

2. All read and write cycle timings are referenced from K or G.


3. \overline{G} is a don't care when \overline{W} is sampled low.

4. Maximum access times are guaranteed for all possible MC68040 external bus cycles.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQX1 min for a given device and from device to device.


6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of clock (K) whenever TSP or TSC are low and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. Chip select must be true (S1 low and S0 high) at each rising edge of clock for the device (when TSP or TSC is low) to remain enabled. Timings for S1 and S0 are similar.

AC TEST LOADS

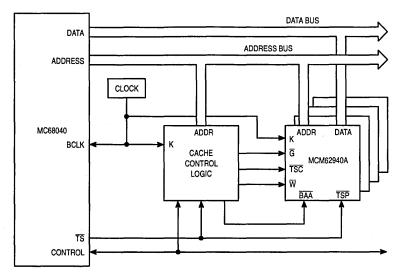
NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ-WRITE CYCLE

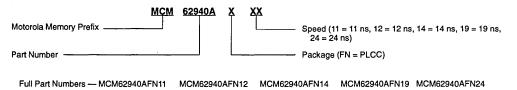
NOTE: Q1(A2) represents the first output from the external address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.

MCM62940A

4-90


WRITE CYCLE

NOTE: $\overline{G} = V_{IH}$.


4

APPLICATION EXAMPLE

128K Byte Burstable, Secondary Cache Using Four MCM62940AFN24s with a 33 MHz MC68040

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Advance Information

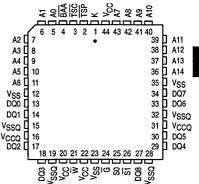
32K x 9 Bit BurstRAM[™] Synchronous Static RAM With Burst Counter and Self-Timed Write

The MCM62940B is a 294,912 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the MC68040 and PowerPC™ microprocessors. It is organized as 32,768 words of 9 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A14), data inputs (DQ0 – DQ8), and all control signals, except output enable (\overline{G}), are clock (K) controlled through positive-edge-triggered noninverting registers.

Bursts can be initiated with either transfer start processor (TSP) or transfer start cache controller (TSC) input pins. Subsequent burst addresses are generated internally by the MCM62940B (burst sequence imitates that of the MC68040 and PowerPC) and controlled by the burst address advance (BAA) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

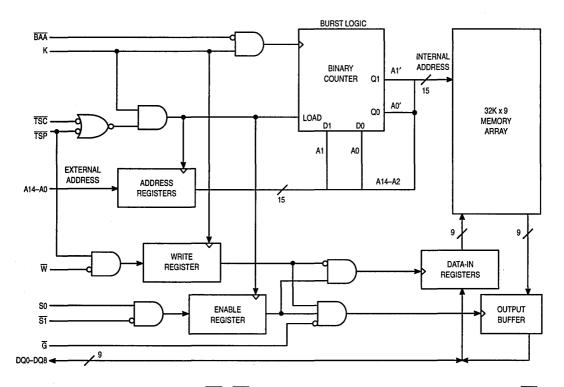

The MCM62940B is packaged in a 44-pin plastic-leaded chip carrier (PLCC). Multiple power and ground pins have been utilized to minimize effects induced by output noise. Separate power and ground pins have been employed for DQ0 – DQ8 to allow user-controlled output levels of 5 volts or 3.3 volts.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Level Compatibility
- Fast Access Times: 11/12/14/19/24 ns Max, Cycle Times: 15/20/20/25/30 ns Min
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- TSP, TSC, and BAA Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- High Output Drive Capability: 85 pF per I/O
- High Board Density PLCC Package
- Fully TTL-Compatible
- · Active High and Low Chip Select Inputs for Easy Depth Expansion

MCM62940B

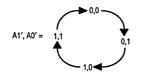
PIN ASSIGNMENT

PIN NAMES
$\begin{array}{cccccc} A0-A14 & & Address Inputs \\ K & & Clock \\ \overline{W} & & Synchronous Write \\ \overline{G} & & Output Enable \\ S0, \overline{S1} & & Output Enable \\ S0, \overline{S1} & & Chip Selects \\ \overline{BAA} & & Burst Address Advance \\ \overline{TSP}, \overline{TSC} & & Transfer Start \\ DQ0-DC8 & & Data Input/Output \\ V_{CC} & & + 5 V Power Supply \\ V_{CCQ} & & Output Buffer Power Supply \\ V_{SSQ} & & Output Buffer Ground \\ \end{array}$


All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

BurstRAM is a trademark of Motorola, Inc. PowerPC is a trademark of IBM Corp.


MOTOROLA FAST SRAM DATA

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The TSC or TSP signals control the duration of the burst and the start of the next burst. When TSP is sampled low, any ongoing burst is interrupted and a read (independent of W and TSC) is performed using the new external address. When TSC is sampled low (and TSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the next external address. Chip selects (S0, S1) are sampled only when a new base address is loaded. After the first cycle of the burst, BAA controls subsequent burst cycles. When BAA is sampled low, the internal address is advanced prior to the operation. When BAA is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE GRAPH.

BURST SEQUENCE GRAPH (See Note)

NOTE: The external two values for A1 and A0 provide the starting point for the burst sequence graph. The burst logic advances A1 and A0 as shown above.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, 3, and 4)

S	TSP	TSC	BAA	W	K	Address	Operation	
F	L	X	x	x	L-H	N/A	Deselected	
F	X	L	X	x	L•H	N/A	Deselected	
Т	L	X	x	x	L-H	External Address	Read Cycle, Begin Burst	
т	н	L	x	Ļ	L-H	External Address	Write Cycle, Begin Burst	
т	н	L	x	н	L-H	External Address	Read Cycle, Begin Burst	
X	н	н	L	L	L-H	Next Address	Write Cycle, Continue Bur	
х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst	
x	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst	
х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst	

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. S represents S0 and $\overline{S1}$. T implies S0 = H and $\overline{S1}$ = L; F implies S0 = L or $\overline{S1}$ = H.

4. Wait states are inserted by suspending burst.

Operation	Ğ	I/O Status
Read	Ľ	Data Out (DQ0-DQ8)
Read	н	High-Z
Write	X	High-Z — Data In (DQ0-DQ8)
Deselected	х	High-Z

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data requird setup time and held high throughout the input data hold time.

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	V
Output Power Supply Voltage	Vccq	- 0.5 to V _{CC}	V
Voltage Relative to VSS	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = 0)

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccq	4.5 3.0	5.0 3.3	5.5 3.6	V
Input High Voltage	VIH	2.2		V _{CC} + 0.3	V
Input Low Voltage	VIL	- 0.5*		0.8	V

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

* V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)	- 1	± 1.0	μA
Output Leakage Current (\overline{G} , $\overline{S1} = V_{IH}$, S0 = V_{IL} , $V_{out} = 0$ to V_{CCQ})	likg(O)	-	± 1.0	μA
AC Supply Current (\overline{G} , $\overline{S1}$ = V _{IL} , S0 = V _{IH} , All Inputs = V _{IL} = 0 V and V _{IH} \ge 3.0 V, I _{out} = 0 mA, Cycle Time \ge t _{KHKH} min)	ICCA	-	150	mA
Standby Current ($\overline{S1} = V_{IH}$, S0 = V_{IL} , All Inputs = V_{IL} and V_{IH} , Cycle Time $\ge t_{KHKH}$ min)	ISB1		40	mA
CMOS Standby Current (S1 \ge V _{CC} – 0.2 V, S0 \le 0.2 V, All Inputs \ge V _{CC} – 0.2 V or \le 0.2 V, Cycle Time \ge tKHKH min)	I _{SB2}	-	20	mA
Output Low Voltage (I _{DL} = + 8.0 mA)	VOL	-	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	. 	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible MC68040 bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ8)	C _{in}	2	3	pF
Input/Output Capacitance (DQ0 – DQ8)	C _{I/O}	7	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCQ} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5	v
Input Pulse Levels 0 to 3.0	V
Input Rise/Fall Time	ns

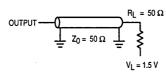
READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)

	Sym	bol	6294	0B-11	62940)B-12	62940	0B-14	6294)B-19	6294)B-24		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time	^t кнкн	tCYC	15	—	20	-	20	-	25	—	30	· —	ns	
Clock Access Time	tkhqv	tCD	-	11	-	12	-	14	—	19	—	24	ns	4
Output Enable to Output Valid	^t GLQV	tOE	- 1	5	-	5	-	6	-	7	-	7	ns	
Clock High to Output Active	tKHQX1	^t DC1	6	—	6	-	6	-	6		6		ns	
Clock High to Output Change	tKHQX2	^t DC2	3	-	3	—	5	-	5		5		ns	1
Output Enable to Output Active	^t GLQX	to∟z	0		0	-	0	-	0	-	0	-	ns	
Output Disable to Q High-Z	^t GHQZ	tohz	-	6	—	6	—	6	-	7	-	7	ns	5
Clock High to Q High-Z	^t KHQZ	tcz	-	6	—	6	—	6	-	6	—	6	ns	5
Clock High Pulse Width	^t KHKL	tСН	5.5	—	7	-	8		9		11	-	ns	
Clock Low Pulse Width	^t KLKH	tCL	5.5	-	7	-	8	—	9	—	11	-	ns	
Setup Times: Address Address Status Data In Write Address Advance Chip Select	^t AVKH ^t TSVKH ^t DVKH ^t WVKH ^t BAVKH ^t S0VKH ^t S1VKH	tas tss tDs tws	2	-	2		3	-	3	_	3	—	ns	6
Hold Times: Address Address Status Data In Write Address Advance Chip Select	^t KHAX ^t KHTSX ^t KHDX ^t KHWX ^t KHBAX ^t KHS0X ^t KHS1X	tah tsh tDH twh	2	_	2	-	2		2		2	_	ns	6

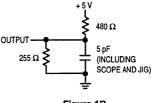
NOTES:

1. A read cycle is defined by W high or TSP low for the setup and hold times. A write cycle is defined by W low and TSP high for the setup and hold times.

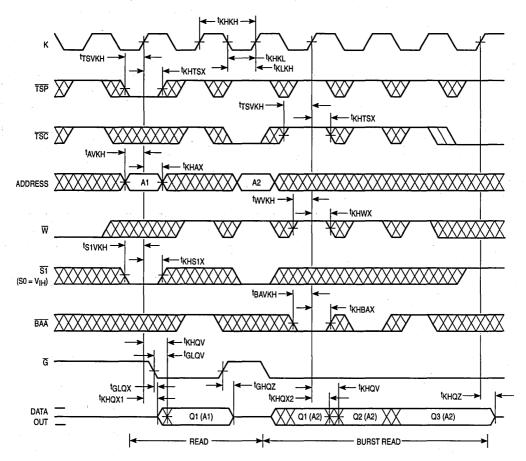
2. All read and write cycle timings are referenced from K or \overline{G} .

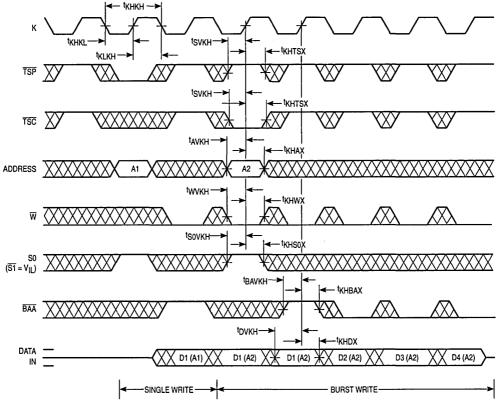

3. \overline{G} is a don't care when \overline{W} is sampled low.

4. Maximum access times are guaranteed for all possible MC68040 external bus cycles.


5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQX1 min for a given device and from device to device.

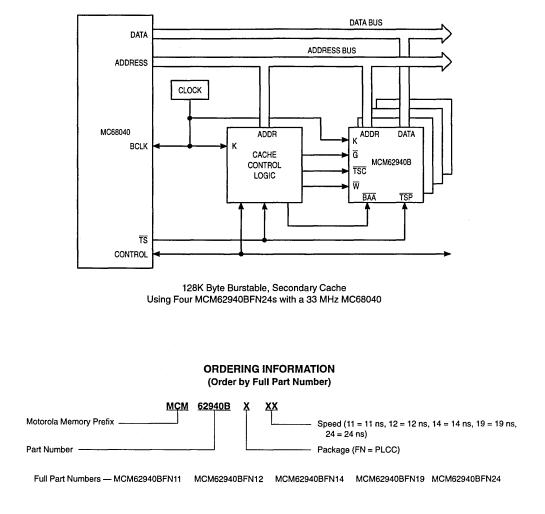
6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of clock (K) whenever TSP or TSC are low and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. Chip select must be true (ST low and S0 high) at each rising edge of clock for the device (when TSP or TSC is low) to remain enabled. Timings for ST and S0 are similar.


AC TEST LOADS



READ-WRITE CYCLE

NOTE: Q1(A2) represents the first output from the external address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.


WRITE CYCLE

NOTE: $\overline{G} = V_{IH}$.

4

APPLICATION EXAMPLE

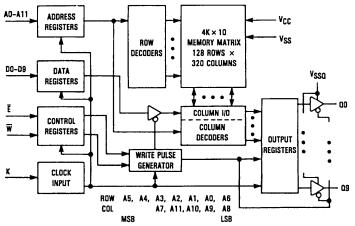
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview **4K × 10 Bit Synchronous Static RAM** with Output Registers

The MCM62963A is a 40,960 bit synchronous static random access memory organized as 4096 words of 10 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output registers onto a single monolithic circuit. This allows reduced parts count implementation of cache data RAM, writeable control store applications, and other applications that utilize long words.

Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

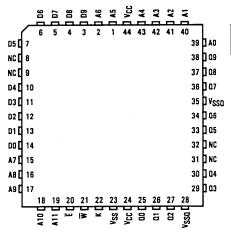
The address (A0-A11), data (D0-D9), write (\overline{W}) , and chip enable (\overline{E}) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.


The chip enable (\overline{E}) input is a synchronous input clock that places the device in a low power mode when high at the rising edge of the clock (K).

The MCM62963A provides output register operation. At the rising edge of clock (K), the RAM data from the previous clock (K) high cycle is presented.

Write operations are internally self-timed and initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

BLOCK DIAGRAM


- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 30 ns Max
- Fast Clock (K) Access Times: 13 ns Max
- Address, Data Input, E, and W Registers On-Chip
- Output Registers for Fully Pipelined Applications
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins

MCM62963A

PIN ASSIGNMENT

PIN NAMES								
A0-A11 Address Input	5							
W Write Enable	ð							
Ē Chip Enable	ð							
D0-D9 Data Input	s							
Q0-Q9 Data Output	s							
K Clock Inpu								
VCC · · · · · · + 5 V Power Suppl	Y							
Vss Ground	d							
VSSQ Output Buffer Ground	t							
NC No Connection	n.							

For proper operation of the device VSS and both VSSQ leads must be connected to ground.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē	W	Operation	Q0-Q9	Current
L	L	Write	High Z	lcc
L	н	Read	Dout	Icc
н	X	Not Selected	High Z	ISB

NOTE: The values of \overline{E} and \overline{W} are valid inputs for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS=VSSQ=0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	v
Voltage Relative to V _{SS} /V _{SSQ} for Any Pin Except V _{CC}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	v
Output Current (per I/O)	lout	±20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	Tstg	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at V_{IL} or V_{IH} during power up to prevent spurious read cycles from occurring.

DC OPERATING CONDITIONS AND CHARACTERISTICS (Vcc=5.0 V + 10% Ta = 0 to 70°C. Unless Otherwise Noted)

1100-0	••	T 10 /0,	14-0	10 70	υ,	0111033	Outor Wise	1101007

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS}=V_{SSQ}=0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.5*	_	0.8	v

 V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
input Leakage Current (All Inputs, Vin=0 to VCC)	l _{ikg} (i)	-	±1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC} , Outputs must be high-Z)	likg(O)		±1.0	μA
AC Supply Current (Ē=V _{IL} , All Inputs=V _{IL} or V _{IH} , I _{out} =0 mA, Cycle Time≥t _{KHKH} min) t _{KHKH} =30 ns	ICCA		140	mA
Standby Current (Ē=V _{IH} , V _{IH} ≥3.0 V, V _{IL} ≤0.4 V, I _{out} ≈0 mA, Cycle Time≥ =t _{KHKH} min)	ISB	-	30	mA
Output Low Voltage (IOL = 12.7 mA)	VOL	<u> </u>	0.4	V
Output High Voltage (I _{OH} = - 1.8 mA)	VOH	2.8	-	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	3	4	рF
Output Capacitance	Cout	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 5 ns

READ CYCLE (See Note 1)

		MCM8	2963A-30		
Parameter	Symbol	Min	Max	Unit	Notes
Read Cycle Time	^t КНКН	30	-	ns	2
Clock Access Time	tKHQV	-	13	ns	3
Output Active from Clock High	^t KHOX	3	-	ns	4
Clock High to Q High Z (Ē=VIH)	tkhoz	-	13	ns	4
Clock Low Pulse Width	^t KLKH	5	-	ns	
Clock High Pulse Width	^t KHKL	5	-	ns	1
Setup Times for: Ē A W	^t EVKH ^t AVKH ^t WHKH	5	-	ns	5
Hold Times for: Ē A W	^t KHEX ^t KHAX ^t KHWX	· 3	-	ns	5

NOTES:

1. A read is defined by \overline{W} high and \overline{E} low for the setup and hold times.

2. All read cycle timing is referenced from K.

3. Valid data from K high will be the data stored at the address of the last valid read cycle.

Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested. At any
given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min for a given device.

5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

AC TEST LOADS

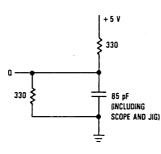


Figure 1A

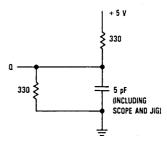
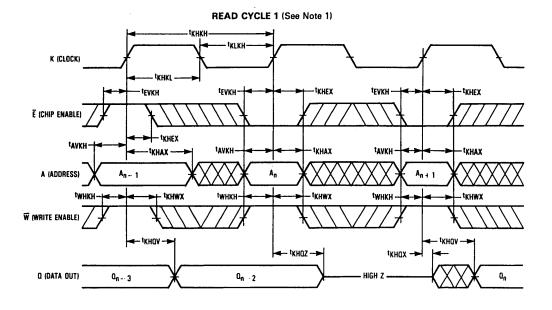
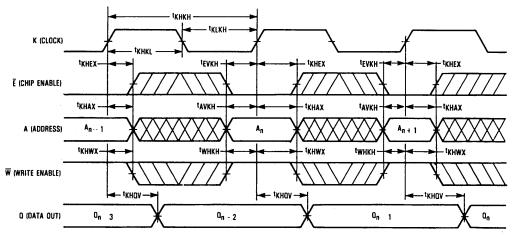




Figure 1B

NOTE:

1. The outputs Q_{n-3} and Q_{n-2} are derived from two previous read cycles where $\overline{W} = V_{IH}$ and $\overline{E} = V_{IL}$ for those cycles.

WRITE CYCLE (W Controlled, See Note 1)

_		MCM6	2963A-30		
Parameter	Symbol	Min	Max	Unit	Notes
Write Cycle Time	tкнкн	30	-	ns	2
Clock High to Q High Z ($\overline{W} = V_{IL}$)	tKHOZ	-	13	ns	3
v	tevkh tavkh twlkh tvlkh	5	-	ns	4
v	tKHEX tKHAX tKHWX tKHWX tKHDX	3	-	ns	4


NOTES:

1. A write is performed when \overline{W} and \overline{E} are both low for the specified setup and hold times.

2. All write cycle timing is referenced from K.

3. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested. At any given voltage and temperature, tKHOZ max is less than tKHOX min for a given device.

4. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

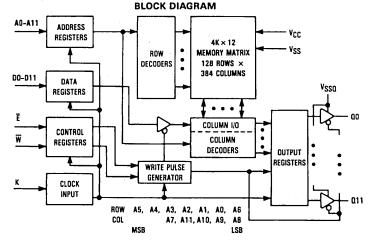
WRITE CYCLE

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview 4K × 12 Bit Synchronous Static RAM with Output Registers

The MCM62973A is a 49,152 bit synchronous static random access memory organized as 4096 words of 12 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output registers onto a single monolithic circuit for reduced parts count implementation of cache data RAM, writeable control store applications, and other applications that utilize long words.

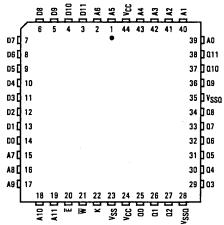
Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.


The address (A0-A11), data (D0-D11), write (\overline{W}), and chip enable (\overline{E}) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.

The chip enable (\overline{E}) input is a synchronous input clock that places the device in a low power mode when high at the rising edge of the clock (K).

The MCM62973A provides output register operation. At the rising edge of the clock (K) The MCM62973A provides output register operation. At the rising edge of clock (K), the RAM data from the previous clock (K) high cycle is presented.

Write operations are internally self-timed and initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.


- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 18/20 ns Max
- Fast Clock (K) Access Times: 10/10 ns Max
- Address, Data Input, E, and W Registers On-Chip
- Output Registers for Fully Pipelined Applications
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins

FN PACKAGE 44-LEAD PLCC CASE 777

MCM62973A

PIN ASSIGNMENT

PIN NAMES
A0-A11 Address Inputs
W Write Enable
ĒChip Enable
D0-D11 Data Inputs
Q0-Q11 Data Outputs
K Clock Input
V _{CC} · · · · · · + 5 V Power Supply
V _{SS} Ground
VSSQ Output Buffer Ground

For proper operation of the device V_{SS} and both V_{SSQ} leads must be connected to ground.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē	W	Operation	Q0-Q11	Current
L	L	Write	High Z	Icc
L	н	Read	D _{out}	Icc
н	Х	Not Selected	High Z	ISB

NOTE: The values of \overline{E} and \overline{W} are valid inputs for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	v
Voltage Relative to V _{SS} /V _{SSQ} for Any Pin Except V _{CC}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	v
Output Current (per I/O)	lout	±20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	Τ _Α	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of the clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at V_{IL} or V_{IH} during power up to prevent spurious read cycles from occurring.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V ± 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	-	V _{CC} +0.3	v
Input Low Voltage	VIL	-0.5*	_	0.8	v

 V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	l _{ikg(i)}	-	± 1.0	μA
Output Leakage Current ($\vec{E} = V_{IH}$, $V_{out} = 0$ to V_{CC} , Outputs must be in High Z)	likg(O)	-	±1.0	μA
AC Supply Current (Ē=V _{IL} , All Inputs=V _{IL} or V _{IH} , I _{out} =0 mA, Cycle Time≥t _{KHKH} min) MCM62973A-18: t _{KHKH} =18 ns MCM62973A-20: t _{KHKH} =20 ns	ICCA	_	170 160	mA
Standby Current (Ē=V _{IH} , V _{IH} ≥3.0 V, V _{IL} ≤0.4 V, I _{Out} =0 mA, Cycle Time≥=t _{KHKH} min)	ISB	-	30	mA
Output Low Voltage (I _{OL} = 12.7 mA)	VOL	_	0.4	v
Output High Voltage (I _{OH} = - 1.8 mA)	V _{OH}	2.8	-	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	3	4	pF
Output Capacitance	Cout	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 5 ns

Output Timing Measurement Reference Level 1.5 V Output Load..... See Figure 1A Unless Otherwise Noted

READ CYCLE (See Note 1)

Parameter			мсма	2973-18A	MCM6	2973A-20		Notes
Parameter		Symbol	Min	Max	Min	Max	Unit	
Read Cycle Time		^t КНКН	18	-	20	_	ns	2
Clock Access Time		^t KHQV	-	10	-	10	ns	3
Output Active from Clock High		tкнох	3	-	3	-	ns	4
Clock High to Q High Z ($\vec{E} = V_{IH}$)		tKHOZ	-	10	-	10	ns	4
Clock Low Pulse Width		^t KLKH	5	-	5	-	ns	
Clock High Pulse Width		^t KHKL	5	-	5	- 1	ns	
Setup Times for:	E A W	^t EVKH ^t AVKH ^t WHKH	4	-	4	-	ns	5
Hold Times for:	E A W	^t KHEX ^t KHAX ^t KHWX	2	-	2	_	ns	5

5

NOTES:

1. A read is defined by \overline{W} high and \widetilde{E} low for the setup and hold times.

2. All read cycle timing is referenced from K.

3. Valid data from K high will be the data stored at the address of the last valid read cycle.

Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested. At any
given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min for a given device.

5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

Figure 1A

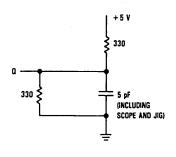
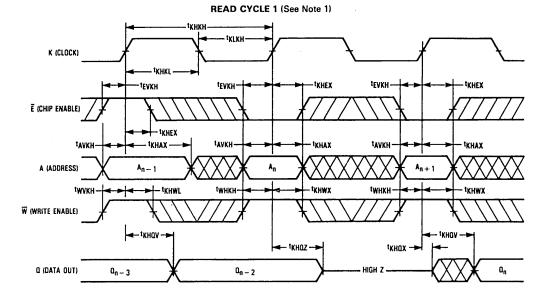
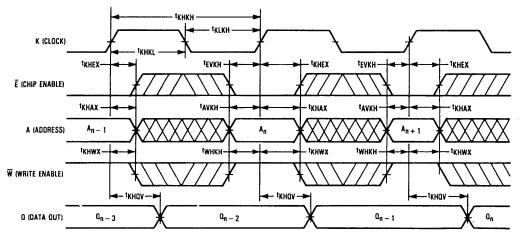




Figure 1B

READ CYCLE 2 (See Note 1)

NOTE:

1. The outputs Q_{n-3} and Q_{n-2} are derived from two previous read cycles where $\overline{W} = V_{IH}$ and $\overline{E} = V_{IL}$ for those cycles.

WRITE CYCLE (W Controlled, See Note 1)

		Symbol MCM62973	2973A-18	MCM62973A-20		1		
Parameter			Min	Max	Min	Max	Unit	Notes
Write Cycle Time		^t КНКН	18	-	20	_	ns	2
Clock High to Output High Z ($\overline{W} = V_{IL}$)		tkhoz		10	-	10	ns	3
Setup Times for:	Dă⊳≣	^t EVKH ^t AVKH ^t WLKH ^t DVKH	4	-	4	-	ns	4
Hold Times for:	D≦⊳⊒	^t KHEX ^t KHAX ^t KHWX ^t KHDX	2	_	2	_	ns	4

NOTES:

1. A write is performed when \overline{W} and \overline{E} are both low for the specified setup and hold times.

2. All write cycle timing is referenced from K.

Transition is measured ±500 mV from steady-state voltage with load of Figure 18. This parameter is sampled not 100% tested. At any
given voltage and temperature, tKHOZ max is less than tKHOX min for a given device.

4. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

WRITE CYCLE

^tKHKH K (CLOCK) ^tKHKL ^tKLKH *t***EVKH** [†]EVKH ^tKHEX **TEVKH** ^tKHEX E (CHIP ENABLE) ^tAVKH ^tKHAX TAVKH TAVKH ^tKHAX A (ADDRESS) An An + 1 A_{n+2} ^tWLKH ^tKHWX twlkh TKHWX **tWLKH** W (WRITE ENABLE) ^tovkh ^tKHDX ^tDVKH ^tKHDX - tovkh 0_n 0_{n + 1} D (DATA IN) 0n + 2 \vdash **tKHQV** ^tKHOZ Q (DATA OUT) 0_{n - 2} 0_{n - 1} HIGH Z -**ORDERING INFORMATION** (Order by Full Part Number) MCM 62973A ΧХ х Speed (18 = 18 ns, 20 = 20 ns) Motorola Memory Prefix -Package (FN = PLCC) Part Number-

Full Part Numbers-MCM62973AFN18 MCM62973AFN20

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

64K x 4 Bit Fast Synchronous Static RAM

The MCM62980 is a 262,144 bit synchronous static random access memory organized as 65,536 words of 4 bits, fabricated using Motorola's high-performance silicongate CMOS technology. The device integrates a 64K x 4 SRAM core with advanced peripheral circuitry consisting of positive edge triggered registers on address and synchronous write enable inputs. Asynchronous controls consist of asynchronous write strobe and output enable (G). This device has increased output drive capability supported by multiple power pins.

Write cycles are differentiated from read cycles by the state of the synchronous write enable pin (\overline{SW}) at the rising edge of clock (K). Write cycles are completed only if asynchronous write strobe (\overline{AW}) is asserted within the specified setup time of the following rising edge of clock (K). Write cycles may be aborted by negating the \overline{AW} signal prior to the low transition of the clock.

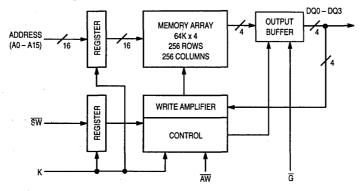
Additional power supply pins have been utilized and placed on the package for maximum performance. In addition one set of power pins is electrically isolated from the other set and supplies power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state which allows simple yet effective transmission line terminations to be achieved.

The MCM62980 will be available in a 28-pin 300 mil plastic SOJ.

Applications for this device include cache data and tag RAMs. See Figure 2 for applications information.

- Single 5 V ± 10% Power Supply
- Choice of 5.0 V or 3.3 V ± 10% Power Supplies for Output Buffers
- · Fast Access and Cycle Times: 15/20 ns Max
- Fully Synchronous Operation, Single Clock Control
- Clock Timed Writes with Asynchronous Late Write Abort
- Registered Address Inputs
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- High Board Density 300 mil Plastic SOJ Package

MCM62980


J PACKAGE 300 MIL SOJ CASE 810B

Pli	ASSIG	NM	ENT
КC	1•	28	v _{cc}
A0 [2	27	A15 .
A1 [3	26	A14
A2 [4	25	A13
A3 [5	24	A12
A4 [6	23] A11
• • • • • A5 [7	22	A10
A6 [8	21	D Vcca
A7 [9	20	D v _{ssa}
A8 E	10	19	000 [
A9 [11	. 18	DQ1
SW [12	17	DQ2
<u></u> 6	13	16	1 003
v _{ss} C	14	15) aw
			•

PIN NAMES
A0 – A15 Address Inputs AW0 Asynchronous Write Strobes SW Synchronous Write Enable K Clock G Output Enable DQ0 – DQ3 Data Input/Output VCC + 5 V Power Supply VCCQ Output Buffer Power Supply VSSQ Output Buffer Ground VSS Ground

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

BLOCK DIAGRAM

AC TEST LOADS

TRUTH TABLE (See Note)

SW	ĀŴ	G	Mode	Supply Current	I/O Status
н	X	L	Read Cycle	lcc	Data Out
Н	X	н	Read Cycle	ICC	High-Z
L	L	х	Write Cycle	ICC	High-Z
L	н	x	Aborted Write Cycle	lcc	High-Z

NOTE: SW and AW satisfy the specified setup and hold times for the rising edge of clock (K).

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	0.5 to 7.0	۰V,
Voltage Relative to VSS/VSSQ for Any Pin Except V _{CC} and V _{CCQ}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	Tstg	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High Z at power up.

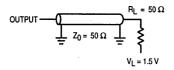
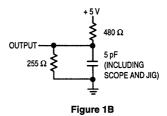



Figure 1A

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 V \pm 10\%, V_{CCQ} = 5.0 V \text{ or } 3.3 V \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Symbol	Min	Тур	Max	Unit			
V _{CC}	4.5	5.0	5.5	V			
Vcca•	4.5 3.0	5.0 3.3	5.5 3.6	V			
VIH	2.2	-	V _{CC} + 0.3	V			
VIL	- 0.5**	-	0.8	V			
	Symbol Vcc VccQ* VIH	Symbol Min V _{CC} 4.5 V _{CCQ} * 4.5 3.0 VIH	Symbol Min Typ V _{CC} 4.5 5.0 V _{CCQ} * 4.5 5.0 3.0 3.3 V _{IH} 2.2 —	Symbol Min Typ Max V _{CC} 4.5 5.0 5.5 V _{CCQ} * 4.5 5.0 5.5 V _{CCQ} * 4.5 5.0 3.3 V _{IH} 2.2 V _{CC+0.3}			

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS = VSSQ = 0 V)

*V_{CCQ} must be \leq V_{CC} at all times, including power up. **V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)	_		± 1.0	μA
Output Leakage Current (G = VIH)	likg(O)	_	_	± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , All Inputs = V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, I_{out} = 0 mA, Cycle Times \geq t(HKH min)	ICCA	·	130	170	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	_	0.4	V
Output High Voltage (IOH = - 4.0 mA)	Voн	2.4	<u> </u>		V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ3)	C _{in}	4	6	pF
Input/Output Capacitance (DQ0 – DQ3)	C _{I/O}	8	10	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCQ} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	o 3.0 V
Input Rise/Fall Time	. 3 ns

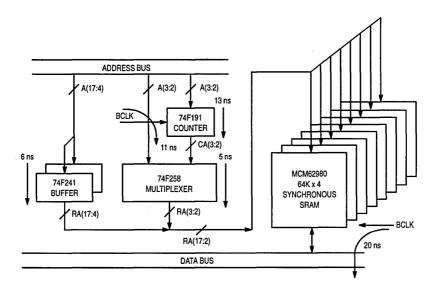
 Output Timing Reference Level
 1.5 V

 Output Load
 See Figure 1A Unless Otherwise Noted

READ AND WRITE CYCLE TIMING (See Note 1)

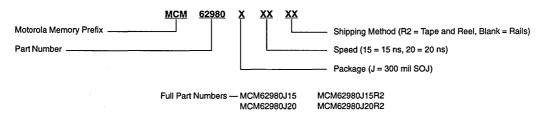

		MCM62	2980-15	I5 MCM62980-20			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Cycle Times: Clock High to Clock High	tкнкн	15		20	_	ns	
Access Times: Clock High to Output Valid Output Enable Low Output Valid	^t KHQV ^t GLQV	-	15 6	_	20 8	ns	2
Aborted Write Cycles: Clock Low to Asynchronous Write Strobe High Clock High to Asynchronous Write Strobe Invalid	tKLAWH tKHAWX	2	<u> </u>	2	0	ns	
Output Buffer Control: Output Enable High to Output High-Z Output Enable Low to Output Low-Z Reads:	tGHQZ tGLQX	2	6	2 2	8	ns	3
Clock High to Output Low-Z after Write Clock High to Output Invalid Writes:	^t KHQX1 ^t KHQX2	8 5	-	8 5	=		
Clock High to Output High-Z after Read	^t кнqz	3	8	3	10		
Clock: Clock High Time Clock Low Time	^t KHKL ^t KLKH	4 8	-	4 10	=	ns	
Setup Times: Address Valid to Clock High Synchronous Write Enable Valid to Clock High Writes:	^t AVKH ^t SWVKH	3 3	-	3 3	-	ns	
Data In Valid to Clock High Asynchronous Write Strobe Low to Clock High	^t DVKH ^t AWLKH	5 6	-	6 6	-		
Hold Times: Clock High to Address Invalid Clock High to Synchronous Write Enable Invalid Writes:	^t KHAX ^t KHSWX	2 2	=	2 2	_	ns	
Clock High to Data In Invalid Clock High to Asynchronous Write Strobe High	^t KHDX ^t KHAWX	0 2		0 2	_		

NOTES:


1. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K).

2. Into rated load of 85 pF equivalent resistive load (see Figure 1).

3. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ is less than tKHQX1 and tGHQZ is less than tGLQX for a given device. **READ CYCLES**



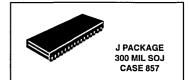
4

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

64K x 4 Bit Fast Synchronous ParityRAM™

The MCM62981 is a 262,144 bit synchronous static random access memory organized as 65,536 words of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 64K x 4 SRAM core with advanced peripheral circuitry consisting of positive edge triggered registers on address and synchronous write enable inputs. Asynchronous controls include asynchronous write strobes and output enable (G). This device has increased output drive capability supported by multiple power pins. Four asynchronous write strobes ($\overline{AWO} - \overline{AW3}$) are provided to allow each bit position to be written individually, thereby simplifying the task of supporting byte parity. This x4 organized SRAM is ideally suited for parity on 32-bit words. The device is functionally similar to the MCM62980 and MCM62990 with the only difference being the individual bit write capability.

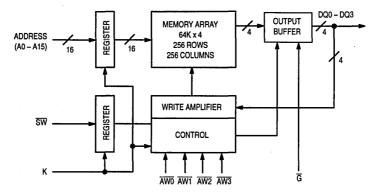

Write cycles are differentiated from read cycles by the state of the synchronous write enable pin (\overline{SW}) at the rising edge of clock (K). Write cycles are completed only if the appropriate asynchronous write strobe (\overline{AWx}) is asserted within the specified setup time of the following rising edge of clock (K). Write cycles may be aborted by ensuring that each \overline{AWx} is negated by the time the clock transitions to the low state.

Additional power supply pins have been utilized and placed on the package for maximum performance. In addition, one set of power pins is electrically isolated from the other set and supplies power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state which allows simple yet effective transmission line terminations to be achieved.

The MCM62981 will be available in a 32-pin 300 mil plastic SOJ. Applications for this device include parity RAMs for fast data caches.

- Single 5 V ± 10% Power Supply
- Choice of 5.0 V or 3.3 V ± 10% Power Supplies for Output Buffers
- Fast Access and Cycle Times: 15/20 ns Max
- Fully Synchronous Operation, Single Clock Control
- · Clock Timed Writes with Asynchronous Late Write Abort
- Each Bit Position Individually Writeable for Simple Parity Support
- Registered Address Inputs
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- · High Output Drive Capability: 85 pF/Output at Rated Access Time

MCM62981



PIN ASSIGNMENT						
кC	1 •	32	l v _{cc}			
AO [2	31] A15			
A1 [3	30	A14			
A2 [4	29] A13			
A3 [5	28	A12			
A4 [6	27	J A11			
A5 🕻	7	26	J A10			
A6 🕻	8	25] v _{cco}			
A7 🕻	9	24] v _{ssq}			
A8 [10	23] DQ0			
а9 [11	22	DQ1			
<u>sw</u> [12	21	DQ2			
ធ	13	20	DQ3			
v _{ss} C	14	19	D AW3			
NC [15 .	18] AW2			
awo C	16	17	AW1			

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

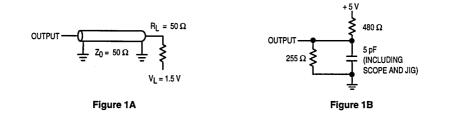
ParityRAM is a trademark of Motorola Inc.

BLOCK DIAGRAM

TRUTH TABLE (See Note)

SW	AWx	G	Mode	Supply Current	I/O Status
н	X	L	Read Cycle	ad Cycle ICC	
н	х	н	Read Cycle I _{CC}		High-Z
L	L	х	Write Cycle	lcc	High-Z
L	Н	х	Aborted Write Cycle	Icc	High-Z

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V)


Rating	Symbol	Value	Unit		
Power Supply Voltage	Vcc	- 0.5 to 7.0	V		
Voltage Relative to VSS/VSSQ for Any Pin Except VCC and VCCQ	Vin, Vout	- 0.5 to V _{CC} + 0.5	v		
Output Current (per I/O)	lout	± 20	mA		
Power Dissipation	PD	1.0	w		
Temperature Under Bias	T _{bias}	- 10 to + 85	°C		
Operating Temperature	TA	0 to + 70	°C		
Storage Temperature	Tstg	- 55 to + 125	°C		

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the OPERATING CONDI-TIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High Z at power up.

AC TEST LOADS

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

DC OPERATING CONDITIONS AND CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccq	4.5 3.0	5.0 3.3	5.5 3.6	v
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3	v
Input Low Voltage	VIL	- 0.5*	_	0.8	V

 V_{IL} (min) = - 3.0 V ac (pulse width \leq 20 ns)

DC OPERATING CONDITIONS AND CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(i)	_	-	± 1.0	μΑ
Output Leakage Current (G = VIH)	l _{lkg} (O)	_	-	± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , All Inputs = V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, I _{out} = 0 mA, Cycle Times \geq t _{KHKH} min)	ICCA	_	130	170	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	-	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4	_	-	v

$\label{eq:capacity} \textbf{CAPACITANCE} \hspace{0.2cm} (f=1.0 \hspace{0.2cm} \text{MHz}, \hspace{0.2cm} \text{dV} = 3.0 \hspace{0.2cm} \text{V}, \hspace{0.2cm} \text{T}_{\text{A}} = 25 \hspace{0.2cm} ^{\circ} \text{C}, \hspace{0.2cm} \text{Periodically Sampled Rather Than 100\% Tested})$

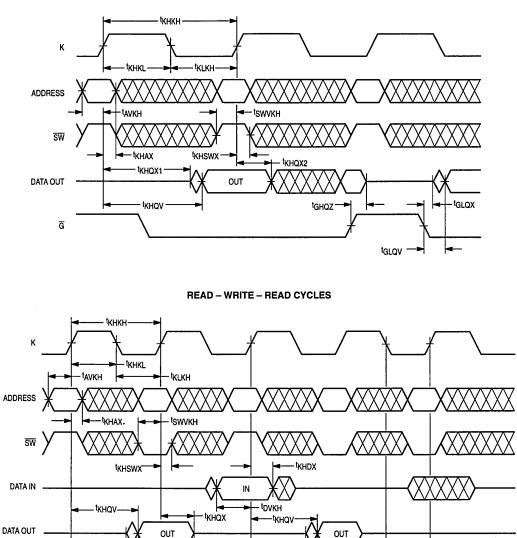
Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ3)	C _{in}	4	6	ρF
Input/Output Capacitance (DQ0 – DQ3)	CI/O	8	10	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.	5 V č
Input Pulse Levels 0 to 3.0	ענ
Input Rise/Fall Time 3	ns

READ AND WRITE CYCLE TIMING (See Note 1)


Parameter		MCM62981-15		MCM62981-20			
	Symbol	Min	Max	Min	Max	Unit	Notes
Cycle Times: Clock High to Clock High	^t кнкн	15		20	_	ns	
Access Times: Clock High to Output Valid Output Enable Low Output Valid	^t KHQV ^t GLQV	=	15 6	-	20 8	ns	2
Aborted Write Cycles: Clock Low to Asynchronous Write Strobe High Clock High to Asynchronous Write Strobe Invalid	^t KLAWxH ^t KHAWx	2	<u> </u>	2	0	ns	
Output Buffer Control: Output Enable High to Output High-Z Output Enable Low to Output Low-Z Reads:	^t GHQZ ^t GLQX	2 2	6	2 2	8	ns	3
Clock High to Output Low-Z after Write Clock High to Output Invalid Writes:	^t KHQX1 ^t KHQX2	8 5	-	8 5	-		
Clock High to Output High-Z after Read	tкноz	3	8	3	10		
Clock: Clock High Time Clock Low Time	tkhkl tklkh	4 8	-	4 10		ns	
Setup Times: Address Valid to Clock High Synchronous Write Enable Valid to Clock High Writes:	^t AVKH ^t SWVKH	3 3	-	3 3	-	ns	
Data In Valid to Clock High Asynchronous Write Strobe Low to Clock High	^t DVKH ^t AWxLK	5 6	=	6 6	-		
Hold Times: Clock High to Address Invalid Clock High to Synchronous Write Enable Invalid Writes:	^t KHAX ^t KHSWX	2 2	-	2 2	-	ns	
Clock High to Data In Invalid Clock High to Asynchronous Write Strobe High	^t KHDX ^t KHAWx	0 2	-	0 2			

NOTES:

1. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K).

2. Into rated load of 85 pF equivalent resistive load (see Figure 1).

 Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHQZ} is less than t_{KHQX1} and t_{GHQZ} is less than t_{GLQX} for a given device. READ CYCLES

tKHQX1

- ^tKHAWxH

READ

tKLAWxH-

ABORTED WRITE

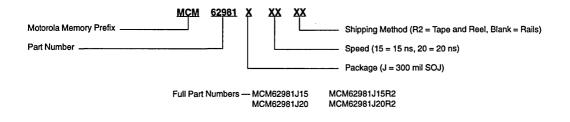
tKHQX1

^tAWxLKH

WRITE

4

MOTOROLA FAST SRAM DATA


READ

ĀŴ

– ^tKHAWx

ORDERING INFORMATION

(Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

16K x 16 Bit Synchronous Fast Static RAM

The MCM62990A is a 262,144 bit synchronous static random access memory organized as 16,384 words of 16 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 16K x 16 SRAM core with advanced peripheral circuitry. Inputs to the device fall into two categories: synchronous and asynchronous. All synchronous inputs pass through positive-edge-triggered registers controlled by a single clock input (K). The synchronous inputs include all addresses, the two chip enables (SE and SE), and the synchronous write enable (SW).

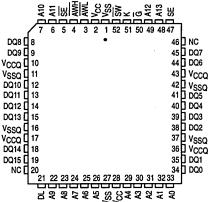
Asynchronous inputs include the asynchronous byte write strobes (\overline{AWL} and \overline{AWH}), output enable (\overline{G}), data input (DQ0 – DQ15), and the data latch enable (DL). Input data can be asynchronously latched by DL to provide simplified datain timings during write cycles.

Address and write control are registered on-chip which greatly simplifies write cycles. Dual write strobes (\overline{AWL} and \overline{AWH}) are provided to allow individually writeable bytes. \overline{AWL} controls DQ0 – DQ7, the lower bits while \overline{AWH} controls DQ8 – DQ15, the upper bits. In addition, the AWs allow late write cycles to be aborted if they are "false" during the low period of the clock. Dual chip enables (SE and \overline{SE}) are provided, allowing address decoding to be accomplished on-chip when the device is used in a dual bank mode.

An input data latch is provided. When data latch enable (DL) is high, the data latch is in the transparent state. When DL is low, the data latch is in the latched state. This data input latch simplifies write cycles by guaranteeing data hold time in a simple fashion.

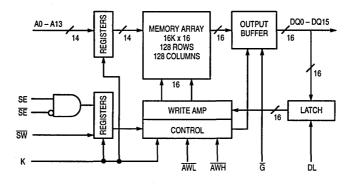
Additional power supply pins have been utilized and placed on the package for maximum performance. In addition, one set of power pins is electrically isolated from the other two and supplies power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state which allows simple yet effective transmission line terminations to be achieved.

The MCM62990A will be available in a 52 pin plastic leaded chip carrier (PLCC).


Typical applications for this device are cache memory and tag RAMs, memory in systems which are pipelined and systems which require wide data bus widths and reduced parts count.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V Power Supplies for Output Buffers
- Fast Access Times: 12/15/20/25 ns Max
- Byte Writeable via Dual Write Strobes with Abort Write Capability
- Separate Data Input Latch for Simplified Write Cycles
- Clock Controlled Registered Address, Write Control, and Dual Chip Enables
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- High Board Density 52 Lead PLCC Package

MCM62990A



PIN ASSIGNMENT

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

BLOCK DIAGRAM

TRUTH TABLE (See Notes)

SEs	sw	AWL	AWH	DL	G	Mode	Supply Current	I/O Status
F	х	х	X	х	х	Deselected Cycle	ISB	High-Z
т	н	х	x	х	н	Read Cycle	lcc	High-Z
Т	н	х	x	X	L	Read Cycle	1cc	Data Out
Т	L	Ľ	L L	н	х	Write Cycle All Bits Transparent Data In	Icc	High-Z
Т	L	н	н	х	х	Aborted Write Cycle	licc	High-Z
Т	L	L	H	н	х	Write Cycle Lower 8 Bits Transparent Data In	lcc	High-Z
Т	L	н	L	L	х	Write Cycle Upper 8 Bits Latched Data In	lcc	High-Z

NOTES:

1. True (T) is SE = 1 and \overline{SE} = 0.

Registered inputs (Addresses, SW, SE, and SE) satisfy the specified setup and hold times about the rising edge of clock (K). Data-in satisfies the specified setup and hold times for DL.
 A transparent write cycle is defined by DL high during the write cycle.

4. A latched write cycle is defined by DL transitioning low during the write cycle and satisfying the specified setup and hold times.

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS/VSSQ for Any Pin Except VCC and VCCQ	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current (per 1/O)	lout	± 20	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = V_{CCQ} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC**}	4.5	5.0	5.5	V
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible) (V _{CCQ} must be \leq V _{CC} at all times, including power up.)	VCCQ	4.5 3.0	5.0 3.3	5.5 3.6	V
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3	v
Input Low Voltage	VIL	- 0.5*	-	0.8	v

* V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

** V_{CC} must be \geq V_{CCQ} at all times, including power up.

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(i)	_	-	± 1.0	μA
Output Leakage Current ($\overline{G} = V_{IH}$)	likg(O)	_	-	± 1.0	μA
AC Supply Current (\overline{G} = V _I H, I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{KHKH} min)	ICCA12 ICCA15 ICCA20 ICCA25		295 275 265 255	350 330 320 310	mA
$ \begin{array}{l} \mbox{Standby Current} (\overline{E}=V_{ H}, E=V_{ L}, I_{OUt}=0 \mbox{ mA}, \mbox{All Inputs}=V_{ L} \mbox{ or } V_{ H}, \\ V_{ L}=0 \ V \mbox{ and } V_{ H} \geq 3.0 \ V, \mbox{ Cycle Time} \geq t_{KHKH} \mbox{ min}) \end{array} $	ISB	_	40	50	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	-	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4	-	—	v

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ15)	C _{in}	4	6	pF
Input/Output Capacitance (DQ0 – DQ15)	Cout	8	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V ± 10%, V_{CCQ} = 3.3 V or 5.0 V ± 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	3 ns

READ AND WRITE CYCLE TIMING (See Notes 2 and 3)

		6299	62990A-12		DA-15	62990A-20		0 62990A-25			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Times Clock High to Clock High	^t кнкн	15	-	15	-	20	-	25	-	ns	
Access Times Clock High to Output Valid Output Enable Low to Output Valid	^t KHQV ^t GLQV	=	12 5	_	15 6	_	20 8	_	25 10	ns	4
Aborted Write Cycles Clock Low to Asynchronous Write Strobes (AWL, AWH) High Clock High to AWx Invalid	^t KLAWxH ^t KHAWxL	- 2	0	2	0	2	0	2	0	ns	
Output Buffer Control Asynchronous Output Enable (G) High to Output High Z	tGHQZ	2	5	2	5	2	5	2	5	ns	1
G Low to Output Low Z Reads:	^t GLQX	2	-	2	—	2	-	2	-		1
Clock (K) High to Output Low Z After Deselect or Write	^t KHQX1	8	-	8		8	-	8	-	ļ	1
Data Out Hold After Clock High Writes:	tKHQX2	5	-	5	-	5	-	5	-	ĺ	5
K High to Output High Z After Read	^t KHQZ	3	10	3	10	3	10	3	10	<u> </u>	1
Clock Clock High Time Clock Low Time	^t KHKL ^t KLKH	4 7	_	4 8	_	4 10	=.	4 10	=	ns	
Setup Times Address Valid to Clock High Synchronous Write (SW) Valid to Clock High	tavkh tswvkh	3 3	-	3 3		3 3	_	3 3	_	ns	5 5
Synchronous Enables (SE, SE) Valid to Clock High	^t SEVKH	3	_	3	_	3	_	3	-		5
Writes: Data-In Valid to Clock High AWL, AWH Low to Clock High Data Latch:	^t DVKH tAWxLKH	5 6	_	6 6	-	6 6	=	7 7	-		2, 5 5
Data-In Valid to DL Low	^t DVDLL	2	—	2		2	_	2			3, 5
Hold Times Clock High to Address Invalid Clock High to SW Invalid Clock High to SE, SE Invalid	^t KHAX ^t KHSWX ^t KHSEX	2 3 3		2 3 3		2 3 3		2 3 3		ns	5 5 5
Writes: Clock High to Data-In Invalid Clock High to AWL, AWH High Clock High to DL High Data Latch:	^t KHDX ^t KHAWxH ^t KHDLH	2 2 2		2 2 2	 	2 2 2		2 2 2			2, 5 5 3, 5
DL Low to Data-In Invalid DL High to Clock High	^t DLLDX ^t DLHKH	2 5	_	2 6	_	2 6	_	2 7			3, 5 3, 5

NOTES:

1. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ is less than tKHQX and tGHQZ is less than tGLQX for a given device.

2. A transparent write cycle is defined by DL high during the write cycle.

3. A latched write cycle is defined by DL transitioning low during the write cycle and satisfying the specified hold time for the rising edge of clock (K).

4. Into rated load of 85 pF equivalent resistive load (see Figure 1A).

5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for all rising edges of clock (K) or falling edges of data latch enable (DL).

AC TEST LOADS

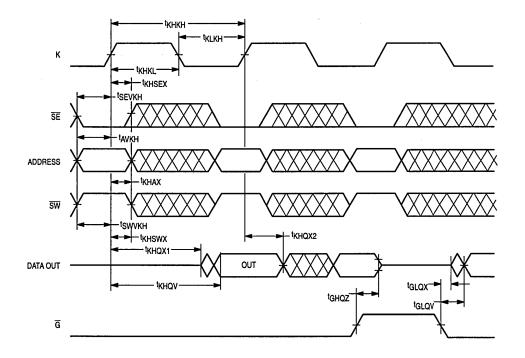
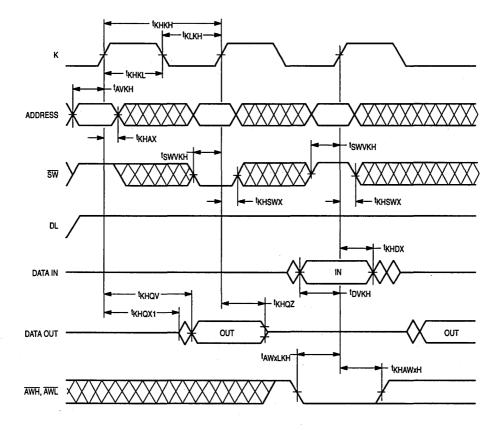
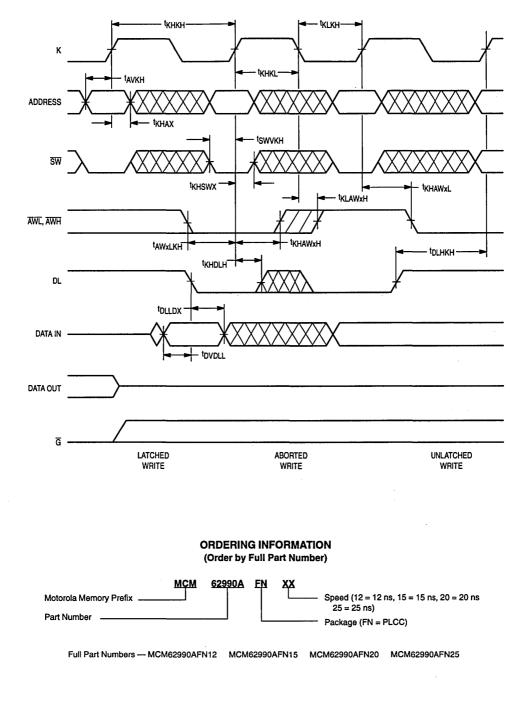


Figure 1A

Figure 1B


NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLES



4

READ-UNLATCHED WRITE-READ CYCLES

WRITE CYCLES

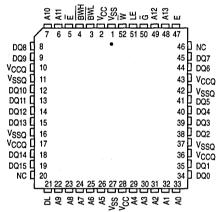
16K x 16 Bit Asynchronous/Latched Address Fast Static RAM

The MCM62995A is a 262,144 bit latched address static random access memory organized as 16,384 words of 16 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 16K x 16 SRAM core with advanced peripheral circuitry consisting of address and data input latches, active high and active low chip enables, separate upper and lower byte write strobes, and a fast output enable. This device has increased output drive capability supported by multiple power pins. In addition, the output levels can be either 3.3 V or 5 V TTL compatible by choice of the appropriate output bus power supply.

Address, data in, and chip enable latches are provided. When latch enable (LE for address and chip enables and DL for data in) is high, the address, data in, and chip enable latches are in the transparent state. If latch enable (LE, DL) is tied high, the device can be used as an asynchronous SRAM. When latch enable (LE, DL) is low, the address, data in and chip enable latches are in the latched state. This input latch simplifies read and write cycles by guaranteeing address and data-in hold time in a simple fashion.

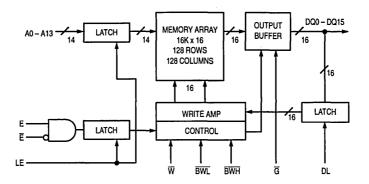
Dual write strobes (BWL and BWH) are provided to allow individually writeable bytes. BWL controls DQ0 – DQ7 (the lower bits), while BWH controls DQ8 – DQ15 (the upper bits).

Additional power supply pins have been utilized and placed on the package for maximum performance. In addition, the output buffer power pins are electrically isolated from the other two and supply power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state thereby allowing simplified transmission line terminations.


The MCM62995A is available in a 52 pin plastic leaded chip carrier (PLCC). This device is ideally suited for systems which require wide data bus widths, cache memory and tag RAMs. See Figure 2 for applications information.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Buffers
- Fast Access Times: 12/15/20/25 ns Max
- · Byte Writeable via Dual Write Strobes with Abort Write Capability
- · Separate Data Input Latch for Simplified Write Cycles
- Address and Chip Enable Input Latches
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- High Board Density 52 Lead PLCC Package

MCM62995A


FN PACKAGE PLASTIC CASE 778

PIN ASSIGNMENT

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

BLOCK DIAGRAM

TRUTH TABLE

Es	w	BWL	BWH	LE	DL	ā	Mode	Supply Current	I/O Status
F	x	x	x	х	x	х	Deselected Cycle	ISB	High-Z
т	н	X	x	н	x	н	Read Cycle	ICC	High-Z
Т	н	X	X	н	X	L	Read Cycle	ICC	Data Out
т	н	x	x	L	х	L	Latched Read Cycle	lcc	Data Out
т	L	L	L	н	н	х	Write Cycle All Bits	Icc	High-Z
т	L	н	н	х	x	х	Aborted Write Cycle	Icc	High-Z
Т	L	L	н	н	н	х	Write Cycle Lower 8 Bits	lcc	High-Z
т	L	н	L	н	L	х	Write Cycle Upper 8 Bits Latched Data-In	lcc	High-Z
Т	L	L	L	L	L	х	Latched Write Cycle Latched Data-In	lcc	High-Z

NOTE: True (T) is E = 1 and E = 0. E, E, and Addresses satisfy the specified setup and hold times for the falling edge of LE. Data-in satisfies the specified setup and hold times for falling edge of DL.

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} /V _{SSQ} for Any Pin Except V _{CC} and V _{CCQ}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = V_{CCQ} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit	
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccq	4.5 3.0	5.0 3.3	5.5 3.6	V	
Input High Voltage	VIH	2.2		V _{CC} + 0.3	v	
Input Low Voltage	VIL	- 0.5*	_	0.8	V	

* V_{IL} (min) = - 3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(i)		_	± 1.0	μA
Output Leakage Current ($\overline{G} = V_{IH}$)	likg(O)			± 1.0	μΑ
AC Supply Current (I _{Out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, Cycle Time \geq t _{AVAV} min)	ICCA12 ICCA15 ICCA20 ICCA25	-	295 275 265 255	350 330 320 310	mA
$ \begin{array}{l} \text{Standby Current} \ (E=V_{IL}, \overline{E}=V_{IH}, I_{out}=0 \ \text{mA}, \ \text{All inputs}=V_{IL} \ \text{or} \ V_{IH}, \\ V_{IL}=0 \ V \ \text{and} \ V_{IH} \geq 3.0 \ V, \ \text{Cycle Time} \geq t_{AVAV} \ \text{min}) \end{array} $	ISB		40	50	mA
Output Low Voltage (IOL = + 8.0 mA)	VOL	_	-	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	_	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ15)	C _{in}	4	6	pF
Input/Output Capacitance (DQ0 - DQ15)	Cout	8	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCQ} = 3.3 \text{ V or } 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 3 ns

 Output Timing Reference Level
 1.5 V

 Output Load
 See Figure 1 Unless Otherwise Noted

ASYNCHRONOUS READ CYCLE TIMING (See Notes 1, 2, 3, and 4)

		6299	5A-12	6299	5A-15	6299	5A-20	6299	5A-25		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	t _{AVAV}	15	—	15	-	20	-	25	-	ns	5
Access Times: Address Valid to Output Valid E, Ē "True" to Output Valid Output Enable Low to Output Valid	^t AVQV ^t ETQV ^t GLQV		12 12 5		15 15 6		20 20 8		25 25 10	ns	6
Output Hold from Address Change	tAXQX	4	—	4	-	4	-	4	- 1	ns	
Output Buffer Control: E, Ē "True" to Output Active G Low to Output Active E, Ē "False" to Output High-Z G High to Output High-Z	^t ETQX ^t GLQX ^t EFQZ ^t GHQZ	2 2 2 2	 9 5	2 2 2 2	 9 6	2 2 2 2		2 2 2 2		ns	7
Power Up Time	^t ETICCA	0	—	0	-	0		0	—	ns	

NOTES:

1. LE and DL are equal to $V_{I\!H}$ for all asynchronous cycles.

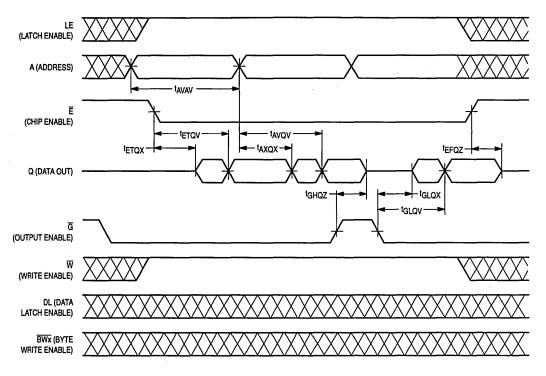
2. Write Enable is equal to VIH for all read cycles.

3. ET is defined by E going low coincident with or after E goes high, or E going high coincident with or after E goes low.

4. EF is defined by E going high or E going low.

5. All read cycle timing is referenced from the last valid address to the first transitioning address.

6. Addresses valid prior to or coincident with \overline{E} going low or E going high.


 Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEFQZ is less than tETQX and tGHQZ is less than tGLQX for a given device.

AC TEST LOADS

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

ASYNCHRONOUS READ CYCLES

		6299	5A-12	6299	5A-15	6299	5A-20	6299	5A-25		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Times	tavav	15	—	15	-	20	-	25	—	ns	6
Setup Times: Address Valid to End of Write Address Valid to E, E "False" Address Valid to W Low Address Valid to W Low Data Valid to W High Data Valid to E or E "False" Byte Write Low to W High Byte Write High to W Low (Abort)	tavwh tavef tavwl tavet tovwh tovef tewxlwh tewxlwh	10 10 0 5 5 4 0		13 13 0 6 6 6 0		15 15 0 8 8 8 8 0		20 20 0 10 10 10 10 0		ns	2
Byte Write Low to E, Ē "False" Hold Times: W High to Address Invalid E, Ē "False" to Address Invalid W High to Data Invalid E, Ē "False" to Data Invalid W High to Byte Write Invalid E, Ē "False" to Byte Write Invalid	^t BWxLEF ^t WHAX ^t EFAX ^t WHDX ^t EFDX ^t WHBWxX ^t EFBWxX	4 0 0 0 2 2		6 0 0 2 2	 	8 0 0 0 0 2 2		10 0 0 0 2 2		ns	
Write Pulse Width: Write Pulse Width Write Pulse Width Enable to End of Write Enable to End of Write	^t WLWH ^t WLEF ^t ETWH ^t ETEF	12 12 12 12		13 13 13 13		15 15 15 15		20 20 20 20		ns	9 8 8,9
Output Buffer Control: W High to Output Valid W High to Output Active W High to Output High-Z	^t WHQV ^t WHQX ^t WLQZ	12 5 0	 9	18 5 0		20 5 0	 9	25 5 0	 10	ns	10 7, 1

ASYNCHBONOUS WRITE CYCLE TIMING (See Notes 1, 2, 3, 4, and 5)

NOTES:

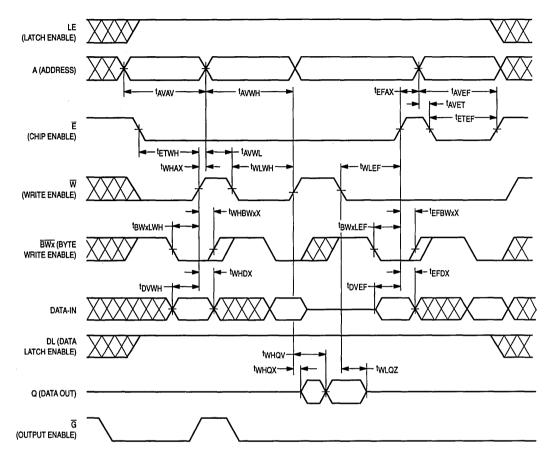
1. LE and DL are equal to VIH for all asynchronous cycles.

2. A write occurs during the overlap of ET, \overline{W} low and \overline{BWx} low. An aborted write occurs when \overline{BWx} remains at V_{IH} while \overline{W} is low.

3. Write must be equal to VIH for all address transitions.

4. ET is defined by E going low coincident with or after E goes high, or E going high coincident with or after E goes low.

5. EF is defined by E going high or E going low.


6. All write cycle timing is referenced from the last valid address to the first transitioning address.

7. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

8. If E and E goes true coincident with or after W goes low the output will remain in a high impedance state.

9. If E or E goes false coincident with or before W goes high the output will remain in a high impedance state. 10. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tWLQZ is less than tWHQX for a given device.

ASYCHRONOUS WRITE CYCLE

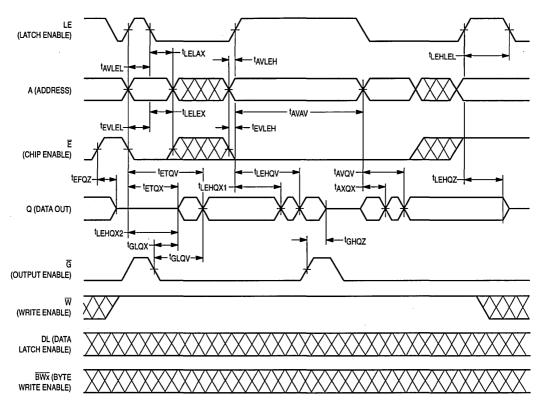
LATCHED READ CYCLE TIMING (See Notes 1, 2, 3, and 4)

		6299	5A-12	6299	5A-15	6299	5A-20	6299	5A-25		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	t AVAV	15	-	15	—	20	—	25	-	ns	5
Access Times: Address Valid to Output Valid E, Ē "True" to Output Valid LE High to Output Valid Output Enable Low to Output Valid	^t AVQV ^t ETQV ^t LEHQV ^t GLQV		12 12 12 5		15 15 15 6		20 20 20 8		25 25 25 10	ns	5 6
Setup Times: Address Valid to LE Low E, Ē "Valid" to LE Low Address Valid to LE High E, Ē "Valid" to LE High	[†] AVLEL [†] EVLEL [†] AVLEH [†] EVLEH	2 2 0 0		2 2 0 0		2 2 0 0		2 2 0 0		ns	6 6
Hold Times: LE Low to Address Invalid LE Low to E, Ē "Invalid"		3 3	=	3 3	=	3 3	=	3 3	=	ns	6
Output Hold: Address Invalid to Output Invalid LE High to Output Invalid	^t AXQX ^t LEHQX1	4 4	_	4	_	4 4	_	4	-	ns	
Latch Enable High Pulse Width	^t LEHLEL	5	-	5	-	5	1	5	-	ns	
Output Buffer Control: E, Ē "True" to Output Active G Low to Output Active LE High to Output Active E, Ē "Fatse" to Output High-Z LE High to Output High-Z G High to Output High-Z	^t ETQX ^t GLQX ^t LEHQX2 ^t EFQZ ^t LEHQZ ^t GHQZ	2 2 2 2 2 2 2 2	 9 9 5	2 2 2 2 2 2 2	 9 9 6	2 2 2 2 2 2 2		2 2 2 2 2 2 2		ns	7

NOTES:

1. Write Enable is equal to VIH for all read cycles.

2. All read cycle timing is referenced from the last valid address to the first transitioning address.


3. ET is defined by E going low coincident with or after E goes high, or E going high coincident with or after E goes low.

EF is defined by E going high or E going low.

5. Addresses valid prior to or coincident with \overline{E} going low and E going high

All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of latch enable (LE) and data latch enable (DL).

 Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEFQZ is less than tETQX and tLEHQZ is less than tLEHQX2 and tGHQZ is less than tGLQX for a given device. LATCHED READ CYCLES

		6299	5A-12	6299	5A-15	6299	5A-20	6299	5A-25		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Times: Address Valid to Address Valid LE High to LE High	tavav tLEHLEH	15 15	=	15 15	_	20 20	_	25 25	-	ns	5
Setup Times: Address Valid to End of Write Address Valid to End of Write E, \overline{E} "Valid" to LE Low Address Valid to LE Low E, \overline{E} "Valid" to LE High Address Valid to LE High Address Valid to \overline{W} Low Address Valid to \overline{W} Low Address Valid to \overline{W} Low Data Valid to DL Low Data Valid to \overline{D} Low Data Valid to \overline{D} High Data Valid to \overline{W} High DL High to \overline{W} High Byte Write Low to \overline{W} High Byte Write Low to \overline{W} High Byte Write High to \overline{W} Low (Abort)	tavwh tavef tevlel tevleh tavleh taven tavwl tavwl tavwl tavwl tovef tovoll tovwh tolhef tbwklwh tblkef tbwklwh	10 10 2 2 0 0 0 0 0 2 5 5 5 5 5 4 4 0		13 13 2 0 0 0 0 0 0 2 6 6 6 6 6 6 6 6 0		15 15 2 0 0 0 0 0 2 8 8 8 8 8 8 8 8 8 8 8 8 8		20 20 2 2 0 0 0 0 2 10 10 10 10 10 10 0 0		ns	
Hold Times: LE Low to E, Ē "Invalid" LE Low to Address Invalid DL Low to Data Invalid W High to Address Invalid E, Ē "False" to Address Invalid W High to Data Invalid E, Ē "False" to Data Invalid W High to DL High E, Ē "False" to DL High W High to Byte Write Invalid E, Ē "False" to Byte Write Invalid W High to LE High	¹ LELEX ¹ LELAX ¹ DLLDX ¹ WHAX ¹ EFAX ¹ WHDX ¹ EFDX ¹ WHDLH ¹ EFDLH ¹ EFDLH	3 2 0 0 0 0 0 2 2 0		3 2 0 0 0 0 0 2 2 0		3 2 0 0 0 0 0 0 2 2 0		3 2 0 0 0 0 0 0 2 2 0		ns	5 5
Write Pulse Width: LE High to W High Write Pulse Width Write Pulse Width Enable to End of Write Enable to End of Write	^t LEHWH ^t WLWH ^t WLEF ^t ETWH ^t ETEF	12 12 12 12 12		13 13 13 13 13		15 15 15 15 15		20 20 20 20 20	 	ns	6 9 8 8, 9
Latch Enable High Pulse Width	LEHLEL	5	—	5	-	5	-	5	-	ns	
Output Buffer Control: W High to Output Valid W High to Output Active W Low to Output High-Z	^t WHQV ^t WHQX ^t WLQZ	12 5 0	— — 9	15 5 0	— — 9	20 5 0	— — 9	25 5 0		ns	10 7, 10

NOTES:

1. A write occurs during the overlap of ET, W low and BWx low. An aborted write occurs when BWx remians at VIH while W is low.

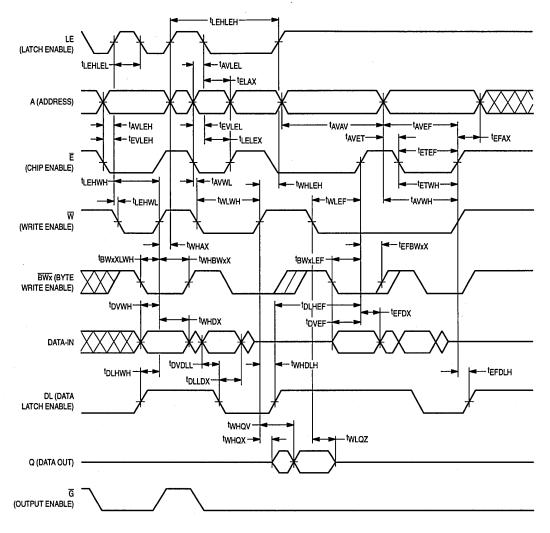
2. Write must be equal to VIH for all address transitions.

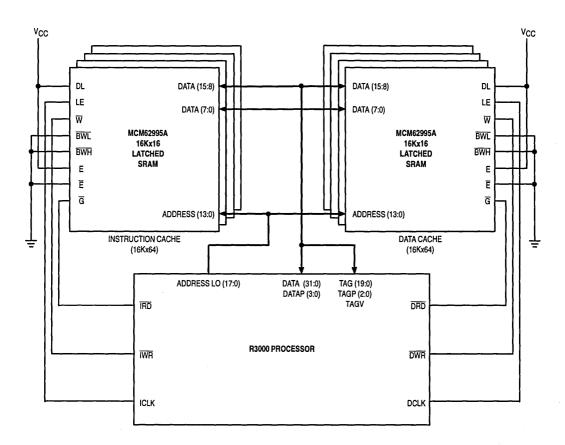
3. ET is defined by E going low coincident with or after E goes high, or E going high coincident with or after E goes low.

4. EF is defined by E going high or E going low.

5. All write cycle timing is referenced from the last valid address to the first transitioning address.

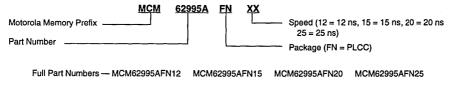
6. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of latch enable (LE) and data latch enable (DL).


7. If G goes low coincident with or after W goes low, the output will remain in a high impedance state


8. If E and E goes true coincident with or after W goes low the output will remain in a high impedance state.


9. If E or \overline{E} goes false coincident with or before \overline{W} goes high the output will remain in a high impedance state.

10. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tWLQZ is less than tWHQX for a given device.


LATCHED WRITE CYCLES

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview 32K x 18 Bit Asynchronous/Latched Address Fast Static RAM

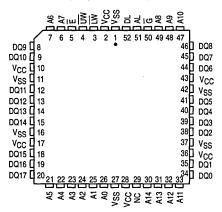
The MCM67A518 is a 589,824 bit latched address static random access memory organized as 32,768 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates a 32K x 18 SRAM core with advanced peripheral circuitry consisting of address and data input latches, active low chip enable, separate upper and lower byte write strobes, and a fast output enable. This device has increased output drive capability supported by multiple power pins.

Address, data in, and chip enable latches are provided. When latch enables (AL for address and chip enables and DL for data in) are high, the address, data in, and chip enable latches are in the transparent state. If latch enables are tied high, the device can be used as an asynchronous SRAM. When latch enables are low, the address, data in, and chip enable latches are in the latched state. This input latch simplifies read and write cycles by guaranteeing address and data-in hold time in a simple fashion.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits) while \overline{UW} controls DQ9 – DQ17 (the upper bits).

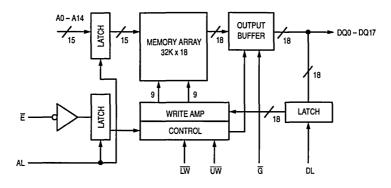
Additional power supply pins have been utilized and placed on the package for maximum performance.

The MCM67A518 will be available in a 52-pin plastic leaded chip carrier (PLCC).


This device is ideally suited for systems which require wide data bus widths, cache memory, and tag RAMs.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 12/15/20 ns Max
- · Byte Writeable via Dual Write Enables
- Separate Data Input Latch for Simplified Write Cycles
- · Address and Chip Enable Input Latches
- · Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package

MCM67A518


PIN ASSIGNMENT

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM

TRUTH TABLE

Ē	LW	បា	AL*	DL*	G	Mode	Supply Current	I/O Status
н	X	X	х	X	x	Deselected Cycle	ISB	High-Z
L	X	X	L	X	X	Read or Write Using Latched Addresses	lcc	-
L	X	х	н	х	X	Read or Write Using Unlatched Addresses	Icc	— [·]
L	н	н	x	X	L	Read Cycle	lcc	Data Out
L	н	н	х	x	H.	Read Cycle	Icc	High-Z
L	L	L	х	L	X	Write Both Bytes Using Latched Data In	lcc	High-Z
L	L	L	x	н	x	Write Both Bytes Using Unlatched Data In	lcc	High-Z
L	L	н	x	X	x	Write Cycle, Lower Byte	lcc	High-Z
L	н	L	x	X	x	Write Cycle, Lower Byte	ICC	High-Z

*E and Addresses satisfy the specified setup and hold times for the falling edge of AL. Data-in satisfies the specified setup and hold times for falling edge of DL.

NOTE: This truth table shows the application of each function. Combinations of these functions are valid.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	1.6	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit	
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	v	
Input High Voltage	ViH	2.2	V _{CC} + 0.3**	v	
Input Low Voltage	VIL	- 0.5*	0.8	v	

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA. ** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(l)	_	± 1.0	μA
Output Leakage Current (G = VIH)	l _{lkg} (O)	_	± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0, Cycle Time \geq t _{AVAV} min)	ICCA12 ICCA15 ICCA20		290 275 260	mA
AC Standby Current (E = V _{IH} , I _{out} = 0 mA, All Inputs = V _{IL} and V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, f = f _{max})	ISB1		75	mA
CMOS Standby Current ($\vec{E} \ge V_{CC} - 0.2$, All Inputs $\ge V_{CC} - 0.2$ V or ≤ 0.2 V, f = f _{max})	ISB2	_	12	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	3.3	v

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	рF
Input/Output Capacitance (DQ0 - DQ17)	C _{I/O}	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

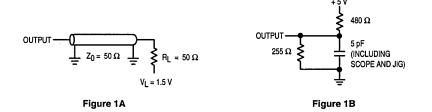
Input Timing Measurement Reference Level 1.	5 V
Input Pulse Levels 0 to 3.	0 V 0
Input Rise/Fall Time	ns

Output Timing Reference Level 1.5 V Output Load Figure 1 Unless Otherwise Noted

ASYNCHRONOUS READ CYCLE TIMING (See Notes 1 and 2)

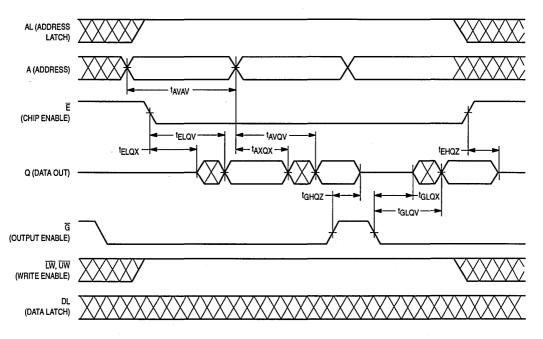
		MCM67	A518-12	MCM67	A518-15	MCM67	A518-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	t _{AVAV}	12		15	—	20	—	ns	3
Access Times: Address Valid to Output Valid Ē Low to Output Valid Output Enable Low to Output Valid	^t AVQV ^t ELQV ^t GLQV		12 12 6		15 15 7		20 20 8	ns	4
Output Hold from Address Change	tAXQX	4	_	4		4	—	ns	
Output Buffer Control: E Low to Output Active G Low to Output Active E High to Output High-Z G High to Output High-Z	^t ELQX ^t GLQX ^t EHQZ ^t GHQZ	3 1 2 2	 6 6	2 1 2 2	 9 7	2 1 2 2	 9 9	ns	5
Power Up Time	^t ELICCA	0	_	0	_	0	-	ns	

NOTES:


1. AL and DL are equal to V_{IH} for all asynchronous cycles. 2. Both Write Enable signals (LW, UW) are equal to V_{IH} for all read cycles.

3. All read cycle timing is referenced from the last valid address to the first transitioning address.

4. Addresses valid prior to or coincident with E going low.


5. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEHQZ is less than tELQX and tGHQZ is less than tGLQX for a given device.

AC TEST LOADS

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

ASYNCHRONOUS READ CYCLES

ASYNCHRONOUS WRITE CYCLE TIMING (See Notes 1, 2, and 3)

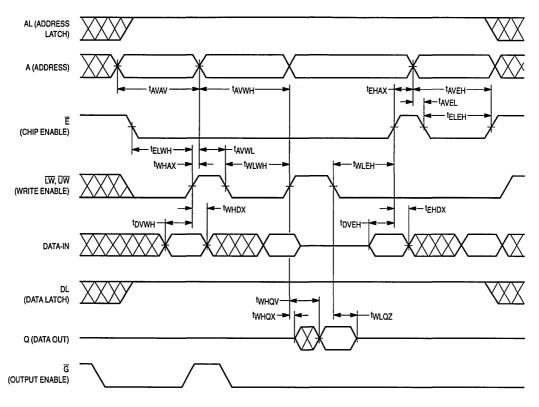
		MCM67	A518-12	12 MCM67A518-15 MCM67A518-20					
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Times	t AVAV	12	—	15	-	20	—	ns	4
Setup Times: Address Valid to End of Write Address Valid to E High Address Valid to W Low Address Valid to E Low Address Valid to W High Data Valid E High	tavwh taveh tavwl tavel tovwh toveh	8 0 0 6 6		13 13 0 7 7		15 15 0 8 8		ns	
Hold Times:	^t WHAX ^t EHAX ^t WHDX ^t EHDX	0 0 0 0	 	0 0 0 0		0 0 0 0		ns	
Write Pulse Width: Write Pulse Width (G Low) Write Pulse Width (G High) Write Pulse Width Enable to End of Write Enable to End of Write	^t WLWH ^t WLWH ^t WLEF ^t ELWH ^t ELEH	8 7 8 8 8	- - - -	13 12 13 13 13		15 14 15 15 15		ns	5 6 5, 6
Output Buffer Control: W High to Output Valid W High to Output Active W Low to Output High-Z	^t WHQV ^t WHQX ^t WLQZ	12 3 0	 6	15 5 0	 9	20 5 0	 9	ns	7 7, 8

NOTES:

1. \overline{W} refers to either or both byte write enables (\overline{LW} , \overline{UW}).

2. AL and DL are equal to V_{IH} for all asynchronous cycles.

3. Both Write Enables must be equal to V_{IH} for all address transitions.


4. All write cycle timing is referenced from the last valid address to the first transitioning address.

5. If E goes high coincident with or before W goes high the output will remain in a high impedance state.

6. If E goes low coincident with or after W goes low the output will remain in a high impedance state.

7. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tWLOZ is less than tWHOX for a given device. 8. If G goes low coincident with or after W goes low the output will remain in a high impedance state.

ASYNCHRONOUS WRITE CYCLE

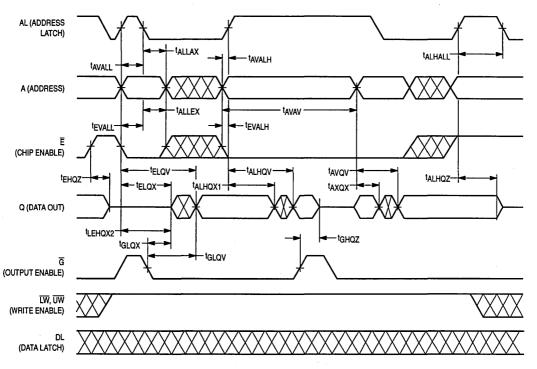
MCM67A518 4-148

LATCHED READ CYCLE TIMING (See Notes 1 and 2)

		MCM67	A518-12	MCM67	A518-15	MCM67	A518-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	^t AVAV	12		15		20	-	ns	3
Access Times: Address Valid to Output Valid Ē Low to Output Valid AL High to Output Valid Output Enable Low to Output Valid	^t AVQV ^t ELQV ^t ALHQV ^t GLQV		12 12 12 6	- - -	15 15 15 7		20 20 20 8	ns	3 4
Setup Times: Address Valid to AL Low 룬 Valid to AL Low Address Valid to AL High 룬 Valid to AL High	^t AVALL ^t EVALL ^t AVALH ^t EVALH	2 2 0 0		2 2 0 0		2 2 0 0	 	ns	4 4
Hold Times: AL Low to Address Invalid AL Low to E Invalid	^t ALLAX ^t ALLEX	2 2	_	3 3	=	3 3	_	ns	4
Output Hold: Address Invalid to Output Invalid AL High to Output Invalid	tAXQX tALHQX1	4 4		4 4	_	4 4	=	ns	
Address Latch Pulse Width	TALHALL	5	_	5	—	5	-	ns	
Output Buffer Control: E Low to Output Active G Low to Output Active AL High to Output Active E High to Output High-Z AL High to Output High-Z G High to Output High-Z	[†] ELQX [†] GLQZ [†] ALHQX2 [†] EHQZ [†] ALHQZ [†] ALHQZ [†] GHQZ	3 1 3 2 2 2		2 1 2 2 2 2	 9 9 7	2 1 2 2 2 2	 10 10 8	ns	5

NOTES:

1. Both Write Enable Signals (\overline{LW} , \overline{UW}) are equal to V_{IH} for all read cycles.


2. All read cycle timing is referenced from the last valid address to the first transitioning address.

3. Addresses valid prior to or coincident with E going low.

4. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of address latch (AL) and data latch (DL).

5. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEHQZ is less than tELQX and tLEHQZ is less than tEHQX2 and tGHQZ is less than tGLQX for a given device.

LATCHED READ CYCLES

LATCHED WRITE CYCLE TIMING (See Notes 1, 2, and 3)

		MCM67	A518-12	518-12 MCM67A518-15		MCM67	A518-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Times:	tavav	12	-	15		20	_	ns	4
Address Valid to Address Valid									
Setup Times:								ns	
Address Valid to End of Write	tavwh	8	-	13	-	15	-		
Address Valid to End of Write	^t AVEH	8	-	13	-	15			
Ē Valid to AL Low	^t EVALL	2	-	2	-	2	-		
Address Valid to AL Low	^t AVALL	2	-	2		2	-		
E Valid to AL High	^t EVALH	0	-	0	-	0	-		
Address Valid to AL High	tAVALH	0	-	0	-	0	-		
AL High to W Low	tALHWL	0	-	0	-	0	-		}
Address Valid to W Low	tAVWL	0	-	0	-	0	-		
Address Valid to E Low	tAVEL	0	-	0	-	0	-		1
Data Valid to DL Low	tDVDLL	2	-	2	_	2	-		
Data Valid to W High	^t DVWH	6	-	7	- 1	8	-		
Data Valid to E High	^t DVEH	6	-	7	- 1	8	-		
DL High to W High	^t DLHWH	6	- 1	7		8	-		ł
DL High to E High	^t DLHEH	6	-	7	-	8	-		
Hold Times:								ns	
AL Low to E Invalid	^t ALLEX	2	_	3	I	3	_		4
AL Low to Address Invalid	tALLAX	2		3	- 1	3	_	ł	4
DL Low to Data Invalid	tDLLDX	2	_	3	I _	3	_	1	
W High to Address Invalid	tWHAX	ō	l _	ō	_	Ō		1	
E High to Address Invalid	tEHAX	ō	_	ō		ō			
W High to Data Invalid	tWHDX	ŏ	_	ō		ō	_	1	
E High to Data Invalid		ō	_	ŏ		ŏ	_		
W High to DL High		ŏ	_	ŏ	I _	ŏ	_		
Ē High to DL High		ŏ		ŏ	_	ŏ	_		
W High to AL High		ŏ	_	o	l _	ŏ	- 1		
Write Pulse Width:							<u> </u>	ns	
AL High to W High	talhwh	8	· _	13		15	1 _	113	5
Write Pulse Width (G Low)		8		13		15			l v
Write Pulse Width (G High)		7	1 =	12		14			
Write Pulse Width (G High) Write Pulse Width		8		13	_	14	1 -		6
Enable to End of Write	tWLEH	8		13		15			7
Enable to End of Write	^t ELWH	8	-	13	-	15	-		6,7
	^t ELEH				<u> </u>		<u> </u>		· · ·
Address Latch Pulse Width	^t ALHALL	12		15	-	20		ns	4
Output Buffer Control:								ns	
W High to Output Valid	twhqv	12		15	-	20	-		
W High to Output Active	twhox	3	-	5	-	5	-		8
W Low to Output High-Z	tWLQZ	0	6	0	9	0	9		8, 9

NOTES:

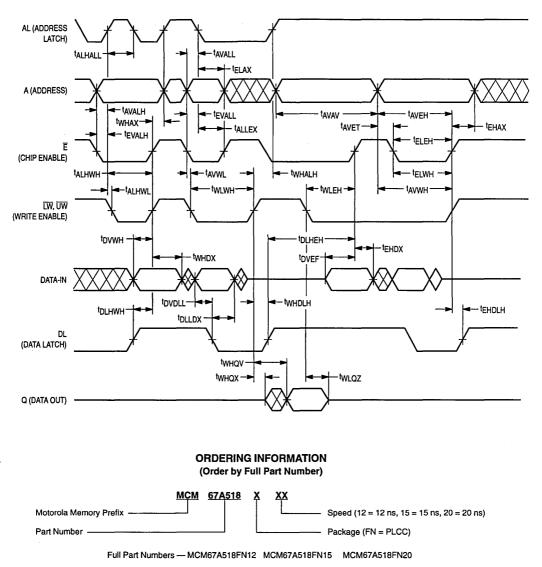
1. \overline{W} refers to either or both byte write enables (\overline{LW} , \overline{UW}).

2. A write occurs during the overlap of E low and W low.

3. Both Write Enables must be equal to VIH for all address transitions.

4. All write cycle timing is referenced from the last valid address to the first transitioning address.

5. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of address latch (AL) and data latch (DL).


6. If \overline{E} goes high coincident with or before \overline{W} goes high the output will remain in a high impedance state.

7. If E goes low coincident with or after W goes low the output will remain in a high impedance state.

8. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, twLQZ is less than twHQX for a given device.

9. If G goes low coincident with or after W goes low the output will remain in a high impedance state.

LATCHED WRITE CYCLES

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

32K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Self-Timed Write

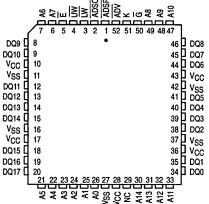
The MCM67B518 is a 589,824 bit synchronous fast static random access memory designed to provide a burstable, high-performance, secondary cache for the i486[™] and Pentium[™] microprocessors. It is organized as 32,768 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A14), data inputs (D0 – D17), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive-edge-triggered noninverting registers.

Bursts can be initiated with either address status processor (\overline{ADSP}) or address status cache controller (\overline{ADSC}) input pins. Subsequent burst addresses can be generated internally by the MCM67B518 (burst sequence imitates that of the i486 and Pentium) and controlled by the burst address advance (\overline{ADV}) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).

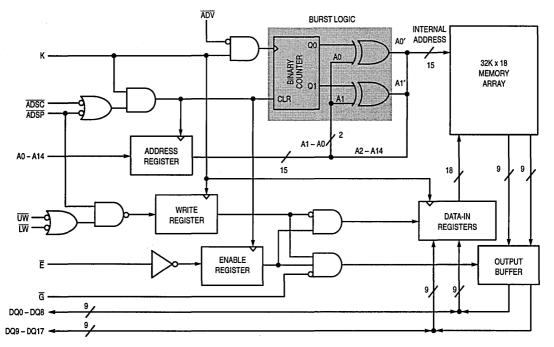

This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information.

- Single 5 V ± 5% Power Supply
- Fast Access Times: 9/12/18 ns Max
- Byte Writeable via Dual Write Enables
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package

MCM67B518

PIN ASSIGNMENT

PIN NAMES								
A0 – A14 Address Inputs K Clock ADV Burst Address Advance LW Lower Byte Write Enable UW Upper Byte Write Enable ADSC Controller Address Status ADSF Processor Address Status G Output Enable DQ – DQ17 Data Input/Output VCC + 5 V Power Supply VSS Ground NC No Connection								


All power supply and ground pins must be connected for proper operation of the device.

BurstRAM is a trademark of Motorola, Inc.

i486 and Pentium are trademarks of Intel Corp.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on \overline{W}) is performed using the new external address. Chip enable (\overline{E}) is sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is advanced prior to the operation. When ADV is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW, UW).

BURST SEQUENCE TABLE (See Note)

External Address	A14 – A2	A1	A0
1st Burst Address	A14 – A2	A1	ĀŌ
2nd Burst Address	A14 – A2	ĀĪ	A0
3rd Burst Address	A14 – A2	A1	ĀŌ

NOTE: The burst wraps around to its initial state upon completion.

MCM67B518 4-154

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	ADSP	ADSC	ADV	UW or LW	к	Address Used	Operation
н	L	х	x	x	L-H	N/A	Deselected
н	x	L	x	X	L-H	N/A	Deselected
L	L	х	x	X	L-H	External Address	Read Cycle, Begin Burst
L	н	L	x	L	L•H	External Address	Write Cycle, Begin Burst
L	н	L	x	н	L-H	External Address	Read Cycle, Begin Burst
х	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
х	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
Х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out
Read	н	High-Z
Write	x	High-Z — Data In
Deselected	×	High-Z

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to VSS for Any Pin Except VCC	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	1.5	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	ТА	0 to +70	°C
Storage Temperature	Tstg	- 55 to + 125	°C

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to VSS = 0 V)

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	V
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*	0.8	V

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20.0 ns) for I ≤ 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20.0 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})	l _{lkg} (I)	—	± 1.0	μA
Output Leakage Current ($\overline{G} = V_{ H}$)	likg(O)		± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , \overline{E} = V _{IL} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{KHKH} min)	ICCA9 ICCA12 ICCA18	_	275 250 225	mA
AC Standby Current (\vec{E} = V _{IH} , i _{OUt} = 0 mA, All Inputs = V _{IL} and V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{KHKH} min)	ISB1	-	75	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	—	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	3.3	v

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486 and Pentium bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	рF
Input/Output Capacitance (DQ0 – DQ17)	CI/O	6	8	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 3 ns

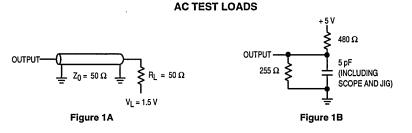
 Output Timing Reference Level
 1.5 V

 Output Load
 See Figure 1A Unless Otherwise Noted

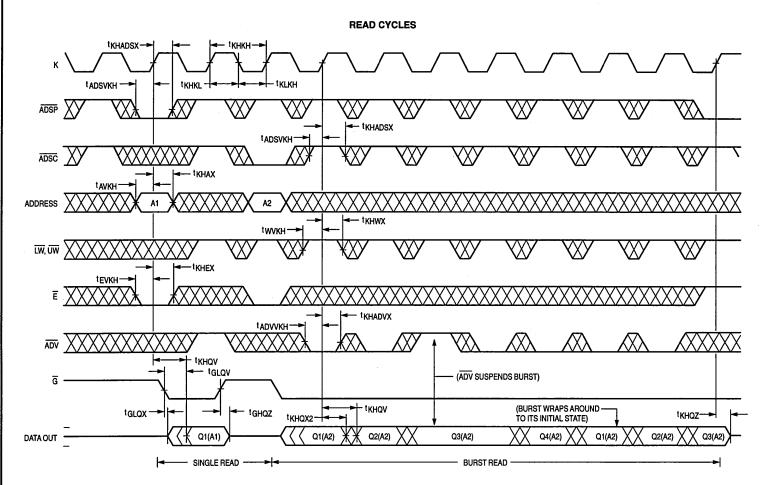
		Syn	hbol	MCM67	'B518-9	MCM67	B518-12	MCM67	B518-18		
Pai	rameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time		^t кнкн	tCYC	15	-	20	-	30	—	ns	
Clock Access Tim	ne	^t KHQV	tCD	-	9	- 1	12	_	18	ns	4
Output Enable to	Output Valid	tGLQV	tOE	-	5	-	6	-	7	ns	
Clock High to Out	tput Active	tKHQX1	tDC1	6	-	6	-	6	—	ns	
Clock High to Out	tput Change	tKHQX2	tDC2	3	—	3	-	3	-	ns	
Output Enable to	Output Active	tGLQX	tolz	0	-	0	-	0	—	ns	
Output Disable to	Q High-Z	tGHQZ	tonz	2	6	2	7	2	7	ns	5
Clock High to Q H	High-Z	^t KHQZ	tcz	_	6	-	6		6	ns	
Clock High Pulse	Width	^t KHKL	^t CH	5		6	-	7	-	ns	
Clock Low Pulse	Width	^t KLKH	tCL	5	-	6	-	7	-	ns	
Setup Times:	Address Address Status Data In Write Address Advance Chip Enable	^t AVKH ^t ADSVKH ^t DVKH ^t WVKH ^t ADVVKH ^t ADVVKH	tAS tSS tDS tWS	2.5	—	2.5	_	3.0		ns	6
Hold Times:	Address Address Status Data In Write Address Advance Chip Enable	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHEX	tah tsh tDH twh	0.5	-	0.5	—	0.5		ns	6

NOTES:

1. A read cycle is defined by UW and LW high or ADSP low for the setup and hold times. A write cycle is defined by LW or UW low and ADSP high for the setup and hold times.

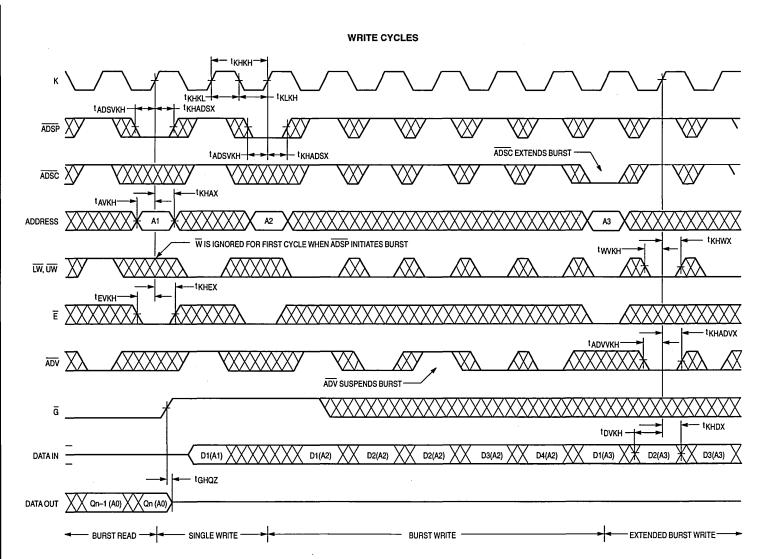

2. All read and write cycle timings are referenced from K or $\overline{G}.$

3. G is a don't care when UW or LW is sampled low.

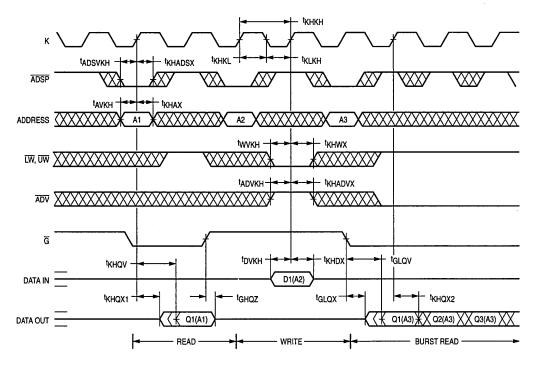

4. Maximum access times are guaranteed for all possible i486 external bus cycles.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQZ1 min for a given device and from device to device.

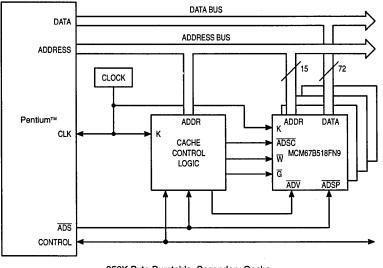
6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled.



NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.


NOTE: Q1(A2) represents the first output data from the base address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.

4



MCM67B518 4-159

COMBINATION READ/WRITE CYCLE

APPLICATION EXAMPLE

256K Byte Burstable, Secondary Cache Using Four MCM67B518FN9s with a 66 MHz Pentium

Figure 2

ORDERING INFORMATION (Order by Full Part Number)

МСМ	<u>67B518</u>	¥	XХ	
Motorola Memory Prefix				Speed (9 = 9 ns, 12 = 12 ns, 18 = 18 ns)
Part Number		L		Package (FN ≖ PLCC)

Full Part Numbers — MCM67B518FN9 MCM67B518FN12 MCM67B518FN18

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

32K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Registered Outputs

The MCM67C518 is a 589,824 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the i486[™] and Pentium[™] microprocessors. It is organized as 32,768 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive registered output drivers onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A14), data inputs (D0 – D17), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive-edge-triggered noninverting registers.

This device contains output registers for pipeline operations. At the rising edge of K, the RAM provides the output data from the previous cycle.

Output enable (\overline{G}) is asynchronous for maximum system design flexibility.

Burst can be initiated with either address status processor (ADSP) or address status cache controller (ADSC) input pins. Subsequent burst addresses can be generated internally by the MCM67C518 (burst sequence imitates that of the i486) and controlled by the burst address advance (ADV) input pin. The following pages provide more detailed information on burst controls.

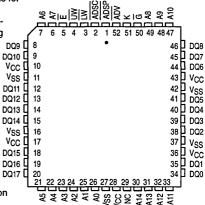
Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

This device also incorporates pass-thru functionality. A read cycle preceded by a write cycle will cause the the data written into the array to appear at the outputs on the same clock cycle on which the read was initiated. The clock high to data valid time is the same as that of a standard read operation. Chip enable (\overline{E}) does not have to be asserted to receive valid data during a pass-thru operation. Untput enable (\overline{G}) maintains control of the output buffers during a pass-thru operation.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).

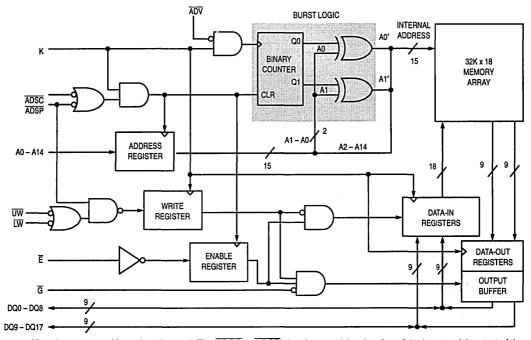
This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information.

- Single 5 V ± 5% Power Supply
- Fast Access Time/Fast Cycle Time = 7 ns/80 MHz, 9 ns/66 MHz
- Byte Writeable via Dual Write Enables
- Internal Input Registers (Address, Data, Control)
- · Output Registers for Pipelined Applications
- · Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Write Pass-Thru Capability
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package


BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

MCM67C518



PIN ASSIGNMENT

All power supply and ground pins must be connected for proper operation of the device.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the new external address. Chip enable (E) is sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is advanced prior to the operation. When ADV is sampled high, the internal address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW, UW).

BURST	SEQUENCE	TABLE	(See Note)
-------	----------	-------	------------

External Address	A14 – A2	A1	A0
1st Burst Address	A14 – A2	A1	ĀŌ
2nd Burst Address	A14 – A2	A1	A0
3rd Burst Address	A14 – A2	A1	ĀŌ

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	ADSP	ADSC	ADV	UW or LW	к	Address Used	Operation
н	L	х	x	x	L-H	N/A	Deselected
н	x	L	x	x	L-H	N/A	Deselected
L	L	x	x	x	L-H	External Address	Read Cycle, Begin Burst
L	н	L	X	L	L-H	External Address	Write Cycle, Begin Burst
L	н	L	X	н	L-H	External Address	Read Cycle, Begin Burst
x	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
x	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out
Read	н	High-Z
Write	X	High-Z — Data In
Deselected	X	High-Z

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

Operation of Previous Cycle	Ē	LW	UW	G	Operation of Present Cycle	Operation of Next Cycle
Write Cycle, Both Bytes (Address = n - 1)	L	L	L	L	 Register Address = n and all Inputs Data of Address = n - 1 Appears at Outputs 	Read Data at Address = n
Write Cycle, Upper Byte (Address = n - 1)	н	L	н	L	Data of Address = n – 1 Appears at Outputs of Upper Byte	No Carry-Over Operation From Previous Cycle
Write Cycle, Both Bytes (Address = n - 1)	н	L	L	н	All I/Os High-Z	No Carry-Over Operation From Previous Cycle

PASS-THRU TRUTH TABLE (Read preceded by a write)

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	+ 30	mA
Power Dissipation	PD	1.6	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	ТА	0 to +70	°C
Storage Temperature	Tstg	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for l ≤ 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)		± 1.0	μA
Output Leakage Current (G = VIH)	l _{lkg} (O)		± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , \overline{E} = V _{IL} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{KHKH} min)	ICCA7 ICCA9	_	290 275	mA
AC Standby Current ($\overline{E} = V_{IH}$, $I_{out} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	I _{SB1}	_	75	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL		0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	3.3	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486 and Pentium bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0 - DQ17)	CI/O	6	8	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5% T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to :	3.0 V
Input Rise/Fall Time	3 ns

READ/WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4)

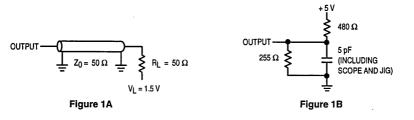
		Syn	nbol	MCM67	7C518-7	MCM6	7C518-9		
Pa	rameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Cycle Time		tкнкн	tcyc	12.5	-	15		ns	
Clock Access Time)	^t KHQV	tCD	-	7	_	9	ns	5
Output Enable to C	output Valid	^t GLQV	t _{OE}	_	5	- T	6	ns	
Clock High to Outp	ut Active	tKHQX1	^t DC1	2	-	2	- 1	ns	
Clock High to Outp	ut Change	tKHQX2	tDC2	2		2		ns	
Output Enable to C	output Active	^t GLQX	tolz	1		1	-	ns	
Output Disable to C	Q High-Z	^t GHQZ	tонz	2	6	2	6	ns	6
Clock High to Q High	gh-Z	^t KHQZ	tcz	—	6	-	6	ns	
Clock High Pulse V	Vidth	^t KHKL	tCH	5	-	5	-	ns	
Clock Low Pulse W	/idth	^t KLKH	tCL	5	-	5		ns	
Setup Times:	Address Address Status Data In Write Address Advance Chip Enable	^t AVKH ^t ADSVKH ^t DVKH ^t WVKH ^t ADVVKH ^t EVKH	tAS tSS tDS tWS	2.5	—	2.5	_	ns	7
Hold Times:	Address Address Status Data In Write Address Advance Chip Enable	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHEX	tAH tSH tDH tWH	0.5	-	0.5	-	ns	7

NOTES:

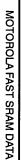
1. W refers to either or both byte write enables (LW, UW).

2. A read cycle is defined by UW and UW high or ADSP low for the setup and hold times. A write cycle is defined by UW or UW low and ADSP high for the setup and hold times.

3. All read and write cycle timings are referenced from K or $\overline{G}.$

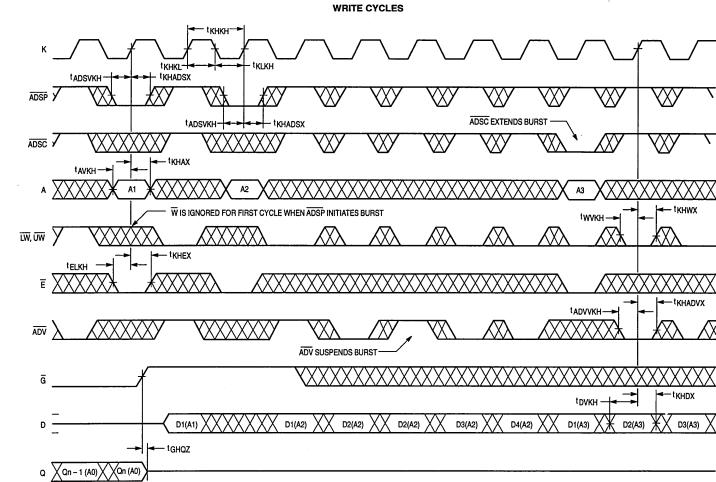

4. G is a don't care when UW or LW is sampled low.

5. Maximum access times are guaranteed for all possible i486 external bus cycles.

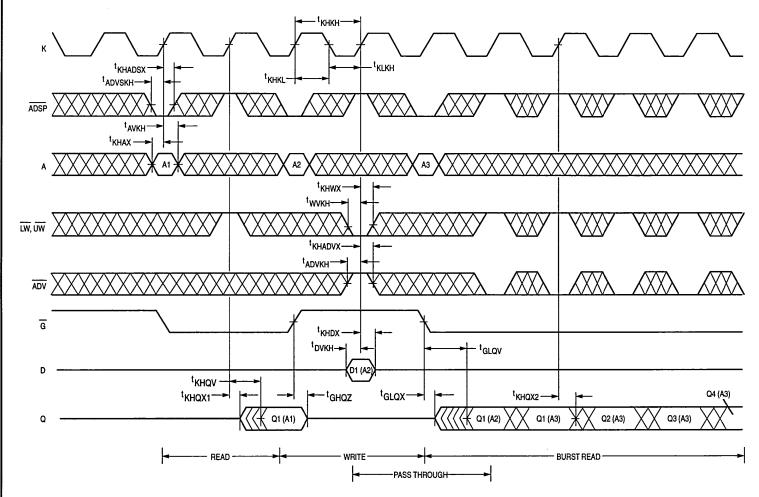

 Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQZ1 min for a given device and from device to device.

7. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled.

AC TEST LOADS


NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

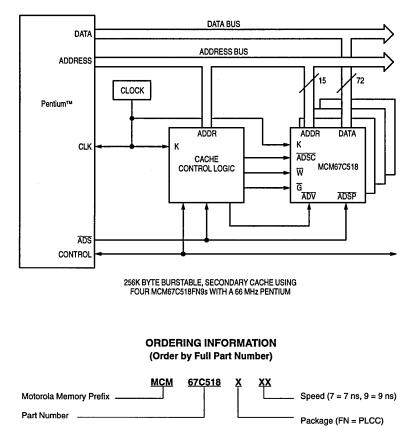
^t KHKH к -t ADSVKH ^t KLKH ^t KHKL ^t KHADSX- $\langle \rangle$ ADSP Ķ. $\overline{\Lambda}$ ADSC ^tavkh → ^t KHADSX BURST CONTINUED WITH NEW BASE ADDRESS tadsvkh ---^t KNAX Α A2 A4 A? IW, UW ^tEVKH ─► t KMWX t KHEXtwvkh --► Е ٨, ^tADWKH —► ^t KHADVX -ADV t GLQV (ADV SUSPENDS BURST) G –^t Khqv t KHQV t GLQX ---> (BURST WRAPS AROUND TO ITS INITIAL STATE) t KHQX1 --I - t GHQZ -> t KHQX2 -_ +Q1 (A1) (-{{Q1 (A2)} Q2 (A2) Q4 (A2) Q1 (A2) Q3 (A2) Q1 (A3) Q3 (A2) Q2 (A2) ٥ SINGLE READ BURST READ 7


READ CYCLES

MCM67C518 4-167

4

- BURST READ - SINGLE WRITE - SINGLE



COMBINATION READ/WRITE CYCLES

MCM67C518 4-169

4

APPLICATION EXAMPLE

Full Part Numbers --- MCM67C518FN7 MCM67C518FN9

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Product Preview

32K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Self-Timed Write

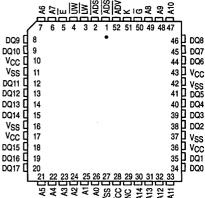
The MCM67H518 is a 589,824 bit synchronous fast static random access memory designed to provide a burstable, high-performance, secondary cache for the i486 and Pentium[™] microprocessors. It is organized as 32,768 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A14), data inputs (D0 – D17), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive-edge-triggered noninverting registers.

Bursts can be initiated with either address status processor (\overline{ADSP}) or address status cache controller (\overline{ADSC}) input pins. Subsequent burst addresses can be generated internally by the MCM67H518 (burst sequence imitates that of the i486 and Pentium) and controlled by the burst address advance (\overline{ADV}) input pin. The following pages provide more detailed information on burst controls.

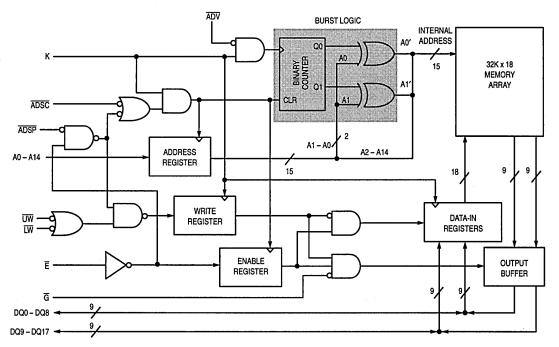
Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).


This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information.

- Single 5 V ± 5% Power Supply
- Fast Access Times: 9/12/18 ns Max
- Byte Writeable via Dual Write Enables
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- · Common Data Inputs and Data Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package
- ADSP Disabled with Chip Enable (E) Supports Address Pipelining

MCM67H518



All power supply and ground pins must be connected for proper operation of the device.

BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the new external address. Chip enable (E) is sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is advanced prior to the operation. When ADV is sampled high, the internal address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW, UW).

BURST SEQUENCE TABLE (See Note)

External Address 1st Burst Address 2nd Burst Address 3rd Burst Address

A14 – A2	A1	A0
A14 – A2	A1	ĀÖ
A14 – A2	ĀĨ	A0
A14 – A2	A1	ĀŪ

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	ADSP	ADSC	ADV	UW or LW	к	Address Used	Operation
н	×	L	X	X	<u>г</u> н	N/A	Deselected
L	L	х	X	x	L-H	External Address	Read Cycle, Begin Burst
L	н	L	×	L	L-H	External Address	Write Cycle, Begin Burst
L	н	L	X	н	L-H	External Address	Read Cycle, Begin Burst
х	н	н	L	L	L·H	Next Address	Write Cycle, Continue Burst
х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
х	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst
н	x	н	L	L	L·H	Next Address	Write Cycle, Continue Burst
н	x	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
н	x	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
н	х	н	Н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out
Read	н	High-Z
Write	x	High-Z — Data In
Deselected	x	High-Z

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V_{SS} for Any Pin Except V_{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	1.5	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-Impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20.0 ns) for $| \le 20.0$ mA. **V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width ≤ 20.0 ns) for $| \le 20.0$ mA.

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	¹ lkg(l)		± 1.0	μA
Output Leakage Current (G = VIH)	l _{lkg} (O)	-	± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , \overline{E} = V _{IL} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{KHKH} min)	ICCA9 ICCA12 ICCA18	-	275 250 225	mA
AC Standby Current ($\vec{E} = V_{IH}$, $I_{out} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	ISB1	-	75	mA
Output Low Voltage (IOL = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	3.3	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486 and Pentium bus cycles.

$\label{eq:capacitance} \textbf{CAPACITANCE} ~(f=1.0~\text{MHz}, \, \text{dV}=3.0~\text{V}, \, \text{T}_{A}=25^{\circ}\text{C}, \, \text{Periodically Sampled Rather Than 100\% Tested})$

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 - DQ17)	Cin	4	5	pF
Input/Output Capacitance (DQ0 – DQ17)	C1/O	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

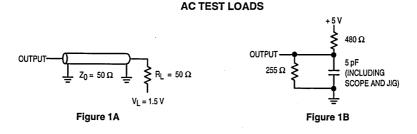
Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V
Input Rise/Fall Time	3 ns

READ/WRITE CYCLE TIMING (See Notes	1, 2, and 3) (W refers to either or both byte write enables)
------------------------------------	--

		Syn	nbol	MCM67	7H518-9	MCM67H518-12		MCM67H518-18			
Pa	arameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time		tкнкн	tCYC	15	—	20	_	30	-	ns	
Clock Access Til	me	tKHQV	tCD	_	9	-	12	_	18	ns	4
Output Enable to	o Output Valid	tGLQV	tOE	-	5	—	6	_	7	ns	
Clock High to Ou	utput Active	tKHQX1	^t DC1	6	-	6	-	6	-	ns	
Clock High to Ou	utput Change	tKHQX2	tDC2	3		3	—	3	-	ns	
Output Enable to	Output Active	tGLQX	tolz	0	-	0	-	0	-	ns	
Output Disable to	o Q High-Z	tGHQZ	tohz	2	6	2	7	2	7	ns	5
Clock High to Q	High-Z	^t KHQZ	tcz	—	6	—	6	-	6	ns	
Clock High Pulse	e Width	^t KHKL	tСH	5		6	-	7	-	ns	
Clock Low Pulse	Width	^t KLKH	tCL	5	—	6		7		ns	
Setup Times:	Address Address Status Data In Write Address Advance Chip Enable	tavkh tadsvkh tdvkh twvkh tadvvkh tevkh	tAS tSS tDS tWS	2.5		2.5	_	3.0		ns	6
Hold Times:	Address Address Status Data In Write Address Advance Chip Enable	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHEX	tah tsh tDH tWH	0.5	-	0.5		0.5	-	ns	6

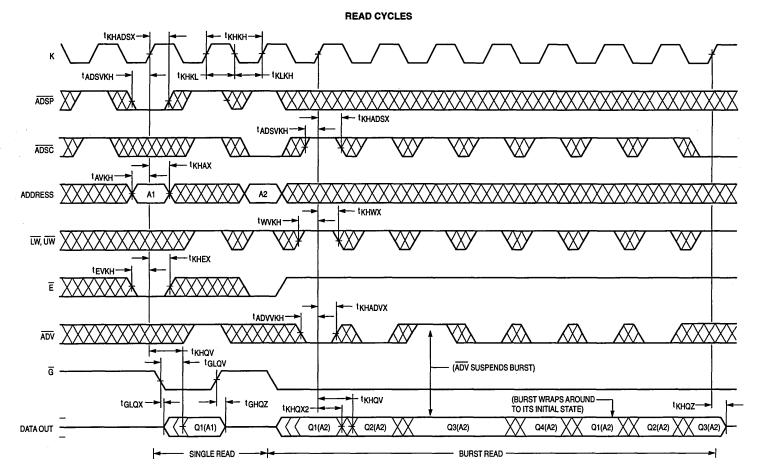
NOTES:

1. A read cycle is defined by UW and LW high or ADSP low for the setup and hold times. A write cycle is defined by LW or UW low and ADSP high for the setup and hold times.

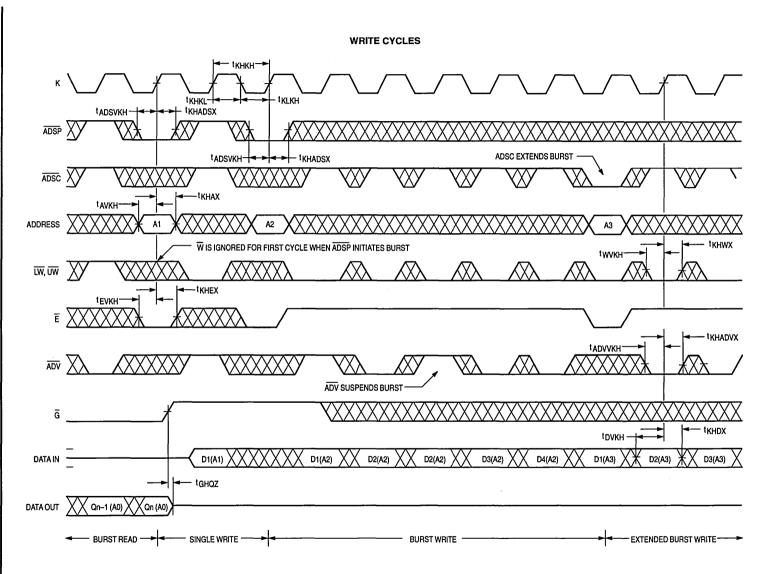

2. All read and write cycle timings are referenced from K or \overline{G} .

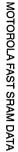
3. G is a don't care when UW or LW is sampled low.

4. Maximum access times are guaranteed for all possible i486 external bus cycles.

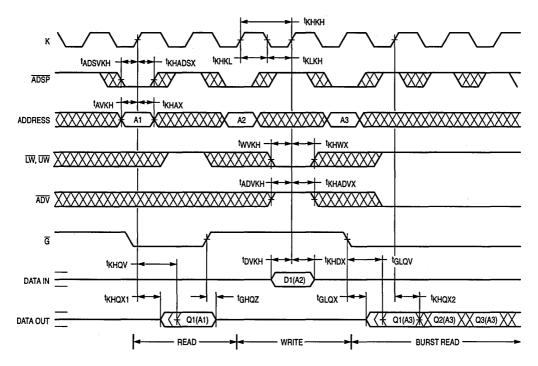

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQZ1 min for a given device and from device to device.

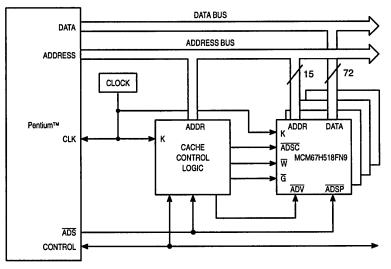
6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled.


NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.



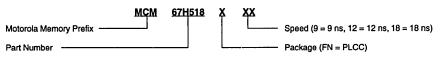
4


NOTE: Q1(A2) represents the first output data from the base address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.



MCM67H518 4-177

COMBINATION READ/WRITE CYCLE


APPLICATION EXAMPLE

256K Byte Burstable, Secondary Cache Using Four MCM67H518FN9s with a 66 MHz Pentium

Figure 2

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers - MCM67H518FN9

MCM67H518FN12 MCM67H518FN18

MOTOROLA FAST SRAM DATA

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Product Preview

32K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Registered Outputs

The MCM67J518 is a 589,824 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the i486[™] and Pentium[™] microprocessors. It is organized as 32,768 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive registered output drivers onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A14), data inputs (D0 – D17), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive-edge-triggered noninverting registers.

This device contains output registers for pipeline operations. At the rising edge of K, the RAM provides the output data from the previous cycle.

Output enable (\overline{G}) is asynchronous for maximum system design flexibility. Burst can be initiated with either address status processor (\overline{ADSP}) or address status cache controller (\overline{ADSC}) input pins. Subsequent burst addresses can be generated internally by the MCM67J518 (burst sequence imitates that of the i486) and controlled by the burst address advance (\overline{ADV}) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

This device also incorporates pass-thru functionality. A read cycle preceded by a write cycle will cause the the data written into the array to appear at the outputs on the same clock cycle on which the read was initiated. The clock high to data valid time is the same as that of a standard read operation. Chip enable (Ē) does not have to be asserted to receive valid data during a pass-thru operation. Output enable (G) maintains control of the output buffers during a pass-thru operation.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).

This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information.

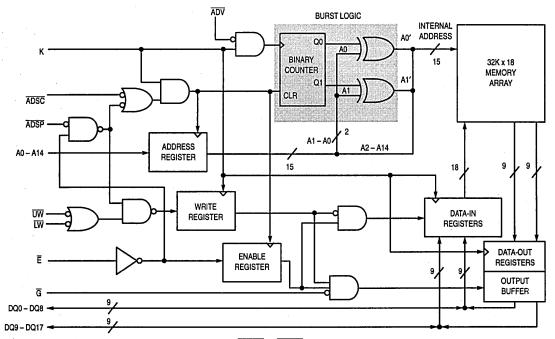
- Single 5 V ± 5% Power Supply
- Fast Access Time/Fast Cycle Time = 7 ns/80 MHz, 9 ns/66 MHz
- Byte Writeable via Dual Write Enables
- Internal Input Registers (Address, Data, Control)
- Output Registers for Pipelined Applications
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Write Pass-Thru Capability
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package
- ADSP Disabled with Chip Enable (E) Supports Address Pipelining

BurstRAM is a trademark of Motorola, Inc.


i486 and Pentium are trademarks of Intel Corp.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

MCM67J518


PIN ASSIGNMENT

PIN NAMES				
K	Address Inputs Clock Burst Address Advance ower Byte Write Enable Introller Address Status cessor Address Status Output Enable Data Input/Output + 5 V Power Supply Ground			

All power supply and ground pins must be connected for proper operation of the device.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the new external address. Chip enable (E) is sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is advanced prior to the operation. When ADV is sampled high, the internal address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW, UW).

BURST SEQUENCE TA	ABLE (See Note)
-------------------	-----------------

External Address	A14 – A2	A1	A0
1st Burst Address	A14 – A2	A1	ĀŌ
2nd Burst Address	A14 – A2	Āī	A0
3rd Burst Address	A14 – A2	ĀĨ	ÃŌ

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	ADSP	ADSC	ADV	UW or LW	к	Address Used	Operation
н	x	L	x	X	L-H	N/A	Deselected
L	L	x	x	x	L-H	External Address	Read Cycle, Begin Burst
L	н	L	x	L	L-H	External Address	Write Cycle, Begin Burst
L	н	L	x	н	L-H	External Address	Read Cycle, Begin Burst
х	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
х	н	. Н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst
н	х	Н	L	L	L-H	Next Address	Write Cycle, Continue Burst
н	x	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
н	x	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
н	X	Н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	VO Status
Read	L	Data Out
Read	н	High-Z
Write	X	High-Z — Data In
Deselected	x	High-Z

NOTES:

1. X means Don't Care.

2. For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

PASS-THRU TRUTH TABLE (Read preceded by a write)

Operation of Previous Cycle	Ē	LW	ŪW	G	Operation of Present Cycle	Operation of Next Cycle
Write Cycle, Both Bytes (Address = n - 1)	L	L	L	L	 Register Address = n and all Inputs Data of Address = n - 1 Appears at Outputs 	Read Data at Address = n
Write Cycle, Upper Byte (Address = n - 1)	н	L	н	L	Data of Address = n – 1 Appears at Outputs of Upper Byte	No Carry-Over Operation From Previous Cycle
Write Cycle, Both Bytes (Address = n - 1)	н	L	L	н	All I/Os High-Z	No Carry-Over Operation From Previous Cycle

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to VSS for Any Pin Except V_{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	+ 30	mA
Power Dissipation	PD	1.6	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	ТА	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	. V
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

* V_{IL} (min) = - 0.5 V dc; V_{IL} (min) = - 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns) for 1 \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	^l ikg(l)	_	± 1.0	μA
Output Leakage Current (G = VIH)	l _{lkg} (O)	_	± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , \overline{E} = V _{IL} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{KHKH} min)	ICCA7 ICCA9	_	290 275	mA
AC Standby Current ($\overline{E} = V_{IH}$, $I_{out} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	ISB1	_	75	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL		0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4	3.3	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486 and Pentium bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 - DQ17)	C _{in}	4	5	рF
Input/Output Capacitance (DQ0 – DQ17)	CI/O	6	8	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5% T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V
Input Rise/Fall Time	3 ns

READ/WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4)

		Syn	nbol	мсм6	7J518-7	MCM6	7J518-9		
Par	ameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Cycle Time		^t кнкн	tCYC	12.5	-	15		ns	
Clock Access Time		^t KHQV	tCD	—	7	-	9	ns	5
Output Enable to O	utput Valid	^t GLQV	^t OE	_	5	-	6	ns	
Clock High to Outpu	ut Active	tKHQX1	^t DC1	2	-	2	-	ns	
Clock High to Outpu	ut Change	tKHQX2	^t DC2	2		2	—	ns	
Output Enable to O	utput Active	tGLQX	tolz	1	-	1	-	ns	
Output Disable to Q	High-Z	^t GHQZ	tonz	2	6	2	6	ns	6
Clock High to Q Hig	h-Z	^t KHQZ	tcz		6	-	6	ns	
Clock High Pulse W	/idth	^t KHKL	tСН	5	-	5	-	ns	
Clock Low Pulse W	idth	^t KLKH	tCL	5	-	5	- 1	ns	
Setup Times:	Address Address Status Data In Write Address Advance Chip Enable	^t AVKH ^t ADSVKH ^t DVKH ^t WVKH ^t ADVVKH ^t EVKH	tAS tSS tDS tWS	2.5	_	2.5	_	ns	7
Hold Times:	Address Address Status Data In Write Address Advance Chip Enable	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHEX	tah tsh tDH tWH	0.5	_	0.5	-	ns	7

NOTES:

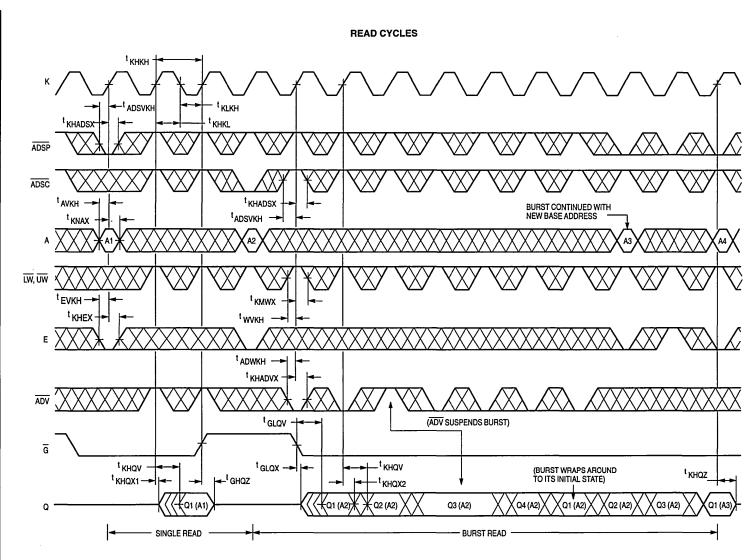
1. W refers to either or both byte write enables (LW, UW).

2. A read cycle is defined by UW and UW high or ADSP low for the setup and hold times. A write cycle is defined by UW or UW low and ADSP high for the setup and hold times.

3. All read and write cycle timings are referenced from K or \overline{G} .

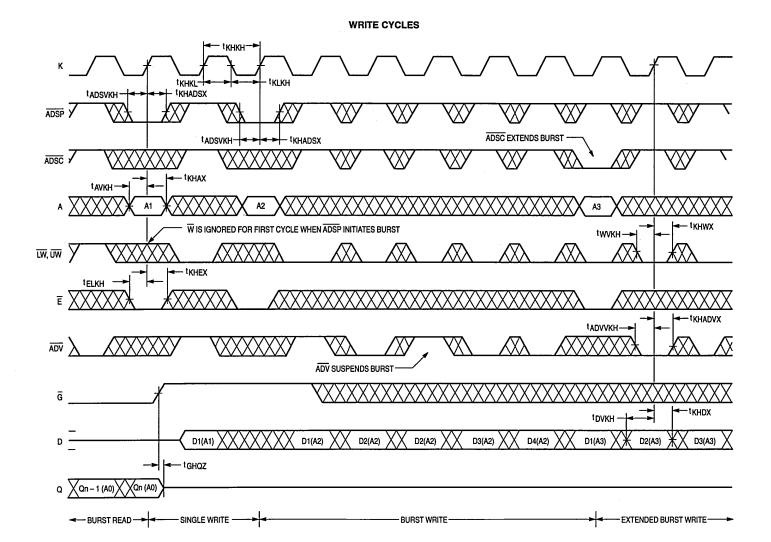

4. G is a don't care when UW or LW is sampled low.

5. Maximum access times are guaranteed for all possible i486 external bus cycles.

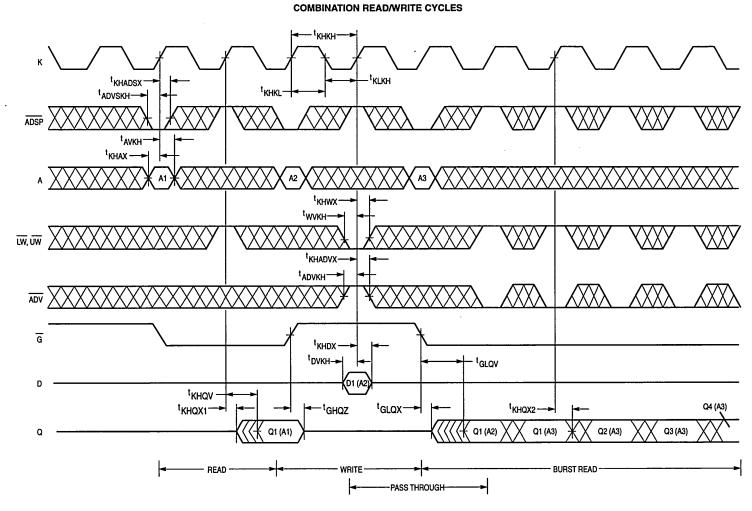

 Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, t_{KHOZ} max is less than t_{KHOZ}1 min for a given device and from device to device.
 This is a synchronous device. All addresses must meet the specified setup and hold times for *ALL* rising edges of K whenever ADSP or

7. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled.

AC TEST LOADS

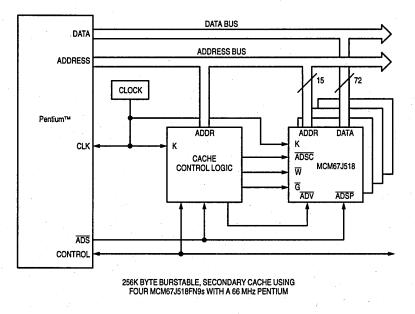


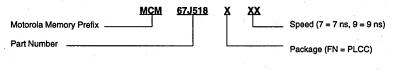
NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.



MOTOROLA FAST SRAM DATA

MCM67J518 4-185


MCM67J518 4-186 •


MCM67J518 4-187

4

APPLICATION EXAMPLE

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers - MCM67J518FN7

MCM67J518FN9

MOTOROLA FAST SRAM DATA

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

32K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Self-Timed Write

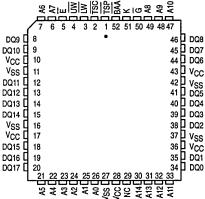
The MCM67M518 is a 589,824 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the MC68040 and PowerPC™ microprocessors. It is organized as 32,768 words of 18 bits, fabricated using Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A14), data inputs (DQ0 – DQ17), and all control signals, except output enable (G), are clock (K) controlled through positive-edgetriggered noninverting registers.

Bursts can be initiated with either transfer start processor (TSP) or transfer start cache controller (TSC) input pins. Subsequent burst addresses are generated internally by the MCM67M518 (burst sequence imitates that of the MC68040) and controlled by the burst address advance (BAA) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

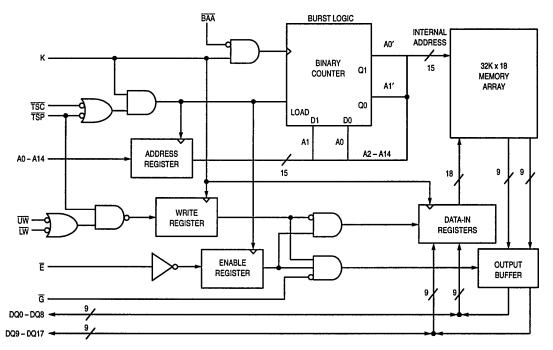
Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).


This device is ideally suited for systems that require wide data bus widths and cache memory.

- Single 5 V ± 5% Power Supply
- Fast Access Times: 9/11/14/19 ns Max and Cycle Times: 12.5/15/20/25 ns Min
- Byte Writeable via Dual Write Strobes
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- TSP, TSC, and BAA Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- High Board Density 52-PLCC Package
- 3.3 V I/O Compatible

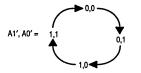
MCM67M518

PIN ASSIGNMENT


PIN NAMES A0 - A14 Address Inputs K Clock BAA Burst Address Advance LW Lower Byte Write Enable UW Upper Byte Write Enable TSP, TSC Transfer Start E Output Enable G Output Enable DQ0 - DQ17 Data Input/Output Vcs Ground NC No Connection	
K Clock BAA Burst Address Advance LW Lower Byte Write Enable UW Upper Byte Write Enable TSP, TSC Transfer Start E Chip Enable G Output Enable DQ0 - DQ17 Data Input/Output VCC + 5 V Power Supply VSS Ground	PIN NAMES
	K Clock BAA Burst Address Advance LW Lower Byte Write Enable UW Upper Byte Write Enable TSP, TSC Transfer Start G Output Enable GQ DQ17 Data Liput/Output VCC + 5 V Power Supply

All power supply and ground pins must be connected for proper operation of the device.

BurstRAM is a trademark of Motorola, Inc. PowerPC is a trademark of IBM Corp.


This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The TSC or TSP signals control the duration of the burst and the start of the next burst. When TSP is sampled low, any ongoing burst is interrupted and a read (independent of W and TSC) is performed using the new external address. When TSC is sampled low (and TSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the next external address. Chip enabled (E) is sampled only when a new base address is loaded. After the first cycle of the burst, BAA controls subsequent burst cycles. When BAA is sampled low, the internal address is advanced prior to the operation. When BAA is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE GRAPH. Write refers to either or both byte write enables (LW, UW).

BURST SEQUENCE GRAPH (See Note)

NOTE: The external two values for A1 and A0 provide the starting point for the burst sequence graph. The burst logic advances A1 and A0 as shown above.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	TSP	TSC	BAA	LW or UW	к	Address	Operation
н	L	X	x	X	L-H	N/A	Deselected
н	x	L	x	X	L-H	N/A	Deselected
L	L	x	x	x	L-H	External Address	Read Cycle, Begin Burst
L	н	L	х	L.	L-H	External Address	Write Cycle, Begin Burst
L	н	L	x	н	L-H	External Address	Read Cycle, Begin Burst
х	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
Х	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
x	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out (DQ0 - DQ8)
Read	н	High-Z
Write	X	High-Z — Data In
Deselected	X	High-Z

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to VSS for Any Pin Except VCC	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	1.6	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	V
Input High Voltage	ViH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20.0 ns) for I ≤ 20.0 mA. **V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width ≤ 20.0 ns) for I ≤ 20.0 mA.

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(I)	-	± 1.0	μA
Output Leakage Current (G = V _{IH})	l _{lkg} (O)	-	± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , \overline{E} = V _{IL} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{KHKH} min)	ICCA9 ICCA11 ICCA14 ICCA19		290 275 250 225	mA
AC Standby Current ($\vec{E} = V_{IH}$, $I_{out} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	ISB1	_	75	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	—	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	3.3	v

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible 68040 bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0 - DQ17)	CI/O	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5% T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.	.5 V
Input Pulse Levels 0 to 3	.0 V
Input Rise/Fall Time	3 ns

 Output Timing Reference Level
 1.5 V

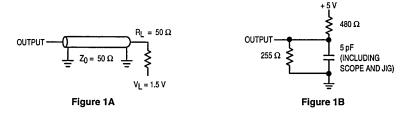
 Output Load
 See Figure 1A Unless Otherwise Noted

	Sym	bol	67M5	518-9	67M5	18-11	67M5	18-14	67M5	18-19		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time	^t кнкн	tCYC	12.5	—	15	—	20		25	-	ns	
Clock Access Time	^t KHQV	tCD	-	9	-	11	—	14	-	19	ns	4
Output Enable to Output Valid	^t GLQV	tOE	-	5	-	5	-	6		7	ns	
Clock High to Output Active	tKHQX1	^t DC1	6	-	6		6	_	6	_	ns	
Clock High to Output Change	tKHQX2	tDC2	3	-	3	-	3	_	3	-	ns	
Output Enable to Output Active	^t GLQX	tolz	0	_	0	—	0	-	0		ns	
Output Disable to Q High-Z	^t GHQZ	tонz	2	6	2	6	2	6	2	7	ns	5
Clock High to Q High-Z	^t KHQZ	tcz	-	6	—	6	-	6	—	6	ns	5
Clock High Pulse Width	^t KHKL	tСН	5		5	-	6	-	7	_	ns	
Clock Low Pulse Width	^t KLKH	tCL	5	_	5	-	6		7	—	ns	
Setup Times: Address Address Status Data In Write Address Advance Chip Select	^t AVKH ^t TSVKH ^t DVKH ^t WVKH ^t BAVKH ^t EVKH	tas tss tos tws	2.5	_	2.5	_	2.5		3.0		ns	6
Hold Times: Address Address Status Data In Write Address Advance Chip Select	^t KHAX ^t KHTSX ^t KHDX ^t KHWX ^t KHBAX ^t KHEX	tah tsh tDH tWH	0.5	_	0.5		0.5	_	0.5		ns	6

NOTES:

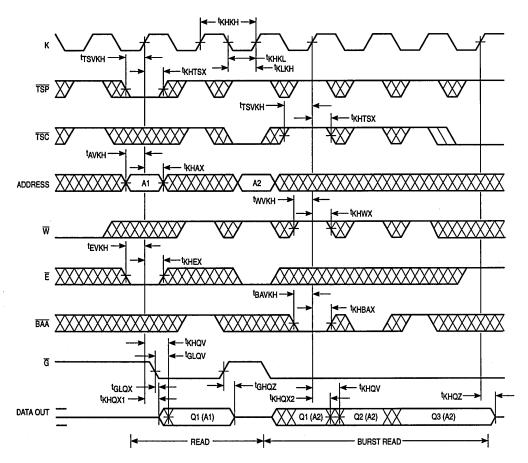
1. A read cycle is defined by UW and UW high or TSP low for the setup and hold times. A write cycle is defined by UW or UW low and TSP high for the setup and hold times.

2. All read and write cycle timings are referenced from K or $\overline{G}.$

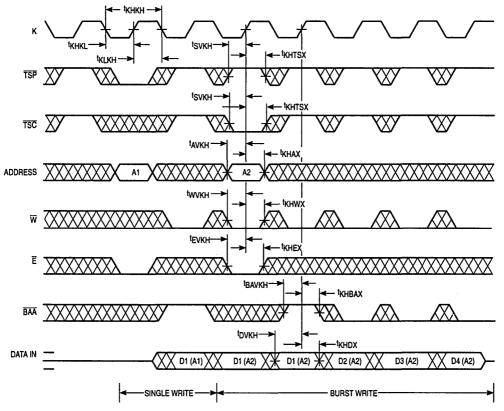

3. \overline{G} is a don't care when \overline{UW} or \overline{LW} is sampled low.

4. Maximum access times are guaranteed for all possible MC68040 external bus cycles.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHQZ} max is less than t_{KHQX1} min for a given device and from device to device.

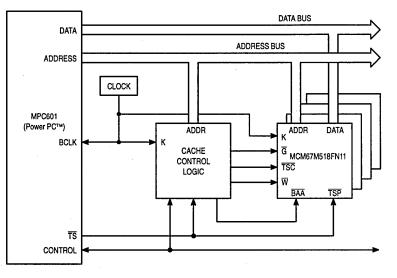

6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of clock (K) whenever TSP or TSC are low and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. Chip enable must be valid at each rising edge of clock for the device (when TSP or TSC is low) to remain enabled.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

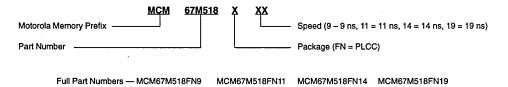

READ CYCLE

NOTE: Q1(A2) represents the first output from the external address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.

1


WRITE CYCLE

NOTE: $\overline{G} = V_{IH}$.


4

APPLICATION EXAMPLE

256K Byte Burstable, Secondary Cache Using Four MCM67M518FN11s with a 66 MHz MPC601 Power PC™

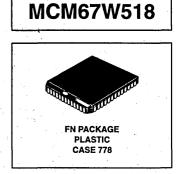
ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

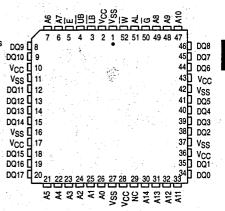
Product Preview 32K x 18 Bit Asynchronous Fast Static RAM With Address Latch Byte Enable

The MCM67W518 is a 589,824 bit static random access memory organized as 32,768 words of 18 bits, fabricated using Motorola's high-performance silicon-gate BICMOS technology. The device integrates a 32K x 18 SRAM core with advanced peripheral circuitry consisting of address latches, active low chip enable, write enable, separate upper and lower byte selects, and a fast output enable. This device has increased output drive capability supported by multiple power pins.

Address latch enable (AL) is provided to simplify read and write cycles by guaranteeing address hold time in a simple fashion. When the address latch input is high, the address latch is in the transparent state. If the latch enable is tied high, the device can be used as an asynchronous SRAM. When the address latch enable is low, the address is in the latched state.


Dual byte selects (LB and UB) are provided to allow individually readable and writeable bytes. LB controls DQ0 – DQ8 (the lower bits) while \overline{UB} controls DQ9 – DQ17 (the upper bits).

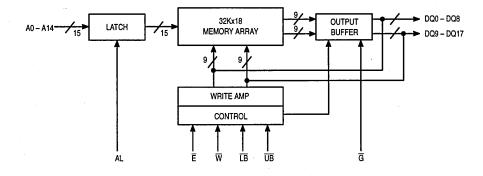
A generous number of power supply pins have been utilized and placed on the package for maximum performance.


The MCM67W518 will be available in a 52-pin plastic leaded chip carrier (PLCC).

This device is ideally suited for systems that require wide data bus widths, cache memory, and as tag RAMs.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 12/15/20 ns Max
- Byte Write and Byte Read Capability
- Transparent Address Latch
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package

PIN ASSIGNMENT



state e t	PIN NAMES
A0 – A14	Address Inputs
AL	Address Latch
₩	Write Enable
	Lower Byte Select
	Upper Byte Select
	Chip Enable
	Output Enable
	Data Input/Output
	+ 5 V Power Supply
VSS	Ground
NC	No Connection

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM

TRUTH TABLE

Ē	ĹВ	UB	w	AL*	G	Mode	Supply Current	I/O Status
н	x	x	х	X	х	Deselected	ISB	High-Z
L	X	x	х	L	X	Read or Write Using Latched Addresses	lcc	-
L	X	x	х	н	х	Read or Write Using Unlatched Addresses		_ 1
L	L	L	н	X	L	Read Cycle	lcc	Data Out
L	L	L	н	X	н	Read Cycle	lcc	High-Z
L	L	L	L	X	X	Write Cycle Lower and Upper Byte	lcc	High-Z
L	L	н	L	L	х	Write Cycle Lower Byte with Latched Addresses	lcc	High-Z
L	н	L	н	Ĺ	L	Read Cycle Upper Byte	lcc	Data Out

*Addresses must satisfy the specified setup and hold times for the falling edge of AL.

NOTE: This truth table shows the application of all device functions; different combinations are valid.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	1.6	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	llkg(l)	_	± 1.0	μA
Output Leakage Current (G = V _{IH})	lkg(O)		± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{AVAV} min)	ICCA12 ICCA15 ICCA20		290 275 260	mA
AC Standby Current (E = V _{IH} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0 V and V _{IH} \geq 3.0 V, f = f _{max})	ISB1	_	75	mA
CMOS Standby Current ($\vec{E} \ge V_{CC} - 0.2 \text{ V}$, All Inputs $\ge V_{CC} - 0.2 \text{ V}$ or $\le 0.2 \text{ V}$, f = f _{max})	ISB2	. —	12	mA
Output Low Voltage (IOL = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (IOH = - 4.0 mA)	Voн	2.4	3.3	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	рF
Input/Output Capacitance (DQ0 - DQ17)	Cout	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V
Input Rise/Fall Time	3 ns

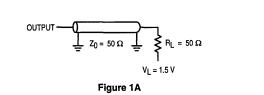
READ CYCLE (See Notes 1, 2, and 3)

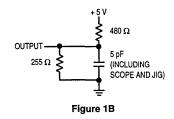
		MCM67	W518-12	MCM67	W518-15	MCM67	W518-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	tavav	12	-	15	—	20		ns	4
Access Times: Address Valid to Output Valid Chip Enable Low to Output Valid AL High to Output Valid Output Enable Low to Output Valid Byte Select Low to Output Valid	^t AVQV ^t ELQV ^t ALHQV ^t GLQV ^t BLQV	- - - -	12 12 12 6 6	- 	15 15 15 7 7	 	20 20 20 8 8	ns	5
Setup Times: Address Valid to Address Latch Low Address Valid to Address Latch High	^t AVALL ^t AVALH	2 0	=	2 0	_	2 0	_	ns	
Hold Times: Address Latch Low to Address Invalid	^t ALLAX	2	_	3	_	3	_	ns	
Output Hold: Address Invalid to Output Invalid AL High to Output Invalid	tAXQX tALHQX	4 4	=	4 4	=	4 4	=	ns	
Address Latch Pulse Width	^t ALHALL	5	—	5	—	5	—	ns	
Output Buffer Control: Chip Enable Low to Output Active Output Enable Low to Output Active Byte Select Low to Output Active Chip Enable High to Output High-Z Output Enable High to Output High-Z Byte Select High to Output High-Z	^t ELQX ^t GLQX ^t BLQX ^t EHQZ ^t GHQZ ^t BHQZ	3 1 2 2 2 2 2		2 1 2 2 2 2	 9 7 9	2 1 2 2 2 2		ns	6

NOTES:

1. B refers to either or both byte selects (LB, UB).

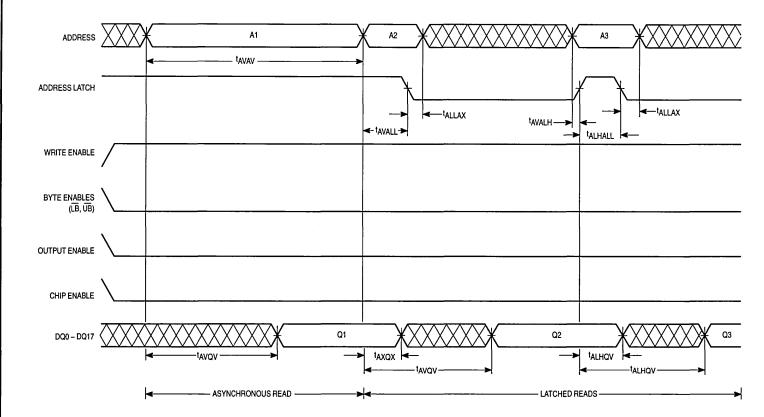
2. Address latch (AL) is high for all asynchronous cycles.

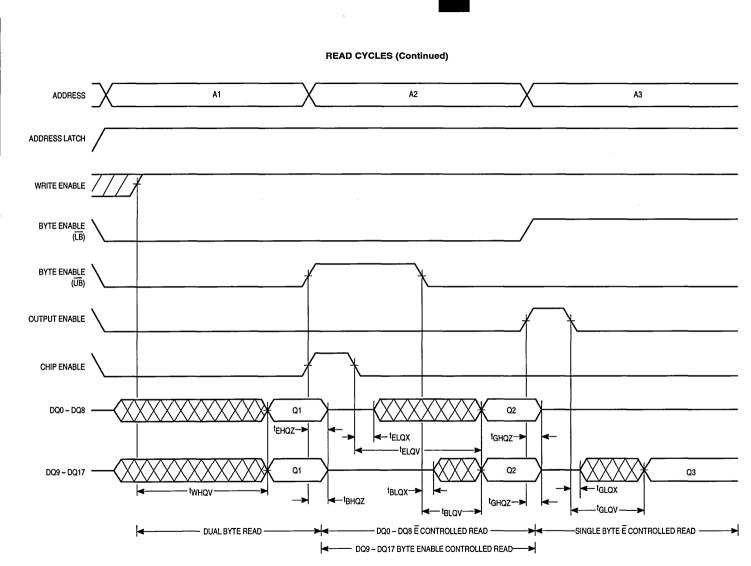

3. A read occurs during the overlap of \overline{E} low, \overline{W} high, and either or both byte enable (\overline{LB} , \overline{UB}) low.


4. All read cycle timing is referenced from the last valid address to the first transitioning address.

5. Addresses valid prior to or coincident with \overline{E} low.

6. Transition is measured \pm 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{EHQZ} is less than t_{ELQX} and t_{GHQZ} is less than t_{GLQX} for a given device.


AC TEST LOADS


NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

MOTOROLA FAST SRAM DATA

READ CYCLES

C 🚬

MCM67W518 4-202

WRITE CYCLE (See Notes 1, 2, 3, and 4)

		MCM67	W518-12	MCM67	N518-15	MCM67W518-20			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	12	_	15	_	20	-	ns	5
Setup Times:								ns	
Address Valid to End of Write	tavwh	8	-	13	—	15	—		
Address Valid to Chip Enable High	^t AVEH	8	-	13	—	15			l
Address Valid to Write Enable Low	tAVWL	0	- 1	0	—	0	-		
Address Valid to Chip Enable Low	TAVEL	0	-	0		0	-	1	
Data Valid to Write Enable High	tDVWH	6	-	7		8	-		
Data Valid to Chip Enable High	^t DVEH	6		7		8	-		1
Byte Select Low to Write Enable High	^t BLWH	4	-	6	—	8	—		{
Byte Select High to Write Enable Low	^t BHWL	0	-	0	-	0	- 1		
Byte Select Low to Chip Enable High	^t BLEH	4	-	6	-	8	-		
Address Latch High Write Low	tALHWL	0		0	l —	0	—		l I
Address Valid to Address Latch Low	TAVALL	2		2	- 1	2			
Address Valid to Address Latch High	^t AVALH	0	-	0	-	0			
Hold Times:								ns	
Write Enable High to Address Invalid	tWHAX	0	- 1	0	1 -	0	1 —		1
Chip Enable High to Address Invalid	^t EHAX	0	- 1	0	- 1	0	—		
Byte Select High to Address Invalid	^t BHAX	0	-	0	—	0		i	
Write Enable High to Data Invalid	^t WHDX	0		0	—	0	-		1
Chip Enable High to Data Invalid	^t EHDX	0	- 1	0		0	-		1
Byte Select High to Data Invalid	^t BHDX	0		0	- 1	0	— .		
Write Enable High to Byte Enable Invalid	tWHBX	2	-	2	- 1	2	—	1	
Chip Enable High to Byte Enable Invalid	^t EHBX	2		2	- 1	2	-		
Address Latch Low to Address Invalid	tALLAX	2	-	3	1 1	3	- 1		1
Write Enable High to Address Latch High	tWHALH	0	-	0	-	0	—		1
Byte Select High to Address Latch High	^t BHALH	0	-	0	-	0			
Write Pulse Width:								ns	1
Write Pulse Width (G Low)	twLwH	8	—	13		15	-		
Write Pulse Width (G High)	tWLWH	7	. —	12	-	14	-		i i
Write Pulse Width	tWLEH	8	- 1	13		15	—		6
Chip Enable to End of Write	^t ELWH	8	-	13	- 1	15	- 1		7
Chip Enable to End of Write	^t ELEH	8	-	13	- 1	15	-		6, 7
Address Latch High to Write Enable High	^t ALHWH	8	-	13	-	15	-		
Address Latch Pulse Width	tALHALL	5	-	5	_	5	-	ns	T
Output Buffer Control:		<u> </u>						ns	1
Write Enable High to Output Active	twhox	3	—	5	-	5	-		8
Write Enable Low to Output High-Z	twLQZ	0	6	0	9	0	9		8,9

NOTES:

1. B refers to either or both byte selects (LB, UB).

2. Address latch (AL) is high for all asynchronous cycles.

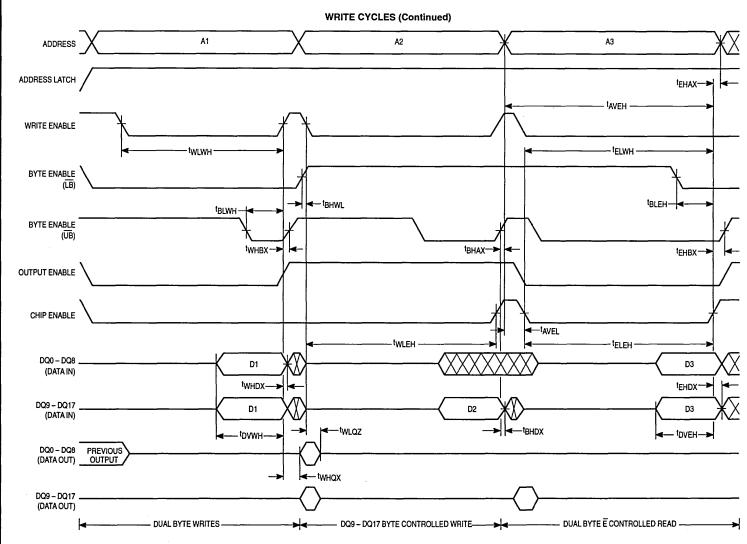
3. A write occurs during the overlap of \overline{E} low, \overline{W} low, and either or both byte enable (\overline{LB} , \overline{UB}) low.

4. Write enable must be equal to VIH for all address transitions.

5. All write cycle timing is referenced from the last valid address to the first transitioning address.

6. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

7. If E goes low coincident with or after W goes low, the output will remain in a high impedance state.
8. If E goes high coincident with or before W goes high the output will remain in a high impedance state.


9. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEHQZ is less than tELQX and tGHQZ is less than tGLQX for a given device.

MCM67W518 4-204

MOTOROLA FAST SRAM DATA

MOTOROLA FAST SRAM DATA

ORDERING INFORMATION (Order by Full Part Number)

<u>MÇM 67W</u>	<u>518 FN</u>	<u>XX</u>	
Motorola Memory Prefix			Speed (12 = 12 ns, 15 = 15 ns, 20 = 20 ns)
Part Number	L		Package (FN = PLCC)

Full Part Numbers - MCM67W518FN12 MCM67W518FN15 MCM67W518FN20

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

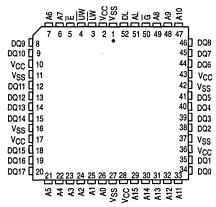
Product Preview 64K x 18 Bit Asynchronous/Latched Address Fast Static RAM

The MCM67A618 is a 1,179,648 bit latched address static random access memory organized as 65,536 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates a 64K x 18 SRAM core with advanced peripheral circuitry consisting of address and data input latches, active low chip enable, separate upper and lower byte write strobes, and a fast output enable. This device has increased output drive capability supported by multiple power pins.

Address, data in, and chip enable latches are provided. When latch enables (AL for address and chip enables and DL for data in) are high, the address, data in, and chip enable latches are in the transparent state. If latch enables are tied high the device can be used as an asynchronous SRAM. When latch enables are low the address, data in, and chip enable latches are in the latched state. This input latch simplifies read and write cycles by guaranteeing address and data-in hold time in a simple fashion.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits) while \overline{UW} controls DQ9 – DQ17 (the upper bits).

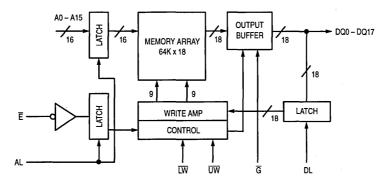
Additional power supply pins have been utilized and placed on the package for maximum performance.


The MCM67A618 will be available in a 52-pin plastic leaded chip carrier (PLCC).

This device is ideally suited for systems which require wide data bus widths, cache memory, and tag RAMs.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 12/15/20 ns Max
- Byte Writeable via Dual Write Enables
- Separate Data Input Latch for Simplified Write Cycles
- Address and Chip Enable Input Latches
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package

PIN ASSIGNMENT


PIN NAMES	
A0 – A15 Address Input AL Address Latch DL Data Latch LW Lower Byte Write Enable UW Higher Byte Write Enable G Output Enable DQ – DQ17 Data Input/Output Vgc + 5 V Power Supply Vss Ground	atch atch able able able able tput oply

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

MCM67A618

BLOCK DIAGRAM

TRUTH TABLE

Ē	τw	ŪW	AL*	DL*	G	Mode	Supply Current	I/O Status
н	x	x	x	X	х	Deselected Cycle	ISB	High-Z
L	x	x	L	X	х	Read or Write Using Latched Addresses	Icc	-
L	X	X	н	X	х	Read or Write Using Unlatched Addresses	^I CC	-
L	н	н	X	X	L	Read Cycle	Icc	Data Out
L	н	н	X	X	н	Read Cycle	Icc	High-Z
L	L	L	X	L	x	Write Both Bytes Using Latched Data In	^I CC	High-Z
L	L	L	X	н	X	Write Both Bytes Using Unlatched Data In	^I CC	High-Z
L	L	н	X	X	х	Write Cycle, Lower Byte	lcc	High-Z
L	н	L	X	X	X	Write Cycle, Lower Byte	Icc	High-Z

*E and Addresses satisfy the specified setup and hold times for the falling edge of AL. Data-in satisfies the specified setup and hold times for falling edge of DL.

NOTE: This truth table shows the application of each function. Combinations of these functions are valid.

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	1.6	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	Tstg	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	V
Input High Voltage	ViH	2.2	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*	0.8	v

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA. ** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	l _{ikg(i)}	_	± 1.0	μA
Output Leakage Current (G = VIH)	l _{lkg(O)}		± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , I _{OUt} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0, Cycle Time ≥ t _{AVAV} min)	ICCA12 ICCA15 ICCA20	_	290 275 260	mA
AC Standby Current ($\vec{E} = V_{IH}$, $I_{out} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, f = f _{max})	ISB1	-	75	mA
CMOS Standby Current ($\overline{E} \ge V_{CC} - 0.2$, All Inputs $\ge V_{CC} - 0.2$ V or ≤ 0.2 V, f = f _{max})	I _{SB2}	···	12	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	V _{OL}		0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	3.3	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0 – DQ17)	C _{I/O}	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

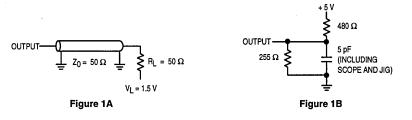
 $(V_{CC} = 5.0 V \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}C, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1	.5 V
Input Pulse Levels 0 to 3	.0 V 0.
Input Rise/Fall Time	2 ns

ASYNCHRONOUS READ CYCLE TIMING (See Notes 1 and 2)

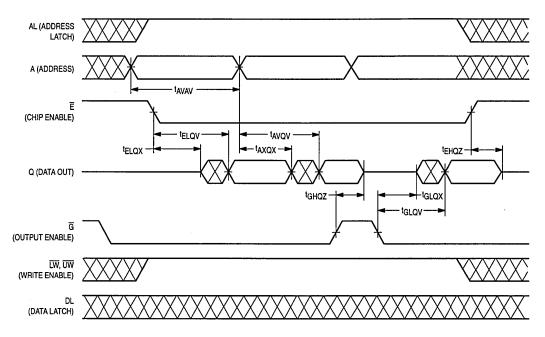
		MCM67	A618-12	MCM67.	MCM67A618-15		MCM67A618-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	tAVAV	12	-	15	—	20	—	ns	3
Access Times: Address Valid to Output Valid Ē Low to Output Valid Output Enable Low to Output Valid	tavqv telqv tglqv	=	12 12 6		15 15 7		20 20 8	ns	4
Output Hold from Address Change	taxqx	4	-	4	-	4	—	ns	
Output Buffer Control: Ē Low to Output Active G Low to Output Active Ē High to Output High-Z G High to Output High-Z	[†] ELQX [†] GLQX [†] EHQZ [†] GHQZ	3 1 2 2	 6 6	2 1 2 2	 9 7	2 1 2 2	99	ns	5
Power Up Time	^t ELICCA	0	-	0	-	0	—	ns	

NOTES:


1. AL and DL are equal to V_{IH} for all asynchronous cycles. 2. Both Write Enable signals (LW, UW) are equal to V_{IH} for all read cycles.

3. All read cycle timing is referenced from the last valid address to the first transitioning address.

4. Addresses valid prior to or coincident with E going low.


5. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEHQZ is less than tELQX and tGHQZ is less than tGLQX for a given device.

AC TEST LOADS

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

ASYNCHRONOUS READ CYCLES

		MCM67	A618-12	MCM67	A618-15	MCM67	A618-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Times	tavav	12	_	15	—	20	-	ns	4
Setup Times: Address Valid to End of Write Address Valid to E High Address Valid to W Low Address Valid to E Low Address Valid to W High Data Valid E High	^t AVWH ^t AVEH ^t AVWL ^t AVEL ^t DVWH ^t DVEH	8 8 0 0 6 6		13 13 0 7 7		15 15 0 8 8		ns	
Hold Times:	^t WHAX ^t EHAX ^t WHDX ^t EHDX	0 0 0 0		0 0 0 0		0 0 0 0		ns	
Write Pulse Width: Write Pulse Width (G Low) Write Pulse Width (G High) Write Pulse Width Enable to End of Write Enable to End of Write	^t WLWH ^t WLWH ^t WLEF ^t ELWH ^t ELEH	8 7 8 8 8		13 12 13 13 13		15 14 15 15 15		ns	5 6 5, 6
Output Buffer Control:	^t WHQV ^t WHQX ^t WLQZ	12 3 0		15 5 0	 	20 5 0	— — 9	ns	7 7, 8

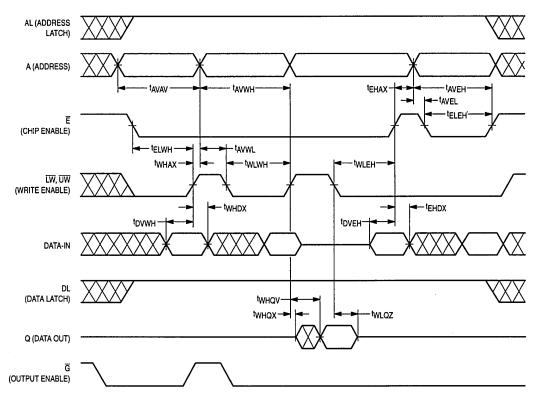
NOTES:

1. \overline{W} refers to either or both byte write enables (\overline{LW} , \overline{UW}).

2. AL and DL are equal to V_{IH} for all asynchronous cycles.

3. Both Write Enables must be equal to V_{IH} for all address transitions.

4. All write cycle timing is referenced from the last valid address to the first transitioning address.


5. If \overline{E} goes high coincident with or before \overline{W} goes high the output will remain in a high impedance state.

6. If \overline{E} goes low coincident with or after \overline{W} goes low the output will remain in a high impedance state.

7. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, twLQZ is less than twHQX for a given device.

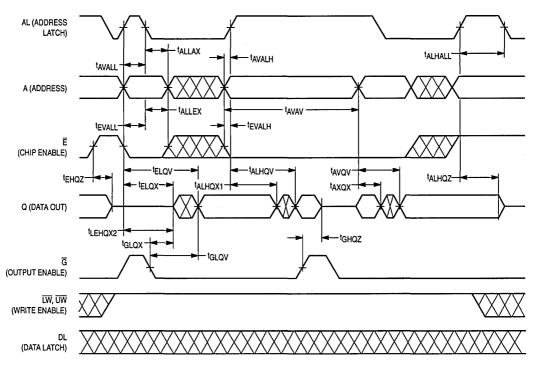
8. If \overline{G} goes low coincident with or after \overline{W} goes low the output will remain in a high impedance state.

ASYNCHRONOUS WRITE CYCLE

LATCHED READ CYCLE TIMING (See Notes 1 and 2)

		MCM67	A618-12	MCM67	A618-15	MCM67	A618-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	^t AVAV	12	-	15	— —	20	—	ns	3
Access Times: Address Valid to Output Valid E Low to Output Valid AL High to Output Valid Output Enable Low to Output Valid	tAVQV tELQV tALHQV tGLQV		12 12 12 6		15 15 15 7		20 20 20 8	ns	3 4
Setup Times: Address Valid to AL Low Ē Valid to AL Low Address Valid to AL High Ē Valid to AL High	^t AVALL ^t EVALL ^t AVALH ^t EVALH	2 2 0 0	- - -	2 2 0 0		2 2 0 0		ns	4 4
Hold Times: AL Low to Address Invalid AL Low to E Invalid	t _{ALLAX} t _{ALLEX}	2 2	=	3 3	=	3 3	=	ns	4
Output Hold: Address Invalid to Output Invalid AL High to Output Invalid	tAXQX tALHQX1	4 4	_	4	=	4 4	_	ns	
Address Latch Pulse Width	^t ALHALL	5	—	5	. —	5	-	ns	
Output Buffer Control: Ē Low to Output Active G Low to Output Active AL High to Output Active Ē High to Output High-Z AL High to Output High-Z G High to Output High-Z	^t ELQX ^t GLQZ ^t ALHQX2 ^t EHQZ ^t ALHQZ ^t GHQZ	3 1 3 2 2 2		2 1 2 2 2 2		2 1 2 2 2 2	 10 10 8	ns	5

NOTES:


1. Both Write Enable Signals (\overline{LW} , \overline{UW}) are equal to V_{IH} for all read cycles.

2. All read cycle timing is referenced from the last valid address to the first transitioning address.

3. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.

4. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of address latch (AL) and data latch (DL).

5. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEHQZ is less than tELQX and tLEHQZ is less than tELQX for a given device. LATCHED READ CYCLES

LATCHED WRITE CYCLE TIMING (See Notes 1, 2, and 3)

		MCM67	A618-12	MCM67	A618-15	MCM67	A618-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Times:	tAVAV	12	_	15		20	-	ns	4
Address Valid to Address Valid									
Setup Times:								ns	
Address Valid to End of Write	tavwh	8	-	13		15	—		
Address Valid to End of Write	tAVEH	8	-	13	-	15	—		
E Valid to AL Low	^t EVALL	2	-	2		2			
Address Valid to AL Low	TAVALL	2	- 1	2	- 1	2		1	1
E Valid to AL High	^t EVALH	0	—	0	-	0			
Address Valid to AL High	^t AVALH	0	-	0	-	0	—		
AL High to W Low	^t ALHWL	0	-	0		0			
Address Valid to W Low	^t AVWL	0	-	0	-	0	—		
Address Valid to \overline{E} Low	tAVEL	0	-	0	- 1	0	—		
Data Valid to DL Low	TDVDLL	2	-	2		2	- 1		
Data Valid to W High	^t DVWH	6	-	7	-	8	-		
Data Valid to E High	^t DVEH	6	—	7	- 1	8	-		
DL High to W High	^t DLHWH	6	—	7		8			
DL High to E High	^t DLHEH	6	-	7		8	-		
Hold Times:			1					ns	1
AL Low to E Invalid	[†] ALLEX	2	- 1	3	_	3	-		4
AL Low to Address Invalid	TALLAX	2		3		3	_		4
DL Low to Data Invalid	TDLLDX	2	_	3	_	3	_		
W High to Address Invalid	tWHAX	0	- 1	0	-	0			
E High to Address Invalid	^t EHAX	0	_	0		0			
W High to Data Invalid	tWHDX	0	l —	0	-	0	—		1
E High to Data Invalid	^t EHDX	0	-	0		0	-		
W High to DL High	tWHDLH	0	-	0	_	0	_		
E High to DL High	^t EFDLH	0	- 1	0	- 1	0	- 1		
W High to AL High	tWHALH	0	-	0	_	0	_		
Write Pulse Width:			1			[ns	
AL High to W High	^t ALHWH	8	_	13		15	_		5
Write Pulse Width (G Low)	^t WLWH	8	1 -	13	- 1	15	-		
Write Pulse Width (G High)	^t WLWH	7	- 1	12	_	14	_	1	
Write Pulse Width	tWLEH	8	_	13	_	15			6
Enable to End of Write	TELWH	8		13	_	15	- 1	1	7
Enable to End of Write	TELEH	8	-	13	_	15	-	1	6,7
Address Latch Pulse Width	^t ALHALL	12	- 1	15		20		ns	4
Output Buffer Control:	_	1		 				ns	
W High to Output Valid	twHQV	12	-	15	-	20	_		
W High to Output Active	^t WHQX	3		5	- 1	5	- I		8
W Low to Output High-Z	tWLQZ	0	6	0	9	0	9	1	8,9

NOTES:

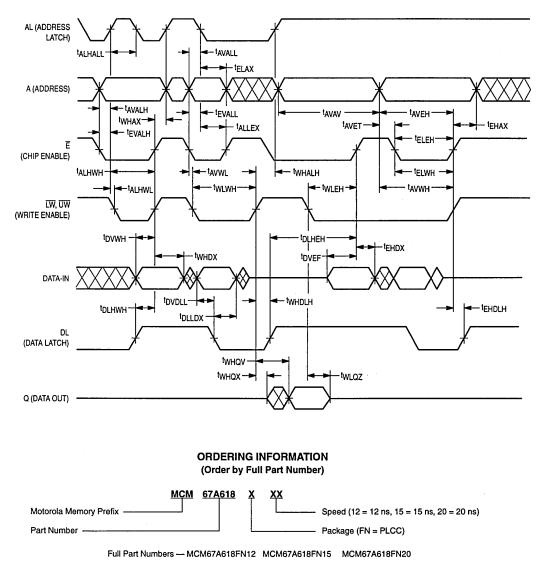
1. W refers to either or both byte write enables (LW, UW).

2. A write occurs during the overlap of \overline{E} low and \overline{W} low.

3. Both Write Enables must be equal to $V_{\mbox{\scriptsize IH}}$ for all address transitions.

4. All write cycle timing is referenced from the last valid address to the first transitioning address.

5. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of address latch (AL) and data latch (DL).


6. If \overline{E} goes high coincident with or before \overline{W} goes high the output will remain in a high impedance state.

7. If E goes low coincident with or after W goes low the output will remain in a high impedance state.

8. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, twLQZ is less than twHQX for a given device.

9. If G goes low coincident with or after W goes low the output will remain in a high impedance state.

LATCHED WRITE CYCLES

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Product Preview

64K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Self-Timed Write

The MCM67B618 is a 1,179,648 bit synchronous fast static random access memory designed to provide a burstable, high-performance, secondary cache for the i486 and Pentium[™] microprocessors. It is organized as 65,536 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

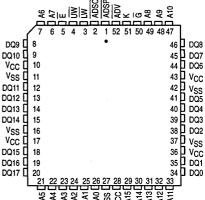
Addresses (A0 – A15), data inputs (D0 - D17), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive-edge-triggered noninverting registers.

Bursts can be initiated with either address status processor (ADSP) or address status cache controller (ADSC) input pins. Subsequent burst addresses can be generated internally by the MCM67B618 (burst sequence imitates that of the i486 and Pentium) and controlled by the burst address advance (ADV) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).

This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information.


- Single 5 V ± 5% Power Supply
- Fast Access Times: 9/12/18 ns Max
- Byte Writeable via Dual Write Enables
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- · Common Data Inputs and Data Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package

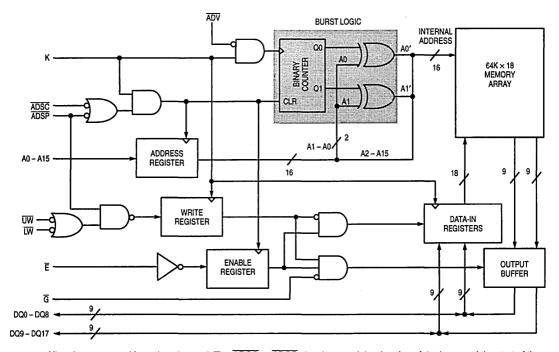
FN PACKAGE

MCM67B618

PLASTIC CASE 778

PIN ASSIGNMENT

PIN NAMES
A0 – A15 Address Inputs K Clock ADV Burst Address Advance LW Lower Byte Write Enable UW Upper Byte Write Enable ADSC Controller Address Status ADSF Processor Address Status E Output Enable G Output Enable DQ0 – DQ17 Data Input/Output VCC + 5 V Power Supply VSS Ground


All power supply and ground pins must be connected for proper operation of the device.

BurstRAM is a trademark of Motorola, Inc.

i486 and Pentium are trademarks of Intel Corp.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the new external address. Chip enable (E) is sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is advanced prior to the operation. When ADV is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW, UW).

BURST SEQUENCE TABLE (See Note)

External Address 1st Burst Address 2nd Burst Address 3rd Burst Address

A15 – A2	A1	A0
A15 – A2	A1	ĀŌ
A15 – A2	ĀĪ	A0
A15 – A2	Āī	ĀŪ

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	ADSP	ADSC	ADV	UW or LW	к	Address Used	Operation
н	L	x	x	x	L-H	N/A	Deselected
н	x	L	x	x	L-H	N/A	Deselected
L	L	x	x	x	L-H	External Address	Read Cycle, Begin Burst
L	н	L	X	L	L-H	External Address	Write Cycle, Begin Burst
L	н	L	X	н	L-H	External Address	Read Cycle, Begin Burst
Х	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
x	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
X	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	VO Status
Read	L	Data Out
Read	н	High-Z
Write	x	High-Z — Data In
Deselected	x	High-Z

NOTES:

1. X means Don't Care.

For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to VSS for Any Pin Except VCC	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	1.5	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	ТА	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20.0 ns) for I ≤ 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20.0 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})	likg(i)	_	± 1.0	μA
Output Leakage Current (G = VIH)	likg(O)	—	± 1.0	μA
AC Supply Current ($\overline{G} = V_{IH}$, $\overline{E} = V_{IL}$, $i_{out} = 0$ mA, All Inputs = V_{IL} or V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	ICCA9 ICCA12 ICCA18		275 250 225	mA
AC Standby Current ($\vec{E} = V_{IH}$, $I_{out} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	ISB1		75	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VoL	_	0.4	v
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	3.3	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486 and Pentium bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0 – DQ17)	CI/O	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

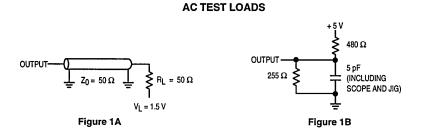
 $(V_{CC} = 5.0 V \pm 5\%, T_A = 0 \text{ to} + 70^{\circ}C, Unless Otherwise Noted)$

Input Timing Measurement Reference Level 1.	.5 V
Input Pulse Levels 0 to 3.	0 V 0.
Input Rise/Fall Time	3 ns

		Symbol		MCM67B618-9		MCM67B618-12		MCM67B618-18			
Pa	arameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time		^t КНКН	tCYC	15	-	20	—	30	—	ns	
Clock Access Time		^t KHQV	tCD	-	9	- 1	12	-	18	ns	4
Output Enable to Output Valid		^t GLQV	^t OE	_	5		6	—	7	ns	
Clock High to Output Active		tKHQX1	tDC1	6		6	-	6	—	ns	
Clock High to Output Change		tKHQX2	tDC2	3	—	3	-	3	-	ns	
Output Enable to Output Active		tGLQX	tolz	0	_	0	—	0	—	ns	
Output Disable to Q High-Z		tGHQZ	tOHZ	2	6	2	7	2	7	ns	5
Clock High to Q High-Z		^t KHQZ	tcz	-	6	—	6	—	6	ns	
Clock High Pulse Width		^t KHKL	tСН	5	-	6	_	7		ns	
Clock Low Pulse Width		^t KLKH	tCL	5	-	6	_	7	—	ns	
Setup Times:	Address Address Status Data In Write Address Advance Chip Enable	^t AVKH ^t ADSVKH ^t DVKH ^t WVKH ^t ADVVKH ^t EVKH	tas tss tDs tws	2.5		2.5	_	3.0	-	ns	6
Hold Times:	Address Address Status Data In Write Address Advance Chip Enable	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHEX	tah tsh tDH tWH	0.5	_	0.5		0.5	_	ns	6

NOTES:

1. A read cycle is defined by UW and LW high or ADSP low for the setup and hold times. A write cycle is defined by LW or UW low and ADSP high for the setup and hold times.

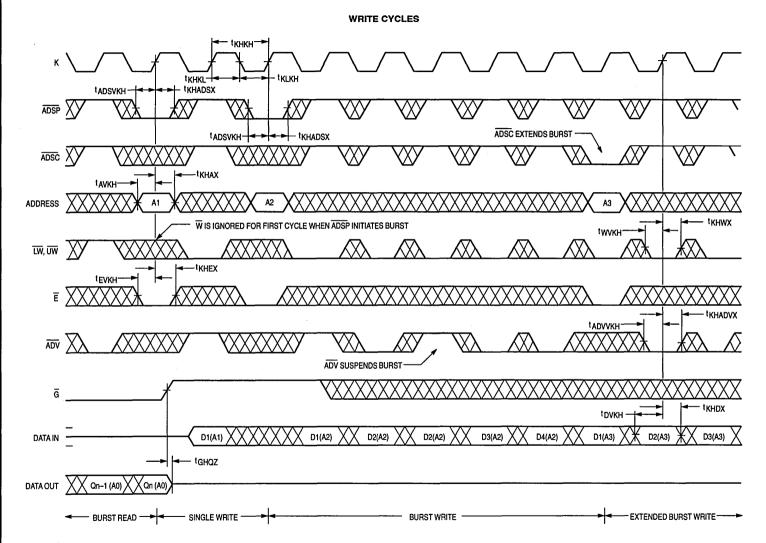

2. All read and write cycle timings are referenced from K or \overline{G} .

3. G is a don't care when UW or LW is sampled low.

4. Maximum access times are guaranteed for all possible i486 external bus cycles.

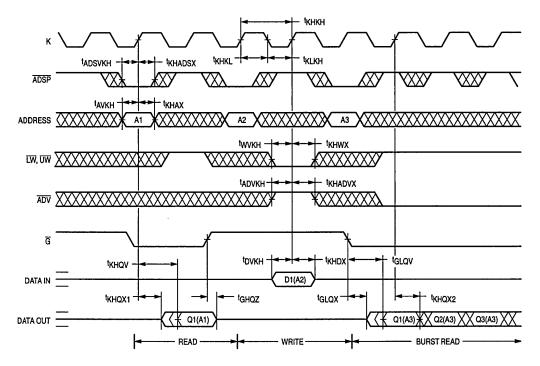
 Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQZ1 min for a given device and from device to device.

6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled.

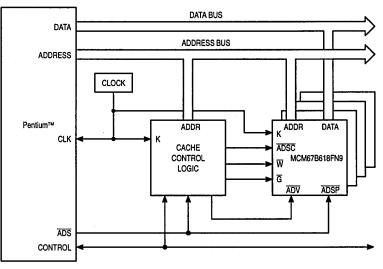


NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

MOTOROLA FAST SRAM DATA


READ CYCLES tKHADSX-> - tкнкн--к • tKLKH tADSVKH · tKHKL- $\sqrt{\chi}$ $\langle X \rangle$ ∞ $\langle X \rangle$ ADSP χ + tKHADSX tADSVKH-> $\langle \chi \rangle$ ADSC - †KHAX **tAVKH** ADDRESS A2 A1 --- tKHWX twvkh- $\langle \chi \rangle$ LW, UW 'Χ -tKHEX tEVKH-Ē tkhadvx tADVVKH-XXXXX X $\langle \overline{\chi} \rangle$ ADV ^tKHQV - tglav (ADV SUSPENDS BURST) G (BURST WRAPS AROUND -TO ITS INITIAL STATE) tGLQX ---tGHQZ tKHQZ--tKHQX2-----Q1(A2) Q3(A2) Q1(A2) Q2(A2) Q1(A1) Q2(A2) Q4(A2) Q3(A2) DATA OUT BURST READ SINGLE READ --

NOTE: Q1(A2) represents the first output data from the base address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.



MCM67B618 4-224

COMBINATION READ/WRITE CYCLE

APPLICATION EXAMPLE

512K Byte Burstable, Secondary Cache Using Four MCM67B618FN9s with a 66 MHz Pentium

Figure 2

ORDERING INFORMATION (Order by Full Part Number)

Motorola Mem Part Number	MCM 67B618	X XX	 Speed (9 = 9 ns, 12 = 12 ns, 18 = 18 ns) Package (FN = PLCC)
	Full Part Numbers — MCM67B618FN9	MCM67B618F	N12 (MCM67B618FN18

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

64K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Registered Outputs

The MCM67C618 is a 1,179,648 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the i486 and Pentium[™] microprocessors. It is organized as 65,536 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive registered output drivers onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A15), data inputs (D0 – D17), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive-edge-triggered noninverting registers.

This device contains output registers for pipeline operations. At the rising edge of K, the RAM provides the output data from the previous cycle.

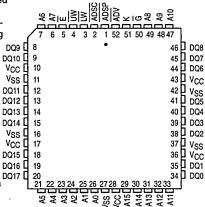
Output enable (\overline{G}) is asynchronous for maximum system design flexibility. Burst can be initiated with either address status processor (\overline{ADSP}) or address status cache controller (\overline{ADSC}) input pins. Subsequent burst addresses can be generated internally by the MCM67C618 (burst sequence imitates that of the i486) and controlled by the burst address advance (\overline{ADV}) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

This device also incorporates pass-thru functionality. A read cycle preceded by a write cycle will cause the the data written into the array to appear at the outputs on the same clock cycle on which the read was initiated. The clock high to data valid time is the same as that of a standard read operation. Chip enable (\overline{E}) does not have to be asserted to receive valid data during a pass-thru operation. Utput enable (\overline{G}) maintains control of the output buffers during a pass-thru operation.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).

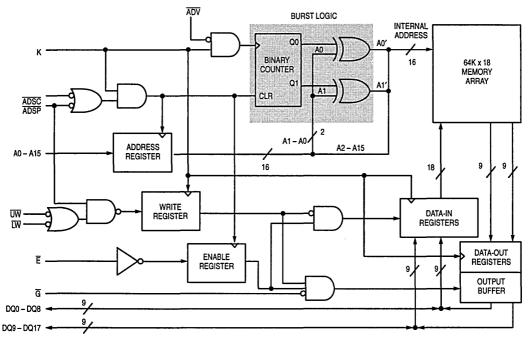
This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information.


- Single 5 V ± 5% Power Supply
- Fast Access Time/Fast Cycle Time = 7 ns/80 MHz, 9 ns/66 MHz
- Byte Writeable via Dual Write Enables
- Internal Input Registers (Address, Data, Control)
- Output Registers for Pipelined Applications
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Write Pass-Thru Capability
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package

BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

MCM67C618



PIN ASSIGNMENT

PIN NAMES				
A0 – A15 Address Inputs K Clock ADV Burst Address Advance LW Lower Byte Write Enable JW Upper Byte Write Enable ADSC Controller Address Status ADSP Processor Address Status E Chip Enable G Output Enable DQ0 – DQ17 Data Input/Output V _{CC} + 5 V Power Supply V _{SS} Ground				

All power supply and ground pins must be connected for proper operation of the device.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the new external address. Chip enable (E) is sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is loaded the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW, UW).

BURST SEQUENCE	TABLE	(See Note)
----------------	-------	------------

External Address	A15 – A2	A1	A0	
1st Burst Address	A15 – A2	A1	ĀŪ	
2nd Burst Address	A15 – A2	A1	A0	
3rd Burst Address	A15 – A2	A1	ĀŌ	

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	ADSP	ADSC	ADV	UW or LW	к	Address Used	Operation
н	L	x	X	x	L∙H	N/A	Deselected
н	х	L	x	x	L-H	N/A	Deselected
L	L	x	×	×	L•H	External Address	Read Cycle, Begin Burst
L	н	L	X	L	L-H	External Address	Write Cycle, Begin Burst
L	н	L	x	н	L•H	External Address	Read Cycle, Begin Burst
х	Н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
х	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out
Read	н	High-Z
Write	x	High-Z — Data In
Deselected	x	High-Z

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

Operation of Previous Cycle	Ē	LW	ŪW	G	Operation of Present Cycle	Operation of Next Cycle
Write Cycle, Both Bytes (Address = n - 1)	L	L	L	L	1. Register Address = n and all Inputs 2. Data of Address = n - 1 Appears at Outputs	Read Data at Address = n
Write Cycle, Upper Byte (Address = n - 1)	н	L	н	L	Data of Address = n – 1 Appears at Outputs of Upper Byte	No Carry-Over Operation From Previous Cycle
Write Cycle, Both Bytes (Address = n - 1)	н	L	L	н	All I/Os High-Z	No Carry-Over Operation From Previous Cycle

PASS-THRU TRUTH TABLE (Read proceeded by a write)

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = V_{SSQ} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS for Any Pin Except V_{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	+ 30	mA
Power Dissipation	PD	1.6	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	ТА	0 to +70	°C
Storage Temperature	T _{stg}	– 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 V \pm 5\%, T_A = 0 \text{ to} + 70^{\circ}C, Unless Otherwise Noted)$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

*VIL (min) = -0.5 V dc; VIL (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(i)	-	± 1.0	μA
Output Leakage Current (G = VIH)	l _{lkg} (O)	_	± 1.0	μA
AC Supply Current (\overline{G} = V _I H, \overline{E} = V _I L, I _{out} = 0 mA, All Inputs = V _I L or V _I H, V _I L = 0.0 V and V _I H \ge 3.0 V, Cycle Time \ge t _{KHKH} min)	ICCA7 ICCA9		290 275	mA
AC Standby Current ($\vec{E} = V_{IH}$, $I_{out} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	ISB1	_	75	mA
Output Low Voltage (IOL = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4	3.3	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486, Pentium bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	Cin	4	5	pF
Input/Output Capacitance (DQ0 – DQ17)	C _{I/O}	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5% T_A = 0 to + 70°C, Unless Otherwise Noted)

 READ/WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4)

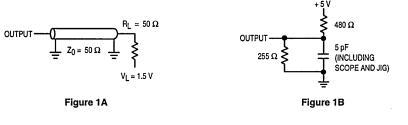
		Syn	nbol	MCM67	'C618-7	MCM67	C618-9		
Parameter		Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Cycle Time		tкнкн	tCYC	12.5	-	15		ns	
Clock Access Time)	^t KHQV	tCD	-	7	-	9	ns	5
Output Enable to O	output Valid	^t GLQV	tOE	-	5	-	6	ns	
Clock High to Outp	ut Active	^t KHQX1	^t DC1	2	—	2	-	ns	
Clock High to Outp	ut Change	tKHQX2	tDC2	2	-	2	-	ns	
Output Enable to O	output Active	^t GLQX	tolz	1	-	1		ns	
Output Disable to C	Q High-Z	^t GHQZ	tohz	2	6	2	6	ns	6
Clock High to Q Hig	gh-Z	^t KHQZ	tcz	-	6		6	ns	
Clock High Pulse V	Vidth	^t KHKL	tСН	5	_	5	-	ns	
Clock Low Pulse W	/idth	^t KLKH	^t CL	5	-	5	-	ns	
Setup Times:	Address Address Status Data In Write Address Advance Chip Enable	^t AVKH ^t ADSVKH ^t DVKH ^t WVKH ^t ADVVKH ^t EVKH	tAS tSS tDS tWS	2.5	-	2.5	_	ns	7
Hold Times:	Address Address Status Data In Write Address Advance Chip Enable	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHEX	tah tsh tDH tWH	0.5	-	0.5	-	ns	7

NOTES:

1. \overline{W} refers to either or both byte write enables (\overline{LW} , \overline{UW}).

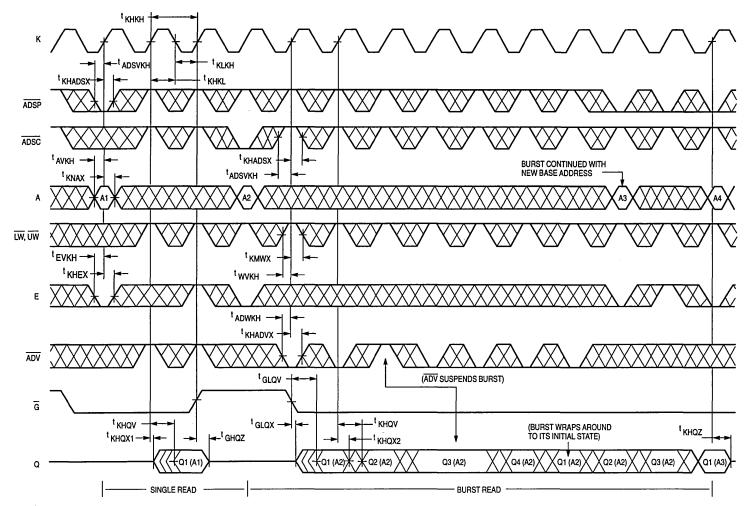
2. A read cycle is defined by UW and UW high or ADSP low for the setup and hold times. A write cycle is defined by UW or UW low and ADSP high for the setup and hold times.

3. All read and write cycle timings are referenced from K or $\overline{G}.$

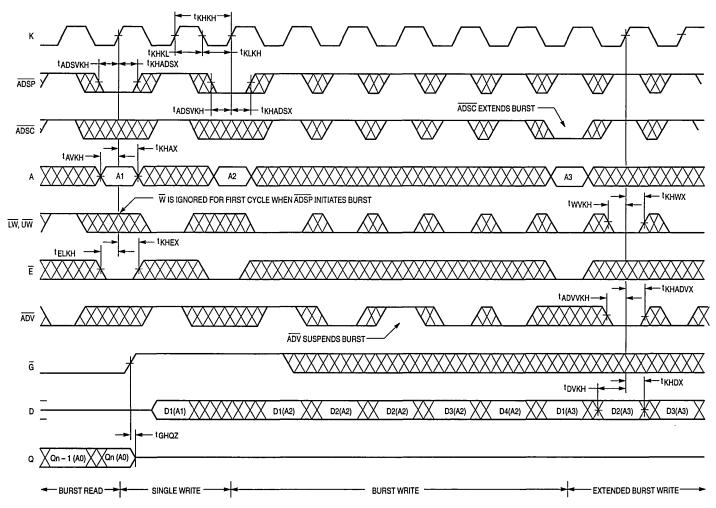

4. G is a don't care when UW or LW is sampled low.

5. Maximum access times are guaranteed for all possible i486 external bus cycles.

6. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQZ1 min for a given device and from device to device.

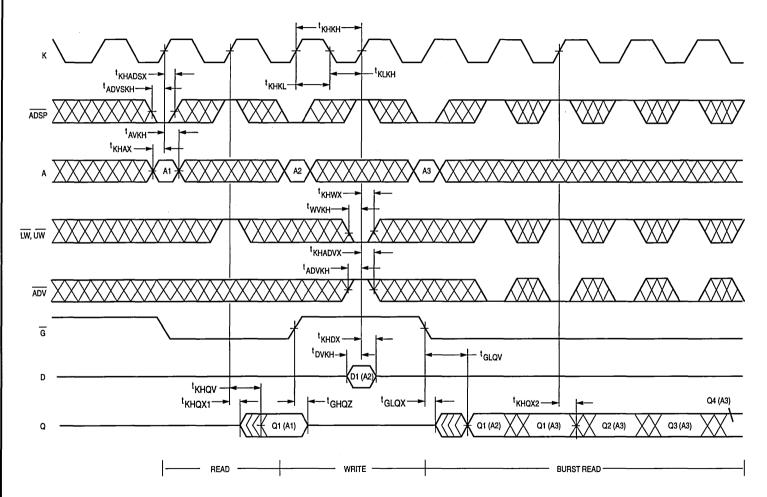

7. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled.

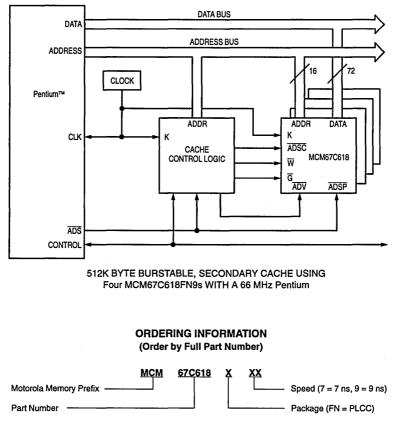
NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.



READ CYCLES

MOTOROLA FAST SRAM DATA


7


MCM67C618 4-233

MCM67C618 4-234

APPLICATION EXAMPLE

Full Part Number --- MCM67C618FN7 MCM67C618FN9

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Product Preview 64K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Self-Timed Write

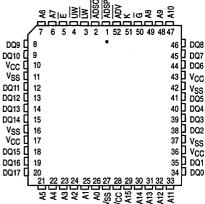
The MCM67H618 is a 1,179,648 bit synchronous fast static random access memory designed to provide a burstable, high-performance, secondary cache for the i486 and Pentium[™] microprocessors. It is organized as 65,536 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A15), data inputs (D0 – D17), and all control signals except output enable (G) are clock (K) controlled through positive-edge-triggered noninverting registers.

Bursts can be initiated with either address status processor (\overline{ADSP}) or address status cache controller (\overline{ADSC}) input pins. Subsequent burst addresses can be generated internally by the MCM67H618 (burst sequence initates that of the i486 and Pentium) and controlled by the burst address advance (\overline{ADV}) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

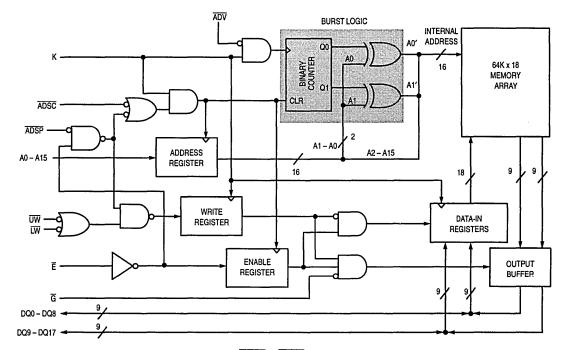
Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).


This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information.

- Single 5 V ± 5% Power Supply
- Fast Access Times: 9/12/18 ns Max
- Byte Writeable via Dual Write Enables
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package
- ADSP Disabled with Chip Enable (E) Supports Address Pipelining

MCM67H618

PIN ASSIGNMENT


PIN NAMES	
A0 – A15 Address Inputs K Clock ADV Burst Address Advance LW Lower Byte Write Enable UW Upper Byte Write Enable ADSC Controller Address Status ADSP Processor Address Status E Chip Enable G Output Enable DQ0 – DQ17 Data Input/Output/	k e e e e e e e e e e e e e
V _{CC} + 5 V Power Supply V _{SS} Ground	

All power supply and ground pins must be connected for proper operation of the device.

BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the new external address. Chip enable (E) is sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is advanced prior to the operation. When ADV is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW, UW).

BURST SEQUENCE TABLE (See Note)

External Address 1st Burst Address 2nd Burst Address 3rd Burst Address

A15 – A2	A1	A0
A15 – A2	A1	ĀŌ
A15 – A2	ĀĪ	A0
A15 – A2	A1	ĀŪ

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	ADSP	ADSC	ADV	UW or LW	к	Address Used	Operation
Н	x	L	X	x	L-H	N/A	Deselected
L	L	×	x	x	L-H	External Address	Read Cycle, Begin Burst
L	н	L	x	L	L-H	External Address	Write Cycle, Begin Burst
L	н	L	x	н	L-H	External Address	Read Cycle, Begin Burst
х	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
x	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
х	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
х	н	. Н	н	н	L-H	Current Address	Read Cycle, Suspend Burst
Н	x	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
н	x	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
Н	x	Н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
н	x	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out
Read	н	High-Z
Write	X	High-Z — Data In
Deselected	X	High-Z

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	1.5	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	ТА	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20.0 ns) for I ≤ 20.0 mA. **V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width ≤ 20.0 ns) for I ≤ 20.0 mA.

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit
input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(l)	_	± 1.0	μA
Output Leakage Current (G = VIH)	likg(O)	_	± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , \overline{E} = V _{IL} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{KHKH} min)	ICCA9 ICCA12 ICCA18		275 250 225	mA
AC Standby Current ($\vec{E} = V_{IH}$, $I_{OUt} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	ISB1	-	75	mA
Output Low Voltage (IOL = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (IOH = - 4.0 mA)	Voh	2.4	3.3	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486 and Pentium bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0 – DQ17)	CI/O	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

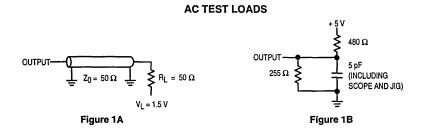
 $(V_{CC} = 5.0 V \pm 5\%, T_A = 0 \text{ to} + 70^{\circ}C, Unless Otherwise Noted)$

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V
Input Rise/Fall Time	3 ns

Parameter		Syn	nbol	MCM67	'H618-9	MCM67	H618-12	MCM67	H618-18		
		Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time		^t кнкн	tCYC	15		20	-	30	-	ns	
Clock Access Tir	ne	^t KHQV	tCD		9		12	—	18	ns	4
Output Enable to	Output Valid	tGLQV	tOE	-	5	- 1	6		7	ns	
Clock High to Ou	tput Active	tKHQX1	^t DC1	6		6		6	-	ns	
Clock High to Ou	tput Change	tKHQX2	tDC2	3	—	3	_	3		ns	
Output Enable to	Output Active	tGLQX	tolz	0	—	0	—	0	—	ns	
Output Disable to	o Q High-Z	tGHQZ	tонz	2	6	2	7	2	7	ns	5
Clock High to Q High-Z		tKHQZ	tcz	_	6		6		6	ns	
Clock High Pulse Width		^t KHKL	^t CH	5		6		7	_	ns	
Clock Low Pulse	Width	^t KLKH	tCL	5	-	6		7	- 1	ns	
Setup Times:	Address Address Status Data In Write Address Advance Chip Enable	^t AVKH ^t ADSVKH ^t DVKH ^t WVKH ^t ADVVKH ^t EVKH	tas tss tDs tws	2.5	_	2.5	_	3.0	_	ns	6
Hold Times:	Address Address Status Data In Write Address Advance Chip Enable	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHEX	tah tsh tDh tWh	0.5	—	0.5	—	0.5	_	ns	6

NOTES:

1. A read cycle is defined by UW and LW high or ADSP low for the setup and hold times. A write cycle is defined by LW or UW low and ADSP high for the setup and hold times.


2. All read and write cycle timings are referenced from K or \overline{G} .

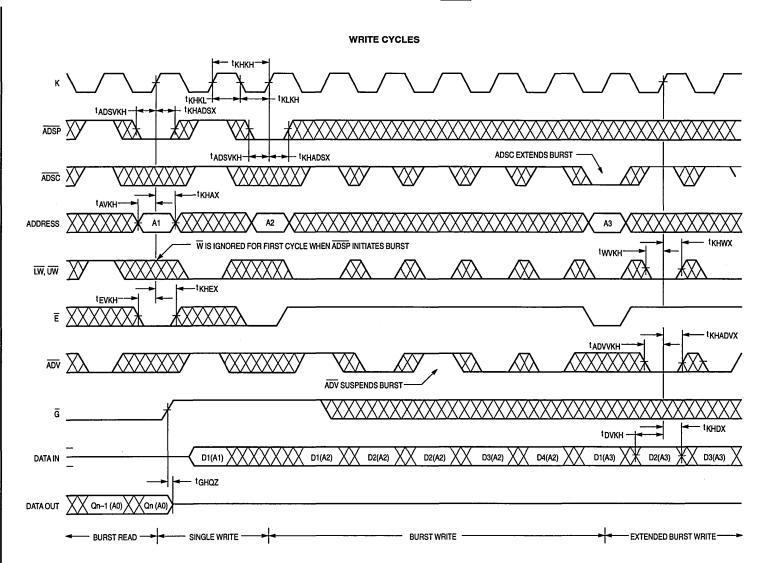
3. G is a don't care when UW or LW is sampled low.

4. Maximum access times are guaranteed for all possible i486 external bus cycles.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQZ1 min for a given device and from device to device.

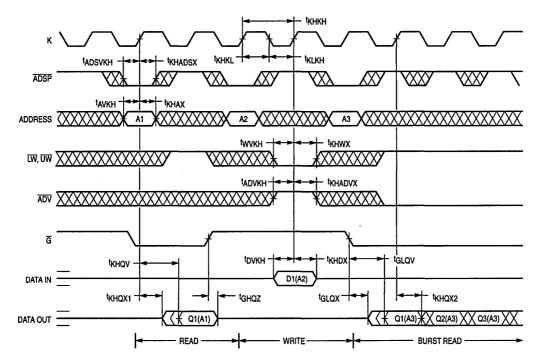
6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled.

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.


MOTOROLA FAST SRAM DATA

tкнкн--> tKHADSXκ ^tKLKH t ADSVKH · TKHKL - Σ ADSP - tKHADSX tADSVKH--- $\langle \chi \rangle$ $\langle \! \rangle \! \rangle$ ADSC XX Х - tkhax TAVKH ADDRESS A2 A1 🗕 tkhwx twvkh-> TW, UW (X) $\langle X \rangle$ -tKHEX tEVKH-Ē - tKHADVX tADVVKH- $\langle X \rangle$ $\langle X \rangle$ $\langle XXXXX$ ĀDV (X)+ ткнол **tGLQV** (ADV SUSPENDS BURST) G (BURST WRAPS AROUND -TO ITS INITIAL STATE) tGLQX --> - tghqz tKHQZ---> tKHQX2 Q2(A2) Q1(A1) Q1(A2) Q2(A2) Q3(A2) Q4(A2) Q1(A2) Q3(A2) DATA OUT SINGLE READ BURST READ

READ CYCLES


NOTE: Q1(A2) represents the first output data from the base address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.

4

MCM67H618 4-242

COMBINATION READ/WRITE CYCLE

APPLICATION EXAMPLE

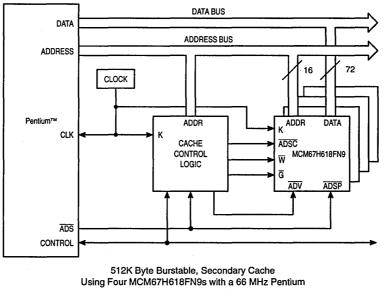
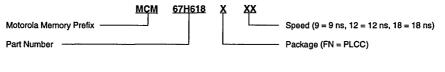



Figure 2

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers - MCM67H618FN9

MCM67H618FN12 MCM67H618FN18

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

64K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Registered Outputs

The MCM67J618 is a 1,179,648 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the i486[™] and Pentium[™] microprocessors. It is organized as 65,536 words of 18 bits, fabricated with Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive registered output drivers onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A15), data inputs (D0 – D17), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive-edge-triggered noninverting registers.

This device contains output registers for pipeline operations. At the rising edge of K, the RAM provides the output data from the previous cycle.

Output enable $(\overline{\mathbf{G}})$ is asynchronous for maximum system design flexibility.

Burst can be initiated with either address status processor (ADSP) or address status cache controller (ADSC) input pins. Subsequent burst addresses can be generated internally by the MCM67J618 (burst sequence initiates that of the i486) and controlled by the burst address advance (ADV) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

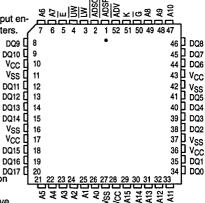
This device also incorporates pass-thru functionality. A read cycle preceded by D_{QQ}^{DQ} a write cycle will cause the the data written into the array to appear at the outputs on the same clock cycle on which the read was initiated. The clock high to data valid time is the same as that of a standard read operation. Chip enable (\overline{E}) does not have to be asserted to receive valid data during a pass-thru operation. Output enable (\overline{G}) maintains control of the output buffers during a pass-thru operation.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).

This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information.

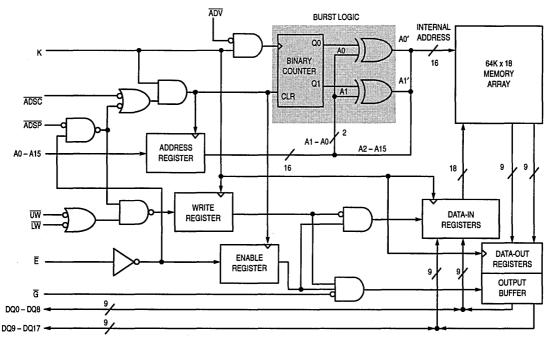
- Single 5 V ± 5% Power Supply
- Fast Access Time/Fast Cycle Time = 7 ns/80 MHz, 9 ns/66 MHz
- Byte Writeable via Dual Write Enables
- Internal Input Registers (Address, Data, Control)
- Output Registers for Pipelined Applications
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Write Pass-Thru Capability
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package
- ADSP Disabled with Chip Enable (E) Supports Address Pipelining

BurstRAM is a trademark of Motorola, Inc.


i486 and Pentium are trademarks of Intel Corp.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

MCM67J618


PIN ASSIGNMENT

PIN NAMES					
A0 – A15 Address Input K Cloc ADV Burst Address Advance LW Lower Byte Write Enable UW Upper Byte Write Enable ADSC Controller Address Statu ADSC Controller Address Statu G Output Enable DQ0 – DQ17 Data Input/Output VCC + 5 V Power Supp	k e le le s s le le ut ly				

All power supply and ground pins must be connected for proper operation of the device.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the new external address. Chip enable (E) is sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is advanced prior to the operation. When ADV is sampled high, the internal address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW, UW).

BURST	SEQUENCE	TABLE ((See Note)
-------	----------	---------	------------

External Address	A15 – A2	A1	A0
1st Burst Address	A15 – A2	A1	ĀŪ
2nd Burst Address	A15 – A2	A1	A0
3rd Burst Address	A15 – A2	Āī	ĀŌ

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	ADSP	ADSC	ADV	UW or LW	к	Address Used	Operation
н	x	L	x	x	L∙H	N/A	Deselected
L	L	х	x	X	L∙H	External Address	Read Cycle, Begin Burst
L	н	L	x	L	L-H	External Address	Write Cycle, Begin Burst
L	н	L	X	н	L-H	External Address	Read Cycle, Begin Burst
х	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
х	н	H	н	L	L-H	Current Address	Write Cycle, Suspend Burst
х	н	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst
н	х	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
н	х	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
н	x	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
н	х	н	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out
Read	н	High-Z
Write	X	High-Z — Data In
Deselected	×	High-Z

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

PASS-THRU TRUTH TABLE (Read preceded by a write)

Operation of Previous Cycle	Ē	TW	บพ	G	Operation of Present Cycle	Operation of Next Cycle
Write Cycle, Both Bytes (Address = n - 1)	L	L	L	L	 Register Address = n and all Inputs Data of Address = n - 1 Appears at Outputs 	Read Data at Address = n
Write Cycle, Upper Byte (Address = n - 1)	н	L	н	L	Data of Address = n – 1 Appears at Outputs of Upper Byte	No Carry-Over Operation From Previous Cycle
Write Cycle, Both Bytes (Address = n - 1)	н	L	L	н	All I/Os High-Z	No Carry-Over Operation From Previous Cycle

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	+ 30	mA
Power Dissipation	PD	1.6	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	ТА	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	lkg(l)	-	± 1.0	μA
Output Leakage Current (G = VIH)	l _{lkg} (O)	_	± 1.0	μA
AC Supply Current (\overline{G} = V _{IH} , \overline{E} = V _{IL} , I _{out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} ≥ 3.0 V, Cycle Time ≥ t _{KHKH} min)	ICCA7 ICCA9	—	290 275	mA
AC Standby Current ($\overline{E} = V_{IH}$, $I_{Out} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	ISB1		75	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL		0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	3.3	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486, Pentium bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 - DQ17)	C _{in}	4	5	рF
Input/Output Capacitance (DQ0 – DQ17)	CI/O	6	8	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5% T_A = 0 to + 70°C, Unless Otherwise Noted)

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 3 ns

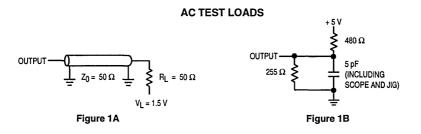
READ/WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4)

		Syn	lodr	MCM67	7J618-7	MCM6	7J618-9		
Pa	rameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Cycle Time		tкнкн	tcyc	12.5	-	15	-	ns	
Clock Access Time)	^t KHQV	tCD	-	7	-	9	ns	5
Output Enable to C	Dutput Valid	^t GLQV	^t OE	—	5	-	6	ns	
Clock High to Outp	out Active	^t KHQX1	tDC1	2	-	2	-	ns	
Clock High to Outp	out Change	tKHQX2	tDC2	2	-	2	-	ns	
Output Enable to C	Dutput Active	^t GLQX	tolz	1	_	1	- 1	ns	
Output Disable to 0	Q High-Z	^t GHQZ	tohz	2	6	2	6	ns	6
Clock High to Q Hi	gh-Z	^t KHQZ	tcz	_	6	-	6	ns	
Clock High Pulse Width		^t KHKL	tсн	5	—	5	-	ns	
Clock Low Pulse V	Vidth	^t KLKH	^t CL	5	_	5	-	ns	
Setup Times:	Address Address Status Data In Write Address Advance Chip Enable	^t AVKH ^t ADSVKH ^t DVKH ^t WVKH ^t ADVVKH ^t EVKH	tAS tSS tDS tWS	2.5	-	2.5	_	ns	7
Hold Times:	Address Address Status Data In Write Address Advance Chip Enable	^t KHAX ^t KHADSX ^t KHDX ^t KHWX ^t KHADVX ^t KHEX	tah tsh tDH twh	0.5	_	0.5	_	ns	7

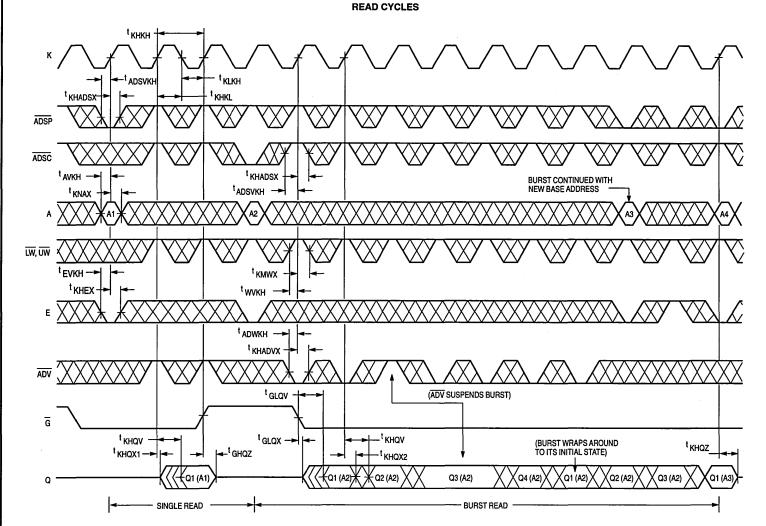
NOTES:

1. W refers to either or both byte write enables (LW, UW).

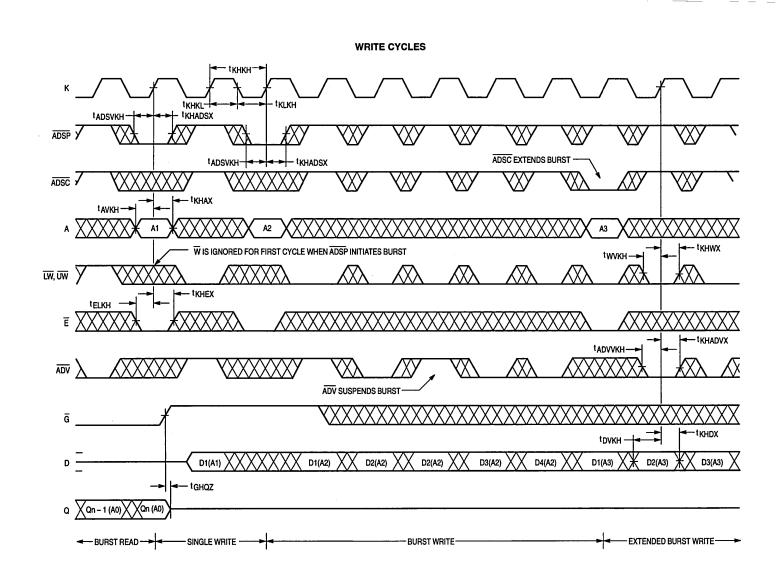
2. A read cycle is defined by UW and UW high or ADSP low for the setup and hold times. A write cycle is defined by UW or UW low and ADSP high for the setup and hold times.

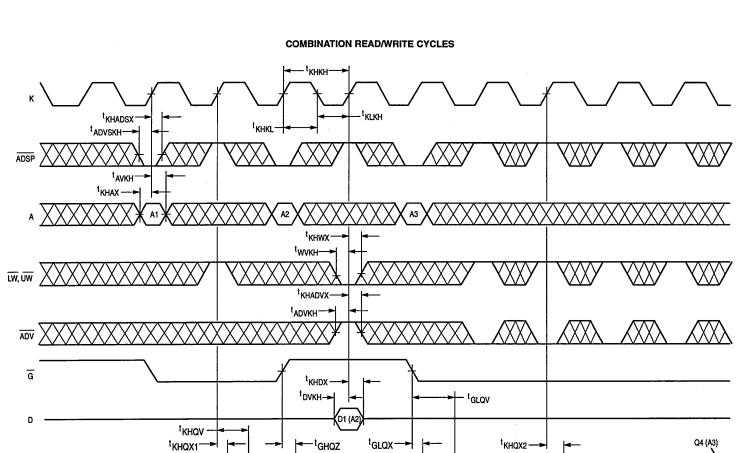

3. All read and write cycle timings are referenced from K or \overline{G} .

4. G is a don't care when UW or LW is sampled low.


5. Maximum access times are guaranteed for all possible i486 external bus cycles.

6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQZ1 min for a given device and from device to device.


7. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled.



NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

MCM67J618 4-250



Q1 (A1)

READ

WRITE

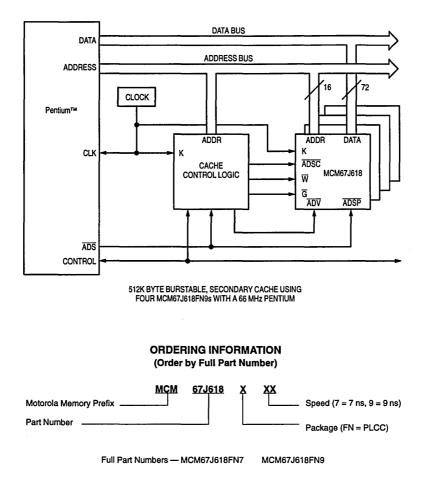
-PASS THROUGH

MOTOROLA FAST SRAM DATA

Q

4

Q1 (A2)


Q1 (A3)

BURST READ

Q2 (A3)

Q3 (A3)

APPLICATION EXAMPLE

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Product Preview 64K x 18 Bit BurstRAM[™] Synchronous Fast Static RAM With Burst Counter and Self-Timed Write

The MCM67M618 is a 1,179,648 bit synchronous static random access memory designed to provide a burstable, high-performance, secondary cache for the MC68040 and PowerPC[™] microprocessors. It is organized as 65,536 words of 18 bits, fabricated using Motorola's high-performance silicon-gate BiCMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A15), data inputs (DQ0 – DQ17), and all control signals, except output enable (G), are clock (K) controlled through positive-edge-triggered noninverting registers.

Bursts can be initiated with either transfer start processor (TSP) or transfer start cache controller (TSC) input pins. Subsequent burst addresses are generated internally by the MCM67M618 (burst sequence imitates that of the MC68040) and controlled by the burst address advance (BAA) input pin. The following pages provide more detailed information on burst controls.

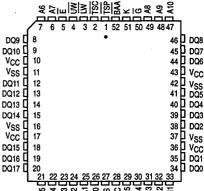
Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{UW} controls DQ9 – DQ17 (the upper bits).

This device is ideally suited for systems that require wide data bus widths and cache memory.

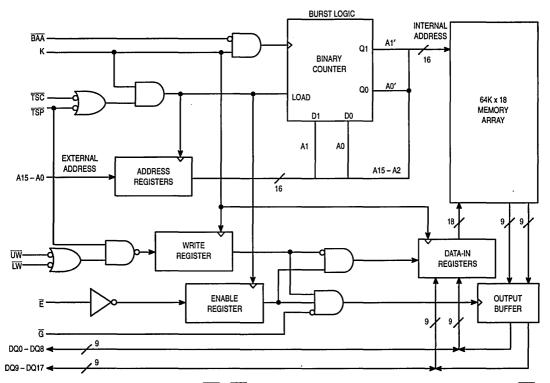
This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

- Single 5 V ± 5% Power Supply
- Fast Access Times: 9/11/14/19 ns Max and Cycle Times: 12.5/15/20/25 ns Min
- Byte Writeable via Dual Write Strobes
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- TSP, TSC, and BAA Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- · Common Data Inputs and Data Outputs
- High Board Density 52-PLCC Package


BurstRAM is a trademark of Motorola, Inc. PowerPC is a trademark of IBM Corp.

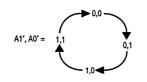
• 3.3 V I/O Compatible

PIN ASSIGNMENT



PIN NAMES				
K BAA LW TSP, TSC G G DQ0 – DQ17 VCC	Address Inputs Clock Burst Address Advance Lower Byte Write Enable Upper Byte Write Enable Transfer Start Chip Enable Output Enable Data Input/Output + 5 V Power Supply Ground			

All power supply and ground pins must be connected for proper operation of the device.


MCM67M618

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The TSC or TSP signals control the duration of the burst and the start of the next burst. When TSP is sampled low, any ongoing burst is interrupted and a read (independent of W and TSC) is performed using the new external address. When TSC is sampled low (and TSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the next external address. Chip enable (E) is sampled only when a new base address is loaded. After the first cycle of the burst, BAA controls subsequent burst cycles. When BAA is sampled low, the internal address is advanced prior to the operation. When BAA is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE GRAPH. Write refers to either or both byte write enables (LW, UW).

BURST SEQUENCE GRAPH (See Note)

NOTE: The external two values for A1 and A0 provide the starting point for the burst sequence graph. The burst logic advances A1 and A0 as shown above.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

Ē	TSP	TSC	BAA	LW or UW	к	Address	Operation
н	L	х	х	x	L-H	N/A	Deselected
н	x	L	х	x	L-H	N/A	Deselected
L	L	x	х	x	L-H	External Address	Read Cycle, Begin Burst
L	н	L	х	L	L-H	External Address	Write Cycle, Begin Burst
L	н	L	х	н	L-H	External Address	Read Cycle, Begin Burst
х	н	н	L	L	L-H	Next Address	Write Cycle, Continue Burst
Х	н	н	L	н	L-H	Next Address	Read Cycle, Continue Burst
х	н	н	н	L	L-H	Current Address	Write Cycle, Suspend Burst
x	н	H.	н	н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

1. X means Don't Care.

2. All inputs except G must meet setup and hold times for the low-to-high transition of clock (K).

3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out (DQ0 - DQ8)
Read	н	High-Z
Write	X	High-Z — Data In
Deselected	x	High-Z

NOTES:

1. X means Don't Care.

 For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS for Any Pin Except VCC	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	1.6	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to VSS = VSSO = 0 V)

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

4-256

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	V
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	V

*V_{IL} (min) = -0.5 V dc; V_{IL} (m:n) = -2.0 V ac (pulse width ≤ 20.0 ns) for I ≤ 20.0 mA. **V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width ≤ 20.0 ns) for I ≤ 20.0 mA.

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(i)	_	± 1.0	μΑ
Output Leakage Current (G = VIH)	likg(O)		± 1.0	μA
AC Supply Current ($\overline{G} = V_{IH}$, $\overline{E} = V_{IL}$, $I_{out} = 0$ mA, All Inputs = V_{IL} or V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	ICCA9 ICCA11 ICCA14 ICCA19	_	290 275 250 225	mA
AC Standby Current ($\overline{E} = V_{IH}$, $I_{out} = 0$ mA, All Inputs = V_{IL} and V_{IH} , $V_{IL} = 0.0$ V and $V_{IH} \ge 3.0$ V, Cycle Time $\ge t_{KHKH}$ min)	^I SB1		75	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	· _	0.4	V
Output High Voltage (IOH = - 4.0 mA)	VOH	2.4	3.3	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible 68040 bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Min	Тур	Мах	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	-	4	5	pF
Input/Output Capacitance (DQ0 – DQ17)	C _{I/O}	—	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

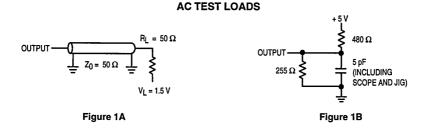
 $(V_{CC} = 5.0 V \pm 5\% T_A = 0 to + 70^{\circ}C, Unless Otherwise Noted)$

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	3 ns

	Syn	nbol	67M	618-9	67M6	18-11	67M6	18-14	67M6	18-19		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time	^t кнкн	tCYC	12.5	-	15	—	20	_	25	-	ns	
Clock Access Time	^t KHQV	tCD	-	9	-	11	-	14		19	ns	4
Output Enable to Output Valid	tGLQV	tOE		5	-	5		6	_	7	ns	
Clock High to Output Active	tKHQX1	^t DC1	6	-	6	—	6	—	6	-	ns	
Clock High to Output Change	tKHQX2	tDC2	3	_	3	-	3		3	_	ns	
Output Enable to Output Active	^t GLQX	tolz	0	-	0	—	0	-	0	-	ns	
Output Disable to Q High-Z	tGHQZ	tonz	2	6	2	6	2	6	2	7	ns	5
Clock High to Q High-Z	^t KHQZ	tCZ	-	6	—	6	-	6	_	6	ns	5
Clock High Pulse Width	^t KHKL	tCH	5	_	5		6	—	7	-	ns	
Clock Low Pulse Width	^t KLKH	tCL	5	-	5		6	—	7	—	ns	
Setup Times: Address Address Status Data In Write Address Advance Chip Select	^t AVKH ^t TSVKH ^t DVKH ^t WVKH ^t BAVKH ^t EVKH	tas tss tDs tWS	2.5	_	2.5	_	2.5	_	3.0	_	ns	6
Hold Times: Address Address Status Data In Write Address Advance Chip Select	^t KHAX ^t KHTSX ^t KHDX ^t KHWX ^t KHBAX ^t KHEX	tah tsh tDH t₩H	0.5		0.5		0.5		0.5	_	ns	6

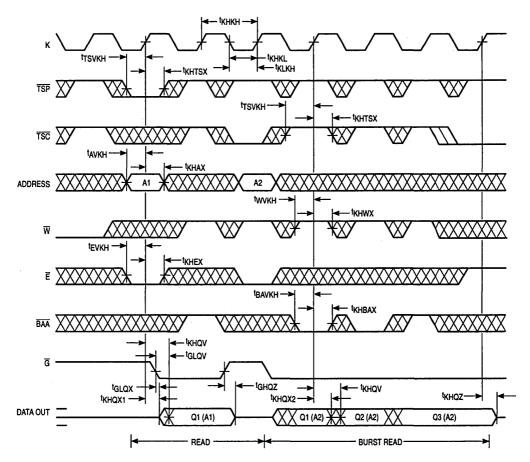
NOTES:

1. A read cycle is defined by UW and UW high or TSP low for the setup and hold times. A write cycle is defined by UW or UW low and TSP high for the setup and hold times.

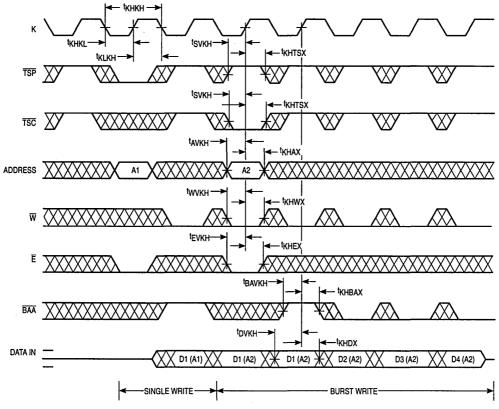

2. All read and write cycle timings are referenced from K or $\overline{G}.$

3. G is a don't care when UW or LW is sampled low.

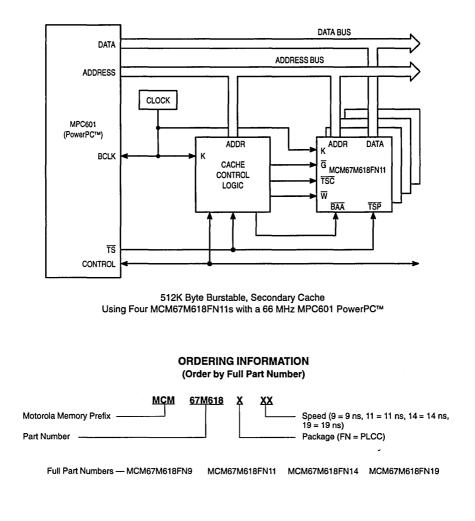
4. Maximum access times are guaranteed for all possible MC68040 external bus cycles.


5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ max is less than tKHQX1 min for a given device and from device to device.

6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of clock (K) whenever TSP or TSC are low and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. Chip enable must be valid at each rising edge of clock for the device (when TSP or TSC is low) to remain enabled.


NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

READ CYCLE


NOTE: Q1(A2) represents the first output from the external address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.

WRITE CYCLE

NOTE: $\overline{G} = V_{IH}$.

APPLICATION EXAMPLE

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Product Preview 64K x 18 Bit Asynchronous Fast Static RAM

With Address Latch and Byte Enable

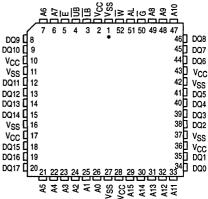
The MCM67W618 is a 1,179,648 bit static random access memory organized as 65,536 words of 18 bits, fabricated using Motorola's high-performance silicon-gate BiCMOS technology. The device integrates a 64K x 18 SRAM core with advanced peripheral circuitry consisting of address latches, active low chip enable, write enable, separate upper and lower byte selects, and a fast output enable. This device has increased output drive capability supported by multiple power pins.

Address latch enable (AL) is provided to simplify read and write cycles by guaranteeing address hold time in a simple fashion. When the address latch input is high, the address latch is in the transparent state. If the latch enable is tied high, the device can be used as an asynchronous SRAM. When the address latch enable is low, the address is in the latched state.

Dual byte selects (\overline{LB} and \overline{UB}) are provided to allow individually readable and writeable bytes. \overline{LB} controls DQ0 – DQ8 (the lower bits) while \overline{UB} controls DQ9 – DQ17 (the upper bits).

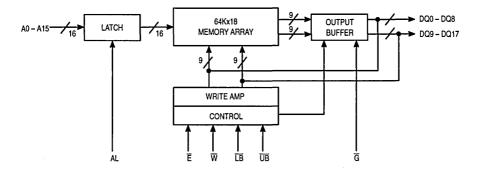
A generous number of power supply pins have been utilized and placed on the package for maximum performance.

The MCM67W618 will be available in a 52-pin plastic leaded chip carrier (PLCC).


This device is ideally suited for systems that require wide data bus widths, cache memory, and as tag RAMs.

- Single 5 V ± 10% Power Supply
- · Fast Access Times: 12/15/20 ns Max
- Byte Write and Byte Read Capability
- Transparent Address Latch
- · Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package

PIN ASSIGNMENT



PIN NAMES						
A0 – A15 Address Inputs AL Address Latch W Write Enable LB Lower Byte Select UB Upper Byte Select G Output Enable DQ0 – DQ17 Data Input/Output VCC + 5 V Power Supply VSS Ground						

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM

TRUTH TABLE

Ē	LB	ŪB	w	AL*	Ğ	Mode	Supply Current	I/O Status
н	x	х	x	X	X	Deselected	ISB	High-Z
L	x	х	х	L	X	Read or Write Using Latched Addresses	lcc	_
L	x	х	х	н	X	Read or Write Using Unlatched Addresses	lcc	-
L	L	L	н	X	L	Read Cycle	lcc	Data Out
L	L	L	н	X	н	Read Cycle	lcc	High-Z
L	L	L	L	X	x	Write Cycle Lower and Upper Byte	lcc	High-Z
L	L	н	L	L	x	Write Cycle Lower Byte with Latched Addresses	lcc	High-Z
L	н	L	н	L	L	Read Cycle Upper Byte	lcc	Data Out

*Addresses must satisfy the specified setup and hold times for the falling edge of AL.

NOTE: This truth table shows the application of all device functions; different combinations are valid.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V	
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v	
Output Current (per I/O)	lout	± 30	mA	
Power Dissipation	PD	1.6	w	
Temperature Under Bias	T _{bias}	- 10 to + 85	°C	
Operating Temperature	Τ _Α	0 to + 70	°C	
Storage Temperature	T _{stg}	- 55 to + 125	°C	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

 $\label{eq:VIL} \begin{array}{l} ^{*}V_{IL} \mbox{ (min)} = - \ 0.5 \ V \ dc; \ V_{IL} \mbox{ (min)} = - \ 2.0 \ V \ ac \ (pulse \ width \le 20 \ ns) \ for \ I \le 20.0 \ mA. \\ \\ ^{**}V_{IH} \mbox{ (max)} = \ V_{CC} + \ 0.3 \ V \ dc; \ V_{IH} \mbox{ (max)} = \ V_{CC} + \ 2.0 \ V \ ac \ (pulse \ width \le 20 \ ns) \ for \ I \le 20.0 \ mA. \end{array}$

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	llkg(l)	_	± 1.0	μΑ
Output Leakage Current (G = VIH)	likg(O)	_	± 1.0	μΑ
AC Supply Current (\overline{G} = V _{IH} , I _{OUT} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} \ge 3.0 V, Cycle Time \ge t _{AVAV} min)	ICCA12 ICCA15 ICCA20		290 275 260	mA
AC Standby Current (E = V _I H, I _{OUt} = 0 mA, All Inputs = V _I L or V _I H, V _I L = 0 V and V _I H \geq 3.0 V, f = f _{max})	ISB1	_	75	mA
CMOS Standby Current ($\overline{E} \geq V_{CC} - 0.2$ V, All Inputs $\geq V_{CC} - 0.2$ V or ≤ 0.2 V, f = fmax)	I _{SB2}		12	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	Vol	_	0.4	v
Output High Voltage (IOH = - 4.0 mA)	Voн	2.4	3.3	v

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0 – DQ17)	Cout	6	8	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	3 ns

READ CYCLE (See Notes 1, 2, and 3)

		MCM67	W618-12	MCM67	W618-15	MCM67	N618-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	tavav	12	- 1	15	—	20		ns	4
Access Times: Address Valid to Output Valid Chip Enable Low to Output Valid AL High to Output Valid Output Enable Low to Output Valid Byte Select Low to Output Valid	tAVQV tELQV tALHQV tGLQV tBLQV	 	12 12 12 6 6		15 15 15 7 7		20 20 20 8 8	ns	5
Setup Times: Address Valid to Address Latch Low Address Valid to Address Latch High	^t AVALL ^t AVALH	2 0	=	2 0	=	2 0	_	ns	
Hold Times: Address Latch Low to Address Invalid	†ALLAX	2	_	3	_	3	· _	ns	
Output Hold: Address Invalid to Output Invalid AL High to Output Invalid	^t AXQX ^t ALHQX	4 4	=	4	=	4 4	=	ns	
Address Latch Pulse Width	^t ALHALL	5	-	5	-	5	-	ns	
Output Buffer Control: Chip Enable Low to Output Active Output Enable Low to Output Active Byte Select Low to Output Active Chip Enable High to Output High-Z Output Enable High to Output High-Z Byte Select High to Output High-Z	^t ELQX ^t GLQX ^t BLQX ^t EHQZ ^t GHQZ ^t BHQZ	3 1 2 2 2 2		2 1 2 2 2 2	 9 7 9	2 1 2 2 2 2		ns	6

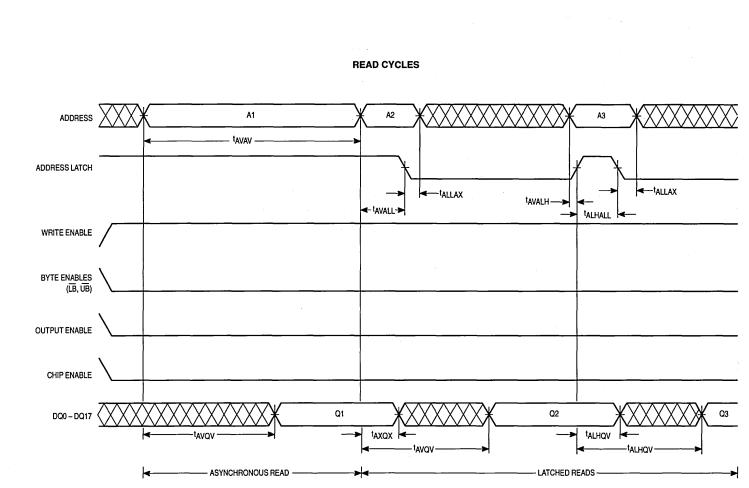
NOTES:

1. \overline{B} refers to either or both byte selects (\overline{LB} , \overline{UB}).

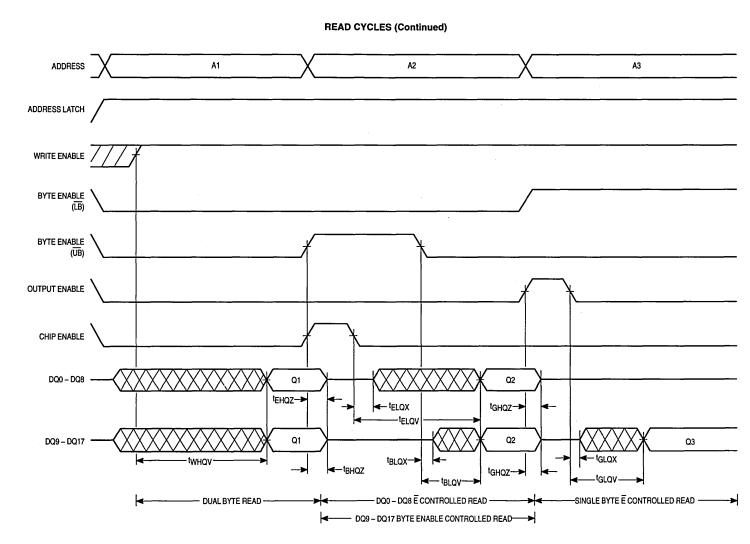
2. Address latch (AL) is high for all asynchronous cycles.

3. A read occurs during the overlap of \vec{E} low, \vec{W} high, and either or both byte enable (\vec{LB} , \vec{UB}) low.

4. All read cycle timing is referenced from the last valid address to the first transitioning address.


5. Addresses valid prior to or coincident with E low.

6. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEHQZ is less than tELQX and tGHQZ is less than tELQX for a given device.


AC TEST LOADS

NOTE: For information on output I-V characteristics, see Chapter 8, Section 1.

MCM67W618 4-266

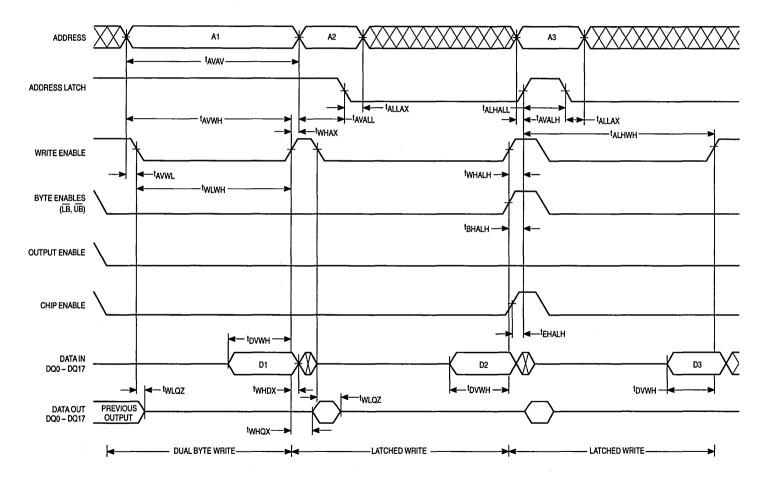
MCM67W618 4-267

		MCM67	W618-12	MCM67	N618-15	MCM67	W618-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	12	-	15	—	20	-	ns	5
Setup Times:								ns	
Address Valid to End of Write	tavwh	8	i —	13	_	15			i
Address Valid to Chip Enable High	^t AVEH	8	-	13	-	15		i i	
Address Valid to Write Enable Low	TAVWL	0		0	—	0	-		Į
Address Valid to Chip Enable Low	^t AVEL	0	-	0	-	0	-	1	1
Data Valid to Write Enable High	^t DVWH	6	- 1	7	—	8	-		
Data Valid to Chip Enable High	^t DVEH	6	- 1	7		8	-		
Byte Select Low to Write Enable High	^t BLWH	4	-	6	-	8	— .		l I
Byte Select High to Write Enable Low	^t BHWL	0	-	0		0	-		
Byte Select Low to Chip Enable High	^t BLEH	4	-	6	- 1	8	-		
Address Latch High Write Low	^t ALHWL	0	-	0		0	-		
Address Valid to Address Latch Low	tAVALL	2	- 1	2	—	2			1
Address Valid to Address Latch High	^t AVALH	0	-	0	-	0	-		i
Hold Times:								ns	
Write Enable High to Address Invalid	twhax	0	-	0	—	0	-		
Chip Enable High to Address Invalid	^t EHAX	0	-	0	-	0	- 1		
Byte Select High to Address Invalid	^t BHAX	0	1 -	0	_	0	·		
Write Enable High to Data Invalid	tWHDX	0	- 1	0	-	0			
Chip Enable High to Data Invalid	^t EHDX	0	-	0		0	-		
Byte Select High to Data Invalid	^t BHDX	0	- 1	0	-	0			
Write Enable High to Byte Enable Invalid	^t WHBX	2	- 1	2	_	2	- 1		
Chip Enable High to Byte Enable Invalid	^t EHBX	2	-	2		2	- 1		
Address Latch Low to Address Invalid	TALLAX	2		3	_	3			
Write Enable High to Address Latch High	tWHALH	0	-	0		0	- 1		
Byte Select High to Address Latch High	^t BHALH	0	-	0	-	0	-		
Write Pulse Width:								ns	
Write Pulse Width (G Low)	twlwh	8	_	13	_	15		1.0	
Write Pulse Width (G High)	1WLWH	7	-	12	_	14	_		
Write Pulse Width	[†] WLEH	8	- 1	13	- 1	15	í —	1	6
Chip Enable to End of Write	TELWH	8	-	13		15	-		7
Chip Enable to End of Write	TELEH	8	-	13	- 1	15	-		6, 7
Address Latch High to Write Enable High	tALHWH	8	-	13	-	15	-		
Address Latch Pulse Width	^t ALHALL	5	<u> </u>	5	_	5	- 1	ns	
Output Buffer Control:								ns	
Write Enable High to Output Active	twhox	3	I _	5	-	5	_		8
Write Enable Low to Output High-Z	twLQZ	ŏ	6	Ō	9	ō	9		8,9

NOTES:

1. \overline{B} refers to either or both byte selects (\overline{LB} , \overline{UB}).

2. Address latch (AL) is high for all asynchronous cycles.

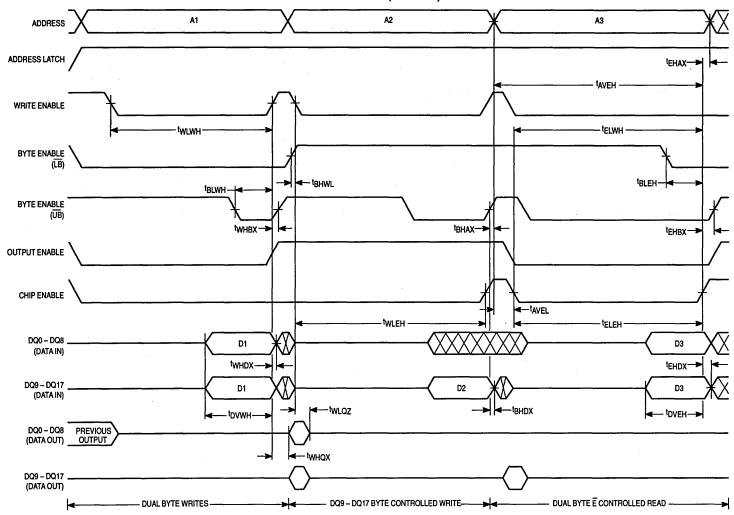

3. A write occurs during the overlap of E low, W low, and either or both byte enable (LB, UB) low.

4. Write enable must be equal to $V_{\mbox{\scriptsize IH}}$ for all address transitions.

5. All write cycle timing is referenced from the last valid address to the first transitioning address.
6. If G goes low coincident with or after W goes low, the output will remain in a high impedance state.
7. If E goes high coincident with or before W goes high the output will remain in a high impedance state.
8. If E goes high coincident with or before W goes high the output will remain in a high impedance state.
8. If E goes high coincident with or before W goes high the output will remain in a high impedance state.

9. Transition is measured \pm 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tEHQZ is less than tELQX and tGHQZ is less than tGLQX for a given device.

WRITE CYCLES



MCM67W618 4-269

4

WRITE CYCLES (Continued)

ORDERING INFORMATION (Order by Full Part Number)

MÇM	<u>67W618</u> FN	<u>ҳх</u>	
Motorola Memory Prefix			Speed (12 = 12 ns, 15 = 15 ns, 20 = 20 ns)
Part Number			Package (FN = PLCC)

Full Part Numbers - MCM67W618FN12 MCM67W618FN15 MCM67W618FN20

MOTOROLA SEMICONDUCTOR

Product Preview 128K x 9 Bit Synchronous Dual I/O or Separate I/O Fast Static RAM

The MCM67D709 is a 1,179,648 bit synchronous static random access memory organized as 131,072 words of 9 bits, fabricated using Motorola's high-performance silicon-gate BiCMOS technology. The device integrates a 128K x 9 SRAM core with advanced peripheral circuitry consisting of address registers, two sets of input data registers and two sets of output latches. This device has increased output drive capability supported by multiple power pins.

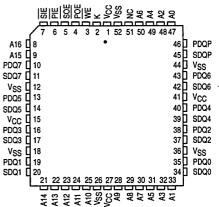
Asynchronous inputs include the processor output enable (POE) and the system output enable (SOE).

The address inputs (A0 – A16) are synchronous and are registered on the falling edge of clock (K). Write enable (\overline{W}), processor input enable (\overline{PIE}) and system input enable (\overline{SIE}) are registered on the rising edge of clock (K). Writes to the RAM are self-timed.

All data inputs/outputs, PDQ0 – PDQ7, SDQ0 – SDQ7, PDQP, and SDQP have input data registers triggered by the rising edge of the clock. These pins also have three-state output latches which are transparent during the high level of the clock and latched during the low level of the clock.

This device has a special feature which allows data to be passed through the RAM between the system and processor ports in either direction. This streaming is accomplished by latching in data from one port and asynchronously output enabling the other port. It is also possible to write to the RAM while streaming.

The MCM67D709's dual I/Os can be used in x9 separate I/O applications. Common I/Os PDQ0 – 7, PDQP and SDQ0 – 7, SDQP can be treated as either inputs (D) or outputs (Q) depending on the state of the control pins. In order to dedicate PDQ0 – 7, PDQP as data (D) inputs and SDQ0 – 7, SDQP as outputs (Q), tie SIE and POE high. SOE becomes the asynchronous \overline{G} for the outputs. PIE will need to track \overline{W} for proper write/read operations.

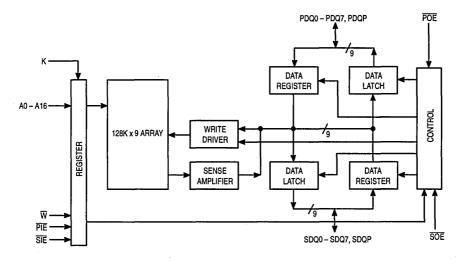

This device is ideally suited for pipelined systems and systems with multiple data buses and multi-processing systems, where a local processor has a bus isolated from a common system bus.

- Single 5 V ± 5% Power Supply
- 88110/88410 Compatibility: -16/60 MHz, -20/50 MHz
- · Self-Timed Write Cycles
- Clock Controlled Output Latches
- Address and Data Input Registers
- Common Data Inputs and Data Outputs
- Dual I/O for Separate Processor and Memory Buses
- Separate Output Enable Controlled Three-State Outputs
- 3.3 V I/O Compatible
- High Board Density 52 Lead PLCC Package
- Can be used as Separate I/O x9 SRAM

FN PACKAGE PLASTIC CASE 778

MCM67D709

PIN ASSIGNMENT



PIN NAMES
A0 – A16 Address Inputs K Clock Input Wite Enable PiE PIE Processor Input Enable SIE System Input Enable POE Processor Output Enable SOE System Output Enable PDQ0 – PDQ7 Processor Data I/O PDQ0 – SDQ7 System Data I/O SDQ0 – SDQ7 System Data Parity VCC + 5 V Power Supply VSS Ground NC No Connection

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM

FUNCTIONAL TRUTH TABLE (See Notes 1 and 2)

w	PIE	SIE	POE	SOE	Mode	Memory Subsystem Cycle	PDQ0 – PDQ7, PDQP Output	SDQ0 – SDQ7, SDQP Output	Notes
1	1	1	0	1	Read	Processor Read	Data Out	High-Z	3
1	1	1	1	0	Read	Copy Back	High-Z	Data Out	3
1	1	1	0	0	Read	Dual Bus Read	Data Out	Data Out	3
1	X	Х	1	1	Read	NOP	High-Z	High-Z	
X	0	0	X	х	N/A	NOP	High-Z	High-Z	2,4
0	0	1	1	1	Write	Processor Write Hit	Data In	High-Z	2,5
0	1	0	1	1	Write	Allocate	High-Z	Data In	2, 5
0	0	1	1	0	Write	Write Through	Data In	Stream Data	2,6
0	1	0	0	1	Write	Allocate With Stream	Stream Data	Data In	2, 6
1	0	1	1	0	N/A	Cache Inhibit Write	Data In	Stream Data	2, 6
1	1	0	0	1	N/A	Cache Inhibit Read	Stream Data	Data In	2, 6
0	1	1	X	Х	N/A	NOP	High-Z	High-Z	4
х	0	1	0	0	N/A	Invalid	Data In	Stream	2, 7
Х	0	1	0	1	N/A	Invalid	Data In	High-Z	2,7
х	1	0	0	0	N/A	Invalid	Stream	Data In	2,7
х	1	0	1	0	N/A	Invalid	High-Z	Data In	2, 7

NOTES:

 A '0' represents an input voltage ≤ V_{IL} and a '1' represents an input voltage ≥ V_{IH}. All inputs must satisfy the specified setup and hold times for the falling or rising edge of K. Some entries in this truth table represent latched values. Other possible combinations of control inputs not covered by this note or the table above are not supported and the RAMs behavior is not specified.

2. If either IE signal is sampled low on the rising edge of clock, the corresponding OE is a don't care, and the corresponding outputs are High-Z.

3. A read cycle is defined as a cycle where data is driven on the internal data bus by the RAM.

4. No RAM cycle is performed.

5. A write cycle is defined as a cycle where data is driven onto the internal data bus through one of the data I/O ports (PDQ0 - PDQ7 and PDQP or SDQ0 - SDQ7 and SPDQ), and written into the RAM.

6. Data is driven on the internal data bus by one I/O port through its data input register and latched into the data output latch of the other I/O port.

7. Data contention will occur.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS for Any Pin Except V_{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 V \pm 5\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	V
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v
Input Low Voltage	VIL	- 0.5*	0.8	v

*VIL (min) = -0.5 V dc; VIL (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC})	l _{lkg(l)}	_	± 1.0	μA
Output Leakage Current (POE, SOE = VIH)	likg(O)		± 1.0	μA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ICCA		280 260	mA
Output Low Voltage (IOL = + 8.0 mA)	VOL	. –	0.4	v
Output High Voltage (IOH = - 4.0 mA)	VOH	2.4	3.3	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except I/Os)	C _{in}	5	6	рF
Input/Output Capacitance (PDQ0 – PDQ7, SDQ0 – SDQ7, PDQP, SDQP)	Cout	6	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	. 1.5 V
Input Pulse Levels 0	to 3.0 V
Input Rise/Fall Time	3 ns

 Output Measurement Timing Level
 1.5 V

 Output Load
 See Figure 1A Unless Otherwise Noted

READ CYCLE (See Note 1)

	Process	or Frequency		MHz D709-16		MHz 'D709-20	_	
Parameter		Symbol	Min	Max	Min	Max	Unit	Notes
Read Cycle Time Clock High to Clock High		^t кнкн	16		20	-	ns	1,2
Clock Low Pulse Width		^t KLKH	5	_	5	_	ns	
Clock High Pulse Width		^t KHKL	7		7	-	ns	
Clock High to Output Valid		^t KHQV		6		7.5	ns	3
Clock (K) High to Output Low Z After Write		tKHQX1	0	—	0	-	ns	
Output Hold from Clock High		tKHQX2	2	_	3	- 1	ns	3,4
Setup Times:	A W PIE SIE	^t AVKL ^t WHKH ^t PIEHKH ^t SIEHKH	2 2 2 2	-	2 2 2 2	_	ns	
Hold Times:	A W PIE SIE	^t KLAX ^t KHWX ^t KHPIEX ^t KHSIEX	2 2 2 2	-	2 2 2 2	-	ns	
Output Enable High to Q High-Z		^t POEHQZ tSOEHQZ	0	5	0	8	ns	4
Output Hold from Output Enable High		tPOEHQX tSOEHQX	2	-	5	-	ns	4
Output Enable Low to Q Active		^t POELQX tSOELQX	0	-	0	-	ns	4
Output Enable Low to Output Valid		^t POELQV tSOELQV	—	5	-	6	ns	

NOTES:

1. A read is defined by W high for the setup and hold times.

2. All read cycle timing is referenced from K, SOE, or POE.

3. K must be at a high level for outputs to transition.

4. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ is less than tKHQX, tPOEHQZ is less than tPOELQX for a given device, and tSOEHQZ is less than tSOELQX for a given device.

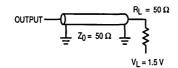
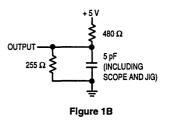
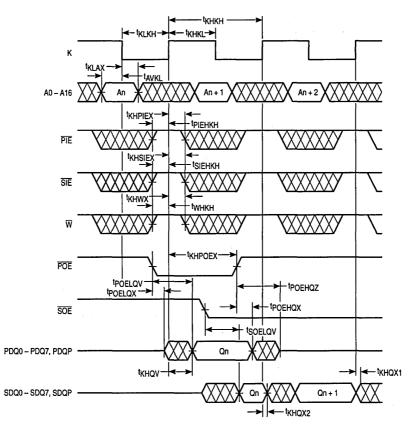




Figure 1A

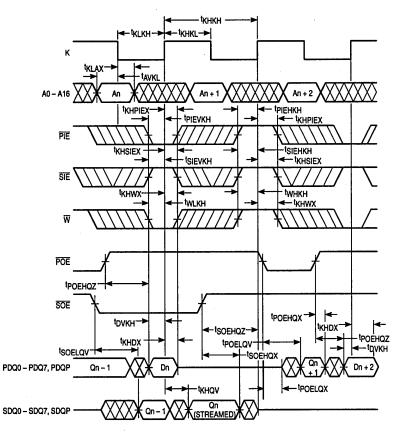
READ CYCLE (See Note)

Process	or Frequency	60 I	MHz	50	MHz		
		MCM67	D709-16	MCM67	D709-20		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Times	^t кнкн	16	-	20	-	ns	1, 2
Clock Low Pulse Width	^t KLKH	5	-	5	-	ns	
Clock High Pulse Width	^t KHKL	7	—	7		ns	
Clock High to Output High-Z ($\overline{W} = V_{IL}$ and SIE = PIE = V _{IH})	^t KHQZ	_	8	_	8	ns	3, 4
Setup Times: A W PIE SIE SDQ0 – SDQ7, SDQP, PDQ0 – PDQ7, PDQP	^t AVKL ^t WLKH ^t PIEVKH ^t SIEVKH ^t DVKH	2 2 2 2 2	-	2 2 2 2 2	-	ns	
Hold Times: A W PIE SIE SDQ0 – SDQ7, SDQP, PDQ0 – PDQ7, PDQP	^t KLAX ^t KHWX ^t KHPIEX ^t KHSIEX ^t KHDX	2 2 2 2 2 2	_	2 2 2 2 2	_	ns	
Write with Streaming ($\overrightarrow{PIE} = \overrightarrow{SOE} = V_{IL}$ or $\overrightarrow{SIE} = \overrightarrow{POE} = V_{IL}$) Clock High to Output Valid	^t KHQV	_	5		7	ns	5
Output Enable High to Q High-Z	^t POEHQZ ^t SOEHQZ	0	5	0	8	ns	6
Output Hold from Output Enable High	^t POEHQX ^t SOEHQX	2	-	5	-	ns	6
Output Enable Low to Q Active	^t POELQX ^t SOELQX	0	-	0	-	ns	6
Output Enable Low to Output Valid	^t POELQV ^t SOELQV	_	5	—	6	ns	

WRITE CYCLE (See Note 1)

NOTES:

1. A write is performed with $\overline{W} = V_{|L}$ for the specified setup and hold times and either $\overline{P|E} = V_{|L}$ or $\overline{S|E} = V_{|L}$. If both $\overline{P|E} = V_{|L}$ and $\overline{S|E} = V_{|L}$ and $\overline{S|E}$ and $\overline{S|E}$ and $\overline{S|E$


2. All write cycle timings are referenced from K.

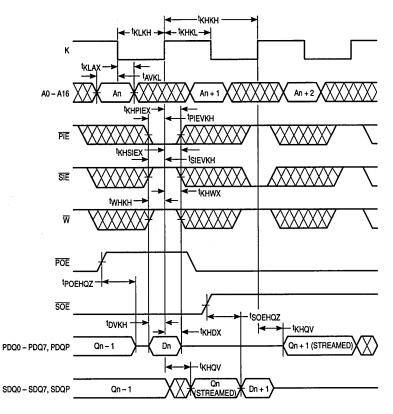
3. K must be at a high level for the outputs to transition.

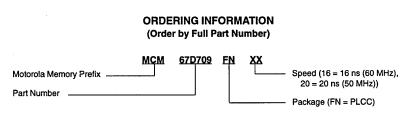
4. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tKHQZ is less than tKHQX for a given device.

5. A write with streaming is defined as a write cycle which writes data from one data bus to the array and outputs the same data onto the other data bus.

6. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B., This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHQZ} is less than t_{KHQX}, t_{POEHQZ} is less than t_{POELQX} for a given device, and t_{SOEHQZ} is less than t_{SOELQX} for a given device. WRITE THROUGH - READ - WRITE

Process	or Frequency	60 MHz		50	MHz		
		MCM67	D709-16	MCM67D709-20			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Stream Cycle Time	^t кнкн	16	-	20	-	ns	1, 2
Clock Low Pulse Width	^t KLKH	5	-	5	-	ns	
Clock High Pulse Width	^t KHKL	7	- 1	7	-	ns	
Stream Access Time	^t KHQV		6	_	7	ns	
Setup Times: A W PIE SIE SDQ0 – SDQ7, SDQP, PDQ0 – PDQ7, PDQP	^t AVKL ^t WHKH ^t PIEVKH ^t SIEVKH ^t DVKH	2 2 2 2 2	-	2 2 2 2 2	_	ns	
Hold Times: A W PIE SIE SDQ0 – SDQ7, SDQP, PDQ0 – PDQ7, PDQP	^t KLAX ^t KHWX ^t KHPIEX ^t KHSIEX ^t KHDX	2 2 2 2 2	_	2 2 2 2 2	-	ns	
Output Enable High to Q High-Z	^t POEHQZ ^t SOEHQZ	0	5	0	8	ns	3
Output Enable Low to Q Active	^t POELQX tSOELQX	0	-	0	-	ns	3
Output Enable Low to Output Valid	^t POELQV ^t SOELQV	_	5		6	ns	


NOTES:


1. A stream cycle is defined as a cycle where data is passed from one data bus to the other data bus.

2. All stream cycle timing is referenced from K.

3. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tPOEHQZ is less than tPOELQX, tSOEHQZ is less than tSOELQX, and tKHQZ is less than tKHQX for a given device.

STREAM CYCLE

Full Part Numbers - MCM67D709FN16 MCM67D709FN20

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

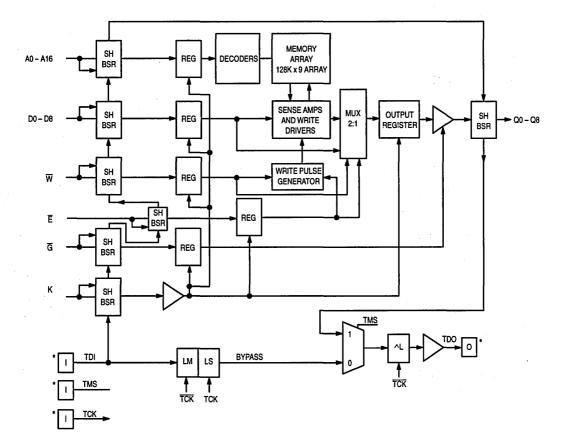
Product Preview 128K x 9 Bit Separate I/O Synchronous Fast Static RAM

The Motorola MCM67Q709 is a 1,179,648 bit static random access memory, organized as 131,072 words of 9 bits. This device is fabricated using Motorola's high-performance silicon-gate BiCMOS technology. It features separate TTL input and output buffers, which are fully I/O compatible at 3.3 V, and incorporates input and output registers on board with high speed SRAM. It also features transparent-write and data pass-through capabilities.

The synchronous design allows for precise cycle control with the use of an external single clock (K). The Addresses (A0 – A16), Data Input (D0 – D8), Data Output (Q0 – Q8), Write-Enable (\overline{W}), Chip-Enable (\overline{E}), and Output-Enable (\overline{G}), are registered in on the rising edge of Clock (K).

The MCM67Q709 is available in a 9 x 10 grid, 86 bump surface mount OMPAC.

- Single 5 V ± 10% Power Supply
- · Fast Cycle Times: 10/12 ns Max
- Single Clock Operation
- TTL Input and Output Levels (3.3 V I/O Compatible)
- Address, Data Input, E, W, G, Registers on Chip
- 100 MHz Maximum Clock Cycle Time
- Self Timed Write
- Separate Data Input and Output Pins
- Transparent-Write or Data Pass-Through
- · High Output Drive Capability: 50 pF/Output at Rated Access Time
- Boundary Scan Implementation

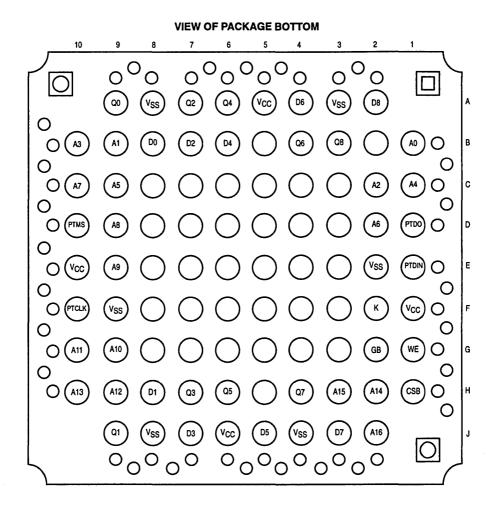


9 x 10 GRID 86 BUMP OMPAC CASE 896A-01

$\begin{array}{cccc} A0-A16 & & Address Input \\ \hline E & & Chip Enable \\ \hline W & & Write Enable \\ \hline G & & Output Enable \\ \hline O - D8 & & Data Inputs \\ Q0-Q8 & & Data Output S \\ K & Clock Input \\ TCK & Test Clock Input \\ TMS & Test Mode Select \\ TDI & Test Data Input \\ VCC & + 5 V Power Suply \\ VSS & Ground \\ NC & No Connection \\ \end{array}$

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM



NOTES:

1. Bypass is with TSENOT (TSE) and TCK.

Boundary Scan only samples inputs.
 SH BSR = Shadow Bypass Scan Register.

*Four added test pins.

TRUTH TABLE

Ē (t _n)	W (t _n)	<u>G</u> (t _{n + 1})	Mode	D0 – D3	Q0 – Q3 (t _{n + 1})	V _{CC} Current	
L		L	Write and Pass Thru	Valid	D0 – D3 (t _n)	lcc	
		н	Write	Valid	High-Z	lcc	
н		L	Pass Thru	Valid	D0 – D3 (t _n)	^I CC	
	Ц н		NOP	Don't Care	High-Z	lcc	
x	н	L	Read	Don't Care	Q _{out} (t _n)	ICC	
Ĺ		н	Read	Don't Care	High-Z	lcc	

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 30	mA
Power Dissipation	PD	1.2	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	Tstg	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This is a synchronous device. All synchronous inputs must meet specified setup and hold times with stable logic levels for *ALL* rising edges of clock (K) whie the device is selected.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	v
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	V
Input Low Voltage	VIL	- 0.5*	0.8	V
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(i)	-	± 1.0	μA
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)	-	± 1.0	μA
Output Low Voltage (IOL = + 8.0 mA)	VOL	_	0.4	v
Output High Voltage (IOH = - 4.0 mA)	VOH	2.4	3.3	V

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter	Symbol	MCM67Q709-10	MCM67Q709-12	Unit
AC Active Supply Current (I _{out} = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	210	200	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit
Address and Data Input Capacitance	Cin	6	pF
Control Pin Input Capacitance	C _{in}	6	pF
Output Capacitance	Cout	8	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1	.5 V
Input Pulse Levels 0 to 3	V 0.
Input Rise/Fall Time	3 ns

READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)

	Symbol		MCM67	Q709-10	MCM67Q709-12			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Cycle Time	^t кнкн	tcyc	10	-	12	- 1	ns	1
Clock Access Time	^t KHQV	tCD	—	5	-	6	ns	2
Clock Low Pulse Width	^t KLKH	tCL	4	—	4	-	ns	
Clock High Pulse Width	^t KHKL	tСН	4	_	4	-	ns	1
Clock High to Data Output Invalid	^t КНQХ	tDC1	2	—	2	-	ns	_
Clock High to Data Output High-Z	^t KHQZ	tcz	—	5	-	6	ns	
Setup Times: A W E G D0 – D8	^t AVKH ^t WVKH ^t EVKH ^t GVKH ^t DVKH	tAS tWS tES tGS tDS	2	-	2		ns	3
Hold Times: A W E G D0 - D8	^t KHAX ^t KHWX ^t KHEX ^t KHGX ^t KHDX	tah twh teh tGH tDH	1	_	1	_	ns	3

NOTES:

1. All read and write cycles are referenced from K.

2. Valid data from Clock High will be the data stored at the address or the last valid read cycle.

3. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

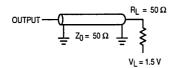
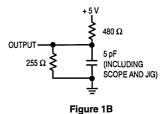
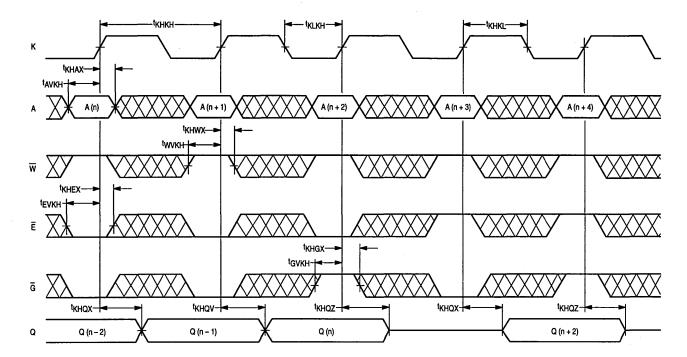




Figure 1A

READ CYCLE TIMING

MOTOROLA FAST SRAM DATA

TRANSPARENT-WRITE PASS-THROUGH WITH OUTPUTS HIGH-Z NO WRITE TRANSPARENT-WRITE TRANSPARENT-WRITE [†]КНКНtKLKHtKHKLκ tkhax-[†]AVKH-Α A (n + 2) A (n + 3) A (n + 4) A (n) A (n + 1) tKHWXtwvкн-+ \overline{W} **tKHEX** ^tEVKH Ē tKHGXtGVKH-Ĝ tKHQXtKHQV tKHQZtKHQZ-Q Q (n – 1) D (n) D (n + 2) Q (n - 2) tKHDX-D (n + 2) D D (n + 3) D (n + 4) D (n) D (n + 1)

4

WRITE AND DATA PASS-THROUGH CYCLE TIMING

MCM67Q709 4-287

BOUNDARY SCAN CYCLE TIMING

		MCM67Q709-10		MCM67	Q709-12		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Cycle Time	^t СНСН2	100	. —	100		ns	
Clock High Pulse Width	^t CHCL2	40	—	40		ns	
Clock Low Pulse Width	tCLCH2	40	-	40	-	ns	
Scan Mode Setup	tss	10		10	-	ns	1
Bypass Mode Setup	tBS	10	_	10		ns	2
Scan Mode Recovery Time	tSR	100	- 1	100	-	ns	3
TCK Low to TMS High	^t CLMH	10	-	10		ns	4
TMS High to TCK High	tмнсн	10	-	10	-	ns	5
TCK High to TMS Low	^t CHML	10	_	10	-	ns	6
TDI Valid to TCK High	ţıлсн	10	_	10	-	ns	
TCK High to TDI Don't Care	tсніх	10	-	10	— —	ns	
TCK Low to TDO Valid	tCLOV	_	20	-	20	ns	

NOTES:

1. The minimum delay required between ending normal operation and beginning scan operations.

2. The minimum delay required between ending Shift Mode and beginning Bypass Mode.

3. The minimum delay required before restarting normal RAM operation.

4. The minimum delay required before executing a Parallel Load operation.

5. The minimum delay required between a Parallel Load operation and a Shift.

6. Minimum Shift command hold time.

BOUNDARY SCAN

OVERVIEW

Boundary scan is a simple, non-intrusive scheme that allows verification of electrical continuity for each of a clocked RAM's logically active inputs and I/Os without adversely affecting RAM performance. Boundary scan allows the user to monitor the logic levels applied to each signal input on the RAM, and to shift them out in a serial bit stream.

OPERATION

Boundary scan requires four signal pins for implementation: Test Data In (TDI), Test Data Out (TDO), Test Clock (TCK, active high), and TMS (Test Mode Select, active high). Boundary scan provides three modes of operation: (1) normal RAM operation, (2) scan, and (3) bypass. For normal RAM operation TCK and TMS must be held low. The RAM will always return to normal operation immediately after the RAM receives a rising edge of the RAM input clock (K or CK) with TCK and TMS held low. To enter scan mode, TMS is driven high, parallel loading all the scan registers, and TCK is activated. Each rising edge of TCK captures the data presented to the TDI pin. Each falling edge of TCK pushes new data onto the TDO pin. To enter bypass mode simply exercise TCK with TMS held low. In this mode TDI is sampled on the rising edge of TCK. The level found on TDI is then driven out on TDO on the next falling edge of TCK. MOTOROLA FAST SRAM DATA

NORMAL

OPERATION

SHIFT

1

BYPASS

SHIFT

2

NORMAL BYPASS OPERATION СК PARALLEL LOAD tCHCL2 tCLCH2 t_{SR} тск CLA ^{-t}снсн ^tMHCH -BS TMS ^tIVCH SI S2 TDI -tCHIX B2 TDO S1 B1 S1 Sn Sn Sn Sn Sn Sn ^{-t}CLOV

BOUNDARY SCAN TIMING DIAGRAM

SHIFT

32

SHIFT

33

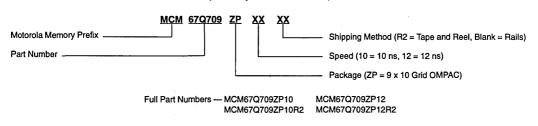
SHIFT

34

SHIFT

35

SHIFT


n

SHIFT

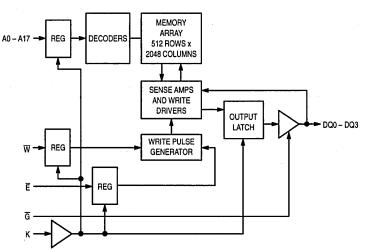
3

B1 and B2 = Bypass Serial Data from outside source S1 – Sn + 1 = Serial Scan Data from outside source S1 – Sn = RAMs Input Register contents

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview 256K x 4 Bit Synchronous Static RAM with Latched Outputs


The MCM67F804 is a 1,048,576 bit static random access memory organized as 262,144 x 4 bits. This device is fabricated using Motorola's high-performance silicon-gate BiCMOS technology. It features separate TTL input and output buffers, which are fully I/O compatible at 3.3 V, and incorporates input registers and output latches on board with high speed SRAM.

The synchronous design allows for precise cycle control with the use of an external single clock (K). The Addresses (A0 – A17), Data Input (D0 – D3), Data Output (Q0 – Q3), Write-Enable (\overline{W}), and Chip Enable (\overline{E}), are registered in on the rising edge of Clock (K).

The MCM67F804 is available in a 400 mil, 32-lead surface-mount SOJ package.

- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 12/15 ns Max
- Single Clock Operation
- TTL Input and Output Levels (3.3 V I/O Compatible)
- Address, Data Input, E, W Registers on Chip
- Transparent Output Latches

BLOCK DIAGRAM

The second	C.C.C.
an active	WJ PACKAGE 400 MIL SOJ
	CASE 857A

MCM67F804

PIN ASSIGNMENT						
ис [1•	32 A17				
A0 [2	31 🛛 A16				
A1 [3	30 🛛 A15				
A2 [4	29 🛛 A14				
A3 [5	28 🛛 A13				
Ēd	6	27] G				
DQ0 [7	26 🕽 DQ3				
Vcc 🕻	8	₂₅ 🛛 v _{SS}				
v _{ss} [9	24 0 VCC				
	10	23 DQ2				
₩d	11	22 D K				
A4 [12	21 A12				
A5 [13	20 🛛 A11				
A6 [14	19 A10				
A7 [15	18 🛛 A9				
NC [16	17 🛛 A8				
•						

PIN NAMES						
A0 – A17	Chip Enable /rite Enable tput Enable nput/Output Clock Input wer Supply Ground					

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

Ē	Ğ	W	Mode	V _{CC} Current	Output	Cycle
н	х	х	Not Selected	ISB1, ISB2	High-Z	-
L	н	н	Output Disabled	ICCA	High-Z	-
L	L	н	Read	ICCA	Dout	Read Cycle
L	х	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS for Any Pin Except VCC	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current	l _{out}	± 30	mA
Power Dissipation	PD	1.2	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS (V_{CC} = 5.0 V ± 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Parameter	Symbol	Min	Max	Unit	
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	v	
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	v	
Input Low Voltage	VIL	- 0.5*	0.8	v	
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	l _{lkg(l)}	-	± 1.0	μА	
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	l _{lkg} (O)	_	± 1.0	μA	
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	-	0.4	v	
Output High Voltage (I _{OH} = - 4.0 mA)	V _{OH}	2.4	3.3	v	

 V_{IL} (min) = - 0.5 V dc; V_{IL} (min) = - 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns) for 1 \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	MCM67F804-12	MCM67F804-15	Unit
AC Active Supply Current (I _{out} = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	180	170	mA
AC Standby Current ($\vec{E} = V_{IH}, V_{CC} = max, f = f_{max}$)	ISB1	40	40	mA
$ \begin{array}{l} CMOS \mbox{ Standby Current } (V_{CC} = max, f = 0 \mbox{ MHz}, \overline{E} \geq V_{CC} - 0.2 \mbox{ V}, \\ V_{in} \leq V_{SS} + 0.2 \mbox{ V}, \mbox{ or } \geq V_{CC} - 0.2 \mbox{ V}) \end{array} $	ISB2	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address and Data Input Capacitance	C _{in}	-	6	pF
Control Pin Input Capacitance	C _{in}		6	pF
Output Capacitance	Cout	_	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V
Input Rise/Fall Time	3 ns

 Output Timing Reference Level
 1.5 V

 Output Load
 Figure 1A Unless Otherwise Noted

READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)

		Syn	nbol	MCM67	'F804-12	MCM67	F804-15		
Parameter		Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Cycle Time		^t кнкн	tCYC	12	-	15	-	ns	1
Clock Low Pulse Width		tĸ∟ĸн	tCL	5	-	6		ns	2
Clock High Pulse Width		^t KHKL	tСН	5		6		ns	
Clock High to Output Active		tKHQX1	^t DC1	5	- 1	5	—	ns	
Clock High to Output Hold		tKHQX2	tDC2	7	-	7	-	ns	
Clock High to Q High-Z		^t KHQZ	tcz	-	6	-	8	ns	
Clock Access Time		^t KHQV	· tCD	-	12	-	15	ns	4
Setup Times:	d ≣≦	^t AVKH ^t WVKH ^t EVKH ^t DVKH	tAS tWS tES tDS	2	-	2	-	ns	3
Hold Times:	A ∭ P D ∭ A	^t KHAX ^t KHWX ^t KHEX ^t KHDX	tah twh teh tDh	1	-	1	-	ns	3
Clock Low Access Time		^t KLQV		-	7		9	ns	5
Output Enable to Output Valid		tGLQV	^t OE		5	-	6	ns	
Clock Low to Output Active		tKLQX1		0	- 1	0	-	ns	
Clock Low to Output Hold		tKLQX2		2	- 1	2	—	ns	·
Output Enable to Output Active		tGLQX	tLZ	0	- 1	0	- 1	ns	ŀ
Clock Low to Q High-Z		tKLQZ		0	6	0	8	ns	·
Output Disable to Q High-Z		tGHQZ	tHZ	0	6	0	8	ns	

NOTES:

1. All read and write cycles are referenced from K.

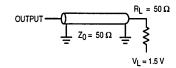
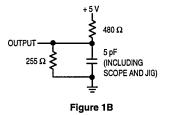
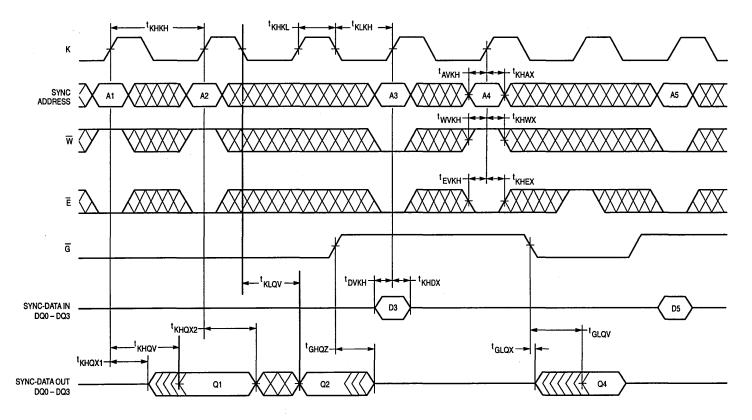
2. Valid data from Clock High will be the data stored at the address or the last valid read cycle.

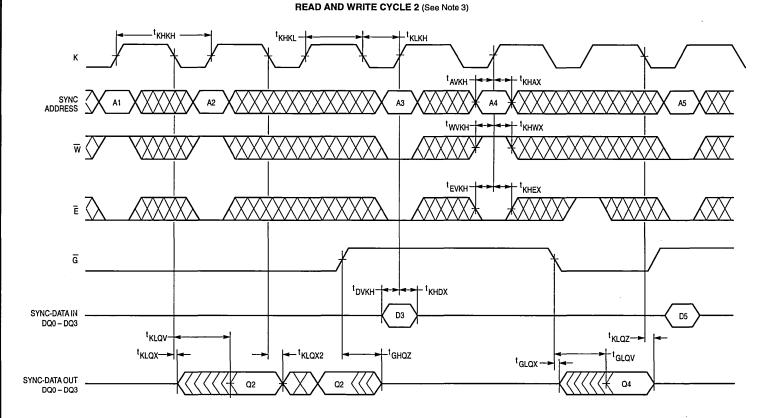
3. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

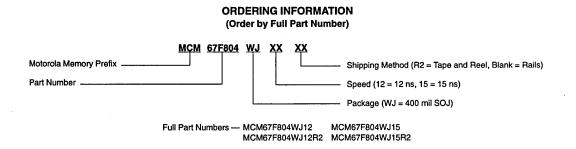
4. For Read Cycle 1 timing, clock high pulse width < (tKHQV - tKLQV).

5. For Read Cycle 2 timing, clock high pulse width \geq (t_{KHQV} – t_{KLQV}).

AC SPEC LOADS

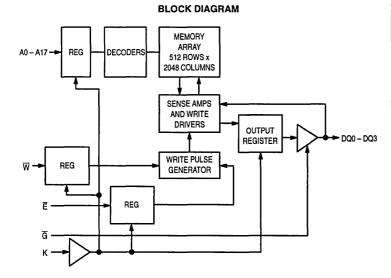

Figure 1A



4

READ AND WRITE CYCLE 1 (See Note 2)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


Product Preview 256K x 4 Bit Synchronous Static RAM with Registered Outputs

The Motorola MCM67P804 is a 1,048,576 bit static random access memory organized as 262,144 x 4 bits. This device is fabricated using Motorola's highperformance silicon-gate BiCMOS technology. It features separate TTL input and output buffers, which are fully I/O compatible at 3.3 V, and incorporates input and output registers on board with high speed SRAM.

The synchronous design allows for precise cycle control with the use of an external single clock (K). The addresses (A0 – A17), Data Input (D0 – D3), Data Output (Q0 – Q3), Write Enable (\overline{W}), and Chip Enable (\overline{E}) are registered in on the rising edge of Clock (K).

The MCM67P804 is available in a 400 mil, 32-lead surface-mount SOJ package.

- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 10/12 ns Max
- Single Clock Operation
- TTL Input and Output Levels (3.3 V I/O Compatible)
- Address, Data Input, E, W, Registers on Chip
- 100 MHz Maximum Clock Cycle Time
- Self Timed Write
- High Output Drive Capability: 85 pF/Output at Rated Access Time

	TTAN .
an and a state of the state of	WJ PACKAGE 400 MIL SOJ CASE 857A

MCM67P804

PIN ASSIGNMENT							
NC [1•	32] A17				
A0 [2	31	A 16				
A1 [3	30	A15				
A2 [4	29	A14				
A3 [5	28	A13				
ĒC	6	27] <u></u>				
DCO	7	26] DQ3				
Vcc [8	25) v _{ss}				
Vss C	9	24) v _{cc}				
DQ1 [10	23	DQ2				
₩C	11	22	рк				
A4 [12	21] A12				
A5 [13	20	D A11				
A6 [14	19	J A10				
A7 [15	18	D A9				
NC [16	17] A8				
			•				

PIN NAMES	
A0 – A17 Address Inpu E Chip Enabl W Write Enabl G Output Enabl DQ0 – DQ3 Data Input/Output K Clock Inpu VCC + 5 V Power Supp VSS Groun NC No Connection	e e ut ut

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (X = Don't Care)

Ē (t _{n→1})	G (t _{n-1})	W (t _{n-1})	Mode (t _n)	V _{CC} Current (t _n)	Output (t _n)	Cycle (t _n)
н	x	Х	Not Selected	ISB1, ISB2	High-Z	-
L	н	н	Output Disabled	ICCA	High-Z	-
L.	L	н	Read	ICCA	Dout	Read Cycle
L	х	L.	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	0.5 to + 7.0	V
Voltage Relative to V_{SS} for Any Pin Except V_{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	lout	± 30	mA
Power Dissipation	PD	1.2	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C
NOTE: Permanent device damage may o	ccur if ABSOLU	TE MAXIMUM RATIN	IGS are

exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for

extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS (V_{CC} = 5.0 V ± 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Parameter	Symbol	Min	Max	Unit	
Supply Voltage (Operating Voltage Range)	Vcc		5.5	V	
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	V	
Input Low Voltage	VIL	- 0.5*	0.8	V	
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(I)		± 1.0	μA	
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	llkg(O)	-	± 1.0	μA	
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL		0.4	v	
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	3.3	V	

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter	Symbol	MCM67P804-10	MCM67P804-12	Unit
AC Active Supply Current ($I_{out} = 0 \text{ mA}$) ($V_{CC} = \max, f = f_{max}$)	ICCA	180	170	mA
AC Standby Current ($\overline{E} = V_{IH}$, $V_{CC} = max$, f = f _{max})	ISB1	40	40	mA
CMOS Standby Current (V _{CC} = max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2$ V, V _{in} $\le V_{SS} + 0.2$ V, or $\ge V_{CC} - 0.2$ V)	ISB2	20	20	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address and Data Input Capacitance	C _{in}	_	6	pF
Control Pin Input Capacitance	C _{in}		6	pF
Output Capacitance	Cout	—	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

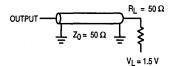
 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

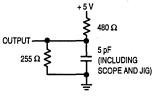
 Input Rise/Fall Time
 3 ns

READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)

		Symbol		MCM67P804-10		MCM67P804-12			
Parameter		Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Cycle Time		tкнкн	tCYC	10	—	12	_	ns	1
Clock Low Pulse Width		^t KLKH	^t CL	4	-	5		ns	2
Clock High Pulse Width		^t KHKL	tCH	4	-	5.		ns	
Clock High to Output Active		tKHQX1	^t DC1	2	_	2		ns	
Clock High to Output Change		tKHQX2	tDC2	2	_	2	-	ns	
Clock High to Q High-Z		^t KHQZ	^t CZ		5		6	ns	
Clock Access Time		tKHQV	^t CD	-	6	-	7	ns	
Setup Times:	A ₩ E D	^t AVKH ^t WVKH ^t EVKH ^t DVKH	tAS tWS tES tDS	2	-	2	_	ns	3
Hold Times:	A ⊠≣D	^t KHAX ^t KHWX ^t KHEX ^t KHDX	t _{AH} twh tEH tDH	1	-	1	_	ns	3
Output Enable to Output Valid		^t GLQV	tOE	—	5	-	6	ns	
Output Enable to Output Active		^t GLQX	۴LZ	2	-	2	—	ns	
Output Disable to Q High-Z		tGHQZ	tHZ	—	5	-	6	ns	

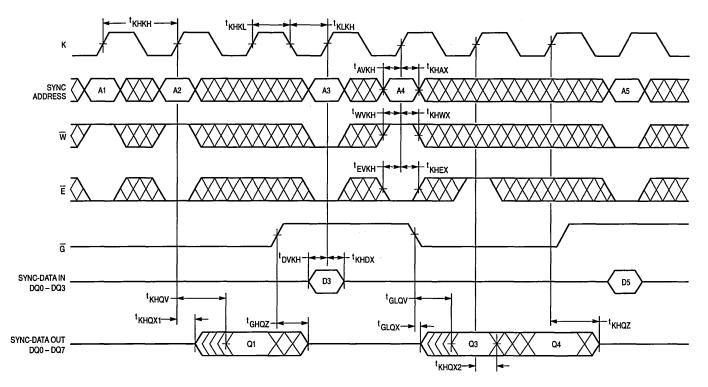

NOTES:

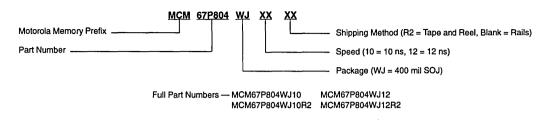
1. All read and write cycles are referenced from K.


2. Valid data from Clock High will be the data stored at the address or the last valid read cycle.

3. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

AC SPEC LOADS





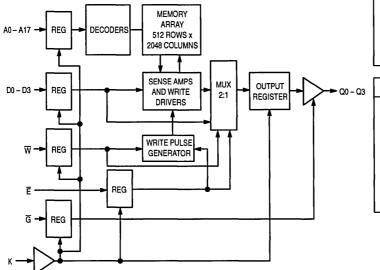
4

READ AND WRITE CYCLES

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Product Preview 256K x 4 Bit Separate I/O Synchronous Fast Static RAM


The Motorola MCM67Q804 is a 1,048,576 bit static random access memory, organized as 262,144 x 4 bits. This device is fabricated using Motorola's high-performance silicon-gate BiCMOS technology. It features separate TTL input and output buffers, which are fully I/O compatible at 3.3 V, and incorporates input and output registers on board with high speed SRAM. It also features transparent-write and data pass-through capabilities.

The synchronous design allows for precise cycle control with the use of an external single clock (K). The Addresses (A0 – A17), Data Input (D0 – D3), Data Output (Q0 – Q3), Write-Enable (\overline{W}), Chip-Enable (\overline{E}), and Output-Enable (\overline{G}), are registered in on the rising edge of Clock (K).

The MCM67Q804 is available in a 400 mil, 36-lead surface-mount SOJ package.

- Single 5 V ± 10% Power Supply
- · Fast Cycle Times: 10/12 ns Max
- Single Clock Operation
- TTL Input and Output Levels (3.3 V I/O Compatible)
- Address, Data Input, E, W, G, Registers on Chip
- 100 MHz Maximum Clock Cycle Time
- Self Timed Write
- Separate Data Input and Output Pins
- Transparent-Write or Data Pass-Through
- · High Output Drive Capability: 50 pF/Output at Rated Access Time

MCM67Q804

PIN	N ASSI	GNMENT	
NC [1•	36 A17	
ao [2	35 🕽 A16	
A1 [3	34 🛛 A15	
A2 [4	33 🕽 A14	
A3 [5	32 🗍 A13	
EC	6	31 🛛 G	
D0 []	7	30 🗍 🛛 גם 🗍 30	
Q0 [8	29 🛛 Q3	
v _{cc} C	9	28 🛛 V _{SS}	
v _{ss} C	10	27 🛛 V _{CC}	
Q1 [11	26] Q2	
D1 [12	25 🕽 D2	
w C	13	24 🛛 к	
A4 [14	23 🗋 A12	
A5 [15	22 🕽 A11	
A6 [16	21 A10	
A7 [17	20 🗍 A9	
NC [18	19 🗍 A8	

PIN NAMES
A0 – A17 Address Input E Chip Enable W Write Enable G Output Enable D0 – D3 Data Inputs Q0 – Q3 Data Output Enable K Clock Input VCC + 5 V Power Supply VSS Ground NC No Connection

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē (t _n)	W (t _n)	G (t _{n + 1})	Mode	D0 – D3	Q0 Q3 (t _{n + 1})	V _{CC} Current
L		L	Write and Pass Thru	Valid	D0 – D3 (t _n)	lcc
-	-	н	Write	Valid	High-Z	lcc
н	_	L	Pass Thru	Valid	D0 – D3 (t _n)	lcc
	5	н	NOP	Don't Care	High-Z	lcc
x	н	L	Read	Don't Care	Q _{out} (t _n)	lcc
Ĺ		н	Read	Don't Care	High-Z	lcc

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to VSS for Any Pin Except VCC	Vin, Vout	0.5 to V _{CC} + 0.5	v
Output Current	lout	± 30	mA
Power Dissipation	PD	1.2	w
Temperature Under Bias	Tbias	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature Plastic	Tstg	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This is a synchronous device. All synchronous inputs must meet specified setup and hold times with stable logic levels for *ALL* rising edges of clock (K) whie the device is selected.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS (V_{CC} = 5.0 V ± 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Symbol	Min	Max	Unit	
Vcc	4.5	5.5	v	
VIH	2.2	V _{CC} + 0.3**	v	
VIL	- 0.5*	0.8	v	
likg(i)	_	± 1.0	μA	
likg(O)	_	± 1.0	μA	
VOL	_	0.4	v	
	2.4	3.3	V	
	V _{CC} V _{IH} V _{IL} I _{lkg(I)} I _{lkg(O)} V _{OL}	V _{CC} 4.5 V _I H 2.2 V _I L -0.5* I _{Ikg} (I) - V _I L 0.000 V _I L 0.000 V _I L 0.000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

*V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

** VIH (max) = V_{CC} + 0.3 V dc; V_IH (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

DC CHARACTERISTICS

Parameter		MCM67Q804-10	MCM67Q804-12	Unit
AC Active Supply Current (Iout = 0 mA) (VCC = max, f = fmax)	ICCA	180	170	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address and Data Input Capacitance	C _{in}		6	рF
Control Pin Input Capacitance	C _{in}	_	6	рF
Output Capacitance	C _{out}		8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
input Pulse Levels 0	0 to 3.0 V
Input Rise/Fall Time	3 ns

 Output Timing Reference Level
 1.5 V

 Output Load
 Figure 1A Unless Otherwise Noted

WRITE CYCLE TIMING (See Notes 1, 2, and 3)

	Symbol		MCM67Q804-10		MCM67Q804-12			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Cycle Time	^t кнкн	tCYC	10	-	12	-	ns	1
Clock Access Time	^t KHQV	tCD	-	5	-	6	ns	2
Clock Low Pulse Width	^t KLKH	tCL	4		4	—	ns	
Clock High Pulse Width	^t KHKL	tСH	4	- 1	4	-	ns	
Clock High to Data Output Invalid	tкнох	tDC1	2	-	2		ns	
Clock High to Data Output High-Z	^t KHQZ	tcz	-	5	-	6	ns	
Setup Times: A W E G D0 – D3	tavkh twvkh tevkh tgvkh tovkh	tAS tWS tES tGS tDS	2		2	-	ns	3
Hold Times: A W E G D0 – D3	^t KHAX ^t KHWX ^t KHEX ^t KHGX ^t KHDX	tAH tWH tEH tGH tDH	1		1	-	ns	3

NOTES:

1. All read and write cycles are referenced from K.

2. Valid data from Clock High will be the data stored at the address or the last valid read cycle.

3. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

AC SPEC LOADS

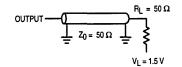


Figure 1A

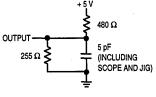
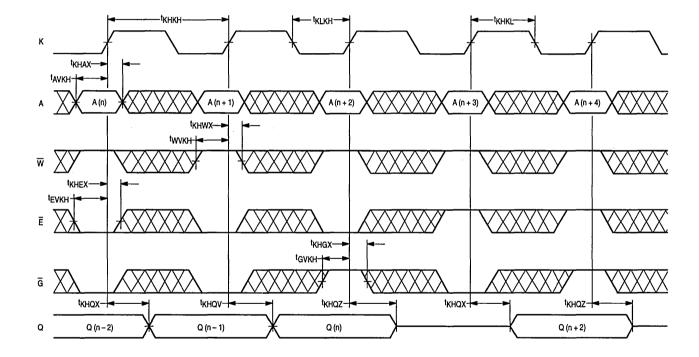
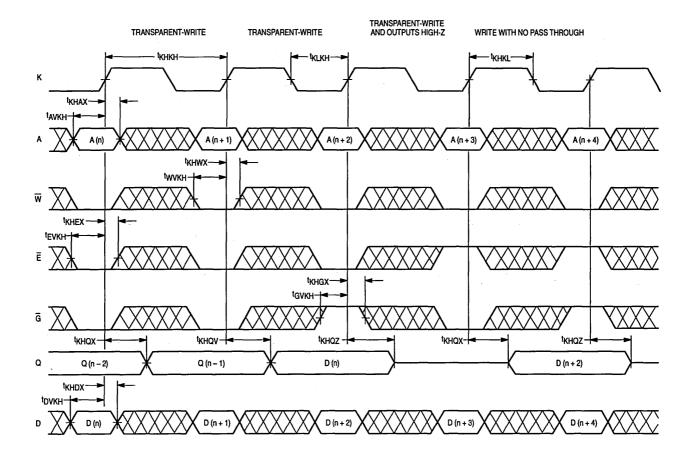
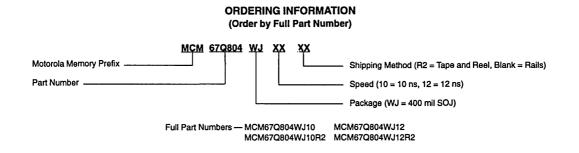



Figure 1B


MOTOROLA FAST SRAM DATA


4

READ CYCLE TIMING

MCM67Q804 4-305

4

4

Fast Static RAM Modules

Standard Modules

MCM3264A		5-29
MCM32128	5	5-15
MCM32257	5	5-22

Processor Specific Cache Modules

MCM32A32 supports 486	5-3
MCM32A64 supports 486	5-3
MCM32AB32 supports 486	5-12
MCM32AB64 supports 486	5-12
MCM32AB128 supports 486	5-12
MCM4464 supports R4000	5-36
MCM44256 supports R4000	5-44
MCM72BA32 supports Penium™	5-52
MCM72BA64 supports Pentium™	5-52

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

MCM32A32 MCM32A64

128KB and 256KB Secondary Cache Fast Static RAM Modules With Tag for 486 Processor Based Systems

The MCM32A32 and MCM32A64 are two products in Motorola's asynchronous secondary cache module family for the 486 processor. The modules are configured with 32-bit data, 8-bit tag, and an altered bit for cache writeback. The family supports all cache sizes of the 486 processor. They are offered in 33 and 50 MHz versions:

The 32A32 is a 128KB single bank cache of 32K x 32. The tag is an 8K x 8, and the altered bit is 8K x 1.

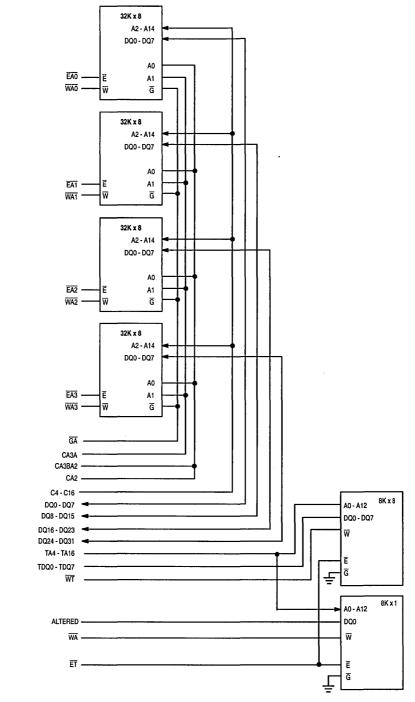
The 32A64 is a 256KB double bank cache of 64K x 32. The tag is 16K x 8 and the altered bit is 16K x 1.

The cache family is designed to interface with popular 486 chipsets with on-board cache controllers.

Cache upgrades are seamless, eliminating the need for motherboard jumpers. PD0, 1, 2 are reserved for density identification:

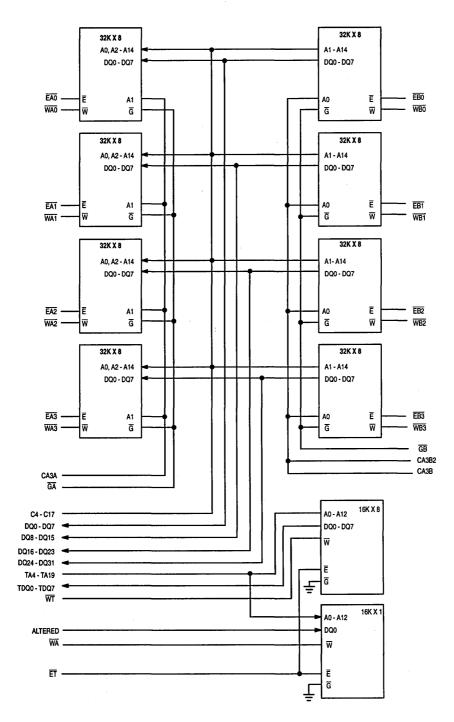
MCM32A32: PD0 = gnd, PD1 = gnd, PD2 = open MCM32A64: PD0 = open, PD1 = open, PD2 = gnd

- · 64 Position Dual Readout SIMM for Circuit Density
- Single 5 V ± 10% Power Supply
- All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Fast Access Times/Cycle Times: 15 ns/50 MHz, 20 ns/33 MHz
- · Cache Byte Write, Byte Chip Enable, Bank Output Enable
- Tag Write Enable, Altered Write Enable, Tag/Altered Chip Enable
- Decoupling Capacitors Are Used For Each Fast Static RAM
- High Quality Multi-Layer FR4 PWB With Separate Power and Ground Plane


PIN ASSIGNMENT
64 POSITION DUAL READOUT
128 PIN SIMM
TOP VIEW

			.
PD0	1	65	PD1
PD2	2	66	V _{SS}
DQ0	3	67	DQ1
DQ2	4	68	DQ3
DQ4	5	69	Vcc
	6	70	DQ5
DQ6			
DQ8	7	71	DQ7
VSS	8	72	DQ9
DQ10	9	73	DQ11
DQ12	10	74	DQ13
DQ14	11	75	DQ15
DQ16	12	76	DQ17
DQ18	13	77	DQ19
DQ20	14	78	DQ21
VSS	15	79	VSS
DQ22	16	80	DQ23
DQ24	17	81	DQ25
Vcc	18	82	Vcc
DQ26	19	83	DQ27
DQ28	20	84	DQ29
DQ30	21	85	DQ31
NC	22	86	NC
NC	23	87	NC
VSS			VSS
	24	88	EBO
EAO	25	89	
EA1	26	90	EBÍ
EA2	27	91	Vcc
EA3	28	92	EB2
VSS	29	93	EB3
GA	30	94	GB
WAO	31	95	WBO
WAT			
WAT	32	96	WB1
		ļ	
14/4.0	~		11/200
WA2	33	97	WB2
WA3	34	98	WB3
WA3 WT			
WA3	34	98	WB3 WA
WA3 WT ET	34 35 36	98 99 100	WB3 WA V _{CC}
WA3 WT ET NC	34 35 36 37	98 99 100 101	WB3 WA V _{CC} NC
WA3 WT ET NC NC	34 35 36 37 38	98 99 100 101 102	WB3 WA V _{CC} NC NC
WA3 WT ET NC CA3A	34 35 36 37 38 39	98 99 100 101 102 103	WB3 WA V _{CC} NC NC CA3BA2
WA3 WT ET NC NC	34 35 36 37 38 39 40	98 99 100 101 102 103 104	WB3 WA V _{CC} NC NC
WA3 WT ET NC CA3A	34 35 36 37 38 39	98 99 100 101 102 103	WB3 WA V _{CC} NC NC CA3BA2
WA3 WT ET NC CA3A CA2	34 35 36 37 38 39 40	98 99 100 101 102 103 104	WB3 WA V _{CC} NC NC CA3BA2 CA3B
WA3 WT ET NC CA3A CA2 VSS	34 35 36 37 38 39 40 41	98 99 100 101 102 103 104 105	WB3 WA V _{CC} NC CA3BA2 CA3B V _{SS}
WA3 WT ET NC NC CA3A CA2 VSS CA4 CA6	34 35 36 37 38 39 40 41 42 43	98 99 100 101 102 103 104 105 106 107	WB3 WA V _{CC} NC CA3BA2 CA3B V _{SS} CA5 CA7
WA33 W ET NC CA3A CA3A CA3A CA3A CA4 CA6 CA8	34 35 36 37 38 39 40 41 42 43 44	98 99 100 101 102 103 104 105 106 107 108	WB3 WA VCC NC NC CA3BA2 CA3B VSS CA5 CA7 CA9
WA33 WT ET NC CA3A CA2 VSS CA4 CA6 CA8 CA10	34 35 36 37 38 39 40 41 42 43 44 45	98 99 100 101 102 103 104 105 106 107 108 109	WB3 WA VCC NC CA3BA2 CA3BA2 CA3B VSS CA5 CA7 CA9 CA11
W33 WT ET NC CA3A CA3A CA3A CA3A CA4 CA6 CA10 CA12	34 35 36 37 38 39 40 41 42 43 44 45 46	98 99 100 101 102 103 104 105 106 107 108 109 110	WB3 WA VCC NC CA3BA2 CA3BA2 CA3B VSS CA5 CA7 CA9 CA11 CA13
WA3 WT ET NC CA3A CA2 VSS CA4 CA6 CA10 CA12 CA14	34 35 36 37 38 39 40 41 42 43 44 45 46 47	98 99 100 101 102 103 104 105 106 107 108 109 110 111	WB3 WA VCC NC CA3BA2 CA3B VSS CA5 CA7 CA9 CA11 CA13 CA15
WA3 WT ET NC CA3A CA2 VSS CA4 CA6 CA8 CA10 CA12 CA14 CA16	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112	WB3 WA VCC NC CA3BA2 CA3B VSS CA5 CA7 CA9 CA11 CA13 CA15 CA15 CA17
WA3 WT ET NC CA3A CA2 VSS CA4 CA6 CA10 CA12 CA14	34 35 36 37 38 39 40 41 42 43 44 45 46 47	98 99 100 101 102 103 104 105 106 107 108 109 110 111	WB3 WA VCC NC CA3BA2 CA3B VSS CA5 CA7 CA9 CA11 CA13 CA15
WA3 WT ET NC CA3A CA2 VSS CA4 CA6 CA10 CA12 CA14 CA16 CA18	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112	WB3 WA VCC NC CA3BA2 CA3B VSS CA7 CA7 CA11 CA13 CA15 CA17 CA13
WA3 WT ET NC CA3A CA2 VSS CA4 CA6 CA10 CA12 CA14 CA16 CA18 VSS	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	WB3 WA VCC NC CA3BA2 CA3B VSS CA7 CA11 CA15 CA17 CA19 VSS
WA3 WT ET NC CA3A CA2 VSS CA4 CA68 CA10 CA12 CA14 CA16 CA18 VSS TA4	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	WB3 WA VCC NC CA3BA2 CA3B VSS CA7 CA9 CA11 CA13 CA15 CA17 CA19 VSS TA5
WA3 WT ET NC CA3A VSS CA4 CA6 CA10 CA12 CA14 CA16 CA18 VSS TA4 TA6	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	WB3 WA VCC NC NC CA3BA2 CA3B VSS CA11 CA13 CA15 CA17 CA19 VSS TA5 TA7
WA3 WT ET NC CA3A CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA3 C	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	WB3 WA VCC NC CA3BA2 CA3B VSS CA12 CA13 CA15 CA17 CA19 VSS CA17 CA19 TA5 TA7 TA9
WA3 WT ET NC CA3A VSS CA4 CA6 CA10 CA12 CA14 CA16 CA18 VSS TA4 TA6	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	WB3 WA VCC NC NC CA3BA2 CA3B VSS CA11 CA13 CA15 CA17 CA19 VSS TA5 TA7
WA3 WT ET NC CA3A CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA3 C	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	WB3 WA VCC NC CA3BA2 CA3B VSS CA12 CA13 CA15 CA17 CA19 VSS CA17 CA19 TA5 TA7 TA9
WA3 WT ET NC CA3A CA2 VSS CA4 CA6 CA12 CA14 CA16 CA18 VSS TA4 TA6 TA8 TA8 TA10	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 54	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	WE3 WA VCC NC CA3BA2 CA3B VSS CA7 CA9 CA11 CA13 CA15 CA17 CA19 VSS TA5 TA7 TA9 TA11
WA3 WT ET NC CA3A CA2 VSS CA4 CA6 CA10 CA12 CA14 CA16 CA12 CA14 CA16 CA12 CA14 CA16 CA12 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA14 CA16 CA16 CA16 CA16 CA16 CA16 CA16 CA16	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 55 56	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	WE3 WA VCC NC NC CA3BA2 CA3B VSS CA5 CA7 CA9 CA11 CA15 CA17 CA18 VSS TA5 TA7 TA9 TA11 TA13 TA15
WA3 WT ET NC CA3A CA2 CA3A CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 55 55 57	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	WE3 WA VC NC NC CA3BA2 CA3B VSS CA5 CA7 CA9 CA11 CA13 CA15 CA17 CA19 VSS CA17 CA19 TA5 TA7 TA9 TA11 TA13 TA15 TA17
WA3 WT ET NC CA3A CA2 VSS CA4 CA6 CA6 CA6 CA6 CA6 CA6 CA6 CA6 CA6 CA6	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 55 55 55 55 55 55 55 55 55 55	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 212 122	WE3 WA VC NC AC CA3BA2 CA3B VSS CA7 CA9 CA11 CA135 CA15 CA17 CA19 VSS TA5 TA7 TA9 TA11 TA15 TA17 TA19
WA3 WT ET NC CA3A CA2 VSS CA4 CA6 CA6 CA6 CA6 CA6 CA6 CA6 CA6 CA6 CA6	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 657 58 59	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 113 114 115 116 117 118 119 120 121 122 123	WE3 WA VC NC ACA3BA2 CA3BA2 CA3B VSS CA7 CA9 CA11 CA13 CA15 CA15 CA17 CA19 VSS TA5 TA7 TA9 TA11 TA13 TA17 TA19 VSS
WA3 WT ET NC CA3A CA2 CA4 CA4 CA4 CA4 CA4 CA4 CA4 CA4 CA4 CA4	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58 59 60	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 116 117 118 119 120 121 121 123 124	WE3 WA VCC NC NC CA3BA2 CA3B VSS CA17 CA13 CA15 CA17 CA15 CA17 CA18 VSS TA5 TA7 TA9 TA11 TA13 TA15 TA17 VSS TDQ1
WA3 WT ET NC CA3A CA2 VSS CA46 CA88 CA10 CA12 CA14 CA16 CA18 VSS TA4 CA16 CA18 TA8 TA10 TA12 TA14 TA16 TA18 TA14 TA16 TA18 TA10 TA12 CA2 CA2 CA2 CA2 CA2 CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA3	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 55 57 58 9 50 60 61	98 99 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 121 122 123 124 125	WE3 WA VCC NC ACA3BA2 CA3BA2 CA3B VSS CA7 CA9 CA11 CA13 CA15 CA17 CA19 VSS CA17 CA19 VSTA5 TA7 TA9 TA113 TA15 TA17 TA19 VSS TDQ1 TDQ3
WA3 WT ET NC CA3A CA2 VSS CA4 CA10 CA12 CA16 CA16 CA16 CA16 CA16 CA16 CA16 CA16	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 55 55 55 55 59 60 61 62	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 116 117 118 119 120 121 121 123 124	WE3 WA VC NC NC CA3BA2 CA3B VSS CA7 CA9 CA11 CA13 CA15 CA17 CA19 VSS TA5 TA7 TA9 TA11 TA13 TA17 TA19 VSS TDQ1 TDQ3 TDQ5
WA3 WT ET NC CA3A CA2 VSS CA46 CA88 CA10 CA12 CA14 CA16 CA18 VSS TA4 CA16 CA18 TA8 TA10 TA12 TA14 TA16 TA18 TA14 TA16 TA18 TA10 TA12 CA2 CA2 CA2 CA2 CA2 CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA3 CA3	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 55 57 58 9 50 60 61	98 99 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 121 122 123 124 125	WE3 WA VCC NC ACA3BA2 CA3BA2 CA3B VSS CA7 CA9 CA11 CA13 CA15 CA17 CA19 VSS CA17 CA19 VSTA5 TA7 TA9 TA113 TA15 TA17 TA19 VSS TDQ1 TDQ3
WA3 WT ET NC CA3A CA2 VSS CA4 CA10 CA12 CA16 CA16 CA16 CA16 CA16 CA16 CA16 CA16	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 55 55 55 55 59 60 61 62	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	WE3 WA VC NC NC CA3BA2 CA3B VSS CA7 CA9 CA11 CA13 CA15 CA17 CA19 VSS TA5 TA7 TA9 TA11 TA13 TA17 TA19 VSS TDQ1 TDQ3 TDQ5

r


PIN NAMES
CA2 - CA19 Cache Address Inputs WA0 - WA3; WB0 - WB3 Byte Write Enable EA0 - EA3; EB0 - EB3 Cache Chip Enable GA - GB Bank Output Enable DQ0 - DQ31 Cache Data Input/Output TA4 - TA19 Tag Write Enable
WA Altered Write Enable ET Tag/Altered Chip Enable
TDQ0 - TDQ7 Tag Data Input/Output ALT Altered Input/Output PD0 - PD2 Presence Detect VCC +5 V Power Supply VSS Ground NC No Connection

128KB BLOCK DIAGRAM

MCM32A32•MCM32A64 5-5

256KB BLOCK DIAGRAM

TRUTH TABLE (X = Don't Care)

Ē	Ğ	W	Mode	V _{CC} Current	Output	Cycle
н	X	X	Not Selected	ISB1, ISB2	High-Z	-
L	н	н	Output Disabled	ICCA	High-Z	-
L	L	н	Read	ICCA	Dout	Read Cycle
L	X	L	Write	ICCA	High-Z	Write Cycle

NOTE: $\vec{E} = \vec{Exx}$, \vec{ET} ; $\vec{W} = \vec{Wxx}$, \vec{WT} , \vec{WA} ; $\vec{G} = \vec{GA}$, \vec{GB}

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	v
Voltage Relative to VSS For Any Pin Except VCC	V _{in} , V _{out}	– 0.5 to V _{CC} + 0.5	v
Output Current	lout	± 20	mA
Power Dissipation	PD	11.0	W
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	ТА	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3**	Υ N
Input Low Voltage	VIL	- 0.5*	-	0.8	V

* V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns)

** VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)		± 10	μA
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)	_	± 10	μA
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-	V
Output Low Voltage (IOL = 8.0 mA)	VOL	-	0.4	V

POWER SUPPLY CURRENTS

Parameter	Symbol	32A32 33 MHz	32A32 50 MHz	32A64 33 MHz	32A64 50 MHz	Unit
AC Active Supply Current (Iout = 0 mA, VCC = Max, f = fmax)	ICCA	840	920	1530	1680	mA
AC Standby Current ($\overline{E} = V_{IH}$, $V_{CC} = Max$, $f = f_{max}$)	ISB1	250	280	465	520	mA
$ \begin{array}{l} CMOS \mbox{ Standby Current (V}_{CC} = Max, f = 0 MHz, \overline{E} \geq V_{CC} - 0.2 \mbox{ V} \\ V_{in} \leq V_{SS} + 0.2 \mbox{ V, or } \geq V_{CC} - 0.2 \mbox{ V} \\ \end{array} $	ISB2	110	110	190	190	mA

CAPACITANCE (f = 1 MHz, dV = 3 V, TA = 25°C, Periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Cache Address Input Capacitance	C _{in}	48	pF
Control Pin Input Capacitance (E, W)	C _{in}	8	pF
I/O Capacitance	CI/O	8	pF
Tag Address Input Capacitance	C _{in}	18	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	1
Input Pulse Levels 0 to 3.0 V	/
Input Rise/Fall Time 5 ns	5

READ CYCLE (See Notes 1 and 2)

	Symbol		33 MHz		iz 50 MHz			
Parameter	Std	Alt	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	15	-	20	-	ns	3
Address Access Time	tavqv	tAA	- 1	15	—	20	ns	
Tag Access Time	^t AVTV		-	12	. —	15	ns	
Enable Access Time	^t ELQV	tACS	-	15	·	20	ns	4
Output Enable Access Time	^t GLQV	tOE	-	8		10	ns	
Output Hold from Address Change	^t AXQX	tон	4	-	4	-	ns	5,6,7
Enable Low to Output Active	^t ELQX	^t CLZ	4	-	4	-	ns	5,6,7
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	8	0	9	ns	5,6,7
Output Enable Low to Output Active	^t GLQX	toLZ	0	-	0	-	ns	5,6,7
Output Enable High to Output High-Z	^t GHQZ	tohz	0	7	0	8	ns	5,6,7

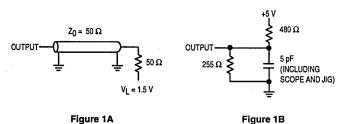
NOTES:

1. W is high for read cycle.

2. $\overline{E} = \overline{Exx}$, \overline{ET} ; $\overline{W} = \overline{Wxx}$, \overline{WT} , \overline{WA} ; $\overline{G} = \overline{GA}$, \overline{GB}

3. All timings are referenced from the last valid address to the first transitioning address.

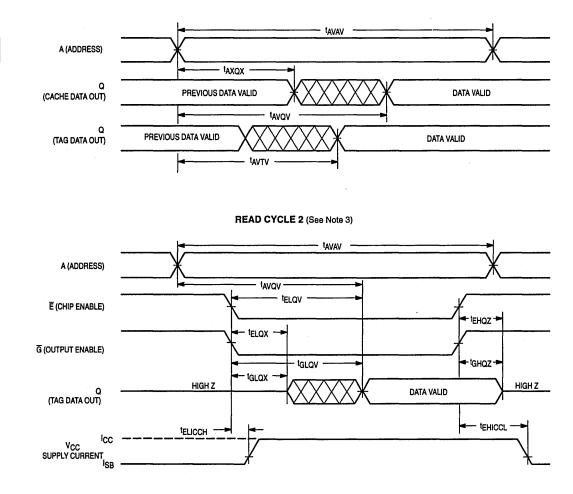
4. Addresses valid prior to or coincident with \overline{E} going low.


 At any given voltage and temperature, t_{EHQZ} (max) is less than t_{ELQX} (min), and t_{GHQZ} (max) is less than t_{GLQX} (min), both for a given device and from device to device.

6. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.

7. This parameter is sampled and not 100% tested.

8. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).


AC TEST LOADS

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Note 7)

WRITE CYCLE 1 (W Controlled, See Notes 1, 2, and 3)

	Sym	bol	50	MHz	33 MHz			
Parameter	Std	Alt	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	15	- 1	20	-	ns	4
Address Setup Time	tavwl	tAS	0	-	0	- 1	ns	
Address Valid to End of Write	tavwh	taw	12	-	15		ns	
Write Pulse Width	twLWH, twLEH	tWP	10	-	15	-	ns	
Data Valid to End of Write	tD/WH	tDW	7	-	8	—	ns	
Data Hold Time	twhdx	tDH	0	-	0	-	ns	
Write Low to Output High-Z	twLQZ	twz	0	.7	0	8	ns	6,7,8
Write High to Output Active	twhax	tow	0	-	0	-	ns	6,7,8
Write Recovery Time	twhax	twn	0	-	0	-	ns	

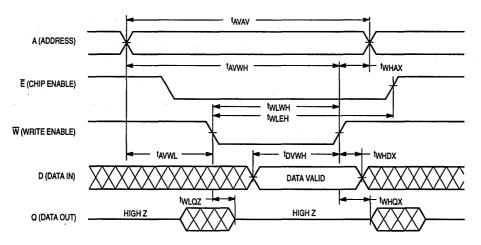
NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. $\overline{E} = \overline{Exx}, \overline{ET}; \overline{W} = \overline{Wxx}, \overline{WT}, \overline{WA}; \overline{G} = \overline{GA}, \overline{GB}$

3. If G goes low coincident with or after W goes low, the output will remain in a high impedance state.

4. All timings are referenced from the last valid address to the first transitioning address.


5. If $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state.

6. At any given voltage and temperature, tWLQZ (max) is less than tWHQX (min), both for a given device and from device to device.

7. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.

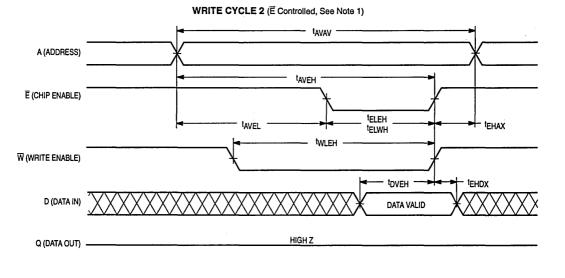
8. This parameter is sampled and not 100% tested.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

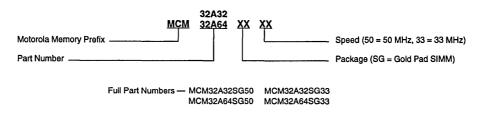
WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Sym	nbol	50	50 MHz		MHz		
Parameter	Std	Alt	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	15	-	20	-	ns	
Address Setup Time	tAVEL	tAS	0	-	0	-	ns	
Address Valid to End of Write	tAVEH	tAW	12	—	15	-	ns	
Enable to End of Write	^t ELEH, ^t ELWH	tcw	10	-	12	-	ns	4,5
Data Valid to End of Write	^t DVEH	tDW	7	-	8	-	ns	
Data Hold Time	^t EHDX	^t DH	0	-	0	—	ns	
Write Recovery Time	^t EHAX	tWR	0	_	0	-	ns	

NOTES:


1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. $\vec{E} = \vec{Exx}, \vec{ET}; \vec{W} = \vec{Wxx}, \vec{WT}, \vec{WA}; \vec{G} = \vec{GA}, \vec{GB}$


3. All timings are referenced from the last valid address to the first transitioning address.

4. If E goes low coincident with or after W goes low, the output will remain in a high impedance state.

5. If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Advance Information 128KB/256KB/512KB Secondary Cache Module With Tag, Valid, and Dirty for 486 Processor Based Systems

MCM32AB32 MCM32AB64 MCM32AB128

The MCM32AB32SG, MCM32AB64SG, and MCM32AB128 are a family of Motorola's asynchronous secondary cache modules for the 486 processor. This family is suited for the Intel 82420 PCI chipset. The modules are configured with 32 bit data, 7 bit tag, valid and a dirty bit for cache writeback. The family supports three cache sizes of the 486 processor.

The MCM32AB32SG is a 128KB single bank cache of 32K x 32. The tag/valid is 8K x 8, and the Dirty bit is 8K x 1.

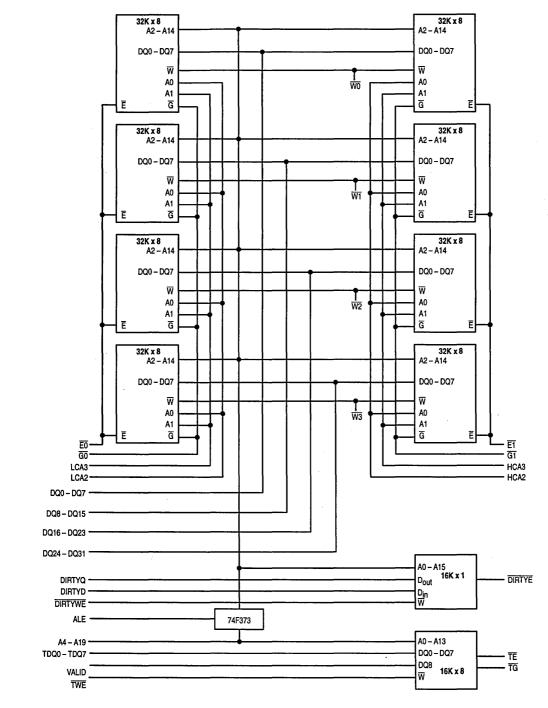
The MCM32AB64SG is a 256KB double bank cache of 64K x 32. The tag/valid is 16K x 8 and the Dirty bit is 16K x 1.

The MCM32AB128SG is a 512KB single bank cache of 128K x 32. The tag/valid is $32K \times 8$ and the Dirty bit is $32K \times 1$.

Cache upgrades are seamless eliminating the need for motherboard jumpers. The presence detect pins map into the cache configuration register of the Intel 82240 CDC.

- Low Profile Edge Connector: Burndy Part Number: CELP2X56SC3Z48
- Single 5 V ± 10% Power Supply
- · All Inputs and Outputs are TTL Compatible
- Three State Outputs
- · Fast Module Cycle Time: Up to External Processor Bus Speed of 33 MHz
- Cache Byte Write, Bank Chip Enable, Bank Output Enable
- · Decoupling Capacitors are Used for Each Fast Static RAM
- · High Quality Multi-Layer FR4 PWB With Separate Power and Ground Plane

BurstRAM is a registered trademark of Motorola.


This document contains information on a new product. Specifications and information herein are subject to change without notice.

PIN ASSIGNMENT CACHE MODULE 112 PIN CARDEDGE TOP VIEW

PD4	PD3	PD2	PD1	PD0	Cache Size	Main Memory Max	Module
NC	NC	NC	NC	NC	-	_	No Module
Vcc	Vcc	NC	NC	NC	64KB	8MB	
Vcc	Vcc	NC	NC	Vcc	128KB	16MB	32AB32
Vcc	Vcc	NC	Vcc	NC	256KB	32MB	32AB64
Vcc	Vcc	NC	Vcc	Vcc	512KB	64MB	32AB128

VSS DQ0 DQ2 DQ4 DQ6 VCC NC DQ8 DQ10 DQ12 VSS DQ14 DQ16 DQ12 VSS DQ14 DQ16 DQ12 VSS DQ14 DQ20 VCC DQ22 NC DQ22 NC DQ24 DQ20 VSS DQ14 DQ16 DQ10 VCS DQ20 VSS DQ14 DQ16 DQ10 VCS DQ20 VSS DQ14 DQ16 DQ10 VSS DQ20 VCS DQ20 VSS DQ14 DQ16 DQ12 VSS DQ20 VCS DQ14 DQ16 DQ12 VSS DQ10 VCS DQ20 VCS DQ20 VCS DQ14 DQ20 VCS DQ20 DQ22 VCS DQ24 DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 DQ20 DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS DQ20 VCS VCS VCS VCS VCS VCS VCS VCS VCS VCS	$\begin{array}{c} 57\\ 559\\ 601\\ 622\\ 634\\ 666\\ 677\\ 777\\ 777\\ 777\\ 777\\ 777\\ 77$	1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 1 22 3 24 25 26 7 28 29 30 1 32 33 34 5 36 37 8 39 40 11 42 3	VSS DQ1 DQ3 DQ5 DQ7 VCC NC DQ9 DQ11 DQ13 VSS DQ15 DQ17 DQ19 DQ21 VCC DQ23 NC DQ25 DQ27 VSS DQ29 DQ21 VSS DQ29 DQ21 VCC A7 A9 A11 A13 A15 A17 NC VSS DQ29 DQ21 VSS DQ29 DQ21 VSS DQ25 DQ27 VSS DQ25 DQ27 VSS DQ29 DQ21 VSS DQ25 DQ27 VSS DQ27 VSS DQ25 DQ27 VSS DQ25 DQ27 VSS VSS VSS VSS VSS VSS VSS VSS VSS VS
TE TWE	99 100	44	ALE WEO
Vcc	101	45	Vcc
V <u>SS</u> TG DIRTYWE DIRTYWE V <u>CC</u> GO EO PD0 PD0 PD2 PD4 VSS	102 103 104 105 106 107 108 109 110 111 112	46 47 48 49 50 51 52 53 54 55 56	V <u>SS</u> WE1 WE2 WE3 V <u>C</u> C G1 E1 PD1 PD2 NC VSS

486 256KB CACHE MODULE BLOCK DIAGRAM

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information 128K x 32 Bit Fast Static RAM Module

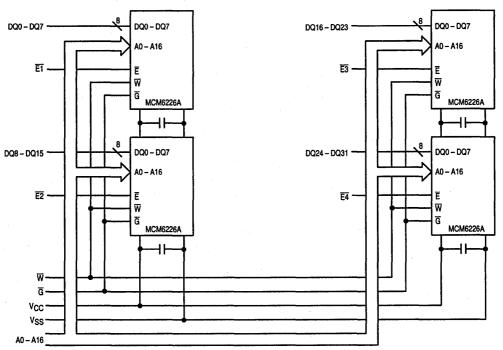
The MCM32128 is a 4M bit static random access memory module organized as 131,072 words of 32 bits. The module is offered in either a 64-lead zig-zag in-line package (ZIP) or a 64-lead single in-line memory module (SIMM). Four MCM6226A fast static RAMs, packaged in 32-lead SOJ packages are mounted on a printed circuit board along with four decoupling capacitors.

The MCM6226A is a high-performance CMOS fast static RAM organized as 131,072 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM32128 is equipped with output enable (\overline{G}) and four separate byte enable $(\overline{E1} - \overline{E4})$ inputs, allowing for greater system flexibility. The \overline{G} input, when high, will force the outputs to high impedance. Ex high will do the same for byte x.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 20/25/35 ns
- Three-State Outputs
- Fully TTL Compatible
- JEDEC Standard Pin Out
- Power Operation: 720/640/600 mA Maximum, Active AC
- High Board Density ZIP or SIMM Package
- Byte Operation: Four Separate Chip Enables, One for Each Byte (Eight Bits)
- High Quality Four-Layer FR4 PWB with Separate Internal Power and Ground Planes
- Incorporates Motorola's State-of-the-Art Fast Static RAMs

PIN N	IAMES
A0 - A16	Address Inputs
₩	Write Enable
ឲ	Output Enable
Ē1-Ē4	Byte Enables
DQ0 – DQ31	Data Input/Output
Vcc	+ 5 V Power Supply
Vss	Ground
PD0 – PD1	Package Density


For proper operation of the device, $V_{\mbox{\scriptsize SS}}$ must be connected to ground.

M	CI	ЛЗ	21	28
Μ	CI	ЛЗ	21	28

64-LE/	I ASSIGNMEI TOP VIEW AD ZIP – CAS) SIMM – CAS	E 871
PD0 [Vss
DQ0 [4 3	E
DQ1 [-	
DQ2		
DQ3 [10	DQ10
	12 10	DQ11
A1 [14 15] A0] A2
A3 [10	⊔~≃]} ∧4
A5 [10	DQ12
DQ4 [DQ12
DQ5	~~	DQ14
DQ6	24	DQ15
DQ7 [20 27	Vss
. ₩[20 20	1 A6
A7	30 31	1 62
ET [32	
	33] E4
Ē3 [35	ц] NC
A8 [30	ាត
Vss [38 30	DQ24
DQ16	40	
DQ17	42	DQ26
DQ18	44	DQ27
DQ19	40	1 A9
A10	40 40	1 A11
A12 A14	50	A13
A14	52 50	Vcc
DQ20		A16
DQ20	50	DQ28
DQ22	50	DQ29
DQ23		DQ30
Vss [63	DQ31

This document contains information on a new product. Specifications and information herein are subject to change without notice.

FUNCTIONAL BLOCK DIAGRAM

128K x 32 MEMORY MODULE

PD0-PD1-NC

TRUTH TABLE

Ex	Ğ	W	Mode	V _{CC} Current	Output	Cycle
н	х	х	Not Selected	ISB1 or ISB2	High-Z	-
L	н	н	Read	ICCA	High-Z	_
L	L	н	Read	ICCA	Dout	Read Cycle
L	х	L	Write	ICCA	Din	Write Cycle

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	v
Output Power Supply Voltage	Vccq	- 0.5 to V _{CC}	V
Voltage Relative to VSS	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	4.4	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperatrue	T _{stg}	- 25 to + 125	°C

The devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

These CMOS memory circuits have been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = V_{CCQ} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	_	V _{CC} +0.3*	v
Input Low Voltage	VIL	- 0.5**	—	0.8	V

*VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns) **VIL (min) = - 3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(I)	-	-	±4	μA
Output Leakage Current (\overline{G} , $\overline{Ex} = V_{IH}$, $V_{out} = 0$ to V_{CC})	l _{lkg(O)}	-	-	±4	μΑ
AC Active Supply Current (G, Ex = V _{IL} , I _{out} = 0 mA, MCM32128-20: t _{AVAV} = 2 Cycle time ≥ t _{AVAV} min) MCM32128-25: t _{AVAV} = 2 MCM32128-35: t _{AVAV} = 2	25 ns		600 540 480	720 640 600	mA
AC Standby Current (Ex = VIH, Cycle time ≥ t _{AVAV} min)	ISB1	-	28	80	mA
CMOS Standby Current ($\overline{Ex} \ge V_{CC} - 0.2 \text{ V}$, All Inputs $\ge V_{CC} - 0.2 \text{ V}$ or $\le 0.2 \text{ V}$)	ISB2	-	16	60	mA
Output Low Voltage (IOL = + 8.0 mA)	VOL	-	-	0.4	V
Output High Voltage (IOH = - 4.0 mA)	Voн	2.4	-	-	V

NOTE: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic		Symbol	Тур	Max	Unit
Input Capacitance	(All pins except DQ0 – DQ31 and $\overline{E1} - \overline{E4}$) $\overline{E1} - \overline{E4}$	C _{in}	16 10	24 14	pF
Input/Output Capacitance (DQ0 - DQ31)		Cout	8	9	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Output Timing Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V

READ CYCLE TIMING (See Notes 1 and 2)

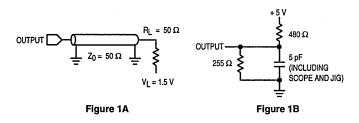
	Symb	ol	MCM32128-20 M		MCM32	MCM32128-25		2128-35		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	20		25	-	35	-	ns	3
Address Access Time	tAVQV	tAA	-	20	-	25	-	35	ns	
Enable Access Time	^t ELQV	tACS	-	20	-	25	-	35	ns	
Output Enable Access Time	^t GLQV	tOE		10	—	12	-	15	ns	
Output Hold from Address Change	tAXQX	tон	5	-	5	—	5	-	ns	
Enable Low to Output Active	^t ELQX	^t CLZ	5	-	5	_	5	-	ns	4,5,6
Output Enable to Output Active	tGLQX	tolz	0	-	0	-	0	-	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	9	0	10	0	12	ns	4,5,6
Output Enable High to Output High-Z	tGHQZ	tонz	0	9	0	10	0	12	ns	4,5,6
Power Up Time	^t ELICCH	tPU	0	-	0		0	_	ns	
Power Down Time	^t EHICCL	tPD	_	20	-	25	-	35	ns	

NOTES:

1. W is high for read cycle.

2. E1 - E4 are represented by E in these timing specifications, any combination of Exs may be asserted.

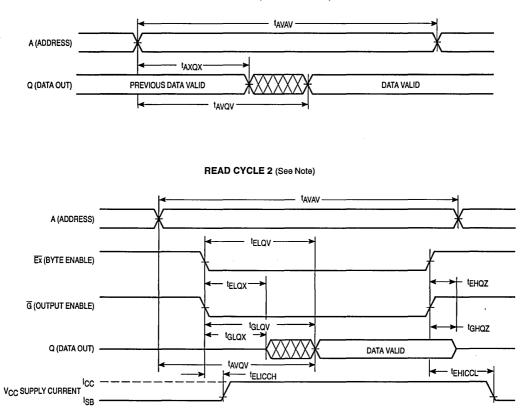
3. All read cycle timing is referenced from the last valid address to the first transitioning address.


 At any given voltage and temperature, tEHQZ max is less than tELQX min, and tGHQZ max is less than tGHQX min, both for a given device and from device to device.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

7. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).



TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Note 7 Above)

NOTE: Addresses valid prior to or coincident with \overline{E} going low.

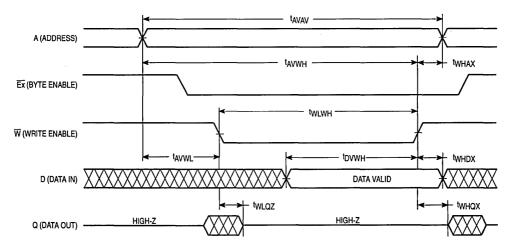
WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Symt	Symbol		2128-20	128-20 MCM321		2128-25 MCM32128-			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20	-	25	_	35	-	ns	3
Address Setup Time	tAVWL	tAS	0	-	0	—	0	-	ns	
Address Valid to End of Write	tavwh	taw	15	_	17		20	-	ns	
Write Pulse Width	twLwH, twLEH	tWP	15	-	17	-	20	-	ns	
Data Valid to End of Write	tDVWH	tDW	10	_	10	—	15		ns	1
Data Hold Time	twhox	^t DH	0	_	0		0	-	ns	
Write Low to Data High-Z	twLQZ	twz	0	9	0	10	0	15	ns	4,5,6
Write High to Output Active	twhox.	tow	5	—	5	-	5		ns	4,5,6
Write Recovery Time	twhax	twn	0		0	- 1	0	<u> </u>	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. $\overline{E1} - \overline{E4}$ are represented by \overline{E} in these timing specifications, any combination of \overline{Ex} s may be asserted. \overline{G} is a don't care when \overline{W} is low.


3. All write cycle timing is referenced from the last valid address to the first transitioning address.

4. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

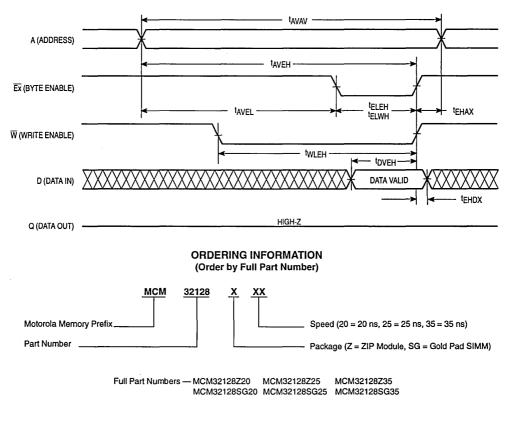
5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, twLoz max is less than twHoX min both for a given device and from device to device.

WRITE CYCLE 1

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

	Symb	loo	MCM32	2128-20 MCM32128-25 MC		MCM3	MCM32128-35			
Parameter	Std	Ait	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	- 1	25	-	35	-	ns	3
Address Setup Time	[†] AVEL	tAS	0		0	-	0	-	ns	
Address Valid to End of Write	^t AVEH	taw	15	-	17	-	20	-	ns	
Enable to End of Write	^t ELEH	tcw	15	_	17	-	20	-	ns	4,5
Enable to End of Write	tELWH	tcw	15	- 1	17	-	20	-	ns	
Write Pulse Width	tWLEH	twp	15	-	17	-	20	-	ns	
Data Valid to End of Write	tDVEH	tDW	10	—	10	-	15	-	ns	
Data Hold Time	t _{EHDX}	tDH.	0	- 1	0		0	-	ns	
Write Recovery Time	^t EHAX	twn	0	-	0	- 1	0		ns	


NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. E1 – E4 are represented by E in these timing specifications, any combination of Exs may be asserted. G is a don't care when W is low.

3. All write cycle timing is referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

WRITE CYCLE 2

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

256K x 32 Bit Fast Static RAM Module

The MCM32257 is an 8M bit static random access memory module organized as 262,144 words of 32 bits. The module is a 64-lead zig-zag in-line package (ZIP) or 64-lead single in-line memory module (SIMM) consisting of eight MCM6229A fast static RAMs packaged in 28-lead SOJ packages and mounted on a printed circuit board along with eight decoupling capacitors.

The MCM6229A is a high-performance CMOS fast static RAM organized as 262,144 words of 4 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM32257 is equipped with output enable (\overline{G}) and four separate byte enable $(\overline{E1} - \overline{E4})$ inputs, allowing for greater system flexibility. The \overline{G} input, when high, will force the outputs to high impedance. Ex high will do the same for byte x.

PD0 and PD1 are reserved for density identification. PD0 and PD1 are connected to ground. These pins can be used to identify the density of the memory module.

- Single 5 V ± 10% Power Supply
- Fast Access Time: 20/25/35 ns
- Three-State Outputs
- Fully TTL Compatible
- JEDEC Standard Pin Out
- Power Operation: 1360/1200/1120 mA Maximum, Active AC
- High Board Density ZIP Package
- Byte Operation: Four Separate Chip Enables, One for Each Byte (Eight Bits)
- High Quality Four-Layer FR4 PWB with Separate Internal Power and Ground Planes
- Incorporates Motorola's State-of-the-Art Fast Static RAMs

	PIN NAMES	
₩ G E1 - E4 DQ0 - V _{CC}	7 Address Inputs Write Enable Output Enable Byte Enables DQ31	e e s t
	Ground D1 Package Density	

For proper operation of the device, V_{SS} must be connected to ground.

MCM32257

	I ASSIGNI TOP VIEN D ZIP — (SIMM —	V	D
PD0 [DQ0 [DQ1 [DQ2 [DQ3 [Vcc [A1 [A3 [DQ4 [DQ5 [DQ6 [DQ7 [₩ [A7 [2 4 6 8 10 12 14 16 18 20 22 24 26 28	1) VSS 3) PD1 5) DQ8 7) DQ9 9) DQ10 11) DQ11 13] A0 15] A2 17] A4 19] DQ12 21] DQ13 23] DQ14 25] DQ15 27] VSS 29] A6 31] E2	
DQ16 [DQ17 [DQ18 [DQ19 [A11 [A13 [A15 [A16 [DQ20 [34 36 38 40 42 44 46 48 50 52 54 55 58 60	33] E4 33] E4 35] A8 37] G 39] DQ24 41] DQ25 43] DQ26 45] DQ27 47] A10 49] A12 51] A14 53] VCC 55] A17 57] DQ28 61] DQ30 63] DQ31	

FUNCTIONAL BLOCK DIAGRAM

256K x 32 MEMORY MODULE

TRUTH TABLE

Ēx	G	W	Mode	V _{CC} Current Output		Cycle
н	х	X	Not Selected	ISB1 or ISB2 High-Z		-
L	н	н	Read	ICCA	High-Z	
L	L	н	Read	ICCA	Dout	Read Cycle
L	X	L	Write	ICCA	Din	Write Cycle

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	- 0.5 to 7.0	V	
Output Power Supply Voltage	Vccq	- 0.5 to V _{CC}	V	
Voltage Relative to VSS	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	v	
Output Current (per I/O)	lout	± 30	mA	
Power Dissipation)	PD	8.8	w	
Temperature Under Bias	T _{bias}	- 10 to + 85	°C	
Operating Temperature	TA	0 to + 70	°C	
Storage Temperatrue	T _{stg}	- 25 to + 125	°C	

The devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

These CMOS memory circuits have been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = V_{CCQ} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	v
Input High Voltage	ViH	2.2	-	V _{CC} +0.3*	• V
Input Low Voltage	VIL	- 0.5**	—	0.8	V

*V_{IL} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns) **V_{IL} (min) = - 3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit	
Input Leakage Current (All Inputs, $V_{in} = 0$ to V_{CC}) Output Leakage Current (\overline{G} , $\overline{Ex} = V_{IH}$, $V_{out} = 0$ to V_{CC})					± 8	μA
			-	-	± 8	μA
AC Active Supply Current (\overline{G} , $\overline{Ex} = V_{1L}$, $I_{out} = 0$ mA, Cycle time $\ge t_{AVAV}$ min)	MCM32257-20: t _{AVAV} = 20 ns MCM32257-25: t _{AVAV} = 25 ns MCM32257-35: t _{AVAV} = 35 ns	ICCA		1120 960 880	1360 1200 1120	mA
AC Standby Current ($\overline{Ex} = V_{IH}$, Cycle time $\ge t_{AVAV}$ m	in)	I _{SB1}	-	56	160	mA
CMOS Standby Current ($\overline{Ex} \ge V_{CC} - 0.2 \text{ V}$, All Inputs	\geq V _{CC} – 0.2 V or \leq 0.2 V)	I _{SB2}	-	32	120	mA
Output Low Voltage (IOL = + 8.0 mA)		VOL	-	-	0.4	V
Output High Voltage (IOH = - 4.0 mA)			2.4	-	-	V

NOTE: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Chara	Characteristic t Capacitance (All pins except DQ0 – DQ31 and E1 – E E1 – E E1 – E			Max	Unit
Input Capacitance	(All pins except DQ0 – DQ31 and $\overline{E1}$ – $\overline{E4}$) $\overline{E1}$ – $\overline{E4}$	C _{in}	32 10	48 14	pF
Input/Output Capacitance (DQ0 - DQ31)		Cout	8	9	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Output Timing Reference Level	1.5 V
Input Pulse Levels 0 to 3	3.0 V

READ CYCLE TIMING (See Notes 1 and 2)

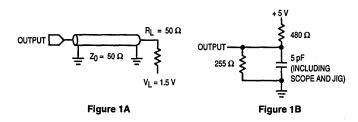
	Symb	ol	MCM32257-20		MCM32	2257-25	MCM3	2257-35		T T
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	^t RC	20	_	25		35	-	ns	3
Address Access Time	tAVQV	tAA	-	20	- 1	25	-	35	ns	
Enable Access Time	^t ELQV	tACS		20		25	-	35	ns	
Output Enable Access Time	tGLQV	tOE	_	10	· ·	12	-	15	ns	
Output Hold from Address Change	tAXQX	tон	5	-	5	—	5	-	ns	
Enable Low to Output Active	^t ELQX	^t CLZ	. 5	-	5	-	5	-	ns	4,5,6
Output Enable to Output Active	^t GLQX	tolz	0		0	- 1	0	-	ns	4,5,6
Enable High to Output High-Z	^t EHQZ	^t CHZ	0	9	0	10	0	12	ns	4,5,6
Output Enable High to Output High-Z	tGHQZ	tohz	0	9	0	10	0	12	ns	4,5,6
Power Up Time	tELICCH	tPU	0	-	0	-	0	-	ns	
Power Down Time	tEHICCL	tPD	. —	20	-	25	-	35	ns	

NOTES:

1. W is high for read cycle.

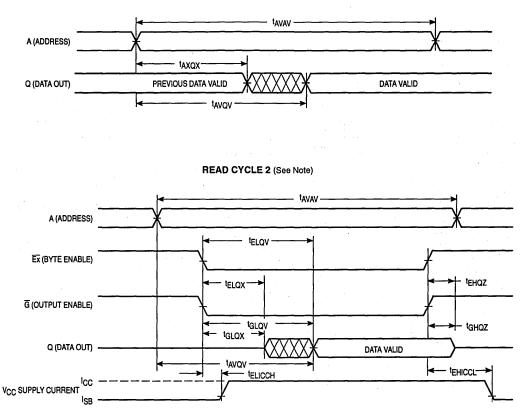
2. E1 - E4 are represented by E in these timing specifications, any combination of Exs may be asserted.

3. All read cycle timing is referenced from the last valid address to the first transitioning address.


 At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GHQX} min, both for a given device and from device to device.

5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.


7. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).

TIMING LIMITS

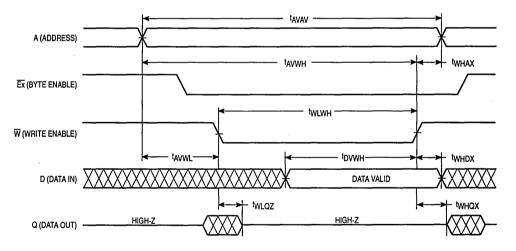
The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. READ CYCLE 1 (See Note 7 Above)

NOTE: Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

Parameter	Symbol		MCM32257-20		MCM32257-25		MCM32257-35			
	Std	Alt	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20	- 1	25	-	35	-	ns	3
Address Setup Time	tavwl	tAS	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	taw	15	-	17	-	20	-	ns	
Write Pulse Width	^t WLWH, ^t WLEH	twp	15	-	17	-	20	-	ns	
Data Valid to End of Write	tDVWH	tDW	10	- 1	10		15	_	ns	
Data Hold Time	twhdx	^t DH	0		0	-	0	—	ns	
Write Low to Data High-Z	twLQZ	twz	0	9	0	10	0	15	ns	4,5,6
Write High to Output Active	twhax	tow	5	- 1	5	-	5	-	ns	4,5,6
Write Recovery Time	twhax	twR	0	-	0	-	0	-	ns	

NOTES:


A write occurs during the overlap of Ē low and W low.
 Eī - E4 are represented by Ē in these timing specifications, any combination of Exs may be asserted. G is a don't care when W is low.

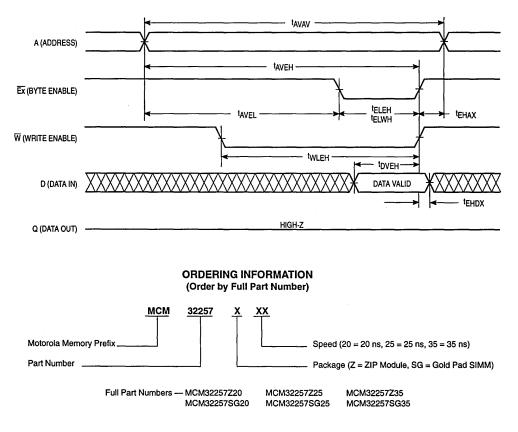
All write cycle timing is referenced from the last valid address to the first transitioning address.
 Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, twLQZ max is less than twHQX min both for a given device and from device to device.

WRITE CYCLE 1

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)


Parameter	Symbol		MCM32257-20		MCM32257-25		MCM32257-35			
	Std	Alt	Min	Мах	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20	-	25	-	35	- 1	ns	3
Address Setup Time	^t AVEL	tAS	0	-	0	-	0	-	ns	
Address Valid to End of Write	^t AVEH	tAW	15	-	17	-	20	-	ns	
Enable to End of Write	tELEH	tcw	15	-	17	-	20	-	ns	4,5
Enable to End of Write	telwh	tcw	15		17	- 1	20	-	ns	
Write Pulse Width	tWLEH	twp	15	-	17		20	-	ns	
Data Valid to End of Write	^t DVEH	tDW	10		10	<u> </u>	15		ns	
Data Hold Time	^t EHDX	tDH.	0	<u> </u>	0	- 1	0	- 1	ns	_
Write Recovery Time	^t EHAX	twR	0	- 1	0	- 1	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. E1 – E4 are represented by E in these timing specifications, any combination of Exs may be asserted. G is a don't care when W is low. 3. All write cycle timing is referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

WRITE CYCLE 2

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

64K x 32 Bit Static Random Access Memory Module

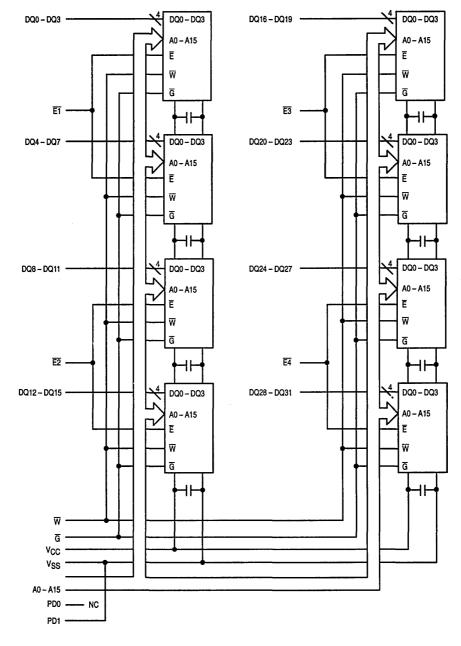
The MCM3264A is a 2M bit static random access memory module organized as 65,536 words of 32 bits. The module is a 64-lead zig-zag in-line module consisting of eight MCM6209C fast static RAMs packaged in a 28 J-lead small outline package (SOJ) and mounted on a printed circuit board along with a decoupling capacitor for each FSRAM.

The MCM6209C is a high-performance CMOS fast static RAM organized as 65,536 words of 4 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM3264A is equipped with output enable (\overline{G}) and four separate byte enable ($\overline{E1}$ - $\overline{E4}$) inputs, allowing for greater system flexibility. The \overline{G} input, when high, will force the outputs to high impedance. \overline{Ex} high will do the same for byte x.

PD0 and PD1 are reserved for density expansion. PD0 is open and PD1 is connected to ground internally on the module. These pins can be used to identify the density of the memory module.

- Single 5 V ± 10% Power Supply
- Fast Access Time: 15/20 ns
- Equal Address and Chip Enable Access Time
- Three State Outputs
- Full TTL Compatible
- JEDEC Standard Compatible
- Power Operation: 1240/1160 mA Maximum, Active AC
- High Board Density ZIP Module
- Byte Operation: Four Separate Chip Enables, One for Each Byte (Eight Bits)
- High Quality Four Layer FR4 PWB with Separate Internal Power and Ground Plane
- Incorporates Motorola's State-of-the-Art Fast Static RAMs


PIN NAMES					
W G E1 – E4 DQ0 – DQ31 V _{CC} V _{SS} PD0 – PD1	Address Inputs Write Enable Output Enable Byte Enables Byte Enables Data Input/Output .+ 5 V Power Supply 				

All power supply and ground pins must be connected for proper operation of the device.

MCM3264A

64-LEAD ZI	ASSIGN G-ZAG IN- IP VIEW –	LINE	MODULE
PD0 0 DQ0 0 DQ1 0 DQ2 0 DQ3 0 VCC 0 A1 0 A3 0 DQ4 0 DQ5 0 DQ6 0 DQ7 0 ₩ 0 A7 0 ĒT 0	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32	1 3 5 7 9 7 1 13 7 7 9 7 1 13 7 1 13 7 1 13 7 1 13 7 1 19 7 1 19 7 1 19 7 21 7 23 7 1 23 7 1 1 2 2 3 7 1 1 2 2 3 7 1 1 1 2 2 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VSS PD1 DQ8 DQ9 DQ10 DQ11 A0 A2 A4 DQ12 DQ13 DQ14 DQ15 VSS A6 E2
E3 (NC (VSS (DQ16 (DQ17 (DQ18 (DQ19 (A11 (A13 (DQ20 (DQ21 (DQ22 (DQ23 (VSS (34 36 38 40 42 44 46 48 50 52 55 54 56 58 60 62 64	33 35 37 39 39 41 43 1 43 1 53 1 53 1 53 1 53 1 63 1	E4 NC G DQ24 DQ25 DQ26 DQ27 A8 A10 A12 VCC A15 DQ28 DQ29 DQ30 DQ31

FUNCTIONAL BLOCK DIAGRAM

*NC = No Connection

MCM3264A TRUTH TABLE

Ēx	Ğ	W	Mode	VCC Current	Output	Cycle
н	х	х	Not Selected	ISB1, ISB2	High-Z	-
L	н	н	Read	ICCA	High-Z	-
L	L	н	Read	ICCA	Dout	Read Cycle
L	Х	L	Write	ICCA	D _{in}	Write Cycle

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to VSS	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	8	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 25 to + 125	°C

The devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

These CMOS memory circuits have been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	-	V _{CC} + 0.3*	V
Input Low Voltage	VIL	- 0.5**	—	0.8	V

 $V_{IH}(max) = V_{CC} + 0.3 V dc; V_{IH}(max) = V_{CC} + 2 V ac (pulse width \le 20 ns)$

** $V_{IL}(min) = -3.0$ V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	llkg(i)	-	-	±8	μA
Output Leakage Current (\overline{G} , $\overline{Ex} = V_{IH}$, $V_{out} = 0$ to V_{CCQ})	l _{lkg} (O)	-	-	±8	μA
AC Active Supply Current (I _{Out} = 0 mA, Cycles Times ≥ t _{AVAV} min) MCM3264A-15: t _{AVAV} = 15 ns MCM3264A-20: t _{AVAV} = 20 ns	ICCA	=	840 760	1240 1160	mA
AC Standby Current (Ex = V _{IH} , Cycle Times ≥ t _{AVAV} min) MCM3264A-15: t _{AVAV} = 15 ns MCM3264A-20: t _{AVAV} = 20 ns	^I SB1	_	300 260	400 360	mA
CMOS Standby Current (f = 0 MHz, $Ex \ge V_{CC} - 0.2 V$, All Inputs $\ge V_{CC} - 0.2 V$ or $\le 0.2 V$)	ISB2	_	32	160	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL		-	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	-		V

NOTE: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter			Тур	Max	Unit
Input Capacitance	All Pins Except DQ0 – DQ31 and E1 – E4 E1 – E4	C _{in}	32 10	48 14	pF
Input/Output Capacitance (DQ0 – DQ31)		CI/O	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ T}_{A} = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V
Input Rise/Fall Time	. 5 ns

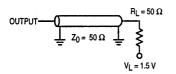
READ CYCLE TIMING (See Notes 1 and 2)

······	Syn	Symbol		MCM3264A-15		264A-20		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	15	-	20		ns	3
Address Access Time	tAVQV	tAA	—	15	- 1	20	ns	
Enable Access Time	^t ELQV	tACS		15	—	20	ns	
Output Enable Access Time	tGLQV	^t OE	_	8	-	10	ns	
Output Hold from Address Change	tAXQX	tон	4	—	4	—	ns	
Enable Low to Output Active	tELQX	tCLZ	4	-	4	_	ns	4, 5, 6
Output Enable to Output Active	tGLQX	tolz	0	-	0	-	ns	4, 5, 6
Enable High to Output High-Z	tEHQZ	tCHZ	0	8	0	9	ns	4, 5, 6
Output Enable High to Output High Z	tGHQZ	tohz	0	7	0	8	ns	4, 5, 6
Power Up Time	^t ELICCH	tPU	0	-	0		ns	
Power Down Time	^t EHICCL	^t PD	_	15	—	20	ns	

NOTES:

1. W is high for read cycle.

2. E1 - E4 are represented by E in these timing specifications; any combination of Exs may be asserted.


3. All read cycle timing is referenced from the last valid address to the first transitioning address.

 At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GHQX} min, both for a given device and from device to device.

5. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.

6. This parameter is sampled and not 100% tested.

AC TEST LOADS

Figure 1A

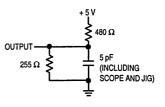
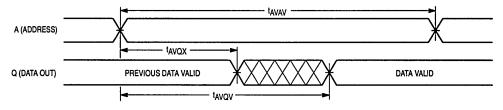
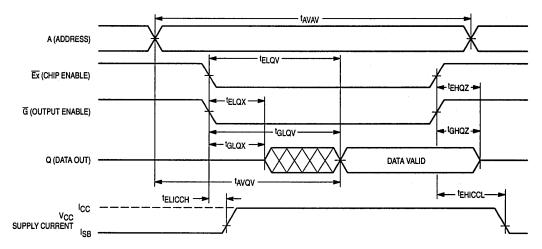



Figure 1B

TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

READ CYCLE 1 (See Note)

NOTE: Device is continuously selected ($\overline{E} = V_{|L}, \overline{G} = V_{|L}$).

NOTES:

1. Addresses valid prior to or coincident with \overline{E} going low.

2. All read cycle timing is referenced from the last valid address to the first transitioning address.

5

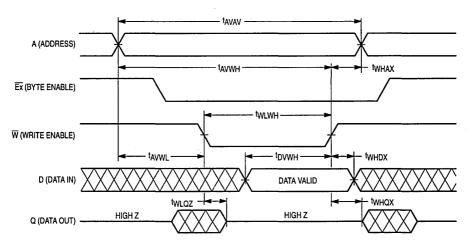
WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	nbol	MCM3264A-15		MCM3264A-20			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Unit Notes
Write Cycle Time	tAVAV	twc	15	—	20	-	ns	3
Address Setup Time	tavwl	tAS	0	—	0	—	ns	
Address Valid to End of Write	tavwh	tAW	12		15		ns	
Write Pulse Width	twLwH twLEH	tWP	12	<u> </u>	15	-	ns	
Write Pulse Width, G High	twLwH twLEH	tWP	10	_	12	-	ns	
Data Valid to End of Write	tD/WH	tDW	7	—	8	- 1	ns	
Data Hold Time	twhdx	^t DH	0		0	-	ns	
Write Low to Data High-Z	twloz	twz	0	7	0	8	ns	4, 5, 6
Write High to Output Active	twhox	tow	4	—	4	_	ns	4, 5, 6
Write Recovery Time	twhax	twR	0	-	0		ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. E1 – E4 are represented by E in these timing specifications; any combination of Exs may be asserted. G is a don't care when W is low.


3. All write cycle timing is referenced from the last valid address to the first transitioning address.

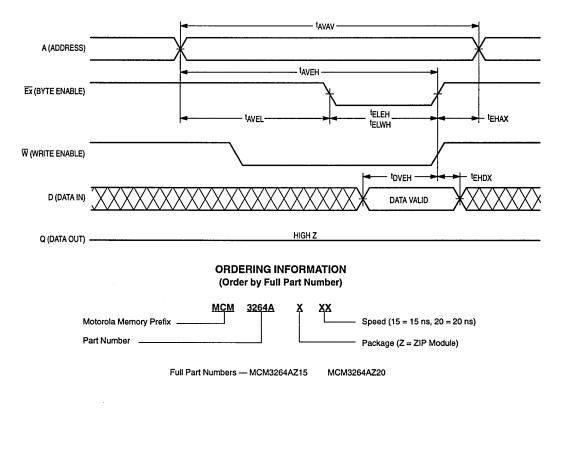
4. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.

5. This parameter is sampled and not 100% tested.

6. At any given voltage and temperature, tWLQZ max is less than tWHQX min both for a given device and from device to device.

WRITE CYCLE 1

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)


	Syn	nbol	MCM3264A-15		MCM3264A-20			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	15	—	20	-	ns	3
Address Setup Time	^t AVEL	tAS	0	-	0	—	ns	
Address Valid to End of Write	t AVEH	taw	12	—	15	—	ns	
Enable to End of Write	^t ELEH, ^t ELWH	tcw	10	-	12	-	ns	4, 5
Data Valid to End of Write	^t DVEH	tDW	7	-	8	-	ns	
Data Hold Time	^t EHDX	tDH	0	—	0	-	ns	
Write Recovery Time	^t EHAX	twR	0	-	0	-	ns	

NOTES:

1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

2. ET – ET are represented by E in these timing specifications; any combination of Exs may be asserted. \overline{G} is a don't care when \overline{W} is low. 3. All write cycle timing is referenced from the last valid address to the first transitioning address.

If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

WRITE CYCLE 2

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

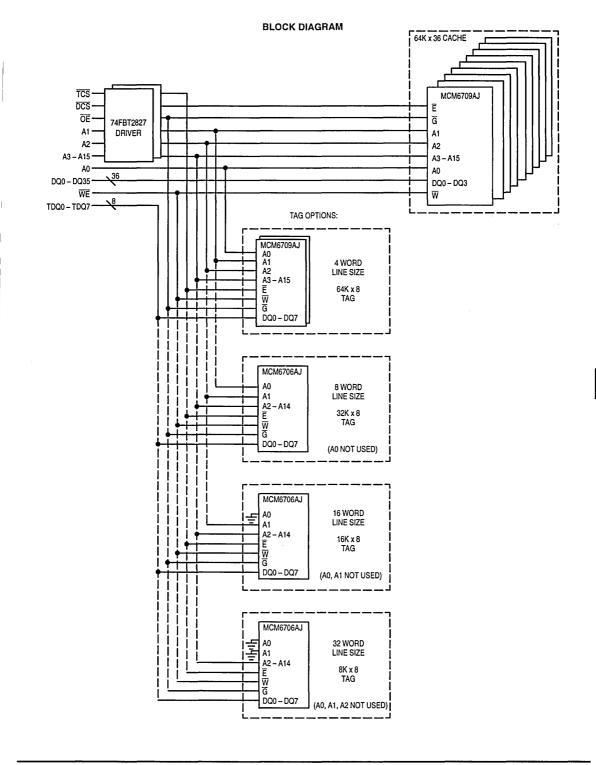
1MB R4000 Secondary Cache Fast Static RAM Module Set

Four MCM4464 modules comprise a full 1 MB of secondary cache for the R4000 processor. Each module contains nine MCM6709AJ fast static RAMs for a cache data size of 64K x 36. The tag portion, dependent on word line size, contains either two MCM6709AJ or one MCM6706AJ fast static RAMs. All input signals, except A0 and WE are buffered using 74FBT2827 drivers with series 25Ω resistors.

The MCM6709AJ and MCM6706AJ are fabricated using high-performance silicon-gate BiCMOS technology. Static design eliminates the need for internal clocks or timing strobes.

All 1MB R4000 supported secondary cache options are available.

- Single 5 V ± 10% Power Supply
- All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Fast Module Access Time: 12/15/17 ns
- Zero Wait-State Operation
- Unified or Split Seconday Cache Modules are Available (See Ordering Information for Details)
- Word Line Sizes of 4, 8, 16, and 32 are Available (See Ordering Information for Details)
- The Pin Compatible MCM44256 Series is also Available to Support a Full 4MB R4000 Secondary Cache.
- Decoupling Capacitors are Used for Each Fast Static RAM and Buffer, Along with Bulk Capacitance for Maximum Noise Immunity
- High Quality Multi-Layer FR4 PWB with Separate Power and Ground Plane


PIN N	AMES
A0 – A15	Address Inputs
WE	Write Enable
DCS	Data Enable
TCS	Tag Enable
<u>OE</u>	Output Enable
DQ0 – DQ35	Data Input / Output
TDQ0-TDQ7 T/	AG Data Input / Output
	+ 5 V Power Supply
V _{SS}	Ground

For proper operation of the device, V_{SS} must be connected to ground.

MCM4464 Series

PIN ASSIGNMENT 80 LEAD SIMM — TOP VIEW								
	•	1	VSS					
V _{CC} DQ1	2 4	3	DQ0					
DQ3	6	5	DQ2					
DQ5	8	7	DQ4					
Vss	10	9	DQ6					
VSS DQ8	12	11	DQ7					
DQ10	14	13	DQ9					
DQ12	16	15	DQ11					
DQ14	18	17	DQ13					
DQ15	20	19	V _{SS}					
DQ17	22	21	DQ16					
DQ19	24	23	DQ18					
DQ21	26	25	DQ20					
VSS	28	27	DQ22					
DQ23	30	29	VCC					
DQ25	32	31	DQ24					
DQ27	34	33	DQ26					
DQ29	36	35	DQ28					
DQ30	38	37	V _{SS}					
DQ32	40	39	DQ31					
DQ34	42	41	DQ33					
V _{SS}	44	43	DQ35					
A0	46	45	WE					
A2	48	47	A1					
A4	50	49	A3					
A6	52	51	A5					
Vcc	54	53	VSS					
OE	56	55	DCS					
A8	58	57	A7					
A10	60	59	A9					
VSS	62	61	A11					
A13	64	63	A12					
A15	66*	65	A14					
NC	68 *	67	NC					
TDQ0	70	69	TCS					
TDQ1	72	71	VSS					
TDQ3	74	73	TDQ2					
TDQ5	76	75	TDQ4					
TDQ7	78	77	TDQ6					
VSS	80	79	Vcc					
NOTE: Pin assi								
			68 become					
Addres	A) DCIVI 2	is) and	l Pin 66 is N	٥.				

Ν

Ę

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	v
Voltage Relative to VSS	Vin, Vout	- 0.5 to V _{CC} + 0.5	v
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	10	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 25 to +125	°C

This devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

These BiCMOS memory circuits have been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at leat 500 linear feet per minute is maintained.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = V_{CCQ} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter Supply Voltage (Operating Voltage Range)		Symbol	Min	Тур	Max	Unit
		Vcc	4.5	5.0	5.5	v
Input High Voltage	(DQ0 – 35, TDQ0 – 7, WE, A0) (A1 – A15, OE, DCS, TCS)	VIH	2.2 2.0	_	V _{CC} + 0.3 V* V _{CC} + 0.3 V*	V
Input Low Voltage		VIL	- 0.5**	_	0.8	V

*VIH (max) = V_{CC} + 0.3 V dc; VIH (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns)

**V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(l)		-	± 10	μΑ
Output Leakage Current (\overline{G} , $\overline{Ex} = V_{IH}$, $V_{out} = 0$ to V_{CC})	llkg(O)	·		± 10	μΑ
AC Supply Current (\overline{G} , $\overline{Ex} = V_{IL}$, $I_{out} = 0$ mA)	ICCA	<u> </u>		1850	mA
Output Low Voltage (IOL = + 8 mA)	V _{OL}	_	—	0.4	v
OUtput High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	_	—	V

Note: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

	Parameter	Symbol	Тур	Max	Unit
Input Capacitance	(A0, WE) (A1 – A15, OE, DCS, TCS)	C _{in}	_	110 10	pF
Input/Output Capacitance		Cout		10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

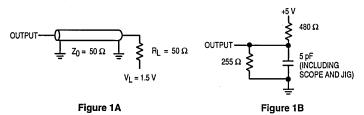
(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels	0 to 3.0 V
Input Rise/Fall Time	3 ns

READ CYCLE (See Notes 1 and 2)

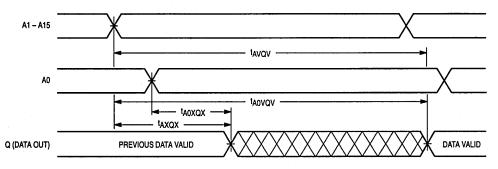
	Syn	nbol	-1	2	-1	15	-1	7		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Address Access Time	^t AVQV	tAA	-	12	-	15	-	17	ns	
A0 Access Time	tA0QV	t _{A0A}	-	10	-	12	-	14	ns	
Data/Tag Enable Access Time	^t ELQV	tACS	—	12	-	15	-	17	ns	
Output Enable Access Time	tGLQV	tOE	-	9	_	10	—	11	ns	
Output Hold from Address Change	tAXQX	tон	4	-	4	-	4	-	ns	
Output Hold from A0 Change	tA0XQX	tон	4	-	4	-	4	-	ns	
Data/Tag Enable Low to Output Active	^t ELQX	t∟z	2	-	2	-	2	-	ns	3, 4
Data/Tag Enable High to Output High-Z	t _{EHQZ}	tHZ	1	9	1	10	1	11	ns	3, 4
Output Enable Low to Output Active	tGLQX	t∟z	1		1	—	1	-	ns	3, 4
Output Enable High to Output High-Z	tGHQZ	tHZ	1	9	1	10	1	11	ns	3, 4

NOTES:

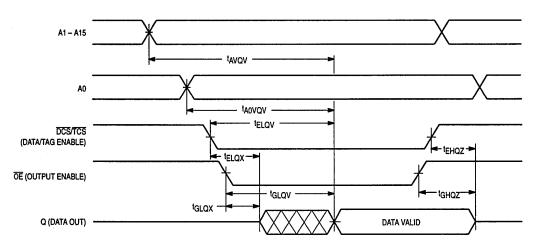

1. WE is high for read cycle.

2. Enable timings are the same for both $\overline{\text{DCS}}$ and $\overline{\text{TCS}}$.

3. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.


4. This parameter is sampled and not 100% tested.

AC TEST LOADS


TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. READ CYCLE 1 (See Note)

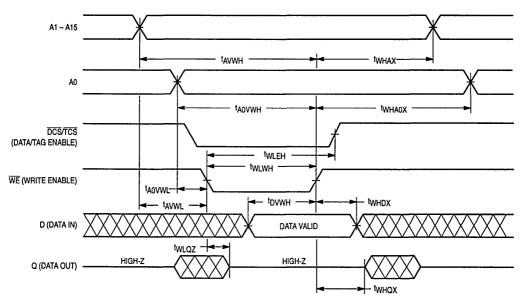
NOTE: Module is continuously selected (\overline{DCS} or $\overline{TCS} = V_{IL}$, $\overline{OE} = V_{IL}$).

NOTE: Address valid prior to or coincident with DCS or TCS going low.

WRITE CYCLE 1 (WE Controlled, See Notes 1 and 2)

	Syn	nbol	-1	12	-1	15	-1	17		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Address Setup Time	tavwL	tAS	0	-	0	-	0	-	ns	
A0 Setup Time	tAOVWL	tA0S	0	—	0		0	-	ns	
Address Valid to End of Write	tavwh	tAW	12	-	15	-	17	-	ns	
A0 Valid to End of Write	tAOVWH	tAOW	10	-	12	-	14	-	ns	
Write Pulse Width	twLWH twLEH	tWP	7		10	-	12	-	ns	
Data Valid to End of Write	^t DVWH	tDW	6	-	7	-	8	-	ns	
Data Hold Time	twhdx	^t DH	0	-	0	-	0	-	ns	
Write Low to Data High-Z	twlqz	twz	0	4	0	5	0	6	ns	3, 4
Write High to Output Active	twhax	tow	3	-	3		3	-	ns	3, 4
Write Recovery Time	twhax	t₩R	0	-	0	-	0	-	ns	
Write Recovery Time - A0	twhaox	twn	0	-	0	-	0	-	ns	

NOTES:

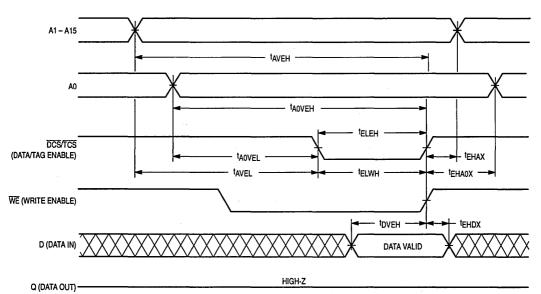

1. A write occurs during the overlap of DCS or TCS low and WE low.

2. Enable timings are the same for both DCS and TCS.

3. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

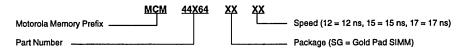
4. This parameter is sampled and not 100% tested.

WRITE CYCLE 1



WRITE CYCLE 2 (DCS or TCS Controlled, See Notes 1 and 2)

Parameter	Syn	Symbol		-12		15	-17			
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Address Setup Time	tAVEL	tAS	0	-	0	- 1	0	_	ns	
A0 Setup Time	^t A0VEL	tAOS	0	- 1	0	-	0	-	ns	
Address Valid to End of Write	tAVEH	tAW	12		15		17	-	ns	
A0 Valid to End of Write	tA0VEH	tAOW	10		12	-	14	-	ns	
Data/Tag Enable to End of Write	^t ELEH, ^t ELWH	tcw	12		15	-	17	-	ns	
Data Valid to End of Write	tDVEH	tDW	6	-	7	-	8	-	ns	
Data Hold Time	^t EHDX	tDH	5	-	5.	-	5	-	ns	
Write Recovery Time	^t EHAX	twR	5	-	5	—	5	—	ns	[
Write Recovery Time – A0	^t EHA0X	twn	5	-	5	_	5		ns	[


NOTES:

1. A write occurs during the overlap of $\overline{\text{DCS}}$ or $\overline{\text{TCS}}$ low and $\overline{\text{WE}}$ low. 2. Enable timings are the same for both $\overline{\text{DCS}}$ and $\overline{\text{TCS}}$.

WRITE CYCLE 2

ORDERING INFORMATION (Order by Full Part Number)

Part Number Unified/Split		Word Line Size	TAG Depth
MCM44A64	Unified	4	64K
MCM44B64	Unified	8	32K
MCM44C64	Unified	16	16K
MCM44D64	Unified	32	8K
MCM44E64	Split	4	64K
MCM44F64	Split	8	32K
MCM44G64	Spllit	16	16K
MCM44H64	Split	32	8K

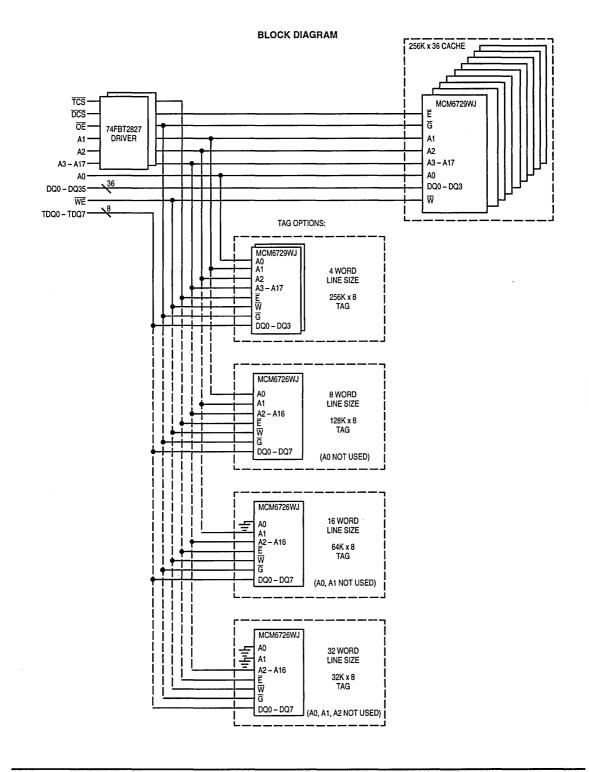
MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

4MB R4000 Secondary Cache Fast Static RAM Module Set

Four MCM44256 modules comprise a full 4 MB of secondary cache for the R4000 processor. Each module contains nine MCM6729WJ fast static RAMs for a cache data size of 256K x 36. The tag portion, dependent on word line size, contains either two MCM6729WJ or one MCM6726WJ fast static RAMs. All input signals, except A0 and WE are buffered using 74FBT2827 drivers with series 25Ω resistors.

The MCM6729WJ and MCM6726WJ are fabricated using high-performance silicon-gate BiCMOS technology. Static design eliminates the need for internal clocks or timing strobes.

All 4MB R4000 supported secondary cache options are available.


- Single 5 V ± 10% Power Supply
- All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Fast Module Access Time: 12/15/17 ns
- Zero Wait-State Operation
- · Unified or Split Seconday Cache is Supported
- Word Line Sizes of 4, 8, 16, and 32 are Available (See Ordering Information for Details)
- Decoupling Capacitors are Used for Each Fast Static RAM and Buffer, Along
 with Bulk Capacitance for Maximum Noise Immunity
- High Quality Multi-Layer FR4 PWB with Separate Power and Ground Plane

PIN NAMES
A0 – A17 Address Inputs WE Write Enable DCS Data Enable TCS Tag Enable OE Output Enable DQ0 – DQ35 Data Input / Output TDQ0 – TDQ7 TAG Data Input / Output VCC + 5 V Power Supply VSS Ground

For proper operation of the device, V_{SS} must be connected to ground.

MCM44256 Series

PIN ASSIGNMENT 80 LEAD SIMM — TOP VIEW									
	0	1	VSS						
V _{CC} DQ1	2	3	DQ0						
DQ3	6	5	DQ2						
DQ5	8	7	DQ4						
	10	9	DQ6						
V _{SS} DQ8	12	11	DQ7						
DQ10	14	13	DQ9						
DQ10	16	15	DQ11						
DQ12 DQ14	18	17	DQ13						
DQ14 DQ15	20	19	VSS						
DQ13	20	21	DQ16						
DQ17 DQ19	22	23	DQ18						
DQ13 DQ21	26	25	DQ20						
VSS	28	27	DQ22						
DQ23	30	29	VCC						
DQ25	32	31	DQ24						
DQ27	34	33	DQ26						
DQ29	36	35	DQ28						
DQ30	38	37	V _{SS}						
DQ32	40	39	DQ31						
DQ34	42	41	DQ33						
VSS	44	43	DQ35						
AO	46	45	WE						
A2	48	47	A1						
A4	50	49	A3						
A6	52	51	A5						
VCC	54	53	VSS						
ŌĒ	56	55	DCS						
A8	58	57	A7						
A10	60	59	A9						
VSS	62	61	A11						
A13	64	63	A12						
A15	66	65	A14						
A17	68	67	A16						
TDQ0	70	69	TCS						
TDQ1	72	71	VSS						
TDQ3	74	73	TDQ2						
TDQ5	76	75	TDQ4						
TDQ7	78	77	TDQ6						
V _{SS}	80	79	Vcc						

MOTOROLA FAST SRAM DATA

5

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	– 0.5 to 7.0	V
Voltage Relative to VSS	Vin, Vout	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	10	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 25 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

These BiCMOS memory circuits have been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at leat 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS (V_{CC} = V_{CCQ} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter Supply Voltage (Operating Voltage Range)		Symbol	Min	Тур	Max	Unit
		Vcc	4.5	5.0	5.5	v
Input High Voltage	(DQ0 – 35, TDQ0 – 7, WE, A0) (A1 – A17, OE, DCS, TCS)	VIH	2.2 2.0	-	V _{CC} + 0.3 V* V _{CC} + 0.3 V*	V
Input Low Voltage		VIL	- 0.5**	-	0.8	v

*V_{IL} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns) **V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V _{CC})	likg(l)		_	± 10	μA
Output Leakage Current (\overline{G} , $\overline{Ex} = V_{IH}$, $V_{out} = 0$ to V_{CC})	likg(O)		-	± 10	μA
AC Supply Current (\overline{G} , $\overline{Ex} = V_{IL}$, $I_{out} = 0$ mA)	ICCA	_	- 1	1750	mA
Output Low Voltage (IOL = + 8 mA)	VOL	_	-	0.4	V
OUtput High Voltage (IOH = - 4.0 mA)	Voh	2.4	_	—	V

NOTE: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Sym	bol Typ	Max	Unit
Input Capacitance (A	(A0, WE) C _i	n —	110 10	pF
Input/Output Capacitance	Co	ut —	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

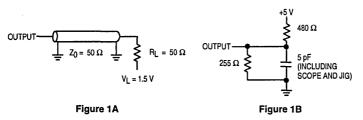
(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level	1.5 V
Input Pulse Levels 0 to	3.0 V
Input Rise/Fall Time	3 ns

READ CYCLE (See Notes 1 and 2)

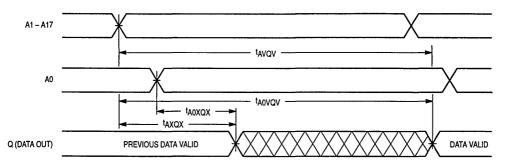
	Symbol		-12		-15		-17			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Address Access Time	tAVQV	tAA	-	12	·	15	-	17	ns	
A0 Access Time	^t A0AQV	t _{A0A}	-	10	—	12	_	14	ns	
Data/Tag Enable Access Time	^t ELQV	tACS	—	12	—	15		17	ns	
Output Enable Access Time	tGLQV	tOE	-	9		10	-	11	ns	
Output Hold from Address Change	tAXQX	tон	4	-	4	-	4	-	ns	
Output Hold from A0 Change	tAOXQX	tон	4	-	4	-	4	-	ns	
Data/Tag Enable Low to Output Active	^t ELQX	tLZ	2		2	-	2	-	ns	3, 4
Data/Tag Enable High to Output High-Z	^t EHQZ	tHZ	1	9	1	10	1	11	ns	3, 4
Output Enable Low to Output Active	tGLQX	tLZ	1	-	1	-	1	-	ns	3,4
Output Enable High to Output High-Z	tGHQZ	ţнz	1	9	1	10	1	11	ns	3, 4

NOTES:

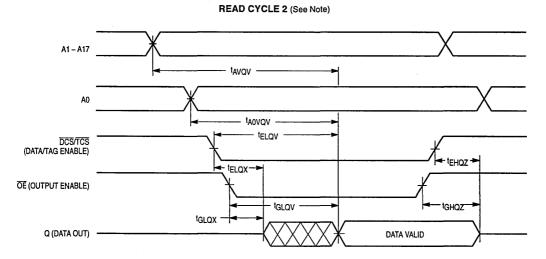

1. WE is high for read cycle.

2. Enable timings are the same for both DCS and TCS.

3. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.


4. This parameter is sampled and not 100% tested.

AC TEST LOADS



TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. READ CYCLE 1 (See Note)

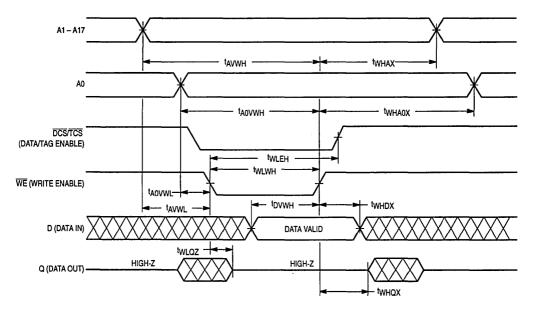
NOTE: Module is continuously selected ($\overline{\text{DCS}}$ or $\overline{\text{TCS}} = V_{|L}$, $\overline{\text{OE}} = V_{|L}$)

NOTE: Address valid prior to or coincident with $\overline{\text{DCS}}$ or $\overline{\text{TCS}}$ going low.

WRITE CYCLE 1 (WE Controlled, See Notes 1 and 2)

	Syn	Symbol		-12		-15		17		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Address Setup Time	tavwL	tAS	0	-	0	-	0	-	ns	
A0 Setup Time	^t A0VWL	tAOS	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh	tAW	12	-	15	-	17	-	ns	
A0 Valid to End of Write	tAOVWH	tAOW	10		12	-	14	-	ns	
Write Pulse Width	twLWH twLEH	tWP	7	-	10	-	12	-	ns	
Data Valid to End of Write	tDVWH	tDW	6	-	7	-	8	-	ns	
Data Hold Time	twhdx	^t DH	0	-	0	—	0		ns	
Write Low to Data High-Z	twlqz	twz	0	4	0	5	0	6	ns	3, 4
Write High to Output Active	twhox	tow	3		3	-	3	-	ns	3, 4
Write Recovery Time	twhax	twn	0	-	0	-	0	-	ns	
Write Recovery Time - A0	twhaox	twR	0	- 1	0	-	0	-	ns	

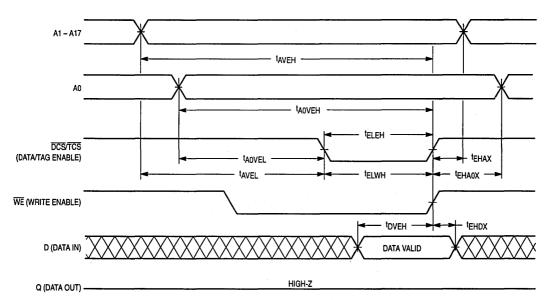
NOTES:


1. A write occurs during the overlap of $\overline{\text{DCS}}$ or $\overline{\text{TCS}}$ low and $\overline{\text{WE}}$ low.

2. Enable timings are the same for both $\overline{\text{DCS}}$ and $\overline{\text{TCS}}$.

3. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.

4. This parameter is sampled and not 100% tested.



WRITE CYCLE 2 (DCS or TCS Controlled, See Notes 1 and 2)

	Syn	Symbol		-12		-15		-17		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Address Setup Time	tAVEL	tAS	0	-	0	-	0	—	ns	
A0 Setup Time	^t A0VEL	tAOS	0	-	0	-	0	- 1	ns	
Address Valid to End of Write	^t AVEH	tAW	12		15	-	17	- 1	ns	
A0 Valid to End of Write	tA0VEH	tAOW	10	-	12	-	14	-	ns	
Data/Tag Enable to End of Write	tELEH, tELWH	tcw	12	-	15	-	17	-	ns	
Data Valid to End of Write	^t DVEH	tow	6	-	7	—	8	- 1	ns	
Data Hold Time	^t EHDX	t _{DH}	5	-	5	-	5	-	ns	
Write Recovery Time	^t EHAX	twR	5		5		5	[ns	
Write Recovery Time - A0	^t EHA0X	twn	5		5		5	-	ns	

NOTES:

A write occurs during the overlap of DCS or TCS low and WE low.
 Enable timings are the same for both DCS and TCS.

WRITE CYCLE 2

ORDERING INFORMATION (Order by Full Part Number)

Part Number	Unified/Split	Word Line Size	TAG Depth
MCM44A256	Unified/Split	4	256K
MCM44B256	Unified/Split	8	128K
MCM44C256	Unified/Split	16	64K
MCM44D256	Unified/Split	32	32K

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

МСМ72ВА32 МСМ72ВА64

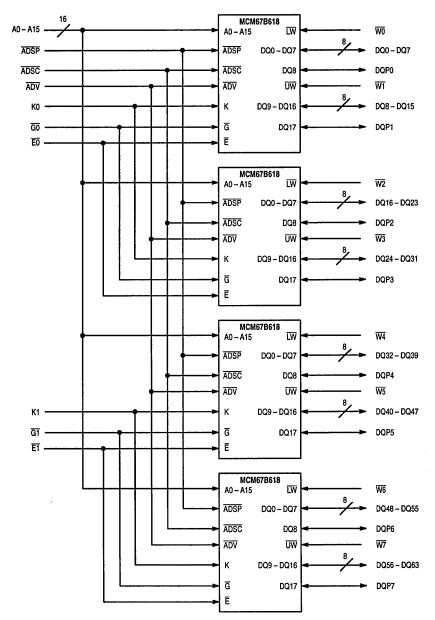
Advance Information 256KB and 512KB BurstRAM[™] Secondary Cache Module for Pentium[™]

The MCM72BA32SG and MCM72BA64SG are designed to provide a burtstable, high performance, 256K/512K L2 cache for the Pentium microprocessor. The modules are configured as 32K x 72 and 64K x 72 bits in a 136 pin dual readout single inline memory module (SIMM). The module uses four of Motorola's MCM67B618 or MCM67B518 BiCMOS BurstRAMs.

Bursts can be initiated with either address status processor ($\overline{\text{ADSP}}$) or address status controller ($\overline{\text{ADSC}}$). Subsequent burst addresses are generated internal to the BurstRAM by the burst advance ($\overline{\text{ADV}}$) input pin.

Write cycles are internally self timed and are initiated by the rising edge of the clock (K) input. Eight write enables are provided for byte write control.

The cache family is designed to interface with popular Pentium cache controllers with on board TAG.


PD0 - PD2 are reserved for density identification.

- · Dual Readout SIMM for Circuit Density
- Single 5 V ± 5% Power Supply
- · All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Byte Parity
- Fast Module Cycle Time: 66 MHz, 60 MHz, 50MHz
- · Decoupling Capacitors for each Fast Static RAM
- · High Quality Multi-Layer FR4 PWB With Separate Power and Ground Plane
- I/Os are 3.3 V Compatible

This document contains information on a new product. Specifications and information herein are subject to change without notice.

PIN ASSIGNMENT 68-LEAD DUAL READOUT SIMM TOP VIEW	PD0 PD1 DQ0 DQ1 VCC DQ4 DQ4 DQ6 DQ70 VSS DQ14 VSS DQ14 VSS DQ14 VSS DQ14 VSS DQ14 DQ19 DQ21 VCC DQ16 DQ19 DQ21 VCC DQ16 DQ19 DQ21 VCC QQ10 VSS DQ14 VSS DQ24 VSS DQ24 VSS DQ24 VSS DQ24 VSS DQ24 VSS DQ24 VSS DQ24 VSS VSS DQ24 VSS DQ24 VSS VSS DQ24 VSS DQ24 VSS DQ24 VSS DQ24 VSS DQ24 VSS DQ24 VSS VSS VSS VSS VSS VSS VSS VSS VSS VS	1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 4	69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 84 85 86 87 91 92 93 94 95 96 97 97 91 101 102	VSS PD2 VCC DQ3 DQ3 DQ3 DQ4 DQ3 DQ5 DQ7 VSS DQ11 DQ12 DQ31 DQ13 DQ14 VSS DQ13 DQ14 VSS DQ22 DQ23 DQ22 DQ23 DQ30 VSS E0 W13 G05 G1 W35 G1
ES Address Inputs 	W6 DQ32 DQ33 VSS DQ36 DQ38 DQ39 DQ40 VCC DQ43 DQ45 DQ45 DQ45 DQ45 DQ45 DQ52 DQ55 DQ56 DQ60 DQ62 DQ77 A0 A4 A6 A10 A12 A14	$\begin{array}{c} 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 55\\ 56\\ 57\\ 55\\ 56\\ 57\\ 8\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 66\\ 67\\ 68\\ \end{array}$	103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 121 122 123 124 125 126 127 128 129 121 133 134 132 133 134 135 136	W7 E1 DQ34 DQ35 DQ41 DQ44 VSC DQ44 VSS DQ40 VSS DQ40 VSS DQ40 VSS DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DQ57 DQ630 DQ641 DQ54 DQ55 DQ57 DQ631 DQ54 DQ55 DQ57 DQ631 VCC A1 A3 A5 A7 VSC A11 A13 A11

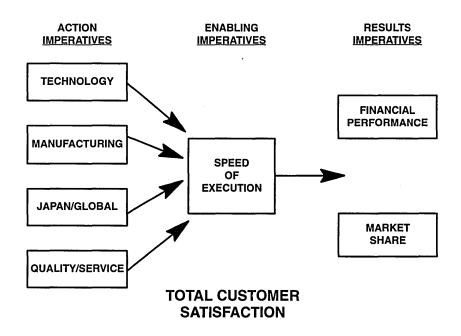
PIN	NAMES
	Address Inputs
	Clock
E0, E1	Module Enable
	Module Output Enable Cache Data Input/Output
	Data Parity Input/Output Controller Address Status
	. Processor Address Status
	Burst Advance
	+ 5 V Power Supply
V _{SS}	Ground

32K/64K x 72 BurstRAM MEMORY MODULE BLOCK DIAGRAM

ORDERING INFORMATION (Order by Full Part Number)

72BA3; MCM 72BA6; Motorola Memory Prefix Part Number		— Speed (66 = 66 MHz, 60 = 60 MHz, 50 = 50 MHz) — Package (SG = Gold Pad SIMM)
Full Part Numbers — MCM72BA32SG66	MCM72BA32SG60	MCM72BA32SG50
MCM72BA64SG66	MCM72BA64SG60	MCM72BA64SG50

Military Products


In addition to the parts covered in this data book, Motorola also offers a wide range of military memory parts. For more information, including a complete military memory product listing, please refer to DL144/D, *Military Memory Family Data*.

Reliability Information

7

MOTOROLA SEMICONDUCTOR PRODUCTS SECTOR IMPERATIVES

DIVISION QUALITY STATEMENT

MOTOROLA FAST STATIC RAM PRODUCTS DIVISION

The Fast Static RAM Products Division is committed to being a world class CMOS, BiCMOS, Application Specific, and Module Fast Static RAM supplier. This means the integration of outstanding product and technology designs, linked with excellent manufacturing, cycle time, customer service, and engineering analysis.

This will be accomplished through dedication to a continuous quality improvement culture that will ensure our success in reaching the Motorola Corporate goal of total customer satisfaction.

We trust that you will experience Motorola Fast Static RAM Products Division as the best memory supplier through WORLD CLASS product margins and services.

Roge Kung

Vice-President and General Manager Fast Static RAM Division Microprocessor and Memory Technologies Group

Milael Phille

Michael Phillips Director, Reliability and Quality Assurance MOS Memory Products Microprocessor and Memory Technologies Group

QUALITY SYSTEMS

Motorola Fast Static RAM Products Division maintains a World Wide Quality Assurance system that is second to none. Daily status reports are received from remote locations, and any problems that arise are tackled on a timely basis. The Fast Static RAM Products Division is also a leader in accurate and efficient methods of quality data collection and reporting.

Every unit that the Fast Static Ram Products Division produces is coded so that complete traceability is maintained, including visibility to the wafer and assembly lot level. The Quality System ensures that we can provide any specific processing information to our customers on request.

INTERNAL QUALIFICATION DISCIPLINE

Motorola recognizes the need to establish that all Fast Static RAM devices, both new products as well as existing ones, reach and maintain a level of quality and reliability that is unsurpassed in the electronics marketplace. To ensure this, internal qualification requirements, procedures, and methods as well as vendor qualification specifications have been developed. These activities are intended to provide a consistent, comprehensive, and methodical approach to device qualification and to improve our customer's understanding of Motorola's qualification results and their subsequent application implications.

For qualification results to be valid and acceptable, the collected data must be proven accurate to the highest possible confidence level. Therefore, a complete device history and data log is kept with any lost or missing data potentially leading to test results that are unusable for qualification purposes. Testing conditions and pass/fail criteria are established before stressing begins. Strict adherence to these criteria and the use of control devices ensure that the test results are valid and meaningful.

New Fast Static RAM devices which are under development or in the prototype stage are subject to requirements defined for the three levels of the development cycle. These levels are the alpha, beta, and introductory phases of device development. Each phase contains guidelines and controls concerning issues such as device labeling, number of customers, sample quantities, pricing and stocking levels, and openorder-entry timing. Decisions regarding these items are made jointly by marketing, design, product, and reliability personnel.

JOINT QUALIFICATION

As a result of the rigorous discipline used for internal qualification of Motorola Fast Static RAM products, our customers can benefit from joint qualification activities. Motorola's clearly defined qualification procedures improve the customer's ability to comprehend the qualification results in an effective manner which aides in their qualification decision making process. Through parallel qualification activities between Motorola and its customers, this procedure can cut qualification costs by reducing duplication of effort, improving resource utilization, and shortening introduction cycle time. This helps to ensure competitive edge advantages for our customers.

Joint Qualification activities result in a partnership type of interaction between Motorola and its customers on an engineering level. This assists our customers in two critical areas. First, it allows them to understand more clearly the strengths and weaknesses of Motorola's products. Secondly, our customers can make clear decisions concerning which stresses they need to concentrate on during their internal qualification activities.

QUALITY MONITORING

Average Outgoing Quality (AOQ) refers to the number of devices per million that are outside specification limits at the time of shipment. Motorola has continually improved its outgoing quality, and has established a goal of zero defects. This level of quality will lead to vendor certification programs with many of our customers. The program ensures a certain level of quality, thus allowing a customer to either reduce or eliminate the need for incoming inspections.

By paying strict attention to quality at an early stage, the possibility of failures occurring further down the line is greatly minimized. Motorola's electrical parametric testing eliminates devices that do not conform to electrical specification. Additional parametric testing on a sample basis provides data for continued improvement.

AVERAGE OUTGOING QUALITY CALCULATION

AOQ in PPM = (Process Average) • (Lot Acceptance Rate) • (10⁶)

Process Average = Total Projected Reject Devices* Total Number of Devices

Projected Reject Devices = <u>Defects in Sample</u> Sample Size • Lot Size

Total Number of Devices = Sum of all the units in each submitted lot

Lot Acceptance Rate = 1 - Number of Lots Rejected Number of Lots Tested

*10⁶ = Conversion to parts per million (PPM)

The chart in Figure 1 indicates the product Average Outgoing Quality performance as measured in parts per million.

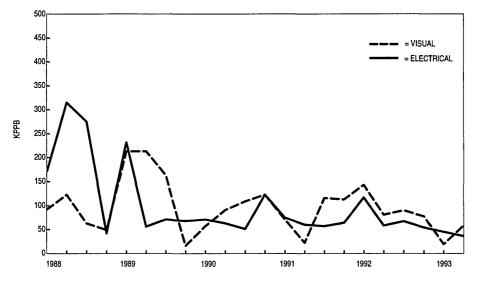


Figure 1. FSRAM AOQ

STATISTICAL PROCESS CONTROL

Motorola's Fast Static RAM Products Division is continually pursuing new ways to improve product quality. Initial design improvement is one method that can be used to produce a superior product. Equally important to outgoing product quality is the ability to produce product that consistently conforms to specification. Process variability is the basic enemy of semiconductor manufacturing since it leads to product variability. Used in all phases of Motorola's product manufacturing, STATISTICAL PROCESS CONTROL (SPC) replaces variability with predictability. The traditional philosophy in the semiconductor industry has been adherence to the data sheet specification. Using SPC methods ensures that the product will meet specific process requirements throughout the manufacturing cycle. The emphasis is on defect prevention, not detection. Predictability through SPC methods requires the manufacturing culture to focus on constant and permanent improvements. Usually, these improvements cannot be bought with state-of-the-art equipment or automated factories. With quality in design, process, and material selection, coupled with manufacturing predictability, Motorola produces world class products.

The immediate effect of SPC manufacturing is predictability through process controls. Product centered and distributed well within the product specification benefits Motorola with fewer rejects, improved yields, and lower cost. The direct benefit to Motorola's customers includes better incoming quality levels, less inspection time, and ship-to-stock capability. Circuit performance is often dependent on the cumulative effect of component variability. Tightly controlled component distributions give the customer greater circuit predictability. Many customers are also converting to just-in-time (JIT) delivery programs. These programs require improvements in cycle time and yield predictability achievable only through SPC techniques. The benefit derived from SPC helps the manufacturer meet the customer's expectations of higher quality and lower cost product.

Ultimately, Motorola will have Six Sigma capability on all products. This means parametric distributions will be centered within the specification limits, with a product distribution of plus or minus Six Sigma about mean. Six Sigma capability, shown graphically in Figure 2, details the benefit in terms of yield and outgoing quality levels. This compares a centered distribution versus a 1.5 sigma worst case distribution shift.

New product development at Motorola requires more robust design features that make them less sensitive to minor variations in processing. These features make the implementation of SPC much easier.

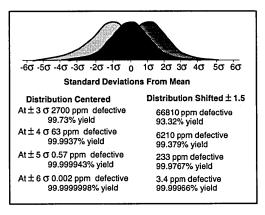


Figure 2. Percent Defective and Yield from a Normal Distribution of Product with 6σ Capability

MARKING PERMANENCY, HERMETICITY, AND SOLDERABILITY MONITORS

Marking permanency testing is performed per Motorola specification. The procedure involves soaking the device in various solvents, brushing the markings, and then inspecting the markings for legibility.

Hermeticity monitoring includes tests for both fine and gross leaks in the hermetic package seal.

Solderability testing is used to ensure that device leads can be soldered without voids, discoloration, flaking, dewetting, or bridging. Typically, the test specifies steam preconditioning followed by a 235 to 260°C solder dip and microscope inspection of the leads.

RELIABILITY STRESS TESTS

The following summary briefly describes the various reliability tests included in the Motorola reliability monitor program.

DYNAMIC EARLY FAIL STUDY

This stress is performed to accelerate infant mortality failure mechanisms, which are defects that occur within the first year of normal device operation. Typical stress is a temperature of 125° C, nominal voltage (6.5 V), and a duration of 72 hours. All devices used in this test are sampled directly after the standard production final test flow with no prior burn-in or other prescreening, unless called out in the normal production flow.

DYNAMIC AND STATIC LONG TERM LIFETEST

Both Dynamic and Static Long Term Lifetests are performed to accelerate failure mechanisms and access parametric shifts, which are voltage and thermally activated. This is done through the application of extreme temperatures and the use of biased operating conditions. Typical stress temperature is 125°C with the bias applied being equal to or greater than the data sheet nominal value. All devices used in the long term lifetest are sampled from the Dynamic Early Fail Study. Testing is either performed with dynamic signals applied to the devices or in a static bias configuration for a test duration of 1008 hours.

TEMPERATURE CYCLE

This test accelerates the effects of thermal expansion mismatch among the different components within a specific die and packaging system. This test is typically performed to minimum and maximum temperatures of -65 to $+150^{\circ}$ C for a duration of 500 cycles. During temperature cycle testing, devices are inserted into a cycling system and held at cold dwell temperature for at least ten minutes. Following this cold dwell, the devices are heated to the hot dwell where they remain for another ten minutes. The system employs a circulating air environment to assure rapid stabilization at the specified temperature.

THERMAL SHOCK

The objective of this test is the same as that for Temperature Cycle testing: to emphasize differences in expansion coefficients for components of the packaging system. However, thermal shock provides additional stress because the device is exposed to a sudden change in temperature due to the transfer time of ten seconds maximum as well as the increased thermal conductivity of a liquid ambient. This test is typically performed to minimum and maximum temperatures of -65 to $+150^{\circ}$ C for a duration of 500 cycles. Devices are placed in a fluorocarbon bath and cooled to minimum specified temperature. After being held in the cold chamber for five minutes, the devices are transferred to an adjacent chamber filled with fluorocarbon at the maximum specified temperature for an equivalent time. Two five minute dwells plus two ten second transitions constitute one cycle.

TEMPERATURE HUMIDITY BIAS (THB)

This is an environmental test performed at a temperature of 85°C and a relative humidity of 85%. The test is designed to measure the moisture resistance of plastic encapsulated circuits. A nominal static bias is applied to the device to create the electrolytic cells necessary to accelerate corrosion of the metalization. Typical stress duration is 1008 hours.

PRESSURE TEMPERATURE HUMIDITY BIAS (PTHB)

This test is performed to accelerate the effects of moisture penetration with the dominant effect being corrosion. This test detects similar failure mechanisms as THB but at a greatly accelerated rate. Conditions employed during this test are a temperature of 148°C, humidity of 90%, 44 psig, and a nominal static bias voltage. Typical stress duration is 72 hours.

SMT PRECONDITIONING STRESS

The purpose of this test is to simulate the manufacturing steps involved in mounting and reworking a surface mount device used in customer applications. The test consists of simulating ambient moisture absorption by the device followed by exposure to temperatures typical of solder reflow. Devices are exposed to 85°C/85% relative humidity until saturated (non-moisture sensitive devices) or 30°C/60% relative humidity (moisture sensitive devices) followed by four passes of vapor phase reflow (215°C) for 120 seconds per pass.

AUTOCLAVE

Autoclave is an environmental test that measures devices resistance to moisture penetration and the resultant effects of galvanic corrosion. Conditions employed during the test include 121°C, 100% relative humidity, and 15 psig. Corrosion of the die is the expected failure mechanism. Autoclave is a highly accelerated and destructive test. Typical test duration is 96 hours.

SYSTEM SOFT ERROR

System soft error is designed to detect errors caused by impact ionization of silicon by high energy particles. This stress is performed on a system level basis. The system is operated for millions of device hours to obtain an accurate measure of actual system soft error performance.

Typical Operating Curves 8-3
Thermal Performance of FSRAM
Packages 8-7
Application Notes
Avoiding Bus Contention in Fast Access RAM
Designs (AN971) 8-11
The Motorola BurstRAM (AN1209)
A Protocol Specific Memory for Burstable
Fast Cache Memory Applications (AN1210) 8-19
A Zero Wait State Secondary Cache for
Intel's Pentium™ (AN1223) 8-25
Novel Overmolded Pad-Array Carrier May
Obsolete Plastic Quad Flat Packs (AR354) 8-33

Applications Information

TYPICAL OPERATING CURVES

The terminated transmission line (T-line) shown in Figure 1A of the data sheets represents the actual test environment seen by the device under test (DUT). Because these SRAMs have fast edge rates (ranging from 1.5 V/ns to 3.5 V/ns), transmission line effects are encountered in the test environment. For the purpose of maintaining signal integrity, a 50 Ω termination is placed at the far end (tester's input) of the 50 Ω T-line. All of Motorola's Fast SRAM's output buffers have been designed to supply high current (>50 mA) demanded by both the 50 Ω test environment as well as heavily capacitive system applications. Although this test load may closely represent the load in your design, you may wish to simulate the SRAM's performance in your system. For this reason, a SPICE output buffer model is available upon request from the factory.

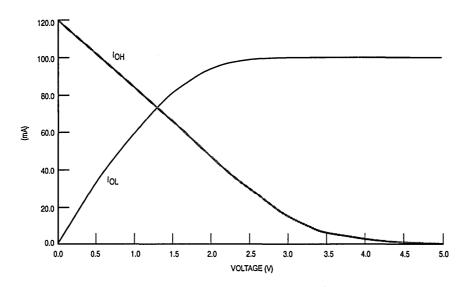
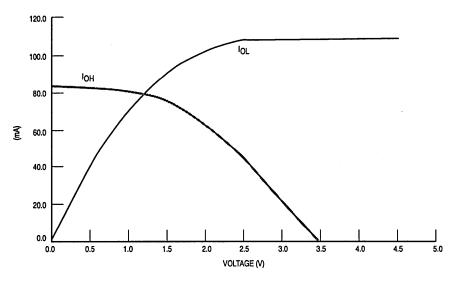
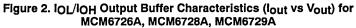




Figure 1. IOL/IOH Output Buffer Characteristics (Iout vs Vout) for MCM6226A, MCM6227A, MCM6229A

Č

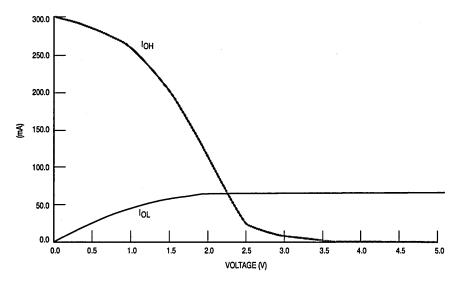
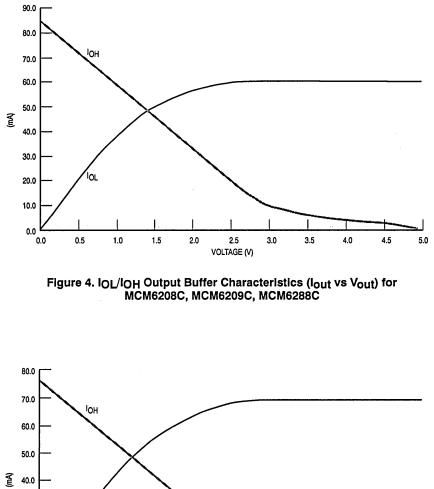



Figure 3. IOL/IOH Output Buffer Characteristics (I_{OUt} vs V_{Out}) for MCM6705A, MCM6706A, MCM6708A, MCM6709A

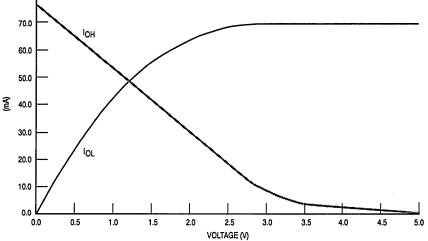
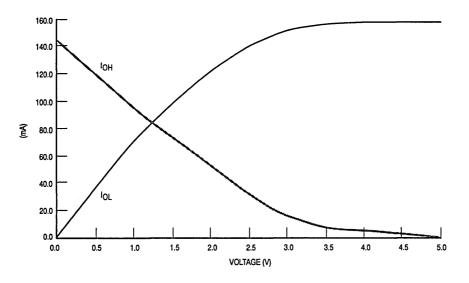
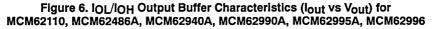




Figure 5. IOL/IOH Output Buffer Characteristics (Iout vs Vout) for MCM6205C, MCM6206C, MCM6264C, MCM6265C, MCM56824A, MCM56824AZP

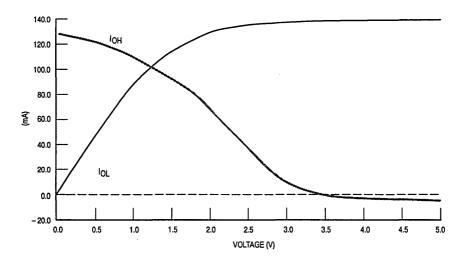


Figure 7. IOL/IOH Output Buffer Characteristics (Iout vs Vout) for MCM67A518, MCM67B518, MCM67C518, MCM67H518, MCM67J518, MCM67M518, MCM67W518 MCM67A618, MCM67B618, MCM67C618, MCM67H618, MCM67J618, MCM67M618, MCM67W618

THERMAL PERFORMANCE OF FAST STATIC RAM PACKAGES

The following explains the test and simulation methodologies that are used to determine thermal performance. Simulation results are reported for most of Motorola's Fast Static RAM packages currently in use.

JUNCTION TO AMBIENT THERMAL RESISTANCE

The thermal performance of a surface mount integrated circuit package is normally reported as a junction to ambient thermal resistance. Theta JA, θ_{JA} , and $R\theta_{JA}$ are the normal nomenclatures. Theta JA is determined using the methodology of SEMI Standard G38 – 87. To summarize, the package is built with a thermal test die which has resistors for heating the silicon die within the package and one or more diodes to measure the die temperature. A surface mount package is then soldered to a printed circuit board. Naturally, the size and amount of metallization on the board strongly influences the measured thermal performance. The test boards are designed with "minimum" metallization but with all the leads routed. The printed circuit board with the package is placed horizontally in either the wind tunnel for forced convection measurements or in a one cubic foot box for natural convection measurements. The test chip is used to heat the package and determine the die temperature within the package. This die temperature is the "junction" temperature. Then the junction to ambient thermal resistance is determined by

$$\theta_{JA} = \frac{(T_J - T_A)}{P}$$

where T_J is the die temperature, T_A is the ambient temperature, and P is the power dissipated within the package. The ambient temperature is measured below the printed circuit board, one half inch away from the edge of the board and one inch below the plane of the board. This location is a local ambient while avoiding measuring the air temperature after it has been heated by the package. Typically for the SOJ packages, one watt is used for the measurement. The measured value of Theta JA is not a strong function of the measurement power although the measured value will decrease slightly with increasing power. The slight decrease occurs because higher surface temperatures cause a more effective natural convection.

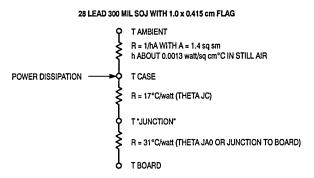
Measurements of test die have been taken on three memory packages for this report: 24 lead, 300 mil wide SOJ; 28 lead, 400 mil wide SOJ; and 52 lead PLCC. This data was used to "calibrate" the thermal simulation tool. After the simulations were completed, measurements were made on the 28 lead 300 mil wide SOJ to provide an error estimate.

With validation obtained from the experimental data, the simulation tool was used to calculate the thermal performance of the packages listed in Table 1. The simulations are expected to be within 20%. The range in thermal performance between the various devices in a given package are primarily a result of the different die and die paddle sizes.

Lead Count	Pkg Width	Part Number	Theta JA, Natural, Measured	Theta JA, Natural, Simulated	Theta JA, 200 LFM, Measured	Theta JA, 200 LFM, Simulated	Theta JC, Measured	Theta JC, Simulated	Theta JA0, Natural, Simulated
36	400 mil	XCM6246WJ		54.06		39.86		5.06	15.61
36	400 mil	XCM67084WJ		57.69		43.35		7.65	21.11
32	400 mil	XCM6249WJ		55.58		40.28		4.23	14.14
32	400 mil	MCM6726WJ		60.48		45.02		7.72	21.55
32	400 mil	MCM6226AWJ		59.69		44.24		7.3	19.43
32	400 mil	Test Chip	56.5	55.53	39.7	40.22		4.25	14.46
32	400 mil	MCM6226BWJ		66.81		51.2		13.7	26.09
28	400 mil	MCM6229AWJ		67.36		49.73		6.8	18.72
28	400 mil	MCM6728WJ		68.34		50.54		7.35	21.41
28	400 mil	MCM6229BWJ		74.86		57.18		13.23	25.83
32	300 mil	MCM6206CJ		72.1		57.37		14.14	27.59
32	300 mil	MCM6206BJ		68.07		53.35		10.36	24.36
28	300 mil	MCM6206CJ		75.27		60.19		15.24	28.99
28	300 mil	MCM6264CJ		92.77		76.93		30.29	49.95
28	300 mil	MCM6229BJ		70.7		55.63		11.01	25.33
28	300 mil	MCM6706AJ		77.35		62.21		17.09	31.23
28	300 mil	Test Chip	65.1*	76.6	48.1	61.45	17.3	16.38	30.69
24	300 mil	MCM6708AJ		80.73		64.19		16.85	31.14
24	300 mil	MCM6290CJ		91.28		74.16		25.29	45.08
24	300 mil	Test Chip	69.7	72.7		56.4		9.95	23.16
52	PLCC	MCM67618FN		45.88		31.85		8.46	14.79
52	PLCC	Test Chip	45.5	50.24	33	35.47	15.4	11.96	18.96
44	PLCC	MCM62486FN		57.1		41.03		14.78	23.35

Table 1. Thermal Resistances of Memory Packages

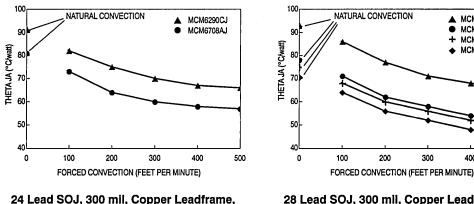
*Measured value on SOJ with pin 14 and pin 28 connected to "split" flag (die paddle). Simulated value for SOJ with standard flag.

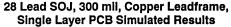

JUNCTION TO CASE THERMAL RESISTANCE

The junction to case thermal resistance, Theta JC or θ_{JC} , has been used in many different ways. The definition that is currently being used by the JEDEC 15.1 committee is the thermal resistance from the junction to the surface of the package. For the SOJ and PLCC package, that would be the thermal resistance from the junction to top surface of the package. Since heat sinks are rarely employed for SOJ packages, the junction to case thermal resistance is not normally used in determining the junction temperature. The enclosed table provides the simulated junction to case thermal resistance as determined by the simulation tool. The values obtained are not very accurate, but have sufficient accuracy in most circumstances. For a critical application, the junction to case thermal resistance should be measured.

Frequently, however, ThetaJC is used for the temperature difference (divided by total package power) between the junction and a thermocouple (or other temperature sensor) attached to top of the case. The JEDEC committee is recommending the nomenclature of *junction to reference* for the measurements relative to a thermocouple at the top of the package. Using the temperature on the top of the package in conjunction with the junction to reference thermal resistance is the best method to determine junction temperature in an actual use condition. In Natural Convection for the memory packages, we recommend using a value of Theta J-ref of 4°C/watt. In forced convection above 400 ft/minute, the recommended value of the Theta J-ref is Theta JC. These values will allow estimation of the junction temperature within 5°C for the normal range of applications provided that the thermocouple is 40 gauge or smaller and is applied correctly.

OVERALL PACKAGE THERMAL MODEL


Theta JC is also used for a junction to lead thermal resistance occasionally. From an experimental point of view, it makes more sense to discuss the junction to board (printed circuit board) thermal resistance. The simulation software calculates a thermal resistance that is similar to the junction to board resistance: namely, θ_{1} is that is defined to be the thermal resistance, with the printed circuit board held at ambient temperature. This is a close approximation of the junction to board thermal resistance since approximately 80% of the heat flows to the board in natural convection. These values can be used to construct a 1-D model of the thermal paths of the package as shown in Figure 1 below. This model can be used in the 2.5-D thermal model of the printed circuit application, if the spreading resistance of the board is treated correctly. Because the junction temperature is so closely coupled to the board temperature, determining the board temperature in the actual application is extremely important if the junction temperature is to be estimated.



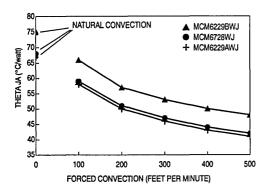
NOTE: Theta JA simulated in Natural Convection 77°C/watt.

Figure 1. One Dimensional Thermal Model

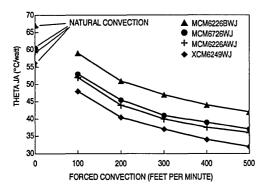
The thermal derating curves for Motorola's Fast Static RAMs are provided below. Although the data represents simulation results, there is a high level of confidence in the data points. In all cases, the manner in which the data is used could have a significant impact upon the validity of your thermal budget.

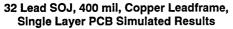
Single Laver PCB Simulated Results

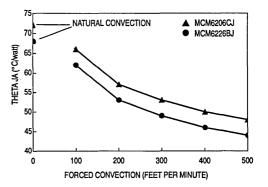
MCM6264CJ

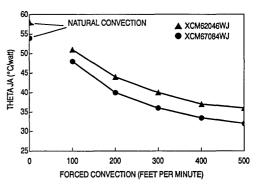

MCM6706AJ

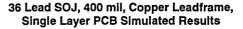
MCM6206CJ

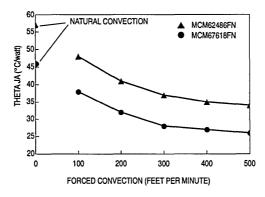

MCM6229BJ


400


500


28 Lead SOJ, 400 mil, Copper Leadframe, Single Layer PCB Simulated Results





32 Lead SOJ, 300 mil, Copper Leadframe, Single Layer PCB Simulated Results

MOTOROLA SEMICONDUCTOR I APPLICATION NOTE

AN971 REV1

Avoiding Bus Contention in Fast Access RAM Designs

INTRODUCTION

When designing a bus oriented system, the possibility of bus contention must be taken into consideration. Bus contention occurs when two or more devices try to output opposite logic levels on the same common bus line.

This application note points out common causes of bus contention when designing with fast static random access memories and describes ways to eliminate or reduce contention.

WHAT CAUSES BUS CONTENTION?

The most common form of bus contention occurs when one device has not completely turned off (output in a highimpedance state) before another device is turned on (output active). Basically, contention is a timing overlap problem that results in large, transient current spikes. These large current spikes not only generate system noise, but can also affect the long term reliability of the devices on the bus (see Figure 1).

BUS CONTENTION AND FAST STATIC RAMS

Since memory devices are primarily used in bus oriented systems, care must be taken to avoid bus contention in memory designs. Fast static RAMs with common I/O data lines (or any high frequency device with common I/O pins) are the most likely candidates to encounter bus contention. This is due to the tight timing requirements that are needed to achieve high-speed operation. If timing control is not well maintained, bus contention for memories occurs when switching from a read mode to a write mode or vice versa.

SWITCHING FROM A READ TO WRITE MODE

With \overline{E} low (device selected), on the falling edge of \overline{W} (write asserted) the RAM output driver begins to turn off (high-impedance state). Depending on the input and output logic levels, if sufficient time is not allowed for the output to fully turn off before an input driver turns on, bus contention will occur (see Figure 2a).

Figure 2a shows an example of a RAM trying to drive a bus line low while an input driver is trying to drive the line high. If the situation were reversed (RAM output high and the input driver low), bus contention would still exist.

Of course the obvious way to avoid this type of bus contention is to make sure that the input buffer is not enabled until the write low to output high-impedance (t_{WLOZ}) time is satisfied (see Figure 2b). This specification is usually given on most manufacturers' data sheets.

Another method to eliminate bus contention would be to use \overline{E} to deselect the RAM before asserting \overline{W} (low). This allows the RAM output extra time to go into high-impedance state before the input driver is enabled. \overline{E} and \overline{W} are later asserted low to begin a write cycle (see Figure 2c).

SWITCHING FROM A WRITE TO A READ MODE

With \overline{E} set low (device selected), on the rising edge of \overline{W} (write terminated) the address or data-in changes before the device has had a chance to terminate the write mode. If this should occur, and depending on the input and output logic levels, a bus contention situation could exist (see Figure 3). To avoid address changing type bus contention requires that the address not change till the write recovery specification (tWHAX) is satisfied. To avoid bus contention caused by data changing requires that the data-in remains stable for the duration of the data hold specification (tWHAX). Most of

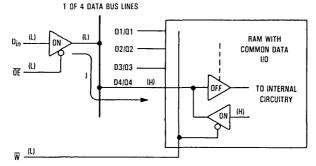


Figure 1. Common I/O Bus Contention

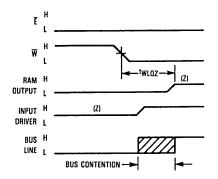


Figure 2a. Input Driver Enabled Prior to Disabling RAM Output

Figure 2b. Input Driver Disabled Prior to Enabling RAM Output

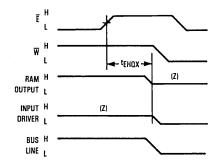


Figure 2c. Using E to Avoid Bus Contention

Motorola's fast static RAMs specify write recovery and data hold times of 0 ns. However, it is always a good practice to allow some margin to take care of possible race conditions.

Both of these types of contention could also be avoided by taking \overline{E} high prior to taking \overline{W} high. This will give the RAM output driver time to go to a high-impedance state before \overline{W} goes high. In this case \overline{E} is used to terminate the write cycle instead of \overline{W} (see Figure 3c).

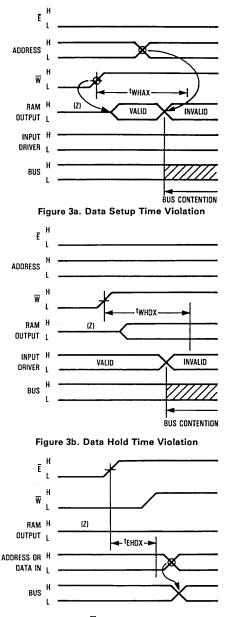


Figure 3c. Using $\overline{\mathbf{E}}$ to Avoid Bus Contention

OTHER WAYS TO ELIMINATE BUS CONTENTION

If the RAM has an output enable pin $\{\overline{G}\}$, synchronizing schemes can be incorporated to help eliminate bus contention Taking \overline{G} high will ensure that even when the RAM is in a read mode the output will be in a high-impedance state. This will allow the input driver to be enabled longer.

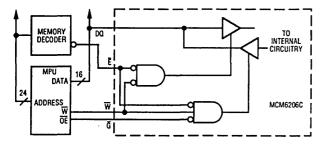


Figure 4a. Using G to Avoid Bus Contention

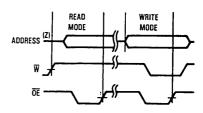


Figure 4b. Timing Diagram of MPU

Most advanced microprocessors have asynchronous buscontrol signals that take advantage of fast memory devices with output enable pins. Figure 4 shows one way to avoid bus contention using a microprocessor interfaced to a Motorola 15-ns MCM6206C.

A more obvious way to eliminate bus contention is to use slow memory devices. Slow memories have loose timing requirements that allow devices to fully turn off before another device turns on. Of course this defeats the whole purpose of fast static memory devices.

Another obvious way to eliminate bus contention is to use memory devices that have separate data I/O pins. In this way the \overline{W} signal from the microporcessor can control a buffer device to eliminate bus contention (see Figure 5). However, the industry is demanding RAM with common I/O because these devices cost less and save system real estate.

Common I/O devices reduce package size since fewer pins are needed. Smaller packages result in less PCB space requirement. Common I/O devices also eliminate the need for

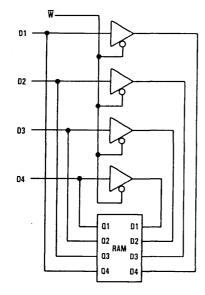
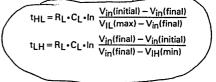



Figure 5. Separate I/O Buffer

an extra buffer with its associated expense and space requirement. In general fast static RAMs configured greater than a X1 will have common data I/O pins.

Another popular way to reduce bus contention is to put a current limiting series resistor on each bus line (see Figure 6). The series resistor does not eliminate bus contention, but it helps reduce the large transient currents associated with bus contention. However, series resistors increase access time as well as increasing component count. The added access time depends on the total bus capacitance (including the capacitance of the devices on the bus) and the total bus resistance. The added delay should be added on to the point at which bus contention ceases. The following formulas can be used to determine the added access delay.

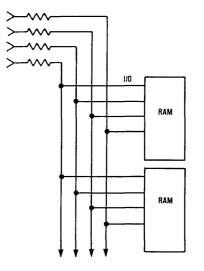


Figure 6. Using Series Terminating Resistors

Generally the value of the resistor should be around 50 ohms. The larger the resistor the less the transient current generated, but the greater the delay. Using a 150-ohm resistor will limit the current flow to less than 20 milliamperes while adding approximately 3 nanoseconds extra access time. However, note that even the series resistors bus contention duty cycle must be minimized to reduce EMI and bus ringing.

Although it is very important to reduce bus contention, CMOS memories can tolerate more bus noise generated by bus contention than can bipolar memories, due to the excellent noise immunity advantage of CMOS over bipolar technology. However, even when using CMOS memories, large destructive transient currents generated by bus contention can still occur.

CONCLUSION

Bus contention must be taken into consideration in most bus-oriented system design. The occurrence of bus contention generates large transient currents that produce system noise and could also affect the system's long term reliability.

Fast random access memories with common data I/O pins are very susceptible to bus contention due to tight timing requirements. Although it is almost impossible to totally eliminate bus contention, it must be the goal of the system designer to minimize bus contention.

MOTOROLA SEMICONDUCTOR APPLICATION NOTE

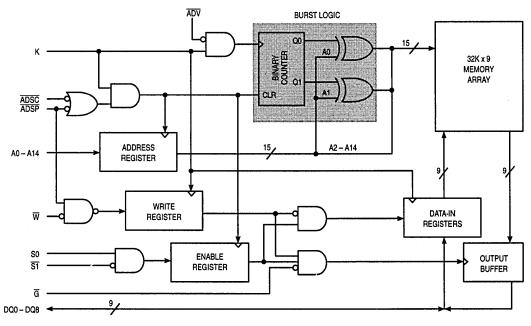
AN1209

The Motorola BurstRAM™

Prepared by: James Garris

This note introduces the MCM62486 32K x 9 Synchronous BurstRAM. The device was designed to provide a high-performance, secondary cache for the Intel i486™ microprocessor and future microprocessors with burst protocol. Four of these devices can supply a 128K byte direct-mapped bursting cache with parity support.

THE MCM62486


The 62486 is a synchronous device with input registers and address counters surrounding a standard 32K x 9 FSRAM core. The additional circuitry in the periphery enables the memory to uniquely interface with the i486. Like the i486, the timings are referenced to the rising edge of the clock (K). Signals generated by the processor and control logic must be stable during all transitions of clock from low to high. Output enable (\overline{G}) on the 62486 is the only asynchronous input.

The 62486 contains three burst-control inputs. They are ADV, ADSC, and ADSP. These inputs are used by the cache controller to control the burst capabilities of the 62486 and to maintain synchronization with the i486 or other logic driving the cache.

USE WITH THE i486 PROCESSOR

The 62486 requires an ASIC or discrete PAL type of cache controller to work with the i486. This cache control logic must also include 8K x 8 of cache-tag comparator RAM and any other buffers needed for system operation.

Control signals are sourced as follows: K is driven by the system clock (CLK); ADSP is an output from the microprocessor; and ADV, ADSC are generated from the cache control logic. The data bus and lower address bus may interface directly with the 62486 or the address bus may be buffered to

Figure 1. MCM62486 Block Diagram

BurstRAM is a trademark of Motorola, Inc. i486 is a trademark of Intel Corp.

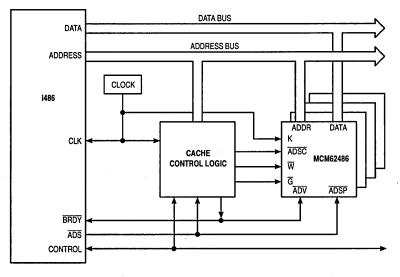


Figure 2. Typical System Block Diagram

improve its drive to the rest of the system. A simple block diagram of this setup is shown in Figure 2.

INPUT PINS OF THE MCM62486

K is the clock input of the 62486. This should be tied to the system clock.

ADSP is one of two address status input pins that are supplied on the 62486. This input allows the microprocessor to initiate a cache bus cycle. For every processor access, to or from memory, the i486 will assert ADS for one transition of K from low to high. If ADS from the i486 is tied to ADSP on the 62486, the 62486 will register the correct address from the processor. During all "T2" cycles on the i486, ADS and ADSP should not be asserted as described in the i486 processor user manual.

ADSC is the second of two address status input pins supplied on the 62486. This input allows external logic to initiate or continue cache bus cycles. The purpose of this input is to give the cache controller its own input to regulate cache accesses. This gives the 62486 a good deal of system design flexibility. One use of ADSC is for burst extension. After four burst accesses have been generated by the 62486, the cache controller may supply an additional base address to continue the burst. This method works well with 72 bit data buses. This pin can also be used in a similar manner to facilitate a cache fill from other sources.

ADV is the burst advance input pin supplied on the 62486. The purpose of this pin is to acknowledge a successful readfrom or write-to memory as determined by the cache control logic. The 62486 may then proceed to the next address. This input is a function of T2 (T2 cycle as defined by the i486 processor manual), KEN (from the processor), MATCH (from the cache tags), READ (from the processor) and MISS (a cacheable read miss from the control logic).

 \overline{W} is the synchronous write input pin supplied on the 62486. This signal must be valid for every clock cycle \overline{ADSP} is not asserted. A0 – A14 are the synchronous address pins supplied on the 62486. These must be valid for the transitions of K from low to high. If neither $\overline{\text{ADSC}}$ or $\overline{\text{ADSP}}$ is negated, or if the chip is deselected, the address inputs do not need to meet the required setup/hold times. For all other read/write operations, the setup/hold times **MUST** be met.

S0 and S1 are the synchronous chip selects supplied on the 62486. These must be valid whenever the addresses are required valid. These inputs can be used for address depth expansion without any external logic.

 $\overline{\mathbf{G}}$ is the asynchronous output enable supplied on the 62486. This pin changes the outputs from high impedance to active at any time that the SRAM is selected.

CACHE OPERATION

READ CYCLES

Cache operations of the 62486 are initiated with one of the two Address Status Pins mentioned. Figure 3 shows the read cycle timings when \overline{ADSP} is tied to \overline{ADS} . During the first cycle (T1) the i486 supplies an address and asserts \overline{ADS} low. The 62486 responds to \overline{ADSP} being asserted by registering the lower 15 addresses. The 62486 begins to perform a read access regardless of the state of its \overline{W} input.

During the next cycle (T2), the cache controller determines if the read access was a cache hit. If so, the controller should assert \overline{G} and \overline{ADV} on the 62486 as well as \overline{BRDY} on the i486. The assertion of \overline{G} will allow the 62486 to drive the data onto the data bus while \overline{BRDY} will inform the processor that the data is correct. The assertion of \overline{ADV} will cause the 62486 to begin on the next burst access. Subsequent burst access will be available without wait states in a similar fashion.

Single, non-burst reads behave in a similar manner as the first access of a read burst.

Note for timing diagrams: Q1, Q2, Q3, Q4 represent the data output from the first address (base address), second, third and fourth address. For example, if A in Figure 3 was #000C, Q1 would be the data from #000C, Q2 from #0008, Q3

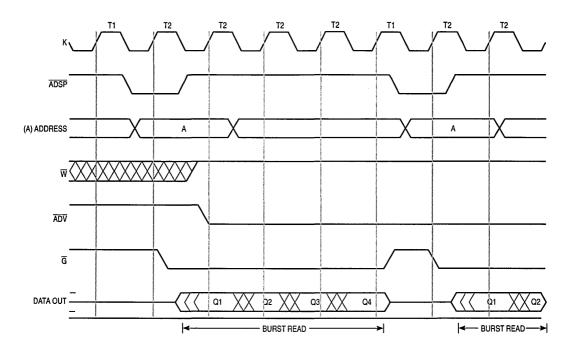


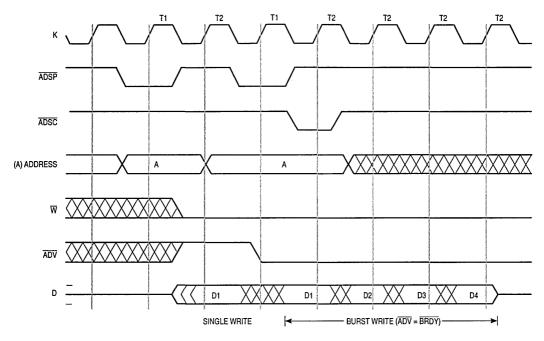
Figure 3. Cache Read Cycles

from #0004 and Q4 from #0000. (This is the same burst sequence as in **Table 7.7. Burst Order** in the *i486 Microprocessor Data Book*).

WRITE CYCLES

For a write to cache access, the initial T1 cycle will be the same as above. During the T2 cycle, the cache controller should assert \overline{W} instead of \overline{G} . This will allow the 62486 to receive the data from the i486 and write it to memory. The i486 can burst write for 8 and 16 bit operations. The 62486 data sheet and Figure 4.

ADDRESS BUS LOADING


The 62486 has setup and hold timing that allow address buffers to be placed between the SRAM and the processor. The i486 is specified with 50 pF loads. Since the 62486 has a typical input capacitance of 2 pF, the i486 can be run without the buffer assuming the cache tags and other circuitry do not overload the bus.

ADVANTAGES OF THE 62486 OVER OTHER FSRAM SOLUTIONS

The 62486 is meant to replace a standard 32K x 9 FSRAM as well as some external logic. By incorporating this logic and RAM onto one chip, the system designer is given more board space, less power consumption, and most of all, easier design timing requirements. At 33 MHz, a discrete logic/SRAM solution would require a 7 ns PAL (for the burst counter) and an 18 ns SRAM [30 ns (period) – 5 ns (i486 setup) – 7 ns (PAL) = 18 ns].

This timing is even more difficult in write cycles. Closer examination of writes shows that the write signal and data from the processor do not correspond with the requirements of a standard $32K \times 9$ SRAM. A self-timed write SRAM is essential for high performance systems.

The 62486 represents the JEDEC standard for a 32K x 9 Synchronous SRAM for the i486. This pin-out provides enough power and ground pins to allow these devices to support systems running 50 MHz and faster. Also the 62486 represents the standard functionality descriptions for ADSP, ADSC, and ADV. These same pins are used in the JEDEC standard 64K x 18 SRAM to be used with the i486 and the "P5".

NOTE: The first T1/T2 cycle is a single write operation. This works the same as the first two cycles of a burst write. In this single write operation, ADV goes high for the T2 cycle, while the RDY signals on the processor must be asserted low. In this operation, the ADV and RDY signals behave differently. To match their behavior, examine the second T1/T2 cycles. This second write operation (the burst write) shows how the ADV signal may behave like the RDY signals. Note that the ADSC is asserted for the first T2 cycle, thereby reloading the base address. Had the ADSC remained high for this cycle, the data (D1) would have been incorrectly written to the second burst address. This second write operation shows both single and burst write operations with ADV and RDY both asserted low for all T2 cycles.

Figure 4. Cache Write Cycles

8

MOTOROLA SEMICONDUCTOR APPLICATION NOTE

AN1210

A Protocol Specific Memory for Burstable Fast Cache Memory Applications

Prepared by: Ron Hanson

Cache memory design has evolved rapidly in recent years, taking full advantage of the specialized cache application specific fast static RAMs that are becoming increasingly available. These advanced designs are driven by several factors: faster processor clock rates, larger on-chip processor caches, larger and faster FSRAMs, more efficient processor bus protocols, and more efficient DRAM interfaces.

CACHE MEMORY DESIGN TRENDS

Six key trends can be observed in this evolution:

- 1. Larger caches to improved hit rates.
- Faster caches to maintain the desired no-wait state response.
- Dominance of direct-mapped cache designs over the number of multiple-way set associative cache designs.
- Minimization of external cache control logic to increase speed.
- Users are developing their own cache solutions, even though vendors are offering more and more integrated solutions.
- 6. An increasing use of Application Specific Memories (ASMs).

LARGER CACHES

The latest CISC and RISC processors all have ample amounts of no-wait state cache on-chip or included in the processor chip set. Frequently this cache responds a full clock cycle or more faster than an external memory cache could because it is connected to the processor's highly efficient internal bus. In the case of the MC68040, this is a full Harvard Bus architecture that is at least twice as efficient as the fastest external memory system.

The hit rates of these internal caches are very impressive too. The i486[™] provides 8K bytes of on-chip four-way set associative cache as does the '040. Though a small amount of cache, these caches have read hit rates greater than 80%. In short, it takes a comparatively large external cache to improve on the performance of the processor alone and this trend will continue. However, FSRAMS are also getting larger. 256K bit FSRAMs are now in abundance and 1 Megabit FSRAMs are in production. As has always been the case with memories, these new larger FSRAMs will replace the older smaller ones at about the same price relative to their respec-

BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp. PowerPC is a trademark of IBM Corp. tive product life cycles. In other words, building a cache with the largest FSRAMs available today is no more expensive that building a cache three years ago with the largest FSRAMs available then.

FASTER CACHES

Processor speeds continue to increase and there is no end in sight. There are already 50 MHz production processors. Recently the processors have been designed to be more "cache friendly." Significant protocol improvements were implemented on the '040 versus the '030 and the i486 versus the i386. These include implementing synchronous protocols, adding burst addressing, and reducing the data input set-up times.

However, it still comes down to question of raw speed. Fortunately, the increase in density has also been accompanied by increases in FSRAM speed. Now RAMs with 12 ns access times are available to support the 50 MHz processors. It is increasingly apparent that greater integration will be needed to continue to support the fastest processors. The elimination of logic circuits from the critical cache speed path is being vigorously pursued today.

THE DOMINANCE OF DIRECT-MAPPED CACHE DESIGNS

It has been shown that for any given system, as the size of the external cache increases, the performance advantage of a multiple way set associative cache over a direct mapped cache quickly fades to insignificance.¹ Furthermore, a multiple way set associative cache is always more complex to implement.² In a discrete design, this translates to either more cost or a loss in response time, which erodes any performance advantage that might be gained. For an integrated solution, it means relying on a vendor for a purchased proprietary solution. Often, if more performance is sought, it is far simpler and less expensive to just enlarge the cache rather than build in multiple way set associativity.

¹ Jeff Leonard, "Clever Cache Designs Required to Pace High-Speed RISCs," *EE Times*, March 19, 1990, pp. 56, 68 – 69.

² Mark D. Hill, "A Case for Direct-Mapped Caches," *IEEE*, December 1988, pp. 25 – 40.

MINIMIZATION OF EXTERNAL LOGIC

This point differs from the comment made on the elimination of logic circuits though integration. The Cache Tag RAM is a good example of integration that eliminated the need for a discrete comparator logic device. This did not minimize the logic required. Synchronous or self timed RAMs accomplish this by greatly reducing the complex logic required during write cycles. This is only the beginning; new protocol-specific memories are on the way that will take their cues from the processor itself and perform the needed RAM functions.

USERS ARE DEVELOPING THEIR OWN SOLUTIONS

There are many reasons why computer companies from the lowest performance to the highest are developing their own circuits rather than purchasing the ready-made solutions. One is competitive pressures. PC manufacturers using the same processor, coprocessor, mass storage devices, etc., must find a way to differentiate their products. They can do this by designing their own circuits. Another reason is value added. Many of these companies desire to develop their own chip technology to increase their own share of the revenue received for each computer.

Nevertheless, there is still a high demand for standardized memories. The sheer volume a memory can generate if it is adopted as a standard will drive its cost down far below what an individual custom memory could accomplish. Thus, though cache designs are using more specialty ICs, they still rely on multi-sourced high volume memories for cache data storage.

USE OF APPLICATION SPECIFIC MEMORIES

Referring back to the problem of supporting the very fastest processors, it is clear that the cache designer must attack this problem on all fronts. What is needed is a smart flexible, integrated, high density, very fast SRAM. Such products do exist, and the following is a description of one of the latest under development by several vendors that combines all of these features.

THE SYNCHRONOUS BURST PROTOCOL

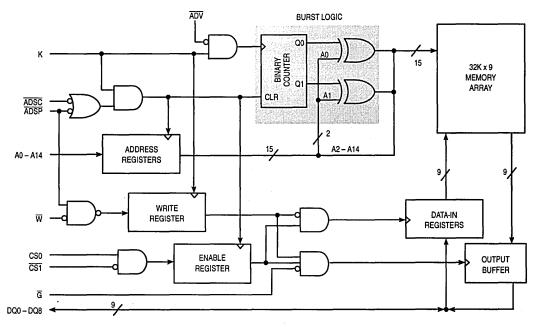
In an effort to overcome the limitations of memory bus bandwidth, many of the high performance microprocessors have implemented burst memory protocols. Rather than transferring a single memory word per bus cycle, the microprocessor will transfer (burst) several consecutive memory words in quick succession. The number of words transferred corresponds to the length of a line in the microprocessor's internal cache. Burst transfers have been shown to greatly improve bus utilization. The MC68030, MC68040, PowerPCTM, i486, PentiumTM, MC88200, and AM29000 all employ burst memory transfers of one type or another.

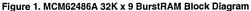
Though the on-chip cache(s) can be very effective, system performance frequently can be improved by the addition of a secondary cache memory external to the microprocessor. There are three good possible reasons to add a secondary cache: 1) in multiprocessing systems, the time spent arbitrating for control of a global bus can severely degrade performance; 2) the system bus may run at a significantly slower rate than the microprocessor bus; and 3) the nature of the code itself may be better suited for larger caches than are available on-chip. Burst protocols provide a new challenge for system designers. To achieve no wait state performance, it is necessary for the cache to count through the burst sequence. This in turn creates a problem during cache update cycles when wait states must be added to account for slower DRAM access times. Clearly, the designer would benefit from the integration of as much of this logic as possible onto the FSRAM. This reduces chip count and eliminates the propagation delay from discrete devices. Furthermore, by using inputs directly from the processor, it is possible to actually minimize the amount of logic required to manage the burst cycle. The inclusion of this logic creates an FSRAM that is not only processor specific, but protocol specific as well.

THE 32K x 9 SYNCHRONOUS BURST FSRAM

Not surprisingly, the original specification proposal for this burst FSRAM came from a user, Compaq Computer (Houston, Texas). It is a Synchronous FSRAM with an on-chip burst counter (see Figure 1) and special logic that enables the RAM to interface directly to the i486 processor as well as a cache controller. This device is being developed by several vendors for the i486 market.

The device is similar to existing synchronous FSRAMs in the market today. All of the address and control signal inputs to the RAM are held in registers on the chip, which are triggered by the rising edge the clock input (K) or the clock input gated by another input signal. These other signals include the ADSP and ADSC signals that qualify the address input.


The burst counter on chip is designed to count in the sequence used by the i486; however, the on chip count avoids the wait state inserted by the i486 at the beginning of a burst read cycle, thus improving cache performance. The ADV signal advances the counter of the rising edge of the clock, prior to the next memory access. The device uses a data input register to clock in the data on write cycles. Writes to the RAM are self-timed, requiring the minimal amount of control logic.


This FSRAM has a special built in wait state on write cycles (see Figure 2). This conforms with the i486 write timing. Furthermore, the RAM only advances its internal counter when told to by the controller, which is simultaneously acknowledging the previous transfer to the processor. The RAM can insert wait states whenever needed and, more importantly, it can hold address and count and switch from read to write mode in the event that a cache read miss occurs.

The real value of the BurstRAM™ is its simple processor interface (see Figures 3 and 4). The on-chip Address Register is controlled by the clock input and the processor's valid address signal. Thus, the RAM only registers the address when told to by the processor.

Using inputs from users on Motorola's MC68040 microprocessor, a similar device for '040 has been developed. This version, the MCM62940A, can also interface with the MPC601 (PowerPC™), MC88200 and AM29000 RISC processors.

This version of the BurstRAM naturally has a modulo four burst counter to stay in step with the '040 and MPC601. Nowait state Write Burst Cycles at very high clock rates are attainable on both '040 and PowerPC platforms.

The removal of the wait state from the beginning of the write cycle actually simplifies the control logic since the conditions under which the BurstRAMs internal counter is advanced are now identical for both read and write cycles.

The conditional registering of the address input is especially useful when interfacing to a processor with multiplexed address and data buses such as the MC88200 or shared address buses such as the AM29000.

Burst FSRAMs are not a new concept; when the '030 first introduced the burst protocol in a microprocessor environment, a burst protocol FSRAM specification was developed. Unfortunately, the timing constraints of the '030 placed the performance goals of the FSRAM beyond the technology available at the time. The only way to build a no-wait state cache at the higher speeds was to utilize the bus retry cycle to rerun any memory access in the event of a cache miss.³ To the RAM, this meant having to count backwards in the event of a cache miss and adding pins and logic to control this adjustment. Furthermore, the 15 ns access times needed were not feasible at the time.

THE FUTURE DIRECTION OF PROTOCOL SPECIFIC FSRAMs

Clearly, with the technology being developed today, it will be quite feasible to fully integrate all of the elements of the cache (data storage, address tag storage, and control logic) onto one chip. This will be the least cost approach, and if offered by a vendor, it will represent the least amount of user design resources. However, this approach will severely limit cache options and product differentiation. Furthermore, this approach will never perform as well as on-chip caches, which are growing in size. Thus, discrete FSRAMs of some kind will continue to be used in cache memory design.

Protocol Specific FSRAMs will increase in usage, but they will not completely replace standard products if for no other reasons than the versatility advantage of a standard device and its smaller packages. The densities of both will have to increase, though it appears that wider RAMs will be preferred for the new designs.

³ Richard Crisp, Brian Branson, and Ron Hanson, "Designing a Cache for a Fast Processor," *Electronic Design*, October 13, 1988, pp. 111 – 118.

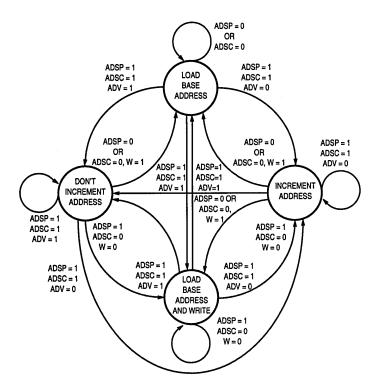


Figure 2. State Diagram for Address Determination on the MCM62486A BurstRAM

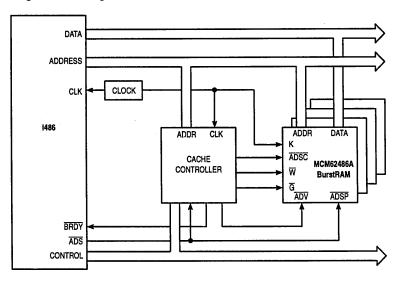
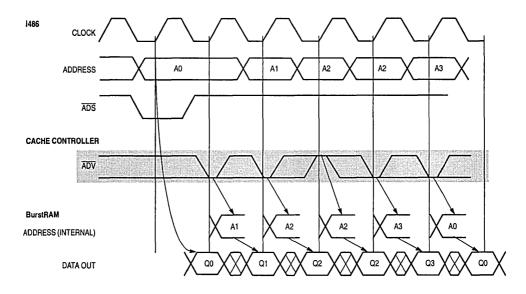
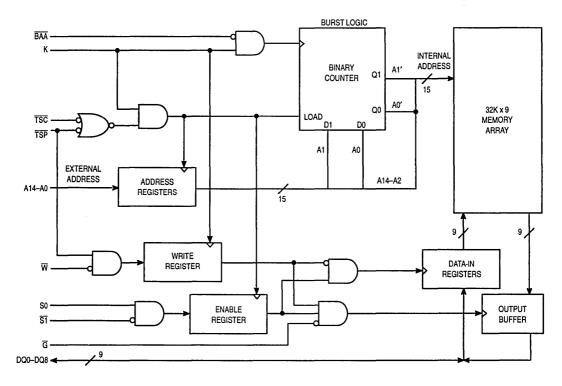
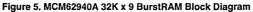





Figure 3. i486 128K Byte Burstable Cache Memory Block Diagram

AN1210 8-23 8

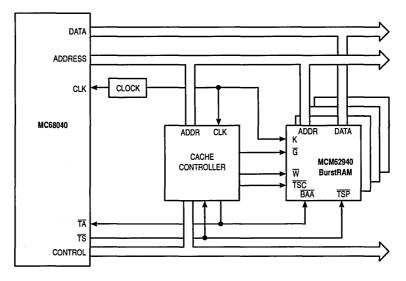
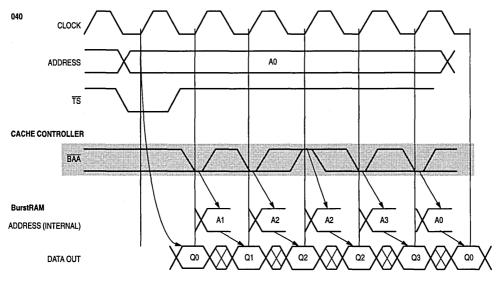



Figure 6. MC68040 128K Byte Burstable Cache Memory Block Diagram

MOTOROLA SEMICONDUCTOR APPLICATION NOTE

AN1223

A Zero Wait State Secondary Cache for Intel's Pentium™

Prepared by: Michael Peters, FSRAM Applications Engineer

Due to the increased complexity and sheer memory size requirements of new and forthcoming operating systems (OS), graphical user interfaces (GUI) and application programs, the demand for ever-increasing performance from the desktop machine continues. Next generation machines require more and faster memory. Microsoft's Windows NTTM, for instance, will most likely need 12 to 16 MBytes of main memory. Cache size requirements follow accordingly. And Intel's new Pentium CPU has been introduced with external bus speeds of 60 MHz and 66 MHz.

High performance memory is essential in achieving Pentium's full potential. First level (L1), on-chip cache memory hit rates will suffer as a result of users' migration away from DOS to Windows to Windows NT. It has been shown that L1 cache hit rates decrease mainly due to the increased number and types of references demanded by the newer OS.¹ The CPU designer can only afford relatively small increases in L1 cache size in an effort to keep chip size down. So, second level (L2) cache must make up for the lack of an appropriately sized cache and significantly help to avoid time consuming DRAM accesses. In addition, at 60/66 MHz bus speeds, the L2 cache must be capable of reading and writing data fast enough for Pentium's superscalar design.

Motorola's new families of 64Kx18 and 32Kx18 Fast SRAMs establish a new standard in providing a big enough and fast enough data cache for Pentium designs. These families include five synchronous and two asynchronous devices in each family. All x18 SRAMs feature byte-write capability, 3.3 V I/O compatibility, and asynchronous output enable control. A zero wait state solution is possible using four MCM67B618 (or four MCM67B518) BurstRAMsTM. The objective of this note is to explain some of the system level, electrical, and timing issues associated with the design of a zero wait state secondary cache.

BurstRAMs vs. ASYNCHRONOUS SRAMs

Although the i486[™] and Pentium CPUs support a burst cache line fill protocol, in most cases building a zero wait state bursting cache with a single bank of ordinary SRAMs is simply not practical. Virtually all cache controllers/chipsets designed to work with the i486 accommodate the burst protocol by using an interleaved scheme of two banks of standard asynchronous SRAMs. The speed requirements for this type of caching arrangement allow the use of 20 ns through 35 ns SRAMs. These speeds accommodate 20 through 33 MHz i486 machines, the bulk of today's IBM-compatible PC market. For the i486's 32-bit bus speeds less than 50 MHz, this hook-up

BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp. Windows NT is a trademark of Microsoft Corp. is technically feasible, but somewhat expensive and physically large, and it consumes a good deal of power since as many as eight SRAMs are required. However, Pentium's 64-bit bus and bus cycle rates of 60 MHz and faster only exacerbate the difficulties with single and double bank caches using ordinary asynchronous SRAMs. Most chipset vendors will find that the use of synchronous burstable SRAMs will be the only practical zero wait state solution for Pentium.

A single bank scheme must use either extremely fast RAMs (< 7 ns for a 60 MHz bus) or add wait states. With the added wait states, a single bank 3-2-2-2 (three lead-off clock cycles and two clock cycles for each subsequent read) design might still require 12 ns standard SRAMs.

A double bank scheme can be designed with wait states or for high speed with no wait states. Figure 1 shows the timing for a 3-2-2-2 design using sixteen 15 ns 32Kx8 (or x9) SRAMs in a two bank design.

The cache can be expected to consume about 8.6 W. Two banks of 12 ns standard 32Kx8 (or x9) BiCMOS SRAMs might achieve 3-1-1-1 burst, but at an even greater power premium — nearly 12 W. In two bank schemes, even when one bank is de-selected, it will still draw about 65% of the full operating current.

Double bank designs present other issues that must be considered, including address and data bus loading, physical layout, and socketing devices. Two banks of 32Kx8s will present an 80 pF load (plus routing) to the cache controller's address bus. These heavily loaded lines represent additional signal delay and power dissipation compared to a BurstRAM design. And, one cannot afford a 5 ns buffer delay in the address path. When comparing the BurstRAM's 52-lead PLCC package with a standard 32Kx9 SOJ, direct mounting of these devices on a board will yield roughly four square inches versus eight square inches, respectively. Socketing the SRAMs is ill advised since access time will be pushed out, and signal integrity may be compromised.

Although designing caches with asynchronous SRAMs can be done, the control signal timing is far from easy. Of all timing concerns, write pulse generation may be the biggest issue. Burst writes may be next to impossible to perform since both edges of the write pulse must be positioned precisely to accommodate address set-up and data hold times. One can expect 10 ns minimum write pulse widths for 12 ns asynchronous SRAMs; this does not leave much time for the 15 ns cycle processor bus.

Motorola has developed a series of 256Kbit, 512Kbit, and 1Mbit SRAMs, known collectively as BurstRAMs, to solve these problems.²

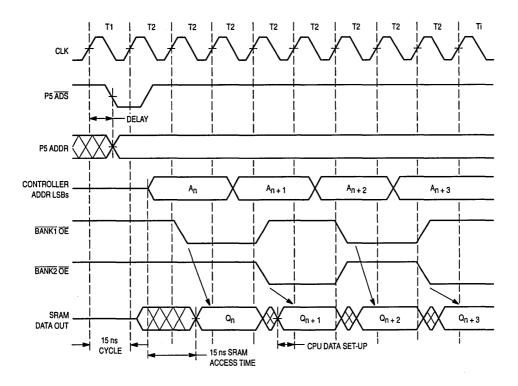
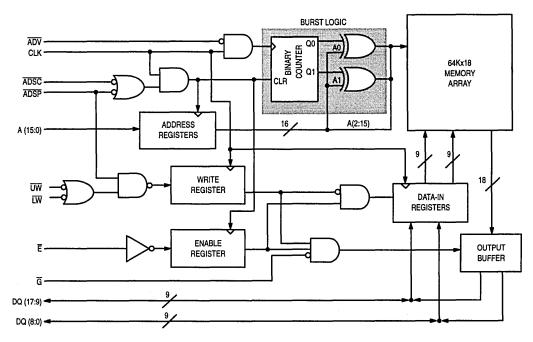


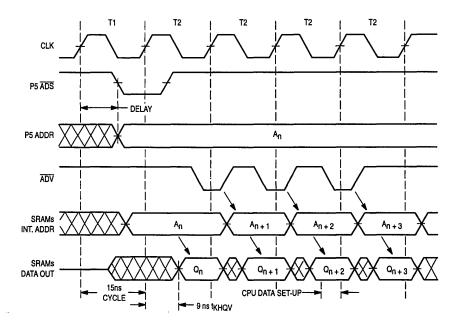
Figure 1. Two Bank Asynchronous SRAMs Performing 3-2-2-2 Burst READ

The MCM62486, a 32Kx9 BurstRAM, was developed for i486 systems. These BurstRAMs are being used in many of the 50 MHz i486 systems built today. The MCM67518, a 32Kx18 device, and the MCM67618, a 64Kx18 device, are the best suited for Pentium-based designs. Key to the success of a zero wait solution is the SRAM's support of Intel's burst protocol. A 2-1-1-1 (zero wait state) burst read cycle can be performed at cycle times of 20 ns and less. Pipelined addressing can further reduce a burst cycle to a 1-1-1-1 count. The MCM67B618 and MCM67B518 are synchronous BICMOS SRAMs that feature wide x18 data paths, burst reading and writing, byte-write capability, 3.3 V I/O compatibility, and asynchronous output enable control. Note that all BurstRAM operations occur on the rising edge of clock (CLK).

Four (4) MCM67618 devices provide a single bank of 512K byte L2 cache. The interface to the Pentium chip is a direct connection for address and data paths. These new BurstRAMs (MCM67B518, MCM67B618) have been designed to operate at clock rates of up to 66 MHz (15 ns cycle time). They are available in access times of 9/12/18 ns with cycle times of 15/20/30 ns, respectively. The term "access time" is used loosely for synchronous SRAMs and is more accurately, CLK-to-VALID DATA time.


WHAT IS A BurstRAM™?

BurstRAMs are synchronous SRAMs that contain input registers for address, write, and enable signals and have an onchip burst counter that imitates the i486 and Pentium's lower order address burst count. These control signals are registered into the BurstRAM on the rising edge of the CLK input. Three (3) control pins allow complete control of the burst function. \overrightarrow{ADSP} (ADS Processor), \overrightarrow{ADSC} (ADS Controller), and \overrightarrow{ADV} (ADVance) control the burst read/write functions as well as single read/writes. A self-timed write is also provided for the purpose of simpler (and relaxed) write timing. Byte-write capability is provided with the \overrightarrow{UW} and \overrightarrow{LW} (Upper/Lower byte Write) signals. Note that all control signals are active low. See Figure 2.

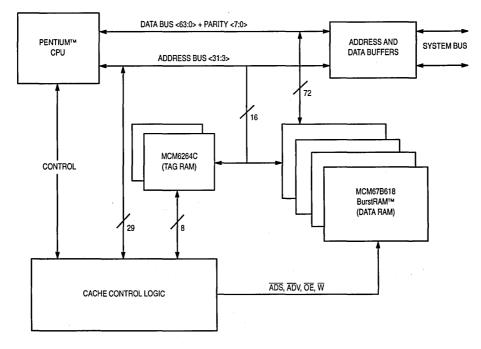

THE BURST CYCLE

A burst read cycle is performed as follows (see Figure 3):

 During the first cycle (T1), the CPU generates ADS and a valid address, and the BurstRAMs register the external address A<18:3> and enable on the rising edge of the system clock (CLK). This address can be considered the base address from which the BurstRAM begins its address counting,

- 2. Assuming the cache controller has determined that the cycle is a cache hit, the first 8 bytes of valid data are driven onto the data bus 9 ns after the second rising clock edge,
- Subsequent cycles present valid data upon the negation of ADS and the assertion of ADV. An entire 32 byte cache line can be supplied to the CPU in just five cycles. The BurstRAM's output enable (G) can be asserted well into the 2nd cycle since it is asynchronous and represents only 5 ns delay.

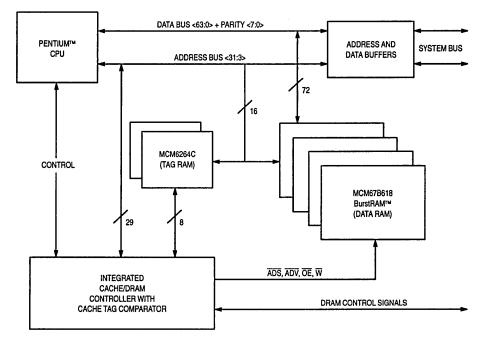
Pentium operates with external bus speeds of 60 MHz and 66 MHz. This corresponds to 16.6 ns and 15 ns cycle times, respectively. Standard asynchronous SRAMs are hard pressed for a zero-wait state application. A look at the timing reveals that sub-12 ns SRAMs would be required since Pentium's data set-up time is about 3 to 4 ns. The inclusion of on-chip logic allows the BurstRAM to be directly connected to the CPU, and avoids the timing penalty associated with glue logic.


Using the BurstRAM, a zero wait state burst write cycle can be performed as well. Upon the CPU's assertion of ADS, the BurstRAM begins and completes a burst write cycle with the assertion of E, LW, UW, and ADV signals. A burst write cycle can be started using either ADSP or ADSC. If ADSC is sampled low (while ADSP is high), data can be written immediately to the BurstRAM while ADV is asserted on subsequent cycles for the completion of the burst cycle. If ADSP is sampled low (while $\overline{\text{ADSC}}$ is high), the write register is blocked inside the BurstRAM and consequently only allows A<15:0> and \overline{E} to be registered. On the following cycle ($\overline{\text{ADSP}}$ and $\overline{\text{ADSC}}$ negated), the burst write operation begins assuming \overline{LW} and \overline{UW} have been asserted. Again, $\overline{\text{ADV}}$ must be asserted on subsequent cycles to complete the burst cycle.

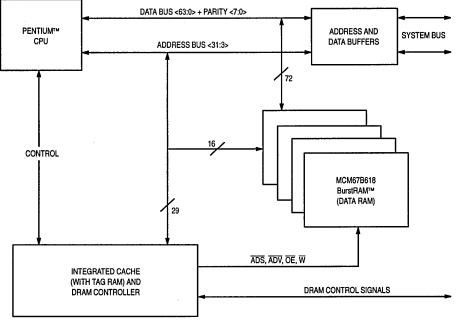
The use of a synchronous SRAM makes a design simpler in the sense that address and control signals can have looser timing constraints since they are registered in, and the SRAM does the rest. As long as DQ<17:0-, LW, and UW signals comply with the required set-up (2.5 ns) and hold (0.5 ns) times, complex off-chip write pulse generation can be eliminated. An undue burden will be placed on the controller to provide proper write pulse width and write timing edges relative to address and the CPU's valid data.

SYSTEM CONFIGURATIONS

Pentium's 64-bit data path will require four (4) MCM67B618s (or MCM67B518s) to provide a single bank 512K (256K) byte L2 cache. The interface to the Pentium chip is a direct connection for address and data paths. Control signals must come from the cache controller. See Configurations A/B/C of the System Block Diagrams.


Configuration A is the least integrated solution, one that uses external tag RAM and a PAL or ASIC for the cache controller. The DRAM controller would be yet another component in the system.

Configuration A Secondary Cache Solution for Pentium --- 512KByte


Configurations B and C are the most likely approaches taken by chipset vendors in which the tag RAM may or may not be integrated, but will probably integrate the DRAM control. For direct-mapped caches such as these, tag RAM size

depends on the controller's mapping of tags (or sectors) to cache lines. Each sector may consist of 1, 2, 4, or more cache lines. Tag RAM depth is then 16K, 8K, 4K, or so, respectively.

Configuration B Secondary Cache Solution for Pentium ---- 512KByte

The tag RAM must be at least 10 ns for zero wait state performance; otherwise, a lead-off wait state must be added (3-1-1-1). This is determined by the speed of the controller's tag comparison as well. If the cache line size is 32 bytes and the data RAM depth is 64K, the tag RAM will have to be a 16Kx8/10 or 4Kx8/10 organization. The tag RAM's width (data path) is a function of the system's main memory size. An 8-bit tag will allow a cache size of 512KB to cache 128MB of main memory.

Configuration C Secondary Cache Solution for Pentium — 512KByte

FEATURES OF 64Kx18

The 64Kx18 SRAMs are fabricated on a BiCMOS process and exhibit less dependence on output loading compared to CMOS devices. These SRAMs are powered on a single 5 V supply (\pm 5%) and are 3.3 V I/O compatible — no additional power supplies are required. The output buffer is composed of an NPN pull-up and an N-channel MOS pull-down. The pullup circuitry has been carefully designed to limit the NPN's base drive such that the output pulls up to approximately 3.3 V even under high supply conditions (e.g., 5.25 V). These 3.3 V "friendly" output buffers have controlled 3.3 V output swing and will not overdrive a future 3.3 V controller or processor. This important feature allows one to easily migrate from an all 5 V system to a mixed 5 V – 3.3 V system upon the availability of 3.3 V Pentium and controller chips.

SYSTEM CONSIDERATIONS

The entire 64Kx18 SRAM family makes use of multiple power and ground pins on the 52-lead PLCC package. Five (5) power and five (5) ground pins (6 pairs for the asynchronous devices) have been provided to allow adequate supply decoupling and return current paths for such a fast device. Multiple power and ground pins reduce the effective inductance of theses connections. Since the output buffers swing 3.3 V in 1 to 2 ns (t_f/t_f), significant di/dt currents flow in the V_{CC} and V_{SS} pins. Separate power and ground planes on the printed circuit board are highly recommended and will help improve signal integrity, ground bounce, and in turn the SRAM's access time. The use of a 0.001 µF or 0.01 µF chip capacitor or similar leadless (surface mount) capacitor connected within 0.5 inch or so of each pair of V_{CC}/V_{SS} pins will provide a low impedance path for the fastest transients. A single 1 to 4.7 µF chip or ceramic capacitor per device should be sufficient for dc stability.

The use of standard (asynchronous) SRAMs may prove to be very difficult to use in 50+ MHz systems due to the requirements of carefully controlling the signal integrity, maintaining good noise margins, keeping component count down, and reducing board space. Because the BurstRAM, a synchronous device, registers address and control signals during a very brief moment during the system cycle, noise occurring throughout most of the cycle in the system can be tolerated by the BurstRAM. Component count, and therefore board space, is reduced since these SRAMs integrate the burst counter logic and self-timed write circuitry onto the chip and, in addition, have a wide (x18) data path. Because of the on-chip logic, cache control logic can be simplified and some control signal timing can be relaxed. In cases that demand detailed timing analysis and a close look at the analog effects of your board design, it is recommended that a board-level (Quad Design/Viewlogic) or SPICE simulator is used. Particularly when PCB routing lengths are about 4 inches or more, transmission line effects become dominant over the lumped circuit equivalent. Since interconnect time-of-flight is approximately 175 to 190 ps/inch, a 4 inch route adds about 0.75 ns to a memory access.

When analyzing the cache data read path, the DQ<17:0> are in their active state and drive the data bus. The characteristics of these output pins are important to know when completing a board's physical layout. Use the information in Table 1 (output buffer I-V data), Table 2 (input I-V data), and Table 3 (package parasitics) to help verify your timing and loading effects. This tabular data may be used directly as input to board level simulators, such as those offered by Quad Design, Integrity Engineering, Quantic Labs, etc. Figure 4 shows how to connect the parasitic package components between the chip (output buffer or input) and package pin. An input pin on the 64Kx18 can be modeled as C die = 4 pF.

V _{OL} (V)	I _{OL} (min) (mA)	I _{OL} (max) (mA)	V _{ОН} (V)	l _{OH} (min) (mA)	IOH (max) (mA)
0	0	0	0	- 110	- 145
0.5	38	60	0.5	- 106	- 136
1.0	68	107	1.0	- 96	- 124
1.5	90	137	1.5	- 78	- 102
2.0	104	154	2.0	- 55	- 77
2.5	110	160	2.5	- 29	- 45
3.0	112	162	3.0	-7	- 13
3.5	113	163	3.5	0.3	0.2
4.0	114	164	4.0	0.7	0.6
4.5	115	164	4.5	1.4	1.3
5.0	115	164	5.0	2.0	2.0

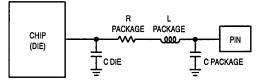

Table 1. I-V Characteristics of the 64Kx18 I/O Buffers

Table 2. I-V Characteristics of the 64Kx18 Inputs (Address and Control)

Diode	to GND	Diode to V _{CC}		
V _{in} (V)	l _{in} (mA)	v _{in} (V)	l _{in} (mA)	
0	0	5.0	0	
- 0.4	0	5.4	0	
- 0.5	0	5.5	0	
- 0.6	0	5.6	0	
- 0.7	- 0.1	5.7	0.1	
- 0.8	- 2.0	5.8	2.1	
- 0.9	- 25	5.9	20	
- 1.0	- 70	6.0	50	

Table 3. Packaging Characteristics

• •					
	Min	Max	Unit		
R package	50	200	mΩ		
L package	3	6	nH		
C package	0.5	1.0	pF		
C die	2	7	pF		

Figure 4. Package Parasitics Schematic

OUTPUT BUFFER CHARACTERISTICS

The access times guaranteed in the datasheet are based on a 50 Ω test load and should be derated for unterminated CMOS loads. Refer to the derating curve (Figure 5) for your application. This curve relates the difference in access time between a 50 Ω test environment and a lumped capacitive load (no dc load) condition typically found in most applications. The curve is based on worst case conditions, i.e., V_{CC} = 4.75 V and T_A = 70°C. Note that the 50 Ω test condition is equivalent to a lumped 10 pF load. For instance, if the BurstRAM outputs see a 30 pF load, derate the access time by about 0.4 ns. So, for a Pentium design that uses the MCM67B618 – 9 ns device, one can expect a worst case access time of 9.4 ns under these conditions.

SUMMARY

For high performance Pentium systems, the use of Motorola's 64Kx18 BurstRAMs provides a straightforward solution to Pentium's secondary cache requirements. Four BiCMOS BurstRAMs support the size and speed required by zero wait state Pentium systems. For equivalent cache size and performance, standard SRAM solutions warrant two bank interleaved approaches that utilize more board space, require more power, and demand a higher performance cache controller.

REFERENCES

- 1. AP-469: "Cache and Memory Design Considerations for the Intel 486DX2 Microprocessor", Intel Corp.
- 2. DL156/D: Fast Static RAM BiCMOS, CMOS, and Module Data, Motorola, Inc.

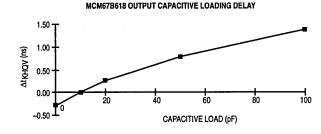


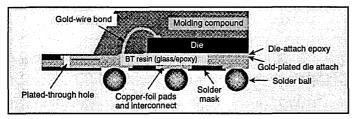
Figure 5. Access Time Derating Curve

TECHNOLOGY ADVANCES

NOVEL OVERMOLDED PAD-ARRAY CARRIER MAY OBSOLETE PLASTIC QUAD FLAT PACKS

Tntil now, the plastic | quad flatpack (QFP) has been the package of choice for high-leadcount ICs. But the QFP's successor may have arrived in the form of an overmolded package that uses an array of solder balls for board attachment. Not only does the overmolded pad-array carrier (OM-PAC) eliminate worries about lead skew and coplanarity, it also can be handled with the same pickand-place and soldering equipment used by pcboard manufacturers for low-lead-count components. Furthermore, it's much thinner and may handle more power than an equivalent QFP.

The OMPAC was initially developed by Motorola Inc.'s Land Mobile Products Sector, Plantation. Fla., for its handheld communication products. That group had a need for a high-lead-count package, but wanted to avoid the coplanarity issues surrounding QFPs. Subsequently, the OMPAC was recognized as an attractive vehicle for the high-density CMOS gate arrays produced by Motorola's Semiconductor Products Sector in Phoenix, Ariz. Initially, the OMPAC will come in 169- and 225-contact versions. The former is an alternative to 160-lead OFPs.


while the latter can replace | bumps' composition is 62% 208- or 232-lead OFPs.

The package consists of a thin, BT-epoxy-laminate pc board that's clad with copper (see the figure). BT epoxy is a glass-laminate material similar to FR-4. The top-side metallization carries a die flag and wirebond pads. The wire-bond pads extend outward to plated through holes located around the board's periphery. These holes provide electrical continuity from the top of the board to the back side. There, the signal path is completed by copper traces routed from the through holes to solder-pad termination sites in a fully populated matrix array. All metal features on the pc board are photodefined, etched, and electroplated with copper, nickel, and gold. A solder mask is photodefined on the back side of the package to contain the flow of solder during infrared (IR) reflow soldering.

Package assembly begins with standard epoxy die-attach and gold-ballbonding techniques to interconnect the IC to the base. Conventional epoxy transfer-molding procedures are performed to encapsulate the die. After post-mold curing, the packages are solder-bumped, detached from the strip, and electrically tested. The tin. 36% lead, and 2% silver.

What results is a package that has numerous advantages over conventional QFPs. Because the connections to the board are simple solder balls, no special handling is required. There are no leads to be skewed or knocked out of coplanarity. Motorola's previous answer to QFP lead skew and coplanarity problems was the molded carrier ring, which holds the leads rigid through assembly and test and enables it to guarantee 4-mil coplanarity. With the OM-PAC, those problems disappear entirely.

Another advantage is the package's potential power-dissipation capability. Because the OMPAC was adapted for high-performance gate arrays, Motorola addressed thermal enhancements in the form of thermal vias under the die to act as heat pipes through the bottom of the package to lands placed on the pc board. In contrast, QFPs are cooled by forcing air over the mold compound on top of the die. Motorola's measurements indicate that the 225-contact OMPAC with thermal vias delivers a thermal resistance over 20% lower than that of a 208-lead QFP. OM-PACs can also be built without thermal vias, in

Reprinted from ELECTRONIC DESIGN February 1993

which case their therma performance is roughly equal to that of QFPs.

A key aspect of the OM PAC is how little space it occupies on a board. With a reduced area of about 51% a 169-contact OMPAC will fit inside the body dimensions of a 160-lead QFP That's because of two factors: the lead span of the QFP is eliminated, and the OMPAC's body size is 22 mm versus 28 mm for the QFP. The OMPAC's size advantage also extends to the dimension of height. Both versions stand about 1.5-mm tall from the board. Equivalent QFPs are about 3.65-mm tall.

But even with their smaller size, the 169- and 225-lead OMPACs sport a pitch between solder pads of 1.5 mm, while the 160lead QFP's leads are pitched at 0.65mm. Ata 1.5mm pitch, critical circuittiming traces can be routed directly under the package between the pad rows. This saves board space and shortens critical paths.

In the assembly process, the OMPAC really shines. It can be placed on boards with an alignment tolerance of 12 mils, whereas the QFP needs about a 3mil registration tolerance. In addition, the OMPAC is more or less self-registering. As the solder balls reflow, the package tends to fall into its lands on the pc board and positions itself. This simplifies the requirement for very-high-precision pick-and-place equipment, thus reducing equipment investments.

For the 225-contact OM-PAC user, this translates into IR-reflow attachment of 225 leads. Once again, the OMPAC gives board populators a way to greatly reduce their equipment investment.

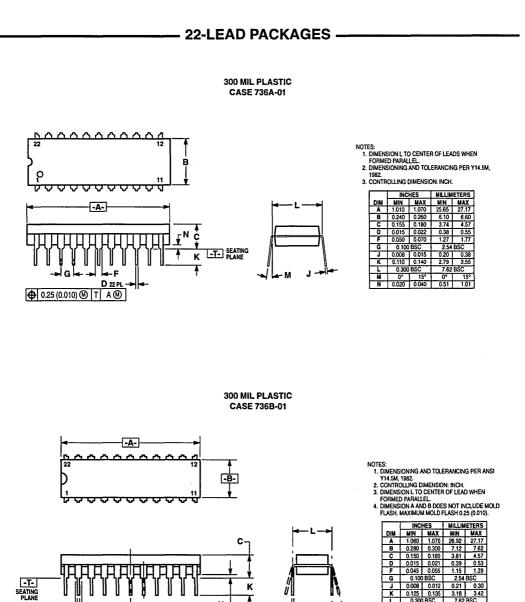
TECHNOLOGY ADVANCES

The OMPAC, then, represents the attachment of high-lead-count packages at a level that's comparable to devices with much lower lead counts. When the attachment-defect yields are taken into account, the **OMPAC** becomes even more attractive. In its production trials, Motorola is observing a near-zero-ppm defect yield. At 160 leads, the defect level for QFPs is about 100 ppm, a figure that climbs dramatically at higher lead counts.

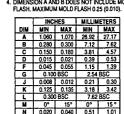
Motorola will be offering its HDP Series 1-µm CMOS gate arrays and its H4C Series submicron gate arrays in the 169- and 225-contact OMPACs. Many would-be customers for these devices were unable to handle high-leadcount QFPs, but should be far more comfortable working with the OMPAC.

Production has commenced for the 169-contact package and will begin shortly for the 225-contact package. There is a slight premium for the gate ar-rays in the OMPAC, but it's anticipated that this will ramp down in time. As for the package's future, Motorola is looking ahead to the OMPAC as a vehicle for multichip modules (MCMs). Developments in this direction could come within the next year.

Motorola's 225-contact OMPAC will be demonstrated in the Universal Instruments booth at next week's Nepcon West show in Anaheim, Calif. This will be the public's first look at the OMPAC.

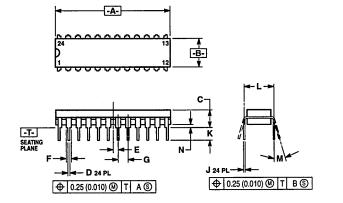

DAVID MALINIAK

Copyright © 1993 by Penton Publishing, Inc., Cleveland, Ohio 44114

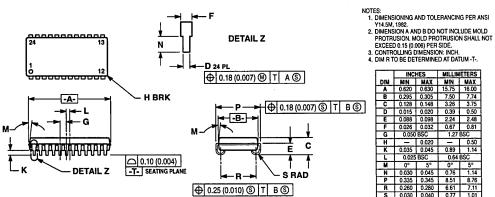

Mechanical Data

MOTOROLA FAST SRAM DATA

Package availability and ordering information are given on the individual data sheets.

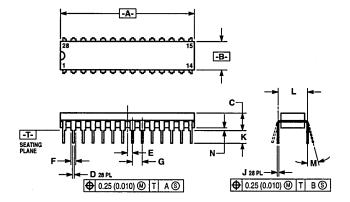


24-LEAD PACKAGES


300 MIL PLASTIC CASE 724A-01

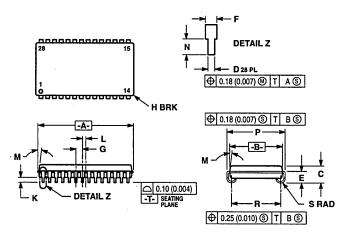
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: NCH. 3. DIMENSIONL TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION A AND B DOLES NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).

	INC	HES	MILLIM	ETERS	
DIM	MIN MAX		MIN	MAX	
A	1.160	1.170	29.47	29.71	
В	0.280 0.30		7.12	7.62	
С	0.150 0.180		3.81	4.57	
D	0.015	0.021	0.39	0.53	
E	0.050	BSC	1.27 BSC		
F	0.045	0.055	1.15	1.39	
G	0.100	BSC	2.54 BSC		
1	0.008	0.012	0.21	0.30	
ĸ	0.125	0.135	3.18	3.42	
L	0.300	BSC		BSC	
M	0°	15°	0°	15°	
N	0.020	0.040	0.51	1.01	


300 MIL SOJ CASE 810A-02

	INC	HES	MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
A	0.620	0.630	15.75	16.00	
B	0.295	0.305	7.50	7.74	
C	0.128	0.148	3.26	3.75	
D	0.015 0.020		0.39	0.50	
E	0.088	0.098	2.24	2.48	
F	0.026	0.032	0.67	0.81	
G	0.050	BSC	1.27 BSC		
H	-	0.020	I	0.50	
K	0.035	0.045	0.89	1.14	
Ľ	0.025	BSC	0.64 BSC		
M	0°	5°	0°	5°	
N	0.030	0.045	0.76	1.14	
P	0.335	0.345	8.51	8.76	
R	0.260	0.280	6.61	7.11	
S	0.030	0.040	0.77	1.01	

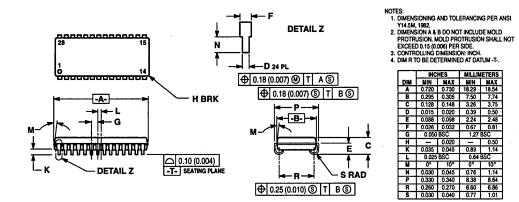
- 28-LEAD PACKAGES


300 MIL PLASTIC CASE 710B-01

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: NCH. 3. DIMENSIONL TO CENTER OF LEAD WHEN FORMED PARALLEL 4. DIMENSION A AND B DOES NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).

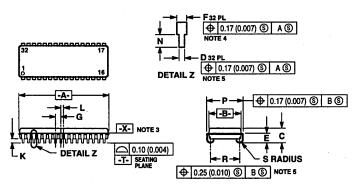
	INC	HES	MILLIN	ETERS	
DIM	MIN	MAX	MIN	MAX	
A	1.360	1.370	34.55	34.79	
B	0.280	0.300	7.12	7.62	
C	0.150	0.180	3.81	4.57	
D	0.015	0.015 0.021		0.53	
E	0.050		1.27 BSC		
F	0.045	0.055	1.15	1.39	
G	0.100	BSC	2.54 BSC		
1	0.008	0.012	0.21	0.30	
K	0.125	0.135	3.18	3.42	
L	0.300	BSC	7.62	BSC	
M	0°	15°	0°	15°	
N	0.020	0.040	0.51	1.01	

400 MIL SOJ CASE 810-03



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. DIMENSION A & BOO NOT INCLUDE MOLD PROTRUSION, MOLD PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 3. CONTROLING DIMENSION: IROH. 4. DIM R TO BE DETERMINED AT DATUM -T.

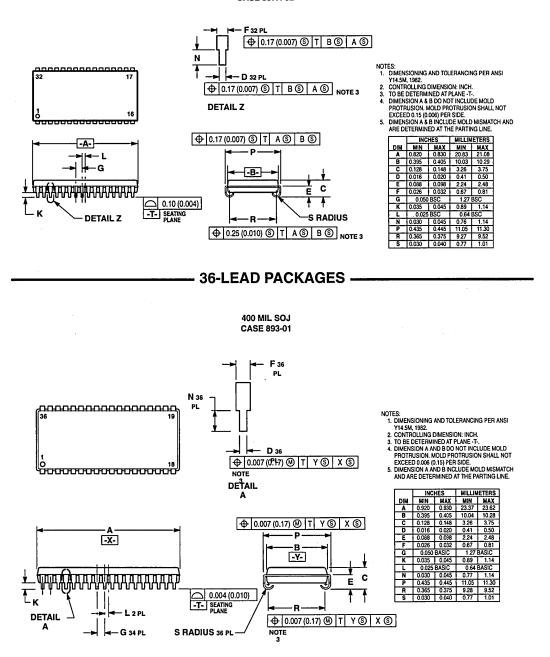
	INC	INCHES M		ETERS	
DIM	MIN	MAX	MIN	MAX	
A	0.720 0.730		18.29	18.54	
B	0.395 0.405		10.04	10.28	
C	0.128	0.128 0.148 3.26		3.75	
D	0.015 0.020		0.39	0.50	
E	0.088	0.098	2.24	2.48	
F	0.026	0.032	0.67	0.81	
G	0.050	BSC	1.27 BSC		
Н	-	0.020	1	0.50	
ĸ	0.035	0.045	0.89	1.14	
L	0.025	BSC	0.64 BSC		
M	0°	5°	0°	5°	
N	0.030	0.045	0.76	1.14	
P	0.435	0.445	11.05	11.30	
R	0.360	0.380	9.15	9.65	
S	0.030	0.040	0.77	1.01	

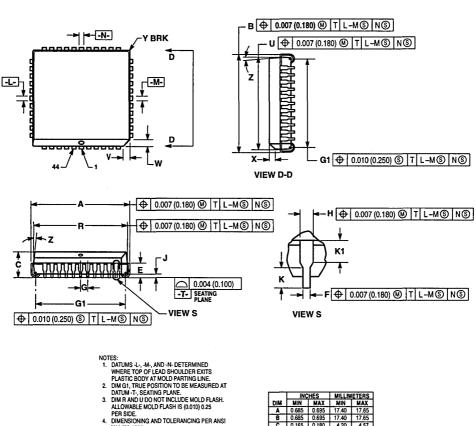

28-LEAD PACKAGES (Continued)

300 MIL SOJ CASE 810B-03

32-LEAD PACKAGES

300 MIL SOJ CASE 857-02

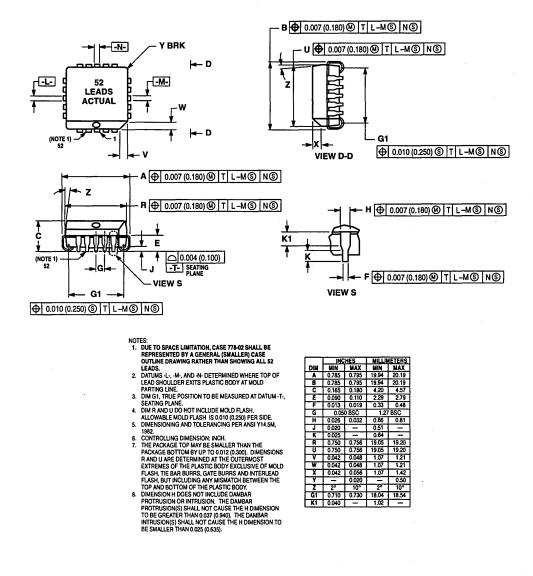

NOTES:


- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLING DIMENSION: INCH. 3. DATUM PLANE -X- LOCATED AT TOP OF MOLD PARTING LINE AND CONCIDENT WITH TOP OF LEAD WHERE LEAD EXITS BODY. 4. TO BE DETERMINED AT PLANE -X. 5. TO BE DETERMINED AT PLANE -X. 6. DIMENSIONAL AT BOANCH AT DUANCIDE UND D
- - DIMENSION A & B DO NOT INCLUDE MOLD PROTRUSION. MOLD PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

	INC	HES	MILLIN	ETERS	
DIM	MIN	MAX	MIN	MAX	
A	0.820	0.830	20.83	21.08	
B	0.295	0.305	7.50	7.74	
C	0.128	0.148	3.26	3.75	
D	0.016	0.020	0.41	0.50	
E	0.068	0.098	2.24	2.48	
F	0.026	0.032	0.67	0.81	
G	0.050	BSC	1.27 BSC		
ĸ	0.035	0.045	0.89	1.14	
L	0.025	BSC	0.64 BSC		
N	0.030	0.045	0.76	1.14	
Ρ	0.330	0.340	8.38	8.64	
R	0.260	0.270	6.60	6.86	
S	0.030	0.040	0.77	1.01	

32-LEAD PACKAGES (Continued)

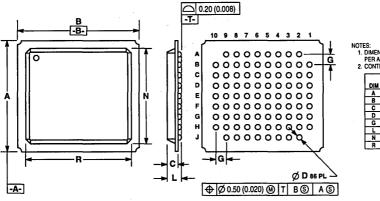
400 MIL SOJ CASE 857A-02


PLASTIC CHIP CARRIER CASE 777-02

- UMENSIONING AND TOLEHANCING PER AN Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300), DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY
- INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE H 7. DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

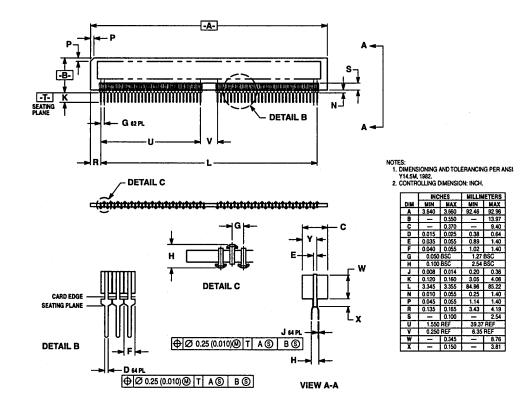
	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
A	0.685	0.695	17.40	17.65
8	0.685	0.695	17.40	17.65
C	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G		0 BSC		BSC
H	0.026	0.032	0.66	0.81
1	0.020	-	0.51	-
ĸ	0.025	-	0.64	-
R	0.650	0.656	16.51	16.66
U	0.650	0.656	16.51	16.66
V	0.042 0.048 1.07			1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Ŷ	-	0.020	-	0.50
Z	2°	10°	2°	10°
G1	0.610	0.630	15.50	16.00
K1	0.040	-	1.02	-

52-LEAD PACKAGE

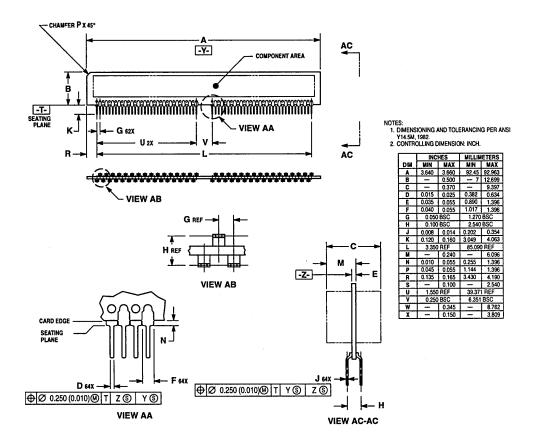

PLASTIC CHIP CARRIER CASE 778-02

MOTOROLA FAST SRAM DATA

86 BUMP OMPAC

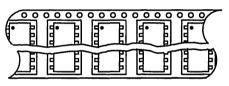

CASE 896A-01

	MILLIN	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	16.16	16.36	0.637	0.644
8	17.68	17.88	0.697	0.703
С	1.33	1.73	0.053	0.068
D	0.69	0.81	0.028	0.031
G	1.524	BSC	0.060	BSC
L	1.84	2.44	0.073	0.096
N	13.80	14.20	0.544	0.559
R	15.29	15.69	0.602	0.617


64-LEAD MODULE -

64-LEAD MODULE (Continued) -

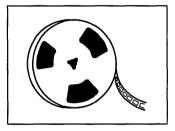
CASE 871A-01

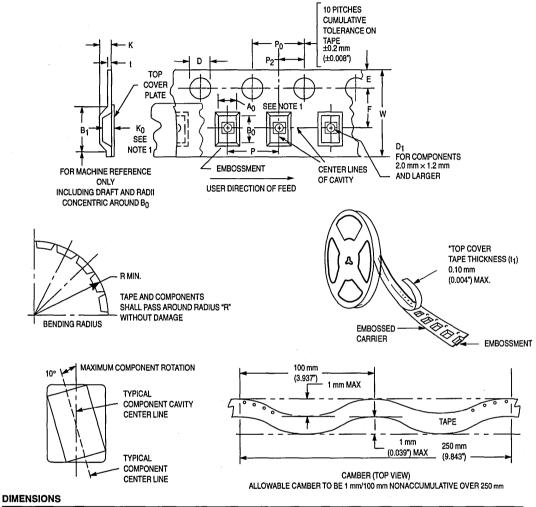

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Embossed Tape and Reel

Embossed Tape and Reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as the shipping container for various products and requires a minimum of handling. The antistatic/conductive tape provides a secure cavity for the product when sealed with the "peel-back" cover tape.

- 13-Inch Reel
- Used For Automatic Pick and Place Feed Systems
- Minimizes Product Handling
- EIA-481
- SOJ: 24, 20/26, 24/26, 28, 32
- SOIC: 28, 32
- PLCC: 44, 52

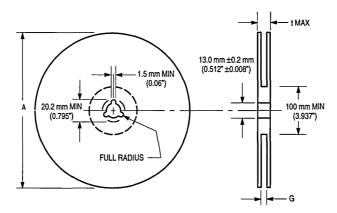

Use the standard device title and add the required suffix R2. Note the minimum lot size is one full reel for each line item, and orders are required to be in increments of the single reel quantity.


DIRECTION OF FEED

Tape and Reel					
Data for					
MOS Memory					
Surface Mount					
Devices					

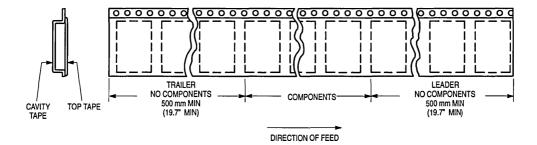
PACKAGES						
SOJ:	24, 20/26, 24/26, 28, 32					
SOIC:	28, 32					
PLCC:	44. 52					

Package	Lead Count	Package Width (mils)	Tape Width (mm)	Reel Size	Devices Per Reel	Minimum Lot Size	Tape and Reel Suffix
SOJ	24	300	24	13"	1000	1000	R2
	20/26	300	24	13"	1000	1000	R2
	20/26	350	24	13"	1000	1000	R2
	24/26	300	24	13"	1000	1000	R2
	28	300	24	13"	1000	1000	R2
	28	400	24	13"	1000	1000	R2
	32	300	32	13"	1000	1000	R2
	32	400	32	13"	1000	1000	R2
SOIC (Gull Wing)	28	350	24	13"	1000	1000	R2
	32	450	32	13"	1000	1000	R2
PLCC	44	650/656	32	13"	500	500	R2
	52	750/756	32	13"	450	450	R2


Tape Size	B ₁ Max	D	D1	E	F	. К	Р	Po	P2	R Min	t Max	w
24 mm	19.4 mm (0.764")	1.5+0.1 mm -0.0 (0.059+0.004" -0.0)	2.0 mm Min (0.079")	1.75 ±0.1 mm (0.069 ±0.004")	11.5 ±0.1 mm (0.453 ±0.004")	4.0 mm (0.157")	12.0-16.0 ±0.10 mm (0.472-0.630 ±0.004")	4.0 ±0.1 mm (0.156 ±0.004")	2.0 ±0.05 mm (0.079 ±0.002")	50 mm (1.968")	0.400 mm (0.016")	24 ±0.2 mm (0.945 ±0.008")
32 mm	23.0 mm (0.906")	1.5+0.1 mm -0.0 (0.059+0.004* -0.0)	2.0 mm Min (0.079")	1.75 ±0.1 mm (0.069 ±0.004")	14.2 ±0.1 mm (0.559 ±0.004")	10.0 mm (0.394")	16.0-24.0 ±0.10 mm (0.630-0.945 ±0.004")	4.0 ±0.1 mm (0.156 ±0.004")	2.0 ±0.05 mm (0.079 ±0.002")	50 mm (1.968")	0.500 mm (0.020")	32 ±0.3 mm (1.26 ±0.012")

Metric Dimensions Govern-English are in parentheses for reference only.

NOTE 1: A₀, B₀, and K₀ are determined by compnent size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity


REEL DIMENSIONS

Metric Dimensions Govern-English are in Parentheses for Reference only.

Size	A Max	G	t Max
24 mm	330 mm	24.400 mm, +2.0 mm, -0.0	30.4 mm
	(12.992")	(0.961", +0.079", -0.00)	(1.197")
32 mm	330 mm	32.4 mm, +2.0 mm, -0.0	38.4 mm
	(12.992")	(1.276", +0.079", -0.00)	(1.51")

TAPE ENDS

MOTOROLA DISTRIBUTOR AND WORLDWIDE SALES OFFICES

AUTHORIZED NORTH AMERICAN DISTRIBUTORS

U

4

UNITED STATES	
ALABAMA	
Huntsville	
Arrow/Schweber Electronics .	(205)837-6955
Future Electronics	(205)830-2322
Hall-Mark Electronics	(205)837-8700
Hall-Mark Electronics	(205)837-8700
Newark	(205)837-9091
Time Electronics	. (205)721-1133
Arizona	
Chandler Hamilton/Avnet Electronics	(602)961-0836
Phoenix	(002)001 0000
Future Electronics	(602)968-7140
Hall-Mark Electronics	(602)437-1200
Newark Electronics	(602)864-9905
Wyle Laboratories	(602)437-2088
Tempe	
Arrow/Schweber Electronics .	(602)431-0030
Time Electronics	(602)967-2000
CALIFORNIA	
Agoura Hills	
Time Electronics Corporate	(818)707-2890
Belmont	
Richardson Electronics	(415)592-9225
Calabassas	
Arrow/Schweber Electronics .	(818)880-9686
Wyle Laboratories	(818)880-9000
Chatsworth	
Future Electronics	(818)772-6240
Hall-Mark Electronics	(818)773-4500
Time Electronics	(818)998-7200
Costa Mesa	(74 4)754 0000
Hamilton/Avnet Electronics	(714)754-6092
Hamilton/Avnet Corporate	(213)558-2000
Gardena	(213)556-2000
Hamilton/Avnet Electronics	(213)516-6498
Irvine	(213)310-0430
Arrow/Schweber Electronics	(714)587-0404
Future Electronics	(714)250-4141
Hall-Mark Electronics	(714)727-6000
Wyle Laboratories Corporate .	(714)753-9953
Wyle Laboratories	(714)863-9953
Mountain View	
Richardson Electronics	(415)960-6900
Orange	,
Newark	(714)634-8224
Rocklin	
Hall-Mark Electronics	(916)624-9781

Wyle Laboratories	(714)863-9953
Mountain View Richardson Electronics	(415)060 6000
	(415)900-0900
Orange Newark	(714)634-8224
Rocklin Hall-Mark Electronics	(916)624-9781
Sacramento	
Hamilton/Avnet Electronics	(916)925-2216
Newark	(916)721-1633
Wyle Laboratories	(916)638-5282
San Diego	
Arrow/Schweber Electronics	(619)565-4800
Future Electronics	(619)278-5020
Hall-Mark Electronics	(619)268-1201
Hamilton/Avnet Electronics	(619)571-8730
Newark	(619)569-9877
Wyle Laboratories	(619)565-9171
San Francisco	•
Newark	(415)571-5300
San Jose	
Arrow/Schweber Electronics .	(408)441-9700
Arrow/Schweber Electronics .	(408)428-6400
Future Electronics	(408)434-1122
Hall-Mark Electronics	(408)432-4000
Santa Clara	• •
Wyle Laboratories	(408)727-2500
Sunnyvale	
Hamilton/Avnet Electronics	(408)743-3300

Time Electronics	(408)734-9888
Torrance Time Electronics	(310)320-0880
Tustin Time Electronics	(714)669-0100
West Hills Newark	(818)888-3718
Woodland Hills Hamilton/Avnet Electronics Richardson Electronics	(818)594-0404 (615)594-5600
COLORADO	
Broomfield Future Electronics	(303)421-0123
Colorado Springs Newark	(719)592-9494
Denver Newark	(303)757-3351
Englewood	
Arrow/Schweber Electronics . Hall-Mark Electronics	(303)799-0258 (303)790-1662
Hamilton/Avnet Electronics	(303)740-1002
Time Electronics	(303)721-8882
Thornton Wyle Laboratories	(303)457-9953
CONNECTICUT	(,
Bethel	
Future Electronics	(203)743-9594
Hall-Mark Electronics	(203)271-2844
Danbury Hamilton/Avnet Electronics	(203)743-6077
Southbury Time Electronics	(203)271-3200
Wallingfort Arrow/Schweber Electronics .	(203)265-7741
Windsor Newark	(203)683-8860
FLORIDA	
Altamonte Springs Future Electronics	(407)767-8414
Casselberry Hall-Mark Electronics	
Clearwater	(407)830-5855
Future Electronics Hall-Mark Electronics	(813)530-1222 (813)541-7440
Deerfield Beach	(010)0111110
Arrow/Schweber Electronics . Ft. Lauderdale	(305)429-8200
Hamilton/Avnet Electronics	(305)767-6377
Time Electronics	(305)484-1778
Arrow/Schweber Electronics . Orlando	(407)333-9300
Hamilton/Avnet Electronics	(407)628-3888
Newark	(407)896-8350
Time Electronics	(407)841-6565
Plantation Newark	(305)424-4400
Pompano Beach Hall-Mark Electronics	(305)971-9280
Tampa/St. Petersburg Hamilton/Avnet Electronics	(813)573-3930
Newark	(813)287-1578
Time Electronics	(407)841-6565
Winter Park Richardson Electronics	(407)644-1453
GEORGIA	1403
Atlanta	
Time Electronics	(404)351-3545
Duluth	

Dululi			
Arrow/Schweber	Electronics	. 1	(404)497-1300

Hall-Mark Electronics Hamilton/Avnet Electronics	(404)623-4400 (404)446-0611
Norcross Future Electronics	(404)441-7676
Newark	(404)448-1300
Time Electronics	(404)368-0969
ILLINOIS	
Bensenville Hamilton/Avnet Electronics	(708)860-7700
Chicago Newark Electronics Corp	(312)784-5100
Hoffman Estates Future Electronics	(708)882-1255
Itasca Arrow/Schweber Electronics LaFox	(708)250-0500
Richardson Electronics	(708)208-2401
Newark	(708)310-8980
Time Electronics	(708)303-3000
Wooddale Hall-Mark Electronics	(708)860-3800
INDIANA	
Indianapolis Arrow/Schweber Electronics	(217) 200 2074
Hall-Mark Electronics	(317)299-2071 (317)872-8875
Hamilton/Avnet Electronics	(317)844-9333
Newark	(317)259-0085
Time Electronics	(708)303-3000
Newark	(219)484-0766
IOWA	
Cedar Rapids Hamilton/Avnet Electronics	(319)362-4757
Newark	(319)393-3800
Time Electronics	
	(314)391-6444
KANSAS	(314)391-6444
KANSAS Lenexa	
KANSAS Lenexa Arrow/Schweber Electronics . Hall-Mark Electronics	(314)391-6444 (913)541-9542 (913)888-4747
KANSAS Lenexa Arrow/Schweber Electronics . Hall-Mark Electronics Overland Park	(913)541-9542 (913)888-4747
KANSAS Lenexa Arrow/Schweber Electronics . Hall-Mark Electronics Overland Park Hamitor/Avnet Electronics	(913)541-9542 (913)888-4747 (913)888-8900
KANSAS Lenexa ArrowSchweber Electronics . Hall-Mark Electronics Overland Park Hamilton/Avnet Electronics Newark	(913)541-9542 (913)888-4747
KANSAS Lenexa Arrow/Schweber Electronics . Hall-Mark Electronics Overland Park Hamitor/Avnet Electronics	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727
KANSAS Lenexa Arrow/Schweber Electronics . Hail-Mark Electronics Overland Park Hamilton/Avnet Electronics . Newark Time Electronics MARYLAND Beltaville	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444
KANSAS Lenexa Arrow/Schweber Electronics	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700
KANSAS Lenexa ArrowSchweber Electronics Hall-Mark Electronics Overland Park Hamilton/Avnet Electronics Newark Time Electronics MARYLAND Beltaville Newark Columbia ArrowSchweber Electronics .	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700 (301)596-7800
KANSAS Lenexa Arrow/Schweber Electronics Hall-Mark Electronics Overland Park Hamibor/Avnet Electronics Newark MARYLAND Beltaville Newark Columbia Arrow/Schweber Electronics Future Electronics	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700 (301)596-7800 (301)596-7800
KANSAS Lenexa Arrow/Schweber Electronics Overland Park Hali-Mark Electronics Newark Time Electronics MARYLAND Beltaville Newark Columbia Arrow/Schweber Electronics Hali-Mark Electronics	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700 (301)596-7800 (301)596-7800 (301)929-0600 (301)928-9800
KANSAS Lenexa Arrow/Schweber Electronics Hall-Mark Electronics Overland Park Hamibor/Avnet Electronics Newark MARYLAND Beltaville Newark Columbia Arrow/Schweber Electronics Future Electronics	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700 (301)596-7800 (301)596-7800
KANSAS Lenexa Arrow/Schweber Electronics Overland Park Hamilton/Avnet Electronics Newark Time Electronics MARYLAND Beltsville Newark Columbla Arrow/Schweber Electronics Hall-Mark Electronics	(913)541-9542 (913)888-4747 (913)888-800 (913)677-0727 (314)391-6444 (301)506-7800 (301)596-7800 (301)596-7800 (301)988-9600 (301)988-9600
KANSAS Lenexa Arrow/Schweber Electronics	(913)541-9542 (913)888-4747 (913)888-800 (913)677-0727 (314)391-6444 (301)506-7800 (301)596-7800 (301)596-7800 (301)988-9600 (301)988-9600
KANSAS Lenexa ArrowSchweber Electronics Hall-Mark Electronics Overland Park Hamiltor/Avnet Electronics Time Electronics MARYLAND Beltsville Newark Columbla Arrow/Schweber Electronics Hall-Mark Electronics Hamiltor/Avnet Electronics Hamiltor/Avnet Electronics Hamiltor/Avnet Electronics Billerica Hall-Mark Electronics Boston	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700 (301)596-7800 (301)596-7800 (301)596-7800 (301)598-9800 (301)595-3500 (301)95-3500 (301)95-3500 (301)964-3090 (508)667-0902
KANSAS Lenexa Arrow/Schweber Electronics Overland Park Hainiton/Avnet Electronics Time Electronics MARYLAND Beltaville Newark Columbia Arrow/Schweber Electronics Hainiton/Avnet Electronics MASSACHUSETTS Billerica Hali-Mark Electronics Boston Arrow/Schweber Electronics Hamilton/Avnet Electronics	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700 (301)596-7800 (301)596-7800 (301)596-9800 (301)995-3500 (301)964-3090
KANSAS Lenexa Arrow/Schweber Electronics Overland Park HainMark Electronics Time Electronics MRAYLAND Beltaville Newark Columbla Arrow/Schweber Electronics Hainitor/Avnet Electronics Billerica Hall-Mark Electronics Boston Arrow/Schweber Electronics Boston Future Corporate	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700 (301)596-7800 (301)290-0600 (301)988-9800 (301)995-3500 (301)964-3090 (508)667-0902 (508)658-0900
KANSAS Lenexa Arrow/Schweber Electronics Verland Park Hamilton/Avnet Electronics Time Electronics MARYLAND Beltaville Newark Columbia Arrow/Schweber Electronics Hall-Mark Electronics Hamilton/Avnet Electronics MASSACHUSETTS Billerica Hall-Mark Electronics Boston Arrow/Schweber Electronics Boston Arrow/Schweber Electronics Boston Future Corporate Bolton Future Corporate	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700 (301)596-7800 (301)596-7800 (301)596-7800 (301)988-9600 (301)995-3500 (301)964-3090 (508)667-0902 (508)667-0902 (508)658-0900 (508)531-7430
KANSAS Lenexa Arrow/Schweber Electronics Verland Park HainMark Electronics Time Electronics MARYLAND Beltaville Newark Columbla Arrow/Schweber Electronics HainMark Electronics HainMark Electronics HainMark Electronics HainMark Electronics Billerica Hail-Mark Electronics Boston Arrow/Schweber Electronics Boston Future Corporate Botton Future Corporate Builton Wyle Laboratories Weboratories Builton Kerveil	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)604-1700 (301)596-7800 (301)290-0600 (301)998-9800 (301)998-9800 (301)964-3090 (508)667-0902 (508)667-0902 (508)658-0900 (508)531-7430 (508)779-3000
KANSAS Lenexa Arrow/Schweber Electronics Hall-Mark Electronics Overland Park Hamilton/Avnet Electronics Time Electronics MARYLAND Beltaville Newark Columbla Arrow/Schweber Electronics Hamilton/Avnet Electronics Time Electronics Hamilton/Avnet Electronics Hamilton/Avnet Electronics Billerica Hall-Mark Electronics Boston Arrow/Schweber Electronics Bolton Future Corporate Burlington Wyle Laboratories Methuen Newark	(913)541-9542 (913)888-4747 (913)888-8900 (913)677-0727 (314)391-6444 (301)596-7800 (301)596-7800 (301)596-7800 (301)985-3500 (301)995-3500 (301)995-3500 (301)964-3090 (508)667-0902 (508)667-0902 (508)658-0900 (508)531-7430 (508)779-3000 (617)272-7300

AUTHORIZED DISTRIBUTORS – continued

UNITED STATES -- continued

MICHIGAN	
Detroit Newark	(313)967-0600
Grand Rapids Hamilton/Avnet Electronics	(616)243-8805
Livonia	
Arrow/Schweber Electronics . Future Electronics	(313)462-2290 (313)261-5270
Hall-Mark Electronics	(313)462-1205
Hamilton/Avnet Electronics	(313)347-4270
Time Electronics	(614)794-3301
Eden Prairie Arrow/Schweber Electronics .	(612)941-5280
Future Electronics	(612)944-2200
Hall-Mark Electronics	(612)881-2600 (612)943-2433
Time Electronics	(012)943-2455
Hamilton/Avnet Electronics	(612)932-0600
Newark	(612)331-6350
MISSOURI	
Earth City Hall-Mark Electronics	(314)291-5350
Hamilton/Avnet Electronics	(314)537-1600
St. Louis	(01 4) 5 67 6066
Arrow/Schweber Electronics . Future Electronics	(314)567-6888 (314)469-6805
Newark	(314)298-2505
Time Electronics	(314)391-6444
NEW HAMPSHIRE	
Manchester Hamilton/Avnet Electronics	(603)624-9400
NEW JERSEY	
Cherry Hill Hamilton/Avnet Electronics	(609)424-0100
Fairfield	(000)424 0100
Future Electronics	(201)299-0400 (201)882-0300
Mariton	. ,
Arrow/Schweber Electronics . Future Electronics	(609)596-8000 (609)778-7600
Mount Laurel	
Hall-Mark Electronics	(609)235-1900
Arrow/Schweber Electronics . Parsippany	(201)227-7880
Parsippany Hall-Mark Electronics	(201)515-3000
Hamilton/Avnet Electronics Wayne	(201)575-3390
Time Electronics	(201)785-8250
NEW MEXICO	
Albuquerque Alliance Electronics	(505)292-3360
Hamilton/Avnet Electronics	(505)345-0001
Newark	(505)828-1878
NEW YORK	
Commack Newark	(516)499-1216
Fairport	
Hall-Mark Electronics Hauppauge	(716)425-3300
Arrow/Schweber Electronics .	(516)231-1000
Future Electronics	(516)234-4000
Hall-Mark Electronics Hamilton/Avnet Electronics	(516)737-0600 (516)231-9800
Liverpool	
Future Electronics	(315)451-2371
Newark	(716)381-4244
Arrow/Schweber Electronics .	(716)427-0300

	013-00	
Future Electronics		
Hall-Mark Electronics	(716)425-3300	
Hamilton/Avnet Electronics	(716)292-0730	
Richardson Electronics Time Electronics	(716)264-1100 (315)432-0355	
Rockville Centre	(515)452-0555	
Richardson Electronics	(516)872-4400	
Syracuse Hamilton/Avnet Electronics Time Electronics	(315)437-2641 (315)432-0355	
	(315)432-0355	
NORTH CAROLINA		
Charlotte	(70 A) 455 0000	
Future Electronics Richardson Electronics	(704)455-9030 (704)548-9042	
Greensboro	(104)540-3042	
Newark	(919)292-7240	
Raleigh Arrow/Schweber Electronics .	(919)876-3132	
Future Electronics		
Hall-Mark Electronics	(919)872-0712	
Hamilton/Avnet Electronics	(919)878-0810	
Time Electronics	(919)693-5166	
OHIO		
Centerville		
Arrow/Schweber Electronics .	(513)435-5563	
Cleveland	(010)010 1000	
Hall-Mark Electronics Hamilton/Avnet Electronics	(216)349-4632	
Newark	(216)349-5100 (216)391-9330	
Time Electronics	(614)794-3301	
Columbus	()	
Hamilton/Avnet Electronics	(614)882-7004	
Newark	(614)431-0809	
Time Electronics	(614)794-3301	
Dayton	(540) 400 0700	
Hamilton/Avnet Electronics	(513)439-6700 (513)294-8980	
Newark	(614)794-3301	
Mayfield Heights	(014)/34-3301	
Future Electronics	(216)449-6996	
Solon Arrow/Schweber Electronics .	(216)248-3990	
Toledo Hamilton/Avnet Electronics	(419)242-6610	
Worthington Hall-Mark Electronics	(614)888-3313	
OKLAHOMA	(014)888-3313	
Tulsa Hall-Mark Electronics	(918)254-6110	
Hamilton/Avnet Electronics	(918)252-7297	
Newark		
OREGON		
Beaverton		
Arrow/Almac Electronics Corp.	(503)629-8090	
Future Electronics	(503)645-9454	
Wyle Laboratories	(503)643-7900	
Portland		
Hamilton/Avnet Electronics	(503)627-0201	
Newark	(503)297-1984	
Time Electronics	(503)626-2979	
PENNSYLVANIA		
Erle		
Hamilton/Avnet Electronics	(814)455-6767	
King of Prussia Newark	(215)265-0933	
Montgomeryville Richardson Electronics	(215)628-0805	
Philadelphia	(045)055 5005	
Hall-Mark Electronics	(215)355-7300	
Time Electronics	(609)596-6700	
Pittsburgh Arrow/Schweber Electronics .	(412)963-6807	
Hamilton/Avnet Electronics		
	-	

unuea	
Newark	(412)788-4790 (614)794-3301
TENNESSEE	
Franklin Biskarden Fischerin	(015)304 1000
Richardson Electronics	(615)791-4900
Newark	(615)588-6493
TEXAS	
Austin	(540)005
Arrow/Schweber Electronics . Hall-Mark Electronics	(512)835-4180 (512)258-8848
Hamilton/Avnet Electronics	(512)832-4306
Newark	(512)338-0287 (512)346-7346
Wyle Laboratories	(512)345-8853
Caroliton	
Arrow/Schweber Electronics . Dallas	(214)380-6464
Future Electronics	(214)437-2437
Hall-Mark Corporate Hall-Mark Electronics	(214)343-5000 (214)553-4300
Hamilton/Avnet Electronics	(214)308-8140
Richardson Electronics	(214)239-3680
Time Electronics	(214)644-4644
Wyle Laboratories	(214)235-9953
Allied Electronics	(817)336-5401
Houston Arrow/Schweber Electronics .	(713)530-4700
Future Electronics	(713)556-8696
Hall-Mark Electronics	(713)781-6100
Hamilton/Avnet Electronics	(713)240-7898
Newark Time Electronics	(713)270-4800 (713)530-0800
Wyle Laboratories	(713)879-9953
Richardson	
Newark	(214)235-1998
UTAH Salt Lake City	
UTAH Salt Lake City Arrow/Schweber Electronics	(801)973-6913
UTAH Salt Lake City Arrow/Schweber Electronics . Future Electronics	(801)973-6913 (801)972-8489
UTAH Salt Lake City Arrow/Schweber Electronics . Future Electronics Hamilton/Avnet Electronics Newark	(801)973-6913
UTAH Salt Lake City Arrow/Schweber Electronics . Future Electronics Hamilton/Avnet Electronics Newark	(801)973-6913 (801)972-8489 (801)972-2800 (801)261-5660
UTAH Sait Lake City Arrow/Schweber Electronics . Future Electronics	(801)973-6913 (801)972-8489 (801)972-2800
UTAH Salt Lake City Arrow/Schweber Electronics . Future Electronics Hamilton/Avnet Electronics Newark	(801)973-6913 (801)972-8489 (801)972-2800 (801)261-5660 (801)972-1008
UTAH Salt Lake City Arrow/Schweber Electronics . Future Electronics	(801)973-6913 (801)972-8489 (801)972-2800 (801)261-5660 (801)972-1008 (801)973-8494
UTAH Sait Lake City Arrow/Schweber Electronics Future Electronics Hamilton/Avnet Electronics Newark West Valley City Hall-Mark Electronics Time Electronics Wyle Laboratories Wyle Laboratories WASHINGTON Belleyue	(801)973-6913 (801)972-8489 (801)972-8409 (801)261-5660 (801)972-1008 (801)972-1088 (801)974-9953
UTAH Sait Lake City Arrow/Schweber Electronics . Future Electronics Hamitor/Avnet Electronics Newark West Valley City Hall-Mark Electronics Time Electronics Wyle Laboratories WASHINGTON Bellevue Almac Electronics Corp	(801)973-6913 (801)972-8489 (801)972-8489 (801)972-2800 (801)261-5660 (801)972-1008 (801)973-8494 (801)974-9953 (206)643-9992
UTAH Sait Lake City Arrow/Schweber Electronics Future Electronics Hamilton/Avnet Electronics Newark West Valley City Hall-Mark Electronics Time Electronics Wyle Laboratories Wyle Laboratories WASHINGTON Belleyue	(801)973-6913 (801)972-8489 (801)972-8489 (801)972-2800 (801)261-5660 (801)972-1008 (801)973-8494 (801)974-9953 (206)643-9992 (206)681-8199
UTAH Salt Lake City Arrow/Schweber Electronics Future Electronics Hamilton/Avnet Electronics Newark West Valley City Hail-Mark Electronics Wyle Laboratories WASHINGTON Bellevue Almac Electronics Corp. Hail-Mark Electronics Newark	(801)973-6913 (801)972-8489 (801)972-8489 (801)972-2800 (801)972-1008 (801)973-8494 (801)973-8494 (801)974-9953 (206)643-9992 (206)643-9992 (206)547-0415 (206)641-9800
UTAH Sait Lake City Arrow/Schweber Electronics . Future Electronics . Newark . West Valley City Hail-Mark Electronics . Wyle Laboratories Wyle Laboratories Wyle Laboratories Hail-Mark Electronics Corp Future Electronics Hail-Mark Electronics Newark Richardson Electronics	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-1008 (801)973-8494 (801)974-9953 (206)643-9992 (206)881-8199 (206)547-0415
UTAH Sait Lake City Arrow/Schweber Electronics . Future Electronics Hamilton/Avnet Electronics Newark West Valley City Hall-Mark Electronics Wyle Laboratories Wyle Laboratories WASHINGTON Bellevue Almac Electronics Corp Future Electronics Newark Richardson Electronics Redmond	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-1008 (801)973-8494 (801)973-8494 (801)974-9953 (206)643-9992 (206)643-8992 (206)643-8992 (206)644-8920 (206)646-7224
UTAH Sait Lake City Arrow/Schwebør Electronics . Future Electronics Hamilton/Avmet Electronics Newark West Valley City Hall-Mark Electronics Time Electronics Wyle Laboratories Wyle Laboratories Hall-Mark Electronics Corp Future Electronics Richardson Electronics Richardson Electronics Redmond Hamilton/Avmet Electronics Time Electronics	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-2800 (801)973-8494 (801)973-8494 (801)973-8494 (801)973-8494 (801)974-9953 (206)643-9992 (206)643-9892 (206)645-724 (206)645-724
UTAH Sait Lake City Arrow/Schweber Electronics . Future Electronics . Newark West Valley City Hall-Mark Electronics . Wyle Laboratories Wyle Laboratories Richardson Electronics	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-2800 (801)973-8494 (801)973-8494 (801)973-8494 (801)973-8494 (801)974-9953 (206)643-9992 (206)643-9892 (206)645-724 (206)645-724
UTAH Sait Lake City Arrow/Schwebør Electronics . Future Electronics Hamilton/Avmet Electronics Newark West Valley City Hall-Mark Electronics Time Electronics Wyle Laboratories Wyle Laboratories Hall-Mark Electronics Corp Future Electronics Richardson Electronics Richardson Electronics Redmond Hamilton/Avmet Electronics Time Electronics	(801)973-6913 (801)972-8489 (801)972-8489 (801)972-2800 (801)972-1008 (801)973-8494 (801)973-8494 (801)974-9953 (206)643-9992 (206)643-9992 (206)6481-8199 (206)646-7224 (206)646-7224 (206)620-1525 (206)820-1525 (206)881-1150
UTAH Sait Lake City Arrow/Schweber Electronics Future Electronics Hamilton/Avnet Electronics Newark West Valley City Hail-Mark Electronics Wyle Laboratories WASHINGTON Bellevue Almac Electronics Corp Hall-Mark Electronics Hall-Mark Electronics Richardson Electronics Richardson Electronics Richardson Electronics Richardson Electronics Time Electronics Richardson Electronics Richardson Electronics Wyle Laboratories Wyle Laboratories Wyle Laboratories Wyle Laboratories Wyle Laboratories Wyle Laboratories	(801)973-6913 (801)972-8489 (801)972-8489 (801)972-2800 (801)972-1008 (801)973-8494 (801)973-8494 (801)974-9953 (206)643-9992 (206)643-9992 (206)6481-8199 (206)646-7224 (206)646-7224 (206)620-1525 (206)820-1525 (206)881-1150
UTAH Sait Lake City Arrow/Schweber Electronics Hamilton/Avnet Electronics Newark West Valley City Hall-Mark Electronics Wyle Laboratories Wyle Laboratories Richardson Electronics Spokane Arrow/Almac Electronics Corp. WISCONSIN Brookfield	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-2000 (801)973-8494 (801)974-9953 (206)643-9992 (206)643-9992 (206)643-8800 (206)643-8800 (206)644-820 (206)646-7224 (206)241-8555 (206)820-1525 (206)821-1150 (509)924-9500
UTAH Sait Lake City Arrow/Schweber Electronics . Future Electronics Hamilton/Avnet Electronics Newark West Valley City Hall-Mark Electronics Wyle Laboratories Wyle Laboratories Corp. Future Electronics Corp. Hall-Mark Electronics Newark Richardson Electronics Redmond Hamilton/Avnet Electronics Spokane Arrow/Almac Electronics Corp. Spokane Arrow/Almac Electronics Corp. WISCONSIN Brookfield Arrow/Schweber Electronics	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-2000 (801)973-8494 (801)974-9953 (206)643-9992 (206)643-9992 (206)643-8800 (206)643-8800 (206)644-820 (206)646-7224 (206)241-8555 (206)820-1525 (206)821-1150 (509)924-9500
UTAH Sait Lake City Arrow/Schweber Electronics . Future Electronics . Newark West Valley City Hall-Mark Electronics . Wyle Laboratories Wyle Laboratories Redmond Hamilton/Avnet Electronics Redmond Hamilton/Avnet Electronics Time Electronics Rowark Redmond Hamilton/Avnet Electronics Wyle Laboratories Wisconsin Brookfield Arrow/Schweber Electronics Milwaukee Time Electronics	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-2000 (801)973-8494 (801)974-9953 (206)643-9992 (206)643-9992 (206)643-8800 (206)643-8800 (206)644-820 (206)646-7224 (206)241-8555 (206)820-1525 (206)821-1150 (509)924-9500
UTAH Sait Lake City Arrow/Schweber Electronics Future Electronics Hamitor/Avmet Electronics Newark West Valley City Hall-Mark Electronics Wyle Laboratories WASHINGTON Bellevue Almac Electronics Corp. Hall-Mark Electronics Newark Newark Richardson Electronics Newark Richardson Electronics Time Electronics Spokane Arrow/Almac Electronics Corp. WISCONSIN Brookfield Arrow/Schweber Electronics Milwaukee Time Electronics New Berlin	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-2800 (801)973-8494 (801)973-8494 (801)973-8494 (206)643-8992 (206)643-8992 (206)643-809 (206)646-724 (206)241-8555 (206)881-1150 (509)924-9500 (414)792-0150
UTAH Sait Lake City Arrow/Schweber Electronics . Hamilton/Avnet Electronics . Newark West Valley City Hall-Mark Electronics . Wyle Laboratories Wyle Laboratories Richardson Electronics Richardson Electronics Richardson Electronics Richardson Electronics Richardson Electronics Richardson Electronics Newark Richardson Electronics Richardson Electronics Brookfield Arrow/Schweber Electronics WiSCONSIN Brockfield Arrow/Schweber Electronics New Brockfield Arrow/Schweber Electronics New Brockfield Arrow/Schweber Electronics New Brockfield Arrow/Schweber Electronics Hall-Mark Electronics	(801)973-6913 (801)972-8489 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-1008 (801)973-8494 (801)973-8494 (801)973-8494 (206)643-9992 (206)643-9992 (206)643-9992 (206)641-9800 (206)646-7224 (206)241-8555 (206)820-1525 (206)881-1150 (509)924-9500 (414)792-0150 (708)303-3000
UTAH Sait Lake City Arrow/Schweber Electronics Hamilton/Avnet Electronics Newark West Valley City Hall-Mark Electronics Wyle Laboratories Wyle Laboratories Hall-Mark Electronics Hall-Mark Electronics Redmond Hanilton/Avnet Electronics Wyle Laboratories	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-2800 (801)972-2008 (801)973-8494 (801)973-8494 (206)843-89992 (206)841-8199 (206)841-8199 (206)841-8150 (206)842-1525 (206)881-1150 (509)924-9500 (414)792-0150 (708)303-3000 (414)797-7844
UTAH Sait Lake City Arrow/Schweber Electronics . Future Electronics Hamilton/Avnet Electronics Newark West Valley City Hall-Mark Electronics Wyle Laboratories Wyle Laboratories Redmond Hamilton/Avnet Electronics Richardson Electronics Spokane Arrow/Almac Electronics Corp. WISCONSIN Brookfield Arrow/Schweber Electronics New Berlin Hall-Mark Electronics	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-2800 (801)973-8494 (801)973-8494 (801)973-8494 (801)973-8494 (206)547-0415 (206)541-9800 (206)646-7224 (206)646-7224 (206)646-7224 (206)646-7224 (206)681-1150 (206)881-1150 (509)924-9500 (414)792-0150 (708)303-3000 (414)797-7844 (414)786-1884
UTAH Sait Lake City Arrow/Schweber Electronics . Future Electronics . Newark West Valley City Hall-Mark Electronics . Wyle Laboratories . Wyle Laboratories . Newark Manac Electronics Corp. Hall-Mark Electronics . Redmond Haniltor/Avnet Electronics . Wyle Laboratories . Wyle Laboratories . Wyle Laboratories . Spokane Arrow/Almac Electronics . Milwaukee Time Electronics . Milwaukee Time Electronics . Haniltor/Avnet Electronics . Milwaukee Time Electronics Haniltor/Avnet Electronics Hal-Mark Electronics Kedmond Haniltor/Avnet Electronics Wyle Laboratories Wyle Laboratories Wyle Laboratories Wyle Laboratories Wyle Laboratories Wyle Laboratories	(801)973-6913 (801)972-8489 (801)972-2800 (801)972-2800 (801)972-2800 (801)973-8494 (801)973-8494 (801)973-8494 (206)643-9992 (206)841-8199 (206)647-824 (206)641-9800 (206)646-7224 (206)821-1525 (206)881-1150 (509)924-9500 (414)792-0150 (708)303-3000 (414)797-7844 (414)784-4510

AUTHORIZED DISTRIBUTORS – continued

CANADA

ALBERTA

~ ~1	σa	-
60	ua	

Electro Sonic Inc.	(403)255-9550
Future Electronics	(403)250-5550
Hamilton/Avnet Electronics	(800)663-5500
Edmonton	
Future Electronics	
Hamilton/Avnet Electronics .	(800)663-5500

BRITISH COLUMBIA

UNITED STATES

	DUV	

Arrow Electronics	 (604)421-2333
Electro Sonic Inc.	
Future Electronics	 (604)294-1166

CALIFORNIA, San Diego (619)541-2163

CALIFORNIA, Sunnyvale (408)749-0510

COLORADO, Colorado Springs . (719)599-7497 COLORADO, Denver (303)337-3434

CONNECTICUT, Wallingford ... (203)949-4100 FLORIDA, Maitland (407)628-2636

IDAHO, Boise (208)323-9413

 INDIANA, Indianapolis
 (317)571-0400

 INDIANA, Kokomo
 (317)457-6634

 IOWA, Cedar Rapids
 (319)373-1328

 KANSAS, Kansas City/Mission
 (913)451-8555

 MARYLAND, Columbia
 (410)381-1570

 MASSACHUSETTS, Marborough
 (506)481-8100

 MASSACHUSETTS, Woburn
 (617)932-9700

 MICHIGAN, Detroit
 (313)347-6800

 MINNESOTA, Minnetonka
 (612)932-15700

 MISSOURI, St. Louis
 (314)275-7380

 NEW JERSEY, Fairfield
 (201)808-2400

 NEW YORK, Fairport
 (716)425-4000

OHIO, Dayton (513)495-6800

 OKLAHOMA, Tulsa
 (800)544-9496

 OREGON, Portland
 (503)641-3681

 PENNSYLVANIA, Colmar
 (215)997-1020

 Philadelphia/Horsham
 (215)957-4100

 TENNESSEE, Knoxville
 (51690-553)

FLORIDA, Pompano Beach/

NEW YORK, Poughkeepsie/

ILLINOIS, Chicago/

Hamilton/Avnet Electronics	(604)420-4101
Newark	(800)463-9275

Hamilton/A Newark ...

Winnipeg	
Electro Sonic Inc	(204)783-3105
Future Electronics	(204)786-7711
Hamilton/Avnet Electronics	(800)663-5500

ONTARIO

Unawa	
Arrow Electronics	(613)226-6903
Electro Sonic Inc.	(613)728-8333
Future Electronics	(613)820-8313
Hamilton/Avnet Electronics	(613)226-1700
Toronto	
Arrow Electronics	(416)670-7769

SALES OFFICES

TEXAS, Austin	(512)873-2000
TEXAS, Houston	(800)343-2692
TEXAS, Plano	(214)516-5100
VIRGINIA, Richmond	(804)285-2100
WASHINGTON, Bellevue	(206)454-4160
Seattle Access	(206)622-9960
WISCONSIN, Milwaukee/	
Brookfield	(414)792-0122

Field Applications Engineering Available Through All Sales Offices

CANADA

BRITISH COLUMBIA, Vancouver	(604)293-7650
ONTARIO, Toronto	(416)497-8181
ONTARIO, Ottawa	(613)226-3491
QUEBEC, Montreal	(514)731-6881

INTERNATIONAL

AUSTRALIA, Melbourne (61-3)887-0711
AUSTRALIA, Sydney 61(2)906-3855
BRAZIL, Sao Paulo 55(11)815-4200
CHINA, Beijing
FINLAND, Helsinki 358-0-351 61191
car phone
FRANCE, Paris/Vanves 33(1)40 955 900
GERMANY, Langenhagen/
Hannover
GERMANY, Munich 49 89 92103-0
GERMANY, Nurenberg 49 911 64-3044
GERMANY, Sindelfingen 49 7031 69 910
GERMANY, Wiesbaden 49 611 761921
HONG KONG, Kwai Fong 852-4808333
Tai Po
INDIA, Bangalore (91-812)627094
ISRAEL, Tel Aviv 972(3)753-8222
ITALY, Milan 39(2)82201
JAPAN, Aizu
JAPAN, Atsugi 81(0462)23-0761
JAPAN, Kumagaya 81(0485)26-2600
JAPAN, Kyushu 81(092)771-4212
JAPAN, Mito
JAPAN, Nagoya 81(052)232-1621
JAPAN, Osaka 81(06)305-1801
JAPAN, Sendai
JAPAN, Tachikawa 81(0425)23-6700

Electro Sonic Inc	(416)494-1666
Future Electronics	(416)612-9200
Hamilton/Avnet Electronics	(416)564-6060
Newark	(800)463-9275
Richardson Electronics	(800)348-5530

QUEBEC

Montreal	
Arrow Electronics	. (514)421-7411
Future Electronics	(514)694-7710
Hamilton/Avnet Electronics	(514)335-1000
Newark	(800)463-9275
Richardson Electronics	(800)348-5530
Quebec City	
Future Electronics	(418)877-6666

JAPAN, Tokyo 81(03)3440-3311
JAPAN, Yokohama 81(045)472-2751
KOREA, Pusan 82(51)4635-035
KOREA, Seoul
MALAYSIA, Penang 60(4)374514
MEXICO, Mexico City 52(5)282-2864
MEXICO, Guadalajara 52(36)21-8977
Marketing 52(36)21-9023
Customer Service 52(36)669-9160
NETHERLANDS, Best (31)4998 612 11
PUERTO RICO, San Juan (809)793-2170
SINGAPORE (65)2945438
SPAIN, Madrid 34(1)457-8204
or 34(1)457-8254
SWEDEN, Solna 46(8)734-8800
SWITZERLAND, Geneva 41(22)799 11 11
SWITZERLAND, Zurich 41(1)730-4074
TAIWAN, Taipei 886(2)717-7089
THAILAND, Bangkok (66-2)254-4910
UNITED KINGDOM, Aylesbury 44(296)395-252

FULL LINE REPRESENTATIVES

CALIFORNIA, Loomis	
Galena Technology Group	(916)652-0268
COLORADO, Grand Junction	
Cheryl Lee Whitely	(303)243-9658
KANSAS, Wichita	
Melinda Shores/Kelly Greiving .	(316)838-0190
NEVADA, Reno	
Galena Technology Group	(702)746-0642
NEW MEXICO, Albuquerque	
S&S Technologies, Inc	(505)298-7177
UTAH, Salt Lake City	
Utah Component Sales, inc	(801)561-5099
WASHINGTON, Spokane	
Doug Kenley	(509)924-2322
ARGENTINA, Buenos Aires	
Argonics, S.A.	(541)343-1787

HYBRID/MCM COMPONENT SUPPLIERS

Chip Supply	(407)298-7100
Elmo Semiconductor	(818)768-7400
Minco Technology Labs Inc	(512)834-2022
Semi Dice Inc.	(310)594-4631

SALES OFFICES

INTERNATIONAL MOTOROLA DISTRIBUTOR AND SALES OFFICES

AUTHORIZED DISTRIBUTORS

AUSTRALIA

AVUT I I ALIA	
Veltek Pty Ltd	(61)3 808-7511
VSI Promark Elec. Pty Ltd	(61)2 439-4655
VSI Electronics (NZ) Ltd	(64)9 579-6603

AUSTRIA

EBV	(43) 222 894 1774
Elbatex	(43) 222 86 3211

BENELUX

Diode Belgium	(32) 2 725 4660
Diode Netherlands	(31) 4054 54 30
EBV Belgium	(32) 2 720 9936
EBV Netherlands	(31) 3465 623 53
Rodelco/Lemaire	(32) 2 460 0560
Rodelco Holland	(31) 767 84911

CHINA

China El. App. Corp. Xiamen Co. (86)592 553-487 Nanco Electronics Supply Ltd. . . (852) 333-5121 Qing Cheng Enterprises Ltd. . (852) 493-4202

FRANCE

EBV Elektronik	(33) 1 64 68 86 00
Arrow	(33) 1 49 78 49 78
Scalb	(33) 1 46 87 23 13
Avnet Comp	. (33) 1 49652500

GERMANY

HONG KONG

Nanshing Clr. & Chem. Co. Ltd . (852) 333-5121 Wong's Kong King Semi. Ltd. . (852) 357-8888

INDIA

Canyon Products Ltd (852) 755-2583

CANADA

BRITISH COLUMBIA, Vancouver .	(604)293-7650
ONTARIO, Toronto	(416)497-8181
ONTARIO, Ottawa	(613)226-3491
QUEBEC, Montreal	(514)731-6881

INTERNATIONAL

AUSTRALIA, Melbourne (61-3)887-0711
AUSTRALIA, Sydney 61(2)906-3855
BRAZIL, Sao Paulo 55(11)815-4200
CHINA, Beijing 86-505-2180
CHINA, Guangzhou (86) 20 331-1626
CHINA, Shanghai (86) 21 279-8206
CHINA, Tianjin
FINLAND, Helsinki 358-0-351 61191
car phone
FRANCE, Paris/Vanves 33(1)40 955 900
GERMANY, Langenhagen/
Hannover
GERMANY, Munich 49 89 92103-0
GERMANY, Nurenberg 49 911 64-3044

ITALY

Adelsi SpA	(39) 2 38103100
EBV	(39) 2 66017111
Silverstar SpA	. (39) 2 66 12 51

KOREA

Lite-On Korea Ltd (82)2 858-3853
Lee Ma Industrial Co. Ltd (82)2 739-5257
Jung Kwang Sa (82)51 802-2153

SCANDINAVIA

Field OY	. (35) 80 757 10 11
ITT Multikomponent AB	(46) 8 830 020
Avnet Nortec (S)	(46) 8 705 1800
Avnet Nortec (DK)	(45) 42 842 000
Danelec A/S	(45) 39 690 511
Avnet Nortec (N)	(47) 6 684 210

SINGAPORE

Alexan Commercial	. (63)2 405-952
GEIC	. (65) 298-7633
P.T. Ometraco	(62)22 630-805
Uraco Impex Asia Pte Ltd	(65) 284-0622
Shapiphat Ltd	(66)2 221-5384

SPAIN

EBV	. (34) 1 358 86 08
Selco S.A	. (34) 1 326 42 13

SWITZERLAND

EBV	 (34) 1 740 10 90
Selco S.A.	 (34) 1 326 42 13

TAIWAN

Mercuries & Assoc. Ltd	(886)2 503-1111
Solomon Technology Corp	(886)2 760-5858
Strong Electronics Co. Ltd	(886)2917-9917

UNITED KINGDOM

Avnet/Access	(44) 462 488 500
Arrow	. (44) 234 3472 111
Future	(44) 753 52 1193
Macro	(44) 628 604 383
ESD	(44) 279 44 1144
EBV	(41) 1 740 10 90
Elbatex AG	(41) 56 275 111

SALES OFFICES

GERMANY, Sindelfingen 49 7031 69 910
GERMANY, Wiesbaden 49 611 761921
HONG KONG, Kwai Fong 852-4891111
Tai Po 852-6668333
INDIA, Bangalore (91-812)627094
ISRAEL, Tel Aviv 972(3)753-8222
ITALY, Milan
JAPAN, Aizu
JAPAN, Atsugi 81(0462)23-0761
JAPAN, Kumagaya 81(0485)26-2600
JAPAN, Kyushu 81(092)771-4212
JAPAN, Mito
JAPAN, Nagoya 81(052)232-1621
JAPAN, Osaka 81(06)305-1801
JAPAN, Sendai 81 (22) 268-4333
JAPAN, Tachikawa 81(0425)23-6700
JAPAN, Tokyo 81(03)3440-3311
JAPAN, Yokohama 81(045)472-2751
KOREA, Pusan 82(51)4635-035
KOREA, Seoul

CANADA

ALBERTA

ALDERIA	
Calgary	
Electro Sonic Inc.	(403)255-9550
Future Electronics	(403)250-5550
Hamilton/Avnet Electronics .	(403)236-2484
Edmonton	• •
Future Electronics	(403)438-2858
Hamilton/Avnet Electronics .	(800)663-5500
BRITISH COLUMBIA Vancouver	
Electro Sonic Inc.	(609)273-2911
Future Electronics	
Hamilton/Avnet Electronics	
	(004)420-4101
MANITOBA Winnipeg	
Electro Sonic Inc	(209)783-3105
Future Electronics	(204)786-7711
Hamilton/Avnet Electronics .	(204)942-3992
ONTARIO Ottawa	
Arrow Electronics	(613)226-6903
Electro Sonic Inc.	(613)728-8333
Future Electronics	(613)820-8313
Hamilton/Avnet Electronics	(613)226-1700
	(010)220-1700
Toronto	
Arrow Electronics	(416)670-7769
Electro Sonic Inc.	(416)494-1555
Future Electronics	(416)638-4771
Hamilton/Avnet Electronics .	(416)677-7432
Richardson Electronics	(416)458-5333
QUEBEC Montreal	
Arrow Electronics	(514)421-7411
Future Electronics	(514)694-7710
Hamilton/Avnet Electronics .	(514)335-1000
Quebec City	(014)000 1000
Arrow Electronics	(418)687-4231
Future Electronics	
	(418)682-8092
St. Laurent	
Richardson Electronics	(514)748-1770

MALAYSIA, Penang 60(4)374514
MEXICO, Mexico City 52(5)282-0495
MEXICO, Guadalajara 52(36)21-8977
Marketing 52(36)21-9023
Customer Service 52(36)669-9160
NETHERLANDS, Best (31)4998 612 11
PHILIPPINES, Manila (63)2 822-0625
PUERTO RICO, San Juan (809)793-2170
SINGAPORE (65)2945438
SPAIN, Madrid 34(1)457-8204
or
SWEDEN, Solna
SWITZERLAND, Geneva 41(22)799 11 11
SWITZERLAND, Zurich 41(1)730-4074
THAILAND, Bangkok 66(2)254-4910
TAIWAN, Taipei
UNITED KINGDOM, Aylesbury 44(296)395-252

FULL LINE REPRESENTATIVES

ARGENTINA, Buenos Aires

Argonics, S.A. (541)30-2461

NOTES

NOTES

NOTES

- Selector Guide and Cross Reference
- **2** BiCMOS Fast Static RAMs
- **3 CMOS Fast Static RAMs**
- 4 Application Specific Fast Static RAMs
- 5 Fast Static RAM Modules
- 6 Military Products
- 7 Reliability Information
- 8 Applications Information
- 9 Mechanical Data

ġ

Ultrature Distribution Centers:

USA Motorola Literatura Distribution, PO Box 20912, Phoantx, Anzona 35033

EURORE Motorola Litol., European Literature Centre, 33 Tannars Drive, Bakelands, Milton Kaynes, Mikiki 53P, England JARAN Nippon Motorola Litol., 4462-11, Nisht-Cotanda, Shinagawa-ku, Tokyo 1411 Japan. ASIA-RAOIRE Motorola Semiconductors IIIIK Litol., Silicon I Harbour Center, No. 2 Daviking Street, Tetro Industral Estate,

TED PO. N.T. Hong Kong

