MPCFPE32B/AD
REV. 1

PowerPC™ Microprocessor Family:
The Programming Environments
for 32-Bit Microprocessors

owerPC A) MoTorOLA

Overview 1
PowerPC Register Set 4

Operand Conventions

w

| (6] BAN

I_
O

Addressing Modes and Instruction Set Summary
Cache Model and Memory Coherency
Exceptions

Memory Management

Instruction Set

PowerPC Instruction Set Listings
POWER Architecture Cross Reference
Multiple-Precision Shifts

Floating-Point Models

Synchronization Programming Examples
Simplified Mnemonics
Glossary of Terms and Abbreviations [ife}

Index

pa
O

Overview
PowerPC Register Set
Operand Conventions

Addressing Modes and Instruction Set Summary

Cache Model and Memory Coherency

“ Exceptions
Memory Management
“ Instruction Set

PowerPC Instruction Set Listings
POWER Architecture Cross Reference
Multiple-Precision Shifts
Floating-Point Models

Synchronization Programming Examples

Simplified Mnemonics

Glossary of Terms and Abbreviations

Index

MPCFPE32B/AD
1/97
REV.1

PowerPC™ Microprocessor Family:

The Programming Environments
For 32-Bit Microprocessors

PowerPC @ MOTOROLA

© Motorola Inc. 1997. Al rights reserved.
Portions hereof © International Business Machines Corp. 1991-1997. All rights reserved.

This d it contains inft ion on a new product under development by M la and IBM. M la and IBM reserve the right to change or
discontinue this product without notice. Inf ion in this d is provided solely to enable system and software implementers to use PowerPC
microprocessors. There are no express or implied copyright or patent li g d hereunder by Motorola or IBM to design, modify the design of, or

fabricate circuits based on the information in this document.

The PowerPC microp family embodies the intell | property of Motorola and of IBM. H , neither nor IBM any
responsibility or liability as to any asp of the perf 1ce, operation, or other attrib of the P as marketed by the other party or by
any third party. Neither Motorola nor IBM is to be considered an agent or representative of the other, and neither has assumed, created, or granted hereby
any right or authority to the other, or to any third party, to assume or create any express or implied obligations on its behalf. Information such as errata
sheets and data sheets, as well as sales terms and conditions such as prices, schedules, and support, for the product may vary as between parties selling
the product. Accordingly, customers wishing to learn more information about the products as marketed by a given party should contact that party.

Both Motorola and IBM reserve the right to modify this document and/or any of the products as described herein without further notice. NOTHING IN
THIS DOCUMENT, NOR IN ANY OF THE ERRATA SHEETS, DATA SHEETS, AND OTHER SUPPORTING DOCUMENTATION, SHALL BE
INTERPRETED AS THE CONVEYANCE BY MOTOROLA OR IBM OF AN EXPRESS WARRANTY OF ANY KIND OR IMPLIED WARRANTY,
REPRESENTATION, OR GUARANTEE REGARDING THE MERCHANTABILITY OR FITNESS OF THE PRODUCTS FOR ANY PARTICULAR
PURPOSE. Neither Motorola nor IBM assumes any liability or obligation for damages of any kind arising out of the application or use of these materials.
Any warranty or other obligations as to the products described herein shall be undertaken solely by the marketing party to the cust under a sep
sale agl tb 1 the marketing party and the In the ab of such an ag no liability is assumed by Motorola, IBM, or the
marketing party for any damages, actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. Neither Motorola nor IBM convey any license under their respective intellectual property rights nor the rights
of others. Neither Motorola nor IBM makes any claim, warranty, or representation, express or implied, that the products described in this document are
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support
or sustain life, or for any other application in which the failure of the produc1 oould create a situation where personal injury or death may occur. Should
customer purchase or use the products for any such uni ded or ur), shall indemnify and hold M: la and IBM and
their respective officers, employ idiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney’s fees arising out of, durectly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

I1BM, RS/6000, and S /370 are trademarks of | ional Busi Machines Corp
The PowerPC name, the PowerPC logotype, PowerPC 601, PowerPC 602, PowerPC 603, PowerPC 603e, PowerPC 604, PowerPC 604e, and PowerPC
620 are | demarks of Ir | Busil Machines Corporation used by Motorola under license from | ional Busi Machines Corp

| Busit Machines Corporation is an Equal Opportunity/Affirmative Action Employer.

CONTENTS

Paragraph . Page
Number Title Number
About This Book

AUIENICE ...ttt ettt sae st asstessssueenesassneons «ee XXVil

Organization............cccevevvseeseennne . weee XXVid

Suggested Reading.........ccocvuviviriieiiinncciincncccn s XXviii

CONVENLIONSovoereevreuriurenneninnnetentetesseseesiesessessssesssstesesssssessnmosessssessssssssessesssssasas XXXi

Acronyms and Abbreviations R Xxxiii

Terminology Conventions . . XXXV

Chapter 1
Overview

1.1 PowerPC Architecture Overview verreeeaeseeesaenaens 1-2
1.1.1 The 64-Bit PowerPC Architecture and the 32-Bit Subset . 1-4
1.1.2 The Levels of the PowerPC Architecture 1-5
1.1.3 Latitude Within the Levels of the PowerPC Architecture...........c.cocceveurecnnne 1-6
1.1.4 Features Not Defined by the PowerPC Architecture..........coovevcreinsnccrccnnenes 1-7
1.1.5 Summary of Architectural Changes in this Revision 1-7
1.2 The PowerPC Architectural MOdEIScoueercereeceirncicieniccenecsccesecneneaes 1-8
1.2.1 PowerPC Registers and Programming Model crerereeresaeeeseresaans 1-8
122 Operand Conventions TR 1-9
1.2.2.1 Byte Orderingcccceveevrecrsresssseseesssesssssessssssssssssssssssasssssssesssssas 1-9
1.22.2 Data Organization in Memory and Data Transfers . 1-10
1.2.23 Floating-Point Conventions............ccceseevrseeresrenernnenes 1-10
1.2.3 PowerPC Instruction Set and Addressing Modes . 1-10
1.2.3.1 PowerPC Instruction Set.........ccccocevvveevcruennnne . 1-11
1232 Calculating Effective Addresses . 1-12
124 PowerPC Cache MOdEL.........ccoeuiiniriniintnaetrecnniseiscseseiessssessssesseesaene 1-13
1.2.5 PowerPC Exception Model . . 1-13
1.2.6 PowerPC Memory Management Model 1-14
1.3 Changes in This Revision of The Programming Environments Manual............ 1-15

Contents i

CONTENTS

Paragraph . Page
Number Title Number
Chapter 2
PowerPC Register Set
2.1 PoWErPC UISA ReEGISIEL SEL.......covurreervenrererenineesensieseessesseseesesessessessassssssesasnne 2-1
2.1.1 General-Purpose Registers (GPRS).....c.cc.ecvceurrenrieencreneneeeessesesessesesseenns 2-3
2.1.2 Floating-Point Registers (FPRS)cccceceevtrvtrntrreenenerienieniesenesesesseessessesseens 2-4
2.13 Condition Register (CR)ccceveverenueniriciiiieenieieenisrenesesesesessessesessessessessenes 2-5
2.13.1 Condition Register CRO Fleld Dcﬁnltlon .. 2-6
2132 Condition Register CR1 Field Definition..........cccceveverreverieneenseereereeceenenne 2-6
2.133 Condition Register CRn Field—Compare Instructionccceeereevervennes 2-7
214 Floating-Point Status and Control Register (FPSCR).........ccccceeuervverreerveensuennne 2-7
215 XER RegiSter (XER)coveevirirererrirseeeresesreniesessssssessesesssssessensessessessassassanns 2-11
2.1.6 Link Register (LR) ettt et et a et e e et b se et s e e s enen 2-11
2.1.7 Count Register (CTR).....ccccuvviuevivinriiiieiiniiceisceniescecee et eee s 2-12
22 PowerPC VEA Register Set—Time Base.........ccccecevveiverneereenenenneenineneeseennens 2-13
2.2.1 Reading the Time Base...........iccvvernieneiecninenenieiecresseneesennesessessesssessensens 2-16
222 Computing Time of Day from the Time Base.........ccececervrverirerenerercerennennn. 2-16
23 POWErPC OEA REGISLET Set.....cccuecueerrreceerreeieirneenrensensessessessestssesessessssssessesses 2-17
2.3.1 Machine State Register (MSR)ccocvvververiiverenierenreneneneneesennsenseesessessesennes 2-20
232 Processor Version Register (PVR)cccceeiveevernieeeiicccnieeneeneseseeeenens 2-23
233 BAT REZISLEIS...c..couerrerrineereriresrertestensesessesseessessessessessessessessessesenssssasssssassessens 2-24
234 SDRIL..teettrteecttet ettt st ettt a et sae s e st s s e saesenasssan 2-27
235 SegmeENt REGISIEIS......ccuiirieeinieniienietiietstiiss ettt se s esessesassassesnans 2-28
2.3.6 Data Address Register (DAR)ccocceevuiiinrenenseneneneneeereeeensesessessssesseessens 2-29
23.7 SPRGO-SPRG3ooiiiinirreneiieieestneetsseestsseesessesesesestetssesssesessssssessssennns 2-30
238 DISISR ottt ettt bbbt st b s s et sae e a b nes 2-30
2.3.9 Machine Status Save/Restore Regxster 0 () 33 200) N 2-31
23.10 Machine Status Save/Restore Register 1 (SRR1).....ccccooevuevenrierrrerrererennennns 2-31
2.3.11 Floating-Point Exception Cause Register (FPECR)c.cccoceevveenrerenerennnn. 2-32
23.12 Time Base Facility (TB)—OEAccccecvrnmnnicnirinrrneseeenieneeessesenenns 2-32
23.12.1 Writing to the Time Base........cccceceeevecerveeneencrcnennen. reerereeneteteneas 2-32
2.3.13 Decrementer Register (DEC)........ccceveeererrenrerenrenerenresenesessieniesessssesessssessens 2-33
23.13.1 Decrementer Operation.............coeeeververeeerueennes . 2-33
2.3.13.2 Writing and Reading the DEC.......c.cocooiiiiinininiciniececcieneeseeieeenens 2-34
2.3.14 Data Address Breakpoint Register (DABR)........ccoocvvniiiriencncnnccennnenene. 2-34
2.3.15 External Access Register (EAR).............. . . 2-35
2.3.16 Processor Identification Register (PIR)ccccevueveeneenieneerenrinennrenresnesseneennes 2-36
23.17 Synchronization Requirements for Special Registers and for
Lookaside BUFTETS........ccceivuenienererienniennenennenenessessesessesssessessesssessessessnns 2-36

iv PowerPC Microprocessor Family: The Programming Environments (32-Bit)

CONTENTS

Paragraph . Page
Numger Title Numb%r
Chapter 3
Operand Conventions

3.1 Data Organization in Memory and Data Transfers..........c.ocovevnvveicnveeninernnnne. 3-1
3.1.1 Aligned and Misaligned ACCESSESoecurveveeinrenrirenrineninrenieeseereneeneeessenenses 3-1
3.1.2 Byte Orderingcocoviiuiiiiiiiniicii s 3-2
3.1.2.1 Big-Endian Byte Ordering..........cceceveeeererirnennenseeneeseeceneeeeeesesessesseseenes 3-2
3.1.2.2 Little-Endian Byte Orderingc.ceceeveeereneerereruenerscresueseseesessessescseennene 3-3
3.13 Structure Mapping EXamples..........ccccceeereneinerieinneerentninsestneestereseesseneneseeees 3-3
3.1.3.1 Big-Endian Mappingcccccceveeemrircnieninreniieniiieecnieeessteseessseesesseseesessens 3-4
3.1.3.2 Little-Endian Mapping........ccoceeveeeerienieneiniinieneesieniinriseinessessesnesessessesessesnes 3-5
314 PoWerPC Byte Orderingccoceeveevereeneenerseesneseerueseessesesstessessessensesesssssnensenes 3-6
3.14.1 Aligned Scalars in Little-Endian Modeccoevieveneeiinccninneecnenenens 3-6
3.14.2 Misaligned Scalars in Little-Endian Modecoceeevverivercereneneeniennenennens 39
3.14.3 NODSCALALS......coeeiiriiiiiiiiirit i eb i sens 3-10
3144 PowerPC Instruction Addressing in Little-Endian Mode..........c.cccueerncnn. 3-10
3145 PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode 3-11
32 Effect of Operand Placement on Performance—VEAcccccooevenueveenniinenne 3-12
3.2.1 Summary of Performance Effects............ccoccrvevienenieneinnnniniccncnieeene 3-12
322 Instruction REStArt.........ccvciveiviiiniininiiiieinieretsnncrct s 3-14
33 Floating-Point Execution Models—UISA........cc.cccoverriinrienninneenenenenneesieenees 3-15
3.3.1 Floating-Point Data FOrmMatceceoeeuietrneinirnecetneenenieesesseseeseneeseseseene 3-16
33.1.1 Value RePresentation..........cceeeeeeeeruerereereeesinesseessesessseeeseesesssessssesesenees 3-18
33.1.2 Binary Floating-Point NUMDETS.........cccoeceeverierireeninernntrenenteeesenenseenns 3-19
3313 Normalized Numbers (ENORM)........ccoveieveeeeeerecreeeeceeerreeeeeeevereveenne 3-19
33.14 Z10 Values (F0) ..coveeveirieeiicieieeneenresieessesseeseesssesesssssssssesesssessasssassssessans 3-20
3.3.15 Denormalized Numbers (DENORM).........ccoeevevveereecveneenienneerereervenees 3-20
3.3.1.6 INFINIIES (F00) cuvrevrruerrirreererierereeresessesseseeeesressessessesassssessassessessassassasaesean 3-21
3.3.1.7 Not a NUMDErs (INANS)ccceeverriirrenreerrenreeneeereesseessreseeesesnesessssssesossenses 3-21
332 SigN Of RESUL...c.cviueuiiiiiciecitciitne ettt 3-22
3.33 Normalization and Denormalization...........occeueeerereneirereienneenrinecneecsenennes 3-23
334 Data Handling and Precision . e st 3-24
335 Rounding.........cccouvurucucenene. . reererrestere et a et e te e re b aneerans 3-25
336 Floating-Point Program EXCeptions...........ccceeeereevererersenreseneeneesesesessessesennes 3-28
3.3.6.1 Invalid Operation and Zero Divide Exception Conditions 3-35
33.6.1.1 Invalid Operation Exception Condition............cccveveveeireninnenneciecencniens 3-37
3.3.6.1.2 Zero Divide Exception Condition............suceeeruieivnirennicninenininseseesenneens 3-38
3.3.6.2 Overflow, Underflow, and Inexact Exception Conditionsccc...... 3-39
3.3.6.2.1 Overflow Exception Condition............cceurueevininrevcrincnninninniesissscsencans 3-41
3.3.6.2.2 Underflow Exception Condition...........cceeevereerererrereresessnssisssesessenenns 3-42
33.6.2.3 Inexact Exception Conditionc.ccoeveereciienecnineneniennnincnnenseseennns 3-43
Contents v

CONTENTS

Paragraph . Page
Number Title Number
Chapter 4
Addressmg Modes and Instruction Set Summary

4.1 CONVENLIONScvrrieririririiiiesiseecsesisneisssinens reereesreeeneeaene 4-3
4.1.1 Sequential Execution Model4-3
4.1.2 Computation Modes..................... ettt asanet e 4-3
4.13 Classes of Instructions st asaatens 4-3
4.1.3.1 Definition of Boundedly Undefinedccoceeverereenrserrecrncensnrscererenreeserennens 4-4
4132 Defined Instruction Class ettt s st bs e bens 4-4
4.13.2.1 Preferred Instruction Forms.. et iae s seasaseaes 4-4
4.1.32.2 Invalid InStruction FOIMScoccivnicininnenninnicnnncncnecsniseesssnnsessenne 4-5
41323 Optional INSLIUCHONSc.ceveeruermerrureenisrisisessiesetssesessssessssssecsassesessssens 4-5
4133 Illegal Instruction Classcccocevirrecesnseiiiennnriennnseinenesensseeansnssesenns 4-6
4134 Reserved INStruCtions.........coueeveeeinerinicntnnenencniesnenestesesessesesstsessesesseseesens 4-6
414 MemOTry AdAIESSING ...c.ceveevrreireriernerererserrssessssenssiersstssessestsssssessossesessessessssessans 4-7
4.14.1 Memory Operandscoceevreerereriereinisnsiessisniissssesssneseeans 4-7
4142 Effective Address Calculationccecevveevenenniniceccncsincnnnnes 4-7
4.15 Synchronizing INSLrUCHONSccc.eureriviereiriininsesesmeninsnesenesesens 4-8
4.15.1 Context Synchronizing InStruCtionsc..eceeeveeinerisensnrenennnescseseseescsnenes 4-8
4.15.2 Execution Synchronizing Instructions S bevesnerensieniaernensseane 49
4.1.6 Exception Summary . 49
42 PowerPC UISA INStrUCHONScoceeeiieeeirsiseiesisesesissessssessessenene 4-10
4.2.1 Integer Instructionseeeueeen. ceresereneenens 4-10
42.1.1 Integer Arithmetic Instructions....... oottt eatsas s e b e st st a b e saes 4-11
4212 Integer Compare Instructions ettt s sa st snens 4-15
42.13 Integer Logical InStructions............coceevevervencnceansune 4-16
42.14 Integer Rotate and Shift Instructions 4-18
42.14.1 Integer Rotate Instructions.. resteee s 4-18
42.142 Integer Shift INStrUCHONSccevvrreerecrrrresenresresesvenseseesesenns 4-19
422 Floating-Point INStIUCHIONScceciviruerinirernisiniensisiniiienesistsssssessssessssssns 4-20
4221 Floating-Point Arithmetic InStructions.............ecoeveveerrirenenieseessernenessenen, 4-21
4222 Floating-Point Multiply-Add Instructions............. 4-23
4223 Floating-Point Rounding and Conversion INStructionsc..eevueee. 4-25
4224 Floating-Point Compare INStructions............ccccuvverereresesniseresisessesnsesesnennns 4-25
4225 Floating-Point Status and Control Register Instructionsccceceecceeee. 4-26
42.2.6 Floating-Point Move Instructions reeereenneeseaeenanens 4-28
423 Load and Store Instructions reete e es et 4-28
423.1 Integer Load and Store Address Generation....... 4-29
423.1.1 Register Indirect with Immediate Index Addressing for

Integer Loads and StOTesccovveeerrirniisinscnesnnciceseniscsinsssecseesenes 4-29
423.1.2 Register Indirect with Index Addressing for Integer Loads and Stores. 4-30
423.1.3 Register Indirect Addressing for Integer Loads and Stores................... 4-30
vi PowerPC Microprocessor Family: The Programming Environments (32-Bit)

CONTENTS

Paragraph Title Page
Number Number
4232 Integer Load INStIUCHONSceevveruerueeeereenienienrereeeeeeentetecresseeeseessesenenees 4-31
4233 Integer Store INStrUCLIONS.......cccceeurieneririreeieerieieseeees et seesre et 4-33
4234 Integer Load and Store with Byte-Reverse Instructions............cccceveeuenennes 4-34
4235 Integer Load and Store Multiple InStructions..........c.cceccvveeeevrrncrceereesennenn 4-35
423.6 Integer Load and Store String InStructions.........ccceccecceverneeneeneneeservensnenn. 4-36
4.2.3.7 Floating-Point Load and Store Address Generation............cceccceveuercvucnencne 4-37
4.2.3.7.1 Register Indirect with Immediate Index Addressing for

Floating-Point Loads and StOres.........c..cecevceveermecerscrrenieserneneeseseseeseenens 4-37
42372 Register Indirect with Index Addressing for Floating-Point

Loads and StOres........cccceeeeerereenenrscnrerennenticseeneetsieseseeeseeseseeseesessenees 4-38
4.2.3.8 Floating-Point Load INStIUCHONScccoviiniiiiicniiiciiiiicieiccisnsiscnenes 4-38
4239 Floating-Point Store INStrUCHIONSccvevterteriererseereenieneneereeseeesseesueeseenens 4-40
424 Branch and Flow Control INStructions.............cccveeueveicnenenscneesusnecnenesessenees 4-41
424.1 Branch Instruction Address Calculation...........ccceccvuveeecniinercnierineenesnennenes 4-41
424.1.1 Branch Relative Addressing Mode.........c.coeeeeveeenenercneneecrnrenennenns 4-42
42412 Branch Conditional to Relative Addressing Mode.............cccoveerereenunnene 4-42
42413 Branch to Absolute Addressing Mode..........ccccvveeereerinerneresesnenriseesennnne 4-43
424.14 Branch Conditional to Absolute Addressing Mode...........ccccueereerennnne. 4-44
424.15 Branch Conditional to Link Register Addressing Mode........................ 4-45
424.1.6 Branch Conditional to Count Register Addressing Mode...................... 4-46
4242 Conditional Branch COntrol...........ccceceeeereeienerennenscesernensnecessessesseesssssesees 4-47
4243 Branch INSruCtiONSccueeruiirueciiitiitcincteceestseee ettt ene e senes 4-49
4244 Simplified Mnemonics for Branch Processor Instructions..............cc.c...... 4-50
4245 Condition Register Logical INStructions...........cecceeevrveerereesveserersesueseesennas 4-50
4246 Trap INSIUCHONSvcuevrinciinicncirccit st sess e e sensess 4-51
4.24.7 System Linkage Instruction—UISAcccocrevirvirenerrerienreneneecrnesensenns 4-52
425 Processor Control Instructions—UISAc.ccceniieeiericnnininnsnineniiesninenene 4-52
425.1 Move to/from Condition Register INStructions..........c.coceeeveeemevsveerereesenenes 4-52
4252 Move to/from Special-Purpose Register Instructions (UISA).........ccecunue 4-53
4.2.6 Memory Synchronization Instructions—UISAcccocevvrrververnenereeerens 4-53
4.2.7 Recommended Simplified MNEMONICS.......ceeueverevuiieririsineisisnssieenssesssanaens 4-55
43 POWETPC VEA INSIIUCHIONSc.covevrueerrerueeitstsieciressestssesetesenestesssessesenesessens 4-56
431 Processor Control Instructions—VEA..........ccccceneiirnnennenccnncneseneeseeenene 4-56
432 Memory Synchronization Instructions—VEAcccocvvevrviivnenenvenenerenns 4-57
433 Memory Control Instructions—VEAcccoeiiinincninininincinseiesecsenenes 4-58
4.3.3.1 User-Level Cache Instructions—VEAcccivciiiiienreniennesincreeeene 4-58
434 External Control INStrUCLIONS..........ccccveieurinenenesireniesteissesteneeseesesesessesseenne 4-62
44 POWETPC OEA INSIIUCHIONSouciveuenintriereseieeteensecstenetstsestessassasesnesssessnses 4-63
44.1 System Linkage Instructions—OEAccccooviniinenveninincseniennneeninesesssnnnne 4-63
442 Processor Control Instructions—OEA.........cccocccviviininnnccrinecineincsienesneenene 4-64
4421 Move to/from Machine State Register InStructions...........cccceeeereruererennas 4-64
4422 Move to/from Special-Purpose Register Instructions (OEA)...........cccceuue 4-64
Contents vii

CONTENTS

Paragraph . Page
Number Title Number
443 Memory Control Instructions—OEAcccooovievennireinenerneeeeseneeeseesenes 4-65
443.1 Supervisor-Level Cache Management Instructionceeveviiuciniincnne 4-65
4432 Segment Register Manipulation Instructions..........cccecceeeeceenirnnnicererernennes 4-66
4433 Translation Lookaside Buffer Management Instructionsceceuecuenne 4-67
Chapter 5
Cache Model and Memory Coherency

5.1 The Virtual ENVIIONMENLcceverrerereiineniienniicstsnessestssessestssessessesesssssesesessenees 5-1
5.1.1 Memory Access OTdering........oouveeiviiriresisiivnnnisinicesisiensesssessssesessssssnns 5-2
5.1.1.1 Enforce In-Order Execution of I/O Instructionc.c.cceceeveenneeceenenneenns 5-2
5.1.1.2 Synchronize INSrUCHONc.covreeeerirerierireeerrseseetresessessessessessesessessessssenes 5-3
512 ALOINICILY .ottt et se e sttt et b s e s e e eons 5-4
5.13 CaChe MOGEL.......ccorreueiieeeieeeteneiint et ese ettt et et ee et et sesaseesasasnstone 5-5
5.14 MemOry CONEIENCYcovuiremnireeiiniisiiiiessseeisssaee s s sessssesssssenesens 5-5
5.14.1 Memory/Cache Access MOdEScocuveeirivuiieiincciniceinceccecneeceane 5-6
5.14.1.1 Pages Designated as Write-Throughc.ceceevivirencvnenncnnncnennenens 5-6
5.14.12 Pages Designated as Caching-Inhibited..........cccoceeveveeenenennesenccrnvennennns 5-6
5.14.1.3 Pages Designated as Memory Coherency Required.........c.ccceeeeeurenene. 5-7
5.14.14 Pages Designated as Memory Coherency Not Required............ccceceuencne 5-7
5.14.15 Pages Designated as Guarded............ococeviviiinincicniicninnincnnieieeneenene 5-7
5.14.2 Coherency PreCautionsccoeveeecirreninenireenentsesnscsesiesnssssessesessseresessons 5-7
5.15 VEA Cache Management INStIUCTIONSccevevrinueisesessesnssessssesnessesusesesens 5-8
5.15.1 Data Cache INStIUCHIONScc.covrueeviimrerreenrnenrstereniitiestsstsessesssseeseseessssassenios 5-8
5.15.1.1 Data Cache Block Touch (dcbt) and

Data Cache Block Touch for Store (dcbtst) Instructions........................ 5-8
5.15.12 Data Cache Block Set to Zero (dcbz) Instructioneeceeveeenrereeennens 5-9
5.15.13 Data Cache Block Store (dcbst) InStruction...........ceeceeeveereerieesieensensennns 5-9
5.15.14 ‘Data Cache Block Flush (dcbf) Instruction..........cceceeceveevereevenenresnerennns 5-10
5.15.2 Instruction Cache INSrUCHONSc.cucvevivirerrecrineicserncinieeteeeseesesnenes 5-10
51521 Instruction Cache Block Invalidate Instruction (icbi) 5-11
51522 Instruction Synchronize Instruction (iSyNC)cccccevemeneeeenereneseseenenene 5-11
52 The Operating Environmentccccecvueeevcecnneenineninenineseseeenciesseneseesesesasns 5-12
5.2.1 Memory/Cache Access AUIDULESccvureriieriineeririnieninienisesiennscesenennnes 5-12
52.1.1 Write-Through Attribute (W)c.ccecvcviviinninineccrniinnccsenceeesesnnes 5-13
52.1.2 Caching-Inhibited Attribute (I).......cccciveremmrrrrenrernerrerrrenenerese e seesenaees 5-14
5213 Memory Coherency Attribute (M)........cocvvmiureinuneninnincnincsiniicesiscseseseenes 5-15
52.14 W, I, and M Bit Combinations...........ccceceerveerrueervueesineesssnecssseeessessssaessneses 5-15
52.1.5 The Guarded AUIIDULE (G) ..ccveeverrirrernrernrernierereneieeseesessnesseeseessessessessanses 5-16
52.15.1 Performing Operations Out of Order........c..cecveeeueeerriererecencrnenesenennnnes 5-16
52.152 Guarded MemOTYciceruererenencninsenseeneeesststeseeeeee e sessessesseeseenes 5-17
52.1.53 Out-of-Order Accesses to Guarded Memory..........ceceevueeveeerierveiseensenne 5-18
Viii

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

CONTENTS

Paragraph . Page
Number Title Number
5.2.2 I/O Interface CONSIAErations.........ccceevreeemererirreerissenesseniesesessessssesersessassensenes 5-19
523 OEA Cache Management Instruction—

Data Cache Block Invalidate (dcbi)ccocevvevereiecrineecenrececeseeecee e 5-19

Chapter 6
Exceptions

6.1 EXCEPLION CIASSEScoverueeneeiiienretenteeiereesessesiessessessessessessessessasasssesserssessessessens 6-3
6.1.1 Precise EXCEPLIONScocvviuiuieiiiiiicterciciinineeesit ettt et eseaens 6-6
6.1.2 SYNCAIONIZALIONcoeevniiieiiieteececee ettt ettt et ae bt e s ernane 6-6
6.1.2.1 Context SYNChroNiZationccecevceeerirerireserieneesnrresestsresseresessessseessssens 6-6
6.1.2.2 Execution SynChronization...........cecececeeveeererrereeseeneneseesesesnsessessenesessnnes 6-7
6.1.2.3 Synchronous/Precise EXCEPLONScccceerueeeerinieverenseeserieseneseseesnssesssanses 6-7
6.1.24 Asynchronous EXCEPHONSccceurverieinirrieinceriiiiseeeseeteenesseseeseesaesceens 6-8
6.1.24.1 System Reset and Machine Check Exceptions.........c.c.ceceeeeevervrresrennenen. 6-8
6.1.24.2 External Interrupt and Decrementer Exceptions...........ccoeeeeeervereernnrannan 6-9
6.1.3 ImPprecise EXCEPLIONScoeeueirueireeeiereinietsiencssestestsesseessnssasessessessssessessens 6-9
6.1.3.1 Imprecise Exception Status DeSCIiption........c..eeveveeverreneerereseesserenreressenens 6-9
6.1.3.2 Recoverability of Imprecise Floating-Point EXceptions............ccceveveenane 6-10
6.1.4 Partially Executed INStIUCHONScoeevireerrerrentereenienreneneseeseeeeesessesseessensennes 6-11
6.1.5 EXCePLioN PLIOTItIES.......cceviueuieieririinteieietesieeetste ettt se et eaene 6-12
6.2 EXCeption PrOCESSINGccvvvvemiiitiiiiiieniiictitneiieseeees et s se s seseenes 6-14
6.2.1 Enabling and Disabling EXCeptions........c..ccveevrerereerecersnreseneeieeeceeeesenennns 6-17
6.2.2 Steps for EXxception ProCessing.........ccouveeveeereneereuesenieenieecneneecsessesessesenns 6-18
6.2.3 Returning from an Exception Handler............ccceceruevvrveruenenienennrennecenenrennnnes 6-19
6.3 Process SWItChiNgc.covuiivuiriiniiiiiincret sttt et st sn e 6-19
6.4 Exception DEfinitionsccceeereeeeunerinierecnininieencsteseenssssessssessessssesessssessenes 6-20
6.4.1 System Reset Exception (0X00100)........ccoeveeereeiinercrenenrcrenienineeeeeseneennes 6-21
6.4.2 Machine Check Exception (0X00200)cccoeeervrrererienenineenenerecceneneseneeneens 6-22
6.4.3 DSI Exception (0X00300)ccccveeiierrirneniniriresenenteretsesseneseesessssesssessssasesses 6-23
644 ISI Exception (0x00400).........ccocevererrerenee rereereeereebeaeenrearenaens 6-26
6.4.5 External Interrupt (0X00500)cocoeerirerverrrrerineneerenieneeressassensesansesesssssessessens 6-27
6.4.6 Alignment Exception (0X00600)ccocvueverrerereererrenriseesesensesnsessessssnssessens 6-27
6.4.6.1 Integer Alignment EXCEPLONSccoovveveuiucuiemniinincnnnnienictneseseenesee s 6-30
6.4.6.1.1 Page Address Translation Access Considerations.........cc.cecceveveeerrenennen 6-30
6.4.6.1.2 Direct-Store Interface Access Considerations...........ccceeeeeveeecrerreeeenes 6-30
6.4.6.2 Little-Endian Mode Alignment EXCEPHONS.........ccceevereereruenvrsineessereseneennas 6-30
6.4.6.3 Interpretation of the DSISR as Set by an Alignment Exception 6-31
6.4.7 Program Exception (0x00700).......cccccovreeurerurerenrerineresrernesessessenesessessessennes 6-33
6.4.8 Floating-Point Unavailable Exception (0X00800)cccecveeuemerecreerveruennnene 6-34
649 Decrementer Exception (0X00900)c.cocveviverieiicninencninenineceeeseeesseenes 6-35
6.4.10 System Call Exception (0X00C00)cccvvverrereerererreniensesesresnnreesressasaeennes 6-36
Contents ix

CONTENTS

Paragraph \ Page
Number Title Number
6.4.11 Trace Exception (0X00D00).........cccereerererenieneerenenesenessesesesseseessessessessenses 6-37
6.4.12 Floating-Point Assist Exception (0X00EQQ)cccccvveveinrvinnicnncnnennecesennenes 6-39
Chapter 7
Memory Management

7.1 MMU FEALUIESvcvirirriiniiriiiniisisinieneesisesie sttt ssesssessessesstsssssassesansasanes 7-2
7.2 MMU OVETVIEW ...vvirirririininniississiiesissisissistssssissssesssssstssessesssssssssssssssssssssssensssss 7-3
7.2.1 MemoOry AdAIESSINGcovuveririnrireniriiiiiieieeiseitsestsse et sssse s sesesesens 7-4
7.2.1.1 Effective Addresses in 32-Bit Mode.........ccccoovirieveieeenecrnenenenreneseesennennns 7-4
7.2.1.2 Predefined Physical Memory Locations...........cocceueeeerecnivenennnneneennennann. 7-4
722 MMU OrganizZation........cccereerereererrereesesserasssersesessessesessassssessossssassessassesessessssens 7-5
723 Address Translation MechaniSms..........cccoveverenirncnecsinnnesessensenessnssessesssressens 7-7
724 Memory Protection Facilities.........ccoevverinineiiinncnnninenieiienesesesessensenenns 7-9
725 Page History InfOrmation..........ccceceecevenmincecnnencncnineininccseeeseseseessesesenns 7-11
7.2.6 General Flow of MMU Address Translation...........ccccoceeeectenerenernenenuennnnens 7-11
7.2.6.1 Real Addressing Mode and Block Address Translation Selection............ 7-11
72.6.2 Page and Direct-Store Address Translation Selection...........ccceccecrurrennne 7-12
7.2.6.2.1 Selection of Page Address Translation............ceeveererreverecreserreeenseesnennne 7-14
7.2.6.2.2 Selection of Direct-Store Address Translation...........ccoceveeeereveeneeeenenes 7-14
7.2.7 MMU EXCeptions SUMIMALYcccccceveveeuereeeercemertereeseneressesseesseseessssessessaranes 7-15
7.2.8 MMU Instructions and Register Summaryccocceceverneeenireeneressenrensenensenns 7-17
729 TLB Entry Invalidation........cccceeererrereneneerernenesenesessensessessssessessssessessesssseses 7-18
7.3 Real Addressing Mode.........ccccuieieueeinininincicseeneesctsessent e seseesesesnesasesnns 7-19
7.4 Block Address Translation.........c.ccvueiruenineniiinccneniincniisisessssissisesnssessesessesenanns 7-20
741 BAT Array Organizationceecceceeeeeeercerrecruesessessescsesseseesessesesesssssessesenes 7-20
742 Recognition of Addresses in BAT AITAYScccccvvererrererrenennereseerensessesnnsenes 7-22
74.3 BAT Register Implementation of BAT ATTayccocvuvveeeeereresensessereesssenns 7-24
744 Block MemoOry Protection........ccoueveviuvieeeenirineesisinesesessenenesessseseseessssssssssesesens 7-27
745 Block Physical Address Generationco.ceceveeeererenessesesnssssesessesesssassens 7-31
7.4.6 Block Address Translation SUMMATYc.ccceeeruereecnreereerernenesresiesseensennes 7-32
7.5 Memory Segment MOdELcc.ocveirnenieiencniienencniinnnentsnseesssessessessssessesssesaes 7-32
7.5.1 Recognition of Addresses in SEZMENLSccveererervereererrererseressenaeans 7-33
75.1.1 Selection of MEmMOry SEZMENLS..........coceecuiiininiiesinsecsisessetsnssesseensens 7-33
7.5.1.2 Selection of Direct-Store SEZMENLS.........ccceerererreererreerresrenressesseeseessesensens 7-34
7.5.2 Page Address Translation OVErVIEW........cc.eeereeiruercrveurcntruencsenenenensesessesesens 7-34
7.5.2.1 Segment Descriptor Definitionsccocecveceeriveererenienrenenenereensnressensennnne 7-35
75.2.1.1 Segment Descriptor FOrmat...........cocvciveriecieininininnccinenciseeeceeeeseeenns 7-35
7522 Page Table Entry (PTE) Definitions.........cc.ccveveveverinncrinincscnnsencnesencecens 7-37
75.2.2.1 PTE FOIMAL.......cciiiiiiiiiceericitsiccie et e e sassesesassesassosenssasens 7-37
753 Page History Recordingccvieuvvimeermniiunciincrcnnectscieenieceeeeseeeenene 7-38
75.3.1 Referenced Bitccccveeetruienininnenicintnnsneeeseseeesssesesseessssssesnssesessssensses 7-39
75.3.2 Changed Bitccccviininiiininniiicieneeiiesestsss st sesnsssesnsasnns 7-40
X

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

CONTENTS

Paragraph . Page
Number Title Number
7533 Scenarios for Referenced and Changed Bit Recordingcooeecneceee. 7-40
7534 Synchronization of Memory Accesses and Referenced and

Changed Bit Updatesccovceveniieninieecnnineniinnesiccessesensseseseens 7-42
754 Page Memory Protectionccccvvveuiiininiinicniniiciiicnenesssennns 7-42
7.5.5 Page Address Translation SUMMATLYccccvveriiinincnininiinceinnnenneneenne 7-46
7.6 Hashed Page Tablesccccovceininuenenenrienineeiteetninscetsesseseeesessesesseessesssnens 7-48
7.6.1 Page Table Definitioncccocevvurcniimiuiincniiiinceiissccisssessesennne 7-49
7.6.1.1 SDR1 Register Definitionscccceeruereemerirncrenieeneneneeessenesesesseseeseenes 7-50
7.6.1.2 Page Table SizZe........cccovvricemriiiinriiririeiinciiies et ssesesessnes 7-51
7.6.1.3 Page Table Hashing FUNCHONScccoceerinrriceienccienieinicccentseseeeseninees 7-52
7.6.14 Page Table AdAresses........ocueueruruerierrnenenienenenisensisssssestssessesesssssesanas 7-54
7.6.1.5 Page Table Structure SUMMATLYcccccovvieeriereeenneniescsnincrsneseessessssesanas 7-56
7.6.1.6 Page Table Structure EXamplesccocceveereiririeeneninnenneninenseseseeneeenns 7-57
7.6.1.7 PTEG Address Mapping EXamplescooeveevrucicnnnincininninicsnneenaenes 7-58
7.6.2 Page Table Search Operation..........c.coeveuveveniininenisiencisnninseesnssssseissssesessene 7-61
7.6.2.1 Flow for Page Table Search Operation............cccceveeererercsersenescsenessenenns 7-62
7.6.3 Page Table UPdAtescoceiveinmerrernriiiiiinieiisesiisnseseeissssesessesessssesens 7-64
7.6.3.1 Adding a Page Table Entry.........ccccceecerveineenienecieircneeeneseeseeeseseeseenns 7-65
7.6.3.2 Modifying a Page Table Entry..........ccccoevevinmririnincicnininricninnnicecnincnnnnes 7-66
7.6.3.2.1 GENETal CaSE.....c.courueeeiecierinciriicteretrrccste sttt sae s sse e ssessnans 7-66
7.6.3.2.2 Clearing the Referenced (R) Bitc.ccevcevivvreniciniieiininieecniennncinneens 7-66
76323 Modifying the Virtual Address..........cccocveretrrencnirirnenesnneenereeseeeeeene 7-67
7.6.3.3 Deleting a Page Table Entrycccoceevereenceereenenenieierieesenenieenessesseseesnens 7-67
7.6.4 Segment Register Updatesccoeeceureerierecncrneninieneeiseesssccesissseessesessens 7-68
7.7 Direct-Store Segment Address Translationcccevvveevernerecrenenrerecneneeneencenes 7-68
7.17.1 Segment Descriptors for Direct-Store SEgMENts...........ovvveeervrrnieisnsseseruene 7-68
7.1.2 Direct-Store SEgMENt ACCESSESererueriririrrereriiiseriniisieisnsseesssessesessssensas 7-69
773 Direct-Store Segment ProteCtioncceveeeevereerereeserreseneesesseseseesseresessenns 7-69
774 Instructions Not Supported in Direct-Store Segments...........cccoeveerverierencnne 7-69
715 Instructions with No Effect in Direct-Store Segmentsccccocvueceeennnnene. 7-70
7.1.6 Direct-Store Segment Translation Summary Flow.........ccccoveeceinnccnicnnan. 7-70

Chapter 8
Instruction Set

8.1 INStruction FOIMALSccocevinuiuininiinininrciincninicissieiisesesein e e ssesessene 8-1
8.1.1 Split-Field NOtationcccoveiniriincniniiiricniiiitncineesseseseseesssessssssess 8-2
8.12 InStruction FIEldsccviviiiiiriiiiiiiiitiinscicccsecses s 8-2
8.13 Notation and CONVENLONScceereereeeeereririreesesniseisiesssnesessesssssessssessesssescens 8-4
8.14 Computation MOdES.........coceeurueueeireiriieieteeieiscnenteeteie et sae e s 8-8
82 PoWerPC INStrUCHION SEt.........cvciviruierinieriniiresininciinieiesessesitssessessssessssesees 8-9
Contents xi

CONTENTS

Paragraph . Page
Number Title Number
Appendix A
PowerPC Instruction Set Listings
Al Instructions Sorted by MNEmONICcccveverereertrrneeererreerenreresessessesesssessessesesessens A-1
A2 Instructions Sorted by Opcode.........covcceverererveerereiseneneinesesessesesestsressesessessessens A-8
A3 Instructions Grouped by Functional Categoriescceccerrverrereeerenreseeresesnenes A-14
A4 Instructions Sorted by FOrm........ccccocveviivieniinccrnnnirieceneceneeinesessestesesseneenne A-26
AS Instruction Set Legendcccveevererrrrenererresenseneseniesesssssesessssessesessssessessennones A-36
Appendix B
POWER Architecture Cross Reference

B.1 New Instructions, Formerly Supervisor-Level Instructions..........c.coceeveveeeruennene. B-1
B2 New Supervisor-Level INSIrUCHONSc.couvvecetriitieininenisecnenisessssesesssseseseeens B-1
B3 Reserved Bits in INSLIUCHONSc.ceuivinrcrierininisinineiiisiieninieescstseeseseessesesaes B-2
B4 Reserved Bits il REGISLETSocevvrvivieiiiiivieriniiintnenen i sssnssesene B-2
BS Algnment CheckK ...t ssssesenes B-2
B.6 Condition REISLETcucciiveeriiiicinriiiiiircirectcit sttt sanes B-2
B.7 Inappropriate Use of LK and RC bitscceuiiireiivniiciniiicicniiinccneeinene B-3
B.8 BO FIEId....ciieciieeeetrtsiseei ettt et ettt st s e se st ss e e s s ava st sanas B-3
B9 Branch Conditional to Count RegiSter..........ccccverevirenrerenerenerenesensesneressensenssens B-4
B.10 System Call/Supervisor Call...........coeeevereeerererrenrirenenresensesesesessessssesseressessesees B-4
B.11 XER REZISLETvevivererirerereeriseeresearesseesessessassesessessessssssassessssessessssssassosessessessones B-4
B.12 Update Forms of MemOIy ACCESSccceurremrinmnirniisissseisisesmsissssiesesessssessssens B-4
B.13 Multiple Register LOads........c.cccorreririreninereninecineseseeeesescsteteeeeesessensssssessnns B-5
B.14 Alignment for Load/Store Multiple...........ccoevererencnerencncnnnn. ettt B-5
B.15 Load and Store String INStIUCLIONSccceueetrrirucrrireereriinenssstesesnssssessssesessessessoses B-5
B.16 SYNCHIONIZALONceviriiiniiriiiiiniiiictnt sttt sas e snesesans B-5
B.17 Move to/from SPR ...ttt e B-6
B.18 Effects of Exceptions on FPSCR Bits FR and FIccccceovevevnnnnnncnncrennnenn, B-6
B.19 Floating-Point Store Single INStruCtions..........cocceuieeeeiiennninerneneerenreseeseeseseennes B-7
B.20 MOVE oM FPSCRccoiiuiriiiiiinicitnecintiestseestssesctess sttt sesessssssesassessssans B-7
B.21 Clearing Bytes in the Data Cache...........cccocovuevieniniiniinncincciecneeee e B-7
B.22 Segment Register INSLIUCHIONScoceeverueeircerieerientrieteseeeeesessestesesresseessessassenans B-7
B.23 TLB Entry INValidation..........ccccccvueieererreereerenereenenressesessesessessssesesssassesssssssessenne B-8
B.24 Floating-Point EXCEPLONS.......c.ccuvviuiirinenciiieninieiiniieissectsisssiesescssssesessenesene B-8
B.25 Timing FaCilitiescccoceuevininiiiiiiiicicintieectct ettt nseseans B-8
B.25.1 Real-Time ClOCK.......cooreincnereiiniieiteeeecetntee et eeeeteeetet e saenneas B-8
B.25.2 DECIEMENLETcvivireieiiiete ettt se s e e s e st s e essas e snnas B-9
B.26 Deleted INSIIUCHONSco.ciiiimiiriiieirccesesese et eterestsste et saeessestssesessessssassassonee B-9
B.27 POWER Instructions Supported by the PowerPC Architecture......................... B-11
Xii PowerPC Microprocessor Family: The Programming Environments (32-Bit)

CONTENTS

Paragraph . Page
Number Title Number

Appendix C

Multiple-Precision Shifts

C.1 Multiple-Precision Shifts in 32-Bit Implementations............cccccoeveevreinineirenenneass C-2

Appendix D

Floating-Point Models
D.1 Execution Model for IEEE OPerationscccoueureerieesessnesisnscsiseseesescsnesssenne D-1
D.2 Execution Model for Multiply-Add Type Instructions...........ccceeevercvereesesuenennns D-4
D3 Floating-Point CONVETSIONSccccerreeerseeresesseseescssesesseseesaesassessoasesssssessessssenes D-5
D.3.1 Conversion from Floating-Point Number to Signed Fixed-Point
INtEZEr WOId.....cueoieiiiieeeetetetctreet ettt s et s sess s stssnesnsnanns D-5
D.3.2 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer
WOIA ..ttt sttt st s e b et s st s b se et sssensasnnns D-6

D4 Floating-Point MOAEIScccvvervirirerinerinenirestrsesesesessessnssesessesessssesressesessenens D-6
D4.1 Floating-Point Round to Single-Precision Model..........ccccccevervrvuneereneneenennene D-6
D42 Floating-Point Convert to Integer Model...........c.cocecvneeernrnveneenenencenennnscnnenns D-10
D43 Floating-Point Convert from Integer Model............ccocceeveererecerinerneereneerenne D-12
DS Floating-Point SEleCtion.........cccoceeverrierirceeneneneeereecenenressesesseeseeseesessesnssnes D-13
DS5.1 (0] 1110 T El0)1 I (012 (R D-14
DS5.2 Minimum and MaXimuUmcc.ceevertieeiienensisesisensnntsseesessssesessessssssesseseens D-14
D53 Simple If-Then-Else CONStIUCHONScccvvueeeririrenineiscsencseeniesisessssesssnenens D-14
DS54 INOLES ..ttt ettt ettt st sas b st e st et s e ss e sensnssesans D-14
D.6 Floating-Point Load INSLIUCHONScccceereeruesenresueresserseressessesasessensssessesessennes D-15
D.7 Floating-Point Store INSLrUCLIONScccevererrereererresensereeressesereeresessssessesessenns D-16

Appendix E

Synchronization Programming Examples

E.1l General INformation...........coeceeuerricneincniiiniciccecctiee sttt s seeeens E-1
E.2 Synchronization PHMILIVEScccccevveverreeeieenernenesesnsseseesssessssessessssessessesessesnen E-2
E.2.1 Fetch and NO-OP.......ooeriiriiiirereeineeenienresenesesesssseessessesessesseesessnesesssassanee E-2
E2.2 Fetch and StOreoceveviiiniieiiiiiiicicnincsnesetsse et st sessne E-3
E23 Fetch and Add........co.oeeeeieiieieiciieeeieneeccte ettt e seeseenees E-3
E2.4 Fetch and AND ...ttt ssesse st stsassssassssssesensans E-3
E.2.5 TESt ANA SEL....cviuieiriiiriiicrieeeet ettt ettt se s sassnesesesnnene E-3
E.3 Compare and SWaDcoeuruiuirieniriniieeiicitnsesessesse st st ssesesissesesesssessanes E-4
E4 Lock Acquisition and RelEaSeocceerrverrererrerrenennnseesessennnesseseseseessesessesaeass E-5
E.5 LiSt INSETHION ...ecuvviieeriniitieitnieitt et sacssts ettt st s s sbsn et saesennns E-6
Contents Xiii

CONTENTS

Paragraph . Page
Number Title Number
Appendix F
Simplified Mnemonics
F.1 Symbols ettt et ae et crtseeee s ..F-1
F2 Simplified Mnemonics for Subtract InStructions...........cccecevveieiicreresecescnsenaene F-2
F.2.1 Subtract IMMEIatecocevrierririviinniiiiiiii e F-2
F2.2 SUBLraCt ...ecveueuernereieeereennns ettt sttt ettt sa st st et a e aeseteas F-2
F3 Simplified Mnemonics for Compare InStructions..........c.cecevereenireesereecneriensrnnne F-3
F3.1 WoOrd COMPATISONScucririiniiisiiiisniiiiieiiei et en b sbesssressesnene F-3
F4 Simplified Mnemonics for Rotate and Shift Instructionsc..ceceevevervnreeriennne F-4
F4.1 Operations 0N WOLAScoeevrverererereeniieniienresestssse et sieteseseeseessesssesssessesesss F-4
F5 Simplified Mnemonics for Branch Instructions........c...cceceveeererueueernencncne .F-6
F5.1 BO and BIFIEldScccoueueurrereerenirenieenirensicninteiseciessesesssssetseesesesesnesenenesenne F-6
F5.2 Basic Branch MNemoOmniCscccceeeeruereenerneenintnsiisssecsssssesseesesaeesnesssesens F-6
F5.3 Branch Mnemonics Incorporating Conditions...........ceceeeecerereereecerrenresaeennes F-12
F54 Branch Predictioncccccccennncnniciinenccninisssscieseessssesssnssessesssens F-17
F.6 Simplified Mnemonics for Condition Register Logical Instructions................. F-18
F7 Simplified Mnemonics for Trap INStruCtions..........cecvueerererscnessrereseecsesessensens F-19
F.8 Simplified Mnemonics for Special-Purpose Registers.........ocvveruerrennerrerserrennns F-21
F9 Recommended Simplified MNemONiCs.......cccovevererrrereerenrereeenreneeseeseeseseesassesens F-23
F9.1 No-Op (nop) .. ettt ettt st s et s bbb ns F-23
F9.2 Load IMmediate (1)ccvuevereremeeruerereeereriieeeseseneiseeeseseststsesnenesesesssesenenenes F-23
F9.3 Load Address (1) e tees F-23
F9.4 Move Register (Ir)cccccceeerereeeererreens rrrersererst s sassesebererenersasaeananes F-23
F9.5 Complement Register (MOL)cccvrveriiemriiucienninincisncisneesseennens F-24
F.9.6 Move to Condition Register (INECT).......coeuvureriniensiinisieiininnsisssisisnnanns F-24
Glossary of Terms and Abbreviations
Index
xiv PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Figure
Number

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
3-1
3-2
3-3
34
3-5
3-6
3-7
3-8

ILLUSTRATIONS

. Page

Title Number

Programming Model—PowerPC RegIStersccvrrrimirriruniscniinnecscsesesinennens 1-8
Big-Endian Byte and Bit Ordering...........c.cccevuevenenieerinecncctnneneerieneseacsnessesensens 1-10
UISA Programming Model—User-Level Registerscocceueue.. 2-2
General-Purpose Registers (GPRS)c.ccccovueirnnircnincincncneneeteesiesesnnes 2-4
Floating-Point Registers (FPRS)..........cccoceetrrctrienrenerenersesesiereesesesassesaensones 2-5
Condition Register (CR)......cocooureirvimeinuiiiiieiieniiiiessiesssessssesssesssssessssssessesenens 2-5
Floating-Point Status and Control Register (FPSCR).........cccoeveveeernneineresenennns 2-8
XER REGISIET.....cucveviriniriririniinirniiisssesessisaense s ssssssssssnssssssssssessssanssssssssssasns 2-11
Link Register (LR) ettt et sttt a e saes 2-12
Count RegiSter (CTR)ccccvuevverenirireiicienineectnscinsetsessissesesssesestssessssssssssnsesnens 2-12
VEA Programming Model——User-Level Registers Plus Time Base 2-14
Time Base (TB).....cccuveeeirrerrerineneriiissesseeesesssessestssessessesssssesssesesessesesssessasses 2-15
OEA Programming Model—All Reglsters ... 2-18
Machine State Register (MSR)ccooevvevrevcniniinncniniiiinitseescssenens 2-21
Processor Version Register (PVR).......ccccocvvirviireninieneneneninsesnesesseseesesseesennes 2-23
Upper BAT Register..... . e 2-24
Lower BAT Register et et b R bt saebe e s 2-24
SDR1 ettt nens ettt ettt aenen 2-27
Segment Register Format (T = 0)......cccocvvivivininnnininiciiiicnccneseesisnesesens 2-28
Segment Register FOrmat (T = 1)....c.cceveevcniniienineninineceieeereeneseseeesseesneseene 2-28
Data Address Register (DAR)........c.ccceoeereireccnene.2-29
SPRGO-SPRG3.....cociiiriirieinrietsettseseet sttt sese it sesestssssestassssssnessnens 2-30
DISISR....oiiiriiriicitrtseseeseseese ettt st e b e s s s st s et sasbsne st ssssessnen 2-30
Machine Status Save/Restore Register 0 (SRRO)cccoeoeeeeuieninerencrereescnnes 2-31
Machine Status Save/Restore Register 1 (SRR1)ccccovevverercernricercnienserceennennen 2-31
Decrementer Register (DEC)cccveeveeernecvrrenaennnes . 2-33
Data Address Breakpoint Register (DABR) 2-34
External Access Register (EAR)coccoiveneeineninineneerecececesesie e s 2-35
C Program Example—Data Structure S..........co.cevveeerreserveseeseeenrssesrenssessasessosesnes 33
Big-Endian Mapping of StrUCIUIE Sccccveerererrrnenenrerenreneesusenssseeresesassssessessenes 3-4
Little-Endian Mapping of Structure Sccceveeveveernrererrenenieesrenesresessessenseessenes 3-5
Little-Endian Mapping of Structure S —Alternate View . . .3-6
Munged Little-Endian Structure S as Seen by the Memory Subsystem 3-7
Munged Little-Endian Structure S as Seen by Processorcocvveeeveveerersenenenne 3-8
True Little-Endian Mapping, Word Stored at Address 05ccccccvueneen. 3-9

Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystem.. 3-10

lllustrations

XV

ILLUSTRATIONS

Figure . Page
Number Title Number
39 Floating-Point Single-Precision FOIMat..............c.evueeueevereeerseeersessssssesessecsssnnnns 3-16
3-10 Floating-Point Double-Precision FOrmatc.cococeveveerieninenennccteeencennreseeanenn 3-16
3-11 Approximation to Real Numberscccovvvmivinniinnicniniesctceescnreeeeaneen 3-18
3-12 Format for Normalized NUmDETLSc..covueeuriereiienirnciereecineerneneseesesreesinensseina 3-19
3-13 Format for Zero Numberscoceunee. sttt nanes ..3-20
3-14 Format for Denormalized NUMDETSccccceurmieienreniercnientnciereeenesenneseennens 3-20
3-15 Format for Positive and Negative Infinitiesco.cceeevmererireerennnevnresesrsinveenens 3-21
3-16 Format for NaNs.........ccccovveunivenieens bbb 3-21
3-17 Representation of Generated QNaN.........ccocovivcriveiirirenisinnrescsnenene ..3-22
3-18 Single-Precision Representation in an FPRccccocvvvivnieneneerenenenrecennerensenes 3-25
3-19 Relation 0f Z1 and Z2c.ccoeiinirinnicniniecctsrneieseseesese s seesessesesesesns 3-26
3-20 Selection of Z1 and Z2 for the Four Rounding Modescccccvreeeererrineenenns 3-27
3-21 Rounding Flags in FPSCRccccccviineinninnnnininenncnees s 3-28
3-22 Floating-Point Status and Control Register (FPSCR)..........cccevvveevuverniecenverennens 3-28
3-23 Initial Flow for Floating-Point Exception Conditions...........c.ccceveseereensrererenens 3-36
3-24 Checking of Remaining Floating-Point Exception Conditions...........cccceeerureenen. 3-40
4-1 Register Indirect with Immediate Index Addressing for Integer Loads/Stores... 4-29
4-2 Register Indirect with Index Addressing for Integer Loads/Stores..........c...vu..... 4-30
4-3 Register Indirect Addressing for Integer Loads/Stores4-31
4-4 Register Indirect with Immediate Index Addressing for ’
Floating-Point Loads/StOresc.ceueueererieureneninrsceenrenccstenescneeseeesessssesesens 4-37

4-5 Register Indirect with Index Addressing for Floating-Point Loads/Stores.......... 4-38
4-6 Branch Relative Addressing........cocvevureiierenereneinecienessenessesnsessessssesesssessssessenens 4-42
4-7 Branch Conditional Relative Addressing.........ccveevenerivcieneeserenesserenesesvensenens 4-43
4-8 Branch to Absolute Addressing...........ccoceevvverereneververenesiereniessesenennes 4-43
49 Branch Conditional to Absolute Addressing..........c..ceceecerererreerererenens . 4-44
4-10 Branch Conditional to Link Register Addressingcoceeevveveevneccrnenenrenenennen 4-45
4-1 1 Branch Conditional to Count Register Addressingccvvevvereeerereerrreseeeneennns 4-46
6-1 Machine Status Save/Restore Register 0.........ccceeeervenerenverareeresnsssressesesseressenens 6-15
6-2 Machine Status Save/Restore Register 1........ccoccceeeeevirieenneerenieninesriieneeenennenne 6-15
6-3 ‘Machine State Register (MSR)cc.ccvvirveriirreinerneeneneerinesneesesseessessessessessssessenas 6-15
7-1 MMU Conceptual Block Diagramc.cecveveviniiineniiininsenisinsessssessesesesessecons 7-6
7-2 Address Translation TYPES.........cccvevererirrerreresriresreseeresersesessesssessesessesssssssssenssesses 7-8
7-3 General Flow of Address Translation (Real Addressmg Mode and Block) 7-12
7-4 General Flow of Page and Direct-Store Address Translationccoccccveecnene. 7-13
7-5 BAT Array Organization..........cocecueeeeverererencrsaseesssesssssessesessassessesassosesssessnsessenses

7-6 BAT Array Hit/Miss Flowccoccvveuenenn. ‘

7-7 Format of Upper BAT Registers...........cccccveenne. e oo b b s

7-8 Format of Lower BAT Registers....

7-9 " Memory Protection Violation Flow for Blocks

7-10 Block Physical Address Generation............ceceveeeeverereereevessensesnssennns eeerseesreaerens

7-11 Block Address Translation FIow..........cccevervveceererivennenes

7-12 Page Address Translation Overview

xvi PowerPC Microprocessor Family: The Programming Environments (32-Bit)

ILLUSTRATIONS

Figure " Page
Number Title Number
7-13 Segment Register Format for Page Address Translationcccceeuerveveenennee. 7-35
7-14 Page Table Entry FOrmat..........c.ccceueurueeirueenenennesceneeccst et eesesseseseesenens 7-37
7-15 Memory Protection Violation Flow for Pages .. 7-45
7-16 Page Address Translation Flow—TLB Hit.........c..cccouveeiineinincniininierciieennene 7-47
7-17 Page Memory Protection Violation Conditions for Page Address Translation .. 7-48
7-18 Page Table Definitionsc.cccouvviueiivinininiciiiniiciiiincccisesccssssssssesessenes 7-49
7-19 SDRI1 Register FOmMatc..coivinuincniiniininiiticiniieiissesecnsessssssssesssene 7-50
7-20 Hashing Functions for Page Tables............cccocevuereveiieninenineneeenreeneseseesnesesensens 7-53
7-21 Generation of Addresses for Page Tablesccccceververerenercnnencnsereeeeeserseenens 7-55
7-22 Example Page Table Structurecc.coceereeerenrenineninniininccsencssessssessesessesnenes 7-57
7-23 Example Primary PTEG Address Generation.............ceeeueueseeeenscenseeessesseseesens 7-59
7-24 Example Secondary PTEG Address Generation................coceceveueeencenennnencnns 7-60
7-25 Page Table Search FIOWccccocoeiieniiicniiiiinnccnictectceeeesssseeesseseesens 7-63
7-26 Segment Register Format for Dlrect-Store Segments ... 7-68
7-27 Direct-Store Segment Translation FIOw...........ccocvvevivircininicnienicnininncssennecsnenne 7-71
8-1 Instruction Description............. reeeetete ettt sttt st ss e e e aenaneenas 8-9
D-1 IEEE 64-Bit Execution Modelccocceevrenrincneeniniecnecneecneeeseseeeesseseseesenes D-1
D-2 Multiply-Add 64-Bit Execution Model.............cccoevvininenriniinnnnininnnuccsnsscnnens D-4
lllustrations Xvii

xviii PowerPC Microprocessor Family: The Programming Environments (32-Bit)

TABLES

Table . Page
Number Title Number
i Acronyms and Abbreviated Terms..........cccoceeeeeirueiirueniieneerenineeneeseneeeseesesseseesenns XXXiii
ii Terminology CONVENLIONScceueeveerueirensentrertesieiesseiestssesissesessessssasessersassessanens XXXV
iii Instruction Field CONVENHONScccoveerueucieirieiesenseeettseseeseseeeeseseesessesssessens XXXVi
1-1 UISA Changes—Rev. 0 to ReV. 0.1c.covvereriieninininirecenreiesreeeinreesseesseseeanes 1-16
1-2 UISA Changes—Rev. 0.1 to Rev. 1.0......ccoiiiiiiiiiiciiicncicncnceenee e 1-16
1-3 VEA Changes—Rev. 0 to Rev. 0.1c.coviiiiniiireeieieercresteceeniesiecee e seeseenens 1-16
1-4 VEA Changes—Rev. 0.1 to ReV. 1.0 ..cc.coeeeueieeiiiecircieeeeneesereeseeeeesannns 1-16
1-5 OEA Changes—Rev. 0 to ReV. 0.1 ...c.oorioiioirieieineetrtrenesieseesteseesessnessesseenens 1-17
1-6 OEA Changes—Rev. 0.1 to ReV. 1.0....ccooirirvriniriiieieneeceneneeseseereseesaeesnens 1-17
2-1 Bit Settings for CRO Field Of CRcccooeivivieviirincienenececseseeeeeeeeceeseeseseesseeseens 2-6
2-2 Bit Settings for CR1 Field Of CRcoeoveeieiniricneieserccisenisiesteesveseseesaenessesseneas 2-6
2-3 CRr Field Bit Settings for Compare INStructions............ccoueevrereeesuessrseresesserensens 2-7
2-4 FPSCR Bit SEUNES ...c.coevererirrenreirreenressenteessetsessestssesssssessesassesessasessessessssessensen 2-8
2-5 Floating-Point Result Flags in FPSCR.........cccoccocvvivreiniiienrvernerieneneseseressennennens 2-10
2-6 XER Bit DEfINItiONSccceoeeuiverrirtiintininienieineneiieeesseeeetssesessesessessenensesesscssessens 2-11
2-7 BO Operand EnCOings..........cocceeeererrersennirneeceeneensesstesesessestesseseessessssesssessessesens 2-13
2-8 MSR Bit SEUNESoceceeirieieneirierees ettt et es e et sese st snesanessennns 2-21
29 Floating-Point Exception Mode Bits.........c.ccccceeeeirueecinininrenenirenieeenenesseessssssesnens 2-22
2-10 State of MSR at POWET UDc.covviieririieeeircteenieeeretsresesreessesesaesessesesssssnssnnes 2-23
2-11 BAT Registers—Field and Bit DesCriptionsc.ccceeueeeueeeeenereencnsesecserenenns 2-25
2-12 BAT Area Lengthscccceovveeierniiniiceiecceeniecseeseeste e srseeestesesesesseee s saessssenssenseen 2-26
2-13 SDRI Bit SEttNES......ccceveeererrererreirieseresieseeirieteessessesessesesssseessessesessssesssssssassenes 2-27
2-14 Segment Register Bit Settings (T = 0).....cccccevverierieriersiririireneneceseeereesseeeeeennas 2-28
2-15 Segment Register Bit Settings (T = 1)...cccceoererrenereesiininenenenieceesreeeereeseesesneeas 2-29
2-16 Conventional Uses of SPRGO-SPRG3cccovrinrinireneninrnrenenenseeesesnnesesnens 2-30
2-17 DABRBIt SELHNEScoveirieiereirenieiesenenteessestsieeeessesessssessssessenssessesessenssnens 2-34
2-18 External Access Register (EAR) Bit Settingscccoeeeurerrerueneresesrnereeseneennes 2-36
2-19 Data Access SYNCAIONIZAtIONcceueeerreeersererrenresineeseesseesesserissesseassessesessessanns 2-37
2-20 Instruction Access SYNChroNiZationcccoveeevervrreererinueseruevesnesensensesessnsssensennns 2-38
3-1 Memory Operand ALIZNMENLccceeveereereruerirrenrereerisesneresesesssssesesessessessesssnnns 3-2
32 EA MOGIfICAtIONScveueerucveeneeirieeeeseeneestesesseeseseestssessseassesessessssessssessasessansnses 3-7
3-3 Performance Effects of Memory Operand Placement, Big-Endian Mode............ 3-13
3-4 Performance Effects of Memory Operand Placement, Little-Endian Mode.......... 3-14
3-5 IEEE Floating-Point Fields..........cccccecevinuirerninenninrerirnenienesesresseneseesessesessennas 3-17
3-6 Biased EXponent FOIMALc.ccceeverreriererenirenessereesesnsseseosersssessssessssessensssesseens 3-17
3-7 Recognized Floating-Point NUMDETScccceruimiinirencnininiieicerneeicseseeeeenene 3-18

Tables Xix

TABLES

Table . Page
Number Title Number
3-8 FPSCR Bit Settings—RN Field..........ccceccvneninrnas ...3-26
39 FPSCR Bit Settings 3-29
3-10 Floating-Point Result Flags — FPSCR[FPRF] .3-31
3-11 MSR[FEQ] and MSR[FET1] Bit Settings for FP Exceptions 3-34
3-12 Additional Actions Performed for Invalid FP Operations 3-38
3-13 Additional Actions Performed for Zero Divide 3-39
3-14 Additional Actions Performed for Overflow Exception Condition 3-41
3-15 Target Result for Overflow Exception Disabled Caseccccoerererrenrevenrevenrennnne 3-42
3-16 Actions Performed for Underflow Conditionsc.ccceeveeeceeneresnensrerernsesserenennens 3-43
4-1 Integer Arithmetic Instructions 4-11
4-2 Integer Compare INSIIUCHONSc.ccvevererrereereseeresarsessesnsessesessssessassesesseses 4-15
4-3 Integer Logical Instructions ..4-16
4-4 Integer Rotate Instructions 4-19
4-5 Integer Shift Instructions 4-20
4-6 Floating-Point Arithmetic Instructions 4-21
4-7 Floating-Point Multiply-Add Instructions 4-23
4-8 Floating-Point Rounding and Conversion INStructionsceccceecvcecsescsencsinccnens 4-25
49 CR Bit Settings 4-26
4-10 Floating-Point Compare Instructions 4-26
4-11 Floating-Point Status and Control Register Instructions 4-27
4-12 Floating-Point Move Instructions 4-28
4-13 Integer 1.oad INSLIUCLIONS........ccovererrirrerearesesssnenssasasasasesssssssesssressnssssesessssssssenssnns 4-32
4-14 Integer Store Instructions 4-33
4-15 Integer Load and Store with Byte-Reverse Instructions 4-35
4-16 Integer Load and Store Multiple Instructions ...4-36
4-17 Integer Load and Store String Instructions ..4-36
4-18 Floating-Point Load Instructions 4-39
4-19 Floating-Point Store Instructions 4-40
4-20 BO Operand Encodings 4-47
421 Branch Instructions 4-49
4-22 Condition Register Logical Instructions 4-50
4-23 Trap Instructions 4-51
4-24 System Linkage Instruction—UISA 4-52
4-25 Move to/from Condition Register Instructions 4-52
4-26 Move to/from Special-Purpose Register Instructions (UISA) 4-53
4-27 Memory Synchronization Instructions—UISA 4-55
4-28 Move from Time Base Instruction 4-56
4-29 User-Level TBR Encodings (VEA) .. 4-56
4-30 Supervisor-Level TBR Encodings (VEA) 4-57
4-31 Memory Synchronization Instructions—VEA.........ccccocvvnnininrnsensseinnes 4-58
4-32 User-Level Cache Instructions 4-59
4-33 External Control Instructions 4-62
4-34 System Linkage Instructions—OEA ... 4-63
XX PowerPC Microprocessor Family: The Programming Environments (32-Bit)

TABLES

Table . Page
Number Title Number
4-35 Move to/from Machine State Register Instructions..... 4-64
4-36 Move to/from Special-Purpose Register Instructions (OEA) 4-64
4-37 Cache Management Supervisor-Level Instruction .. 4-66
4-38 Segment Register Manipulation Instructions ..4-67
4-39 Translation Lookaside Buffer Management Instructions...... 4-68
5-1 Combinations of W, I, and M Bits 5-15
6-1 PowerPC Exception ClassifiCationsccceeeceeeremenenieunuercsceinseescseecssescessessssens 6-3
6-2 Exceptions and Conditions—OVEIVIEWc.coereeeereeeriennsnsaenenns .6-4
6-3 IEEE Floating-Point Program Exception Mode Bits....... 6-10
6-4 EXCeption PHOTILIEScccecevverenrereruercssrreesesensesanesssassosenses 6-12
6-5 MSR Bit SELtNESccceverrrerererrnrenrrenenrnrereissesessnsassesesssssssseranens 6-16
6-6 MSR Setting Due to Exception 6-20
6-7 System Reset Exception—Register Settings....... 6-21
6-8 Machine Check Exception—Register Settings 6-23
6-9 DSI Exception—Register Settings 6-24
6-10 ISI Exception—Register Settings 6-26
6-11 External Interrupt—Register Settings 6-27
6-12 Alignment Exception—Register Settings 6-28
6-13 DSISR(15-21) Settings to Determine Misaligned Instruction............cccecerervereenen. 6-31
6-14 Program Exception—Register Settings............ 6-34
6-15 Floating-Point Unavailable Exception—Register Settings 6-35
6-16 Decrementer Exception—Register Settings 6-36
6-17 System Call Exception—Register Settings 6-36
6-18 Trace Exception—Register Settings 6-38
6-19 Floating-Point Assist Exception—Register Settings 6-39
7-1 Predefined Physical Memory Locations.................. 7-4
7-2 Value of Base for Predefined Memory Use 7-5
7-3 Access Protection Options for Pages 79
7-4 Translation Exception Conditions . 1-15
7-5 Other MMU Exception Conditions . 7-16
7-6 Instruction Summary—Control MMU....................... 7-17
7-17 MMU REGISLETSceeeereurereinrrrsnesnnsssesessssssssssssssssssanss 7-18
7-8 BAT Registers—Field and Bit Descriptionscccceveevevernnnes .. 7-26
7-9 Upper BAT Register Block Size Mask Encodings 7-26
7-10 Access Protection Control for BIocksc.coeeeeurunscecenenee .7-28
7-11 Access Protection Summary for BAT Arraycccccoveureenneccenenenes 7-29
7-12 Segment Descriptor Types 7-33
7-13 Segment Register Bit Definition for Page Address Translation 7-36
7-14 PTE Bit Definitions . 7-38
7-15 Table Search Operations to Update History Blts 7-39
7-16 Model for Guaranteed R and C Bit Settings.........ccccecereereuerevererrrvnresnsrsreesseseressrns 7-41
7-17 Access Protection Control with Key 7-43
7-18 Exception Conditions for Key and PP Combmatlons 7-44

Tables Xxi

TABLES

Table Page
Number Title Number
7-19 Access Protection Encoding of PP Bits for Ks=0and Kp = 1.....ccceevvercrrnnnene 7-44
7-20 SDR1 Register Bit Settings 7-50
7-21 Minimum Recommended Page Table Sizes...........ccoceueureinerncrenesnsencnennnenccnaenene
7-22 Segment Register Bit Definitions for Direct-Store Segments

8-1 Split-Field Notation and COnventions............oeceusseuereucsencnenens

8-2 Instruction Syntax CoOnventionsc.ceceeeueveecersuccrvrunes

8-3 Notation and Conventions

84 Instruction Field Conventions .

8-5 Precedence Rules.........o.coeverveceincrunncnenes

8-6 BO Operand Encodings..........cccoccvvrvcnirnunrcnunucnnne

8-7 BO Operand Encodings........ccccoceeeuieueunnce

8-8 BO Operand Encodings...

8-9 PowerPC UISA SPR Encodings for mfspr

8-10 PowerPC OEA SPR Encodings for mMESPIccccoververvinnernencrncennensenneesiesesseennens
8-11 TBR Encodings for mfth............cccocenervninninnnncnniccnncnnens

8-12 PowerPC UISA SPR Encodings for MeSPr...........ccccoovriireieneenrenennecsesreeesennnns
8-13 PowerPC OEA SPR Encodings for mtspr-....................... ’
A-1 Complete Instruction List Sorted by Mnemonic .

A-2 Complete Instruction List Sorted by Opcode..........ccceuerrecccuenecncncne.

A-3 Integer Arithmetic Instructions....

A4 Integer Compare Instructionsc..cccoceecucuecnce

A-5 Integer Logical Instructions....

A-6 Integer Rotate Instructions

A-7 Integer Shift Instructions

A-8 Floating-Point Arithmetic Instructions..........ccceceruevencnn

A-9 Floating-Point Multiply-Add Instructions..........ccccccceuce.

A-10 Floating-Point Rounding and Conversion Instructions

A-11 Floating-Point Compare Instructions . .

A-12 Floating-Point Status and Control Register InStructionsccceceeveeeeverecceneuencs
A-13 Integer Load INStructions...........ccceveeuvercrnnsesesneecsscsesncnnes

A-14 Integer Store INStructionsccceeceveeveeseerueseccneencne

A-15 Integer Load and Store with Byte Reverse Instructions

A-16 Integer Load and Store Multiple Instructions...................

A-17 Integer Load and Store String Instructions....................

A-18 Memory Synchronization Instructions ...

A-19 Floating-Point Load Instructions..........cc.ccceuuce..

A-20 Floating-Point Store INStrucCtions..........ccceevureneenuncerinnessesesesssssesessesesseessssessessens
A-21 Floating-Point Move Instructions................

A-22 Branch Instructions...

A-23 Condition Register Logical Instructions......... .

A-24 System Linkage Instructionsc.ccceeeeeeerenenee.

A-25 Trap Instructions....... .

A-26 Processor Control Instructions ettt eseassaens

xxii PowerPC Microprocessor Family: The Programming Environments (32-Bit)

TABLES

Table . Page
Number Title Number
A-27 Cache Management Instructions ceerrreesesereenenens ...A-24
A-28 Segment Register Manipulation InsStructions.c.cceceuvvveeeinisisirenencae A-25
A-29 Lookaside Buffer Management InStructionscccceeeecevceeeeeecnconnnneencenssenncns A-25
A-30 External Control Instructions ettt sttt saaenn A-25
A-31 B 30 5 (O A-26
A-32 B-FOrmcoovvmniririnrnnenene . A-26
A-33 SC-FOIM ...cutiininiitriisisiiinisessssissesessssssessssssisssssssssesssssssesene . A-26
A-34 D-Form .. ettt ettt ees A-26
A-35 XFOIM oot ssssssss s ensessssss sttt sassse e s e s se e e e se et ne A-28
A-36 XLAFOIM....ouiiierinenesisineneenneressisssanesnssssssesenssessssssssnsnasans .. A-32
A-37 XFX-Formcccevnee. . A-32
A-38 XFL-Form..........cce.cuu.. reeeste et ettt ae et s e s e sneneess A-33
A-39 D (0 15 2107 ¢ 1 1 LT ... A-33
A-40 A-Formccouevecencnnnene ‘ . . A-34
A-41 M-Form.........cevuueue A-35
A-42 PowerPC Instruction Set Legend A-36
B-1 Condition Register Settings...........coocevreerecrneriereericscseesenes B-2
B-2 Deleted POWER INSIIUCHONS.........coveniiuireisinserniesstimsiesissssessssesssesessesasssssessosessess B-9
B-3 POWER Instructions Implemented in PowerPC Archltecture B-11
D-1 Interpretation of G, R, and X Bits D-2
D-2 Location of the Guard, Round, and Sticky Bits—IEEE Execution Model............. D-3

D-3 Location of the Guard, Round, and Sticky Bits—

Multiply-Add Execution Modelcccooerveeurvenrenennens D-4
F-1 Condition Register Bit and Identification Symbol Descriptions.............cccsveevesverene F-1
F-2 Simplified Mnemonics for Word Compare INStructionscececeeeesiercrerescsesens F-3
F-3 Word Rotate and Shift Instructions rtree s sesaeae F-5
F-4 Simplified Branch MNEMONICScoceuvirururviririisiiisisinisissmssisesssssssessssssesssseas F-7
F-5 Simplified Branch Mnemonics for be and bea Instructions

without Link Register UPdatecccevvrerrenenierrecrnienineressersssenseessssesseressessesses F-8
F-6 Simplified Branch Mnemonics for bclr and beclr Instructlons

without Link Register Update . F-9
F-7 Simplified Branch Mnemonics for bel and bela Instructions

with Link Register Update...........cocceverimrecrnreereneireceesessnsenssnsssressosasssssssassessesess F-10
F-8 Simplified Branch Mnemonics for belrl and beetrl Instructions

with Link Register Update ettt sttt s e e n e b nas F-11
F-9 Standard Coding for Branch Conditions . F-12
F-10 Simplified Branch Mnemonics with Comparison Conditions............cececsuvivveurunnee F-13
F-11 Simplified Branch Mnemonics for be and bea Instructions without Comparison

Conditions and Link Register Updating............cccvoeevererrererreseresnnsenessensesseenses F-14
F-12 Simplified Branch Mnemonics for belr and beetr Instructions without Comparison

Conditions and Link Register Updatingccccoeveuruernverecrsenscrcnnesnencessnenns F-15
F-13 Simplified Branch Mnemonics for bel and bela Instructions with Comparison

Conditions and Link Register Updateccccevuvrnirnnnicrsnsnnnsncieisesnsnsssssesanaes F-16

Tables Xxiii

TABLES

Table . Page
Number Title Number
F-14 Simplified Branch Mnemonics for belrl and bectl Instructions

with Comparison Conditions and Link Register Update............cccoovrrrrvrreuenene F-17
F-15 Condition Register Logical MNEMONICS..........ccceeveeieererenirerencniereereseernresssesennns F-18
F-16 Standard Codes for Trap INStIUCHONScc.ccevereeerenirireecsenieetseeesesceaseeeseereneses F-19
F-18 Trap MNEMOMICS.......corvrrurrrrrrenreressssesnestssessessssesssssssssessessesessssssssssesessesassessesseseans F-20
F-19 TO Operand Bit ENCOQING........ccocereueriererieneniesiirieeeetsseeessssescsessessssssssesessssenens F-21
F-20 Simplified Mnemonics for SPRS.........cccccccceirireenicninenescstnrsreeetneeesee s eseesseanns F-22
XXiv PowerPC Microprocessor Family: The Programming Environments (32-Bit)

About This Book

The primary objective of this manual is to help programmers provide software that is
compatible across the family of PowerPC™ processors. Because the PowerPC architecture
is designed to be flexible to support a broad range of processors, this book provides a
general description of features that are common to PowerPC processors and indicates those
features that are optional or that may be implemented differently in the design of each
Processor.

This revision of this book describes only the 32-bit portion of the PowerPC architecture in
detail. This book provides a subset of the information provided in PowerPC
Microprocessor Family: The Programming Environments, which describes both the 64-
and 32-bit portions of the architecture. Both books reflect changes to the PowerPC
architecture made subsequent to the publication of PowerPC Microprocessor Family: The
Programming Environments, Rev. 0 and Rev. 0.1.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.mot.com/powerpc/ or at http://www.chips.ibm.com/products/ppc.

For designers working with a specific processor, this book should be used in conjunction
with the user’s manual for that processor. For information regarding variances between a
processor implementation and the version of the PowerPC architecture reflected in this
document, see the reference to Implementation Variances Relative to Rev. 1 of The
Programming Environments Manual described in “PowerPC Documentation,” on Page
XXiX.

This document distinguishes between the three levels, or programming environments, of
the PowerPC architecture, which are as follows:

e PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

¢ PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, and defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are

About This Book XXV

particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

* PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is 1mportant to note that some resources are deﬁned more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book. The level of the architecture to which text refers is indicated in the
outer margin, using the conventions shown in “Conventions,” on Page xxxi.

This book does not attempt to replace the PowerPC architecture specification, which
defines the architecture from the perspective of the three programming environments and
which remains the defining document for the PowerPC architecture. This book reflects
changes made to the architecture before August 6, 1996. These changes are described in
Section 1.3, “Changes in This Revision of The Programming Environments Manual.” For
information about the architecture specification, see “General Information,” on Page xxviii.

For ease in reference, this book and the processor user’s manuals have arranged the
architecture information into topics that build upon one another, beginning with a
description and complete summary of registers and instructions (for all three environments)
and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of the
architecture; for example, the discussion of the cache model uses information from both the
VEA and the OEA.

XXVi PowerPC Microprocessor Family: The Programming Environments (32-Bit)

It is beyond the scope of this manual to describe individual PowerPC processors. It must be
kept in mind that each PowerPC processor is unique in its implementation of the PowerPC
architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and application
programmers who want to develop products for the PowerPC processors in general. It is
assumed that the reader understands operating systems, microprocessor system design, and
the basic principles of RISC processing. '

This revision of this book describes only the 32-bit portion of the PowerPC architecture in
detail. Readers who need to know more about the architecture specifications for 64-bit
PowerPC processors should refer to PowerPC Microprocessor Family: The Programming
Environments, which contains both the information presented in both the 32- and 64-bit
portions of the architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

e Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

¢ Chapter 2, “PowerPC Register Set,” is useful for software engineers who need to
understand the PowerPC programming model for the three programming
environments and the functionality of the PowerPC registers.

¢ Chapter 3, “Operand Conventions,” describes PowerPC conventions for storing data
in memory, including information regarding alignment, single- and double-
precision floating-point conventions, and big- and little-endian byte ordering.

¢ Chapter 4, “Addressing Modes and Instruction Set Summary,” provides an overview
of the PowerPC addressing modes and a description of the PowerPC instructions.
Instructions are organized by function.

» Chapter 5, “Cache Model and Memory Coherency,” provides a discussion of the
cache and memory model defined by the VEA and aspects of the cache model that
are defined by the OEA.

About This Book XXVii

* Chapter 6, “Exceptions,” describes the exception model defined in the OEA.

* Chapter 7, “Memory Management,” provides descriptions of the PowerPC address
translation and memory protection mechanism as defined by the OEA.

* Chapter 8, “Instruction Set,” functions as a handbook for the PowerPC instruction
set. Instructions are sorted by mnemonic. Each instruction description includes the
instruction formats and an individualized legend that provides such information as
the level(s) of the PowerPC architecture in which the instruction may be found and
the privilege level of the instruction.

¢ Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

* Appendix B, “POWER Architecture Cross Reference,” identifies the differences that
must be managed in migration from the POWER architecture to the PowerPC
architecture.

* Appendix C, “Multiple-Precision Shifts,” describes how multiple-precision shift
operations can be programmed as defined by the UISA.

* Appendix D, “Floating-Point Models,” gives examples of how the floating-point
conversion instructions can be used to perform various conversions as described in
the UISA.

* Appendix E, “Synchronization Programming Examples,” gives examples showing
how synchronization instructions can be used to emulate various synchronization
primitives and how to provide more complex forms of synchronization.

* Appendix F, “Simplified Mnemonics,” provides a set of simplified mnemonic
examples and symbols.

» This manual also includes a glossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information
The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

* The following books are available from the Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415)
392-2665 (International); internet address: mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

XXViii PowerPC Microprocessor Family: The Programming Environments (32-Bit)

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson,

¢ Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

* PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation
The PowerPC documentation is organized in the following types of documents:

¢ User’s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

— PowerPC 601™ RISC Microprocessor User’s Manual:
MPC601UM/AD (Motorola order #)

— PowerPC 602™ RISC Microprocessor User’s Manual:
MPC602UM/AD (Motorola order #)

— PowerPC 603e™ RISC Microprocessor User’s Manual with Supplement for
PowerPC 603 Microprocessor:
MPC603EUM/AD (Motorola order #)

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorola order #)

e PowerPC Microprocessor Family: The Programming Environments, Rev. 1
provides information about resources defined by the PowerPC architecture that are
common to PowerPC processors. This document describes both the 64- and 32-bit
portions of the architecture.

MPCFPE/AD (Motorola order #)

* Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available via the world-wide web at http://www.mot.com/powerpc/.

About This Book XXiX

Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals. These include the following:

— Addendum to PowerPC 603e RISC Microprocessor User’s Manual: PowerPC
603e Microprocessor Supplement and User’s Manual Errata:
MPC603EUMAD/AD (Motorola order #)

— Addendum to PowerPC 604 RISC Microprocessor User’s Manual: PowerPC
604e™ Microprocessor Supplement and User's Manual Errata:
MPC604UMAD/AD (Motorola order #)

Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 601 RISC Microprocessor Hardware Specifications:
MPC601EC/D (Motorola order #)

— PowerPC 602 RISC Microprocessor Hardware Specifications:
MPC602EC/D (Motorola order #)

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603EC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications: :
MPC603EEC/D (Motorola order #)

— PowerPC 603e RISC Mzcroprocessor Family: PID7V-603e Hardware
Specifications:
MPC603E7VEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Speczﬁcanons
MPCG604EC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Specifications:
MPC604E9VEC/D (Motorola order #)

Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 602, 603, 603e, 604, and 604e as well as the
following:

— PowerPC 620™ RISC Microprocessor Technical Summary: MPC620/D
(Motorola order #)

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

* PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIF/AD (Motorola order #) provides a detailed functional description of the
60x bus interface, as implemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

* PowerPC Microprocessor Family: The Programmer’s Reference Guide:
MPCPRG/D (Motorola order #) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction
set.

e PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide:
MPCPRGREF/D (Motorola order #): This foldout card provides an overview of the
PowerPC registers, instructions, and exceptions for 32-bit implementations.

» Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
Processors.

» Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPCI106 PCI Bridge/Memory Controller User’s Manual.:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.com/powerpc/.

Conventions

This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, beetrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA,rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG(FIELD] Abbreviations or acronyms for registers are shown in uppercase text.

Specific bits, fields, or ranges appear in brackets. For example,

About This Book . XXXi

MSRILE] refers to the little-endian mode enable bit in the machine

state register.

X In certain contexts, such as a signal encoding, this indicates a don’t
care.

n Used to express an undefined numerical value

- NOT logical operator

& AND logical operator

I OR logical operator

This symbol identifies text that is relevant with respect to the

PowerPC user instruction set architecture (UISA). This symbol is
used both for information that can be found in the UISA specification
as well as for explanatory information related to that programming
environment.

v This symbol identifies text that is relevant with respect to the
PowerPC virtual environment architecture (VEA). This symbol is
used both for information that can be found in the VEA specification
as well as for explanatory information related to that programming
environment.

o This symbol identifies text that is relevant with respect to the
PowerPC operating environment architecture (OEA). This symbol is
used both for information that can be found in the OEA specification
as well as for explanatory information related to that programming
environment.

Indicates reserved bits or bit fields in a register. Although these bits
may be written to as either ones or zeros, they are always read as
Zeros.

TEMPORARY 64-BIT BRIDGE

Text that pertams to the optlonal 64 b1t bndge deﬁned by |
is presented with a grayed background as shown here. Th
information is not discussed in detail in this book, but
__as part of the 64-bit architecture in The PowerP Microp
. Family: The ngrammmg Envzronments

Additional conventlons used w1th instruction encodings are descrlbed in Table 8-2 on page
8-2. Conventions used for pseudocode examples are described in Table 8-3 on page 8-4.

XXX PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ASR Address space register
BAT Block address translation
BIST Built-in self test
BPU Branch processing unit
BUID Bus unit ID
CR Condition register
CTR Count register
DABR Data address breakpoint register
DAR Data address register
DBAT Data BAT
DEC Decrementer register
DSISR Register used for determining the source of a DS| exception
DTLB Data translation lookaside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FPECR Floating-point exception cause register
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
IBAT Instruction BAT »
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
LIFO Last-in-first-out

About This Book XXXiii

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

LR Link register

LRU Least recently used

LSB Least-significant byte

Isb Least-significant bit

MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PIR Processor identification register

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIMM Signed immediate value

SLB Segment lookaside buffer

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRRO Machine status save/restore register 0

SRR1 Machine status save/restore register 1

STE Segment table entry

B Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value
XXXV PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
UISA User instruction set architecture
VA Virtual address
VEA Virtual environment architecture
XATC Extended address transfer code
XER Register used primarily for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Table ii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSI exception

Extended mnemonics

Simplified mnemonics

Instruction storage interrupt (1S1)

1SI exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address Physical address
Relocation Translation
Storage (locations) Memory
Storage (the act of) Access
About This Book XXXV

Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:
BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)
D d
DS ' ds
FLM FM
FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)
FXM CRM
RA, RB, RT, RS rA, rB, rD, rS (respectively)
S| SIMM
U IMM
ul UIMM
L 0...0 (shaded)

XXXVi PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Chapter 1
Overview

The PowerPC™ architecture provides a software model that ensures software compatibility
among implementations of the PowerPC family of microprocessors. In this document, and
in other PowerPC documentation as well, the term ‘implementation’ refers to a hardware
device (typically a microprocessor) that complies with the specifications defined by the
architecture.

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. This manual
describes the architecture from a 32-bit perspective. Although some 64-bit resources are
discussed, this manual does not completely describe details of the 64-bit—only features of
the architecture, in particular with respect to the memory management model, registers, and
instruction set. For more information about the 64-bit aspects of the PowerPC architecture,
refer to PowerPC Microprocessor Family: The Programming Environments, which
contains the information in this book as well.

In general, the architecture defines the following:

» Instruction set—The instruction set specifies the families of instructions (such as
load/store, integer arithmetic, and floating-point arithmetic instructions), the specific
instructions, and the forms used for encoding the instructions. The instruction set
definition also specifies the addressing modes used for accessing memory.

 Programming model—The programming model defines the register set and the
memory conventions, including details regarding the bit and byte ordering, and the
conventions for how data (such as integer and floating-point values) are stored.

* Memory model—The memory model defines the size of the address space and of the
subdivisions (pages and blocks) of that address space. It also defines the ability to
configure pages and blocks of memory with respect to caching, byte ordering (big-
or little-endian), coherency, and various types of memory protection.

* Exception model—The exception model defines the common set of exceptions and
the conditions that can generate those exceptions. The exception model specifies
characteristics of the exceptions, such as whether they are precise or imprecise,
synchronous or asynchronous, and maskable or nonmaskable. The exception model
defines the exception vectors and a set of registers used when exceptions are taken.
The exception model also provides memory space for implementation-specific
exceptions. (Note that exceptions are referred to as interrupts in the architecture
specification.)

Chapter 1. Overview 11

* Memory management model—The memory management model defines how
memory is partitioned, configured, and protected. The memory management model
also specifies how memory translation is performed, the real, virtual, and physical
address spaces, special memory control instructions, and other characteristics.
(Physical address is referred to as real address in the architecture specification.)

* Time-keeping model—The time-keeping model defines facilities that permit the
time of day to be determined and the resources and mechanisms required for
supporting time-related exceptions.

These aspects of the PowerPC architecture are defined at different levels of the architecture,
and this chapter provides an overview of those levels—the user instruction set architecture
(UISA), the virtual environment architecture (VEA), and the operating environment
architecture (OEA).

To locate any published errata or updates for this document, refer to the website at
http://www.mot.com/powerpc/ or at http://www.chips.ibm.com/products/ppc.

1.1 PowerPC Architecture Overview

The PowerPC architecture, developed jointly by Motorola, IBM, and Apple Computer, is
based on the POWER architecture implemented by RS/6000™ family of computers. The
PowerPC architecture takes advantage of recent technological advances in such areas as
process technology, compiler design, and reduced instruction set computing (RISC)
microprocessor design to provide software compatibility across a diverse family of
implementations, primarily single-chip microprocessors, intended for a wide range of
systems, including battery-powered personal computers; embedded controllers; high-end
scientific and graphics workstations; and multiprocessing, microprocessor-based
mainframes. '

To provide a single architecture for such a broad assortment of processor environments, the
PowerPC architecture is both flexible and scalable.

The flexibility of the PowerPC architecture offers many price/performance options.
Designers can choose whether to implement architecturally-defined features in hardware or
in software. For example, a processor designed for a high-end workstation has greater need
for the performance gained from implementing floating-point normalization and
denormalization in hardware than a battery-powered, general-purpose computer might.

The PowerPC architecture is scalable to take advantage of continuing technological
advances—for example, the continued miniaturization of transistors makes it more feasible
to implement more execution units and a richer set of optimizing features without being
constrained by the architecture.

1-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The PowerPC architecture defines the following features:

Separate 32-entry register files for integer and floating-point instructions. The
general-purpose registers (GPRs) hold source data for integer arithmetic

instructions, and the floating-point registers (FPRs) hold source and target data for

floating-point arithmetic instructions.

Instructions for loading and storing data between the memory system and either the
FPRs or GPRs

Uniform-length instructions to allow simplified instruction pipelining and parallel
processing instruction dispatch mechanisms

Nondestructive use of registers for arithmetic instructions in which the second, third,
and sometimes the fourth operand, typically specify source registers for calculations
whose results are typically stored in the target register specified by the first operand.

A precise exception model (with the option of treating floating-point exceptions
imprecisely)

Floating-point support that includes IEEE-754 floating-point operations

A flexible architecture definition that allows certain features to be performed in
either hardware or with assistance from implementation-specific software
depending on the needs of the processor design

The ability to perform both single- and double-precision floating-point operations

User-level instructions for explicitly storing, flushing, and invalidating data in the
on-chip caches. The architecture also defines special instructions (cache block touch
instructions) for speculatively loading data before it is needed, reducing the effect of
memory latency.

Definition of a memory model that allows weakly-ordered memory accesses. This
allows bus operations to be reordered dynamically, which improves overall
performance and in particular reduces the effect of memory latency on instruction
throughput.

Support for separate instruction and data caches (Harvard architecture) and for
unified caches

Support for both big- and little-endian addressing modes

Support for 64-bit addressing. The architecture supports both 32-bit or 64-bit
implementations.This document describes the 32-bit portion of the PowerPC
architecture. For information about the 64-bit architecture, see PowerPC
Microprocessor Family: The Programming Environments.

Chapter 1. Overview 1-3

This chapter provides an overview of the major characteristics of the PowerPC architecture
in the order in which they are addressed in this book:

Register set and programming model
Instruction set and addressing modes
Cache implementations

Exception model

Memory management

1.1.1 The 64-Bit PowerPC Architecture and the 32-Bit Subset

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. It is important to
distinguish the following modes of operations:

64-bit implementations/64-bit mode—The PowerPC architecture provides 64-bit
addressing, 64-bit integer data types, and instructions that perform arithmetic
operations on those data types, as well as other features to support the wider
addressing range. For example, memory management differs somewhat between 32-
and 64-bit processors. The processor is configured to operate in 64-bit mode by
setting a bit in the machine state register (MSR).

Processors that implement only the 32-bit portion of the PowerPC architecture
provide 32-bit effective addresses, which is also the maximum size of integer data

types.

64-bit implementations/32-bit mode—For compatibility with 32-bit
implementations, 64-bit implementations can be configured to operate in 32-bit
mode by clearing the MSR[SF] bit. In 32-bit mode, the effective address is treated
as a 32-bit address, condition bits, such as overflow and carry bits, are set based on
32-bit arithmetic (for example, integer overflow occurs when the result exceeds

32 bits), and the count register (CTR) is tested by branch conditional instructions
following conventions for 32-bit implementations. All applications written for 32-
bit implementations will run without modification on 64-bit processors running in
32-bit mode.

1-4

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

1.1.2 The Levels of the PowerPC Architecture

The PowerPC architecture is defined in three levels that correspond to three programming
environments, roughly described from the most general, user-level instruction set
environment, to the more specific, operating environment.

This layering of the architecture provides flexibility, allowing degrees of software
compatibility across a wide range of implementations. For example, an implementation
such as an embedded controller may support the user instruction set, whereas it may be
impractical for it to adhere to the memory management, exception, and cache models.

The three levels of the PowerPC architecture are defined as follows:

» PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level (referred to as problem state in the architecture
specification) software should conform. The UISA defines the base user-level
instruction set, user-level registers, data types, floating-point memory conventions
and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant with respect to
the UISA.

¢ PowerPC virtual environment architecture (VEA)—The VEA defines additional v
user-level functionality that falls outside typical user-level software requirements.
The VEA describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model, defines cache
control instructions, and defines the time base facility from a user-level perspective.
The icon shown in the margin identifies text that is relevant with respect to the VEA.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

e PowerPC operating environment architecture (OEA)—The OEA defines supervisor- @
level (referred to as privileged state in the architecture specification) resources
typically required by an operating system. The OEA defines the PowerPC memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. The icon shown in the margin identifies text that is relevant with
respect to the OEA.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level;
likewise, implementations that conform to the OEA level are also guaranteed to conform to
the UISA and the VEA levels.

All PowerPC devices adhere to the UISA, offering compatibility among all PowerPC
application programs. However, there may be different versions of the VEA and OEA than
those described here. For example, some devices, such as embedded controllers, may not
require some of the features as defined by this VEA and OEA, and may implement a
simpler or modified version of those features.

Chapter 1. Overview 1-5

The general-purpose PowerPC microprocessors developed jointly by Motorola and IBM
(such as the PowerPC 601™, PowerPC 603™, PowerPC 603e™, PowerPC 604™,
PowerPC 604e™, and PowerPC 620™ microprocessors) comply both with the UISA and
with the VEA and OEA discussed here. In this book, these three levels of the architecture
are referred to collectively as the PowerPC architecture.

The distinctions between the levels of the PowerPC architecture are maintained clearly
throughout this document, using the conventions described in the section “Conventions,”
on page xxxi of the Preface.

1.1.3 Latitude Within the Levels of the PowerPC Architecture

The PowerPC architecture defines those parameters necessary to ensure compatibility
among PowerPC processors, but also allows a wide range of options for individual
implementations. These are as follows:

* The PowerPC architecture defines some facilities (such as registers, bits within
registers, instructions, and exceptions) as optional.

* The PowerPC architecture allows implementations to define additional privileged
special-purpose registers (SPRs), exceptions, and instructions for special system
requirements (such as power management in processors designed for very low-
power operation).

* There are many other parameters that the PowerPC architecture allows
implementations to define. For example, the PowerPC architecture may define
conditions for which an exception may be taken, such as alignment conditions. A
particular implementation may choose to solve the alignment problem without
taking the exception.

* Processors may implement any architectural facility or instruction with assistance
from software (that is, they may trap and emulate) as long as the results (aside from
performance) are identical to that specified by the architecture.

* Some parameters are defined at one level of the architecture and defined more
specifically at another. For example, the UISA defines conditions that may cause an
alignment exception, and the OEA specifies the exception itself.

Because of updates to the PowerPC architecture specification, which are described in this
document, variances may result between existing devices and the revised architecture
specification. Those variances are included in Implementation Variances Relative to Rev. 1
of The Programming Environments Manual.

1-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

1.1.4 Features Not Defined by the PowerPC Architecture

Because flexibility is an important design goal of the PowerPC architecture, there are many
aspects of the processor design, typically relating to the hardware implementation, that the
PowerPC architecture does not define, such as the following:

¢ System bus interface signals—Although numerous implementations may have
similar interfaces, the PowerPC architecture does not define individual signals or the
bus protocol. For example, the OEA allows each implementation to determine the
signal or signals that trigger the machine check exception.

¢ Cache design—The PowerPC architecture does not define the size, structure, the
replacement algorithm, or the mechanism used for maintaining cache coherency.
The PowerPC architecture supports, but does not require, the use of separate
instruction and data caches. Likewise, the PowerPC architecture does not specify the
method by which cache coherency is ensured.

* The number and the nature of execution units—The PowerPC architecture is a RISC
architecture, and as such has been designed to facilitate the design of processors that
use pipelining and parallel execution units to maximize instruction throughput.
However, the PowerPC architecture does not define the internal hardware details of
implementations. For example, one processor may execute load and store operations
in the integer unit, while another may execute these instructions in a dedicated
load/store unit.

¢ Other internal microarchitecture issues—The PowerPC architecture does not
prescribe which execution unit is responsible for executing a particular instruction;
it also does not define details regarding the instruction fetching mechanism, how
instructions are decoded and dispatched, and how results are written back. Dispatch
and write-back may occur in order or out of order. Also while the architecture
specifies certain registers, such as the GPRs and FPRs, implementations can
implement register renaming or other schemes to reduce the impact of data
dependencies and register contention.

1.1.5 Summary of Architectural Changes in this Revision

This revision reflects enhancements to the architecture that have been made since the
publication of the PowerPC Microprocessor Family: The Programming Environments,
Rev. 0.1. The primary difference described in this document is the addition of the rfid and
mtmsrd instructions to the 64-bit portion of the architecture. The rfi and mtmsr
instructions are now legal in 32-bit processors and illegal in 64-bit processors. Likewise,
the rfid and mtmsrd are valid instructions only in 64-bit processors and are illegal in 32-
bit processors.

In addition, this book reflects smaller changes and clarifications to the PowerPC
architecture. For more information, see Section 1.3, “Changes in This Revision of The
Programming Environments Manual.”

Chapter 1. Overview 1-7

1.2 The PowerPC Architectural Models

W This section provides overviews of aspects defined by the PowerPC architecture, following
@ the same order as the rest of this book. The topics include the following:

* PowerPC registers and programming model

* PowerPC operand conventions

* PowerPC instruction set and addressing modes
* PowerPC cache model

e PowerPC exception model

* PowerPC memory management model

1.2.1 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for computational
instructions. Source operands for these instructions are accessed from the architected
registers or are provided as immediate values embedded in the instruction. The three-
register instruction format allows specification of a target register distinct from two source
operand registers. This scheme allows efficient code scheduling in a highly parallel
processor. Load and store instructions are the only instructions that transfer data between
registers and memory. The PowerPC registers are shown in Figure 1-1.

4 SUPERVISOR MODEL—OEA N\
Configuration Registers
[(\ Machine State Register (MSR)
USER MODEL—UISA Processor Version Register (PVR)
32 General-Purpose Registers (GPRs) Memory Management Registers
32 FIoatnnq-Ponnt Rgglsters (FPRs) 8 Instruction BAT Registers (IBATs)
___Condition Register (CR) 8 Data BAT Registers (DBATs)
Floating-Point Status and Control Register (FPSCR) SDR1
Link RXE_F: R 16 Segment Registers (SRs)!
ink Register . .
Count Register (CTR) Exception Handling Registers
_ y, Data Address Register (DAR)
DSISR
USER MODEL—VEA Save and ResétglsGR:;gsisPt;ré:(aSRRO/SRR‘l)
Time Base Facility (.TBU and TBL) Floating-Point Exception Cause Register (FPECR) 2
(For reading)
k / Miscellaneous Registers
Time Base Facility (TBU and TBL) (For writing)
Decrementer Register (DEC)
Data Address Breakpoint Register (DABR) 2
Processor Identification Register (PIR) 2
External Access Register (EAR) 2

1 32-bit implementations only
2 Optional

Figure 1-1. Programming Model—PowerPC Registers

1-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The programming model incorporates 32 GPRs, 32 FPRs, special-purpose registers
(SPRs), and several miscellaneous registers. Each implementation may have its own unique
set of hardware implementation (HID) registers that are not defined by the architecture.

PowerPC processors have two levels of privilege:

* Supervisor mode—used exclusively by the operating system. Resources defined by
the OEA can be accessed only supervisor-level software.

* User mode—used by the application software and operating system software (Only
resources defined by the UISA and VEA can be accessed by user-level software)

These two levels govern the access to registers, as shown in Figure 1-1. The division of
privilege allows the operating system to control the application environment (providing
virtual memory and protecting operating system and critical machine resources).
Instructions that control the state of the processor, the address translation mechanism, and
supervisor registers can be executed only when the processor is operating in supervisor
mode.

¢ User Instruction Set Architecture Registers—All UISA registers can be accessed
by all software with either user or supervisor privileges. These registers include the
32 general-purpose registers (GPRs) and the 32 floating-point registers (FPRs), and
other registers used for integer, floating-point, and branch instructions.

* Virtual Environment Architecture Registers—The VEA defines the user-level
portion of the time base facility, which consists of the two 32-bit time base registers.
These registers can be read by user-level software, but can be written to only by
supervisor-level software.

* Operating Environment Architecture Registers—SPRs defined by the OEA are
used for system-level operations such as memory management, exception handling,
and time-keeping.

The PowerPC architecture also provides room in the SPR space for implementation-
specific registers, typically referred to as HID registers. Individual HIDs are not discussed
in this manual.

1.2.2 Operand Conventions
Operand conventions are defined in two levels of the PowerPC architecture—user

instruction set architecture (UISA) and virtual environment architecture (VEA). These v

conventions define how data is stored in registers and memory.

1.2.2.1 Byte Ordering

The default mapping for PowerPC processors is big-endian, but the UISA provides the
option of operating in either big- or little-endian mode. Big-endian byte ordering is shown
in Figure 1-2.

Chapter 1. Overview 1-9

MSB

[Byte 0 | Byte 1 | /% [Byte N (max) |
Big-Endian Byte Ordering

Figure 1-2. Big-Endian Byte and Bit Ordering

@® The OEA defines two bits in the MSR for specifying byte ordering—LE (little-endian
mode) and ILE (exception little-endian mode). The LE bit specifies whether the processor
is configured for big-endian or little-endian mode; the ILE bit specifies the mode when an
exception is taken by being copied into the LE bit of the MSR. A value of 0 specifies big-
endian mode and a value of 1 specifies little-endian mode.

1.2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
string/multiple instructions, a sequence of bytes or words. The address of a multiple-byte
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned.

1.2.2.3 Floating-Point Conventions

The PowerPC architecture adheres to the IEEE-754 standard for 64- and 32-bit floating-
point arithmetic:

* Double-precision arithmetic instructions may have single- or double-precision
operands but always produce double-precision results.

* Single-precision arithmetic instructions require all operands to be single-precision
values and always produce single-precision results. Single-precision values are
stored in double-precision format in the FPRs—these values are rounded such that
they can be represented in 32-bit, single-precision format (as they are in memory).

1.2.3 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction
formats are consistent among all instruction types, permitting decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

1.2.3.1 PowerPC Instruction Set

Although these categories are not defined by the PowerPC architecture, the PowerPC 1
instructions can be grouped as follows:

* Integer instructions—These instructions are defined by the UISA. They include
computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Logical instructions
— Integer rotate and shift instructions
¢ Floating-point instructions—These instructions, defined by the UISA, include

floating-point computational instructions, as well as instructions that manipulate the
floating-point status and control register (FPSCR).

— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point compare instructions
— Floating-point status and control instructions
— Floating-point move instructions ’
— Optional floating-point instructions
* Load/store instructions—These instructions, defined by the UISA, include integer
and floating-point load and store instructions.
— Integer load and store instructions
— Integer load and store with byte reverse instructions
— Integer load and store multiple instructions
— Integer load and store string instructions
— Floating-point load and store instructions
» The UISA also provides a set of load/store with reservation instructions (lwarx and

stwcex.) that can be used as primitives for constructing atomic memory operations.
These are grouped under synchronization instructions.

* Synchronization instructions—The UISA and VEA define instructions for memory
synchronizing, especially useful for multiprocessing:

— Load and store with reservation instructions—These UISA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

— The Synchronize instruction (sync)—This UISA-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

— Enforce In-Order Execution of I/O (eieio)— The eieio instruction providesan
ordering function for the effects of load and store operations executed by a
Processor.

Chapter 1. Overview : 1-11

04

* Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— The UISA defines numerous instructions that control the program flow,
including branch, trap, and system call instructions as well as instructions that
read, write, or manipulate bits in the condition register.

— The OEA defines two flow control instructions that provide system linkage.
These instructions are used for entering and returning from supervisor level.

* Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches and translation lookaside buffers (TLBs)
(and segment registers in 32-bit implementations). These instructions include move

- to/from special-purpose register instructions (mtspr and mfspr).

* Memory/cache control instructions—These instructions provide control of caches,
TLBs, and segment registers.

— The VEA defines several cache control instructions.

— The OEA defines one cache control instruction and several memory control
instructions.

VWV * External control instructions—The VEA defines two optional instructions for use

with special input/output devices.

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions. This is not defined by the PowerPC
architecture.

1.2.3.2 Calculating Effective Addresses

The effective address (EA), also called the logical address, is the address computed by the
processor when executing a memory access or branch instruction or when fetching the next
sequential instruction. Unless address translation is disabled, this address is converted by
the MMU to the appropriate physical address. (Note that the architecture specification uses
only the term effective address and not logical address.)

The PowerPC architecture supports the following simple addressing modes for memory
access instructions:
* EA = (rAl0) (register indirect)
* " EA = (rAl0) + offset (including offset = 0) (register indirect with immediate index)
* EA = (rAl0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.

1-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

1.2.4 PowerPC Cache Model

The VEA and OEA portions of the architecture define aspects of cache implementations for ¥
PowerPC processors. The PowerPC architecture does not define hardware aspects of cache @
implementations. For example, some PowerPC processors may have separate instruction

and data caches (Harvard architecture), while others have a unified cache.

The PowerPC architecture allows implementations to control the following memory access
modes on a page or block basis:

* Write-back/write-through mode

* Caching-inhibited mode

* Memory coherency

* Guarded/not guarded against speculative accesses

Coherency is maintained on a cache block basis, and cache control instructions perform
operations on a cache block basis. The size of the cache block is implementation-
dependent. The term cache block should not be confused with the notion of a block in
memory, which is described in Section 1.2.6, “PowerPC Memory Management Model.”

The VEA portion of the PowerPC architecture defines several instructions for cache
management. These can be used by user-level software to perform such operations as touch
operations (which cause the cache block to be speculatively loaded), and operations to
store, flush, or clear the contents of a cache block. The OEA portion of the architecture @
defines one cache management instruction—the Data Cache Block Invalidate (dcbi)
instruction.

1.2.5 PowerPC Exception Model

The PowerPC exception mechanism, defined by the OEA, allows the processor to change
to supervisor state as a result of external signals, errors, or unusual conditions arising in the
execution of instructions. When exceptions occur, information about the state of the
processor is saved to various registers and the processor begins execution at an address
(exception vector) predetermined for each type of exception. Exception handler routines
begin execution in supervisor mode. The PowerPC exception model is described in detail
in Chapter 6, “Exceptions.” Note also that some aspects regarding exception conditions are
defined at other levels of the architecture. For example, floating-point exception conditions
are defined by the UISA, whereas the exception mechanism is defined by the OEA.

PowerPC architecture requires that exceptions be handled in program order (excluding the
optional floating-point imprecise modes and the reset and machine check exception);
therefore, although a particular implementation may recognize exception conditions out of
order, they are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet begun to execute, are required to complete before the
exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,

Chapter 1. Overview 1-13

but are not handled until all instructions currently executing successfully complete
processing and report their results.

The OEA supports four types of exceptions:

e Synchronous, precise

* Synchronous, imprecise

* Asynchronous, maskable

* Asynchronous, nonmaskable

® 1.2.6 PowerPC Memory Management Model

The PowerPC memory management unit (MMU) specifications are provided by the
PowerPC OEA. The primary functions of the MMU in a PowerPC processor are to translate
logical (effective) addresses to physical addresses for memory accesses and I/O accesses
(most I/O accesses are assumed to be memory-mapped), and to provide access protection
on a block or page basis. Note that many aspects of memory management are
implementation-dependent. The description in Chapter 7, “Memory Management,’
describes the conceptual model of a PowerPC MMU; however, PowerPC processors may
differ in the specific hardware used to. implement the MMU model of the OEA.

PowerPC processors require address translation for two types of transactions—instruction
accesses and data accesses to memory (typically generated by load and store instructions).

The memory management specification of the PowerPC OEA includes models for both 64-
and 32-bit implementations. The MMU of a 32-bit PowerPC processor provides 232 bytes
of logical address space accessible to supervisor and user programs with a 4-Kbyte page
size and 256-Mbyte segment size.

In 32-bit implementations, the entire 4-Gbyte memory space is defined by sixteen 256-
Mbyte segments. Segments are configured through the 16 segment registers. In 64-bit
implementations there are more segments than can be maintained in architecture-defined
registers, so segment descriptors are maintained in segment table entries (STEs) in memory
and are accessed through the use of a hashing algorithm much like that used for accessing
page table entries (PTEs).

PowerPC processors also have a block address translation (BAT) mechanism for mapping
large blocks of memory. Block sizes range from 128 Kbyte to 256 Mbyte and are software-
selectable. In addition, the MMU of 32-bit PowerPC processors uses an interim virtual
address (52 bits) and hashed page tables in the generation of 32-bit physical addresses.

Two types of accesses generated by PowerPC processors require address translation:
instruction accesses, and data accesses to memory generated by load and store instructions.
The address translation mechanism is defined in terms of segment tables (or segment
registers in 32-bit implementations) and page tables used by PowerPC processors to locate
the logical-to-physical address mapping for instruction and data accesses. The segment

1-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

information translates the logical address to an interim virtual address, and the page table
information translates the virtual address to a physical address.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors
to keep recently-used page table entries on-chip. Although their exact characteristics are not
specified by the architecture, the general concepts that are pertinent to the system software
are described. Similarly, 64-bit implementations may contain segment lookaside buffers
(SLBs) on-chip that contain recently-used segment table entries, but for which the
PowerPC architecture does not define the exact characteristics.

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs); refer to
Chapter 7, “Memory Management,” for more information.

1.3 Changes in This Revision of The Programming
Environments Manual

This book reflects changes made to the PowerPC architecture after the publication of Rev. 0
of The Programming Environments Manual and before Dec. 13, 1994 (Rev. 0.1). In
addition, it reflects changes made to the architecture after the publication of Rev. 0.1 of The
Programming Environments Manual and before Aug. 6, 1996 (Rev. 1). Although there are
many changes in this revision, this section summarizes only the most significant changes
and clarifications to the architecture specification.

The main substantive change from Rev. 0 to Rev. 1 for 32-bit processors is the phasing out
of the direct-store facility. This facility defined segments that were used to generate direct-
store interface accesses on the external bus to communicate with specialized I/O devices; it
was not optimized for performance in the PowerPC architecture and was present for
compatibility with older devices only. As of this revision of the architecture (Rev. 1), direct-
store segments are an optional processor feature. However, they are not likely to be
supported in future implementations and new software should not use them.

Table 1-1 and Table 1-2 list changes made to the UISA that are reflected in this book and
identify the chapters affected by those changes. Note that many of the changes made in the
UISA are reflected in both the VEA and OEA portions of the architecture as well.

Chapter 1. Overview 1-15

Table 1-1. UISA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
The rules for handling of reserved bits in registers are clarified. 2
Clarified that isync does not wait for memory kacoesses to be performed. 4,8
CRO[0-2] are undefined for some instructions in 64-bit mode. 4,8
Clarified intermediate result with respect to floating-point operations (the intermediate 3
result has infinite precision and unbounded exponent range).
Clarified the definition of rounding such that rounding always occurs (specifically, FR and 3
Fl flags are always affected) for arithmetic, rounding, and conversion instructions. :
Clarified the definition of the term ‘tiny’ (detected before rounding).
In D.3.2, “Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word,” D
changed value in FPR 3 from 232 to 232 — 1 (in 32-bit implementation description).
Noted additional POWER incompatibility for Store Floating-Point Single (stfs) instruction. | B

Table 1-2. UISA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected
Although the stfiwx instruction is an optional instruction, it will likely be required for future | 4,8, A
processors.
Added the new Data Cache Block Allocate (dcba) instruction. ’ 4,5,8,A
Deleted some warnings about generating misaligned little-endian access. 3

Table 1-3 and Table 1-4 list changes made to the VEA that are reflected in this book and the
chapters that are affected by those changes. Note that some changes to the UISA. are
reflected in the VEA and in turn, some changes to the VEA affect the OEA as well.

Table 1-3. VEA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
Clarified conditions under which a cache block is considered modified. 5
WIMG bits have meaning only when the effective address is translated. 2,57
Clarified that isync does not wait for memory accesses to be performed. 4,5,7,8
Clarified paging implications of eciwx and ecowx. 4,5,7,8

Table 1-4. VEA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected
Added the requirement that caching-inhibited guarded store operations are ordered. 5
Clarified use of the dcbf instruction in keeping instruction cache coherency in the caseofa | 5

combined instruction/data cache in a multiprocessor system.

PoweiPC Microprocessor Family: The Programming Environments (32-Bit)

Table 1-5 and Table 1-6 list changes made to the OEA that are reflected in this book and the
chapters that are affected by those changes. Note that some changes to the UISA and VEA

are reflected in the OEA as well.

Table 1-5. OEA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
Restricted several aspects of out-of-order operations. 2,4,5,6,7
Clarified instruction fetching and instruction cache paradoxes. 4,5
Specified that IBATs contain W and G bits and that software must not write 1s to them. 2,7
Corrected the description of coherence when the W bit differs among processors. 5
Clarified that referenced and changed bits are set for virtual pages. 7
Revised the description of changed bit setting to avoid depending on the TLB. 7
Tightened the rules for setting the changed bit out of order. 57
Specified which multiple DSISR bits may be set due to simultaneous DSI exceptions. 6
Removed software synchronization requirements for reading the TB and DEC. 2
More flexible DAR setting for a DABR exception. 6
Table 1-6. OEA Changes—Rev. 0.1 to Rev. 1.0
Change Chapter(s) Affected
Changed definition of direct-store segments to an optional processor feature that is not 2,6,7
likely to be supported in future implementations and new software should not use it.
Changed the ranges of bits saved from MSR to SRR1 (and restored from SRR1to MSRon | 2, 6
rfi) on an exception.
Clarified the definition of execution synchronization. Also clarified that the mtmsr and 2,4,8
mtmsrd instructions are not execution synchronizing.
Clarified the use of memory allocated for predefined uses (including the exception 6,7
vectors).
Revised the page table update synchronization requirements and recommended code 7
sequences.
Chapter 1. Overview 1-17

Chapter 2
PowerPC Register Set

This chapter describes the register organization defined by the three levels of the PowerPC
architecture—user instruction set architecture (UISA), virtual environment architecture
(VEA), and operating environment architecture (OEA). The PowerPC architecture defines
register-to-register operations for all computational instructions. Source data for these
instructions are accessed from the on-chip registers or are provided as immediate values
embedded in the opcode. The three-register instruction format allows specification of a
target register distinct from the two source registers, thus preserving the original data for
use by other instructions and reducing the number of instructions required for certain
operations. Data is transferred between memory and registers with explicit load and store
instructions only.

Note that the handling of reserved bits in any register is implementation-dependent.
Software is permitted to write any value to a reserved bit in a register. However, a
subsequent reading of the reserved bit returns O if the value last written to the bit was 0 and
returns an undefined value (may be O or 1) otherwise. This means that even if the last value
written to a reserved bit was 1, reading that bit may return 0.

2.1 PowerPC UISA Register Set

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user- or
supervisor-level instructions (the architecture specification refers to user-level and
supervisor-level as problem state and privileged state respectively). The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed as instruction operands.
Access to registers can be explicit (that is, through the use of specific instructions for that
purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-
Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction.
Some registers are accessed both explicitly and implicitly.

The number to the right of the register names indicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the XER is SPR 1).

Note that the general-purpose registers (GPRs), link register (LR), and count register (CTR)
are 64 bits wide on 64-bit implementations and 32 bits wide on 32-bit implementations.

10/

Chapter 2. PowerPC Register Set - 2-1

7 ™
i SUPERVIBOR MODEL
/.,r \.\\ {}ﬁ;&
/ USER MODEL \ Contiguration Registers
UISA Mactine State Register Provessor Yersion feglster !
[omeRew PR G | SPR 287
General-Purpose Registers : L srRa
GPRO (64/32) Memory Management Rogisters
GPR1 (64/32) instrustion BAT Registers Data BAT Registers
: H BPR 28 DEATOU G4/30) [5PH 528
. SFR 529

SRR 537

GPR31 (64/32)

GPR B3

PR 591

SPR 539

2y L GPR 540

Floating-Point Registers

FPRO (64)
FPR1 (64) BPR 534 DEBATIY B482) | BPR 542
° GFR 535 DBATIL (6435 |SPR 543
. Segment Feglisterg 12
FPR31 (64) RO
534
Condition Register ! SR ¢
#
CR(32) wpace t
AGH B4 ISFRERG #
. SR1E B0
Floating-Point Status DA
and Control Register !

Exception Handling Reglsters
FPSCR (32) Data Addrsas Ragister O8IsR

ke b,
149 PODSISREE | SR8
XER Register ' i SRR

XER (32) SPR1
SPROC (B452)

Link Register SERGT (6455
LR (64/32) SPR S8 SPRZ (647492)

Bave and Restore Registers
G482y 1 BPR 28

SEF (B4/02) BPF 27

SPROS
Count Register
\ CTR(6432) | SPR9) Miscellansous Regisiers
Time Base Facility ’ Duta Address
{For Writing) Breakpoint Register
USER MODEL ‘ 5 {Optional}
VEA THU (88 : bAsR
Time Bage Facility ' . Extornal Avcess Register
(For feading) Denyorenter {Optional) * ¢
THL (32 THIT 268 g

32 THE 960 Provessor lentification
- R ional}
. S/ e 10es

. eerereerrseecceeemmioreest A

! These registers are 32-bit registers only.
2 These registers are on 32-bit implementations only.
3 These registers are on 64-bit implementations only.

Figure 2-1. UISA Programming Model—User-Level Registers

2-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The user-level registers can be accessed by all software with either user or supervisor
privileges. The user-level register set includes the following:

General-purpose registers (GPRs). The general-purpose register file consists of 32
GPRs designated as GPRO-GPR31. The GPRs serve as data source or destination
registers for all integer instructions and provide data for generating addresses. See
Section 2.1.1, “General-Purpose Registers (GPRs),” for more information.

Floating-point registers (FPRs). The floating-point register file consists of 32 FPRs
designated as FPRO-FPR31; these registers serve as the data source or destination
for all floating-point instructions. While the floating-point model includes data
objects of either single- or double-precision floating-point format, the FPRs only
contain data in double-precision format. For more information, see Section 2.1.2,
“Floating-Point Registers (FPRs).”

Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit fields,
CRO-CR7, that reflects the results of certain arithmetic operations and provides a
mechanism for testing and branching. For more information, see Section 2.1.3,
“Condition Register (CR).”

Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable bits,
and rounding control bits needed for compliance with the IEEE 754 standard. For
more information, see Section 2.1.4, “Floating-Point Status and Control Register
(FPSCR).” (Note that the architecture specification refers to exceptions as
interrupts.)

XER register (XER). The XER indicates overflows and carry conditions for integer
operations and the number of bytes to be transferred by the load/store string indexed
instructions. For more information, see Section 2.1.5, “XER Register (XER).”

Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instructions, and can optionally be used to hold
the effective address of the instruction that follows a branch with link update
instruction in the instruction stream, typically used for loading the return pointer for
a subroutine. For more information, see Section 2.1.6, “Link Register (LR).”

Count register (CTR). The CTR holds a loop count that can be decremented during
execution of appropriately coded branch instructions. The CTR can also provide the
branch target address for the Branch Conditional to Count Register (bcetrx)
instructions. For more information, see Section 2.1.7, “Count Register (CTR).”

2.1.1 General-Purpose Registers (GPRs)

Integer data is manipulated in the processor’s 32 GPRs shown in Figure 2-2. These registers
are 64-bit registers in 64-bit implementations and 32-bit registers in 32-bit
implementations. The GPRs are accessed as source and destination registers in the
instruction syntax.

Chapter 2. PowerPC Register Set 2-3

GPRO
GPR1

GPR31

Figure 2-2. General-Purpose Registers (GPRs)

2.1.2 Floating-Point Registers (FPRs)

The PowerPC architecture provides thirty-two 64-bit FPRs as shown in Figure 2-3. These
registers are accessed as source and destination registers for floating-point instructions.
Each FPR supports the double-precision floating-point format. Every instruction that
interprets the contents of an FPR as a floating-point value uses the double-precision
floating-point format for this interpretation. Note that FPRs are 64 bits on both 64-bit and
32-bit processor implementations.

All floating-point arithmetic instructions operate on data located in FPRs and, with the
exception of compare instructions, place the result into an FPR. Information about the
status of floating-point operations is placed into the FPSCR and in some cases, into the CR
after the completion of instruction execution. For information on how the CR is affected for
floating-point operations, see Section 2.1.3, “Condition Register (CR).”

Load and store double-word instructions transfer 64 bits of data between memory and the
FPRs with no conversion. Load single instructions are provided to read a single-precision
floating-point value from memory, convert it to double-precision floating-point format, and
place it in the target floating-point register. Store single-precision instructions are provided
to read a double-precision floating-point value from a floating-point register, convert it to
single-precision floating-point format, and place it in the target memory location.

Single- and double-precision arithmetic instructions accept values from the FPRs in
double-precision format. For single-precision arithmetic and store instructions, all input
values must be representable in single-precision format; otherwise, the result placed into
the target FPR (or the memory location) and the setting of status bits in the FPSCR and in
the condition register (if the instruction’s record bit, Rc, is set) are undefined.

The floating-point arithmetic instructions produce intermediate results that may be
regarded as infinitely precise and with unbounded exponent range. This intermediate result
is normalized or denormalized if required, and then rounded to the destination format. The
final result is then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction. Refer to Section 3.3, “Floating-Point Execution
Models—UISA,” for more information.

2-4 PoweiPC Microprocessor Family: The Programming Environments (32-Bit)

FPRO
FPR1

FPR31

Figure 2-3. Floating-Point Registers (FPRs)

2.1.3 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing and branching. The bits in the CR are grouped into
eight 4-bit fields, CRO—CR?7, as shown in Figure 2-4.

CRO | CR1 J CR2 CR3 CR4 CR5 r CR6 J CR?
) 34 78 112 15 16 9 20 73 24 77 28 3

Figure 2-4. Condition Register (CR)

The CR fields can be set in one of the following ways:
¢ Specified fields of the CR can be set from a GPR by using the mterf instruction.

¢ The contents of XER[0-3] can be moved to another CR field by using the merf
instruction.

¢ A specified field of the XER can be copied to a specified field of the CR by using the
merxr instruction.

* A specified field of the FPSCR can be copied to a specified field of the CR by using
the merfs instruction.

» Condition register logical instructions can be used to perform logical operations on
specified bits in the condition register.

* CRO can be the implicit result of an integer instruction.

* CRI can be the implicit result of a floating-point instruction.

* A specified CR field can indicate the result of either an integer or floating-point
compare instruction.

Note that branch instructions are provided to test individual CR bits.

Chapter 2. PowerPC Register Set 2-5

2.1.3.1 Condition Register CRO Field Definition

For all integer instructions, when the CR is set to reflect the result of the operation (that is,
when Rc = 1), and for addic., andi., and andis., the first three bits of CRO are set by an
algebraic comparison of the result to zero; the fourth bit of CRO is copied from XER[SO].
For integer instructions, CR bits 0-3 are set to reflect the result as a signed quantity.

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined,
the value placed into the first three bits of CRO is undefined.

Table 2-1. Bit Settings for CRO Field of CR

CRO .
Bit Description
0 Negative (LT)—This bit is set when the result is negative.
1 Positive (GT)—This bit is set when the result is positive (and not
zero).
2 Zero (EQ)—This bit is set when the result is zero.
3 Summary overflow (SO)—This is a copy of the final state of XER[SO]
at the completion of the instruction.

Note that CRO may not reflect the true (that is, infinitely precise) result if overflow occurs.

2.1.3.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the operation (that
is, when the instruction’s record bit, Rc, is set), CR1 (bits 4-7 of the CR) is copied from
bits 0-3 of the FPSCR and indicates the floating-point exception status. For more
information about the FPSCR, see Section 2.1.4, “Floating-Point Status and Control
Register (FPSCR).” The bit settings for the CR1 field are shown in Table 2-2.

Table 2-2. Bit Settings for CR1 Field of CR

CR1

Bit Description

4 Floating-point exception (FX)—This is a copy of the final state of
FPSCRI[FX] at the completion of the instruction.

5 Floating-point enabled exception (FEX)—This is a copy.of the final
state of FPSCR[FEX] at the completion of the instruction.

6 Floating-point invalid exception (VX)—This is a copy of the final state
of FPSCR[VX] at the completion of the instruction.

7 Floating-point overflow exception (OX)—This is a copy of the final
state of FPSCR[OX] at the completion of the instruction.

2-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

2.1.3.3 Condition Register CRn Field—Compare Instruction

For a compare instruction, when a specified CR field is set to reflect the result of the

comparison, the bits of the specified field are interpreted as shown in Table 2-3.

Table 2-3. CRn Field Bit Settings for Compare Instructions

CRn
Bit!

Description?

0

Less than or floating-point less than (LT, FL).

For integer compare instructions: rA < SIMM or rB (signed comparison) or
rA < UIMM or rB (unsigned comparison).

For floating-point compare instructions: frA < frB.

Greater than or floating-point greater than (GT, FG).

For integer compare instructions: rA > SIMM or rB (signed comparison) or
rA > UIMM or rB (unsigned comparison).

For floating-point compare instructions: frA > frB.

Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA =frB.

Summary overflow or floating-point unordered (SO, FU).

For integer compare instructions: This is a copy of the final state of XER[SO}
at the completion of the instruction.

For floating-point compare instructions: One or both of frA and frB is a Not a
Number (NaN).

Notes:'Here, the bit indicates the bit number in any one of the 4-bit subfields, CRO-CR7.

2For a complete description of instruction syntax conventions, refer to Table 8-2 on
page 8-2.

2.1.4 Floating-Point Status and Control Register (FPSCR)
The FPSCR, shown in Figure 2-5, contains bits that do the following:

* Record exceptions generated by floating-point operations
* Record the type of the result produced by a floating-point operation
* Control the rounding mode used by floating-point operations

* Enable or disable the reporting of exceptions (invoking the exception handler)

Bits 0-23 are status bits. Bits 24-31 are control bits. Status bits in the FPSCR are updated

at the completion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid
operation exception summary (VX), the exception condition bits in the FPSCR (bits 0-12
and 21-23) are sticky. Once set, sticky bits remain set until they are cleared by an merfs,

mtfsfi, mtfsf, or mtfsb0 instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not

listed among the FPSCR bits directly affected by the various instructions.

Chapter 2. PowerPC Register Set

Reserved

VXIDI VXzZDz ——— VXSOFT
VXisi VXIMZ VXSQRT
VXSNAN VXVC VXCVI

— —
|Fx|m4vx|oxjux|zx|xx] [TTTT T 7

i l IVElOElUElZElXEINll RNI

3 4 5 6 7 8 9 10 11 12 13 1415 1920 21 22 23 24 25 26 27 28 29 30 31

Figure 2-5. Floating-Point Status and Control Register (FPSCR)

A listing of FPSCR bit settings is shown in Table 2-4.

Table 2-4. FPSCR Bit Settings

Bit(s) Name

Description

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf,
implicitly sets FPSCR[FX] if that instruction causes any of the floating-point exception bits in
the FPSCR to transition from 0 to 1. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1
instructions can alter FPSCR[FX] explicitly. This is a sticky bit.

1 FEX

Floating-point enabled exception summary. This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits
masked by their respective enable bits (FEX = (VX & VE) A (OX & OE) A (UX & UE) A (ZX &
ZE) A (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot alter
FPSCR[FEX] explicitly. This is not a sticky bit.

Floating-point invalid operation exception summary. This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exceptions. The
mcrfs, mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This
is not a sticky bit.

Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, “Overflow,
Underflow, and Inexact Exception Conditions.”

Floating-point underflow exception. This is a sticky bit. See Section 3.3.6.2.2, “Underflow
Exception Condition.”

Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, “Inexact Exception
Condition.”
FPSCR[XX] is the sticky version of FPSCRIFI]. The following rules describe how FPSCR[XX]
is set by a given instruction:
« |f the instruction affects FPSCRIFI], the new value of FPSCR[XX] is obtained by logically
ORing the old value of FPSCR[XX] with the new value of FPSCRIFI].
« If the instruction does not affect FPSCR(FI], the value of FPSCR[XX] is unchanged.

7 VXSNAN

Floating-point invalid operation exception for SNaN. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

8 VXISI

Floating-point invalid operation exception for « — . This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

9 VXIDI

Floating-point invalid operation exception for o + o, Th«s is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

10 VXZDZ

Floating-point invalid operation exception for 0 + 0. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 2-4. FPSCR Bit Settings (Continued)

Bit(s)

Name

Description

1

VXIMZ

Floating-point invalid operation exception for « * 0. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

12

VXVC

Floating-point invalid operation exception for invalid compare. This is a sticky bit. See
Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

13

FR

Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that
rounded the intermediate result incremented the fraction. See Section 3.3.5, “Rounding.” This
bit is not sticky.

14

Fl

Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction
either rounded the intermediate result (producing an inexact fraction) or caused a disabled
overflow exception. See Section 3.3.5, “Rounding.” This is not a sticky bit. For more
information regarding the relationship between FPSCR[FI] and FPSCR[XX], see the
description of the FPSCR[XX] bit.

15-19

FPRF

Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is
based on the result placed into the target register, except that if any portion of the result is
undefined, the value placed here is undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion
instructions may set this bit with the FPCC bits to indicate the class of the result as
shown in Table 2-5.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic,
rounding, and conversion instructions may set the FPCC bits with the C bit to
indicate the class of the result. Note that in this case the high-order three bits of the
FPCC retain their relational significance indicating that the value is less than,
greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note that these are not sticky bits.

20

Reserved

21

VXSOFT

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can
be altered only by the merfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed
information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

22

VXSQRT

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more
detailed information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

23

VXCVI

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See
Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

24

VE

Floating-point invalid operation exception enable. See Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

25

OE

|IEEE floating-point overflow exception enable. See Section 3.3.6.2, “Overflow, Underflow, and
Inexact Exception Conditions.”

26

UE

|IEEE floating-point underflow exception enable. See Section 3.3.6.2.2, “Underflow Exception
Condition.”

27

ZE

|IEEE floating-point zero divide exception enable. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

28

XE

Floating-point inexact exception enable. See Section 3.3.6.2.3, “Inexact Exception Condition.”

Chapter 2. PowerPC Register Set 2-9

Table 2-4. FPSCR Bit Settings (Continued)

Bit(s) Name Description

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards
and the other FPSCR bits may have meanings other than those described here. If the bit is set
and if all implementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero
(retaining the sign of the denormalized number). Any other effects associated with setting this
bit are described in the user's manual for the implementation (the effects are implementation-
dependent).

30-31 | RN Floating-point rounding control. See Section 3.3.5, “Rounding.”
00 Round to nearest

01 Round toward zero

10 Round toward +infinity

11 Round toward —infinity

Table 2-5 illustrates the floating-point result flags used by PowerPC processors. The result
flags correspond to FPSCR bits 15-19.

Table 2-5. Floating-Point Result Flags in FPSCR

Result Flags (Bits 15-19)
: Result Value Class
C < > = ?
1 0 0 0 1 | Quiet NaN
ol 1] o} o} 1 |-nfiity
0 1 0 0 0 | —Normalized number
1 1 0 0 0 | —Denormalized number
1 0 0 1 0 | —Zero
0 0 0 1 0 | +Zero
1 0 1 0 0 | +Denormalized number
0 0 1 0 0 | +Normalized number
0 0 1 0 1 +Infinity

2-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

2.1.5 XER Register (XER)
The XER register (XER) is a 32-bit, user-level register shown in Figure 2-6.

T —
Figure 2-6. XER Register

The bit definitions for XER, shown in Table 2-6, are based on the operation of an
instruction considered as a whole, not on intermediate results. For example, the result of the
Subtract from Carrying (subfex) instruction is specified as the sum of three values. This
instruction sets bits in the XER based on the entire operation, not on an intermediate sum.

Table 2-6. XER Bit Definitions

Bit(s) | Name Description

0 SO Summary overflow. The summary overflow bit (SO) is set whenever an instruction (except mtspr)
sets the overflow bit (OV). Once set, the SO bit remains set until it is cleared by an mtspr
instruction (specifying the XER) or an merxr instruction. It is not altered by compare instructions,
nor by other instructions (except mtspr to the XER, and merxr) that cannot overflow. Executing
an mtspr instruction to the XER, supplying the values zero for SO and one for OV, causes SO to
be cleared and OV to be set.

1 ov Overflow. The overflow bit (OV) is set to indicate that an overflow has occurred during execution
of an instruction. Add, subtract from, and negate instructions having OE = 1 set the OV bit if the
carry out of the msb is not equal to the carry out of the msb + 1, and clear it otherwise. Multiply
low and divide instructions having OE = 1 set the OV bit if the result cannot be represented in 64
bits (mulld, divd, divdu) or in 32 bits (muliw, divw, divwu), and clear it otherwise. The OV bit is
not altered by compare instructions that cannot overflow (except mtspr to the XER, and merxr).

2 CA Carry. The carry bit (CA) is set during execution of the following instructions:
* Add carrying, subtract from carrying, add extended, and subtract from extended instructions
set CA if there is a carry out of the msb, and clear it otherwise.
« Shift right algebraic instructions set CA if any 1 bits have been shifted out of a negative
operand, and clear it otherwise.
The CA bit is not altered by compare instructions, nor by other instructions that cannot carry
(except shift right algebraic, mtspr to the XER, and mcrxr).

3-24 —_ Reserved

25-31 This field specifies the number of bytes to be transferred by a Load String Word Indexed (Iswx) or
Store String Word Indexed (stswx) instruction.

2.1.6 Link Register (LR)

The link register (LR) is a 64-bit register in 64-bit implementations and a 32-bit register in
32-bit implementations. The LR supplies the branch target address for the Branch
Conditional to Link Register (bclrx) instructions, and in the case of a branch with link
update instruction, can be used to hold the logical address of the instruction that follows the

Chapter 2. PowerPC Register Set 2-11

branch with link update instruction (for returning from a subroutine). The format of LR is
shown in Figure 2-7.

| Branch Address |
0 63
Figure 2-7. Link Register (LR)

Note that although the two least-significant bits can accept any values written to them, they
are ignored when the LR is used as an address. Both conditional and unconditional branch
instructions include the option of placing the logical address of the instruction following
the branch instruction in the LR.

The link register can be also accessed by the mtspr and mfspr instructions using SPR 8.
Prefetching instructions along the target path (loaded by an mtspr instruction) is possible
provided the link register is loaded sufficiently ahead of the branch instruction (so that any
branch prediction hardware can calculate the branch address). Additionally, PowerPC
processors can prefetch along a target path loaded by a branch and link instruction.

Note that some PowerPC processors may keep a stack of the LR values most recently set
by branch with link update instructions. To benefit from these enhancements, use of the link
register should be restricted to the manner described in Section 4.2.4.2, “Conditional
Branch Control.”

2.1.7 Count Register (CTR)

The count register (CTR) is a 64-bit register in 64-bit implementations and a 32-bit register
in 32-bit implementations. The CTR can hold a loop count that can be decremented during
execution of branch instructions that contain an appropriately coded BO field. If the value
in CTR is O before being decremented, it is OXFFFF_FFFF (2 2_1) afterward. The CTR can
also provide the branch target address for the Branch Conditional to Count Register
(beetrx) instruction. The CTR is shown in Figure 2-8.

| CTR
0 : 63
Figure 2-8. Count Register (CTR)

Prefetching instructions along the target path is also possible provided the count register is
loaded sufficiently ahead of the branch instruction (so that any branch prediction hardware
can calculate the correct value of the loop count).

The count register can also be accessed by the mtspr and mfspr instructions by specifying
SPR 9. In branch conditional instructions, the BO field specifies the conditions under which

2-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

the branch is taken. The first four bits of the BO field specify how the branch is affected by
or affects the CR and the CTR. The encoding for the BO field is shown in Table 2-7.

Table 2-7. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.
001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1200y Decrement the CTR, then branch if the decremented CTR # 0.

1201y Decrement the CTR, then branch if the decremented CTR = 0.

121zz Branch always.

Notes: The y bit provides a hint about whether a conditional branch is likely to be taken and is used by
some PowerPC implementations to improve performance. Other implementations may ignore the
ybit.

The zindicates a bit that is ignored. The z bits should be cleared (zero), as they may be assigned
a meaning in a future version of the PowerPC UISA.

2.2 PowerPC VEA Register Set—Time Base

The PowerPC virtual environment architecture (VEA) defines registers in addition to those W

defined by the UISA. The PowerPC VEA register set can be accessed by all software with
either user- or supervisor-level privileges. Figure 2-9 provides a graphic illustration of the
PowerPC VEA register set. Note that the following programming model is similar to that
found in Figure 2-1, however, the PowerPC VEA registers are now included.

The PowerPC VEA introduces the time base facility (TB), a 64-bit structure that consists
of two 32-bit registers—time base upper (TBU) and time base lower (TBL). Note that the
time base registers can be accessed by both user- and supervisor-level instructions. In the
context of the VEA, user-level applications are permitted read-only access to the TB. The
OEA defines supervisor-level access to the TB for writing values to the TB. See
Section 2.3.12, “Time Base Facility (TB)—OEA,” for more information.

In Figure 2-9, the numbers to the right of the register name indicates the number that is used
in the syntax of the instruction operands to access the register (for example, the number
used to access the XER is SPR 1).

Note that the general-purpose registers (GPRs), link register (LR), and count register (CTR)
are 64 bits on 64-bit implementations and 32 bits on 32-bit implementations. These
registers are described fully in Section 2.1, “PowerPC UISA Register Set.”

Chapter 2. PowerPC Register Set 2-13

SUPERVISOR MODEL

// ~ OEA
USER MODEL Configuration Registers
UISA Machine Siate Hegister Proceasor Version Reglster *
General-Purpose Registers | msREEEy | l PR 1 SPRZET
GPRO (64/32) Memory Management Registers
GPR1 (64/32) instruction BAY Hegisters Data BAT Hegisters
: IBATOU (84/32) [SPR 528 DBATOU (84/52)
. IBATOL (64 PR 528 DBATOL (84/32) 18PR &
GPR31 (64/32) SPR5I0 DBATIU (64
SPR 53 DHAT L (64732}
Floating-Point Registers Sf DEAT2U (64/38)
FPRO (64) f DBAT2L (84:32)
FPR1 (64) DBATSU (84/32) {SPR 542
. 391 535 DRATSL (§4/32) | 3PR 543
. Begment Registers -2
FPR31 (64) SRE {38
SR 93
Condition Register ' ik
L3
CR(32) %
#
SR1S (32}
Floating-Point Status

1
and Control Register Exception Handling Registers

FPSCR (32) Data Address Hegistier DRSH

e o % sags
XER Register ! | DAR i SPR 19] SR8 18
XER 32) SPR1 SPRGs S;a*fe a:wd Reftefe Qegxstarﬁ
SPRGE (64732) | SPR 272 SRRC 6452 | SPR28
Link Register SPRO1T (84/32) |SPR 273 SRR1 @402y | SPRZT
LR (64/32) SPR8 8PRE74 Floating-Point Exception
SPRGS (8642 |BPROVE Cause Register (Optional)
Count Register i OSPR 12
k CTR(64/32) | SPR9 / Miscellaneous Registers
Thne Bage Faciity * Dats Address
{For Writing} Breakpoint Register
USER MODEL TRL (38) SPR 284 {Optional) om0
VEA TBU ey PR 28s | SPR1013
Time Base Facility ! . External Access Register
(For Reading) .!}ecrememer {Optional) |
e 23
TBL(32) | TBR268* LB PR22
Processor idesntification
TBU (32) 15A 29 Register {Optional}
\\ 11 1023

! These registers are 32-bif registers only.

2 These registers are on 32-bit implementations only.

3 These registers are on 64-bit implementations only.

4 In 64-bit implementations, TBR268 is read as a 64-bit value.

Figure 2-9. VEA Programming Model—User-Level Registers Plus Time Base

2-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The time base (TB), shown in Figure 2-10, is a 64-bit structure that contains a 64-bit
unsigned integer that is incremented periodically. Each increment adds 1 to the low-order
bit (bit 31 of TBL). The frequency at which the counter is incremented is implementation-
dependent. :

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base
0 31 0 31

Figure 2-10. Time Base (TB)

The TB increments until its value becomes OXFFFF_FFFF_FFFF_FFFF (264 - 1). At the
next increment its value becomes 0x0000_0000_0000_0000. Note that there is no explicit
indication that this has occurred (that is, no exception is generated).

The period of the time base depends on the driving frequency. The TB is implemented such
that the following requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time base.

2. Storing a GPR to the time base replaces the value in the time base with the value in
the GPR.

The PowerPC VEA does not specify a relationship between the frequency at which the time
base is updated and other frequencies, such as the processor clock. The TB update
frequency is not required to be constant; however, for the system software to maintain time
of day and operate interval timers, one of two things is required:

* The system provides an implementation-dependent exception to software whenever
the update frequency of the time base changes and a means to determine the current
update frequency; or

* The system software controls the update frequency of the time base.

Note that if the operating system initializes the TB to some reasonable value and the update
frequency of the TB is constant, the TB can be used as a source of values that increase at a
constant rate, such as for time stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically
. . 64 .

increasing (except when the TB wraps from 2°° — 1 to 0). If a trace entry is recorded each
time the update frequency changes, the sequence of TB values can be postprocessed to
become actual time values.

However, successive readings of the time base may return identical values due to
implementation-dependent factors such as a low update frequency or initialization.

Chapter 2. PowerPC Register Set 2-15

2.2.1 Reading the Time Base

The mftb instruction is used to read the time base. For specific details on using the mftb
instruction, see Chapter 8, “Instruction Set.” For information on writing the time base, see
Section 2.3.12.1, “Writing to the Time Base.”

On 32-bit implementations, it is not possible to read the entire 64-bit time base in a single
instruction. The mftb simplified mnemonic moves from the lower half of the time base
register (TBL) to a GPR, and the mftbu simplified mnemonic moves from the upper half
of the time base (TBU) to a GPR.

Because of the possibility of a carry from TBL to TBU occurring between reads of the TBL
and TBU, a sequence such as the following example is necessary to read the time base on
32-bit implementations:

loop:
mftbu rx #load from TBU
mftb ry #load from TBL
mftbu «rz #load from TBU
cmpw rz,rx #see if ‘0ld’ = ‘new’
bne loop #loop if carry occurred

The comparison and loop are necessary to ensure that a consistent pair of values has been
obtained. The previous example will also work on 64-bit implementations running in either
64-bit or 32-bit mode.

2.2.2 Computing Time of Day from the Time Base

Since the update frequency of the time base is system-dependent, the algorithm for
converting the current value in the time base to time of day is also system-dependent.

In a system in which the update frequency of the time base may change over time, it is not
possible to convert an isolated time base value into time of day. Instead, a time base value
has meaning only with respect to the current update frequency and the time of day that the
update frequency was last changed. Each time the update frequency changes, either the
system software is notified of the change via an exception, or else the change was instigated
by the system software itself. At each such change, the system software must compute the
current time of day using the old update frequency, compute a new value of ticks-per-
second for the new frequency, and save the time of day, time base value, and tick rate.
Subsequent calls to compute time of day use the current time base value and the saved data.

A generalized service to compute time of day could take the following as input:

» Time of day at beginning of current epoch

* Time base value at beginning of current epoch

* Time base update frequency

* Time base value for which time of day is desired

2-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

For a PowerPC system in which the time base update frequency does not vary, the first three
inputs would be constant.

2.3 PowerPC OEA Register Set

The PowerPC operating environment architecture (OEA) completes the discussion of
PowerPC registers. Figure 2-11 shows a graphic representation of the entire PowerPC
register set—UISA, VEA, and OEA. In Figure 2-11 the numbers to the right of the register
name indicates the number that is used in the syntax of the instruction operands to access
the register (for example, the number used to access the XER is SPR 1).

All of the SPRs in the OEA can be accessed only by supervisor-level instructions; any
attempt to access these SPRs with user-level instructions results in a supervisor-level
exception. Some SPRs are implementation-specific. In some cases, not all of a register’s
bits are implemented in hardware.

If a PowerPC processor executes an mtspr/mfspr instruction with an undefined SPR
encoding, it takes (depending on the implementation) an illegal instruction program
exception, a privileged instruction program exception, or the results are boundedly
undefined. See Section 6.4.7, “Program Exception (0x00700),” for more information.

Note that the GPRs, LR, CTR, TBL, MSR, DAR, SDRI1, SRRO, SRRI1, and
SPRGO-SPRG3 are 64 bits wide on 64-bit implementations and 32 bits wide on 32-bit
implementations.

o I

Chapter 2. PowerPC Register Set 2-17

i

General-Purpose Registers
GPRO (64/32)
GPR1 (64/32)

GPR31 (64/32)

Floating-Point Registers
FPRO (64)
FPR1 (64)

FPR31 (64)

Condition Register '
CR (32)

Floating-Point Status
and Control Register !

FPSCR (32)

>
m
]
I
®
Q,
2
[}
-

XER (32) SPR 1
Link Register

Count Register

CTR(64/32) | SPR9)

USER MODEL
VEA

Time Base Facility °
(For Reading)

TBL (32) TBR 2684

TBU (32) TBR 269

/

SUPERVISOR MODEL
OEA
Configuration Registers
Machine State Register Processor Version Register !

~

MSR (64/32) PVR (32) SPR 287
. Memory Management Registers
Instruction BAT Registers Data BAT Registers
IBATOU (64/32) | SPR 528 DBATOU (64/32) | SPR 536
IBATOL (64/32) |SPR 529 DBATOL (64/32) | SPR 537
IBAT1U (64/32) |SPR 530 DBAT1U (64/32) | SPR 538
IBAT1L (64/32) |SPR 531 DBAT1L (64/32) | SPR 539
IBAT2U (64/32) |SPR 532 DBAT2U (64/32) | SPR 540
IBAT2L (64/32) |SPR 533 DBAT2L (64/32) | SPR 541
IBAT3U (64/32) | SPR 534 DBAT3U (64/32) | SPR 542
IBATSL (64/32) |SPR 535 DBATSL (64/32) | SPR 543
Segment Registers -2
SDR1 SRO (32)
SDR1(64/32) | SPR25 SR1(32)
Address Space Register ° .
ASR (64) |SPR280 hd
SR15(32)
Exception Handling Registers
Data Address Register DSISR!
DAR (64/32) | SPR19 DSISR (32) SPR 18
SPRGs Save and Restore Registers
SPRGO (64/32) | SPR 272 SRRO(64%2) | SPR26
SPRG1 (64/32) |SPR 273 SRR1(64/32) | SPR27
SPRG2 (64/32) | SPR 274 Floating-Point Exception
SPRG3 (64/32) |SPR 275 Cause Register (Optional)
FPECR SPR 1022
Miscellaneous Registers
Time Base Facility ' Data Address
(For Writing) Breakpoint Register
(Optional)
TBL (32) SPR 284 ABR Gi732 oR
TBU (32) SPR 285 S 1013
Decrementer ! External Access Register

(Optional) !
EAR (32)

DEC (32) SPR 22

Processor Identification
Register (Cptional)

SPR 1023 }

SPR 282

! These registers are 32-bit registers only.

2These registers are on 32-bit implementations only.
3 These registers are on 64-bit implementations only.
4 In 64-bit implementations, TBR268 is read as a 64-bit value

Figure 2-11. OEA Programming Model—All Registers

2-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

A description of the PowerPC OEA supervisor-level registers follows:
* Configuration registers

— Machine state register (MSR). The MSR defines the state of the processor. The
MSR can be modified by the Move to Machine State Register (mtmsr), System
Call (sc), and Return from Interrupt (rfi) instructions. It can be read by the Move
from Machine State Register (mfmsr) instruction. For more information, see
Section 2.3.1, “Machine State Register (MSR).”

— Processor version register (PVR). This register is a read-only register that
identifies the version (model) and revision level of the PowerPC processor. For
more information, see Section 2.3.2, “Processor Version Register (PVR).”

¢ Memory management registers

— Block-address translation (BAT) registers. The PowerPC OEA includes eight
block-address translation registers (BATSs), consisting of four pairs of instruction
BATs (IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of data BATs
(DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-11 for a list of the
SPR numbers for the BAT registers. Refer to Section 2.3.3, “BAT Registers,” for
more information. '

— SDRI1. The SDRI1 register specifies the page table base address used in virtual-
to-physical address translation. For more information, see Section 2.3.4,
“SDR1.” (Note that physical address is referred to as real address in the
architecture specification.)

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. For more information, see
Section 2.3.5, “Segment Registers.”

* Exception handling registers

— Data address register (DAR). After a DSI or an alignment exception, DAR is set
to the effective address generated by the faulting instruction. For more
information, see Section 2.3.6, “Data Address Register (DAR).”

— SPRGO-SPRG3. The SPRGO-SPRGS3 registers are provided for operating
system use. For more information, see Section 2.3.7, “SPRG0O-SPRG3.”

— DSISR. The DSISR defines the cause of DSI and alignment exceptions. For more
information, refer to Section 2.3.8, “DSISR.”

Chapter 2. PowerPC Register Set 2-19

— Machine status save/restore register 0 (SRRO). The SRRO register is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed. For more information, see Section 2.3.9, “Machine
Status Save/Restore Register 0 (SRRO0).”

— Machine status save/restore register 1 (SRR1). The SRR1 register is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed. For more information, see Section 2.3.10, “Machine
Status Save/Restore Register 1 (SRR1).”

— Floating-point exception cause register (FPECR). This optional register is used
to identify the cause of a floating-point exception.

* Miscellaneous registers

— Time base (TB). The TB is a 64-bit structure that maintains the time of day and
operates interval timers. The TB consists of two 32-bit registers—time base
upper (TBU) and time base lower (TBL). Note that the time base registers can be
accessed by both user- and supervisor-level instructions. For more information,
see Section 2.3.12, “Time Base Facility (TB)—OEA” and Section 2.2,
“PowerPC VEA Register Set—Time Base.”

— Decrementer register (DEC). This register is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock. For
more information, see Section 2.3.13, “Decrementer Register (DEC).”

— External access register (EAR). This optional register is used in conjunction with
the eciwx and ecowx instructions. Note that the EAR register and the eciwx and
ecowx instructions are optional in the PowerPC architecture and may not be
supported in all PowerPC processors that implement the OEA. For more
information about the external control facility, see Section 4.3.4, “External
Control Instructions.”

— Data address breakpoint register (DABR). This optional register is used to
control the data address breakpoint facility. Note that the DABR is optional in
the PowerPC architecture and may not be supported in all PowerPC processors
that implement the OEA. For more information about the data address
breakpoint facility, see Section 6.4.3, “DSI Exception (0x00300).”

— Processor identification register (PIR). This optional register is used to hold a
value that distinguishes an individual processor in a multiprocessor environment.

2.3.1 Machine State Register (MSR)

The machine state register (MSR) is a 64-bit register on 64-bit implementations and a 32-
bit register in 32-bit implementations (see Figure 2-12). The MSR defines the state of the
processor. When an exception occurs, MSR bits, as described in Table 2-8, are altered as
determined by the exception. The MSR can also be modified by the mtmsr, sc, and rfi
instructions. It can be read by the mfmsr instruction.

2-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Reserved

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 31

Figure 2-12. Machine State Register (MSR)

Table 2-8 shows the bit definitions for the MSR.

Table 2-8. MSR Bit Settings

Bit(s)

Name

Description

0-12

Reserved

13

POW

Power management enable

0 Power management disabled (normal operation mode)

1 Power management enabled (reduced power mode)

Note: Power management functions are implementation-dependent. If the function
is not implemented, this bit is treated as reserved.

14

Reserved

15

ILE

Exception little-endian mode. When an exception occurs, this bit is copied into
MSRILE] to select the endian mode for the context established by the exception.

16

EE

External interrupt enable

0 While the bit is cleared, the processor delays recognition of external interrupts
and decrementer exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer
exception.

17

PR

Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18

FP

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including
floating-point loads, stores, and moves.

1 The processor can execute floating-point instructions.

19

ME

Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20

FEO

Floating-point exception mode 0 (see Table 2-9).

21

SE

Single-step trace enable (Optional)

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful
execution of the next instruction.

Note: If the function is not implemented, this bit is treated as reserved.

22

BE

Branch trace enable (Optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the

execution of a branch instruction, regardless of whether the branch was taken.

Note: If the function is not implemented, this bit is treated as reserved.

Chapter 2. PowerPC Register Set

2-21

Table 2-8. MSR Bit Settings (Continued)

Bit(s) | Name Description
23 FE1 Floating-point exception mode 1 (See Table 2-9).
24 — Reserved
25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset

is prepended with Fs or 0s. In the following description, nnnnn is the offset of the

exception vector. See Table 6-2.

0 Exceptions are vectored to the physical address 0x000n_nnnn in 32-bit
implementations and 0x0000_0000_000n_nnnn in 64-bit implementations.

1 Exceptions are vectored to the physical address OxFFFn_nnnn in 32-bit
implementations and 0x0000_0000_FFFn_nnnn in 64-bit implementations.

In most systems, IP is set to 1 during system initialization, and then cleared to 0

when initialization is complete.

26 IR Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information, see Chapter 7, “Memory Management.”

27 DR Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information, see Chapter 7, “Memory Management.”

28-29 | — Reserved

30 RI Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.

1 Exception is recoverable.

For more information, see Chapter 6, “Exceptions.”

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

The floating-point exception mode bits (FEO-FE1) are interpreted as shown in Table 2-9.
Table 2-9. Floating-Point Exception Mode Bits

FEO | FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable
1 0 Floating-point imprecise recoverable
1 1 Floating-point precise mode

2-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 2-10 indicates the initial state of the MSR at power up.

Table 2-10. State of MSR at Power Up

Bit(s) | Name Defgﬁ;ta \;talue
0-12 — Unspeciﬁed1
13 POW 0
14 — UnspecifiedI
15 ILE 0
16 EE 0
17 PR 0
18 FP 0
19 ME 0
20 FEO Y
21 SE Y
22 BE 0
23 FE1 0
24 — Unspecified’
25 P 12
26 IR 0
27 DR 0
28-29 — Unspecified'
30 RI 0
31 LE 0

1 Unspecified can be either 0 or 1
2 1 is typical, but might be 0

2.3.2 Processor Version Register (PVR)

The processor version register (PVR) is a 32-bit, read-only register that contains a value
identifying the specific version (model) and revision level of the PowerPC processor (see
Figure 2-13). The contents of the PVR can be copied to a GPR by the mfspr instruction.
Read access to the PVR is supervisor-level only; write access is not provided.

r Version | Revision l
0 15 16 31

Figure 2-13. Processor Version Register (PVR)

Chapter 2. PowerPC Register Set 2-23

The PVR consists of two 16-bit fields:

¢ Version (bits 0—~15)—A 16-bit number that uniquely identifies a particular processor
version. This number can be used to determine the version of a processor; it may not
distinguish between different end product models if more than one model uses the
same processor.

¢ Revision (bits 16-31)—A 16-bit number that distinguishes between various releases
of a particular version (that is, an engineering change level). The value of the
revision portion of the PVR is implementation-specific. The processor revision level
is changed for each revision of the device.

2.3.3 BAT Registers

The BAT registers (BATs) maintain the address translation information for eight blocks of
memory. The BATs are maintained by the system software and are implemented as eight
pairs of special-purpose registers (SPRs). Each block is defined by a pair of SPRs called
upper and lower BAT registers. These BAT registers define the starting addresses and sizes
of BAT areas.

The PowerPC OEA defines the BAT registers as eight instruction block-address translation

(IBAT) registers, consisting of four pairs of instruction BATSs, or IBATs (IBATOU-IBAT3U

and IBATOL-IBAT3L) and eight data BATs, or DBATs, (DBATOU-DBAT3U and
DBATOL-DBAT3L). See Figure 2-11 for a list of the SPR numbers for the BAT registers.

Figure 2-14 and Figure 2-15 show the format of the upper and lower BAT registers for
32-bit PowerPC processors.

Reserved

BEPI BL IVs]V;]
0 14 15 1819 29 30 31
Figure 2-14. Upper BAT Register
Reserved
BRPN WIMG*
0 14 15 24 25 28 29 30 31

*W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.
Figure 2-15. Lower BAT Register

Table 2-11 describes the bits in the BAT registers.

2-24 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 2-11. BAT Registers—Field and Bit Descriptions

Upper/Lower

BAT Bits Name Description

Upper BAT 0-14 BEPI Block effective page index. This field is compared with high-order bits of
Register the logical address to determine if there is a hit in that BAT array entry.
(Note that the architecture specification refers to logical address as
effective address.)

15-18 —_ Reserved

19-29 BL Block length. BL is a mask that encodes the size of the block. Values for
this field are listed in Table 2-12.

30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if
there is a match with the logical address. For more information, see
Section 7.4.2, “Recognition of Addresses in BAT Arrays."

31 Vp User mode valid bit. This bit also interacts with MSR[PR] to determine if
there is a match with the logical address. For more information, see
Section 7.4.2, “Recognition of Addresses in BAT Arrays.”

Lower BAT 0-14 BRPN This field is used in conjunction with the BL field to generate high-order
Register bits of the physical address of the block.

15-24 —_ Reserved

25-28 WIMG Memory/cache access mode bits

W Write-through

| Caching-inhibited

M Memory coherence

G Guarded

Attempting to write to the W and G bits in IBAT registers causes
boundedly-undefined results. For detailed information about the WIMG
bits, see Section 5.2.1, “Memory/Cache Access Attributes."

29 —_ Reserved

30-31 PP Protection bits for block. This field determines the protection for the block
as described in Section 7.4.4, “Block Memory Protection.”

Chapter 2. PowerPC Register Set 2-25

Table 2-12 lists the BAT area lengths encoded in BAT[BL].
Table 2-12. BAT Area Lengths

B::n‘g‘::“ BL Encoding
128 Kbytes 000 0000 0000
256 Kbytes 000 0000 0001
512 Kbytes 000 0000 0011
1 Mbyte 000 0000 0111
2 Mbytes 000 0000 1111
4 Mbytes 000 0001 1111
8 Mbytes 000 0011 1111
16 Mbytes 000 0111 1111
32 Mbytes 000 1111 1111
64 Mbytes 001 1111 1111
128 Mbytes 011 1111 1111
256 Mbytes 111111 1111

Only the values shown in Table 2-12 are valid for the BL field. The rightmost bit of BL is
aligned with bit 14 of the logical address. A logical address is determined to be within a
BAT area if the logical address matches the value in the BEPI field.

The boundary between the cleared bits and set bits (Os and 1s) in BL determines the bits of
logical address that participate in the comparison with BEPI. Bits in the logical address
corresponding to set bits in BL are cleared for this comparison. Bits in the logical address
corresponding to set bits in the BL field, concatenated with the 17 bits of the logical address
to the right (less significant bits) of BL, form the offset within the BAT area. This is
described in detail in Chapter 7, “Memory Management.”

The value loaded into BL determines both the length of the BAT area and the alignment of
the area in both logical and physical address space. The values loaded into BEPI and BRPN
must have at least as many low-order zeros as there are ones in BL.

Use of BAT registers is described in Chapter 7, “Memory Management.”

2-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

2.3.4 SDR1

The SDR1 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The 32-bit implementation of SDR1 is shown in Figure 2-16.

HTABORG

0 15 16 22. 23 31
Figure 2-16. SDR1

The bits of the 32-bit implementation of SDR1 are described in Table 2-13.
Table 2-13. SDR1 Bit Settings

Bits Name Description
0-15 HTABORG The high-order 16 bits of the 32-bit physical address of the page table
1622 | — Reserved

23-31 HTABMASK Mask for page table address

In 32-bit implementations, the HTABORG field in SDR1 contains the high-order 16 bits of
the 32-bit physical address of the page table. Therefore, the page table is constrained to lie
ona 216-byte (64 Kbytes) boundary at a minimum. At least 10 bits from the hash function
are used to index into the page table. The page table must consist of at least 64 Kbytes (210
PTEGs of 64 bytes each).

The page table can be any size 2" where 16 < n < 25. As the table size is increased, more
bits are used from the hash to index into the table and the value in HTABORG must have
more of its low-order bits equal to 0. The HTABMASK field in SDR1 contains a mask value
that determines how many bits from the hash are used in the page table index. This mask
must be of the form 0b00...011...1; that is, a string of 0 bits followed by a string of 1bits.
The 1 bits determine how many additional bits (at least 10) from the hash are used in the
index; HTABORG must have this same number of low-order bits equal to 0. See
Figure 7-23 for an example of the primary PTEG address generation in a 32-bit
implementation.

For example, suppose that the page table is 8,192 (213), 64-byte PTEGs, for a total size of
219 bytes (512 Kbytes). Note that a 13-bit index is required. Ten bits are provided from the
hash initially, so 3 additional bits form the hash must be selected. The value in
HTABMASK must be 0x007 and the value in HTABORG must have its low-order 3 bits
(bits 13-15 of SDR1) equal to 0. This means that the page table must begin on a
23+10+6 _ 519 _ 512 Kbytes boundary.

For more information, refer to Chapter 7, “Memory Management.”

Chapter 2. PowerPC Register Set 2-27

2.3.5 Segment Registers

The segment registers contain the segment descriptors for 32-bit implementations. For 32-
bit processors, the OEA defines a segment register file of sixteen 32-bit registers. Segment
registers can be accessed by using the mtsr/mfsr and mtsrin/mfsrin instructions. The
value of bit 0, the T bit, determines how the remaining register bits are interpreted.
Figure 2-17 shows the format of a segment register when T = 0.

VvSID

01 2 3 4 78

Figure 2-17. Segment Register Format (T = 0)
Segment register bit settings when T = 0 are described in Table 2-14.

Table 2-14. Segment Register Bit Settings (T = 0)

Bits Name Description
0 T T = 0 selects this format
1 Ks Supervisor-state protection key
2 Kp User-state protection key
3 N No-execute protection
4-7 — Reserved
8-31 VSID Virtual segment ID

Figure 2-18 shows the bit definition when T = 1.

| T | KsI Kpl BUID Controller-Specific Information

01 2 3 1112 31

Figure 2-18. Segment Register Format (T = 1)

2-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The bits in the segment register when T = 1 are described in Table 2-15.

Table 2-15. Segment Register Bit Settings (T = 1)

Bits Name Description
0 T T = 1 selects this format.
1 Ks Supervisor-state protection key
2 Kp User-state protection key
3-11 BUID Bus unit ID
12-31 CNTLR_SPEC | Device-specific data for /O controller

If an access is translated by the block address translation (BAT) mechanism, the BAT
translation takes precedence and the results of translation using segment registers are not
used. However, if an access is not translated by a BAT, and T = 0 in the selected segment
register, the effective address is a reference to a memory-mapped segment. In this case, the
52-bit virtual address (VA) is formed by concatenating the following:

e The 24-bit VSID field from the segment register
e The 16-bit page index, EA[4-19]
e The 12-bit byte offset, EA[20-31]

The VA is then translated to a physical address as described in Section 7.5, “Memory
Segment Model.”

If T = 1 in the selected segment register (and the access is not translated by a BAT), the
effective address is a reference to a direct-store segment. No reference is made to the page
tables. However, note that the direct-store facility is being phased out of the architecture and
will not likely be supported in future devices. Thus, all new programs should write a value
of zero to the T bit. For further discussion of address translation when T = 1, see
Section 7.7, “Direct-Store Segment Address Translation.”

2.3.6 Data Address Register (DAR)

The DAR is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The DAR is shown in Figure 2-19.

DAR

Figure 2-19. Data Address Register (DAR)

The effective address generated by a memory access instruction is placed in the DAR if the
access causes an exception (for example, an alignment exception). For information, see
Chapter 6, “Exceptions.”

Chapter 2. PowerPC Register Set 2-29

2.3.7 SPRGO0-SPRG3

SPRGO-SPRG3 are 64-bit or 32-bit registers, depending on the type of PowerPC processor.
They are provided for general operating system use, such as performing a fast state save or

for supporting multiprocessor implementations. The formats of SPRGO-SPRG3 are shown
in Figure 2-20.

SPRGO
SPRG1
SPRG2
SPRG3

Figure 2-20. SPRG0-SPRG3

Table 2-16 provides a description of conventional uses of SPRGO through SPRG3.
Table 2-16. Conventional Uses of SPRG0O-SPRG3

Register Description

SPRGO | Software may load a unique physical address in this register to identify an area of memory
reserved for use by the first-level exception handler. This area must be unique for each processor
in the system.

SPRG1 | This register may be used as a scratch register by the first-level exception handier to save the
content of a GPR. That GPR then can be loaded from SPRGO and used as a base register to
save other GPRs to memory.

SPRG2 | This register may be used by the operating system as needed.

SPRG3 | This register may be used by the operating system as needed.

2.3.8 DSISR

The 32-bit DSISR, shown in Figure 2-21, identifies the cause of DSI and alignment
exceptions.

DSISR

Figure 2-21. DSISR

For information about bit settings, see Section 6.4.3, “DSI Exception (0x00300),” and
Section 6.4.6, “Alignment Exception (0x00600).”

2-30 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

2.3.9 Machine Status Save/Restore Register 0 (SRRO0)

The SRRO is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. SRRO is used to save machine status on exceptions and restore machine
status when an rfi instruction is executed. It also holds the EA for the instruction that
follows the System Call (sc) instruction. The format of SRRO is shown in Figure 2-22.

f SRRO

0 29 30 31

Figure 2-22. Machine Status Save/Restore Register 0 (SRRO0)

When an exception occurs, SRRO is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has begun execution.
When an rfi instruction is executed, the contents of SRRO are copied to the next instruction
address (NIA)—the 64- or 32-bit address of the next instruction to be executed. The
instruction addressed by SRRO may not have completed execution, depending on the
exception type. SRRO addresses either the instruction causing the exception or the
immediately following instruction. The instruction addressed can be determined from the
exception type and status bits.

Note that in some implementations, every instruction fetch performed while MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRRO.

For information on how specific exceptions affect SRRO, refer to the descriptions of
individual exceptions in Chapter 6, “Exceptions.”

2.3.10 Machine Status Save/Restore Register 1 (SRR1)

The SRRI1 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. SRR1 is used to save machine status on exceptions and to restore
machine status when an rfi instruction is executed. The format of SRR1 is shown in
Figure 2-23.

SRR1

Figure 2-23. Machine Status Save/Restore Register 1 (SRR1)

Chapter 2. PowerPC Register Set 2-31

When an exception occurs, bits 1-4 and 1015 of SRR1 are loaded with exception-specific
information and bits 16-23, 25-27, and 30-31 of MSR are placed into the corresponding
bit positions of SRR1.When rfi is executed, MSR[16-23, 25-27, 30-31] are loaded from
SRR1[16-23, 25-27, 30-31].

The remaining bits of SRR1 are defined as reserved. An implementation may define one or
more of these bits, and in this case, may also cause them to be saved from MSR on an
exception and restored to MSR from SRR1 on an rfi.

Note that, in some implementations, every instruction fetch when MSR[IR] = 1, and every
instruction execution requiring address translation when MSR[DR] = 1, may modify SRR1.

For information on how specific exceptions affect SRR1, refer to the individual exceptions
in Chapter 6, “Exceptions.”

2.3.11 Floating-Point Exception Cause Register (FPECR)

The FPECR register may be used to identify the cause of a floating-point exception. Note
that the FPECR is an optional register in the PowerPC architecture and may be
implemented differently (or not at all) in the design of each processor. The user’s manual
of a specific processor will describe the functionality of the FPECR, if it is implemented in
that processor.

2.3.12 Time Base Facility (TB)—OEA

As described in Section 2.2, “PowerPC VEA Register Set—Time Base,” the time base (TB)
provides a long-period counter driven by an implementation-dependent frequency. The
VEA defines user-level read-only access to the TB. Writing to the TB is reserved for
supervisor-level applications such as operating systems and boot-strap routines. The OEA
defines supervisor-level, write access to the TB.

The TB is a volatile resource and must be initialized during reset. Some implementations
may initialize the TB with a known value; however, there is no guarantee of automatic
initialization of the TB when the processor is reset. The TB runs continuously at start-up.

For more information on the user-level aspects of the time base, refer to Section 2.2,
“PowerPC VEA Register Set—Time Base.”

2.3.12.1 Writing to the Time Base
Note that writing to the TB is reserved for supervisor-level software.

The simplified mnemonics, mttbl and mttbu, write the lower and upper halves of the TB,
respectively. The simplified mnemonics listed above are for the mtspr instruction; see
Appendix F, “Simplified Mnemonics,” for more information. The mtspr, mttbl, and mttbu
instructions treat TBL and TBU as separate 32-bit registers; setting one leaves the other
unchanged. It is not possible to write the entire 64-bit time base in a single instruction.

2-32 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The instructions for writing the time base are not dependent on the implementation or
mode. Thus, code written to set the TB on a 32-bit implementation will work correctly on
a 64-bit implementation running in either 64- or 32-bit mode.

The TB can be written by a sequence such as:

1wz rX,upper #load 64-bit value for
lwz ry, lower # TB into rx and ry
1i rz,0

mttbl rz #force TBL to 0

mttbu rx #set TBU

mttbl ry #set TBL

Provided that no exceptions occur while the last three instructions are being executed,
loading 0 into TBL prevents the possibility of a carry from TBL to TBU while the time base
is being initialized.

For information on reading the time base, refer to Section 2.2.1, “Reading the Time Base.”

2.3.13 Decrementer Register (DEC)

The decrementer register (DEC), shown in Figure 2-24, is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a programmable
delay. The DEC frequency is based on the same implementation-dependent frequency that
drives the time base.

| DEC |

0 31

Figure 2-24. Decrementer Register (DEC)

2.3.13.1 Decrementer Operation

The DEC counts down, causing an exception (unless masked by MSR[EE]) when it passes
through zero. The DEC satisfies the following requirements:

¢ The operation of the time base and the DEC are coherent (that is, the counters are
driven by the same fundamental time base).

* Loading a GPR from the DEC has no effect on the DEC.

* Storing the contents of a GPR to the DEC replaces the value in the DEC with the
value in the GPR.

* Whenever bit 0 of the DEC changes from 0 to 1, a decrementer exception request is
signaled. Multiple DEC exception requests may be received before the first
exception occurs; however, any additional requests are canceled when the exception
occurs for the first request.

» Ifthe DEC is altered by software and the content of bit O is changed from O to 1, an
exception request is signaled.

Chapter 2. PowerPC Register Set 2-33

2.3.13.2 Writing and Reading the DEC

The content of the DEC can be read or written using the mfspr and mtspr instructions, both
of which are supervisor-level when they refer to the DEC. Using a simplified mnemonic for
the mtspr instruction, the DEC may be written from GPR rA with the following:

mtdec rA

Using a simplified mnemonic for the mfspr instruction, the DEC may be read into GPR rA
with the following:

mfdec rA

2.3.14 Data Address Breakpoint Register (DABR)

The optional data address breakpoint facility is controlled by an optional SPR, the DABR.
The DABR is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The data address breakpoint facility is optional to the PowerPC
architecture. However, if the data address breakpoint facility is implemented, it is
recommended, but not required, that it be implemented as described in this section.

The data address breakpoint facility provides a means to detect accesses to a designated
double word. The address comparison is done on an effective address, and it applies to data
accesses only. It does not apply to instruction fetches.

The DABR is shown in Figure 2-25.

DAB IBTIDWIDRI
0 28 29 30 31

Figure 2-25. Data Address Breakpoint Register (DABR)
Table 2-17 describes the fields in the DABR.
Table 2-17. DABR—Bit Settings

Bits Name Description
0-28 DAB Data address breakpoint
29 BT Breakpoint translation enable
30 DW Data write enable
31 DR Data read enable

2-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

A data address breakpoint match is detected for a load or store instruction if the three
following conditions are met for any byte accessed:

» EA[0-28] = DABR[DAB]

« MSR[DR] =DABR[BT]

¢ The instruction is a store and DABR[DW] = 1, or the instruction is a load and
DABR[DR] = 1.

Even if the above conditions are satisfied, it is undefined whether a match occurs in the
following cases:

* A store string instruction (stwcex.) in which the store is not performed
* Aload or store string instruction (Iswx or stswx) with a zero length

* A dcbz, dcbz, eciwx, or ecowx instruction. For the purpose of determining whether
a match occurs, eciwx is treated as a load, and dcbz, dcba, and ecowx are treated as
stores.

The cache management instructions other than dcbz and dcba never cause a match. If dcbz
or dcbha causes a match, some or all of the target memory locations may have been updated.

A match generates a DSI exception. Refer to Section 6.4.3, “DSI Exception (0x00300),” for
more information on the data address breakpoint facility.

2.3.15 External Access Register (EAR)

The EAR is an optional 32-bit SPR that controls access to the external control facility and
identifies the target device for external control operations. The external control facility
provides a means for user-level instructions to communicate with special external devices.
The EAR is shown in Figure 2-26.

Reserved

01 25 26 31

Figure 2-26. External Access Register (EAR)

The high-order bits of the resource ID (RID) field beyond the width of the RID supported
by a particular implementation are treated as reserved bits.

The EAR register is provided to support the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions, which are described in Chapter 8,
“Instruction Set.” Although access to the EAR is supervisor-level, the operating system can
determine which tasks are allowed to issue external access instructions and when they are
allowed to do so. The bit settings for the EAR are described in Table 2-18. Interpretation of
the physical address transmitted by the eciwx and ecowx instructions and the 32-bit value
transmitted by the ecowx instruction is not prescribed by the PowerPC OEA but is

Chapter 2. PowerPC Register Set 2-35

determined by the target device. The data access of eciwx and ecowx is performed as
though the memory access mode bits (WIMG) were 0101.

For example, if the external control facility is used to support a graphics adapter, the ecowx
instruction could be used to send the translated physical address of a buffer containing
graphics data to the graphics device. The eciwx instruction could be used to load status
information from the graphics adapter.

Table 2-18. External Access Register (EAR) Bit Settings

Bit Name Description
0 E Enable bit
1 Enabled
0 Disabled

If this bit is set, the eciwx and ecowx instructions can perform the
specified external operation. If the bit is cleared, an eciwx or ecowx
instruction causes a DSI exception.

1-25 — Reserved
26-31 RID Resource ID

This register can also be accessed by using the mtspr and mfspr instructions.
Synchronization requirements for the EAR are shown in Table 2-19 and Table 2-20.

2.3.16 Processor Identification Register (PIR)

The PIR register is used to differentiate between individual processors in a multiprocessor
environment. Note that the PIR is an optional register in the PowerPC architecture and may
be implemented differently (or not at all) in the design of each processor. The user’s manual
of a specific processor will describe the functionality of the PIR, if it is implemented in that
Processor.

2.3.17 Synchronization Requirements for Special Registers and for
Lookaside Buffers

Changing the value in certain system registers, and invalidating TLB entries, can cause
alteration of the context in which data addresses and instruction addresses are interpreted,
and in which instructions are executed. An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or in which instructions are executed, is
called a context-altering instruction. The context synchronization required for context-
altering instructions is shown in Table 2-19 for data access and Table 2-20 for instruction
fetch and execution.

A context-synchronizing exception (that is, any exception except nonrecoverable system
reset or nonrecoverable machine check) can be used instead of a context-synchronizing
instruction. In the tables, if no software synchronization is required before (after) a context-
altering instruction, the synchronizing instruction before (after) the context-altering
instruction should be interpreted as meaning the context-altering instruction itself.

2-36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

A synchronizing instruction before the context-altering instruction ensures that all
instructions up to and including that synchronizing instruction are fetched and executed in
the context that existed before the alteration. A synchronizing instruction after the context-
altering instruction ensures that all instructions after that synchronizing instruction are
fetched and executed in the context established by the alteration. Instructions after the first
synchronizing instruction, up to and including the second synchronizing instruction, may
be fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no
instructions that are affected by any of the context alterations, no software synchronization
is required within the sequence.

Note that some instructions that occur naturally in the program, such as the rfi at the end of
an exception handler, provide the required synchronization.

No software synchronization is required before altering the MSR (except when altering the
MSR[POW] or MSR[LE] bits; see Table 2-19 and Table 2-20), because mtmsr is execution
synchronizing. No software synchronization is required before most of the other alterations
shown in Table 2-20, because all instructions before the context-altering instruction are
fetched and decoded before the context-altering instruction is executed (the processor must
determine whether any of the preceding instructions are context synchronizing).

Table 2-19 provides information on data access synchronization requirements.

Table 2-19. Data Access Synchronization

Instruction/Event Requifed Prior Required After
Exception ! None None
i ! None None
sc! None None
Trap ! None None
mtmsr (ILE) None None
mtmsr (PR) None Context-synchronizing instruction
mtmsr (ME) 2 None Context-synchronizing instruction
mtmsr (DR) None Context-synchronizing instruction

mtmsr (LE) 3 —_ —

mtsr [or mtsrin] Context-synchronizing instruction Context-synchronizing instruction
mtspr (SDR1) 45 sync Context-synchronizing instruction
mtspr (DBAT) Context-synchronizing instruction Context-synchronizing instruction
mtspr (DABR) & — —

mtspr (EAR) Context-synchronizing instruction Context-synchronizing instruction

Chapter 2. PowerPC Register Set 2-37

Table 2-19. Data Access Synchronization (Continued)

Instruction/Event ; ' Required Prior Required After
tibie 7:7 Context-synchronizing instruction Context-synchronizing instruction or
) . sync
tibia 77 : Context-synchronizing instruction Context-synchronizing instruction or
sync
Notes:

1
2

Synchronization requirements for changing the power conserving mode are implementation-dependent.

A context synchronizing instruction is required after modification of the MSR[ME] bit to ensure that the
modification takes effect for subsequent machine check exceptions, which may not be recoverable and
therefore may not be context synchronizing.

Synchronization requirements for changing from one endian mode to the other are implementation-dependent.
SDR1 must not be altered when MSR[DR] = 1 or MSR][IR] = 1; if it is, the results are undefined.

A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby
the location of the referenced and changed (R and C) bits. To ensure that R and C bits are updated in the
correct page table, SDR1 must not be altered until all R and C bit updates due to instructions before the mtspr
have completed. A sync instruction guarantees this synchronization of R and C bit updates, while neither a
‘context synchronizing operation nor the instruction fetching mechanism does so.

Synchronization requirements for changing the DABR are implementation-dependent.
Multiprocessor systems have other requirements to synchronize TLB invalidate.

For information on instruction access synchronization requirements, see Table 2-20.

Table 2-20. instruction Access Synchronization

Instruction/Event Required Prior Required After
Exception ! None - None
fi! None None
sc! | None None
Trap ! None : None

mtmsr (POW) ! - —

mtmsr (ILE) None None

mtmsr (EE) 2 ‘ None None

mtmsr (PR) None Context-synchronizing instruction
mtmsr (FP) None Context-synchronizing instruction
mtmsr (ME) 3 None _Context-synchronizing instruction
mtmsr (FEO, FE1) None Context-synchronizing instruction -
mtmsr (SE, BE) None Context-synchronizing instruction
mtmsr (IP) None None

mtmsr (IR) 4 None Context-synchronizing instruction
mtmsr (RI) None None

2-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 2-20. Instruction Access Synchronization (Continued)

Instruction/Event Required Prior Required After
mtmsr (LE) 5 — —
mtsr [or mtsrin] 4 None Context-synchronizing instruction
mtspr (SDR1) 6.7 sync Context-synchronizing instruction
mtspr (IBAT) 4 None Context-synchronizing instruction
mtspr (DEC) & None None
tibie 109 None Context-synchronizing instruction or sync
tibia 10.9 None Context-synchronizing instruction or sync
Notes:

1 Synchronization requirements for changing the power conserving mode are implementation-dependent.
2 The effect of altering the EE bit is immediate as follows:

* If an mtmsr sets the EE bit to 0, neither an external interrupt nor a decrementer exception can occur after
the instruction is executed.
* If an mtmsr sets the EE bit to 1 when an external interrupt, decrementer exception, or higher priority
exception exists, the corresponding exception occurs immediately after the mtmsr is executed, and
before the next instruction is executed in the program that set MSR[EE].
3 A context synchronizing instruction is required after modification of the MSR[ME] bit to ensure that the
modification takes effect for subsequent machine check exceptions, which may not be recoverable and therefore
may not be context synchronizing.

The alteration must not cause an implicit branch in physical address space. The physical address of the context-
altering instruction and of each subsequent instruction, up to and including the next context synchronizing
instruction, must be independent of whether the alteration has taken effect.

Synchronization requirements for changing from one endian mode to the other are implementation-dependent.
6 SDR1 must not be altered when MSR[DR] = 1 or MSR[IR] = 1; if it is, the results are undefined.

7 A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby
the location of the referenced and changed (R and C) bits. To ensure that R and C bits are updated in the correct
page table, SDR1 must not be altered until all R and C bit updates due to instructions before the mtspr have
completed. A sync instruction guarantees this synchronization of R and C bit updates, while neither a context
synchronizing operation nor the instruction fetching mechanism does so.

The elapsed time between the content of the decrementer becoming negative and the signaling of the
decrementer exception is not defined.

Multiprocessor systems have other requirements to synchronize TLB invalidate.

5

Chapter 2. PowerPC Register Set 2-39

Chapter 3
Operand Conventions

This chapter describes the operand conventions as they are represented in two levels of the
PowerPC architecture—user instruction set architecture (UISA) and virtual environment
architecture (VEA). Detailed descriptions are provided of conventions used for storing
values in registers and memory, accessing PowerPC registers, and representing data in these
registers in both big- and little-endian modes. Additionally, the floating-point data formats
and exception conditions are described. Refer to Appendix D, “Floating-Point Models,” for
more information on the implementation of the IEEE floating-point execution models.

3.1 Data Organization in Memory and Data Transfers

In a PowerPC microprocessor-based system, bytes in memory are numbered consecutively
starting with 0. Each number is the address of the corresponding byte. Memory operands
may be bytes, half words, words, or double words, or, for the load and store multiple and
the load and store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

The following sections describe the concepts of alignment and byte ordering of data, and
their significance to the PowerPC architecture.

3.1.1 Aligned and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned. Instructions are always four
bytes long and word-aligned.

Chapter 3. Operand Conventions . 3-1

Operands for single-register memory access instructions have the characteristics shown in
Table 3-1. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.)

Table 3-1. Memory Operand Alignment

Operand Length Aligned Addr(60-63)
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes x000
Quad word 16 bytes 0000

Note: An x in an address bit position indicates that the bit can be 0 or 1
independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

3.1.2 Byte Ordering

If individual data items were indivisible, the concept of byte ordering would be
unnecessary. The order of bits or groups of bits within the smallest addressable unit of
memory is irrelevant, because nothing can be observed about such order. Order matters
only when scalars, which the processor and programmer regard as indivisible quantities,
can be made up of more than one addressable unit of memory.

For PowerPC processors, the smallest addressable memory unit is the byte (8 bits), and
scalars are composed of one or more sequential bytes. When a 32-bit scalar is moved from
a register to memory, it occupies four consecutive bytes in memory, and a decision must be
made regarding the order of these bytes in these four addresses.

Although the choice of byte ordering is arbitrary, only two orderings are practical—big-
endian and little-endian. The PowerPC architecture supports both big- and little-endian
byte ordering. The default byte ordering is big-endian.

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting)
address while the least-significant byte (LSB) is stored at the highest (or ending) address.
This is called big-endian because the big end of the scalar comes first in memory.

3-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the least-significant byte is stored at the lowest (or starting)
address while the most-significant byte is stored at the highest (or ending) address. This is
called little-endian because the little end of the scalar comes first in memory.

3.1.3 Structure Mapping Examples

Figure 3-1 shows a C programming example that contains an assortment of scalars and one
array of characters (a string). The value presumed to be in each structure element is shown
in hexadecimal in the comments (except for the character array, which is represented by a
sequence of characters, each enclosed in single quote marks).

struct {
int a; /* 0x1112_1314 word */
double b; /* 0x2122_2324_2526_2728 double word */
char * c; /* 0x3132_3334 word */
char ar7i; /* 'L','M','N','0','P','Q','R' array of bytes */
short e; /* 0x5152 half word */
int £; /* 0x6162_6364 word */

} s;

Figure 3-1. C Program Example—Data Structure S

The data structure S is used throughout this section to demonstrate how the bytes that
comprise each element (a, b, c, d, e, and f) are mapped into memory.

Chapter 3. Operand Conventions 3-3

3.1.3.1 Big-Endian Mapping

The big-endian mapping of the structure, S, is shown in Figure 3-2. Addresses are shown in
hexadecimal below each byte. The content of each byte, as shown in the preceding C
programming example, is shown in hexadecimal and, for the character array, as characters
enclosed in single quote marks. Note that the most-significant byte of each scalar is at the
lowest address.

Contents [11 | 12 | 13 | 14 | 0 | ® | 0 | ® |
Address 00 o1 02 03 04 05 06 07
Contents L 21 T 22 | 23 [24 | 25 [26 ! 27 [28 |
Address 08 09 0A 0B oc oD OE OF
Contents | 31 | 32 ! 33 | 34 J v L‘M’] N | ‘o]
Address 10 11 12 13 14 15 16 17
Contents [P T Q [R] x)] 51 | 52 |)] x) |
Address 18 19 1A 1B 1C 1D 1E 1F
Contents [61 | 62 | 63 | 6 | ® | ® | 0 | ® |
Address 20 21 22 23 24 25 26 27

Figure 3-2. Big-Endian Mapping of Structure S

The structure mapping introduces padding (skipped bytes indicated by (x) in Figure 3-18)
in the map in order to align the scalars on their proper boundaries—four bytes between
elements a and b, one byte between elements d and e, and two bytes between elements e
and f. Note that the padding is dependent on the compiler; it is not a function of the
architecture.

3-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.1.3.2 Little-Endian Mapping

Figure 3-3 shows the structure, S, using little-endian mapping. Note that the least-
significant byte of each scalar is at the lowest address.

Contents | 14] 13] 12 | 1]) | (%) | (x) |)]
Address 00 01 02 03 04 05 06 07
Contentsl 28 | 27 | 26 | 25 [24 [23 | 22 | 21 |
Address 08 09 0A 0B oC oD 0E OF
Contents | 34 | 33 [32 | 31 | € | ‘w | N | ‘o |
Address 10 1 12 13 14 15 16 17
Contents | P | ‘@ | R] (x) | 52 | 51 |) | (x) |
Address 18 19 1A 1B 1C 1D 1E 1F
Contents [64 | 63 | 62 | 6 | ® | 0 | 0 | ® |
Address 20 21 22 23 24 25 26 27

Figure 3-3. Little-Endian Mapping of Structure S

Figure 3-3 shows the sequence of double words laid out with addresses increasing from left
to right. Programmers familiar with little-endian byte ordering may be more accustomed to
viewing double words laid out with addresses increasing from right to left, as shown in
Figure 3-4. This allows the little-endian programmer to view each scalar in its natural byte
order of MSB to LSB. However, to demonstrate how the PowerPC architecture provides
both big- and little-endian support, this section uses the convention of showing addresses
increasing from left to right, as in Figure 3-3.

Chapter 3. Operand Conventions 3-5

ContentsL(x) | (%) | (x)—[x) | 1 | 12] 13 | 14 |
05 04

Address 07 06 03 02 01 00
Contents | 21 r 22 | 23 | 24 | 25 | 26 | 27 | 28 |
Address OF OE oD oC 0B 0A 09 08
Contents | ‘o T N] ‘~ | [T | 31 | 32 | 33 | 34]
Address 17 16 15 14 13 12 1 10

Cotents |) | 0 [51 | 52 | 0 [R | @ | 7 |

Address 1F 1E 1D 1C 1B 1A 19 18
Contents | (x) |) | (x)] (x)] 61 | 62 | 63 | 64 |
Address 27 26 25 24 23 22 21 20

Figure 3-4. Little-Endian Mapping of Structure S —Alternate View

3.1.4 PowerPC Byte Ordering

The PowerPC architecture supports both big- and little-endian byte ordering. The default
byte ordering is big-endian. However, the code sequence used to switch from big- to little-
endian mode may differ among processors.

The PowerPC architecture defines two bits in the MSR for specifying byte ordering—LE
(little-endian mode) and ILE (exception little-endian mode). The LE bit specifies the endian
mode in which the processor is currently operating and ILE specifies the mode to be used:
when an exception handler is invoked. That is, when an exception occurs, the ILE bit (as
set for the interrupted process) is copied into MSR[LE] to select the endian mode for the
context established by the exception. For both bits, a value of 0 specifies big-endian mode
and a value of 1 specifies little-endian mode.

The PowerPC architecture also provides load and store instructions that reverse byte
ordering. These instructions have the effect of loading and storing data in the endian mode
opposite from that which the processor is operating. See Section 4.2.3.4, “Integer Load and
Store with Byte-Reverse Instructions,” for more information on these instructions.

3.1.4.1 Aligned Scalars in Little-Endian Mode

Chapter 4, “Addressing Modes and Instruction Set Summary,” describes the effective
address calculation for the load and store instructions. For processors in little-endian mode,
the effective address is modified before being used to access memory. The three low-order
address bits of the effective address are exclusive-ORed (XOR) with a three-bit value that
depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in Table 3-2. This
address modification is called ‘munging’. Note that although the process is described in the

3-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

architecture, the actual term ‘munging’ is not defined or used in the specification. However,
the term is commonly used to describe the effective address modifications necessary for
converting big-endian addressed data to little-endian addressed data.

Table 3-2. EA Modifications

Data Width (Bytes) EA Modification
8 No change
4 XOR with 0b100
2 XOR with 0b110
1 XOR with 0b111

The munged physical address is passed to the cache or to main memory, and the specified
width of the data is transferred (in big-endian order—that is, MSB at the lowest address,
LSB at the highest address) between a GPR or FPR and the addressed memory locations
(as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as little-
endian, when in fact they are stored in big-endian order, but at different byte addresses
within double words. Only the address is modified, not the byte order.

Taking into account the preceding description of munging, in little-endian mode, structure
S is placed in memory as shown in Figure 3-5.

Contents |) | x) | (x) l %) | 11 | 12 | 13 | 14 |
Address 00 01 02 03 04 05 06 07
Contents | 21] 22 | 23 | 24 | 25 | 26 | 27 | 28 |
Address 08 09 0A 0B oC oD OE OF
Contents | ‘o | N | W [v | 31 | 32 | 33 | 34]
Address 10 1 12 13 14 15 16 17
Contents [(0 | (9 | 51 | 52 | @ | R | @ | *P |
Address 18 19 1A 1B 1C 1D 1E 1F
Contents [(x) |) |) |) | 61 | 62 | 63 | 64 |
Address 20 21 22 23 24 25 26 27

Figure 3-5. Munged Little-Endian Structure S as Seen by the Memory Subsystem

Chapter 3. Operand Conventions 3-7

Note that the mapping shown in Figure 3-5 is not a true little-endian mapping of the
structure S. However, because the processor munges the address when accessing memory,
the physical structure S shown in Figure 3-5 appears to the processor as the structure S
shown in Figure 3-6.

Contents] 14 | 13 | 12 | 11 | |] | |
Address 00 01 02 03 04 05 06 07
Contents | 28 | 27 | 26 | 25 | 24] 23 | 22 | 21 |
Address 08 09 0A 0B oC oD OE OF
Contents | 34 | 33 | 32 | 31 | v] ‘w | N | ‘o |
Address 10 1 12 13 14 15 16 17
Contents I ‘P l ‘Q | ‘R ‘ | 52 | 51 | | I
Address 18 19 1A 1B 1c 1D 1E 1F
Contents | 64 [63 | 62 | 61‘] | | |]
23

Address 20 21 22 24 25 26 27

Figure 3-6. Munged Little-Endian Structure S as Seen by Processor

Note that as seen by the program executing in the processor, the mapping for the structure
S (Figure 3-6) is identical to the little-endian mapping shown in Figure 3-3. However, from
outside of the processor, the addresses of the bytes making up the structure S are as shown
in Figure 3-5. These addresses match neither the big-endian mapping of Figure 3-2 nor the
true little-endian mapping of Figure 3-3. This must be taken into account when performing
I/O operations in little-endian mode; this is discussed in Section 3.1.4.5, “PowerPC
Input/Output Data Transfer Addressing in Little-Endian Mode.”

3-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.1.4.2 Misaligned Scalars in Little-Endian Mode

Performing an XOR operation on the low-order bits of the address works only if the scalar
is aligned on a boundary equal to a multiple of its length. Figure 3-7 shows a true little-
endian mapping of the four-byte word 0x1112_1314, stored at address 05.

Contents[L J | ‘ j 14 T 13 | 12 —l
Address 00 01 02 03 04 05 06 07

Contents[1 | | | l |] L 1

Address 08 09 0A 0B oC oD OE OF

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05

For the true little-endian example in Figure 3-7, the least-significant byte (0x14) is stored
at address 0x05, the next byte (0x13) is stored at address 0x06, the third byte (0x12) is
stored at address 0x07, and the most-significant byte (0x11) is stored at address 0x08.

When a PowerPC processor, in little-endian mode, issues a single-register load or store
instruction with a misaligned effective address, it may take an alignment exception. In this
case, a single-register load or store instruction means any of the integer load/store,
load/store with byte-reverse, memory synchronization (excluding sync), or floating-point
load/store (including stfiwx) instructions. PowerPC processors in little-endian mode are not
required to invoke an alignment exception when such a misaligned access is attempted. The
processor may handle some or all such accesses without taking an alignment exception.

The PowerPC architecture requires that half words, words, and double words be placed in
memory such that the little-endian address of the lowest-order byte is the effective address
computed by the load or store instruction; the little-endian address of the next-lowest-order
byte is one greater, and so on. However, because PowerPC processors in little-endian mode
munge the effective address, the order of the bytes of a misaligned scalar must be as if they
were accessed one at a time.

Using the same example as shown in Figure 3-7, when the least-significant byte (0x14) is
stored to address 0x05, the address is XORed with Ob111 to become 0x02. When the next
byte (0x13) is stored to address 0x06, the address is XORed with Ob111 to become 0x01.
When the third byte (0x12) is stored to address 0x07, the address is XORed with Ob111 to
become 0x00. Finally, when the most-significant byte (0x11) is stored to address 0x08, the
address is XORed with Ob111 to become OxOF. Figure 3-8 shows the misaligned word,
stored by a little-endian program, as seen by the memory subsystem.

Chapter 3. Operand Conventions 3-9

Contentsl 12] 13 l 14T I T | l |

Address 00 01 02 03 04 05 06 07
Contents l | | I | l I | 1 |
Address 08 09 0A 0B oc oD OE OF

Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory
Subsystem

Note that the misaligned word in this example spans two double words. The two parts of
the misaligned word are not contiguous as seen by the memory system. An implementation
may support some but not all misaligned little-endian accesses. For example, a misaligned
little-endian access that is contained within a double word may be supported, while one that
spans double words may cause an alignment exception.

3.1.4.3 Nonscalars

The PowerPC architecture has two types of instructions that handle nonscalars (multiple
instances of scalars):

* Load and store multiple instructions
* Load and store string instructions

Because these instructions typically operate on more than one word-length scalar, munging
cannot be used. These types of instructions cause alignment exception conditions when the
processor is executing in little-endian mode. Although string accesses are not supported,
they are inherently byte-based operations, and can be broken into a series of word-aligned
accesses.

3.1.4.4 PowerPC Instruction Addressing in Little-Endian Mode

Each PowerPC instruction occupies an aligned word of memory. PowerPC processors fetch
and execute instructions as if the current instruction address is incremented by four for each
sequential instruction. When operating in little-endian mode, the instruction address is
munged as described in Section 3.1.4.1, “Aligned Scalars in Little-Endian Mode,” for
fetching word-length scalars; that is, the instruction address is XORed with 0b100. A
program is thus an array of little-endian words with each word fetched and executed in
order (not including branches).

3-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Allinstruction addresses visible to an executing program are the effective addresses that are
computed by that program, or, in the case of the exception handlers, effective addresses that
were or could have been computed by the interrupted program. These effective addresses
are independent of the endian mode. Examples for little-endian mode include the
following:

* Aninstruction address placed in the link register by branch and link operation, or an
instruction address saved in an SPR when an exception is taken, is the address that
a program executing in little-endian mode would use to access the instruction as a
word of data using a load instruction.

¢ An offset in a relative branch instruction reflects the difference between the
addresses of the branch and target instructions, where the addresses used are those
that a program executing in little-endian mode would use to access the instructions
as data words using a load instruction.

e A target address in an absolute branch instruction is the address that a program
executing in little-endian mode would use to access the target instruction as a word
of data using a load instruction.

» The memory locations that contain the first set of instructions executed by each kind
of exception handler must be set in a manner consistent with the endian mode in
which the exception handler is invoked. Thus, if the exception handler is to be
invoked in little-endian mode, the first set of instructions comprising each kind of
exception handler must appear in memory with the instructions within each double
word reversed from the order in which they are to be executed.

3.1.4.5 PowerPC Input/Output Data Transfer Addressing in Little-
Endian Mode

For a PowerPC system running in big-endian mode, both the processor and the memory
subsystem recognize the same byte as byte 0. However, this is not true for a PowerPC
system running in little-endian mode because of the munged address bits when the
Processor accesses memory.

For I/O transfers in little-endian mode to transfer bytes properly, they must be performed
as if the bytes transferred were accessed one at a time, using the little-endian address
modification appropriate for the single-byte transfers (that is, the lowest order address bits
must be XORed with Ob111). This does not mean that I/O operations in little-endian
PowerPC systems must be performed using only one-byte-wide transfers. Data transfers
can be as wide as desired, but the order of the bytes within double words must be as if they
were fetched or stored one at a time. That is, for a true little-endian I/O device, the system
must provide a mechanism to munge and unmunge the addresses and reverse the bytes
within a double word (MSB to LSB).

Chapter 3. Operand Conventions 3-11

In earlier processors, I/O operations can also be performed with certain devices by storing
to or loading from addresses that are associated with the devices (this is referred to as
direct-store interface operations). However, the direct-store facility is being phased out of
the architecture and will not likely be supported in future devices. Care must be taken with
such operations when defining the addresses to be used because these addresses are
subjected to munging as described in Section 3.1.4.1, “Aligned Scalars in Little-Endian
Mode.” A load or store that maps to a control register on an external device may require the
bytes of the value transferred to be reversed. If this reversal is required, the load and store
with byte-reverse instructions may be used. See Section 4.2.3.4, “Integer Load and Store
with Byte-Reverse Instructions,” for more information on these instructions.

3.2 Effect of Operand Placement on
Performance—VEA

W The PowerPC VEA states that the placement (location and alignment) of operands in

memory affects the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. For more information
on memory access ordering and atomicity, refer to Section 5.1, “The Virtual Environment.”

3.2.1 Summary of Performance Effects

To obtain the best performance across the widest range of PowerPC processor
implementations, the programmer should assume the performance model described in
Table 3-3 and Table 3-4 with respect to the placement of memory operands.

The performance of accesses varies depending on the following: -

¢ Operand size

* Operand alignment

¢ Endian mode (big-endian or little-endian)
* Crossing no boundary

* Crossing a cache block boundary

* Crossing a page boundary

* Crossing a BAT boundary

* Crossing a segment boundary

3-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 3-3 applies when the processor is in big-endian mode.

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode

Operand Boundary Crossing
. Byte
Size
Alignment None Cache Block Page BAT/Segment
Integer
8 byte 8 Optimal — - —
4 Good Good Poor Poor
<4 Poor Poor Poor Poor
4 byte 4 Optimal — — —
<4 Good Good Poor Poor
2 byte 2 Optimal —_ — —
<2 Good Good Poor Poor
1 byte 1 Optimal — — —
Imw, stmw 4 Good Good Good' Poor
String — Good Good Poor Poor
Floating Point None Cache Block Page BAT/Segment
8 byte 8 Optimal — — —
4 Good Good Poor Poor
<4 Poor Poor Poor Poor
4 byte 4 Optimal — — —
<4 Poor Poor Poor Poor

Note: ! Note that crossing a page boundary where the memory/cache access attributes of the two
pages differ is equivalent to crossing a segment boundary, and thus has poor performance.

Table 3-4 applies when the processor is in little-endian mode.

Chapter 3. Operand Conventions 3-13

Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode

Operand Boundary Crossing
. Byte
Size .
Alignment None Cache Block Page BAT/Segment
Integer
8 byte 8 Optimal — —_ —_
<8 Poor Poor Poor Poor
4 byte 4 Optimal — — —
<4 Poor Poor Poor Poor
2 byte 2 Optimal —_ — —
<2 Poor Poor Poor Poor
1 byte 1 Optimal —_ - —
Floating Point None Cache Block Page BAT/Segment
8 byte 8 Optimal — — —
<8 Poor Poor Poor Poor
4 byte 4 Optimal - — —_
<4 Poor Poor Poor Poor

The load/store multiple and the load/store string instructions are supported only in big-
endian mode. The load/store multiple instructions are defined by the PowerPC architecture
to operate only on aligned operands. The load/store string instructions have no alignment
requirements.

3.2.2 Instruction Restart

If a memory access crosses a page, BAT, or segment boundary, a number of conditions
could abort the execution of the instruction after part of the access has been performed. For
example, this may occur when a program attempts to access a page it has not previously
accessed or when the processor must check for a possible change in the memory/cache
access attributes when an access crosses a page boundary. When this occurs, the processor
or the operating system may restart the instruction. If the instruction is restarted, some bytes
at that location may be loaded from or stored to the target location a second time.

The following rules apply to memory accesses with regard to restarting the instruction:

* Aligned accesses—A single-register instruction that accesses an aligned operand is
never restarted (that is, it is not partially executed).

* Misaligned accesses—A single-register instruction that accesses a misaligned
operand may be restarted if the access crosses a page, BAT, or segment boundary, or
if the processor is in little-endian mode.

» Load/store multiple, load/store string instructions—These instructions may be
restarted if, in accessing the locations specified by the instruction, a page, BAT, or
segment boundary is crossed.

3-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The programmer should assume that any misaligned access in a segment might be restarted.
When the processor is in big-endian mode, software can ensure that misaligned accesses
are not restarted by placing the misaligned data in BAT areas, as BAT areas have no internal
protection boundaries. Refer to Section 7.4, “Block Address Translation,” for more
information on BAT areas.

3.3 Floating-Point Execution Models—UISA

There are two kinds of floating-point instructions defined for the PowerPC architecture:
computational and noncomputational. The computational instructions consist of those
operations defined by the IEEE-754 standard for 64- and 32-bit arithmetic (those that
perform addition, subtraction, multiplication, division, extracting the square root, rounding
conversion, comparison, and combinations of these) and the multiply-add and reciprocal
estimate instructions defined by the architecture. The noncomputational floating-point
instructions consist of the floating-point load, store, and move instructions. While both the
computational and noncomputational instructions are considered to be floating-point
instructions governed by the MSR[FP] bit (that allows floating-point instructions to be
executed), only the computational instructions are considered floating-point operations
throughout this chapter.

The IEEE standard requires that single-precision arithmetic be provided for single-
precision operands. The standard permits double-precision arithmetic instructions to have
either (or both) single-precision or double-precision operands, but states that single-
precision arithmetic instructions should not accept double-precision operands. The
guidelines are as follows:

» Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

* Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections. Appendix D, “Floating-Point Models,” has additional detailed information on the
execution models for IEEE operations as well as the other floating-point instructions.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second

Chapter 3. Operand Conventions 3-15

bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1 (exceptions are referred to as
interrupts in the architecture specification):

* Underflow during multiplication using a denormalized operand
* Overflow during division using a denormalized divisor '

3.3.1 Floating-Point Data Format

The PowerPC UISA defines the representation of a floating-point value in two different
binary, fixed-length formats. The format is a 32-bit format for a single-precision floating-
point value or a 64-bit format for a double-precision floating-point value. The single-
precision format may be used for data in memory. The double-precision format can be used
for data in memory or in floating-point registers (FPRs).

The lengths of the exponent and the fraction fields differ between these two formats. The
layout of the single-precision format is shown in Figure 3-9; the layout of the double-
precision format is shown in Figure 3-10.

[s] EXP FRACTION
01 8 9 31

Figure 3-9. Floating-Point Single-Precision Format

[s|] exp FRACTION
01 112 63

Figure 3-10. Floating-Point Double-Precision Format

Values in floating-point format consist of three fields:
* S (sign bit)
* EXP (exponent + bias)
¢ FRACTION (fraction)

If only a portion of a floating-point data item in memory is accessed, as with a load or store
instruction for a byte or half word (or word in the case of floating-point double-precision
format), the value affected depends on whether the PowerPC system is using big- or little-
endian byte ordering, which is described in Section 3.1.2, “Byte Ordering.” Big-endian
mode is the defauit.

3-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

For numeric values, the significand consists of a leading implied bit concatenated on the
right with the FRACTION. This leading implied bit is a 1 for normalized numbers and a 0
for denormalized numbers and is the first bit to the left of the binary point. Values
representable within the two floating-point formats can be specified by the parameters
listed in Table 3-5.

Table 3-5. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision
Exponent bias +127 +1023
Maximum exponent +127 +1023
(unbiased)

Minimum exponent -126 -1022
(unbiased)

Format width 32 bits 64 bits
Sign width 1 bit 1 bit
Exponent width 8 bits 11 bits
Fraction width 23 bits 52 bits
Significand width 24 bits 53 bits

The true value of the exponent can be determined by subtracting 127 for single-precision
numbers and 1023 for double-precision numbers. This is shown in Table 3-6. Note that two
exponent values are reserved to represent special-case values. Setting all bits indicates that
the value is an infinity or NaN and clearing all bits indicates that the number is either zero
or denormalized.

Table 3-6. Biased Exponent Format

Biased Exponent Single-Precision Double-Precision
(Binary) (Unbiased) (Unbiased)

1. 11 Reserved for infinities and NaNs
1. 10 +127 +1023
11..... 01 +126 +1022
10.....00 1 1
o1..... 11 0 0

ot..... 10 -1 -1

Chapter 3. Operand Conventions

3-17

Table 3-6. Biased Exponent Format (Continued)

Biased Exponent Single-Precision Double-Precision
(Binary) (Unbiased) (Unbiased)
00..... 01 -126 -1022
00..... 00 Reserved for zeros and denormalized numbers

3.3.1.1 Value Representation

The PowerPC UISA defines numerical and nonnumerical values representable within
single- and double-precision formats. The numerical values are approximations to the real
numbers and include the normalized numbers, denormalized numbers, and zero values. The
nonnumerical values representable are the positive and negative infinities and the NaNs.
The positive and negative infinities are adjoined to the real numbers but are not numbers
themselves, and the standard rules of arithmetic do not hold when they appear in an
operation. They are related to the real numbers by order alone. It is possible, however, to
define restricted operations among numbers and infinities as defined below. The relative
location on the real number line for each of the defined numerical entities is shown in
Figure 3-11. Tiny values include denormalized numbers and all numbers that are too small
to be represented for a particular precision format; they do not include 0.

Tiny Tiny

-0 +0
+NORM

—oo | -NORM |—DENORM l +DENORM +00
- I | 1 \ A ']

Unrepresentable, small numbers

Figure 3-11. Approximation to Real Numbers

The positive and negative NaNs are encodings that convey diagnostic information such as
the representation of uninitialized variables and are not related to the numbers, oo, or each
other by order or value.

Table 3-7 describes each of the floating-point formats.

Table 3-7. Recognized Floating-Point Numbers

Sign Bit Biased Exponent Implied Bit Fraction Value
0 Maximum X Nonzero NaN
0 Maximum X Zero +Infinity
0 0 < Exponent < Maximum 1 X +Normalized
0 0 0 Nonzero +Denormalized
0 0 X Zero +0
3-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 3-7. Recognized Floating-Point Numbers (Continued)

Sign Bit Biased Exponent Implied Bit Fraction Value
1 0 X Zero -0
1 0 0 Nonzero —-Denormalized
1 0 < Exponent < Maximum 1 X —Normalized
1 Maximum X Zero —Infinity
1 Maximum X Nonzero NaN

The following sections describe floating-point values defined in the architecture.

3.3.1.2 Binary Floating-Point Numbers

Binary floating-point numbers are machine-representable values used to approximate real
numbers. Three categories of numbers are supported—normalized numbers, denormalized
numbers, and zero values.

3.3.1.3 Normalized Numbers (tNORM)

The values for normalized numbers have a biased exponent value in the range:
* 1-254 in single-precision format
* 1-2046 in double-precision format
The implied unit bit is one. Normalized numbers are interpreted as follows:
NORM = (-1)°% x 2B x (1.fraction)
The variable (s) is the sign, (E) is the unbiased exponent, and (1.fraction) is the significand

composed of a leading unit bit (implied bit) and a fractional part. The format for normalized
numbers is shown in Figure 3-12.

MIN < E’(‘BF;‘A’QES)T <MAX FRACTION = ANY BIT PATTERN

SIGNBIT,00R 1

Figure 3-12. Format for Normalized Numbers

The ranges covered by the magnitude (M) of a normalized floating-point number are
approximated in the following decimal representation:

Single-precision format:
1.2x10%® < M < 3.4x10%
Double-precision format:

2.2x1072%8 < M < 1.8x10%8

Chapter 3. Operand Conventions 3-19

3.3.1.4 Zero Values (+0)

Zero values have a biased exponent value of zero and fraction of zero. This is shown in
Figure 3-13. Zeros can have a positive or negative sign. The sign of zero is ignored by
comparison operations (that is, comparison regards +0 as equal to —0). Arithmetic with zero
results is always exact and does not signal any exception, except when an exception occurs
due to the invalid operations as described in Section 3.3.6.1.1, “Invalid Operation
Exception Condition.” Rounding a zero result only affects the sign (10).

Ex?gx‘gg‘gf 0 FRACTION =0

l SIGNBIT,00R 1

Figure 3-13. Format for Zero Numbers

3.3.1.5 Denormalized Numbers (tDENORM)

Denormalized numbers have a biased exponent value of zero and a nonzero fraction. The
format for denormalized numbers is shown in Figure 3-14.

EXPONENT =0 FRACTION = ANY NONZERO
(BIASED) BIT PATTERN

SIGN BIT,00R 1

Figure 3-14. Format for Denormalized Numbers

Denormalized numbers are nonzero numbers smaller in magnitude than the normalized
numbers. They are values in which the implied unit bit is zero. Denormalized numbers are
interpreted as follows:

DENORM = (-1)% x 2E™" y (0.fraction)

The value Emin is the minimum unbiased exponent value for a normalized number (—126
for single-precision, —1022 for double-precision).

3-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.3.1.6 Infinities ()

These are values that have the maximum biased exponent value of 255 in the single-
precision format, 2047 in the double-precision format, and a zero fraction value. They are
used to approximate values greater in magnitude than the maximum normalized value.
Infinity arithmetic is defined as the limiting case of real arithmetic, with restricted
operations defined among numbers and infinities. Infinities and the real numbers can be
related by ordering in the affine sense:

—oo < every finite number < +oo

The format for infinities is shown in Figure 3-15.

XN ASE) TMUM FRACTION = 0

l SIGNBIT,00R 1

Figure 3-15. Format for Positive and Negative Infinities

Arithmetic using infinite numbers is always exact and does not signal any exception, except
when an exception occurs due to the invalid operations as described in Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

3.3.1.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a nonzero fraction. The format for
NaNs is shown in Figure 3-16. The sign bit of NaN does not show an algebraic sign; rather,
it is simply another bit in the NaN. If the highest-order bit of the fraction field is a zero, the
NaN is a signaling NaN; otherwise it is a quiet NaN (QNaN).

EXPONENT = MAXIMUM FRACTION = ANY NONZERO
(BIASED) BIT PATTERN

SIGN BIT (ignored)

Figure 3-16. Format for NaNs

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as attempts to perform
arithmetic operations on infinities or NaNs, when the invalid operation exception is
disabled (FPSCR[VE] = 0). Quiet NaNs propagate through all operations, except floating-
point round to single-precision, ordered comparison, and conversion to integer operations,
and signal exceptions only for ordered comparison and conversion to integer operations.
Specific encodings in QNaNs can thus be preserved through a sequence of operations and
used to convey diagnostic information to help identify results from invalid operations.

Chapter 3. Operand Conventions 3-21

When a QNaN results from an operation because an operand is a NaN or because a QNaN
is generated due to a disabled invalid operation exception, the following rule is applied to
determine the QNaN to be stored as the resulit:
If (£frA) is a NaN
Then £frD « (£fra)
Else if (£rB) is a NaN
Then if instruction is frsp
Then £rD « (£rB)[0-34]]](29)0
Else £fxrD « (£rB)
Else if (£xC) is a NaN
Then £xrD ¢« (£xC)
Else if generated QNaN
Then £rD « generated QNaN

If the operand specified by frA is a NaN, that NaN is stored as the result. Otherwise, if the
operand specified by frB is a NaN (if the instruction specifies an frB operand), that NaN is
stored as the result, with the low-order 29 bits cleared. Otherwise, if the operand specified
by frC is a NaN (if the instruction specifies an frC operand), that NaN is stored as the result.
Otherwise, if a QNaN is generated by a disabled invalid operation exception, that QNaN is
stored as the result. If a QNaN is to be generated as a result, the QNaN generated has a sign
bit of zero, an exponent field of all ones, and a highest-order fraction bit of one with all
other fraction bits zero. An instruction that generates a QNaN as the result of a disabled
invalid operation generates this QNaN. This is shown in Figure 3-17.

0 111..4 1000....0

| SIGN BIT (ignored)

Figure 3-17. Representation of Generated QNaN

3.3.2 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when the
operation does not yield an exception. These rules apply even when the operands or results
are +0 or too:

* The sign of the result of an addition operation is the sign of the source operand
having the larger absolute value. If both operands have the same sign, the sign of the
result of an addition operation is the same as the sign of the operands. The sign of
the result of the subtraction operation, x —y, is the same as the sign of the result of
the addition operation, x + (-y).

¢ When the sum of two operands with opposite sign, or the difference of two operands
with the same sign, is exactly zero, the sign of the result is positive in all rounding
modes except round toward negative infinity (—eo), in which case the sign is negative.

* The sign of the result of a multiplication or division operation is the XOR of the
signs of the source operands.

3-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

» The sign of the result of a round to single-precision or convert to/from integer
operation is the sign of the source operand.

¢ The sign of the result of a square root or reciprocal square root estimate operation is
always positive, except that the square root of —0 is —0 and the reciprocal square root
of -0 is —infinity.

For multiply-add instructions, these rules are applied first to the multiplication operation
and then to the addition or subtraction operation (one of the source operands to the addition
or subtraction operation is the result of the multiplication operation).

3.3.3 Normalization and Denormalization

The intermediate result of an arithmetic or Floating Round to Single-Precision (frspx)
instruction may require normalization and/or denormalization. When an intermediate result
consists of a sign bit, an exponent, and a nonzero significand with a zero leading bit, the
result must be normalized (and rounded) before being stored to the target.

A number is normalized by shifting its significand left and decrementing its exponent by
one for each bit shifted until the leading significand bit becomes one. The guard and round
bits are also shifted, with zeros shifted into the round bit; see Section D.1, “Execution
Model for IEEE Operations,” for information about the guard and round bits. During
normalization, the exponent is regarded as if its range were unlimited.

If an intermediate result has a nonzero significand and an exponent that is smaller than the
minimum value that can be represented in the format specified for the result, this value is
referred to as ‘tiny’ and the stored result is determined by the rules described in Section
3.3.6.2.2, “Underflow Exception Condition.” These rules may involve denormalization.
The sign of the number does not change.

An exponent can become tiny in either of the following circumstances:

e As the result of an arithmetic or Floating Round to Single-Precision (frspx)
instruction or

* As the result of decrementing the exponent in the process of normalization.

Normalization is the process of coercing the leading significand bit to be a 1 while
denormalization is the process of coercing the exponent into the target format's range. In
denormalization, the significand is shifted to the right while the exponent is incremented
for each bit shifted until the exponent equals the format’s minimum value. The result is then
rounded. If any significand bits are lost due to the rounding of the shifted value, the result
is considered inexact. The sign of the number does not change.

Chapter 3. Operand Conventions 3-23

3.3.4 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs and
memory. For double-precision format data, the data is not altered during the move. For
single-precision data, the format is converted to double-precision format when data is
loaded from memory into an FPR. A format conversion from double- to single-precision is
performed when data from an FPR is stored as single-precision. These operations do not
cause floating-point exceptions. ‘ '

All floating-point arithmetic, move, and select instructions use floating-point ‘double-
precision format.

Floating-point single-precision formats are obtained by using the following four types of
instructions:

Load floating-point single-precision instructions—These instructions access a
single-precision operand in single-precision format in memory, convert it to double-
precision, and load it into an FPR. Floating-point exceptions do not occur during the
load operation. '

Floating Round to Single-Precision (frspx) instruction—The frspx instruction
rounds a double-precision operand to single-precision, checking the exponent for
single-precision range and handling any exceptions according to respective enable
bits in the FPSCR. The instruction places that operand into an FPR as a double-
precision operand. For results produced by single-precision arithmetic instructions
and by single-precision loads, this operation does not alter the value.

Single-precision arithmetic instructions—These instructions take operands from the
FPRs in double-precision format, perform the operation as if it produced an
intermediate result correct to infinite precision and with unbounded range, and then
force this intermediate result to fit in single-precision format. Status bits in the
FPSCR and in the condition register are set to reflect the single-precision result. The
result is then converted to double-precision format and placed into an FPR. The
result falls within the range supported by the single-precision format.-

Source operands for these instructions must be representable in single-precision
format. Otherwise, the result placed into the target FPR and the setting of status bits
in the FPSCR, and in the condition register if update mode is selected, are undefined.

Store floating-point single-precision instructions—These instructions convert a

~ double-precision operand to single-precision format and store that operand into

memory. If the operand requires denormalization in order to fit in single-precision
format, it is automatically denormalized prior to being stored. No exceptions are
detected on the store operation (the value being stored is effectively assumed to be
the result of an instruction of one of the preceding three types).

When the result of a Load Floating-Point Single (Ifs), Floating Round to Single-Precision
(frspx), or single-precision arithmetic instruction is stored in an FPR, the low-order 29
fraction bits are zero. This is shown in Figure 3-18.

3-24

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Bit 35 j

Figure 3-18. Single-Precision Representation in an FPR

The frspx instruction allows conversion from double- to single-precision with appropriate
exception checking and rounding. This instruction should be used to convert double-
precision floating-point values (produced by double-precision load and arithmetic
instructions) to single-precision values before storing them into single-format memory
elements or using them as operands for single-precision arithmetic instructions. Values
produced by single-precision load and arithmetic instructions can be stored directly, or used
directly as operands for single-precision arithmetic instructions, without being preceded by
an frspx instruction.

A single-precision value can be used in double-precision arithmetic operations. The reverse
is true only if the double-precision value can be represented in single-precision format.
Some implementations may execute single-precision arithmetic instructions faster than
double-precision arithmetic instructions. Therefore, if double-precision accuracy is not
required, using single-precision data and instructions may speed operations in some
implementations.

3.3.5 Rounding

All arithmetic, rounding, and conversion instructions defined by the PowerPC architecture
(except the optional Floating Reciprocal Estimate Single (fresx) and Floating Reciprocal
Square Root Estimate (frsqrtex) instructions) produce an intermediate result considered to
be infinitely precise and with unbounded exponent range. This intermediate result is
normalized or denormalized if required, and then rounded to the destination format. The
final result is then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction.

The IEEE-754 specification allows loss of accuracy to be defined as when the rounded
result differs from the infinitely precise value with unbounded range (same as the definition
of ‘inexact’). In the PowerPC architecture, this is the way loss of accuracy is detected.

Let Z be the intermediate arithmetic result (with infinite precision and unbounded range) or
the operand of a conversion operation. If Z can be represented exactly in the target format,
then the result in all rounding modes is exactly Z. If Z cannot be represented exactly in the
target format, let Z1 and Z2 be the next larger and next smaller numbers representable in
the target format that bound Z; then Z1 or Z2 can be used to approximate the result in the
target format.

Chapter 3. Operand Conventions 3-25

Figure 3-19 shows a graphical representation of Z, Z1, and Z2 in this case.

By incrementing Isb of Z
Infinitely precise value
By truncating after Isb

[\ } |

z2 Z1 0 z2 Z1

Negative values <__.|.__> Positive values

Figure 3-19. Relation of Z1 and Z2

Four rounding modes are available through the floating-point rounding control field (RN)
in the FPSCR. See Section 2.1.4, “Floating-Point Status and Control Register (FPSCR).”
These are encoded as follows in Table 3-8.

Table 3-8. FPSCR Bit Settings—RN Field

RN Rounding Mode Rules

00 Round to nearest Choose the best approximation (Z1 or Z2). In case of a tie,
choose the one that is even (least-significant bit 0).

01 Round toward zero Choose the smaller in magnitude (Z1 or Z2).

10 Round toward +infinity Choose Z1.

11 Round toward —infinity Choose Z2.

See Section D.1, “Execution Model for IEEE Operations,” for a detailed explanation of
rounding. Rounding occurs before an overflow condition is detected. This means that while
an infinitely precise value with unbounded exponent range may be greater than the greatest
representable value, the rounding mode may allow that value to be rounded to a
representable value. In this case, no overflow condition occurs.

3-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

However, the underflow condition is tested before rounding. Therefore, if the value that is
infinitely precise and with unbounded exponent range falls within the range of
unrepresentable values, the underflow condition occurs. The results in these cases are
defined in Section 3.3.6.2.2, “Underflow Exception Condition.” Figure 3-20 shows the
selection of Z1 and Z2 for the four possible rounding modes that are provided by
FPSCR[RN].

Z is infinitely precise
result or operand

Zfits otherwnse
target format

22 <Z<2Z1| perFigure 3-19
frD (— z T

FPSCRI[RN] = 01
otherwise (round toward 0)

FPSCRIAN] =11 oo i

z
(round toward —eo) >0
1«0 (tez1) 1D « 22

FPSCRIRN]=00 FPSCR[RN] = 10
(round to nearest) (round toward +o)

frD « Best approx (21 or Z2) frD « Z1
If tie, choose even (Z1 or Z2 w/ Isb 0)

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes

All arithmetic, rounding, and conversion instructions affect FPSCR bits FR and FI,
according to whether the rounded result is inexact (FI) and whether the fraction was
incremented (FR) as shown in Figure 3-21. If the rounded result is inexact, FI is set and FR
may be either set or cleared. If rounding does not change the result, both FR and FI are
cleared. The optional fresx and frsqrtex instructions set FI and FR to undefined values;
other floating-point instructions do not alter FR and FI.

Chapter 3. Operand Conventions 3-27

CZ,ound is rounded result)

otherwise Ziound 2 Z

Fle<0
FR«O0 O
fraction

. otherwise
incremented

Figure 3-21. Rounding Flags in FPSCR

3.3.6 Floating-Point Program Exceptions

The computational instructions of the PowerPC architecture are the only instructions that
can cause floating-point enabled exceptions (subsets of the program exception). In the
processor, floating-point program exceptions are signaled by condition bits set in the
floating-point status and control register (FPSCR) as described in this section and in
Chapter 2, “PowerPC Register Set.” These bits correspond to those conditions identified as
IEEE floating-point exceptions and can cause the system floating-point enabled exception
error handler to be invoked. Handling for floating-point exceptions is described in
Section 6.4.7, “Program Exception (0x00700).”

The FPSCR is shown in Figure 3-22.

VXIDI vXzDz —— VXSOFT
VXIS| —————— —————— VXIMZ VXSQRT
VXSNAN VXVC VXCVI
[FXIFEXIVXIOXI UXIZX!XXI | I l I I IFRI FIL FPRF T |VE|OE|UE|ZErXEﬁII nﬂ
01 2 3 4 5 6 7 8 9 10 11 12 13 1415 1920 21 22 23 24 25 26 27 28 29 30 31

Figure 3-22. Floating-Point Status and Control Register (FPSCR)

3-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

A listing of FPSCR bit settings is shown in Table 3-9.

Table 3-9. FPSCR Bit Settings

Bit(s)

Name

Description

0

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf,
implicitly sets FPSCR[FX] if that instruction causes any of the floating-point exception bits in
the FPSCR to transition from 0 to 1. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1
instructions can alter FPSCR[FX] explicitly. This is a sticky bit.

FEX

Floating-point enabled exception summary. This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits
masked by their respective enable bits (FEX = (VX & VE) A (OX & OE) A (UX & UE) A (ZX &
ZE) A (XX & XE)). The mcrfs, mtfsf, mifsfi, mtfsb0, and mtfsb1 instructions cannot alter
FPSCRIFEX] explicitly. This is not a sticky bit.

VX

Floating-point invalid operation exception summary. This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exception bits as
described in Section 3.3.6.1.1, “Invalid Operation Exception Condition.” The mcrfs, mtfsf,
mtfsfi, mtfsb0, and mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky
bit.

OoX

Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, “Overflow,
Underflow, and Inexact Exception Conditions.”

UX

Floating-point underflow exception. This is a sticky bit. See Section 3.3.6.2.2, “Underflow
Exception Condition.”

Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, “Inexact Exception
Condition.”
FPSCR[XX] is the sticky version of FPSCRIFI]. The following rules describe how FPSCR[XX]
is set by a given instruction:
« |f the instruction affects FPSCRIFI], the new value of FPSCR[XX] is obtained by logically
ORing the old value of FPSCR[XX] with the new value of FPSCR[FI].
« If the instruction does not affect FPSCR[FI), the value of FPSCR[XX] is unchanged.

VXSNAN

Floating-point invalid operation exception for SNaN. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

VXisl|

Floating-point invalid operation exception for « — . This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

VXIDI

Floating-point invalid operation exception for « + c. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

10

VXZDZ

Floating-point invalid operation exception for 0 + 0. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

1

VXIMZ

Floating-point invalid operation exception for « * 0. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

12

VXVC

Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Section
3.3.6.1.1, “Invalid Operation Exception Condition.”

13

FR

Floating-point fraction rounded. The last arithmetic, rounding, or conversion instruction
incremented the fraction. See Section 3.3.5, “Rounding.” This bit is not sticky.

Chapter 3. Operand Conventions 3-29

Table 3-9. FPSCR Bit Settings (Continued)

Bit(s)

Name

Description

14

Fl

Floating-point fraction inexact. The last arithmetic, rounding, or conversion instruction either
produced an inexact result during rounding or caused a disabled overflow exception. See
Section 3.3.5, “Rounding.” This is not a sticky bit. For more information regarding the
relationship between FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.

15-19

FPRF

Floating-point result flags. For arithmetic, rounding, and conversion instructions the field is
based on the result placed into the target register, except that if any portion of the result is
undefined, the value placed here is undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion
instructions may set this bit with the FPCC bits to indicate the class of the result as
shown in Table 3-10.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic,
rounding, and conversion instructions may set the FPCC bits with the C bit to
indicate the class of the result. Note that in this case the high-order three bits of the
FPCC retain their relational significance indicating that the value is less than,
greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)

17 Floating-point greater than or positive (FG or >)

18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note that these are not sticky bits.

20

Reserved

21

VXSOFT

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can
be altered only by the merfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed
information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

22

VXSQRT

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more
detailed information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

23

VXCVI

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See
Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

24

VE

Floating-point invalid operation exception enable. See Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

25

OE

|IEEE floating-point overflow exception enable. See Section 3.3.6.2, “Overflow, Underflow, and
Inexact Exception Conditions.”

26

UE

|IEEE floating-point underflow exception enable. See Section 3.3.6.2.2, “Underflow Exception
Condition.”

27

ZE

IEEE floating-point zero divide exception enable. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

28

XE

Floating-point inexact exception enable. See Section 3.3.6.2.3, “Inexact Exception Condition.”

3-30

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 3-9. FPSCR Bit Settings (Continued)

Bit(s) Name Description

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards
and the other FPSCR bits may have meanings other than those described here. If the bit is set
and if all implementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero
(retaining the sign of the denormalized number). Any other effects associated with setting this
bit are described in the user's manual for the implementation.

Effects of the setting of this bit are implementation-dependent.

30-31 | RN Floating-point rounding control. See Section 3.3.5, “Rounding.”
00 Round to nearest

01 Round toward zero

10 Round toward +infinity

11 Round toward —infinity

Table 3-10 illustrates the floating-point result flags used by PowerPC processors. The result
flags correspond to FPSCR bits 15-19 (the FPRF field).

Table 3-10. Floating-Point Result Flags — FPSCR[FPRF]

Result Flags (Bits 15-19)

Result Value Class
C < > = ?
1 0 0 0 1 | Quiet NaN
0 1 0 0 1 —Infinity
0 1 0 0 0 | —Normalized number
1 1 0 0 0 | —Denormalized number
1 0 0 1 0 | —Zero
0 0 0 1 0 | +Zero
1 0 1 0 0 | +Denormalized number
0 0 1 0 0 | +Normalized number
o}o 1 0 1 | +infinity

The following conditions that can cause program exceptions are detected by the processor.
These conditions may occur during execution of computational floating-point instructions.
The corresponding bits set in the FPSCR are indicated in parentheses:

» Invalid operation exception condition (VX)
— SNaN condition (VXSNAN)
— Infinity — infinity condition (VXISI)
— Infinity + infinity condition (VXIDI)
— Zero + zero condition (VXZDZ)
— Infinity * zero condition (VXIMZ)

Chapter 3. Operand Conventions 3-31

— Invalid compare condition (VXVC)

— Software request condition (VXSOFT)

— Invalid integer convert condition (VXCVI)
— Invalid square root condition (VXSQRT)

These exception conditions are described in Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

e Zero divide exception condition (ZX). These exception conditions are described in
Section 3.3.6.1.2, “Zero Divide Exception Condition.”

¢ Overflow Exception Condition (OX). These exception conditions are described in
Section 3.3.6.2.1, “Overflow Exception Condition.”

e Underflow Exception Condition (UX). These exception conditions are described in
Section 3.3.6.2.2, “Underflow Exception Condition.”

¢ Inexact Exception Condition (XX). These exception conditions are described in
Section 3.3.6.2.3, “Inexact Exception Condition.”

Each floating-point exception condition and each category of invalid IEEE floating-point
operation exception condition has a corresponding exception bit in the FPSCR which
indicates the occurrence of that condition. Generally, the occurrence of an exception
condition depends only on the instruction and its arguments (with one deviation, described
below). When one or more exception conditions arise during the execution of an
instruction, the way in which the instruction completes execution depends on the value of
the IEEE floating-point enable bits in the FPSCR which govern those exception conditions.
If no governing enable bit is set to 1, the instruction delivers a default result. Otherwise,
specific condition bits and the FX bit in the FPSCR are set and instruction execution is
completed by suppressing or delivering a result. Finally, after the instruction execution has
completed, a nonzero FX bit in the FPSCR causes a program exception if either FEO or FE1
is set in the MSR (invoking the system error handler). The values in the FPRs immediately
after the occurrence of an enabled exception do not depend on the FEO and FE1 bits.

The floating-point exception summary bit (FX) in the FPSCR is set by any floating-point
instruction (except mtfsfi and mtfsf) that causes any of the exception bits in the FPSCR to
change from O to 1, or by mtfsfi, mtfsf, and mtfsb1 instructions that explicitly set one of
these bits. FPSCR[FEX] is set when any of the exception condition bits is set and the
exception is enabled (enable bit is one).

A single instruction may set more than one exception condition bit only in the following
cases:

¢ The inexact exception condition bit (FPSCR[XX]) may be set with the overflow
exception condition bit (FPSCR[OX]).

¢ The inexact exception condition bit (FPSCR[XX]) may be set with the underflow
exception condition bit (FPSCR[UX]).

3-32 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

* The invalid IEEE floating-point operation exception condition bit (SNaN) may be
set with invalid IEEE floating-point operation exception condition bit (co*0)
(FPSCR[VXIMZ]) for multiply-add instructions.

e The invalid operation exception condition bit (SNaN) may be set with the invalid
IEEE floating-point operation exception condition bit (invalid compare)
(FPRSC[VXVC(]) for compare ordered instructions.

¢ The invalid IEEE floating-point operation exception condition bit (SNaN) may be
set with the invalid IEEE floating-point operation exception condition bit (invalid
integer convert) (FPSCR[VXCVI]) for convert-to-integer instructions.

Instruction execution is suppressed for the following kinds of exception conditions, so that
there is no possibility that one of the operands is lost:

¢ Enabled invalid IEEE floating-point operation

* Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written to the
destination specified by the instruction causing the exception condition. The result may
depend on whether the condition is enabled or disabled. The kinds of exception conditions
that deliver a result are the following:

» Disabled invalid IEEE floating-point operation
e Disabled zero divide

e Disabled overflow

¢ Disabled underflow

¢ Disabled inexact

¢ Enabled overflow

¢ Enabled underflow

¢ Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the
action taken when they are detected.

The IEEE standard specifies the handling of exception conditions in terms of traps and trap
handlers. In the PowerPC architecture, an FPSCR exception enable bit being set causes
generation of the result value specified in the IEEE standard for the trap enabled case—the
expectation is that the exception is detected by software, which will revise the result. An
FPSCR exception enable bit of O causes generation of the default result value specified for
the trap disabled (or no trap occurs or trap is not implemented) case—the expectation is that
the exception will not be detected by software, which will simply use the default result. The
result to be delivered in each case for each exception is described in the following sections.

Chapter 3. Operand Conventions 3-33

The IEEE default behavior when an exception occurs, which is to generate a default value
and not to notify software, is obtained by clearing all FPSCR exception enable bits and
using ignore exceptions mode (see Table 3-11). In this case the system floating-point
enabled exception error handler is not invoked, even if floating-point exceptions occur. If
necessary, software can inspect the FPSCR exception bits to determine whether exceptions
have occurred.

If the system error handler is to be invoked, the corresponding FPSCR exception enable bit
must be set and a mode other than ignore exceptions mode must be used. In this case the
system floating-point enabled exception error handler is invoked if an enabled floating-
point exception condition occurs.

Whether and how the system floating-point enabled exception error handler is invoked if an
enabled floating-point exception occurs is controlled by MSR bits FEO and FE1 as shown
in Table 3-11. (The system floating-point enabled exception error handler is never invoked
if the appropriate floating-point exception is disabled.)

Table 3-11. MSR[FEO] and MSR[FE1] Bit Settings for FP Exceptions

FEO | FE1 Description

0 0 Ignore exceptions mode—Floating-point exceptions do not cause the program exception error
handler to be invoked.

0 1 Imprecise nonrecoverable mode—When an exception occurs, the exception handler is invoked at
some point at or beyond the instruction that caused the exception. It may not be possible to identify
the excepting instruction or the data that caused the exception. Results from the excepting instruction
may have been used by or affected subsequent instructions executed before the exception handler
was invoked.

1 0 Imprecise recoverable mode— When an enabled exception occurs, the floating-point enabled
exception handler is invoked at some point at or beyond the instruction that caused the exception.
Sufficient information is provided to the exception handler that it can identify the excepting instruction
and correct any faulty results. In this mode, no results caused by the excepting instruction have been
used by or affected subsequent instructions that are executed before the exception handler is
invoked.

1 1 Precise mode—The system floating-point enabled exception error handler is invoked precisely at the

instruction that caused the enabled exception.

In precise mode, whenever the system floating-point enabled exception error handler is
invoked, the architecture ensures that all instructions logically residing before the excepting
instruction have completed and no instruction after the excepting instruction has been
executed. In an imprecise mode, the instruction flow may not be interrupted at the point of
the instruction that caused the exception. The instruction at which the system floating-point
exception handler is invoked has not been executed unless it is the excepting instruction and
the exception is not suppressed.

In either of the imprecise modes, an FPSCR instruction can be used to force the occurrence
of any invocations of the floating-point enabled exception handler, due to instructions
initiated before the FPSCR instruction. This forcing has no effect in ignore exceptions
mode and is superfluous for precise mode.

3-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Instead of using an FPSCR instruction, an execution synchronizing instruction or event can
be used to force exceptions and set bits in the FPSCR; however, for the best performance
across the widest range of implementations, an FPSCR instruction should be used to
achieve these effects.

For the best performance across the widest range of implementations, the following
guidelines should be considered:

» IfIEEE default results are acceptable to the application, FEO and FE1 should be
cleared (ignore exceptions mode). All FPSCR exception enable bits should be
cleared.

» IfIEEE default results are unacceptable to the application, an imprecise mode
should be used with the FPSCR enable bits set as needed.

» Ignore exceptions mode should not, in general, be used when any FPSCR exception
enable bits are set.

» Precise mode may degrade performance in some implementations, perhaps
substantially, and therefore should be used only for debugging and other specialized
applications.

3.3.6.1 Invalid Operation and Zero Divide Exception Conditions

The flow diagram in Figure 3-23 shows the initial flow for checking floating-point
exception conditions (invalid operation and divide by zero conditions). In any of these cases
of floating-point exception conditions, if the FPSCR[FEX] bit is set (implicitly) and
MSR[FEO-FE1] # 00, the processor takes a program exception (floating-point enabled
exception type). Refer to Chapter 6, “Exceptions,” for more information on exception
processing. The actions performed for each floating-point exception condition are
described in greater detail in the following sections.

Chapter 3. Operand Conventions 3-35

Check for FP Computational
FP Exception Conditions Instructions

Invalld Operand

otherwise Exception Condmon
[Perform Actlons per Section 3.3.6.1.1
" /l\ (FPSCRIFEX] = 1) &
otherwise (MSR[FEO-FE1] # 00)
Take FP Enabled
Zero Divide Program Exception

otherwise Exception Condmon (for Invalid Operation)

rPerform Actnons per Section 3.3.6.1.2 |
(FPSCR[FEX] =1)&
otherwise (MSR[FEO-FE1] # 00)

Take FP Enabled
Execute Instruction; Program Exception
x « Intermediate Result Tor Zoro Divid
(infinitely Precise and with Unbounded Range) (for Zero Divide)

DY

x = (0) or (+eo) otherwise
* Xroung ¢ Rounded x (per FPSCR[RN]) Check for Overflow, Underflow,
* 1D Xroung & Inexact Exce| ﬁOI',I Condition; (see Figure 3-24)
* Set FPSCRI[FI, FR, FPRF] appropriately P

Continue Instruction
Execution

Figure 3-23. Initial Flow for Floating-Point Exception Conditions

3-36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.3.6.1.1 Invalid Operation Exception Condition

An invalid operation exception occurs when an operand is invalid for the specified
operation. The invalid operations are as follows:

* Any operation except load, store, move, select, or mtfsf on a signaling NaN (SNaN)
* For add or subtract operations, magnitude subtraction of infinities (eo — o)

* Division of infinity by infinity (eo =+ o)

* Division of zero by zero (0 + 0)

e Multiplication of infinity by zero (o * 0)

* Ordered comparison involving a NaN (invalid compare)

* Square root or reciprocal square root of a negative, nonzero number (invalid square
root). Note that if the implementation does not support the optional floating-point
square root or floating-point reciprocal square root estimate instructions, software
can simulate the instruction and set the FPSCR[VXSQRT] bit to reflect the
exception.

* Integer convert involving a number that is too large in magnitude to be represented
in the target format, or involving an infinity or a NaN (invalid integer convert)

FPSCR[VXSOFT] allows software to cause an invalid operation exception for a condition
that is not necessarily associated with the execution of a floating-point instruction. For
example, it might be set by a program that computes a square root if the source operand is
negative. This allows PowerPC instructions not implemented in hardware to be emulated.

Any time an invalid operation occurs or software explicitly requests the exception via
FPSCR[VXSOFT], (regardless of the value of FPSCR[VE]), the following actions are
taken:

* One or two invalid operation exception condition bits is set

FPSCR[VXSNAN] (if SNaN)
FPSCR[VXISI] (if 00 — o)
FPSCR[VXIDI] (if o0 + o0)
FPSCR[VXZDZ] (if0+0)
FPSCR[VXIMZ] (if = * 0)
FPSCR[VXV(] (if invalid comparison)
FPSCR[VXSOFT] (if software request)
FPSCR[VXSQRT] (if invalid square root)
FPSCR[VXCVI] (if invalid integer convert)

» If the operation is a compare,
FPSCRI[FR, FI, C] are unchanged
FPSCR[FPCC] is set to reflect unordered

» If software explicitly requests the exception,
FPSCRIFR, FI, FPRF] are as set by the mtfsfi, mtfsf, or mtfsb1 instruction.

Chapter 3. Operand Conventions 3-37

There are additional actions performed that depend on the value of FPSCR[VE]. These are
described in Table 3-12.

Table 3-12. Additional Actions Performed for Invalid FP Operations

Action Performed
Invalid Operation Result Category
FPSCR[VE] =1 FPSCR[VE] =0
Arithmetic or floating-point round frD Unchanged QNaN
to single
FPSCRI[FR, Fl] Cleared Cleared
FPSCR[FPRF] Set for QNaN Unchanged
Convert to 64-bit integer frD[0-63] Unchanged Most positive 64-bit
(positive number or +°°) integer value
FPSCRIFR, Fl] Cleared Cleared
FPSCRI[FPRF] Set for QNaN Undefined
Convert to 64-bit integer frD[0-63] Unchanged Most negative 64-bit
(negative number, NaN, or —o0) integer value
FPSCRI[FR, FI] Cleared Cleared
FPSCR[FPRF] Set for QNaN Undefined
Convert to 32-bit integer frD[0-31] Unchanged Undefined
(positive number or +20) — -
frD[32-63] Unchanged Most positive 32-bit
integer value
FPSCRIFR, Fl] Cleared Cleared
FPSCRI[FPRF] Set for QNaN Undefined
Convert to 32-bit integer frD[0-31] Unchanged Undefined
(negative number, NaN, or —o0)
frD[32-63] Unchanged Most negative 32-bit
integer value
FPSCRI[FR, Fl] Cleared Cleared
FPSCR[FPRF] Set for QNaN Undefined
All cases FPSCRI[FEX] Implicitly set Unchanged
(causes exception)

3.3.6.1.2 Zero Divide Exception Condition

A zero divide exception condition occurs when a divide instruction is executed with a zero
divisor value and a finite, nonzero dividend value or when an fres or frsqrte instruction is
executed with a zero operand value. This exception condition indicates an exact infinite
result from finite operands exception condition corresponding to a mathematical pole
(divide or fres) or a branch point singularity (frsqrte).

3-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

When a zero divide condition occurs, the following actions are taken:
» Zero divide exception condition bit is set FPSCR[ZX] = 1.
e FPSCRIFR, FI] are cleared.

Additional actions depend on the setting of the zero divide exception condition enable bit,
FPSCR[ZE], as described in Table 3-13.

Table 3-13. Additional Actions Performed for Zero Divide
Action Performed
Result Category
FPSCR[ZE] = 1 FPSCR[ZE] =0
frD Unchanged +oo (sign determined by XOR of the
signs of the operands)
FPSCR[FEX] Implicitly set (causes exception) Unchanged
FPSCRI[FPRF] Unchanged Set to indicate +e

3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions

As described earlier, the overflow, underflow, and inexact exception conditions are detected
after the floating-point instruction has executed and an infinitely precise result with
unbounded range has been computed. Figure 3-24 shows the flow for the detection of these
conditions and is a continuation of Figure 3-23. As in the cases of invalid operation, or zero
divide conditions, if the FPSCR[FEX] bit is implicitly set as described in Table 3-9 and
MSR[FEO-FE1] # 00, the processor takes a program exception (floating-point enabled
exception type). Refer to Chapter 6, “Exceptions,” for more information on exception
processing. The actions performed for each of these floating-point exception conditions
(including the generated result) are described in greater detail in the following sections.

Chapter 3. Operand Conventions 3-39

Check for Overflow, "
(Underflow, and Inexaa (from Figure 3-23)
I

Xnorm < Normalized x
(Xnorm Infinitely Precise and with Unbounded Range)

Xnorm i tiny otherwise
(ur'f PSCRIUE] =0 g Otherwise [Xoun Rounded xporm (per FPSCRIRN]) |
* Xgenorm ¢~ Denormalized Xyorm /Othem"se magnitude of Xyo,ng > magnitude of
* Round Xgenorm (per FPSCR[RN]) | largest finite number in result precision

(overflow)

FPSCR[OX] « 1 |

* frD « X;oung < Rounded Xgenorm
* inexact « Xround # Xdenorm
* If ‘inexact’, FPSCR[UX] « 1

* frD < Xound
¢ inexact < Xround # Xnorm

O
*FPSCRIUX] &1 otherwise FPSCRI[OE] =0
¢ FPSCRI[FEX] = 1 (implicitly) (overflow disabled)
® Xadjust <~Adj. Exp. of Xorm per Table 3-14
* Round Xagjust (Per FPSCR[RN]) * FPSCR[FEX] = 1 (implicitly)
* D ¢ X;oung ¢~ Rounded Xggjust * Adjust Exponent per Table 3-14 | ["Fpcchney
* inexact ¢ Xround # Xadjust ¢ frD « X;oung (adjusted) SCRIXX] 1

* inexact < X;ound # Xnorm

| * Get default fromTable 3-15
¢ frD « default
otherwise inexact = 1 * FPSCRIFI] « 1

(inexact)

¢ FPSCR[FR] « undefined
FPSCR[XX] « 1

FPSCR[XE] =0
(inexact disabled)

otherwise

LFPSCR[FEX] =1 (implicitly) I

L Set FPSCR[FPRF] appropriately

If (FPSCR[FEX] = 1) & (MSR[FEO-FE1] 00),
then take FP Program Exception;
otherwise, continue

Figure 3-24. Checking of Remaining Floating-Point Exception Conditions

3-40 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.3.6.2.1 Overflow Exception Condition
Overflow occurs when the magnitude of what would have been the rounded result (had the
exponent range been unbounded) is greater than the magnitude of the largest finite number
of the specified result precision. Regardless of the setting of the overflow exception
condition enable bit of the FPSCR, the following action is taken:

e The overflow exception condition bit is set FPSCR[OX] = 1.

Additional actions are taken that depend on the setting of the overflow exception condition
enable bit of the FPSCR as described in Table 3-14.

Table 3-14. Additional Actions Performed for Overflow Exception Condition

Condition

Result Category

Action Performed

FPSCR[OE] =1

FPSCR[OE] = 0

Double-precision
arithmetic instructions

Exponent of normalized
intermediate result

Adjusted by subtracting 1536

Single-precision Exponent of normalized | Adjusted by subtracting 192 -
arithmetic and frspx intermediate resuit
instruction
All cases frD Rounded result (with adjusted Default result per Table 3-15
exponent)
FPSCRIXX] Set if rounded result differs Set
from intermediate result
FPSCRIFEX] Implicitly set (causes Unchanged
exception)
FPSCRI[FPRF] Set to indicate tnormal number | Set to indicate +e or
+normal number
FPSCRIFI} Reflects rounding Set
FPSCRI[FR] Reflects rounding Undefined

When the overflow exception condition is disabled (FPSCR[OE] = 0) and an overflow
condition occurs, the default result is determined by the rounding mode bit (FPSCR[RN])
and the sign of the intermediate result as shown in Table 3-15.

Chapter 3. Operand Conventions

3-41

Table 3-15. Target Result for Overflow Exception Disabled Case

FPSCR[RN] Slgn of Intertediata D
Round to nearest Positive +Infinity
Negative ~Infinity
Round toward zero Positive Format’s largest finite positive number
Negative Format's most negative finite number
Round toward +infinity Positive +Infinity
Negative Format’'s most negative finite number
Round toward —infinity Positive Format'’s largest finite positive number
Negative —Infinity

3.3.6.2.2 Underflow Exception Condition
The underflow exception condition is defined separately for the enabled and disabled states:

¢ Enabled—Underflow occurs when the intermediate result is tiny.

* Disabled—Underflow occurs when the intermediate result is tidy and the rounded
result is inexact.

In this context, the term ‘tiny’ refers to a floating-point value that is too small to be
represented for a particular precision format.

As shown in Figure 3-24, a tiny result is detected before rounding, when a nonzero
intermediate result value computed as though it had infinite precision and unbounded
exponent range is less in magnitude than the smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit is cleared
(FPSCR[UE] = 0), the intermediate result is denormalized (see Section 3.3.3,
“Normalization and Denormalization”) and rounded (see Section 3.3.5, “Rounding”)
before being stored in an FPR. In this case, if the rounding causes the delivered result value
to differ from what would have been computed were both the exponent range and precision
unbounded (the result is inexact), then underflow occurs and FPSCR[UX] is set.

3-42 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The actions performed for underflow exception conditions are described in Table 3-16.

Table 3-16. Actions Performed for Underflow Conditions

Condition

Result Category

Action Performed

FPSCRIUE] = 1

FPSCR[UE] =0

Double-precision
arithmetic instructions

Exponent of normalized
intermediate result

Adjusted by adding 1536

Single-precision

Exponent of normalized

Adjusted by adding192

arithmetic and frspx intermediate result
instructions
All cases frD Rounded result (with Denormalized and
adjusted exponent) rounded result
FPSCRI[XX] Set if rounded result Set if rounded result
differs from intermediate differs from intermediate
result result
FPSCR[UX] Set Set only if tiny and inexact
after denormalization and
rounding
FPSCRI[FPRF] Set to indicate Set to indicate
+normalized number +denormalized number or.
tzero
FPSCRIFEX] Implicitly set (causes Unchanged
exception)
FPSCRIFI] Reflects rounding Reflects rounding
FPSCRI[FR] Reflects rounding Reflects rounding

Note that the FR and FI bits in the FPSCR allow the system floating-point enabled
exception error handler, when invoked because of an underflow exception condition, to
simulate a trap disabled environment. That is, the FR and FI bits allow the system floating-
point enabled exception error handler to unround the result, thus allowing the result to be

denormalized.

3.3.6.2.3 Inexact Exception Condition
The inexact exception condition occurs when one of two conditions occur during rounding:

» The rounded result differs from the intermediate result assuming the intermediate
result exponent range and precision to be unbounded. (In the case of an enabled
overflow or underflow condition, where the exponent of the rounded result is
adjusted for those conditions, an inexact condition occurs only if the significand of
the rounded result differs from that of the intermediate result.)

* The rounded result overflows and the overflow exception condition is disabled.

Chapter 3. Operand Conventions

3-43

When an inexact exception condition occurs, the following actions are taken independently
of the setting of the inexact exception condition enable bit of the FPSCR:

» Inexact exception condition bit in the FPSCR is set FPSCR[XX] = 1.

* The rounded or overflowed result is placed into the target FPR.

* FPSCR[FPRF] is set to indicate the class and sign of the result.

In addition, if the inexact exception condition enable bit in the FPSCR (FPSCR[XE]) is set,
and an inexact condition exists, then the FPSCR[FEX] bit is implicitly set, causing the
processor to take a floating-point enabled program exception.

In PowerPC implementations, running with inexact exception conditions enabled may have
greater latency than enabling other types of floating-point exception conditions.

3-44 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Chapter 4
Addressing Modes and Instruction Set
Summary

This chapter describes instructions and addressing modes defined by the three levels of the
PowerPC architecture—user instruction set architecture (UISA), virtual environment
architecture (VEA), and operating environment architecture (OEA). These instructions are oy
divided into the following functional categories:

 Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 4.2.1, “Integer Instructions.”

» Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 4.2.2, “Floating-Point Instructions.”

* Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 4.2.3, “Load and Store Instructions.”

* Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 4.2.4, “Branch and Flow Control
Instructions.”

* Processor control instructions—These instructions are used for synchronizing
memory accesses and managing of caches, TLBs, and the segment registers. For
more information, see Section 4.2.5, “Processor Control Instructions—UISA,”
Section 4.3.1, “Processor Control Instructions—VEA,” and Section 4.4.2,
“Processor Control Instructions—OEA.”

¢ Memory synchronization instructions—These instructions control the order in
which memory operations are completed with respect to asynchronous events, and
the order in which memory operations are seen by other processors or memory
access mechanisms. For more information, see Section 4.2.6, “Memory
Synchronization Instructions—UISA,” and Section 4.3.2, “Memory
Synchronization Instructions—VEA.”

Chapter 4. Addressing Modes and Instruction Set Summary 4-1

* Memory control instructions—These include cache management instructions (user-
level and supervisor-level), segment register manipulation instructions, and
translation lookaside buffer management instructions. For more information, see
Section 4.3.3, “Memory Control Instructions—VEA,” and Section 4.4.3, “Memory
Control Instructions—OEA.” (Note that user-level and supervisor-level are referred
to as problem state and privileged state, respectively, in the architecture
specification.)

* External control instructions—These instructions allow a user-level program to
communicate with a special-purpose device. For more information, see
Section 4.3.4, “External Control Instructions.”

This grouping of instructions does not necessarily indicate the execution unit that processes
a particular instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, half-word, and word operands. Floating-point

ed8

instructions operate on single-precision and double-precision floating-point operands. The
PowerPC architecture uses instructions that are four bytes long and word-aligned. It
provides for byte, half-word, and word operand fetches and stores between memory and a
set of 32 general-purpose registers (GPRs). It also provides for word and double-word
operand fetches and stores between memory and a set of 32 floating-point registers (FPRs).
The FPRs are 64 bits wide in all PowerPC implementations. The GPRs are 32 bits wide in
32-bit implementations and 64 bits wide in 64-bit implementations.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
PowerPC-compliant assemblers support the mnemonics and operand lists. To simplify
assembly language programming, a set of simplified mnemonics (referred to as extended
mnemonics in the architecture specification) and symbols is provided for some of the most
frequently-used instructions; see Appendix F, “Simplified Mnemonics,” for a complete list
of simplified mnemonics.

The instructions are organized by functional categories while maintaining the delineation
of the three levels of the PowerPC architecture—UISA, VEA, and OEA; Section 4.2
discusses the UISA instructions, followed by Section 4.3 that discusses the VEA
instructions and Section 4.4 that discusses the OEA instructions. See Section 1.1.2, “The
Levels of the PowerPC Architecture,” for more information about the various levels defined
by the PowerPC architecture.

4-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.1 Conventions

This section describes conventions used for the PowerPC instruction set. Descriptions of

computation modes, memory addressing, synchronization, and the PowerPC exception
summary follow.

4.1.1 Sequential Execution Model

The PowerPC processors appear to execute instructions in program order, regardless of
asynchronous events or program exceptions. The execution of a sequence of instructions
may be interrupted by an exception caused by one of the instructions in the sequence, or by
an asynchronous event. (Note that the architecture specification refers to exceptions as
interrupts.)

For exceptions to the sequential execution model, refer to Chapter 6, “Exceptions.” For
information about the synchronization required when using store instructions to access
instruction areas of memory, refer to Section 4.2.3.3, “Integer Store Instructions,” and
Section 5.1.5.2, “Instruction Cache Instructions.” For information regarding instruction
fetching, and for information about guarded memory refer to Section 5.2.1.5, “The
Guarded Attribute (G).”

4.1.2 Computation Modes
The PowerPC architecture allows for the following types of implementations:

* 64-bit implementations, in which all general-purpose and floating-point registers,
and some special-purpose registers (SPRs) are 64 bits long, and effective addresses
are 64 bits long. All 64-bit implementations have two modes of operation: 64-bit
mode (which is the default) and 32-bit mode. The mode controls how the effective
address is interpreted, how condition bits are set, and how the count register (CTR)
is tested by branch conditional instructions. All instructions provided for 64-bit
implementations are available in both 64- and 32-bit modes.

* 32-bit implementations, in which all registers except the FPRs are 32 bits long, and

effective addresses are 32 bits long.

This chapter describes only the instructions defined for 32-bit implementations.
Instructions defined only for 64-bit implementations are illegal in 32-bit implementations,
and vice versa.

4.1.3 Classes of Instructions
PowerPC instructions belong to one of the following three classes:
* Defined

e Illegal
¢ Reserved

Chapter 4. Addressing Modes and Instruction Set Summary 4-3

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruction that
is specific to 64-bit implementations is considered defined for 64-bit implementations but
illegal for 32-bit implementations.

The class is determined by examining the primary opcode, and the extended opcode if any.
If the opcode, or the combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may
become defined (by being added to the architecture) or reserved (by being assigned to one
of the special purposes). Likewise, reserved instructions may become defined.

4.1.3.1 Definition of Boundedly Undefined

The results of executing a given instruction are said to be boundedly undefined if they could
have been achieved by executing an arbitrary sequence of instructions, starting in the state
the machine was in before executing the given instruction. Boundedly undefined results for
a given instruction may vary between implementations, and between different executions
on the same implementation.

4.1.3.2 Defined Instruction Class

Defined instructions contain all the instructions defined in the PowerPC UISA, VEA, and
OEA. Defined instructions are guaranteed to be supported in all PowerPC implementations.
The only exceptions are instructions that are defined only for 64-bit implementations,
instructions that are defined only for 32-bit implementations, and optional instructions, as
stated in the instruction descriptions in Chapter 8, “Instruction Set.” A PowerPC processor
may invoke the illegal instruction error handler (part of the program exception handler)
when an unimplemented PowerPC instruction is encountered so that it may be emulated in
software, as required.

A defined instruction can have invalid forms, as described in Section 4.1.3.2.2, “Invalid
Instruction Forms.”

4.1.3.2.1 Preferred Instruction Forms
A defined instruction may have an instruction form that is preferred (that is, the instruction
will execute in an efficient manner). Any form other than the preferred form will take
significantly longer to execute. The following instructions have preferred forms:

* Load/store multiple instructions

e Load/store string instructions

* Or immediate instruction (preferred form of no-op)

4-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.1.3.2.2 Invalid Instruction Forms

A defined instruction may have an instruction form that is invalid if one or more operands,
excluding opcodes, are coded incorrectly in a manner that can be deduced by examining
only the instruction encoding (primary and extended opcodes). Attempting to execute an
invalid form of an instruction either invokes the illegal instruction error handler (a program
exception) or yields boundedly-undefined results. See Chapter 8, “Instruction Set,” for
individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a
reserved bit (shown as ‘0’) is coded as ‘1°.

The following instructions have invalid forms identified in their individual instruction
descriptions:

* Branch conditional instructions

* Load/store with update instructions

* Load multiple instructions

* Load string instructions

* Integer compare instructions (in 32-bit implementations only)

* Load/store floating-point with update instructions

4.1.3.2.3 Optional Instructions
A defined instruction may be optional. The optional instructions fall into the following
categories:

* General-purpose instructions—fsqrt and fsqrts

* Graphics instructions—fres, frsqrte, and fsel

» External control instructions—eciwx and ecowx

* Lookaside buffer management instructions—tlbia, tlbie, and tlbsync (with

conditions, see Chapter 8, “Instruction Set,” for more information)

Note that the stfiwx instruction is defined as optional by the PowerPC architecture to ensure
backwards compatibility with earlier processors; however, it will likely be required for
subsequent PowerPC processors.

Also, note that additional categories may be defined in future implementations. If an
implementation claims to support a given category, it implements all the instructions in that
category.

Any attempt to execute an optional instruction that is not provided by the implementation
will cause the illegal instruction error handler to be invoked. Exceptions to this rule are
stated in the instruction descriptions found in Chapter 8, “Instruction Set.”

Chapter 4. Addressing Modes and Instruction Set Summary 4-5

4.1.3.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:

 Instructions that are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions. The following primary opcodes are defined as illegal but
may be used in future extensions to the architecture:

1,4,5,6, 56, 57, 60, 61

¢ Instructions that are implemented in the PowerPC architecture but are not
implemented in a specific PowerPC implementation. For example, instructions
specific to 64-bit PowerPC processors are illegal for 32-bit processors.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on 32-bit implementations:

2,30, 58,62

e All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 4.1.3.4, “Reserved Instructions.” Notice that extended opcodes for
instructions that are defined only for 64-bit implementations are illegal in 32-bit
implementations. The following primary opcodes have unused extended opcodes.

19,31, 59, 63 (primary opcodes 30 and 62 are illegal for 32-bit implementations, but
as 64-bit opcodes they have some unused extended opcodes)

* An instruction consisting entirely of zeros is guaranteed to be an illegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the illegal instruction error handler (a program exception). Note
that if only the primary opcode consists of all zeros, the instruction is considered a
reserved instruction, as described in Section 4.1.3.4, “Reserved Instructions.”

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 6.4.7, “Program Exception
(0x00700),” for additional information about illegal instruction exception.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the PowerPC architecture.

4.1.3.4 Reserved Instructions

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
Section 6.4.7, “Program Exception (0x00700),” for additional information about illegal
instruction exception.

4-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The following types of instructions are included in this class:

1. Instructions for the POWER architecture that have not been included in the
PowerPC architecture.

2. Implementation-specific instructions used to conform to the PowerPC
architecture specifications (for example, Load Data TLB Entry (tlbld) and
Load Instruction TLB Entry (tlbli) instructions for the PowerPC 603™
MiCroprocessor).

3. The instruction with primary opcode 0, when the instruction does not consist
entirely of binary zeros

4. Any other implementation-specific instructions that are not defined in the UISA,
VEA, or OEA

4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian;
see Section 3.1.2, “Byte Ordering,” for more information.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address O, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

v
o

Chapter 4. Addressing Modes and Instruction Set Summary 4-7

In all implementations (including 32-bit mode in 64-bit implementations), the three low-
order bits of the calculated effective address may be modified by. the processor before
accessing memory if the PowerPC system is operating in little-endian mode. See
Section 3.1.2, “Byte Ordering,” for more information about little-endian mode.

Load and store operations have three categories of effective address generation that depend
on the operands specified:

* Register indirect with immediate index mode
* Register indirect with index mode
* Register indirect mode

See Section 4.2.3.1, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

¢ Immediate addressing.
* Link register indirect
* Count register indirect

See Section 4.2.4.1, “Branch Instruction Address Calculation,” for a detailed
description of effective address generation for branch instructions.

Branch instructions can optionally load the LR with the next sequential instruction address
(current instruction address + 4).

4.1.5 Synchronizing Instructions

©® The synchronization described in this section refers to the state of activities within the

processor that is performing the synchronization. Refer to Section 6.1.2,
“Synchronization,” for more detailed information about other conditions that can cause
context and execution synchronization.

4.1.5.1 Context Synchronizing Instructions

The System Call (sc), Return from Interrupt (rfi), and Instruction Synchronize (isync)
instructions perform context synchronization by allowing previously issued instructions to
complete before performing a context switch. Execution of one of these instructions
ensures the following:

1. No higher priority exception exists (sc) and instruction dispatching is halted.

2. All previous instructions have completed to a point where they can no longer cause
an exception.

If a prior memory access instruction causes one or more direct-store interface error
exceptions, the results are guaranteed to be determined before this instruction is
executed. However, note that the direct-store facility is being phased out of the
architecture and will not likely be supported in future devices.

4-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3. Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

4. The instructions following the sc, rfi, or isync instruction execute in the context
established by these instructions.

4.1.5.2 Execution Synchronizing Instructions

An instruction is execution synchronizing if it satisfies the conditions of the first two items
described above for context synchronization. The sync instruction is treated like isync with
respect to the second item described above (that is, the conditions described in the second
item apply to the completion of sync). The sync and mtmsr instructions are examples of
execution-synchronizing instructions.

All context-synchronizing instructions are execution-synchronizing. Unlike a context
synchronizing operation, an execution synchronizing instruction need not ensure that the
instructions following it execute in the context established by that instruction. This new
context becomes effective sometime after the execution synchronizing instruction
completes and before or at a subsequent context synchronizing operation.

4.1.6 Exception Summary

PowerPC processors have an exception mechanism for handling system functions and error
conditions in an orderly way. The exception model is defined by the OEA. There are two
kinds of exceptions—those caused directly by the execution of an instruction and those
caused by an asynchronous event. Either may cause components of the system software to
be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (program
exception) error handler to be invoked. An attempt by a user-level program to
execute the supervisor-level instructions listed below causes the privileged
instruction (program exception) handler to be invoked.

The PowerPC architecture provides the following supervisor-level instructions:
dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi, tibia, tlbie,
and tlbsync (defined by OEA). Note that the privilege level of the mfspr and mtspr
instructions depends on the SPR encoding.

» The execution of a defined instruction using an invalid form causes either the illegal
instruction error handler or the privileged instruction handler to be invoked.

» The execution of an optional instruction that is not provided by the implementation
causes the illegal instruction error handler to be invoked.

* An attempt to access memory in a manner that violates memory protection, or an
attempt to access memory that is not available (page fault), causes the DSI exception
handler or ISI exception handler to be invoked.

oR<J <]

a

Chapter 4. Addressing Modes and Instruction Set Summary 4-9

¢~ An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

¢ The execution of an sc instruction permits a program to call on the system to perform
a service, by causing a system call exception handler to be invoked.

* The execution of a trap instruction invokes the program exception trap handler.

¢ The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable exception handler.

» The execution of an instruction that causes a floating-point exception that is enabled
invokes the floating-point enabled exception handler.

¢ Theexecution of a floating-point instruction that requires system software assistance
causes the floating-point assist exception handler to be invoked. The conditions
under which such software assistance is required are implementation-dependent.

Exceptions caused by asynchronous events are described in Chapter 6, “Exceptions.”

4.2 PowerPC UISA Instructions

The PowerPC user instruction set architecture (UISA) includes the base user-level
instruction set (excluding a few user-level cache-control, synchronization, and time base
instructions), user-level registers, programming model, data types, and addressing modes.
This section discusses the instructions defined in the UISA.

4.2.1 Integer Instructions
The integer instructions consist of the following:

* Integer arithmetic instructions

¢ Integer compare instructions

* Integer logical instructions

» Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs. Integer arithmetic, shift, rotate, and string move instructions may update or read
values from the XER, and the condition register (CR) fields may be updated if the Rc bit of
the instruction is set.

These instructions treat the source operands as signed integers unless the instruction is
explicitly identified as performing an unsigned operation. For example, Multiply High-
Word Unsigned (mulhwu) and Divide Word Unsigned (divwu) instructions interpret both
operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer
arithmetic instruction, addic., set CR bits 0—3 (CRO) to characterize the result of the
operation. CRO is set to reflect a signed comparison of the result to zero.

4-10 PoweiPC Microprocessor Family: The Programming Environments (32-Bit)

The integer arithmetic instructions, addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze, always set the XER bit, CA, to reflect the carry out of
bit 0. Integer arithmetic instructions with the overflow enable (OE) bit set in the instruction
encoding (instructions with -0 suffix) cause the XER[SO] and XER[OV] to reflect an
overflow of the result. Except for the multiply low and divide instructions, these integer
arithmetic instructions reflect the overflow of the result.

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit
(CA) may delay the execution of subsequent instructions.

Unless otherwise noted, when CRO and the XER are set, they reflect the value placed in the
target register.

4.2.1.1 Integer Arithmetic Instructions
Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Table 4-1. Integer Arithmetic Instructions

Operand
Name Mnemonic Syntax Operation
Add Immediate |addi rD,rA,SIMM | The sum (rAlO) + SIMM is placed into rD.
Add Immediate |addis rD,rA,SIMM | The sum (rAlO) + (SIMM Il 0x0000) is placed into rD.
Shifted
Add add rD,rA,rB The sum (rA) + (rB) is placed into rD.
acd. add Add
acco add. Add with CR Update. The dot suffix enables the update of the
addo. CR
addo Add with Overflow Enabled. The o suffix enables the overflow
bit (OV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables the
update of the CR and enables the overflow bit (OV) in the
XER.
Subtract From |subf rD,rA,rB The sum - (rA) + (rB) +1 is placed into rD.
:u::;, subf Subtract From
um subf. Subtract from with CR Update. The dot suffix enables the
sublo. update of the CR.
subfo Subtract from with Overflow Enabled. The o suffix enables the
overflow bit (OV) in the XER.
subfo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit
(OV) in the XER.
Add Immediate |addic rD,rA,SIMM | The sum (rA) + SIMM is placed into rD.
Carrying
Add Immediate | addic. rD,rA,SIMM | The sum (rA) + SIMM is placed into rD. The CR is updated.
Carrying and
Record
Subtract from | subfic rD,rA,SIMM | The sum - (rA) + SIMM + 1 is placed into rD.
Immediate
Carrying

Chapter 4. Addressing Modes and Instruction Set Summary 4-11

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Os;;er:taar;d Operation
Add Carrying addc rD,rA,rB The sum (rA) + (rB) is placed into rD.
::gz;) addc Add Carrying
addco. addc. Add Carrying with CR Update. The dot suffix enables the
. update of the CR.
addco Add Carrying with Overflow Enabled. The o suffix enables the
overflow bit (OV) in the XER.
addco. Add Carrying with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit
(OV) in the XER.
Subtract from subfc rD,rA,rB The sum = (rA) + (rB) + 1 is placed into rD.
Carrying sul;:c. subfc Subtract from Carrying
::bfgg subfc. Subtract from Carrying with CR Update. The dot suffix
: enables the update of the CR.
subfco Subtract from Carrying with Overflow. The o suffix enables the
overflow bit (OV) in the XER.
subfco. Subtract from Carrying with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.
Add adde rD,rA,rB The sum (rA) + (rB) + XER[CA] is placed into rD.
Extended e adde AddExtended '
addeo. adde. Add Extended with CR Update. The dot suffix enables the
. update of the CR.
addeo Add Extended with Overflow. The o suffix enables the
overflow bit (OV) in the XER.
addeo. Add Extended with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit
(OV) in the XER.
Subtract from subfe rD,rA,rB The sum = (rA) + (rB) + XER[CA] is placed into rD.
Exiended Subte. subfe Subtract from Extended .
subfeo subfe. Subtract from Extended with CR Update. The dot suffix
) enables the update of the CR.
subfeo Subtract from Extended with Overflow. The o suffix enables
the overflow bit (OV) in the XER.
subfeo. Subtract from Extended with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
(OV) bit in the XER.
Add to Minus addme rD,rA The sum (rA) + XER[CA] added to OxFFFF_FFFF is placed into rD.
One Extended :g:m:; addme Add to Minus One Extended .
addmeo. addme. Add to Minus One Extended with CR Update. The dot suffix
) enables the update of the CR.
addmeo Add to Minus One Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.
addmeo. Add to Minus One Extended with Overflow and CR Update.
The o. suffix enables the update of the CR and enables the
overflow (OV) bit in the XER.
4-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-1. Integer Arithmetic Instructions (Continued)

Operand

Name Mnemonic Syntax Operation
Subtract from subfme rD,rA The sum = (rA) + XER[CA] added to OxFFFF_FFFF is placed into rD.
g':us dOge :ug:me. subfme Subtract from Minus One Extended
ende ubfmeo subfme. Subtract from Minus One Extended with CR Update. The dot
subtmeo. suffix enables the update of the CR.
subfmeo Subtract from Minus One Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and CR
Update. The o. suffix enables the update of the CR and
enables the overflow bit (OV) in the XER.
Add to Zero addze rD,rA The sum (rA) + XER[CA] is placed into rD.
S :ggze' addze Add to Zero Extended
ad dz:: addze. Add to Zero Extended with CR Update. The dot suffix enables

the update of the CR.

addzeo Add to Zero Extended with Overflow. The o suffix enables the
overflow bit (OV) in the XER.

addzeo. Add to Zero Extended with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

Subtract from | subfze rD,rA The sum - (rA) + XER[CA] is placed into rD.
Zero Extended | subfze. subfze Subtract from Zero Extended

:3::::2 subfze. Subtract from Zero Extended with CR Update. The dot suffix
: enables the update of the CR.
subfzeo Subtract from Zero Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.
subfzeo. Subtract from Zero Extended with Overflow and CR Update.
The o. suffix enables the update of the CR and enables the
overflow bit (OV) in the XER.
Negate neg rD,rA The sum - (rA) + 1 is placed into rD.
::9; neg Negate
9 neg. Negate with CR Update. The dot suffix enables the update of
nego. the CR.
nego Negate with Overflow. The o suffix enables the overflow bit
(OV) in the XER.
nego. Negate with Overflow and CR Update. The o. suffix enables
the update of the CR and enables the overflow bit (OV) in the
XER.
Multiply Low mulli rD,rA,SIMM | The low-order 32 bits of the product (rA) * SIMM are placed into rD.

Immediate This instruction can be used with mulhdx or mulhwx to calculate a full

64-bit product.

Chapter 4. Addressing Modes and Instruction Set Summary 4-13

Table 4-1. Integer Arithmetic Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Multiply Low

mullw
mullw.
mullwo
mullwo.

rD,rA,rB

The 32-bit product (rA) * (rB) is placed into register rD.

This instruction can be used with mulhwx to calculate a full 64-bit
product.

muliw Multiply Low

mullw. Multiply Low with CR Update. The dot suffix enables the
update of the CR.

mullwo Multiply Low with Overflow. The o suffix enables the overflow
bit (OV) in the XER.

mullwo. Multiply Low with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables the
overflow bit (OV) in the XER.

Multiply High
Word

mulhw
mulhw.

rD,fAIB -

The contents of rA and rB are interpreted as 32-bit signed integers. The
64-bit product is formed. The high-order 32 bits of the 64-bit product are
placed into rD.

mulhw Multiply High Word

mulhw. Multiply High Word with CR Update. The dot suffix enables
the update of the CR.

Multiply High
Word Unsigned

mulhwu
mulhwu.

rD,rA,rB

The contents of rA and of rB are interpreted as 32-bit unsigned integers.
The 64-bit product is formed. The high-order 32 bits of the 64-bit product
are placed into rD.

mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot suffix
enables the update of the CR.

Divide Word

divw
divw.
divwo
divwo.

rD,rA,rB

The dividend is the signed value of rA. The divisor is the signed value of
rB. The quotient is placed into rD. The remainder is not supplied as a
result.

divw Divide Word

divw. Divide Word with CR Update. The dot suffix enables the update
of the CR.

divwo Divide Word with Overflow. The o suffix enables the overflow bit
(OV) in the XER.

divwo. Divide Word with Overflow and CR Update. The o. suffix enables
the update of the CR and enables the overflow bit (OV) in the
XER.

Divide Word
Unsigned

divwu
divwu.
divwuo
divwuo..

rD,rA,rB

The dividend is the zero-extended value in rA. The divisor is the zero-
extended value in rB. The quotient is placed into rD. The remainder is not
supplied as a result.

divwu Divide Word Unsigned

divwu. Divide Word Unsigned with CR Update. The dot suffix enables
the update of the CR.

divwuo Divide Word Unsigned with Overflow. The o suffix enables the
overflow bit (OV) in the XER.

divwuo. Divide Word Unsigned with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

4-14

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Although there is no “Subtract Immediate” instruction, its effect can be achieved by using
an addi instruction with the immediate operand negated. Simplified mnemonics are
provided that include this negation. The subf instructions subtract the second operand (rA)
from the third operand (rB). Simplified mnemonics are provided in which the third operand
is subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” for
examples.

4.2.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 4-2
summarizes the integer compare instructions.

Appendix F, “Simplified MnemonicsFor 32-bit implementations, the L field must be
cleared, otherwise the instruction form is invalid.

The integer compare instructions (shown in Table 4-2) set one of the leftmost three bits of
the designated CR field, and clear the other two. XER[SO] is copied into bit 3 of the CR
field.

Table 4-2. Integer Compare Instructions

Name Mnemonic | Operand Syntax Operation
Compare cmpi crfD,L,rA,SIMM | The value in register rA is compared with the sign-extended value of
Immediate the SIMM operand, treating the operands as signed integers. The
result of the comparison is placed into the CR field specified by
operand crfD.
Compare cmp crfD,L,rA,rB The value in register rA is compared with the value in register rB,

treating the operands as signed integers. The result of the comparison
is placed into the CR field specified by operand erfD.

Compare cmpli crfD,L,rA,UIMM | The value in register rA is compared with 0x0000 Il UIMM, treating the
Logical operands as unsigned integers. The result of the comparison is placed
Immediate into the CR field specified by operand crfD.

Compare cmpl crfD,L,rA,rB The value in register rA is compared with the value in register rB,
Logical treating the operands as unsigned integers. The result of the

comparison is placed into the CR field specified by operand crfD.

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics.”

Chapter 4. Addressing Modes and Instruction Set Summary 4-15

4.2.1.3 Integer Logical Instructions

The logical instructions shown in Table 4-3 perform bit-parallel operations on 32-bit
operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO (bits 0 to 2) to characterize the result of the
logical operation. Logical instructions without CR update and the remaining logical
instructions do not modify the CR. Logical instructions do not affect the XER[SO],
XER[OV], and XER[CA] bits.

See Appendix F, “Simplified Mnemonics,” for simplified mnemonic examples for integer
logical operations.

Table 4-3. Integer Logical Instructions

Operand .
Name Mnemonic Syntax Operation
AND andi. rA,rS,UIMM | The contents of rS are ANDed with 0x0000 Il UIMM and the result is placed
Immediate into rA.
The CR is updated.
AND andis. rA,rS,UIMM | The content of rS are ANDed with UIMM Il 0x0000 and the result is placed
Immediate into rA.
Shifted The CR is updated.
OR ori rA,rS,UIMM | The contents of rS are ORed with 0x0000 || UIMM and the result is placed
Immediate into rA.
The preferred no-op is ori 0,0,0
OR oris rA,rS,UIMM | The contents of rS are ORed with UIMM |l 0x0000 and the result is placed
Immediate into rA.
Shifted
XOR xori rA,rS,UIMM | The contents of rS are XORed with 0x0000 Il UIMM and the result is placed
Immediate into rA.
XOR xoris rA,rS,UIMM | The contents of rS are XORed with UIMM Il 0x0000 and the result is placed
Immediate into rA.
Shifted
AND and rA,rS,rB | The contents of rS are ANDed with the contents of register rB and the result
and. is placed into rA.
and AND
and. AND with CR Update. The dot suffix enables the update of the CR.
OR or rA,rS,rB The contents of rS are ORed with the contents of rB and the result is placed
or. into rA.
or OR
or. OR with CR Update. The dot suffix enables the update of the CR.
XOR xor rA,rS,rB The contents of rS are XORed with the contents of rB and the result is
Xor. placed into rA.
xor XOR
Xor. XOR with CR Update. The dot suffix enables the update of the CR.

4-16 Powei PC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-3. Integer Logical Instructions (Continued)

Operand

Name Mnemonic Syntax Operation
NAND nand rA,rS,rB The contents of rS are ANDed with the contents of rB and the one’s
nand. complement of the result is placed into rA.
nand NAND
nand. NAND with CR Update. The dot suffix enables the update of CR.
Note that nandx, with rS = rB, can be used to obtain the one's complement.
NOR nor rA,rS,rB The contents of rS are ORed with the contents of rB and the one’s
nor. complement of the result is placed into rA.
nor NOR
nor. NOR with CR Update. The dot suffix enables the update of the CR.
Note that norx, with rS = rB, can be used to obtain the one's complement.
Equivalent }eqv rA,rS,rB The contents of rS are XORed with the contents of rB and the
eqv. complemented result is placed into rA.
eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the update of
the CR.
AND with andc rA,rS,rB The contents of rS are ANDed with the one’s complement of the contents of
Complement | andc. rB and the result is placed into rA.
andc AND with Complement
andc. AND with Complement with CR Update. The dot suffix enables the
update of the CR.
OR with orc rA,rS,rB The contents of rS are ORed with the complement of the contents of rB and
Complement | orc. the result is placed into rA.
orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix enables the
update of the CR.
Extend Sign |extsb rA,rS The contents of the low-order eight bits of rS are placed into the low-order
Byte extsb. eight bits of rA. Bit 24 of rS is placed into the remaining high-order bits of
rA.
extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the
update of the CR.
Extend Sign |extsh rA,rS The contents of the low-order 16 bits of rS are placed into the low-order 16
Half Word extsh. bits of rA. Bit 16 of rS is placed into the remaining high-order bits of rA.
extsh Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix enables the
update of the CR.
Count cntizw rA,rS A count of the number of consecutive zero bits starting at bit 0 of rS is
Leading cntizw. placed into rA. This number ranges from 0 to 32, inclusive.
Zeros Word

If Rc = 1 (dot suffix), LT is cleared in CRO.

cntizw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix enables
the update of the CR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-17

4.2.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. The rotation operations rotate a 32-bit quantity left by a
specified number of bit positions. Bits that exit from position O enter at position 31.

The rotate and shift instructions employ a mask generator. The mask is 32 bits long and
consists of ‘1’ bits from a start bit, Mstart, through and including a stop bit, Mstop, and ‘0’
bits elsewhere. The values of Mstart and Mstop range from O to 31. If Mstart > Mstop, the
‘1’ bits wrap around from position 31 to position 0. Thus the mask is formed as follows:

if Mstart < Mstop then

mask[mstart—-mstop] = ones

mask][all other bits] = zeros
else

mask[mstart—-31] = ones

mask[0-mstop] = ones

mask[all other bits] = zeros

It is not possible to specify an all-zero mask. The use of the mask is described in the
following sections.

If CR updating is enabled, rotate and shift instructions set CRO[0-2] according to the
contents of rA at the completion of the instruction. Rotate and shift instructions do not
change the values of XER[OV] and XER[SO] bits. Rotate and shift instructions, except
algebraic right shifts, do not change the XER[CA] bit.

See Appendix F, “Simplified Mnemonics,” for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

4.2.1.4.1 Integer Rotate Instructions

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is O the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

Rotate left instructions allow right-rotation of the contents of a register to be performed by
aleft-rotation of 64 — n, where n is the number of bits by which to rotate right. It also allows
right-rotation of the contents of the low-order 32 bits of a register to be performed by a left-
rotation of 32 — n, where n is the number of bits by which to rotate right.

4-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The integer rotate instructions are summarized in Table 4-4.

Table 4-4. Integer Rotate Instructions

Name Mnemonic | Operand Syntax Operation

Rotate Left riwinm rA,rS,SH,MB,ME | The contents of register rS are rotated left by the number of bits

Word riwinm. specified by operand SH. A mask is generated having 1 bits from
Immediate the bit specified by operand MB through the bit specified by
then AND with operand ME and 0 bits elsewhere. The rotated data is ANDed with
Mask the generated mask and the result is placed into register rA.

riwinm Rotate Left Word Immediate then AND with Mask
riwinm. Rotate Left Word Immediate then AND with Mask with
CR Update. The dot suffix enables the update of the

CR.
Rotate Left riwnm rA,rS,rB,MB,ME | The contents of rS are rotated left by the number of bits specified
Word then riwnm. by operand in the low-order five bits of rB. A mask is generated
AND with having 1 bits from the bit specified by operand MB through the bit
Mask specified by operand ME and 0 bits elsewhere. The rotated word is

ANDed with the generated mask and the result is placed into rA.

riwnm Rotate Left Word then AND with Mask
riwnm. Rotate Left Word then AND with Mask with CR Update.
The dot suffix enables the update of the CR.

Rotate Left riwimi rA,rS,SH,MB,ME | The contents of rS are rotated left by the number of bits specified
Word riwimi. by operand SH. A mask is generated having 1 bits from the bit
Immediate specified by operand MB through the bit specified by operand ME
then Mask and 0 bits elsewhere. The rotated word is inserted into rA under
Insert control of the generated mask.

riwimi Rotate Left Word Immediate then Mask
riwimi. Rotate Left Word Immediate then Mask Insert with CR
Update. The dot suffix enables the update of the CR.

4.2.1.4.2 Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics”) are provided to make coding of such shifts simpler and easier to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by
2", The setting of XER[CA] by the shift right algebraic instruction is independent of mode.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts.”

Chapter 4. Addressing Modes and Instruction Set Summary 4-19

The integer shift instructions are summarized in Table 4-5.

Table 4-5. Integer Shift Instructions

Operand
Name Mnemonic Syntax Operation
Shift Left siw rA,rS,rB | The contents of rS are shifted left the number of bits specified by operand in
Word siw. the low-order six bits of rB. Bits shifted out of position 0 are lost. Zeros are
. supplied to the vacated positions on the right. The 32-bit result is placed into
rA.
slw Shift Left Word
siw. Shift Left Word with CR Update. The dot suffix enables the update
of the CR.
Shift Right | srw rA,rS,rB | The contents of rS are shifted right the number of bits specified by the low-
Word . Srw. order six bits of rB. Bits shifted out of position 31 are lost. Zeros are supplied
to the vacated positions on the left. The 32-bit result is placed into rA.
srw Shift Right Word
srw. Shift Right Word with CR Update. The dot suffix enables the
update of the CR.
Shift Right | srawi rA,rS,SH | The contents of rS are shifted right the number of bits specified by operand
Algebraic srawi. SH. Bits shifted out of position 31are lost. The result is sign extended and
Word placed into rA.
lmmedlatg srawi Shift Right Algebraic Word immediate
srawi. Shift Right Algebraic Word Immediate with CR Update. The dot
suffix enables the update of the CR.
Shift Right | sraw rA,rS,rB | The contents of rS are shifted right the number of bits specified by the low-
Algebraic sraw. order six bits of rB. Bits shifted out of position 31 are lost. The result is
Word placed into rA.
sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix
enables the update of the CR.

4.2.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

* Floating-point arithmetic instructions

* Floating-point multiply-add instructions

» Floating-point rounding and conversion instructions
* Floating-point compare instructions

* Floating-point status and control register instructions
* Floating-point move instructions

Note that MSR[FP] must be set in order for any of these instructions (including the floating-
point loads and stores) to be executed. If MSR[FP] = 0 when any floating-point instruction
is attempted, the floating-point unavailable exception is taken (see Section 6.4.8, “Floating-
Point Unavailable Exception (0x00800)”). See Section4.2.3, “Load and Store
Instructions,” for information about floating-point loads and stores.

4-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The PowerPC architecture supports a floating-point system as defined in the IEEE-754
standard, but requires software support to conform with that standard. Floating-point
operations conform to the IEEE-754 standard, with the exception of operations performed
with the fmadd, fres, fsel, and frsqrte instructions, or if software sets the non-IEEE mode
bit (NI) in the FPSCR. Refer to Section 3.3, “Floating-Point Execution Models—UISA,”
for detailed information about the floating-point formats and exception conditions. Also,
refer to Appendix D, “Floating-Point Models,” for more information on the floating-point
execution models used by the PowerPC architecture.

4.2.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 4-6.

Table 4-6. Floating-Point Arithmetic Instructions

Name

Mnemonic

Operand
Syntax

Operation

Floating
Add
(Double-
Precision)

fadd
fadd.

frD,frA,frB

The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant significand
is not a one the result is normalized. The result is rounded to the target
precision under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

fadd Floating Add (Double-Precision)
fadd. Floating Add (Double-Precision) with CR Update. The dot suffix
enables the update of the CR.

Floating
Add Single

fadds
fadds.

frD,frAfrB

The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant significand
is not a one, the result is normalized. The result is rounded to the target
precision under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

fadds Floating Add Single
fadds. Floating Add Single with CR Update. The dot suffix enables the
update of the CR.

Floating
Subtract
(Double-
Precision)

fsub
fsub.

frD,frAfrB

The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant
significand is not 1, the result is normalized. The result is rounded to the
target precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.

fsub Floating Subtract (Double-Precision)
fsub. Floating Subtract (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.

Floating
Subtract
Single

fsubs
fsubs.

frD,frA,frB

The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant
significand is not 1, the result is normalized. The result is rounded to the
target precision under control of the floating-point rounding control field RN
of the FPSCR and placed into frD.

fsubs Fioating Subtract Single
fsubs. Floating Subtract Single with CR Update. The dot suffix enables
the update of the CR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-21

Table 4-6. Floating-Point Arithmetic Instructions (Continued)

Operand .
Name | Mnemonic Syntax Operation
Floating | tmul frD,frAfrC The floating-point operand in register frA is multiplied by the floating-point
Multiply fmul. operand in register frC.
f,D°“.b'.e') fmul Floating Multiply (Double-Precision)
recision fmul. Floating Multiply (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.
Floating fmuls frD,frAfrC The floating-point operand in register frA is multiplied by the floating-point
Multiply fmuls. operand in register frC.
Single fmuls Floating Multiply Single
fmuls. Floating Multiply Single with CR Update The dot suffix enables
the update of the CR.
Floating fdiv frD,frA,frB The floating-point operand in register frA is divided by the floating-point
Divide fdiv. operand in register frB. No remainder is preserved.
f,Dr°“.b'i°'n) fdiv Floating Divide (Double-Precision)
ecisio tdiv. Floating Divide (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.
Floating fdivs frD,frA,frB The floating-point operand in register frA is divided by the floating-point
Divide fdivs. operand in register frB. No remainder is preserved.
Single fdivs Floating Divide Single
fdivs. Floating Divide Single with CR Update. The dot suffix enables
the update of the CR.
Floating fsqrt frD,frB The square root of the floating-point operand in register frB is placed into
Square fsqrt. register frD.
rg) Otbl . fsqrt Floating Square Root (Double-Precision)
ouble fsqrt. Floating Square Root (Double-Precision) with CR Update. The
Precision)
dot suffix enables the update of the CR.
This instruction is optional.
Floating fsqrts frD,frB The square root of the floating-point operand in register frB is placed into
Square fsqrts. register frD.
g;ﬂ fsqrts Floating Square Root Single
gl fsqrts. Floating Square Root Single with CR Update. The dot sufﬁx
enables the update of the CR.
This instruction is optional.
Floating fres frD,frB A single-precision estimate of the reciprocal of the floating-point operand in
Reciprocal |fres.) register frB is placed into frD. The estimate placed into frD is correct to a
Estimate precision of one part in 256 of the reciprocal of frB.
Single fres Floating Reciprocal Estimate Single
fres. Floating Reciprocal Estimate Single with CR Update. The dot
suffix enables the update of the CR.
This instruction is optional.

4-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-6. Floating-Point Arithmetic Instructions (Continued)

. Operand
Name | Mnemonic Syntax Operation

Floating frsqrte frD,frB A double-precision estimate of the reciprocal of the square root of the
Reciprocal |frsqrte. floating-point operand in register frB is placed into frD. The estimate
Square placed into frD is correct to a precision of one part in 32 of the reciprocal of
Root the square root of frB.
Estimate frsqrte Floating Reciprocal Square Root Estimate

frsqrte. Floating Reciprocal Square Root estimate with CR Update. The

dot suffix enables the update of the CR.

This instruction is optional.
Floating fsel frD,frA,frC,frB | The floating-point operand in frA is compared to the value zero. If the
Select operand is greater than or equal to zero, frD is set to the contents of frC. If

the operand is less than zero or is a NaN, frD is set to the contents of frB.
The comparison ignores the sign of zero (that is, regards +0 as equal to

-0). .
fsel Floating Select
fsel. Floating Select with CR Update. The dot suffix enables the

update of the CR.
This instruction is optional.

4.2.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

Status bits are set as follows:

* Overflow, underflow, and inexact exception bits, the FR and FI bits, and the FPRF
field are set based on the final result of the operation, and not on the result of the
multiplication.

¢ Invalid operation exception bits are set as if the multiplication and the addition were
performed using two separate instructions (fmuls, followed by fadds or fsubs). That
is, multiplication of infinity by zero or of anything by an SNaN, and/or addition of
an SNaN, cause the corresponding exception bits to be set.

The floating-point multiply-add instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Multiply-Add Instructions

Name | Mnemonic | Operand Syntax Operation
Floating |[fmadd frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-
Multiply- | fmadd. point operand in register frC. The floating-point operand in register frB
Add is added to this intermediate result.
(Double- . o g -
Precision) fmadd Floating Multiply-Add (Double-Precision)

fmadd. Floating Multiply-Add (Double-Precision) with CR Update.
The dot suffix enables the update of the CR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-23

Table 4-7. Floating-Point Multiply-Add Instructions (Continued)

Name | Mnemonic | Operand Syntax Operation
Floating |fmadds frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-
Multiply- | fmadds. point operand in register frC. The floating-point operand in register frB
Add is added to this intermediate result.
Single

fmadds Floating Multiply-Add Single
fmadds. Floating Multiply-Add Single with CR Update. The dot suffix
enables the update of the CR.

Floating |fmsub frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-

Multiply- | fmsub. point operand in register frC. The floating-point operand in register frB
Subtract is subtracted from this intermediate result.

(Double- : e Dracic

Precision) fmsub Floating Multiply-Subtract (Double-Precision)

fmsub. Floating Multiply-Subtract (Double-Precision) with CR
Update. The dot suffix enables the update of the CR.

Floating |fmsubs frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-

Multiply- |fmsubs. point operand in register frC. The floating-point operand in register frB
Subtract is subtracted from this intermediate result.
Single

fmsubs Floating Multiply-Subtract Single
fmsubs. Floating Multiply-Subtract Single with CR Update. The dot
suffix enables the update of the CR.

Floating |fnmadd frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-

Negative |fnmadd. point operand in register frC. The floating-point operand in register frB
Multiply- is added to this intermediate result.
Add

fnmadd ' Floating Negative Multiply-Add (Double-Precision)
fnmadd. Floating Negative Multiply-Add (Double-Precision) with CR
Update. The dot suffix enables update of the CR.

(Double-
Precision)

Floating |fnmadds |frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-

Negative |fnmadds. point operand in register frC. The floating-point operand in register frB
Multiply- is added to this intermediate result.
Add ’

fnmadds Floating Negative Multiply-Add Single
fnmadds. Floating Negative Multiply-Add Single with CR Update. The
dot suffix enables the update of the CR.

Single

Floating |fnmsub frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-

Negative |fnmsub. point operand in register frC. The floating-point operand in register frB
Multiply- is subtracted from this intermediate result.
(Ss’::;:t_ fnmsub Floating Negative Multiply-Subtract (Double-Precision)

fnmsub. Floating Negative Multiply-Subtract (Double-Precision) with

Precision) CR Update. The dot suffix enables the update of the CR.

Floating |fnmsubs |frD,frAfrC,frB The floating-point operand in register frA is multiplied by the floating-

Negative |fnmsubs. point operand in register frC. The floating-point operand in register frB
Multiply- is subtracted from this intermediate resuilt.
gi‘:‘t;{:‘” fnmsubs Floating Negative Multiply-Subtract Single

fnmsubs. Floating Negative Multiply-Subtract Single with CR Update.
o The dot suffix enables the update of the CR.

For more information on multiply-add instructions, refer to Section D.2, “Execution Model
for Multiply-Add Type Instructions.”

4-24 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-
point convert instructions convert a 64-bit double-precision floating-point number to a 32-
bit signed integer number.

The PowerPC architecture defines bits 0-31 of floating-point register frD as undefined
when executing the Floating Convert to Integer Word (fctiw) and Floating Convert to
Integer Word with Round toward Zero (fctiwz) instructions. The floating-point rounding
instructions are shown in Table 4-8.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models.”

Table 4-8. Floating-Point Rounding and Conversion Instructions

. | Operand .
Name Mnemonic Syntax Operation
Floating Round |frsp frD,frB | The floating-point operand in frB is rounded to single-precision using the
to Single- frsp. rounding mode specified by FPSCR[RN] and placed into frD.
Precision frsp Floating Round to Single-Precision
frsp. Floating Round to Single-Precision with CR Update. The dot
suffix enables the update of the CR.
Floating Convert | fctiw frD,frB | The floating-point operand in register frB is converted to a 32-bit signed
to Integer Word | fctiw. integer, using the rounding mode specified by FPSCR[RN], and placed in
the low-order 32 bits of frD. Bits 0-31 of frD are undefined.
fetiw Floating Convert to Integer Word
fetiw. Floating Convert to Integer Word with CR Update. The dot suffix
enables the update of the CR.
Floating Convert | fctiwz frD,frB | The floating-point operand in register frB is converted to a 32-bit signed
to Integer Word | fctiwz. integer, using the rounding mode Round toward Zero, and placed in the low-
with Round order 32 bits of frD. Bits 0-31 of frD are undefined.
toward Zero fetiwz Floating Convert to Integer Word with Round toward Zero
fctiwz. Floating Convert to Integer Word with Round toward Zero with
CR Update. The dot suffix enables the update of the CR.

4.2.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers
and the comparison ignores the sign of zero (that is +0 = —0). The comparison can be
ordered or unordered. The comparison sets one bit in the designated CR field and clears the
other three bits. The FPCC (floating-point condition code) in bits 16-19 of the FPSCR
(floating-point status and control register) is set in the same way.

Chapter 4. Addressing Modes and Instruction Set Summary 4-25

The CR field and the FPCC are interpreted as shown in Table 4-9.

‘Table 4-9. CR Bit Settings
Bit | Name Description
o |F (frA) < (frB)
1 FG (frA) > (frB)
2 FE (frA) = (frB)
3 FU (frA) ? (frB) (unordered)

The floating-point compare instructions are summarized in Table 4-10.

Table 4-10. Floating-Point Compare Instructions

Operand
Name Mnemonic Syntax Operation

Floating |fcmpu criD,frAfrB | The floating-point operand in frA is compared to the floating-point operand
Compare in frB. The result of the compare is placed into crfD and the FPCC.
Unordered

Floating |fempo crfD,frA,frB | The floating-point operand in frA is compared to the floating-point operand
Compare in frB. The result of the compare is placed into crfD and the FPCC.
Ordered :

4.2.2.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. In particular:

» All exceptions caused by the previously initiated instructions are recorded in the
FPSCR before the FPSCR instruction is initiated.

» All invocations of the floating-point exception handler caused by the previously
initiated instructions have occurred before the FPSCR instruction is initiated.

* No subsequent floating-point instruction that depends on or alters the settings of any
FPSCR bits appears to be initiated until the FPSCR instruction has completed.

Floating-point memory access instructions are not affected by the execution of the FPSCR
instructions.

4-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The FPSCR instructions are summarized in Table 4-11.

Table 4-11. Floating-Point Status and Control Register Instructions

. Operand
Name Mnemonic Syntax Operation
Move from mifs frD The contents of the FPSCR are placed into bits 32—63 of frD. Bits 0-31 of
FPSCR mffs. frD are undefined.
mifs Move from FPSCR
mffs. Move from FPSCR with CR Update. The dot suffix enables the
update of the CR.
Move to mcerfs crfD,crfS | The contents of FPSCR field specified by operand crfS are copied to the
Condition CR field specified by operand crfD. All exception bits copied (except FEX
Register from and VX bits) are cleared in the FPSCR.
FPSCR
Move to mtfsfi crfD,IMM | The contents of the IMM field are placed into FPSCR field crfD. The
FPSCR Field | mtfsfi. contents of FPSCR[FX] are altered only if erfD = 0.
Immediate mtfsfi Move to FPSCR Field Immediate
mtfsfi. Move to FPSCR Field Immediate with CR Update. The dot
suffix enables the update of the CR.
Move to mtfst FM,frB Bits 32-63 of frB are placed into the FPSCR under control of the field
FPSCR Fields | mtfsf. mask specified by FM. The field mask identifies the 4-bit fields affected.
Let i be an integer in the range 0-7. If FM[{] = 1, FPSCR field i (FPSCR
bits 4*jthrough 4*/+3) is set to the contents of the corresponding field of
the low-order 32 bits of frB.
The contents of FPSCR[FX] are altered only if FM[0] = 1.
mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix enables
the update of the CR.
Move to mtfsb0 crbD The FPSCR bit location specified by operand crbD is cleared.
FPSCRBit0 | mtfsbo. Bits 1 and 2 (FEX and VX) cannot be reset explicitly.
mtfsb0 Move to FPSCR Bit 0
mtfsb0. Move to FPSCR Bit 0 with CR Update. The dot suffix enables
the update of the CR.
Move to mtfsbi crbD The FPSCR bit location specified by operand crbD is set.
FPSCRBit1 [mifsb1. Bits 1 and 2 (FEX and VX) cannot be set explicitly.
mtfsb1 Move to FPSCR Bit 1
mtfsb1. Move to FPSCR Bit 1 with CR Update. The dot suffix enables
the update of the CR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-27

4.2.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, altermg the sign bit
(bit 0) as described for the fneg, fabs, and fnabs instructions in Table 4-12. The fneg, fabs,
and fnabs instructions may alter the sign bit of a NaN. The floating-point move instructions
do not modify the FPSCR. The CR update option in these instructions controls the placing
of result status into CR1. If the CR update option is enabled, CR1 is set; otherwise, CR1 is
unchanged.

Table 4-12 provides a summary of the floating-point move instructions.

Table 4-12. Floating-Point Move Instructions

Name |Mnemonic| Operand Syntax " Operation
Floating |fmr frD,frB The contents of frB are placed into frD.
I:gvg ter fmr. fmr Floating Move Register -
gis fmr. Floating Move Register with CR Update. The dot suffix

enables the update of the CR.

Floating |fneg frD,frB The contents of frB with bit 0 inverted are placed into frD.

Negate fneg. fneg Floating Negate

fneg. Floating Negate with CR Update. The dot suffix enables the |
update of the CR.

Floating |fabs. frD,frB The contents of frB with bit 0 cleared are placed into frD.
Absolute | fabs. fabs Floating Absolute Value

Value fabs. Floating Absolute Value with CR Update. The dot suffix
enables the update of the CR.

Floating |fnabs frD,frB - | The contents of frB with bit 0 set are placed into frD.

l:ggaltntfe fnabs. fnabs Floating Negative Absolute Value

Valff(’e ute fnabs. Floating Negative Absolute Value with CR Update. The dot

suffix enables the update of the CR.

4.2.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

* Integer load instructions

* Integer store instructions

» Integer load and store with byte-reverse instructions

* Integer load and store multiple instructions

* Floating-point load instructions

* Floating-point store instructions

* Memory synchronization instructions

4-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.3.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 4.1.4.2, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 6.4.6.1, “Integer Alignment
Exceptions,” for additional information about load and store address alignment exceptions.

4.2.3.1.1 Register Indirect with Inmediate Index Addressing for Integer
Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended, and added to the contents of a general-purpose register
specified in the instruction (rA operand) to generate the effective address. If the rA field of
the instruction specifies r0, a value of zero is added to the immediate index (d operand) in
place of the contents of r0. The option to specify rA or 0 is shown in the instruction
descriptions as (rAl0).

Figure 4-1 shows how an effective address is generated when using register indirect with
immediate index addressing.

0 56 1011 15 16 31
Instruction Encoding: [opoode | rD/rSL rA l

o
L

0 47 48] 63
| Sign Extension d l

Yes

A
_ No -
0 63 0 63

| GPR (rA) Effective Address
0 63 .

. Store »| Memory
| GPR (rD/fS) | Load Interface

Figure 4-1. Register Indirect with Inmediate Index Addressing for Integer
Loads/Stores

Chapter 4. Addressing Modes and Instruction Set Summary 4-29

4.2.3.1.2 Register Indirect with Index Addressing for Integer Loads and
Stores

Instructions using this addressing mode cause the contents of two general-purpose registers

(specified as operands rA and rB) to be added in the generation of the effective address. A

zero in place of the rA operand causes a zero to be added to the contents of the general-

purpose register specified in operand rB (or the value zero for Iswi and stswi instructions).

The option to specify rA or 0 is shown in the instruction descriptions as (rAl0).

Figure 4-2 shows how an effective address is generated when using register indirect with
index addressing.

.) 0 56 1011 1516 20 21 30 31
Reserved Instruction Encoding: [Opcode [rors| ta | 8 | Subopeode
0 | 63
| GPR (rB)
Yes n
No -
0 63 0 63
| GPR (rA) ‘ Effective Address]
Y
0 63
. Store | Memory

| GPR (1D/rS) [Load Interface

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores

4.2.3.1.3 Register Indirect Addressing for Integer Loads and Stores

Instructions using this addressing mode use the contents of the general-purpose register
specified by the rA operand as the effective address. A zero in the rA operand causes an
effective address of zero to be generated. The option to specify rA or 0 is shown in the
instruction descriptions as (rAl0).

Figure 4-3 shows how an effective address is generated when using register indirect
addressing.

4-30 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

0 56 1011 1516 2021 30 31
Instruction Encoding: | opcode | roirs| ra | NB | Subopcode

0 63
Yes
rA=0? ~|oooooooooooooooooooooooooooooooq
No
0 63
| GPR (rA) |
0 1 63
¢{ Effective Address I
0 63 ‘
. Store »| Memory
| GPR (rD/rS) [Load Interface

Figure 4-3. Register Indirect Addressing for integer Loads/Stores

4.2.3.2 Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if rA #
0 and rA #rD (otherwise invalid), the EA is placed into rA and the memory element (byte,
half word, word, or double word) addressed by the EA is loaded into rD. Note that the
PowerPC architecture defines load with update instructions with operand rA = 0 or
rA =rD as invalid forms.

The default byte and bit ordering is big-endian in the PowerPC architecture; see
Section 3.1.2, “Byte Ordering,” for information about little-endian byte ordering.

Note that in some implementations of the architecture, the load word algebraic instructions
(Tha, lhax, lwa, lwax) and the load with update (Ibzu, Ibzux, lhzu, lhzux, lhau, lhaux,
Iwaux, ldu, ldux) instructions may execute with greater latency than other types of load
instructions. Moreover, the load with update instructions may take longer to execute in
some implementations than the corresponding pair of a nonupdate load followed by an add
instruction.

Chapter 4. Addressing Modes and Instruction Set Summary 4-31

Table 4-13 summarizes the integer load instructions.

Table 4-13. Integer Load Instructions

Operand .
Name Mnemonic Syntax Operation

Load Byte and |lbz rD,d(rA) |The EA is the sum (rAl0) + d. The byte in memory addressed by the EA is

Zero loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and |Ibzx rD,rA,rB | The EA is the sum (rAlO) + (rB). The byte in memory addressed by the EA is

Zero Indexed loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and |lIbzu rD,d(rA) |The EA is the sum (rA) + d. The byte in memory addressed by the EA is

Zero with loaded into the low-order eight bits of rD. The remaining bits in rD are

Update cleared. The EA is placed into rA.

Load Byte and | Ibzux rD,rA,rB | The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is

Zero with loaded into the low-order eight bits of rD. The remaining bits in rD are

Update Indexed cleared. The EA is placed into rA.

Load Half Word |lhz rD,d(rA) | The EA is the sum (rAlO) + d. The half word in memory addressed by the EA

and Zero is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

Load Half Word | lhzx rD,rA,rB | The EA is the sum (rAl0) + (rB). The half word in memory addressed by the

and Zero EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are

Indexed cleared.

Load Half Word |lhzu rD,d(rA) | The EA is the sum (rA) + d. The half word in memory addressed by the EA is

and Zero with loaded into the low-order 16 bits of rD. The remaining bits in rD are cleared.

Update The EA is placed into rA.

Load Half Word | Ihzux rD,rA,rB | The EA is the sum (rA) + (rB). The half word in memory addressed by the EA

and Zero with is loaded into the low-order 16 bits of rD. The remaining bits in rD are

Update Indexed cleared. The EA is placed into rA.

Load Half Word |lha rD,d(rA) |The EA is the sum (rAl0) + d. The half word in memory addressed by the EA

Algebraic is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
with a copy of the most significant bit of the loaded half word.

Load Half Word |lhax rD,rA,rB | The EA is the sum (rAl0) + (rB). The half word in memory addressed by the

Algebraic EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are

Indexed filled with a copy of the most significant bit of the loaded half word.

Load Half Word | Ihau rD,d(rA) |The EA is the sum (rA) +d. The half word in memory addressed by the EA is

Algebraic with loaded into the low-order 16 bits of rD. The remaining bits in rD are filled with

Update a copy of the most significant bit of the loaded half word. The EA is placed
into rA.

Load Half Word |lhaux rD,rA,rB | The EAis the sum (rA) + (rB). The half word in memory addressed by the EA

Algebraic with is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled

Update Indexed with a copy of the most significant bit of the loaded half word. The EA is
placed into rA.

Load Word and |Ilwz rD,d(rA) |The EA is the sum (rAl0) + d. The word in memory addressed by the EA is

Zero loaded into rD.

Load Word and | lwzx rD,rA,rB | The EA is the sum (rAlO) + (rB). The word in memory addressed by the EA is

Zero Indexed loaded into rD.

4-32

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-13. Integer Load Instructions (Continued)

Operand .
Name Mnemonic Syntax Operation
Load Word and |lwzu rD,d(rA) | The EA is the sum (rA) + d. The word in memory addressed by the EA is
Zero with loaded into rD. The EA is placed into rA.
Update

Load Word and | lwzux rD,rA,rB | The EA is the sum (rA) + (rB). The word in memory addressed by the EA is
Zero with loaded into rD. The EA is placed into rA.
Update Indexed

4.2.3.3 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

e IfrA #0, the effective address is placed into rA.

e IfrS=rA, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

In general, the PowerPC architecture defines a sequential execution model. However, when
a store instruction modifies a memory location that contains an instruction, software
synchronization is required to ensure that subsequent instruction fetches from that location
obtain the modified version of the instruction.

If a program modifies the instructions it intends to execute, it should call the appropriate
system library program before attempting to execute the modified instructions to ensure
that the modifications have taken effect with respect to instruction fetching.

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 4-14 provides
a summary of the integer store instructions.

Table 4-14. Integer Store Instructions

Operand
Name Mnemonic Syntax Operation

Store Byte stb rS,d(rA) | The EA is the sum (rAl0) + d. The contents of the low-order eight bits
of rS are stored into the byte in memory addressed by the EA.

Store Byte Indexed |stbx rS,rA,rB | The EA is the sum (rAl0) + (rB). The contents of the low-order eight
bits of rS are stored into the byte in memory addressed by the EA.

Store Byte with stbu rS,d(rA) | The EA is the sum (rA) + d. The contents of the low-order eight bits of

Update rS are stored into the byte in memory addressed by the EA. The EA is
placed into rA.

Chapter 4. Addressing Modes and Instruction Set Summary 4-33

Table 4-14. Integer Store Instructions (Continued)

.| Operand .
Name Mnemonic Syntax Operation

Store Byte with stbux rS,rA,rB | The EA is the sum (rA) + (rB). The contents of the low-order eight bits

Update Indexed of rS are stored into the byte in memory addressed by the EA. The EA
is placed into rA.

Store Half Word sth rS,d(rA) | The EA is the sum (rAlO) + d. The contents of the low-order 16 bits of
rS are stored into the half word in memory addressed by the EA.

Store Half Word sthx rS,rA,rB | The EA is the sum (rAlO) + (rB). The contents of the low-order 16 bits

Indexed of rS are stored into the half word in memory addressed by the EA.

Store Half Word with | sthu rS,d(rA) |The EAis the sum (rA) + d. The contents of the low-order 16 bits of rS

Update are stored into the half word in memory addressed by the EA. The EA
is placed into rA.

Store Half Word with | sthux rS,rA,rB | The EA is the sum (rA) + (rB). The contents of the low-order 16 bits of

Update Indexed rS are stored into the half word in memory addressed by the EA. The
EA is placed into rA.

Store Word stw rS,d(rA) |The EA is the sum (rAIO) + d. The contents of rS are stored into the
word in memory addressed by the EA.

Store Word Indexed | stwx rS,rA,rB | The EA is the sum (rAlO) + (rB). The contents of rS are stored into the
word in memory addressed by the EA.

Store Word with stwu rS,d(rA) | The EA is the sum (rA) + d. The contents of rS are stored into the

Update word in memory addressed by the EA. The EA is placed into rA.

Store Word with stwux rS,rA,rB | The EA is the sum (rA) + (rB). The contents of rS are stored into the

Update Indexed word in memory addressed by the EA. The EA is placed into rA.

4.2.3.4 Integer Load and Store with Byte-Reverse Instructions

Table 4-15 describes integer load and store with byte-reverse instructions. Note that in
some PowerPC implementations, load byte-reverse instructions may have greater latency
than other load instructions.

When used in a PowerPC system operating with the default big-endian byte order, these
instructions have the effect of loading and storing data in little-endian order. Likewise,
when used in a PowerPC system operating with little-endian byte order, these instructions
have the effect of loading and storing data in big-endian order. For more information about
big-endian and little-endian byte ordering, see Section 3.1.2, “Byte Ordering.”

4-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-15. Integer Load and Store with Byte-Reverse Instructions

Name |Mnemonic Og;r:::: Operation

Load Half |lhbrx rD,rA,rB | The EA is the sum (rAlO) + (rB). The high-order eight bits of the half word

Word Byte- addressed by the EA are loaded into the low-order eight bits of rD. The next eight

Reverse higher-order bits of the half word in memory addressed by the EA are loaded into

Indexed the next eight lower-order bits of rD. The remaining rD bits are cleared.

Load Iwbrx rD,rA,rB | The EA is the sum (rAlO) + (rB). Bits 0—7 of the word in memory addressed by

Word Byte- the EA are loaded into the low-order eight bits of rD. Bits 8—15 of the word in

Reverse memory addressed by the EA are loaded into bits 16—23 of rD. Bits 16—23 of the

Indexed word in memory addressed by the EA are loaded into bits 8—15. Bits 24-31 of
the word in memory addressed by the EA are loaded into bits 0-7. The
remaining bits in rD are cleared.

Store Half |sthbrx rS,rA,rB | The EA is the sum (rAl0) + (rB). The contents of the low-order eight bits of rS are

Word Byte- stored into the high-order eight bits of the half word in memory addressed by the

Reverse EA. The contents of the next lower-order eight bits of rS are stored into the next

Indexed eight higher-order bits of the half word in memory addressed by the EA.

StoreWord | stwbrx rS,rA,rB | The effective address is the sum (rAl0) + (rB). The contents of the low-order

Byte- eight bits of rS are stored into bits 0-7 of the word in memory addressed by EA.

Reverse The contents of the next eight lower-order bits of rS are stored into bits 8—15 of

Indexed the word in memory addressed by the EA. The contents of the next eight lower-

order bits of rS are stored into bits 16—23 of the word in memory addressed by
the EA. The contents of the next eight lower-order bits of rS are stored into bits
24-31 of the word addressed by the EA.

4.2.3.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.
Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EA and rD (rS) is such that
the low-order byte of GPR31 is loaded from or stored into the last byte of an aligned quad
word in memory; if the effective address is not correctly aligned, it may take significantly
longer to execute.

In some PowerPC implementations operating with little-endian byte order, execution of an
Imw or stmw instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.

Chapter 4. Addressing Modes and Instruction Set Summary 4-35

The PowerPC architecture defines the load multiple word (Imw) instruction with rA in the
range of registers to be loaded, including the case in which rA = 0, as an invalid form.

Table 4-16. Integer Load and Store Multiple Instructions

Operand
Name Mnemonic Syntax Operation
Load Multiple Word “Imw rD,d(rA) The EA is the sum (rAlO) + d. n = (32 - rD).
Store Multiple Word stmw rS,d(rA) The EA is the sum (rAl0) + d. n= (32 - rS).

4.2.3.6 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 4-17
summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently when rD or rS = 5, and the last
register loaded or stored is less than or equal to 12.

In some PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.

Table 4-17. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax Operation
Load String Word Immediate Iswi rD,rA,NB The EA is (rAlO).
Load String Word Indexed Iswx rD,rA,rB The EA is the sum (rAlO) + (rB).
Store String Word Immediate stswi rS,rA,NB The EA is (rAlO).
Store String Word Indexed stswx rS,rA,rB The EA is the sum (rAlO) + (rB).

Load string and store string instructions may involve operands that are not word-aligned.
As described in Section 6.4.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non-word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

4-36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.3.7 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads:and stores are not supported for direct-store interface accesses.
The use of floating-point loads and stores for direct-store interface accesses results in an
alignment exception. Note that the direct-store facility is being phased out of the
architecture and is not likely to be supported in future devices.

4.2.3.7.1 Register Indirect with Inmediate Index Addressing for Floating-
Point Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended to 32 bits, and added to the contents of a GPR specified
in the instruction (rA operand) to generate the effective address. If the rA field of the
instruction specifies r0, a value of zero is added to the immediate index (d operand) in place
of the contents of r0. The option to specify rA or 0 is shown in the instruction descriptions
as (rAl0).

Figure 4-4 shows how an effective address is generated when using register indirect with
immediate index addressing for floating-point loads and stores.

0 56 1011 1516 31
Instruction Encoding: lopcodel rDArS | A | d j
0 47 48 63
L Sign Extension d I

Yes

e
No W
0 63 63

0
| GPR (TA) | Effective Address
0 63
- Store > Memory
| FPR (frD/rS) B Toad Access

Figure 4-4. Register Indirect with Inmediate Index Addressing for Floating-Point
Loads/Stores

Chapter 4. Addressing Modes and Instruction Set Summary 4-37

4.2.3.7.2 Register Indirect with Index Addressing for Floating-Point Loads
and Stores

Instructions using this addressing mode add the contents of two GPRs (specified in
operands rA and rB) to generate the effective address. A zero in the rA operand causes a
zero to be added to the contents of the GPR specified in operand rB. This is shown in the
instruction descriptions as (rAl0).

Figure 4-5 shows how an effective address is generated when using register indirect with
index addressing.

0 56 1011 1516 2021 30 31

0 \ 63

I GPR (rB)
Yes
@ o] 1
No ?
0 63 | 0 63
|

l GPR (rA) Effectiver Address
0 63

. Store »| Memory
[FPR (frDATS) [Load Access

Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Stores

The PowerPC architecture defines floating-point load and store with update instructions
(Ifsu, Ifsux, Ifdu, Ifdux, stfsu, stfsux, stfdu, stfdux) with operand rA = 0 as invalid forms
of the instructions. In addition, it defines floating-point load and store instructions with the
CR updating option enabled (Rc bit, bit 31 = 1) to be an invalid form.

The PowerPC architecture defines that the FPSCR[UE] bit should not be used to determine
whether denormalization should be performed on floating-point stores.

4.2.3.8 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-
precision operand formats. Because the FPRs support only the floating-point double-
precision format, single-precision floating-point load instructions convert single-precision
data to double-precision format before loading the operands into the target FPR. This
conversion is described fully in Section D.6, “Floating-Point Load Instructions.”
Table 4-18 provides a summary of the floating-point load instructions.

4-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Note that the PowerPC architecture defines load with update instructions with rA =0 as an
invalid form.

Table 4-18. Floating-Point Load Instructions

. | Operand :
Name Mnemonic Syntax Operation

Load Floating- | Ifs frD,d(rA) |The EAis the sum (rAlO) + d.

Point Single The word in memory addressed by the EA is interpreted as a floating-point
single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

Load Floating- | Ifsx frD,rA,rB | The EA is the sum (rAlO) + (rB).

ﬁ‘t;n::éngle The word in memory addressed by the EA is interpreted as a floating-point

e single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

Load Floating- | Ifsu frD,d(rA) |The EAis the sum (rA) +d.

";‘i)t'r:‘tus'gg:: The word in memory addressed by the EA is interpreted as a floating-point

P single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.
The EA is placed into the register specified by rA.

Load Floating- | Ifsux frD,rA,rB | The EA is the sum (rA) + (rB).

az::‘tusl;gg:: The word in memory addressed by the EA is interpreted as a floating-point

Indexed single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

The EA is placed into the register specified by rA.

Load Floating- | Ifd frD,d(rA) |The EAis the sum (rAlO) + d.

Point Double The double word in memory addressed by the EA is placed into register frD.

Load Floating- | Ifdx frD,rA,rB | The EA is the sum (rAlO) + (rB).

:::::;Bdwble The double word in memory addressed by the EA is placed into register frD.

Load Floating- | ifdu frD,d(rA) |The EAis the sum (rA) + d.

Point Double . . . "

with Update The double word in memory addressed by the EA is placed into register frD.
The EA is placed into the register specified by rA.

Load Floating- | Ifdux frD,rA,rB | The EA is the sum (rA) + (rB).

Point Double

with Update The dauble word in memory addressed by the EA is placed into register frD.

Indexed The EA is placed into the register specified by rA.

Chapter 4. Addressing Modes and Instruction Set Summary 4-39

4.2.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the

store instruction—single-precision, double-precision, and integer. The integer form is

supported by the stfiwx instruction. (Note that the stfiwx instruction is defined as optional
by the PowerPC architecture to ensure backwards compatibility with earlier processors;

however, it will likely be required for subsequent PowerPC processors.) Because the FPRs

support only floating-point, double-precision format for floating-point data, single-

precision floating-point store instructions convert double-precision data to single-precision

format before storing the operands. The conversion steps are described fully in Section D.7,

“Floating-Point Store Instructions.” Table 4-19 provides a summary of the floating-point

store instructions.

Note that the PowerPC architecture defines store with update instructions with rA =0 as an
invalid form.

Table 4-19 provides the floating-point store instructions for the PowerPC processors.

Table 4-19. Floating-Point Store Instructions

Name Mnemonic | Operand Syntax Operation
Store Floating- | stfs frS,d(rA) The EA is the sum (rAl0) + d. ‘
Point Single The contents of frS are converted to single-precision and stored
into the word in memory addressed by the EA.
Store Floating- | stfsx frS,rA,rB The EA is the sum (rAlO) + (rB).
Point Single The contents of rS are converted to single-precision and stored
Indexed into the word in memory addressed by the EA.
Store Floating- | stfsu frS,d(rA) The EA is the sum (rA) + d.
Point Single The contents of frS are converted to single-precision and stored
with Update into the word in memory addressed by the EA.
The EA is placed into rA.
Store Floating- | stfsux frS,rA,rB The EA is the sum (rA) + (rB).
Ps,tlt:‘LSIgagule The contents of frS are converted to single-precision and stored
with Update into the word in memory addressed by the EA.
Indexed
The EA is placed into the rA.
Store Floating- | stfd frS,d(rA) The EA is the sum (rAl0) + d.
Point Double The contents of frS are stored into the double word in memory
addressed by the EA.
Store Floating- | stfdx frS,rA,rB The EA is the sum (rAlO) + (rB).
IPcz;nt Ddouble The contents of frS are stored into the double word in memory
naexe addressed by the EA.
Store Floating- | stfdu frS,d(rA) The EA is the sum (rA) + d.
Pc.:;n:tUDzult)Ie The contents of frS are stored into the double word in memory
with Update addressed by the EA.
The EA is placed into rA.

4-40 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-19. Floating-Point Store Instructions (Continued)

Name Mnemonic | Operand Syntax Operation

Store Floating- | stfdux frS,rA,rB The EA is the sum (rA) + (rB).
Point Double . .

ith Updat The contents of frS are stored into the double word in memory
with Update addressed by EA.
Indexed

The EA is placed into register rA.

Store Floating- | stfiwx frS,rA,rB The EA is the sum (rAlO) + (rB).
r‘i'm asw rd The contents of the low-order 32 bits of frS are stored, without
I:c:eiee:j ° conversion, into the word in memory addressed by the EA.

Note: The stfiwx instruction is defined as optional by the PowerPC
architecture to ensure backwards compatibility with earlier
processors; however, it will likely be required for subsequent
PowerPC processors.

4.2.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch may either be predicted using the y bit (as described in Table 4-20) or by using
dynamic prediction. The interlock is monitored while instructions are fetched for the
predicted branch. When the interlock is cleared, the processor determines whether the
prediction was correct based on the value of the CR bit. If the prediction is correct, the
branch is considered completed and instruction fetching continues. If the prediction is
incorrect, the fetched instructions are purged, and instruction fetching continues along the
alternate path.

4.2.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

e Branch relative

¢ Branch conditional to relative address

¢ Branch to absolute address

¢ Branch conditional to absolute address

* Branch conditional to link register

* Branch conditional to count register

Chapter 4. Addressing Modes and Instruction Set Summary 4-41

In the 32-bit mode of a 64-bit implementation, the final step in the address computation is
clearing the high-order 32 bits of the target address.

4.2.4.1.1 Branch Relative Addressing Mode

Instructions that use branch relative addressing generate the next instruction address by
sign extending and appending 0b00 to the immediate displacement operand LI, and adding
the resultant value to the current instruction address. Branches using this addressing mode
have the absolute addressing option disabled (AA field, bit 30, in the instruction
encoding = 0). The link register (LR) update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-6 shows how the branch target address is generated when using the branch relative
addressing mode.

0 56 29 30 31
Instruction Encoding: | 18 | L |adiy
0 37 38 61 62 63
|Sign Extensionl LI
0 63
L Current Instruction Address +
0 63
Reserved L Branch Target Address

Figure 4-6. Branch Relative Addressing

4.2.4.1.2 Branch Conditional to Relative Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to relative
addressing mode generate the next instruction address by sign extending and appending
0b00 to the immediate displacement operand (BD) and adding the resultant value to the
current instruction address. Branches using this addressing mode have the absolute
addressing option disabled (AA field, bit 30, in the instruction encoding = 0). The link
register update option can be enabled (LK field, bit 31, in the instruction encoding = 1).
This option causes the effective address of the instruction following the branch instruction
to be placed in the LR.

Figure 4-7 shows how the branch target address is generated when using the branch
conditional relative addressing mode.

4-42 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

0 56 1011 1516 30 31
Instruction Encoding:[16 | Bo] Bl BD [aie] f] Reserved

0 63
Next Sequential Instruction Address

Condition
Met?

0 47 48 61 62 63
[Sign Extension BD
0 63
Current Instruction Address I_’@
0 63
L Branch Target Address]

Figure 4-7. Branch Conditional Relative Addressing

4.2.4.1.3 Branch to Absolute Addressing Mode

Instructions that use branch to absolute addressing mode generate the next instruction
address by sign extending and appending Ob0O to the LI operand. Branches using this
addressing mode have the absolute addressing option enabled (AA field, bit 30, in the
instruction encoding = 1). The link register update option can be enabled (LK field, bit 31,
in the instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to
absolute addressing mode.

0 56 29 30 31
Instruction Encoding: | 18 | L a4
0 3738 61 62 63
|Sign Extensionl LI JO | 0 |
0 1] 61 62 63
| Branch Target Address 1 0 I OJ

Figure 4-8. Branch to Absolute Addressing

Chapter 4. Addressing Modes and Instruction Set Summary 4-43

4.2.4.1.4 Branch Conditional to Absolute Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to absolute
addressing mode generate the next instruction address by sign extending and appending
0b00 to the BD operand. Branches using this addressing mode have the absolute addressing
option enabled (AA field, bit 30, in the instruction encoding = 1). The link register update
option can be enabled (LK field, bit 31, in the instruction encoding = 1). This option causes
the effective address of the instruction following the branch instruction to be placed in the
LR.

Figure 4-9 shows how the branch target address is generated when using the branch
conditional to absolute addressing mode.

0 56 1011 1516 29 30 31
Instruction Encoding: | 16 | 8o | s BD aaliy]

63
Next Sequential Instruction Address

0 61 62 63
L Sign Extension BD m 0 l
0 L 61 62 63
L Branch Target Address ' 0| 01

Figure 4-9. Branch Conditional to Absolute Addressing

4-44 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.4.1.5 Branch Conditional to Link Register Addressing Mode

If the branch conditions are met, the branch conditional to link register instruction generates
the next instruction address by fetching the contents of the LR and clearing the two low-
order bits to zero. The link register update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-10 shows how the branch target address is generated when using the branch
conditional to link register addressing mode.

56 1011 1516 2021 30 31

I BO I BI Reserved

0
Instruction Encoding: l 19

63
Next Sequential Instruction Address

LR ' (1

N

Branch Target Address I

Figure 4-10. Branch Conditional to Link Register Addressing

Chapter 4. Addressing Modes and Instruction Set Summary 4-45

4.2.4.1.6 Branch Conditional to Count Register Addressing Mode

If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by fetching the contents of the count register (CTR)
and clearing the two low-order bits to zero. The link register update option can be enabled
(LK field, bit 31, in the instruction encoding = 1). This option causes the effective address
of the instruction following the branch instruction to be placed in the LR.

Figure 4-11 shows how the branch target address is generated when using the branch
conditional to count register addressing mode.

0 56 1011 1516 2021 30 31)

Instruction Encoding:| 19 | Bo | BI

63
Next Sequential Instruction Address

o 61 62 63
CTR } Il

0 T 63

Branch Target Address l

Figure 4-11. Branch Conditional to Count Register Addressing

4-46 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.4.2 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which
the branch is taken. The first four bits of the BO operand specify how the branch is affected
by or affects the condition and count registers. The fifth bit, shown in Table 4-20 as having
the value y, is used by some PowerPC implementations for branch prediction as described
below.

The encodings for the BO operands are shown in Table 4-20.
Table 4-20. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1200y Decrement the CTR, then branch if the decremented CTR # 0.

1201y Decrement the CTR, then branch if the decremented CTR = 0.

121zz Branch always.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The ybit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

The branch always encoding of the BO operand does not have a y bit.

Clearing the y bit indicates a predicted behavior for the branch instruction as follows:
* For bex with a negative value in the displacement operand, the branch is taken.

* Inall other cases (bex with a non-negative value in the displacement operand, belrx,
or beetrx), the branch is not taken.

Setting the y bit reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an
absolute address. The default value for the y bit should be 0, and should only be set to 1 if
software has determined that the prediction corresponding to y = 1 is more likely to be
correct than the prediction corresponding to y = 0. Software that does not compute branch
predictions should clear the y bit.

Chapter 4. Addressing Modes and Instruction Set Summary 4-47

In most cases, the branch should be predicted to be taken if the value of the following
expression is 1, and predicted to fall through if the value is 0.

((BO[0] & BOI[2]) I S) = BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is the sign
bit of the displacement operand if the instruction has a displacement operand and is O if the
operand is reserved. BO[4] is the y bit, or 0 for the branch always encoding of the BO
operand. (Advantage is taken of the fact that, for belrx and bectrx, bit 16 of the instruction
is part of a reserved operand and therefore must be 0.)

The 5-bit BI operand in branch conditional instructions specifies which of the 32 bits in the
CR represents the condition to test.

When the branch instructions contain immediate addressing operands, the target addresses
can be computed sufficiently ahead of the branch instruction that instructions can be
fetched along the target path. If the branch instructions use the link and count registers,
instructions along the target path can be fetched if the link or count register is loaded
sufficiently ahead of the branch instruction.

Branching can be conditional or unconditional, and optionally a branch return address is
created by the access of the effective address of the instruction following the branch
instruction in the LR after the branch target address has been computed. This is done
regardless of whether the branch is taken. Some processors may keep a stack of the link
register values most recently set by branch and link instructions, with the possible
exception of the form shown below for obtaining the address of the next instruction. To
benefit from this stack, the following programming conventions should be used.

In the following examples, let A, B, and Glue represent subroutine labels:

* Obtaining the address of the next instruction— use the following form of branch and
link:

bel 20,31,$+4
* Loop counts:

Keep them in the count register, and use one of the branch conditional instructions
to decrement the count and to control branching (for example, branching back to the
start of a loop if the decremented counter value is nonzero).

* Computed GOTOs, case statements, etc.:

Use the count register to hold the address to branch to, and use the beetr instruction
with the link register option disabled (LK = 0) to branch to the selected address.

4-48 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

¢ Direct subroutine linkage—where A calls B and B returns to A. The two branches
should be as follows:

— A calls B: use a branch instruction that enables the link register (LK = 1).

— B returns to A: use the belr instruction with the link register option disabled
(LK = 0) (the return address is in, or can be restored to, the link register).

¢ Indirect subroutine linkage:

Where A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a
calling sequence is common in linkage code used when the subroutine that the
programmer wants to call, here B, is in a different module from the caller: the binder
inserts “glue” code to mediate the branch.) The three branches should be as follows:

— A calls Glue: use a branch instruction that sets the link register with the link
register option enabled (LK = 1).

— Glue calls B: place the address of B in the count register, and use the beetr
instruction with the link register option disabled (LK = 0).

— B returns to A: use the belr instruction with the link register option disabled
(LK = 0) (the return address is in, or can be restored to, the link register).

4.2.4.3 Branch Instructions
Table 4-21 describes the branch instructions provided by the PowerPC processors.

Table 4-21. Branch Instructions

Name Mnemonic | Operand Syntax Operation
Branch b target_addr b Branch. Branch to the address computed as the sum of the
ba immediate address and the address of the current instruction.
bl ba Branch Absolute. Branch to the absolute address specified.
bla bl Branch then Link. Branch to the address computed as the sum

of the immediate address and the address of the current
instruction. The instruction address following this instruction is
placed into the link register (LR).

bla Branch Absolute then Link. Branch to the absolute address
specified. The instruction address following this instruction is
placed into the LR.

Branch be BO,Bl,target_addr | The Bl operand specifies the bit in the CR to be used as the condition
Conditional |bca of the branch. The BO operand is used as described in Table 4-20.
bel

be Branch Conditional. Branch conditionally to the address
computed as the sum of the immediate address and the
address of the current instruction.

bca Branch Conditional Absolute. Branch conditionally to the
absolute address specified.

bel Branch Conditional then Link. Branch conditionally to the
address computed as the sum of the immediate address and
the address of the current instruction. The instruction address
following this instruction is placed into the LR.

bcla Branch Conditional Absolute then Link. Branch conditionally to
the absolute address specified. The instruction address
following this instruction is placed into the LR.

bcla

Chapter 4. Addressing Modes and Instruction Set Summary 4-49

Table 4-21. Branch Instructions (Continued)

Name Mnemonic | Operand Syntax Operation
Branch belr BO,BI The Bl operand specifies the bit in the CR to be used as the condition
Conditional |belrl i of the branch. The BO operand is used as described in Table 4-20.
g’ L'.n't(belr Branch Conditional to Link Register. Branch conditionally to
egister the address in the LR.
belrl Branch Conditional to Link Register then Link. Branch
conditionally to the address specified in the LR. The instruction
address following this instruction is then placed into the LR.
Branch bectr BO,BI The Bl operand specifies the bit in the CR to be used as the condition
Conditional |bccetrl of the branch. The BO operand is used as described in Table 4-20.
ge(g;?stt’:: beetr Branch Conditional to Count Register. Branch conditionally to

the address specified in the count register.

beetrl Branch Conditional to Count Register then Link. Branch
conditionally to the address specified in the count register.
The instruction address following this instruction is placed into
the LR.

Note: If the “decrement and test CTR” option is specified (BO[2] = 0),

the instruction form is invalid.

4.2.4.4 Simplified Mnemonics for Branch Processor Instructions

To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for the most frequently used forms of branch conditional, compare, trap, rotate
and shift, and certain other instructions. See Appendix F, “Simplified Mnemonics,” for a
list of simplified mnemonic examples.

4.2.4.5 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 4-22, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

Table 4-22. Condition Register Logical Instructions

Name Mnemonic | Operand Syntax Operation
Condition crand crbD,crbA,crbB | The CR bit specified by crbA is ANDed with the CR bit specified
Register AND by crbB. The result is placed into the CR bit specified by crbD.
Condition cror crbD,crbA,crbB | The CR bit specified by crbA is ORed with the CR bit specified
Register OR by crbB. The result is placed into the CR bit specified by crbD.
Condition crxor crbD,crbA,crbB | The CR bit specified by crbA is XORed with the CR bit specified
Register XOR by crbB. The result is placed into the CR bit specified by crbD.
Condition crnand crbD,crbA,crbB | The CR bit specified by crbA is ANDed with the CR bit specified
Register NAND by crbB. The complemented result is placed into the CR bit
specified by crbD.

4-50 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-22. Condition Register Logical Instructions (Continued)

Name Mnemonic | Operand Syntax Operation

Condition crnor crbD,crbA,crbB | The CR bit specified by crbA is ORed with the CR bit specified

Register NOR by crbB. The complemented resuilt is placed into the CR bit
specified by erbD.

Condition creqv crbD,crbA, crbB | The CR bit specified by crbA is XORed with the CR bit specified

Register by crbB. The complemented result is placed into the CR bit

Equivalent specified by crbD.

Condition crandc crbD,crbA, crbB | The CR bit specified by crbA is ANDed with the complement of

Register AND the CR bit specified by crbB and the result is placed into the CR

with Complement bit specified by crbD.

Condition crorc crbD,crbA, crbB | The CR bit specified by crbA is ORed with the complement of

Register OR with the CR bit specified by crbB and the result is placed into the CR

Complement bit specified by crbD.

Move Condition |mecrf crfD,crfS The contents of crfS are copied into crfD. No other condition

Register Field register fields are changed.

4.2.4.6 Trap Instructions

The trap instructions shown in Table 4-23 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally. See Appendix F, “Simplified Mnemonics,” for a complete set of simplified
mnemonics.

Table 4-23. Trap Instructions

. Operand
Name Mnemonic Syntax Operand Syntax

Trap Word twi TO,rA,SIMM | The contents of rA are compared with the sign-extended SIMM operand.

Immediate If any bit in the TO operand is set and its corresponding condition is met
by the result of the comparison, the system trap handler is invoked.

Trap Word tw TO,rA,rB The contents of rA are compared with the contents of rB. If any bit in the
TO operand is set and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

Chapter 4. Addressing Modes and Instruction Set Summary 4-51

4.2.4.7 System Linkage Instruction—UISA

Table 4-24 describes the System Call (sc) instruction that permits a program to call on the
system to perform a service. See Section 4.4.1, “System Linkage Instructions—OEA,” for
a complete description of the sc instruction.

Table 4-24. System Linkage Instruction—UISA

Operand

Name | Mnemonic Syntax Operation
System | sc —_ This instruction calls the operating system to perform a service. When control is
Call returned to the program that executed the system call, the content of the registers

will depend on the register conventions used by the program providing the system
service. This instruction is context synchronizing as described in Section 4.1.5.1,
“Context Synchronizing Instructions.”

See Section 4.4.1, “System Linkage Instructions—OEA,” for a complete description
of the sc instruction.

4.2.5 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 4.3.1, “Processor Control Instructions—VEA,” for the mftb instruction and
Section 4.4.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

4.2.5.1 Move to/from Condition Register Instructions
Table 4-25 summarizes the instructions for reading from or writing to the condition register.

Table 4-25. Move to/from Condition Register Instructions

Operand
Name Mnemonic Syntax Operation

Move to Condition | mtcrf CRM,rS | The contents of rS are placed into the CR under control of the field

Register Fields mask specified by operand CRM. The field mask identifies the 4-bit
fields affected. Let j be an integer in the range 0-7. If CRM() =1, CR
field / (CR bits 4 * ithrough 4 * j + 3) is set to the contents of the
corresponding field of rS.

Move to Condition | merxr crfiD The contents of XER[0-3] are copied into the condition register field

Register from XER designated by crfD. All other CR fields remain unchanged. The
contents of XER[0-3] are cleared.

Move from mfcr D The contents of the CR are placed into rD.

Condition Register

4-52 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)

Table 4-26 provides a brief description of the mtspr and mfspr instructions. For more
detailed information refer to Chapter 8, “Instruction Set.”

Table 4-26. Move to/from Special-Purpose Register Instructions (UISA)

.| Operand .
Name Mnemonic Syntax Operation
Move to Special- mtspr SPR,rS | The value specified by rS are placed in the specified SPR.
Purpose Register
Move from Special- | mfspr rD,SPR | The contents of the specified SPR are placed in rD.
Purpose Register

4.2.6 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms.

The number of cycles required to complete a sync instruction depends on system
parameters and on the processor's state when the instruction is issued. As a result, frequent
use of this instruction may degrade performance slightly. The eieio instruction may be more
appropriate than sync for many cases.

The PowerPC architecture defines the sync instruction with CR update enabled (Rc field,
bit 31 = 1) to be an invalid form.

The proper paired use of the Iwarx with stwex. instructions allows programmers to emulate
common semaphore operations such as test and set, compare and swap, exchange memory,
and fetch and add. Examples of these semaphore operations can be found in Appendix E,
“Synchronization Programming Examples.” The lwarx instruction must be paired with an
stwex. instruction with the same effective address specified by both instructions of the pair.
The only exception is that an unpaired stwex. instruction to any (scratch) effective address
can be used to clear any reservation held by the processor. Note that the reservation
granularity is implementation-dependent.

The concept behind the use of the lwarx and stwex. instructions is that a processor may
load a semaphore from memory, compute a result based on the value of the semaphore, and
conditionally store it back to the same location. The conditional store is performed based
upon the existence of a reservation established by the preceding Iwarx instruction. If the
reservation exists when the store is executed, the store is performed and a bit is set in the
CR. If the reservation does not exist when the store is executed, the target memory location
is not modified and a bit is cleared in the CR.

The lwarx and stwex. primitives allow software to read a semaphore, compute a result
based on the value of the semaphore, store the new value back into the semaphore location
only if that location has not been modified since it was first read, and determine if the store

Chapter 4. Addressing Modes and Instruction Set Summary 4-53

was successful. If the store was successful, the sequence of instructions from the read of the
semaphore to the store that updated the semaphore appear to have been executed atomically
(that is, no other processor or mechanism modified the semaphore location between the
read and the update), thus providing the equivalent of a real atomic operation. However, in
reality, other processors may have read from the location during this operation.

The Iwarx and stwex. instructions require the EA to be aligned.

In general, the Iwarx and stwex. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequent lwarx instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
Iwarx instruction.

A reservation held by the processor is cleared (or may be cleared, in the case of the fourth

‘and fifth bullet items) by one of the following:

» The processor holding the reservation executes another Iwarx instruction; this clears
the first reservation and establishes a new one.

* The processor holding the reservation executes any stwcex. instruction whether its
address matches that of the lwarx.

* Some other processor executes a store or debz to the same reservation granule, or
modifies a referenced or changed bit in the same reservation granule.

* Some other processor executes a dcbtst, dcbst, debf, or debi to the same reservation
granule; whether the reservation is cleared is undefined.

* Some other processor executes a dcba to the same reservation granule. The
reservation is cleared if the instruction causes the target block to be newly

established in the data cache or to be modified; otherwise, whether the reservation is
cleared is undefined.

* Some other mechanism modifies a memory location in the same reservation granule.

Note that exceptions do not clear reservations; however, system software invoked by
exceptions may clear reservations.

4-54 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-27 summarizes the memory synchronization instructions as defined in the UISA. m
See Section 4.3.2, “Memory Synchronization Instructions—VEA,” for details about
additional memory synchronization (eieio and isync) instructions.

Table 4-27. Memory Synchronization Instructions—UISA

Operand
Name Mnemonic Syntax Operation

Load Word Iwarx rD,rA,rB | The EA is the sum (rAl0O) + (rB). The word in memory addressed by the EA is

and Reserve loaded into rD.

Indexed

Store Word | stwex. rS,rA,rB | The EA is the sum (rAlO) + (rB).

ICzngltI:‘:nal If a reservation exists and the effective address specified by the stwex.

ndexe instruction is the same as that specified by the load and reserve instruction
that established the reservation, the contents of rS are stored into the word in
memory addressed by the EA, and the reservation is cleared.
If a reservation exists but the effective address specified by the stwex.
instruction is not the same as that specified by the load and reserve
instruction that established the reservation, the reservation is cleared, and it is
undefined whether the contents of rS are stored into the word in memory
addressed by the EA.
If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

Synchronize |sync - Executing a sync instruction ensures that all instructions preceding the sync

instruction appear to have completed before the sync instruction completes,
and that no subsequent instructions are initiated by the processor until after
the sync instruction completes. When the sync instruction completes, all
memory accesses caused by instructions preceding the sync instruction will
have been performed with respect to all other mechanisms that access
memory.

See Chapter 8, “Instruction Set,” for more information.

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). Assemblers should provide the simplified
mnemonics listed in Section F.9, “Recommended Simplified Mnemonics.” Programs
written to be portable across the various assemblers for the PowerPC architecture should
not assume the existence of mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics.”

Chapter 4. Addressing Modes and Instruction Set Summary 4-55

4.3 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the

memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache-control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

4.3.1 Processor Control Instructions—VEA

W The VEA defines the mftb instruction (user-level instruction) for reading the contents of

the time base register; see Chapter 5, “Cache Model and Memory Coherency,” for more
information. Table 4-28 describes the mftb instruction.

Simplified mnemonics are provided (See Section F.8, “Simplified Mnemonics for Special-
Purpose Registers”) for the mftb instruction so it can be coded with the TBR name as part
of the mnemonic rather than requiring it to be coded as an operand. The simplified
mnemonics Move from Time Base (mftb) and Move from Time Base Upper (mftbu) are
variants of the mftb instruction rather than of the mfspr instruction. The mftb instruction
serves as both a basic and simplified mnemonic. Assemblers recognize an mftb mnemonic
with two operands as the basic form, and an mftb mnemonic with one operand as the
simplified form.

On 32-bit implementations, it is not possible to read the entire 64-bit time base register in
a single instruction. The mftb simplified mnemonic moves from the lower half of the time
base register (TBL) to a GPR, and the mftbu simplified mnemonic moves from the upper
half of the time base (TBU) to a GPR.

Table 4-28. Move from Time Base Instruction

Name |Mnemonic| Operand Syntax Operation
Move mftb D, TBR The TBR field denotes either time base lower or time base upper, encoded
from as shown in Table 4-29 and Table 4-30. The contents of the designated
Time register are copied to rD.
Base

Table 4-29 summarizes the time base (TBL/TBU) register encodings to which user-level
access (using mftb) is permitted (as specified by the VEA).

Table 4-29. User-Level TBR Encodings (VEA)

Decimal Value Register
in TBR Field tbr[0—4] tbr[5-9] Name Description
268 01100 01000 TBL Time base lower (read-only)
269 01101 01000 TBU Time base upper (read-only)

4-56 PowerPC Microprocessor Family: The Programming Environments (32-Bit) .

Table 4-30 summarizes the TBL and TBU register encodings to which supervisor-level
access (using mtspr) is permitted.

Table 4-30. Supervisor-Level TBR Encodings (VEA)

Decimal Value in
SPR Field spr[0-4] spr[5-9] Register Name Description
284 11100 01000 TBL! Time base lower (write only)
285 11101 01000 TBU! Time base upper (write only)

Moving from the time base (TBL and TBU) can also be accomplished with the mftb instruction.

4.3.2 Memory Synchronizatica Instructions—VEA

Memory synchronization instructions control the order in which memory operations are

completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 5, “Cache Model
and Memory Coherency,” for additional information about these instructions and about
related aspects of memory synchronization.

System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by a sync operation and perform the appropriate actions to
guarantee that memory references that may be queued internally to the second-level cache
have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce In-
Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions; see
Table 4-31. The number of cycles required to complete an eieio instruction depends on
system parameters and on the processor's state when the instruction is issued. As a result,
frequent use of this instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behind the isync instruction).

Chapter 4. Addressing Modes and Instruction Set Summary 4-57

Table 4-31. Memory Synchronization Instructions—VEA

. | Operand
Name Mnemonic Syntax Operation
Enforce In-Order | eieio —_ The eieio instruction provides an ordering function for the effects of loads
Execution of I/O and stores executed by a processor.
Instruction isync — Executing an isync instruction ensures that all previous instructions
Synchronize complete before the isync instruction completes, although memory

accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that the
processor initiates no subsequent instructions until the isync instruction
completes. Finally, it causes the processor to discard any prefetched
instructions, so subsequent instructions will be fetched and executed in
the context established by the instructions preceding the isync
instruction.

This instruction does not affect other processors or their caches.

4.3.3 Memory Control Instructions—VEA

W Memory control instructions include the following types:

* Cache management instructions (user-level and supervisor-level)
* Segment register manipulation instructions

* Segment lookaside buffer management instructions

* Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See Section 4.4.3, “Memory Control Instructions—OEA,” for more information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

4.3.3.1 User-Level Cache Instructions—VEA

W The instructions summarized in this section provide user-level programs the ability to

manage on-chip caches if they are implemented. See Chapter 5, “Cache Model and
Memory Coherency,” for more information about cache topics.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

@ Note that when data address translation is disabled (MSR[DR] = 0), the Data Cache Block

Clear to Zero (dcbz) and the Data Cache Block Allocate (dcba) instructions allocate a
cache block in the cache and may not verify that the physical address (referred to as real
address in the architecture specification) is valid. If a cache block is created for an invalid
physical address, a machine check condition may result when an attempt is made to write
that cache block back to memory. The cache block could be written back as a result of the

4-58 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

execution of an instruction that causes a cache miss and the invalid addressed cache block
is the target for replacement or a Data Cache Block Store (dcbst) instruction.

Any cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op. However, note that
the direct-store facility is being phased out of the architecture and will not likely be
supported in future devices.

Table 4-32 summarizes the cache instructions defined by the VEA. Note that these
instructions are accessible to user-level programs.

Table 4-32. User-Level Cache Instructions
. | Operand .
Name Mnemonic Syntax Operation

Data dcbt rA,rB The EA is the sum (rAlO) + (rB).
g?‘:"(e This instruction is a hint that performance will probably be improved if the block
T o h containing the byte addressed by EA is fetched into the data cache, because

ouc the program will probably soon load from the addressed byte.
Data dcbtst rA,rB The EA is the sum (rAl0) + (rB).
(B;Iadll(e This instruction is a hint that performance will probably be improved if the block
T och for containing the byte addressed by EA is fetched into the data cache, because
S?;; the program will probably soon store into the addressed byte.
Data dcba rA,rB The EA is the sum (rAlO) + (rB).
CB)IacI:(e If the cache block containing the byte addressed by the EA is in the data cache,
Allc;ccate all bytes of the cache block are made undefined, but the cache block is still

considered valid. Note that programming errors can occur if the data in this
cache block is subsequently read or used inadvertently.

If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
allocated (and made valid) in the data cache without fetching the block from
main memory, and the value of all bytes of the cache block is undefined.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x), this instruction is treated as a no-op.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcba instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording,
and the ordering enforced by eieio or by the combination of caching-inhibited
and guarded attributes for a page.

This instruction is optional in the PowerPC architecture.

(In the PowerPC OEA, the dcba instruction is additionally defined to clear all
bytes of a newly established block to zero in the case that the block did not
already exist in the cache.)

Chapter 4. Addressing Modes and Instruction Set Summary 4-59

Table 4-32. User-Level Cache Instructions (Continued)

Operand "
Name Mnemonic Syntax Operation

Data dcbz rA,rB The EA is the sum (rAlO) + (rB).

glacl:(e If the cache block containing the byte addressed by the EA is in the data cache,

CIZ:r to all bytes of the cache block are cleared to zero.

Zero If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
established in the data cache without fetching the block from main memory, and
all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x) or write-through (WIM = 1xx), either all bytes of the area of main
memory that corresponds to the addressed cache block are cleared to zero, or
an alignment exception occurs.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording,
and the ordering enforced by eieio or by the combination of caching-inhibited
and guarded attributes for a page.

Data dcbst rA,rB The EA is the sum(rAlO) + (rB).

Cache - . .

Block Store If the cache block containing the byte addressed by the EA is located in a page

marked memory coherent (WIM = xx1), and a cache block containing the byte
addressed by EA is in the data cache of any processor and has been modified,
the cache block is written to main memory.

If the cache block containing the byte addressed by the EA is located in a page
not marked memory coherent (WIM = xx0), and a cache block containing the
byte addressed by EA is in the data cache of this processor and has been
modified, the cache block is written to main memory.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The dcebst instruction is treated as a load from the addressed byte with respect
to address translation and memory protection. It may also be treated as a load
for referenced and changed bit recording except that referenced and changed
bit recording may not occur.

4-60 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-32. User-Level Cache Instructions (Continued)

Operand

Name Mnemonic Syntax

Operation

Data dcbf rA,rB The EA is the sum (rAl0) + (rB).
Cache

Block Flush The action taken depends on the memory mode associated with the target, and

on the state of the block. The following list describes the action taken for the
various cases, regardless of whether the page or block containing the
addressed byte is designated as write-through or if it is in the caching-inhibited
or caching-allowed mode.

¢ Coherency required (WIM = xx1)

— Unmodified block—Invalidates copies of the block in the caches of all
processors.

— Modified block—Copies the block to memory. Invalidates copies of the
block in the caches of all processors.

— Absent block—If modified copies of the block are in the caches of other
processors, causes them to be copied to memory and invalidated. If
unmodified copies are in the caches of other processors, causes those
copies to be invalidated.

¢ Coherency not required (WIM = xx0)

— Unmodified block—Invalidates the block in the processor’s cache.

— Modified block—Copies the block to memory. Invalidates the block in the
processor’s cache.

— Absent block—Does nothing.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The dcbf instruction is treated as a load from the addressed byte with respect
to address translation and memory protection. It may also be treated as a load
for referenced and changed bit recording except that referenced and changed
bit recording may not occur.

Instruction |icbi rA,rB The EA is the sum (rAl0) + (rB).
Cache
Block
Invalidate

If the cache block containing the byte addressed by EA is located in a page
marked memory coherent (WIM = xx1), and a cache block containing the byte
addressed by EA is in the instruction cache of any processor, the cache block is
made invalid in all such instruction caches, so that the next reference causes
the cache block to be refetched.

If the cache block containing the byte addressed by EA is located in a page not
marked memory coherent (WIM = xx0), and a cache block containing the byte
addressed by EA is in the instruction cache of this processor, the cache block is
made invalid in that instruction cache, so that the next reference causes the
cache block to be refetched.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The icbi instruction is treated as a load from the addressed byte with respect to
address translation and memory protection. It may also be treated as a load for
referenced and changed bit recording except that referenced and changed bit
recording may not occur.

Chapter 4. Addressing Modes and Instruction Set Summary 4-61

4.3.4 External Control Instructions

The external control instructions allow a user-level program to communicate with a special-
purpose device. Two instructions are provided and are summarized in Table 4-33.

Table 4-33. External Control Instructions

Operand .
Name |Mnemonic Syntax Operation
External |eciwx rD,rA,rB | The EA is the sum (rAlO) + (rB).
svongol In A load word request for the physical address corresponding to the EA is sent to
lng;xe d the device identified by the EAR[RID] (bits 26—-31), bypassing the cache. The

word returned by the device is placed into rD. The EA sent to the device must be
word-aligned.

This instruction is treated as a load from the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering performed by eieio.

This instruction is optional.

External |ecowx rS,rA,rB | The EA is the sum (rAlO) + (rB).

gz?w; rd A store word request for the physical address corresponding to the EA and the
Indexed contents of rS are sent to the device identified by EAR[RID] (bits 26-31),

bypassing the cache. The EA sent to the device must be word-aligned.

This instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering performed by eieio. Software synchronization is required in order to
ensure that the data access is performed in program order with respect to data
accesses caused by other store or ecowx instructions, even though the
addressed byte is assumed to be caching-inhibited and guarded.

This instruction is optional.

4-62 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.4 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

4.4.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 4-34). The sc instruction @
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The rfi instruction is a supervisor-
level instruction that is useful for returning from an exception handler.

Table 4-34. System Linkage Instructions—OEA

. | Operand .
Name |Mnemonic Syntax Operation
System |sc —_ When executed, the effective address of the instruction following the sc¢ instruction
Call is placed into SRRO. Bits 1—4, and 10-15 of SRR1 are cleared. Additionally, bits
16-23, 25-27, and 30-310f the MSR are placed into the corresponding bits of
SRR1. Depending on the implementation, additional bits of MSR may also be
saved in SRR1. Then a system call exception is generated. The exception causes
the MSR to be altered as described in Section 6.4, “Exception Definitions.”
The exception causes the next instruction to be fetched from offset 0xC00 from
the base physical address indicated by the new setting of MSR[IP].
This instruction is context synchronizing.
Return | rfi — Bits 1623, 25-27, and 30-31 of SRR1 are placed into the corresponding bits of
from the MSR. Depending on the implementation, additional bits of MSR may also be
Interrupt restored from SRR1. If the new MSR value does not enable any pending
(32-bit exceptions, the next instruction is fetched, under control of the new MSR value,
only) from the address SRR0[0-29] || 0b0O.

If the new MSR value enables one or more pending exceptions, the exception
associated with the highest priority pending exception is generated; in this case
the value placed into SRRO (machine status save/restore 0) by the exception
processing mechanism is the address of the instruction that would have been
executed next had the exception not occurred.

This is a supervisor-level instruction and is context-synchronizing.

This instruction is defined only for 32-bit implementations. The use of the rfi
instruction on a 64-bit implementation will invoke the system exception handler.

o

Chapter 4. Addressing Modes and Instruction Set Summary 4-63

4.4.2 Processor Control Instructions—OEA

This section describes the processor control instructions that are used to read from and
write to the MSR and the SPRs.

4.4.2.1 Move to/from Machine State Register Instructions
Table 4-35 summarizes the instructions used for reading from and writing to the MSR.

Table 4-35. Move to/from Machine State Register Instructions

Operand "
Name Mnemonic Syntax Operation

Move to Machine mtmsr rS The contents of rS are placed into the MSR.

State Register This instruction i isor-level instruction and is context

(32-bit only) is instruction is a supervisor-level instruction and is conte:
synchronizing except with respect to alterations to the POW and LE
bits. Refer to Section 2.3.17, “Synchronization Requirements for
Special Registers and for Lookaside Buffers,” for more information.

{Move from Machine | mfmsr D The contents of the MSR are placed into rD. This is a supervisor-level
State Register instruction.

4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)
Provided is a brief description of the mtspr and mfspr instructions (see Table 4-36). For
more detailed information, see Chapter 8, “Instruction Set.” Simplified mnemonics are
provided for the mtspr and mfspr instructions in Appendix F, “Simplified Mnemonics.”
For a discussion of context synchronization requirements when altering certain SPRs, refer
to Appendix E, “Synchronization Programming Examples.”

Table 4-36. Move to/from Special-Purpose Register Instructions (OEA)

. Operand
Name Mnemonic Syntax Operation
Move to mtspr SPR,rS The SPR field denotes a special-purpose register. The contents of rS
Special- are placed into the designated SPR. For SPRs that are 32 bits long,
Purpose the contents of rS are placed into the SPR.
Register For this instruction, SPRs TBL and TBU are treated as separate 32-
bit registers; setting one leaves the other unaltered.
Move from mfspr rD,SPR The SPR field denotes a special-purpose register. The contents of the
Special- designated SPR are placed into rD.
Purpose
Register

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 1620 of the instruction encoding and the low-order 5 bits in bits 11-15.

4-64 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

For information on SPR encodings (both user- and supervisor-level), see Chapter 8,
“Instruction Set.” Note that there are additional SPRs specific to each implementation; for
implementation-specific SPRs, see the user’s manual for that particular processor.

4.4.3 Memory Control Instructions—OEA
Memory control instructions include the following types of instructions:

¢ Cache management instructions (supervisor-level and user-level)
¢ Segment register manipulation instructions
* Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 4.3.3,
“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.

4.4.3.1 Supervisor-Level Cache Management Instruction

Table 4-37 summarizes the operation of the only supervisor-level cache management
instruction. See Section 4.3.3.1, “User-Level Cache Instructions—VEA,” for cache
instructions that provide user-level programs the ability to manage the on-chip caches.

Note that any cache control instruction that generates an effective address that corresponds
to a direct-store segment (segment descriptor[T] = 1) is treated as a no-op. However, note
that the direct-store facility is being phased out of the architecture and will not likely be
supported in future devices.

Chapter 4. Addressing Modes and Instruction Set Summary 4-65

Table 4-37. Cache Management Supervisor-Level Instruction

. | Operand
Name |Mnemonic Syntax Operation
Data dcbi rA,rB The EA is the sum (rAlO) + (rB).
cB:lacie The action taken depends on the memory mode associated with the target, and
|n3:|i date the state (modified, unmodified) of the cache block. The following list describes

the action to take if the cache block containing the byte addressed by the EA is or
is not in the cache.

¢ Coherency required (WIM = xx1)
— Unmodified cache block—Invalidates copies of the cache block in the
caches of all processors.
— Modified cache block—invalidates copies of the cache block in the caches
of all processors. (Discards the modified contents.)
— Absent cache block—If copies are in the caches of any other processor,
causes the copies to be invalidated. (Discards any modified contents.)
¢ Coherency not required (WIM = xx0)
— Unmodified cache block—Invalidates the cache block in the local cache.
— Modified cache block—Invalidates the cache block in the local cache.
(Discards the modified contents.)
— Absent cache block—No action is taken.
When data address translation is enabled, MSR[DT]=1, and the logical (effective)
address has no translation, a data access exception occurs.

The function of this instruction is independent of the write-through and cache-
inhibited/allowed modes determined by the WIM bit settings of the block
containing the byte addressed by the EA.

This instruction is treated as a store to the addressed byte with respect to
address translation and protection, except that the change bit need not be set,
and if the change bit is not set then the reference bit need not be set.

4.4.3.2 Segment Register Manipulation Instructions

The instructions listed in Table 4-38 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to Section 2.3.17, “Synchronization Requirements for Special
Registers and for Lookaside Buffers,” for serialization requirements and other
recommended precautions to observe when manipulating the segment registers.

4-66

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-38. Segment Register Manipulation Instructions

. | Operand

Name Mnemonic Syntax Operation
Move to Segment mtsr SR,rS The contents of rS are placed into segment register specified by
Register operand SR.
(32-bit only) This is a supervisor-ievel instruction.
Move to Segment mtsrin rS,rB The contents of rS are copied to the segment register selected by bits
Register Indirect 0-3 of IB.
(32-bit only) This is a supervisor-level instruction.
Move from Segment | mfsr rD,SR The contents of the segment register specified by operand SR are
Register placed into rD.
(32-bit only) This is a supervisor-level instruction.
Move from Segment | mfsrin rD,rB The contents of the segment register selected by bits 0-3 of rB are
Register Indirect copied into rD.
(32-bit only) This is a supervisor-level instruction.

4.4.3.3 Translation Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical-to-physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
tables and page tables in memory, respectively.

For performance reasons, many processors implement one or more translation lookaside
buffers on-chip. These are caches of portions of the page table. As changes are made to the
address translation tables, it is necessary to maintain coherency between the TLB and the
updated tables. This is done by invalidating TLB entries, or occasionally by invalidating the
entire TLB, and allowing the translation caching mechanism to refetch from the tables.

Each PowerPC implementation that has a TLB provides means for invalidating an
individual TLB entry and invalidating the entire TLB.

If a processor does not implement a TLB, it treats the corresponding instructions (tlbie,
tlbia, and tlbsync) either as no-ops or as illegal instructions.

Chapter 4. Addressing Modes and Instruction Set Summary 4-67

Refer to Chapter 7, “Memory Management,” for more information about TLB operation.
Table 4-39 summarizes the operation of the SLB and TLB instructions.

Table 4-39. Translation Lookaside Buffer Management Instructions

Operand
Name Mnemonic Syntax Operation
TLB tibie B The EA is the contents of rB. If the TLB contains an entry corresponding to the
Invalidate EA, that entry is removed from the TLB. The TLB search is performed
Entry regardless of the settings of MSRJ[IR] and MSR[DR]. Block address translation
for the EA, if any, is ignored.
This instruction causes the target TLB entry to be invalidated in all processors.
The operation performed by this instruction is treated as a caching inhibited
and guarded data access with respect to the ordering performed by eieio.
This is a supervisor-level instruction and optional in the PowerPC architecture.
TLB tibia _— All TLB entries are made invalid. The TLB is invalidated regardless of the
Invalidate All settings of MSR[IR] and MSR[DR].
This instruction does not cause the entries to be invalidated in other
processors.
This is a supervisor-level instruction and optional in the PowerPC architecture.
TLB tibsync —_ Executing a tibsync instruction ensures that all tibie instructions previously
Synchronize executed by the processor executing the tibsync instruction have completed

on all processors.

The operation performed by this instruction is treated as a caching-inhibited
and guarded data access with respect to the ordering performed by eieio.

This is a supervisor-level instruction and optional in the PowerPC architecture.

Because the presence and exact semantics of the translation lookaside buffer management
instructions is implementation-dependent, system software should incorporate uses of the
instruction into subroutines to minimize compatibility problems.

4-68

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Chapter 5
Cache Model and Memory Coherency

This chapter summarizes the cache model as defined by the virtual environment
architecture (VEA) as well as the built-in architectural controls for maintaining memory
coherency. This chapter describes the cache control instructions and special concerns for
memory coherency in single-processor and multiprocessor systems. Aspects of the
operating environment architecture (OEA) as they relate to the cache model and memory
coherency are also covered.

The PowerPC architecture provides for relaxed memory coherency. Features such as write-
back caching and out-of-order execution allow software engineers to exploit the
performance benefits of weakly-ordered memory access. The architecture also provides the
means to control the order of accesses for order-critical operations. :

In this chapter, the term multiprocessor is used in the context of maintaining cache
coherency. In this context, a system could include other devices that access system memory,
maintain independent caches, and function as bus masters.

Each cache management instruction operates on an aligned unit of memory. The VEA
defines this cacheable unit as a block. Since the term ‘block’ is easily confused with the unit
of memory addressed by the block address translation (BAT) mechanism, this chapter uses
the term ‘cache block’ to indicate the cacheable unit. The size of the cache block can vary
by instruction and by implementation. In addition, the unit of memory at which coherency
is maintained is called the coherence block. The size of the coherence block is also
implementation-specific. However, the coherence block is often the same size as the cache
block.

5.1 The Virtual Environment

The user instruction set architecture (UISA) relies upon a memory space of 2% bytes for
applications. The VEA expands upon the memory model by introducing virtual memory,
caches, and shared memory multiprocessing. Although many applications will not need to
access the features introduced by the VEA, it is important that programmers are aware that
they are working in a virtual environment where the physical memory may be shared by
multiple processes running on one or more processors.

M

Chapter 5. Cache Model and Memory Coherency 5-1

This section describes load and store ordering, atomicity, the cache model, memory
coherency, and the VEA cache management instructions. The features of the VEA are
accessible to both user-level and supervisor-level applications (referred to as problem state
and privileged state, respectively, in the architecture specification).

The mechanism for controlling the virtual memory space is defined by the OEA. The
features of the OEA are accessible to supervisor-level applications only (typically operating
systems). For more information on the address translation mechanism, refer to Chapter 7,
“Memory Management.”

5.1.1 Memory Access Ordering

The VEA specifies a weakly consistent memory model for shared memory multiprocessor
systems. This model provides an opportunity for significantly improved performance over
amodel that has stronger consistency rules, but places the responsibility for access ordering
on the programmer. When a program requires strict access ordering for proper execution,
the programmer must insert the appropriate ordering or synchronization instructions into
the program.

The order in which the processor performs memory accesses, the order in which those
accesses complete in memory, and the order in which those accesses are viewed as
occurring by another processor may all be different. A means of enforcing memory access
ordering is provided to allow programs (or instances of programs) to share memory. Similar
means are needed to allow programs executing on a processor to share memory with some
other mechanism, such as an I/O device, that can also access memory.

Various facilities are provided that enable programs to control the order in which memory
accesses are performed by separate instructions. First, if separate store instructions access
memory that is designated as both caching-inhibited and guarded, the accesses are
performed in the order specified by the program. Refer to Section 5.1.4, “Memory
Coherency,” and Section 5.2.1, “Memory/Cache Access Attributes,” for a complete
description of the caching-inhibited and guarded attributes. Additionally, two instructions,
eieio and sync, are provided that enable the program to control the order in which the
memory accesses caused by separate instructions are performed.

No ordering should be assumed among the memory accesses caused by a single instruction
(that is, by an instruction for which multiple accesses are not atomic), and no means are
provided for controlling that order. Chapter 4, “Addressing Modes and Instruction Set
Summary,” contains additional information about the sync and eieio instructions.

5.1.1.1 Enforce In-Order Execution of 1/O Instruction

The eieio instruction permits the program to control the order in which loads and stores are
performed when the accessed memory has certain attributes, as described in Chapter 8,
“Instruction Set.” For example, eieio can be used to ensure that a sequence of load and store
operations to an I/O device’s control registers updates those registers in the desired order.

5-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The eieio instruction can also be used to ensure that all stores to a shared data structure are
visible to other processors before the store that releases the lock is visible to them.

The eieio instruction may complete before memory accesses caused by instructions
preceding the eieio instruction have been performed with respect to system memory or
coherent storage as appropriate.

If stronger ordering is desired, the sync instruction must be used.

5.1.1.2 Synchronize Instruction

When a portion of memory that requires coherency must be forced to a known state, it is
necessary to synchronize memory with respect to other processors and mechanisms. This
synchronization is accomplished by requiring programs to indicate explicitly in the
instruction stream, by inserting a sync instruction, that synchronization is required. Only
when sync completes are the effects of all coherent memory accesses previously executed
by the program guaranteed to have been performed with respect to all other processors and
mechanisms that access those locations coherently.

The sync instruction ensures that all the coherent memory accesses, initiated by a program,
have been performed with respect to all other processors and mechanisms that access the
target locations coherently, before its next instruction is executed. A program can use this
instruction to ensure that all updates to a shared data structure, accessed coherently, are
visible to all other processors that access the data structure coherently, before executing a
store that will release a lock on that data structure. Execution of the sync instruction does
the following:

* Performs the functions described for the sync instruction in Section 4.2.6, “Memory
Synchronization Instructions—UISA.”

» Ensures that consistency operations, and the effects of icbi, dcbz, dcbst, debf, dcba,
and dcbi instructions previously executed by the processor executing sync, have
completed on such other processors as the memory/cache access attributes of the
target locations require.

* Ensures that TLB invalidate operations previously executed by the processor
executing the sync have completed on that processor. The sync instruction does not
wait for such invalidates to complete on other processors.

* Ensures that memory accesses due to instructions previously executed by the
processor executing the sync are recorded in the R and C bits in the page table and
that the new values of those bits are visible to all processors and mechanisms; refer
to Section 7.5.3, “Page History Recording.”

The sync instruction is execution synchronizing. It is not context synchronizing, and
therefore need not discard prefetched instructions.

Chapter 5. Cache Model and Memory Coherency 5-3

For memory that does not require coherency, the sync instruction operates as described
above except that its only effect on memory operations is to ensure that all previous
memory operations have completed, with respect to the processor executing the sync
instruction, to the level of memory specified by the memory/cache access attributes
(including the updating of R and C bits).

5.1.2 Atomicity

An access is atomic if it is always performed in its entirety with no visible fragmentation.
Atomic accesses are thus serialized—each happens in its entirety in some order, even when
that order is neither specified in the program nor enforced between processors.

Only the following single-register accesses are guaranteed to be atomic:

* Byte accesses (all bytes are aligned on byte boundaries)
¢ Half-word accesses aligned on half-word boundaries
* Word accesses aligned on word boundaries

No other accesses are guaranteed to be atomic. In particular, the accesses caused by the
following instructions are not guaranteed to be atomic:

* Load and store instructions with misaligned operands

¢ Imw, stmw, Iswi, Iswx, stswi, or stswx instructions

* Floating-point double-word accesses in 32-bit implementations
* Any cache management instructions

The lwarx/stwex. instruction combinations can be used to perform atomic memory
references. The Iwarx instruction is a load from a word-aligned location that has two side
effects:

1. A reservation for a subsequent stwex. instruction is created.

2. The memory coherence mechanism is notified that a reservation exists for the
memory location accessed by the lwarx.

The stwcx. instruction is a store to a word-aligned location that is conditioned on the
existence of the reservation created by lwarx and on whether the same memory location is
specified by both instructions and whether the instructions are issued by the same
processor.

In a multiprocessor system, every processor (other than the one executing Iwarx/stwcx.)
that might update the location must configure the addressed page as memory coherency
required. The lwarx/stwcx. instructions function in caching-inhibited, as well as in
caching-allowed, memory. If the addressed memory is in write-through mode, it is
implementation-dependent whether these instructions function correctly or cause the DSI
exception handler to be invoked. (Note that exceptions are referred to as interrupts in the
architecture specification.)

5-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The lwarx/stwcx. instruction combination is described in Section 4.2.6, “Memory
Synchronization Instructions—UISA,” and Chapter 8, “Instruction Set.”

5.1.3 Cache Model

The PowerPC architecture does not specify the type, organization, implementation, or even
the existence of a cache. The standard cache model has separate instruction and data caches,
also known as a Harvard cache model. However, the architecture allows for many different
cache types. Some implementations will have a unified cache (where there is a single cache
for both instructions and data). Other implementations may not have a cache at all.

The function of the cache management instructions depends on the implementation of the
cache(s) and the setting of the memory/cache access modes. For a program to execute
properly on all implementations, software should use the Harvard model. In cases where a
processor is implemented without a cache, the architecture guarantees that instructions
affecting the nonimplemented cache will not halt execution (note that dcbz may cause an
alignment exception on some implementations). For example, a processor with no cache
may treat a cache instruction as a no-op. Or, a processor with a unified cache may treat the
icbi instruction as a no-op. In this manner, programs written for separate instruction and
data caches will run on all compliant implementations.

5.1.4 Memory Coherency

The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. The VEA and OEA define coherency controls that
facilitate synchronization, cooperative use of shared resources, and task migration among
processors. These controls include the memory/cache access attributes, the sync and eieio
instructions, and the lwarx/stwex. instruction pair. Without these controls, the processor
could not support a weakly-ordered memory access model.

A strongly-ordered memory access model hinders performance by requiring excessive
overhead, particularly in multiprocessor environments. For example, a processor
performing a store operation in a strongly-ordered system requires exclusive access to an
address before making an update, to prevent another device from using stale data.

The VEA defines a page as a unit of memory for which protection and control attributes are
independently specifiable. The OEA (supervisor level) specifies the size of a page as
4 Kbytes. It is important to note that the VEA (user level) does not specify the page size.

Chapter 5. Cache Model and Memory Coherency 5-5

5.1.4.1 Memory/Cache Access Modes

The OEA defines the set of memory/cache access modes and the mechanism to implement
these modes. Refer to Section 5.2.1, “Memory/Cache Access Attributes,” for more
information. However, the VEA specifies that at the user level, the operating system can be
expected to provide the following attributes for each page of memory:

e Write-through or write-back

* Caching-inhibited or caching-allowed

* Memory coherency required or memory coherency not required
* Guarded or not guarded

User-level programs specify the memory/cache access attributes through an operating
system service.

5.1.4.1.1 Pages Designated as Write-Through

When a page is designated as write-through, store operations update the data in the cache
and also update the data in main memory. The processor writes to the cache and through to
main memory. Load operations use the data in the cache, if it is present.

In write-back mode, the processor is only required to update data in the cache. The
processor may (but is not required to) update main memory. Load and store operations use
the data in the cache, if it is present. The data in main memory does not necessarily stay
consistent with that same location’s data in the cache. Many implementations automatically
update main memory in response to a memory access by another device (for example, a
snoop hit). In addition, the dcbst and dcbf instructions can be used to explicitly force an
update of main memory.

The write-through attribute is meaningless for locations designated as caching-inhibited.

5.1.4.1.2 Pages Designated as Caching-Inhibited

When a page is designated as caching-inhibited, the processor bypasses the cache and
performs load and store operations to main memory. When a page is designated as caching-
allowed, the processor uses the cache and performs load and store operations to the cache
or main memory depending on the other memory/cache access attributes for the page.

It is important that all locations in a page are purged from the cache prior to changing the
memory/cache access attribute for the page from caching-allowed to caching-inhibited. It
is considered a programming error if a caching-inhibited memory location is found in the
cache. Software must ensure that the location has not previously been brought into the
cache, or, if it has, that it has been flushed from the cache. If the programming error occurs,
the result of the access is boundedly undefined.

5-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

5.1.4.1.3 Pages Designated as Memory Coherency Required

When a page is designated as memory coherency required, store operations to that location
are serialized with all stores to that same location by all other processors that also access
the location coherently.This can be implemented, for example, by an ownership protocol
that allows at most one processor at a time to store to the location. Moreover, the current
copy of a cache block that is in this mode may be copied to main storage any number of
times, for example, by successive dcbst instructions.

Coherency does not ensure that the result of a store by one processor is visible immediately
to all other processors and mechanisms. Only after a program has executed the sync
instruction are the previous storage accesses it executed guaranteed to have been performed
with respect to all other processors and mechanisms.

5.1.4.1.4 Pages Designated as Memory Coherency Not Required

For a memory area that is configured such that coherency is not required, software must
ensure that the data cache is consistent with main storage before changing the mode or
allowing another device to access the area.

Executing a dcbst or dcbf instruction specifying a cache block that is in this mode causes
the block to be copied to main memory if and only if the processor modified the contents
of a location in the block and the modified contents have not been written to main memory.

In a single-cache system, correct coherent execution may likely not require memory
coherency; therefore, using memory coherency not required mode improves performance.

5.1.4.1.5 Pages Designated as Guarded

The guarded attribute pertains to out-of-order execution. Refer to Section 5.2.1.5.3, “Out-
of-Order Accesses to Guarded Memory,” for more information about out-of-order
execution.

When a page is designated as guarded, instructions and data cannot be accessed out of
order. Additionally, if separate store instructions access memory that is both caching-
inhibited and guarded, the accesses are performed in the order specified by the program.
When a page is designated as not guarded, out-of-order fetches and accesses are allowed.

5.1.4.2 Coherency Precautions

Mismatched memory/cache attributes cause coherency paradoxes in both single-processor
and multiprocessor systems. When the memory/cache access attributes are changed, it is
critical that the cache contents reflect the new attribute settings. For example, if a block or
page that had allowed caching becomes caching-inhibited, the appropriate cache blocks
should be flushed to leave no indication that caching had previously been allowed.

Although coherency paradoxes are considered programming errors, specific
implementations may attempt to handle the offending conditions and minimize the negative
effects on memory coherency. Bus operations that are generated for specific instructions
and state conditions are not defined by the architecture.

Chapter 5. Cache Model and Memory Coherency 5-7

5.1.5 VEA Cache Management Instructions

The VEA defines instructions for controlling both the instruction and data caches. For
implementations that have a unified instruction/data cache, instruction cache control
instructions are valid instructions, but may function differently.

Note that any cache control instruction that generates an EA that corresponds to a direct-
store segment (SR[T] = 1) is treated as a no-op. However, the direct-store facility is being
phased out of the architecture and will not likely be supported in future devices. Thus,
software should not depend on its effects.

This section briefly describes the cache management instructions available to programs at
the user privilege level. Additional descriptions of coding the VEA cache management
instructions is provided in Chapter 4, “Addressing Modes and Instruction Set Summary,”
and Chapter 8, “Instruction Set.” In the following instruction descriptions, the target is the
cache block containing the byte addressed by the effective address.

5.1.5.1 Data Cache Instructions

Data caches and unified caches must be consistent with other caches (data or unified),
memory, and I/O data transfers. To ensure consistency, aliased effective addresses (two
effective addresses that map to the same physical address) must have the same page offset.
Note that physical address is referred to as real address in the architecture specification.

5.1.5.1.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst) Instructions
These instructions provide a method for improving performance through the use of

software-initiated prefetch hints. However, these instructions do not guarantee that a cache
block will be fetched.

A program uses the dcbt instruction to request a cache block fetch before it is needed by
the program. The program can then use the data from the cache rather than fetching from
main memory.

The dcbtst instruction behaves similarly to the dcbt instruction. A program uses dcbtst to
request a cache block fetch to guarantee that a subsequent store will be to a cached location.

The processor does not invoke the exception handler for translation or protection violations
caused by either of the touch instructions. Additionally, memory accesses caused by these
instructions are not necessarily recorded in the page tables. If an access is recorded, then it
is treated in a manner similar to that of a load from the addressed byte. Some
implementations may not take any action based on the execution of these instructions, or
they may prefetch the cache block corresponding to the EA into their cache. For
information about the R and C bits, see Section 7.5.3, “Page History Recording.”

5-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Both dcbt-and dcbtst are provided for performance optimization. These instructions do not
affect the correct execution of a program, regardless of whether they succeed (fetch the
cache block) or fail (do not fetch the cache block). If the target block is not accessible to
the program for loads, then no operation occurs.

5.1.5.1.2 Data Cache Block Set to Zero (dcbz) Instruction
The dcbz instruction clears a single cache block as follows:

» If the target is in the data cache, all bytes of the cache block are cleared.

o If the target is not in the data cache and the corresponding page is caching-allowed,
the cache block is established in the data cache (without fetching the cache block
from main memory), and all bytes of the cache block are cleared.

» Ifthe targetis designated as either caching-inhibited or write-through, then either all
bytes in main memory that correspond to the addressed cache block are cleared, or
the alignment exception handler is invoked. The exception handler should clear all
the bytes in main memory that correspond to the addressed cache block.

» If the target is designated as coherency required, and the cache block exists in the
data cache(s) of any other processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to address
translation, protection, referenced and changed recording, and the ordering enforced by
eieio or by the combination of caching-inhibited and guarded attributes for a page.

Refer to Chapter 6, “Exceptions,” for more information about a possible delayed machine
check exception that can occur by using dcbz when the operating system has set up an
incorrect memory mapping.

5.1.5.1.3 Data Cache Block Store (dcbst) Instruction
The dcbst instruction permits the program to ensure that the latest version of the target
cache block is in main memory. The dcbst instruction executes as follows:

» Coherency required—If the target exists in the data cache(s) of any processor(s) and
has been modified, the data is written to main memory.

» Coherency not required—If the target exists in the data cache of the executing
processor and has been modified, the data is written to main memory.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused by a dcbst instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation (not as a store
operation).

Chapter 5. Cache Model and Memory Coherency 5-9

5.1.5.1.4 Data Cache Block Flush (dcbf) Instruction

The action taken depends on the memory/cache access mode associated with the target, and
on the state of the cache block. The following list describes the action taken for the various
cases:

e Coherency required

Unmodified cache block—Invalidates copies of the cache block in the data caches
of all processors.

Modified cache block—Copies the cache block to memory. Invalidates copies of the
cache block in the data caches of all processors.

Target block not in cache—If a modified copy of the cache block is in the data
cache(s) of any processor(s), debf causes the modified cache block to be copied to
memory and then invalidated. If unmodified copies are in the data caches of other
processors, debf causes those copies to be invalidated.

e Coherency not required

Unmodified cache block—Invalidates the cache block in the executing processor's
data cache.

Modified cache block—Copies the data cache block to memory and then invalidates
the cache block in the executing processor.

Target block not in cache—No action is taken.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused by a dcbf instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation (not as a store
operation).

5.1.5.2 Instruction Cache Instructions

Instruction caches, if they exist, are not required to be consistent with data caches, memory,
or I/O data transfers. Software must use the appropriate cache management instructions to
ensure that instruction caches are kept coherent when instructions are modified by the
processor or by input data transfer. When a processor alters a memory location that may be
contained in an instruction cache, software must ensure that updates to memory are visible
to the instruction fetching mechanism. Although the instructions to enforce consistency
vary among implementations, the following sequence for a uniprocessor system is typical:

dcbst (update memory)

sync (wait for update)

icbi (invalidate copy in instruction cache)
isync (perform context synchronization)

Sl

5-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Note that most operating systems will provide a system service for this function. These
operations are necessary because the memory may be designated as write-back. Since
instruction fetching may bypass the data cache, changes made to items in the data cache
may not otherwise be reflected in memory until after the instruction fetch completes.

For implementations used in multiprocessor systems, variations on this sequence may be
recommended. For example, in a multiprocessor system with a unified instruction/data
cache (at any level), if instructions are fetched without coherency being enforced, the
preceding instruction sequence is inadequate. Because the icbi instruction does not
invalidate blocks in a unified cache, a debf instruction should be used instead of a dcbst
instruction for this case.

5.1.5.2.1 Instruction Cache Block Invalidate Instruction (icbi)
The icbi instruction executes as follows:

* Coherency required

If the target is in the instruction cache of any processor, the cache block is made
invalid in all such processors, so that the next reference causes the cache block to be
refetched.

* Coherency not required

If the target is in the instruction cache of the executing processor, the cache block is
made invalid in the executing processor so that the next reference causes the cache
block to be refetched.

The icbi instruction is provided for use in processors with separate instruction and data
caches. The effective address is computed, translated, and checked for protection violations
as defined in Chapter 7, “Memory Management.” If the target block is not accessible to the
program for loads, then a DSI exception occurs.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused by an icbi instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation. Implementations that
have a unified cache treat the icbi instruction as a no-op except that they may invalidate the
target cache block in the instruction caches of other processors (in coherency required
mode).

5.1.5.2.2 Instruction Synchronize Instruction (isync)

The isync instruction provides an ordering function for the effects of all instructions
executed by a processor. Executing an isync instruction ensures that all instructions
preceding the isync instruction have completed before the isync instruction completes,
except that memory accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after the isync instruction completes.

Chapter 5. Cache Model and Memory Coherency 5-11

Finally, it causes the processor to discard any prefetched instructions, with the effect that
subsequent instructions will be fetched and executed in the context established by the
instructions preceding the isync instruction. The isync instruction has no effect on other
processors or on their caches.

5.2 The Operating Environment

© The OEA defines the mechanism for controlling the memory/cache access modes

introduced in Section 5.1.4.1, “Memory/Cache Access Modes.” This section describes the
cache-related aspects of the OEA including the memory/cache access attributes, out-of-
order execution, direct-store interface considerations, and the dcbi instruction. The features
of the OEA are accessible to supervisor-level applications only. The mechanism for
controlling the virtual memory space is described in Chapter 7, “Memory Management.”

The memory model of PowerPC processors provides the following features:

» Flexibility to allow performance benefits of weakly-ordered memory access

¢ A mechanism to maintain memory coherency among processors and between a
processor and I/O devices controlled at the block and page level

 Instructions that can be used to ensure a consistent memory state
* Guaranteed processor access order

The memory implementations in PowerPC systems can take advantage of the performance
benefits of weak ordering of memory accesses between processors or between processors
and other external devices without any additional complications. Memory coherency can
be enforced externally by a snooping bus design, a centralized cache directory design, or
other designs that can take advantage of the coherency features of PowerPC processors.

Memory accesses performed by a single processor appear to complete sequentially from
the view of the programming model but may complete out of order with respect to the
ultimate destination in the memory hierarchy. Order is guaranteed at each level of the
memory hierarchy for accesses to the same address from the same processor. The dcbst,
dcbf, ichi, isync, sync, eieio, Iwarx, and stwcx. instructions allow the programmer to
ensure a consistent memory state.

5.2.1 Memory/Cache Access Attributes
All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

e Write-through (W attribute)

¢ Caching-inhibited (I attribute)

e Memory coherency (M attribute)

* Guarded (G attribute)

5-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

These attributes are programmed in the PTEs and BATSs by the operating system for each
page and block respectively. The W and I attributes control how the processor performing
an access uses its own cache. The M attribute ensures that coherency is maintained for all
copies of the addressed memory location. When an access requires coherency, the processor
performing the access must inform the coherency mechanisms throughout the system that
the access requires memory coherency. The G attribute prevents out-of-order loading and
prefetching from the addressed memory location.

Note that the memory/cache access attributes are relevant only when an effective address is
translated by the processor performing the access. Note also that not all combinations of
settings of these bits is supported. The attributes are not saved along with data in the cache
(for cacheable accesses), nor are they associated with subsequent accesses made by other
Processors.

The operating system programs the memory/cache access attribute for each page or block
as required. The WIMG attributes occupy four bits in the BAT registers for block address
translation and in the PTEs for page address translation. The WIMG bits are programmed
as follows:

» The operating system uses the mtspr instruction to program the WIMG bits in the
BAT registers for block address translation. The IBAT register pairs implement the
W or G bits; however, attempting to set either bit in IBAT registers causes
boundedly-undefined results.

* The operating system writes the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

Note that for data accesses performed in real addressing mode (MSR[DR] = 0), the WIMG
bits are assumed to be 0b0O11 (the data is write-back, caching is enabled, memory
coherency is enforced, and memory is guarded). For instruction accesses performed in real
addressing mode (MSR[IR] = 0), the WIMG bits are assumed to be 0b0001 (the data is
write-back, caching is enabled, memory coherency is not enforced, and memory is
guarded).

5.2.1.1 Write-Through Attribute (W)

When an access is designated as write-through (W = 1), if the data is in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
memory location. The definition of the memory location to be written to (in addition to the
cache) depends on the implementation of the memory system but can be illustrated by the
following examples:

* RAM-—The store is sent to the RAM controller to be written into the target RAM.
* 1/O device—The store is sent to the memory-mapped I/O controller to be written to
the target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the
memory hierarchy that is seen by all processors and devices.

Chapter 5. Cache Model and Memory Coherency 5-13

Multiple store instructions may be combined for write-through accesses except when the
store instructions are separated by a sync or eieio instruction. A store operation to a memory
location designated as write-through may cause any part of the cache block to be written
back to main memory.

Accesses that correspond to W = 0 are considered write-back. For this case, although the
store operation is performed to the cache, the data is copied to memory only when a copy-
back operation is required. Use of the write-back mode (W = 0) can improve overall
performance for areas of the memory space that are seldom referenced by other processors
or devices in the system.

Accesses to the same memory location using two effective addresses for which the W bit
setting differs meet the memory-coherency requirements if the accesses are performed by
a single processor. If the accesses are performed by two or more processors, coherence is
enforced by the hardware only if the write-through attribute is the same for all the accesses.

5.2.1.2 Caching-Inhibited Attribute (I)

If I = 1, the memory access is completed by referencing the location in main memory,
bypassing the cache. During the access, the addressed location is not loaded into the cache
nor is the location allocated in the cache.

Itis considered a programming error if a copy of the target location of an access to caching-
inhibited memory is resident in the cache. Software must ensure that the location has not
been previously loaded into the cache, or, if it has, that it has been flushed from the cache.

Data accesses from more than one instruction may be combined for cache-inhibited
operations, except when the accesses are separated by a sync instruction, or by an eieio
instruction when the page or block is also designated as guarded.

Instruction fetches, dcbz instructions, and load and store operations to the same memory
location using two effective addresses for which the I bit setting differs must meet the
requirement that a copy of the target location of an access to caching-inhibited memory not
be in the cache. Violation of this requirement is considered a programming error; software
must ensure that the location has not previously been brought into the cache or, if it has,
that it has been flushed from the cache. If the programming error occurs, the result of the
access is boundedly undefined. It is not considered a programming error if the target
location of any other cache management instruction to caching-inhibited memory is in the
cache.

5-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

5.2.1.3 Memory Coherency Attribute (M)

This attribute is provided to allow improved performance in systems where hardware-
enforced coherency is relatively slow, and software is able to enforce the required
coherency. When M = 0, there are no requirements to enforce data coherency. When M =1,
the processor enforces data coherency.

When the M attribute is set, and the access is performed to memory, there is a hardware
indication to the rest of the system that the access is global. Other processors affected by
the access must then respond to this global access. For example, in a snooping bus design,
the processor may assert some type of global access signal. Other processors affected by
the access respond and signal whether the data is being shared. If the data in another
processor is modified, then the location is updated and the access is retried.

Because instruction memory does not have to be coherent with data memory, some
implementations may ignore the M attribute for instruction accesses. In a single-processor
(or single-cache) system, performance might be improved by designating all pages as
memory coherency not required.

Accesses to the same memory location using two effective addresses for which the M bit
settings differ may require explicit software synchronization before accessing the location
with M = 1 if the location has previously been accessed with M = 0. Any such requirement
is system-dependent. For example, no software synchronization may be required for
systems that use bus snooping. In some directory-based systems, software may be required
to execute dcbf instructions on each processor to flush all storage locations accessed with
M = 0 before accessing those locations with M = 1.

5.2.1.4 W, |, and M Bit Combinations

Table 5-1 summarizes the six combinations of the WIM bits supported by the OEA. The
combinations where WIM = 11x are not supported. Note that either a zero or one setting
for the G bit is allowed for each of these WIM bit combinations.

Table 5-1. Combinations of W, I, and M Bits

WIM Setting Meaning

000 The processor may cache data (or instructions).
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

001 Data (or instructions) may be cached.
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor enforces memory coherency for accesses it initiates.

010 Caching is inhibited.
The access is performed to memory, completely bypassing the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

o011 Caching is inhibited.
The access is performed to memory, completely bypassing the cache.
The processor enforces memory coherency for accesses it initiates.

Chapter 5. Cache Model and Memory Coherency 5-15

Table 5-1. Combinations of W, I, and M Bits (Continued)

WIM Setting Meaning

100 Data (or instructions) may be cached.

A load operation whose target hits in the cache may use that entry in the cache.

Store operations are written to memory. The target location of the store may be cached and is
updated on a hit.

The processor does not need to enforce memory coherency for accesses it initiates.

101 Data (or instructions) may be cached.

A load operation whose target hits in the cache may use that entry in the cache.

Store operations are written to memory. The target location of the store may be cached and is
updated on a hit.

The processor enforces memory coherency for accesses it initiates.

5.2.1.5 The Guarded Attribute (G)

‘When the guarded bit is set, the memory area (block or page) is designated as guarded. This
setting can be used to protect certain memory areas from read accesses made by the
processor that are not dictated directly by the program. If there are areas of physical
memory that are not fully populated (in other words, there are holes in the physical memory
map within this area), this setting can protect the system from undesired accesses caused
by out-of-order load operations or instruction prefetches that could lead to the generation
of the machine check exception. Also, the guarded bit can be used to prevent out-of-order
(speculative) load operations or prefetches from occurring to certain peripheral devices that
produce undesired results when accessed in this way.

5.2.1.5.1 Performing Operations Out of Order

An operation is said to be performed in-order if it is guaranteed to be required by the
sequential execution model. Any other operation is said to be performed out of order.

Operations are performed out of order by the hardware on the expectation that the results
will be needed by an instruction that will be required by the sequential execution model.
Whether the results are really needed is contingent on everything that might divert the
control flow away from the instruction, such as branch, trap, system call, and rfi
instructions, and exceptions, and on everything that might change the context in which the
instruction is executed.

5-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Typically, the hardware performs operations out of order when it has resources that would
otherwise be idle, so the operation incurs little or no cost. If subsequent events such as
branches or exceptions indicate that the operation would not have been performed in the
sequential execution model, the processor abandons any results of the operation (except as
described below).

Most operations can be performed out of order, as long as the machine appears to follow
the sequential execution model. Certain out-of-order operations are restricted, as follows.

e Stores

A store instruction may not be executed out of order in a manner such that the
alteration of the target location can be observed by other processors or mechanisms.

e Accessing guarded memory

The restrictions for this case are given in Section 5.2.1.5.3, “Out-of-Order Accesses
to Guarded Memory.”

No error of any kind other than a machine check exception may be reported due to an
operation that is performed out of order, until such time as it is known that the operation is
required by the sequential execution model. The only other permitted side effects (other
than machine check) of performing an operation out of order are the following:

* Referenced and changed bits may be set as described in Section 7.2.5, “Page History
Information.”

* Nonguarded memory locations that could be fetched into a cache by in-order
execution may be fetched out of order into that cache.

5.2.1.5.2 Guarded Memory

Memory is said to be well behaved if the corresponding physical memory exists and is not
defective, and if the effects of a single access to it are indistinguishable from the effects of
multiple identical accesses to it. Data and instructions can be fetched out of order from
well-behaved memory without causing undesired side effects.

Memory is said to be guarded if either (a) the G bit is 1 in the relevant PTE or DBAT
register, or (b) the processor is in real addressing mode (MSR[IR] = 0 or MSR[DR] = 0 for
instruction fetches or data accesses respectively). In case (b), all of memory is guarded for
the corresponding accesses. In general, memory that is not well-behaved should be
guarded. Because such memory may represent an I/O device or may include locations that
do not exist, an out-of-order access to such memory may cause an I/O device to perform
incorrect operations or may result in a machine check.

Note that if separate store instructions access memory that is both caching-inhibited and
guarded, the accesses are performed in the order specified by the program. If an aligned,
elementary load or store to caching-inhibited, guarded memory has accessed main memory
and an external, decrementer, or imprecise-mode floating-point enabled exception is
pending, the load or store is completed before the exception is taken.

Chapter 5. Cache Model and Memory Coherency 5-17

5.2.1.5.3 Out-of-Order Accesses to Guarded Memory
The circumstances in which guarded memory may be accessed out of order are as follows:

Load instruction

If a copy of the target location is in a cache, the location may be accessed in the
cache or in main memory.

Instruction fetch

In real addressing mode (MSR[IR] = 0), an instruction may be fetched if any of the
following conditions is met:

— The instruction is in a cache. In this case, it may be fetched from that cache.

— The instruction is in the same physical page as an instruction that is required by
the sequential execution model or is in the physical page immediately following
such a page.

IfMSR[IR] = 1, instructions may not be fetched from either no-execute segments or
guarded memory. If the effective address of the current instruction is mapped to
either of these kinds of memory when MSR[IR] = 1, an ISI exception is generated.
However, it is permissible for an instruction from either of these kinds of memory
to be in the instruction cache if it was fetched into that cache when its effective
address was mapped to some other kind of memory. Thus, for example, the
operating system can access an application's instruction segments as no-execute
without having to invalidate them in the instruction cache.

Additionally, instructions are not fetched from direct-store segments (only applies
when MSR[IR] = 1). If an instruction fetch is attempted from a direct-store segment,
an ISI exception is generated. Note that the direct-store facility is being phased out
of the architecture and will not likely be supported in future devices. Thus, software
should not depend on its effects.

Note that software should ensure that only well-behaved memory is loaded into a cache,
either by marking as caching-inhibited (and guarded) all memory that may not be well-
behaved, or by marking such memory caching-allowed (and guarded) and referring only to
cache blocks that are well-behaved.

If a physical page contains instructions that will be executed in real addressing mode
(MSRIIR] = 0), software should ensure that this physical page and the next physical page
contain only well-behaved memory.

5-18

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

5.2.2 /O Interface Considerations
The PowerPC architecture defines two mechanisms for accessing I/O:

¢ Memory-mapped I/O interface operations. SR[T] = 0. These operations are
considered to address memory space and are therefore subject to the same coherency
control as memory accesses. Depending on the specific I/O interface, the
memory/cache access attributes (WIMG) and the degree of access ordering
(requiring eieio or sync instructions) need to be considered. This is the
recommended way of accessing I/O.

» Direct-store segment operations. SR[T] = 1. These operations are considered to
address the noncoherent and noncacheable direct-store segment space; therefore,
hardware need not maintain coherency for these operations, and the cache is
bypassed completely. Although the architecture defines this direct-store
functionality, it is being phased out of the architecture and will not likely be
supported in future devices. Thus, its use is discouraged, and new software should
not use it or depend on its effects.

5.2.3 OEA Cache Management Instruction—
Data Cache Block Invalidate (dcbi)

As described in Section 5.1.5, “VEA Cache Management Instructions,” the VEA defines
instructions for controlling both the instruction and data caches, The OEA defines one
instruction, the data cache block invalidate (dcbi) instruction, for controlling the data
cache. This section briefly describes the cache management instruction available to
programs at the supervisor privilege level. Additional descriptions of coding the dcbi
instruction are provided in Chapter 4, “Addressing Modes and Instruction Set Summary,”
and Chapter 8, “Instruction Set.” In the following description, the target is the cache block
containing the byte addressed by the effective address.

Any cache management instruction that generates an EA that corresponds to a direct-store
segment (SR[T] = 1) is treated as a no-op. However, note that the direct-store facility is
being phased out of the architecture and will not likely be supported in future devices. Thus,
software should not depend on its effects.

The action taken depends on the memory/cache access mode associated with the target, and
on the state of the cache block. The following list describes the action taken for the various
cases:

¢ Coherency required

Unmodified cache block—Invalidates copies of the cache block in the data caches
of all processors.

Modified cache block—Invalidates copies of the cache block in the data caches of
all processors. (Discards the modified data in the cache block.)

Chapter 5. Cache Model and Memory Coherency 5-19

Target block not in cache—If copies of the target are in the data caches of other
processors, debi causes those copies to be invalidated, regardless of whether the data
is modified or unmodified.

* Coherency not required

Unmodified cache block—Invalidates the cache block in the executing processor's
data cache.

Modified cache block—Invalidates the cache block in the executing processor's data
cache. (Discards the modified data in the cache block.)

Target block not in cache—No action is taken.

The processor treats the dcbi instruction as a store to the addressed byte with respect to
address translation and protection. It is not necessary to set the referenced and changed bits.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target. To ensure coherency, aliased
effective addresses (two effective addresses that map to the same physical address) must
have the same page offset.

5-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Chapter 6
Exceptions

The operating environment architecture (OEA) portion of the PowerPC architecture defines
the mechanism by which PowerPC processors implement exceptions (referred to as
interrupts in the architecture specification). Exception conditions may be defined at other
levels of the architecture. For example, the user instruction set architecture (UISA) defines
conditions that may cause floating-point exceptions; the OEA defines the mechanism by
which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the
appropriate machine state if it is desired to allow control to ultimately return to the
excepting program.

Chapter 6. Exceptions 6-1

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRR1 soon after the exception is taken to prevent this information from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor
mode (referred to as privileged state in the architecture
specification).

6-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.1 Exception Classes

As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor’s execution; synchronous exceptions are caused by
instructions.

The PowerPC exception types are shown in Table 6-1.

Table 6-1. PowerPC Exception Classifications

Type Exception
Asynchronous/nonmaskable Machine Check
System Reset
Asynchronous/maskable External interrupt
Decrementer
Synchronous/precise Instruction-caused exceptions, excluding floating-

point imprecise exceptions

Synchronous/imprecise Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Exceptions, their offsets, and conditions that cause them, are summarized in Table 6-2. The
exception vectors described in the table correspond to physical address locations,
depending on the value of MSR[IP]. Refer to Section 7.2.1.2, “Predefined Physical
Memory Locations,” for a complete list of the predefined physical memory areas.
Remaining sections in this chapter provide more complete descriptions of the exceptions
and of the conditions that cause them.

Chapter 6. Exceptions 6-3

Table 6-2. Exceptions and Conditions—Overview

Exception
Type

Vector Offset
(hex)

Causing Conditions

System
reset

00100

The causes of system reset exceptions are implementation-dependent. If the conditions
that cause the exception aiso cause the processor state to be corrupted such that the
contents of SRRO and SRR1 are no longer valid or such that other processor resources
are so corrupted that the processor cannot reliably resume execution, the copy of the RI
bit copied from the MSR to SRR1 is cleared.

Machine
check

00200

The causes for machine check exceptions are implementation-dependent, but typically
these causes are related to conditions such as bus parity errors or attempting to access
an invalid physical address. Typically, these exceptions are triggered by an input signal to
the processor. Note that not all processors provide the same level of error checking.
The machine check exception is disabled when MSR[ME] = 0. If a machine check
exception condition exists and the ME bit is cleared, the processor goes into the
checkstop state.

If the conditions that cause the exception also cause the processor state to be corrupted
such that the contents of SRRO and SRR1 are no longer valid or such that other
processor resources are so corrupted that the processor cannot reliably resume
execution, the copy of the RI bit written from the MSR to SRR1 is cleared.

(Note that physical address is referred to as real address in the architecture
specification.)

DSI

00300

A DSI exception occurs when a data memory access cannot be performed for any of the
reasons described in Section 6.4.3, “DSI Exception (0x00300).” Such accesses can be
generated by load/store instructions, certain memory control instructions, and certain
cache control instructions.

ISI

00400

An ISI exception occurs when an instruction fetch cannot be performed for a variety of
reasons described in Section 6.4.4, “ISI Exception (0x00400).”

External
interrupt

00500

An external interrupt is generated only when an external interrupt is pending (typically
signalled by a signal defined by the implementation) and the interrupt is enabled
(MSRI[EE] =1).

Alignment

00600

An alignment exception may occur when the processor cannot perform a memory
access for reasons described in Section 6.4.6, “Alignment Exception (0x00600).”

Note that an implementation is allowed to perform the operation correctly and not cause
an alignment exception.

6-4

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 6-2.

Exceptions and Conditions—Overview (Continued)

Exception

Type

Vector Offset
(hex)

Causing Conditions

Program

00700

A program exception is caused by one of the following exception conditions, which

correspond to bit settings in SRR1 and arise during execution of an instruction:

* Floating-point enabled exception—A floating-point enabled exception condition is
generated when MSR[FEO-FE1] = 00 and FPSCR[FEX] is set. The settings of FEO
and FE1 are described in Table 6-3.

FPSCRIFEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of a Move to FPSCR instruction that sets both
an exception condition bit and its corresponding enable bit in the FPSCR. These
exceptions are described in Section 3.3.6, “Floating-Point Program Exceptions.”

¢ lilegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal combination of
opcode and extended opcode fields or when execution of an optional instruction not
provided in the specific inplementation is attempted (these do not include those
optional instructions that are treated as no-ops). The PowerPC instruction set is
described in Chapter 4, “Addressing Modes and Instruction Set Summary.” See
Section 6.4.7, “Program Exception (0x00700),” for a complete list of causes for an
illegal instruction program exception.

* Privileged instruction—A privileged instruction type program exception is generated
when the execution of a privileged instruction is attempted and the MSR user
privilege bit, MSR[PRY], is set. This exception is also generated for mtspr or mfspr
with an invalid SPR field if spr{0] = 1 and MSR[PR] = 1.

* Trap—A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

For more information, refer to Section 6.4.7, “Program Exception (0x00700).”

Floating-
point
unavailable

00800

A floating-point unavailable exception is caused by an attempt to execute a floating-point
instruction (including floating-point load, store, and move instructions) when the floating-
point available bit is cleared, MSR[FP] = 0.

Decrementer

00900

The decrementer interrupt exception is taken if the exception is enabled (MSR[EE] = 1),
and it is pending. The exception is created when the most-significant bit of the
decrementer changes from 0 to 1. If it is not enabled, the exception remains pending untit
it is taken.

Reserved

00A00

This is reserved for implementation-specific exceptions. For example, the 601 uses this
vector offset for direct-store exceptions.

Reserved

00B00

System call

00C00

A system call exception occurs when a System Call (sc) instruction is executed.

Trace

00D00

Implementation of the trace exception is optional. If implemented, it occurs if either the
MSRISE] = 1 and almost any instruction successfully completed or MSR[BE] = 1 and a
branch instruction is completed. See Section 6.4.11, “Trace Exception (0x00D00),” for
more information.

Floating-
point assist

00E00

Implementation of the floating-point assist exception is optional. This exception can be
used to provide software assistance for infrequent and complex floating-point operations
such as denormalization.

Reserved

00E10-00FFF

Reserved

01000-02FFF

This is reserved for implementation-specific purposes. May be used for implementation-
specific exception vectors or other uses.

Chapter 6. Exceptions

6-5

6.1.1 Precise Exceptions

When any precise exceptions occur, SRRO is set to point to an instruction such that all prior
instructions in the instruction stream have completed execution and no subsequent
instruction has begun execution. However, depending on the exception type, the instruction
addressed by SRRO may not have completed execution.

When an exception occurs, instruction dispatch (the issuance of instructions by the
instruction fetch unit to any instruction execution mechanism) is halted and the following
synchronization is performed:

1. The exception mechanism waits for all previous instructions in the instruction
stream to complete to a point where they report all exceptions they will cause.

2. The processor ensures that all previous instructions in the instruction stream
complete in the context in which they began execution.

3. The exception mechanism implemented in hardware and the software handler is
responsible for saving and restoring the processor state.

The synchronization described conforms to the requirements for context synchronization.
A complete description of context synchronization is described in the following section.

6.1.2 Synchronization

The synchronization described in this section refers to the state of activities within the
processor that performs the synchronization.

6.1.2.1 Context Synchronization

An instruction or event is context synchronizing if it satisfies all the requirements listed
below. Such instructions and events are collectively called context-synchronizing
operations. Examples of context-synchronizing operations include the sc and rfi
instructions and most exceptions. A context-synchronizing operation has the following
characteristics:

1. The operation causes instruction dispatching (the issuance of instructions by the
instruction fetch mechanism to any instruction execution mechanism) to be halted.

2. The operation is not initiated or, in the case of isync, does not complete, until all
instructions in execution have completed to a point at which they have reported all
exceptions they will cause.

If a prior memory access instruction causes one or more direct-store interface error
exceptions, the results are guaranteed to be determined before this instruction is
executed. However, note that the direct-store facility is being phased out of the
architecture and will not likely be supported in future devices.

6-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3. Instructions that precede the operation complete execution in the context (for
example, the privilege, translation mode, and memory protection) in which they
were initiated.

4. If the operation either directly causes an exception (for example, the sc instruction
causes a system call exception) or is an exception, the operation is not initiated until
no exception exists having higher priority than the exception associated with the
context-synchronizing operation.

A context-synchronizing operation is necessarily execution synchronizing. Unlike the sync
instruction, a context-synchronizing operation need not wait for memory-related operations
to complete on other processors, or for referenced and changed bits in the page table to be
updated.

6.1.2.2 Execution Synchronization

An instruction is execution synchronizing if it satisfies the conditions of the first two items
described above for context synchronization. The sync instruction is treated like isync with
respect to the second item described above (that is, the conditions described in the second
item apply to the completion of sync). The sync and mtmsr instructions are examples of
execution-synchronizing instructions.

All context-synchronizing instructions are execution-synchronizing. Unlike a context-
synchronizing operation, an execution-synchronizing instruction need not ensure that the
subsequent instructions execute in the context established by that instruction. This new
context becomes effective sometime after the execution-synchronizing instruction
completes and before or at a subsequent context-synchronizing operation.

6.1.2.3 Synchronous/Precise Exceptions

When instruction execution causes a precise exception, the following conditions exist at the
exception point:

* Depending on the type of exception, SRRO addresses either the instruction causing
the exception or the immediately following instruction. The instruction addressed
can be determined from the exception type and status bits, which are defined in the
description of each exception.

* Allinstructions that precede the excepting instruction complete before the exception
is processed. However, some memory accesses generated by these preceding
instructions may not have been performed with respect to all other processors or
system devices.

* The instruction causing the exception may not have begun execution, may have
partially completed, or may have completed, depending on the exception type.
Handling of partially executed instructions is described in Section 6.1.4, “Partially
Executed Instructions.”

* Architecturally, no subsequent instruction has begun execution.

Chapter 6. Exceptions 6-7

While instruction parallelism allows the possibility of multiple instructions reporting
exceptions during the same cycle, they are handled one at a time in program order.
Exception priorities are described in Section 6.1.5, “Exception Priorities.”

6.1.2.4 Asynchronous Exceptions

There are four asynchronous exceptions—system reset and machine check, which are
nonmaskable and highest-priority exceptions, and external interrupt and decrementer
exceptions which are maskable and low-priority. These two types of asynchronous
exceptions are discussed separately.

6.1.2.4.1 System Reset and Machine Check Exceptions

System reset and machine check exceptions have the highest priority and can occur while
other exceptions are being processed. Note that nonmaskable, asynchronous exceptions are
never delayed; therefore, if two of these exceptions occur in immediate succession, the state
information saved by the first exception may be overwritten when the subsequent exception
occurs. Note that these exceptions are context-synchronizing if they are recoverable
(MSR[RI] is copied from the MSR to SRR1 if the exception does not cause loss of state.)
If the RI bit is clear (nonrecoverable), the exception is context-synchronizing only with
respect to subsequent instructions.

These exceptions cannot be masked by using the MSR[EE] bit. However, if the machine
check enable bit, MSR[ME], is cleared and a machine check exception condition occurs,
the processor goes directly into checkstop state as the result of the exception condition.
‘When one of these exceptions occur, the following conditions exist at the exception point:

* For system reset exceptions, SRRO addresses the instruction that would have
attempted to execute next if the exception had not occurred.

* For machine check exceptions, SRRO holds either an instruction that would have
completed or some instruction following it that would have completed if the
exception had not occurred.

* An exception is generated such that all instructions preceding the instruction
addressed by SRRO appear to have completed with respect to the executing
Processor.

Note that a bit in the MSR (MSR[RI]) indicates whether enough of the machine state was
saved to allow the processor to resume processing.

6-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.1.2.4.2 External Interrupt and Decrementer Exceptions

For the external interrupt and decrementer exceptions, the following conditions exist at the
exception point (assuming these exceptions are enabled (MSR[EE] bit is set)):

e All instructions issued before the exception is taken and any instructions that
precede those instructions in the instruction stream appear to have completed before
the exception is processed.

* No subsequent instructions in the instruction stream have begun execution.

» SRRO addresses the instruction that would have been executed had the exception not
occurred.

That is, these exceptions are context-synchronizing. The external interrupt and decrementer
exceptions are maskable. When the machine state register external interrupt enable bit is
cleared (MSR[EE] = 0), these exception conditions are not recognized until the EE bit is
set. MSR[EE] is cleared automatically when an exception is taken, to delay recognition of
subsequent exception conditions. No two precise exceptions can be recognized
simultaneously. Exception handling does not begin until all currently executing instructions
complete and any synchronous, precise exceptions caused by those instructions have been
handled. Exception priorities are described in Section 6.1.5, “Exception Priorities.”

6.1.3 Imprecise Exceptions

The PowerPC architecture defines one imprecise exception, the imprecise floating-point
enabled exception. This is implemented as one of the conditions that can cause a program
exception.

6.1.3.1 Imprecise Exception Status Description

When the execution of an instruction causes an imprecise exception, SRRO contains
information related to the address of the excepting instruction as follows:

¢ SRRO contains the address of either the instruction that caused the exception or of
some instruction following that instruction.

» The exception is generated such that all instructions preceding the instruction
addressed by SRRO have completed with respect to the processor.

» If the imprecise exception is caused by the context-synchronizing mechanism (due
to an instruction that caused another exception—for example, an alignment or DSI
exception), then SRRO contains the address of the instruction that caused the
exception, and that instruction may have been partially executed (refer to
Section 6.1.4, “Partially Executed Instructions”).

» If the imprecise exception is caused by an execution-synchronizing instruction other
than sync or isyne, SRRO addresses the instruction causing the exception.
Additionally, besides causing the exception, that instruction is considered not to
have begun execution. If the exception is caused by the sync or isync instruction,
SRRO may address either the sync or isync instruction, or the following instruction.

Chapter 6. Exceptions 6-9

If the imprecise exception is not forced by either the context-synchronizing
mechanism or the execution-synchronizing mechanism, the instruction addressed by
SRRO is considered not to have begun execution if it is not the instruction that caused
the exception.

When an imprecise exception occurs, no instruction following the instruction
addressed by SRRO is considered to have begun execution.

6.1.3.2 Recoverability of Imprecise Floating-Point Exceptions

The enabled IEEE floating-point exception mode bits in the MSR (FEO and FE1) together
define whether IEEE floating-point exceptions are handled precisely, imprecisely, or
whether they are taken at all. The possible settings are shown in Table 6-3. For further
details, see Section 3.3.6, “Floating-Point Program Exceptions.”

Table 6-3. IEEE Floating-Point Program Exception Mode Bits

FEO | FE1 Mode

0 0 Floating-point exceptions ignored

0 1 Floating-point imprecise nonrecoverable
1 0 Floating-point imprecise recoverable
1 1 Floating-point precise mode

As shown in the table, the imprecise floating-point enabled exception has two
modes—nonrecoverable and recoverable. These modes are specified by setting the
MSR[FEOQ] and MSR[FET1] bits and are described as follows:

* Imprecise nonrecoverable floating-point enabled mode. MSR[FEO] = 0;

MSR[FE1] = 1. When an exception occurs, the exception handler is invoked at some
point at or beyond the instruction that caused the exception. It may not be possible
to identify the excepting instruction or the data that caused the exception. Results
from the excepting instruction may have been used by or affected subsequent
instructions executed before the exception handler was invoked.

Imprecise recoverable floating-point enabled mode. MSR[FEQ] = 1; MSR[FE1] =0.
When an exception occurs, the floating-point enabled exception handler is invoked
at some point at or beyond the instruction that caused the exception. Sufficient
information is provided to the exception handler that it can identify the excepting
instruction and correct any faulty results. In this mode, no incorrect results caused
by the excepting instruction have been used by or affected subsequent instructions
that are executed before the exception handler is invoked.

Although these exceptions are maskable with these bits, they differ from other maskable
exceptions in that the masking is usually controlled by the application program rather than
by the operating system.

6-10

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.1.4 Partially Executed Instructions

The architecture permits certain instructions to be partially executed when an alignment
exception or DSI exception occurs, or an imprecise floating-point exception is forced by an
instruction that causes an alignment or DSI exception. They are as follows:

* Load multiple/string instructions that cause an alignment or DSI exception—Some
registers in the range of registers to be loaded may have been loaded.

 Store multiple/string instructions that cause an alignment or DSI exception—Some
bytes in the addressed memory range may have been updated.

* Non-multiple/string store instructions that cause an alignment or DSI
exception—Some bytes just before the boundary may have been updated. If the
instruction normally alters CRO (stwex.), CRO is set to an undefined value. For
instructions that perform register updates, the update register (rA) is not altered.

» Floating-point load instructions that cause an alignment or DSI exception—The
target register may be altered. For update forms, the update register (rA) is not
altered.

* Aload or store to a direct-store segment that causes a DSI exception due to a direct-
store interface error exception—Some of the associated address/data transfers may
not have been initiated. All initiated transfers are completed before the exception is
reported, and the transfers that have not been initiated are aborted. Thus the
instruction completes before the DSI exception occurs. However, note that the
direct-store facility is being phased out of the architecture and will not likely be
supported in future devices.

In the cases above, the number of registers and the amount of memory altered are
implementation-, instruction-, and boundary-dependent. However, memory protection is
not violated. Furthermore, if some of the data accessed is in a direct-store segment and the
instruction is not supported for use in such memory space, the locations in the direct-store
segment are not accessed. Again, note that the direct-store facility is being phased out of
the architecture and will not likely be supported in future devices.

Partial execution is not allowed when integer load operations (except multiple/string
operations) cause an alignment or DSI exception. The target register is not altered. For
update forms of the integer load instructions, the update register (rA) is not altered.

Chapter 6. Exceptions 6-11

6.1.5 Exception Priorities
Exceptions are roughly prioritized by exception class, as follows:

1.

Nonmaskable, asynchronous exceptions have priority over all other
exceptions—system reset and machine check exceptions (although the machine
check exception condition can be disabled so that the condition causes the processor
to go directly into the checkstop state). These two types of exceptions in this class
cannot be delayed by exceptions in other classes, and do not wait for the completion
of any precise exception handling.

Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

If an imprecise exception exists (the instruction that caused the exception has been
completed and is required by the sequential execution model), exceptions signaled
by instructions subsequent to the instruction that caused the exception are not
permitted to change the architectural state of the processor. The exception causes an
imprecise program exception unless a machine check or system reset exception is
pending.

Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
have lowest priority.

The exceptions are listed in Table 6-4 in order of highest to lowest priority.

Table 6-4. Exception Priorities

" Exception .
Class Priority Exception
Nonmaskable, 1 System reset—The system reset exception has the highest priority of all exceptions. If this
asynchronous exception exists, the exception mechanism ignores all other exceptions and generates a
system reset exception. When the system reset exception is generated, previously issued
instructions can no longer generate exception conditions that cause a nonmaskable
exception.

2 Machine check—The machine check exception is the second-highest priority exception. If
this exception occurs, the exception mechanism ignores all other exceptions (except reset)
and generates a machine check exception.When the machine check exception is
generated, previously issued instructions can no longer generate exception conditions that
cause a nonmaskable exception.

6-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 6-4. Exception Priorities (Continued)

Exception

Class Priority Exception

Synchronous, 3 Instruction dependent— When an instruction causes an exception, the exception
precise mechanism waits for any instructions prior to the excepting instruction in the instruction
stream to complete. Any exceptions caused by these instructions are handled first. It then
generates the appropriate exception if no higher priority exception exists when the
exception is to be generated.
Note that a single instruction can cause multiple exceptions. When this occurs, those
exceptions are ordered in priority as indicated in the following:
A. Integer loads and stores
a. Alignment
b. DSI
c. Trace (if implemented)
B. Floating-point loads and stores
a. Floating-point unavailable
b. Alignment
c.DSI
d. Trace (if implemented)
C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Floating-point assist (if implemented)
d. Trace (if implemented)
D.rfi and mtmsr
a. Program—Privileged Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsr only
If precise-mode IEEE floating-point enabled exceptions are enabled and the
FPSCRI[FEX] bit is set, a program exception occurs no later than the next
synchronizing event.
E. Other instructions
a. These exceptions are mutually exclusive and have the same priority:
—Program: Trap
— System call (sc)
—Program: Privileged Instruction
—Program: lllegal Instruction
b. Trace (if implemented)
F. 1Sl exception
The ISI exception has the lowest priority in this category. It is only recognized when all
instructions prior to the instruction causing this exception appear to have completed and
that instruction is to be executed. The priority of this exception is specified for
completeness and to ensure that it is not given more favorable treatment. An
implementation can treat this exception as though it had a lower priority.

Imprecise 4 Program imprecise floating-point mode enabled exceptions—When this exception occurs,
the exception handler is invoked at or beyond the floating-point instruction that caused the
exception. The PowerPC architecture supports recoverable and nonrecoverable imprecise
modes, which are enabled by setting MSR[FEO] # MSR[FE1]. For more information see,
Section 6.1.3, “Imprecise Exceptions.”

Chapter 6. Exceptions 6-13

Table 6-4. Exception Priorities (Continued)

Exception
Class Priority Exception
Maskable, 5 External interrupt—The external interrupt mechanism waits for instructions currently or
asynchronous previously dispatched to complete execution. After all such instructions are completed, and

any exceptions caused by those instructions have been handled, the exception mechanism
generates this exception if no higher priority exception exists. This exception is enabled
only if MSR[EE] is currently set. If EE is zero when the exception is detected, it is delayed
until the bit is set.

6 Decrementer—This exception is the lowest priority exception. When this exception is
created, the exception mechanism waits for all other possible exceptions to be reported. It
then generates this exception if no higher priority exception exists. This exception is
enabled only if MSR[EE] is currently set. If EE is zero when the exception is detected, it is
delayed until the bit is set.

Nonmaskable, asynchronous exceptions (namely, system reset or machine check
exceptions) may occur at any time. That is, these exceptions are not delayed if another
exception is being handled (although machine check exceptions can be delayed by system
reset exceptions). As a result, state information for the interrupted exception handler may
be lost.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized. Only one
synchronous, precise exception can be reported at a time. If a maskable, asynchronous or
an imprecise exception condition occurs while instruction-caused exceptions are being
processed, its handling is delayed until all exceptions caused by previous instructions in the
program flow are handled and those instructions complete execution.

6.2 Exception Processing

When an exception is taken, the processor uses the save/restore registers, SRR1 and SRRO,
respectively, to save the contents of the MSR for the interrupted process and to help
determine where instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in SRRO is used to help calculate where
instruction processing should resume when the exception handler returns control to the
interrupted process. Depending on the exception, this may be the address in SRRO or at the
next address in the program flow. All instructions in the program flow preceding this one
will have completed execution and no subsequent instruction will have begun execution.
This may be the address of the instruction that caused the exception or the next one (as in
the case of a system call or trap exception). The SRRO register is shown in Figure 6-1.

6-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

SRRO (holds EA for instruction in interrupted program flow)

Figure 6-1. Machine Status Save/Restore Register 0

The save/restore register 1 (SRR1) is used to save machine status (selected bits from the
MSR and other implementation-specific status bits as well) on exceptions and to restore
those values when rfi is executed. SRR1 is shown in Figure 6-2.

Exception-specific information and MSR bit values |

Figure 6-2. Machine Status Save/Restore Register 1

When an exception occurs, SRR1 bits 1-4 and 10-15 are loaded with exception-specific
information and MSR bits 16-23, 25-27, and 30-31 are placed into the corresponding bit
positions of SRR1. Depending on the implementation, additional bits of the MSR may be
copied to SRR1.

Note that, in some implementations, every instruction fetch when MSR[IR] = 1, and every
data access requiring address translation when MSR[DR] = 1, may modify SRRO and
SRRI1.

The MSR is 32 bits wide as shown in Figure 6-3. Note that the 32-bit implementation of
the MSR is comprised of the 32 least-significant bits of the 64-bit MSR.

Reserved

0 12 13 14 15 16 171819 20 2122 23 24 252627282930 31

Figure 6-3. Machine State Register (MSR)

Chapter 6. Exceptions 6-15

Table 6-5 shows the bit definitions for the MSR.

Table 6-5. MSR Bit Settings

Bit(s)

Name

Description

0-12

Reserved

13

POW

Power management enable

0 Power management disabled (normal operation mode).

1 Power management enabled (reduced power mode).

Note: Power management functions are implementation-dependent. If the function is not
implemented, this bit is treated as reserved.

14

Reserved

15

ILE

Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select the
endian mode for the context established by the exception.

16

EE

External interrupt enable

0 While the bit is cleared the processor delays recognition of external interrupts and decrementer
exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer exception.

17

PR

Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18

FP

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point loads,
stores, and moves.

1 The processor can execute floating-point instructions.

19

ME

Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20

FEO

Floating-point exception mode O (see Table 2-10).

21

SE

Single-step trace enable (Optional)

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of the
next instruction.

Note: If the function is not implemented, this bit is treated as reserved.

22

BE

Branch trace enable (Optional)

0 The processor executes branch instructions normally.

1 The processor generates a branch trace exception after completing the execution of a branch
instruction, regardless of whether or not the branch was taken.

Note: If the function is not implemented, this bit is treated as reserved.

23

FE1

Floating-point exception mode 1 (See Table 2-10).

24

Reserved

25

Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or 0s. In the following description, nnnnn is the offset of the exception vector. See Table 6-2.
0 Exceptions are vectored to the physical address 0x000n_nnnn .

1 Exceptions are vectored to the physical address OxFFFn_nnnn.

In most systems, IP is set to 1 during system initialization, and then cleared to 0 when initialization is
complete.

6-16

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 6-5. MSR Bit Settings (Continued)

Bit(s) | Name Description

26 IR Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 7, “Memory Management.”

27 DR Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 7, “Memory Management”

28-29 |— Reserved

30 RI Recoverable exception (for system reset and machine check exceptions).

0 Exception is not recoverable.

1 Exception is recoverable.

For more information see Section 6.4.1, “System Reset Exception (0x00100),"and Section 6.4.2,
“Machine Check Exception (0x00200).”

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Those MSR bits that are written to SRR1 are written when the first instruction of the
exception handler is encountered. The data address register (DAR) is used by several
exceptions (for example, DSI and alignment exceptions) to identify the address of a
memory element.

6.2.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition as follows:

» IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FEQ] and MSR[FE1] are cleared. If either of these bits is set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.

* Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] = 0, recognition
of these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken to delay recognition of conditions causing those exceptions.

* A machine check exception can only occur if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs.

Chapter 6. Exceptions 6-17

6.2.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1.

The machine status save/restore register 0 (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. SRRI bits 1-4 and 10-15 are loaded with information specific to the exception type.

MSR bits 16-23, 25-27, and 30-31 are loaded with a copy of the corresponding bits
of the MSR. Note that depending on the implementation, additional bits from the
MSR may be saved in SRR1.

The MSR is set as described in Table 6-7. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Also, note that the MSR[ILE] bit setting at the time of the exception is copied to
MSRI[LE] when the exception is taken (as shown in Table 6-7).

Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector offset (see Table 6-2) to the base address determined by MSR[IP]. If IP is
cleared, exceptions are vectored to the physical address 0x000n_nnnn. If IP is set,
exceptions are vectored to the physical address OXFFFn_nnnn. For a machine check
exception that occurs when MSR[ME] = 0 (machine check exceptions are disabled),
the checkstop state is entered (the machine stops executing instructions). See
Section 6.4.2, “Machine Check Exception (0x00200).”

In some implementations, any instruction fetch with MSR[IR] = 1 and any load or store
with MSR[DR] = 1 may cause SRRO and SRR1 to be modified.

6-18

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.2.3 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process.
Execution of the rfi instruction ensures the following:

* All previous instructions have completed to a point where they can no longer cause
an exception.

If a previous instruction causes a direct-store interface error exception, the results
are determined before this instruction is executed. However, note that the direct-
store facility is being phased out of the architecture and will not likely be supported
in future devices.

* Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

¢ The rfi instruction copies SRR1 bits back into the MSR.

* The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Section 6.1.2.1, “Context
Synchronization.”

6.3 Process Switching
The operating system should execute the following when processes are switched:

* The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes.

* The isync instruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

» The stwex. instruction, to clear any outstanding reservations, which ensures that an
Iwarx instruction in the old process is not paired with an stwex. instruction in the
new process.

The operating system should handle MSRI[RI] as follows:

* In machine check and system reset exception handlers—If the SRR1 bit
corresponding to MSR[RI] is cleared, the exception is not recoverable.

* In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

¢ At the end of each exception handler—Clear MSR[RI], set the SRRO and SRR1
registers appropriately, and then execute rfi.

Chapter 6. Exceptions 6-19

Note that the RI bit being set indicates that, with respect to the processor, enough processor
state data is valid for the processor to continue, but it does not guarantee that the interrupted
process can resume.

6.4 Exception Definitions

Table 6-6 shows all the types of exceptions that can occur and certain MSR bit settings
when the exception handler is invoked. Depending on the exception, certain of these bits
are stored in SRR1 when an exception is taken. The following subsections describe each
exception in detail.

Table 6-6. MSR Setting Due to Exception

MSR Bit
Exception Type

POW | ILE | EE | PR | FP | ME | FEO | SE | BE | FE1 | IP | IR | DR | RI LE
System reset 0 —_ 0 0 0| — 0 0 0 0 — 1|0 0 0 ILE
Machine check 0 — 10 0 0 0 0 0 0 0O |—]O0] O 0 ILE
Data access 0 — 0 0 0| — 0 0 0 0O |—]0}] O 0 ILE
Instruction access 0 — 10 0 0| — 0 0 0 oO|—1J]0]O0 0 ILE
External 0 —_ 0 0 0| — 0 0 0 0 — 10 0 0 ILE
Alignment 0 — 10 0 0| — 0 0 0 o|l—|0] O 0 ILE
Program 0 —_ 0 0 0| — 0 0 0 0 — 10 0 0 ILE
Floating-point 0 —_ 0 0 0| — 0 0 0 0 —]0} O 0 ILE
unavailable
Decrementer 0 — 0 0 0| — 0 0 0 o|—]0] O 0 ILE
System call 0 — 1 0 ojoj}l—1}] o 0 0 o|l—]o0}]oO 0 | ILE
Trace exception 0 — 0 0 0| — 0 0 0 0 —10 0 0 ILE
Floating-point 0 — 0 0 0| — 0 0 0 0 — 10 0 0 ILE
assist exception

0 Bit is cleared

1 Bit is set

ILE Bitis copied from the ILE bit in the MSR.

— Bit is not altered

Reading of reserved bits may return 0, even if the value last written to it was 1.

6-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.4.1 System Reset Exception (0x00100)

The system reset exception is a nonmaskable, asynchronous exception signaled to the
processor typically through the assertion of a system-defined signal; see Table 6-7.

Table 6-7. System Reset Exception—Register Settings

Register Setting Description

SRRO | Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

SRR1 |14 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30 Loaded from the equivalent MSR bit, MSRI[RI], if the exception is recoverable;
otherwise cleared.
31 Loaded with equivalent bit from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.
If the processor state is corrupted to the extent that execution cannot resume reliably, the bit
corresponding to MSR[RI], (SRR1[30]), is cleared.

MSR POW 0 FP 0 BE 0 DR ©
ILE — ME — FE1 0 Rl 0
EE O FEO 0 IP — LE Setto value of ILE
PR © SE 0 IR 0

When a system reset exception is taken, instruction execution continues at offset 0x00100
from the physical base address determined by MSR[IP].

If the exception is recoverable, the value of the MSR[RI] bit is copied to the corresponding
SRR1 bit. The exception functions as a context-synchronizing operation. If a reset
exception causes the loss of:

* an external exception (interrupt or decrementer),

» direct-store error type DSI (the direct-store facility is being phased out of the
architecture—not likely to be supported in future devices), or

» floating-point enabled type program exception,

then the exception is not recoverable. If the SRR1 bit corresponding to MSR[RI] is cleared,
the exception is context-synchronizing only with respect to subsequent instructions. Note
that each implementation provides a means for software to distinguish between power-on
reset and other types of system resets (such as soft reset).

Chapter 6. Exceptions 6-21

6.4.2 Machine Check Exception (0x00200)

If no higher-priority exception is pending (namely, a system reset exception), the processor
initiates a machine check exception when the appropriate condition is detected. Note that
the causes of machine check exceptions are implementation- and system-dependent, and
are typically signalled to the processor by the assertion of a specified signal on the
processor interface.

When a machine check condition occurs and MSR[ME] = 1, the exception is recognized
and handled. If MSR[ME] = 0 and a machine check occurs, the processor generates an
internal checkstop condition. When a processor is in checkstop state, instruction processing
is suspended and generally cannot continue without resetting the processor. Some
implementations may preserve some or all of the internal state of the processor when
entering the checkstop state, so that the state can be analyzed as an aid in problem
determination.

In general, it is expected that a bus error signal would be used by a memory controller to
indicate a memory parity error or an uncorrectable memory ECC error. Note that the
resulting machine check exception has priority over any exceptions caused by the
instruction that generated the bus operation.

If a machine check exception causes an exception that is not context-synchronizing, the
exception is not recoverable. Also, a machine check exception is not recoverable if it causes
the loss of one of the following:

* An external exception (interrupt or decrementer)

* Direct-store error type DSI (the direct-store facility is being phased out of the
architecture and is not likely to be supported in future devices)

» Floating-point enabled type program exception

If the SRR1 bit corresponding to MSRI[RI] is cleared, the exception is context-
synchronizing only with respect to subsequent instructions. If the exception is recoverable,
the SRR1 bit corresponding to MSR[RI] is set and the exception is context-synchronizing.

Note that if the error is caused by the memory subsystem, incorrect data could be loaded
into the processor and register contents could be corrupted regardless of whether the
exception is considered recoverable by the SRR1 bit corresponding to MSR[RI].

On some implementations, a machine check exception may be caused by referring to a
nonexistent physical (real) address, either because translation is disabled (MSR[IR] or
MSRI[DR] = 0) or through an invalid translation. On such a system, execution of the dcbz
or dcba instruction can cause a delayed machine check exception by introducing a block
into the data cache that is associated with an invalid physical (real) address. A machine
check exception could eventually occur when and if a subsequent attempt is made to store
that block to memory (for example, as the block becomes the target for replacement, or as
the result of executing a dcbst instruction).

6-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

When a machine check exception is taken, registers are updated as shown in Table 6-8.

Table 6-8. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis, implementations can set this to an EA of some instruction that was
executing or about to be executing when the machine check condition occurred.

SRR1 Bit 30 is loaded from MSRIRI] if the processor is in a recoverable state. Otherwise cleared. The
setting of all other SRR1 bits is implementation-dependent.

MSR POW 0 FP . 0 BE 0 DR 0
ILE — ME — FE1 0 Rl 0
EE ©0 FEO O P — LE Setto value of ILE
PR 0 SE 0 IR 0

* Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

If MSR[RI] is set, the machine check exception may still be unrecoverable in the sense that
execution cannot resume in the same context that existed before the exception.

When a machine check exception is taken, instruction execution resumes at offset 0x00200
from the physical base address determined by MSR[IP].

6.4.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The condition that caused the DSI exception can be determined by
reading the DSISR, a supervisor-level SPR (SPR18) that can be read by using the mfspr
instruction. Bit settings are provided in Table 6-9. Table 6-9 also indicates which memory
element is pointed to by the DAR. DSI exceptions can be generated by load/store
instructions, cache-control instructions (icbi, dcbi, dcbz, dcbst, and dcbf), or the
eciwx/ecowx instructions for any of the following reasons:

* A load or a store instruction results in a direct-store error exception. Note that the
direct-store facility is being phased out of the architecture and is not likely to be
supported in future devices.

* The effective address cannot be translated. That is, there is a page fault for this
portion of the translation, so a DSI exception must be taken to retrieve the
translation, for example from a storage device such as a hard disk drive.

* The instruction is not supported for the type of memory addressed.

— For lwarx/stwex. instructions that reference a memory location that is write-
through-required. If the exception is not taken, the instructions execute correctly.

— For lwarx/stwcx. or eciwx/ecowx instructions that attempt to access direct-store
segments (direct-store facility is being phased out of the architecture—not likely
to be supported in future devices). If the exception does not occur, the results are
boundedly undefined.

Chapter 6. Exceptions 6-23

The access violates memory protection.

The execution of an eciwx or ecowx instruction is disallowed because the external
access register enable bit (EAR[E]) is cleared.

A data address breakpoint register (DABR) match occurs. The DABR facility is

optional to the PowerPC architecture, but if one is implemented, it is recommended,

but not required, that it be implemented as follows. A data address breakpoint match

is detected for a load or store instruction if the three following conditions are met for

any byte accessed:

— EA[0-28] = DABR[DAB]

— MSR[DR] = DABR[BT]

— The instruction is a store and DABR[DW] = 1, or the instruction is a load and
DABRI[DR] =1.

The DABR is described in Section 2.3.14, “Data Address Breakpoint Register
(DABR).” DAR settings are described in Table 6-9. If the above conditions are
satisfied, it is undefined whether a match occurs in the following cases:

— The instruction is store conditional but the store is not performed.

— The instruction is a load/store string of zero length.

— The instruction is debz, eciwx, or ecowx.

The cache management instructions other than debz never cause a match. If dcbz
causes a match, some or all of the target memory locations may have been updated.

For the purpose of determining whether a match occurs, eciwx is treated as a load,
and ecowx and dcbz are treated as stores.

If an stwcx. instruction has an EA for which a normal store operation would cause a DSI
exception but the processor does not have the reservation from lwarx, whether a DSI
exception is taken is implementation-dependent.

If the value in XER[25-31] indicates that a load or store string instruction has a length of
zero, a DSI exception does not occur, regardless of the effective address.

The condition that caused the exception is defined in the DSISR. As shown in Table 6-9,
this exception also sets the data address register (DAR).

Table 6-9. DSI Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that caused the exception.

SRR1 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

6-24 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 6-9. DSI Exception—Register Settings (Continued)

Register Setting Description

MSR POW 0 FP 0 BE O DR ©0
ILE — ME — FE1 0 Rl 0
EE © FEO O P — LE Setto value of ILE
PR 0 SE 0 IR 0

DSISR 0 Set if a load or store instruction results in a direct-store error exception; otherwise cleared. Note

that the direct-store facility is being phased out of the architecture and is not likely to be
supported in future devices.

1 Set if the translation of an attempted access is not found in the primary hash table entry group
(HTEG), or in the rehashed secondary HTEG, or in the range of a DBAT register (page fault
condition); otherwise cleared.

2-3 Cleared
4 Set if a memory access is not permitted by the page or DBAT protection mechanism; otherwise
cleared.

5 Set if the eciwx, ecowx, lwarx, or stwcx. instruction is attempted to direct-store interface space,
or if the Iwarx or stwex instruction is used with addresses that are marked as write-through.
Otherwise cleared to 0. Note that the direct-store facility is being phased out of the architecture
and is not likely to be supported in future devices.

6 Set for a store operation and cleared for a load operation.

7-8 Cleared
9 Set if a DABR match occurs. Otherwise cleared.
10 Cleared

1 Set if the instruction is an eciwx or ecowx and EAR[E] = 0; otherwise cleared.

12-31 Cleared

Due to the multiple exception conditions possible from the execution of a single instruction, the
following combinations of bits of DSISR may be set concurrently:

*Bits 1 and 11

*Bits4and 5

¢ Bits 4 and 11

eBits5and 11

Additonally, bit 6 is set if the instruction that caused the exception is a store, ecowx, dcbz, dcba, or
dcbi and bit 6 would otherwise be cleared. Also, bit 9 (DABR match) may be set alone, or in
combination with any other bit, or with any of the other combinations shown above.

DAR Set to the effective address of a memory element as described in the following list:

* A byte in the first word accessed in the segment or BAT area that caused the DSI exception, for a
byte, half word, or word memory access (to a segment or BAT area).

¢ - A byte in the first double word accessed in the segment or BAT area that caused the DSI exception,
for a double-word memory access (to a segment or BAT area).

= A byte in the block that caused the exception for a cache management instruction.

¢ Any EA in the memory range addressed (for direct-store error exceptions). Note that the direct-store
facility is being phased out of the architecture and is not likely to be supported in future devices.

* The EA computed by the instruction for the attempted execution of an eciwx or ecowx instruction
when EAR[E] is cleared.

«If the exception is caused by a DABR match, the DAR is set to the effective address of any byte in the

range from A to B inclusive, where A is the effective address of the word (for a byte, half word,or word

access) or double word (for a double word access) specified by the EA computed by the instruction,

and B is the EA of the last byte in the word or double word in which the match occurred.

When a DSI exception is taken, instruction execution resumes at offset 0x00300 from the
physical base address determined by MSR[IP].

Chapter 6. Exceptions 6-25

6.4.4 ISI Exception (0x00400)

An ISI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction to be executed fails for any of the following reasons:

¢ The effective address cannot be translated. For example, when there is a page fault
for this portion of the translation, an ISI exception must be taken to retrieve the page
(and possibly the translation), typically from a storage device.

* An attempt is made to fetch an instruction from a no-execute segment.
* An attempt is made to fetch an instruction from guarded memory and MSR[IR] = 1.
* The fetch access violates memory protection.

* An attempt is made to fetch an instruction from a direct-store segment. Note that the
direct-store facility is being phased out of the architecture and is not likely to be
supported in future devices.

Register settings for ISI exceptions are shown in Table 6-10.

Table 6-10. ISI Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present (if the exception occurs on attempting to fetch a branch target,
SRRO is set to the branch target address).

SRR1 1 Set if the translation of an attempted access is not found in the primary hash
table entry group (HTEG), or in the rehashed secondary HTEG, or in the
range of an IBAT register (page fault condition); otherwise cleared.

2 Cleared

3 Set if the fetch access occurs to a direct-store segment (SR[T] = 1), to a no-
execute segment (N bit set in segment descriptor), or to guarded memory
when MSR[IR] = 1. Otherwise, cleared. Note that the direct-store facility is
being phased out of the architecture and is not likely to be supported in future

devices.

4 Set if a memory access is not permitted by the page or IBAT protection
mechanism, described in Chapter 7, “Memory Management”; otherwise
cleared.

10-15 Cleared

16-23 Loaded with equivalent bits from the MSR

25-27 Loaded with equivalent bits from the MSR

30-31 Loaded with equivalent bits from the MSR

Note that only one of bits 1, 3, and 4 can be set .
Also, note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE O DR 0
ILE — ME — FE1 0 Rl 0
EE O FEO O IP —_ LE Setto value of ILE
PR 0 SE 0 IR O

When an ISI exception is taken, instruction execution resumes at offset 0x00400 from the
physical base address determined by MSR[IP].

6-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.4.5 External Interrupt (0x00500)

An external interrupt exception is signaled to the processor by the assertion of the external
interrupt signal. The exception may be delayed by other higher priority exceptions or if the
MSRI[EE] bit is zero when the exception is detected. Note that the occurrance of this
exception does not cancel the external request.

The register settings for the external interrupt exception are shown in Table 6-11.

Table 6-11. External Interrupt—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no interrupt conditions were present.
SRR1 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE — ME — FE1 0 Rl 0
EE 0 FEO O P — LE Setto value of ILE
PR 0 SE 0 IR 0

When an external interrupt exception is taken, instruction execution resumes at offset
0x00500 from the physical base address determined by MSR[IP].

6.4.6 Alignment Exception (0x00600)

This section describes conditions that can cause alignment exceptions in the processor.
Similar to DSI exceptions, alignment exceptions use the SRRO and SRR1 to save the
machine state and the DSISR to determine the source of the exception. An alignment
exception occurs when no higher priority exception exists and the implementation cannot
perform a memory access for one of the following reasons:

* The operand of a floating-point load or store instruction is not word-aligned.
* The operand of Imw, stmw, lwarx, stwcx., eciwx, or ecowx is not aligned.

* The instruction is Imw, stmw, Iswi, Iswx, stswi, or stswx and the processor is in
little-endian mode.

* The operand of an elementary or string load or store crosses a protection boundary.
* The operand of Imw or stmw crosses a segment or BAT boundary.

Chapter 6. Exceptions 6-27

» The operand of dcbz is in memory that is write-through-required or caching
inhibited, or dcbz is executed in an implementation that has either no data cache or
a write-through data cache.

* The operand of a floating-point load or store instruction is in a direct-store segment
(T = 1). Note that the direct-store facility is being phased out of the architecture and
is not likely to be supported in future devices.

For Imw, stmw, Iswi, Iswx, stswi, and stswx instructions in little-endian mode, an
alignment exception always occurs. For Imw and stmw instructions with an operand that is
not aligned in big-endian mode, and for Iwarx, stwcx., eciwx, and ecowx with an operand
that is not aligned in either endian mode, an implementation may yield boundedly-
undefined results instead of causing an alignment exception (for eciwx and ecowx when
EAR[E] =0, a third alternative is to cause a DSI exception). For all other cases listed above,
an implementation may execute the instruction correctly instead of causing an alignment
exception. For the dcbz instruction, correct execution means clearing each byte of the block
in main memory. See Section 3.1, “Data Organization in Memory and Data Transfers,” for
a complete definition of alignment in the PowerPC architecture.

The term, ‘protection boundary’, refers to the boundary between protection domains. A
protection domain is a segment, a block of memory defined by a BAT entry, a virtual 4-
Kbyte page, or a range of unmapped effective addresses. Protection domains are defined
only when the corresponding address translation (instruction or data) is enabled (MSR[IR]
or MSR[DR] =1).

The register settings for alignment exceptions are shown in Table 6-12.

Table 6-12. Alignment Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception.
SRR1 1-4 Cleared
10-15 ~ Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.
MSR POW 0 FP 0 BE 0 DR 0
ILE — ME — FE1 0 RI 0
EE 0 FEO 0 P — ~ LE Settovalueof ILE
PR 0 SE 0 IR 0

6-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 6-12. Alignment Exception—Register Settings (Continued)

Register Setting Description

DSISR 0-14 Cleared
15-16 For instructions that use register indirect with index addressing—set to bits 29-30 of the
instruction encoding.
For instructions that use register indirect with immediate index addressing—cleared
17 For instructions that use register indirect with index addressing—set to bit 25 of the instruction
encoding.
For instructions that use register indirect with immediate index addressing— set to bit 5 of the
instruction encoding.
18-21 For instructions that use register indirect with index addressing—set to bits 21-24 of the
instruction encoding.
For instructions that use register indirect with immediate index addressing—set to bits 1—4 of the
instruction encoding.
22-26 Set to bits 6-10 (identifying either the source or destination) of the instruction encoding.
Undefined for debz.
27-31 Set to bits 11-15 of the instruction encoding (rA) for update-form instructions
Set to either bits 11-15 of the instruction encoding or to any register number not in the range of
registers loaded by a valid form instruction for Imw, iswi, and Iswx instructions. Otherwise
undefined.
Note that for load or store instructions that use register indirect with index addressing, the DSISR can
be set to the same value that would have resulted if the corresponding instruction uses register indirect
with immediate index addressing had caused the exception. Similarly, for load or store instructions that
use register indirect with immediate index addressing, DSISR can hold a value that would have resulted
from an instruction that uses register indirect with index addressing. For example, a misaligned Iwarx
instruction that crosses a protection boundary would normally cause the DSISR to be set to the
following binary value:

000000000000 00 0 01 0 0101 titit 22???
The value ttttt refers to the destination and ????? indicates undefined bits.
However, this register may be set as if the instruction were Iwa, as follows:

If there is no corresponding instruction, no alternative value can be specified.
The instruction pairs that can use the same DSISR values are as follows:

Ibz/Ibzx Ibzu/Ibzux Ihz/lhzx Ihzu/lhzux Iha/thax Ihau/lhaux
Iwz/lwzx Iwzu/lwzux Iwa/lwax sth/stbx stbu/stbux sth/sthx
sthu/sthux stw/stwx stwu/stwux ifs/ifsx Ifsu/lfsux stfs/stfsx
stfsu/stfsux

DAR Set to the EA of the data access as computed by the instruction causing the alignment exception.

The architecture does not support the use of a misaligned EA by load/store with reservation
instructions or by the eciwx and ecowx instructions. If one of these instructions specifies a
misaligned EA, the exception handler should not emulate the instruction but should treat
the occurrence as a programming error.

Chapter 6. Exceptions 6-29

6.4.6.1 Integer Alignment Exceptions

Operations that are not naturally aligned may suffer performance degradation, depending
on the processor design, the type of operation, the boundaries crossed, and the mode that
the processor is in during execution. More specifically, these operations may either cause
an alignment exception or they may cause the processor to break the memory access into
multiple, smaller accesses with respect to the cache and the memory subsystem.

6.4.6.1.1 Page Address Translation Access Considerations

A page address translation access occurs when MSR[DR] is set, SR[T] is cleared, and there
is no BAT match. Note that a debz instruction causes an alignment exception if the access
is to a page or block with the W (write-through) or I (cache-inhibit) bit set.

Misaligned memory accesses that do not cause an alignment exception may not perform as
well as an aligned access of the same type. The resulting performance degradation due to
misaligned accesses depends on how well each individual access behaves with respect to
the memory hierarchy.

Particular details regarding page address translation is implementation-dependent; the
reader should consult the user’s manual for the appropriate processor for more information.

6.4.6.1.2 Direct-Store Interface Access Considerations
The following apply for direct-store interface accesses:

e Ifa256-Mbyte boundary will be crossed by any portion of the direct-store interface
space accessed by an instruction (the entire string for strings/multiples), an
alignment exception is taken.

* Floating-point loads and stores to direct-store segments may cause an alignment
exception, regardless of operand alignment.

e The load/store word with reservation instructions that map into a direct-store
segment always cause a DSI exception. However, if the instruction crosses a
segment boundary an alignment exception is taken instead.

Note that the direct-store facility is being phased out of the architecture and is not likely to
be supported in future devices.

6.4.6.2 Little-Endian Mode Alignment Exceptions

The OEA allows implementations to take alignment exceptions on misaligned accesses (as
described in Section 3.1.4, “PowerPC Byte Ordering”) in little-endian mode but does not
require them to do so. Some implementations may perform some misaligned accesses
without taking an alignment exception.

6-30 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.4.6.3 Interpretation of the DSISR as Set by an Alignment Exception

For most alignment exceptions, an exception handler may be designed to emulate the
instruction that causes the exception. To do this, the handler requires the following
characteristics of the instruction:

* Load or store

* Length (half word or word)

* String, multiple, or normal load/store

« Integer or floating-point

¢ Whether the instruction performs update

* Whether the instruction performs byte reversal

e Whether it is a dcbz instruction
The PowerPC architecture provides this information implicitly, by setting opcode bits in the
DSISR that identify the excepting instruction type. The exception handler does not need to

load the excepting instruction from memory. The mapping for all exception possibilities is
unique except for the few exceptions discussed below.

Table 6-13 shows the inverse mapping—how the DSISR bits identify the instruction that
caused the exception.

The alignment exception handler cannot distinguish a floating-point load or store that
causes an exception because it is misaligned, or because it addresses the direct-store
interface space. However, this does not matter; in either case it is emulated with integer
instructions. Note that the direct-store facility is being phased out of the architecture and is
not likely to be supported in future devices.

Table 6-13. DSISR(15—-21) Settings to Determine Misaligned Instruction

DSISR[15-21] Instruction DSISR[15-21] Instruction
00 0 0000 Iwarx, lwz, special cases! 0110010 —
0000010 — 0110101 Iwaux
0000010 stw 1000010 stwex.
0000100 lhz 1000011 —

00 00101 lha 10 0 1000 Iwbrx
0000110 sth 1001010 stwbrx
0000111 Imw 1001100 Ihbrx
00 0 1000 Ifs 1001110 sthbrx
00 0 1001 — 10 1 0100 eciwx
000 1010 stfs 1010110 ecowx
000 1011 — 101 1111 dcbz

Chapter 6. Exceptions 6-31

Table 6-13. DSISR(15-21) Settings to Determine Misaligned Instruction (Continued)

DSISR[15-21] Instruction DSISR[15-21] Instruction
000 1101 Id,iwa 2 11 0 0000 Iwzx
0001111 std 1100010 stwx
00 1 0000 Iwzu 1100100 thax
00 10010 stwu 1100101 lhax
00 10100 thzu 1100110 sthx
00 10101 lhau 1101000 Ifsx
0010110 sthu 110 1001 —_
0010111 stmw 1101010 stfsx
00 1 1000 Ifsu 1101011 —_

00 1 1001 —_ 110 1111 stfiwx
0011010 stfsu 111 0000 Iwzux
0011011 - 1110010 stwux
01 0 0000 _ 1110100 Ihzux
0100010 _ 1110101 lhaux
0100101 Iwax 1110110 sthux
010 1000 Iswx 1111000 Ifsux
010 1001 Iswi 111 1001 -_
0101010 stswx 1111010 stfsux
010 1011 stswi 1111011 —

01 1 0000 —_ —_ _

lThe instructions Iwz and Iwarx give the same DSISR bits (all zero). But if lwarx causes an
alignment exception, it is an invalid form, so it need not be emulated in any precise way. It is
adequate for the alignment exception handler to simply emulate the instruction as if it were an
Iwz. It is important that the emulator use the address in the DAR, rather than computing it

from rA/rB/D, because Iwz and Iwarx use different addressing modes.

If opcode O (“illegal or reserved”) can cause an alignment exception, it will be indistiguishable

to the exception handler from Iwarx and Iwz.

2These instructions are distinguished by DSISR[12-13], which are not shown in this table.

6-32

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.4.7 Program Exception (0x00700)

A program exception occurs when no higher priority exception exists and one or more of
the following exception conditions, which correspond to bit settings in SRR1, occur during
execution of an instruction:

» System IEEE floating-point enabled exception—A system IEEE floating-point
enabled exception can be generated when FPSCR[FEX] is set and either (or both)
of the MSR[FEQ] or MSR[FE1] bits is set.

FPSCRI[FEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of a “move to FPSCR” type instruction that
sets an exception bit when its corresponding enable bit is set. Floating-point
exceptions are described in Section 3.3.6, “Floating-Point Program Exceptions.”

* Illegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal combination
of opcode and extended opcode fields (these include PowerPC instructions not
implemented in the processor), or when execution of an optional or a reserved
instruction not provided in the processor is attempted.

Note that implementations are permitted to generate an illegal instruction program
exception when encountering the following instructions. If an illegal instruction
exception is not generated, then the alternative is shown in parenthesis.

— An instruction corresponds to an invalid class (the results may be boundedly
undefined)

— An Iswx instruction for which rA or rB is in the range of registers to be loaded
(may cause results that are boundedly undefined)

— A move to/from SPR instruction with an SPR field that does not contain one of
the defined values

— MSRJ[PR] =1 and spr[0] = 1 (this can cause a privileged instruction program
exception)

— MSRI[PR] = 0 or spr[0] = 0 (may cause boundedly-undefined results.)

— An unimplemented floating-point instruction that is not optional (may cause a
floating-point assist exception)

* Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
processor is operating in user mode (MSR[PR] is set). It is also generated for mtspr
or mfspr instructions that have an invalid SPR field that contain one of the defined
values having spr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>