
MOTOROI.A
Semiconductor Products Inc.

AN-8S0
Application Note

MULTI-PROCESSOR CONTROLLER
USING THE MC6809E AND

THE MC68120
Prepared by

David L. Ruhberg
and

Michael C. Wood
Microprocessor Applications Engineering

Austin, Texas

As the demand for system performance increases, the
design engineer is faced with the task of providing additional
throughput. To obtain the increased performance, system
flexibility should provide for additional expansion without
the need for total redesign of the existing system. Two alter-
natives are available to the designer in developing any
microprocessor system: single processor and multi-processor.
This application note investigates both alternatives and
describes a basic multi-processor system using Motorola's
MC6809E and MC68I20.

The single processor system is the more common approach
in use, since one micro processing unit (MPU) typically has
been able to handle the system performance requirements.
Hardware and software are both simpler with only one MPU
on the bus; however, as system performance requirements
continue to increase, the design engineer is faced with the job
of either upgrading the system or redesigning a complete
system. The characteristics of a single processor system
should be reviewed before jumping into another single pro-
cessor system redesign. Basically, the total growth of the
single processor system is limited to the throughput rate of
the MPU, so all future tasks and expansions must be taken
into account at design time to avoid another complete system
redesign. An MPU capable of handling all of the anticipated
expansion must be selected. Thus, the MPU will not perform
anywhere near its rated peak efficiency until the system is ex-
panded. In any area where rapid system expansion is an-
ticipated, the single processor system is a temporary solution
at best.

The multi-processor configuration can eliminate the ex-
pansion problems which are present in a single MPU design.
An interface containing a bus arbitrator and data transfer
area common to both MPU buses could keep the buses
separate and also allow the two systems to communicate.
Thus, the simplicity of single bus systems can be maintained

while obtaining the expansion capabilities of the multi-
processor system. By adding more of these interfaces, the
system expansion occurs by simply adding peripherals to an
MPU bus. Two features utilized by the Motorola MC68I20
Intelligent Peripheral Controller (IPe) provide the bus ar-
bitrator and data transfer area for a multiple MPU system
just described. These features are six semaphore registers and
128 bytes of dual-ported RAM. With the MC6809E MPU
operating the system bus (master) and the MC68I20 contain-
ing the system bus interface, as well as the CPU controlling
the local bus (slave), the system now has the best features of
both the single and multi-processor approaches.

TRADITIONAL MPU MULTI-PROCESSING
One of the most common multi-processor schemes has

been a bi-phase technique in which both processors operate
from opposite phases of a system clock (see Figure 1). The
memory and peripherals are accessed during each MPU clock
high time. This scheme has the benefit of lower costs due to
the presence of only one bus; however, some of the cost sav-
ings may be consumed in circuitry required to synchronize
the clocks and in buffers required to prevent bus contention.
In order to debug the bi-phase system, most of the hardware
and software in both of the MPU systems must be working.
Also, care must be taken when all resources are available to
both processors, as in this bi-phase configuration, to avoid
inadvertently clearing status flags or making changes in
RAM. The major drawback to this system is that the system
is limited to two MPUs.

The multiple bus configuration can simplify or eliminate
most of the constraints and limitations of the bi-phase ap-
proach (see Figure 2) provided a simple bus arbitration
scheme is available. The debugging of this type of system is
simplified since one bus can operate independent of the
other, except when the buses need to communicate with each

Memory
and

Peripherals

MPUl
Clock

MPU2
Clock

MPUl MPU2
Address and Address and

MPUl Data Bus Data Bus MPU2

MPUl ~ - - f+- MPU2
Clock Bus Arbitrator Clock

or Interface
Circuitry

MPUl MPU2
Memory Memory

and and
Peripherals Peripherals

IPrinter

Local
MPU (MCl44431

AID

MC68120 AID

r--

-- -- - f- - - ISystem Local
MPU MPU (MCl4443l

I AID

MC6809E MC68120 I AID'----
System Bus AID

r--

- -- - -I-- -- -- _ -.J
plementation Local

MPU
(MCl4443)

AID

MC68120 AID
AID'----

other. This configuration also physically eliminates any
chance of one processor accidently clearing any flags in the
nonshared resources of the other system. There is no need to
determine if the other processor is using the bus for more
than one cycle (read-modify-write) since each processor has
its own bus, thus eliminating any chance of bus contention.
The bi-phase approach is limited to two processors, whereas
this system is limited only by the throughput of the system
(master) processor.

DESCRIPTION OF THE BASIC SYSTEM
Using the multiple bus scheme, the MC6809E-MC68120

multi-processor pair can be used in many different applica-
tions. One particular application could be a system in which
the multi-processor pair is responsible for holding the
pressure and temperature in a given system within certain
limits (see Figure 3). To simplify matters, the application
discussed here concentrates only on the MC6809E and
MC68120 interface.

HARDWARE
The MC6809E MPU is one of the most advanced 8-bit

microprocessor units on the market today. The M6809E (see
Figure 4) contains two 16-bit index registers, two l6-bit in-
dexable stack pointers, two 8-bit accumulators (which can be
concatenated to form one 16-bit accumulator), and a direct

I
I
I
I

page register that allows the direct addressing mode to be
used throughout memory.

The basic instructions of any computer are greatly en-
hanced by the presence of powerful addressing modes. The
M6809E has one of the most complete sets of addressing
modes available on any microprocessor today. For example,
the M6809E contains 59 basic instructions; however, due to
these addressing modes, the M6809E will recognize 1464 dif-
ferent variations of the basic instructions. It features an ex-
ternal clock input which facilitates synchronizing the pro-
cessor to an overall multi-processor system. Other hardware
features include three-state control (TSC) inputs for control
of internal bus buffers and the advanced valid memory ad-
dress (AVMA) allows efficient use of common resources in a
multi-processor system. Two outputs which facilitate multi-
processor configurations are the last instruction cycle (LIC)
output and the BUSY output. The LIC output indicates
when an opcode fetch will occur. The BUSY output is a
status line that indicates the need to hold off the bus transfer
for the next bus cycle. The M6809E also contains three
prioritized interrupts (NMI, IRQ, FIRQ) and a SYNC
acknowledge output which allows synchronization to an ex-
ternal event. These features make the MC6809E an easy
MPU to incorporate into a multi-processor system.

The MC68120 Intelligent Peripheral Controller (IPC) is a
general purpose mask-programmable peripheral controller

Instruction
Register

BS
BUSY

designed to simplify the interface between two MPU buses.
The MC68 120 IPC is a single chip microcomputer containing
the hardware elements necessary to interface multiple pro-
cessors into one system. These hardware elements consist of
dual-ported RAM and semaphore registers. The dual-ported
RAM provides a means for the IPC, and other devices inter-
connected on a system bus, to exchange data without affec-
ting devices on a local bus. Six semaphore registers are used
as a software tool in arbitrating between the system and the
local bus. The IPC also contains 2K of mask-programmable
ROM which allows the user to provide customized firmware
for his application. A full-duplex, asynchronous, serial com-
munications interface (SCI) with two data formats are
available at a variety of baud rates. A l6-bit programmable
timer consisting of a free-running counter which is in-
cremented by the MPU E-clock is also incorporated in the
IPC. The IPC also has up to 21 I/O lines available, depen-
ding on which of the on-chip resources are being used. A
block diagram of the MC68120 IPC is shown in Figure 5.

In the application discussed here, the MC6809E-MC68120
multi-processor pair is responsible for monitoring a
temperature and pressure sensitive system and holding it
within safe operating limits. The MC68120 is responsible for
monitoring the analog-to-digital (A/D) converters (such as
Motorola's MCI4443) which reflect the temperature and

pressure at various points within the system. The MC68120
checks the data and, if it is not within a desired range, signals
the MC6809E and passes the data. The MC6809E will then
take the appropriate action. The implementation, as shown
in Figure 6, consists of only one MC6809E and MC68120 in-
terface although many more can be added in a similar man-
ner. The system bus (MC6809E), as implemented, has IK of
RAM, 2K of EPROM, and the MC68120 on it. The
MC68120 is operated in an expanded multiplexed mode with
2K of RAM, 2K of EPROM, and the demultiplexing latch
(SN74LS373) on the bus. The MC68120 also has an RS-232
interface connected to the transmit and receive pins on the
SCI to utilize the resident monitor in the ROM on the
MC68l20. The detailed schematic of the implemented hard-
ware is shown in Figure 7. The resident monitor allows the
user to examine internal registers and the dual-ported RAM
from the local bus with a terminal, as well as to develop and
modify small programs. This ability greatly enhances the
testabiljty of the system.

SOFTWARE
The software needed for transfer of information in the

multi-processor system is made much easier with the use of
the semaphore registers and dual-ported RAM, located in the

HALT/BA/NMI
IRQ'

RESET

E

VSS
VCC

S C· {o 0 0 0 0 0 0 °I"" I""ingle hip ::::::::: :::: :::::::::: :::::::::: :::: C5 ~

{
" CD LD '" "" N _ alsl'/)Expanded Non-Multiplexed 0 0 0 0 0 0 0 0 ;;:Q

{

f"-..<.OLD"C'.tMN'--O
Expanded Multiplexed f: f: f: f: f: f: f: f: I~ ~~~~::J:;;'~::t~a:

CS
SR/W
i'5Ti'iL;R

~
SDO.
SDl

::>
SD2III

'" SD2
6 ro

Sema-
0 SD3 (;

SD4 CL

phore "'SD5
::>

Registers III

SD6 E
SD7 *>-

(/)

."l
'" ~0
(/) ::>

III

"'"'Q)-0
-0
«

OOOOOOOO}--------
r---<.OLDo:;:tMN.---Q ~« « « « « « « « ro

()
o....J

lD"<;f"MN..--omoo::t::t::t::t:1::t««

IPC. The dual-ported RAM provides a vehicle for transfer-
ring data between a system and local bus while keeping each
bus isolated. Semaphore registers are provided as a software
tool to arbitrate between shared resources such as the dual-
ported RAM or peripheral devices. The semaphore registers
may also be used to indicate that a task is in process or has
been completed.
Each semaphore register (as shown below) consists of a
semaphore bit (SEM, bit 7) and an ownership bit (OWN, bit
6). The remaining six bits (bO-b5) are not used and when
read, will read zeroes. The semaphore bits are test and set
bits with hardware arbitration during simultaneous accesses.
Basically, the semaphore bit is cleared when written and set
when read during a single processor access.

A single processor semaphore bit truth table is shown
below. During a write to a semaphore register, the data is
disregarded and the semaphore bit is cleared. However, dur-
ing a read, the data read from the semaphore bit can be inter-
preted as: 0 - resources are available, 1 - resources are not

available. Thus a write to any semaphore register clears the
semaphore bit and makes the associated resources
"available. "

Org. Sem R/W Data Resulting
Bit Read Sem Bit

0 R 0 1

1 R 1 1

0 W - 0
1 W - 0

In passing data from the IPC to a system processor
through the dual-ported RAM, the semaphore registers can
be used t.o indicate to the system processor that data is ready.
The system processor can poll, for example, on semaphore 1
and when data is ready, the IPC CPU will write to
semaphore 1, thus clearing the semaphore bit. A simple poll-
ing routine for the system processor is shown below.
The system processor will always read a 1 in the semaphore
bit of semaphore register 1 until semaphore register 1 is writ-
ten to by the IPC CPU. This will clear the semaphore bit and

Clock
Circuit

Chip
Select
Circuit

2K
EPROM

1K
RAM

cause the system processor to jump to a program and get
data.

SEMPH1
#$80
LOOP
GETOATA

LOA
ANOA
BNE
BSR

Polling Routine

It may now be necessary for the IPC CPU to determine if
the system processor reads the data from the dual-ported
RAM in case more data needs to be sent. Another semaphore
register could be dedicated for this purpose or the same
semaphore register could be used again. Timing complica-
tions could arise when reads and writes of the same
semaphore register are occurring from both buses. For exam-
ple, if the IPC CPU wrote to semaphore I to clear the
semaphore bit and then polls on semaphore I, the IPC could
set the semaphore bit before the system processor detected it
as clear. Therefore, to avoid an inadvertent set, a delay must
be incorporated in the program between the read and write of
the semaphore to guarantee that the semaphore bit was
detected clear by the system processor.

In token-passing applications, the ownership bits can be
used to simplify the procedure. The ownership bit is a read-
only bit that indicates which processor set the semaphore bit.

When the semaphore bit is set, the ownership bit indicates
which processor set it. When the semaphore bit is not set, the
ownership bit indicates which processor last set the
semaphore bit: OWN = 0, the other processor set it;
OWN = I, this processor set SEM. After reset, all
semaphores are set and the IPC owns all of them except
semaphore 2 which the system processor owns.

As mentioned earlier in the hardware section, this
MC6809E-MC68120 system monitors the temperature and
pressure in a typical system. Basically, the MC68120 ac-
cumulates and monitors the data. The data is transferred to
the MC6809E either when the MC6809E requests it, at the
end of 12hours, or if the data is out of the desired range. The
CPU on the local bus is responsible for reading the data from
the AID converters every 15 seconds. In this software, it is
assumed that the data is formatted in such a way that both
the temperature and pressure are available in one byte of
data as shown below.

MSB

TEMP

LSB

PRES

One Byte of Data from AID Converter

The 15 seconds are measured by using the internal timer of
the MC68120. The timer sets a flag every 50 ms and after the

I Kl091A

C'''••,
0"

983 MHz

~
- --

--J
e
L2

J

74LSl39 4

U4A 7

5

..
40" 5Cl RmT '"~E '31
J9

5 SR/W' '32
38

'33
J7

'34
J6

~SAO
'35

35

~ SAI
'J6

34

~ SA' P3733

~SA3

~ SM
~SA5MC68120 ~~ U9

S"

~+5V~SA7
I ,

~soo P4()~

UJA ~ ~SOl '"
~SD2 ~J '"
~SD3 ~P4J

~s~
28 A12,..~

~SD5 ~"5

~SD6 26 AlA,..•~
~SD7 ~'47,

CS P23
46

.5V
P24~

"IF
JL~~

4 ~

~ ~
1374lS373~~12A4

Ul0
14 ~
17 ~ ...••.•

18 ~

+~

J6 a
~E

~TSC-l, -r)7 'Fl!ID

...L ± ----2 AO-=- _ .--.1 Al MC6009E

.----.l.2 A2 US

-----!! AJ

12 A4

~A5
14 A'

~A7

" ...-----ll A9

18 AIQ

~All

.12. A12

21 AI)

..E A14

23 A15

R/W
32

oo~
01~

O'~
OJ :;---....

"'~
D5~

D6~
07 .::..--.....

+14 DO
13 01~
12 D2

11 03

00 9~~
....£.!......!2 '-=

02 11 -

OJ I

43 P20 l5Tm~

P21 P22SC2~-

l:':WV
.•. 511 11 r'N914 .•. 511

-"-,~ E+5V..,.-----

74LSl39 6 rn

~~UlIA~",",,, .~
- 15

E

AID 14 74$1139 ~11 ffi...::.:,:::.... UllB 12 CSO

~ -

~ ~
WE ~ ~~ 13-2.!... ~ ~

~ ~ ~ ~
~ ~~ ~
~ ~
~MCM2114 MCM2114~

~ U14 ~ ~ Ut6 ~

~ ·5v .5V ~
~ ~
~ ~~ ~
~ - - ~

*
CS,

~ =
BO rn

~ ,
CS ~ ~ CS

~ 13~ ~13 ~
~ ~ ~ ~
~ ~ ~ ~
~ ~
~MCM2114 MCM2114~

~ UIS ~ ~ U17 ~

~ -5v ·5v ~
~ ~
~ ~F ~
~ ~

*
- -

~10 10

flag has been set 300 times, the data is read. After the data is
read, it is stored in RAM and checked to determine if it is
within the desired range. If not within the desired range, an
error condition is realized. The MC68120 then pulls the IRQ
line to the MC6809E low and begins dumping all the data (15

Initialize:
1) Counters
2) Pointers
3) Timer

Service Timer
and Increment

15 Second
Counter

Timer Service
Routine

second increments) to the MC6809E through the dual-ported
RAM ($BO-EB). The MC68120 can hold up to 8 hours of
data in 15 second increments. The MC68120 will also dump
its 15second data upon request from the MC6809E. Every 15
minutes, the MC68120 stores the value into dual-ported

Calculate Amount
of Data to
Transfer

Format in Form of:
Blocks and Remainder

Initialize
Dual Ported RAM

Pointer

Move Data and
Increment
Pointers

Decrement Blocks
to TxFR Counter
and Modify Pass

Data Flag Semaphore

Wait for OK from
MC6809E to Proceed

Transfer
Remainder

of Data

Increment 15 Minute
Couhter and Clear
15 Second Counter

Reset
Pointer to

Start of RAM

Set Error
Semaphore

and Pull
MC6809E IRQ

Low

Make MC6809E
IRQ High. Reset
Error Semaphore

Set Normal
RAM Dump
Semaphore

Pull MC6809E
IRQ Line

Low

Wait for
Request
to Clear

Make MC6809E
IRQ Line

High. Request
to Clear
IRQ CLR

Semaphore

Reset RAM
Pointer

and Clear
Counters

RAM ($80-AF)and if after 12 hours no error has occurred, it
will dump its 15 minute data to the MC6809E via the dual-
ported RAM. See Figures 8 and 9 for the MC68120
flowchart and software. When the MC6809E receives data, it
does two things: first it writes the data out to a printer via
another MC68120 (perhaps an MC68122 - Cluster Terminal
Controller; for more information, see the Motorola
MC68122 Data Sheet); and second, if the transfer is a result
of an error condition, the MC6809E stores the data in RAM.
After the MC6809E stores the data into RAM, the last bytes
of data are used to determine which way to modify the
temperature and pressure and then modifies them according-
ly (one incremeijt up or down). These bytes are also used to
calculate the temperature and pressure differential. If the dif-
ferential exceeds a designated amount, the temperature and
pressure are modified again (turned up or down) to compen-
sate. (In this application, temperature and pressure are
assumed to be directly related - increasing one automatical-
ly increases the other.) The MC6809E then provides a signal
via a semaphore register which causes the MC68120 to clear
the IRQ line. The MC6809E also monitors an input from a
display panel in which the operator could ask for a listing of
15 second data. See Figures 10 and II for the MC6809E
flowchart and software. The implemented portion of the

MC6809E-MC68 120 system is intended to show what is need-
ed in the basic system and demonstrate the modularity of the
software for expansion purposes. When the system requires
expansion, more MC68l20s can easily be added to the
MC6809E bus. The added MC68120s will use the same soft-
ware as the existing MC68120, and the MC6809E software
will only require slight modification to poll devices and
discern which MC68120 generated the low IRQ. The same
service routines may be used that are now in service.
EXPANDING THE BASIC SYSTEM

Specific computational tasking is one of the many func-
tions the MC68120 may perform. When time consuming
functions need to be implemented, parallel processing
becomes a viable alternative. This is easily accomplished by
putting several MC68l20s on the system bus. Simple data en-
cryption is one example of the tasks the MC68120 can per-
form. Others could include calculating trigonometric func-
tions, fourier transforms, or other data processing needs.

Expansion of the basic system by using additional
MC68l20s requires a method of interrupt distinction. The
problem that arises when multiple interrupts are needed is
that most microprocessors have only one nonmaskable and
one (sometimes two) maskable interrupt inputs. Therefore,
in larger systems, a large polling routine must be used to
determine which device caused the actual interrupt.

An ideal situation would be to have a separate input pin on
the microprocessors for each interrupt required. However, it
is not feasible to devote pins on the processor exclusively for
this purpose when it can be done more economically with ex-
ternal devices.

By using the MC6828 Priority Interrupt Controller (PIC),
each interrupt input to the processor could be easily expand-
ed to have eight maskable interrupt inputs. The primary pur-
pose of the PIC is to generate a modified address to ROM in
response to prioritized inputs. The PIC assigns each interrup-
ting device a unique ROM location which contains the start-
ing address of the appropriate service routine. After the
MPU detects and responds to an interrupt, the PIC directs
the MPU to the proper memory location. The PIC simplifies
multiple interrupt handling and interfacing it to the
MC6809E is easily done. They can also be cascaded to allow
more than eight interrupts.

When servicing slow peripherals such as low baud rate ter-
minals and printers, the MC68120 can relieve the host of
these time consuming chores, formulate the data into bigger
blocks, and allow the host to obtain the data all at once. The
MC68122 (Cluster Terminal Controller) is a prime example.

OVERCOMING SYSTEM PROCESSOR LIMITATIONS
When expanding the multi-processor system, the limiting

factor becomes the throughput of the system processor. The
system processor must be able to service all the MC68120s in
a system and still have time to process the information it has
received. As this occurs, the tendency would be to shift more
and more of the processing responsibility from the system
processor towards the local processor. These MC68120s
would then provide the system bus another level of
MC68120s leaving the system processor free as communica-
tions arbitrators for the lower level of MC68120s.

CONCLUSION
The MC6809E and the MC68120 utilize the semaphore

registers and dual-ported RAM to provide an efficient multi-
processor system that is easily expandable. This feature
allows the engineer to design a system that has the capability
of simple expansion and increases its time of usefulness.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058

0003
0001
0008
0009
OOOB

0017
0018
0019
001A
001B
001C
OOFO

EBOO
1783

1787
1789
178B
0011

178D
EB80

THIS PROGRAM IS USED ON THE MC68120 IN A MC6809E
MULTIPROCESSOR CONFIGURATION

$03
$01
$08
$09
SOB

A P2DR EQU
A P2DDR EQU
A TCSR EQU
A TIMERR EQU
A TIMROC EQU

* The 1ST 2 Semaphore Registers are cleared by the *
* MC68120 and set by the MC6809E *
* The next 2 Semaphore registers are cleared by the *
* MC6809E and cleared the by MC68120 *
* The last two are used as flags, to pass data between *
* the two MPUs *
**
*A SEMPHl EQU

A SEMPH2 EQU
A SEMPH3 EQU
A SEMPH4 EQU
A SEMPH5 EQU
A SEMPH6 EQU
A WHNO EQU

*

A TXDCR EQU
A SDPTR EQU

*

A TXRMSZ EQU
A TEMP EQU

*A NRMPTR EQU
A LOW EQU

*

A FROM EQU
A TO EQU

$17
$18
$19
$lA
$lB
$lC
$FO
$Fl
$1780

$1782

$EBOO
$1783
$1785

$1787
$1789
$178B
$11

$CC
$00
$01

$178D
$EB80

PORT 2 DATA REGISTER
PORT 2 DATA DIR. REG.
TIMER CONTROL & STAT. REG.
READ TIMER COUNTER REGISTER
TIMER OUTPUT COMPARE REG.

REG 1 (ERROR SITUATION)
REG 2 (NORMAL RAM DUMP)
REG 3 (REQUEST FOR DATA)
REG 4 (IRQ CLR)
REG 5 (PASS DATA
REG 6 (PASS DATA
NUMBER OF BLOCKS

(1 byte wide)
REMAINDER OF BYTES TO BE

TRANSFERRED (1 byte wide)
15 SECOND COUNTER REGISTER

(2 bytes)
15 MINUTE COUNTER REGISTER

(1 bytes)
TRANSDUCER INPUT LOCATION
START DATA POINTER

(2 bytes-for RAM)
END DATA POINTER

(2 bytes-for RAM)
TRANSMIT RAM SIZE (2 BYTES)
TEMPORARY ADDRESS STORAGE

(2 bytes)
NORM. RAM DUMP POINTER (2 BYTES)
TXDUCER DATA SHOULD BE ABOVE

THIS VALUE
TXDUCER DATA SHOULD BE BELOW

THIS VALUE
VALUE FOR PORT 2 TO PULL '09

IRQ LOW
VALUE FOR PORT 2 TO PULL '09

IRQ HIGH
TEMP RAM FOR DATA ADDRESS(2 bytes)
END OF DATA

SEMPH
SEMPH
SEMPH
SEMPH
SEMPH
SEMPH
WHOLE

FLAG)
FLAG)
60 BYTES

PAGE 13132 MLTPRCA .SA:l
13131359 *131313612JAE812J12J ORG $E 81313
0131361 *13131362 * INITIALIZATION ROUTINE
13131363 *13131364A E8 1313 8E 17FF A LDS #$17FF INIT. STACK
12J12J12J65AE812J3 CE 0131313 A LDX #13 CLEAR COUNTER REGS.12J012J66AE812J6 FF 17813 A STX SECCTR 15 SECOND COUNTER REG.
12J12J12J67AE812J9 FF 1782 A STX MINCTR 15 MINUTE COUNTER REG.
13131368A E8l2JC CE 1131313 A LDX #$1131313 INIT. START DATA POINTER
12J12J12J69AE8l2JF FF 1783 A STX SDPTR
131313712JAE812 FF 1785 A STX EDPTR AND END DATA POINTER
13131371 * TIMER COMES UP INIT. IN DESIRED MODE
12J12J12J72AE815 96 131 A LDAA IRQHG CONFIGURE AND INIT.
12J12J12J73AE817 97 133 A STAA P2DR IRQ TO MC68139
12J12J12J74AE819 86 131 A LDAA #$131
12J12J12J75AE81B 97 131 A STAA P2DDR
12J12J12J76AE81D DC 139 A LDD TIMERR INIT. TIMER FOR 513 MSEC.
12J12J12J77AERIF C3 EFBF A ADDD #$EFBF
13131378A E822 DD 12JB A STD TIMROC
012J12J79AE824 CE EBI2JI2JA LDX #$EBI2JI2J START ADDRESS FOR DATA
1313138l2JAE827 FF 178D A STX FROM
12J12J12J81AE82A CE 1313813 A LDX #$1313813 INIT. NORMAL RAM POINTER
12J12J12J82AE82D FF 178B A STX NRMPTR TO BEG. OF DUAL PORTED RAM
12J12J12J83AE8313 86 1313 A LDAA #$1313
13131384A E832 97 FI2J A STAA WHNO
13131385 *13131386 * CHECKING ON UPDATE DATA SEMAPHORE (#3)
13131387 * (NO DATA PASSED IN REGISTERS)
12J12J12J88AE834 96 19 A POLLI LDAA SEMPH3 CHECK REQUEST
12J012J89AE836 84 813 A ANDA #$813 FOR MORE
1313139l2JAE838 26 132 E83C BNE CONTI DATA
12J12J12J91AE83A 8D IE E85A BSR DMPRAM GO DUMP IT
12J12J12J92AE83C 96 138 A CONTI LDAA TCSR CHECK FOR
12J12J12J93AE83E 84 413 A ANDA #$413 TIMER FLAG SET
12J12J12J94AE8413 27 F2 E834 BEQ POLLI BRA IF NOT SET
13131395 *13131396 * ENTERING THE 513 MSEC TIMEOUT SERVICE LOOP
13131397 *12J12J12J98AE842 96 138 A LDAA TCSR DUMMY READ TO CLEAR OCF
12J12J12J99AE844 DC 139 A LDD TIMERR READ TIMER
131311313A E846 C3 EF9C A ADDD #$EF9C REINIT. TIMER - ADJUSTED TO COR-
I2Jl2Jll2JIAE849 DD 12JB A STD TIMROC RECT FOR ADDED CYCLES OF ROUTINE
I2Jl2Jll2J2AE84B FE 17813 A LDX SECCTR INCREMENT 15 SEC. CTR.
I2Jl2Jll2J3AE84E 138 INX
I2Jl2Jll2J4AE84F FF 17813 A STX SECCTR
13131135A E852 8C 12J12C A CPX #31313 CHECK IF 15 SECS. UP?
I2Jl2Jll2J6AE855 26 DD E834 BNE POLLI BRANCH IF NOT (31313TIMES)
I2Jl2Jll2J7AE857 7E E8C9 A JMP TMRSRV GO TO TIMER SERVICE ROUTINE
13131138 *13131139 * THIS ROUTINE DUMPS THE RAM (15 SEC. DATA SAMPLES)
I2Jl2Jlll2JAE85A FC 1785 A DMPRAM LDD EDPTR CALC. SIZE OF DATA
I2Jl2JlllAE85D B3 1783 A SUBD SDPTR TO BE TRANSFERRED
12J12J112AE8613 FD 1787 A STD TXRMSZ
12J12J113AE863 135 LSLD CLEAR SIGN BIT
12J12J1l4AE864 134 LSRD
1313115 * CONFIGURE SIZE IN FORMAT FOR DPR STORAGE
12J12J116AE865 7C 1313FI2J A COUNT INC WHNO DIVIDING BY 613

PAGE 003 MLTPRCA .SA:l

001l7A E868 83 003C A SUBD #60
001l8A E86B 2A F8 E865 BPL COUNT
001l9A E86D 7A OOFO A DEC WHNO
00120A E870 C3 003C A ADDD #60 DONE
00121A E873 D7 Fl A STAB RMDR SAVE REMAINDER
00122 *CHECK IF WHOLE NUMBER EQUAL ZERO
00123A E875 96 FO A LDAA WHNO
00124A E877 81 00 A CMPA #00
00125A E879 27 2B E8A6 BEQ LAST
00126 * LOADING 60 BYTES OF DATA TO DPR
00127A E87B CC OOBO A LOOP LDD #$OOBO INIT. DPR PTR.
00128A E87E FD 1789 A STD TEMP
00129A E881 FE 1783 A TLOOP LDX SDPTR GET MEMORY LOC & DATA
00l30A E884 E6 00 A LDAB O,X
00l31A E886 08 INX SET SDPTR UP FOR NEXT
00l32A E887 FF 1783 A STX SDPTR TIME
00l33A E88A FE 1789 A LDX TEMP GET DESTINATION
00l34A E88D E7 00 A STAB O,X STORE DATA
00l35A E88F 08 INX SET TEMP UP FOR NEXT
00136A E890 FF 1789 A STX TEMP TIME
00l37A E893 8C OOEC A CPX #$OOEC
00l38A E896 26 E9 E881 BNE TLOOP CHECK IF 60 BYTES TX
00l39A E898 07 IB A STAB SEMPH5 SET TX'FER SEMPH.- GIVES '09 "00"
00140A E89A 96 lC A WAITI LDAA SEMPH6 CHECK IF OK TO PROCEED
00141A E89C 84 80 A ANDA #$80
00142A E89E 26 FA E89A BNE WAITI BRANCH IF NOT OK
00143A E8AO 86 00 A LDAA #00 CHECK IF ALL 60 BYTE
00144A E8A2 91 FO A CMPA WHNO BLOCKS ARE TX'FERRED
00145A E8A4 26 D5 E87B BNE LOOP BRANCH IF NOT
00146 * TRANSFER REMAINDER OF DATA
00147A E8A6 CC OOBO A LAST LDD #$OOBO BEGINNING OF TX'FER
00148A E8A9 FD 1789 A STD TEMP AREA
00149A E8AC FE 1783 A ELOOP LDX SDPTR GET START ADDRESS
00150A E8AF E6 00 A LDAB O,X GET DATA
00151A E8Bl 08 INX PREPARE FOR NEXT FETCH
00152A E8B2 FF 1783 A STX SDPTR AND SAVE
00153A E8B5 FE 1789 A LDX TEMP GET DESTIN. ADDRESS
00154A E8B8 E7 00 A STAB O,X STORE IN DPR
00155A E8BA 08 INX PREPARE FOR NEXT STORE
00156A E8BB FF 1789 A STX TEMP AND SAVE
00157A E8BE FE 1785 A LDX EDPTR CHECK IF DONE
00158A E8Cl BC 1783 A CPX SDPTR CHECK IF DONE
00159A E8C4 26 E6 E8AC BNE ELOOP BRANCH IF NOT TO END LOOP
00160A E8C6 D7 IB A STAB SEMPH5 SET TX'FER SEMPH.- GIVES °09 "00"
00161A E8C8 39 RTS GOIN HOME
00162 *
00163 * TIMER SERVICE ROUTINE - ACCESSED EVERY 15 SECON
00164 *
00165A E8C9 7C 1782 A TMRSRV INC MINCTR INCREMENT 15 MIN. CTR.
00166A E8CC CE 0000 A LDX #00 CLEAR 15 SEC. CTR.
00167A E8CF FF 1780 A STX SECCTR
00168A E8D2 FE 178D A LDX FROM READ DATA
00169A E8D5 8C EB80 A CPX #TO DUMMY ROUTINE FOR DATA
00170A E8D8 26 06 E8EO BNE AROUND AQUISITION
0017lA E8DA CE EBOO A LDX #$EBOO
00172A E8DD FF 178D A STX FROM
00173A E8EO A6 00 A AROUND LDAA O,X
00174A E8E2 08 INX

PAGE 004 MLTPRCA .SA:l
b0175A E8E3 FF 178D A STX FROM
00176A E8E6 FE 1785 A LDX EDPTR GET NEXT OPEN LOCATION
00177A E8E9 A7 00 A STAA O,X STORE DATA THERE
00178A E8EB 08 INX INCREMENT AND CHECK
00179A E8EC 8C 1780 A CPX #$1780 DATA POINTER FOR
00180A E8EF 26 03 E8F4 BNE OOVRN END OF RAM
00181A E8Fl CE 1000 A LDX #$1000
00182A E8F4 FF 1785 A DOVRN STX EDPTR SAVE END DATA POINTER
00183A E8F7 BC 1783 A CPX SDPTR CHECK FOR DATA OVERRUN
00184A E8FA 26 07 E903 BNE OK
00185A E8FC CE 1000 A LDX #$1000 DATA OVERRUN
00186A E8FF 08 INX INCREMENT START
00187A E900 FF 1783 A STX SDPTR ADDRESS POINTER
00188A E903 81 11 A OK CMPA #LOW CHECK IF DATA IN
00189A E905 25 21 E928 BLO ERROR RANGE
00190A E907 81 CC A CMPA #HIGH
00191A E909 22 ID E928 BHI ERROR
00192A E90B F6 1782 A LDAB MINCTR DATA GOOD- CHECK IF 15 MIN.
00193A E90E Cl 3C A CMPB #60 COUNTER TIMED OUT YET?
00194A E910 26 11 E923 BNE GONE BRANCH IF NOT
00195A E912 FE 178B A LDX NRMPTR IF SO STORE IT IN UPPER
00196A E915 A7 00 A STAA O,X
00197A E917 8C OOAF A CPX #$AF CHECK IF DUAL PORTED RAM
00198A E91A 27 29 E945 BEQ DPRST OVERRUN-IF SO DMP & RESET
00199A E91C 08 INX
00200A E91D FF 178B A STX NRMPTR UPDATE DATA PTR. FOR NEXT TIME
00201A E920 7F 1782 A CLR MINCTR REINIT. 15 MIN COUNTER TO 0
00202A E923 96 17 A GONE LDAA SEMPHI REGAIN OWNERSHIP OF SEMPHI
00203A E925 7E E834 A JMP POLLI GET OUT OF ROUTINE
00204 *
00205 * ERROR ROUTINE
00206 *00207A E928 D7 17 A ERROR STAB SEMPHI SET ERROR SEMAPHORE(l)
00208A E92A C6 00 A LDAB #!RQLW PULL '09 IRQ LOW
00209A E92C D7 03 A STAB P2DR
00210A E92E 96 lA A KPLKNG LDAA SEMPH4 CHEC~ FOR IRQ CLEAR SIGNAL
00211A E930 84 80 A ANDA #$80
00212A E932 26 06 E93A BNE DMPCHK BRA IF ISN'T CLEAR
002l3A E934 C6 01 A LDAB #!RQHG CLEAR
00214A E936 D7 03 A STAB P2DR '09 IRQ
00215A E938 20 E9 E923 BRA GONE GET OUT OF ROUTINE
00216A E93A D6 19 A DMPCHK LDAB SEMPH3 CHECK FOR REQUEST
00217A E93C 84 80 A ANDA #$80 TO DUMP DATA IN RAM
00218A E93E 26 EE E92E BNE KPLKNG KEEP LOOKING
00219A E940 BD E85A A JSR DMPRAM DUMP THE RAM
00220A E943 20 E9 E92E BRA KPLKNG WAIT FOR IRQ CLEAR
00221A E945 97 18 A DPRST STAA SEMPH2 SET NORMAL DUMP SEMPH.
00222A E947 C6 00 A LDAB #!RQLW PULL '09 IRQ LOW
00223A E949 D7 03 A STAB P2DR
00224A E94B 96 lA A WAIT LDAA SEMPH4 CHECK REQUEST TO CLR IRQ
00225A E94D 84 80 A ANDA #$80 WAITING ON '09
00226A E94F 26 FA E94B BNE WAIT
00227A E951 C6 01 A LDAB #IRQHG CLEAR
00228A E953 D7 03 A STAB P2DR '09 IRQ AND
00229A E955 7F 178B A CLR NRMPTR RESET NORMAL RAM POINTER
00230A E958 7F 1782 A CLR MINCTR RESET 15 MIN. COUNTER TO 0
00231A E95B 20 C6 E923 BRA GONE
00232 END

E8EO AROUND 00170 00173*
E83C CONTI 00090 00092*
E865 COUNT 00116*00118
E93A DMPCHK 00212 00216*
E85A DMPRAM 00091 00110*00219
E8F4 OOVRN 00180 00182*
E945 DPRST 00198 00221*
1785 EDPTR 00042*00070 00110 00157 00176 00182
E8AC ELOOP 00149*00159
E928 ERROR 00189 00191 00207*
178D FROM 00056*00080 00168 00172 00175
E923 GONE 00194 00202*00215 00231
OOCC HIGH 00050*00190
0001 IRQHG 00054*00072 00213 00227
0000 IRQLW 00052*00208 00222
E92E KPLKNG 00210*00218 00220
E8A6 LAST 00125 00147*
E87B LOOP 00127*00145
0011 LOW 00048*00188
1782 MINCTR 00037*00067 00165 00192 00201 00230
178B NRMPTR 00047*00082 00195 00200 00229
E903 OK 00184 00188*
0001 P2DDR 00011*00075
0003 P2DR 00010*00073 00209 00214 00223 00228
E834 POLLI 00088*00094 00106 00203
OOFI RMDR 00033*00121
1783 SDPTR 00040*00069 00111 00129 00132 00149 00152 00158 00183 00187
1780 SECCTR 00035*00066 00102 00104 00167
0017 SEMPHI 00025*00202 00207
0018 SEMPH2 00026*00221
0019 SEMPH3 00027*00088 00216
001A SEMPH4 00028*00210 00224
001B SEMPH5 00029*00139 00160
001C SEMPH6 00030*00140
0008 TCSR 00012*00092 00098
1789 TEMP 00045*00128 00133 00136 00148 00153 00156
0009 TIMERR 00013*00076 00099
OOOB TIMROC 00014*00078 00101
E881 TLOOP 00129*00138
E8C9 TMRSRV 00107 00165*
EB80 TO 00057*00169
EBOO TXDCR 00039*
1787 TXRMSZ 00044*00112
E94B WAIT 00224*00226
E89A WAITI 00140*00142
OOFO WHNO 00031*00084 00116 00119 00123 00144

Clear
Interrupt

Mask

Set
Interrupt

Mask

Clear
IRQ CLR

Semaphore

Branch to
Get Data

Subroutine

Read in Data,
Store'in RAM,

and
Send to Printer

Turn Up
Heat
One

Increment

Calculate
Slope

Calculate
Negative

Slope

Turn Down
Heat One
Increment

Calculate
Positive
Slope

Read In
Data and
Store to
PRINTEC

Turn Down
Heat One

More
Increment

PAGE 001 MLTPR09A.SA:l

00001 *00002 *00003 OPT ABS,LLE=85,S,CRE
00004 *00005 *00006 * THIS IS THE CODE THAT ALLOWS THE MC6809E TO
00007 * INTERFACE WITH THE MC68120 IN A
00008 * MULTIPROCESSOR CONFIGURATION
00009 *00010 *00011 *00012 0017 A SEMPHl EQU $17 ERROR SITUATION
00013 0018 A SEMPH2 EQU $18 NORMAL RAM DUMP
00014 0019 A SEMPH3 EQU $19 RQST FOR DATA (15 SEC INCR.)
00015 001A A SEMPH4 EQU $lA IRQ CLEAR
00016 001B A SEMPH5 EQU $lB 60 BYTE BLOCK OF DATA FLAG
00017 001C A SEMPH6 EQU $lC 60 BYTE BLOCK OF DATA FLAG
00018 OOFO A WHNO EQU $FO WHOLE NUMBER OF 60 BYTE BLOCKS
00019 * TO BE MOVED
00020 OOFl A RMDR EQU $Fl REMAINDER OF THE 60 BYTE BLOCK
00021 * TO BE MOVED
00022 0100 A LOWER EQU $100 WHEN THIS ADDRESS IS WRITTEN
00023 * TO, THE SYSTEM T&P IS LOWERED
00024 0101 A RAISE EQU $101 WHEN THIS ADDRESS IS WRITTEN
00025 * TO, THE SYSTEM T&P IS RAISED
00026 12FO A CMPTMP EQU $12FO TEMP. STORAGE FOR COMPARE
00027 * (2 bytes)
00028 12F2 A LASTl EQU $12F2 SLOPE POINT VALUES (1 byte)
00029 12F3 A DTAREQ EQU $12F3 BUTTIN REQUEST FOR DATA
00030 * (l-requestiO-no request)
00031 *00032 *00033 *00034A F800 ORG $F800
00035 *00036 *00037 * INITIALIZATION ROUTINE
00038A F800 10CE 13FF A START LDS #$13FF INIT. STACK
00039A F804 86 00 A LDA #$00 INI'r. BUTTON REQ. FOR
00040A F806 B7 12F3 A STA DTAREQ DATA (SET UP FOR NO REQ.)
00041 *00042 * START POLLING ON DUM RAM REQUEST AND WAIT
00043 * FOR INTERRUPT REQUEST
00044 *00045A F809 B6 12F3 A MAIN LDA DTAREQ CHECK IF OPERATOR
00046A F80C 81 80 A CMPA #$80 REQUESTING DATA
00047A F80E 26 02 F812 BNE OPEN
00048A F810 8D 07 F819 BSR GETDTA GO GET DATA
00049 * LET IN IRQ INPUT
00050A F812 lC EF A OPEN ANDCC #$EF CLEAR I BIT
00051A F814 12 NOP
00052A F815 lA 10 A ORCC #$10 SET I BIT
00053A F817 20 FO F809 BRA MAIN BACK
00054 *00055 * GET DATA SUBROUTINE
00056 *
00057A F819 97 19 A GETDTA STA SEMPH3 ASK FOR DATA
00058A F81B 96 lB A WAITl LDA SEMPH5 WAIT FOR READY

00059A
00060A
00061A
00062A
00063A
00064A
00065A
00066
00067
00068A
00069A
00070A
0007lA
00072A
00073A
00074A
00075A
00076A
00077A
00078A
00079A
00080A
00081A
00082A
00083A
00084A
00085A
00086A
00087A
00088A
00089A
00090A
00091A
OOOnA
00093
00094
00095
00096
00097
00098A
00099A
OOlOOA
OOlOlA
00102A
00103A
00104A
00105A
00106
00107
00108
00109A
OOllOA
OOlllA
001l2A
001l3A
001l4A
001l5A
001l6A

F81D 84
F81F 26
F821 96
F823 81
F825 27
F827 8E
F82A 108E

F82E EC
F830 ED
F834 30
F836 ED
F838 8C
F83B 26
F83D 97
F83F OA
F841 20
F843 8E
F846 108E
F84A IF
F84C D3
F84E 1083
F852 27
F854 FD
F857 7C
F85A A6
F85C A7
F860 30
F862 A7
F864 BC
F867 26
F869 97
F86B 39

F86C 96
F86E 84
F870 27
F872 96
F874 84
F876 27
F878 97
F87A 3B

F87B 8D
F87D BE
F880 A6
F882 81
F884 25
F886 86
F888 B7
F88B 20

80 A
FA F81B
FO A
00 A
lC F843
OOBO A
1000 A

84
89 EOOO
02
Al
OOEC
Fl
lC
FO
D8
OOBO
103C
10
FO
OOT30
15
12FO
12Fl
84
89 EOOO
01
AO
12FO
Fl
lC

A
A
A
A
A

F82E
A
A

F81B
A
A
A
A
A

F869
A
A
A
A
A
A
A

F85A
A

17 A
80 A
09 F87B
18 A
80 A
3B F8B3
lA A

9C F819
12FO A
84 A
CB A
07 F88D
CC A
0100 A
06 F893

ANDA #$80 SEMAPHORE
BNE WAITl BRANCH IF NOT READY

FCHDTA LDA WHNO READY, READ HOW MUCH DATA
CMPA #00 TO TRANSFER
BEQ LAST TX'FER REMAINDER IF WHNO =0
LDX #$OOBO PREPARE TO TX'FER (READ)
LDY #$1000 60 BYTE BLOCK

* LOADS DATA TO IPC PRINTER CONTROLLER AT $EOOO
* THE CONTROLLER IS WAITING FOR THE DATA
MOVED LDD O,X GET 2 BYTES

STD >$EOOO,X STORE TO PRINTER IPC
LEAX 2,X
STD O,Y++
CMPX #$EC
BNE MOVED
STA SEMPH6
DEC WHNO
BRA WAITl
LDX #$OOBO
LDY #$103C
TFR X,D
ADDD WHNO
CMPD #$OOBO
BEQ OUT
STD CMPTMP
INC CMPTMP+l

NXTBYT LDA O,x
STA $EOOO,X
LEAX 1,X
STA O,Y+
CMPX CMPTMP
BNE NXTBYT
STA SEMPH6
RTS

** AH-HA! THE
IRQ LDA

ANDA
BEQ
LDA
ANDA
BEQ

CLRIRQ STA
RTI

MC68120
SEMPHl
#$80
ERROR
SEMPH2
#$80
NORMAL
SEMPH4

STORE 2 BYTES
CHECK IF DONE (60 BYTES)
GO AGAIN
CLEAR SEMPH6
WAIT FOR NEXT BLOCK
INITIALIZE POINTERS FOR LAST
TRANSFER ($1000+60~$103C)
CHECK HOW MUCH TO MOVE
CHECK IF RMDR =0
AND GET OUT IF SO
IF NOT GO MOVE BLOCK
ADD 1 TI CMPTMP+l(00F1)
GET NEXT BYTE OF DATA
STORE TO PRINTER

STORE IN RAM
CHECK IF DONE
IF NOT GO AGAIN
CLEAR SEMPH6

WANTS TO TELL ME SOMETHING!!
CHECK IF ERROR SITUATION
BRANCH IF SO
CHECK FOR NORMAL DATA
DOWNLOAD
BRANCH IF SO
WRITE CLEAR IRQ SEMPH
BACK TO MAIN

ERROR BSR
LDX
LDA
CMPA
BLO
LDA
STA
BRA

GETDTA
CMPTMP
O,X
#$CB
CONT
#$CC
LOWER
SLOPE

GET DATA INTO RAM
GET ADDRESS OF LATEST DATA
GET DATA AND CHECK
IF DATA
TOO HIGH
IF SO - TURN DOWN TEMP.

PAGE 003 MLTPR09A.SA: 1

001l7A F88D 12 CONT NOP
001l8A F88E 86 11 A LDA #$11
001l9A F890 B7 0101 A STA RAISE INCREASE TEMP.
00120 *
00121 * IF SLOPE NEG. - GETTING HOTTER
00122 * IF SLOPE POS. - GETTING COLDER
00123 *
00124A F893 A6 82 A SLOPE LDA O,-X GET LAST
00125A F895 B7 12F2 A STA LASTl DATA AND NEXT
00126A F898 A6 84 A LDA O,X TO LAST DATA
00127A F89A BO 12F2 A SUBA LASTl
00128A F89D 2A OB F8AA BPL MAGNC BRANCH IF COLDER
00129 * NEG. SLOPE- HOTTER
00130A F89F 84 7F A ANDA #$7F DELETE NEG SIGN
00131A F8Al 81 10 A MAGNH CMPA #$10 COMPARE MAG OF SLOPE
00132A F8A3 25 D3 F878 BLO CLRIRQ TO CRIT. SLOPE VALUE
00133A F8A5 B7 0100 A STA LOWER LOWER TEMP. 1 INCR.
00134A F8A8 20 CE F878 BRA CLRIRQ
00135A F8AA 81 10 A MAGNC CMPA #$10 COMPARE MAG OF SLOPE TO
00136A F8AC 25 CA F878 BLO CLRIRQ CRIT SLOPE VALUE
00137A F8AE B7 0101 A STA RAISE RAISE TEMP. 1 INCR.
00138A F8Bl 20 C5 F878 BRA CLRIRQ
00139A F8B3 8E 0080 A NORMAL LDX #$0080 PREPARE TO GET DATA
00l40A F8B6 EC 84 A LDD O,X GET DATA
00141A F8B8 ED 89 EOOO A MOVIT STD $EOOO,X MOVE TO PRINTER
00l42A F8BC 30 02 A LEAX 2,X
00143A F8BE 8C OOBO A CMPX #$BO CHECK IF DONE
00l44A F8Cl 26 F5 F8B8 BNE MOVIT KEEPING GOING
00145A F8C3 20 B3 F878 BRA CLRIRQ CLEAR IRQ AND OUT
00146 *
00147A FFFO ORG $FFFO
00148A FFFO F800 A FDB START
00149A FFF2 F800 A FDB START
00150A FFF4 F800 A FDB START
00151A FFF6 F800 A FDB START
00152A FFF8 F86C A FDB IRQ
00153A FFFA F800 A FDB START
00154A FFFC F800 A FDB START
00155A FFFE F800 A FDB START
00156 END
TOTAL ERRORS 00000--00000
TOTAL WARNINGS 00000--00000

F878 CLRIRQ 00104*00132 00134 F85A NXTBYT 00085*00090
00136 00138 00145 F812 OPEN 00047 00050*

12FO CMPTMP 00026*00083 00084 F869 OUT 00082 00091*00089 00110 0101 RAISE OQ024*00119 00137F88D CONT 00113 00117* OOFl RMDR 00020*12F3 DTAREQ 00029*00040 00045 0017 SEMPHl 00012*00098F87B ERROR 00100 00109* 0018 SEMPH2 00013*00101F821 FCHDTA 00061* 0019 SEMPH3 00014*00057F819 GETDTA 00048 00057*00109 001A SEMPH4 00015*00104F86C IRQ 00098*00152 001B SEMPH5 00016*00058F843 LAST 00063 00077* 001C SEMPH6 00017*00074 0009112F2 LASTl 00028*00125 00127 F893 SLOPE 00116 00124*0100 LOWER 00022*00115 00133 F800 START 00038*00148 00149
F8AA MAGNC 00128 00135* 00150 00151 00153
F8Al MAGNH 00131* 00154 00155
F809 MAIN 00045*00053 F81B WAITl 00058*00060 00076
F82E MOVED 00068*00073 OOFO WHNO 00018*00061 00075
F8B8 MOVIT 00141*00144 00080
F8B3 NORMAL 00103 00139*

FIGURE 11 - MC6809E Software (Concluded)

19

Motorola reserves the right to make changes to any products herein to improve reliability. function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

® MOTOROLA SemiconductorProductsInc.
3501 ED BLUESTEIN BLVD. AUSTIN, TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC.

