2 DEVICES (PTY)

(918 WL

L Th
MOTOROLA DVANCE é}oL(;\;éé'% donannesburg 2000 AN-83 1
Semiconductor Products Inc. srd Floor, Vogas Hous

123 Pritchard Street/Comer Mool stApplication Note

Johanmesburg
Tel N £8-2859

AN IEEE-488 BUS INTERFACE
USING DMA

By

Mike Newman
Manager Technical Marketing
Austin, Texas

INTRODUCTION

This application note provides information about using
the MC6809 processor to form a Talker/Listener IEEE-488
System. An overview of a data transfer operation, the
General Purpose Interface Bus (GPIB), and some direct
memory access techniques are given for review purposes
prior to the actual system implementation.

The Talker/Listener device consists of an MC6809 pro-
cessor, an MC68488 general purpose interface adapter
device, and an MC6844 direct memory access controller.
Hardware and software considerations are discussed. The
listing of an example program is also given.

DATA TRANSFER OVERVIEW

The standard method of transferring data between
memory and a peripheral device is to have the transfer con-
trolled by a processor. To perform this transfer, the pro-
cessor initiates a read instruction which places the data byte
in the accumulator of the processor followed by a write in-
struction completing the transfer. The generalized sequence
needed to transfer a data byte between a peripheral device
and memory is as follows:

1. The peripheral device alerts the processor when a data
byte is to be transferred. The processor recognizes this
through either an interrupt sequence or a polling pro-
cedure.

2. The processor executes a load instruction to read the
data from the peripheral device and loads it into an ac-
cumulator, which is used as a temporary holding
register.

3. The processor executes a store instruction to write the
data from the accumulator into the appropriate
memory location.

This sequence shows that at least two software instructions
(load and store) are required for each data transfer and that
additional software is required to recognize when it is time to
transfer each data byte.

In an interrupt driven system, the processor also needs to
recognize the interrupt iequest, complete the current instruc-
tion, stack the appropriate internal registers, and enter an in-
terrupt handler routine to determine what course of action is
necessary concerning the interrupt.

The MC6809 allows three different types of interrupts, in-
terrupt request (IRQ), fast ast_interrupt request (FIRQ), and
non-maskable mterruL_t(NMI) The entire machine state is
saved for IRQ and NMI. This can take up to 20 E clock
pulses. The FIRQ is a faster responding interrupt in that only
the contents of the condition code register and the program
counter are saved. This can take up to 12 E clock pulses. If
any other internal registers need to be saved when using
FIRQ, they need to be saved via software.

©MOTOROLA INC., 1981

actions to be taken within the devices. The word controller
does not refer to a processor on the instrument side of the
GPIB.

The controller alters activity on the bus by sending inter-
face messages. The active controller is the only device
capable of sending interface messages. It does this in one of
two ways:

1. Uniline Messages — The controller can send a message
over any one of the five general interface management
lines.

2. Multiline Messages — The controller can send a
message over the eight data bus lines. It does this by
asserting the attention (ATN) general interface
management line signifying to all devices on the bus
that the eight bus lines contain a multiline message
rather than data.

These messages are interface commands which do not in-
teract directly with the measurement process of an instru-
ment. They interact only with the interface logic within con-
nected devices. The primary purpose of these messages is to
carry out the proper protocol in setting up, maintaining, and
terminating an orderly flow of device dependent messages.
(Device dependent messages refer to the information being
sent by the addressed talker device to the addressed listener
devices and not the messages used to control the interface.)
The multiline and uniline messages are used to address
devices to be talkers or listeners, to tell a device to ignore or
not ignore front panel settings, to inquire about any prob-
lems the device has, to reset the interface circuitry, to begin
making a measurement, etc.

Addresses are assigned to each device so it can respond to
addressed commands. Using this address, the controller can
pick out a specific device and instruct it to be either a talker
or listener. The controller does not assign addresses; this
must come from some external means such as a set of switch-
es attached to the device or a subroutine resident in the soft-
ware controlling the device. The address is placed in the
GPIB interface for the device during an initialization se-
quence. Once resident in the interface circuitry, the device
can respond to addressed commands. The address is a 15-bit
digital number that allows the controller to talk to a par-
ticular device.

A talker sends a data byte over the GPIB to a listener or
listeners using an asynchronous three-wire handshake. The
transfer begins when the talker asserts data available (DAV)
and is completed when the slowest listener accepts the data
byte by asserting data accepted (DAC). The third handshake
line, ready for data (RFD), is used to let the talker know that
the listeners are ready for data. There are actually four states
in a data transfer.

1. The talker generates a new byte.

2. The states of the data bus signal lines settle.
3. The listeners accept the data.

4. The listeners become ready for the next byte.

Since there can be many listeners (maximum of 14; 14
listeners plus one talker for 15 devices maximum), it is possi-

ble to have some that respond very quickly (e.g., a disk) and
some that respond slowly (e.g., a teletype) to the same data
byte. In this case, the overall speed of transmission over the
bus is governed by, and cannot exceed the response rate of
the slowest active listener.

The following example is given to demonstrate the com-
mand structure of the GPIB bus and how this relates to the
internal processor system of a device. In this example, a
device assigned a GPIB address of 3 is to send a block of data
using DMA to a device assigned a GPIB address of 1. One
procedure for establishing this link is as follows:

1. Once connected to the system (other devices may also
be connected to this system), the power to each device
is turned on. The unique GPIB address for each device
is placed in its respective general purpose interface
adapter(MC68488) during a power-on initialization se-
quence by the processor along with other appropriate
initialization procedures.

2. The GPIB controller takes control of the bus by asser-
ting ATN and, with the appropriate interface com-
mands, clears all devices on the bus. Remember that
the GPIB controller only talks to the general purpose
interface adapter (MC68488) and not directly to the
device processor. It is up to the MC68488 to alert the
processor through either a polling or an interrupt
routine when the processor needs to take action.

3. The GPIB controller makes device 3 a listener and
sends it information concerning the upcoming DMA
block transfer. The MC68488 interprets these bytes as
data and flags the processor on a per byte basis. The
processor software interprets these data bytes as device
dependent messages. These messages provide informa-
tion such as the precise data to be sent, the format of
the data, mode of processor transfer — DMA or non-
DMA, etc.

4. The GPIB controller clears device 3 and makes
device 1 a listener. Step 3 is repeated to device 1;
however, in this case the information pertains to device
1 as the recipient of the block of data.

5. The GPIB controller leaves device 1 in the listen mode
and assigns device 3 to be a talker. The GPIB con-
troller now releases control of the GPIB, by negating
ATN allowing the data transfer to take place.

6. The talker now sends the data in a byte-per-byte se-
quence to the listener. Each byte is accepted by the
listener according to the asynchronous handshake.

7. When the last byte is sent, the talker alerts both the
listeners and the controller that the next byte is the last
byte of the data block by asserting the EOI general in-
terface management line. The end of a data string can
also be indicated by a special sequence of data
characters (e.g., carriage return followed by line feed)
which are interpreted in software.

8. The GPIB controller can now reconfigure the bus for
the next data transfer.

DIRECT MEMORY ACCESS MODES OF OPERATION

The MC6844 (DMAC) is capable of three modes of DMA
transfer, they are: three-state cycle steal, halt cycle steal, and
halt burst. Only the halt burst and three-state cycle steal
modes were considered for this system controller since the
MC6809 can handle these modes efficiently. The
characteristics of these modes are:

Halt Burst Mode — In this mode, the processor is
halted and removed from the bus (the appropriate out-
put lines placed in the high-impedance state) while a
block of data is transferred between memory and the
GPIB. The DMAC manages the control lines (e.g.,
R/W, address lines, etc.) and keeps track of how many
bytes have been transferred, returning control to the
processor when the last byte has been sent. Therefore,
if the DMAC has been programmed for a 16K byte
transfer, the processor is removed from the bus at the
beginning of the transfer and is not brought back on
the bus until all 16K bytes have been transferred. This
mode of operation provides the direct memory access
system with the highest data transfer rate capability;
however, even though the DMAC can operate at this
high data transfer rate, the actual transfer rate cannot
exceed the rate at which the GPIA can issue request.

The main advantage of the halt burst mode is the
high data transfer capabilities. The main disadvantage
is that the processor is halted during the entire
transfer.

Three-State Cycle Steal — In this mode, the pro-
cessor is neither halted nor removed from the bus for
any extended length of time. Rather, the operations of
the processor are temporarily suspended and the pro-
cessor removed from the bus (the appropriate output
lines are placed in the high-impedance state) while the
DMAC transfers one byte of data. At the end of this
transfer, control is given back to the processor. If a
block of data is being transferred, the processor is
placed back on the bus between each transfer for at
least one processor clock cycle. This method of direct
memory access operation is slower than the halt burst
mode, but does not cause the processor to relinquish
control of the bus for long periods of time.

The MC68488 GPIA cannot issue direct memory access
transfer requests at a high enough rate to take advantage of
the high data transfer rate capabilities of the halt burst mode.
This is due to the inherent functionality of the GPIA and the
IEEE-488 bus. The GPIA must acknowledge each data byte
on the bus before it can issue the next transfer request. This
can take up to seven processor clock cycles. In addition, the
data on the GPIB is transferred in an asynchronous fashion
and cannot be transferred at a rate faster than it can be ac-
cepted by the slowest listening device. In many applications
the data rate on the bus can be very slow; and as a result, the
transfer requests being issued to the DMAC for the device in
question could be occurring at a rate considerably slower
than one every seven processor clock cycles. If the halt burst

mode were used, the MC6809 would be inactive during the
non-DMA time that the DMAC is waiting for a transfer re-
quest from the GPIA. To take advantage of the non-DMA
time and allow the MC6809 to do processing during this
time, the three-state cycle steal mode of operation was
chosen. Now the processor can be brought back on the bus to
perform tasks in between DMA transfers.

SYSTEM OVERVIEW

The DMA system given in this application is essentially
divided into seven major circuits as shown in Figure 2. The
following paragraphs provide a brief description of each of
these circuits. A description of how these circuits are inter-
connected as a working system is also provided.

MC6809 MICROPROCESSOR — The MC6809 is an ad-
vanced member of the MC6800 microprocessor family. It has
special DMA capabilities that allow highly efficient DMA
data transfers. During non-DMA conditions, the MC6809
continues to operate the system. The MC6809 initializes the
other circuits in the system (e.g., MC6844, MC68488, and
the display). At other times, it can be used to execute special
purpose programs.

MC6844 DIRECT MEMORY ACCESS CON-
TROLLER — The MC6844 requests control of the bus from
the MC6809 and issues the appropriate commands (via the
R/W line, grant line, and address lines) to perform data
transfers. The direct memory access controller never actually
receives the data, it directs the flow of the data from one
place to the other at the correct time and in the required
direction. After the transfer is complete, the MC6844 returns
control to the MC6809.

MC68488 GENERAL PURPOSE INTERFACE
ADAPTER — The MC68488 provides the interface between
the IEEE-488 bus and a processor controlled system. After
initialization, the GPIB system controller places the
MC68488 in either a talk mode when it is to send data or in a
listen mode if it is to receive data.

SYNCHRONIZATION CIRCUITRY — The syn-
chronization circuitry performs two functions: 1) It syn-
chronizes the DMA request signal from the DMAC with the
quadrature (Q) signal from the MC6809 by ensuring that the
DMA request is not presented to the MC6809 DMA/BREQ
input during the last quarter cycle of the E signal. 2) The end
or identify (EOI) line on the general purpose interface byte is
used by a talker to indicate to the listeners that the next data
byte received is the last byte of a block. In this system, this
line is applied to the synchronization circuitry to disable
DMA transfer requests to the MC6809. The EOI input to the
synchronization circuitry is used only when DMA transfers
are being made from the GPIA to memory.

Display
System

1 CS
__To Moy 4/§ Device
Address
ﬁ l’\l l-\..] Switches
Data Lines
Control Lines
1 | = |
Address Lines ’
Address
Decode
RESET/Q — =
> CS cs "
(5 MCgRad MC68488 R
BABS DGRNT 7 GPIA :
TxRQ [=== 'DMA Request E
DMA/BREQ \/V R
— Sync [DRQT TxSTB a1 DMA Grant S
Circuit

A

Figure 2. DMA System Block Diagram

DISPLAY SYSTEM — The display system provides a
visual indication of: how many blocks of data have been
transferred, whether the device is a talker or a listener, and
whether the device is in a local or remote state.

DEVICE ADDRESS SWITCHES — This set of toggle
switches is isolated from the data bus by buffers. They are
used to select the device address for the GPIB, i.e., the ad-
dress that the GPIB controller uses when sending addressed
commands. These switches are manually set to the desired
address. The MC6809 initialization program reads the ad-
dress by enabling the buffers and places it in the MC68488.

OPERATION
This system allows bidirectional data transfers in either a
non-DMA mode or a three-state cycle steal DMA mode.

The software is a simplified test program which
demonstrates the DMA capability of the system and is not in-
tended as a general purpose application program. The test
program only allows data transfers in the DMA mode. After
the initialization sequence, the MC6809 simply monitors the
GPIA for the direction of data transfer. The DMAC is not
initialized during the system initialization sequence. The soft-
ware initializes the display and GPIA and then enters a
monitor loop leaving the DMAC disabled. When the direc-
tion of transfer is established, the MC6809 branches to a
routine that initializes the DMAC accordingly. For system
simplicity, the characteristics of the transfer (e.g., number of
bytes to be transferred and beginning memory address) are
constants in the DMAC initialization routine. The only
variable is direction and this is determined by monitoring the
address status register of the GPIA.

The DMAC is not initialized until the direction of transfer
has been established by the GPIB controller. The controller
does this by sending either my talk address (MTA) or my
listen address (MLA). When the GPIA receives either an
MTA or MLA, it sets the appropriate talker active state
(TACS) or the listener active state (LACS) status bit in the
address status register. The MC6809 polls the address status
register for status information and initializes the DMAC to
transfer data from memory to GPIA if the TACS bit is set
and from GPIA to memory if the LACS bit is set.

INITIALIZATION SEQUENCE — A power-on reset
places the display system, DMAC, and GPIA in a reset state.
During the initialization routine shown in Figure 3, the
display system and GPIA are initialized.

Clear Listener/ Talker
Memory Buffer

Initialize Display
System PIA

Initialize GPIA

To Monitor Loop
(or Program Sequence)

Figure 3. Initialization Routine Flow Chart

The display system has an MC6821 peripheral interface
adapter (PIA) which drives two seven-segment displays and
three indicator lights. During initialization, the PIA lines
that control the seven-segment displays are programmed as
outputs and set to zero causing the displays to read a $00. In
addition, the lines that control the indicator lights are pro-
grammed as outputs and set to zero keeping the indicator
light off.

The GPIA is initialized next. The first step is for the
MC6809 to read the address selected by the address switches
and place this value in the GPIA address register (R4W).
This is the value that the GPIB system controller will use to
send addressed commands to this device. The next step is to
remove the GPIA software reset by writing a $00 to the aux-
iliary command register (R3W). Until the software reset is
removed (bit 7 of R3W written to zero), the only register in
the GPIA that can be accessed is the address register. After
R3W is written with $00, the MC6809 programs the address
mode register (R2W) with a $80. This deselects certain status
bits in the interrupt and command status registers from being
set. The GPIA ignores any conditions on the GPIB that

cause the GET status bit in the interrupt status register to be
set and also any conditions that prevent the UACG, UUCG,
and DCAS status bits in the command status register from
being set. The interrupt mask register is then set up to enable
interrupt capability on certain conditions. The interrupt
mask register is programmed with $86. This allows interrupts
to occur if the END status bit is set or the CMD status bit is
set. A summary of interrupt and command status registers is
given in Figure 4.

Since bit 7, R2ZW was set during initialization, the only bits
in the command status reigster that can cause the CMD
status bit to be set are remote local change (RLC) or serial
poll active state (SPAS). The RLC status bit is used to deter-
mine the state of the remove local indicator light. The serial
poll active state feature is not used in this system, and if this
bit gets set and causes an interrupt, the system software goes
to a trap routine and displays $E4 on the display.

MONITORING SEQUENCE — After the initialization
sequence, the MC6809 software enters the monitor loop
shown in Figure 5. The primary purpose of this routine is to
set the indicator lights to indicate how the GPIA has been ad-
dressed (talk or listen) and initialize DMAC. The first pro-
cedure that is executed in the monitor loop is a reset and set
of the GPIA interrupt mask register. Since the GPIA inter-
rupt structure is edge sensitive to the setting of its status bits,
the reset/set sequence of the interrupt mask register ensures
that if a second interrupt bit gets set while a prior one is still
set, this second interrupt is not missed. Now the address
status register (R2R) of the GPIA is monitored. If the LACS
bit is set, the listen status indicator is turned on and the
DMAC initialized to transfer data from the GPIA to
memory. If the TACS bit is set, the talker indicator light is
turned on and the talker memory buffer is loaded with
‘“‘dummy’’ values for the example test transfer. The DMAC
is now initialized to transfer data from memory to GPIA.

After the direction of DMA transfer is established and the
DMA controller initialized, the program enters the wait loop
shown in Figure 6. The system enters this loop and waits for
a DMA transfer request to be issued by the GPIA. The wait
loop is not a necessary part of the system and in many ap-
plications can be replaced by the MC6809 performing some
task. While in the wait loop, the software checks the address
status register for any change in the addressed state. The
following conditions result:

1. If there is not a change in address status of the GPIA,
no action is taken and the program continually cycles
through the wait loop.

2. If the GPIA is unaddressed (e.g., receiving an unlisten
or untalk command), the program turns off the
DMAC and goes to the monitor loop. This unaddress-
ed condition is detected by monitoring the my address
(ma) status bit in the GPIA.

3. If the addressed state changes from talker to listener or
from listener to talker during a DMA block transfer,
the wait loop branches to a trap routine and $E1 is

ROR

R1R

This bit is set if any of the other bits in ROR are set
and the mask bits are enabled in ROW. This bit is
used to generate IRQ.

In the Talker mode this bit indicates when a byte can
be written to R7W. When set it will issue a DMA
transfer request. Interrupt for this bit is disabled.

This bit is deselected in this system by bit 7
Always in low state. Interrupt is disabled.

- Unused position. Always in high

_ This feature is not used
disabled.

When set

, R2w.

state.

in this system. Interrupts

When set this bit indicates that either UUCG,
UACG, RLC, SPAS or DCAS are set in command
status register (R1R). Interrupts enabled for this bit.

this bit indicates that the EOl management

line is asserted and GPIA is in LACS. Interrupts
enabled for this bit.

In the listener mode this bit indicates the reception
of a data byte from the addressed talker. When set a

" o
INT BO GET APT | CMD | END B DMA request is issued. Interrupt for this bit is disabl-
ed.
Interrupt Status Register
This bit is deselected in this system by bit 7, R2W. Is
always low and thus can not cause a CMD interrupt.
Device is in Remote state when REM =1 and Local
state when REM =0. Any change in this bit causes
RLC bit to be set.
This bit reports the LOCK state for the
Remote/Local feature. This bit is not used in this
system.

—~ Unused bit location.

CMD interrupt.

RLC bit reports a change in REM bit and causes a

This bit is set if GPIB control places device in Serial
Poll Active State. If set CMD interrupt occurs and
software enters a Trap routine.

UACG

REM SPAS | DCAS JUUCG

LOK NRLC

L ——~ These bits are deselected in this system by bit 7,

R2W, are always low and thus do not cause a CMD
interrupt.

Command Status Register

Figure 4. GPIA Interrupt and Command Status Register

Reset and Set GPIA
IRQ Mask

=

Load Address Status

Yes

Listen

Mode?

Turn Talk Light Off

Turn Listen Light On

Turn Listen Light Off

!

Set up DMAC to Receive

. Address Register

. Byte Count Register

. Channel Control Register

. Interrupt Control Register

. Priority Control Register
(must be done last)

OB WN =

Talk No

!

Mode?

es

Turn Talk Light On

+

Set Up Data
To Be Transferred

!

Initialize DMAC to Send

. Address Register

. Byte Count Register

. Channel Control Register

. Interrupt Control Register

. Priority Control Register
(must be done last)

OB WN =

Y

Wait Loop 4

Figure 5. Monitor Loop Flow Chart

Read Address Status
Register (R2R) in GPIA

Turn Off DMAC

$

Go To Monitor

No

TACS Set?

Yes

Is Listen

Load PIAIMG Bit Set?

No

\

Turn Off DMAC

Is

Load E1 Code

Load PIAIMG ‘

Yes

Is Talk
Bit Set?

Go To Code
Routine

No

Figure 6. Wait Loop Flow Chart

displayed. Should this type of change occur, an error
condition is trapped by the software and no additional
block transfers are allowed to occur. The system pro-
gram must be restarted.

Any change in the address status requires intervention by
the GPIB system controller. This does not occur during most
block transfers. It is possible, however, for the controller to
take over the bus synchronously and untalk/unlisten the
devices (condition 2 above). This might occur in response to
a service request from some device in the system. Most likely,
condition 3 will never occur (changing the talker/listener
state immediately to the listener/talker state during a block
transfer). If this does occur, the software enters a trap
routine and $E1 is displayed.

LISTENER TRANSFER SEQUENCE — When the
GPIA enters the listener active state, the LACS bit in the ad-

dress status register is set. The MC6809 software monitors
this register and as soon as it finds the LACS bit set, the
DMAC is enabled. The byte count register is loaded with a
number larger than the actual number of bytes to be transfer-
red during DMAC initialization. Rather than having the byte
count register decrement to zero to end the block transfer,
the talker asserts the end or identify (EOI) management line
to end the transfer. Asserting EOI causes the GPIA to
generate an interrupt as an end of block transfer indication
and prepare to receive the final byte via software as shown in
Figure 7.

After the DMAC is initialized, the software will enter the
wait loop. When the GPIA receives a data byte it issues a
transfer request to the DMAC. The DMAC, in turn, issues a
transfer request (DRQ T) to the synchronization circuitry. It
synchronizes this request with the Q clock from the MC6809
and issues a.-DMA/BREQ to the MC6809 during the Q high

10

time. The low input on the MC6809 DMA/BREQ pin stops
instruction execution at the end of the current cycle (E
pulse). The processor address and data lines go to a high-
impedance state and the BA and BS output lines goto a 1 to
indicate that the present cycle is the dead cycle used to
transfer control to the DMAC. The BA and BS outputs are
ANDed to become a DMA grant input to the DMAC. Once
the DMAC has bus control, it issues a DMA grant to the
GPIA. During the E pulse, while DMA grant to the GPIA is
high, the data is actually transferred. The GPIA releases the
transfer request line to the DMAC. The DMAC releases the
DMA/BREQ input to the MC6809 and, after one dead cycle,
the MC6809 removes the high-impedance state from the ad-
dress and data lines and takes control of the bus. The pro-
cessor is free to perform other tasks. The transfer uses three
E pulses (one pulse for the transfer and one dead cycle before
and after the transfer). Each data byte is transferred using
this same procedure.

Enter Via GPIA END
Status Bit Interrupt

f

Turn Off DMAC

Load DMAC
Address Register
Into Index Register

Read GPIA Data-
In Register (R7R)

Store At Address
Pointed to by
Index Register

%

Go To Monitor

Figure 7. Receive Last Byte Routine Flow Chart

Prior to receiving the last byte of data, the GPIB talker
drives the EOI line low. The EOI line is an input to the syn-
chronization circuitry and, when asserted, prevents a DMA
request from the DMAC to the MC6809 from being issued.
This ensures that the MC6809 does not release control of the
bus to the DMAC for the last byte transfer. In addition, the
EOI line causes the END status bit in the GPIA to be set
which in turn sends an interrupt to the MC6809. When the
MC6809 software detects the END status bit set, it branches
to a special routine, and the last byte is transferred to
memory via processor software. The last byte is transferred
by software since the processor must be used to read the

11

status of the MC68488 for the occurrence of an EOI. The
software also disables the DMAC. The software returns to
the monitor loop when the last byte is in memory. Reception
of this last byte causes the GPIB talker to release the EOI
line.

TALKER TRANSFER SEQUENCE — The GPIB system
controller instructs a device to send data by sending its talk
address (MTA). When the MC68488 is made a talker, it
moves into the talker active state and the TACS bit in the ad-
dress status register is set. If set, the MC6809 initializes the
DMAC to transfer data from memory to GPIA. The DMAC
byte count register is loaded with the number N-1, where N is
the number of bytes to be transferred. A DMA transfer is
used for N-1 bytes. The last byte (N) is sent to the GPIA via
MC6809 software. The last byte is sent this way because just
prior to sending the last byte the MC6809 must set the forced
end or identify (feoi) bit in the auxiliary command register of
the GPIA. This causes the EOI management line to go low
and alert the listener(s) that the next byte is the last byte of
the block. Figure 8 is a flowchart of the send last byte
routine.

Enter Via
DMA Interrupt

+

Turn Off DMAC

Set feoi in GPIA.
This Asserts the EOI
GPIB Management Line

Send Last Byte to
GPIA Data-Out
Register (R7W)

Return to Monitor

Figure 8. Send Last Byte Routine Flow Chart

As soon as the MC68488 enters the talker active state, a
transfer request is issued indicating that the MC68488 is an
active talker and the output buffer is empty. Each time the
byte written to the GPIA output buffer is accepted by the
listener(s) on the bus, another transfer request is issued. The
transfer request handshake sequence between the MC68488,
MC6844, and MC6809 is the same in the talker mode as it is
for the listener mode.

INTERRUPT HANDLING — There are two sources of
interrupts, the DMAC and the GPIA. When an interrupt oc-
curs, the software checks to see if the DMAC caused the in-
terrupt, as shown in Figure 9. The DMAC only generates an
interrupt when the byte count register decrements to 0. Recall
that, in the listener mode, the byte count register is program-
med with a hex number larger than the number of bytes to be
transferred. In the talker mode, the byte count register is pro-
grammed with N-1, where N is the number of bytes to be
transferred. Therefore, the only time the DMAC can
generate an interrupt in this system is when the GPIA is in
the talker mode and is ready to transfer the last data byte
from memory to GPIA.

If a DMAC interrupt occurs, the software checks the R/W
bit in the DMAC channel control register. If this bit is not
set, the DMAC is programmed to transfer data from GPIA
to memory indicating that the GPIA is programmed to be a
listener. In this instance, the byte count register was initializ-
ed with a number too small for the block size being transfer-
red. The system enters a trap routine and $E2 is displayed. If
the R/W bit is set, the system is in a talker mode and it is time
to send the last byte of the block. The software enters the
send last byte routine.

If a DMAC interrupt did not occur, then the GPIA is
checked. If the GPIA INT status bit is not set, then one of
two conditions has occurred. Either an extraneous interrupt
was produced by another device such as a PIA or the GPIA
has produced a ‘‘ghost interrupt.’”’ Ghost interrupts can oc-
cur in this system if the GPIB controller performs an illegal
sequence of events or if the GPIA is placed in the serial poll
active state (SPAS) and then removed from this state before
the MC6809 interrupt software can check the GPIA status.
Should any of these conditions occur, the software enters the
trap routine and $E3 is displayed.

If the GPIA caused the interrupt, the software first checks
the CMD bit in the interrupt status register. If the END bit is
not set, the GPIA interrupt occurred from some other source
in the interrupt status register. This implies that the interrupt
mask register was incorrectly initialized and $E3 is displayed
and the program trapped. If the END bit is set, then the last
byte of the block is to follow. The program turns off the
DMAC and then begins monitoring the BI bit in the interrupt
register for the occurrence of the last byte.

If the GPIA caused the interrupt and the CMD bit was set,
the software checks the command status register. All the bits
in the command status register except the RLC and SPAS
bits have been deselected in the initialization sequence.
Therefore, the software only needs to check the RLC bit and,
if it is not set, can assume that the interrupt was caused by

12

SPAS. Since the SPAS feature of the GPIB is not used in this
system, this occurrence causes the software to enter a trap
routine. If the RLC bit was set, then the software checks the
REM bit to see if the device is in local or remote and operates
the remote/local indicator light accordingly.

DATA RATE — The data rate in this type of system is a
function of the response of the device being communicated
with. During the testing of this operation, a Hewlett Packard
GPIB Emulator which has a TTL response rate was used
(negligible when compared with the 6809/6844/68488
system). Because of this, the data rates for the system in this
application are primarily a function of the 6809/6844/68488
system and any increase from combining the response rates
for devices on both sides of the communications link can be
considered negligible. The data rate differs slightly depen-
ding on whether the GPIA is a talker or a listener. This time
difference is a result of the GPIA itself. The data rate as a
listener is measured from the time the GPIA made the ready
for data (RFD) line true for one transfer to the time RFD is
made true for the next transfer. This time is 11 E-clock cycles
which results in, for a one megabyte E clock, a transfer rate
of 99K bytes per second.

The data rate as a talker is measured from the time the
GPIA made DAV true for one transfer to the time DAV is
made true for the next transfer. This time is eight E-clock
cycles and results in a transfer rate of 125K bytes per second.

SYSTEM HARDWARE

The system hardware is designed to maximize the efficien-
cy of DMA transfers and to provide an orderly processor bus
control exchange between the processor and the DMAC. As
mentioned earlier, there are two handshake sequences for
each DMA transfer. The handshake between the peripheral
device and the DMAC is to request and grant a DMA
transfer. The handshake between the processor and DMAC
is to exchange control of the processor bus. This control ex-
change must occur in an orderly fashion to eliminate bus
contention. System clock cycles called ‘‘dead cycles’’ are pro-
vided before and after the actual DMA transfer cycle. It is
during these dead cycles that the device in control of the pro-
cessor bus releases control and goes into a high-impedance
state and the other device assumes control by coming out of a
high-impedance state. As shown in Figure 10, the timing is
designed so that each exchange occurs in one cycle to max-
imize system efficiency and yet prevent both devices from
trying to be in control of the processor bus at the same time.
There is a time during each dead cycle where both the pro-
cessor and DMAC are off the bus and the processor bus and
control lines are in the high-impedance state. To prevent a
spurious write or read during this time, a signal called
DMAVMA is generated which disables the chip select of all
peripheral devices.

To ensure that the entire post dead cycle hasa DMAVMA,
a signal called first quarter (FQ) is used to provide DMAV-
MA for the first quarter of every MC6809 E clock period.
Since the first quarter is not used by peripheral devices, this
operation does not pose any system problems.

Turn Off DMAC

Y

Go To Send Last
Byte Routine

Disable
Interrupts

!

Read DMAC
Channel Centrol
Register

Is

No

DEND Set?

Y

Load E3
Trap Code

Y

Go To Trap
Routine

Read GPIA
Is R/W Inte::pitstsetratus
Bit Set? 9
No (wasn’t
ki
a talker) No
Load E2
Trap Code
v Yes
Go To Trap
Routine - No
Read GPIA
Interrupt
Status Register

Turn Off DMAC

Y

Go To Receive
Last Byte Routine

Reset
REN Indicator Light

Read GPIA
Command Status
Register

No

Yes

No

Set REN
Indicator Light

Load E4
Trap Code

Y

Go To Trap
Routine

Figure 9. Interrupt Handling Routine Flow Chart

13

Disable i i |
| I |

MPU MPU Dead DMA Dead MPU MPU
Pre-DMA DMA Cycle Post-DMA
Cycle Cycle

E clock I l l I | ' |
o JA High-Z i I l |

MC6809 7 Operation / - 9 il |

Address Bus 5 s |

mC6844 | PO G T - i '

Address | — Operation t

Bus | —] —— |

| |~480 ns [|

I

|
| I
Decode l | I | | | |

L
.

Figure 10. System DMA Cycle Timing

During data chaining operations on the DMAC, an extra
post dead cycle occurs during the data chain process itself.
The DMAVMA signal is not generated for this extra dead cy-
cle. To prevent spurious read/write operations, the DMA re-
quest line from the MC68488 is input to the synchronization
circuitry. This allows the MC6809 to take control of the pro-
cessor during the extra data chaining dead cycle.

To immediately begin a DMA transfer sequence, the
MC6844 must have a request at the TxRQ input within 120
nanoseconds of the rising edge of E in the cycle just before
the pre-DMA dead cycle. Otherwise, the DMA transfer se-
quence will occur one cycle late. This does not affect pro-
cessor efficiency but slows the response time to the peripheral
requesting attention. The MC68488 issues its request to the
MC6844 within this time, as well as synchronously with
respect to E. Figure 11 is a timing diagram for the system
showing the relationship between MC6809, MC6844, and
MC68488 request and grant signals.

The GPIA provides the necessary handshake lines to allow
it to be used in a DMA mode. These control lines (DMA
Grant and DMA Request) are used to control the transfer of
data bytes to and from memory with the aid of a DMAC.
The DMA control lines as well as the specialized operation of
the R/W line and register select lines (RSO, RS1, RS2) in this
mode allow a DMAC such as the MC6844 to connect directly
to the GPIA without any additional gating circuitry. A DMA
request automatically causes the GPIA to select register 7, in-
vert R/W, and proceed with the data transfer when a DMA
Grant occurs. Therefore, no R/W inverters or data bus
drivers are needed.

SYNCHRONIZATION CIRCUITRY The syn-
chronization circuitry is shown in Figure 12. During a
transfer the gating of EOI and DQRT prevents the data
transfer request (from the DMAC) from being applied to the
processor when EOI is asserted. With no transfer request ap-

plied to the MC6809 it resumes a normal operation. In
parallel with the assertion of EOI, the MC68488 has issued
an interrupt request (IRQ) to the MC6809 to service a last
byte condition signified by the presence of EOI. The MC6809
selects register 7 and moves the last byte of data itself. Now
the system software will turn off the DMAC and enter the
monitor loop. This method of detecting the last byte is used
because the processor may not know the message length. The
EOI indication provides more versatility for sensing the last
byte of a block of data and is readily available on the GPIB
as an option for instruments and controllers. In addition, the
TxRQ input removes the DMAC from the bus and puts the
MC6809 on the bus during the second post-DMA dead cycle
that occurs during data chaining operations.

With the system in a typical transfer mode, the transfer re-
quest signal DRQT is gated to the synchronization
circuitry.The purpose of the circuitry at this time is to delay
the transfer request until the next high Q. Thus, not only
should the signal be clocked through on positive edges of Q,
but it should also be allowed to appear directly at the
DMA/BREQ input of the MC6809 when Q is high.
Therefore, the flip-flop latches on positive edges and, during
the positive half of Q, passes the signal directly to the
MC6809. This enables the system to work both in its present
format as well as with other peripherals which may signal
their transfer requests later in time.

TIMING DESCRIPTION — This description assumes in-
itialization of peripherals and controllers and a typical
character transfer to/from memory. Both transfer types are
shown — the byte from memory (talker mode) and a byte to
memory (listener mode). To alleviate any timing losses on the
IEEE-488 bus, a Hewlett Packard GPIB emulator with an
automatic high-speed receiver/transmitter is used as the
‘“‘other end’’ sender/receiver. This TTL device has an inter-
nal delay in both modes of 80 nanoseconds (due to the ready-
ing of new data while the MC68488 receives/talks).

9

Pre-DMA Post-DMA
MPU Dead DMA Dead MPU MPU
E
Q ——)
120 ns Min. —»| fe— > gﬁf&gated
(MC68488) DMA Request Negative Edge of
[(MC6844) TxRQO] I” DMA Request from TxSTB
—>> << 6844 Delay
(MC6844) DRQT —_—
DRQT
[(MC6809) DMA/BREQ]
220 ns Max. > <
10 ns Typ.
(MC6844) DGRNT Both Edges l I 270 ns Max.
[(MCB809) BA®BS} ol - g 1T0 ns
(MC6844) TxSTB Bmhygd o
((MC68488) DMA GRANT] ’

FQ

Change

DMAVMA

NOTE: The bracketed terms represent the same signal as the term just above.

Figure 11. System Timing Diagram

+5V

r\élcneggs aekl 740574
741508 Ly
MC6809 Q 4 LJa102 1 .
Pin 36 6 . el s -
cLK
5 7 741832
Q D U113 . DQRT
i = DORT_II
741586 g (12 TxRQO
uia_ o N =
6 5 5 EO 4 qs EOI
| T 741832
MCe809 DMA/BREQ f U113 s

Pin 33

Figure 12. Synchronization Circuitry

LISTENER — Refer to Figure 13. With the GPIA in the
listener mode, the ready for data (RFD) handshake line goes
high (1) as the GPIA is ready for another byte. One emulator
box delay (80 ns) later, data is valid on the bus (2). Approx-
imately two clock cycles later, the GPIA has taken the byte
and RFD goes low.

Three and a half clock cycles later, the GPIA issues a re-
quest to the system using the DMA request line (3). Approx-
imately 300 nanoseconds later, the MC6844 issues DRQT.
The synchronization circuitry passes the request instantly
since Q is high, and the MC6809 receives a DMA/BREQ in-
put. At the beginning of the dead cycle (if the 125 nanosec-
ond lead time on DMA/BREQ was observed), the BA and
BS lines both go high to indicate that the bus is in a high-
impedance state and is available. With the BA and BS signals
ANDed together and sent to the DGRNT input of the
MC6844, the DMAC readies the bus for transfer by output-
ting: the address for the memory store, a write condition on
the R/W line, and in the next cycle, a TxSTB to the DMA
grant line of the GPIA. As soon as DMA grant is received,
the TxRQ is removed from the MC6844 by the GPIA and,
300 nanoseconds later, DRQT is also brought low. By the
falling edge of E on the DMA cycle, the GPIA has
automatically selected register 7. It has inverted R/W (so that
the ““write’’ of the received data to memory means ‘‘read”’
from the GPIA), and on the falling edge of E, the data is
latched into memory at the address that the MC6844 has
already supplied. Now that a byte has been taken from
register 7, the GPIA prepares to receives a new byte from the
GPIB. Ir the post DMA dead cycle, a data accepted (DAC)
signal is put on the bus (@). After one (80 ns) emulator box
delay the GPIA gets a ““Not Valid’’ indication on the DAV
line (3. From that time to a new RFD signal (), the internal
delay time in the GPIA is required to reset all latches and

begin again.

16

TALKER — The processor bus timing when the GPIA is
in the talker mode is the same as for the listener mode. The
rate that transfer requests are generated by the GPIA is
directly related to how quickly the listener can accept the
data. Figure 14 shows the system timing when the GPIA is
programmed as a talker.

As soon as the data from the last transfer is accepted at the
emulator and a DAC is received (D), the GPIA sends out its
DMA request for a new byte from the MC6844. Three cycles
later when the DMA occurs (3), the GPIA begins to move
that data to the GPIB. One and one-half cycles later (), the
GPIA issues DAV, and the emulator issues DAC 80
nanoseconds later. After a response time to ‘‘Data Not
Valid”’ (approximately 2 cycles), the emulator is ready for a
new byte from the GPIA (§).

SYSTEM SOFTWARE

The software shown in this application is not intended to
be a general purpose application program. It is an example
program showing how the MC68488 can be used with the
MC6809 in a DMA system. The memory map for this system
is shown in Figure 15.

TRAP ROUTINE — The software has a trap routine
which displays a code on the system display. Once the system
enters the trap routine, it remains in this routine. If an EX-
ORciser system is used, then the Restart key has to be used to
restart the program at the monitor loop location ($D079). A
list of the display codes are given below.

Code Description
El1 The LACS/TACS bit in the GPIA is set, but the
listener/talker software flag bit (PIAIMG) is not set.
This condition could occur uring a DMA block
transfer if the GPIA system controller readdresses

L1

@ GPIA Through

Through
@ Request | RFD Systems @ @ @
L <€<—Response Request —3] i |
* l
E] | |
| ;
|
| | gt Re
RFD (GPia) Mot | | Ready | i Aemiy | Ready
Ready | : [
GPIA Response Time ~1 Cycle
- New RFD from DAC | 'T_
DAV Not : _ ! Valid
(Emulator Box) valid | Valid g I | Mot Vishe ; (New Data)
|
—> l€— Box Response Time (80 ns) Box Response (80 ns) —ﬁ fe— _>} —
|
h |
DAC (GPIA) | | i
Total GPIA

Iy

Cycling Speed

With Emulator Box
10 E Pulses

—>

GPIA Delay —)' i(— Max 100 ns
L
I

DMA Request (GPIA)
I | L
| {
BAeBS (MC6809) |
(MC6844 TxSTB)
DMA Grant (to GPIA)
[I | | "
[Request | Dead | DMA | Dead |

Accepted (Pre-DMA) Cycle (Post-DMA)

Figure 13. Listener Mode Timing Diagram

81

GPIA Delay

|
Previous Byte From Last @ |®
Acceptance to @@ @ @ |
New “'Not Valid" | | [s GPIA |
6809 System Acceptance
e e Delay — >« Delay —»| Response — > |
1 | to Bus !
l T
E | |
| ! |
(80 ns) —>] [<€— Box Response Time | L4 |
i T T $ e
RFD Ready I Not Ready : Rladv | Not Ready | Ready
(Emulator Box) : | |
! |
[
& gt | | I
—— B4 | T
DAV Not Valid | Valid Data | Not valid Valid Not Valid
(GPIA) L b I
T Lo 4
(80 ns) —3» Box Response Time |(—
| (‘/ 5 l' I
DAC Not Accept I Accept Accepted Not Accepted

(Emulator Box)

DMA Request (GPIA)

BAeBS

I

I

I

i GPIA Request Delay
««—From RFD (Emulator Box)
I to DMA Request

(6809)

6844 TxSTB

(DMA Grant 68488)

"
I
I
|
l
|
i
|
|
l
l
|

i
I | I I I
Request I Dead I DMA Dead |
Accepted (Pre-DMA) Cycle (Post-DMA)

Figure 14. Talker Mode Timing Diagram

Figure 15. Memory Map

Memory Function Memory Location
MC68488 Registers $E060-$E067
MC6844 Registers $E040-$E056
Display System (PIA Registers) $EQ70-$E073
Main Program ORG at $D000
Receive Memory Buffer $D800-$D8FF
Talker Memory Buffer $D800-$DBFF

E2

the GPIA to be a talker when it was a listener or vice
versa.

The DMAC caused the interrupt, but the system was
not programmed to be a talker. Under normal opera-
tions, the DMAC should only interrupt the MC6809
when the system is in the listener mode. If it inter-
rupts when the system is in the listener mode, then
the count in the DMAC byte count register was ex-

19

E3

E4

ceeded by the actual number of bytes in the block
received. The byte count register must be initialized
with a larger number or the block of data to be
transferred must be broken up into smaller blocks.
Neither the DMAC nor the GPIA interrupt bits are
set. The interrupt was caused by another device or
the GPIA produced a ‘‘ghost interrupt.”’ In this
system the only way the GPIA produces a ‘‘ghost in-
terrupt’’ is if the GPIB system controller places the
GPIA in the serial poll active state (SPAS) and then
removes it from this state before the MC6809 can res-
pond to the interrupt.

The SPAS bit is set. This occurs if the GPIB system
controller sends the serial poll enable command and
then sends the device talk address placing the GPIA
in the serial poll active state.

EXAMPLE PROGRAM LISTING — The following pro-
gram listing is an example program to show how the
MC68488 can be used with the MC6809 in a DMA mode.

PAGE

n00061
eana2
P0003
00004
LLLLEY
00006
ea0n7
00AABA
20039
oeel1a
eenll
onn12
onaL3
00014
92015
0A016
0a017
00018
00819
20020
Ane21
0022
ona23
20824
200825
nan25
20827
0a028
00029
0630
20031
000832
0@0833
Ana34
2@n3s
200836
20037
00n38
000439
0004
eneal
00n42
00043
20ag44
00845
00046
00n47
20048
n@e49
000850
000851
200852
200853
20A54A
0@855A
AAB5H6A
00ASTA
0ABS8A

8L

Daan

DAaR
DAA2
Deo4
DoO6
DABs

GPIA2

<SA:2

EA6D
ER6QA
EA6L
FAR2
ER62
EO63
EAR3
EAR4
Fa54
EA65S
EPGRS
EARR
EAS6
FA6R7
EART

EASA
EA54
EASS
EA4N
ER4L
EA42
EA43
EA4C
EA4D
EA4E
FOAF
EAS6

EA71
E273
EA70
ER72
EA70
EAT72

AAFF
AAFE
ol 1sl7]
DBAA
a4

GPIAL
*
*
*
"
*
NAM
oPT
ORG
*
*LOCATIONS
*
A ROR EOU
A ROV EOU
A RIR EOU
A R2R £QU
A R2W EOU
A R3R EOU
A R3wW EQU
A RAR EOU
A RAW EQU
A RSR EOU
A RSV EQU
A R6R EOU
A RAY FOU
A R7R EQU
A R7W EOU
-
*THEFOLLOWING
*
A CHCON EOU
A PRICON EOU
A INTCON EQU
A ADDHA EQU
A ADDLA EQU
A BYTEHD EQU
A BYTEL? EQU
A ADDH3 QU
A ADDL3 EQU
A BYTEH3 EQU
A BYTEL3 EOU
A DCHAIN EQU
*
*THEFOLLOWING
*LOCATIONS
*
A CRA Fou
A CRB EOU
A PRA EQU
A PRB EQU
A DDA EOl
A NDB EOU
*
A LRYCNT FDR
A TBYCNT FDR
A LMEMPT FDB
A TMEMPT EDB
A RENON FCB

MCRRARB (GPIA)

A8M9 - DMA SYSTE™

R/26/7°

GPIAL

LLF=87,ARS
epenp

*THE FOLLOWING ARF GPIA REGISTFR APNNRFSE

SFA6R INTFRRUPT REG
SENRR INTERRUPT “ASY REC
SRAAL COMMAND STAT'IS arr
SFEA42 ADPDRE STAET'IS RF7
SERR2 ADDRESS MODE REC
SENR3 AUXILLARY COMMAND PEC
SE“63 A'XILLARY COMMAND REG
SEF64 ADDRESS SWITCH PEC
ADDRFSS RFGISTER
SERIAL POLL PRG

SFRIAL POLL RFG(WRIT"Y)
COMMAND PAGG=THR! ARC
PARALLFEL POLI. RFA

SEAAT PATA IN RFG

SFErA7 PATA OUT REC

ARE DMAC RERISTEPR ADPRESS LOCATIONS
sease CHANNEL CONTROL. RREC
SEMSA PRIORITY CONTROL RER
SERSS INTERRUPT CONTROL RFC
SFa4e HIGH ORPER APD PVTS
SENAL LOW ORDER ADDRESS PVTR
SFR42 HIGH ORDER BYTE COUMT
SEN43 LOW ORPER PVTE COUNT
SFER4C HIGH ORDER APD RYTH
SERAD LOW ORDER APNRESS RYTF
SEA4E NIGH ORTAR RYTE COUNT
SEAMF LOW ORDER BYTE COUNT
SENSA DATA CHAIN REC

ARE PIA REGISTER APDRESS

SEATL CONTROL REG A

SF473 CONTROL REG R

SFATY PERIPHERAL REA A

SEAT2 PERIPHERAL RFG B

SEA7A DATA DIRECTION RFG A
SEAT2 DATA DIRECTION RFC R
SAAFF MAX NO., LISTEN BRYTES
SAAFF N-1 OF N TALK RYTES
spsag LISTEN MFEM RUF POINTFR
SDRAR TALK MEM BUF POINTFR
aca REN LIGHT NN MASY

PAGE 002

20059A
20860A
0006 1A
00062A
20063A
00064A
00065A
A@BARGA
20067
00068A
00069A
20070A
00071
00072
00073
20e74
80075
20076A
00077
2an78
nen79
0AR8AA
2008 1A
008 2A
00883A
22084A
ADBBSA
aneeny
HRARTA

papen g

waeena
2009 LA
28092A
008093A
2A094

20095

Are9s

20897A
0N098A
0AA99A
ANLAGA
@a1a1A
001A2A
001043

00124n
AALOSA
27106

aeLer

anL0A8

PALA9A
P0L10A
OALLLIA
00112A
00113A
@a114A
P@LLSA
GOLLIAA

Do0o9
DOOA
DéoB
Daec
DA@D
DAAE
DeaF
Deia

DALl
DalL2
DALl

Del4a

DAlK
DO17
DOL1A
DALD
DA21
D23
D825
n27

Lot

nn3y
D32
DR34
ne3s

D38
DA3B
DA3E
DA4a
DA43
DA4A

DA49
na4c

DA4F
DOS1
D854
DAs7
DA59
DASC
D@SF
D@61

GPIA2

4F
BR?
BE
1ABE
A7
3¢

2R

86
B7
BR7

B7
B7

B7

«SA:0 GPIAL

nAL2
Doaa
naAaA
84
Ly
r
2

24
LF

F8

EF64
EN64
aa

EAR3
paLe
E062

DAAF
E260

a0
EA71
EA73

EAT7®
EA72

EA71

P> >PPIPPPPP

a
29

s> PP P

DA3a

>y >>»>

>>»

P> 2> >>

RENOFF FCB SFB REN LIGHT OFF MASK
TALKON FCR snL TALK LIGHT ON MASK
TALKOF FCB SFE TALK LIGHT OFF MASY
LISTON FCB sa2 LISTEN LIGHT ON MASK
LISTOF FCB SFD LISTEN LIGHT OFF VAGK
SCALER FCB €63 RLOCK DISPLAY PRESCALFR
MASK FCB $86 GPIA INTERRUPT = 3F
DSEL FCB s80 NESELECTS STATUS BITS
BLOCK RMB 1 NO. OF PRFSCALED BLOCKS TRAXCF
COMP RMR 1 PRESCALE COUNT COMPARE
PIAIMG RME 1 IMAGE OF LED LIGHTS
*
"
#**INITIALIZATION ROUTINE*#
L
*
ORCC #51¢ DISABLE INTFRRUPTS
*
*CLEAR LISTENER & TALKFR ¥EM RUFFFRS
*
CLRA
STA comp SET COMP TO ZFRO
LDX LMEMPT GET LIST. MPM POINTER
LnY LBYCNT GET LIST., RYT: COUNT
LOOPL STAA @,X CLEAR MEM LOCATION
DG . = 1 LS
Zilt e o oer wwmen gL er
faday s i
- :
- e L
LENP? STA 2, CLEAY wrw [ACATINS
LFAX =1,% MOVE TO WEXT ¥R& LOCATIAV
LEAY -1,Y 1S TAIS LAST LOCATION OF BUFFF
BNF LOCP2 IF NOW, CLEAR AROTHPR
*
*INITIALIZE CPIA
*
LDA RAR REAR APDRESS SWITCI'ES
STA RAW PLACF APDRESS IN GPIA
LDA 1¢e0
STA REMOVE APIA RESET
LDA NESEL CERTAIN STAT!S
STA RITS FROM CAUSING IRD
LDA MASY GET IRM MAS¥ BYTE
STA RAW SET UP GPIA IRD MAS¥

*

*INITIALIZF PIA
*

LDA
STA
STA
LDA
STA
STA
LDA
STA

8sap
CRA
CRB
#SFF
NDA
NDR
#504
CRA

SELECT DATA DIRFCTION
REG FOR A PORT
SELFECT PORT R PATA DIR,

PORT A AS OUTPUT
PORT R AS OUTPUT

SELECT PERIPH., REG A

|4

PAGE

0NLL7A
Jyaliea
20119A
NaL20n
anl2l

122

AdL23

AL24A
CN125A
APL2AA
WL27A
RaL20A
ani2e

oaL3e

a7131

w32

20133

a0 134A
U2135A
VA136A
AL3T7A
eeL3s

oaL3e

aeLan

aAdLALA
avid42a
CfLa3a
AdLaan
APL45A
ADLAGA
20147
ANL1ABA
ARLAOA
AVLSAA
CRLSIA
anLs2a
ANL53A
AR154A
ArL55

enLsh

ARLS7

aaL58A
27159A
ABLARA
AALA1A
00162A
031A3A
CALA4A
0d165A
AdL66A
ANLATA
AALABA
AALAYA
ABL70A
ARL71A
ANL72A
AAL73A
20174A

ap3

DG4
D267
DTA9
DRAGC

DAGF
D7l
nir73
nR77
D78

D79
DA7R8
DY7E
D8l

nage
D37
i
D28B
DASE
DA91
nnog4
Dra7
ne9g
DE9P
DA9E
DRAL
DA4
DEAT

DA
DAAC
DAAF
DAR2
CARS
DaBe
DABB
D@ABE
DACL
paca
Dac?
DNCA
pacc
DACF
DADL
D?D4
DANG

GPIA2

F7
86
R7
R7

1C
85
3
3F

25
R7
1
R7

R%

«SA:®

EA73
aa

FR72
Ef72

EP
ac

P> >

> >

8D 0WE3

a9

an

Fa60
DVWAF
EA&QD

EAG2
]
1F
D13
naan
EAT72
neL3
na
45
pAL3
neap
ERT72
N3
ne

>>» »>

A
DAAY
A

S >B >

DOE
A

L

nes

P> PP I P>

GPIAL

*

STB
LDA
STA
STA

CRB
#5009
PRA
PRB

SELECT PERIPH. REG B

INIT.
INIT

PORT A TO ZERO
PORT B TO ZERO

*ASSISTA9 INTERRUPT PROCEDURE
*

*

*FALL THROUGH
*

*AXAMONITOR**
*

MONIT

*
*CHECK
*

LooP?7

*

ANDCC

LDA
LEAX
SWI
FCH

LDA
STA
LDA
STA

#SEF
412

IRO,PCR

aQ

ENABLE SYS. INTERRUPTS

TO MONITOR

#s0n
ROR
MASK
RAR

RESET GPIA IRG MASK

SET GPIA TRQ MASK

GPIA TO SEE IF ACTIVE TALKER/LISTENER

LDB
BITB
BNE
LDA
ANDA
STA
STA
BITB
BNE
LPA
ANDA
STA
STA
BRA

R2R
#sn4
LACS
PIAIMG
LISTOF
PRB
PIAIMG
tso8
TACS
PIAIMG
TALKOF
PRB
PIAIMG
LOOP7

LOAD GPIA ADD. STATUS
IS LACS SET

IF YES, SET UP DMAC
iF NO,

TURN OFF LISTEN LIGHT
SEND TO FRONT PANEL
UPDATE PIAIMG

1S TACS SET

IF YES, SET UP DMAC
IF NO,

TURN OFF TALK LIGHT
SEND TO FRONT PANFL
UPDATE PIAIMG

TEST GPIA ADPD STATUS

*SET UP DMAC FOR LISTEN ROUTINE
*

LACS

LDA
ANDA
ORA
STA
STA
LDX
STX
STX
LDX
STX
STX
LDA
STA
LDA
STA
LDA
STA

PIAIMS
TALKOF
LISTON
PRB
PIAIMG
LMEMPT
ADDH®
ADDH3
LBYCNT
BYTEHO
BYTEH3
#3504
CHCON
#581
INTCON
500
DCHAIN

TURN OFF TALK LIGHT
TURN ON LISTEN LIGHT
SEND TO FRONT PANEL
UP DATE PIAIMG

GET LIST. START ADD
PUT IN DMAC CHAMMEL @
PUT IN DMAC CHANNEL 3
GET NO. OF BYTES

PUT IN DMAC CHANNEL @
PUT IN DMAC CHANNEL 3
SELECT UP COUNT, TSC
STEAL, & MEM WRITE
SELECT IRO ON DEND
PUT IN DMAC

DISABLE DATA CHAIN FEATURE

PAGFE

01758
"PL76A
AnLT7A
erL7n

°tL79

anLse

TTLRIA
APLA2A
2SN
VOLRAA
fnLasa
W26

w137

AvLana
wTLP9A
241208
ARLGLA
APLA2A
arLeas
e L24A
LALO5A
ENL06A
291974
wrLa0a
TN L99A
22020
e LA
OT202A
A 2¢3A
S04
eN208A
AR2PAA
ap207A
AN209A
2R2090
WA21A
2214

w212

2213

ar2l14a

ae21s

air215

AE24T

an212

20219

@p220

ei2218
232227
WRA223A
224

aN225A
20225A
an227A
AN22RA
ae229A
AA232n
AA231A
AR232A

ars

toTidol)
DInE
DRRE

"OER
DOE3
DRFS
DREY
LARC

~PEF
NaF2
DAFS
RS
DOFA
NAFH
AED
DOFF
nifl
D14
pLa?
DICA
npan
nlia
nL13
5115
Dl
NLLA
I
DILF
D122
£124
ri27

D129
niac
D12E

Dl3@
D132
D134
D137
D139
2138
D13D
D14y

GPIA2

RS
K4
RA
K7
87

BE
12PE
cs
&7
sC
ki
31

BF

R4
i57
S
87
2

«SA:Q
@1 A
Fa54 A
4° n129
nL3 A
DWAL A
NZeA A
EA72 A
nal3 A
PROs A
B2 A
ad A
24 A
LR A
3F A
i NAFR
nafs A
Bp4 A
E®4C A
nae2 A
Fa42 A
EC4F A
5 A
EAS™ A
el A
E255 A
an A
ENSA A
b A
£754 A
aa niL29
EfGR2 A
a A
22 D152
4 A
(e D145
nal13 A
72 A
EFE D129
i) A
ER54 A
El A

SPIAL

LDA
STA

BRA
*

#sal
PRICON
WAIT

ENABLE CH. @ TRANSFER REQUEST

*SET UP DMAC FOR TALK ROUTINE
*

TACS LDA
ANDA
ORA
STA

STA
*

*LOAD TALKFER MEM BUFFER

LDX
Lny
LDBR
STB
INCB
LEAX
LEAY
BNE
LDX
STX
STX
Lnx
STX
STX
LDA
STA
LDA
STA
LPA
STA
LDA
STA
RRA

LOOP3

*
*WAIT LOOP

* %% %o

NAI'T LDA
RITA

BEQ

BITA
BED
LDA
RITA
BNE
LDA
STA
LDA

TRAP1

PIAIMS
LISTOF
TALKON
PRB

PIAIMG

TMEMPT
TRYCNT
sen
a,x

=1,X
=1,¥
LOOP3
TMEMPT
ADDHA
ADDH3
TRYCNT
BYTEH®A
BYTEH3
4525
CHCON
#8581
INTCON
#S00
DCHAIN
€0l
PRICON
WAI'T

~ WAITS FOR A DMA REQUEST TO OCCUR,

TURN OFF LISTEN LIGHT
TURN ON TALK LIGHT
SEND TO FRONT PANEL
UPDATE PIAIMG

GET MFM POINTER
GET NO. OF BYTES

STORE DATA RYTE IN MEM
INC. NO., TO BE STORED
DEC. ADDRESS POINTRR
DECRIMENT BYTE COUNT
IF NOT LAST DO ANOTHER
GET TALK BUF ADD.

PUT IN DMAC CHANNEL @
PUT IN DMAC CHANNEL 3
GET NO. OF BYTFES

PUT IN DMAC CHANNEL @
PUT IN DMAC CHANNEL 3
SELECT UP COUNT, TSC
STEAL , & MEM READ
SELFCT IR0 ON DEND

PUT IN DMAC

DISABLE DATA CHAINING
FEATURE OF DMAC

ENABLE CH @ TRANSFER

TALK/L

CONDITION RECOGNIZED AND DMAC HAS REEN S

ACCORDINGLY.

WAIT LOOP ALSO CHECKS FOR A

IN GPIA ANDRESS STATUS.
IF APDRESSED DIFFERENTLY THAN IT WAS
WHEN WAIT LOOP ENTERRED AN FEl TRAP

WILL RE PRODUCED.

R2R
#s8e
OFF

4504
TACBIT
PIAIMG
#5092
WAIT
asen
PRICON
#SEL

LOAD GPIA ADD. STATUS
IS MA BIT SET

IF YO, GO TURN OFF DMAC

IS LACS BIT SET

IF NO, GO TEST TACS

IF YES, SEE IF LISTFN FLAG SET
IS LISTEN FLAG SET
IF YES, ALL IS ‘OK'
IF NO, ALL IS NOT OK
TURN OFF DMAC

LOAD ACC A WITH TRAP CODE

- CHECK R2

(74

PAGE @05 GPIA2 «SA:0 GPIAlL PAGE @36 GPIA2 .SA:@ GPIAlL

0@233A D142 16 0098 DLEA LBRA TRAP GO TO TRAP ROUTINE @A291A D1A2 BE 849 A LDX ADDH@ GET ADD OF LAST BYTE
@0234A D145 85 a8 A TACBIT BITA $s08 IS TACS BIT SET AA292A DIAS A7 84 A STA 0,X GET LAST BYTE
@0235A D147 27 EQ D129 BEQ WAIT IF NO, GO TEST ADDRESS STATUS 39293A DIAT R7 EAGT A STA RIW SEND LAST BYTE
@0236A D149 B6 DP13 A LDA PIAIMG IF YES, CHECK TALK A7294A DIAA 15 FECC D079 LRRA MONIT

@8237A D14C 85 a1 A BITA #501 IS TALK FLAG SET 29295 *

@0238A DI4E 26 D9 Di29 BNE WAIT IF YES, ALL “OK' 22296 *RECEIVE LAST BYTE ROUTINE

@@239A D150 20 E9 D13B BRA TRAP1 IF NO, GO SET El DISPLAY an297 *

@0240A D152 86 00 A OFF LDA #500 TURN OFF DMAC A3298A DIAD 86 00 A LILAST LDA 1500

90241A D154 B7 E@54 A STA PRICON 27299A DIAF B7 E@54 A STA PRICON TURN OFF DMAC
08242A D157 16 FFIF D@79 LBRA MONIT GO TO MONITOR AN30AA DIB2 RE EA4D A LDX ADDH® LOAD LAST BYTE ADDRESS IN X RE
20243 @A30LA DIBS5 RA ERGRT7 A LDA R7R GET LAST BYTE
00244 2 A@3A2A DIB8 A7 84 A STA (%3 STORE IT

008245 * % 29323

00246 *** INTERRUPT ROUTINE** £ cA3¢4 ?

90247 2 g 20325 *SET REMOTE ENABLE LIGHT INDICATOR

208248 = 02306 *

90249 » @3307A DiIBA Bf DAA8 A REMON LDA RENON GET RENON MASK
00250 *CHECK FOR DMAC INTERRUPT 333A8A DIBD BA DAL A ORA PIAIMG “OR" WITH CURRENT STATUS
208251 » a#339A DlCA BT DVi3 A STA PIAIMG UPDATE PIAIMG
@0252A D15A B6 E@50 A IRQ LDA CHCON LOAD DMAC CONTROL REG AA312A DIC3 BT EA72 A STA PRB

0@253A D15D 85 80 A BITA #4580 IS IRQ FROM DMAC An3ll *

@0254A DLISF 27 oF D170 BEQ GPIA IF NO, GO CHECK GPIA 008312 *RESET AND SET GPIA MASK REG

@@255A D161 85 a1 A BITA #5001 IS DMA IN TALK MODE Aa313 *

#8256A D163 27 a7 D16C BEQ TRAP2 IF NO, GO TO TRAP2 @2314A DICA 8K a9 A RESETM LDA #sae

00257A D165 86 @0 A LDA #5900 IF YES, #A315A DICB B7 EM4P A STA ROW RESET GPIA IRQ MASK
00258A D167 B7 E254 A STA PRICON TURN OFF DMAC A3315A DICB BS DOAF A LDA MASK

@0259A DL6A 20 31 D19D BRA TALAST GO SEND LAST BYTE 22317A DICE B? ED6O A STA ROW SET GPIA IRQ MASK
@@260A DI6C 86 E2 A TRAP2 LDA #SE2 LOAD ACC A WITH TRAP2 CODE 27318A DIN1 3B RTI

@0261A DI6E 20 70 D1E® BRA TRAP GO TO TRAP ROUTINE 98319 *

20262 » 2320 *RESET REMOTE ENABLE LIGHT INDICATOR
00263 *CHECK FOR GPIA INTERRUPT 20321 pe

00264 & #8322A DI1D2 BG D299 A REMOFF LDA RENOFF GET RENOFF MASK
@0265A D170 B6 ER60 A GPIA LDA RAR GET GPIA IRQ STATUS 209323A DINS B4 DLl A ANDA PIAIMG TURN OFF REN BIT
@0266A D173 85 88 A BITA #5374 IS IRQ FROM GPIA 70324A DID8 B7 D@L3 A STA PIAIMG UPDATE PIAIMG
@@267A D175 27 11 D188 BEQ TRAP3 IF NO, GO TO TRAP3 ROUTINE #A325A DIDB B7 FA72 A STA PRB TURN REN OFF
@0268A D177 85 24 A BITA #5004 IS CMD BIT SET 27@3265A DIDE 20 E6 DICH BRA RESETM

@08269A D179 26 11 D18C BNE RLC IF YES, 1S RLC SET an327 *

@82708A D17B 85 a2 A BITA 1502 IF NO, GO TO TRAP3 en32e *TRAP ROUTINE

@0271A D17D 27 29 D188 BEQ TRAP3 IF NO, GO TO TRAP3 32329 »

@8272A D17F 85 al A BI BITA S0l IF END IS YES, IS BRI #A332A DLED B7 EAT7Y A TRAP STA PRA SEND TRAP CODE TO DISPLAY
@0273A DIB1 26 2A D1AD BNE LILAST IF YES, GET LAST BYTE AA331A CLE3 22 FB DILER BRA TRAP

@08274A D183 B6 ER60 A LDA RAR IF NO, LOAD ROR 332 END

@@275A D186 20 | & D17F BRA BI AND TEST BRI AGAIN TOTAL ERRORS R30dd--00A00

@08276A D188 86 E3 A TRAP3 LDA #SE3 LOAD ACC A WITH TRAP3 CODE TOTAL WARNINGS 20A0A--88032

@A277A DL8BA 22 54 DIEA BRA TRAP GO TO TRAP ROUTINE

@0278A DL8C B6 E@61 A RLC LDA RIR GET GPIA COMMAND STATUS

@0279A DISF 85 28 A BITA #508 IS RLC SET

@0288A D191 27 06 D199 BEQ TRAP4 IF NO, GO TO TRAP4

20281A D193 85 40 A BITA 15490 IF YES, IS REM SET

@0282A D195 27 3B D1D2 BEQ REMOFF IF NO, TURN OFF REN LIGHT

#8283A D197 20 21 D1BA BRA REMON IF YES, TURN ON REN LIGHT

@08284A D199 86 E4 A TRAP4 LDA #SE4 LOAD ACC A WITH TRAP4 CODE

@08285A D19B 20 43 D1EA BRA TRAP GO TO TRAP ROUTINE

00286 -

008287 *SEND LAST BYTE AS A TALKER

20288 *

@08289A D19D 86 o1 A TALAST LDA #1501

0@290A DIO9F B7 E063 A STA R3W SET feoi

