DL408/D
REV 1

>

8-bit MCU
Applications
Manual

lenuepy suonediddy NN 1!(1-8

DL408/D
REV 1

@ MOTOROLA IR

@ MOTOROLA

8-bit MCU
Applications
Manual

All products are sold on Motorola's Terms & Conditions of Supply. In ordering a product d by this d the C agrees
to be bound by those Terms & Conditions and nothing contained in this document constitutes or forms part of a contract (with the ption of
the contents of this Notice). A copy of Motorola's Terms & Conditions of Supply is available on request.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental
dlmam “Typical" parameters can and do vary in diﬂetonl applientions All operating parameters, including “Typicals®, must be validated
for application by s ical t y any license under its patent rights nor the rights of others.
Motorola products are not designed, intended, ormmorizodhmse- ponents in sy i ded for surgical implantinto the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation
where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unimended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distrib h gainst all claims, costs,
damages, and exp and bk y fees arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the
part. Motorolaand@are registered trad ks of M ia, Inc. M la, Inc. is an Equal Opportunity/Affirmative Action Employer.

The Customer should ensure that it has the most up to date version of the d by ing its local M la office. This document
supersedes any earlier documentation relating to the products referred to herein. The information contained in this document is current at the
date of publication. it may subsequently be updated, revised or withdrawn.

Includes literature available at July 1992
All trademarks recognized.

© MOTOROLA INC.
All Rights Reserved
First Edition DL408/D, 1990
DL408/D Rew. 1, 1992
Printed in Great Britain by Tavistock Press (Bedford) Ltd. 5000 8/92

Preface

This compilation of Application Notes, Engineering Bulletins, Design Concepts, etc.
was originally published by the European Literature Centre of Motorola Ltd. in Milton
Keynes, England, and has subsequently gained worldwide acceptance.

Because of the worldwide popularity of the Application Manuals Series it is impor-
tant for the reader to take note of the following:

The various Application Notes, Engineering Bulletins, Design Concepts, etc. which
are included were developed at Design Centres strategically located throughout the
global community and many were originally written to support a'local need. Whilst
the basic concepts of each of the publications included may have broad global
applicability, specific Motorola semiconductor parts may be referred to that are
currently available for limited distribution in a specific region and may only be
supported by the country of origin of the document in which it is referenced.

Also included in the series for completeness and historical significance are
documents that may no longer be available individually because obsolete devices
are referenced or perhaps, simply, the original document is out of print. Such items
are marked in the Table of Contents, Cross Reference, Abstracts and on the first
page of the document with the letters ‘Hr’ to indicate that these documents are
included for Historical Information only.

Allthe Application Notes, Engineering Bulletins, Design Concepts, etc. are included
to enhance the user’'s knowledge and understanding of Motorola’s products.
However, before attempting to design-in adevice referenced in this Series, the user
should contact the local Motorola supplier or sales office to confirm product
availability and if application support is available.

Thank you.

Other books in this series include:

DL409/D Rev. 1

DL410/D
DL411/D
DL412/D
DL413/D
DL414/D

16/32-bit Applications Manual

Power Applications Manual
Communications Application Manual
Industrial Control Applications Manual
Radio, RF and Video Applications Manual
FET Applications Manual

Contents

page
Device Cross Referenceccoevueeeieneieseccievenncnecenennn 9
Abstracts of Applications DOCUMENESccooiririeieninieirerteee et seesess st rs et aeesnesseses e sesseaenne 13
Applications Documents
AN427 MC68HC11 EEPROM Error Correction Algorithms in C 21
AN431 Temperature Measurement and Display Using the MC68HC05B4 and the MC14489 33
AN432 128K byte Addressing with the MEBBHC 11c.cccovirncrcereesceeeenne 49
AN433 TV On-Screen Display Using the MC68HCO5T1 73
AN434 Serial Bootstrap for the RAM and EEPROM1 of the MCEBHCO5B6ccocconueecevevcneccrennene 93
AN436 Error Detection and Correction Routines for M68HCO05 Devices Containing EEPROM........ 105
AN440 MC68HC805B6 and MC68HC705B5 Serial/Parallel Programming Module.................cccc... 117
AN441 MC68HCO05E0 EPROM Emulator 121
AN442 Driving LCDs with MB805 MICIOPrOCESSOISccoveuvreieeiircrtiicmrresieessisessesssiaeseassssessesncns 153
AN446 MCM2814 Gang-Programmer Using an MCB8HCB805B6..............cccceeeevecmreeenierninens 169
AN448 "FLOF” Teletext using M6805 Microcontrollers181
AN452 Using the MC68HC11K4 Memory Mapping Logic 217
AN459 A Monitor for the MC68HCOSEO
AN890 Low Voltage Inhibit (LVI) Capability of the M6805 HMOS Microcomputer Family ¥ 265
AN900 Using the M6805 Family On-Chip 8-Bit A/D Converter . ’ 285
AN940 Telephone Dialling Techniques Using the MCB8O5............ccoeevinriniecincccnmcnicrresesieeneneen 305
AN974 MC68HC11 Floating-Point Package............ccovecveereereincereneencances 323
AN991 Using the Serial Peripheral Interface to Communicate Between Multiple Microcomputers ...365
AN1010 MC68HC11 EEPROM Programming from a Personal CompuLer..............eeceevenreeeereeeccnes 385
AN1050 Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers.............. 399
AN1055 M6805 16-bit Support Macroscceevcvurneniceisenecsnccenniiinens
AN1057 Selecting the Right Microcontroller UNit...........cceeeoreeeivreneinsieseeinicestee e s s sn e stsseennens
AN1058 Reducing A/D Errors in Microcontroller Applications ..
AN1060 MCB8HC11 Bootstrap MOde..........c.ccccuvurecumricuimcenriiieceicr e
AN1064 Use of Stack Simplifies M68BHC11 Programmmg
AN1065 Use of the MC68HC6E8T1 Real-Time Clock with Multiple Time Bases
AN1066 Interfacing the MC68HCO5C5 SIOP to an 12C Peripheralccccccvevcenvcernniniiniceeeenenenees
AN1067 Pulse Generation and Detection with Microcontroller Units
AN1091 Low Skew Clock Drivers and their System Design Considerations............cccocccevercruecereeuneeee
AN1097 Calibration-Free Pressure Sensor System
AN1102 Interfacing Power MOSFETSs to Logic Devices..........cccoceveiencreeccrecnan
AN1120 Basic Servo Loop Motor Control Using the MC68HCO$BS MCU
AN1203 A Software Method for Decoding the Output from the MC14497/MC3373 Combination 643
ANE405 Bi-Directional Data Transfer Between MC68HC11 and MC6805L3 Using SPIM 649
ANE418 MC68HCB805B6 Low-Cost EEPROM Microcomputer Programming Module ¥ 659
ANE420 Monitor Program for the MC68HC05B6 Microcomputer Unit ¥ 661
EB400 Secure Single Chip Microcomputer Manufacture 683
EB401 SCAM Modules for Smart Cardsccceveerierecnenneerceineereseseesssesesseeesesenesssesssessssessencssns 691
EB404 “Memories Are Made of This” ... a Look at Memory Considerations for Smart Card
APPICALIONSeorerecuiieenirreeieies st e res e e ses e seae et st en et st es e e staa e saaeerare st ebesesasnsaseseressanarns 693
EB405 Smart Cards: How to Deal Yourself a Wlnnlng Hand ... 705
EB408 MC68HC705T3 Bootloader 713
Additional Information 723

Device Cross
Reference

Device Cross Reference

This quick-reference list indicates where specific
components are featured in applications documents
reproduced in this Manual.

M68HCO5 ... AN431
... AN436
... AN442
....AN1203

M68HCO5EQAN459

M68HC11AN427

....AN432
...AN1058

AN1060
AN1064

...AN1102

AN1203
AN442

...AN1055

MC68HC05C4

MC68HCO05CS ...
MC68HCO5EQ ...
MC68HCO05J1
MCE8HCO5LS ..o
MC68HCO5SC11cceevune
MC68HC05SC21 ..
MC68HCO5T1 ...
MC68HCO05T7
MC68HC11 ...

....AN431

....AN434

....AN1097
...AN1120

ANE418™
ANE420™

....AN991
....AN1067
....AN1066
....AN441
...AN1067

AN442
EB401

....AN436
....EB401
....AN433
....AN448

...AN974

MC68HC11A8 ... AN1067
MC68HC11A8P1 ..o AN1065
MC68HC11G5 ..o AN432
MC68HC11K4 AN452
MC68HC68T1 ... AN1065
MC68HC705B5 AN440
MC68HC705C8....... AN1067
MC68HC705T3EB408
MC68HCB805B6...............c.coceneee. AN440
AN446
....ANE418"
MC74LS26cccovvriiinee AN1102
MC3373 ... AN1203
MC6805L3ANE405 ™
MC6805SCO1EB401
MC6805SCO03EB401
MC14489AN431
MC14497AN1203
MCB8705P3covviiiiis ANS40
MC68705R3..........ccvveiviciis AN991
MC144115AN441
MC144115PAN442
MC145000AN442
MC145003AN442
MC145004AN442
MCC68HCO5SC11 ... EB400
MCCB8HCO05SC21..........cccceveee EB400
MCM60L256AN441
MCM2814AN446
MPM3004..... ...AN1120
MPX2000AN1097
MTP3055EAN1102
MTP3055EL ... AN1102
PCF8573.......coiiiieiriicninn AN1066

10

Abstracts of
Applications
Documents

11

12

Abstracts

AN427 MC68HC11 EEPROM Error Correction

Algorithms in C

A modified Hamming code is used to correct one-bit
errors and detect two-bit errors in data blocks of upto 11
bits — avoiding the problem of erroneous correction of
two-bit errors. The technique is implemented entirely in
‘C’, and additional functions are provided to program
and read MC68HC11 EEPROM using the encoding/
decoding algorithms.

AN431 Temperature Measurement and Display

Using the MC68HC05B4 and the MC14489

Shows the basic building blocks of atemperature control
system based onthe M68HC05 B-series MCUs. Software
routines provided include Look-Up Table Interpolation,
Binary to BCD Conversion, Degrees C to Degrees F
Conversion, and the basis of a real-time counter/clock.
Uses a thermistor as the sensing element to allow easy
interfacing to the A/D converter of the MC68HC05B4,
but the software principles are easily adapted to other
sensors.

AN432 128K byte Addressing with the M68HC11

The 64K byte direct addressing capability ofthe M68HC 11
family is insufficient for some applications. This note
describes two methods of memory paging — one soft-
ware only, the other hardware plus software —that allow
the MCU to address a 1Mbit EPROM (128K bytes) by
manipulation of the address lings. The two methods
illustrate the concept of paging and the inherent compro-
mises; thetechnique may be expanded to other memory
combinations. Includes full software listings.

AN433 TV On-Screen Display Using the

MC68HCO05T1

The T-series devices in the M68HC05 MCU Family
provide a convenient and cost-effective means of add-
ing On Screen Display capability (OSD) to TVs and
VCRs. The MC68HCO5T1 is atthe centre of the T-series
price/performance range, and is used in this example.
Full software listings are provided for a ROM-efficient
implementation of an 8-row by 16-character display,
including Programme Change, Channel Mode, Auto-
matic Search, Analogues and Channel Name.

AN434 Serial Bootstrap for the RAM and

EEPROM1 of the MC68HCO05B6

The MC68HC05B6 has 256 bytes of on-chip EEPROM,
called EEPROM1, which can be used for non-volatile
data storage. In many applications EEPROM1 stores a
look-uptable or system set-up variables—inthese cases
it is necessary to initialise the memory during system
manufacture. The RAM bootstrap program in the 'B6
mask ROM uses a simple protocol in order to save ROM
space, and cannot accept the S-records that are the
normal assembler output. This note explains how to
convert assembler output to the 'B6 bootstrap format,
and how to bootstrap data into EEPROM1.

13

AN436 Error Detection and Correction Routines
for M68HCO05 Devices COg taining EEPROM

Applications based on M68BHC05 MCUs increasingly
require large amounts of critical data to be stored in the
on-chip EEPROM. This note describes '"HCOS software
routines which allow stored data to be encoded so that
single bit errors in retreived data may be corrected, and
two bit errors detected. The routines use a simple Linear
Block Code (Hamming Code) for encoding the stored
data. They were written originally for the MC68HCO05-
SC21 Smart Card MPU, but can be modified easily to run
on any 'HC05 MCU with EEPROM.

AN440 MC68HC805B6 and MC68HC705B5
Serial/Parallel Programming Module

The MC68HCO5B serial/parallel programmer module
allows the user to program MC68HC805B6 and
MC68HC705B5 MCUs. This note describes its various
operating modes, and gives details of its construction
and use. includes circuit diagram and parts list.

AN441 MC68HCO5EO0 EPROM Emulator

Unlike other members of the M6805 family, the
MC68HCOSEO has no on-chip ROM but can address a
full 64K bytes of external memory; the external memory
may be ROM, EPROM, RAM and/or additional hard-
ware. This EPROM emulator illustrates a typical use of
this type of MCU; it includes a keyboard, LCD, serial
communication and 64K of paged RAM. It can replace
with RAM the program ROM or EPROM in a target
system through a cable connection to the system’s
EPROM socket, and can be used to debug and modify
the target system software. Includes an assembled
listing of the emulator control program.

AN442 Driving LCDs with M6805
Microprocessors

The MC68HCOSL series of MCUs include circuitry for
direct LCD drive. Other MCUs in the M6805 and
M68HCO05 families have a variety of I/O and display drive
capabilities. This comprehensive note describes alter-
native LCD drive arrangements for applications with
different numbers of backplanes and display drive capa-
bilities, including software-based and display driver chip
solutions. Circuits and software listings are provided.
The techniques apply equally to other MCU families
such as the M6801 and M68HC11.

AN446 MCM2814 Gang-Programmer Using an
MC68HC8058B6

Non-volatile memories (NVM) such as the MCM2814
are widely used in consumer equipment such as tele-
vision receivers to store semi-permanent, user-defined
information. They may also contain data such as optimum
sound and picture settings. Inaproduction environment,
the initial loading of this data can be achieved quickly by
copying an existing NVM. This note describes a prog-
rammer based on an MC68HC805B6 which in four

Abstracts (continued)

seconds can fully program eight MCM2814s in parallel
and verify them individually.

AN448 “FLOF” Teletext using M6805

Microcontrollers

The “-T” members of Motorola’s M68HC05 MCU family
provide a cost-effective method of adding On Screen
Display (OSD)to TVs and VCRs. This note describes an
example of Full Level One Feature (FLOF) Teletext
control software written for the MC68HCO5T7 to control
type 5243 Teletext chips. Around 3K bytes of ROM are
used, allowing the code to fit with tuning, OSD and
stereofunctions into the 7.9K bytes ofthe MC68HC05T7.
The example software includes the Spanish implemen-
tation of Packet 26; Packet 26 allows for the substitution
of specific characters for a particular country.

AN452 Using the MC68HC11K4 Memory

Mapping Logic

The MC68HGC11K4 includes memory expansion logic
which allows the 64 KByte addressing range of the
M68HC11 CPU to be extended to more than 1 MByte.
This note discusses the operation of this logic and
provides examples of memory maps and possible hard-
ware configurations.

AN459 A Monitor for the MC68HCO5EQ

Development systems for single-chip MCUs can be
complex and relatively expensive. This can dissuade
potential users from designing them into new applica-
tions. This note describes a simple “entry level” devel-
opment system suitable for debugging hardware and
software for the M6805 family of microprocessors. In-
cludes full descriptions, circuit diagram and a listing of
the monitor software.

AN890 Low Voltage Inhibit (LVI) Capability

of the M6805 HMOS Microcomputer (MCU)

Family HI
The LVI option provides a cost effective means for the
MCU to sense a drop in supply voltage and then shut
itself down in well-defined manner. Because the option
does not require any additional external parts it provides
an overall product cost reduction. The LVI option is
provided at the time of manufacture by on-chip circuitry
contained in part of the user's ROM pattern. This
application note includes an LVI schematic diagram as
well as alisting of the monitor and self-check programs.

AN900 Using the M6805 Family On-Chip 8-Bit A/

D Converter

Factors which should be considered when using on-chip
analog-to-digital (A/D) converters are covered. The
pertinent circuit elements and terminology are defined
and a self-test hardware/software technique is illus-
trated. An example on how to manipulate the converted
analog data from a temperature sensor is given. It is
intended for the digital designer with little or no program-
ming experience.

14

AN940 Telephone Dialling Techniques Using the
MC6805

Intelligent telephones are increasing in popularity —
MCUs from the versatile M6805 family make ideal
controllers. This demonstration board, based on an
MC68705P3 single-chip MCU, shows two cost-effective
methods of DTMF and pulse-type dialling. Full hardware
schematic and software listings included.

AN974 MCG68HC11 Floating-Point Package

While most MC68HC11 applications canbe implemented
using 16-bit integer precision, certain algorithms may be
difficult or impossible without floating-point. This appli-
cation note details an efficient floating-point package
that includes basic trig functions and square root in
addition to add, subtract, multiply and divide. It requires
just over 2k bytes of memory, with only 10 bytes of page
zero RAM in addition to stack RAM.

AN991 Using the Serial Peripheral Interface to
Communicate Between Multiple
Microcomputers

Communication between multiple processors can be
difficult when different types are used. One solution is
the SPI, an interface intended for communication bet-
ween ICs on the same board. It can be implemented in
software, allowing communication between two MCUs
where one has SPI hardware and the other does not.
Costly expansion buses and UARTs are eliminated.
Theschemeisillustrated with atemperature/time display
circuit using an MC68HC05C4 and an MC68705R3.

AN1010 MC68HC11 EEPROM Programming from
a Personal Computer

Describes a simple and reliable method of programming
the MC68HC11's internal EEPROM (or EEPROM con-
nected to its external bus) by downloading data in
Motorola S-record format from a standard personal
computer (PC) fitted with a serial communications port.
Includes BASIC program for the PC (to Program Exter-
nal EEPROM/RAM, Program Internal EEPROM, or Verify
internal or External EEPROM/RAM) and the source
listing of MC68HC11 code for downloading to RAM to
receive S records.

AN1050 Designing for Electromagnetic
Compatiblility (EMC) with HCMOS
Microcontrollers

As the operating speeds of the latest HCMOS devices
increase, the MCU system designer must take more
account of the electromagnetic compatibility (EMC) of
the finished product. This discussion relates mainly to
emission control, but most of the techniques also reduce
electromagnetic susceptibility. Subjects include Legal
Requirements, RF| Problems, types of radiation, Supply
Decoupling, Grounding Techniques and PCB Layouts.
Incorporates an’ article reprint from EMC Technology
describing an EMI/RFI diagnostic probe.

Abstracts (continued)

AN1055 M6805 16-bit Support Macros

MCUs from the M6805 family are usually chosen for
applications requiring small program memory and iow
computing power, where their low cost is an important
benefit. However they may also be used in more
advanced applications by employing the advanced soft-
ware techniques described here. The examples are
suitable for ‘black box’ operation (they may be used
without knowing how they work) and consist of macros
and subroutines that support pseudo registers on the
'6805, simulating registers and addressing modes avail-
able on the M6BHC11.

AN1057 Selecting the Right Microcontroller Unit

Selacting the proper MCU for an application is one of the
critical decisions which can control the success orfailure
of the project. There are numerous criteria to consider;
many of them are presented here along with the thought
processes guiding their selection. The reader should
attach an appropriate grading scale before evaluating
the total and making the correct decision.

AN1058 Reducing A/D Errors in Microcontroller

Applications

The MCU with integrated Analogue to Digital Converter
provides a highly cost-effective solution for many mixed
analogue/digital applications. However, combining a
wide bandwidth ADC system on the same die as a high-
speed CPU can lead to noise problems in the analogue
measurements. This comprehensive note lays down
basic system guidelines for the design phase of an
MCU-based product, to avoid ADC problems. Includes
an examination of a real-world system.

AN1060 MC68HC11 Bootstrap Mode

The M68HC11 Bootstrap Mode allows auser program to
be loaded into internal RAM through the Serial Commu-
nications Interface (SCI). In addition to operating nor-
mally, this program can do anything a factory test
program can do since the protected control bits become
accessible; Expanded Mode resources are available
because the controlbits canbe changed by the bootstrap
program. Although the basic concepts are simple, some
subtle implications of this mode need careful considera-
tion, both to avoid problems and to find useful applica-
tions. Includes commented istings forselected M68HC 11
bootstrap ROMs.

AN1064 Use of Stack Simplifies M68HC11

Programming

Architectural extensions to the M6800 family built in to
the MC68HC11 allow easy manipulation of data on the
stack. The CPU uses the stack for subroutine and
interrupt return addresses. This note discusses two
additional uses — the storage of local variables and
subroutine parameter passing — that can simplify pro-
gramming and debugging. It describes the basic opera-
tion of the MCE8HC11 stack, the concept of local and

15

global variables, subroutine parameter passing, and the
use of the instruction set to achieve the additional uses.
Includes example listings illustrating the techniques.

AN1065 Use of the MC68HC68T1 Real-Time Clock
with Multiple Time Bases

The MC68HC68T1 Real Time Clock plus RAM can use
a crystal or the 50/60Hz line frequency as its timebase;
a Serial Peripheral Interface is provided for communica-
tion with a microcomputer. Applications are often line
powered during normal operation, using the line fre-
quency as timebase, but must continue to maintain the
correct time of day froma crystal source when mains
power is lost. The MC68HC68T1 is not capable of
switching between the two frequency sources directly,
and additional support by the MCU is necessary. This
note describes the necessary hardware and software,
based on an MC68HC11A8P1 MCU.

AN1066 Interfacing the MC68HCO5CS5 SIOP to an
12C Peripheral

A standard MCU may not have all the peripherals
required in a system on chip. The problem canbe solved
by interfacing the MCU to off-chip peripherals, ideally
using a synchronous serial communication port. Unfor-
tunately these peripherals may not have an interface
that is compatible with Motorola’s simple synchronous
Serial I/O Port (SIOP). This note describes how the
SIOP on the MC68HCO05CS5 can be interfaced to an 12C
peripheral, in this case the PCF8573 Clock/Timer. In-
cludes circuit and software listings for a timer/calendar
application that can interface with a terminal.

AN1067 Pulse Generation and Detection with
Microcontroller Units

MCUs are often required to generate timed output
pulses, and to detect and measure input pulses. Output
pulses might strobe a display latch, transmit a code or
meter an action in a process control system. Input
pulses can range from microseconds to hours, and
include detecting pushbutton closures, receiving codes
or measuring engine rotation. This note describes
various methods of generation and detection using
several families of Motorola MCUs with differing timer
structures. Includes program listings.

AN1091 Low Skew Clock Drivers and thelr
System Design Considerations

With microprocessor-based systems now running at
33MHz and beyond, low-skew clock drivers have be-
come essential — Motorola produces several devices
with less than 1ns skew between outputs. Unfortu-
nately, simply plugging one of these high performance
clock drivers into a board does not guarantee trouble-
free operation. Careful board layout and system noise
considerations must also be taken into account.

Abstracts (continued)

AN1097 Calibration-Free Pressure Sensor

System

The MPX2000 Series of pressure transducers give an
output signal proportional to applied pressure. They are
available as both ported and unported assemblies for
pressure, vacuum and differential measurement. By
using the on-chip A/D converter of the MC68HCO5B6
MCU, an accurate, reliable and versatile pressure
measurement system can be designed which needs no
external calibration.

AN1102 Interfacing Power MOSFETs to Logic

Devices

Most popular power MOSFETs need 10 volts of gate
drive to support their maximum drain current. This
creates problems when attempting to drive from 5 volt
logic. The new Logic Level power MOSFETs solve
some but not all of the problems. This note discusses
easy methods of directly interfacing both types of
MOSFET to TTL and CMOS logic, and to microproces-
sors such as the M68BHC11. Discusses a method of
calculating switching times, to minimise switching losses,
and stresses the significance of logic power supply
variations.

AN1120 Basic Servo Loop Motor Control Using

the MC68HC05B6 MCU

A Proportional Derivative (PD) closed-loop speed con-
trol for a brush motor can be created using four inte-
grated circuits, two opto discretes and less than 200
bytes of code. The use of an MCU in feedback control
systems is increasingly commonplace. It is justified
when system flexibility is needed, for example to accom-
modate varying drive motors or to allow wear param-
eters to be stored in EEPROM. This design is based on
an MC68HC05B6 MCU and an MPM3004 power
MOSFET H-bridge.

AN1203 A Software Method for Decoding the

Output from the MC14497/MC3373 Combination

Infrared communication is now widely used as a simple
and effective means of remote control over short dis-
tances. A variety of encoding methods is used, including
the biphase scheme implemented by the MC14497, a
complete building block for IR data transmission. The
MC3373 is a companion receiver chip to the MC14497,
providing front-end processing to interface a photo de-
tectorto a TTL level. This note describes, with software
listings for the MC68HC11 and the MCE68HCO5, the
decoding of the data at the output of the MC3373.

ANE405 Bi-Directional Data Transfer Between

MC68HC11 and MC6805L3 Using SPI HI

The powerful Serial Peripheral Interface available on
many Motorola MCUs is implemented in 2 forms (the
HCMOS families support only Level 1, Level 2 is imple-
mented only on HMOS processors). Both levels commu-
nicate easily with each other, but Level 2 has additional

16

capabilities including asynchronous communication. This
note describes a method of achieving synchronous
communication between levels 1and 2, and explainsthe
on-chip differances in SPI implementation.

ANE418 MC68HC805B6 Low-Cost EEPROM
Microcomputer Programming Module HI

The EEPROM/feature of the MC68HC805B6 microcom-
puter enables the user to emulate the MC68HC05B6
and the MC68HC05B4. This note describes one pro-
gramming technique for the MC68HC805B6 internal
EEPROM, and describes the design of the simple pro-
gramming module required.

ANE420 Monitor Program for the
MC68HC05B6 Microcomputer Unit HI

A monitor program is available in the mask ROM of a
68HC05B6 MCU (XC68HCO05B6FN MONITOR) which
allows the user to write and debug small portions of
68HCO05B6 code. ltis used in conjuction with a monitor
circuit module, +5V power supply and RS-232 terminal.
This note includes a description of the facilities available
from the software, a circuit diagram of the module and a
listing of the monitor code.

EB400 Secure Single Chip Microcomputer
Manufacture

Security is the fundamental requirement in designing
and manufacturing Smart Card MCUs. This Bulletin
summarises the purpose and history of Smart Cards,
and explains some of the problems of testing devices
after manufacture without prejudicing security. The
manufacturing process is necessarily different to that of
‘normal’ MCUs.

EB401 SCAM Modules for Smart Cards

Motorola’s SCAM range of assembly modules consists
of the Smart Card product family packaged for insertion
in ISO standard plastic cards. This Bulletin lists the
planned devices and shows the IS7816/2 contact dimen-
sions, locations and connections. All devices conform
to all relevant ISO standards.

EB404 “Memories Are Made of This” ...
a Look at Memory Conslderations for
Smart Card Applications

A Smart Card application typically uses many millions of
units per year, so unit cost is crucial to its success. This
paper discusses some of the issues concerning. memory
size and type — and their effect on the specification and
cost of secure microcomputers — with particular refer-
ence to physical size. (11pp)

EB405 Smart Cards: How to Deal Yourself a
Winning Hand

An overview of the current Smart Card market and the

various types of product on offer. It looks at ways of
determining what features must be provided by a suc-

Abstracts (continued)

cessful Smart Card implementation in a given applica-
tion. Because of the high production volumes, it is
essential to choose the optimum product, and to ask the
right questions at the start.

EB408 MC68HC705T3 Bootloader

This bootloader for the MC68HC705T3 has four switch-
selected modes of operation. In addition to program-
ming and verifying the internal EPROM from an external
EPROM, it is also possible to load and execute a
program in RAM locations $0100-$01FF. A handshake
facility is included to allow the external EPROM to be
replaced by an intelligent data source and to provide a
limited debug capability. Includes circuit diagram and
software listing.

17

18

Applications
Documents

19

20

AN427

MC68HC11 EEPROM Error Correction

Algorithms in C

By Richard Soja
Motorola Ltd
East Kilbride
Glasgow

INTRODUCTION

This application note describes a technique for correcting
one bit errors, and detecting two bit errors, in a block of data
ranging from 1 to 11 bits in length. The technique applied is
a modified version of a Hamming code, and has been
implemented entirely in C. Additional functions have been
provided to program and read the EEPROM on an
MC68HC11 microcontroller unit using the error encoding
and decoding algorithms.

ENCODING AND DECODING ALGORITHMS

Some texts [1], [2] describe the use of simultaneous equa-
tions to calculate check bits in Hamming distance-3 error
correcting codes. These codes are so named because there
are at least 3 bit differences between each valid code in the
set of available codes. The codes are relatively easy to
generate and can be used to correct one bit errors. However,
their main drawback is that if two bit errors occur, then the
correction will be made erroneously. This is because the
condition of two bit errors corresponds exactly with a one bit
error from another valid code.

The technique described here is based on an algorithmic
strategy which produces Hamming distance-4 codes over
the range of 1 to 11 data bits. This type of code is capable of
correcting single bit errors and detecting 2 bit errors.

Alternatively, if the errors are only to be detected, without
correction, then up to 3 bit errors can be detected. The
reason for this is that the condition of a 3 bit error in one code
corresponds to a one bit error from an adjacent valid code.
The implication of this is that, if the algorithms are used to
correct errors, then a 3 bit error will be corrected errone-
ously, and flagged as a 1 bit error.

21

The C program is divided into 3 modules, plus one header
file:

1. EECOR1.C

This is the main program segment, and serves only to
illustrate the method of calling and checking the
algorithms.

2. HAMMING.C
This module contains the functions which encode and
decode the data.

3. EEPROG.C
This module contains the EEPROM programming
functions tailored for an MC68HC11 MCU.

4. HC11REG.H

This is the header file which contains the MC68HC11 I/O
register names, defined as a C structure.

IMPLEMENTATION OF ERROR CORRECTION
STRATEGY

The basic principle of decoding the error correcting codes is
to use a Parity check matrix, H, to generate a syndrome word
which identifies the error. The H matrix can be generated as
follows:

1. Identify how many data bits are needed. For example: 8
data bits

2. Use the standard equation to derive the number of check
bits required: If k is the number of check bits, and m the
number of data bits, then for the Hamming bound to be
satisfied:

2*2m+k+1

A simple way to understand why this equation holds true
is as follows: If one can generate a check code which is
able to identify where a single error occurs in a bit stream,
then the check code must have at least the same number
of unique combinations as there are bits in the bit stream,
plus 1 extra combination to indicate that no error has
occurred. e.g. if the total number of data plus check bits
were 7, then the check code must consist of 3 bits, to
cover the range 1 to 7 plus one extra (0) to indicate no
error at all.

In this example, if m=8 then, by rearranging the above
equation:

2%-k-1>=8

One way to solve for k is to just select values of k starting
at say, 1 and evaluating until the bound is reached. This
method is implemented algorithmically in function InitEn-
code() in module HAMMING.C

Form=8, the solutionis k=4. Note that this value exceeds
the Hamming bound, which means that additional data
bits can be added to the bit stream, thus increasing the
efficiency of the code. In fact, the maximum number of
data bits is 11 in this case.

3. A Parity matrix, H is created from a ‘horizontally orien-
tated’ binary table.The number of columns (b1 to b12) in
the matrix correspond to the total number of data and
check bits, and the number of rows (r1 to r4) to the
number of check bits.

i.e. bl b2 b3 b4 b5 b6 b7 b8 b9 bl0Obllbl2
rl 1 0 1 o0 1 01 0 1 O 1 O

01 1 0 0 1 1 0 O 1 1 O
6 0o 01 1 11 0 o0 O 0 1
6 0 o 0 0 0 0 1 1 1 1 1

Because the H matrix in this form, is simply a truncated
4 bit binary table, it can easily be generated algorithmi-
cally.

4. The position of all the check bits (C1 to C4) within the
encoded word is the position of the single 1s in the
columns of H. The remaining bits correspond to the data
bits (D1 to D8).

i.e. C1 C2 D1 C3 D2 D3 D4 C4 D5 Dé D7 D8
1 0 1 0 1 0 1 0 1 0 1 O
o 1 1 0 0 1 1 0 0o 1 1 O
0o 0 01 1 1 1 0 o O O 1
o o o 0o 000 1 1 1 1 1

5. Each check bit is generated by taking each row of H in
turn, and modulo-2 adding all bits with a 1 in them except
the check bit positions.

22

C1=D1+D2+D4+D5+D7
C2=D1+D3+D4+D6+D7
C3=D2+D3+D4+D8
C4=D5+D6+D7+D8

i.e.

6. The syndrome, s, is the binary weighted value of all check
‘bits.

i.e. 8=1*C1+2*C2+4*C3+8*C4

7. Theerror position (i.e. column) is determined by the value
of the syndrome word, provided it is not zero. A zero
syndrome means no error has occurred. Note that this
error correction technique can correct errors in either
data or check bits - which is not necessarily the case with
certain other error correction strategies.

The advantage of this method, where the check bits are
interspersed in a binary manner throughout the code
word, is that the error position can be calculated algo-
rithmically.

An important point to note is that the parity check matrix
described above generates Hamming distance-3 codes,
which means that 2 errors will cause erroneous correc-
tion. This can be fixed by adding an extra parity check bit,
C5, which is the modulo-2 addition of all data and check
bits together.

i.e.C5=C1+C2+D1+C3+D2+D3+D4+C4+D5+D6+D7+D8
The code word then becomes:
Cl C2 D1 C3 D2 D3 D4 C4 D5 D6 D7 D8 C5
To determine if an uncorrectable error has occurred (i.e.
2 errors) in the received word, the extra parity bit is
tested. If the syndrome is non-zero and the parity bit is
wrong, then a correctable error has occurred. If the syn-

drome is non-zero and the parity bit is correct, then an
uncorrectable error has occurred.

EFFICIENCY

The following table lists the relative efficiencies of this
algorithm, against data size.

Data bits Encoded bits Efficiency %
1 4 25
2 6 33
3 7 43
4 8 50
5 10 50
6 " 55
7 12 58
8 13 62
9 14 64

10 15 67
1 16 69

The implementation of the above techniques are given in
the module HAMMING.C.

In order to maintain orthogonality in the EEPROM algo-
rithms, the encoded data used by the functionsin module
EEPROG.C are forced to either 1 byte or 2 byte (word)
sizes. This also eliminates the complexities of packing
and unpacking data in partially filled bytes.

CONCLUSIONS

In this application note, the encoding algorithm’s genera-
tor matrix is the same as the parity check matrix.

The C functions <read> and <write> in the module
HAMMING.C return a status value - 0, 1 or 2 - which
indicates whether the data has no errors, 1 corrected
error, or 2 erroneously corrected errors. This means that
if the status value is 0 or 1, then the data can be assumed
good. If the status value is 2, then the data will be bad.

Alternatively the functions can be used for error detection
only, without correction. In this case, a status value of 1
corresponds tb.either 1 or 3 biterrors, while a status value
of 2 indicates that 2 bit errors have occurred.

By using the C functions listed in this application note, the
encoded data size can easily be changed dynamically. To
do this, the function <InitEncode> must be called with

23

il

(2}

the required new data size. The global variables used by
all the encoding, decoding and EEPROM programming
and reading functions are automatically updated. This
allows the encoding and error correction process to be
virtually transparent to the user. in addition, the functions
<write> and <read> will automatically increment the
address pointer by the correct encoded data size set up
by <InitEncode>. This simplifies the structure of loops to
program and read back data. Example code is provided in
module EECOR1.C.

The encoding and decoding algorithms listed here may
be applied to other forms of data, such as that used in
serial communications, or for parallel data transfers.

By incorporating the error correction or detection-only
schemes described in this application note, the integrity
of data storage and transfer can be greatly improved. The
impact on EEPROM usage is to increase its effective re-
liability and extend its useful life beyond the manufactur-
ers’ guaranteed specifications.

REFERENCES

Carlson, ‘Communication Systems’, Chapter 9,
McGraw-Hill.

Harman, ‘Principles of the Statistical Theory of Commu-
nication’, Chapter 5, McGraw-Hill

MODULE EECOR1.C
Tests EEPROM error detection ﬁsing a modified hamming encoding scheme.

typedef unsigned char byte;
typedef unsigned int word;

i

/* Global variables used by main() */
byte *ee_addr, *start_addr, *end addr, i,Error;
word data;

/**ﬁ******************t**/

/* External global variables */

extern byte CodeSize; /* = number of bits in encoded data */
/* External Functions. */
extern byte read{word *data,byte **addr); /* Function returns error status */
extern byte write (word data,byte **addr); VAR
/* Table of Status returned by read and write functions
‘Returned Status Condition
o] . . No errors detected or corrected.
1 One error detected and corrected.
2 Two errors detected, but correction is erroneous.
Notes: S

1/ When the returned value is 2, the function <read> will returned a bad value in variable
<data> due to the inability to correctly correct two errors. <read> also automatically increments
the address pointer passed to it, to the next memory space. The incremented value takes into
account the actual size of the encoded data. i.e. either 1 or 2 byte increment.

2/ Function <write> also performs a read to update and return an error status. This gives an
immediate indication of whether the write was successful. <write> also automatically increments
the address pointer passed to it, to the next free memory space. The incremented value takes into
account the actual size of the encoded data. i.e. either 1 or 2 byte increment.

*/

/*************t************************i**R********t***tk***********t*******/

int main()
{
CodeSize=InitEncode(11); /* Get code size (less 1) needed */
/* by 11 data bits */
ee_addr=(byte *)0xb600; /* Initialise EEPROM start address */
for (i=1;i<=0x10;i++) /* and ‘erase’ EEPROM */
Error=write (0x7£ff, éee_addr) ; /* Function successful if Error<>2 */
ee_addr=(byte *)0xb600; /* Reset EEPROM address */
Error=write (0x5aa, &ee_addr) ; /* Write Ox5aa & increment ee_addr */
Error=write (0x255, &ee_addr) ; /* Write 0x255 at next available address */
CodeSize=InitEncode (4); /* Change number of data bits to 4 *x/
start_addr=ee_addr; /* Save start address for this data */
for (i=1;i<0x10; i<<=1) /* Program ‘walking ls’ */
Error=write (i, &ee_addr) ;
end addr=ee_ addr; /* Save end address */
ee_addr=start_addr;
while (ee_addr<end addr) /* Read back all the 4 bit data */
Error=read (&data, &ee_addr)y /* <data> good if Error=0 or 1 */

} /* main */

24

MODULE HAMMING.C

/*Modules to Generate hamming codes of distance 4, for data sizes in the range 1 bit to 11 bits.
The upper bound is limited by the encoded word type bit range (16 bits).

Corrects 1 bit error in any position (check or data), and detects 2 bit errors in any position.

After execution of the <Decode> function, the global variable <ErrFlag> is updated to indicate
level of error correction.

i.e. ErrFlag Condition
0 No errors detected or corrected.
1 One error detected and corrected.
2 Two errors detected, but correction is erroneous.

Note that when ErrFlag is 2, function <Decode> will return a bad value, due to its inability to
correctly correct two errors.

*/

#define TRUE 1

#define FALSE 0

typedef unsigned char byte;
typedef unsigned int word;

byte DataSize,CodeSize,EncodedWord, ErrFlag;

/* Function prototypes */

byte OddParity(word Code);

word Power2 (byte e);

byte InitEncode (byte DataLength);
word MakeCheck (word Data);

word Encode (word Data);

word Decode (word Code) ;

byte OddParity (Code)

word Code;

/*

Returns TRUE if Code is odd parity, otherwise returns FALSE
*/

{
byte p;

p=TRUE;

while (Code!=0)

{
if (Code & 1) p=!p;
Code>>=1;

}

return(p) ;

}

word Power2 (e)
byte e;

/*

Returns 2%e
*/

{
word P2;
signed char i;

P2=1;

if ((signed char) (e)<0)
return(0) ;

else

25

for (i=1;i<=(signed char) (e);i++)
P2<<=1;"
return (P2) ;
}
}

byte InitEncode(Datalength)
byte DataLength;

/*

Returns the minimum number of total bits needed to provide

Hamming distance 3 codes from a data size defined by passed

variable <DatalLength>. This value also updates global: variable <DataSize>.
i.e. finds the minimum solution of (k+m) for the inequality:

2%k 2k +m+ 1

In addition, updates global variable <EncodedSize> to reflect number of bytes

per encoded data. <EncodedSize> will be either 0 or 1.
*/

byte Checklength,i;

DataSize=Datalength; /* DataSize used by other functions in this module */

CheckLength=1;
while ((Power2 (CheckLength)-CheckLength-1)<Datalength)
ChecklLength++;
i=CheckLength+DataLength;
EncodedWord=i / 8; /* =0 if byte sized, =1 if word sized */

return (ChecklLength+DataLength) ;
}

word MakeCheck (Data)
word Data;
/%
Returns a check word for Data, based on global variables <DataSize>
and <CheckSize>. The H parity matrix is generated by a simple for loop.
*/

{
byte i,H,CheckSize,CheckValue, Check,CheckMask;
word DataMask;

Check=0;
CheckMask=1;
CheckSize=CodeSize-DataSize;
for (i=1;i<=CheckSize;i++)
{
CheckValue=FALSE;
DataMask=1;
for (H=1;H<=CodeSize;H++)
{
if ((0x8000 % H)!=0) /* Column with single bit set R 7
{ .
if ((H & CheckMask) !=0)
CheckValue”=((DataMask & Data) !=0);
DataMask<<=1;
}
}
if (CheckValue) Check|=CheckMask;
CheckMask<<=1;
}
return (Check) ;
}

26

word Encode (Data)

word Data;

/*

Returns an encoded word, consisting of the check bits
concatenated on to the most significant bit of <Data>.

A single odd parity bit is concatenated on to the Encoded word to
increase the hamming bound from 3 to 4, and provide 2 bit error
detection as well as 1 bit correction.

Uses global variables <Datasize> and <CodeSize> to determine the
concatenating positions.

*/

word Code;

Code=Data | (MakeCheck (Data)<<DataSize);
if (OddParity (Code))
Code | =Power?2 (CodeSize) ;
return (Code) ;
}

word Decode (Code)

word Code;

/*

Returns the error corrected data word, decoded from <Code>.

Uses global variable <DataSize> to determine position of the
check bits in <Code>.

Updates global variable <ErrFlag> to indicate error status i.e.:

ErrFlag Status
0 No errors found
1 Single error corrected
2 Double error - invalid correction

*/

{
word ParityBit,Data,Check,ErrorCheck, Syndrome, DataMask;

byte DataPos,CheckSize,CheckPos,H,DataBit;

ErrFlag=0;

ParityBit=Code & Power2 (CodeSize); /* Extract parity bit.
DataMask=Power2 (DataSize)-1; /* Make data mask */
Data=Code & DataMask; /* Extract data bits.
CheckSize=CodeSize-DataSize; /* Extract check bits,

Check=(Code>>DataSize) & (Power2 (CheckSize)-1); /* ignoring parity.
ErrorCheck=MakeCheck (Data) ;

Syndrome=Check “ ErrorCheck; /* Get bit position of error.

if (Syndrome>0) ErrFlag++; /* Increment flag if error exists.
H=0;

DataPos=0;

CheckPos=DataSize;
DataBit=TRUE;

while ((H!=Syndrome) & (DataPos<DataSize)) /* Identify which data or
{
H++; . /* code bit is in error.
DataBit=(0x8000 % H);
if (DataBit) DataPos++;
else CheckPos++;
}
if (DataBit) Code”=Power?2 (DataPos-1);
else Code"=Power?2 (CheckPos-1) ;
Code|=ParityBit;
if (OddParity(Code)) ErrFlag++;
return (Code & DataMask);

27

*/
*/
*/
*/

*/
*/

*/
*/

MODULE EEPROG.C
/*Module to program MC68HC11 EEPROM.

Contains <read> and <wrjite> functions to encode and decode data
formatted by modified hamming scheme.

*/

#include <HC11lREG.H>
#define regbase (*(struct HC11IO *) 0x1000)

#define eras 0x16
#define writ 0x02
typedef unsigned char byte;
typedef unsigned int word;

union twobytes

{

word w;

byte b[2]; /* Word stored as MSB,LSB

} udata;
extern byte EncodedWord,ErrFlag;
/* Function prototypes */

extern word Encode (word Data) ;
extern word Decode (word Code) ;

void delay(word count);

void eeprog(byte val,byte byt,byte *addr,word count);
void program(byte byt,byte *addr);

byte read(word *data,byte **addr);

byte write (word data,byte **addr);

void delay (count)
word count;

{

regbase.TOCl=regbase.TCNT+count; /* Set timeout period on OCl and
regbase.TFLG1=0x80; /* clear any pending OCl flag.
do;while ((regbase.TFLGl & 0x80)==0); /* Wait for timeout flag.

}

void eeprog(val,byt,addr, count)

byte val; /* val determines Erase or Write operation
byte byt; /* byt is byte to be programmed
byte *addr; /* addr is address of encoded byte in EEPROM
word count; /* count is number of E clock delays
{
regbase.PPROG=val; /* Enable address/data latches
addr=byt; / Write value to required eeprom location
++regbase.PPROG; /* Enable voltage pump
if (count<100) count=100; /* Allow for software overhead
delay (count) ; /* wait a bit
—regbase .PPROG; /* Disable pump,then addr/data latches

regbase.PPROG=0;

28

*/

*/
*/
*/

void program(byt, addr)
byte byt;
byte *addr;
{
eeprog (eras, byt, addr, 20000) ;
eeprog (writ, byt ,addr, 20000) ;
}

byte read(data,addr)
word *data;
byte **addr;
{
udata.b[1l]=* (*addr) ++;
if (EncodedWord)
udata.b[0]=* (*addr) ++;
else
udata.b[0]=0;
*data=Decode (udata.w) ;
return (ErrFlag) ;
}

byte write(data,addr)
word data;
byte **addr;
{
byte *oldaddr;

‘udata.w=Encode (data) ;

oldaddr=*addr;

program(udata.b[1l], (*addr) ++) ;

if (EncodedWord)
program(udata.b[0], (*addr) ++) ;

return (read (&udata.w, &oldaddr));

29

/*
/i

/*

/*
/*

/*
/*

/*
/*

/*
/*
/*

First erase byte
Then write value

*/
*/

Read back data LSB first, and inc address */

If word stored then read MSB

*/

Inc address for next call to this function */

else only byte stored, so clear MSB

Decode data, which updates <ErrFlag>,
and return ErrFlag

Encode data.

Save initial address for verification.
Program LSB first to allow for either
1 or 2 byte encoded data

MSB of word sized data,& inc address
Return <ErrFlag> to calling segment

*/

*/
*/

*/
*/
*/
*/
*/
*/

HC11REG.H

/* HC11l structure - I/O registers for MC68HC1ll */

struct HC11I0 {

unsigned char PORTA;
unsigned char Reserved;
unsigned char PIOC;
unsigned char PORTC;
unsigned char PORTB;
unsigned char PORTCL;
unsigned char Reservedl;
unsigned char DDRC;
unsigned char PORID;
unsigned char DDRD;
unsigned char PORTE;
/* Timer Section */
unsigned char CFORC;
unsigned char OC1M;
unsigned char OC1D;
int TCNT;
int TIC1;
int TIC2;
int TIC3;
int TOC1;
int TOC2;
int TOC3;
int TOC4 ;
int TOCS;
unsigned char TCTL1;
unsigned char TCTL2;
unsigned char TMSK1;
unsigned char TFLGl;
unsigned char TMSK2;
unsigned char TFLG2;
/* Pulse Accumulator Timer Control */
unsigned char PACTL;
unsigned char PACNT;

30

/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*

Port A - 3 input -only, 5 Sut;put oﬁiy L

Parallel I/O control
Port C */

Port B - Output only-
Alternate port C latch

Data direction for port C
Port D
Data direction for port D
Port E

Compare force
Ocl mask

Ocl data

Timer counter
Input capture 1
Input capture 2
Input capture 3
Output compare
Output compare
Output compare
Output compare
Output compare
Timer control register 1
Timer control register 2
Main timer interrupt mask 1
Main timer interrupt flag 1
Main timer interrupt mask 2
Main timer interrupt flag 2

e wN e

Pulse Acc control
Pulse Acc count

*/

*/
*/

*/
*/
*/
*/

*/
*/

/* SPI registers */

unsigned char SPCR;
unsigned char SPSR;
unsigned char SPDR;

/* SCI registers */
unsigned char BAUD;
unsigned char SCCR1;
unsigned char SCCR2;
unsigned char SCSR;
unsigned char SCDR;

/* A to D registers */
unsigned char ADCTL;
unsigned char ADR[4];

/* Define each result register */

#define adrl ADR([O]

#define adr2 ADR[1]

#define adr3 ADR([2]

#define adr4 ADR(3]
unsigned char Rsrv[4];

/* System Configuration */
unsigned char OPTION;
unsigned char COPRST;
unsigned char PPROG;
unsigned char HPRIO;
unsigned char INIT;
unsigned char TEST1;
unsigned char CONFIG;

}:
/* End of structure HCll */

31

/*
/*
/*

/*
/*

/*
/*

/*
/*

/*
/*
/*
/*
/*
/*
/*

SPI control register
SPI status register
SPI data register

SCI baud rate control
SCI control register 1
SCI control register 2
SCI status register
SCI data register

AD control register
Array of AD result registers

Reserved for A to D expansion

System configuration options
Arm/Reset COP timer circuitry
EEPROM programming control reg
Highest priority i-bit int & misc
RAM - I/O mapping register
Factory TEST control register
EEPROM cell - COP,ROM, & EEPROM en

*/
*/
*/

*/
*/
*/
*/
*/

*/
*/

*/

*/
*/
*/
*/
*/
*/
*/

32

ANA431

Temperature measurement and display
using the MC68HC05B4 and the MC14489

By Jeff Wright,
Motorola Ltd., East Kilbride

INTRODUCTION

This application note is intended to show the basic
building blocks of a temperature control system based
on the MC68HCO5Bx family of MCUs. Software routines
in the application include look-up table interpolation,
binary to BCD conversion, DegC to DegF conversion and
the-basis of a real time counter/clock. For temperature
display the Multi-character LED display driver MC14489
is used, driven from the B4’s SCI, resulting in simple
hardware with a low component count. The temperature
sensing element used here is a thermistor to allow easy
interfacing to the A/D converter of the HCO5B4, but the
software principles shown would be the same for many
other types of sensors. A software listing is included at
the end of this application note.

Resistance (K)
350

TEMPERATURE MEASUREMENT

A pre-calibrated thermistor was chosen as the
temperature sensing element. Its characteristic curve
over the temperature range of -40 to 80 °C is shown in
Figure 1. To get the best accuracy from the HCO5B4's
on-board A/D, the input signal shbuld be scaled to use
as much of the available VRH-VRL range as possible.
Here VRH is connected to Vdd and VRL is tied to Vss.
In this case, using the thermistor as potential divider
with a 20kQ resistor results in a signal range of
approximately 0.3V to 4.7V over the -40 to 80 °C
temperature range The voltage across the thermistor
(input to the A/D), plotted against temperature, is
shown in Figure 2.

325

300
\ 275

\ 250

225

200

\ 175

150

A\ 125

100
75

-40 10

20

30 40 50 60 70 80

Temperature (°C)

Figure 1. Thermistor resistance vs Temperature

33

-40 -30 -20 -10 0 10, 20

30 40 50 60 70 80 (°C)

Figure 2. A/D input voltage vs Temperature (inset: circuit used)

As can be seen from Figure 2, the response is non-linear
and so a look-up table approach is the simplest way of
obtaining the required accuracy. The thermistor charac-
teristics are stored as a series of pointsina table in ROM
and a linear interpolation between adjacent points is
used to obtain the temperature that corresponds to a
given A/D reading. The number of points that must be
stored depends on how non-linear the response is and
the required accuracy of the result. In this case 16 points
were chosen; in order to keep the software simple (and

therefore fast), they are spread at intervals of 16 through
the A/D result range of 0-255. For each point (16, 32, 48
etc.), the voltage on the A/D input was calculated and
the corresponding temperature was obtained from the
graph of Figure 2. These points were then used to form
the look-up table shown in Figure 3, resulting in a tem-
peraturerange of-40to0 79 °C. Figure 4 shows the recon-
structed response of the thermistor obtained by linear
interpolation of the points in the look-up table.

A/D RESULT | A/D (volts)] TEMP (°C) | TEMP (°C 2s Compl)
0 0 - -
16 0.31 79 4F
32 0.63 56 38
48 0.94 43 28
64 1.26 34 22
80 157 27 1B

96 1.88 21 15
112 2.20 15 OF
128 2.51 10 0A
144 2.82 5 05
160 3.14 -1 FF
176 3.45 -6 FA
192 3.77 -11 F5
208 4.08 -18 EE
224 4.39 -26 E6
240 4.71 -40 D8
255 5.0 - -

Figure 3. Interpolated A/D input voltage vs Temperature

34

10 20

30 40 50 60 70 8o (°C)

Figure 4. Interpolated A/D input voltage vs Temperature

The temperature reading is updated every second; the
software to accomplish this is relatively simple:

The timer is set to overflow every 125 mS witha 4.1934
MHz crystal. The timer overflow interrupt routine up-
dates the real time counters TICKS, SECS, MINS & HRS
and sets the flag bit SEC every time a second has
elapsed.

The main program loop is executed every second (via
the SEC flag bit) and after checking the metric/imperial
selector switch the temperature is measured by the
subroutine ADCONV. This routine starts by reading the
thermistor selector switch and setting up the A/D con-
trol register accordingly. An A/D conversion is then car-
ried out four times on the selected channel and the
results accumulated in the accumulator and the tempo-
rary register TEMP. This result is then divided by 4 by
rotating, to obtain the average A/D result. The averaging
technique is employed to try and reduce the effect of
noise on the A/D input. The number of conversions to
average is determined by time constraints and the noise
levelsin the surrounding environment. The upper nibble
of the result is then used to access the look-up table to
obtain the ‘base’ temperature value. If the temperature
limit is exceeded then the TLIMIT flag is set before
exiting from the routine.

35

Temperature table entries are stored in 2's complement
form so that the interpolation between positive and
negative values will work successfully. The interpola-
tion is carried out by obtaining the difference between
the base value and the next in the table, multiplying this
by the lower nibble of the A/D resultand then dividing by
16. This result is then subtracted from the base value to
obtain the real temperaturein 2's complement °C which
is stored in the register NEWTMP before exiting from
the routine. The difference information is subtracted
from the base value rather than added because the
thermistor has a negative temperature co-efficient
(NTC) so that an increase in the A/D result corresponds
to a drop in temperature.

If the imperial mode is selected (°F) then the next stage
before updating the display is to convert from °C to °F
and this is carried out in the subroutine CTOF.

Converting from °C to °F is accomplished by multiplying
by 1.8 and adding 32. First the sign of the temperature
in °C is stored via the flag bit NEGNUM, then the
maximum °F limit (53 °C) is checked before the magni-
tude is multiplied by 1.8 (multiply by 115 and divide by
64). Again, use is made of rotating to do the dividing, in
order toincrease execution speed. The sign of the result
is then restored and 32 added to obtain the temperature
in 2's complement °F.

* TEMPERATURE DISPLAY

An MC14489 multi-character display driver was cho-
sen for this purpose as it can be easily interfaced to a
wide range of Motorola MCUs, requires almost no
external components and has a character set that
includes the degree symbol (°). The MC14489 can also
be cascaded if the application was expanded to require
a larger display. The MC14483 would normally be
driven from an SPI on the MCU but here, since the the
68HCO05B family does not have an SPI, use is made of
the SCI clock output feature that is available on this
family.

Before the temperature can be written to the display
driver it has to be converted into the correct data
format.

The first stage of this is to convert from 2's comple-
ment binary to BCD. This is carried out in the routine
CONBCD which is called from SETDISP. The sign of
the temperature is stored in the flag bit NEGNUM
before SETDISP is called; then, after first checking if
the TLIMIT flag is set, the temperature is converted to
BCD in DECO-2by CONBCD. This is accomplished by
rotating left the binary number followed immediately
by a rotate left of the BCD result; this has the effect of
multiplying the current BCD result by 2 and adding in
the new binary bit at the same time. After each rotate
the BCD registers are checked and adjusted for over-
flow (>$09) before the bit counter contained in the
index register is decremented. This process of rotate
then adjust is continued until all the binary bits have
been used; the BCD result will then be resident in the
registers DECO, 1 & 2.

The rest of the routine SETDISP is concerned with
setting up the display registers DISP1, 2, 3 and the
display control register DISPC. The MC14489 data
format is msb first whereas the 68HC05B84 SClI trans-
mits Isb first; this means that the bit order of the data
stream has to be stored in reverse in the display
registers. This can be confusing when trying to work
out the codes that have to be stored in the B4 to
generate a specific character.

msb

Figures 5a and 5b show the 14489 data format and the
corresponding bit positions in the B4 registers DISP1,
2, 3 & C. The sign of the temperature is restored and
the numeric display registers are configured to display
‘~" if the temperature limit has been exceeded before
exiting from the SETDISP routine.

The main program loop then calls the subroutine
DISPL which actually transmits the contents of the
display registers to the MC14489 via the SCI. The
MC14489 contains special Bit Grabber circuitry that
allows either the internal display registers or the con-
figuration register to be updated without address or
steering bits so that updating the display involves a
simple transmission of either 3 bytes for the display
registers or 1 byte for the configuration register. Even
for cascaded 14489s there is no need for address bits
- see the MC14489 data sheet for more details.

The MC14489 can be clocked at up to 4 MHz at 5 volts
so here the maximum transmit baud rate of the SClis
used - 131.072 KHz with a 4.19304 MHz crystal. The
transmission of the display data only takes place if
there has been a change in the data since the last time.
If there has been a change, the 3 data registers are
transmitted in turn starting with DISP3 and the OLD
registers are updated ready for the change check next
time round. After the last byte has gone, the SCl and
14489 are disabled before returning to the main loop.

The last subroutine called from the main program is
the 14489 configuration update routine DISCON. This
routine operates in a similar manner to DISPL, check-
ing to see if there has been a change to the config. data

- before transmitting it.

This completes the operation of the program which
now jumps back to the start of the main loop and waits
for the SEC bit to be set again before repeating the
temperature measurement and display sequence.

Isb

[cv]cs]cs|c4]c3,]c2|c1|co|

MC14489 configuration data

! ! |

{ oco | pc1 | ez | pe3 | pea | pes | pee | per |

MC68HC05B4 display register DISPC

Isb

msb

Figure 5a. MC14489 to MC68HC05B4 display register mapping

MC 14489 display data

msb Isb
op(p|p|jopjoypy|o|o|o|pfofo|pfpo|ojD|D|D|{D|D|D|D|D}|D
23| 22|21 |20|19]18 |17 |16 |15 |14 { 13| 12|11 |10]09 |08 |07 | 06 |05 |04 | 03 |02 | 01 | 0O
Decimal point & Bank § Bank 4 Bank 3 Bank 2 Bank 1
brightness nibble nibble nibble nibble nibble
control /\/\
pfo|Jo|ofypo}ob|op|o}yD|D|D|jD|D|D|D|D}D|D|D|D|D|D|D]|D
30|3132(33)|34|35|36|37)20]21]|22(23 |24 (25|26 |27 10|11 |12 (13 (14 |15| 1617
Isb DISP3 msb Isb DISP2 msb Isb DISP1 msb

Display registers on MC68HC05B4

Figure 5b. MC14489 to MC68HC05B4 display register mapping

HARDWARE

Asalready mentioned, the use of the MC14489results
in a very low component count for the application; the
hardware schematic can be seen in Figure 6. The only
1/O pins required are for reading the option switches
and for controlling the enable of the MC14489. Pull-
downs are required on the clock and data pins as these
become high impedance when the SCl is disabled.
The LED displays are common cathode; a single exter-
nal resistor is all that is required to set the brightness

level of the displays. In this case though, a light
dependent resistor, R12 (ORP12), has been used to
control the display brightness for a variety of back-
ground lighting conditions. The resistance of R12
decreases with increasing light and so R11 must be
incorporated to ensure that the maximum source
current spec. of the MC14489 is not exceeded in very
bright lighting conditions. R13 ensures there is still
enough drive current for the LEDs in dark conditions.

APPLICATION AREAS

As mentioned in the introduction, this application note
is designed only to show some fundamental building
blocks of a temperature control system based on the
68HCO5Bx family of MCUs. Where possible, the soft-
ware has been writtenin amodular fashion, so that the
routines can easily be transported to another applica-
tion and the binary to BCD routine could be expanded
to handle larger numbers. The large number of 1/O,

37

PWMs and timer functions unused show that the
68HCO5B family has plenty of functionality left to
perform other control functions. For example, in proc-
ess control, fluid flow or speed sensors could be
connected to the timer input capture pins, pressure
sensors to the other A/D pins, a keypad to the I/O lines
and the other 1/0 & PWMs used to perform output
control functions.

1L]LE.

o

SV

Re
10K0
Ct 8
-,E—' oonsF
16
10M0 Rs 17

T

W

Fwoe -~ 0 a0 .

12
1
9
t
4
3
S0 b
.
1}
=

T
100
R R3
an 1KD 10KQ
13 e
pea 47 10KQ o
PCY
R12
peo ORP12

Figure 6. Hardware schematic

@ s WwN

WWwWwWwwwNNNNNNRNNNN R B e e e e
VB WNHOWO®IOWU D WNFROW®® IS WNR O W

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

00000000
00000001
00000002
00000003
00000004
00000005
00000006

00000008
00000009
00000007

00000004
0000000e
0000000f
00000010
00000007
00000006
00000011

00000012
00000005
00000006
00000007

00000013
00000003
00000004
00000005
00000006
00000007

KRR KKK AR KRR I KRNI KRN KRR E NI AR AR KRR AN NN AAN KRR AR AN ARNA KRR AT RN N K

FEEALELLLLLLATLILLAEILTLLALTLLLLALAATETILLLTLLLITIILTLLBHLIBL0080%8~

*%
*%
*$
*%

*% Jeff Wright,

*%

68HCO5B4

TEMPERATURE MEASUREMENT & DISPLAY

Motorola East Kilbride. Last Updated 22/02/90

*$ This software was written by Motorola for demonstration

*$ purposes only. Motorola does not assume any liability arising
*$ out of the application or use of this software and does not
*$ guarantee its functionality

*%

$*
$*
$*
>
$*
$*
>
§*
$*
$*
s>

FEEELLTLLLIALTLLLLLILLLALLRLALLLLLLLLLLTLLLLLILILIBUBLLLUH993808%~

e e e e s ittt s

AKX KKKKK

*
*
*

*

PORTA
PORTB
PORTC
PORTD
DDRA
DDRB
DDRC

*
*

*
ADDATA
ADSTC.
COoCco

* % %

BAUD
SCCR1
SCCR2
SCSR
TDRE
TC
SCDAT

*

TCR

TOIE
OCIE
ICIE

TSR
OCF2
ICF2
TOF
OCF1
ICF1

I/0 registers

EQU
EQU
EQU
EQU
EQU
EQU
EQU

A/D registers

EQU
EQU
EQU

SCI registers

EQU
EQU
EQU
EQU
EQU
EQU
EQU

$00
$01
$02
$03
$04
$05
$06

$08
$09
7

$0D
SOE
$OF
$10
7

6

$11

TIMER registers

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

$12
S
6
7

$13

~N o s

39

I/0 and INTERNAL registers definition

port A.
port B.
port C.

port

port A DDR.
port B DDR.
port C DDR.

A/D data register.
A/D status and control register.
Conversion complete flag.

'SCI baud register.

SCI control register 1.
SCI control register 2.
SCI status register.

SCI data register.

Timer
Timer
Timer
Timer

control register.

overflow interrupt enable.

output compares interrupt enable.
input captures interrupt enable.

Timer status register.

Timer
Timer
Timer
Timer
Timer

output compare 2 flag.
input capture 2 flag.
overflow flag.

output compare 1 flag.
input capture 1 flag.

KHKXXXKEKXR KKK KKK

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
9
98
99
100
101
102
103
104
105
1ce
107
108
109
110

P
il

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

-

00000014
00000015
00000016
00000016
00000018
00000019
0000001a
0000001b
0000001c
0000001d
0000001e
0000001f

00000020
00000020
00000050
00000£00

00000050
00000051
00000052
00000053

00000054
00000000
00000001
00000002
00000003

00000055
00000000

00000056
00000057
00000058
00000059

0000005a
0000005b
0000005¢
00000054

0000005e
0000005f
00000060
00000061
00000062
00000063

TIC1HI
TIC1LO
TOC1HI
TOC1LO
TIMHI

TIMLO

TIMAHI
TIMALO
TIC2HI
TIC2LO
TOC2HI
TOC2LO

* % % %

TEST
ROMO
RAM

UROM

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

$14
$15
$1e6
$1e6
$18
$19
$1a
$1B
$lc
$1D
$1E
$1F

$20

$0020
$0050
$0F00

F e ek ok e ok ok ek Kk

TICKS
SECS
MINS
HRS

FLAG
OVERFL
NEGNUM
TLIMIT
SEC

MODE
IMP

BINO
DEC2
DEC1
DECO

NEWTMP
TEMP
TEMP1
TEMP2

DISPl
DIsP2
DISP3
DISPC
OoLDD1
OLDD2

RMB
RMB
RMB
RMB

RMB
EQU
EQU
EQU
EQU

RMB
EQU

RMB
RMB
RMB
RMB

RMB
RMB
RMB
RMB

RMB
RMB
RMB
RMB
RMB
RMB

Timer

Timer

Timer

Timer

Timer

Timer

MEMORY MAP DEFINITION

Start
Start
Start

input capture register 1 (16-bit).
output compare register 1 (16-bit).
free running counter (16-bit).
alternate counter register (l16-bit).
input capture register 2 (16-bit).

output compare register 2 (16-bit).

TEST register
address of ROMO.
address of RAM.
address of main user ROM.

RAM ALLOCATION *kkskkkkkkdkkkkhhkkkkkkkkkkkkkh

SECTION.S .RAM, ADDR=$50

o e o W N o (SRS

i

o e

40

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

00000064
00000065

00000020
00000028

00000£00
00000£f00
00000£f02
00000£04
00000f06
00000£f08
00000£f0a
00000£f0c
00000£f0d
00000f0e
00000f10

00000f12
00000f14
00000f16
00000£18

00000fla
00000flc
00000fle
00000£20
00000f22

00000£23
00000£23
00000f26
00000f28
00000f2a
00000f2d
00000f2f
00000£31
00000£34
00000£37
00000£f3a
00000£f3c
00000f3e
00000£3f
00000£f41
00000£43
00000f46
00000£49
00000f4c

004f382b221b150f
0a0SfffafSeee6d8

a600
b700
b701
b704
b705
ae65
£7

a350
26fa

a604
b702
a604
b706

b613
b619
a620
b712
9a

0754fd
1754
1155
010202
1055
1354
cdOffd
015503
cd0fde
b65a
2a03
40
1254
b756
cd0f78
cd1085
cdl0ca
20d5

OLDD3
OLDDC

ADTAB

RMB
RMB

FCB
FCB

SECTION .PAGEO,ADDR=$020

$00, $4F, $38, $2B, $22, $1B, $15, $OF
$0A, $05, $FF, $SFA, $F5, SEE, $SE6, $D8

KKK A KKK K I A KK RRKEKE K KKK KK KKK IR KKK AR KKK KKK KKAK KA KA KRN

*

*

*

*

START OF CODE *

*

R R e e e e T e

RESET

INIRAM

TIMINT

MAINLUP

NOIMP

GOMETR

GOMORE
GODISP

EQU
LDA
STA
STA
STA
STA
LDX
STA
DECX
CPX
BNE

LDA
STA
LDA
STA

LDA
LDA
LDA
STA
CLI

START

EQU
BRCLR
BCLR
BCLR
BRCLR
BSET
BCLR
JSR
BRCLR
JSR
LDA
BPL
NEGA
BSET
STA
JSR
JSR
JSR
BRA

SECTION .USROM, ADDR=$F00

*

#30 Initialise Ports.

PORTA

PORTB

DDRA

DDRB

#0OLDDC

X Initialise all used RAM locations.

#RAM
INIRAM

#$04

PORTC

#504 PC2 output high.
DDRC

TSR clr any pending flags.
TIMLO

#320 Enable timer overflow
TCR interrupt.

OF MAIN PROGRAM LOOpP ——

*

SEC, FLAG, MAINLUP

SEC,FLAG

IMP, MODE Check metric/imperial selector.
0,PORTC, NOIMP Check degC/degF switch.

IMP, MODE

NEGNUM, FLAG Clear sign indicator.
ADCONV Go measure temperature
IMP, MODE, GOMETR (in degC - 2s compl)
CTOF Convert to degF.
NEWTMP
GOMORE

Only use magnitude to do BCD conv.
NEGNUM, FLAG Remember the sign of the number.
BINO Store temperature for conv to BCD.
SETDISP Set-up display bytes.
DISPL Update display if neccessary.
DISCON Update 14489 config if neccessary.
MAINLUP

41

[Y R

NN NN N

NN
NN N R R
~N

223

N
N
S

225

N
N
o

NN NN NN
WWwWWwwwwN NN
A W N R O W ©

N
w
~

238
239
24C
241
242
243
244
245
246
247
248
249
250
251
252

O W ®J U W,

00000f4e
00000f4e
00000£50
00000£52
00000£54
00000£55
00000£57
00000£59
00000£Sb
00000£5d

00000f5e
00000£60
00000f61
00000f62
00000f63
00000f64
00000£65
020C0f66
C00C0f67
00000f68
C0000f69
C¢0000f6a
00000f6b
C00COf6c

000C0fed
00000£70
00000f71
000C0£73
GCOCOf75
CoCCof77

000C0f78
00000£78
00000£7b
00000£7d
00000£80
00000£82
0C000f£83
00000£85
00000£86
00000£87
00000£89
GC0000£8b
00000£8d
00000£8f
00000£91
00000£94
00000£96

b65a
2a05
1254
40

2007
al3s
2503
1454
81

ael3
42
56
46
56
46
56
46
56
46
56
46
56
46

035401
40
1354
ab20
b75a
81

04543e
ae08
cd1052
ae04
4f
3458
49

Sa
26fa
be57
2704
aa8o
2005
035402
aab0
b75e

* =%
= CTOF - Converts NEWIMP from degC to degF =
o =%
* *
CTOF EQU *
LDA NEWTMP
BPL NONEG
BSET NEGNUM, FLAG Remember if No is negative or not.
NEGA
BRA MUL1P8
NONEG cMp #53 Check for max degF limit of 127F.
BLO MUL1P8
BSET TLIMIT,FLAG Set limit and return if over range.
RTS
MUL1P8 LDX #115
MUL Multiply by 115 and divide by 64.
RORX
RORA (same as multiplying by 1.8)
RORX
RORA
RORX
RORA
RORX
RORA
RORX
RORA
RORX
RORA
BRCLR NEGNUM, FLAG, NONEG1
NEGA Return sign of number.
NONEG1 BCLR NEGNUM, FLAG
ADD #32 Add 32 to get degF.
STA NEWTMP
RTS
FXXXXXXXXXXXXXAXXXXXXXXXXXXXXKKX XX XXXXXX XX XXX XXX XXX XXX XXX XXX XXXXXXX *
lx x*
X SETDISP - Sets up display registers with BCD X
*x xi
FAXXAXXXXAXXXKXXAXAXXXXXXXXXAXKKXKXXXXXXRR XXX XXX KX XX XXX XXX XXX XXX XXKXXX*
SETDISP EQU *
BRSET TLIMIT, FLAG, FORCE If temp out of range, force to —
LDX #58
JSR CONBCD Convert 8 bit binary to 3 digit BCD.
LDX #4
CLRA
LUPDIS1 LSR DEC1 * shuffle bit order of digits to allow
ROLA for SCI 1lsb first and 14489 msb first
DECX incompatability.
BNE LUPDIS1
LDX DEC2
BEQ TSTNEG
ORA #$80 If over 100deg, add the 100 digit.
BRA STD1
TSTNEG BRCLR NEGNUM, FLAG, STD1
ORA #$B0 Add code for a - if temp is negaive.
STD1 STA DISP1l Store in 1lst display register.

42

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
2175
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

00000£98
00000f9a
00000£9b
00000£9d
00000f9%e
00000£9f
00000fal
00000fa3
00000fa5
00000fa?7
00000faa
00000fac
00000fae
00000£fb0
00000£fb2
00000£fb4
00000£fb6
00000£fb8
00000£fb9
00000£fbb
00000£fbd
00000fbf
00000fcl
00000fc3
00000fc6
00000fc8
00000fca
00000fcc
00000fce

00000fcf
00000£fd2
00000£fd4
00000£fd6
00000£fd8
00000fda
00000fdc
00000fde
00000fe0
00000fe2
00000fe4
00000fe6
00000fe8
00000fea
00000fec
00000fee
00000£ff0
00000££2
00000f£f4
00000£ff6
00000££8

00000ffa
00000ffc

ae08
4f
3459
49
5a
26fa
aa0f
b75f
a631
015502
a6fl
b760
aécb
be57
2702
a68b
b761
81
a6bb
b75e,
a6bf
b75f
a631
015502
a6fl
b760
a6fb
b761
81

O0bl32a
3e50
b650
alos
2520
3f50
3c¢51
1654
b651
al3c
2514
3£51
3e¢52
b652
al3c
250a
3fs52
b653
alff
2702
3e¢53

b619
80

LDX #8

CLRA
LUPDIS2 LSR DECO
ROLA
DECX Shuffle bit order of digits as above.
BNE LUPDIS2
ORA #SOF add code for the deg symbol.
STA DISP2 Store in second display register.
LDA #$31 Big C, all d.ps off.
BRCLR IMP,MODE, STDIS3
LDA #SF1 Big F, all d.ps off.
STDIS3 STA DISP3
LDA #3CB
LDX DEC2
BEQ STDISC
LDA #$8B
STDISC STA DISPC
RTS
FORCE LDA #$BB FORCE DISPLAY TO —*C
STA DISP1
LDA #S$BF or —"“F
STA DISP2
LDA #$31
BRCLR IMP, MODE, STDI3
LDA #SF1
STDI3 STA DISP3
LDA #SFB
STA DISPC
RTS

000

*0 ox
0 TOVINT - Timer Overflow IRQ routine 0x
0 0x

000

TOVINT BRCLR TOF, TSR, NOOVF Check Tim overflow has really happened.

INC TICKS

LDA TICKS UPDATE REAL TIME CLOCK COUNTERS

CMP #8

BLO NOINC

CLR TICKS

INC SECS

BSET SEC, FLAG

LDA SECS

CMP #60

BLO NOINC

CLR SECS

INC MINS

LDA MINS

CMP #60

BLO NOINC

CLR MINS

LDA HRS

CMmP #SFF

BEQ NOINC

INC HRS
NOINC LDA TIMLO Clear TOF flag.
NOOVF RTI

43

316
317
318
319
320
321
322
323
324
325
326
327

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

351
352
353
354
355
356

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

00000£ffd
00000ffd
00000fff
00001001
00001004
00001006
00001008
0000100a

'0000100c¢

0000100e
0000100f
00001012
00001014
00001016
00001018
00001019
0000101b
0000101d
0000101e
00001020
00001021

00001023
00001024
00001025
00001026
00001027
00001028
0000102a
0000102c
0000102e
0001030
00001032
00001033
00001035
00001037
00001039
0000103b
0000103d
0000103e
0000103f
00001040
00001041
00001042
00001043
00001044
00001045
00001046
00001048
0000104a
0000104c
0000104e
0000104f
00001051

1554
3f5b
020204
a621
2002
a620
b709
ae04
4f
0£09fd
bb08
2402
3c5b
S5a
26f4
365b
46
365b
46
b75b

44
44
44
44
97
€620
2723
alds
271f
b75¢c
S5c
e020
b75d
b65b
a40f
be5d
42
49
59
49
59
49
59
49
59
bf5d
b65c
b05d
b75a
81
1454
81

ADCONV

CONT1
SETAD

ADLUP1

DECCX

TABL

TRANGE

AAY

xA

Ak

*~ ADCONV - A/D Conversion & Temperature table interpolation.”¥

*A

Ak

KAAAY

EQU
BCLR
CLR
BRSET
Lpa
BRA
LDA
STA
LDX
CLRA
BRCLR
ADD
BCC
INC
DECX
BNE
ROR
RORA
ROR
RORA
STA

LSRA
LSRA
LSRA
LSRA
TAX
LDA
BEQ
cMp
BEQ
STA
INCX
SuUB
STA
LDA
AND
LDX
MUL
ROLA
ROLX
ROLA
ROLX
ROLA
ROLX
ROLA
ROLX
STX
Lba
SUB
STA
RTS
BSET
RTS

*

TLIMIT, FLAG
TEMP
1,PORTC, CONT1 Check Thermistor selector switch.
#s21
SETAD
#3520
ADSTCT Start first conversion.
#4 Init counter.
COCO, ADSTCT, ADLUP1 Wait for end of conversion.
ADDATA
DECCX Convert 4 times and accumulate to help
TEMP eliminate ‘noise.
ADLUP1
TEMP
Now divide by 4 to get average and
TEMP
store in TEMP.
TEMP
Isolate upper 4 bits of result,
ADTAB, X and use them to access the look-up table
TRANGE
#SD8 Check table entry limits.
TRANGE
TEMP1 Store “base” value.
ADTAB, X Get the diff between the base and next entry.
TEMP2
TEMP
#S0F Now get the lower 4 bits of the A/D result.
TEMP2
Multiply by the difference.
Divide answer by 16 and leave in TEMP2.
TEMP2
TEMP1 Retrieve base value,
TEMP2 subtract the difference value
NEWTMP and store answer in NEWTMP.
TLIMIT,FLAG

44

379
380
381
382
383
384
385
386
38
38
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

® 9

00001052
00001052
00001053
00001055
00001057

00001059
0000105b
0000105d
0000105f
00001061
00001063
00001065
00001067
00001069
0000106b
0000106d
0000106f
00001071
00001073
00001075
00001077
00001079
0000107b
0000107d
0000107f
00001081
00001082
00001084

00001085
00001085
00001087
00001089
0000108b
0000108d
0000108f
00001091
00001093
00001095
00001097

00001098
0000109a
0000109c
0000109d
0000109f
000010al
000010a3
000010a6

4f

b759
b758
b757

3956
3959
3958
3957
b659
a00a
2b04
b759
3c58
b658
a00a
2b04
b758
3c57
b657
a00a
2b06
a609
b757
1054

26d5
81

béSe
bl62
260d
b6Sf
bl163
2607
b660
blé4
2601
81

a601
b70e
4a
b70d
a608
b70f
0d10fd
1502

H L EEEEEE b L L EEEEEaE L EEEEEEEEEEEEEEEEEEEEEEEEEEEELEEEEEEEEEEEELEE™

‘ ‘
& CONBCD - Converts Binary in BINO to BCD in DEC0-2 &
*‘ &‘k

IO I I I T I L L T L I T T T L T T T T T

CONBCD EQU *
CLRA
STA DECO Clear BCD result bytes.
STA DEC1
STA DEC2
LUPBCD ROL BINO Put the next binary bit in carry.
ROL DECO Multiply current result by 2 and
ROL DEC1 add in new bit at same time.
ROL DEC2
LDA DECO
SUB #s0A
BMI TSTD1 Now check the BCD bytes
STA DECO for overflow.
INC DEC1
TSTD1 LDA DEC1
SUB #S0A
BMI TSTD2
STA DEC1
INC DEC2
TSTD2 LDA DEC2
SUB #s0A
BMI NOOVR
LDA 49
STA DEC2 BCD number has overflowed so set flag
BSET OVERFL, FLAG and set upper digit to 9.
- NOOVR DECX
BNE LUPBCD Any more bits to do?
RTS

ddatdddddddddaddaddddddd-ragadddddaadddad-dddd ldaddddddddeddddddddddddaddd

‘k@ @i
*@ DISPL - Updates 14489 Display registers via SCI ex
@ @

Wt el ddeddddddelddc ddd i g fdddeldddddddddadaddddddddddddd

DISPL EQU *
LDA DISP1 Only update display registers if any
CMP OLDD1 of them have changed since the last
BNE UPDATE time.
LDA DIsP2
CMP OLDD2
BNE UPDATE
LDA DISP3
cMp OLDD3
BNE UPDATE
RTS
UPDATE LDA #s01
STA SCCR1 Clock idle low, edge in mid data, last
DECA
STA BAUD 131.072KHz baud with 4.19%tc XTAL.
LDA 4508
STA SCCR2 Transmit enabled.
PREAM BRCLR TC, SCSR, PREAM Wait for preamble to finish.
BCLR 2,PORTC Enable transmission to 14489.

45

clk.

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
163
464
465
166
167
168
469
470
471
572
473
474
475
276
477
478
479
480
481
482
483
484
185
186
487
488
489
499
491
492
493
494
495
496
497
498
499
500
501
502

504
505
506

000010a8
000010aa
000010ac
000010ae
000010b1
000010b3
000010b5
000010b7
000010ba
000010bc
000010be
000010c0
000010c3
000010c5
000010c7
000010c9

000010ca
000010ca
000010cc
00C010ce
000010d0

000010d1
000010d3
000010d5
0o0co10deé
000C1Cd8
000010da
00CC10dc
€00010df
000010el
000010e3
000010e5
000010e7?
000010ea
000010ec
000010ee
000010£1
000010£3

00001££2
00001ff4
00001f£f6
00001ff8
00001ffa
00001ffc
00001ffe

b660
b764
b711
0f10fd
béSf
b763
b711
0f10fd
bé5e
b762
b711
0d10fd
a600
b70f
1402
81

b661
b165
2601
81

a601
b70e
4a
b70d
a608
b70f
0d10fd
1502
b661
b765
b711
0f10fd
a600
b70f
0d10fd
1402
81

0£00
Ofcf
0£00
0£00
0£00
0£00
0£00

DWAITI1

DWAIT2

DWAIT3

LDA
STA
STA
BRCLR
LDA
STA
STA
BRCLR
LDA
STA
STA
BRCLR
LDA
STA
BSET
RTS

DISP3

OLDD3

SCDAT Send first byte.

TDRE, SCSR,DWAIT1 Wait until it has been transfered
DISP2 - then load second.

OLDD2

SCDAT

TDRE, SCSR, DWAIT2

DISP1

OLDD1

SCDAT

TC,SCSR,DWAIT3 Wait until 3rd byte has actually gone
#500

SCCR2 Dissable SCI transmissions,
2,PORTC then disable 14489.

DISCON

- Updates 14489 Config register via SCI 2%

DISCON

UPDCON

PREAM1
DOCONF

DWAITY

DWAITS

EQU
LDA
cMP
BNE
RTs

LDA
STA
DECA
STA
LDA
STA
BRCLR
BCLR
LDA
STA
STA
BRCLR
LDA
STA
BRCLR
BSET
RTS

*

clk.

DISPC Only update config register if it has
OLDDC changed since last time.

UPDCON

#501

SCCR1 Clock idle low, edge in mid data, last
BAUD 131.072KHz baud with 4.19%etc XTAL.
#s508

SCCR2 Transmit enabled.

TC,SCSR,PREAM1 Wait for preamble to finish.

2,PORTC Enable transmission to 14489.

DISPC

OLDDC

SCDAT

TDRE, SCSR, DWAIT4 Wait until config byte has transfered.
#500

SCCR2 Now disable SCI transmission.

TC,SCSR,DWAIT5 Wait until config byte has actually gone.

2,PORTC Disable 14489 & return.

LR e e e 2222

*

*

*

VECTOR ADDRESSES

*

*

*

R R e e e e 22 22 2

SCIINT
TOVFLW
TOCMP
TICAP
EXTINT
SOFTI
POR

FDB
FDB
FDB
FDB
FDB
FDB
FDB

SECTION .VECT, ADDR=$1FF2

RESET
TOVINT
RESET
RESET
RESET
RESET
RESET

46

1 00000016 (

2 00000010 (

3 000001£4 (

4 0000000e (
_PAGEO 2 00000000
_RAM 1 00000000
.USROM 3 00000000
.VECT 4 00000000
ADLUP1 3 0000100f
ADTAB 2 00000020
BINO 1 00000056
CONT1 3 00001008
DECO 1 00000059
DECI 1 00000058
DEC2 1 00000057
DECCX 3 00001018
DISPL 1 0000005e
DISP2 1 0000005f
DISP3 1 00000060
_PAGEO *131
.RAM *94
_USROM *142
LVECT *498
ADLUP1 *334 334
ADTAB *133 351
BINO *111 183
CONT1 327 *330
DECO *114 255
DEC1 *113 242
DEC2 *112 246
DECCX 336 *338
DISP1 *121 252
DISP2 *122 260
DISP3 *123 264
DISBC *124 269
DOCONF *481
DWAITL *446 446
DWAIT2 *450 450
DWAIT3 *454 454
DWAIT4 *485 485
DWAITS *488 488
EXTINT *504
FLAG *102 170
FORCE 237 *271
GODISP *184
GOMETR 177 *179
GOMORE 180 *183
HRS *100 308
INIRAM *151 154
LUPBCD *392 413
LUPDIS1 *242 245
LUPDIS2 *255 258
MINS x99 303
MODE *108 172

Section synopsis

22)
16)
500)
14)

-RAl
-PA
.Us.
.VE

M
GEO
ROM
CT

Symbol table

DISPC
DOCONF
DWAIT1
DWAIT2
DWAIT3
DWAIT4
DWAITS
EXTINT
FLAG
FORCE
GODISP
GOMETR
GOMORE
HRS
INIRAM

1

W WwWwWwWweE s Wwwwwww

00000061
000010df
000010ae
000010b7
000010c0
000010e7
000010ee
00001ffa
00000054
00000£fb9
00000£43
00000£f3a
00000f41
00000053
00000f0c

| LUPBCD
| LUPDIS1
| LUPDIS2
| MINS

| MODE

| MUL1P8
| NEWTMP
| NOIMP

| NOINC

| NONEG

| NONEG1
| NOOVF

| NOOVR

| OLDD1

| OLDD2

Symbol cross-reference

339
357
392

387
388
266

272
274
278
280

171

311

304
174

393
394
389

424
427
430
469

17s

307
177

396
400
395

451
447

443
482

182

262

399
401 404
405 406
199 204
276

oW WwWwWwWwWwe W R WwWww

00001059
00000£83
00000£90
00000052
00000055
00000f5e
0000005a
00000f2f
00000ffa
00000£57
00000£71
00000ffc
00001081
00000062
00000063

410

222 224

47

OLDD3
oLDDC
POR
PREAM
PREAM1
SCIINT
SECS
SETAD
SOFTI
STD1
STDI3
STDIS3
STDISC
TABL
TEMP

237

1
1
4
3
3

q
1
3
4
3
3
3
3
3
1

250

00000064
00000065
00001ffe
000010a3
000010dc
00001£ff2
00000051
0000100a
00001ffc
00000f96
00000fc8
00000fac
00000fb6
00001023
0000005b

298

TEMP
TEMP1
TEMP 2
TICAP
TICKS
TIMINT
TOCMP
TOVELW
TOVINT
TRANGE
TSTD1
TSTD2
TSTNEG
UPDATE

325 376

0000005b
0000005¢
0000005d
00001ff8
00000050
00000f1a
00001ff6
00001ff4
00000fcf
0000104f
0000106b
00001075
00000£91
00001098

411

MUL1P8
NEWTMP
NOIMP
NOINC
NONEG
NONEG1
NOOVF
NOOVR
OLDD1
OLDD2
OLDD3
OLDDC
POR
PREAM
PREAM1
SCIINT
SECS
SETAD
SOFTI
STD1
STDI3
STDIS3
STDISC
TABL

TEMP
TEMP1
TEMP2
TICAP
TICKS
TIMINT
TOCMP
TOVFLW

TOVINT"

TRANGE
TSTD1
TSTD2
TSTNEG
UPDATE
UPDCON

201
*116
173
295
198
222
291
408
*125
*126
*127
*128
*506
*441
*480
*500
*98
329
*505
249
276
262
267
*346

Symbol cross-reference

*117
*118
*119
*503
*97
*161
*502
*501
*291
352
398
403
247
426
471

203
179
*175
301
*202
*224
*314
*412
425
428
431
150

441
480

*331

250
*278
*264
*269

326
355
358

292

501
354
*401
*406
*250
429
*474

*207
197

306

452
448
444
470

299

*252

337
372
361

293

*376

432

226

310

483

340

371

296

*435

374

*313

342

373

344

359

48

ANA432

128K byte addressing with the M68HC11

By Ross Mitchell
MCU Applications Engineering
Motorola Ltd., East Kilbride, Scotland

OVERVIEW

The maximum direct addressing capability of the M68HC11
device is 684K bytes, but this can be insufficient for some
applications. This application note describes two methods of
memory paging that allow the MCU to fully address a single
1 megabit EPROM (128K bytes) by manipulation of the
address lines.

The two methods illustrate the concept of paging and the

.inherent compromises. The technique may be expanded to

allow addressing of several EPROM, RAM or EEPROM
memories or several smaller memories by using both ad-
dress lines and chip enables.

PAGING SCHEME

The M68HC11 8-bit MCU is capable of addressing up to 64K
bytes of contiguous address space. Addressing greater than
64K bytes requires that a section of the memory be replaced
with another block of memory at the same address range.
This technique of swapping memory is known as paging and
is simply a method of overlaying blocks of data over each
other such that only one of the blocks or pages is visible to
the CPU at a given time.

In a system requiring more than 64K bytes of user code and
tables, it is possible to use the port lines to extend the
memory addressing range of the M68HC11 device. This has
certain restrictions but these can be minimised by careful
consideration of the user code implementation.

There are two basic configurations; method A uses only soft-
ware plus a single portline to control the highaddress bit A16;
method Bisacombination of asmallamount of hardware and
software controllingthe top 3 address bits A14, A15and A16.

In the examples below, the MC68HC11G5 device is used to
demonstrate the paging techniques since this device has a
non-multiplexed dataand address bus; any M68HC11 device
may be used in a similar way.

Method A has the advantage of no additional hardware and
very fewlimitations in the software. The user code main loop
can be up to 64K bytes long and remain in the same page but
this is at the expense of longer interrupt latency. The vector
table and a small amount of code must be present in both
pages of memory to allow correct swapping of the pages.

Method B has the advantage of not affecting the interrupt
latency and has just one copy of the vector table. The
maximum length of the user code main loop in this example
is 48K bytes with a further 5 paged areas of 16K bytes for
subroutines and tables.

49

METHOD A - SOFTWARE TECHNIQUE

Address A16 of the EPROM is directly controlled by port D(5)
of the MB8HC11 as shown in figure 1. This port is automati-
cally configured tobeinthe input state following reset. Itisvital
that the state of the port line controlling address A16 is known
following reset and so there is a 10KQ pull-up resistor on this
port line to force the A16 address bit to a logic high state
following reset. This port bitis then made an output during the
set-up code execution but care must be taken in ensuring that
the data register is written to a logic one before the data
direction register is written with a one to make the port line
output a high state.

This port bit allows the M68HC11 to access the 128K byte
EPROM as two memories of 64K bytes each which are paged
by changing the state of the address A16 line on the EPROM.
Itimportant.to make sure that the port timing enables the port
line to change state at least the setup and hold time before the
address strobe (E clock rising edge on the MC68HC11G5),
otherwise there could be problems with address timing.

Figure 2 shows a schematic representation of the paging
technique for this method where there are two separate 64K
byte pages of memory which may only be addressed individu-
ally.

This paging scheme means that code cannot directly jump
from one 64K page to another without running some common
areaof code during the page switch. This may be accomplished
in 2 basic ways. The user code could build a routine in RAM
(which is common to both pages since it is internal and
therefore unaffected by the port D(5) line) or have the same
location in both pages devoted to a page change routine. The
example software listing in appendix A uses the latter ap-
proach.

Interrupt routines

The change of page routine stores the current page before
setting or clearing the port D(5) line and then has a jump
command which must be at exactly the same address in both
pages of memory. This is because the setting or clearing of the
port D(5) line willimmediately change the page of memory but
the program counter will increment normally. Thus a change
from page 0to page 1 will resultin the BSET PORTD command
from page 0 followed by the JMP 0,X instruction from page 1
(the new page). To enable a jump to work, the X index register
has been loaded with the acdress of the routine tobe runin the
new page. Figure 3 shows the execution of code to perform
a change of page from page 1 to page 0.

Returning from the interrupt routine requires the RTI com-
mand to be replaced with a return from interrupt routine that
checks the ' RAM location containing the memory page num-
ber prior to the interrupt routine execution. The routine then
either performs an RTI command immediately if itis to remain
in the same page or otherwise changes the state of the port
D(5) line and then performs an RTlI command in the correct
page. Note that as with the JMP 0,X command, the RTI must
be at the same address in both pages. It is important that the

50

I-bit in the CCR (interrupt inhibit) is set during this time for the
example code to run correctly, otherwise the return page may
be altered. This limitation can be overcome by using the stack
to maintain a copy of the last page prior to the currentinterrupt.

The latency for aninterrupt routine in a different page fromthe
currently running user code is increased by 21 cycles on
entering the interrupt routine and 18 cycles on leaving the
interrupt routine. Anyinterruptcode that could nottolerate any
such latency could be repeated in both pages of memory.

Other routines

Jumping from one page to another may be done at any time
by using the same change of page routine but there is no need
to storethe current page in RAM and so these two lines of code
become redundant. In the example, the change page routine
could be started at the BCLR or BSET command and save 4
cycles. This would therefore reduce the page change delay to
17 cycles. Note that it is not possible to -perform a JSR
command to move into the other page with the method shown
in the example since the RTS would not return to the original
page, however, a modification to the return from interrupt
routine would allow an equivalent function for a return from
subroutine. In this case the stack should be used to maintain
the correct return page or the I-bitin the CCR should be set to
prevent interrupts.

Important conditions

The state of the port line controlling address A16 after resetis
very important. In the example, port D(5) is used which is an
input after reset and has a pull-up resistor to force a logic high
on A16. If an output only port line was used then it could be
reset such that A16 is a logic zero (no pull-up resistor required)
which hasanimportant consequence. Theinitialisation routine
which sets up the ports must be in the default page dictated
by the state of address A16 following reset otherwise the user
code may notbe able to correctly configure the portsandhence
be unable to manipulate address A16. Similarly, a bidirectional
port line could have a pull-down resistor to determine the
address A16 line after reset with the same implications.

The assembler generates two blocks of code with identical
address ranges used by the user code. This could not be
programmed directly into an EPROM since the second page
would simply attempt to overwrite the first page. The code
must therefore be split into two blocks and programmed into
the correct half of the EPROM. Some linkers may be capable
of performing this function automatically. Figure 2 illustrates
the expansion of the pages into the 128K byte EPROM
memory.

The RAM and registers, and internal EEPROM if available and
enabled, will all appear in the memory map in preference to
external memory so care must be taken to avoid these
addresses or move the RAM or registers away to different
addresses by writing to the INIT register.

68HC11

PD5S

A0 - A15

DO - D7 (-

m

10kQ

vDD

1M bit EPROM

A16

P A0 - A15

= D0 - D7

o—@

Figure 1. Software Paging Schematic Diagram

128K byte EPROM

$00000
64K byte map Page 0
$0000
$0000
$OFFFF
Page 0 $10000
Page 1
$FFFF Page 1
Default Page
$FFFF

$1FFFF

Figure 2. Software Paging Representation

51

128K byte EPROM

$00000
TOGGLE PORT A-4
JUMP TO CHANGE PAGE ROUTINE
Page 0
3
'CHANGE TO PAGE $0F800
L JMP X
R
VECTORS $OFFFF
$10000
TOGGLE PORT A-3
JUMP TO CHANGE PAGE ROUTINE
Page 1
f
$1F800
(.. Default
page
VECTORS
$1FFFF

1 - Jump to change page routine
2 - Page changes to page 0
3 - Jump to address in X register (in page 0)

Figure 3. Flow of program changing from Page 1 to Page 0

52

<voD]

68HC11 10kQ 1M bit EPROM
74HC157
Al14
MUX Al14
PD3
A15 \|
MUX A15
PD4 I
.% D-6—— At6
PD5
74HC27
AO - A13 | AO-A13
DO - D7 | »| DO-D7
74HCO00
E _
— OE
RIW
cs

Figure 4. Hardware and Software Paging Schematic Diagram

METHOD B - COMBINED HARDWARE AND SOFTWARE TECHNIQUE

The basic approach to this method is the same as above
except that hardware replaces some of the software. A port
line together with M68HC11 addresses A14 and A15 are
NOR’d to control the address A16 line of the EPROM. This
signalis alsousedtoselectbetweenthe portlineand address
line for A14 and A15 (see figure 4). The hardware between
the portlines controlling the A14 and A15 addresses enables
64K bytes of user code to be addressed at all times with 48K
bytes common to all the pages and then selecting one of five
16K byte pages of EPROM memory.

In the example, port D(3) and address A14 are connected to
the input of a 2 channel multiplexer such that port D(5),
address A14 and address A15 control which of these two
signals reaches the A14 pin of the EPROM. If addresses A14
or A15 are logic 1, the NOR gate outputs a logic 0 state,
ensuring the A16 pin of the EPROM is a logic 0. In this case
address A14 controls the A14 pin of the EPROM and similarly
A15 and port D(4) are selected such that address A15
controls the A15 pin of the EPROM. Thus the main 48K byte
portion of the EPROM memory may be addressed atall times
ataddresses $4000 up to $FFFF. With Port D(5) and address
A14 and A15 all at logic O (address range $0000 to $3FFF),
the port lines Port D(3) and Port D(4) are selected in place of
address lines A14 and A15. Page 0 is always selected
whenever Port D(5) isalogic 1. This makes it possible to have
one of the five pages of 16 K bytes paged into the 64K
addressing range of the HC11 while always maintaining the
main 48K bytes of user code in the memory map.

There are few restrictions on the user code since the
hardware provides the switchinglogic. Code can be made to
run from one paged area to another by jumping to an
intermediate routine in the main page. Port D is configured
to be in the input state following reset which results in the
main page plus page 0 of the paged memory in the 64K byte
address map since the port D lines each have a pull-up
resistor to maintain a logic high state after reset. A simple
change memory map routine can then bring in the desired
page at any time. Appendix B shows the assembly code for
a program that toggles different port pins in each of the 5
pages controlled from a main routine in the main page.
Figure 5 shows the 5 overlaid pages expanded toa 128K map
with the flow of the program demonstrating a change from
page 0 to page 1 by running the change page subroutine
shown in bold type.

Implementation in ‘C’ language

The demonstration code was originally written in assembly
language but it may also be implemented in ‘C’ as shown in
appendix C. The change of page routines were writtenin ‘C’

with the first part an example of using in-line code and the
second part calling a function. The short example shows the
assembly code on the left, generated by the ‘C’ code on the
right. This is very similar to the assembly code example in
appendix B and so it is possible to extend the memory
addressing beyond 64K bytes with the ‘C’ language just as
with assembly language.

Interrupt conditions

The interrupt routines have normal latency when they reside
in the main 48K bytes page since this is always visible to the
CPU. The 25 cycle delay for changing pages may cause
problems for interrupt routines in a paged area of memory.

Important conditions

There are few special conditions for this method. The vectors
must point to the main page of memory where the page
changing routine must also reside. Routines in a paged area
can only move to another page via the main 48K page unless
the technique in method Ais utilised (i.e. page change routine
duplicated at identical addresses in both pages).

As with method A, the RAM and registers, and internal
EEPROM if available and enabled, will all appear in the
memory map in preference to external memory so care must
be taken to avoid these addresses or move the RAM or
registers away to different addresses.

The assembler generates 5 blocks of code with identical
addressranges used by the user code plus the main 48K byte
section. This could not be programmed directly into an
EPROM since the second and subsequent pages would
simply attempt to overwrite the first page. The code must
therefore be splitintoblocks and programmed into the correct
part of the EPROM. Some linkers may be capable of perform-
ing this function automatically.

Figure 6 illustrates the expansion of the pages into a single
128K byte EPROM memory.

Customisation

Clearly the size of the paged areas may be made to suit the
application with for example a 32K byte main page and three
32K bytes of paged memory simply by not implementing
control over the A14 address of the EPROM and not includ-
ing Port D(3) control. Similarly by adding another port line to
control address A13, the main program can be 56K bytes with
9 pages of 8K bytes each.

b
&

SET UP PORT D FOR PAGE CONTROL

JSR TO PAGE 0 CHANGE SUBROUTINE
JSR TO PAGE 0

:JSR TO PAGE 1
AR R R Ry

JSR TO PAGE 2 CHANGE SUBROUTINE
JSR TO PAGE 2

etc

CHANGE TO PAGE 0 AND RETURN
CHANGE TO PAGE 1 AND RETURN
CHANGE TO PAGE 2 AND RETURN

etc

TOGGLE PORT A-4

AND RETURN TO MAIN PROGRAM

1 - Return from page 0
2 - Jump to page 1 routine
3 - Return from page 1 to main page

| $04000

Main Page

$14000
TOGGLE PORT A-5
AND RETURN TO MAIN Page 2
PROGRAM

$18000
TOGGLE PORT A-6
AND RETURN TO MAIN Page 3
PROGRAM

$1C000
TOGGLE PORT A-7
AND RETURN TO MAIN Page 4
PROGRAM

$1FFFF

Figure 5. lllustration of changing from Page 0 to Page 1

55

$00000
Page 0
$04000
$0000 Page 0
Page 1
$3FFF Main Page
$4000
$10000
Page 1
Main Page
$14000
$18000
Page 3
$1C000
Page 4
$1FFFF

Figure 6. Hardware and software paging representation

56

Method A
Page 1
$FFFF]

Method B

$o0000 Page 0]
Page 1 I
P 2
$3FFF ags |
$4000 age 3 l
Page 4
Main Page
$FFFF

Figure 7. Comparison of paging schemes

IN GENERAL

In both methods, the registers may be moved to more
appropriate addresses. If the usage of RAM s not critical the
registers may be moved to address $0000 by writing $00 to
the INIT register immediately after reset. For the
MC68HC11G5 this means losing 128 bytes of RAM but
resultsin aclean memory map above $1FF. inthe examples,
the registers and RAM remain at the default addresses and
so care must be taken not to have user code from address
$0000 to $01FF and $1000 to $107F for the MC68HC11G5.
Note thatthe MC68HC11E9and MC68HC11A8have slightly
different RAM and register address ranges plus the internal
EEPROM which should be disabled if not used.

Figure 7 demonstrates the differences between the paging
techniques by showing the overlap of the pages. The num-
ber and size of the pages can easily be modified by small
changes to the page change routines and hardware.

57

Beyond 128K bytes

Both techniques may be scaled up with several port lines
controlling address lines beyond address A15 with the
addition of further change page routines and enhancing the
return from interrupt routine to allow a return to a specific
page in method A or the addition of further multiplexing logic
in method B.

IN CONCLUSION

The two methods described in detail are the basis for many
other ways of controlling paging on a single large EPROM
memory device or several smaller EPROMs. It is a simple
matter to scale up or modify the techniques to suitaparticular
application or EPROM. The software approach is the cheap-
est and allows for a main program of up to the full size of the
EPROM while the combined hardware and software ap-
proach has a maximum main program size of 48K bytes (in
this example) and no additional interrupt latency.

WO E WN

00000000
00000001
00000004
00000006
00000007
00000008
Q00060003
00000024
00000025
00000040
00000040
00000026
00000080
00001000

00000000
00000001

00000020
00000200
0000£800
0000ffcc

APPENDIX A - SOFTWARE PAGING SCHEME

*xkk EXTENDA.ASC *Hr bk kAR ke sk ko k kR R AN A AR AR KRR AR R R AR R RN K ARK AN AN R RN AN K

TESTS EXTENDED MEMORY CONTROL

For a single 1M bit (128K byte) EPROM split into 2 x 64K byte pages.
Al6 is connected to Port D(5) which then selects which half of

the EPROM is being accessed. PD5 = 1 after reset since it is in

the input state with a pull-up resistor to Vdd.

This code is written for the 68HC11G5 MCU but can be easily modified
to run on any 68HC11 device. The 68HC11G5 has a non-multiplexed
address and data bus in expanded mode.

* % % % % % % % ® % % * ¥ % ¥

R e e e e e

*

PORTA EQU $00
DDRA EQU $01
PORTB EQU $04
PORTC EQU $06
DDRC EQU $07
PORTD EQU $08
DDRD EQU $09
TMSK2 EQU $24
TFLG2 EQU $25
RTII EQU $40
RTIF EQU $40
PACTL EQU $26
DDRA? EQU $80
REGS EQU $1000

*
L2222 22222222222 2RSS ssssssts iRt ssd s
*

* RAM definitions (from $0000 to $O1FF)

*

R e e e s sty

ORG $0000
PAGE RMB 1 page number prior to interrupt
TIME RMB 2 counter value for real time interrupt routine
*
NPAGE EQU $20 PORT D-5 page control line
ROMBASE EQU $0200 Avoid RAM (from $0 to $1FF)
CHANGE EQU $F800
VECTORS EQU SFFCC

*

L e e R e e st eal

* START OF MAIN PROGRAM
B S A
*

> page 0 (lst half of EPROM)

*

*

e R R R L R e s s

org ROMBASE

EA RS 2R e R s 2 e 2R a2 e sttt sss]
*

* Redirect reset vector to page 1

*

IR e e T I T

58

128

00000200
00000203

00000206
0000020a
0000020e
00000211

00000214
00000219

0000021a
0000021a
0000021c
0000021f
00000221
00000222
00000225
00000227
00000228
0000022a

0000£800
0000£800
0000£802
0000£804
0000£808

ce0200
7e£800

181c0010
18140010
ce0216
7ef800

181e254001
3b

8640
18a725
9602
4c
b71004
de01
08
dfo1l
Tef80a

8600
9700
181c0820
6e00

RESETO LDX #RESET
JMpP CHGPAGEQ

AR AR R AR A A AR AR AR AN R A AR AN R AR N AR RN AR AN TR RN A AN ARk
*

* 2nd half of page 0 loop running in page 1

*

L2222 22 22 22 22 2222222222 sttt st ssd

LOOPPO BSET PORTA, Y, #510 Toggle bit 4
BCLR PORTA, Y, #510
LDX #LOOPP1 get return address in page 1
JMP CHGPAGEO jump to change page routine

*

L2222 222222222ttt ittt sttt Rttt Rl S
*

* Real time interrupt service routine

*

R R A AR R A A R A A A A A A A A AR A A AR A AN AN NN ARNAN A TR AN ARk * ok

RTISRV BRSET TFLG2,Y, #RTIF,RTISERV

RTI return if not correct interrupt source
* This is an RTI because interrupt vector
* only points here when in page 1
*
RTISERV

LDAA #%01000000 page 0 interrupt starts here

STAA TFLG2, Y clear RTI flag

LDAA TIME+1 get the time counter

INCA increment counter

STAA PORTB+REGS store time in port B

LDX TIME

INX

STX TIME and copy back into RAM

JMP RETRTIO jump to RTI routine

LR g e e e e e s a2y

CHANGE PAGE ROUTINE

This code must be executed with the I-bit set to prevent interrupts
during the change if it is a jump for an interrupt routine.
Otherwise PAGE could be updated and then another interrupt could
occur before the PAGE was changed causing the first interrupt
routine to return to the wrong page.

The PAGE variable is not required for a normal jump and so it does
not require the I-bit to be set (only the BSET is important).

This code is repeated for the same position in both pages
KKK R KRR AR R R AR AR AN A AR AR A AR AR AR AR AR RN RN KRR ANXNANR KR NN

L A B T T T T S

jump routine
ORG CHANGE Address for this routine is fixed
* cycles
CHGPAGEO
LDAA #0 2 set current page number = 0
STAA PAGE 2 store page page number
BSET PORTD, Y, #NPAGE 8 change page by setting PD-5
JMP 0,X 3 This code is the same in both pages
*
KRR R AR R AN AR R R A A R R AN A AR A AR R A A RN AR AR AR AN AKX R RN KK

* return from interrupt routine running in page 0

*

*

* check if interrupt occurred while code was running in page 1

* and return to page 1 before the RTI command is performed

*

LSRR R R R s e s e e e s 222222222

59

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

152
153
154
155
156
157
158

160
161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

190
191
192
193
194
195

197

0000£80a
0000£80a
0000£80c
0000£80e
0000£810
0000£811
0000£811
0000£815

0000ffcc
0000ffce
0000££d0
0000ffd2
0000ffd4
0000ffdé
0000ffd8
0000ffda
0000ffdc
0000ffde
0000ffe0
0000ffe2
000Cffed
0000ffe6
0000ffe8
0000ffea
0000ffec
0000ffee
0000£££0
0000£f££f2
0000fff4
0000fffé6
0000fff8
0000fffa
0000fffc
0000fffe

00000200
00000203
00000206
00000208
0000020c
00000210
00000213
00000216
00000216
00000217
00000219

9600
8101
2701
3b

181c0820
3b

8e01ff
bd021b
86ff
181c0008
18140008
ce0206
7e£800

4a
26ef
20eb

*

RETRTIO
LDAA
CMPA
BEQ
RTI

RTIPAGEO
BSET
RTI

cycles
PAGE 2 get page the interrupt occured in
#1 2 is it page 1
RTIPAGEO 3 if yes then change page

12 otherwise, return from interrupt

PORTD, Y, #NPAGE 8
12

change page and return from interrupt
This codes is the same in both pages

e R e e e e e e e

* VECTORS

WAk ok K R A Rk kR R AR A KA AR E AR I AT KA A A IR I KA KA KR IR KA RAR A A XX

ORG
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB

VECTORS
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RTISRV
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO
RESETO

EVENT 2

EVENT 1

TIMER OVERFLOW 2

INPUT CAPTURE 6 / OUTPUT COMPARE 7
INPUT CAPTURE 5 / OUTPUT COMPARE 6
sCI

SPI

PULSE ACC INPUT

PULSE ACC OVERFLOW

TIMER OVERFLOW 1

INPUT CAPTURE 4 / OUTPUT COMPARE 5
OUTPUT COMPARE 4

OUTPUT COMPARE 3

OUTPUT COMPARE 2

OUTPUT COMPARE 1

INPUT CAPTURE 3

INPUT CAPTURE 2

INPUT CAPTURE 1

REAL TIME INTRRUPT

IRQ

XIRQ

SWI

ILLEGAL OPCODE

cop

CLOCK MONITOR

RESET

B g L e e

R o o B

*

* page 1 (2nd half of EPROM)

*

*

e S R R o O S AR RS e S RS RN SR
TR H KR KK AR AT A IR K AN NI R R A AR KRR A A AN AR AR RN AR A ARk hh Ak ke ko kok ok kkhok

*

* MAIN ROUTINE NOT UNDER INTERRUPT CONTROL

*

22 e e e e L

*

ORG
RESET LDS
JSR
LOOP1 LDAA
LOOP BSET
BCLR
LDX
JMP
LOOPP1
DECA
BNE
BRA

ROMBASE
#SO01FF

SETUP

#SFF
PORTA, Y, #3508
PORTA, Y, #5308
#LOOPPO
CHGPAGE1

Loop
Loor1l

60

initialise RTI interrupt and DDRs
Toggle bit 3

set up jump to other page
go to other page

return point from other page
toggle port A
start loop again

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
2217
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
2517
258
259

0000021b
0000021c
00000220
00000222
00000225
00000228
0000022b
00000224
00000230
00000233
00000234

00000235
0000023a

0000023b
0000023b
0000023e

0000£800
0000£800
0000£802
0000£804
0000f808

of
18cel000
86ff
b71001
b71008
b71009
8640
b71025
b71024
Oe

39

181254001
3b

cel2la
7ef800

8601
9700
18140820
6e00

B e
* INITIALISATION ROUTINE
B e T T T T e

*

SETUP SEI
LDY #3$1000 Register address offset
LDAA #SFF
STAA DDRA+REGS make port A all outputs
STAA PORTD+REGS make sure port D-5 is written a 1
STAA DDRD+REGS and only then make all outputs
LDAA #%01000000
STAA TFLG2+REGS clear RTI flag
STAA TMSK2+REGS enable RTI interrupt
CLI
RTS

EA AR RS e e E Rttt sttt Rl
*
* Redirect to the Real time interrupt service routine

* Page 1 routine for service routine located in page 0
F2 222222 R s sttt sttt sl

*

INTRTI BRSET TFLG2,Y, #RTIF,GOODINT

RTI return if. not correct interrupt source
* This is an RTI because interrupt vector
* only points here when in page 1
*
GOODINT cycles
LDX #RTISERV 3 get the interrupt entry point in page 0
JMp CHGPAGE1 3 jump to change page routine

L s s

CHANGE PAGE ROUTINE

This code must be executed with the I-bit set to prevent interrupts
during the change if it is a jump for an interrupt routine.
Otherwise PAGE could be updated and then another interrupt could
occur before the PAGE was changed causing the first interrupt
routine to return to the wrong page.

The PAGE variable is not required for a normal jump and so it does

* not require the I-bit to be set (only the BCLR is important).
*

L

*

* This code is repeated for the same position in both pages
R R e A R s e s e s 2 RSS2SRt Rt S)

* jump routine

ORG CHANGE Address for this routine is fixed
* cycles
CHGPAGE1
LDAA #s1 2 set current page number = 1
STAA PAGE 2 store page page number
BCLR PORTD, Y, #NPAGE 8 change page by clearing PD-5
JMP 0,Xx 3 This code is the same in both pages

*

PR e e s

* return from interrupt routine running in page 0

*

* check if interrupt occurred while code was running in page 1
* and return to page 0 before the RTI command is performed

*

L e e R e s

61

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
271
278
279
280

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

0000£80a
0000£f80a
0000£80c
0000£80e
0000£810
0000£811
0000£811
0000£815

0000ffcc
0000ffce
0000££d0
0000ffd2
0000££fd4
0000££fdé
0000££d8
0000ffda
0000ffdc
0000ffde
0000ffe0
0000ffe2
0000ffed
0000ffe6
0000ffe8
0000ffea
0000ffec
0000ffee
0000£f£f£f0
0000fff2
0000fff4
0000fffé6
0000fff8
0000fffa
0000fffc
0000fffe

9600
8100
2701
3b

18140820
3b

0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0235
0200
0200
0200
0200
0200
0200
0200

*

RETRTI1
LDAA
CMPA
BEQ
RTI

RTIPAGE1l
BCLR
RTI

PAGE
#0
RTIPAGE1l

PORTD, Y, #NPAGE

cycles

=W NN

N

8

get page the interrupt occured in
is it page 0

if yes then change page
otherwise, return from interrupt

change page and return from interrupt
This codes is the same in both pages

KRR RN KK AR A KRR KA AR R E AR KRR HAN KRR R KKK IR I AR KKK IR KKK AR R R KRRk Kk

* VECTORS

R e e e sy

«

ORG
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB

VECTORS
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
INTRTI
RESET
RESET
RESET
RESET
RESET
RESET
RESET

EVENT 2

EVENT 1

TIMER OVERFLOW 2

INPUT CAPTURE 6 / OUTPUT COMPARE 7
INPUT CAPTURE 5 / OUTPUT COMPARE 6
SCI

SPI

PULSE ACC INPUT

PULSE ACC OVERFLOW

TIMER OVERFLOW 1

INPUT CAPTURE 4 / OUTPUT COMPARE 5
OUTPUT COMPARE 4

OUTPUT COMPARE 3

OUTPUT COMPARE 2

OUTPUT COMPARE 1

INPUT CAPTURE 3

INPUT CAPTURE 2

INPUT CAPTURE 1

REAL TIME INTRRUPT

IRQ

XIRQ

SWI

ILLEGAL OPCODE

cop

CLOCK MONITOR

RESET

B e e e s i s ssss sy

END

62

® LU WN -

APPENDIX B - HARDWARE AND SOFTWARE PAGING SCHEME

Akkkkkkk EXTENDB .ASC **hdhkhok ke kdok ke k ke ks kb h ok ke kA Kk kok Kk ek ke ok ok ok ok ok ke

TESTS EXTENDED MEMORY CONTROL

for a single 1M bit (128K byte) EEPROM split into 48KB + 5 x 16KB
$4000 - SFFFF 48K COMMON PAGE
$0200 - $3FFF 16K PAGES 0,1,2,3,4

A multiplexer is used to switch between address and port D lines
controlled by PD5 and Al6 is controlled by /(PD5+A14+Al5)

This ensures that Address Al6 is a logic 1 whenever Al4 or AlS are
high and that all three lines must be low for the paged memory between

L N A 4

(Continued overleaf)

63

* addresses $00000 and $OFFFF.

*

*

* SOURCE CODE EPROM

* ADDRESS ADDRESS
* 0000 + 00000
* | PAGE 0 |

* 4000 R + 04000
* | I

* | MAIN PAGE |

* | t

* | |

* 0000 + - 10000
* | PAGE 1 I

* 0000 + 14000
* I PAGE 2 |

* 0000 + + 18000
* | PAGE 3 |

* 0000 1C000
* | PAGE 4 !

* 3FFF + 1FFFF
*

*

* 4=

* Al4 L

* —=-=-— A I

* I |

* | MUX |——m—mmmee +

* PD3 | | |

* —==--—1 B I |

> -+ |

* .'_nul l s o e . e o S
* | | |

* 1 1]

> Rt ~-=+ | |

* i t——==w—+ Al4

* I |

* +-__ | |

* AlS | wn_y | |

> ——--=-—] A | | !

* I | | |

* | MUX | + AlS

* PD4 1 | 1 |

» ~——==--—| B | t | 1M BIT
* [| | EPROM
» .',_nu' ' ’

* | [|

* +- + ’

* | |

* PDS5 \ \ ! !

* ——emm———\ \ | |

* Al4 \ \ | |

* | NOR >0 + Al6

* Al5 / / |

* ———————— — / |

* / / |

* |

*)

* PD3,PD4 AND PD5 = 1 AFTER RESET e m e ———
* SINCE PULL-UP RESISTORS FORCE HIGH STATE WITH PORT D AS INPUTS
* WHICH DEFAULTS TO MAIN PROGRAM PLUS PAGE 0

*

*

*

*

*

LR AR RSS2 st 2222222222222 2RT]

127

00000000
00000001
00000004
00000006
00000007
00000008
00000009
00000024
00000025
00000040
00000040
00000026
00000080
00001000

00000000

00000200
00004000
0000ffcc

00000000
00000020
00000000
00000008
00000010
00000018

*

PORTA EQU $00

DDRA EQU $01 68HC11GS only
PORTB EQU $04

PORTC EQU $06

DDRC EQU $07

PORTD EQU $08

DDRD EQU $09

TMSK2 EQU $24

TFLG2 EQU $25

RTII EQU $40

RTIF EQU $40

PACTL EQU $26

DDRA7 EQU $80 68HC11E9 only
REGS EQU $1000

*
L2222 2 22 R R 2 2 22 R e s RRsRsRisRtsRiisssddRstsssssn)
*

* RAM definitions

*

AR IR A AN AN AR AR AR AR R A AR N A A AN A AN KRN R I A AR A AN kY E AP P Ry AR A Rh AT Rk hk

ORG $0000
TIME RMB 2 Real time inte-cupt routine counter
*
ROMBASEO EQU $0200 Avoid RAM (from ST te $1FF)

ROMBASE1 EQU $4000

VECTORS EQU $FFCC
*

P e e e s e e

* PAGE 0 = $00000 - $O3FFF (A16=0,A15=0,A14=0. => PAGEC=%00100000
* MAIN = $04000 - SOFFFF (A16=0) => START=%001XX000
* PAGE 1 = $10000 - $13FFF (Al6=1,A15=0,A14=0; => PAGE1=%00000000
* PAGE 2 = $14000 - $17FFF (A16=1,A15=0,A14=_1* => PAGE2=%00001000
* PAGE 3 = $18000 - $1BFFF (Al6=1,Al15=1,A14=0} => PAGE3=%00010000
* PAGE 4 = $1C000 - $1FFFF (Al6=1,Al15=1,Al4=1: => PAGE4=%00011000
*

* PAGEn is added to %$xx000xxx to give the state of port

* D(3), D(4) and D(5).

*

START EQU $00

PAGEO EQU $20

PAGE1l EQU $00

PAGE2 EQU s08

PAGE3 EQU $10

PAGE4 EQU $18

*
P R R e R e a2

65

128

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177
178
179
180
181
182
183

00000200
00000204
00000208

00004000
00004003
00004006
0000400a
0000400e
00004011
00004014
00004017
0000401a
0000401d
00004020
00004023
00004026
00004029
0000402c

0000402e
0000402f
00004033
00004035
00004038
0000403b
0000403e
00004041
00004042
00004045
00004048
0000404a
00004044
00004050
00004051

181¢c0008
18140008
7e4014

8eO1ff
bd402e
181c0840
18140840
bd4062
7e0200
bd406d
bd0200
bd4078
bd0200
bd4083
7e0200
bd408e
70200
2048

of
18cel000
86ff
b71001
b71009
7£0000
7£0001
4f
b71000
b71008
8640
b71025
b71024
Oe

39

R D S sEsd
*

* page 0 (1st half of EPROM)
*
*

R R AR e e e s sd

org ROMBASEQ
LOOPPO BSET PORTA, Y, #508
BCLR PORTA, Y, #508 Toggle Port A-3
JMP MAINO return to main page

*
L R R R R s B e AR A R o e
* START OF MAIN PROGRAM

AR H A AN A AR A AR KA AR AN H A AN R A AN AN AN I AANAKANARRRAA AN AR A AR AN RAN N AN KAk Aok
*

* MAIN ROUTINE NOT UNDER INTERRUPT CONTROL

*

AN RN AN AR AR A AN N A AR R kA AR RN AR Ak kA kA Ak ok ok kk

*

ORG ROMBASE 1
RESET LDS #S01FF
JSR SETUP initialise RTI interrupt and DDRs
Loorp BSET PORTD, Y, #$40
BCLR PORTD, Y, #$40 main routine toggles port D-2
JSR CHGPAGEO select page 0
JMP LOOPPO Toggle Port A-3
MAINO JSR CHGPAGE1 select page 1
JSR LOOPP1 Toggle Port A-4
JSR CHGPAGE2 select page 2
JSR LOOPP2 Toggle Port A-5
JSR CHGPAGE3 select page 3
JMP LOOPP3 Toggle Port A-6
MARIN3 JSR CHGPAGE4 select page 4
JMP LOOPP4 Toggle Port A-7
MAIN4 BRA LOOP start loop again

*
R e e e
* INITIALISATION ROUTINE

B e e

*

SETUP SEI
LDY #$1000 Register address offset
LDAA #SFF
STAA DDRA+REGS make port A all outputs (68HC11G5)
STAA DDRD+REGS make port D all outputs
CLR TIME
CLR TIME+1
CLRA

STAA PORTA+REGS
STAA PORTD+REGS
LDAA 4#%01000000

STAA TFLG2+REGS clear the RTI flag
STAA TMSK2+REGS enable RTI interrupt
CLI

RTS

184 PR R R e e s

185 *

186 * Real time interrupt service routine

187 *

188 I3 2222222222222 sttt sE)
189 00004052 8640 RTISRV LDAA #%01000000

190 00004054 b71025 STAA TFLG2+REGS clear RTI flag

191 00004057 9601 LDAA TIME+1

192 00004059 b71004 STAA PORTB+REGS store counter in port B

193 0000405¢c de0O0 LDX TIME get time counter

194 0000405e 08 INX increment counter

195 0000405f df00 STX TIME save counter value in RAM

196 00004061 3b RTI Return from interrupt

197 *

198 12222 2222222222222 s st st 2222 R D)
199 * CHANGE PAGE

200 * acc B (bits 3-5) contains the 1's complement of new page number address
201 *

202 * SOURCE CODE EPROM

203 * ADDRESS ADDRESS

204 * 0000 + - + 00000

205 * | PAGE 0

206 * 4000 L + 04000

207 * |

208 * | MAIN PAGE |

209 * |

210 * |

211 * 0000 + 10000

212 * | PAGE 1

213 * 0000 + + 14000

214 * | PAGE 2

215 * 0000 + 18000

216 * | PAGE 3 |

217 * 0000 - 1c000

218 * | PAGE 4

219 * 3FFF + 1FFFF

220 *

221 * PAGE 0 = $00000 - $O3FFF (Al16=0,A15=0,A14=0) => PAGE0=%00100000
222 * MAIN = $04000 - SOFFFF (A16=0) => START=%$001XX000
223 * PAGE 1 = $10000 - $13FFF (Al16=1,A15=0,A14=0) => PAGE1=%00000000
224 * PAGE 2 = $14000 - S$17FFF (Al16=1,A15=0,A14=1) => PAGE2=%00001000
225 * PAGE 3 = $18000 - $1BFFF (Al6=1,A15=1,A14=0) => PAGE3=%00010000
226 * PAGE 4 = $1C000 - $S1FFFF (Alé=1,Al15=1,Al4=1) => PAGE4=%00011000
227 *

228 R e e e e el

67

00004062
00004062
00004065
00004067
00004069
0000406c

0000406d
0000406d
00004070
00004072
00004074
00004077

00004078
00004078
0000407b
0000407d
0000407f
00004082

00004083
00004083
00004086
00004088
0000408a
0000408d

0000408e
0000408e
00004091
00004093
00004095
00004098

0000ffcc
0000ffce
0000££fd0
0000ffd2
0000ffd4
0000ffd6
0000f£fd8
0000ffda
0000ffdc
0000ffde
0000ffe0
0000ffe2
0000ffe4
0000ffeé6

b61008
84c?
8b20
b71008
39

b61008
84c7
8b00
b71008
39

b61008
84c?
8b08
b71008
39

b61008
84c?
8b10
b71008
39

b61008
84c?
8b18
b71008
39

4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000

*

CHGPAGEO
LDAA
ANDA
ADDA
STAA
RTS

*

CHGPAGE1
LDAA
ANDA
ADDA
STAA
RTS

*

CHGPAGE2
LDAA
ANDA
ADDA
STAA
RTS

*

CHGPAGE3
LDAA
ANDA
ADDA
STAA
RTS

*

CHGPAGE4
LDAA
ANDA
ADDA
STAA
RTs

*

PORTD+REGS
#%11000111
#PAGEO

PORTD+REGS

PORTD+REGS
#%11000111
#PAGE1

PORTD+REGS

PORTD+REGS
#%11000111
4#PAGE2

PORTD+REGS

PORTD+REGS
#311000111
#PAGE3

PORTD+REGS

PORTD+REGS
#%11000111
#PAGE4

PORTD+REGS

get port D data

make middle 3 bits low state

add PAGE descriptor to this

write back to port D

(only bits 3, 4 and 5 are changed)

get port D data

make middle 3 bits low state

add PAGE descriptor to this

write back to port D

(only bits 3, 4 and 5 are changed)

get port D data

make middle 3 bits low state

add PAGE descriptor to this

write back to port D

(only bits 3, 4 and 5 are changed)

get port D data

make middle 3 bits low state

add PAGE descriptor to this

write back to port D

{(only bits 3, 4 and 5 are changed)

get port D data

make middle 3 bits low state

add PAGE descriptor to this

write back to port D

(only bits 3, 4 and 5 are changed)

R R e e e s s st ssy

* VECTORS

R R e e e e i e sl st tssy

*

ORG
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB

VECTORS
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET

68

EVENT 2

EVENT 1

TIMER OVERFLOW 2

INPUT CAPTURE 6 / OUTPUT COMPARE 7
INPUT CAPTURE 5 / OUTPUT COMPARE 6
SCI

SPI

PULSE ACC INPUT

PULSE ACC OVERFLOW

TIMER OVERFLOW 1

INPUT CAPTURE 4 / OUTPUT COMPARE 5
OUTPUT COMPARE 4

OUTPUT COMPARE 3

OUTPUT COMPARE 2

0000ffe8
0000ffea
0000ffec
0000ffee
0000££f0
0000fff2
0000fff4
0000fff6
0000fff8
0000fffa
0000fffc
0000fffe

00000200
00000204
00000208

00000200
00000204
06000208

00000200
00000204
00000208

00000200
00000204
00000208

4000

4000
4000
4000
4052
4000
4000
4000
4000
4000
4000
4000

181c0010
18140010
39

181c0020
181d0020
39

181c0040
18140040
7e4026

181c0080
18140080
Je402c

FDB RESET OUTPUT COMPARE 1

FDB RESET INPUT CAPTURE 3
FDB RESET INPUT CAPTURE 2
FDB RESET INPUT CAPTURE 1
FDB RTISRV REAL TIME INTRRUPT
FDB RESET IRQ

FDB RESET XIRQ

FDB RESET SWI

FDB RESET ILLEGAL OPCODE
FDB RESET cop

FDB RESET CLOCK MONITOR
FDB RESET RESET

*

KRR AT AR AR R AR RN A N R AR R AN A AR A AN A A A AR RN AN KRR NNNNANNNNANRAN NN
B R e A R
*

* page 1 (2nd half of EPROM)

*

*

R O R R R D B B o O o S S R S SRS

org ROMBASEQ

LOOPP1 BSET PORTA, Y, #$10
BCLR PORTA, Y, #510 Toggle Port A-4
RTS

B B B o e
*

* page 2 (2nd half of EPROM)

*

*

R R R L R R R B o S R RS Ry

org ROMBASEO

LOOPP2 BSET PORTA, Y, #5320
BCLR PORTA, Y, #$20 Toggle Port A-5
RTS

R o e T e o o 2 o e o e e 4
*

* page 3 (2nd half of EPROM)

*

*

Lo A B s a A 8 T

org ROMBASEO
LOOPP3 BSET PORTA, Y, #540
BCLR PORTA, Y, #540 Toggle Port A-6
JMP MAIN3 return to main page

B R R B R R s B i o 2 B S s
*

* page 4 (2nd half of EPROM)

*

*

R R R B o o b

org ROMBASEO
LOOPP4 BSET PORTA, Y, #$80
BCLR PORTA, Y, #580 Toggle Port A-?
JMP MAIN4 return to main page
KA AR AT KA AR AR KA A I AN H A NN R AR AR AR A A TR R R RN TN A AN ARAAAXNIR XXX NN
END

69

APPENDIX C - ‘C’' LANGUAGE ROUTINES FOR METHOD B

/* CHGPAGE.C
C coded extended memory control for 68HC11

* % %

*/
*
P22 2 e 2

/* HC11l structure - I/0 registers for MC68HCll */

struct HC11IO0 {

unsigned char PORTA; /* Port A - 3 input only, 5 output only */
unsigned char Reserved; /* Motorola’s unknown register */
unsigned char PIOC; /* Parallel 1/0 control */

unsigned char PORTC; /* Port C */

unsigned char PORTB; /* Port B - Output only */

unsigned char PORTCL; /* Alternate port C latch */

unsigned char Reservedl; /* Motorola’s unknown register 2 */
unsigned char DDRC; /* Data direction for port C */
unsigned char PORTD; /* Port D */

unsigned char DDRD; /* Data direction for port D */
unsigned char PORTE; /* Port E */

1K
/* End of structure HC11IO */
e v e ok o o o o e e o e ok e ok o ok o o e ok o o o ko o o o o o O Y R o ok o ok o T o ok o o T ok ok o o o o R o o o R e b
x
* #define regbase (*(struct HC11IO *) 0x1000)
* typedef unsigned char byte;
*
* /* Some arbitrary user defined values */
* #define page0 0x20
* #define pagel O0x00
* #define page2 0x08
* #define pagemask Oxc?

*

* /* Macro to generate in line code */

* tdefine chgpage(a) regbase.PORTD = (regbase.PORTD & pagemask) + a
»*
* /* Function prototype */
* void func_chgpage (byte p);
x
* /* Externally defined functions in separate pages */
* extern void func_in_page0 () ; /* bummy function in page 0 */
* extern void func_in_page2(); /* Dummy function in page 2 */

70

o

0000

0000
0003
0005
0007

000a

0004
0010

0012

0015
0016

0016
0016

0017
00la
001c
001d
001f

0022
0023
0024

main: fbegin

£61008 ldab
c4c? andb
cb08 addb
£71008 stab
>bd0000 jsr
cc0020 ldd
8d04 bsr
>bd0000 jsr
39 rts

fend

func_chgpage:

37 pshb
£61008 ldab
cdc? andb
30 tsx
eb00 addb
£71008 stab
31 ins
39 rts
fend

$1008
#199

$1008

func_in_page2

#32
func_chgpage

func_in_page0

fbegin

$1008
#199

0, x
$1008

import func_in_page2
import func_in_page0

end

71

main ()
{

chgpage (page2) ;
/* Change page using inline code */

func_in_page2();
/* Call function in page 2 */

func_chgpage (page0) ;
/* Change page using function call */

func_in_page0();
/* Call function in page 0 */

}

void func_chgpage (p)
byte p;

{
chgpage (p) ;

72

ANA433

TV on-screen display using the MC68HCO05T1

By Peter Topping
Motorola Ltd., East Kilbride, Scotland

INTRODUCTION

The "T" members of the MCE8HCO5 family of MCUs provide
aconvenientand cost effective method of adding on-screen-
display (OSD)to TVsandVCRs. As well as the OSD capability,
they include 8 Kbytes of ROM (adequate for Teletext,
frequency-synthesis, stereo and OSD), 320 bytes of RAM, a
16-bit timer and 8 pulse-width-modulated D/A converters.
The MC68HC(7)05T7/8 also includes IIC hardware and, by
using a 56/64 pin package, 4 ports of I/O independent of the
OSD, serial and D/A outputs. It is thus suitable for large full-

feature chassis. The MCB8HCO5T1 is in the middle of the
price/performance range and includes most of the features
ofthe MC68HCO5T8butina40-pin package. Thisis achieved
by sharing I/O with the other pin functions (SPI, OSD, D/A).
Even if all these features are used there is sufficient I/O for
most applications. The low cost MC68HC05T4 has 5 Kbytes
of ROM and 96 bytes of RAM making it suitable for simpler
(mono, non-Teletext) applications.

68HC05T10SD FEATURES

e Programmable display of 10 rows of 18 characters

e 24byte(18data + 6 control) single row architecture

e Settablein software to any one of four standards

e Zerointer-rowand inter-column spacing

* 64 user-defined mask-programmable 8 x 13 characters

¢ Programmable horizontal position

e Character colour selectable from 4 colours/row

e Software programmable (start, stop and colour) window
e 4 character sizes (normal, double heightand/or width)

* Half-dotcharacter rounding

e Selectable half-dot black outline.

OSD CHARACTERISTICS

The HCO5TX series have an OSD capability of 10 rows of 18
characters. Each row can contain characters of four colours
selected from the eight available colours (black, blue, green,
cyan, red, magenta, yellow and white). The rows can inde-
pendently select double height and/or double width and the
start and stop positions of a background window of any
colour. The signals sentto the TV are Red, Green, Blue, fast-
blanking and half-tone. Separate horizontal and vertical syn-
chronisation inputs are required.

The OSD architecture employed includes only a single line of
display RAM. This makes the software more complicated but
reduces the silicon area required to implement the OSD
function. The software is required to update the display RAM
on a regular basis. When operating in the 625-line PAL
standard the updates must occur at 1.66 ms (26 lines)
intervalsin orderto display adjacentlines. The OSD hardware
can generate an interrupt when an update is required. There

are 18 data registers {one for each character) and 6 control
registers arranged as shown below. The table is for the T1,
some of the control bits are differentinthe T4/7/8

$20-$31 OSD Dataregisters.

$32 CAS Read: status, Write: colours 1 & 2 and
outline enable.

$33 C34 Colours3&4.

$34 RAD Row address, character size, int. enable,
RGBinvert.

$35 WCR OSD & PLL enable, Window enable and
start column.

$36 CCP Window colourandend column.

$37 HPD Horizontal position, standard selection.

73

The OSD display is timed from an on-chip 14 MHz oscillator
which is phase locked to the TV's line synchronisation pulses.
The vertical synchronisation depends on the standard in use.
Four standards are available (15.75 kHz/60 Hz, 31.5 kHz/120
Hz, 15.625 kHz/50 Hz and 31.25 kHz/100 Hz). The standard is
selectedby control bitsinthe T1/2 butis automaticinthe T4 and
the T7/8.

64 OSD characters are mask programmed along with the user
ROM. The spacing and full size of the charactersis the same at

8x 13 (for 625-line standard). This allows continuous graphics.
Half-dot interpolation hardware doubles the apparent resolu-
tion to produce smoother characters. A software selectable
black outline (a half-dot wide) is also implemented in the
hardware. Because the half-dot circuitry has to know the
information for the next line of pixels, a 14th line is available in
the character generator ROM to facilitate look ahead. The
vertical height of a character is 26 lines (52 including interlace)
and the horizontal width is 2 2/7 us (1/7 us per half pixel).

SOFTWARE

There are several approaches to writing OSD software to
operate with the single line architecture. The choice will affect
the amount of ROM and RAM used. One principle is to have a
separate interrupt routine for each type of row to be displayed.
This method will use little RAM but will be inefficientin its use
of ROM. The other approach is to write a single interrupt
routine which transfers display information from a block of
normal RAM to the display RAM as it is required for each new
line. This method will be more ROM efficient but requires a
RAM location for every display character. The amount of RAM
used depends on the maximumamount of datawhichhastobe
displayed at any one time. The choice between these two
methods will depend on the type of data to be displayed. The
first method may be better if much of the displayed data is
fixed. This could be, for example, a series of menus. The
second method will however be more appropriate if the datais
mostly variable. This will usually be the case in conventional TV
applications.

This application note describes an implementation of the
second of the above approaches. A block of RAM is used to
contain a copy of all the data to be displayed. The size of this
block can be changed to reflect the number of rows and the
number of characters perrow. The choice made in the example
described here is 8 rows of 16 characters. This is slightly less

than the maximum available and was chosen because the total
number of characters (128) corresponds to the available page 1
RAMinthe MC68HCO5T1. The choice of 16 characters perrow
also slightly simplifies the software. The software allows any
eight of the ten available rows to be used but only the first 16 of
the 18 available characters. This choice does not prevent
access to the right-hand-side of the screen as the display can
be movedtothe rightunder software control. The use of page 1
for the RAM does not incur any significant compromise in
execution time. It also leaves free the page 0 RAM for the rest
of the TV control software, which would be made less efficient
if it had to use page 1 RAM, where direct addressing and bit
manipulation instructions cannot be used. This choice slightly
increases the ROM used by the OSD code, as 3-byte extended
store instructions sometimes need to be used to write data to
the RAM used for OSD characters.

The 1-byte indexed addressing mode can however be used in
page 1. This addressing mode can access up to address $1FE
and is made use of in the example software. For example the
OSDCLRroutine used toinitialise RAM locations used for OSD
employs a CLR DRAM-1 X instruction. DRAM is the start of
page 1 RAM at $100 so DRAM-1 evaluates as $FF a 1-byte
offset.

INTERRUPT ROUTINE

The OSD update interrupt routine (NLINE) shown in the
programlisting transfers datafrompage 1 RAMto display RAM
each time an interrupt occurs. The first operation is to incre-
ment the pointer which selects the next row number. This
pointer (OSDL) is subsequently used to transfer the appropri-
ate data from page 1 RAM to the OSD RAM. So that any row
number can be used the pointer selects the number from a
table unique to each type of display. The appropriate table is
determined by the value of LIND. The pointer is incremented
until the corresponding row number is zero when the pointeris
reset to zero. This allows any sub-set of up to 8 of the 10
available rows to be used. The next row number (ORed with
the character size information containedin RAM) is written into
the appropriate register ($34). The row number in this register
is compared by the OSD hardware with the current position of
the raster. When they match, an interruptis generated and the
nextinterrupt routine is performed. The other control registers
are then updated from the page 0 RAM locations, which are
used for this purpose.

74

To save RAM only three (RAD, CAS _& CCR) of the six control
registers are loaded in this way. The pointer OSDL is multiplied
by 3 using the table M3, as this is quicker than shifting and
adding. In this example the other registers are loaded by the
main program and therefore have fixed values for each display.
The fixed registers are Colour 3/4 ($33), Window enable/start
column ($35) and Horizontal position delay ($37). As this choice
would not allow windows to be enabled on individual rows,
window enable is controlled by the un-used bit (6) in the RAM
byte used to update the Colour 1/2 register (CAS). This choice
of fixed registers limits the flexibility of the display but clearly all
registers can be updated on a line-by-line basis if more RAMis
used. The limitations imposed by this choice are that colours 3
&4, the window start column and the horizontal position apply
to a whole display rather than to individual lines. In practice
these constraints were not found to be significant restrictions
for the displays required for TV use.

Theinterruptroutine then transfers the relevant OSD data from
page 1 RAM into the OSD data registers. This is done using
linear, repetitive code in order to minimise the time taken by
the interrupt routine. The code used uses 8 cycles (4 us) for
each byte transferred. Less ROM space would be utilised if a
loop was employed but this would use 28 cycles per byte. The
best choice depends on whether time or ROM use is more
critical. The example code includes a cycle count to calculate
the length of the interrupt routine. The time takenis 121+ 4 us.
This includes the time taken by the interrupt itself. An alterna-
tive method of OSD data transfer (TOSD2) using a loop is

included as comments in the listing. It would take an additional
165us.

Thelast task performed by the interruptroutineis to control any
character or window flashing. The software allows one or two
characters (onaselected row) and one window (on the same or
adifferentrow)tobe flashed atarate determined by the MCU's
timer. This function could be performed outwith the interrupt
routine in the main program and the time taken to performitis
notincludedin the figure given above.

MAIN OSD PROGRAM

The remainder of the OSD control program does not write
directly to most of the display registers. It simply puts the
required display and controlinformation into the blocks of RAM
allocated for this purpose, together with supplying the co-
ordinates of any required flashing characters or windows. It
must, however, write to the display control registers not
updated by the interrupt routine; in this example these are $33,
$35and $37. The program has 4 main parts. These are theidle,
channel name table, program/channel number and analogue
displays. The idle display applies when no transient display (eg
program number and channel number orname)ison. The OSD
idle condition is selectable between blank and a small program
number at the bottom right hand corner of the screen.

The OSD example program (assembler listing included) is just
part of the code required to control a TV set. This program was
incorporated in HCO5T1 software along with four other mod-
ules. These were the base module (idle loop, transient control,
local keyboard, IR, IIC and reset), the tuning module (PLL,
analogue and NVM control), the stereo module (stereoton and
Nicam) and the Teletext module (FLOF level 1.5).

The microprocessor in a TV application will usually need to
handle the reception of IR commands. Polied methods of IR
reception are most effective if the time made unavailable to
them by interrupts is minimised. It is for this reason that the
illustrated OSD interrupt routine was written to execute as fast
as possible. This is, however, not 5o much of a problem if the
TCAP facility is used for IR reception. When a falling edge
occurs, the timer value is saved and it does not matter if the
interrupt which processes this information is not serviced until
several hundred microseconds later. The allowable size of this
delay will of course depend on the IR protocol in use. The bi-
phase protocol used with the example OSD software (trans-
mitter chip: MC144105) has a minimum spacing of 1 ms
between consecutive edges.

The next section describes the OSD features of this software.
Some of the data used in the OSD is passed from other
modules (particularly the tuning module). The same RAM
allocation file was used in all modules so this part of the listing
shows thelocations used to pass data between them

OSD FEATURES PROVIDED IN THE EXAMPLE PROGRAM

Program change

When keys 0-9, PC- or PC+ are pressed, the new program
number appears (in cyan) at the bottom-right-hand corner of
the screen in double height/double width characters and stays
for 6 seconds after the last change. Above this display either
the channel name (if one has been defined) or the channel
number is shown (normal size). After 5 seconds this display
times out and there is either no display or a permanent normal
size program number display. This is selectable using the
Teletext MIX key.

For program numbers of 10 and over, three keys are required.
They are selected by first pressing "—". Two flashing dashes
are displayed, the first 0-9 key (only 0-4 valid) will be taken as
the tens digitand the second as the units digit. [fanew program
number has not been selected within 30 seconds, the TV
returns to the previous display (nothing or the old program
number).

75

Channel mode

When the P/Ckey s pressed, the programnumber and channel
name {or number) is displayed for 5 seconds as an indication of
the current status. If it is pressed again during this period, the
TV changes to channel mode. This will remain for 30 seconds
after the last key-press. The display (in yellow) shows the
program number as in program mode along with the channel
number. The channel number flashes to show that it will be
changed if a number or PC- or PC+ key is pressed. New
channels can be selected. If the STORE key is pressed then the
current channelis stored against the current program number.
If no key is pressed for 30 seconds, the TV returns to program
mode. If the channel has been changed but STORE not
pressed then the TV will retune back to the channel stored
against the current program number.

Automatic search

When SEARCH is pressed the TV goes into the channel
mode and the on screen display is as described above. The
channel numberisincremented at a rate of 2 per second until
a signal is found. The search then stops. A press of STORE
returns the TV to program mode, storing the new channel
against the current program number.

Analogues

When any of the analogues are selected the appropriate logo
is displayed along with a horizontal bar indicating the current
value in the D/A convertor (full-scale 63). Display returns to
default (nothing or program number) 5 seconds after the last
change. If no analogue is selected the volumeis shown (and
adjusted) whenthe ANALOGUE +/-keysare used.

Channel name table

Up to 24 channels can have a 4 character name and standard
bitassociated withthem. If the channel number and standard
of one of these entries in the table correspond to those
selected by the current program number then the name is
displayed along with the program number when the program
is selected or when P/C is pressed. Entry of names is done
usingthe TeletextINDEX key Whenitis pressed atable of six

76

lines is displayed. Each line (identified by a “ station” number
in the leftmost column) contains a channel number, standard
andthe associated name. All of this datais user definable.

One character on the screen flashes to indicate the current
position of the cursor. The character at the cursor position
can be changed through 0-9, A-Z and space by pressing PC+
or PC- (0-9 for channel number digits and PAL/SECAM for
standard). When a character (or the standard) is changed, its
colourchanges fromyellowtored. The cursorismovedtothe
leftandrightby the Teletext RED and GREEN keys and up and
down by the BLUE and YELLOW keys. The current line
appears in a light blue (cyan) window as opposed to the dark
blue window used for the other lines. The whole table scrolls
when the cursor is required to go beyond the bottom (or top)
of the current display.

To save a name the STORE key is pressed. This will save the
name and standard on the current line against its channel
number. This is indicated by the colour of any changed
characters returning to yellow. Any changes which have
been made to lines other than the one being stored are lost.
Channel 00 cannot have aname. The procedure for removing
a name from the table is to set the channel number to zero
andthento save the line. Any name left on the line will not be
used. The table display is exited by pressing the Teletext
INDEX key. The function of each key is shown at the bottom
of the display.

OIS WN

00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
0000000a
0000000b
0000000c
0000000d
0000060e
0000000f
00000010
00000011
00000012
00000013
00000014
00000015
00000016
00000017
00000020
00000027
0000002a
0000002d
00000030
00000033
00000036
00000039
0000003a
0000003e
0000003f
00000040
00000041
00000042
00000046

00000047
00000048

EXAMPLE PROGRAM

AR KK KKK A AR A R K K AR KA KA A AR KKK AR KRR AR KRR AR IR KRR KR AR AR AR AR AR AR RN K

No liability can be accepted for its use in any specific application.

*

*

*

*

*

* This software was developed by Motorola Ltd. for demonstration purposes.
*

* Original software copyright Motorola - all rights reserved.

*

*
*
*

S TS T

IMPORT

EXPORT
EXPORT

LIB

TV/Teletext/OSD/Stereo program (MC68HCO5T1/8).

P. Topping

On-Screen-Display module

CHEX, CBCD, READ, WRITE, CDISP2

NLINE, PCOSD, DRAM, ANOSD, PRDSP, CHST

CUP, CDWN, CLF'T, CRGT, PLUS, MINUS, SAVE , OSDLE, OSDEF

RAMT1.S505

SECTION.S .RAM,COMM
KKK KK I KKK KK KA RN KR AR E KK KA KR KA KRR KA KKANK KKK R AAK KK

*

*

* Teletext RAM allocation. *

*

*

R e T T T Y

SUB1 RMB
R1 RMB
R2 RMB
R3 RMB
Ccl RMB
c2 RMB
c3 RMB
c4 RMB
c5 RMB
cé RMB
SUB2 RMB
R4 RMB
RS RMB
R6 RMB
R7 RMB
SUB3 RMB
R8 RMB
R9 RMB
R10 RMB
R1l1 RMB
PH RMB
PT RMB
PU RMB
LIFO RMB
PAGE RMB
PAGO RMB
PAG1 RMB
PAG2 RMB

PAGI RMB
PDP RMB
AcCC RMB
WACC RMB
ADDR RMB

STAT2 RMB

LINKC RMB
STAT3 RMB

PAHRPHFRPARWOWWWWWNORER R R e

e

77

mode register

page request address register
page req. data reg. col. mag.
" " " " " pat.
pgu.
ht.
hu.
:omt.
@ mu.

3
23333

ALBaWNFO

display chapter register

display control register (normal)
display control register (news/sub)
display mode register

active chapter register
active row register
active column register
active data register

n "

2nd
3rd " "
4th " "

LINKED PAGE No. LIFO BUFFER
PAGE No. INPUT BUFFER

ACO PAGE No.

ACl PAGE No.

AC2 PAGE No.

AC3 PAGE No.

CYAN PAGE No.

INDEX PAGE No.

PAGE DIGIT POINTER

DISP, RED, GREEN, YELLOW AC. CIR.
WORKING ACC No.

IIC ADDRESS

IIC DATA POINTER FOR WRITE
IIC SUB-ADDRESS

IIC BUFFER, +2 & +3 RSRVD FOR PLL
ROW24 FETCH FLAG

REMOTE REPEATING
SEARCH/STANDBY IIC LOCK
STANDBY STATUS

UPDATE PENDING
DIFFERENCE FOUND

: NO TELETEXT TRANSMISSION
7: MIXED

LINK OPTIONS

0: CYAN LINK ON

1: YELLOW LINK ON

2: GREEN LINK ON

3: LINKS/ROW24 ON

25th May ‘90

*
*
*
*
*
*
*
*
*
*
*
*

00000049
0000004a
0000004b
0000004c
0000004d
0000004e
0000004 f
00000050
00000051

00000052
00000053
00000054
00000055
00000056

00000057

00000058
00000059
0000005a
0000005b
0000005¢
0000005d
0000005e
0000005f£
00000063
00000064
00000065
00000066
00000067
00000068
00000069
0000006a
0000006b
0000006c
0000006d
0000006e

0000006f
00000070
00000071
00000072
00000073
00000074
00000075
00000076
00000077
00000078
00000079
0000007a

0000007b

0000007¢
0000007d
0000007e
0000007£
00000080
00000081

00000082

P e e s et est]

* *
* General RAM allocation. *
* *

KRR AR AR AR AR AR R R R AR RN R R RN AR KR AR KRR RN RR AR AR KKK

PLLHI RMB 1 PLL DIVIDE RATIO MSB

PLLOW RMB 1 PLL DIVIDE RATIO LSB

W1l RMB 1 WORKING

W2 RMB 1 "

W3 RMB 1 "

COUNT RMB 1 LOOP COUNTER

KOUNT RMB 1 LOCAL KEYBOARD COUNTER

CNT RMB 1 12.8ms (inc, free running)
CNT1 RMB 1 12.8mS (inc, reset every 1S during transient)
*CNT2 RMB 1 3.25 S (inc, store timeout)
CNT3 RMB 1 3.25 s (dec, automatic standby timeout)
CNT4 RMB 1 12.8mS (cleared for row24 delay when page arrives)
CNT5 RMB 1 12.8mS (inc, transient mute)
TMR RMB 1 TRANSIENT DISPLAY SECONDS COUNTER
STAT RMB 1 0: TV/TELETEXT

* 1: IIC R/W

* 2: HOLD

* 3: IR REPEAT INHIBIT

* 4: TRANSIENT DISPLAY ON

* 5: TIME HOLD

* 6: SUB-PAGE MODE

* : IR TASK PENDING

STAT4 RMB 1 0: KEY FUNCTION PERFORMED

* 1: LOCAL REPEATING

* 2: P/C PROG : O, CHAN : 1

* 3: MUTE (TRANSIENT)

* 4: OSD STATUS TRANSIENT

* 5: MUTE (BUTTON)

* 6: COINCIDENCE MUTE

* 7: SEARCH

PWR RMB 1 $55 AT RESET, S$AA NORMALLY
PROG RMB 1 CURRENT PROGRAM NUMBER

CHAN RMB 1 CURRENT CHANNEL NUMBER

DISP RMB 1 CURRENT DISPLAY NUMBER
FTUNE RMB 1 FINE TUNING REGISTER

AVOL RMB 1 VOLUME LEVEL

KEY RMB 1 CODE OF PRESSED KEY (LOCAL)
NUMO RMB 4 LED DISPLAY RAM

IRRAL RMB 1 IR INTERRUPT TEMP.

IRRA2 RMB 1 " " "

IRRA3 RMB 1 " " "

IRRA4 RMB 1 " " "

DIFFH RMB 1 IR TIME DIFFERENCE

DIFFL RMB 1 " " "

IRH RMB 1 IR CODE BIT

IRL RMB 1 COLLECTION

IRCODE RMB 1

IRCNT RMB 1

IRCMCT RMB 1

OLDIR RMB 1

AR AR R R I A KRRRRA AR AR KRR AR IR IRR AR R IRIR KRR RARRR AN

* *
* RAM allocation for Stereoton. *
* *

AR KR KRR IR AR AR KRR AR AR R AR AR KRR IR AR KRR IR KRR AR ARAK

POLLTM RMB 1 Poll timer

TONEA RMB 1 Tone (unadjusted for loudness)

LBAL RMB 1 Loudspeaker balance variable

LVL RMB 1 Loudspeaker left volume (reg 1)
LVR RMB 1 Loudspeaker right volume (reg 2)
HVL RMB 1 Headphone volume left (reg 3)
HVR RMB 1 Headphone volume right (reg 4)
TONE RMB 1 Tone variable (Bass/Treble) (reg 5)
MATRIX RMB 1 Current matrix (reg 6)
MATNO RMB 1 Present mode (mono/stereo/lan 1/11.12/12.11)
WSl RMB 1 Workspace 1 (no interrupt useage

Ws2 RMB 1 Workspace 2 for these please..)

VAV RMB 1

MONCNT RMB 1 Mono ident count Ident detection
STECNT RMB 1 Stereo ident count variables

DULCNT RMB 1 Dual lang ident count

ERRCNT RMB 1 Error ident count

RCOUNT RMB 1 Ident countdown

RANGE RMB 1 Total ident poll number

-

TEMP RMB

78

00000083

00000084
00000085

00000086
00000087
00000088
00000089
0000008a
0000008b
0000008¢
0000008d
0000008e
0000008f
00000090
00000091
00000092
00000093
00000094
00000095
00000096
00000097
00000098
00000099
0000009%a
0000009b
0000009¢
0000009d

0000009e
0000009f
000000a0
000000al
000000a2

000000a3
000000a4

000000a5
000000a6

000000a9
000000bf

00000000
00000000
00000000
00000003

0000000a
0000000b
0000000c
0000000d

00000005
00000006
00000004
00000005
00000006
00000005
00000003

00000080
00000019

STATS

L]

STAT®6

TMPRG

RMB

RMB

RMB

LOUDNESS

VCR

OSD NAME TABLE

OSD DEFAULT P/C NUMBER
ANALOGUE OSD ON
NAME-TABLE STANDARD
STANDARD CHANGED
RE-INITIALISE TELETEXT

NoOMsEWNHO

o

2-DIGIT PROGRAM ENTRY

TEMPORARY PROGRAM NUMBER

AR AR KRR A AR E AR AR AR AR A A AR KA KKK AR K AR KR ARRRRKRR KR

*
*
*

*

OSD RAM allocation. *

*

XA A AR IR KRR AR KRR KRR RR AR K AK RN KRR AR KK

casl
RAD1
CCR1
CAS2
RAD2
CCR2
CAS3
RAD3
CCR3
CAsS4
RAD4
CCR4
CASS

STACK
SP

KEYI
KEYO
KEYIO
SERO

VOLU
CONT
BRIL
SATU

Ll
L2
WIDE
PST
VCR
LouD
MUT

STADR

RMB
RMB

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

NORMVOL EQU

R R b e e e e b e e

e

e

$00
$00
$00
$03

$OA

$0cC
$0D

$05

$04
$05
$06
$05
$03

$80
&25

79

ROW 1, colour 1/2 & outline enable
Row address & character size
Window colour & end column

ROW 2, colour 1/2 & outline enable
Row address & character size
Window colour & end column

ROW 3, colour 1/2 & outline enable
Row address & character size
Window colour & end column

ROW 4, colour 1/2 & outline enable
Row address & character size
Window colour & end column

ROW 5, colour 1/2 & outline enable
Row address & character size
Window colour & end column

ROW 6, colour 1/2 & outline enable
Row address & character size
Window colour & end column

ROW 7, colour 1/2 & outline enable
Row address & character size
Window colour & end column

ROW 8, colour 1/2 & outline enable
Row address & character size
Window colour & end column

CURRENT OSD ROW POINTER
ROW TABLE INDEX

CHARACTER FLASH ROW
CHATACTER FLASH COLUMNS
WINDOW FLASH ROW

FIRST ROW No. (NAME TABLE)

UNUSED

23 BYTES USED FOR STACK
(1 INTERRUPT AND 9 NESTED SUBS)

D/A 2 JPO8 IN EVB
D/A 3 JPO9 IN EVB
D/A 4 JP10 IN EVB
D/A 5 JP1l IN EVB

Lang. 1 indicator bit (LEDOUT)

Lang. 2 indicator bit (LEDOUT)

Wide matrixz bit (MATRIX+LEDOUT)
Pseudo-stereo matrix bit " "
VCR active bit (STAT3+LEDOUT)

LOUDness effect active bit (STAT3)
Mute indicator bit (MATRIX+LEDOUT)

Stereoton address (IIC)
normal volume (mid balance)

00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007

00000012
00000013
00000014
00000015
00000016
00000017
00000018
00000019
0000001c

00000020
00000032
00000033
00000034
00000035
00000036
00000037

00000039
0000003a
0000003p
0000003¢c
0000003d
0000003e
0000003f

00000000

00000000
00000002
00000003
00000005
00000007
00000008
0000000b
0000000d
0000000£
00000012
00000014
00000016
00000018
0000001a
0000001c
0000001d
0000001e
00000020
00000022
00000024
00000026
00000028

0000002b
0000002d
0000002f
00000031
00000033
00000035
00000037

>b600
4c
>b700
>bb00
97
>d60000
27£6
>be00
>de0000
>eal0
b734
>e600
b732
1£35
49
49
2402
le35
>e600
b736
>be00

>de0000

>e6£0
b720

>e6£3

AR R E R KRR R R RN AR AR AR RRK AR AR KA RN RRRRNAR AR AR

*

* Equates.
*

*
*
*

AR AR KRR I AR AR AR AR KRR A AR XA KRR KRR KRR KRR KRR AR

PORTA EQU
PORTB EQU
PORTC EQU
PORTD EQU
DDRA EQU
DDRB EQU
DDRC EQU

DDRD EQU
TCR EQU
TSR EQU

ICRH EQU
ICRL EQU
OCRH EQU
OCRL EQU
TDRH EQU
TDRL EQU
MISsC EQU

osD EQU
CAS EQU
c34 EQU
RAD EQU
WCR EQU
CCR EQU
HPD EQU
MAD EQU
MFD EQU
MCR EQU
MSR EQU
MDR EQU
TR1 EQU
TR2 EQU

$00
$01
$02
$03
$04
$05
$06
$07

$12
$13
$14
$15
$16
$17
$18
$19
$1c

$20
$32
$33
$34
$35
$36
$37

$39
$3a
$3B
$3c
$3D
$3E
$3F

SECTION .RAM2

DRAM RMB

128

SECTION .ROM2

AKX XXX XK XXX XK KK XK XX KKK AR AR KA R AR RAAAAAAAAAAAARAAAARAA

*

Port
Port
Port
Port
Port
Port
Port
Port

address
n

"
"

data direction reg.
" " "

" " "

ocQwroOwy

Timer control register.

Timer status register.

Input capture register, high.
Input capture register, low.
Output compare register, high.
Output compare register, low.
Timer data register, high.
Timer data register, low.
Misc. register

18 OSD data registers

Coloxr & status register
Color 3/4 register

Row address & character size
Window/Column register
Column/color register
Horizontal position delay

M-bus address register
M-bus frequency divider
M-bus control register
M-bus status register
M-bus data register
Test 1, OSD/Timer/PLM
Test 2, EPROM

*

* OSD update routine - row number & data. *

*

*

P R I I T I I I s e T e e e

NLINE LDA
INCA
STAG STA

0OSDL 3 INCREMENT
3 6 LINE POINTER
osDL 4 10 27
LIND 3 13 30
2 15 32
LTABO,'X 5 20 37
STAG 3 23 OR 40 32 +/- 8
0osDL 3 LINE POINTER
M3, X 5 8 MULTIPLY BY 3
RADL, X 4 12 CHARACTER SIZE INFO.
RAD 4 16
CAS1,X 4 20
CAS 4 24
7, WCR 5 29
3 32 GET BIT 6
3 35 OF CASx
SKIPW 3 38
7,WCR 5 43 USE IT TO ENABLE WINDOW
CCR1, X 4 a7
CCR 4 51 83 +/- 8
OSDL 3 7 LINE POINTER
M16,X 5 12 MULTIPLY BY 16
<DRAM-16, X q GET DATA AND WRITE
0sD 4 8 IT TO OSD REGISTER
<DRAM~-15, X
0SD+1
<DRAM-14, X FAST OSD DATA TRANSFER
0SD+2 TAKES ONLY 128 (8x16)
<DRAM-13,X CYCLES.

80

00000039
0000003b
0000003d
0000003f
00000041
00000043
00000045
00000047
00000049
0000004b
0000004d
0000004 £
00000051
00000053
00000055
00000057
00000059
0000005b
00000054
0000005f
00000061
00000063
00000065
00000067
00000069

0000006b
0000006e
00000070
00000072
00000074
00000076
00000078
0000007a
0000007¢
0000007e
0000007£
00000081
00000083
00000084
00000085
00000086
00000087
00000089
0600008b
0000008d
0000008f
00000091
00060093
00000095
00000097
00000099
0000009b

0000009c
0000009%e
000000a0
000000a2
000000a4
000000a6
000000a8
000000aa
000000ab
000000ad

>09001f
>b600
2719
b634
a4of
>b100
2611
>b600
ado0f

*TOSD2
*

*
*OSDOOP

Ok % b % %

STA

STX
LDX
STX
LDX
LDA
DEC
LDX
STA
DEC
BNE

0sD+3
<DRAM-12,X
osD+4
<DRAM-11,X
OSD+5
<DRAM-10, X
0SD+6
<DRAM-9, X
0OsSD+7
<DRAM-8, X
0OsD+8
<DRAM-7, X
0SD+9
<DRAM-6, X
0SD+10
<DRAM-5, X
OSD+11
<DRAM-4, X
0SD+12

<DRAM-3, X

0OSD+13
<DRAM-2, X
OSD+14
<DRAM-1,X
0OSD+15

TMP1

#16

TMP2
TMP1
<DRAM-1, X
TMP1
TMP2
<0sD-1,X
TMP2
OSDOOP

WOOWOEWaN S

140 223 +/- 8
WITH INT 242 (121 +/- 4 US)

ALTERNATIVE OSD DATA
TRANSFER USING A LOOP.
THIS HAS THE ADVANTAGE
OF USING 44 BYTES LESS
ROM BUT IT USES TWO MORE
TEMPORARY RAM LOCATIONS
AND TAKES 330 CYCLES
(165us) LONGER.

28x16+10=458=128+330

A AR A R KRR R AR AR KRR KK R KX KRK RN AR XA R KRR KXk

*
*
*

Character and window flash.

*
*
*

KRR K IR AR AR KRR ERE AR AR A AR KA A R AKX XXX R KKK RK AR KKKk k

CHBLK

NCHBK
WBLK

NOBLK

SPFL

NTSP

BRCLR

LDA
BEQ
LDA
AND
cMP
BNE
LDA
AND
TAX
BSR
LDX
LSRX
LSRX
LSRX
LSRX
BEQ
BSR
BRA
LDA
BEQ
LDA
AND
cMP
BNE
BCLR
RTI

4,CNT, WBLK

BROW
NCHBK
RAD
#$0F
BROW
NCHBK
BCOL
#$0F

SPFL
BCOL

NCHBK
SPFL
NOBLK
WROW
NOBLK

RAD
#$0F
WROW

NOBLK
7,$35

osD, X
#$3F
NTSP

0SD, X

0sD, X

81

+

w

w
WAWWWWWWANWWWWNWWWY

AUNNBWNS ©

CHARACTER BLINK

1st CHARACTER (LS NIBBLE)

IF MS NIBBLE ZERO THEN NO
2nd CHARACTER

WINDOW BLINK

371 +/- 8
with INT 381 +/- 8 cycles
ie 190.5 +/- 4 us

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

215
216
217
218
219
220

000000ae
000000b1
000000b3

000000b5S

000000b7
000000b8
000000ba

000000bc
000000be
000000cO
000000c1

000000c3

000000c6

000000c8
000000ca
000000cd
000000d0
00000042
00000045
000000d7
000000d8
000000da

000000dc
000000de
000000e0
000000e2
000000e5
000000e7
000000e9
000000eb

000000ed
000000ef
000000£1
000000£3
000000£5
000000f6

000000£7
000000£8
000000fa
000000£fb
000000£d
000000£f
00000101

>060004
>1600
2002

>1700

9b
>1900
>1500

aeld
>6££f

5a

26fb

>cd0000
3£30
3£31
>06000a
>c6000c
b730
>c6000e
b731
5¢€
a67f
adlb

a620
b737
a6a3
>050002
a6a6
>b700
a610
>b700

a60c
>b700
>a600
>b700

9a

81

4c
>b700
S5c
>6fff
>b300
26£9
81

AR AR RN AN AR AR RN AR AR KRR AR AN KRR KRR RN KRR * K

*
*
*

*

OSD idle condition. *

*

AR AR KRR A R KRR AR AR IR AR R KRR A KRR AR KKK KRR RR KRR AR,

OSDEF

DOFF

OSDLE

DOOP

SKPDEF

PMD

OSDCLR

DCLR

BRSET
BSET
BRA

BCLR

SEI
BCLR
BCLR

RTS

INCA
STA
INCX
CLR
CPX
BNE
RTS

3, STATS, DOFF
3, STATS
OSDLE

3, STATS

4, STATS NOT ANALOGS
2,STATS NOT NAME TABLE

#29 CLEAR PAGE 0

CASl1l-1,X OSD CONTROL
BYTES

DOOP

CDISP2

$30

$31

3, STATS, SKPDEF

DRAM+12 PROGRAM NUMBER
$30

DRAM+14

$31

$127
OSDCLR

#%00100000 HORIZONTAL POSITION : ZERO

HPD

#%10100011 COLOR 1,0 = RED, CYAN, EDGE ON
2,STAT4,PMD PROGRAM MODE ?

#%10100110 NO, COLOR 0O = YELLOW

#%00010000 SINGLE WIDTH/HIGHT
RAD1

$s0C DEFAULT TO VOLUME
ANAL
#AVOL
ANAF

DRAM-1, X
Wl
DCLR

82

222
223

225
226
227
228
229
230
231
232

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

254
255
256
257
258
259
260
261
262
263
270
271
272
273

275
276
277
278
279
280

282
283
284
285
286
287

289
290
291
292
293
294
295
296
297
298
299
300

00000102
0000010a
00000113
0000011b

00000124
00000127
00000129
0000012b
0000012d
0000012f
00000131
00000133
00000135
00000137

00000139
0000013b
0000013d
0000013f

00000141
00000143
00000145
00000147
00000148
00000149
0000014a

0000014c
0000014e
00000150
00000152
00000153
00000154
00000155

00000157
00000159
0000015b

00000154
0000015f
00000161
00000163
00000165
00000167
00000169
0000016b

0000016d
0000016f
00000171
00000172

00000174
00000175
00000178
0000017a
0000017¢
0000017£
00000180

00000182
00000184
00000186
00000188

3334002328003334
240e00002e212d25
005c009e003c00fe
008b008d006d00a9

>040090

>1400
a6la
b733
a6el
b735
a621
b737
3£30
3£31

a6e5
>b700
aée6
>b700

a6l0

5¢
>d60000
alcO
2706
>d70000
Sc
20£3

ael0
>1d00
>b600
>b700

AR AR AR AR AR AR AR AR R AR KRR AR ARE AR KA KARKR AR RN AR IR KRN

*
*
*

Program/Channel/Name display.

*
*
*

AR AR AR AR AR KA R AR KRR KA KRR KKK KKK KRR K RK AR RN KK

BNTAB

MTAB

PRDSP

STLP

STLP2

ACLR

BNPL

FINBN

FCB
FCB
FCB
FCB

BRSET
BSET
LDA
STA
LDA
STA
LDA
STA
CLR
CLR

LDA
STA
LDA
STA

LDA
LDX
STA
DECX
DECX
DECX
BNE

LDA
LDX
STA
DECX
DECX
DECX
BNE

CLR
LDA
STA

LDA
STA
LDA
STA
LDA
STA
LDA
STA

LDX
CLR
DECX
BNE

CLRX
1DA

BEQ
STA
INCX
BRA

LDX
BCLR
LDA
STA

$33,$34,0,$23,$28,0,$33,$34 ST CH ST
$24,$0E,0,0, $2E, $21, $2D, $25, $CO D. NAME
0,$5C,0,$9E,0,$3C, 0, SFE ><y A
0,$8B,0,$8D,0,56D, 0, $A9, $CO +-MI

2,STATS, OSDLE

2, STATS

#%00011010 COLOR 2 = GREEN

C34 COLOR 3 = CYAN

#%$11100001 OsSD & PLL ON,

WCR WINDOW ON (COLUMN 1)
#%00100001 HORIZONTAL POSITION : ONE
HPD

$30 PUT A SPACE AT 17th AND 18th
$31 CHARACTERS

#%11100101 COLOR 1,0 = RED, MAGENTA, EDGE ON
CAS1

#%11100110 AND WINDOW ON (USING BIT 6)

CAs8

#%00010000 SINGLE WIDTH/HIGHT, INTERRUPTS ON

$24
RAD1-3,X

STLP
#%11100110 COLOR 1,0 = RED, YELLOW, EDGE ON

CAS2-3,X

STLP2

OsSDL
#LTAB3-LTABO
LIND THIRD TABLE

#3 START AT ROW 3
BROW

#503 START AT COLUMN 3
BCOL

#0

WROW

11

COUNT

$#128 CLEAR 1st THRU 8th ROWS
DRAM-1, X

ACLR

BNTAB, X
#$co
FINBN
DRAM, X

BNPL
#16
6, STATS CLEAR STANDARD CHANGE FLAG

COUNT
W2

83

302 AR A AR RN KA KA RN A RN A A RRK R RRRR KA ARR KRR AR R RN AR RRAR

303 * *
304 * Program/Channel/Name main loop. *
305 * *
306 AR R AR R R R RN AR AR R AR R R ARk AR R Ak ARk k&
307

308 0000018a >b600 BNLP LDA W2 STATION No.

309 0000018c >bf00 STX W3

310 0000018e >cd0000 JSR CBCD

311 00000191 >b700 STA Wl

312 00000193 ado0f AND #SO0F

313 00000195 ablo ADD #$10

314 00000197 >be00 LDX W3

315 00000199 >d70001 STA DRAM+1, X

316 0000019c >b600 LDA Wl

317 0000019e 44 LSRA

318 0000019f 44 LSRA

319 000001a0 44 LSRA

320 000001al1 44 LSRA

321 000001a2 2602 BNE NOTZR

322 000001ad4 aé6fo LDA #SFO LEADING ZERO BLANK

323 000001a6 ablo NOTZR ADD #510

324 000001a8 >d70000 STLSN STA DRAM, X

325 000001ab >b600 LDA w2 STATION No.

326 00000l1ad abdf ADD #$DF

327 000001af >b700 STA SUBADR

328 000001bl aé6al LDA #SA0

329 000001b3 >b700 STA ADDR

330 000001b5 >cd0000 JSR READ

331 000001b8 >b601 LDA IOBUF+1 CHANNEL No.

332 000001ba ad7f AND #$7F

333 000001bc >cd0000 JSR CBCD

334 000001bf >b700 STA Wl

335 000001cl ad0f AND #SO0F

336 000001c3 abloO ADD #510

337 000001c5 >be00 LDX W3

338 000001c7 >d70004 STA DRAM+4, X MSD

339 000001lca >b600 LDA Wl

340 000001cc 44 LSRA

341 000001cd 44 LSRA

342 000001ce 44 LSRA

343 000001cf 44 LSRA

344 00000140 ablo ADD #s10

345 000001d2 >d70003 STA DRAM+3, X LSD

347 AR AR AR AR AR AR R R AR R R AR R AR R KRN AR AR RN KRR AR A XXX RNKKR NN
348 * *
349 * Standard and bottom line. *
350 * *
351 KRR AR R R R AR AR R AR AR R AR R A AR AR AR AR AR AR ARk
352

353 000001d5 >1a00 BSET 5,STATS

354 000001d7 >0e0102 BRSET 7, IOBUF+1,PALS

355 000001da >1b00 BCLR 5,STATS

356

357 000001dc >cd0000 PALS JSR CHGST

358

359 000001df >b600 LDA w2

360 000001lel >cd0000 JSR GNAME2

361 000001e4 9f TXA

362 000001e5 abloO ADD #16

363 000001e7 97 TAX

364 000001e8 >3c00 INC W2

365 000001ea a360 CPX #96

366 00000lec 2203 BHI NOJMP

367 00000lee >cc0000 JMP BNLP

368

369 000001f1 5f NOJMP CLRX

370 000001£2 >d60000 MTL LDA MTAB, X

371 000001£5S alcO CcMP #sco

372 000001£7 2706 BEQ ANFIN

373 000001£9 >d70070 STA DRAM+112,X

374 000001fc Sc INCX

375 000001£fd 20f£3 BRA MTL

376

377 000001££f >cd0000 ANFIN JSR WIND

378 00000202 >1800 SEC30 BSET 4,STAT

379 00000204 aéle LDA #30

380 00000206 >b700 STA TMR

381 00000208 81 RTS

84

00000209
0000020c
0000020e
00000210
00000212

00000214
00000216
00000219
0000021b
0000021e
00000221

00000223
00000226
00000228
0000022b
00000224
0000022f
00000231
00000233
00000235
00000237
00000239
0000023b
0000023d
0000023f
00000242
00000244
00000247
00000249
0000024a
0000024b
0000024c
00000244
0000024f
00000252
00000254
00000256
00000258

0000025b
0000025d
00000260
00000262
00000265
00000267
0000026a
00000264
00000270
00000272
00000275
00000277
0000027a
0000027¢
0000027£

00000280
00000282
00000284
00000285
00000286
00000288
0000028a
0000028d
0000028f
00000291
00000294
00000296
00000299
0000029b
00000294
000002a0
000002a2
000002a4
000002a7
000002a9
000002ac

>04002f
a6a0

>b700
a6e0

>b700

>b600
>cd0000
>b700
030205
0b0202
>1e00

>cd0000
>b601
020202
aq47f
2704
>b100
274d
>3c00
>b600
alf?
23e8
>be00
a623
>d70008
a628

>d7000b

a630
>d7000d
a621
>d7000e
aé2c
>d7000£
030212

>d7000£
81

A AR A AR RN AR RR R AR A AR A RN AR AR AN KR A KRR RN KRR AR IR AR AR

*
*
*

Look for channel name.

*
*
*

AR KRR AR AR KRR AR KRR AR A RE NI R A KRR KR KRR AR KRR AR KRR AR

FNAME

OLOOP

IF38

CHO

NONAME

SPAL
NOFND

GNAME2

BRSET
LDA
STA
LDA
STA

LDA
JSR
STA
BRCLR
BRCLR
BSET

JSR
LDA
BRSET
AND
BEQ
cMp
BEQ
INC
LDA
CMP
BLS
LDX
LDA
STA
LDA
STA

2, STAT4, NONAME

#3520
ADDR
#SE0
SUBADR

CHAN

CHEX

COUNT

1, PORTC, OLOOP
5, PORTC, OLOOP
7, COUNT

READ

IOBUF+1

1, PORTC, IF38
#$7F

CHO
COUNT
NOEND
SUBADR
SUBADR
#SF7
OLOOP

w3

$$23
DRAM+8, X
#3528
DRAM+9, X
CHAN

#3510
DRAM+10, X
CHAN
#350F
-#$10
DRAM+11, X

#530
DRAM+13, X
#521
DRAM+14, X
#s2¢C
DRAM+15, X

1, PORTC, SPAL
5, PORTC, SPAL

DRAM+15, X

SUBADR
#$DF

#3$7C
SUBADR
READ

w3
IOBUF+1
DRAM+12,X
IOBUF
DRAM+13, X
SUBADR
SUBADR
READ

W3
IOBUF+1
DRAM+14,X
IOBUF
DRAM+15,X -

85

x2

CHANNEL MODE

38.9 MHz ?

NO,
NO,

38.

YES, SO IGNORE STANDARD

SECAM
PAL

9 MHz

CHAN

NO NAME SO DISPLAY Ch. No.

3xd

4th

38,
NO,
NO,

1st

3rd

4th

CHAR

CHAR

9 MHz
PAL ?
SECAM

CHAR

CHAR

CHAR

CHAR

2

(NAME)

(NAME)

(NAME)

(NAME)

(NAME)

(NAME)

000002ad

000002b3
000002b5
000002b7
000002b9
000002bb
000002bc
000002bf
000002cl

000002c4
000002c¢6
000002¢?7
000002c9
000002cb
000002cc

000002ce
00000240
000002d2
000002d4
000002d5
000002d8
000002da
000002dc

000002dd

000002df
000002el
000002e3
000002e4
000002e5
000002e6

000002e8

| 000002ea

000002ec
000002ee
000002 £0
000002f1
000002£2
000002£5
000002£7
000002£9
000002 £b
000002 £d
000002££

00000300
00000302
00000304
00000306
00000308
0000030a
0000030c
0000030e
00000310
00000312

00000314
00000316
00000318
0000031a
0000031c
0000031e
00000320
00000322
00000324
00000326
00000329

03040c0d0e0f

adl9
a305
2502
aeff
5¢
>d60000
>b700
>cc0000

ados
5d
2602
ael6
Sa
20ee

>b600

>b700
aeff
Sc

>d60000

>b100
26f£8
81

a631

ael2
>e7fd

>b600
alo3
2304
>3a00
2043
>b600
alol
27b1
>3a00
2012

>b600
al08
2404
>3¢c00
20bf
>b600
all3
27ea
>3c00
>cd0000
>cc0000

R R e T T e

*
*
*

LR e e T e T e 2

CURTAB

CLET

NRAP1
NEWC

SEC32

CRGT

NRAP2

FCUR

CRNF

WIND

STLP3

L T 2

*
*
*

R e e e e ey

cup

TOOSM

SEC31

CDWN

TOOBG

FIN30

Cursor control (left & right).

FCB

BSR
CPX
BLO
LDX
INCX
LDA
STA
JMP

BSR
TSTX
BNE
LDX
DECX
BRA

LDA
STA
LDX
INCX
LDA
cMP
BNE
RTS

LDA

LDX
STA
DECX
DECX
DECX
BNE

LDA
STA
STA
LDX
DECX
DECX
LDX
LDA
STA
BSET
LDA
STA
RTS

3,4,12,13,14,15

FCUR
45
NRAP1
#SFF

CURTAB, X
BCOL
SEC30

FCUR

NRAP2
46

NEWC

BCOL
Wl
#SFF

CURTAB, X
w1l
CRNF

#%00110001

#18
CCR2-3,X

STLP3

#%00010001
CCR1
CCR8
BROW

M3, X
CCR1,X
W2

6, W2
w2
CCR1,X

WINDOW BLUE,

WINDOW BLACK,

Cursor control (up & down).

LDA
cMP
BLS
DEC
BRA
LDA
CcMP
BEQ
DEC
BRA

LDA
CMP
BHS
INC
BRA
LDA
CMP
BEQ
INC
JSR
JMP

BROW
43
TOOSM
BROW
WIND
COUNT
#1
SEC32
COUNT
FIN30

BROW
8
TOOBG
BROW
WIND
COUNT
#19
SEC31
COUNT
SEC30
FINBN

86

OFF AT 17

OFF AT 17

0000032¢
0000032e
00000330
00000331
00000332
00000333
00000336
00000339
0000033b
0000033d
0000033f
00000341
00000343

00000346
00000348
0000034b
0000034d
00000350
00000352
00000355
00000357
0000035a
0000035d
00000360
00000363
00000365
00000368
0000036a
0000036d
0000036£
00000372
00000374
00000377
00000379
0000037¢

0000037f
00000380
00000382
00000384
00000387
00000389
0000038¢
0000038d
0000038£

00000391

00000392
00000394
00000395

00000397
00000399
0000039b
0000039d
0000039f
000003al
000003a3
000003a5
000003a?
000003a9
000003ab
000003ad

000003af
000003b1
000003b4

000003b7
000003b9
000003ba

>1b00
>be00

>de0000
>d60006
a43f
al3o
2702
>1a00
>1c00
>cd0000

a630
>d70006
a621
>d70007
aé2c
>d70008
a600
>d70009
>d7000a
03021c
>0a0019
a633
>d70006
a625
>d70007
a623
>d70008
a621
>d70009
a62d
>d7000a
>0d0012

9f
ab05
>b700
>d60006
ab40
>d70006
S5c
>b300
26£3

81

ad40
4c
a43f

alls
2208
allo
2410
a6l0
200c
al2l
2202
a621
al3a
2302
a600

aaq0
>d70000
>cc0000

adlb
4a
a43f

AR AR AR KR AR R AR AR R AR R AR AR A AR KRR AR KRR KRR RRRRE AR AR KRN

*
*
*

Standard change.

*
*
*

ERAARRRARERAREAERE RN AR KRR KR IR RIK AR AR RN KRR AR AR AR AN AK

CHST

SZER

CHGST

SECAM

PAL

NSTCH

BCLR
LDX
DECX
DECX
DECX
LDX
LDA
AND
cMP
BEQ
BSET
BSET
JSR

LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
BRCLR
BRSET
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
BRCLR

RTS

5, STATS
BROW

1, PORTC, PAL
5, STATS, PAL
3

DRAM+6, X
#$25
DRAM+7, X

DRAM+10, X
6, STATS, NSTCH

15

COUNT
DRAM+6, X
#3540
DRAM+6, X

COUNT
XLP

DEFAULT TO SECAM

PAL ?

NO, MAKE IT PAL
STANDARD CHANGED

38.9MHz
NO, PAL
NO, SECAM

W

R T T 22

*
*
*

Character change.

*
*
*

R T T T e T T T T

PLUS

LTES

MT9

MTA

SPACE

NLTO

MINUS

BSR
INCA
AND

CMP
BHI
CMP
BHS
LDA
BRA
cMP
BHI
LDA
CMP
BLS
LDA

ORA
STA
JMP

BSR
DECA
AND

GETIT
#S3F

#3519
MT9

4510
NLTO
#$10
NLTO
#521
MTA

#$21
#$3A
NLTO
#$00

$540

DRAM, X
SEC30
GETIT

#$3F

87

o

N

SPACE

639 000003bc al2l cMP #$521 A

640 000003be 2508 BLO LTA

641 000003cO0 al3a GTEA CMP #$3a k4
642 000003c2 23eb BLS NLTO

643 000003c4 a63a LDA #$3A zZ
644 000003c6é 20e7 BRA NLTO

645 000003c8 all9 LTA CcMP #519 9
646 000003ca 2302 BLS LT9

647 000003cc a619 LDA #519 9
648 000003ce allO LTS CMP #$10 o
649 000003d0 24dd BHS NLTO

650 000003d2 2049 BRA SPACE

651

652 000003d4 >b600 GETIT LDA BROW

653 000003d6é a002 SUB #2

654 000003d8 48 LSLA x2
655 000003d9 48 LSLA x4
656 000003da 48 LSLA %8
657 000003db 48 LSLA %16
658 000003dc >bb00 ADD BCOL

659 000003de 97 TAX

660 000003df >d60000 LDA DRAM, X

661 000003e2 81 RTS

663 AR AR AR AR R R KRR KK AR AR KRR AR K ANK AR KRR KRR AR AR ARAR KRN
664 * .
665 * Name store. *
666 * *
667 AR R R R AR R A AR R AR AR AR AR AR AR R AR AR AR AR AR AR R R AR IR AR
668

669 000003e3 a6al SAVE LDA #SA0

670 000003e5 >b700 STA ADDR

671 000003e7 >b600 LDA COUNT

672 000003e9 >bb00 ADD BROW

673 000003eb 48 LSLA

674 000003ec 48 LSLA

675 000003ed ab70 ADD #370

676 000003ef >b700 STA SUBADR

677 000003f1 a603 LDA 43

678 000003£3 >b700 STA Wl

679 000003£f5 >b700 STA w2

680 000003f7 >beQO LDX BROW

681 000003f9 Sa DECX

682 000003fa 5a DECX

683 000003fb 58 LSLX

684 000003fc 58 LSLX

685 000003fd 58 LSLX

686 000003fe 58 LSLX

687 000003ff >bf00 STX W3

688 00000401 >d6000c LDA DRAM+12,X

689 00000404 a43f AND #S3F

690 00000406 >b700 STA IOBUF

691 00000408 >d6000d LDA DRAM+13, X

692 0000040b ad3f AND #$3F

693 00000404 >b701 STA IOBUF+1,

694 0000040f >ae00 LDX #SUBADR

695 00000411 >cd0000 JSR WRITE

696

€97 00000414 >3c00 INC SUBADR

698 00000416 >3c00 INC SUBADR

699 00000418 >be00 LDX W3

700 0000041a a603 LDA #3

701 0000041lc >b700 STA Wl

702 0000041le >b700 STA W2

703 00000420 >d6000e LDA DRAM+14, X

704 00000423 ad3f AND $$3F

705 00000425 >b700 STA IOBUF

706 00000427 >d6000f LDA DRAM+15, X

707 0000042a ad43f AND #$3F

708 0000042c >b701 STA IOBUF+1

709 0000042e >ael0 LDX #SUBADR

710 00000430 >cd0000 JSR WRITE

88

00000433
00000435
00000438
00000439
0000043a
0000043b
0000043c
0000043e
00000441
00000443
00000445
00000448

0000044a
0000044c
0000044f
00000451
00000453
00000455

00000457
00000459
0000045b
00000454
0000045¢F
00000461
00000463
00000465
00000467

0000046a
0000046d

00000470
00000472
00000475
00000479

00000482
0000048a

>be00
>d60003

>b700
>b700
>ae00
>cd0000

>cd0000
>cc0000

0a00

090800

07080a00
0203040506070809

1020304050607080
000306090c0£1215

AR AR AR AR R AR KRR AR AR AR AR I AR AR KRR RN AR KRR AR KRN RN AAR

*
*
*

Name store (continued).

*
*
*

AR AR IR AR AR A AR R AR AR RN R A I AR AR AR AR KRR AR KRR AR KK

STSEC

LDX
LDA
LSLA
LSLA
LSLA
LSLA
STA
LDA
AND
ADD
JSR
STA

JSR

JSR
JMP

w3
DRAM+3, X

Wl
DRAM+4, X
#30F

Wl

CHEX
IOBUF

w3
DRAM+6, X
#$3F
#$33
STSEC

7, IOBUF

COUNT
BROW
#3DC
SUBADR
#2

Wl

w2 -
#SUBADR
WRITE

SEC30
FINBN

AR AR AR AR KA AR A NI KRKR KKK AKX AN KRR AR AR AR KK

*
*
*

OSD line number tables.

*
*
*

e e e e 22

LTABO
LTABl
LTAB2
LTAB3

M16
M3

FCB
FCB
FCB
FCB

FCB
FCB

89

10,0 IDLE DISPLAY

9,8,0 PR/CH DISPLAY

7,8,10,0 ANALOGUE DISPLAY
2,3,4,5,6,7,8,9,0 PR/CH/STD/NAME TABLE
$10,520,$30, $40, $50, $60,$70, $80 MULT x 16
0,3,6,9,12,15,18,21 MULT x 3

765
766
767
768
769
770
771
772
773
774
775
776
177
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

00000492
00000494
00000496
00000498
0000049a
0000049¢
0000049e
00000420
000004a2
000004a4
000004a6
000004a8
000004aa
000004ac
000004ad
000004af
000004b2
000004b4
000004b6
000004b9
000004bb
000004bd
000004bf
000004cl
000004c4
000004c6
000004c8
000004ca
000004cc
000004ce
000004d1
000004d3
000004d5
000004d7
000004d9
000004db
000004dd
000004df
000004el
000004e3

000004e5
000004e7
000004e9
000004ec
000004ef
000004 £1
000004£3

a60c
>b700
>a600
>b700
>1900
a60a
b733
a670
b735
a622
b737
3£30
3£31
5f
a609
>cd0000
ael0
a6élf
>cd0000
a610
>b700
>b600
2703
>cd0000
a601
>b700
a602
>b700
a6a3
>050002
a6a6
>b700
>b700
a6do
>b700
a610
>b700
a612
>b700
>b700

>1800
a6le

>040005

>000002
a606

>b700
81

D R R e e e e L e

*
*
*

PCOSD

PNAME

SKPGN

PMD2

SECS

s30

*

Bottom corner Program/Channel no. display. *
*

AR AR R R R AR R AR R AR AR AR R R A AR RR AR AR AR AR AR AR RNk k

LDA #s$0C

STA ANAL

LDA #AVOL

STA ANAF

BCLR 4, STATS NOT ANALOGS

LDA #300001010 COLOR 2 = GREEN

STA Cc34 COLOR 3 = BLUE

LDA #301110000 OsSD & PLL ON,

STA WCR WINDOW OFF (COLUMN 16)

LDA #%00100010 HORIZONTAL POSITION : TWO

STA HPD

CLR $30 PUT A SPACE AT 17th AND 18th

CLR $31 CHARACTERS

CLRX

LDA #9

JSR OSDCLR CLEAR UNUSED CHARACTERS

LDX #16

LDA #31

JSR OSDCLR CLEAR UNUSED CHARACTERS

LDA #16

STA W3

LDA PROG

BEQ SKPGN

JSR FNAME

LDA #1 START AT 1 TO PREVENT

STA OSDL DOUBLE-HIGHT-LINE-SHIFT FLASH

LDA 4LTAB1-LTABO

STA LIND FIRST TABLE

LDA #%10100011 COLOR 1,0 = RED, CYAN, EDGE ON

BRCLR 2,STAT4, PMD2 PROGRAM MODE ?

LDA #%10100110 NO, COLOR 0 = YELLOW

STA CAsS1l

STA CAS2

LDA #%11010000 DOUBLE WIDTH/HIGHT

STA RAD1

LDA #%00010000 SINGLE WIDTH/HIGHT

STA RAD2

LDA #%00010010 WINDOW CYAN

STA CCR1

STA CCR2

BSET 4,STAT

LDA 30

BRSET 2,STAT4,S30 CHANNEL MODE ?

BRSET 0, STAT6,S30 NO, 2-DIGIT PROG No. ENTRY ?

LDA #6 NO, SO 6 SECONDS ONLY

STA TMR

RTS

90

887

000004£4

000004f8
00000500

00000508
0000050a
0000050d
0000050f
00000510
00000512
00000515
00000517
00000519
0000051a

0000051c
0000051e
00000520
00000522
00000524
00000526
00000528
0000052a
0000052¢
0000052e
00000530
00000532
00000534
00000536
00000538
0000053a
0000053c
0000053e
00000540
00000542
00000544
00000546

00000548
0000054a
0000054¢

0000054e
00000550
00000553
00000556
00000557
0000055a
0000055d
0000055e
00000561
00000564
00000565
00000568

0el21113

636f6e74a2b2ad%ac
63b321fd4féefectS

>b700
>080041
>1800
5f
a67f
>cd0000
aeld
>6fEf
5a
26fb

a60a
b733
aéel
b735
a622
b737
3£30
3£31
a6eé
>b700
>b700
a6a6
>b700
a610
>b700
>b700
>b700
a6e3
>b700
>b700
a6ll
>b700

>3£00
a605
>b700

>be00
>d60000
>c70000
5c
>d60000
>c70001
Sc
>d60000
>c70010
S5c
>d60000
>c70011

AR AR A AR AR AR AR R R AR R A AR AR AN A K AR AR AR AR KRR AR AR KRR KA KK

* *
* Bottom row analogue bar. *
* *

AR AR AR IR IR AR AR AR KRNI AR AR R A KRNI A KRR KRR AR KRR R AR AR

CHAR FCB $OE, $12,$11,$13 BARGRAPH CHARACTERS
ANCH FCB $63,S6F, $6E,$74,$A2, SB2, $A9, SAC ANALOG

FCB $63,$B3,$21, $F4, $F6, SEF, $SEC, SF5 LOGOS
ANOSD STA w3

BRSET 4, STATS, LOGO ANALOGS

BSET 4, STATS SET-UP SKIP FLAG

CLRX

LDA #127

JSR OSDCLR CLEAR ALL CHARACTERS

LDX #29
coop CLR CAs1-1,X

DECX

BNE coop

LDA #%00001010 COLOR 2 = GREEN

STA c34 COLOR 3 = BLUE

LDA #%11100001 OSD & PLL ON,

STA WCR WINDOW ON (COLUMN 1)

LDA #%00100010 HORIZONTAL POSITION : TWO

STA HPD

CLR $30 PUT A SPACE AT 17th AND 18th

CLR $31 CHARACTERS

LDA #%11100110 COLOR 1,0 = RED, YELLOW, EDGE ON

STA CASl AND WINDOW ON (USING BIT 6

STA CAS2

LDA #%10100110 COLOR 1,0 = RED, YELLOW, WINDOW OFF

STA Cas3

LDA #%00010000 SINGLE WIDTH/HIGHT, INTERRUPTS ON

STA RAD1

STA RAD2

STA RAD3

LDA #%11100011 WINDOW WHITE, OFF AT 3

STA CCR1

STA CCR2

LDA #%00010001 WINDOW BLACK, OFF AT 17

STA CCR3

CLR 0OSDL

LDA #LTAB2-LTABO

STA LIND SECOND TABLE

e 22 2 2232882222 2 SRR 22 22 2 22 S S SRS RS A A AL 00
*
*
*

*
* Analogue logos.
*

P T I I R s 2 s T R R R S 2222 222 22 2 R 2Rt b

LOGO LDX ANAL
LDA ANCH, X
STA DRAM
INCX
LDA ANCH, X
STA DRAM+1
INCX
LDA ANCH, X
STA DRAM+16
INCX
LDA ANCH, X
STA DRAM+17

91

888
889
890
891
892

894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

0000056b
0000056d
0000056 f
00000570
00000572
00000573
00000575
00000577
00000579
0000057a
0000057¢
0000057e
00000580
00000582
00000584
00000586
00000588
0000058a
0000058¢
0000058£
00000591
00000594
00000595

00000597

KRR AR KRR I RN KRR K AKX R KR IR R I RRA KRR RN

*
*
*

Analogue bar.

*
*
*

E e e e e T e e e e s e

S5a LRAN

a60e DOT

>bf00 STAR

>d70020 SKST

>cc0000

LDA
CLR
LSRA
ROL
LSRA
ROL
STA
LDX
DECX
CPX
BEQ
BHI
LDA
BRA
LDA
BRA
STX
LDX
LDA
LDX
STA
TSTX
BNE

JMP

END

W3
W2

CHAR, X ., 1, 20R 3

92

ANA434

Serial bootstrap for the RAM and
EEPROM?1 of the MC68HC05B6

By Jeff Wright,
Motorola Ltd., East Kilbride

INTRODUCTION

The MCE68HCO05B6 has 256 bytes of on chip EEPROM,
called EEPROM1, which can be used to store variable
datain anon-volatile manner. In many applications this
EEPROM?1 will be used to hold a look-up table or
system set up variables. In these cases it is usually a
requirement that the EEPROM1 be initialised during

the manufacture of the application. In addition, loading
small programs into RAM and executing them is an
easy way of trying out new software routines. This
application note describes one method for serially
loading (bootstrapping) the EEPROM1 via a program
executing in the RAM of the MC68HC058B6.

BUILT IN BOOTSTRAP

The MC68HCO05BS6 has a built in RAM serial bootstrap
program contained in the mask ROM of the device that
uses the SCI. It would therefore seem a simple task to
load programs into RAM; however, as ROM space on
the device is obviously critical, a very simple protocol
has been implemented. This means that the boot-
loader on the ‘B6’ does notaccept S-records which are
the normal output from an assembler; instead, the
protocol expects pure binary data preceded by a count
byte that holds the size of the program to be down-
loaded. No address information is contained in the
download; instead, the bootloader always starts the
program load at address $50 in RAM. The first byte
(the count byte) is stored here and then as the subse-
quent bytes are received via the SCl they are stored at
incrementing RAM locations and the count byte is

93

decremented for each byte received. When the count
byte reaches zero the bootstrap program jumps to
address $51 and starts to execute the program that
has just been loaded. No built in bootstrap routine is
provided for the EEPROM1 array.

These restrictions present two problems:

i) How to convertassembler output to the formatac-
cepted by the 68HC05B6 RAM bootstrap routine?

i) How to bootstrap the EEPROM1 of the.
68HCO05B6?

This application note provides a solution for each of
these problems.

1) CONVERTING S-RECORDS FOR RAM BOOTSTRAP

To use the built in RAM bootstrap program on the
MC68HCO05B6 the device must be configured as shown
in Figure 1. If these conditions are met when the reset
pin is released, then the serial bootstrap program de-
scribed above will start to execute and a program can be
downloaded via a 9600 baud RS-232 source. Personal
computers usually have one or more RS-232 ports
referred to as COM ports. To overcome the format
difference between S-records and that accepted by the
bootloader, a conversion program is required. There is
also an additional problem when usinga PC-when afile
is copied to a COM port to transfer it, it is the ascii
characters that are transmitted, not the binary data. This
means for example thatif a file containing the typed data
byte $A5 was copied via the COM port to the B6, the B6
would in fact receive two bytes: $41 and $35, which
represent the ascii characters A and 5 respectively.

This means that the conversion program has to strip out
the S-record format and convert the resultant data to
binary format for transfer to the HCO5B6. It must also
insert the count byte at the beginning of the output file.

The pascal program BINCONV performs these three
tasks; a listing of the source code is given at the end of
this application note. A flow diagram of BINCONV can
be seen in Figure 2. The inclusion of the count byte has
been left as an option to increase the flexibility of the
program, but it could easily be standardised to include
the count byte for the B6 RAM bootloader. When
BINCONV is invoked it prompts for the name of the S-
record input file and the name required for the binary

output file. After this each S-record in the input file is
read and converted to binary data and stored in a
temporary file. As each S-record is read it is echoed to
the screen; when they have all been processed a

‘message prompts the user and asks if a count byte is

94

required. When used with -the 68HC05B6 RAM boot-
loader the answer will always be yes, in which case the
count value is written to the output file before the rest
of the data is copied from the temporary file to the
output file. Finally the value of the count byte is dis-
played for user confirmation —remember that the count
byte is equal to the number of bytes in the program
being converted plus 1 for the count byte itself. The
program will only accept standard S-record format and
will trap and abort if any non-valid character or format is
detected.

With the PC COM port set for 9600 baud and the

68HC05B6 configured as in Figure 1 the binary file can

be transferred and executed as follows:

i) Release Reset on the HCO5B6

i) Enter the command “COPY XXXX.YYY COM1\B" on
the PC.

The program will then be transferred to the B6 and
execution started automatically. Note that the \B option
is used to denote a binary file transfer so that the copy
procedure does not abort if it finds an end of file (EOF)
character in the middle of the file.

+9V

—% RS232
> 9600 baud

+5V
10KQ 10KQ
RESET
o——* 19 10
0.01uF Ra VoD
[i 18| ——
I RESET s
B 16
osct 22
10MQ Teapt {14
¢ 347 oscz
Il o3t [~
L crt Ul L pDas |2
22pFl 4MHz 22p| | ok L
- - 100 |.52 RS 232 level
translator:
150 | :
20| pLma RDI MC145407 or similar
21} pLmB
L1 tomp2 scik |5t
2| Tempr
PDO/ANO}14
22 Teare pD1/ANT 13-
g 1
39} peo 8 pD2 | 12
38| pPB1 g:’ PD5 |5
37] pa2 Q PD6 F4—
3
36| pB3 ﬁ-{' PO7 | —
35| PB4 g VAL
34| pBs S vRHI8 comoct
Connect 33| pBe nne
as desired 32| pay vpp1 140 as desired
NC jo—o
311 pao pc7 42~
301 par Pce |43
29| pa2 pcs |44
28| pas3 pca |45
27| pa4 pca |46
26| pas PC2 |47
25| pas PC1 |48
24 a7 PCo |49
vss

Figure 1. RAM bootstrap schematic

95

2) BOOTSTRAPPING THE EEPROM1

To bootstrap the EEPROM1 on the MC68HCO5B6 in
the absence of a built in loader program, use must be
made of the RAM bootloader described above. The
idea is that an EEPROM1 loader can be written to the
users exact requirements then assembled and down-
loaded into the RAM of the HCO5B6 where it will
execute and in turn download data and program it into
the EEPROM1.

The 6K EEPROM emulation part, the MC68HC805B6,
does have abuiltin EEPROM bootloader in place of the
RAM bootloader and there is an accompanying PC
program available from Motorola called E2B6 that
downloads S-records to the device for programming.

The following is an explanation of an example
EEPROMT1 bootstrap program for the B6 that has been
written to be compatible with the 805B6 PC program
E2B6 thus eliminating the need to develop another PC
program.

Alisting of this program (EE1BOQT) is given at the end
of this application note. The MC68HCO05B6 has 176
bytes of RAM that can be used for the EEPROM1
bootstrap program, so the protocol must be kept
simple and the code written efficiently. The format of
the E2B6 program is a transfer of 2 address bytes
followed by the data byte that is to be programmed at
that location. At the same time the B6 returns the data
from the previously programmed location for verifica-
tion by E2B6. The program EE1BOOT has 4 main
sections: @ main loop, an erase routine, a program
routine andan SCl service routine. The core of both the
erase and program subroutines is the extended ad-
dressing subroutine EXTSUB whichis used to access
the EEPROM1 array. This subroutineis builtin RAM by
the main loop as the address information for the next
byte to be programmed s received from the SCI. E2B6
always sends a null character during initialisation
which could throw the EE1BOOT program out of
synchronisation, as itis already executingbefore E2B6
is invoked. For this reason EE1BOOT ignores the first
character received and treats the second as the first
address byte.

The EXTSUB routine is first called as an “LDA $aaaa”
to retrieve the last byte programmed for verification.

Then the address in the routine is modified as the next
address to be programmedis received. When the data
byteis received the opcode of EXTSUB is incremented
so that it becomes “STA bbbb” before the erase and
program routines are called. After programming the
opcode is decremented back to LDA before the main
loop is repeated.

Note that the EEPROM?1 location is always erased
before programming. The timer output compare func-
tion is used to provide a 10ms delay for erasing and
programming and the programming step is skipped to
save time if the data presented to that location is $FF.
The sequence of events to bootstrap the EEPROM1 of
the 68HCO5B6 is therefore as follows:

1

Configure the 68HCO5B6 as in Figure 1.

2

Assemble the program EE1BOQOT and convertit to
binary using BINCONV as described in section 1.

3

Set up PC COM port to 9600 baud then release
Reset on the HCO5B6.

4

Use the command “COPY EE1BOOT.BIN COM1/
B” to download EE1BOOT into the RAM of the
HC05B6. EE1BOOT will now start to execute.

5

Start the program E2B6 on the PC and follow the
instructions to download the desired S-records to
the EEPROM1 of the 6BHC05B6.

Note:

i) Only the download procedure of E2B6 will work in
conjunction with EE1BOOT.

ii) Once the EEPROM1 security bit has been set, the
RAM bootloader on the 68HC05B6 will no longer op-
erate. This means that after the device has been reset
it will be impossible to download any more data into
the EEPROM1 until selfcheck has been executed —
selfcheck performs an erase of the entire EEPROM1
array. This means that if the EEPROM1 is to be pro-
grammed in several steps, the one that will set the
security bit should be done last.

FURTHER POSSIBILITIES

This application note has shown a method for initialis-
ing the EEPROM1 on the 68HC05B6 by using the
RAM bootloader. It would of course be much simpler
to incorporate a EEPROM1 bootloader. in the ROM
space of the user program, but often there is not

96

enough space. If enough space is available (117
bytes), then EE1BOOT could be incorporated in the
application software, thus saving steps 2, 3 &4 in the
procedure above.

MAIN
PROGRAM

INPUT FILE|
NAMES

OPEN FILES & INITIALISE:
QUIT=FALSE, COUNTBYT=1
|

PROCEDURE
BINWRITE

[ADJUST LENGTH For-Ll

ADDRESS & CHECKSUM

Y

GET NEXT
2 CHARS

LENGTH = LENGTH-2

PROCEDURE CALC-HEX
-CONVERT THESE 2 TO HEX

WRITE HEX TO
TEMPF

Y

WRITE ERROR MESSAGE

QUIT = TRUE

WRITE ERROR MESSAGE

QUIT = TRUE

READ 2 RECORD LENGTH
CHARS & CONVERT TO HEX

PROCEDURE ‘BINWRITE' -
CONVERT REST OF S-REC
TO BINARY & STORE IN TEMPF

Y

WRITE COUNTBYTE TO
OUTPUT FILE & ECHO
TO SCREEN

l

ICOPY BINARY DATA FROM
TEMPF TO OUTPUT FILE

OUTPUT FILES

Figure 2. Flow diagram of BINCONV

97

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025 0000
0026 0001
0027 0002
0028 0003
0029 0004
0030 0005
0031 0006
0032
00330007
0034 0002
0035 0001
0036 0000
0037
0038 000d
0039 000e
0040 0004
0041 000f
0042 0010
0043 0005
0044 0011
0045
0046
0047
0048 0012
0049 0005
0050 0006
0051 0007
0052

B L L L T T T T e

FEEEIHLLLHLARBALLLLLLLELLLILLLLBLLLLLALELTHALLALLLGALIALTIILLILLALLLUESIL~

%
%
%
%
*%
%
%

*% Note: E2B6 sends a null character during initialisaton so this prog

%
*%
*%
%
%

EE1BOOT — 68HC05B6 EEPROMI Serial bootloader

- This prog. is loaded into the RAM of the HCOSB6 via the RAM
bootloader. The program will then start to execute. The format
has been selected to be the same as that on the 805B6 so that

the program E2B6 can be used to program the EEPROM1.

ignores the first character received on the SCI.

Jeff Wright

Last Updated 10/5/90

4
‘t
'
4
P
‘t
'
P
(32
e
o
t 3
s

*EERLLLTTARILALLLILLELLALLIETALLLTLILLFLLVLLLLLLBLALHLTLILLTLILHILLBLR84~

B L L R

AEm AR I1/0 and INTERNAL registers definition

PORTA
PORTB
PCRTC
PORTD
DDRA
DDCRB
DDRC

EECONT
E1ERA
E1LAT
E1PGM

BAUD
SCCR1
MBIT
SCCR2
SCSR
RORF
SCDAT

TCR

TCIlE
OCIE
ICIE

1/0 registers

EQU $00
EQU $01
EQU $02
EQU $03
EQU $04
EQU $05
EQU $06
EQU 507
EQU 2

EQU 1

EQU 0

EQU $0D
EQU SOE
EQU 4

EQU SOF
EQU $10
EQU 5

EQU 511

TIMER registers

EQU s12
EQU 5
EQU 6
EQU 7

port A.
port B.
port C.
port D.
port A DDR.
port B DDR.
port C DDR.

Timer control register. .

Timer overflow interrupt enable.

Timer output compares interrupt enable.
Timer input captures interrupt enable.

98

KRR KRR R R AR AR RR AR K

0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
ooss
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099

0013
0003
0004
0005
0006
0007

0016
0017
0018
0019

00cé6
0014

0051

0051
0053
0055
0057

0059
005b
005d
00Sf
0061
0063
0065
0067
006a

006¢c
006e
0070
0072
0075

0100 0077

0101
0102
0103
0104
0105
0106
0107
o108

007a
007¢
007f
0081
0083
0085
0087

a6 00
b7 04
b7 05
b7 06

ad 21
b7 11
ad 17
c7 00
ad 12
c? 00
ad 0d
c7 00
3c 8f
ad 11
ad 27
3a 8f
20 e3

8f

90

91

93

TSR
OCF2
ICF2
TOF
OCF1
ICF1

TOC1HI
TOC1LO
TIMHI
TIMLO

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

513

N o v oa W

$16
$17
$18
$19

*anxxx MISC DEFINITIONS —

LDAEXT
Ms10

EQU
EQU

$C6
$14

Timer status register.

Timer output compare 2 flag.
Timer input capture 2 flag.
Timer overflow flag.

Timer output compare 1 flag.
Timer input capture 1l flag.

Timer output compare register 1 (16-bit).

Timer free running counter (16-bit).

OP-Code for LDA extended.
10mS delay constant.

AR R A A AR R R R AR RN R RN AR R R AR AR AR R A RN RN KRR AR R AR RN RN RN RN AR AR R ARAR AR AR AR R AR

*

*

*

START OF CODE

*

*

*

AR AR AR R AR R AR AR RN R R AR R R AR R kAR R RN R RN RN R AR RN AR AR AR AR AR AR AR AR AR NI RN

RESET

SCIINT

Loop

ORG

LDA
STA
STA
STA

BCLR
LDA
STA
LDA
STA
STA
LDA
STA
BSR

BSR
STA
BSR
STA
BSR
STA
BSR
STA
INC
BSR
BSR
DEC
BRA

$51

#$00
DDRA
DDRB
DDRC

MBIT, SCCR1

#5C0
BAUD
#S0C
SCCR2
SCSR-
#LDAEXT
OPCDE
SCREAD

EXTSUB
SCDAT
SCREAD
ADDHI
SCREAD
ADDLO
SCREAD
DATA
OPCDE
ERASEE
PROGEE
OPCDE
Loop

31l Ports inputs.

Initialise SCI - 8 data bits.

9600 baud at 4MHz.
Enable transmit and receive.

Clear pending flags.
Init extended addressing subroutine to LDA.

Wait here and ignore lst char (E2B6 init).

Load Acc with data from last programmed addr
Send it back for host to verify.

Get high address

- and store it.

Get low address

- and store it.

Get the data to be programmed

Store it temporarily.

Change the ext addr subroutine to STA aaaa.
Erase the selected address for 10ms.

Now prog the data for 10mS.

Restote ext addr subroutine to LDA aaaa.

99

0109 asxsassnnsanananarxesnxssas SUBROUTINE TO SERVICE SCI **aA#sasannsnnnnnnnansnsnnnnnnn
0110

0111 0089 Ob 10 fd SCREAD BRCLR RDRF, SCSR, *

0112 008c b6 11 LDA SCDAT

0113 008e 81 RTS

0114

0115

0116 *xaarasnssss EXTENDED ADDRESSING SUBROUTINE TO ACCESS FULL MEMORY MAP ****aaxaasan
0117

0118 008f EXTSUB EQU *

0119 008f 00 OPCDE FCB 0

0120 0090 00 ADDHI FCB 0

0121 0091 00 ADDLO FCB 0

0122 0092 81 RTS

0123

0124 0093 00 CATA FCB 0 Reserved Byte for data during erasing.
0125

0126 sasrxaaaasnnnsaanssssrannns EE] ERASING SUBROUTINE ** %4 4% # s aswudnuaxa aaaanaannnnnn
0127

0128 0094 12 07 ERASEE BSET E1LAT, EECONT

0129 0096 14 07 BSET E1ERA, EECONT

0130 0098 ad £5 BSR EXTSUB

0131 00%a a6 14 LDA #MS10

0132 009c 10 07 DEL1 BSET E1PGM, EECONT

0133 00%e b7 19 STA TIMLO Set up timer for a 10ms count

0134 00a0 b7 16 STA TOC1HI

0135 00a2 b7 13 STA TSR - using output compare 1 function.
0136 00a4 b7 17 STA TOC110

0137 00a6 0d 13 fd BRCLR OCF1,TSR,* Wait here for end of erase time
0138 00a9 3f 07 CLR EECONT ~ erase finsished.

0139 OOab 81 RTS

0140

0141 axnnsanswsxsxxsnnnsnns EE] PROGRAMMING SUBROUTINE ** ## ¥ s ass s anaaaaanbunnahaannn
0142

0143 00ac 12 07 PROGEE BSET E1LAT, EECONT

0144 00ae b6 93 LDA DATA

0145 00b0 ad dd BSR EXTSUB

0146 00b2 4c INCA

0147 00b3 27 Of BEQ SKIP Skip programming if data = SFF

0148 00b5 a6 14 LDA #MS10

0149 00b7 10 07 DEL BSET E1PGM, EECONT

0150 00b9 b7 19 STA TIMLO Set-up timer for 10mS count

0151 00bb b7 16 STA TOC1HI

0152 00bd b7 13 STA TSR - using output compare 1 function.
0153 00bf b7 17 STA TOC1LO

0154 00cl 0d 13 fd BRCLR OCF1, TSR, * Wait here for programming to finish.
0155 00c4 3f 07 SKIP CLR EECONT

0156 00cé6 81 RTS

100

(ﬁ**iﬁtiti*ﬁ*ttiiit*i*t*itit*i*tt***ﬁ*t**ﬁiﬂiﬁ*t*ﬁ**ﬁ*k*t*'*it't*t'**ﬁ'*t,

program BINCONV; { Programto convert Motorola S-record files to
binary format. Optional inclusion of a count byte for
HCOS5B6 RAM bootloader etc}
{ Programmer - Jeff Wright, MCU applications
Motorola
East Kilbride}

{ Last Updated 10/5/90}

(ﬁ******t*ﬁ*tﬁiﬁ***ﬁ***t'ktﬁi*ﬁ*ﬁtit*i*i*it*ﬁ'i*i*ﬁit*ﬁ***ﬁ*ttttt*t*ktkt**)

var
SrecFile : text;
BinFile : file;
Tempf : file;
srec : string{100];
Transfer : array(l..20000] of char;
numread, numwritten : word;
answer : char;
fnamei : string({15];
fnameo : string[15];
bytout : char;
countbyt : integer;
datcent : integer;

datval : integer;
point : integer;
cntl : integer;
cnt2 : integer;
quit : boolean;
Count : boolean;

Procedure Calc_hex(chrl,chr2 : integer);

{Combines 2 characters into a single byte value i.e A5->165, error
signaled if non hex character detected}

Begin

Case chrl of

48..57 : chrl := chrl - 48;

65..70 : chrl :=chrl - 55; { Is this a valid hex character?}

else
begin
writeln (‘invalid data - conversion aborted’);
quit := true
end
end;
Case chr2 of
48..57 : chr2 := chr2 - 48;
65..70 : chr2 := chr2 - 55;
else
begin
writeln (‘invalid data - conversion aborted’);
quit := true
end

101

end;
datval := chrl*l6é + chr2; {Convert to single byte}
end;

{ }
Procedure Binwrite (length,dpoint : integer);

{Converts an S-record line to hex and stores it in a temporary file}

begin
length := length-3; {Allow for address and checksum bytes}
countbyt := countbyt+length; {Update running byte total}
length := length*2; {Twice as many characters as bytes}
while length > 0 do
begin
cntl := Ord(srec[dpoint]); {Get the next two characters}
cnt2 := Ord(srec(dpoint+l]);
dpoint := dpoint+2; {Update pointer and length}

length := length-2;

Calc_hex{cntl,cnt2); {Convert two characters into single byte}
bytout := Chr(datval); {- now convert that single byte into a }
blockwrite (tempf, bytout,1l) {character and save it in temporary file}

end
end;

(LA R L L LSS SRS MAIN PROGRAM STARTS BELOW **XA**xk Ak kkkkkh kX hkhk kXA KKk}

begin
writeln (‘S-record to Binary conversion utility’);
writeln;
writeln;
write(‘Input S-record file name? —> ‘');
readln (fnamei) ;
assign(SrecFile, fnamei);
write (' Binary output file name? —> ‘);
readln (fnameo) ;
assign (BinFile, fnameo);
assign (tempf, ‘temp.tmp’);
quit := false;

countbyt := 1;

Reset (SrecFile); {open the two }
Rewrite(BinFile, 1) { -selected files}
Rewrite (tempf, 1) ; { + a temporary file}

102

while not Eof (SrecFile) and not quit do

begin
readln(SrecFile, srec); {read S-rec into char string srec}
writeln(srec);

If srec(l])='S’then {If string does not start with S then quit}
begin
CASE srec(2] of
hD S {If not S1 record then loop back}
begin
cntl := Ord(srec(3]):; {get the 2 record length}
cnt2 := Ord(srec(4]); {characters}

calc_hex(cntl,cnt2); {func to produce hex in
datcnt from cntl & 2}
datcnt := datval;

point := 9; {point to first data character}
binwrite (datcnt, point) { convert the data in this s-rec
line to binary and store in temp file}
end;
‘0’ : writeln (‘Conversion started’);
‘9’ : writeln (‘last S-record done’):;
else
begin {If not SO,SlorS9 record then abort}
quit := true;
writeln (‘'‘Non standard S-record detected - Conversion aborted’)
end
end
end
else
begin {If 1st char not an S then abort}
quit := true;
writeln (‘Non standard S-record detected - Conversion aborted’)
end

end;
If quit = false then

{If no errors then copy the temporary file to the output file and add in
a count byte if required}

begin
Reset (tempf,1);
writeln;
write (‘Do you want a count byte added to start of output file? —> Y);
readln (answer);
If upcase (answer) = ‘Y’ then
Begin
writeln (‘Total size including count byte = ‘,countbyt);
bytout := chr(countbyt);
blockwrite (binfile,bytout,1)
end;
repeat
blockread (tempf,transfer,sizeof (transfer),bnumread);
blockwrite (binfile,transfer,numread, numwritten);
until (numread=0) or (numwritten <> numread)
end;

close (tempf) ;

erase (tempf) ; {Finished with temporary file so erase it}
close (SrecFile);
close'(BinFile) {Close files before quiting}

end.

103

104

ANA436

Error Detection and Correction Routines
for M68HCO05 devices containing EEPROM

By Ken Terry
MCU Applications Group
Motorola Ltd
East Kilbride

INTRODUCTION

An increasing number of applications involving
MC68HC05 MCUs require large amounts of critical
data to be storedin EEPROM memory. Thisapplication
note describes software routines, generated for the
HCO5, which allow stored data to be encoded so that
single bit errors existing in retrieved data may be
corrected and two bit errors detected. The routines
use a simple Linear Block Code for the encoding of
stored data.

SINGLE BIT ERROR CORRECTION

All methods of error detection/correction involve the
use of extra check bits added to the data bits to
produce some form of codeword. To allow the
detection of a single bit error in a specific codeword it
is necessary that each word differs from any other
word by at least two digits. A one bit error will then
produce an invalid word. The number of digits by
which two words, of the same length, differ is defined
as the Hamming Distance. For the correction of up to
t errors a minimum Hamming Distance of 2t + 1 is
required between each codeword. Single bit error
correction and double bit error detection requires a
minimumdistance of 3. The problem s to decide what
an original codeword was if an invalid codeword has
been detected. One means of doing this is to use a
Linear Block Code, as described below. Linear Block
Codes for the correction of single biterrors are referred
to as Hamming Codes. The following describes a
systematic method for single bit error correction.

105

A codeword consists of k data digits to which are added
r check digits to produce an n digit codeword (n = k+r).
The r data digits are redundant, in that they carry no
additional data, and the code efficiency is defined as k/n.
This is an indication of the amount of information
transferred, relative to the total number of bits.

For a linear block code the general codeword can be
written in the form:

318y33.......84C1 Cg.....C;

where a, to a, are the k data digits and ¢, to ¢, are the r
check digits.

The check digits are chosen to satisfy the r linear equations:

0=hna,®h]282® @ h]kakeCI
0= hz,a«, @ h2282 D...... @ hz*ﬂke Cy
0=h412;® h73,® ® h,a,®c,

Each element in the above equations is either a one or a
zero and all addition is modulo 2.

These equations can be more conveniently expressed in
terms of the matrix equation:

[HITI=0

where [T]is an n x.1 column vector representing the
stored codeword:

[Tl = a
8
a3

9
G
)

¢

and[Hl]is an rx n matrix, referredto as the parity check
matrix.

[H] =

A second column vector [R], with same dimensions as
[T], is used to represent the retrieved codeword. This
may or may not be equal to the original stored codeword
[T1, depending on whether or not an error exists. If [H]
[R] = 0, then [R] is most likely to be the original stored
codeword. If [H][R] gives a non zero value then atleast
one error has occurred. If an n x 1 error matrix [E} is
introduced, then the retrieved codeword [R] can be
written as:

[R] = [T] + [E]

If [E] consists totally of zeros then no. error has
occurred. For any error that does occur in [R], [E] will
containa ‘1’ inthe corresponding position. The problem
isthen to determine where in [E] the non zero elements
are, once the codeword [R] has been retrieved. A
matrix [S], referred to as the syndrome, is defined
such that:

(S] = [H] [R]

This can be expanded to
[S] = [H] [T] + [HI [E]
giving

[S]=[H] [E]

[Slisan rx1 column matrixand can consists of any one
of 2'sequences. [E] is an nx 1 matrix and can consist
of any one of 2"sequences. As n> r there is nounique
solution to the above equation. However, in this case
it is assumed that only one error has occurred and
therefore [E] contains only one non zero element.
Multiplying [E] by [H] yields a syndrome which will be
equal to one column within [H]. The position of this
column will indicate where the non zero element
exists in [E] and hence the position of the single bit
error in [R]. In the case of two or more non-zero
elements in [E] error correction is not possible.

HAMMING BOUND AND
CODE EFFICIENCY

The Hamming Bound is defined as: 2”2 k + r+ 1

where kis the number of data bits and ris the number
of check bits.

This must be satisfied for single biterror correction. To
allow double bit error detection a further check bit
must be added. Table 1 shows the number of check
bits required, along with the corresponding code rate,
for single bit error correction and double bit error
detection in different numbers of data bits.

It can be seen from the table that, in general, the
greater the number of data bits the greater the code
efficiency. However as the size of the codeword
increases the calculations involved in detecting an
error become increasingly more cumbersome. It can
also be seen that for both 8 and 11 data bits, the
number of check bits required is 5. By using 11 data
bits and 5 check bits the Hamming bound can be
satisfied exactly. There is no exact solution when 8
data bits are used. However, thisis amore convenient
data size for an 8-bit MCU and is therefore used in this
application, despite the lower code efficiency.

No. of No. of Code
Data Bits (k) Check Bits Efficiency

4 4 50%

8 5 61.5%

1 5 68.7%

26 6 83.9%

Table 1. Check Bit Requirements and Code
Efficiency for Single Error Correction

106

CODEWORD GENERATION
AND STORAGE

For one byte of data, 4 check bits are required for
single bit error correction. The parity check matrix will
consist of 12 columns of 4 bits and can be simply
generated by taking the binary values $1 to $C
(representedas binary column vectors) to generate 12
columns as shown. The check bits, c1 to c4, are
assigned to the columns containing a single non zero
entry and the data bits , b7 to b0, are assigned to the
remaining columns. The order of assignment is
completely arbitrary.

rc1 c2 b7 c3 b6 bS5 b4 c4 b3 b2 b1 b0

[HI =
101010101010
0 1 0011007110
0 0 11 10 0 0 01
0 0 0 00O0T°11T 1T 1 11

The following equations can then be derived from the
parity check matrix and used to calculate c1 to c4.

c1 =b7 ® b6 & b4 & b3 & b1
€2 =b7 ® b5 ® b4 ®b2 ® b1
c3 = b6 ® b5 ® b4 & b0
c4 =b3 ® b2 ® b1 & b0

At no time is the application software required to carry
out any matrix multiplication. This is done implicitly by
the use of the above equations. A fifth check digit, c5,
is used to detect the occurence of a double bit error
and is a simple parity check (even parity) for the 12 bit
codeword formed by concatenatingb7-bOandc1-c4.

Figure 1 shows the data organisation in memory. The
data bytes (b0-b7) and the corresponding check bits
{c1-c5) are stored separately in adjoining blocks of
EEPROM. This allows executable code to be stored in
the EEPROM and protected using error checking. The
data EEPROMblockis 256 bytes long. Itisimmediately
followed by the check EEPROM block. The minimum
size possible for the check EEPROM is 160 bytes (256
x 5 bits). In order that all check bits can be
accommodated within this, software routines are
required for the ‘packing’ and ‘unpacking’ of check
bits.

107

DATA
DATA EEPROM
256 BYTES
DATA + $100
CHECK EEPROM
160 BYTES
DATA + $190

Figure 1. Data Organisation in Memory

DATA RETRIEVAL AND CORRECTION

To allow a retrieved codeword to be checked it is
necessary to generate the syndrome [S]. To do this
the retrieved data byte is used to generate a new set
of check bits, c1/-c4/, using the same set of equations
asabove. The syndromeis then generated by exclusive
ORing c1/ to c4/ with c1 to c4. An non zero result will
indicate the presence of an error. The parity check c&/
is calculated from the retrieved data and check bits
and compared with c5. If they are the same, and the
syndrome indicates the presence of an error, thenitis
assumed that a double error has occurred and can
therefore not be corrected. If the error is correctable
then the syndrome can be compared with values
corresponding to the columns of [H] (in this case, a
simple lookup table in ROM) to determine the error
position.

SOFTWARE

Anassembled listing of the software is included at the
end of this application note.

The software has been written to run on the
MC68HC05SC21 but can be easily modified to run on
any HC05 MCU with EEPROM. It comprises 2 main
routines. The first routine is CHECKPROG and this
generates the codeword from the data and programs
the data and the appropriate check bits into EEPROM.

The second routine, GETCHECK, retrieves the data
and check bits from the EEPROM, calculates the
syndrome and, if any error is detected, returns with
the error position indicated in the accumulator. The
detection of adouble bit errorby GETCHECK isindicated
by the carry bit being set on return from the routine.
The data and check EEPROM blocks can be placed
anywhere within the device EEPROM memory, the
start address of the data EEPROM being determined
by an address held in RAM registers EPSTHI and
EPSTLO.

Four further subroutines are called by the the main
routines. PAKCHK and UNPAKCHK are used for the
packing and unpacking of the check bits in the check
EEPROM block. CHECKBIT is used to calculate the
check bits ¢1to c4and c1/to c4’. CALCS calculates the
parity checks ¢5 and c¥/.

108

The total ROM requirement for the routines is 301
bytes with a further 56 bytes required for the EEPROM
write/erase routines. Execution time for the routine
GETCHECK is approximately 0.6 ms (with 2 MHz
internal bus frequency). The execution time for
CHECKPROG is dependant on the EEPROM
programming time. The time required for the calculation
and packingof the check bitsamounts to approximately
0.6 ms.

REFERENCES

Carlson, ‘Communication Systems’, McGraw Hill.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067

0004
0000
0001
0005
0008
0009

0280

0081
0082
0090
0091

0092
0093
0094
0095
0096
0097
0098
0099
009a
009b

1100

0000

0007
0006
0004

KRR AR I KRR KRR H A KRR AR R A AT AR KA AR A A IR A AN R AAN KA R AR NN AR ARk kb hk
e 9 v o e e e W ok ok ok ok ke e e o e e ke e ok e e e e e e e e e e e e e e ok e e e W e e e e Rk e o ek ke ke ke ko
* MC68HC055C21 - EEPROM ERROR CHECK CODING ROUTINES

*

3k 3 ok ok ok R e ok ok ok ke e ok ok ok R o e e ok ok e o o o ok e ok o o ke b ok e ok o e ok ok ok e o ok e ok ok ok ok ok ke e o ke ke ok e ok e ke e e e e ke ke
This software was developed by Motorola Ltd. for demonstration
purposes only. Motorola does not assume liability arising out of
the application or use of this software and does not guarantee
its functionality.

Original software copyright Motorola - all rights reserved.
FR A KKK AR KKK KKK AR A A AN AN A AR A A AR AR AT AR AR AN A AN R AR IRk k kK

16/10/90

% ok g s W e ok ok W e ok ok gk e ok ok ok ok ok ok g 3k o e o ke o o ok e ok e o o ok e ok ok ok ok ok ok e o ok ok ok e e ok e ok ok e R e ok kR o
These routines use a modified (12,8) Hamming code to provide
single bit error correction and double bit error detection for
data stored in EEPROM. The data is segemented into blocks of 256
bytes. Each 256 block of ‘data’ EEPROM is immediately followed
by 160 bytes of ‘check’ EEPROM which contains the parity check
bits.

e % v g e ke ok ok e o e ok ok e e ok ok ok ok e ke ok o e ok o o e ok ok o ok e ok ok o o 3 ke e ok ok ko e O ok o o ok e o o Sk e ke ke o ok e

* BYTE EQUATES

P e e e e e e e e s

ERE N N T T

*

DDRA EQU $04

PORTA EQU $00

PORTB EQU $01 PORTB

DDRB EQU $05 . PORT B DATA DIRECTION REGISTER

MISC EQU $08 MISC register

PCR EQU $09 Program Control Register

de g ok sk Kk K K ok ok ok ok K gk ok Sk Sk S S o 3 3 3 3 S ok sk o o e ke d ok e e ke e e ke e o e R ok o ok ok ok ok ke ok ok ok ek ke ek ok ok
* USER EQUATES

e ok K ok KKk ok kK ok kR ok o Kk R ok ok KK Rk K R ok Tk o ok sk o ok ok ke ko ok sk ok ok ko s ok
*

ADSTA EQU $80 Start add. of RAM subroutine area for STA inst.
* or LDA inst.

EPRADH EQU $81 Adr. EEPROM high for EEPROM write routine
EPRADL EQU $82 Adr. EEPROM low for EERPOM write routine
SAVA EQU $90 General purpose RAM reg. to store acc.
SAVX EQU $91 General purpose RAM reg. to store x-reg.

*

DATA EQU $92 Data reg. contains data word to be encoded
INDEX EQU $93

CHECKO EQU $94 Holds check bits ¢l to ¢5 for byte in DATA
CHECK1 EQU $95 Used to generate check bits

CHECK3 EQU $96
CHECK4 EQU $97
REM EQU $98
EPSTHI EQU $99
EPSTLO EQU $9A
SYNDROME EQU $9B
*

ERRCOR EQU $1100
*

Fede e ek A K K d Rk ko k ok ke ke ok ke ek e R Rk kKK kKRR KRN AR AR KKK
* BIT EQUATES

L R e st e s s i as s ssssssd

* PORT A SERIAL I/O PORT

SERIO EQU 0 Serial i/o port - port A bit 0
*

* MISC Register

ROMPG EQU 7

INTFF EQU 6

DCTST EQU 4

109

0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
.0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135

0007
0002
0001
0000

1100

1100
1102

1104
1106
1108
110a
110c

110e

1111

1114

1117

11lla

b7

b6

b7

b7
bé

cd

cd

3c

b6
cd
b6
Sc
cd

be
81

11

11

12

81

94
12
95
12

93

33

cl

09

33

33

* Program Control Register
WE EQU 7
VPON EQU 2
PGE EQU 1
PLE EQU 0

*
*
TR TR T AR TR R E R AR H A E AR AR AR AR NI R AN RN N RN AR N AT Ak Ak kA kA A ke ko
*
*

ORG ERRCOR
*
*
Kk kdekkdkdkk ek kde ko kk ko kdrkk ko ke ke ko k kA h ok ke kkh ok ke ke k&
CHKPROG - This routine programs a byte of data held in acc. into a
block of data EEPROM. Data EEPROM is 256 bytes long and starts from
an address held in EPSTHI and EPSTLO. Location of data byte within
data EEPROM is determined by X-reg value. Check bits Cl to C4 are
calculated for the data byte, using a (12,8) block code, to allow
the correction of a single bit error by the routine GETCHECK. A
further simple parity check bit, C5, is generated to allow the
detection of double bit errors. The check bits are programmed as a
5 bit block into the check EEPROM, which is 160 byte long and starts
from location EPSTHI,EPSTLO + $100.

Enter with data to be programmed in acc., start add. of data EEPROM
in EPSTHI and EPSTLO and index value for data address in X-reg.

* ok % % % X % ¥ ® F H X O X *

Returns with X-reg. value saved.
*

TR AT IR R KK IR R KK IR AT IR Tk d Nk ke Ak Ak kA ke ke kR Ak kR k Xk Kk

CHKPROG STA DATA Store data byte

STX INDEX Save data address index value
*

LDA EPSTHI Set up address offset for EPRWRT

STA EPRADH - (EEPROM write routine)

LDA EPSTLO

STA EPRADL

LDA DATA Restore data byte into acc.
*

JSR EPRWRT Store data byte in EEPROM at address
* specified by EPSTHI,EPSTLO + x reg.
*

JSR CHECKBIT Calculate check bits Cl to C4.
* Returns Cl to C4 in CHECKO (bits 0 - 3)
*

JSR CALCS Calculate C5 and return with C5 in CHECKO (4)
*

JSR PAKCHK Calculate offset reqg’d to give byte location
* for C1 to C5 and store in X-reqg. and rotate
* CHECKO. and CHECK1 so that Cl to C5 will be
* programmed into appropriate part of check
* EEPROM
*

INC EPRADH Increment start add. of data EEPROM by $100

*

to get start add. of check EEPROM

LDA CHECKO
JSR EPRWRT Program CHECKO into Check EEPROM
LDA CHECK1
INCX INC X-reg. to get add. for CHECK1
JSR EPRWRT Program CHECK1 into EEPROM
*
LDX INDEX Restore X-reg. value
RTS

*
*
H e KRRk R ook R Ak ko R ok ok o R o ek kK

110

0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
016l
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203

112a
112a
11l2c
112e
1130
1132

1134
1137

1139

113c

113e

1141
1143

1145
1147

1149

1l4c
1l4e
1150
1152
1154

bf

bé

b6
b7

cd
b7

cd

b7

cd

bé
b7

bé
b7

cd

bé
b8
a4

b7

93

99
81

82

11

11

96

94
97

96
94

11

71

88

cl

ed

* % % % % % % % % % % E Ok Kk % % % % % O K % % % ® ¥ %

GETCHECK - Retrieves a data byte from location EPSTHI,EPSTLO + x
along with corresponding check bits Cl to C5. The data, and Cl to C4,
are used to calculate the SYNDROME value which is used to indicate
the position of a single bit error. The SYNDROME value is generated
by calculating new check bit values Cl' to C4' from the retrieved
data and adding these (modulo 2) to the original check bit values
retrieved from the Check EEPROM. C5 and C5' are simple parity check
bits used to indicate the occurance of a 2 bit error.

Enter with start address of data block in EPSTHI and EPSTLO and index
value for data byte in X-reg.

Returns with the uncorrected data byte in RAM location DATA. Error
status is indicated by the following:

No errors - carry = 0, acc. = 0.

Single bit error in data byte - carry = 0, acc. has one bit set to
indicate the position of the error in the data byte.

Single bit error in check bits - carry = 0, acc has upper nybble = S$F
and one bit set in lower nybble to indicate check bit error position.
(b0 indicates error in Cl, b3 indicates error in C4).

Double bit error - carry = 1.

X-reg. contents are saved.

3 e e e ok ek ke ek ok ek o o ok 3 T ok ok ok e ok ok ok e ok S ok ok ok o 3 ok o e ok ok ok o ok ok ok ok ok ok Rk

*

GETCHECK EQU *
*
STX INDEX Store data address offset
*
LDA EPSTHI Set up address offset for GETBYTE
STA EPRADH
LDA EPSTLO
STA EPRADL
*
JSR GETBYTE Get data byte from loc’n EPSTHI,EPSTLO + X
STA DATA Store retrieved data byte
*
JSR UNPAKCHK et check bits and return with Cl to C5
* tn CHECK3 (0 to 4)
STA CHECK3
*
JSR CHECKBIT Calculate new check bits (Cl' to C4') from
* retrieved data byte and return with them in
* CHECKO (0:3)
*
LDA CHECKO
STA CHECK4 Store Cl' to C4’
LDA CHECK3
STA CHECKO
*
*
JSR CALCS5 Calculate new parity check bit C5' from
* retrieved data and check bits (Cl to C4)
* and return with Cl to C4 in CHECKO (0 to 3)
* and C5' in CHECKO (bit 4)
*
LDA CHECK3 Load C1 to C5
EOR CHECK4 Generate Syndrome
AND #$O0F Mask out C5 from syndrome
BEQ NOERR If syndrome = 0 then no error
STA SYNDROME Store syndrome

111

0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271

1156
1158
115a
115¢
115f

1161

1164
1166
1169

1ll6a
1léc

116d

1ll6e
1170

1171

1171
1173
1175
1177
1179
117b

117¢
117d
117e
117f
1180
1181
1182
1183
1184
1185
1186
1187

be
81

a6
b7
aé
b7
bd
81

9b
11

93

93

1188 be 93
118a a6 05

118c

42

09

7o

FNDERR

NOERR
*

*

DOUBLERR
*

*
*

GETBYTE
*

*

BITPNT

LDA CHECKO Load Cl to C4 and C5' into acc.

AND #$10 Mask out Cl to C4 - leave C5'

BNE CORR1 Branch if C5' = 1

BRCLR 4,CHECK3,DOUBLERR If C5 = C5' = 0 then 2 bit error exists
BRA FNDERR If C5 = 1 and C5' then correctable

1 bit error exists’

BRSET 4,CHECK3, DOUBLERR If C5 = C5" = 1 then 2 bit error exists
If C5 = 0 and C5' = 1 then correctable
1 bit error exists

LDX SYNDROME

LDA BITPNT-1,X Set bit in acc. to indicate pos. of error

CLC Clear carry to indicate that double bit
error did not occur

LDX INDEX Restore X-reg. value

RTS

SEC Set carry to indicate double error
occurred

LDX INDEX Restore X-reg. value

RTS

EQU * RAM Subroutine to load acc. with byte held
in EPRADH,EPRADL + x

LDA #$D6 Indexed 2 byte offset LDA inst.

STA ADSTA

LDA #$81 RTS inst.

STA ADSTA+3

JSR ADSTA

RTS

FCB SF1 Error in Cl1

FCB $F2 Error in C2

FCB $80 Error in b7

FCB $F4 Error in C3

FCB $40 Error in bé

FCB $20 Error in bS

FCB $10 Error in b4

FCB $F8 Error in C4

FCB $08 Error in b3

FCB $04 Error in b2

FCB $02 Error in bl

FCB $01 Error in b0

% %3k 3 3,k ok o K ok 3k 3 ok ok ok ek ok ok 3k ok ok 3 ok ok ok ok T ok ok 3 ok ok ok ok ok ok 3k ok ok o 3k K ok ok ok ok ok 3k ok Sk 3K e ok ok ok X

LI SR I A

UNPAKCHK - Calculates the address of the the 1lst byte location
for the check data Cl to C5, for the data byte held in location
EPSTHI,EPSTLO + INDEX, and then fetches the two bytes containing Cl1
to C5 and stores them in CHECK1 and CHECKO. These locations are then
rotated left until Cl1 is located in the lsb position of CHECKO.

Enter with start address of DATA EEPROM in EPSTHI and EPSTLO and
address index in RAM reg. INDEX.

Returns with Cl to C5 in CHECKO (0 - 4). Acc. and X-reg. contents
not saved.

R R T e T ey

*
UNPAKCHK

LDX INDEX
LDA #3505
MUL Multiply DATA offset by 5 and store

result in acc. and x-reg.

112

0272 118d 3f 98 CLR REM Initialise remainder RAM regq.

0273 *

0274 * Divide result in X-reg. and acc. by 8 and store remainder in
0275 * RAM byte REM

0276 *

0277 118f 56 RORX

0278 1190 46 RORA

0279 1191 24 02 BCC UPCHKAD1

0280 1193 10 98 BSET 0, REM

0281 1195 56 UPCHKAD1 RORX

0282 1196 46 RORA

0283 1197 24 02 BCC UPCHKAD2

0284 1199 12 98 BSET 1,REM

0285 119b 56 UPCHKAD2 RORX

0286 119c 46 RORA

0287 119d 24 02 BCC UPCHKAD3

0288 119f 14 98 BSET 2,REM

0289 *

0290 1lal 97 UPCHKAD3 TAX Store index for checkbits in X-reg.
0291 11a2 3c 81 INC EPRADH Inc. GETBYTE address offset by $100
0292 1la4 cd 11 71 JSR GETBYTE Get 1st byte of Cl to C5 string
0293 1la7 b7 94 STA CHECKO

0294 1la9 5c¢ INCX Inc Index by 1

0295 llaa cd 11 71 JSR GETBYTE Get 2nd byte of Cl to C5 string
0296 llad b7 95 STA CHECK1

0297 *

0298 *

0299 1llaf 3d 98 TST REM

0300 11bl 27 09 BEQ UPNOREM

0301 11b3 98 UPCHKAD4 CLC

0302 11b4 36 95 ROR CHECK1 Rotate CHECKO and CHECK1l left

0303 * - the no. of left shifts is equal
0304 * to the value held in REM

0305 11bé 36 94 ROR CHECKO - msb of CHECKO is shifted into 1lsb
0306 11b8 3a 98 DEC REM of CHECK1.

0307 1llba 26 f7 BNE UPCHKAD4

0308 *

0309 1lbc b6 94 UPNOREM LDA CHECKO

0310 1llbe a4 1f AND #S1F Mask out non valid check bits

0311 11cO0 81 RTS

0312 sk % vk 3 ok o sk K ok sk ok g ok ke o ok e ok ok e ok % ke ok ok Sk a9k ok ok ok ok e e ok ke ok ok ok ok o 9 ok ok ok ke o ok o 9 ok Ok o o ok ok e ok e o ok ok ok ok ok k-
0313 * CHECKBIT ~ Calculates the checkbits Cl to C4

0314 *

0315 * Enter with data in RAM reg. DATA

0316 *

0317 * Returns with Cl to C4 in CHECKO (0 - 3).

0318 * Acc., X-reg. contents not saved.

0319 *

0320 e de e e g ok e e R Kk A R R K kA K K KR K kR KK H A KKK KKK A KK A KA KA A A IR A AR A AR A RAN KA CN KRR KR KX KN KK
0321

0322 *

0323 1lcl 3f 94 CHECKBIT CLR CHECKO Clear CHECKO reg.

0324 *

0325 11c3 b6 92 LDA DATA Load data byte into acc.

0326 11c5 a4 Of AND #%00001111 c4 = b3 + b2 + bl + b0 (mod 2)

0327 * (mask out other bits)

0328 11c¢7 ad 31 BSR CALCHK Calculate c4 (result returned in carry)
0329 11c9 39 94 ROL CHECKO rotate c4 into CHECKO

0330

0331 *

0332 1lcb b6 92 LDA DATA Load data byte

0333 llcd a4 71 AND #%01110001 c3 = b6 + b5 + b4 + b0 (mod 2)

0334 * (mask out other bits)

0335 1lcf ad 29 BSR CALCHK Calculate c3 (result returned in carry)
0336 11d1 39 94 ROL CHECKO rotate c3 into CHECKO

0337

0338 *

0339 11d3 beé 92 LDA DATA Load data byte

113

0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407

11d5

1147
11d9

11ldb
lldd

11df
llel
1le3

1lled
lle6
1lle8
llea
llec
llee
11f0
11f2
11f4

11f6

11£7
11£9

11fa

11fa
11fc
l1lfe
11ff
1201
1203
1204
1206
1208

ad
39

b6
a4

b6
19
ad
24
18
b6

25
19

18
81

b6

21

92
da

19
94

94

95

02

95

f8
95

*

AND #%10110110 c2 = b7 + b5 + b4 + b2 + bl (mod 2)
[(mask out other bits)

BSR CALCHK Calculate c2 (result returned in carry)

ROL CHECKO rotate c¢2 into CHECKO

LDA DATA Load data byte

AND #%11011010 cl = b7 + b6 + b4 + b3 + bl (mod 2)
(mask out other bits)

BSR CALCHK Calculate cl (result returned in carry)

ROL CHECKO rotate cl into CHECKO

RTS

k3 k3 30 e ok ke ke ok ok e o e ok ek ok o ok R e o 3 o ok ok o ok ke ok e ok ok ke e e ok ok ok ok ok e e ok ok sk ok ek o Sk ke ok e ok o

*

* % % % %

CALCS5 - Calculates the parity checkbit C5

Enter with data in acc. and Cl to C4 in CHECKO (0 to 3)
Returns with C5 in CHECKO (bit 4).
Acc., X-reg. contents not saved.

e ek ek ek ok o e e ok e ke ok e o R ok ok ok ok o ke R e o ko e e ok ok o o o ok ke ok ok Sk K ok ok ek ok e Ok o e

*
CALCS

NOSETCS

SETCS
*

CALCHK

*

*

CALCHK1

CALCHK2

o x

LDA DATA

BCLR 4,CHECKO Clear C5

BSR CALCHK Calc. C’ = b7+b6+b5+b4+b3+b2+bl+bl+b0 (mod 2

BCC NOSETCS

BSET 4, CHECKO Sset C5 if C =1

LDA CHECKO

BSR CALCHK Cale. ¢5 = C’'+cl+c2+c3+cd

BCS SETCS

BCLR 4,CHECKO Clear C5 if total no. of 1ls in DATA and
cl to c4 is even ((DATA,cl to cd4) parity
is even)

RTS

BSET 4, CHECKO Set C5 if (DATA,cl to c4) parity is odd.

RTS

EQU * Calculates the modulo 2 sum of all bits
in acc. (b7 + b6 +... + b0) and returns
with result in carry.

CLR CHECK1

LDX $s08

RORA

BCC CALCHK2

INC CHECK1

‘DECX

BNE CALCHK1

ROR CHECK1

RTS

5k 3 3 d K Kk ok Sk e Sk 3k ok 3k ok o ok ok S ok sk ok ok ok 3 3 ok ok ok o o 3k ok ok ok ok ok ok 3k 3k ok ok ok ok o ok ok ok ok ke ok ok R Ok Sk Kk Kk

PAKCHK - Calculates the address of the the lst byte location

for the check data Cl to C5 and then rotates the RAM registers
CHECKO and CHECK1l so that Cl to C5 are in the correct bit positions
for programming into the Check EEPROM.

Enter with Cl to C5 precalculated and stored CHECKO (0-4), Start
address of DATA EEPROM in EPSTHI and EPSTLO and address offset
for data byte in RAM reg. INDEX.

Returns with Cl to C5 rotated into correct position within CHECKO
and CHECK1l (all other bit positions = 0) and address offset for
Cl to C5 in X-regq.

2 e e e e e ey

114

0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475

1209
120b
1204

120e

1210
1211
1212
1214
1216
1217
1218
121a
121c
121d
121e

‘1220

1222
1224
1226
1228
1229

122b
1224
122f

1231

1232

1233
1236
1238

123a
123d
123f
1241
1243
1245
1248
124a
124c
124e

124f
1251
1253
1255

be
a6
42

39
3a
26

97

1f
11
bd
13
cd
10
be
bé
81

b7
bf
a6
b7

93
05

98

02
98

02
98

02
98

95

09

94

95

£7

4af

4f

60

PAKCHK

* *

LI

CHKAD1

CHKAD2

*
*
*

CHKAD3

CHKAD4

NOREM

LDX
LDA

CLR

INDEX
#305

REM

Multiply DATA offset by 5

Initialise remainder RAM reg.

Divide result in X-reg. and acc. by 8 and store remainder in
RAM byte REM

RORX
RORA
BCC

BSET
RORX
RORA
BCC

BSET
RORX
RORA
BCC

BSET

CLR
TST
BEQ
CLC
ROL

ROL
DEC
BNE
TAX

RTS

CHKAD1
0,REM

CHKAD2
1,REM

CHKAD3
2,REM

CHECK1
REM
NOREM

CHECKO

CHECK1

REM
CHKAD4

Rotate CHECKO and CHECK1l left

- the no. of left shifts is equal
to the value held in REM

- msb of CHECKO is shifted into lsb
of CHECKI1.

Store CHECK EEPROM offset for Cl to C5
in X regqg.

K % ok ek sk ke e e Ik ok ok e ok ok e e ke ok ok o e e ok e e ok e ke e ke e R ke ek ok ok Kk ok R Rk ke R e kR Rk K Rk ok ok K
Subroutine EPRWRT/EPRERA - Writes one byte of data to EEPROM.

or erases 4 byte block within which, specified address is located.
The address to be written to is determined by EPRADH and EPRADL
added to the contents of the index register.

E AN R S T

Subroutines used: EXSTAI

e ke Kk kK K ko K Rk ok ok e KKk ok e ok K ke e o ek R ok o e ok o ok e Kk o e e e ke e R Rk ok ok R Rk R ek

*
EPRWRT

*
EPRERA

EWRT1

*
EXSTAI

JSR
BSET
BRA

JSR
BCLR
BCLR
JSR
BCLR
JSR
BSET
LDX
Lpa
RTS

STA
STX
LDA
STA

EXSTAI
WE, PCR
EWRT1

EXSTAI
WE, PCR
PLE, PCR
ADSTA
PGE, PCR
EPRDEL
PLE, PCR
SAVX
SAVA

SAVA
SAVX
#3$D7
ADSTA

115

Load ext sta inst subroutine in RAM
Select write mode

Load ext sta inst subroutine into RAM
Select erase mode

Latch address

write to EEPROM

Activate charge pump

Delay 10 ms at 2.5 MHz internal bus speed

Restore X reg contents
Restore acc. contents

Save acc
Save X reg
Indexed 2 byte offset STA inst

0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494

1257
1259
125b
125d
125€F

1260
1262
1264
1267
1268
126a

126b
126c
126e

aé
b7
b6
be
81

a6
ae
cd
4a

81
5a

26
81

fd

6b

*

EPRDEL
EDEL1

EDEL2

LDA
STA
LDA
LDX
RTS

LDA
LDX
JSR
DECA
BNE
RTs

DECX
BNE
RTS

END

#$81
ADSTA+3
SAVA
SAVX

#3508
#3$10
EDEL2

EDEL1

EDEL2

116

10 ms delay at 2.5 MHz internal bus freq.

AN440

MC68HC805B6 and MC68HC705B5
Serial/Parallel Programming Module

By Ross A Mitchell and Mark Maiolani
Motorola Ltd, East Kilbride

INTRODUCTION

The MC68HCO5B serial/parallel programmer module
(Figure 1) enables the userto program MC68HC805B6
and MC68HC705B5 MCU devices. This application
note describes the various operating modes of the
module and gives details of its use and construction.

PROGRAMMING MODES

Two programming modes are available via jumper
selection: parallel mode and serial mode.

In parallel programming mode, the user program
contained in an external EPROM is copied into the
internal EEPROM or EPROM of the MCU device,
whereas in the serial programming mode the MCU
EEPROM or EPROM can be programmed or read via
the serial port on the programmer module.

Note: If the security bit is active on the 68HC705B5
device, no programming operations are possible. On
the 68HC805B6 device, the device will be initially
erased if programming is attempted with the security
bit active.

Table 1 describes the 4 modes of operation for the
68HC805B6 and 68HC705B5 devices. The markings
for jumpers J2 and J3 are on the programmer board.

PARALLEL PROGRAMMING MODE

This mode enables programming of the MCU EEPROM
(68HC805B6) or EPROM (68HC705B5) directly from an
external 27C64 EPROM device, with the programming
module operatingas a stand-alone unit. The main functions
of erasure (68HC805B6 only), programming, and
verification are all implemented in this mode.

In this mode, all the internal EEPROM of the 68HC805B6
is automatically erased before being programmed. Any
failure of the EEPROM to erase results in illumination of
the red LED and a re-attempt of erasure. EEPROM
erasure is normally complete within 500 mS. The erased
state of the 68HC805B6 is $FF and $00 for the 68HC705B5.

The 27C64 EPROM should contain the data to be
programmed with the same addresses as the 6 Kbyte
EEPROM of the 68HC805B6 and so the EPROM should
only have data between addresses $800 and $1FFF
inclusive. Note: The smaller 256 byte EEPROM array of
the 68HC805B6 is not programmable from external
EPROM.

When programming 68HC805B6 devices, locations of
the external EPROM not in the internal EEPROM address
range are omitted, as are locations containing the data
$FF, thus speeding up the programming operation. With
68HC705B5 devices, a similar technique is used, with the
exception that areas with the data $00 are omitted.

Jumper J2 Jumper J3 Device 68HC805B6 Device 68HC705B5

SERIAL BOOT ONLY SERIAL LOAD (NO ERASE) RAM/EPROM SERIAL BOOT
SERIAL ERASE + BOOT SERIAL LOAD WITH ERASE EPROM ERASE CHECK
PARALLEL BOOT ONLY PARALLEL RAM BOOT PARALLEL RAM BOOT
PARALLEL ERASE + BOOT PARALLEL EEPROM BOOT PARALLEL EPROM BOOT

Table 1. Programming modes for 68HC805B6 and 68HC705B5 devices

117

2x100KQ

©8 1uF 1

| 8] ®| &} 8] 28]

2UR[2|B|3[R|2(8 |2|B|3|®|3[3|%|3
@

2[R%

RQ

TCAP1 VDO VRH

RESET

- PAY

PAS

PA7

16 +L cn
8 osct G aF
f__—_ 7 odaq | =
PLMA 220 CRY U 229F

T

GND
S :| -V
RS Re N _I_cm J_u, o‘l o ver - soses
100KQ 1K ‘I, T N INo1e ;0-'15 ;mﬁf +] C10 @] VPP -705BS
o e 2 |w 8 I"“‘

Im

333333

g§3888 33

TCAP2 VSS VAL
7

Figure 1. MC68HC805B6 and MC68HC705B5 Serial/Parallel Bootstrap Programmer

PARTS LIST

RESISTORS

R42

3K

100K
1K
470
10M
4K7
10K

4K7
100K
10K

12K
4K7

INTEGRATED CIRCUITS AND SOCKETS

CAPACITORS
c1-C4 22pF
c5 0.01pF
c6 1.0uF
C7.C8 22pF
c9 100pF
€10,Cc11 47yF
C12 1.0nF
ci13 0.1pF

- DIODES
D1.D2 1NS14
D3 LR3160
Da LG3160
D5,D6 1N5822
D7 1N914
D8 1N5818

TRANSISTORS (All in T092 Package)

BC337-25
BC239C
BC309C

IC1 68HC805B6 52 Pin PLCC ZIF
1C2 INT27C64 28 Pin DIL ZIF
IC3 MAX232CPE 16 Pin DIL LIF
CONNECTORS

J1 25 Way AMP Female

J2,J3,J4 3 Way Jumper

P1 4 Way Terminal Connector
SWITCHES

S$1,52,S3 2 Way, Toggle Switch (SPDT)
MISC

CR1 MKO04000A 4MHz Crystal

118

Package HC-18U

During the programming operation the green LED
should flash with a period of approximately 1 second
to indicate normal programming mode.

After the programming operation has been completed,
the programmed contents of the MCU are verified
against the external EPROM. Any failure to verify will
result in illumination of the red LED. Successful
verification will result in illumination of the green LED.

The 68HC705B5 device can be checked for the EPROM
in the erased state by placing the jumpers in the
SERIAL and ERASE+BOOT positions with +5 volts on
the Vpp supply for 68HC705B5. In this case follow the
instructions below for parallel programming ignoring
steps 4 and 5, but there is no need for a 27C64
EPROM in socket IC2. The green LED turned on
indicates success, the red LED indicates that the
EPROM is not in the erased state.

PARALLEL PROGRAMMING OPERATION

To program the MCU from an EPROM using parallel
mode, perform the following steps:

1. With power to the module removed install MCU
and EPROM devices into the programming module.

. With the power switches S1 and S2 both off, and
switch S3 in the RESET position, connect both
the +5V supply and appropriate Vpp supply
(68HC705B5 or 68HC805B6) to the module.

. Set jumper J4 to the appropriate setting for the
MCU being programmed (705B5 or 805B6).

. Set jumper J3 to the ‘'ERASE + BOOT’ position.
. Set jumper J2 to the ‘'PARALLEL’ position.

. Turn the +5V power supply switch, S1, ON.

. Turn the Vpp power supply switch, S2, ON.

. Place switch S3 in the RUN position.

© 00 N O g b

. Once the green LED has stopped flashing, and
remains continuously illuminated, place switch S3
to the RESET position.

10.Place the Vpp power supply switch, S2, in the OFF
position.

11.Place the +5V power supply switch, S1, in the OFF
position.

Note: To avoid possible damage to the MCU it is
essential that power to the programming module is
appliedand removed in the sequence specifiedabove.

119

SERIAL PROGRAMMING MODE

This mode allows the user to program and read the
MCU EEPROM or EPROM via the serial port on the
programmer module. By using a host computerand a
control program such as E2B6, data can be downloaded
and programmed onto the MCU, or uploaded from the
MCU back to the host computer.

Programming in serial mode consists of the MCU
readinga byte of data from the serial port, programming
itinto the internal 6 Kbyte EEPROM or EPROM array,
reading the data back from programmed location and
sendingit to the serial port. The host computer should
verify programming by checking the data returned
from the programming module for differences from
the programmed data, which would indicate incorrect
programming or erasure.

As in parallel mode, bytes to be programmed with $FF
for EEPROM devices and $00 for EPROM devices are
skipped, reducing the overall programming time and
allowing the memory upload feature to be
implemented. This involves the hostcomputer reading
the data programmed in the MCU by attempting to
program these values and examining the returned
verification data.

MC68HC805B6

A program called E2B6 is available for the IBM PC and
similar machines that communicate via RS-232 with
the programmer board serial connector. This program
allows upload (data transfer from 68HC805B6 to IBM
PC) to read the EEPROM and can also program the
EEPROM by downloading S1 record files to the
68HC805B6 device.

As in the parallel programming mode, the internal
EEPROM areas can be automatically erased before
programming. In serial mode, however, this operation
is optional, and is selected by setting jumper J3 to the
ERASE + BOOT position. An exception is if the
EEPROM security bitis active, in which case the erase
will be carried out regardless of the setting on J3. A
‘read’ or ‘upload’ of the EEPROM wiill also cause the
EEPROM to be erased if J3is set to ‘ERASE + BOOT’
or if the security bit is active.

MC68HCO05B6

The 68HC05B6 (ROM device) 256 byte EEPROM may
also be programmed using this board as described in

application note AN434. In this case the jumpers
should be set as for the 68HCB05B6, ERASE+BOOT
and SERIAL but the Vpp supply for the 80586 power
socket should be connected to +5 volts.

MC68HC705B5

A program called EPB5 for the IBM PC communicates
via RS-232 with the programmer board serial connector.
This program allows upload (data transfer from
68HC705B5 to IBM PC) to read the EPROM and can
also program the EPROM by downloading S1 record
files to the 68HC705B5 device.

The 68HC705B5 EPROM means that the jumpers J2
and J3 have slightly different meaning. See table 1 for
details of operating modes.

SERIAL PROGRAMMING OPERATION

1. Run the program E2B6 (68HC805B6) or EPB5
(68HC705B5) on an IBM PC to communicate with
the device to be programmed.

2. With power to the module removed install the
MCU and connect the serial line between the host
computer and the serial port on the module.

3. With the power switches S1 and S2 both off and
switch S3in the RESET position, connect both the
+5V supply and appropriate Vpp supply (705B5 or
805B6) to the module.

4. Set jumper J4 to the appropriate setting for the
MCU being programmed (70585 or 805B6}.

5. Jumper J3 should be set to the desired setting,
e.g., BOOT ONLY if reading data from the MCU or
ERASE + BOOT if re-programming a device
(68HC805B6 only).

. Set jumper J2 to the 'SERIAL’ position.
. Turn the +5V power supply switch, S1, ON.
. Turn the Vpp power supply switch, S2, ON.

© 0 N

. Place switch S3in the RUN position when prompted
by the host computer control program.

10.Follow the instructions of the upload/download
program to initiate the data transfer.

11.When the operation has been completed, place
switch S3 to the RESET position.

12.Place the Vpp power supply switch, S2, in the OFF
position.

13.Place the +5V power supply switch, S1, in the OFF
position.

For programming several devices, leave the IBM PC
program running and repeat instructions 2 to 13
inclusive.

Note: The documentation of the host computer control
program being used should be consulted for further
details on the use of serial programming mode.

120

AN441

MC68HCO5E0 EPROM Emulator

By Peter Topping
MCU Applications Group
Motorola Ltd, East Kilbride

INTRODUCTION

The MC68HCO5EOQis aversatile member of the M6805
family of microprocessors. Unlike most other versions
it has no on-chip ROM but instead can address a full
64K of external memory. This memory could simply be
a ROM or EPROM containing the required program
but can also include RAM and/or additional hardware.
In addition to the external busses required to support
this capability, the MCE68HCO5EOQ has the usual /0,
timers etc. found on single-chip microprocessors.

The EPROM emulator described here illustrates a
typical application of this type of microprocessor. In
addition to the program EPROM itemploys akeyboard,
LCD, serial communication and 64K of paged RAM.
The emulator can replace with RAM the program
EPROM or ROM (up to 64K x 8) in a microprocessor
based target system. This is done by connecting
the emulator to the target system via a cable to its
EPROM socket.

The object code, which can be loaded serially or from
an EPROM, can be inspected and modified with the
use of a local keyboard and LCD display. The new or
modified code can then be used by the target system
without having to go through the procedure of erasing
and re-programming an EPROM after each software
change. A selectable offset in $0100 steps is available
in order to position the code correctly in the target
system’s memory map.

121

The emulator facilitates the debugging of hardware
and software for any system whose control program
is to be contained in a 27(C}16/32/64/128/256/512
type EPROM. The control software includes branch
offsetcalculation for 6805 code andis thus particularly
suitable for debugging systems using one of the
microprocessors from the M68(HC)05/01/11 ranges.

Two basic methods of loading a program are available.
The firstis applicable when the code is available in an
existing EPROM. The contents of this EPROM can be
transferred by the microprocessor into the RAM. This
method requires an existing EPROM but will prove
useful in applications where a small change to an
existing program has to be checked before committing
to an updated EPROM. This can be done without
access to the source or object code. An EPROM can
be read from the target system interface (through the
emulator’s buffers) or from a separate socket wired
directly to the microprocessor. The former method
allows one socket to be used for both EPROM reading
and the target cable. The second method saves
having to remove the target cable to read an EPROM
but requires an additional socket.

Alternatively, data can be serially loaded in the form of
Motorola S-records via an RS232 link. This code can
come from a “COM" port of a PC (using the COPY
command) or by tapping into the link between a
computer and its terminal on a system using an
RS232 connection between terminal and host. In this
case a TYPE or LIST to the terminal should be used.
A verify facility which compares the contents of RAM
with serial S-records is also available, as is a routine to
dump the current contents of the emulation RAM out
on the RS232 interface.

PRINCIPLE OF OPERATION

Figure 1 shows a block diagram of the emulator in
each of its three main modes of operation. The data/
address flowis controlled by MC74HC245 bidirectional
tri-statable 8-bit buffers. They constitute two 18-bit
buffers for address and control signals and two 8-bit
buffers for data. The enabling and direction control
signals are supplied by the MC68HCO5EO
microprocessor.

|

i Micro-
| processor
|

Figure 1a. Mode A:
direct access to the target system’s interface

Address

Micro-
processor

Target
System

Figure 1b. Mode B:
access to the emulator's RAM

Micro-
processor I

Target
System

Figure 1c. Mode C:
gives the target system access to the RAM

There are three modes of operation:

a)

b

=

c)

Mode A allows the microprocessor to read the
contents of an EPROM on the target system
interface (this is most easily arranged by connecting
the cable to the target system via a zero or low
insertion force socket) by enabling buffers B1 and
B2 to drive from left to right to supply addresses to
the socket {the RAM also receives these addresses
but its data outputs are disabled). Buffers B3 and
B4 are enabled from right to left to return the data
from the EPROM to the MC68HCOSEQ. The RAM
is disabled via its chip-enable pin and so does not
affect the data bus between buffers B3 and B4.

Mode B enables the buffers in such a way that the
microprocessor can read from and write to the
RAM. B1 is enabled to supply addresses to the
RAM from the microprocessor (MC74HC245s were
used throughout although a bidirectional buffer is
not strictly necessary in this position as B1, if
enabled, always drives from left to right). B3 is
enabled to allow data to be written to or read from
the RAM. The direction control for B3 is by the R/
W signal from the MC68HCO5EO (gated with the
RAM's chip enable). This mode is used during use
of -the memory modify facilities. Buffer B4 is
disabled so that there is not a bus contention on
either of its busses evenif the target systemiis still
connected. Buffer B2 is also disabled. The routine
(L1) which loads RAM from an EPROM on the
target system interface switches between modes
A and B for each byte transferred.

In the emulation mode (C) the target system plugged
into the socket is required to have access to the
RAM so buffers B2 and B4 are enabled. B2 passes
the addresses from right to left and B4 the data
fromlefttoright (asthe emulationis foran EPROM,
the target system is not aliowed to write to the
RAM). Buffers B1 and B3 are disabled.

MODE
Control line A B C
4,PortB 1 1 0
5,PortB 0 0 1
6,PortB 0 1 0
7.PortB 1 0 0

122

CIRCUIT

Figure 2 shows the main circuit. An MC74HC138 is
used to provide the chip enables. The emulator
hardware is enabled in the address range $4000 —
$7FFF and the EM64K program EPROM (27(C)64) at
$C000 - $FFFF. If the EM64K programis contained in
a 27(C)16 its pin 21 (Vpp) should be held high.

An additional socket is shown at address $8000 —
$BFFF. This is for the optional LOAD2 facility which
allows code to be loaded from EPROM without having
to disconnect the cable to the target system. The
emulation RAM occupies the address range $4000 —
$7FFF. As this is only a 16K address space the RAM
is paged. The four pages are selected by I/O lines
(port B, bits 0 and 1) from the microprocessor. The
memory map of the emulator is shown in figure 7.

The control lines (port B, bits 4-7) are biased by
resistors. This holds the system in mode B if the
MC68HCO5EOQ is held in reset and prevents bus
contention resulting from an illegal combination of
control signals. During hardware debug of the emulator
itis advisable to-use a current limited power supply (in
the range 50-100 mA) as a bus contention can cause
sufficiently high currents to damage the buffers.

The display is a 6-digit 4-backplane LCD (eg Hamlin
type 4200 or the 8-digit GE type LXD69D3FO09KG)
which is driven by an MC145000 display driver. The
driver is controlled by a 2ine serial link from the
microprocessor. Asingle-backplane (or “static”) display
can be used as an alternative as shown in Figure 3.
Three MC144115 driver chips are used. This circuit
requires many more connections to the LCD but
allows the use of a more readily available display. A
third line (port B bit 3) from the microprocessor is used
to supply the enable pins of the MC144115s. The
single-backplane display drivers can be supplied directly
from the main 5 volt supply but the multiplexed display
requiresalower voltage. Figure 2 shows the MC145000
supplied via a 20k potentiometer which serves as a
contrast control.

The keyboard uses an MC14028 decoder to minimise
the number of 1/O pins used. Note that port A bit 6 is
used for both the keyboard and the display driver. The
LOAD1 and LOAD2 keys overwrite the contents of
emulation RAM and should thus not be pressed
accidentally. It may therefore be useful for only those
LOAD keys actually required to be fitted (usually
LOAD1 and LOAD2 will not both be required) and for

123

any parallel LOAD keys fitted to be placed away from
the front panel or protected by requiring two keys,
connected in series, to be pressed. An accidental
press of the serial LOAD key can be aborted by
pressing RESET.

As the circuit, except for the RS232 interface, is all
CMOS the supply current is very low when the
microprocessor is in STOP mode. This is a low power
mode in which all processing, even the clock, is
stopped. In the emulation mode (C) the MC68HCO5EOQ
is in stop mode. In this mode and with no bus activity
from the target system (or its interface open circuit)
the supply current should be less than 1 pA (this does
not include the current taken by the RS232 interface
which, if present, can be switched off when notin use,
or the 70-80 pA taken by the LCD driver).

It is worth checking that a low supply current is
achieved as any excess can be a useful pointer to a
wiring fault, particularly open circuit pins. The supply
current may be affected by the choice of RAM but the
MCMB0L256 selected has a specified standby ICC of
2 pA and is typically well below this figure. In many
applications the full 64K of RAM will not be required.
If this is the case, only the required RAM need be
included. 6116 2K RAMs could be used for 2-4K
applications and MCM60L64s or equivalents for
8-16K. If using 6064s, their second chip enable pin
(E2) should be held high. One MCM60L256 provides
32K. The serialload routine includes aread-back check
on each byte sent to RAM so an attempt to write to
non-existent RAM will generate an error message
indicating the first faulty address. If 16K or less is
required then the two 74HC245s handling addresses,
A14and A15, can also be omitted. These buffers have
unused pins. The simplest way to ensure that no pins
are left open circuit is to wire up the buffers in a
manner similar to those actually used. Pins 2-7 of the
left-hand buffers are held high while pins 13-18 are
connected to the right-hand buffers whose other pins
have pull-ups. This arrangement means that there will
be no open circuits or bus contentions regardless of
the levels of the control lines. If only one memory chip
is used, the 74HCO00 can be omitted (connect pin 3 of
the 74HC32 directly to the RAM's chip enable).

The optional RS232 interface can most easily be
implemented using the single-supply MC145407
driver-receiver chip. If outputting of S-records is not
required then a simple transistor inverter with a pull-
up resistor and a reverse polarity protection diode can
be used. This interface is shown in Figure 4.

el
wieibeip 31n219 J03eINW3 KOUdI ‘2 34nbi4

.
& s
- Optional Socket {load2) 2
o2 207 AB9101112
o ", 9] 5 y 5
thafo holrjelsefatafi {2 hahshels 4y 3 3
FTize 07 8563 412 BNg 2t —2 ~ . 12
) o 1 ol
MC145000P " -2 o -
3, 5
Vs Ve 0SCn OSCas S i} 1] o
o (EE B 2
54
8o .
WS T g e
i & .
P oE W T w—o & Ry
rook | [100k st anf 2 e R ,
a2 3 N B 74HC24S —
2
an . i B A13
o™ 5 e 2 - a1z
o I = 18 P
o2 N Al
| 2 ha 2 i 2 a10
§ x4 Koy RQ RESET 77 U 3 L 1e E]
1 A9
Matrix MCé8 2 2 2 alng
; HCos wio I u : |1 sl
*‘ i ® | gl
Esc |[em | M | 2 7 be_5 | EOFN vl | B . O B e 24
25] i 2] e !
l2e |
L1 | Load | Vert. | ENT. e cfz LI P, [: R W
MC 100K ; o~
7 8 g |A 1|, 14028P = 100k
BRAGH
T 3
o s s |8, " PN
t ho 18] s AS
18 ! s
. A PAL % m [A5
1 2 3 2 AL
Dump _lar 14 [) A3
» . PR
o F E D = ;:: 2 100 PR 71l 2| 1|2 o 12 [N A2
l I o w a7 w PSRN ”‘;‘-- i ! u::,
L 1] 5 esses
¢+ 4l o 00 | |: —__J]
[t T f] : 2x
S O : (. .
Ax10k i C P ore | MCM60L256 "
45| csroms . " U lE T
s 22} ok Py, e ‘ 00m? - 3 : L1
100k ::z Ale_a1s : T 2
AC w2} 12 = T At 02
Vee Vad C1- Cle B EERT L] : 15153
100k AE] 1 19 10] L] 1N
v
MC145407P YV A B Do-7 Ao-7 ABSIONIT2 . : 1l 5s
PR . 3 "
GNO Vm €20 C2- HC138 See Text 100K 18] — [>]
s il 27004 (EMBAK) P PR b
2 he o, L1 = ! -
. A2 cs2n - e sv MR OF -
4x 104F RS232 7@;_ 2 =" \:’L
100k

BP

o 6-digit Static LCD
c2
abcefged abcef ged BP abcefged abcef ged abcefged abc fged
hel, 2|3 |4fs o]y [8]g PO A2 31l B I |8 g ls]; [olg 10
Segment Outputs Segment Outputs Segment Outputs 11
T NAL Dout 214 Din Dout
MC144115P MC144115P MC144115P
EO LBkP osc & 0sC oscf®
Vaa EN C2 Va EN C2 Va EN C2 _ Va Io ot
24] 2 13 \zl 2 13| :zl 2 13| \zl .
sV 5V
pazje
PB3Z

Figure 3. Alternative static LCD display

5V

4k7 [I]

100k
RS232 L3 >2N3904
Data

1N914 l |

EO
(PB2)

Figure 4. Simple input-only RS232 interface

125

IDD Monitor

It is often useful with CMOS circuits to provide a
simple Ipp monitor which shows via an LED whether
or not the Ipp is above or below a set value. In this
application it shows whether or not the microprocessor
is in the STOP mode. The required circuit is shown in
Figure 5. The current threshold can be chosen by
selecting the value of R1. Avalue of 1kQ sets the limit
at about 500 pA which means the LED should be off
in the emulation mode but on otherwise. The 500 pA
limit allows the LCD and perhaps an emulator-supplied
CMOS target system to be supplied without switching
on the LED. When the microprocessor is not in STOP
(emulator not in mode C), its Ipp is several milliamps
and the LED should be lit. In a battery application this
circuit would also serve as a useful reminder that the
RS232 interface has been left on. If a multiplexed LCD
is used it may be preferable not to supply it via this
type of monitor circuit as a significant change in
contrast may occur when the microprocessor goes
into its STOP mode (see Figure 5). The monitor drops
about 600mV when the microprocessor is running so
the supply voltage should be chosen accordingly; four
zinc-carbon or five Ni-Cad cells were found to be
satisfactory.

Address trap

The emulator allows memory locations to be examined
and changed, but does not provide the breakpoint and
trace features normally foundin development systems.
A limited capability can be made available if address
comparators of the type shown in Figure 6 are added.
This circuit gives an LED indication if the address
selected on the bank of switches is encountered by
the program running in the target system. An address
coincidence is latched by the 74HC74. To indicate the
occurrence of a repetitive event, a one-shot chip could
be added.

SERIAL LOAD

To load external Motorola S-records the serial load key
(LOAD) should be pressed. The LCD will display
“LOAd". S-records should then be supplied at 9600
baud (8-bit, no parity) on the RS232interface. Whenan
S9 termination record is received, the prompt returns.
If an error is detected during a serial load, the load
routine stops and displays the address at which the
error occurred and the error type.

.

5.5-6.0V » 4-backplane | *
50k LCD
R1 1k*
*
BC307 see text

Emulator
(including static LCD)

Figure 5. Simple IDD monitor

126

The following error types are possible:

1: Checksum error, transmitted data or interface faulty.
2: RAM read-back error, RAM faulty or non-existent.
3: ASCII character less than $30 (0) received.
4

. ASCIl character between $39 (9) and $41 (A)
received.

[42]

. ASCIl character more than $46 (F) received.

7: Verify error when comparing S-records with
emulation RAM.

If, when using the emulator, the target system ceases
to function properly, then the verify function can be
used to check that the emulation RAM has not been
corrupted. The VERIFY function is used exactly like
LOAD except that RAM is compared with, rather than
loaded by, the S-records.

The address at the start of each S1-record determines
the address at which the code will reside in the target
system. This address will sometimes be different
from that at which the code is required to be loaded
into the emulation RAM so an offset may need to be
used. The offset byte is entered using the appropriate
key and allows an offset of any multiple of $0100. The
offset is subtracted from the MSB of the S-record
address and this modified address is the physical
address at which the data is loaded into the emulation
RAM. The S-record output routine adds the offset
before transmitting the records. At reset or power-up
the offset is initialised to zero.

All addresses entered while using the MEMORY-
MODIFY, BRAOFF and DUMP routine use the actual
address in the target system. These addresses will
only be the same as the physical RAM address if the
offset is zero.

5V
Target System Address Bus
100k
A0 1234567 A8 9101112131415
Reset .
5V 4 14] 1 s
2| 4| 6| 811[13|18[17 2| 4| & 8]11]13|18[17 5 S Ve R
AO1 234567 AO1 23456 7 D 1K
20 20 MC74HC74
VCC VCC
19 5
A-BP2—1icas A=B 3¢ Q -
MC74HC688 CASH MC74HC688 oo 2
10 10
GND GND 1112 7[10]13]
BO1 23456 7 B0 1234567
3| s[7] o[12[14[16[18 3 s[7] o[12[14]16]18 b
ALDADNDNDND NIVIVIVIVIVIVIL
so “Is15

t

Figure 6. Address Trap

127

PARALLEL LOAD

When the parallel load functions (LOAD1 and LOAD2)
are used, OFFSET has no effect on the transfer of
code into RAM. It can, however, still be used to offset
the RAM addresses to correspond with the actual
address in the target system program when using the
memory-modify facilities.

27(C)64/128/256 EMULATION

When emulating a 27(C)512 EPROM, all the RAM is
used. For emulation of smaller EPROMS, less RAM is
required. The memory used will be at the beginning
of RAM (starting at address zero) only if the unused
high-orderaddresslines are heldlow. ltmay, however,
be more convenient to allow one or more of
these addresses to be high. The pull-ups included in
Figure 2 will hold any uncommitted lines high. For
example, a27(C)64 can be emulated with no hardware
change as long as the code is loaded between $E000
and $FFFF. This will often be appropriate as it allows
the vectors at the top of the target system’s memory
to be included. It makes little difference if the target
microprocessor has an address space smalier than
64K as the high order addresses will not be present
and will be held high. Clearly, the code must still be
assembled at the appropriate addresses and the
emulator’s offset feature used to load the S-records
between $E000 and $FFFF. Alternatively, the S-records
can be loaded lower in the emulator’s address space
and the relevant high-order addresses held low. When
loading from a smaller EPROM, witha VPP or PRG pin,
these pins should be configured correctly for reading
(high) and not driven by the emulator. See Figure 9
for the industry-standard EPROM pinouts. As the
software does not behave differently for smaller
EPROMs, a full 64K transfer will still be made, copying
the EPROM several times into the 64K RAM. The
actual copy used depends on the levels of the high
order addresses as outlined above.

TARGET SYSTEM INTERFACE

Vdd can be connected to the interface by the link
shown. The simplest method of use is to make this
connection and to use a common supply for the
emulator and the target system. If, however, separate
supplies are used, then pin 28 should not be connected.
If separate supplies are used, care should be taken
that they do not differ by more than 0.5V. A delta
greater than this may cause a malfunction as a result
of the logic level on an input pin being in excess of the
chip’s Vdd.

In emulation mode the target system has total control
of the RAM except forits R/W line. It can thus use the
RAM exactly as if it were a ROM or EPROM. Before
IRQ (or RESET) is pressed to exit from the emulation
mode the target system should be stopped so that it
no longer expects the “EPROM” to be there. This will
normally be done by holding the target system in
reset. If the target system is an M68(HC)05 (eg
MC68HCO5E0 or MC146805E2) or M68HC11, then it
can alternatively be put into its STOP mode. If this is
its normal idle condition, then nothing need be done
prior to exiting emulation.

EM64K PROGRAM

The EM64K control programis less than 2K bytes long
and can thus reside in a 27C64 or 27C16. The circuit
is shown for a 27C64 and assumes that the program
starts at the beginning of the EPROM. This EPROM is
enabled at $C000 (and $E000 as A13 is not used). An
assembiled listing of the control program is included at
the end of this application note.

128

EM64K KEY FUNCTIONS

Function KEY Description of function

LOAD1 L1 Load RAM from target system interface ($4000-37FFF).

LOAD2 L2 Load RAM from secondary socket ($8000-$BFFF).

SERIAL LOAD Load emulation RAM with S-records via the RS232 interface,

LOAD during loading LCD shows “LOAd".

VERIFY Verf Compare emulation RAM with S-records via the RS232 interface,
LCD displays “UEriFy”.

EMULATE EM Emulator mode. Prompts: “EP ?” for the removal of an EPROM (if present)
and connection of the target system (press again if OK) and put micro into
EMULATE mode.

MEMORY M Display/change a RAM location. When pressed the last address is displayed.

MODIFY Press ENTER to display the contents of this address or input a new address
followed by ENTER. To change, input new data followed by ENTER.
ENTER moves to next address, M moves to previous address, ESCAPE exits.

ENTER Ent Enter keyed-in address or data
(and move to next address in MEMORY MODIFY).

ESCAPE Esc Exit from current function (OFFSET, BRAOFF, DUMP or MEMORY MODIFY).

BRAOFF A Calculate branch offset. The address of the branch instruction and of the
destination are requested. If a valid branch is calculated it is written into
memory and displayed. If not valid then “or” for out of range is displayed.
A branch of -128 through +127 relative to the start address of the next
instruction is allowed. Esc returns to the normal prompt.

OFFSET B Allows entry of an offset to the emulation RAM address. It is subtracted from
the most significant byte of the address specified by the incoming S-records.
The offset is added to the address by the DUMP function.

DUMP [Output emulation RAM contents as S-records via RS232 interface.
RAM start and finish addresses are requested. They should be entered
followed by ENTER. After the second ENTER, the S-record output starts.

IRQ IRQ Abort emulation and return to emulator monitor.

RESET RESET Resets emulator, displays prompt (©). Should be used after power-up or if

the emulator malfunctions. Can be used instead of IRQ, with the difference
that the OFFSET is reset to zero. RESET provides the only exit from a LOAD
or VERIFY which has not been terminated correctly by the reception of an
S9 record.

129

0000
MCGB68HCO5EO I/0 timers
| ____ 001F
MC68HCO5E0 RAM (480 bytes | %020
| _including stack at 00FF) JotFF
0200
Not used.

_______________________ _| 3FFF
Emulator RAM 4000
| ____64kin4x 16k Pages) IFFE
8000

Load2 EPROM Socket
________________________ BFFF
€000

EM64k Control Program

.. FFF5
FFF6

MC68HCO5EQ Vectors
FFFF

Figure 7. Memory Map

SOFTWARE

A listing of the control program used in the emulator
isincludedin thisapplication note. Some points specific
to the MC68HCO5EO are discussed below.

Port D on the MC68HCOSEO can be used as a normal
1/O port or can selectively supply special signals. In
this application five of the special function are used.
These function are selected using the register at
address $12. The function used are P02, R/W, A13,
A14 and A15. By default only addresses AQ through
A12 are available as this will be sufficient in many
applications. In this application, however, all the
addresses are required. The clock (P02) is used to
qualify the chip selects generated by the MC74HC138
and R/W for control of the emulation RAM. The other
three pins are left as I/O pins but are not used in this
application. The initialisation of $12 can be seen on
lines 93 and 94 of the software listing.

130

The only other register used (apart from the /O data
and DDR registers) is the interrupt control register
($OE). It is written to $01 on lines 82 and 83 of the
listing. This operation clears the interrupt flag (bit 3)
butkeeps the INTMX bit set. This bit enables external
interrupts. The registers associated with unused on-
chip resources are left at their reset conditions. An
important bit in the MC68HCO5EQ is the XROM bit
(2,$0C). It defaults to a 1 which is appropriate in this
application. When it is cleared it constrains the data
bus to be input only thus preventing any unnecessary
activity in sensitive applications when writing to
external memory is not required.

The MC68HCO5EQ has the 8-bitindex register common
to all M6805 microprocessors. It is thus not able to
contain a 16-bit extended address. For this reason,
loading and storing in the emulator’'s RAM is carried
out using a small program in the micro’s RAM. This
program consists of an extended LDA or STA
instruction followed by a two byte address which can
be built in software and an RTS instruction. The four-
byte programresidesin RAMatlocations W2, ADDEH,
ADDRL and W3. It allows the full 64K map to be
accessed using addresses generated within the
program. Address generation is further complicated
by the requirement that the emulation RAM is in four
16K pages. The two most significant addresses thus
have to be transferred to port lines PBO and PB1.

SERIAL INTERFACE

Figure 8 shows a suggested method of wiring up the
RS232 sockets in an emulator with both loading and
dumping capabilities. This arrangement facilitates use
of the serial LOAD and DUMP routines of the emulator
either via a PC COM port or between a host and
terminal connected by an RS232 link. When using a
PC the "host” socket should be used. As only one pin
on the MC68HCOS5EQ is used, switchingis required to
make the required connections. S2 can be eliminated
(or left at “L") if only loading is required, as will often
be the case. To save power in battery applications, the
RS232 interface chip can be switched off using S1.
The following table shows possible methods of use.

Set-up

Function | S1 | S2 Comments

Host & terminal

Load On{ L Terminal and host connected.
Micro looks at data sent from host to terminal (pins 3).

Dump On| D Connection between terminal and host broken.
S-records sent to both host (2) and terminal (3).

PC “COM” port

Load On| L S-records loaded from pin 3.

Dump On| D S-records sent to pin 2 on “host” socket
(and pin 3 on “terminal” socket).

sV _k EO (PB2)

Vec Vdd Ci1- Ci+

MC145407P \/

pe)
[%]
R~

GND Vss C2+ C2-

13[15] 2 I;_] 11_‘”]3_, 10 9
+
:ﬂ + I_.

L_. —}
/777 4 x 10pF °
//
/
|3 /7 , 3
RS232 , 2] RS232

2, Ly
| (terminal) 7| (host)

Figure 8. RS232 circuit with LOAD/DUMP switching

131

Pin 27512 27256 27128 2764
1 A15 Vpp Vpp Vpp
2 A12
3 A7
4 A6
5 A5
6 A4
7 A3
8 A2
9 Al

10 A0

11 DO

12 D1

13 D2

14 Vss

15 D3

16 D4

17 D5

18 D6

19 D7

20 Chip enable

21 A10

22 Output enable

23 A1l

24 A9

25 A8 . . .
26 A13 A13 A13 NC
27 Al4 Al4 " PGM PGM
28 Vce

Figure 9. 27(C) 512, 256, 128 and 64 pin-outs
(Table shows the standard 28-pin EPROMSs.
Blank entries indicate that the pin is the same as for the 27(C) 512.)

132

DN A WN

15 00000000
16 00000001
17 00000002
18 00000003
19 00000004
20 00000005
21 00000006
22 00000007
23 00000008
24 00000009
25 0000000e
26 00000012

30 00000020
31 00000026
32 00000028
33 00000029
34 0000002a
35 0000002b
36 0000002¢c
37 0000002d
38 0000002e
39 0000002f
40 00000030
41 00000031

47 00000032
48 00000033
49 00000034
50 00000035
51 00000036
52 00000037
53 00000038
54 00000039
55 0000003a
56 000000f3
57 000000ff

em64k.as5

ASSEMBLED LISTING OF THE EM64K CONTROL PROGRAM

* -
* MC6BHCOSEO EPROM Emulator. *
* *
* A 68BHCOSED is used to emulate an EPROM *
* of up to 64K (27(C)512) with SRAM which *
* can be loaded from an EPROM or serially *
* by S-records via an RS232 interface and *
* changed 1f required for de-bug etc. *
* *
* P. Topping 11-Jan-91 *
* *
PORTA EQU $00 PORT A ADDRESS
PORTB EQU $01 N -
PORTC EQU $02 - C -
PORTD EQU $03 =D -
PORTE EQU $04 " E -
PORTAD EQU $05 PORT A DATA DIRECTION REG.
PORTBD EQU $06 -8 - - -
PORTCD EQU $07 R - -
PORTOD EQU $08 N - -
PORTED EQU $09 R - -
ICR EQU $OE INTERRUPT CONTROL REGISTER
PORTDSF EQU $12 PORTD ALTERNATIVE FUNCTION REGISTER
ORG $0020 RAM ALLOCATION
DTABL RMB 6 LCD BUFFER
TEMP RMB 2
Wl RMB 1
W2 RMB 1 RAM SUBROUTINE LDA or STA
ADDEH RMB 1 - - ADDRESS MSB
ADDRL RMB 1 - - - LSB
W3 RMB 1 - - RTS
W4 RMB 1
WS RMB 1
W6 RMB 1
ADDRH RMB 1
STAT RMB 1 STATUS BYTE :-
* 2: REAL ADDRESS (OFFSET)
* 4: INVALID ADDRESS (BLDRNG)
* 5: VERYFING (TLOAD)
* 6: INDIVIDUAL REG. (MEMEX)
* 7: PUNCH END
CHKSUM RMB 1 CHECKSUM
COUNT RMB 1 BIT COUNTER
T™MP1 RMB 1
TMP2 RMB 1
BCNT RMB 1 S-RECORD BYTE COUNT
ERTYP RMB 1 ERROR TYPE
ERDAT RMB 1 ERROR DATA
OFF \RMB 1 S-RECORD OFFSET
'RMB 185 UNUSED
STACK RMB 12 13 BYTES USED (1 INTERRUPT
SP RMB 1 AND 4 NESTED SUBROUTINES)

133

59 o * *

60 * *
61 * Idle loop and routine to decide which *
62 * key has been pressed. *
63 * *
64 ek

65

66 ORG $E000

67

68 0000000 cde05f SCAN JSR KEYSCN KEY FOUND ?

69 0000e003 24fb BCC SCAN NO. TRY AGAIN

70 0000e005 5f CLRX

71 0000e006 b728 STA Wl CODE OF PRESSED KEY

72 0000e008 d6e09f RJ LDA CTAB.X FETCH KEYCODE

73 0000e00b b128 cMP w1 THIS ONE ?

74 0000e00d 270b BEQ PJ YES

75 0000e00f cleObf cMP LAST NO, LAST CHANCE ?

76 0000e012 273a BEQ GETCMD YES, ABORT

77 0000e014 5¢ INCX NO

78 0000e015 Sc INCX TRY

79 0000e016 5c¢ INCX THE

80 0000e017 5¢ INCX NEXT

81 0000e018 20ee BRA RJ KEY

82 0000e01a a601 PJ LDA #1

83 0000e01c b70e STA ICR CLEAR TROX FLAG

84 0000e0le 5c INCX

85 0000e01f dce09f JMp CTAB.X

em64k.ass

87 * *hkdkkk

88 * *
89 * Reset routine. *
90 * *
91 * jolaieialeldedoibol
92

93 0000e022 a6e3 START LDA #$E3 ENABLE PORTD SPECIAL FUNCTIONS
94 0000e024 b712 STA PORTDSF P02, R/W, A13, Al4 & Al5
95

96 0000e026 3f00 CLR PORTA

97 0000028 a6f0 LDA #$F0 DISPLAY/KEYBOARD

98 0000e02a b705 STA PORTAD 1/0

99

100 0000e02c a658 LDA #$58 MODE 2, ENABLE (144115) HIGH
101 0000e02e b701 STA PORTB

102 0000e030 abfb LDA #$FB BITS 0. 1, 3-7 OUTPUTS
103 0000e032 b706 STA PORTBD BIT 2 INPUT

104

105 0000e034 3f02 CLR PORTC

106 0000e036 a6ff LDA H#S$FF ALL QUT, NOT USED

107 0000038 b707 STA PORTCD

108"

109 0000e03a 3f03 CLR PORTD

110 0000e03c ablc LDA #s1C BITS 2, 3 & 4 OUT, NOT USED
111 0000e03e b708 STa PORTDD

112

113 0000040 3f04 CLR PORTE

114 0000e042 a60f LDA #$0F BITS 0 - 3 OUT, NOT USED
115 0000e044 b709 STA PORTED

116

117 0000e046 3f31 CLR STAT

118 0000e048 3f2b CLR ADDRL INITIALISE

119 0000eD4a 3f30 CLR ADDRH ADDRESS

120 0000e04c 3f39 CLR OFF

121

122 0000e04e a658 GETCMD LDA #$58 MODE 2. ENABLE (144115) HIGH

134

123
124
125
126
127
128
129

0000e050
0000e052
0000e055
0000e057
0000e059
0000e05¢
0000e05d

em64k.as5

131

173

0000e05f
0000e060
0000e062
0000e064
0000e066
0000e068
0000e06a
0000e06¢
0000e06e
0000e070
0000e072
0000e074
0000076
0000e077
0000e079
0000e07b
0000e07d
0000e07f
0000e081
0000e083
0000e085
0000e087
0000e089
0000e08a
0000e08¢

0000e08d
0000e08f
0000e091
0000e093
0000e095
0000097
0000e098
0000e09a
0000e09c
0000e09e

em64k.as5

b701
cde235
a633
b720
cdelec

20al

STA PORTB
JSR CLRTAB
LDA #$33 PRINT
STA DTABL PROMPT
DSCN JSR DISTAB
RSP
BRA SCAN
* *
* The keyboard routine returns the code *
* of the pressed key in the accumulator. *
* *
KEYSCN CLRA
LDX #6 SETUP
KEY1 ADD #$10 ROW
STA PORTA
COLUMN LDA PORTA READ KEYBOARD
STA W3 STORE IT
BIT ##$0F KEY CLOSED ?
BEQ COLRET NO GET OUuT
BSR DBOUNC ELSE DEBOUNCE
LDA PORTA RE-READ KEYPAD
CMpP W3 SAME KEY CLOSED ?
BNE COLRET NO, GET OUT
SEC
coL1 LDA PORTA KEY
BIT #80F RELEASED ?
BNE coLl NO TRY AGAIN
BSR DBOUNC YES DEBOUNCE
LDA PORTA STILL
BIT #$0F RELEASED ?
BNE coLl NO TRY AGAIN
LDA W3 RETURN CHAR IN A-REG
COLRET BCS KEY2 IF VALID GET OUT
DECX ELSE TRY
BNE KEY1 NEXT ROW
KEY2 RTS
DBOUNC LDA #10 40mS
STA W6
DLP LDA #SFF PAUSE
DLOOP BRN * 256X12
BRN * CYCLES
DECA
BNE pLooP
DEC W6
BNE DLP
RTS

135

211
212
213
214
215
216
217
218
219
220
221
222
223

0000e09f
0000e0a0
0000e0a3
0000e0a4
0000e0a7
0000e0a8
0000e0ab
0000e0ac
0000e0af
0000e0b0
0000e0b3
0000e0b4
0000e0b7
0000e0b8
0000e0bb
0000e0bc
0000e0bf
0000e0c0

0000e0c3
0000e0c4
0000e0c5
0000e0c6
0000e0c7
0000e0c8
0000e0c9
0000e0ca
0000e0cb
0000e0cc
0000e0cd
0000e0ce
0000e0cf
0000e0d0
0000e0d1
0000e0d2
0000e0d3
0000e0d4
0000e0d5
0000e0d6
0000e0d7
0000e0d8
0000e0d9
0000e0da

emb4k.ass

Keyboard tables.

CTAB

LAST

STABL

FCB
JMP
FCc8
JMP
FCB
JMP
FCB
JMP
FCB
JMP
FCB
JMP
FCB
JMP
FCB
JMP
FCB
JMP

FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FcB
FCB

FCB
FCB
FCB
FCB

FCB
FCB
FCB
FCB
FCB
FCcB

$51
DUMP1
$68
DUMPY
$28
PUNCH
$52
TLOAD
$54
VERIFY
$62
MODE3
$64
MEMEX
$38
OFFSET
$48
BRAOFF

$11
$21
$22
$24
$31
$32
$34
$41
$42
$44
$48
$38
$28
$18
$14
$12
$61
$58
$68
$64
$62
$54
$52
$51

136

p

MTMOO®B ©OONDAN B WN - O

LOAD

FROM EPROM ($4000)

LOAD FROM EPROM ($8000)

S-RECORD OQUTPUT

LOAD S-RECORD

VERIFY (S-RECORD)

GO INTO EMULATOR MODE

READ/CHANGE MEMORY

ADDRESS OFFSET

BRANCH OFFSET CALC.

BRANCH OFFSET
LOAD OFFSET
OUTPUT S-RECORDS

vTr<OXTVmm

sc

CANCEL COMMAND

ENTER COMMAND

LOAD FROM $8000
MEMORY EXAMINE/CHANGE
EMULATE

VERIFY RAM

LOAD RAM

LOAD FROM $4000

226 * *
227 * Build a beginning and ending address *
228 * in TEMP,TEMP+1 & ADDRH,ADDRL resp. *
229 > *
230 wohka w e kb
231
232 0000e0db 1931 BLDRNG BCLR 4,STAT
233 0000e0dd 1531 BCLR 2.,STAT EMULATION ADDRESS
234 0000e0df cde235 JSR CLRTAB PRINT
235 0000e0e2 abf4 LDA f#$F4 ‘BA*
236 0000e0ed4 b724 STA DTABL+4
237 0000e0e6 ab677 LDA #$77
238 0000e0e8 b725 STA DTABL+5
239 0000e0ea cdelec JSR DISTAB
240 0000e0ed cde5be JSR BLDADR GET SOURCE ADDR.
241 0000e0f0 2423 BCC BLDRN1 VALID?
242 0000e0f2 b630 LDA ADDRH YES
243 0000e0f4 b726 STA TEMP SAVE IT
244 0000e0f6 b62b LDA ADDRL
245 0000e0f8 b727 STA TEMP+1
246 0000e0fa cde570 JSR LOAD FETCH OPCODE OF INSTR.
247 0000e0fd b72f STA W6 SAVE IT
248 0000e0ff cde235 JSR CLRTAB
249 0000e102 ab6fl LDA #$F1 PRINT “EA*
250 0000e104 b724 STA DTABL+4
251 0000e106 a677 LDA #$77
252 0000e108 b725 STA DTABL+5
253 0000el0a cdelec JSR DISTAB
254 0000e10d cdeSbe JSR BLDADR - GET DESTINATION ADDR
255 0000e110 2403 BCC BLDRN1 VALID?
256 0000el12 b630 LDA ADDRH YES
257 0000el114 81 RTS
258 0000e115 1831 BLDRN1 BSET 4,STAT INVALID
259 0000el117 81 RTS
260
261 ool kkk
262 * *
263 * Display message. *
264 * *
265
266
267 0000e118 bf2f DISP STX Wé
268 0000ella 3f33 CLR COUNT
269 0000ellc be2f DISLP LDX W6
270 0000elle d6el32 LDA DLOAD.X
271 0000e121 be33 LDX COUNT
272 0000e123 e720 STA DTABL.X
273 0000e125 3c2f INC W6
274 0000e127 3c33 INC COUNT
275 0000e129 b633 LDA COUNT
276 0000el2b al06 CMP 6
277 0000el2d 25ed BLO DISLP
278 0000el2f ccelec JMP DISTAB
279
280 0000e132 0000d0d777e6 DLOAD FCB 0.0,$D0,$07.$77,$E6
281 0000e138 d6f1600671b6 VERF FCB $06,$F1,$60.$06,$71.$86
em64k.as5

137

283 * bt *aw
284 *
285 * Calculate branch offset.
286 *
287 N hebaaiadededode bobdaiabbdobddebbd
288
289 0000el3e ad9b BRAOFF BSR BLORNG
290 0000e140 08313e BRSET 4 ,STAT,ORET
291 0000el43 b62b LDA ADDRL NO FIND APPARENT
292 0000e145 a002 SUB #2
293 000Cel47 b72b STA ADDRL
294 0000e149 b630 LDA ADDRH
295 0000el4b a200 SBC #0
296 0000e14d b730 STA ADDRH
297 0000el4f b62b LDA ADDRL
298 0000el151 b027 SuB TEMP+1 OFFSET
299 0000e153 b72b STA ADDRL
300 0000e155 b630 LDA ADDRH
301 0000el57 b226 S8C TEMP
302 0000e159 b730 STA ADDRH
303 0000el5b bé2f LDA W6 CHECK OPCODE
304 0000el5d allf CMP #$1F FOR BIT BRANCH
305 0000el5f 234e BLS OFFST1
306 0000el61 b630 LDA ADDRH
307 0000e163 alff CMP #SFF + OR - OFFSET?
308 0000el65 270b BEQ OFFST2
309 0000el67 4d TSTA CHECK OFFSET
310 0000el68 2674 BNE OVRERR FOR +/- 0
311 0000el6a b62D LDA ADDRL
312 0000el6c al7f cMp ##$7F
313 0000el6e 226e BHI OVRERR
314 0000e170 200a BRA 0K1
315
316 000vel72 b62b OFFST2 LDA ADDRL
317
318 0000el74 alff CMP {#SFF
319 0000el76 2766 BEQ OVRERR
320
321 0000el178 al80 CMP #$80
322 0000el7a 2562 BLO OVRERR
323 0000el7c ad06 0K1 BSR USE PRINT IT IF VALID
324 0000el7e cce000 JMP SCAN
325
326 0000e181 ccelde ORET JMP GETCMD
em64k.as5
328
329 0000e184 cde235 USE JSR CLRTAB
330 0000e187 ab6dé LDA #$06 PRINT *USED*
331 0000e189 b720 STA DTABL
332 0000el8b ab6bs LDA #$85
333 0000e18d b721 STA DTABL+l
334 0000e18f ab6fl LDA #$F1
335 0000e191 b722 STA DTABL+2
336 0000e193 abeé6 LDA #$E6
337 0000e195 b723 STA DTABL+3 A
338 0000e197 b62b LDA ADDRL PRINT OFFSET
339 0000e199 cde5f2 JSR PRTDAT
340 0000el9c 97 TAX
341 0000e19d b627 LDA TEMP+1
342 0000e19f ab0l ADD #1
343 0000elal b72b STA ADDRL
344 0000ela3 b626 LDA TEMP
345 0000ela5 a900 ADC #0 PUT INTO
346 0000ela7 b730 STA ADDRH INSTRUCTION
347 0000elad9 9f TXA
348 0000elaa 1531 BCLR 2.STAT

138

349 0000elac

351 0000elaf
352 0000elbl
353 0000elb3
354 0000e1b5
355 0000e1b7
356 0000e1b9
357 0000elbb
358 0000elbd
359 0000elbf
360 0000elcO
361 0000elc2
362 0000elc4
363 0000elct
364 0000elc8

366 0000elca
367 0000elcc
368 0000elce
369 0000e1d0
370 0000eld2

372 0000eld4
373 0000eld6
374 0000e1d8
375 0000elda
376 0000eldc

378 0000elde
379 0000eled
380 0000ele2
381 0000ele4
382 0000ele6
383 0000ele9

emb4k.as5

385

386

387

388

389

390

391 0000elec
392 0000elee
393 0000elf0
394

395 0000elf2
396 0000elf4
397 0000elf6
398 0000elf8
399 0000e1f9
400 0000elfb
401 0000elfd
402 0000elff
403 0000e201
404 0000203
405 0000204
406 0000206
407 0000e208
408 0000e209
409 0000e20b
410 0000e20d
411

cce562

b62b
a001
b72b
b630
a200
b730
alff
270b
4d

261c
b62b
al7f
2216
200a

b62b
alfe
240e
also
250a

3c27
2602
3c26
adaB
200b

abd7
b724
a660
b725
cde616
cce000

1701
ae05
e620

bf28
1d00
ae08

2402
1c00
1e00
1f00
1d00

26f2
be28
5a

2aeb
1601

JMP STORE
OFFST1 LDA ADDRL ADJUST FOR
sus # BIT BRANCH
STA ADDRL
LDA ADDRH
SBC #0
STA ADDRH
CMp #SFF NEG OFFSET?
BEQ OFFST3 YES
TSTA CHECK FOR
BNE OVRERR +/- 0 AND -1
LDA ADDRL
(4,14 #$7F
BHI OVRERR
BRA 0K2
OFFST3 LDA ADDRL
cmMp #SFE
BHS OVRERR
cup #3580
BLO OVRERR
0K2 INC TEMP+1
BNE OFFITS
INC TEMP
OFFITS BSR USE PRINT IF VALID
BRA SCJmMpP
OVRERR LDA #$07 PRINT “OR"
STA DTABL+4
LDA 1#$60
STA DTABL+5
JSR PRTADR
SCIMP JMP SCAN
* ' *
* Display table contents. *
* *
DISTAB BCLR 3.PORTB ENABLE (144115) LOW
LOX #5
DISCHR LDA DTABL.X LOAD DISPLAY
NT1 STX Wl SAVE INDEX
BCLR 6,PORTA CLEAR DATA
LoX #8
DISL LSLA SET UP
BCC DIS2 BIT OF
BSET 6.PORTA ACCUMULATOR
DIs2 BSET 7.PORTA cLock
BCLR 7.PORTA T
BCLR 6.PORTA CLEAR DATA
DECX COMPLETE?
BNE DIs1 NO
LDX W1 RESTORE INDEX
DECX
BPL DISCHR
BSET 3,PORTB ENABLE (144115) HIGH
RTS

139

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

0000e20e
0000e210
0000e213
0000e215
0000e217
0000e21a
0000e21c
0000e21e
0000e220
0000e222

0000e224
0000e227
0000e229
0000e22b
0000e22d
0000e22f
0000e231

0000e233

em64k.as5

439
440
441
442
443
444
445
446
447
448

0000e235
0000e237
0000e239
0000e23a
0000e23c

0000e23d
0000e240
0000e242
0000e244
0000e246
0000e248
0000e24a
0000e24c
0000e24f
0000e252
0000e254
0000e256
0000e258

0000e25b
0000e25d
0000e25f
0000e261
0000e263
0000e265
0000e267

0a3108
aec7
bf29
bd29
b72d
aec6
bf29

bc29

ae05
6f20

2afb
81

cde235
a6fl
b720
a673
b721
2663
b723
cdelec
cde05f
24fb
alé2
2703
ccelde

a628
b701
ab6fl
b720
a6dé
b721
a6do

Fedede de e ek ok e R A ok Aok o ok ok sk R R R e A e R

*

*

* S-record input RAM accessing. *
* *
RAMACC BSET 1,PORTB 5 6§ XFER Al4 & Al5 TO PORTB
BRSET 7,ADDRH.ALSH 5 10 Al5 HIGH ?
BCLR 1.PORTB 5 15 NO
A1SH BSET 0,PORTB 5 20 YES
BRSET 6,ADDRH,A14H 5 25 Al4 HIGH ?
BCLR 0,PORTB 5 30 NO
Al4H LoX ADDRH 3 33 YES
STX ADDEH 4 37
BSET 6,ADDEH 5 42 Al4 HIGH
BCLR 7,ADDEH 4 47 AlS5 LOW
BRSET ~ 5,STAT.L3 5 52 READING ?
LOX fsC7 2 54 NO, WRITING (STA)
STX w2 4 58 STAIN
JSR w2 16 74 RAM SUBROUTINE
STA w4 4 78 SAVE FOR READBACK CHECK
L3 LDX #$C6 2 80 READING (LDA)
STX w2 13 93 LDA-IN RAM
JMP w2 14 107 121 (B9 FOR READ) WITH JSR

*

*

*

Clear display table.

*

*

*

B ek e e R ok A ok ok o R R R KR ek A

CLRTAB LDX #5
CLRLOC CLR DTABL.X CLEAR SIX

DECX LOCATIONS IN

8PL CLRLOC DISPLAY TABLE

RTS
* *
* Emulator mode. *
* *

Fedek Ik KRk Rk R o e ok ok ek ok o ok ok ok ok ok o sk ok ko ok

MODE3

KSC

CONF

JSR
LDA
STA
LDA
STA
LDA
STA
JSR
JSR
BCC
CMP
BEQ
JMP

LDA
STA
LDA
STA
LDA
STA
LDA

CLRTAB
fisF1
DTABL
#$73
DTABL+1
1#$63
DTABL+3
DISTAB
KEYSCN
KSC
fts62
CONF
GETCMD

f#s28
PORTB
#$F1
DTABL
#$06
DTABL+1
#$00

140

WAIT UNTIL EPROM REMOVED

EMULATION. CONFIRMED ?

MODE 3, ENABLE (144115) HIGH
E

U

478
479
480
481
482
483
484
485
486
487

0000e269
0000e26b
0000e26d
0000e26f
0000e271
0000e273
0000e275
0000e277

0000e27a

emb4k.as5

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

0000e27b
0000e27e
0000e281
0000e283
0000e285
0000e287
0000e289
0000e28b
0000e28d
0000e290
0000e292
0000e294
0000e297
0000e299
0000e29b
0000e29d
0000e29f
0000e2al
0000e2a3
0000e2a5
0000e2a8
0000e2aa
0000e2ac
0000e2af
0000e2b1
0000e2b3
0000e2b5
0000e2b7
0000e2b9
0000e2bb
0000e2bd

b722
a677
b723
a6fo
b724
a6fl
b725
cdelec

8e

cde235
cdelec
a658
b701
1431
3f2b
3f30
1201
0e3002
1301
1001
0c3002
1101
be30
bf2a
1f2a
1c2a
1d01
le0l
cde570
1c01
1101
cde562
3c2b
2602
3c30
b630
26d2
b62b
26ce
ccel4e

STA DTABL+2
LDA fts77 A
STA DTABL+3
LDA {tsFO T
STA DTABL+4
LDA f#$F1 E
STA DTABL+5
JSR DISTAB
sTP STOP
dedek dedokokokok *kkk * * * kx
* *
* Xfer EPROM contents to RAM from emulation *
* socket (3$4000). *
* *
DUMP1 JSR CLRTAB
JSR DISTAB
LDA #$58 MODE 2. ENABLE (144115) HIGH
STA PORTB
BSET 2,STAT REAL ADDRESS (NO OFFSET)
CLR ADDRL
CLR ADORH
LLP1 BSET 1,PORTB 5 5 XFER Al4 & Al5 TO PORTB
BRSET ~ 7,ADDRH,ADISH 5 10 Al5 HIGH ?
BCLR 1.PORTB 5 15 NO
AD15H BSET 0.PORTB 5 20 YES
BRSET ~ 6,ADDRH,AD14H 5 25 Al4 HIGH ?
BCLR 0,PORTB 5 30 NO
AD14H LDX ADDRH 3 33 YES
STX ADDEH 4 37
BCLR 7 ADDEH 5 42 Al5 LOW
BSET 6 ADDEH 5 47 Al4 HIGH
BCLR 6,PORTB
BSET 7.PORTB READ FROM EMULATOR SOCKET
JSR LOAD LOAD BYTE
BSET 6.PORTB
BCLR 7.PORTB WRITE TO RAM
JSR STORE STORE BYTE
INC ADDRL
BNE SKPH
INC ADDRH
SKPH LDA ADDRH
BNE LLP1 MSB ZERO ?
LDA ADDRL YES. LSB ZERO ?
BNE LLP1 IF SO. FINISHED
PL GETCMD

141

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

0000e2c0
0000e2c2
0000e2c4
0000e2c6
0000e2c8
0000e2ca
0000e2cc
0000e2ce
0000e2d0
0000e2d2
0000e2d4
0000e2d6
0000e2d8

em64k.as5

548
549
550
551
552
553
554
555
556
557
558

0000e2db
0000e2de
0000e2el
0000e2e3
0000e2e5

0000e2e7
0000e2e9
0000e2eb
0000e2ed
0000e2ef
0000e2f1
0000e2f3
0000e2f5

0000e2f8
0000e2fa

0000e2fc
0000e2fe
0000300
0000e302
0000e304
0000e307
0000e309
0000e30b
0000e30e
0000e310
0000e312
0000e314
0000e316
0000e318

0000e3la

emb4k.ash

1c31
1431
a6d7
b720
a671
b721
br22
3f23
3f2a
3f30
a639
b72b
cce506

cde235
cdelec
a658
b701
1431

adof
3c01
b601
a403
al03
2574
ad03
ccelde

3f2b
330

be30
bf2a
le2a
1d2a
cde570
1f2a
1c2a
cde562
3c2b
2602
3c30
b630
alao
26e2

81

Offset for S-record

Toad/send. *

OFFSET BSET 6.STAT NO ADDRESS INC/DEC

BSET 2.,STAT REAL ADDRESS

LDA {07 0

STA DTABL

LDA #s71 F

STA DTABL+1

STA DTABL+2

CLR DTABL+3

CLR ADDEH

CLR ADDRH

LDA J#OFF

STA ADDRL

JMP MEMEX3
* B *
* Xfer EPROM contents to RAM from auxiliary *
* socket ($8000). *
* *
e e I e ke ek e ok ek ok ek okok e ek ko *kok
DUMPS JSR CLRTAB

JSR DISTAB

LDA i#$58 MODE 2. ENABLE (144115) HIGH

STA PORTB

BSET 2.,STAT REAL ADDRESS (NO OFFSET)
TLOP BSR T19

INC PORTB NEXT PAGE

LDA PORTB

AND #3

CMP #3 LAST PAGE ?

BLO TLoP

BSR T19 YES

JMP GETCMD
T19 CLR ADDRL

CLR ADDRH
LLPY LDX ADDRH YES

STX ADDEH

BSET 7.ADDEH Al5 HIGH

BCLR 6 .ADDEH Al4 LOW

JSR LOAD READ FROM AUXILIARY SOCKET

BCLR 7.ADDEH Al5 LOW

BSET 6.ADDEH Al4 HIGH

JSR STORE WRITE TO EMULATION RAM

INC ADDRL

BNE SKPH9

INC ADDRH
SKPH9 LDA ADDRH

CMP #$40 LAST ADDRESS $3FFF

BNE LLPY FINISHED ?

RTS

142

590 wwww

591 * *
592 * RS232 (9600) S-Record receiver (4MHz). *
593 * *
594
595
596 0000e31b 1la3l VERIFY BSET 5.STAT SERIAL VERIFY
597 0000e31d ae06 LDX 6
598 0000e31f 2003 BRA L4
599 0000e321 1b31 TLOAD BCLR 5.STAT SERIAL LOAD
600 0000e323 5f CLRX
601 0000e324 a681 L4 LDA i#s81 RTS
602 0000e326 b72c STA W3
603 0000e328 cdell8 JSR DISP DISPLAY “LOAd OR UErIfy~
604
605 0000e32b ad5f INPUT BSR INCHD 7 BIT ASCII INTO A
606 0000e32d al53 CcMP #°S* S ?
607 0000e32f 26fa BNE INPUT NO. TRY AGAIN
608 0000e331 ad59 BSR INCHD YES. GET NEXT CHARACTER
609 0000e333 al39 cMpP #9° 9 ?
610 0000e335 276f BEQ NINE YES. FINISH
611 0000e337 al3l CMP #1° NO. 172
612 0000e339 26f0 BNE INPUT NO. TRY AGAIN
613
614 0000e33b 3f32 LNGTH CLR CHKSUM YES. CLEAR CHECKSUM
615 0000e33d 335 CLR T™P2 AND TEMP. STORE
616 0000e33f cde3bd JSR BYTEI AND GET BYTE COUNT
617 0000e342 b736 STA BCNT AND SAVE IT
618
619 0000e344 cde3bd ADDR JSR BYTEI ADDRESS HIGH
620 0000e347 b039 SuB OFF OFFSET
621 0000e349 b730 STA ADDRH
622 0000e34b cde3bd JSR BYTEI ADDRESS LOW
623 0000e34e b72b STA ADORL
624
625 0000e350 cde3bd oLop JSR BYTEI 75 GET A BYTE
626 0000e353 271d BEQ CHCK 3 78 LAST BYTE ?
627 0000e355 0b310b BRCLR 5,STAT,LS 5 83 NO, VERIFYING ?
628 0000e358 b72f STA W6 4 87 YES
629 0000e35a cde20e JSR RAMACC 66 153 READ RAM
630 0000e35d bl2f cMP We 3 156 SAME ?
631 0000e35f 2658 BNE ERR7 3 159
632 0000e361 2007 BRA L6 3 162
633 0000e363 cde20e L5 JSR RAMACC 67 150 NO, WRITE TO RAM
634 0000e366 bl2d CcMP W4 3 153 READBACK
635 0000e368 263f BNE ERR2 3 156 oK ?
636 0000e36a 3c2b L6 INC ADDRL 5 161 5 167 INCREMENT LS ADDRESS
637 0000e36c 2602 BNE NOOVR 3 164 3170 OVERFLOW ?
638 0000e36e 3c30 INC ADDRH 5 169 5175 YES. INC. HIGH BYTE
639 0000e370 20de NOOVR BRA DLoP 3 172 3178
emb4k.as5

143

695

0000e372
0000e374
0000e376
0000e378

0000e37a
0000e37c
0000e37e
0000e380
0000e381
0000e384
0000e386
0000e389

0000e38¢
0000e38e
0000e391
0000e394
0000e396
0000e398

0000e39a
0000e39c
0000e39f
0000e3a0
0000e3a2

0000e3a4
0000e3a5

0000e3a6

0000e3a9
0000e3ab
0000e3ad
0000e3af
0000e3bl
0000e3b3
0000e3b5
0000e3b7
0000e3b9
0000e3bb

emb4k.ash

bb32
b732
alff
27b1

ae0l
b738
bf37
9f
cde5f2
3f24
cde616
cce000

adé0
0501fd
0401fd
ae07
bf33
ads8

ads52
050100

3a33
2616

44
81

ccelde

ae02
20cf
ae03
20ch
ael4
20c7
ae05
20c3
ae07
20bf

*

* Checksum byte & error routine. *
* *
e e e e e e e e e v o o e e e e e ok ok e e e e e o e ol ke e ok o ok ok o ok ok o o ok o e e ke ok e
CHCK ADD CHKSUM

STA CHKSUM DEBUG

CMP ##$FF 1S CHECKSUM BYTE OK ?

BEQ INPUT YES. AND AGAIN

LOX i#1
ERR STA ERDAT DEBUG

STX ERTYP DEBUG

TXA

JSR PRTDAT

CLR DTABL+4

JSR PRTADR

JMP SCAN

* *
* Input routine, MC6BHCOSEQ : 0.5 uS. *
* Cycles per bit at 9600 baud : 208 *
* *
INCHD BSR DEL191 191 GET OUT OF BIT 7
INCH BRCLR 2,PORTB.* 5 IS LINE HIGH ?
BRSET ~ 2,PORTB,* 5 YES. WAIT FOR START
LDX #7 2 6 7 DATA BITS TO READ
STX COUNT 4 10
BSR DEL11O 110 120 +/-3 OF 1st BIT
INBT BSR DEL191 191 +120-208=103
BRCLR 2,PORTB,ZER 5 196 CYC 2 (105) READ
ZER RORA 3 199 SAVE BIT
DEC COUNT 5 204
BNE INBT 3 207
LSRA 3 16 MSB A ZERO
RTS 6 22
NINE JMP GETCMD
ERR2 LDX 2 READBACK FROM RAM
BRA ERR
ERR3 LDX #3 LESS THAN ASCII 0
BRA ERR
ERR4 LDX #4 BETWEEN ASCIT 9 & A
BRA ERR
ERRS - LDX 15 MORE THAN ASCII F
BRA ERR
ERR7 LDX # VERIFY ERROR
BRA ERR

144

697 Kownann * Hkwk A w

698 * *

699 * Byte input sub-routines. *

700 * *

701 AR A AR AR AR AR AR AR KA AR R A AR A I AR AR AR A AR A ARk A AR A Ak Ak Ak A Ak

702

703 0000e3bd adcd BYTEI BSR INCHD 22 MS NIBBLE

704 0000e3bf adl7 BSR ASCIT 35 57 WHAT WAS 1T

705 0000e3cl 48 LSLA 3 YES

706 0000e3c2 48 LSLA 3 SHIFT

707 0000e3c3 48 LSLA 3 17

708 0000e3c4 48 LSLA 3 69 up

709 0000e3c5 b734 STA TMP1 4 71 AND SAVE IT

710 0000e3c7 b635 LDA T™MP2 3 74 RESTORE BYTE

711 0000e3c9 bb32 ADD CHKSUM 379 ACCUMULATE

712 0000e3cb b732 STA CHKSUM 4 83 IN CHECKSUM BYTE

713 0000e3cd adbd BSR INCHD 22 LS NIBBLE

714 0000e3cf ad07 BSR ASCIT 35 57 WHAT WAS IT

715 0000e3dl bb34 ADD TMP1 3 60 ADD TO MS NIBBLE

716 0000e3d3 b735 STA TMP2 4 64 SAVE BYTE

717 0000e3d5 3a36 DEC BCNT 5 69 DECREMENT BYTE COUNT

718 0000e3d7 81 RTS 6 75

719

720 0000e3d8 al30 ASCIT CMP #$30 2 BEFORE ZERO ?

721 0000e3da 25d1 BLO ERR3 3 5 YES. NOT LEGAL

722 0000e3dc al39 CMP #$39 2 7 AFTER NINE

723 0000e3de 2203 BHI MT9 3 10 YES TRY A-F

724 0000e3e0 a030 SuB #$30 3 13 0-9, CONVERT TO HEX

725 0000e3e2 81 RTS 6 19

726

727 0000e3e3 al4l MT9 cMP #s41 2 12 BEFORE A ?

728 0000e3e5 25ca BLO ERR4 3 15 YES. NOT LEGAL

729 0000e3e7 aldb CMP #$46 2 17 AFTER F ?

730 0000e3e9 22ca BHI ERRS 3 20 YES. NOT LEGAL

731 0000e3eb a037 SuB #$37 3 23 A-F, CONVERT TO HEX

732 0000e3ed 81 NFND RTS 6 29

733

734 0000e3ee aeld DEL191 LDX #29 2

735 0000e3f0 2002 BRA DELAY 3 5

736 0000e3f2 ael0d DEL110 LDX #16 2

737 0000e3f4 5a DELAY DECX 3

738 0000e3f5 26fd BNE DELAY 3 6xX

739 0000e3f7 81 RTS 6 12+6X (INC BSR)
emb4k.ash

741 *x * *x * *kkk ok

742 * *

743 * RS232 (9600 @ 4MHz) S-Record transmitter. *

744 * *

745 *x fadobadaiodl Rk Rk *% *dk Kk

746

747 0000e3f8 1406 PUNCH BSET 2,PORTBD 81T 2 OUTPUT

748 0000e3fa cdeOdb JSR BLDRNG BUILD RANGE

749 0000e3fd 0831la6 BRSET 4.STAT.NINE NEW ADDRESS ENTERED ?

750 0000400 be26 LDX TEMP NO. SWAP .ADDRESSES

751 0000e402 b726 STA TEMP

752 0000e404 bf30 STX ADDRH

753 0000e406 b62b LDA ADDRL

754 0000e408 be27 LDX TEMP+1

755 0000e40a bf2b STX ADDRL

756 0000e40c b727 STA TEMP+1

757 0000e40e 1f31 BCLR 7.STAT CLEAR END FLAG

758 0000e410 1531 BCLR 2.STAT EMULATION ADDRESS

759 “

760 0000e412 b627 LOOP1 LDA TEMP+1 END LSB

761 0000e414 b02b Sus ADDRL CURRENT LSB

145

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
771
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

0000e416
0000e418
0000e41a
0000e41c
0000e4le
0000420
0000e421
0000e423
0000e425
0000e427
0000e429

0000e42b
0000e42d
0000e42f
0000e431
0000e433
0000e436
0000e438
0000e43a
0000e43c
0000e43e
0000e440
0000e442
0000e444
0000e446

0000e448
0000e44b
0000e44d
0000e44f
0000e451
0000e453

em64k.as5

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

0000e455
0000e457
0000e458
0000e45a
0000e45¢

0000ed5f
0000e461
0000e463
0000e465
0000e467
0000469
0000e46b
0000e46d
0000e46f
0000e471
0000e473
0000e475
0000e477
0000e479

b72f STA w6 DIFFERENCE LSB

b626 LDA TEMP END MSB

b230 SBC ADDRH CURRENT MSB

260d BNE LOTS MSB ZERO ?

b62f LDA w6 YES. LOOK AT LSB

4c INCA ADJUST

2708 BEQ LOTS WAS $FF ?

al20 CMP #$20 MORE THAN 23 ?

2204 BHI LoTS IF SO USE 23

le3l BSET 7.STAT NO. LAST S1 RECORD

2002 BRA LTE20 LESS THAN OR EQUAL TO 20

a620 LOTS LDA #$20

ab03 LTE20 ADD #303 ADD BYTE COUNT & ADDRESS

b736 STA BCNT No. BYTES THIS S1 RECORD

a653 LDA #s* N

cde484 JSR OUCH

a631 LDA #1 1

ad4a BSR OUCH

3f32 CLR CHKSUM

b636 LDA BCNT BYTE COUNT

ad72 BSR BYTEO

b630 LDA ADDRH ADDRESS HIGH

adée BSR BYTEO

b62b LDA ADDRL

adéa BSR BYTEQ ADDRESS LOW

cde570 LooP2 JSR LOAD GET BYTE

3c2b INC ADDRL INCREMENT ANDRESS

2602 BNE NOVR OVERFLOW ?

3c30 INC ADDRH YES. INC. HIGH BYTE

ad5f NOVR BSR BYTEO SEND BYTE

26f3 8NE Loor2z LAST BYTE ?
ok *h * e e e e e e e ke e ok e e
* *
* Checksum byte. *
* *

b632 LDA CHKSUM CHECKSUM

43 COMA REQUIRED CHECKSUM BYTE

adss BSR BYTEC SEND IT

ad22 BSR CRLF CRLF

0f31b3 BRCLR 7,STAT,L00P1 FINISHED ?

L L T ranpa———

* *
* S9 record. *
* *

a653 LDA #°s° S

ad21 BSR OUCH

2639 LDA #9° 9

adld B8SR oucH

2603 LDA #$03 3 BYTES

ad47 BSR BYTEO

2600 LDA #3500

ad43 BSR BYTEO DUMMY (0)

ab00 LDA #300

ad3f BSR BYTEQ ADDRESS

aéfc LDA fISFC

ad3b BSR BYTEQ CHECKSUM

ad0s 85R CRLF

1506 BCLR 2 ,PORTBD BIT 2 INPUT

146

828
829
830
831
832

0000e47b

0000e47e

0000e480

0000e482

em64k.as5

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

0000e484
0000e486
0000e488
0000e48a
0000e48b
0000e48c
0000e48f
0000e490

0000e492
0000e494
0000e497
0000e498
0000e499
0000e49a
0000e49c
0000e49e
0000e4a0
0000e4a2
0000e4a4
0000e4a6
0000e4a8

0000e4a9
0000e4ab
0000e4ad
0000edaf
0000e4bl

0000e4b2
0000e4b4
0000e4b5
0000e4b6
0000e4b7
0000e4b8
0000e4ba
0000e4bc
0000e4be
0000e4c0
0000e4c2
0000e4c4
0000e4c6
0000e4c8
0000e4ca
0000e4cc

emb4k.ash

ccelde

a60d
ad02
a60a

ab30
al3g
2302
ab07

JMP GETCMD
CRLF LDA #300 CR
BSR QUCH
LDA #$0A LF
ek ek * e gk ok *k e e e e e e e e e e e ek ek
* *
> Output routine, 208 cycles per bit. *
* *
. N .
OUCH BSET 2 .PORTB 5 MAKE SURE IT'S HIGH
LDX #0 2 7 10 BITS TO SEND
STX COUNT 4 11 START, 8 DATA, STOP
NOP
NOP
JSR DELAY 72 83
cLe 2 85 START A ZERO
BRA STAR 3 88
OUTBT LDX #28 2
JSR DELAY 180 182
NOP 2 184
DEL3 SEC 2 186 FILL WITH ONES FOR STOP
RORA 3 189 GET A BIT
STAR BCS 0ul 3 192 17?
BCLR 2.PORTB 5 197 NO
BRA 0BD 3 200
oul BSET 2 ,PORTB 5 YES
BRA 08D 3
08D DEC COUNT 5 205
BNE QuTBT 3 208 DONE ?
RTS
ASCIO ADD #$30 3 CONVERT TO ASCII
CMP #$39 2 5 0-97?
BLS NMT9 3 8
ADD #$07 3 8 NO, A-F
NMT9 RTS 6 14
* *
* Byte output sub-routine. *
* *
*oxk * P B
BYTEO STA TMP1
LSRA SHIFT
LSRA DOWN TO
LSRA GET MSB
LSRA
BSR ASCIO & CONVERT
BSR OuCH
LDA TMP1 RESTORE BYTE
ADD CHKSUM ACCUMULATE
STA CHKSUM IN CHECKSUM BYTE
LDA TMP1
AND ##$OF LSB
BSR ASCIO CONVERT IT
BSR OUCH
DEC BCNT DECREMENT BYTE COUNT
RTS

147

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

0000e4cd
0000e4ce
0000e4cf
0000e4d0
0000e4d1
0000e4d2
0000e4d3
0000e4d4
0000e4d5
0000e4d6
0000e4d7
0000e4d8
0000e4d9
0000e4da
0000e4db
0000e4dc

0000e4dd
0000e4e0
0000e4e2
0000e4e4
0000e4e6
0000e4e8
0000edea

0000e4ed
0000e4f0
0000e4f2
0000e4f3
0000e4f6
0000e4f8
0000e4f9
0000e4fb
0000e4fc

emb4k.ash

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

0000e4fd
0000e4ff
0000e502
0000e504

0000e506
0000e508
0000e50b
0000e50e
0000e510
0000e512

cde235
a6fl
b721
a660
b722
b723
cce059

cde05f
24fb
5f
dle0c3
2703
5¢c
208
9f

81

1531
cde5b9
allo
2752

adés
cde5f2
cde5af
allo
2746
alll

* % % ¥
[7d
11
Q
3
13
3
b
o
o
Q
o
«
-
=3
S
[ad
¥
o
=
o
—
s
o
o
o
o

CTABL FCB $07 0
FCB $06 1
FCB $E3 2
FCB $A7 3
FCB $36 4
FCB $B85 5
FCB $F5 6
FCB $07 7
FCB $F7 8
FCB $87 9
FCB $77 A
FCB $F4 B
FCB $D1 C
FCB $E6 D
FCB $F1 E
FCB $71 F

ERROR JSR CLRTAB

LDA #$F1
STA DTABL+1
LDA #$60

STA DTABL+2
STA DTABL+3
JMP DSCN

* *
* INPUT ONE CHARACTER *
* A REGISTER CONTAINS HEX VALUE *
* X REGISTER CONTAINS HEX VALUE *
* *
e 9 e sk e e e sk ok ke e e e ke e ek e e e ke ke ke e ke ke e o ke e
CHRIN JSR KEYSCN GET KEY
BCC CHRIN IF NOT VALID RETRY
CLRX
CHRINL CMP STABL.X CONVERT
BEQ CHRIN2 TO HEX
INCX
BRA CHRIN1
GHRINZ TXA IF CANCEL
RTS
*
* Memory examine/change.
*
MEMEX BCLR 2,STAT EMULATION ADDRESS
JSR GETADR GET ADDRESS
CMP #s10 ESCAPE ?
BEQ MEMEX4
MEMEX3 BSR LOAD LOAD DATA
JSR PRTDAT PRINT IT
JSR GETNYB GET NEW NIBBLE
CMP #s10 ESCAPE ?
BEQ MEMEX4
CmpP fis11 ENTER ?

148

994

0000e514
0000e516
0000e518

0000e51a
0000e51c

0000e51e
0000e521
0000e524
0000e526
0000e528
0000e52a
0000e52¢
0000e52e
0000e530
0000e533
0000e535
0000e537
0000e539
0000e53¢
0000e53e
0000e540
0000e542
0000e544
0000e546
0000e548
0000e54b
0000e54d
0000e54f
0000e551
0000e553
0000e556
0000e558
0000e55b
0000e55d
0000e55f

emb4k.as5

0000e562
0000e564
0000e566
0000e568
0000e56a
0000e56¢
0000e56e
0000e56f

0000e570
0000e572
0000e574
0000e576
0000e578

0000e57b
0000e57d
0000e57f
0000e581
0000e583

0000e585

271a
all3
272e

alof
2208

cde5f2
cde59d
2578
alll
2614
b629
ad34
25d6
0c3125
3c2b
2602
3c30
cde6l6
20cB
all3
2616
b629
adlc
25be
0c310d
3d2b
2602
3a30
3a2b
cde6l6
20ae
0d3102
3f2b
1d31
cceQ4e

aec’
ad0c
b72d
ad06
bl2d
2701

81

aec6
bf29
aeBl
bf2c
043120

b72d
b630
b039
b72e
b62d

1201

BEQ ADRINC

CHP #1813 MEMORY ?

BEQ ADRDEC

CMP #SOF

BHI CMDMDL VALID HEX ?
MEMEX1 JSR PRTDAT PRINT IT

JSR GETBY2 SHIFT IN NEXT

BCS MEMEXI IF VALID TRY AGAIN
CMOMDL CMP #s11 ENTER ?

BNE MEMEX2 NO

LA W2 RESTORE ACCA

BSR STORE YES STORE IT

BCS MEMEX3 STORE VALID ?
ADRINC BRSET 6,STAT.MEMEX4

INC ADDRL YES GOTO

BNE MEMEXS NEXT

INC ADDRH
MEMEXS JSR PRTADR PRINT IT

BRA MEMEX3 REPEAT
MEMEX2 CMP #$13 M2

BNE MEMEX4 NO

LDA W2

BSR STORE

BCS MEMEX3
ADRDEC BRSET 6.STAT.MEMEX4

TST ADDRL YES THEN

BNE CMDMB2 GET PREVIOUS

DEC ADDRH ADDRESS
CMOMB2 DEC ADDRL

JSR PRTADR PRINT IT

BRA MEMEX3 REPEAT
MEMEX4 BRCLR 6.STAT,NORM2

CLR ADDRL
NORMZ BCLR 6.STAT

JMP GETCMD

* v ¥ o e ek * LA 22 2 2 4 *k

" *
* LOAD/STORE AT ADDRH(EH). ADDRL *
" x
STORE LDX #5C7 SET-UP

BSR LOSTCH ROUTINE

STA w4 T0 00

BSR LOAD TWO BYTE

P w4 STORE

BEQ STRTS

SEC
STRTS RTS
LOAD LDX #sC6 SET-UP ROUTINE
LDSTCM STX W2 T0 00

LOX #s81 TWO BYTE

STX W3 LOAD

BRSET 2.STAT.NORM REAL ADDRESS ?

STA W4

LDA ADDRH

SUB OFF

STA W5

LDA W4
RMCC BSET 1.PORTB 5 5 XFER Al4 & Al5 TO PORTB

149

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1031
1042
1043
1044
1045
1046
1047
1048
1049
1050

0000e587
0000e58a
0000e58¢
0000e58e
0000e591
0000e593
0000e595
0000e597
0000599
0000e59b

0000e59d
0000e59f
0000e5al
0000e5a3
0000e5a5
0000e5a7
0000e5a9
0000e5ab
0000e5ad
0000e5ae

emb4k.as5

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

0000e5af
0000e5b2
0000e5b3
0000e5b5
0000e5b7
0000e5b8

0000e5b9
0000e5bc
0000e5be
0000e5¢c0
0000e5¢c2
0000e5c4
0000e5¢c6
0000e5¢8
0000e5¢ca
0000e5¢cc
0000e5¢ce
0000e5d0

Oe2e02
1301
1001
0c2e02
1101
be2e
bf2a
1c2a
1f2a
bc29

cdeded
98
alof
2201
99

81

cde235
ads8
adef
250a
allo
272b
alll
2727
20ed
3f30
b72b
ad44

BRSET 7.W5,A15HI 5 10 AL5 HIGH ?
BCLR 1,PORTB 5 15 NO
A15HI BSET 0.PORTB 5 20 YES
BRSET 6.W5,A14HI 5 25 Al4 HIGH ?
BCLR 0.PORTB 5 30 NO
AI4HI LDX W5 3 33 YES
STX ADDEH 4 37
BSET 6 .ADDEH 5 42 Al4 HIGH
BCLR 7 .ADDEH 4 47 Al5 LOW
NORM Jmp w2 14 61 67 (66 FOR LDA) WITH JSR
ARAKARRRR AR AR AT A A AR R RA RN AN AR A Ak hkhkkkkkdkkdk
* *
* Build a byte. *
* *
ARRKRRKRRARAR A IR AR KR KR A RN AN AR AN AN NANNAR AR IRk
GETBY2 STA w2
8SR GETNYB
BCC GETBRT
ASL w2
ASL w2
ASL w2
ASL W2
ORA W2
SEC
GETBRT RTS
e e e e e e e ol e e e e ek e ke e e R kR ek e e Ak ek R ko
* *
* Get one character into ACCA *
* X destroyed. C set if hex. *
* *
GETNYB JSR CHRIN GET CHARACTER
cLe
cmpP {##$OF VALID HEX?
BHI GETRET NO
SEC YES
GETRET RTS
* *
* Build address A.X dest.. address *
* in ADDRL/ADDRH, C set if new. *
* *
GETADR JSR CLRTAB BLANK DISPLAY
BSR PRTADR
BLDADR BSR GETNYB GET CHARACTER
BCS GETAD1 VALID HEX?
cMp #$10
BEQ GETRTS
cwp {11 NO ENTER?
BEQ GETRTS NO TRY AGAIN
BRA GETADR
GETADL CLR ADDRH INIT HIGH ADDRESS
STA ADDRL PUT CHAR AWAY
8SR PRTADR PRINT NEW ADDRESS

150

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

0000e5d2
0000e5d4
0000e5d6
0000e5d7
0000e5d8
0000e5d9
0000e5da
0000e5dc
0000e5dd
0000e5df
0000e5el
0000e5e2
0000e5e4
0000e5e6
0000e5e8
0000e5ea
0000e5ec
0000e5ee
0000e5f0
0000e5f1

em64k.ash

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

0000e5f2
0000e5f4
0000e5f6
0000e5f8
0000e5f9
0000e5fa
0000e5fb
0000e5fc
0000e5fd
0000e600
0000e602
0000e604
0000e606
0000e608
0000609
0000e60c
0000e60e
0000e610
0000e613
0000e615

0000e616
0000e618
0000e6la
0000e61c
0000e61d
0000e61f
0000e621
0000e623
0000e625
0000e627
0000e629

48 GETASF

GETARG

81 GETRTS

KRI KKK KKK

*

LI

GETALP

BSR
BCC
ASLA
ASLA
ASLA
ASLA
LDX
ASLA
ROL
ROL
DECX
BNE
BSR
BRA
CMP
BEQ
CMP
BNE
SEC
RTS

GETNYB
GETARG

#4

ADDRL
ADDRH

GETASF
PRTADR
GETALP
#$10

GETRTS
#$11

GETALP

GET ANOTHER CHAR
VALID?

YES

SHIFT IT IN

PRINT NEW ADDR
GET ANOTHER CHAR
ESCAPE ?

ENTER ?
NO TRY AGAIN
YES SET FLAG

Print one byte (from A).

Print address ADDRH,ADDRL.

*

PRTDAT
PRTBYT

ae04
bf28
b72d
44
44
44
44
97
d6edcd
be28
e720
b62d
a40f

déedcd
be28
e721
cdelec
b62d
81
b72e PRTADR
bf2c

b630

5f

add5

b62b

ae02

adcf

b62e

be2c

81

LDX
STX
STA
LSRA
LSRA
LSRA
LSRA
TAX
LDA
LDX
STA
LDA
AND
TAX
LDA
LDX
STA
JSR
LDA
RTS

STA
STX
LDA
CLRX
BSR
LDA
LDX
BSR
LDA
LDX
RTS

#a

W4

CTABL.X

CTABL,X
Wl
OTABL+1.X
DISTAB

W4

W5
W3
ADDRH

PRTBYT
ADDRL
#2
PRTBYT
W5

W3

151

PRINT IN LAST TWO LCD DIGITS

PRINT ADDRESS (FIRST 4 DIGITS)

1147 * [— * *

1148 *

1149 * MC6BHCOSEQ Vectors.

1150 *

1151 ool *

1152

1153 ORG $FFF4

1154

1155 0000fff4 e022 FDB START SERIAL
1156 0000fff6 e022 FDB START TIMER B
1157 0000fff8 e022 FDB START TIMER A
1158 0000fffa eO4e FDB GETCMD EXTERNAL INTERRUPT
1159 0000fffc e022 FDB START SWI
1160 0000fffe e022 FDB START RESET
1161 END

152

AN442

Driving LCDs with M6805 Microprocessors

By Peter Topping
MCU Applications Group
Motorola Ltd, East Kilbride

INTRODUCTION

M6805 microprocessors include a wide range of parts
witha large diversity of on-chip features. Theseinclude
A/D and D/A convertors, serial interfaces, timers and
display drivers. The display drive capability of the
microprocessors range from none beyond I/O pins,
through high current ports, to specialised display drivers
for LCDs and vacuum fluorescent displays.

The MCB8HCO5M series have vacuum fluorescent
drive capabilities up to 40V. The MC68HCO5L series
include LCD drivers with capabilities ranging from the
MCE68HCO5LS6 (3 or 4 backplanes and 24 frontplanes)
through the MC68HCO5L7/9 with 8 or 16 backplanes
and 60/40 frontplanes. The L9's 40 frontplanes can be
expanded to 205 with three MC68HC6E8L9 expanders.

Microprocessors without special LCD circuitry can be
used to drive single backplane LCDs directly but
require regular software intervention if the requirement
that the display receives only AC drive is to be met.
Alternatively display driver chips can be used to
interface microprocessors with single and multiple
backplane displays.

This application note gives hardware and software
examples for these differentarrangements. The same
methods also apply to other families of
microprocessors, eg M6801 and M68HC11. The
examples are arranged in the order of the number of
backplanes.

153

SINGLE-BACKPLANE DISPLAYS

Single-backplane displays are commonly used where
the number of segments required is limited, usually
using the 7-segment format. They have the advan-
tages over multiplexed displays of superior contrast
and viewing angle and a wider range of operating
voltage and temperature. They can be driven directly
by microprocessors with the number of segments
limited simply by the number of available pins which
are (or can be configured as) autputs. An output pinis
required for the backplane together with one for each
segment. The ports are loaded with the segmentdata
corresponding to the required display, as with any other
peripheral beingdirectly driven by |/Olines. In this case,
however, the microprocessor must complement the
signals (backplane and frontplanes)atregular intervals,
thus satisfying the requirement that the display re-
ceives an AC waveform with only a small DC com-
ponent. It is possible for interrupts to alter the timing
of these voltage reversals and the programmer must
ensure that the resultant DC component does not
exceed that above which the life of the display is
reduced.

An alternative method of driving single-backplane
displays -from microprocessors is to use an LCD
driver. Figure 1 shows a 6-digit 7-segment circuit
using 3 MC144115P LCD drivers. These chips are
driven serially and constitute a simple shift register
giving the programmer full control over the display.

They can also be simply cascaded to drive a display of
any required size. Clearly, the number of chips and
interconnections increases directly as the number of
segments. This limits the practical size of a display
using this arrangement. The output pin to segment
connections can be chosen to suit the application. The
arrangement used here has been chosen to be
compatible with the 4-backplane MC145000 driver
used in a later example.

The MC144115 has a three-line serial interface
consisting of clock, data, and chip enable. The clock
and data lines can be shared with other peripherals,
provided that each peripheral has a separate enable
line. The enable line can, however, be derived from
the clock if no other chips share the clock and data.
This method of savingan I/Q line is used in application
note ANE416. The MC144115 software example
(listing 1) has been modified from the routine used in
ANE416.

BP

c 6-digit Static LCD

Cc2
abcefged abcef ged BP abcefged abcef ged

abcefged abc fged
[6h "% oP%n22 [a{4]s [6]7 |B a0 hof'6h7['8ho|2%1P2 [s s B |2 [Blo 1O 6% g2%P2 fa |45 82 [Ble |10
1
oasl? 1 0 Segment Outputs 5 lu o Segmient Outputs o 0 Segment Outputs o
N MC144115P N MC144115P W N MC144115P ™~ i
68 —akp oscZplskp oscZelBkP osci®—
(HC) Voo EN C_. Vss Voo EN C, Vss Voo EN C Vss 001
I l I 01
05 24[2 13 12 zcl 13 12 24' 2 13 12
oagle___ 5V 5V sV,
pa3tZ

Figure 1. Single-backplane LCD display with MC144115P display drivers

154

® NN A WN -

00000000
00000001

00000050

00000056
00000057
00000058
00000059

00001000
00001002
00001004
00001006
00001007
00001009
0000100a
0000100d
0000100f
00001011
00001013
00001015
00001016
00001018

LISTING 1

*

*

Example program for MC144115 driven
single backplane display.

* % % %
* %

B e e e

PORTA EQU $00 PORT A ADDRESS
PORTB EQU $01 - B -

ORG $0050
R RMB 6 WORKING NUMBER
TMP1 RMB 1 POSITION OF LSB
TMP2 RMB 1 POSITION OF MSB
TMP3 RMB 1
TMP4 RMB 1

ORG $1000

e e A e e e

-
* First part of the display subroutine *
* gets the segment codes corresponding to *
* the BCD data for display. *
* *

R et 2

DISP LDA #305

STA TMP3
LDX TMP1 LSB
D3 LDA 0.X
STX TMP4
TAX
LDA STABL.X FIND 7 SEGMENT CODE
LDX T™P3
STA R.X PUT IN DISPLAY TABLE
DEC TMP3
LDX T™MP4
DECX
CPX TMP2 FINISHED ?
BNE 03

155

0000101a

0000101c
0000101e
00001020
00001022
00001024
00001026
00001027
00001029
0000102b
0000102d
0000102f
00001031
00001032
00001034
00001036
00001037

00001039
0000103b

0000103c
0000103d
0000103e
0000103f
00001040
00001041
00001042
00001043
00001044
00001045

1701

ae05
€650
bf58
1d00
ael8
44

2402
1c00
1e00
100
1d00
5a

26f2
be58
5a

2ae5

1601
81

eb
60
c?
e5
6c
ad
af
el
ef
ed

* *
* The second part of the display routine *
* sends the 48 bits required by the *
* display driver. *
* *
FRA ARk kR ARk kA r kA Ak kA Ak kk
OUTT BCLR 3,PORTB ENABLE LOW

LDX #5 SEND DISPLAY TABLE TO 144115
DISCHR LDA R.X
DISPLY STX TMP3 SAVE INDEX

BCLR 6,PORTA CLEAR DATA

LOX {8
DIS1 LSRA SET uP

8CC DIs2 BIT OF

BSET 6.PORTA ACCUMULATOR
[8Y4 BSET 7.PORTA CLOCK

BCLR 7,PORTA IT

BCLR 6.PORTA CLEAR DATA

DECX COMPLETE ?

BNE DIs1 NO

LDX TMP3 RESTORE INDEX

DECX

BPL DISCHR

BSET 3,PORTB ENABLE HIGH

RTS

B g e s s

*

*

> LCD segment table. *
* *
ek wn * R
STABL FCB $EB 0 SEGMENT

Fcs $60 1

FCB $C7 2 CODES

FCB $ES 3

Fc8 $6C 4 FOR THE

FCB $AD 5

FCB $AF 6 MC145000/144115

FCB $E0 7

FC8 SEF 8 LCD DRIVER

FCB $ED 9

156

THREE-BACKPLANE DISPLAYS

The MC68HCOS5L6 can drive 24 frontplanes and either
3 or 4 backplanes, the number of backplanes being
selectable in software. The data to be displayed is
arranged in the display RAM as shown in figure 2.
Note that data sheet for the MC68HCO5L6 (AD11254)
shows this relationship wrongly.

It can be seen that each frontplane occupies a nibble
inthe 12-byte RAM. There is thus a simple relationship
between RAM location and displayed digit on a
4-backplane 7-segment display (each 2 frontplane
digit corresponds to one byte). With a 3-backplane
display, however, each digit corresponds to 3 nibbles
(1.5 bytes) so the software required to translate the
required segments into display RAM data is more
complex. Listing 2 shows a suggested method of
doing this.

LCD data]
latch 00 7 6 5 4 3 2 1 0
($00) | Bp1| Bp2 |Bp3 |Bp4 | Bp1| Bp2 |Bp3|Bp4
Fp 01 Fp 02

Figure 2. MC68HCO5L6 back/frontplane
pin to LCD data latch bit relationship

The table which translates the required character into
segments contains 2 bytes per character, the middle
nibble of the 3 required beingrepeated. This simplifies
the code required to write to the display RAM by using
one nibble if the character is intended for an even
position in the display and the other for an odd position.
Figure 3 shows the L6 — LCD segment arrangement
used in this example.

When using a microprocessor without an LCD drive
capability a separate display driver can be used todrive
a multiplexed display. The example shown in figure 4
and listing 3 uses the ICM7231B 3-backplane driver.
ThelCM7231B requires each character to be addressed
through pins AO, A1 and A2 and the appropriate data
written to pins DO, D1, D2 and D3. This parallel control
uses more /O lines than the serial arrangement
employed in MC145000/1 and MC144115 drivers.

The fact that datais acceptedin HEX and encodedinto
segments by the driver simplifies the software but
reduces the versatility of the display as only the
driver's 16 characters are available., The ICM7231B
driver displays 0-9,-, E, H, L, P and'blank while the
ICM7231A displays 0-9, A, B, C,D, Eand F.

As with any multiplexed LCD drive, the contrast is
dependent on the supply voltage to the driver's
multiplexer circuitry. In the case of the ICM7231,
contrast can be adjusted using the potentiometer on
pin 2 (figure 4).

c3
8-digit Triplexed LCD c2
c
x_v 2 l I | l |
112 |3 4 |5 |6 718 |9 1001112 [13{14]15 [16[17|18 | 1912021 |22|23]24 N.C.
68| 57|56 [55]|54|63 | 52| 51|50 [49]|48{47 |46| 45[(44 |43]|42[41 | 40| 39|38 |37]36[35 62] 61]60|59
f FP 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BP1 2 3 4
5V Vo
10k [[V
w2l MC68HCO5L6FN
t:v
ss

Figure 3. MC68HCO5L6

157

with a 3-backplane LCD

® N A WwN —

33

35
3¢
37
38
39
41
42
43
44

S

00000009
00000608

00000050
00000058
00000059

00000100
00000102
€0000104
€0000106
00000108
0000010a
0000010c
0000010e
00000110
00000112
00000114
C000C116
00500118
C000011a
€CO0O1 ¢
003CC1le

acca
00c0
e4Be
elce
48c4
eBie
ecde
80c8
ecce
eBce
4004
ecle
4ccd
2c02
ccBc
00C0

LISTING 2

B T e

* *
* Example program using the MC68HCO5L6 *
* to directly drive a 3-backplane display. *
* *

B e T e

LADD EQU $0009 LCD ADDRESS REGISTER

LDAT £Qu $0008 LCD DATA REGISTER
ORG $0050
Q RMB 8 DISPLAY REGISTER
Wl RMB 1
W2 RMB 1
ORG $0100
KRR IR AN KR AR TR AN AR IR AR R AR drrdek ok ok ke ke
* *
LCD segment look-up table. *
* N
ek e R Rk Rk ko Rk kR * * e e e W e e ek e ek

L6TAB FCB $AC.$CA 0
FCB $00,$C0 1
FCB $E4,$8E 2
FCB $E0,$CE 3
FCB $48,$C4 4
FCB $EB.$4E 5
FCB $EC, $4E 6
FCB $80.$C8 7
FCB $EC.$CE 8
FCB $£8,8CE 9
FCB $40,504 - (A: CCCO)
FCB $EC, $OF £ (B: 6C 46)
FCB $4C,$C4 H (C: AC 0A)
FCB $2C,$02 L (D: 64 C6)
FCB $CC,$8C P (E: EC 0E)
FCcB $09,$00 (F: CC 0C)

158

111

00000120
00000122
00000124
00000126
00000128
0000012a
0000012¢
0000012d
0000012e
00000131
00000133
00000135
00000138
00000139
0000013a
0000013b
0000013c
0000013e
00000140
00000142
00000144
00000146
00000147
00000148
0000014b
0000014c
0000014d
0000014e
0000014f
00000151
00000153
00000155
00000158
0000015a
0000015¢
0000015e
00000160
00000162
00000164

e

* % % % %

* % % % %

e e e ek ek ok ek KK Rk K ok ok ok K

START ~ CLR
LDA
STA

Leap LDX
LDA
AND
LSLA
TAX
LDA
STA
INC
LDA
LSRA
LSRA
LSRA
LSRA
STA
INC
LDX
LDA
AND
LSLA
TAX
LDA
LSLA
LSLA
LSLA
LSLA
ADD
STA
INC
LDA
STA
INC
INC
LDA
CMP
BNE
RTS

W2
#$80
LADD

L6TAB.X
LDAT
LADD

Main loop for L6 directly driven LCD.

This subroutine assumes that Q contains
HEX data for display. As each character
requires 1Qbytes (9 bits contained in
3 nibbles with 1 bit (backplane) in
each nibble not used) each execution

of the loop handles 2 characters.

*
*

* % % % % * % ¥

*

L6TAB+1.X

Q.x
#$OF

L6TAB.X

Wl

LDAT
LADD

L6TAB+1,X

LDAT
LADD
W2
LADD
#12
L60P

159

Kok Kk KRR * *x

Initialise digit pointer.
First write to $09: Bus/LCD ratio = 256,
4-backplane, fast charge enabled.

Get HEX data.
Only lower nibble is relevant.
x 2 (two bytes per digit in table).

Get first byte from segment table.
Send it to LCD data latch.

Keep LCO on, move to next latch.
Get second byte of segment data.
From this byte only the

upper nibble is relevant, lower
nibble is lost as upper nibble

is shifted down.

Save nibble, to be combined with first
nibble of next digit.

Address of next digit in Q.

Get HEX data.

only lower nibble is relevant.

x 2 (two bytes per digit in table).

Get first byte from segment table.
From this byte only the

lower nibble is relevant. upper
nibble is lost as lower nibble

is shifted up.

Combine nibble with last nibble

of previous digit and send byte to LCD.
Next LCD data latch.

Get second byte from segment table.
and send it to LCD.

Next latch (three per loop).

Next digit (two per loop).

Finished ?
If not, do next two digits.

I 1 I -
8-digit Triplexed LCD c2
R | | L | “

11213 jafs |6 |7 |89 [10]11]12 [13]14|15 [16}17]18 |19/20|21 |22|23 |24

WpFL . X Y Z X Y Z X YZ XYZ XYZ XYZXYZXYZ a2 a

I]T—z

GND
ICM 7231B

oIsP oP D3 D2 D1 Do

8
8

37 30 N 35 34 3 k73

»
=
n ln IS
<
al
I3
2
3
2

uF

PD2 PD1 PDO PC5S PC4A PC3 PC2 PCI PCO

MC68(HC)05

100!

g

Figure 4. 3-backplane LCD driven by an ICM7321

160

00000001
00000002

00000050

00000100
00000102
00000104

00000106

00000108
0000010a
0000010¢
0000010e
00000110
00000111
00000113
00000115

00000117
00000119

b601
a4fo
b701

ae08

e64f
b702
1701
1601
S5a

2704
3c01
20F1

3f02
81

LISTING 3

FRH IR A RRAR AR AR I AN KRN TR A IR IR IR AR I Rk N A RNk

* *
* Example program using the ICM7231 *
* driver and a 3-backplane display. *
* *
*w * ek ek Aok kW

PORTD EQU $0001 PORT ‘B DATA
PORTC EQU $0002 PORT C DATA

ORG $0050
Q RMB 8 DISPLAY REGISTER

ORG $0100

B e T e

* *
* Display contents of Q. *
* *

B T e

DIsP LDA PORTD CLEAR
AND #$F0 LS NIBBLE OF PORTD
STA PORTD IE DIGIT ADDRESS = 0
LDX i#8

AGAIN LDA Q-1.X
STA PORTC
BCLR 3.PORTD LATCH
BSET 3.PORTD BIGIT

DECX

BEQ out DONE ?

INC PORTD NO, GOTO NEXT DIGIT
BRA AGAIN

out CLR PORTC

161

FOUR-BACKPLANE DISPLAYS

As mentioned above, the MC68HCO5L6 can drive
a 4-backplane display with up to 24 frontplanes
directly. The resultant 96 pixels could be used to drive
2 digits of an 5x8 dot matrix display, but with this
number of segments most applications will use
7-segment or customised displays. A 7-segment
display of up to 12 digits can be used. The software
required is similar to, and simpler than, that shown for
the L6 with a 3-backplane display. When it is required
to drive a 4-backplane display using a microprocessor
withoutan LCD drive capability, the MC145000 offers
aversatile solution. Up to 6 digits (12 frontplanes) can
be driven directly and more can be driven by the
addition of one or more of the 18-pin MC145001
expanders, each adding 11 frontplanes. The example
shown in figure 5 and listing 4 drives 6 digits, the
software being very similar to that shown for the
MC144115 single-backplane driver. This is the result
of both chips having the same shift-register/latch
architecture despite the actual output signals being
quite different. The listing also shows a routine using
an SCI rather than port lines..

A difference between the MC145000 and the
MC144115 is that the MC145000 has no chip-enable
input. it can share its data line with other peripherals
but must have a dedicated clock so that the controiler
can supply data independently of other chips.

Forapplications requiring more than the 12 frontplanes
made available by the MC145000, the MC145003/4
may be appropriate. They provide 32 frontplanes for
use with a 4-backplane display, allowing up to 128

segments. The MC145003 and MC145004 are identical
except for their serial protocol. The MC145004 has an
11C bus interface incorporating the usual acknowledge
procedure associated with the IIC standard. The
MC145003 is the same, except that there is no
acknowledge and hence no associated clock cycle.
The incoming data is automatically latched after
128 bits have been received. If, however, itis required
that the data be latched at other times, an enable pin
is available.

For applications where Vdd and Vicd are connected
together, the LCD contrast is adjusted by adjusting
Vdd. If the data is coming from a chip with a higher
supply voltage, the input pins may go higher than the
supply voltage of the MC145003/4. This is allowed for
the clock and data pins, but not recommended for the
enable pin as its input protection circuitry may clamp
the input voltage. It is therefore not advisable to use
the enable pin if the MC145003/4 has a different Vdd
from the chip supplying it with data. In applications not
using this pin it can be left floating or tied high.

The example shown in figure 6 does not use the
enable pin; the example software sends all 128 bits
every timeitisexecuted. Thelatchingis thus performed
automatically. The circuit shows 2 6-digit displays,
each with 12 frontplanes. Any display or combination
of displays with up to 32 frontplanes can be used with
the software shown in listing 6, as all 128 bits are
always sent. The 6 lines of code (45-50) are
commented out for use with the MC145003; they are
required for the MC145004.

162

22 p—
23
« [_

4] 3| 7| 6{10| 9|13|12]|16|15]20| 19

141 15|16| 17 13| 11| 10| 9| 8| 7| 6| 5| 4| 3| 2| 1

1g|BP43 2 1 FP1211 10 9 8 7 6 5 4 3 2 1
PA7 Clock

MC68(HC)05 MC145000

Al —'8 Data

22 23 24 12

220K 5V f

50k

Figure 5. MC145000 driving a 4-backplane LCD

44 44
23 23
z 4-backplane LCD 2 4-backplane LCD
N.C
3 |4 |6 |7 |9 {10]12]13|15]16(19 |20 3 |4 (6 |7 |9 [10(12{13 |]15|16|19 |20
48| 47| 46| 45 3613513433132 |31]3012928]27{25 |24 23122 (1918117 116115{13 112]11]10 9 8-1
BPt 2 3 4 FP1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25-32
Data Clock Vieo Voo Vss A0 A1 A2 EN FS osc1 osc2
39 38 20! 491 21 44| 43| 42| 41| 37 51 50
%)—SV 270K
sl
PA7 PAB
i N.C. N.C. N.C. N.C. N.C.
MC68(HC)05

Figure 6. MC145003/4 driving 4-backplane LCDs

163

WO ~NO VD WN -

00000000
0000000d
0000000e
0000000f
00000010
00000011

00000050

00000056
00000057
00000058
00000059
0000005a

00091000
00001002
00001004
00001006
00001007
00001009
0000100a
0000100d
0000100f
00001011
00001013

00001015-

00001016
00001018

dede e ek dedk KA R Rk ek ek ke e e e A Rk KR K ek Ak Rk ek Rk ok

*
*
*

*

R e e s 22 22 A

LISTING 4

Example program for MC145000 driven
four-backplane dispiay.

PORTA QU
BAUD EQU
SCR1 EQU
SCR2 EQU
SCSR EQU
SDAT EQU

ORG
R RMB
W2 RMB
W3 RMB
wa RMB
W5 RMB
W6 RMB

ORG

ek ke Rk R AR R AR AR KRR R AR IR A I IR S d kRN R kk ke h ok kkw

*

*

*

*

ok o Aok ek e e o A A AR e ek ok o e e ok ok ek e ke Rk

DISP

03

First part of

repl

LDA
STA
LDX
LDA
STX
TAX
LDA
LDX
STA
DEC
LDX
DECX
CcPX
BNE

$00
$00
$0E
$OF
$10
$11

$005
6

1
1
1
1
1

$100

0

0

PORT A DATA
SCI1 BAUD RATE REGISTER
“ CONTROL REG. No. 1

- - - “ 2

* STATUS =
" DATA -

WORKING NUMBER

POSITION OF LSB

POSITION OF MSB

the display subroutine

aces BCD with segment codes.

STAB
W4
R.X
W4
W5

W6
03

L.X

164

LS8

FIND 7 SEGMENT CODE

PUT IN DISPLAY TABLE

FINISHED ?

60 okkkk it S ok e

61 * *
62 * The second part of the display routine *
63 * sends the 48 bits required by the *
64 * display driver. For comparison two *
65 * routines are included, one using port A *
66 * lines and a second using the SCI. *
67 * *
68 * * e ek ek e ok ke
69

70 0000101a ae05 ouTT LDX #5 SEND ‘DISPLAY TABLE TO 144115/145000
71 0000101c e650 DISCHR LDA R.X

72 0000101e bf57 DISPLY STX W3 SAVE INDEX

73 00001020 1d00 BCLR 6.PORTA CLEAR DATA

74 00001022 ae08 LDX it8

75 00001024 44 DIS1 LSRA SET uP

76 00001025 2402 BCC DIs2 BIT OF

77 00001027 1c00 BSET 6,PORTA ACCUMULATOR

78 00001029 1e00 DIS2 BSET 7,PORTA CLOCK

79 0000102b 1f00 BCLR 7,PORTA IT

80 0000102d 1d00 BCLR 6.PORTA CLEAR DATA

81 0000102f b5a DECX COMPLETE ?

82 00001030 26f2 BNE DIS1 NO

83 00001032 beb57 LDX W3 RESTORE INDEX

84 00001034 5a DECX

85 00001035 2aeb BPL DISCHR

86

87 e 3 e e e e e ok o o e ok ke ok ek ok * Ve e ek ek Kk ok ko
88 * *
89 * SCI LCD driver interface. *
90 * *
91 e e e e e ek ek * e ok

92

93 00001037 ae05 LDX #5 INITIALISE X

94 00001039 e650 MORE LDA R.X FETCH DIGIT

95 0000103b 0f10fd BRCLR 7,SCSR.* WAIT UNTIL TORE =1

96 0000103e b711 STA SDAT WRITE IT TO SCI TX REG.

97 00001040 5a DECX NEXT DIGIT

98 00001041 2afé6 BPL MORE DONE ?

99 00001043 0d10fd BRCLR 6,SCSR,* WAIT UNTIL TC=1
100 00001046 81 RTS

101

102 00001047 eb STABL FCB $EB 0 SEGMENT

103 00001048 60 FCB $60 1

104 00001049 «c7 FCB $C7 2 CODES
105 0000104a e5 FCB $ES 3
106 0000104b 6c FCB $6C 4 FOR THE

107 0000104c ad FCB $AD 5

108 0000104d af FCB $AF 6 MC145000/MC144115

109 0000104e €0 FCB $EO 7

110 0000104f ef FCB $SEF 8 LCD DRIVER
111 00001050 ed FCB $ED 9

165

© NN A WN

00000002
00000006
00000006
00000007
00000040
000000c0

00000050
00000051
00000052
00000053

00000b00
00000b02
00000004
00000b06
00000008
00000b0a
00000b0c
00000b0e

0000010
0000012
00000513
00000b15
00000b16
00000b18
00000b1a
00000b1¢
00000b1e
00000620
00000b21

00000b23
00000b25
00000b27

00000b29
00000b2b
00000b2d

a67e
b752
a6ll
b750
ae52
bf51
1f02
1d02

3c51
3a50
26e7

1c02
le02
81

LISTING 5

Example program using MC145003/4 LCD Drivers.

W1
DPNT
ADDR
11C

START

SEND2

SLooP

sLop

DZERO

* % % % % %

12CEND

EQU
EQU
EQU
EQU
EQU
EQu

ORG

RMB
RMB
RMB
RMB

ORG

LDA
STA
LDA
STA
LDX
STX
BCLR
BCLR

LDX
LDA
LDX
ROLA
BCC
BSET
BSET
BCLR
BCLR
DECX
BNE

LDA
STA
BSET
BCLR
LDA
STA
INC
DEC
BNE

BSET
BSET
RTS

$02
$06
$06

$40
$CO

$0050
1
1
1
16

$0B00

f#I$7E
ADDR

7

W1

{##ADDR
DPNT
SDA.11CP
scL.11cp

DPNT
0.X
#8

DZERO

SDA,TICP
SCL.IICP
SCL.IICP
SDA.TICP

SLoP

#DIN
11C0D
SCL.IICP
scL.1ICP
#00UT
11C0D
DPNT

W1

SLOoP

SCL.IICP
SDA,TICP

166

PORTC

PORTCD

1IC - clock line
1IC - data line
INPUT DATA
OUTPUT DATA

1IC WRITE POINTER
11C ADDRESS
11C BUFFER (128 BITS)

START CONDITION
DATA GOES LOW WHILE CLOCK HIGH

DATA BUFFER POINTER
GET A BYTE
8 BITS TO SHIFT

BIT=107?
NO, BIT =1
CLOCK HIGH
CLOCK LOwW
DATA LOW

DATA LINE AN INPUT

CLOCK
ACKNOWLEDGE BIT

BACK TO AN OUTPUT
NEXT BYTE

LAST BYTE ?

STOP CONDITION
DATA GOES HIGH WHILE CLOCK HIGH

8/16-BACKPLANE DISPLAYS

For dot-matrix displays, 8 or 16 backplanes are
common. This is the result of the large number of
pixels required. A compromise between pin-count
and contrast is made to decide the number of
backplanes. The minimum pinrequirement for a display
with N segments would require the number of
backplanes to be the square root of N, but with typical
requirements of many hundred or thousands of pixels
this is not practical as the resultant contrast would not
be acceptable. Typical compromises are 8 or 16
backplanes, as this gives acceptable contrast and fits
in conveniently with the 8x5 dot-matrix format
commonly used for this type of display.

The MC68HCO05L7 and L9 are designed to directly
drive this type of display. The L7 has 16 backplanes
and 60 frontplanes allowing it to drive up to 960 pixels
or 24 8x5 dot matrix digits (12 with x 8 multiplexing).
The L9 has only 40 frontplanes (16 8x5 digits) but is

capable of being used with MC68HCE8LI LCD drive
expanders. Each MC68HC68LI, up to 3 of which may
be added, contributes 55 frontplanes. An L9 and 3
expanders has thus 205 frontplanes allowing then to
drive up to 3280 pixels or 82 8x5 dot matrix digits.

The display RAM contains a 5-bit word for each row of
dots in the 8x5 format; thus, 8 locations are used for
each digit, allowing easy addressing. The RAM
corresponding to the digits driven by expanders is
contained in the expanders, but appears in the L9's
memory map as the data and address buses from the
L9 to external memory are also used by the
MC68HCE8LIs.

Application note ANHK10/D shows an application
using the L9and also describes a method of extending
the display size beyond that normally available using
this device.

APPLICATION NOTES

The following application notes give complete applications using the type(s) of display indicated.

ANE404 An extended MC146805E2 CBUGO5
system using the MC68HC25.
MC145000-driven 4-backplane, 6-digit
and ICM7231B-driven 3-backplane, 8-digit
display.

ANE416 MC68HCO05B4 Radio Synthesizer.
MC145000-driven 4-backplane, 6-digit and
MC144115-driven 1-backplane, €-digit
display.

ANE425 Use of the MC68HC68T1 RTC with
M6805 Microprocessors.
ICM7231B-driven 3-backplane, 8-digit
display.

ANHK10 The summary of the MC68HCO5L9 Micro.
App. Demo. Board.
MC68HCO5L9/MC68HC6E8LI-driven dot
matrix display.

167

DRIVER CHIPS

The following list shows some LCD driver devices. They are most suitable for 7-segment, 16-segment and
custom displays. The 7SD column shows how many 7-sedment digits each device can drive. With the possible
exceptions of the MC145000/1 and the MC145003/4, they are not generally suitable for dot-matrix displays which
have 3540 segments per digit.

Device Back Front 7SD Drive Expan. Pins

MC14543 1 7 1 parallel parallel 16 BCD
MC14544 1 7 1 parallel parallel 18 ripple blank
MC144115 1 16 2 3Hine yes 24

MC144117 2 16 4 3-ine no 24

MC145000 4 12 6 2-line MC145001 24

MC145001 (4) 1 5.5 2-line n/a 18 expander
MC145003 4 32 16 2-or 3-line parallel 52 2- or 3-line
MC145004 4 32 16 2-line parallel 52 lic
MC145453 1 33 4 2-line parallel 40 also 44-pin
ICM7231 3 24 8 parallel no 40 BCD

168

ANA446

MCM2814 Gang-programmer
using an MC68HC805B6

By Peter Topping
MCU Applications Group
Motorola Ltd, East Kilbride

INTRODUCTION

Non-volatile memories of the type MCM2814 are
widely used in consumer equipment to store semi-
permanent, user-definable information. One of the
most common applications is TVs. Ina TV the NVM is
used to store the channel number or frequency
associated with each program number and may also
store otherinformation about the program (forexample,
fine-tuning and transmission standard). The NVM will
also contain the optimum settings for the sound and
picture analogue values. In some sets other data may
be stored, for example, user-defined names for some
or all of the available channels. In a production
environment the initial loading of this type of information
can be done quickly by copying an existing NVM. This
application note describes a programmer, shown in
Figure 1, which can perform this function. In four
seconds it can fully program 8 MCM2814s in parallel
and verify them individually. The programmer is
controlled by an MC68HC805B6 microprocessor.

The B6 is ideally suited to this application as it has a
256 byte NVEEPROM, the same size as the MCM2814.
The contents of a master MCM2814 can thus be
loaded into the B6 and will remain there until a change
of data is required. Both the B6 and the MCM2814
have a byte in which some bits are dedicated to data
protection so, in fact, only 255 bytes are used.

PRINCIPLE OF OPERATION

The programmer has been designed with an emphasis on
ease of use and consequently has as few controls as
possible. The only control which is used regularly is the
“RUN" button S1. When it is pressed, the NVMs are
powered-up and programmer operation starts. Whenitis
released, power is disconnected from the NVMs but
remains on within the programmer so that the LED
indicators remain.

Three different operations are available.

The first requirementis to load data into the programmer.
This procedure is selected by pressing and holding button
S3, and started by pressing, and holding, the button S1.
The contents of a master NVM in socket #0 will be loaded
into the programmer; this takes about 12 seconds. The
MC68HC805B6 in the programmer retains this data in its
non-volatile EEPROM. During loading both LEDs atsocket
#0 are on and the rest are off. Once the B6's EEPROM is
writtenitis verified against the NVMin socket #0, a green
LED indicating a pass and a red LED a fail. Sockets 1-7
should be empty during this procedure but if they contain
an NVM they wiill also be checked. An attempt to perform
this routine without an NVM in socket #0 will not destroy
the data in the programmer as the software checks foran
1IC acknowledge before overwriting the contents of the
EEPROM within the MCM68HCO05B6. If S3 is pressed,
the position of the slide switch S2 (program and verify or
verify only) is not relevant. As S1 supplies power to the
NVM sockets, it is important that it is held until the
procedure is complete. Reliable results will notbe obtained
if S1 is released before the verification has finished.

169

0L}

swwelboid-bues) yLEZINDIN ‘L 31nBiy

St

-
+V 0—1—(:
J_ J__: 3Q & x2 ;: _L
0.1uF 47uf 47uF 0.1uF 1%
. IR
BC327
_;_cso A _;cso + 8 _.%cso + 8 _;cso <8
Cst 0 — Cst — cs1 9 b Cst 3 — 150
K] VRS K] PR S e K] PR O
sV6 »—%- D 2—1 »—-;-- h] %—- »—?1-] -:——‘ ._':.- D %—
10 AN] AN A
7]cs! = st ; 7¢st - {est - Red
1M 4 ¢ £ M 5 ¢ L —im 6 ¢ L M 7 ¢C
»—‘-— 0 5—4 ;; r—‘1— D -5—-1 ; »——‘-— D 5—-< ;; »——4— -] 5—1
Green
01 0.1pF 0.1uF
mr Wt ”» i mr W mr
100k
34| 35| 39 2 3 12) 1| s| 4] 3 3 22|23} 50} 7 36 5 10k
—118
; B5 B4 BO 87 86 B D2 D3 D4 D6 D7 B2 TC17C2 RD VAL B D5 =g L \
——i VDD 4054 == 10uF
8
'—19— VRH MC68HC80586
—1 iRQ
15
el 8C107
Vo AD Al A2 A3 M A5 AB AT C0 C1 C2 C3 C4 C5 C5 C7 D0 Vss DI_0SCI 0SC2
I B[8] 2]] 2 [J] %] ©| 4 Q| 2 i a T 16 7
w
{0 |
% o | ml L | e
Green 2 6 &I Pﬂrsz npfxz‘l-

4700 x 16

The main programming sequence is selected by putting
S2 in position PN (program and verify). The NVMs
shouldbe placedin the socketsandbutton S1 pressed,
and held, until programming and verification are
complete (4 seconds). During programming, both red
and green LEDs are on. The procedure clears the
write-protect bytes and programs the NVMs in parallel
using the data stored within the B6 in the programmer.
It then verifies the NVMSs individually, the results
being shown on the LEDs (green for pass, red for fail
and neither for no acknowledge).

Running only the verify routine can be selected by
placing S2in position “V"”. The procedure is otherwise
similar to programming. S1 should be held in until
verification is finished (up to 1 second depending on
results).

CIRCUIT

The NVMs are arranged in a matrix using their 1IC
chip-selects (pins 1 and 2). These pins configure the
two least significant bits (1 and 2) of the recognised
IIC address. Bit 0 determines if the device is
receiving or transmitting. The software uses only the
address 1010000x and so an NVM will only be
addressed if both its chip-select pins are low. The
matrix thus allows each NVM to be addressed
individually by 1/O lines using common software. Six
port B I/O lines (0-6) are used for this purpose.

The NVMs (and the IIC pullups) are only powered up
when S1 is closed, allowing them to be inserted and
removed when they are powered down. When S1 is
pressed, 5 volts is also applied to the RC circuit
connected to the base of the BC107 NPN transistor.
This supplies a base current to the transistor while the
10pF capacitor is charging. During this transient the
transistor is on and the MC68HCO05B6 is in reset. The
program starts when the capacitor is charged and the
transistor switches off. The MC34064 also connected
to the reset pin ensures that the microprocessor is
held in reset if the supply is below 4.75V. This will be
the case during power-up and power-down. This is
advisable in any system with EEPROM in order to
prevent the possibility of it being corrupted during the
rise or fall of Vdd.

17

The 33 ohm resistor in series with the supply to the
NVMs limits the current if a device is plugged in the
wrong way round. If this happens, the BC327 PNP
transistor is turned on and the RED fault LED lit. The
actual voltage on the VDD pins of the NVMs is
monitored by bit 5 on port D. Thus the microprocessor
cantellifthere isashort oradevice inserted the wrong
way round. If this is the case the software aborts any
attempt to program or verify NVMs.

Ports A and C are used for the pass and fail LEDs
respectively, while the input-only port D has two pins
used to read the positions of S2 and S3.

SOFTWARE

On reset, the program initialises the ports, 1IC
addresses and the RAM location (STAT) which is used
for status flags. The state of bit 0 on port D is then
checked. This will be low unless the button (S3),
which selects the loading of data into the programmer,
is pressed. If it is low, either program and verify or
verify only is executed according to the level of bit 1 on
port D which is connected to switch S2.

The programming routine (PROG) switches on all the
LEDs, enables all the NVMs and clears their write-
protect by writing $00 to address $FF. A loop which
reads a byte from the B6 within the programmer and
writes it to the NVMs is then performed 255 times.
Writing to the NVMs is carried out without checking
for an acknowledge, so the full procedure will take
place even if all the NVM sockets are empty. This is
the only routine which does not check for an
acknowledge.

Only 255 bytes are transferred, as the last byte in the
MCM2814 is reserved for the write-protect status.
The B6 also has a reserved byte, butitis the first byte,
so the correspondence of the addresses between the
B6 and the NVMs is offset by one.

The verify routine (VERF) switches off all the LEDs and
compares the data in the B6 with the data in each of
the NVMs. It immediately fails a socket which does
not return an IIC acknowledge. The RAM location
COUNT contains the number of the socket being
checked and is used to switch on the appropriate LED
once each verify is complete.

The NVM sockets are arranged in a 2 x 4 matrix using
their two IIC chip selects. The IIC address used is
always $A1 ($AO for writing) and thus an MCM2814
will only respond if both its chip-selects are low.
During the programming routine all lines in the matrix
are low, but during verification each chip is individually
selected by a low on one row and one column. The
required value to be sent to port B to achieve this is
derived from the value in COUNT using the table
TAB1.

If the LOAD routine is selected it performs a loop
which does the opposite of the program loop. It
transfers the contents of an MCM2814 into the
EEPROM of the MC68HC805B6 within the
programmer. It only looks at socket #0 and checks for
an acknowledge before it proceeds to over-write the
data in the B6.

The three routines WRT, RDALL and WRTAL were
used during de-bug, are self-explanatory, and have
been leftin the program for interest and for future use
if required. They are not used by the MC68HC805B6
butcan be usedif the program is run on a development
system (eg an M6BHCOS5EVM).

The IIC READ, SEND and WRITE routines are self
contained and, by using ordinary 1/O lines, could be
used on any 68(HC)05 microprocessor. The READ
sub-routine reads one byte using the IIC address in
ADDR and the sub-address in SUBARD. The
commented out lines (382-385) provide a simple
method ofalso readingasecondbyte. Datais returned
in IOBUF (and IOBUF+1 in the case of a 2-byte read).
Clearly, the number of bytes can be increased by
including more in-line code or by executing a loop.

The SEND sub-routine writes data on the ICbus at lIC
address ADDR startingat theaddressin RAM contained
in the-index register. The number of bytes sent is
determined by the value stored the accumulator. If, as
in this example, a sub-address has to be sent, then it
should be in the RAM location pointed to by the index
register with subsequent locations containing the
data. SEND is suitable for most IIC peripherals. The
WRITE subroutine constitutes a SEND followed by a
delay and a READ. This is what is required to write a
byte to an MCM2814, EEPROM programming is
started by an |IC write and continues until the chip is
addressed again by READ.

The IIC routines use simple BCLR and BSET
instructions on the data registers so that an active
high level is generated. This is not strictly what should
be done on an IIC bus but is OK in the case where
there are no other possible masters in the system. A
passive high can be obtained by keeping the data bit
of the I/O lines used for the |IC bus at a zero and using
BCLR and BSET instructions on the corresponding
data direction bits. If this is done care must be taken
to ensure that these zeros are not lost by any other
read-modify-write operations carried out on the data
register. A BCLR or BSET on another bit on the same
port will read the whole port, modify the required bit
and then write the whole port. The data bit on an IIC
line which was pulled high by the external pull-up
would thus become a one. This would cause a
malfunction the next time the corresponding DDR bit
was set to a one, as the pin would output a high
instead of a low. This can be avoided by using other
types of instructions (eg STA) or by making sure the
relevant data bit is a zero before enabling an output.

172

0001
0002
0003
0004
0005
0006
0007
ooo8
0009
0010
0011
0012
0013
0014 0000
0015 0001
0016 0002
0017 0003
0018 0004
0019 0005
0020 0006
0021 0007
0022 0100
0023 0£00
0024
0025
0026
0027
0028
0029
0030
0031 0050
0032
0033 0050
0034 0051
0035 0052
0036 0053
0037
0038 0055
0039 0056
0040 0057
0041 0058
0042 0059
0043 005a
0044 005b
0045 005c
0046
0047 005d
0048
0049
0050
0051
0052 00Se
0053 00f8
0054 00ff
0055
0056 0800

NVM.ASS
0058

0059

0060

0061

0062

0063

0064

0065 0800
0066 0802
0067 0804
0068 0806
0069 0808
0070 080a

a6
b7
a6
b7
b7
b7

c0
01
ff
00
02
04

Rk R R ARk AR KR KR R Ak Tk A ot o o ok ek ok ok ok sk ek ok ok ok ek ok kK ok ek ok Kk ek

MC68HC05B6 controlled MCM44182 programmer.
This software was developed by Motorola Ltd. for demonstration purposes.
No liability can be accepted for its use in any specific application.
Original software copyright Motorola - all rights reserved.

P. Topping 14th May ’'91

L A

*
*
*
*
*
*
*
*
*

3 e ok 3o ok ok o ok ok ok ok T ok o o ok ok o ok ok ke ok ok ok o ok ok ok ok K ok ok ok ok o e e ok ok ek ok ek ok R ok ke ok

PORTA EQU $00 PORT A ADDRESS

PORTB EQU $01 “ B -

PORTC EQU $02 " C -

PORTD EQU $03 D -

PORTAD EQU $04 PORT A DATA DIRECTION REG.
PORTBD EQU $05 ~ B - -~
PORTCD EQU $06 “c w "
EECTL EQU $07 EEPROM CONTROL REGISTER
E2PR EQU $0100 EEPROM

BUFF EQU $OF00 DEBUG USE ONLY

P e e e e e R e e

* *
* RAM allocation. *
* *

HH R KKK KKK KKK KKK KKK KKK KKK KK I KKK EKK I KK KRR KKKk kK kK *

ORG $0050
ADDR RMB 1 IIC ADDRESS
DPNT RMB 1 IIC DATA POINTER
SUBADR RMB 1 IIC SUB-ADDRESS
IOBUF RMB 2 IIC BUFFER
Wl RMB 1 W
w2 RMB 1 [¢]
W3 RMB 1 R
w4 RMB 1 K
W5 RMB 1 I
w6 RMB 1 N
w7 RMB 1 G
COUNT RMB 1 LOOP COUNTER
STAT RMB 1 STATUS BYTE :-
* 0: not used
* 1: IIC R/W 1:READ, O0:WRITE
* 2: ACKNOWLEDGE OK
RMB 154 not used
STACK RMB 7 8 BYTES USED (0 INTERRUPTS
SP RMB 1 AND 4 NESTED SUBROUTINES)
ORG $0800
page 2
ke de K e ok e kK ko ok s ok ok ok ok ke ok o ok o R o ok e ok ok e ok ke e o o ok ok o ok ok ok ok ok ok ok ok o ok ke
* *
* Main program. *
* *

Feddk kR kK KKk KK KKK I KKK KK I I IR I R KR A R KKK kKR Ik IRk kK,

START LDA #sco
STA PORTB CONTROL LINES LOW
LDA #SFF
STA PORTA LEDS OF
STA PORTC - -
STA PORTAD ALL OUT - GREEN LEDS

173

0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0034
0085
0086
0087
0088
0089
0090
0091
0092
0093

080c
080e
0810
0812
0814
0817
08la

081c
08le
0820
0822
0824
0826
0827
082a
082d

0830
0832
0834
0836
0838
083a
083c
083f
0840
0842
0844

0845
0848
084a
084c

085e
0860
0862
0864

0866
0868
086b
086d
086f

b7
ab
b7
ae
cd
0a
20

a6
b7
3f
3f
3f
5f
00
cc
02

3f
3f
a6
b7
a6
b7
cd
4f
ad
3f
Sf

dé
ad
a3
26

b7
aé
ae
cd
3c
be
81

a0
50
07
52
5d

03
09
03

01
06
ff
£7

53

52
09
52
52

35
02

03

2e

92

01

89

00

STA
LDA
STA
LDX
JSR
BRSET
BRA

€ONT LDA
STA
CLR
CLR
CLR
CLRX
BRSET
JMP

SKLD BRSET

PORTCD ALL OUT - RED LEDS

#33F 6,7 1IN - IIC BUS

PORTBD 0-5 OUT - NVM SELECTION

#100 WAIT 230mS FOR MCM2814 SUPPLY
PN TO SETTLE

5,PORTD, CONT NVMs POWERED UP ?
* NO, DO NOT PROCEED

#SA0 YES, INITIALISE IIC ADDRESS
ADDR

EECTL READ FROM EEPROM (B6)
SUBADR

STAT

0,PORTD, SKLD LOAD B6 EEPROM ?
LOAD YES
1,PORTD, VERF NO, VERIFY ONLY ?

P e e e e e e ey

*

*

* B6 EEPROM ($101-$1FF) -> 8 NVMs ($00 - SFE). *

*

*

P e e e e e e ay

PROG CLR
CLR
LDA
STA
LDA
STA
JSR
CLRA
BSR
CLR
CLRX

oLoop LDA
BSR
CPX
BNE

BRA

WR1 STA
LDA
LDX
JSR
INC
LDX
RTS

PORTA GREEN LEDS ON

PORTC RED LEDS ON

#s$co

PORTB ENABLE ALL NVMS

#SFF

SUBADR SUBADR = SFF

READ CLEAR POR WRITE PROTECT
DATA = $00

WR1 CLEAR WRITE PROTECT BYTE

SUBADR

E2PR+1,X GET BYTE AND

WR1 SEND IT TO NVM

#255 DONE ?

OLOOP

VERF YES. VERIFY

IOBUF

#2 No. BYTES TO SEND (INC. SUB-ADDRESS)

#SUBADR

WRITE IIC WRITE

SUBADR NEXT LOCATION

SUBADR

page 3

L R e e e e e

*
* Verify. *
* *
* B6 EEPROM ($0101-$O1FF) v. NVMs ($00 - SFE). *
* *
KR K I K KKK KRk h Ak kA kAR ARk A R A IRA N KR KK K kok ok ko dkohkdokkk

VERF LDA
STA
STA
CLR

VLP LDX
LDA
STA
BSR
BCC

#SFF

PORTC ALL LEDS OFF
PORTA

COUNT START AT SOCKET #0

COUNT

TAB1, X SELECT NVM
PORTB ACC. TO COUNT
VRF1

PO

174

0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170

0871

0874
0876
0878
087a
087¢c
087e
0880
0882
0884
0886
0888
088a
088c
088e
0890
0892
0894
0896
0898
089a
089c¢
089%e
08a0
08a2

08a4

NVM.ASS5

0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210

08a6
08a8
08aa
O08ac
O8ae
08b0
08b2
08b4
08b6
08b8
08ba
08bc
08be
08c0
08c2
08c4
08c6
08c8
08ca
08cc
08ce
0840
08d2
08d4

08d6
08d8
08da
08dc
08de

3¢
b6
al
23
3f

5d 30

Sc
02
02
01
02
02
02
02
02
03
02
02

02
02
0s
02
02
06
02
07
02
02

30

FO BRSET 2,STAT,FINP IF NO ACK. THEN NO LED

LDX COUNT

BNE F1

BCLR 0,PORTC
F1l CPX #1

BNE F2

BCLR 1,PORTC
F2 CPX #2

BNE F3

BCLR 2,PORTC
F3 CPX #3

BNE F4

BCLR 3,PORTC
F4 CPX #4

BNE F5

BCLR 4,PORTC
FS CPX #5

BNE F6

BCLR 5,PORTC
Fé6 CPX #6

BNE F7

BCLR 6,PORTC
F7 CPX #7

BNE FINP

BCLR 7,PORTC

FINP BRA ouT

page 4

3 ek ok ok ke ok ok K o ok o ok ke e kR e ok sk ok ok ok ke k kK ke ok kX

*
* Verify (continued). *
* *
* B6 EPROM ($0101-$O1FF) v. NVM (300 - SFE). *
* *
e % Je v ok ok % e ok e ok ok 3k ok ke ok e ok ke ok ke ok ok ok ok ke ok ok ok o ok ok R o ok o ok ok Kk ke e ke ok R ke
PO LDX COUNT

BNE Pl

BCLR 0, PORTA
Pl CPX #1

BNE P2

BCLR 1,PORTA
P2 CPX #2

BNE P3

BCLR 2,PORTA
P3 CPX #3

BNE P4

BCLR 3,PORTA
P4 CPX #4

BNE PS

BCLR 4,PORTA
PS5 CPX #5

BNE P6

BCLR 5,PORTA
P6 CPX #6

BNE P7

BCLR 6,PORTA
P7 CPX #7

BNE ouT

BCLR 7,PORTA
ouT INC COUNT NEXT SOCKET

LDA COUNT

CMP #7

BLs vLP FINISHED ?

CLR PORTB YES, ALL CONTROL LINE LOW

175

0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230

08e0

08e2
08e4
08e5
08e8
08eb
08ed
08ef
08f2
08f4
08fé6
08f8
08fa
08fc
08fd
08fe
08ff

0900

db d7

NVM.AS5

0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242

0243

0244

0245

0246
0247

0248

0249
0250
0251

0252
0253
0254
0255
0256
0257
0258
0259
0260
0261

0262
0263
0264

0265
0266

0908
090a
090c¢
090e
0910

0912
0915
0918
091a
091c
091e
0920
0923
0925
0927
0929
092b
092d

092f

0932
0934
0937
0939
093c
093e

NVM.ASS

0268
0269
0270
0271
0272
0273
0274
0275
0276
0277

3f
5f
cd
04
bé
be
dl
26
3c
be
a3
26
98
81
99
81

a6
b7
aé
b7
b7

cd
04
b6

14
ad
cd
12
ad
3¢
be

26

cc

d7
10
cd
3f
81

fe

52

09

53
52
01
Oa
52
52
ff
e9

ed

ee
01
fe
00
02

09
5d
53
07
07
12
Oa
07
Ob
52
52
ff
e3

08

52
01
07
Oa
07

0278 093f 3f 52

92
13

01

eb e7 de dd

92
17

2d

01

33

BRA * AND WAIT HERE

VRF1 CLR SUBADR
CLRX

VLOOP JSR READ GET A BYTE FROM NVM
BRSET 2,STAT,FAIL ACKNOWLEDGE OK ?
LDA IOBUF YES, CHECK DATA
LDX SUBADR
cMp E2PR+1, X COMPARE WITH B6 EEPROM BYTE
BNE FAIL SAME ?
INC SUBADR YES, CONTINUE
LDX SUBADR
CPX #255 FINISHED (255 BYTES) ?
BNE VLOOP
CLC PASS, EXIT WITH C CLEAR
RTS

FAIL SEC FAIL, EXIT WITH C SET
RTS

TAB1 FCB $SEE, $ED, $EB, $E7, $DE, $DD, $DB, $D7

page 5
L2222 e e e e s s R 222222222 222222ttt dd]
* *
* NVM (#0, $00-SFE) ~> B6 EEPROM ($101-S1FF). *
* *

P2 e e s s it lisls)

LOAD LDA #SEE SELECT POSITION 0
STA PORTB
LDA #SFE POSITION 0 LEDS ON
STA PORTA
STA PORTC
ILooP JSR READ GET BYTE FROM NVM
BRSET 2,STAT, SKIP ACKNOWLEDGE OK ?
LDA IOBUF YES, GET DATA
BSET 1,EECTL SET E1LAT
BSET 2,EECTL SET E1ERA
BSR DOIT ERASE BYTE
JSR P10 WAIT 9.2 mS
BSET 1,EECTL SET E1LAT TO WRITE BYTE
BSR DOIT
INC SUBADR
LDX SUBADR
CPX #255
BNE ILOOP
SKIP JMP VERF
DOIT LDX SUBADR GET ADDRESS
STA E2PR+1,X LATCH DATA
BSET 0,EECTL START PROGRAMMING
JSR P20 WAIT 18.4 mS
CLR EECTL STOP
RTS
page 6

KRR K IR RI R I RT R IRRARRN KRR KKK KRR KRR KKK N R K KN R d kW kk ok

Debug routines for use with EVM, not used
in 805B6.

* % % % % %

*
*
*
RAM ($SFO0 - SFFE) -> B6 EEPROM ($101 - S1FF). *
*
*

L e e e e e s

WRT CLR SUBADR

176

0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329

0941

0942
0945
0947
0949
094b
094e
0950
0952
0954
0956
0958

095a

095¢
095e
0960

0962
0965
0967
0969
096c
096e

0970

0972
0974
0976
0978

0979
097c
097f

0981

NVM.ASS5

0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348

0001
0005

0006
0007
007£
00ff
003f

dé
12
14
ad
cd
12
ad
3¢
be

3f
a6
b7

cd
be
b6
d7
3c
26

3f
aé

S5f

dé

52
ee
01

09
52
53
of
52
f2

52
ee
01

0f
08
f8

fe

0983 13 5d
0985 b7 55

33

92

00

00
50

CLRX

LOOP2 LDA BUFF, X
BSET 1,EECTL SET E1LAT
BSET 2,EECTL SET E1lERA
BSR DOIT ERASE BYTE
JSR P20
BSET 1,EECTL SET E1LAT TO WRITE BYTE
BSR DOIT
INC SUBADR
LDX SUBADR
CPX #255
BNE LOOP2
BRA *

93 33 ok e ko o ok e ok e o o ok ok ook ok ok ok ke ok ok R ok e Kk ok Kk ok

* *
* NVM ($00 - S$FF) -> RAM ($0F00 - S$SOFFF) . *
* *

Fe e S de ok K o e ok 3 ok K ok e ok ek ok e ok e Rk ok e R K R kK kR ok kR ok

RDALL CLR SUBADR

LDA #SEE SELECT POSITION 0

STA PORTB
RLOOP JSR READ

LDX SUBADR

LDA I0BUF

STA BUFF, X

INC SUBADR

BNE RLOOP

BRA *
e vk d 3 de ke sk % ok ok e ok ke o I ok K ok ok ok ok o e ok ke ok ek e e ke T ok ke ok ok e ok ok R ok ok ok ok ok ok ok ok ok
* *
* RAM ($OF00 - $OFFF) -> NVM ($00 - SFF). *
* *

3 e ok 3 30 k3 kK ok ok o ke ok ok 3 3k ok ok 3k ok ok 3 3 ok T ok e o ok e ok ok Kk R ok e Kk

WRTAL CLR SUBADR

LDA #SEE SELECT POSITION 0

STA PORTB

CLRX
WLOOP LDA BUFF, X

JSR WR1

BNE WLOOP

BRA *

page 7

EHK KKK NI A IR AR A ANK I I I KRN KR KK AR Kk TR Kk ok kok okl ke ko hRk ke k
* *
* IIC routines. *
* *

e e ok e e ok ke ek ok ok o e ok e ok ok ok ok o ok ok ke ok ok 3k ok ok ok ok ok e ok ok K ok o R o K ok ok

1ICP EQU $01 PORTB

IICDD EQU $05 DDRB

SCL EQU $06 IIC - clock line
SDA EQU $07 IIC - data line
DIN EQU $7F INPUT DATA

DouT EQU $FF OUTPUT DATA

OPEN EQU $3F TRI-STATE BOTH

SEND BCLR 1,STAT WRITE IIC DATA
STA Wl SAVE No. BYTES TO SEND

177

0349
0350
0351
0352
0353
0354
0355
0356

0372
0373

0987

0989
098b
098d
098f

0992

0994
0996
0998

099%a
099c

099%e
09a0

09a2
09a4
09a6
09a8

0%aa

NVM.ASS

0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385

0412
0413
0414
0415
0416
0417
0418

09¢5
09c?

09c9
09cb
09cd
09d0
09d2
09d4
09d5
09d7

09d8
09da
09dc
09de
09e0
0%e2

13
b7

cd

1d
le
lc

a6
b7

Ob

5d
55

Oa

Sd

01

01

ff
05

2d

40

00

BRA

WRITE BCLR
STA
BSR
JSR

READ BSET

IICBUS BCLR
BSET
BSET

LDA
STA

BCLR
LDA

II1CD3 BCLR
BCLR
STX
BSR

BRCLR

IICBUS

1,STAT
wl
IICBUS
P10

1, STAT

SCL, IICP
SDA, IICP
SCL, IICP

#DOUT
IICDD

0, ADDR
ADDR

SDA, IICP
SCL, IICP
DPNT

SHIFT

1, STAT, WRBUS

page 8

WRITE TO NVM
SAVE No. BYTES TO SEND

9.2 mS NVM WRITE TIME
READ IIC DATA

CLOCK LOW

DATA HIGH

CLOCK HIGH

DRIVE
BOTH

RW = 0 ALWAYS WRITE (SUB-ADDRESS)
SEND CHIP ADDRESS

START CONDITION
DATA GOES LOW WHILE CLOCK HIGH

CHIP ADDRESS OUT

READ. OR WRITE ?

KK kKK Ok KK kK e K K ok ek ok ke ok ko ok ok ok S0k 3k ok ek ok ok ok ok e ok ok ok ek ok

*

*

* Send sub-address and read data from bus. *

*

*

e e ok ek ke kK ko R R K Rk Kk kR R KR ok R Rk ok o kR ok e R kK Rk e Kk

RDBUS1 LDA
BSR
RDBUSQ BSET
LDA
BSET
BSET
BCLR
BCLR
BSR

RDBUS3 LDA
STA
BSR

BSR
LDA
STA
BSR

* % % %

BSR
BRA

RDB LDX

RDBUS2 BSET
BRSET
BCLR
ROL
DECX
BNE
RTS

RACK BSET
RA2 LbA
STA
BSET
BCLR
BCLR

SUBADR
SHIFT

0, ADDR
ADDR
SDA, 1ICP
SCL, 1ICP
SDA, IICP
SCL, 1ICP
SHIFT

#DIN
1ICDD
RDB

RACKF
IOBUF
IOBUF+1
RDB

RACK
IICEND

#8

SCL, IICP
SDA, IICP, *+3
SCL, IICP
IOBUF

RDBUS2

SDA, TICP
#DOUT
1ICDD
SCL, IICP
SCL, IICP
SDA, IICP

178

WRITE SUB-ADDRESS
SET BIT 0 FOR READ
CHIP ADDRESS

BOTH HIGH, NO

STOP CONDITION
START CONDITION

RE-SEND CHIP ADDRESS

DATA IN FROM BUS

READ 8 BITS

DUMMY ACKNOWLEDGE
MOVE

up

AND READ 8 MORE

CLOCK HIGH
DATA LINE (RESULT IN CARRY)
CLOCK LOW

LAST BYTE READ : SDA HIGH
SDA OUT

DUMMY ACKNOWLEDGE

CLOCK

0419 09%e4 a6 7f LDA #DIN SDA IN

0420 0%e6 b7 05 STA I1ICDD

0421 09e8 81 RTS

0422

0423 09e9 1f 01 RACKF BCLR SDA, IICP ACKN. WITH FOLLOWING BYTE
0424 09%eb 20 ed BRA RA2

NVM.AS5 page 9

0426

0427 o ¥ ok e ok e vk e ok e ok e o ke o ok ok ok o ok ok i o e o ok o e ok ke o ok ok R Tk ok ok ok ok ok o ok ok o ok ok b ok
0428 * *
0429 * Send sub-address and write data onto bus. *
0430 * *
0431 e o e ok ok ok R ok K o ok ek ok ok ko o ek e o e ok ok ek e ok R Rk e R K K R Kk
0432

0433 09ed be 51 WRBUS LDX DPNT DATA BUFFER POINTER

0434 09ef f6 LDA 0,X DATA

0435 09f0 ad Of BSR SHIFT

0436 09f2 3c 51 INC DPNT

0437 09f4 3a 55 DEC Wl No. BYTES

0438 09f6 26 f5 BNE WRBUS

0439

0440 09f8 1c 01 IICEND BSET SCL, IICP STOP CONDITION

0441 09fa le 01 BSET SDA, IICP DATA GOES HIGH WHILE CLOCK HIGH
0442 09fc a6 3f LDA #OPEN TRI-STATE

0443 09fe b7 05 STA IICDD

0444 0a00 81 RTS

0445

0446 e g de o ok % ek ok o ok o e ok o o ok e K ok o o ok o ke o S ok o ok ok ok ok ok ok ok ok ok ok ok ok o ok ok kK ok
0447 * *
0448 * shift out 8 bits and check acknowledge bit. *
0449 * *
0450 e o e e e ok v vk ok ok ok o gk ok ok ok o ok ok Sk 3k 3k ok ok sk o ok ok ok ok ok o ok ok ok sk O ok ok ok o ko ok
0451

0452 0a0l1 ae 08 SHIFT LDX #8

0453 0a03 49 SHIFT1 ROLA

0454 0a04 24 04 BCC SHIFT2 SHIFT OUT 8 BITS 0 2
0455 0a06 le 01 BSET SDA, IICP NO, DATA =1 .
0456 0a08 20 04 BRA SHIFT3

0457 0ala 1f 01 SHIFT2 BCLR SDA, IICP DATA = 0

0458 0alc 20 00 BRA SHIFT3 DELAY

0459 0Oale 1c 01 SHIFT3 BSET SCL, IICP CLOCK HIGH

0460 0al0 1d 01 BCLR SCL, IICP CLOCK LOW

0461 0al2 1f 01 BCLR SDA, IICP DATA LOW

0462 0Oal4 5a DECX

0463 0al5 26 ec BNE SHIFT1

0464

0465 0al? a6 7f WACK LDA #DIN WRITE ACKNOWLEDGE

0466 0al9 b7 05 STA 1ICDD

0467 Oalb 15 5d BCLR 2,STAT CLEAR FLAG

0468 0ald lc 01 BSET SCL, IICP CLOCK

0469

0470 Oalf Of 01 02 BRCLR SDA, IICP, ACOK ACKNOWLEDGE OK ?

0471 0a22 14 5d BSET 2,STAT NO, SET FLAG

0472

0473 0a24 1d 01 ACOK BCLR SCL, IICP

0474 0a26 1f 01 BCLR SDA, IICP

0475 0a28 a6 ff LDA #DOUT

0476 0a2a b7 05 STA I1ICDD

0477 Oa2c 81 RTS

NVM.ASS page 10

0479

0480 TR KKK AR AT IR K IR NI I A AN KKk Kk RN Nk kdededekh ke ke kR kKR kKK k
0481 * *
0482 * Delay (W2 x 2.3mS with a 2MHz bus). *
0483 * *
Oqsh ek e ok e e s e o ek ke I e e ke e e ke I ke ok o e e e o o o ok ok ke o o 3k ok ok ok ok ok ok e ok ok
0485

0486 0a2d ae 04 P10 LDX #4 9.2 msS

179

O0a2f
0a3l
0a33
0a35
0a37
0a38
Da3a
0a3b
0a3d
0a3f
0ad1

1f£2

1ff2
1ff4
1ff6
1f£8
1ffa
1ffc
1ffe

bf
20
ae
bf
5f
ad
Sa
26
3a
26
81

08
08
08
08
08
08
08

56

08
56

07

fb
56
fé

00
00
00
00
00
00
00

STX
BRA
P20 LDX
PN STX

TPAU CLRX
DLOOP BSR
DECX

DEC
BNE
DALLY RTS

w2
TPAU
#8
W2

DALLY
DLOOP

w2
TPAU

18.4 msS
12
3 15

3 18 18x256/2=2304us

kK kKRR I KA KKK KT IR KR IR K kI Rk kdekkk Rk ok dk ke k W kdk ok

*

* B6 reset and interrupt vectors.

*

*
*
*

e e ke e ok o ok K o e o ok R R Ok W ok Tk K kK ok ek ok ok ke ok

ORG

FDB
FDB
FDB
FDB
FDB
FDB
FDB

END

$1FF2

START
START
START
START
START
START
START

180

SCI

TIMER (OVER)
TIMER (OUT CMP)
TIMER (IN CAP)
IRQ

SWI

RESET

ANA448

“FLOF"” Teletext using M6805 Microcontrollers

By Peter Topping
MCU Applications
Motorola Ltd, East Kilbride

1. INTRODUCTION

The “T" members of the MC68HCO5 family of MCUs provide a convenient and cost effective method of adding
on-screen-display (OSD) to TVs and VCRs. As well as the 64-character OSD capability, they include 8 Kbytes of
ROM (adequate for Teletext, frequency-synthesis, stereo and OSD), 320 bytes of RAM, a 16-bit timer and 8 pulse-
width-modulated D/A converters. The MC68HCO5T7 also includes lIC hardware and, by using a 56-pin package,
4 ports of I/O independent of the OSD, serial and D/A outputs. Itis thus suitable for large full-feature chassis.
The MCB8HCO5T1 is in the middle of the price/performance range and includes most of the features of
the MC68HCO05T7 butin a 40-pin package. This is achieved by sharing I/O with the other pin functions (SPI, OSD,
D/A). Even if all these features are used, there is sufficient I/O for most applications.

The MC68HCO05T2 is a 16K upgrade of the MC68HCO05T1 and the MC68HCO5T3 a 24K version with increased
RAM (512 bytes) and enhanced OSD (112 characters and 2 rows of OSD buffer). The low cost MC68HCO05T4
has 5 Kbytes of ROM and 96 bytes of RAM making it suitable in simpler (eg mono, non-Teletext) applications.
The T4 and T7 also include a 14-bit D/A converter to facilitate voltage synthesis tuning. There are EPROM (and
OTP) versions of the T3 (including T1 and T2 emulation), T4 and T7.

This application note describes an example of Teletext control software written for the MC68HCO05T7 which
directly controls Teletext chips of the type 5243. Spanish FLOF Teletext (level 1.5) is handled using packet X/26.
If no CCT teletext chipis present on the liC bus (as indicated by the lack of an acknowledge), all Teletext functions
are disabled in software. About 3Kbytes of ROM are used allowing the code to fit into the 7.9K bytes available
in an MC68HCO05T7 along with tuning, OSD and stereo functions.

The software in the included listing has been written for the MCE68HCO5T7 but could, with a little modification,
be implemented on other M6805 microcontrollers. A microcontroller without 1IC hardware can be used as long
as additional software is included to facilitate the 1IC bus using I/O pins. An example of [IC master I/O driven
software can be found in application note AN446.

2. “FLOF” TELETEXT FEATURES

Full Level One Feature (FLOF) Teletext utilises “ghost” packets to provide features in addition to those available

with the original CCT Teletext. The primary enhancement is the provision of a menu with a choice of four linked

pages selectable by the user with a single press of one of four coloured buttons on the remote control. The menu

itself is sent in the ghost page using packet 24 while the linked page numbers are contained in packet 27. In

addition to linked pages, packets 26 and 30 are used. Packet 26 allows for the substitution of selected characters
in the display by special characters specific to a particular country. This example application includes the Spanish

implementation of packet 26. The broadcast service data packet (8/30) is used to get the initial (index) page for’
each channel and to display station identification information.

181

“Ghost” packets handled
X/24 :

The FLOF menu information contained in this page extension packet is transferred by the microcomputer to
row 24 of the display chapter. When links are disabled because there is no packet 27 (destination code 0) or when
bit 4 of byte 43 is 0, row 24 is blank.

X/26 :

Optional handling of modes 1xxxx, 01111 and 00010 in accordance with the Spanish Teletext specification. All
the additional characters which are available in the 5243 CCT chip are handled. The feature can be disabled with
a hardware link on an I/O pin (see figure 1) so that the software can be used at level 1.0 in non-Spanish countries
also using packet 26.

X/27 :

This packet contains the linked page numbers for the red, green yellow, blue and index (black) keys. Bit 4 on the
link control byte (byte 43) is used to determine if these links are enabled (1) or disabled (0). When enabled, the
Spanish specification requires that bits 1, 2 and 3 be used to enable the green, yellow and blue links respectively.
This use of these bits is not defined in the World Teletext Specification. For this reason their use is selectable by
a hardware link (see figure 1). If these bits are not used, all links (if enabled by bit 4) will be taken from packet 27
but will be automatically disabled if the broadcast links are default (FF3F7F) or invalid.

8/30 :

The broadcast service packet is used to supply the index page number on exit from standby and (if teletext is not
stopped) after a channel change. Bytes 10-30 of this packet are displayed for 5 seconds on exit from standby and
(if teletext is not stopped) after a channel change.

3. IMPLEMENTATION

The software listing is in two parts. The first part contains the “idle” loop and lIC routines from the main TV control
part of the MC68HCO5T7 application. The idle loop controls the timing of everything performed by the
microprocessor, scans the local keyboard, checks whether or notan IR command has been received, etc. It also
monitors the relevant flags in the Teletext chip and performs the tasks (eg fetching linked pages) which have to
be performed independently of requests for the user.

The second and main listing is the Teletext module itself. It contains all the subroutines required to carry out
automatic and user requested Teletext activity. Both modules use the same RAM allocation file (RAMT8.505)
which is included in the listing of the Teletext module. This listing also includes a symbol cross-reference table.

Figure 1 shows a simplified circuit diagram of the application. Most of the MC68HC05T7's /O is used for purposes
other that Teletext and is not shown in detail. Communication with the 5243 Teletext chip is via an |IC bus in which
the T7is always the master. The function of the three I/O pins used for Teletext is described under “ Ghost packets
handled” and “Inputs and Outputs”.

A version of this Teletext software has been implemented on an MC68HCO05C4 for use in a TV where the other
control functions were handled by a separate microcontroller. The signal from the IR pre-amp was fed int6 the
C4 which used Teletext commands to control a 5243 via a software 1IC bus. Non-Teletext commands were re-
generated by the C4 and sent to the other microcontroller. This arrangement allows Teletext to be added to a
chassis which was originally designed without considering Teletext.

182

0.S.D., Local keyboard,

Analogues, Standby, Mute, 5v)
Stereo, AV, etc. Contrast Reduction

\S Al

2 x 22pf 110 N\
0S¢ scL>—s—scL N\
5243
= SDA SDA tes.
> MCM6264)
osc2 v
4MHZ 10M
MC68HC(7)05T7
I.R. N Picture
Pre-amp TCAP PB3 Control
r 5231
PB6 PB7
A
5V
® [XX
[0 o o | 3 Video
L—-————o

Link control jumpers
v

Figure 1. MC68HC(7)05T7 - Teletext application circuit

4. IDLE LOOP

In the example application the idle loop code is in the main TV control software module rather than in the teletext
module. Listing 1 shows the relevant parts of this module. The loop time is 12.8mS and it is at this rate that the
timing counters used by Teletext (CNT1 and CNT4) are incremented. The standby condition is checked first; if
the TV set is in standby then there is no |IC activity and hence no reading from, or writing to, the 5243. If the TV
has just exited from standby, as indicated by the flag 3,STAT2, then Teletext is initialised using the sub-routine
RESTRT. This sub-routine writes to the 5243’s control and mode registers (R5, R6 and R7) and checks that the
1IC acknowledge is present. If there was no acknowledge, as indicated by flag 6,STAT7, then no further Teletext
activity is attempted.

If an acknowledge is present, Teletext polling goes ahead, although it is suspended if there is a mute or time
display. A mute indicates that the channel has just been changed, or no channel is tuned. During time display,
all other Teletext activity is suspended. Re-initialisation using sub-routine START2 is performed if flag 7,STATS
is set by a change of the tuned frequency.

183

Counter CNT4 is used to delay the transfer of packets 24 (page extension — FLOF menu), 27 (links), 26 (enhanced
display characters) and the control bits from row 25 (display page) after the initial arrival of a page. When row 24
is read the 5243 FOUND flag is setto indicate that the arrival has been acted upon. If UPDATE is on then an update
indicator appears if the update control bit (C9) is set or if the sub-page has changed or if it is the first arrival of the
page. The update display is performed by the sub-routine ARRVD which clears the transient flags and enables
the required display, i.e. page no. in normal mode and the whole of row 0 in sub-page mode. Any boxed
information (eg sub-titles or newsflash) in the current page is also displayed. The last Teletext function performed
by the idle loop is the checking of the FOUND flag in the 5243. This is accessed via the IIC bus:; it is on the last
(not displayed) row of the display page along with the current page and sup-page numbers and the control bits.

If there is a current Teletext transient (time, row 0 box or packet 8/30), the transient control branch from the idle
loop is executed. This routine checks to see if it is time to end the transient. If it is, the subroutine OSDLE is
executed. It resets transients for both the OSD generated by the MC6BHCO05T7 and Teletext. The sub-routine
RSTMD2 performs this function for Teletext. Itis called from within the sub-routine OSDLE (not listed).

5. REMOTE CONTROL FUNCTIONS

TV/TXT

Toggle between TV & Teletext mode.

0-9

Number keys for entry of page and sub-page numbers
Red, Green, Yellow, Blue

Linked page access keys. The decoder stores four pages of text. These are the display page and the three pages
corresponding to the red, green and yellow links. The blue linked page is notacquired in advance. In the absence
of FLOF data or if the links are disabled by the control bit in packet 27, the red key is page+1 and the green key
page-1. Under these circumstances the requested page and the next three pages are acquired.

PC+/-

These keys always select page+1/page-1 regardless of the availability of FLOF information. As with the red, green
and yellow keys, the page is displayed immediately if it is already in RAM.

INDEX

This key operates as an additional link with the difference that if the link is invalid the initial page from packet 8/
30 is selected.

SUB-PAGE/TIME

Text mode: Enter sub-page mode, (max. 3979). TV mode: Display time in top-right-hand corner for 5 seconds.
Pressing this key during a station identification display (packet 8/30 bytes 10-30) can be used to extend this display
beyond the five seconds it appears for, after a channel change.

STOP

Halt acquisition, “STOP" is displayed instead of page number. Press again to restart. If acquisition has been
stopped by partially entering a new page number then this key can be used to return to the original page.

184

MIX/NO-MIX

Toggle between Teletext and mixed display. Use of this key causes the display of the top status row for 5 seconds
ifitis not being displayed because the current page is a newsflash or a sub-title. 5243 contrast reduction is enabled
in mixed mode.

FULL/TOP/BOT

Selects one of the three display formats, ndrmal, top half enlarged, bottom half enlarged.
REVEAL

Reveal hidden text, toggle action.

UPDATE .

Return to picture until a new version of the requested page arrives. When it arrives, its page no. is displayed in
the top-right-hand corner, the key operates in both TV and Teletext mode, set is put into TV mode. Any boxed
information (alarm clock, newsflash or sub-title) will be displayed. In sub-page mode the complete header is
displayed so that both page & sub-page numbers can be seen. Cancel update by entering Teletext mode and then
going back to TV mode by pressing the TV/Text key twice.

6. TELETEXT SUBROUTINES

Ga. Subroutines: TVTX, UPDATE, DIGIT0 and GETIT

The Teletext module (listing 2) comprises various sub-routines which are used both by theidle loop and to perform
any Teletext actions initiated by commands from the IR remote control. They are described in the order in which
they appear in the listing.

TVTX is executed when the TV/TEXT button is pressed. Its function is to toggle between TV mode and Teletext
mode. The flag 0,STAT indicates the current mode. This flag routes the microprocessor to execute either TXTOFF
or TXTON according to the current mode. TXTON checks that Teletext hardware is present and does nothing if
there has been no |IC acknowledge. If, however, a 5243 is present in the TV, it clears all transients (OSDLE) and
sets up the Teletext mode. It initialises the control registers (R5 and R6) to display text and background both in
and out of boxes. For newsflashes the set-up is text and background within boxes and picture outside. TXTOFF
also resets transients but forces TV mode and sync. Polling and updating continue as a background activity.

When the UPDATE key is pressed the update flag 4, STAT2 is set and TXTOFF executed so the TV is forced to
TV mode. If there is a current transient hold (eg time), the hold is cleared before TXTOFF is executed.

The number entry sub-routine DIGITO branches to DIGITS in sub-page mode but otherwise accepts any number
key as a page number input. Three digits are required, the pointer PDP holding the current position (0, 1 or 2 for
hundreds, tens or units). During entry the flag 2,STAT is set to stop Teletext activity. The numbers have to be
written to the top-left-hand corner of the display page as well as saved in RAM. Once all three digits have been
entered the page is requested and page acquisition restarted.

The code at label GETIT makes this request after first checking whether or not the selected page has already been
requested (it could be the current display page or an already requested linked page). If it has, then a switch is made
to the chapter associated with the appropriate acquisition circuit and no new requestis generated. If not, the new
request is made and the FOUND flag set.

185

6b. Subroutines: Colours, INDEX, NPAGE and PPAGE

The four colour keys (Red, Green, Yellow and Blue) are primarily intended for selecting Teletext linked pages.
When pressed the chapter which corresponds to the apnropriate acquisition circuit is selected for display. If links
are disabled (by the link control bit or because there is no packet 27), then the RED and GREEN keys select current
page +1and-1respectively. This choice is taken according to the state of flag 3, STAT3 which reflects the condition
of the link control bit in packet 27. The code executed by RED, if links are notin use, is the same as that executed
by the “+" function (NPAGE) which always selects the next page. Similarly the alternative GREEN function
(PPAGE) is the same as for the “-" key. The YELLOW and BLUE keys do nothing under these circumstances. In
Spanish Teletext the GREEN, YELLOW and BLUE links can be individually inhibited, but the RED link is only
inhibited if all links are off.

The chapter associated with the selected page is displayed immediately if it has already been requested. This will
normally be the case if a linked page (red, green or yellow) has been selected. The code at label LPT is executed
if the page has already been requested. If not, a jump to CLRPD is performed. CLRPD is a label within DIGITO;
the code at CLRPD requests a new page just as if the page number had been entered manually. If the required
acquisition circuit is the one already current, then the “unstop” code is executed. This causes the green page-
being-looked-for header to roll as though the page number had just been entered. This means that something can
be seen to happen in the case where the linked page differs only from the current page in its sub-page number.
Linked sub-pages are not fully supportedin this implementation as they are rarely used by broadcasters and would
significantly increase the size of the software. When the chapter is changed the Teletext PBLF (page being looked
for) flag is checked. If it is low the FOUND flag is cleared. This forces the fetching of the links associated with
the new display page. If the page is not already in, this will automatically happen when it arrives so the FOUND
flag does not need to be cleared.

The BLUE (or cyan) key is different in that its page will not normally be immediately available (the four pages:
display, red, green and yellow occupy the four acquisition circuits and RAM chapters).

The INDEX (or black link) function is similar to BLUE except that if its link is not valid it defaults to the initial (index)
page number supplied by packet 8/30 (see sub-routine GIP).

6c. Subroutines: LINK, GLP1, GLP2, SRCH, CHCK1 and NOTOKx

The sub-routine LINK allocates the three linked pages (RED, YELLOW and GREEN) to the three free acquisition
circuits (not in use by the display page). To do this it checks the page numbers in turn to see if they have already
been requested. If so they are left in their current acquisition circuit. If they have not already been requested the
page number is put into a LIFO. Only 0-9 are regarded as acceptable digits for page numbers; this is consistent
with the Spanish specification although the additional HEX numbers (A-F) may be used experimentally or by
Teletext page generators. Within this first loop the sub-routine GLP1 is used to get the linked page numbers from
packet 27, perform a decode of the Hamming encoded data and calculate the new magazine number (page
hundreds) if different from that of the display page. GLP1 uses sub-routine SRCH to check if the page has already
been requested. If there are no links, or if links are disabled, then displayed page +1, +2 and +3 are requested.

The second loop in LINK allocates new page numbers to the remaining unused acquisition circuits. It uses GLP2
to clear the relevant chapters in the Teletext memory and make the new requests. Subroutine CHCK1 is used
to check whether or not an acquisition circuit is in use before it is loaded with a new page number from the LIFO.

This method of organising new page requests prevents unnecessary requests being made for pages already
requested. This is particularly important when links are disabled and pages are being requested using the “+"
or “-" functions. Under these circumstances when the page number is incremented (or decremented) only one
new page has to be requested (new display page+3), while page, page+1 and page+2 do not need to change and
can be left in their current acquisition circuits.

186

NOTOK3 and NOTOK2 handle the RED and GREEN functions when links are disabled. They are disabled if the
link control bit{packet 27 bit 3, byte 43) is zero or if there is no packet 27. These subroutines respectively increment
and decrement the current page number (units and tens). The current magazine number (page hundreds) is
not affected.

6d. Subroutines: ROW24, W2B, R2B, GCYI, CLINK and DECODE

ROW24 is used to transfer ghost row 20 (packet 24) into the display chapter. This has to be done via the IIC bus.
The loop reads two bytes via the IIC (sub-routine R2B) bus from the ghost page and writes it to the display page
(sub-routine W2B). The FOUND flag is then set to indicate that the arrival of the page has been recognised and
acted upon. This sub-routine is only called by the idle loop and is used along with the other sub-routines which
get information from the ghost page (CLINK, LINK and GET25).

R2B and W2B use IIC routines READ and SEND which are outwith the Teletext module. These subroutines will
differ according to the microprocessor in use. An MC68HC05C8 implementation would need to use I/O lines (see
reference for suitable software) while the MC68HCO5T7 can use its |IC hardware. The routines used in this
example are included in the listing extract from the TV control software module (listing 1).

The sub-routine GCYI is used by LINK to store the data associated with the BLUE an INDEX links. As explained
above, these pages will not be acquired in advance, the page number only being sent to an acquisition circuit if
requested by an IR command.

CLINK fetches the link control byte from packet 27 if the destination code is OK and, after decoding the Hamming
encoded data, transfers the bits to STAT3.

The Hamming decode sub-routine DECODE corrects for single bit errors. This is done with in-line code using the
table HAM (at the end of listing 2) as this uses less ROM than an algorithmic method.

6e. Subroutines: MIX, TRANx, TXTx, HOLD, and NOHOLD

The mixed display capability of the Teletext chip (5243) is toggled using an IR key which calls the sub-routine MIX.
When mixed mode is entered, interlaced broadcast sync. (312/313) is selected because the non-interlaced sync.
used for teletextis notsuitable ifa TV picture is presenton the screen. Thisis set up via the 5243 mode register R1.
The control registers R5 and R6 are updated to provide the mixed display.

When returning to a non-mixed display, the code at NOMIX is used to re-configure the control registers and to set
up a Teletext only 312/312 non-interlaced sync. This sync. reduces adjacent line flicker in a pure Teletext display.

The subroutine TRAN2 sets up a transient which retains a black background on the top row so that the page
number, time etc. can be seen clearly. This type of transient is also started if the page number or sub-page number
is being entered in mixed mode. Sub-routines TRAN1, TRAN2 and TRAN3 are used to initialise the various
transient displays. These displays are cancelled as discussed above by actions taken within the idle loop controlled
by the free-running timer within the MC68HCO05T7.

The TXTx sub-routines are used in conjunction with the IIC SEND routine to write to various sub-sets of the
registers within the 5243.

If the Teletext STOP function is requested by an IR command the routine HOLD is executed. This is a toggled
function when requested in this way. HOLD displays the word “STOP” in place of the page number and stops
the display acquisition circuit by clearing the 5243 HOLD flag accessed via its page request register R3.

NOHOLD is executed to restart the display acquisition circuit. It returns the page number to the top-left-hand
corner. If a new page number has been partially entered, a press of STOP (executing an UNHOLD) will allow a
return to the most recent page request. This takes only a single press as the start of the entry of a new page
number cause a HOLD. The completion of a page number entry (3 digits) causes a NOHOLD.

187

6f. Subroutines: REVEAL, EXPTB and TIME

The REVEAL function causes any hidden display information to appear. Itis controlled by a bit in the display mode
register (R7). The software example leaves any revealed information permanently displayed. If, however, it is
required that such information disappear when the page is updated (this may be better for a quiz page), then the
two commented out lines (80 and 81) in the idle loop should be enabled.

The display expand facility is controlled by another two bits in R7. The EXPTB sub-routine cycles through normal,
top-half double height and bottom-half double height.

The example application uses a single IR key (subroutine TIME) for both the display of the Teletext clock and the
entry into sub-page mode. IF the set is in TV mode then the time is displayed for 5 seconds. If the TV is in Text
mode then sub-page mode is selected. Sub-page number entry is described in the following section. When the
Teletext clock is requested it appears (boxed) at the top-right-hand corner. Itis removed by the idle loop 5 seconds
after the last press of the time button. When the time is being displayed all other Teletext activity is stopped
using UCHOLD.

6g. Subroutines: DIGITS, SUBPG, GET25 and GET26

DIGITS is the sub-page version of DIGITO and uses similar code. More checks on the input data are required as
the four digits of the sub-page number have different maximum values. These maximums are 3 for thousands,
7 for the tens and 9 for the hundreds and units. These values reflect the sub-page number’s original use as a time
(24hr format). For tens and thousands a keyed 8 becomes a 0 and a 9 becomes a 1; for thousands only 4, 5, 6
and 7 become 0, 1, 2 and 3 respectively.

The code at the label SETIT is the sub-page equivalent of GETIT, described above. It requests the new sub-page
and sets the FOUND flag.

The sub-routine SUBPG is called when the TIME (or clock) key is pressed (TV in Teletext mode). It toggles
between normal mode and sub-page mode. When sub-page mode is entered the page number display (P—) is
replaced with **** to indicate the mode change and to prompt for the entry of a sub-page number. Once all four
digits have been entered the new sub-page is requested by SETIT. The code at the label RSTR is used to exit from
this mode back to the normal (page number) mode, restoring the page number display to the top-left-hand corner.

GET25 is used by the idle loop to get the information stored in row 25 of the display chapter. This row is not
displayed but contains various information used by the control microprocessor. The current page number,
magazine number, sub-page number, Teletext control bits and the FOUND and PBLF flags are available. GET25
gets the required information and stores it in the RAM of the MC68HCO5T7.

At the end of this sub-routine the I/O line 7,portB is checked. If it is low, packet 26 is handled. If it is high, this
packet is disabled. This would be required if this application were to be used in a country other than Spain which
used packet 26. It would require to be switched off as the enhanced display feature uses different characters
depending on the country. In countries which do not use packet 26 (eg the UK) it does not matter whether or not
packet 26 is enabled.

If packet 26 is enabled, GET26 processes all packet 26 data present in the ghost page. The tables G2TAB, G3TAB
and CTAB contain the characters used to replace the character at the display location defined by each packet.

188

6h. Subroutines: GIP, R24T and SR24T

The sub-routine GIP gets the initial (index) page from packet 8/30. It will be doing this as the set is brought
out of standby or just after a channel change. It may thus initially get a poor signal {or there may be no
Teletext) so it tries repeatedly until it finds a valid packet 8/30 format 1. If this is not found after 96 tries it
gives up and sets the flag 6,STAT2 to indicate that there is no packet 8/30 (or no Teletext). In this
circumstance it defaults to an index page number of 100.

R24T transfers bytes 10-30 of the broadcasting service data packet (8/30) into the display chapter. It is called once
a second for five seconds after power-on or a channel change. The data is transferred to row 0 of the display page
which can be displayed either at the bottom or, as in this example, the top of the screen. This transient display
is setup using the sub-routine SR24T if Teletext is present. If the flag 6, STAT2 has been set by GIP as described
above then SR24T does nothing. The transient display is terminated by code executed at the appropriate time
from within the idle loop.

7. INPUT AND OUTPUTS

Apart from the 1IC bus, only three pins on the controlling microprocessor are relevant to Teletext. Two inputs
select the usage of packets 26 and 27 and one output can be used to control any hardware which requires to be
changed according to whether or not there is a TV picture currently being displayed. In many applications some
or all of these functions will not be required and could be eliminated from the software thus freeing up the pins
for other uses.

PB3)

This pin is active (high) during a pure (no-mixed, no-boxed) teletext display, otherwise it is low.

PB6)

When this pinis low, Spanish use of link control bits 1, 2 and 3 is enabled. When itis high, these bits are ignored.
PB7)

Packet 26 control. When low, packet 26 is enabled and handles all the Spanish alternate characters which are
available in the 5243. When PB7 is high, packet 26 is ignored.

8. REFERENCES

Application note AN446, MCM2814 Gang-programmer using an MC68HCO5B6.

189

00000000
00000003
00000005
00000007
00000009
0000000c
0000000f
00000011
00000013
00000016
00000018
0000001a
0000001c
00000011
00000022
00000025
00000028
0000002b
0000002e
00000031
00000034
00000037
00000032
0000003¢c
0000003f
00000042
00000044
00000046
00000048
0000004b
0000004e
00000051
00000054
00000057
0000005a
0000005¢c
0000005e
00000060

©00000062

00000064
00000066
00000068
0000006b
0000006e

00000070
00000072
00006075
00000078

00000070
0000007d
0000007f
00000081
00000084
00000086
00000588
0000028a
0000008d
0000008f
00000091
00000093

00000096
00000099

0000009c
0000009f
G00000a2

£00000a4
00C000a6
©00000a8
400000ab
000000ad
000000af
000000bl
000000b3
0C0000b6
000000b3
000000bc
000000be
000000c1
000000c3
000000cS
000000c7

0d13fd
>3¢00
>3c00
>3c00

>1000

>3£00
>04008b
>060088
>090085

>b600

>cc0000

>cd0000
>cc0000

>010003
>cd000C
>1500

>1900
>1900
>0b0011
>1b00
a603
>b700
>b700
>cd0000
>040003
>cdd000
>1100
>000006
>b600
>b700
>3£00
>cc0000

LISTING 1

aensansane aane wan
. .
* Idle loop. *
. .
rrannans senananan
P BRCLR 6,TSR,* OQUTPUT COMPARE FLAG
INC CNT1 TELETEXT TRANSIENT
INC CNT4 ROW 24 DELAY
INC CNTS MUTE TRANSIENT
JSR KBD KEYBOARD & TIMERS
BRCLR 1,PORTB, FON STANDBY ?
BSET 3,STAT2 MAKE SURE FLAG AGREES
BRA F1 AND IDLE WITH NO IIC ACTIVITY
FON BRCLR 3, STAT2, ALRON NO, JUST ON ?
BCLR 3,STAT2 YES, RESTART
BCLR 2,STAT2 CLEAR THIS FLAG ALSO
BCLR 7,STATS RE-INITIALISATION NOT NECESSARY
JSR RESTRT
ALRON JSR VCRPOLL POLL SCART LINES
BRSET 1,STAT2,F1 REMOTE REPEATING ?
BRSET 1,STAT4,F1 LOCAL REPEATING ?
BRSET 6,STAT?,F1 TELETEXT CHIP ON BUS 2
BRSET 2,STAT2,F1 SEARCH/STANDBY ?
BRSET 5, STAT, F1 TIME DISPLAY HOLD
BRSET 3,STAT4,F1 TRANSIENT MUTE ?
BRSET 6, STAT4,F1 COINCIDENCE MUTE 2
BRCLR 7,STATS, DNTRS TO BE RE-ITIALISED 2
BCLR 7, STATS YES, CLEAR FLAG &
JSR START2 RE-INITIALISE TELETEXT
DNTRS BRCLR 0,STAT2,NO24
LDA CNT4 PAUSE WHILE P