

Overview

PowerPC Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

Cache Model and Memory Coherency

Exceptions

Memory Management

Instruction Set

PowerPC Instruction Set Listings

POWER Architecture Cross Reference

Multiple-Precision Shifts

Floating-Point Models

Synchronization Programming Examples

Simplified Mnemonics

Glossary of Terms and Abbreviations

Index

l1li

--

Overview

PowerPC Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

Cache Model and Memory Coherency

Exceptions

Memory Management

Instruction Set

_ PowerPC Instruction Set Listings

_ POWER Architecture Cross Reference

_ Multiple-Precision Shifts

_ Floating-Point Models

_ Synchronization Programming Examples

_ Simplified Mnemonics

Glossary of Terms and Abbreviations

Index

MPCFPE32B/AD
1/97

REV. 1

PowerPC™ Microprocessor Family:

The Programming Environments
For 32-Bit Microprocessors

C Motorola Inc. 1997. All rights reserved.
Portions hereof C International Business Machines Corp. 1991-1997. All rights reserved.

This document contains inlormation on a new product under development by Motorota and IBM. Motorola and IBM reserve the right to change or
discontinue this product without notice. Information in this document is provided solely to enable system and software imptementers to use PowerPC
microprocessors. There are no express or implied copyright or patent licenses grented hereunder by Motorola or IBM to design. modify the design of. or
fabricate circuits based on the inlormation In this document.

The PowerPC microprocessor family embodies the Intellectual property of Motorola and of IBM. However, neither Motorota nor IBM assumes any
responsibility or liability as to any aspects of the periormance, operation, or other attributes of the microprocessor as marketed by the other party or by
any third party. NeHher Motorola nor IBM is to be considered an agent or representative of the other, and neHher has assumed, created, or grantad hereby
any right or authority to the other, or to any third party, to assume or create any exprees or Implied obIlgetions on its behall. Inlormation such as errata
sheets and data sheets, as well as sales terms and conditions such as prices, schedules, and support, lor the product may vary as between parties seUlng
the product. Accordingly, customers wishing to learn more inlormation about the products as marketed by a given party should contact thet party.

Both Motorola and IBM reserve the right to modify this document and/or any of the products as describ8d herein without further notice. N011tING IN
THIS DOCUMENT, NOR IN ANY OF THE ERRATA SHEETS, DATA SHEETS, AND OTHER SUPPOR11NG DOCUMENTAllON, SHALL BE
INTERPRETED AS THE CONVEYANCE BY MOTOROLA OR IBM OF AN EXPRESS WARRANTY OF ANY KIND OR IMPUED WARRANTY,
REPRESENTATION, OR GUARANTEE REGARDING THE MERCHANTABIUTY OR FITNESS OF THE PRODUCTS FOR ANY PAR11CULAR
PURPOSE. NeHher Motorola nor IBM assumes any liabilify or obligation lor damages of any kind arising out 01 the applicetion or use of thase materials.
Any warranty or other obligations as to the products described herein shall be undartaken solely by the marketing party to the customer, undar a separate
sale agreement between the marketing party and the customer. In the absence of such an agreement, no lIabilify is assumed by Motorola, IBM, or the
marketing party lor any damages, actual or otherwise.

'Typical" parameters can and do vary in different applications. All operating parameters, Including 'Typicals," must be validated lor each customer
application by custome(s technical experts. NeHher Motorota nor IBM convey any license under their respective Intellectual property rights nor the rights
of others. NeHher Motorota nor IBM makes any claim, warranty, or representation, exprees or implied, that the products described In this document are
designed, Intended, or authorized lor use as components in systems Intended lor surgical implant Into the body, or other applications intended to support
or sustain life, or lor any other application in which the failure of the product could create a sHuation where personal injury or death may occur. Should
customer purchase or use the products lor any such unintended or unauthorized application, customer shall Indamnify and hold Motorola and IBM and
their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attomay's fees ariSing out of, directly or Indirectly, any claim of personal injury or death associated with such unintended or ~authorized use, even H such
claim alleges that Motorota or IBM was negligent regarding the design or manufacture of the part.

Motorola and @ are registered trademarke of Motorota, Inc. Motorola, Inc. is an Equal OpportunltylAffirmative Action Employer.

IBM, RSl6000, and Systeml310 are trademarks of Intamatlonal Business Machines Corporation.
The PowerPC name, the PowerPC logotype, PowerPC 601, PowerPC 602, PowerPC 603, PowerPC 6038, PowerPC 604, PowerPC 6048, and PowerPC
620 are trademarks of International Business Machines Corporation used by Motorola under license from International Business Machines Corporation.
International Business Machines Corporation is an Equal OpportunitylAffirmative Action Employer.

Paragraph
Number

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2
1.2.1
1.2.2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.3
1.2.3.1
1.2.3.2
1.2.4
1.2.5
1.2.6
1.3

Contents

CONTENTS

Title

About This Book

Page
Number

Audience .. : .. xxvii
Organization .. xxvii
Suggested Reading ... xxviii
Conventions ... xxxi
Acronyms and Abbreviations .. xxxiii
Terminology Conventions ... xxxv

Chapter 1
Overview

PowerPC Architecture Overview ... 1-2
The 64-Bit PowerPC Architecture and the 32-Bit Subset 1-4
The Levels of the PowerPC Architecture .. 1-5
Latitude Within the Levels of the PowerPC Architecture 1-6
Features Not Defined by the PowerPC Architecture 1-7
Summary of Architectural Changes in this Revision 1-7

The PowerPC Architectural Models .. 1-8
PowerPC Registers and Programming Model ... 1-8
Operand Conventions .. 1-9

Byte Ordering .. 1-9
Data Organization in Memory and Data Transfers 1-10
Floating-Point Conventions ... 1-10

PowerPC Instruction Set and Addressing Modes .. 1-10
PowerPC Instruction Bet. ... 1-11
Calculating Effective Addresses .. 1-12

PowerPC Cache Model .. 1-13
PowerPC Exception Model. ... 1-13
PowerPC Memory Management Model .. 1-14

Changes in This Revision of The Programming Environments Manual 1-15

iii

Paragraph
Number

2.1
2.1.1
2.1.2
2.1.3
2.1.3.1
2.1.3.2
2.1.3.3
2.1.4
2.1.5
2.1.6
2.1.7
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
2.3.11
2.3.12
2.3.12.1
2.3.13
2.3.13.1
2.3.13.2
2.3.14
2.3.15
2.3.16
2.3.17

Iv

CONTENTS

Title

Chapter 2
PowerPC Register Set

Page
Number

PowerPC VISA Register Set .. 2-1
General-Purpose Registers (GPRs) .. 2-3
Floating-Point Registers (FPRs) .. 2-4
Condition Register (CR) .. 2-5

Condition Register CRO Field Definition .. 2-6
Condition Register CRI Field Definition .. 2-6
Condition Register CRn Field-Compare Instruction 2-7

Floating-Point Status and Control Register (FPSCR) 2-7
XER Register (XER) ... 2-11
Link Register (LR) ... 2-11
Count Register (CTR.) .. 2-12

PowerPC YEA Register Set-Time Base ..•............... 2-13
Reading the Time Base .. 2-16
Computing Time of Day from the Time Base ... 2-16

PowerPC OEA Register Set. .. 2-17
Machine State Register (MSR) ~ .. 2-20
Processor Version Register (PVR) .. 2-23
BAT Registers .. ~ 2-24
SDR1 .. 2-27
Segment Registers ~ ' .. 2-28
Data Address Register (DAR) ... 2-29
SPRG~PRG3 ... 2-30
DSISR .. 2-30
Machine Status SavelRestore Register 0 (SRRO) .. 2-31
Machine Status SavelRestore Register 1 (SRR1) .. 2-31
Floating-Point Exception Cause Register (FPECR) 2-32
Time Base Facility (TB}--OEA .. 2-32

Writing to the Time Base ... 2-32
Decrementer Register (DEC) ... 2-33

Decrementer Operation.:' .. 2-33
Writing and Reading the DEC ...•................... 2-34

Data Address Breakpoint Register (DABR) .. 2-34
External Access Register (EAR) ! ••••••••••••• ; ••••••••••••••••••••••••••• 2-35
Processor Identification Register (PIR) ... 2-36
Synchronization Requirements for Special Registers and for

Lookaside Buffers .. 2-36

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Paragraph
Number

3.1
3.1.1
3.1.2
3.1.2.1
3.1.2.2
3.1.3
3.1.3.1
3.1.3.2
3.1.4
3.1.4.1
3.1.4.2
3.1.4.3
3.1.4.4
3.1.4.5
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.5
3.3.1.6
3.3.1.7
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.6.1
3.3.6.1.1
3.3.6.1.2
3.3.6.2
3.3.6.2.1
3.3.6.2.2
3.3.6.2.3

Contents

CONTENTS

Title

Chapter 3
Operand Conventions

Page
Number

Data Organization in Memory and Data Transfers .. 3-1
Aligned and Misaligned Accesses ... 3-1
Byte Ordering .. 3-2

Big-Endian Byte Ordering ... 3-2
Little-Endian Byte Ordering .. 3-3

Structure Mapping Examples ... 3-3
Big-Endian Mapping ... 3-4
Little-Endian Mapping ... 3-5

PowerPC Byte Ordering .. 3-6
Aligned Scalars in Little-Endian Mode ... 3-6
Misaligned Scalars in Little-Endian Mode .. 3-9
Nonscalars .. 3-10
PowerPC Instruction Addressing in Little-Endian Mode 3-10
PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode 3-11

Effect of Operand Placement on Performance-VEA 3-12
Summary of Performance Effects .. 3-12
Instruction Restart .. 3-14

Floating-Point Execution Models-VISA ... 3-15
Floating-Point Data Format ... 3-16

Value Representation ... 3-18
Binary Floating-Point Numbers ... 3-19
Normalized Numbers (±NORM) ... 3-19
Zero Values (±O) .. 3-20
Denormalized Numbers (IDENORM) .. 3-20
Infinities (±oo) .. 3-21
Not a Numbers (NaNs) .. 3-21

Sign of Result.. , .. 3-22
Normalization and Denormalization .. 3-23
Data Handling and Precision ... 3-24
Rounding .. 3-25
Floating-Point Program Exceptions ... 3-28

Invalid Operation and Zero Divide Exception Conditions 3-35
Invalid Operation Exception Condition ... 3-37
Zero Divide Exception Condition .. 3-38

Overflow, Underflow, and Inexact Exception Conditions 3-39
Overflow Exception Condition .. 3-41
Underflow Exception Condition .. 3-42
Inexact Exception Condition ... 3-43

v

Paragraph
Number

4.1
4.1.1
4.1.2
4.1.3
4.1.3.1
4.1.3.2
4.1.3.2.1
4.1.3.2.2
4.1.3.2.3
4.1.3.3
4.1.3.4
4.1.4
4.1.4.1
4.1.4.2
4.1.5
4.1.5.1
4.1.5.2
4.1.6
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.1.4.1
4.2.1.4.2
4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6
4.2.3
4.2.3.1
4.2.3.1.1

4.2.3.1.2
4.2.3.1.3

vi

CONTENTS

Title

Chapter 4
Addressing Modes and Instruction Set Summary

Page
Number

Conventions ... 4-3
Sequential Execution Model .. 4-3
Computation Modes ... 4-3
Classes of Instructions ... 4-3

Definition of Boundedly Undefined .. 4-4
Defined Instruction Class .. 4-4

Preferred Instruction Forms ... 4-4
Invalid Instruction Forms .. 4-5
Optional Instructions ... 4-5

Illegal Instruction Class ... 4-6
Reserved Instructions ... 4-6

Memory Addressing .. 4-7
Memory Operands ... 4-7
Effective Address Calculation ... 4-7

Synchronizing Instructions .. 4-8
Context Synchronizing Instructions .. 4-8
Execution Synchronizing Instructions .. 4-9

Exception Summary ... 4-9
PowerPC UISA Instructions .. 4-10

Integer Instructions .. 4-10
Integer Arithmetic Instructions ... 4-11
Integer Compare Instructions .. 4-15
Integer Logical Instructions ... 4-16
Integer Rotate and Shift Instructions ... 4-18

Integer Rotate Instructions ... 4-18
Integer Shift Instructions ... 4-19

Floating-Point Instructions .. 4-20
Floating-Point Arithmetic Instructions .. 4-21
Floating-Point Multiply-Add Instructions ... 4-23
Floating-Point Rounding and Conversion Instructions 4-25
Floating-Point Compare Instructions ... 4-25
Floating-Point Status and Control Register Instructions 4-26
Floating-Point Move Instructions .. 4-28

Load and Store Instructions ... 4-28
Integer Load and Store Address Generation .. 4-29

Register Indirect with Immediate Index Addressing for
Integer Loads and Stores ... 4-29
Register Indirect with Index Addressing for Integer Loads and Stores. 4-30
Register Indirect Addressing for Integer Loads and Stores 4-30

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Paragraph
Number

4.2.3.2
4.2.3.3
4.2.3.4
4.2.3.5
4.2.3.6
4.2.3.7
4.2.3.7.1

4.2.3.7.2

4.2.3.8
4.2.3.9
4.2.4
4.2.4.1
4.2.4.1.1
4.2.4.1.2
4.2.4.1.3
4.2.4.1.4
4.2.4.1.5
4.2.4.1.6
4.2.4.2
4.2.4.3
4.2.4.4
4.2.4.5
4.2.4.6
4.2.4.7
4.2.5
4.2.5.1
4.2.5.2
4.2.6
4.2.7
4.3
4.3.1
4.3.2
4.3.3
4.3.3.1
4.3.4
4.4
4.4.1
4.4.2
4.4.2.1
4.4.2.2

Contents

CONTENTS

Title Page
Number

Integer Load Instructions ... 4-31
Integer Store Instructions ... 4-33
Integer Load and Store with Byte-Reverse Instructions 4-34
Integer Load and Store Multiple Instructions .. 4-35
Integer Load and Store String Instructions .. 4-36
Roating-Point Load and Store Address Generation 4-37

Register Indirect with Immediate Index Addressing for
Roating-Point Loads and Stores .. 4-37
Register Indirect with Index Addressing for Roating-Point
Loads and Stores .. 4-38

Roating-Point Load Instructions ... 4-38
Roating-Point Store Instructions ... 4-40

Branch and Row Control Instructions ... 4-41
Branch Instruction Address Calculation .. 4-41

Branch Relative Addressing Mode .. 4-42
Branch Conditional to Relative Addressing Mode 4-42
Branch to Absolute Addressing Mode ... 4-43
Branch Conditional to Absolute Addressing Mode 4-44
Branch Conditional to Link Register Addressing Mode 4-45
Branch Conditional to Count Register Addressing Mode 4-46

Conditional Branch Control ... 4-47
Branch Instructions .. 4-49
Simplified Mnemonics for Branch Processor Instructions 4-50
Condition Register Logical Instructions .. 4-50
Trap Instructions .. 4-51
System Linkage Instruction-UISA .. 4-52

Processor Control Instructions-UISA ... 4-52
Move to/from Condition Register Instructions .. 4-52
Move to/from Special-Purpose Register Instructions (UISA) 4-53

Memory Synchronization Instructions-UISA ... 4-53
Recommended Simplified Mnemonics .. 4-55

PowerPC VEA Instructions ... 4-56
Processor Control Instructions-YEA ... 4-56
Memory Synchronization Instructions-VEA .. 4-57
Memory Control Instructions-VEA .. 4-58

User-Level Cache Instructions-VEA .. 4-58
External Control Instructions ... 4-62

PowerPC DEA Instructions ... 4-63
System Linkage Instructions-OEA ... 4-63
Processor Control Instructions-DEA ... 4-64

Move to/from Machine State Register Instructions 4-64
Move to/from Special-Purpose Register Instructions (DEA) 4-64

vii

Paragraph
Number

4.4.3
4.4.3.1
4.4.3.2
4.4.3.3

5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.2
5.1.3
5.1.4
5.1.4.1
5.1.4.1.1
5.1.4.1.2
5.1.4.1.3
5.1.4.1.4
5.1.4.1.5
5.1.4.2
5.1.5
5.1.5.1
5.1.5.1.1

5.1.5.1.2
5.1.5.1.3
5.1.5.1.4
5.1.5.2
5.1.5.2.1
5.1.5.2.2
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.1.4
5.2.1.5
5.2.1.5.1
5.2.1.5.2
5.2.1.5.3

viii

CONTENTS

Title Page
Number

Memory Control Instructions-OEA .. 4-65
Supervisor-Level Cache Management Instruction 4-65
Segment Register Manipulation Instructions ... 4-66
Translation Lookaside Buffer Management Instructions 4-67

Chapter 5
Cache Model and Memory Coherency

The Virtual Environment ... 5-1
Memory Access Ordering .. 5-2

Enforce In-Order Execution of 110 Instruction ... 5-2
Synchronize Instruction ... 5-3

Atomicity ... 5-4
Cache Model .. 5-5
Memory Coherency ... 5-5

Memory/Cache Access Modes .. 5-6
Pages Designated as Write-Through ... 5-6
Pages Designated as Caching-Inhibited ... 5-6
Pages Designated as Memory Coherency Required ~ 5-7
Pages Designated as Memory Coherency Not Required 5-7
Pages Designated as Guarded .. 5-7

Coherency Precautions .. 5-7
VEA Cache Management Instructions .. ~ ... 5-8

Data Cache Instructions ... 5-8
Data Cache Block Touch (debt) and
Data Cache Block Touch for Store (debtst) Instructions 5-8
Data Cache Block Set to Zero (debz) Instruction 5-9
Data Cache Block Store (debst) Instruction .. 5-9
Data Cache Block Flush (debt) Instruction ... 5-10

Instruction Cache Instructions ... 5-10
Instruction Cache Block Invalidate Instruction (iebi) 5-11
Instruction Synchronize Instruction (isyne) .. 5-11

The Operating Environment .. 5-12
Memory/Cache Access Attributes ... 5-12

Write-Through Attribute (W) .. 5-13
Caching-Inhibited Attribute (I) , .. 5-14
Memory Coherency Attribute (M) ... 5-15
W, I, and M Bit Combinations ... 5-15
The Guarded Attribute (G) .. 5-16

Performing Operations Out of Order ... 5-16
Guarded Memory ~ .. 5-17
Out -of -Order Accesses to Guarded Memory ... 5-18

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Paragraph
Number

5.2.2
5.2.3

6.1
6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4
6.1.2.4.1
6.1.2.4.2
6.1.3
6.1.3.1
6.1.3.2
6.1.4
6.1.5
6.2
6.2.1
6.2.2
6.2.3
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.6.1
6.4.6.1.1
6.4.6.1.2
6.4.6.2
6.4.6.3
6.4.7
6.4.8
6.4.9
6.4.10

Contents

CONTENTS

Title Page
Number

110 Interface Considerations .. 5-19
OEA Cache Management Instruction-

Data Cache Block Invalidate (dchi) .. 5-19

Chapter 6
Exceptions

Exception Classes .. 6-3
Precise Exceptions ... 6-6
Synchronization ... 6-6

Context Synchronization ... 6-6
Execution Synchronization .. 6-7
Synchronous/Precise Exceptions ... 6-7
Asynchronous Exceptions ... 6-8

System Reset and Machine Check Exceptions .. 6-8
External Interrupt and Decrementer Exceptions 6-9

Imprecise Exceptions ... 6-9
Imprecise Exception Status Description .. 6-9
Recoverability of Imprecise Floating-Point Exceptions 6-10

Partially Executed Instructions .. 6-11
Exception Priorities .. 6-12

Exception Processing ... 6-14
Enabling and Disabling Exceptions ... 6-17
Steps for Exception Processing .. 6-18
Returning from an Exception Handler. .. 6-19

Process Switching .. 6-19
Exception Definitions .. 6-20

System Reset Exception (Ox00100) ... 6-21
Machine Check Exception (Ox00200) ... 6-22
DSI Exception (Ox00300) .. 6-23
lSI Exception (Ox00400) .. 6-26
External Interrupt (Ox00500) ... 6-27
Alignment Exception (Ox00600) ... 6-27

Integer Alignment Exceptions ... 6-30
Page Address Translation Access Considerations 6-30
Direct-Store Interface Access Considerations 6-30

Little-Endian Mode Alignment Exceptions ... 6-30
Interpretation of the DSISR as Set by an Alignment Exception 6-31

Program Exception (Ox00700) ... 6-33
Floating-Point Unavailable Exception (Ox00800) ... 6-34
Decrementer Exception (Ox00900) .. 6-35
System Call Exception (OxOOCOO) .. 6-36

ix

Paragraph
Number

6.4.11
6.4.12

7.1
7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.6.1
7.2.6.2
7.2.6.2.1
7.2,6.2.2
7.2.7
7.2.8
7.2.9
7.3
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.2
7.5.2.1
7.5.2.1.1
7.5.2.2
7.5.2.2.1
7.5.3
7.5.3.1
7.5.3.2

x

CONTENTS

Title Page
Number

Trace Exception (OxOODOO) ... 6-37
Floating-Point Assist Exception (OxOOEOO) .. 6-39

Chapter 7
Memory Management

MMU Features ... 7-2
MMU Overview ... 7-3

Memory Addressing .. 7-4
Effective Addresses in 32-Bit Mode .. 7-4
Predefined Physical Memory Locations .. 7-4

MMU Organization .. 7-5
Address Translation Mechanisms .. 7-7
Memory Protection Facilities ... 7-9
Page History Information ... 7-11
General Flow of MMU Address Translation ... 7-11

Real Addressing Mode and Block Address Translation Selection 7-11
Page and Direct-Store Address Translation Selection 7-12

Selection of Page Address Translation .. 7-14
Selection of Direct-Store Address Translation 7-14

MMU Exceptions Summary .. 7-15
MMU Instructions and Register Summary .. 7-17
TLB Entry Invalidation .. 7-18

Real Addressing Mode ... 7-19
Block Address Translation ... 7-20

BAT Array Organization ... 7-20
Recognition of Addresses in BAT Arrays ... 7-22
BAT Register Implementation of BAT Array ... 7-24
Block Memory Protection .. 7-27
Block Physical Address Generation .. 7-31
Block Address Translation Summary .. 7-32

Memory Segment Model ... 7-32
Recognition of Addresses in Segments ... 7-33

Selection of Memory Segments ... 7-33
Selection of Direct-Store Segments ... 7-34

Page Address Translation Overview .. 7-34
Segment Descriptor Definitions .. 7-35

Segment Descriptor Format ... 7-35
Page Table Entry (PTE) Definitions .. 7-37

PTE Format .. 7-37
Page History Recording ... 7-38

Referenced Bit ... 7-39
Changed Bit ... 7-40

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Paragraph
Number

7.5.3.3
7.5.3.4

7.5.4
7.5.5
7.6
7.6.1
7.6.1.1
7.6.1.2
7.6.1.3
7.6.1.4
7.6.1.5
7.6.1.6
7.6.1.7
7.6.2
7.6.2.1
7.6.3
7.6.3.1
7.6.3.2
7.6.3.2.1
7.6.3.2.2
7.6.3.2.3
7.6.3.3
7.6.4
7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.7.5
7.7.6

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.2

Contents

CONTENTS

Title Page
Number

Scenarios for Referenced and Changed Bit Recording 7-40
Synchronization of Memory Accesses and Referenced and

Changed Bit Updates ... 7-42
Page Memory Protection ... 7-42
Page Address Translation Summary .. 7-46

Hashed Page Tables ... 7-48
Page Table Definition .. 7-49

SDRI Register Definitions .. 7-50
Page Table Size .. 7-51
Page Table Hashing Functions .. 7-52
Page Table Addresses .. 7-54
Page Table Structure Summary ... 7-56
Page Table Structure Examples ... 7-57
PTEG Address Mapping Examples ... 7-58

Page Table Search Operation ... 7-61
Flow for Page Table Search Operation .. 7-62

Page Table Updates ... 7-64
Adding a Page Table Entry .. 7-65
Modifying a Page Table Entry ... 7 -66

General Case .. 7-66
Clearing the Referenced (R) Bit .. 7-66
Modifying the Virtual Address .. 7-67

Deleting a Page Table Entry .. 7-67
Segment Register Updates ... 7-68

Direct-Store Segment Address Translation ... 7-68
Segment Descriptors for Direct-Store Segments ... 7-68
Direct-Store Segment Accesses ... 7-69
Direct-Store Segment Protection ... 7-69
Instructions Not Supported in Direct-Store Segments 7-69
Instructions with No Effect in Direct-Store Segments 7-70
Direct-Store Segment Translation Summary Flow .. 7-70

Chapter 8
Instruction Set

Instruction Formats .. 8-1
Split-Field Notation ... 8-2
Instruction Fields ... 8-2
Notation and Conventions ... 8-4
Computation Modes ... 8-8

PowerPC Instruction Set .. 8-9

xi

Paragraph
Number

CONTENTS

Title

Appendix A
PowerPC Instruction Set Listings

Page
Number

A.l Instructions Sorted by Mnemonic ... A-I
A.2 Instructions Sorted by Opcode .. A-8
A.3 Instructions Grouped by Functional Categories ... A-14
A.4 Instructions Sorted by Forrn .. A-26
A.5 Instruction Set Legend .. A-36

B.l
B,2
B,3
B.4
B.5
B,6
B,7
B,8
B,9
B,1O
B.lI
B,12
B,13
B,14
B.lS
B.l6
B,17
B,18
B,19
B,20
B,21
B,22
B,23
B,24
B,2S
B,2S.l
B,2S.2
B,26
B,27

xii

Appendix B
POWER Architecture Cross Reference

New Instructions, Formerly Supervisor-Level Instructions B-1
New Supervisor-Level Instructions ... B-1
Reserved Bits in Instructions ... B-2
Reserved Bits in Registers ... B-2
Alignment Check ... B-2
Condition Register ... B-2
Inappropriate Use of LK and Rc bits ... B-3
BO Field ... B-3
Branch Conditional to Count Register ... B-4
System Call/Supervisor Call .. B-4
XER Register ... B-4
Update Forms of Memory Access ... B-4
Multiple Register Loads ... B-S
Alignment for Load/Store Multiple ... B-S
Load and Store String Instructions .. B-S
Synchronization ... B-S
Move to/from SPR ... B-6
Effects of Exceptions on FPSCR Bits FR and PI ~ B-6
Floating-Point Store Single Instructions .. B-7
Move from FPSCR .. B-7
Clearing Bytes in the Data Cache .. B-7
Segment Register Instructions ... B-7
TLB Entry Invalidation .. B-8
Floating-Point Exceptions .. B-8
Timing Facilities .. B-8

Real-Time Clock .. B-8
Decrementer ... B-9

Deleted Instructions ... B-9
POWER Instructions Supported by the PowerPC Architecture B-11

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Paragraph
Number

CONTENTS

Title

Appendix C
Multiple-Precision Shifts

Page
Number

C.1 Multiple-Precision Shifts in 32-Bit Implementations .. C-2

Appendix D
Floating-Point Models

D.l Execution Model for IEEE Operations ... D-l
D.2 Execution Model for Multiply-Add Type Instructions D-4
D.3 Floating-Point Conversions .. D-S
D.3.1 Conversion from Floating-Point Number to Signed Fixed-Point

Integer Word ... D-S
D.3.2 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer

Word ... D-6
D.4 Floating-Point Models .. D-6
D.4.1 Floating-Point Round to Single-Precision ModeL .. D-6
D.4.2 Floating-Point Convert to Integer ModeL ... D-IO
D.4.3 Floating-Point Convert from Integer Model... .. D-12
D.S Floating-Point Selection .. D-13
D.5.1 Comparison to Zero .. D-14
D.5.2 Minimum and Maximum .. D-14
D.5.3 Simple If-Then-Else Constructions .. D-14
D.S.4 Notes ... D-14
D.6 Floating-Point Load Instructions .. D-IS
D.7 Floating-Point Store Instructions .. D-16

E.l
E.2
E.2.1
E.2.2
E.2.3
E.2.4
E.2.S
E.3
E.4
E.5

Contents

Appendix E
Synchronization Programming Examples

General Information ... E-l
Synchronization Primitives .. E-2

Fetch and No-Op .. E-2
Fetch and Store .. E-3
Fetch and Add .. E-3
Fetch and AND .. E-3
Test and Set. ... E-3

Compare and Swap .. E-4
Lock Acquisition and Release ... E-S
List Insertion .. E-6

xiii

Paragraph
Number

CONTENTS

Title

Appendix F
Simplified Mnemonics

Page
Number

F.I Symbols ... F-I
F.2 Simplified Mnemonics for Subtract Instructions ... F-2
F.2.1 Subtract Immediate .. F-2
F.2.2 Subtract .. F-2
F.3 Simplified Mnemonics for Compare Instructions .. F-3
F.3.1 Word Comparisons .. F-3
F.4 Simplified Mnemonics for Rotate and Shift Instructions F-4
F.4.1 Operations on Words ... F-4
F.5 Simplified Mnemonics for Branch Instructions ... F-6
F.5.1 BO and BI Fields ... F-6
F.5.2 Basic Branch Mnemonics .. F-6
F.5.3 Branch Mnemonics Incorporating Conditions ... F-12
F.5.4 Branch Prediction .. F-17
F.6 Simplified Mnemonics for Condition Register Logical Instructions F-18
F. 7 Simplified Mnemonics for Trap Instructions ... F-19
F.8 Simplified Mnemonics for Special-Purpose Registers F-21
F.9 Recommended Simplified Mnemonics .. F-23
F.9.1 No-Op (nop) .. F-23
F.9.2 Load Immediate (Ii) ... F-23
F.9.3 Load Address (la) .. F-23
F.9.4 Move Register (mr) ... F-23
F.9.5 Complement Register (not) ... F-24
F.9.6 Move to Condition Register (mter) ... F-24

Glossary of Terms and Abbreviations

Index

xiv PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Figure
Number

ILLUSTRATIONS

Title Page
Number

1-1 Programming Model-PowerPC Registers .. 1-8
1-2 Big-Endian Byte and Bit Ordering .. 1-10
2-1 VISA Programming Mode1-User-Level Registers ... 2-2
2-2 General-Purpose Registers (GPRs) ... 2-4
2-3 Floating-Point Registers (FPRs) .. 2-5
2-4 Condition Register (CR) .. 2-5
2-5 Floating-Point Status and Control Register (FPSCR) ... 2-8
2-6 XER Register. .. 2-11
2-7 Link Register (LR) .. 2-12
2-8 Count Register (CTR) ... 2-12
2-9 YEA Programming Model-User-Level Registers Plus Time Base 2-14
2-10 Time Base (TB) ... 2-15
2-11 OEA Programming Model-All Registers ... 2-18
2-12 Machine State Register (MSR) ... 2-21
2-13 Processor Version Register (PVR) .. 2-23
2-14 Upper BAT Register .. 2-24
2-15 Lower BAT Register ... 2-24
2-16 SDR1 ... 2-27
2-17 Segment Register Format (T = 0) .. 2-28
2-18 Segment Register Format (T = 1) .. 2-28
2-19 Data Address Register (DAR) ... 2-29
2-20 SPRGO-SPRG3 ... 2-30
2-21 DSISR .. 2-30
2-22 Machine Status SavelRestore Register 0 (SRRO) ... 2-31
2-23 Machine Status SavelRestore Register 1 (SRR1) ... 2-31
2-24 Decrementer Register (DEC) .. 2-33
2-25 Data Address Breakpoint Register (DABR) ... 2-34
2-26 External Access Register (EAR) ... 2-35
3-1 C Program Example-Data Structure S .. 3-3
3-2 Big-Endian Mapping of Structure S .. 3-4
3-3 Little-Endian Mapping of Structure S ... 3-5
3-4 Little-Endian Mapping of Structure S -Alternate View 3-6
3-5 Munged Little-Endian Structure S as Seen by the Memory Subsystem 3-7
3-6 Munged Little-Endian Structure S as Seen by Processor 3-8
3-7 True Little-Endian Mapping, Word Stored at Address 05 3-9
3-8 Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystem .. 3-10

Illustrations xv

Figure
Number
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
4-1

4-2
4-3
4-4

4-5
4-6
4-7
4-8
4-9
4-10
4-11
6-1
6-2
6-3
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-l2

xvi

ILLUSTRATIONS

Title Page
Number

Floating-Point Single-Precision Format .. 3-16
Floating-Point Double-Precision Format ; ... 3-16
Approximation to Real Numbers .. 3-18
Format for Normalized Numbers .. 3-19
Format for Zero Numbers ... 3-20
Format for Denormalized Numbers .. 3-20
Format for Positive and Negative Infinities .. 3-21
Format for NaNs .. 3-21
Representation of Generated QNaN .. 3-22
Single-Precision Representation in an FPR .. 3-25
Relation of Z 1 and Z2 ... 3-26
Selection of ZI and Z2 for the Four Rounding Modes 3-27
Rounding Flags in FPSCR .. 3-28
Floating-Point Status and Control Register (FPSCR) ... 3-28
Initial Flow for Floating-Point Exception Conditions , 3-36
Checking of Remaining Floating-Point Exception Conditions 3-40
Register Indirect with Immediate Index Addressing for Integer Loads/Stores ... 4-29
Register Indirect with Index Addressing for Integer Loads/Stores 4-30
Register Indirect Addressing for Integer Loads/Stores 4-31
Register Indirect with Immediate Index Addressing for

Floating-Point Loads/Stores .. 4-37
Register Indirect with Index Addressing for Floating-Point Loads/Stores 4-38
Branch Relative Addressing .. 4-42
Branch Conditional Relative Addressing .. 4-43
Branch to Absolute Addressing ... 4-43
Branch Conditional to Absolute Addressing ... 4-44
Branch Conditional to Link Register Addressing , 4-45
Branch Conditional to Count Register Addressing ... 4-46
Machine Status SaveIRestore Register 0 ... 6-15
Machine Status SaveIRestore Register 1 ... 6-15
Machine State Register (MSR) ... 6-15
MMU Conceptual Block Diagram .. 7-6
Address Translation Types .. 7-8
General Flow of Address Translation (Real Addressing Mode and Block) 7-l2
General Flow of Page and Direct-Store Address Translation 7 -13
BAT Array Organization ... 7-21
BAT Array HitlMiss Flow .. 7-23
Format of Upper BAT Registers ... 7-25
Format of Lower BAT Registers , 7-25
Memory Protection Violation Flow for Blocks ... 7-30
Block Physical Address Generation .. 7-31
Block Address Translation Flow ... 7-32
Page Address Translation Overview ... 7-35

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Figure
Number

7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
8-1
D-l
D-2

Illustrations

ILLUSTRATIONS

Title Page
Number

Segment Register Format for Page Address Translation 7-35
Page Table Entry Format. .. 7-37
Memory Protection Violation Flow for Pages .. 7-45
Page Address Translation Flow-TLB Hit ... 7-47
Page Memory Protection Violation Conditions for Page Address Translation .. 7-48
Page Table Definitions .. 7-49
SDRI Register Format .. 7-50
Hashing Functions for Page Tables ... 7-53
Generation of Addresses for Page Tables ... 7-55
Example Page Table Structure .. 7-57
Example Primary PTEG Address Generation ... 7-59
Example Secondary PTEG Address Generation ... 7-60
Page Table Search Flow .. 7-63
Segment Register Format for Direct-Store Segments ... 7-68
Direct-Store Segment Translation Flow .. 7-71
Instruction Description .. 8-9
IEEE 64-Bit Execution Model ... D-l
Multiply-Add 64-Bit Execution ModeL ... D-4

xvii

xviii PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table
Number

ii
iii
1-1
1-2
1-3
1-4
1-5
1-6
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
3-1
3-2
3-3
3-4
3-5
3-6
3-7

Tables

TABLES

Title Page
Number

Acronyms and Abbreviated Terms .. xxxiii
Terminology Conventions ... xxxv
Instruction Field Conventions ... xxxvi
VISA Changes-Rev. 0 to Rev. 0.1 ... ; 1-16
VISA Changes-Rev. 0.1 to Rev. 1.0 ... 1-16
YEA Changes-Rev. 0 to Rev. 0.1 ... 1-16
YEA Changes-Rev. 0.1 to Rev. 1.0 .. 1-16
OEA Changes-Rev. 0 to Rev. 0.1 ... 1-17
OEA Changes-Rev. 0.1 to Rev. 1.0 .. 1-17
Bit Settings for CRO Field of CR .. 2-6
Bit Settings for CR1 Field of CR .. 2-6
CRn Field Bit Settings for Compare Instructions .. 2-7
FPSCR Bit Settings ... 2-8
Floating -Point Result Flags in FPSCR .. 2-10
XER Bit Definitions .. 2-11
BO Operand Encodings ... 2-13
MSR Bit Settings ... 2-21
Floating-Point Exception Mode Bits ... 2-22
State ofMSR at Power Up .. 2-23
BAT Registers-Field and Bit Descriptions ... 2-25
BAT Area Lengths .. 2-26
SDR1 Bit Settings .. 2-27
Segment Register Bit Settings (T = 0) ... 2-28
Segment Register Bit Settings (T = 1) ... 2-29
Conventional Uses of SPRGO-SPRG3 ... 2-30
DABR-Bit Settings ... 2-34
External Access Register (EAR) Bit Settings ... 2-36
Data Access Synchronization .. 2-37
Instruction Access Synchronization .. 2-38
Memory Operand Alignment .. 3-2
EA Modifications .. 3-7
Performance Effects of Memory Operand Placement, Big-Endian Mode 3-13
Performance Effects of Memory Operand Placement, Little-Endian Mode 3-14
IEEE Floating-Point Fields .. 3-17
Biased Exponent Format ... 3-17
Recognized Floating-Point Numbers .. 3-18

xix

Table
Number

TABLES

Title Page
Number

3-8 FPSCR Bit Settings-RN Field ... 3-26
3-9 FPSCR Bit Settings ... 3-29
3-10 Floating-Point Result Flags - FPSCR[FPRF] ... 3-31
3-11 MSR[FEO] and MSR[FE1] Bit Settings for FP Exceptions 3-34
3-12 Additional Actions Performed for Invalid FP Operations 3-38
3-13 Additional Actions Performed for Zero Divide ... 3-39
3-14 Additional Actions Performed for Overflow Exception Condition 3-41
3-15 Target Result for Overflow Exception Disabled Case .. 3-42
3-16 Actions Performed for Underflow Conditions .. 3-43
4-1 Integer Arithmetic Instructions .. 4-11
4-2 Integer Compare Instructions .. 4-15
4-3 Integer Logical Instructions ... 4-16
4-4 Integer Rotate Instructions .. 4-19
4-5 Integer Shift Instructions ... 4-20
4-6 Floating-Point Arithmetic Instructions .. 4-21
4-7 Floating-Point Multiply-Add Instructions ... 4-23
4-8 Floating-Point Rounding and Conversion Instructions ... 4-25
4-9 CR Bit Settings .. 4-26
4-10 Floating-Point Compare Instructions .. 4-26
4-11 Floating-Point Status and Control Register Instructions ; 4-27
4-12 Floating-Point Move Instructions .. 4-28
4-13 Integer Load Instructions ... 4-32
4-14 Integer Store Instructions .. 4-33
4-15 Integer Load and Store with Byte-Reverse Instructions .. 4-35
4-16 Integer Load and Store Multiple Instructions .. 4-36
4-17 Integer Load and Store String Instructions .. 4-36
4-18 Floating-Point Load Instructions ... 4-39
4-19 Floating-Point Store Instructions ... 4-40
4-20 BO Operand Encodings ... 4-47
4-21 Branch Instructions .. 4-49
4-22 Condition Register Logical Instructions .. 4-50
4-23 Trap Instructions .. 4-51
4-24 System Linkage Instruction-UISA .. 4-52
4-25 Move to/from Condition Register Instructions .. 4-52
4-26 Move to/from Special-Purpose Register Instructions (UISA) 4-53
4-27 Memory Synchronization Instructions-UISA ... 4-55
4-28 Move from Time Base Instruction .. 4-56
4-29 User-Level TBR Encodings (VEA) ... 4-56
4-30 Supervisor-Level TBR Encodings (VEA) ... 4-57
4-31 Memory Synchronization Instructions-VEA .. 4-58
4-32 User-Level Cache Instructions .. 4-59
4-33 External Control Instructions .. 4-62
4-34 System Linkage Instructions-OEA ... 4-63

xx PowerPC Microprocessor Family: The Programming Environments (32-8It)

Table
Number

4-35
4-36
4-37
4-38
4-39
5-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18

Tables

TABLES

Title Page
Number

Move to/from Machine State Register Instructions ... 4-64
Move to/from Special-Purpose Register Instructions (OEA) 4-64
Cache Management Supervisor-Level Instruction .. 4-66
Segment Register Manipulation Instructions .. 4-67
Translation Lookaside Buffer Management Instructions 4-68
Combinations ofW, I, and M Bits .. 5-15
PowerPC Exception Classifications .. 6-3
Exceptions and Conditions-Overview .. 6-4
IEEE Floating-Point Program Exception Mode Bits ... 6-10
Exception Priorities ... 6-12
MSR Bit Settings ... 6-16
MSR Setting Due to Exception ... 6-20
System Reset Exception-Register Settings ... 6-21
Machine Check Exception-Register Settings ... 6-23
DSI Exception-Register Settings .. 6-24
lSI Exception-Register Settings .. 6-26
External Interrupt-Register Settings ... 6-27
Alignment Exception-Register Settings .. 6-28
DSISR(15-21) Settings to Determine Misaligned Instruction 6-31
Program Exception-Register Settings ... 6-34
Floating-Point Unavailable Exception-Register Settings 6-35
Decrementer Exception-Register Settings .. 6-36
System Call Exception-Register Settings ... 6-36
Trace Exception-Register Settings .. 6-38
Floating-Point Assist Exception-Register Settings ... 6-39
Predefined Physical Memory Locations .. 7-4
Value of Base for Predefined Memory Use .. 7-5
Access Protection Options for Pages ... 7-9
Translation Exception Conditions ... 7-15
Other MMU Exception Conditions ... 7 -16
Instruction Summary--Control MMU .. 7-17
MMU Registers ... 7-18
BAT Registers-Field and Bit Descriptions ... 7-26
Upper BAT Register Block Size Mask Encodings .. 7-26
Access Protection Control for Blocks ... 7-28
Access Protection Summary for BAT Array ... 7-29
Segment Descriptor Types .. 7-33
Segment Register Bit Definition for Page Address Translation 7-36
PTE Bit Definitions ... 7-38
Table Search Operations to Update History Bits .. 7-39
Model for Guaranteed R and C Bit Settings .. 7-41
Access Protection Control with Key ... 7-43
Exception Conditions for Key and PP Combinations ... 7-44

xxi

Table
Number

TABLES

Title Page
Number

7-19 Access Protection Encoding ofPP Bits for Ks = 0 and Kp = 1.. 7-44
7-20 SDR1 Register Bit Settings•... 7-50
7-21 Minimum Recommended Page Table Sizes , 7-52
7-22 Segment Register Bit Definitions for Direct-Store Segments 7-68
8-1 Split-Field Notation and Conventions•... 8-2
8-2 Instruction Syntax Conventions .. 8-2
8-3 Notation and Conventions ... 8-4
8-4 Instruction Field Conventions ... 8-7
8-5 Precedence Rules ... 8-7
8-6 BO Operand Encodings ... 8-24
8-7 BO Operand Encodings ... 8-26
8-8 BO Operand Encodings ... 8-28
8-9 PowerPC VISA SPR Encodings for mfspr ... 8-138
8-10 PowerPC OEA SPR Encodings for mfspr .. 8-139
8-11 TBR Encodings for mfth ... 8-143
8-12 PowerPC VISA SPR Encodings for mtspr ... 8-151
8-13 PowerPC OEA SPR Encodings for mtspr .. 8-152
A-I Complete Instruction List Sorted by Mnemonic .. A-I
A-2 Complete Instruction List Sorted by Opcode ... A-8
A-3 Integer Arithmetic Instructions ... A-14
A-4 Integer Compare Instructions ... A-14
A-5 Integer Logical Instructions .. A-IS
A-6 Integer Rotate Instructions ... A-16
A-7 Integer Shift Instructions .. A-16
A-8 Floating-Point Arithmetic Instructions ... A-17
A-9 Floating-Point Multiply-Add Instructions .. A-17
A-lO Floating-Point Rounding and Conversion Instructions .. A-18
A-II Floating-Point Compare Instructions ... A-18
A-12 Floating-Point Status and Control Register Instructions A-18
A-13 Integer Load Instructions .. A-19
A-14 Integer Store Instructions ... A-20
A-IS Integer Load and Store with Byte Reverse Instructions A-20
A-16 Integer Load and Store Multiple Instructions ... A-20
A-17 Integer Load and Store String Instructions ... A-20
A-18 Memory Synchronization Instructions ... A-21
A-19 Floating-Point Load Instructions .. A-21
A-20 Floating-Point Store Instructions .. A-22
A-21 Floating-Point Move Instructions ... A-22
A-22 Branch Instructions ... A-22
A-23 Condition Register Logical Instructions .. ~ A-23
A-24 System Linkage Instructions .. A-23
A-25 Trap Instructions ... A-23
A-26 Processor Control Instructions ... A-24

xxii PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table
Number

A-27
A-28
A-29
A-30
A-31
A-32
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-41
A-42
B-1
B-2
B-3
D-l
D-2
D-3

F-l
F-2
F-3
F-4
F-5

F-6

F-7

F-8

F-9
F-lO
F-ll

F-12

F-l3

Tables

TABLES

Title Page
Number

Cache Management Instructions .. A-24
Segment Register Manipulation Instructions ... A-25
Lookaside Buffer Management Instructions .. A-25
External Control Instructions ... A-25
I-Form ... A-26
B-Form ... A-26
SC-Form ... A-26
D-Form ... A-26
X-Form ... A-28
XL-Form ... A-32
XFX-Form .. A-32
XFL-Form ... A-33
XO-Form .. A-33
A-Form ... A-34
M-Form ... A-35
PowerPC Instruction Set Legend .. A-36
Condition Register Settings ... B-2
Deleted POWER Instructions .. B-9
POWER Instructions Implemented in PowerPC Architecture B-ll
Interpretation of G, R, and X Bits .. D-2
Location of the Guard, Round, and Sticky Bits-IEEE Execution Model D-3
Location of the Guard, Round, and Sticky Bits-

Multiply-Add Execution Model ... D-4
Condition Register Bit and Identification Symbol Descriptions F-l
Simplified Mnemonics for Word Compare Instructions ... F-3
Word Rotate and Shift Instructions ... F-5
Simplified Branch Mnemonics .. F-7
Simplified Branch Mnemonics for be and bea Instructions

without Link Register Update ... F-8
Simplified Branch Mnemonics for belr and beelr Instructions

without Link Register Update ... F-9
Simplified Branch Mnemonics for bel and bela Instructions

with Link Register Update ... F-I0
Simplified Branch Mnemonics for belrl and beetrl Instructions

with Link Register Update ... F-ll
Standard Coding for Branch Conditions ... F-12
Simplified Branch Mnemonics with Comparison Conditions F-l3
Simplified Branch Mnemonics for be and bea Instructions without Comparison

Conditions and Link Register Updating .. F-14
Simplified Branch Mnemonics for belr and bcctr Instructions without Comparison

Conditions and Link Register Updating .. F-15
Simplified Branch Mnemonics for bel and bela Instructions with Comparison

Conditions and Link Register Update ... F-16

xxiii

Table
Number

TABLES

Title

F-14 Simplified Branch Mnemonics for belrl and bcctl Instructions

Page
Number

with Comparison Conditions and Link Register Update, F-17
F-15 Condition Register Logical Mnemonics .. F-18
F-16 Standard Codes for Trap Instructions .. F-19
F-18 Trap Mnemonics .. F-20
F-19 TO Operand Bit Encoding ... F-21
F-20 Simplified Mnemonics for SPRs ... F-22

xxiv PowerPC Microprocessor Family: The Programming Environments (32-Bit)

About This Book
The primary objective of this manual is to help programmers provide software that is
compatible across the family of PowerPCTM processors. Because the PowerPC architecture
is designed to be flexible to support a broad range of processors, this book provides a
general description of features that are common to PowerPC processors and indicates those
features that are optional or that may be implemented differently in the design of each
processor.

This revision of this book describes only the 32-bit portion of the PowerPC architecture in
detail. This book provides a subset of the information provided in PowerPC
Microprocessor Family: The Programming Environments, which describes both the 64-
and 32-bit portions of the architecture. Both books reflect changes to the PowerPC
architecture made subsequent to the publication of PowerPC Microprocessor Family: The
Programming Environments, Rev. 0 and Rev. 0.1.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.mot.comlpowerpc/ or at http://www.chips.ibm.comlproducts/ppc.

For designers working with a specific processor, this book should be used in conjunction
with the user's manual for that processor. For information regarding variances between a
processor implementation and the version of the PowerPC architecture reflected in this
document, see the reference to Implementation Variances Relative to Rev. I of The
Programming Environments Manual described in "PowerPC Documentation," on Page
xxix.

This document distinguishes between the three levels, or programming environments, of
the PowerPC architecture, which are as follows:

• PowerPC user instruction set architecture (UISA)-The VISA defines the level of
the architecture to which user-level software should conform. The VISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

• PowerPC virtual environment architecture (VEA)-The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, and defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are

About This Book xxv

particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

Implementations that conform to the PowerPC VEA also adhere to the VISA, but
may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)-The OEA defines supervisor­
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
VISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the VISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book. The level of the architecture to which text refers is indicated in the
outer margin, using the conventions shown in "Conventions," on Page xxxi.

This book does not attempt to replace the PowerPC architecture specification, which
defines the architecture from the perspective of the three programming environments and
which remains the defining document for the PowerPC architecture. This book reflects
changes made to the architecture before August 6, 1996. These changes are described in
Section 1.3, "Changes in This Revision of The Programming Environments Manual." For
information about the architecture specification, see "General Information," on Page xxviii.

For ease in reference, this book and the processor user's manuals have arranged the
architecture information into topics that build upon one another, beginning with a
description and complete summary of registers and instructions (for all three environments)
and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of the
architecture; for example, the discussion of the cache model uses information from both the
VEA and the OEA.

xxvi PowerPC Microprocessor Family: The Programming Environments (32-Bit)

It is beyond the scope of this manual to describe individual PowerPC processors. It must be
kept in mind that each PowerPC processor is unique in its implementation of the PowerPC
architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers' responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience
This manual is intended for system software and hardware developers and application
programmers who want to develop products for the PowerPC processors in general. It is
assumed that the reader understands operating systems, microprocessor system design, and
the basic principles of RISC processing.

This revision of this book describes only the 32-bit portion of the PowerPC architecture in
detail. Readers who need to know more about the architecture specifications for 64-bit
PowerPC processors should refer to PowerPC Microprocessor Family: The Programming
Environments, which contains both the information presented in both the 32- and 64-bit
portions of the architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, "Overview," is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

• Chapter 2, "PowerPC Register Set;' is useful for software engineers who need to
understand the PowerPC programming model for the three programming
environments and the functionality of the PowerPC registers.

• Chapter 3, "Operand Conventions," describes PowerPC conventions for storing data
in memory, including information regarding alignment, single- and double­
precision floating-point conventions, and big- and little-endian byte ordering.

• Chapter 4, "Addressing Modes and Instruction Set Summary," provides an overview
of the PowerPC addressing modes and a description of the PowerPC instructions.
Instructions are organized by function.

• Chapter 5, "Cache Model and Memory Coherency," provides a discussion of the
cache and memory model defined by the VEA and aspects of the cache model that
are defined by the OEA.

About This Book xxvii

• Chapter 6, "Exceptions," describes the exception model defined in the OEA.

• Chapter 7, "Memory Management," provides descriptions of the PowerPC address
translation and memory protection mechanism as defined by the OEA.

• Chapter 8, "Instruction Set," functions as a handbook for the PowerPC instruction
set. Instructions are sorted by mnemonic. Each instruction description includes the
instruction formats and an individualized legend that provides such information as
the level(s) of the PowerPC architecture in which the instruction may be found and
the privilege level of the instruction.

• Appendix A, "PowerPC Instruction Set Listings," lists all the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

• Appendix B, "POWER Architecture Cross Reference," identifies the differences that
must be managed in migration from the POWER architecture to the PowerPC
architecture.

• Appendix C, "Multiple-Precision Shifts," describes how multiple-precision shift
operations can be programmed as defined by the UISA.

• Appendix D, "Floating-Point Models," gives examples of how the floating-point
conversion instructions can be used to perform various conversions as described in
the VISA.

• Appendix E, "Synchronization Programming Examples," gives examples showing
how synchronization instructions can be used to emulate various synchronization
primitives and how to provide more complex forms of synchronization.

• Appendix F, "Simplified Mnemonics," provides a set of simplified mnemonic
examples and symbols.

• This manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information
The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

• The following books are available from the Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415)
392-2665 (International); internet address: mkp@mkp.com.

xxviii

- The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.comltechlppc-chg.html.

PowerPC Microprocessor Family: The Programming Environments (32-Blt)

- PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

- Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

- Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson,

• Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

• PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation
The PowerPC documentation is organized in the following types of documents:

• User's manuals-These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

- PowerPC 60}TM RISC Microprocessor User's Manual:
MPC60 1 UMI AD (Motorola order #)

- PowerPC 602™ RISC Microprocessor User's Manual:
MPC602UM1 AD (Motorola order #)

- PowerPC 603e™ RISC Microprocessor User's Manual with Supplementfor
PowerPC 603 Microprocessor:
MPC603EUMlAD (Motorola order #)

- PowerPC 604TM RISC Microprocessor User's Manual:
MPC604UM1AD (Motorola order #)

• PowerPC Microprocessor Family: The Programming Environments, Rev. 1
provides information about resources defined by the PowerPC architecture that are
common to PowerPC processors. This document describes both the 64- and 32-bit
portions of the architecture.
MPCFPEI AD (Motorola order #)

• Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available via the world-wide web at http://www.mot.com/powerpc/.

About This Book xxix

• Addenda/errata to user's manuals-Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user's manuals. These include the following:

- Addendum to PowerPC 603e RISC Microprocessor User's Manual: PowerPC
603e Microprocessor Supplement and User's Manual Errata:
MPC603EUMAD/AD (Motorola order #)

- Addendum to PowerPC 604 RISC Microprocessor User's Manual: PowerPC
604e™ Microprocessor Supplement and User's Manual Errata:
MPC604UMAD/AD (Motorola order #)

• Hardware specifications-Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

- PowerPC 601 RISC Microprocessor Hardware Specifications:
MPC60lECID (Motorola order #)

- PowerPC 602 RISC Microprocessor Hardware Specifications:
MPC602ECID (Motorola order #)

- PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603ECID (Motorola order #)

xxx

- PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications:
MPC603EECID (Motorola order #)

- PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware
Specifications:
MPC603E7VECID (Motorola order #)

- PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604ECID (Motorola order #)

- PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Specifications:
MPC604E9VECID (Motorola order #)

• Technical Summaries-Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation's user's manual. Technical
summaries are available for the 601,602,603, 603e, 604, and 604e as well as the
following:

- PowerPC 620™ RISC Microprocessor Technical Summary: MPC6201D
(Motorola order #)

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

• PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIFI AD (Motorola order #) provides a detailed functional description of the
60x bus interface, as implemented on the 601,603, and 604 family of Power PC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

• PowerPC Microprocessor Family: The Programmer's Reference Guide:
MPCPRGID (Motorola order #) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction
set.

• PowerPC Microprocessor Family: The Programmer's Pocket Reference Guide:
MPCPRGREFID (Motorola order #): This foldout card provides an overview of the
PowerPC registers, instructions, and exceptions for 32-bit implementations.

• Application notes-These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

• Documentation for support chips-These include the following:

- MPCI05 PCI Bridge/Memory Controller User's Manual:
MPC 1 05UM1 AD (Motorola order #)

- MPC106 PCI Bridge/Memory Controller User's Manual:
MPC 106UMI AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.comlpowerpc/.

Conventions
This document uses the following notational conventions:

mnemonics

italics

OxO
ObO
rA,rB

rD

frA, frB, frC

frD

REG [FIELD]

AboutThis Book

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics.

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR

Instruction syntax used to identify a destination GPR

Instruction syntax used to identify a source FPR

Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,

xxxi

x

n
...,

&

I

m

MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

In certain contexts, such as a signal encoding, this indicates a don't
care.

Used to express an undefined numerical value

NOT logical operator

AND logical operator

OR logical operator

This symbol identifies text that is relevant with respect to the
PowerPC user instruction set architecture (VISA). This symbol is
used both for information that can be found in the UISA specification
as well as for explanatory information related to that programming
environment.

This symbol identifies text that is relevant with respect to the
PowerPC virtual environment architecture (VEA). This symbol is
used both for information that can be found in the VEA specification
as well as for explanatory information related to that programming
environment.

This symbol identifies text that is relevant with respect to the
PowerPC operating environment architecture (OEA). This symbol is
used both for information that can be found in the OEA specification
as well as for explanatory information related to that programming
environment.

Indicates reserved bits or bit fields in a register. Although these bits
may be written to as either ones or zeros, they are always read as
zeros.

Additional conventions used with instruction encodings are described in Table 8-2 on page
8-2. Conventions used for pseudocode examples are described in Table 8-3 on page 8-4.

xxxii PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDRt and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table I. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ASR Address space register

BAT Block address translation

BIST Built-in self test

BPU Branch processing unit

BUID Bus unit ID

CR Condition register

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DEC Decrementer register

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FPECR Floating-point exception cause register

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

IBAT Instruction BAT

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IU Integer unit

L2 Secondary cache

LIFO Last-in-first-out

About This Book xxxiii

Table i. Acronyms and Abbreviated Terms(Contin~ed)

Term Meaning

LR Link register

LRU Least recently used

LSB Least-significant byte

Isb Least-significant bit

MESI Modifiedlexcluslve/sharedlinvalld-cache coherency protocol

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Nota number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PIR Processor identification register

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RiSe Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIMM Signed immediate value

SLB Segment lookaside buffer

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRRO Machine status save/restore register 0

SRR1 Machine status save/restore register 1

STE Segment table entry

TB Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

xxxiv PowerPC Microprocessor Family: The Programming Envlronmentil (32-Blt)

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

XATC Extended address transfer code

XER Register used primarily for indicating conditions such as carries and overflows for integer operations

Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (OSI) OSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (lSI) lSI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

About This Book xxxv

Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA,BB,BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

t, II, 1// 0 ... 0 (shaded)

xxxvi PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Chapter 1
Overview
The PowerPCTM architecture provides a software model that ensures software compatibility
among implementations of the PowerPC family of microprocessors. In this document, and
in other PowerPC documentation as well, the term 'implementation' refers to a hardware
device (typically a microprocessor) that complies with the specifications defined by the
archi tecture.

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. This manual
describes the architecture from a 32-bit perspective. Although some 64-bit resources are
discussed, this. manual does not completely describe details of the 64-bit-only features of
the architecture, in particular with respect to the memory management model, registers, and
instruction set. For more information about the 64-bit aspects of the PowerPC architecture,
refer to PowerPC Microprocessor Family: The Programming Environments, which
contains the information in this book as well.

In general, the architecture defines the following:

• Instruction set-The instruction set specifies the families of instructions (such as
load/store, integer arithmetic, and floating-point arithmetic instructions), the specific
instructions, and the forms used for encoding the instructions. The instruction set
definition also specifies the addressing modes used for accessing memory.

• Programming model-The programming model defines the register set and the
memory conventions, including details regarding the bit and byte ordering, and the
conventions for how data (such as integer and floating-point values) are stored.

• Memory model-The memory model defines the size of the address space and of the
subdivisions (pages and blocks) of that address space. It also defines the ability to
configure pages and blocks of memory with respect to caching, byte ordering (big­
or little-endian), coherency, and various types of memory protection.

• Exception model-The exception model defines the common set of exceptions and
the conditions that can generate those exceptions. The exception model specifies
characteristics of the exceptions, such as whether they are precise or imprecise,
synchronous or asynchronous, and maskable or nonmaskable. The exception model
defines the exception vectors and a set of registers used when exceptions are taken.
The exception model also provides memory space for implementation-specific
exceptions. (Note that exceptions are referred to as interrupts in the architecture
specification.)

Chapter 1. Overview 1-1

• Memory management model-The memory management model defines how
memory is partitioned, configured, and protected. The memory management model
also specifies how memory translation is performed, the real, virtual, and physical
address spaces, special memory control instructions, and other characteristics.
(Physical address is referred to as real address in the architecture specification.)

• Time-keeping model-The time-keeping model defines facilities that permit the
time of day to be determined and the resources and mechanisms required for
supporting time-related exceptions.

These aspects of the PowerPC architecture are defined at different levels of the architecture,
and this chapter provides an overview of those levels-the user instruction set architecture
(UISA) , the virtual environment architecture (VEA) , and the operating environment
architecture (OEA).

To locate any published errata or updates for this document, refer to the website at
http://www.mot.comlpowerpc/ or at http://www.chips.ibm.comlproducts/ppc.

1.1 PowerPC Architecture Overview
The PowerPC architecture, developed jointly by Motorola, IBM, and Apple Computer, is
based on the POWER architecture implemented by RS/6000™ family of computers. The
PowerPC architecture takes advantage of recent technological advances in such areas as
process technology, compiler design, and reduced instruction set computing (RISC)
microprocessor design to provide software compatibility across a diverse family of
implementations, primarily single-chip microprocessors, intended for a wide range of
systems, including battery-powered personal computers; embedded controllers; high-end
scientific and graphics workstations; and multiprocessing, microprocessor-based
mainframes.

To provide a single architecture for such a broad assortment of processor environments, the
PowerPC architecture is both flexible and scalable.

The flexibility of the PowerPC architecture offers many price/performance options.
Designers can choose whether to implement architecturally-defined features in hardware or
in software. For example, a processor designed for a high-end workstation has greater need
for the performance gained from implementing floating-point normalization and
denormalization in hardware than a battery-powered, general-purpose computer might.

The PowerPC architecture is scalable to take advantage of continuing technological
advances-for example, the continued miniaturization of transistors makes it more feasible
to implement more execution units and a richer set of optimizing features without being
constrained by the architecture.

1-2 PowerPC Microprocessor Family: The Programming Environments (32~Bit)

The PowerPC architecture defines the following features:

• Separate 32-entry register files for integer and floating-point instructions. The
general-purpose registers (GPRs) hold source data for integer arithmetic
instructions, and the floating-point registers (FPRs) hold source and target data for
floating-point arithmetic instructions.

• Instructions for loading and storing data between the memory system and either the
FPRsor GPRs

• Uniform-length instructions to allow simplified instruction pipelining and parallel
processing instruction dispatch mechanisms

• Nondestructive use of registers for arithmetic instructions in which the second, third,
and sometimes the fourth operand, typically specify source registers for calculations
whose results are typically stored in the target register specified by the first operand.

• A precise exception model (with the option of treating floating-point exceptions
imprecisely)

• Floating-point support that includes IEEE-754 floating-point operations

• A flexible architecture definition that allows certain features to be performed in
either hardware or with assistance from implementation-specific software
depending on the needs of the processor design

• The ability to perform both single- and double-precision floating-point operations

• User-level instructions for explicitly storing, flushing, and invalidating data in the
on-chip caches. The architecture also defines special instructions (cache block touch
instructions) for speculatively loading data before it is needed, reducing the effect of
memory latency.

• Definition of a memory model that allows weakly-ordered memory accesses. This
allows bus operations to be reordered dynamically, which improves overall
performance and in particular reduces the effect of memory latency on instruction
throughput.

• Support for separate instruction and data caches (Harvard architecture) and for
unified caches

• Support for both big- and little-endian addressing modes

• Support for 64-bit addressing. The architecture supports both 32-bit or 64-bit
implementations. This document describes the 32-bit portion of the PowerPC
architecture. For information about the 64-bit architecture, see PowerPC
Microprocessor Family: The Programming Environments.

Chapter 1. Overview 1-3

This chapter provides an overview of the major characteristics of the PowerPC architecture
in the order in which they are addressed in this book:

• Register set and programming model

• Instruction set and addressing modes

• Cache implementations

• Exception model
• Memory management

1.1.1 The 64-Bit PowerPC Architecture and the 32-Bit Subset
The PowerPC architecture is a 64-bit architecture with a 32-bit subset. It is important to
distinguish the following modes of operations:

• 64-bit implementations/64-bit mode-The PowerPC architecture provides 64-bit
addressing, 64-bit integer data types, and instructions that perform arithmetic
operations on those data types, as well as other features to support the wider
addressing range. For example, memory management differs somewhat between 32-
and 64-bit processors. The processor is configured to operate in 64-bit mode by
setting a bit in the machine state register (MSR).

• Processors that implement only the 32-bit portion of the PowerPC architecture
provide 32-bit effective addresses, which is also the maximum size of integer data
types.

• 64-bit implementations/32-bit mode-For compatibility with 32-bit
implementations, 64-bit implementations can be configured to operate in 32-bit
mode by clearing the MSR[SF] bit. In 32-bit mode, the effective address is treated
as a 32-bit address, condition bits, such as overflow and carry bits, are set based on
32-bit arithmetic (for example, integer overflow occurs when the result exceeds

1-4

32 bits), and the count register (CTR) is tested by branch conditional instructions
following conventions for 32-bit implementations. All applications written for 32-
bit implementations will run without modification on 64-bit processors running in
32-bit mode.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

1.1.2 The Levels of the PowerPC Architecture
The PowerPC ar.chitecture is defined in three levels that correspond to three programming
environments, roughly described from the most general, user-level instruction set
environment, to the more specific, operating environment.

This layering of the architecture provides flexibility, allowing degrees of software
compatibility across a wide range of implementations. For example, an implementation
such as an embedded controller may support the user instruction set, whereas it may be
impractical for it to adhere to the memory management, exception, and cache models.

The three levels of the PowerPC architecture are defined as follows:

• PowerPC user instruction set architecture (VISA)-The VISA defines the level of II
the architecture to which user-level (referred to as problem state in the architecture
specification) software should conform. The VISA defines the base user-level
instruction set, user-level registers, data types, floating-point memory conventions
and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant with respect to
the VISA.

• PowerPC virtual environment architecture (VEA)-The VEA defines additional V
user-level functionality that falls outside typical user-level software requirements.
The VEA describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model, defines cache
control instructions, and defines the time base facility from a user-level perspective.
The icon shown in the margin identifies text that is relevant with respect to the VEA.

Implementations that conform to the PowerPC VEA also adhere to the VISA, but
may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)-The OEA defines supervisor- CD
level (referred to as privileged state in the architecture specification) resources
typically required by an operating system. The OEA defines the PowerPC memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. The OEA also defines the time base feature from a supervisor­
level perspective. The icon shown in the margin identifies text that is relevant with
respect to the OEA.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
VISA and VEA.

Implementations that adhere to the VEA level are guaranteed to adhere to the VISA level;
likewise, implementations that conform to the OEA level are also guaranteed to conform to
the VISA and the VEA levels.

All PowerPC devices adhere to the VISA, offering compatibility among all PowerPC
application programs. However, there may be different versions of the VEA and OEA than
those described here. For example, some devices, such as embedded controllers, may not
require some of the features as defined by this VEA and OEA, and may implement a
simpler or modified version of those features.

Chapter 1. Overview 1-5

The general-purpose PowerPC microprocessors developed jointly by Motorola and IBM
(such as the PowerPC 601™, PowerPC 603™, PowerPC 603e™, PowerPC 604™,
PowerPC 604e™, and PowerPC 620™ microprocessors) comply both with the VISA and
with the VEA and OEA discussed here. In this book, these three levels of the architecture
are referred to collectively as the PowerPC architecture.

The distinctions between the levels of the PowerPC architecture are maintained clearly
throughout this document, using the conventions described in the section "Conventions,"
on page xxxi of the Preface.

1.1.3 Latitude Within the Levels of the PowerPC Architecture
The PowerPC architecture defines those parameters necessary to ensure compatibility
among PowerPC processors, but also allows a wide range of options for individual
implementations. These are as follows:

• The PowerPC architecture defines some facilities (such as registers, bits within
registers, instructions, and exceptions) as optional.

• The PowerPC architecture allows implementations to define additional privileged
special-purpose registers (SPRs), exceptions, and instructions for special system
requirements (such as power management in processors designed for very low­
power operation).

• There are many other parameters that the PowerPC architecture allows
implementations to define. For example, the PowerPC architecture may define
conditions for which an exception may be taken, such as alignment conditions. A
particular implementation may choose to solve the alignment problem without
taking the exception.

• Processors may implement any architectural facility or instruction with assistance
from software (that is, they may trap and emulate) as long as the results (aside from
performance) are identical to that specified by the architecture.

Some parameters are defined at one level of the architecture and defined more
specifically at another. For example, the VISA defines conditions that may cause an
alignment exception, and the OEA specifies the exception itself.

Because of updates to the PowerPC architecture specification, which are described in this
document, variances may result between existing devices and the revised architecture
specification. Those variances are included in Implementation Variances Relative to Rev. 1
o/The Programming Environments Manual.

1-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

1.1.4 Features Not Defined by the PowerPC Architecture
Because flexibility is an important design goal of the PowerPC architecture, there are many
aspects of the processor design, typically relating to the hardware implementation, that the
PowerPC architecture does not define, such as the following:

• System bus interface signals-Although numerous implementations may have
similar interfaces, the PowerPC architecture does not define individual signals or the
bus protocol. For example, the OEA allows each implementation to determine the
signal or signals that trigger the machine check exception.

• Cache design-The PowerPC architecture does not define the size, structure, the
replacement algorithm, or the mechanism used for maintaining cache coherency.
The PowerPC architecture supports, but does not require, the use of separate
instruction and data caches. Likewise, the PowerPC architecture does not specify the
method by which cache coherency is ensured.

• The number and the nature of execution units-The PowerPC architecture is a RISC
architecture, and as such has been designed to facilitate the design of processors that
use pipelining and parallel execution units to maximize instruction throughput.
However, the PowerPC architecture does not define the internal hardware details of
implementations. For example, one processor may execute load and store operations
in the integer unit, while another may execute these instructions in a dedicated
load/store unit.

• Other internal microarchitecture issues-The PowerPC architecture does not
prescribe which execution unit is responsible for executing a particular instruction;
it also does not define details regarding the instruction fetching mechanism, how
instructions are decoded and dispatched, and how results are written back. Dispatch
and write-back may occur in order or out of order. Also while the architecture
specifies certain registers, such as the GPRs and FPRs, implementations can
implement register renaming or other schemes to reduce the impact of data
dependencies and register contention.

1.1.5 Summary of Architectural Changes in this Revision
This revision reflects enhancements to the architecture that have been made since the
publication of the PowerPC Microprocessor Family: The Programming Environments,
Rev. 0.1. The primary difference described in this document is the addition of the rfid and
mtmsrd instructions to the 64-bit portion of the architecture. The rfi and mtmsr
instructions are now legal in 32-bit processors and illegal in 64-bit processors. Likewise,
the rfid and mtmsrd are valid instructions only in 64-bit processors and are illegal in 32-
bit processors.

In addition, this book reflects smaller changes and clarifications to the PowerPC
architecture. For more information, see Section 1.3, "Changes in This Revision of The
Programming Environments Manual."

Chapter 1. Overview 1·7

III 1.2 The PowerPC Architectural Models
" This section provides overviews of aspects defined by the PowerPC architecture, following
• the same order as the rest of this book. The topics include the following:

• PowerPC registers and programming model

• PowerPC operand conventions
• PowerPC instruction set and addressing modes
• PowerPC cache model
• PowerPC exception model
• PowerPC memory management model

1.2.1 PowerPC Registers and Programming Model
The PowerPC architecture defines register-to-register operations for computational
instructions. Source operands for these instructions are accessed from the architected
registers or are provided as immediate values embedded in the instruction. The three­
register instruction format allows specification of a target register distinct from two source
operand registers. This scheme allows efficient code scheduling in a highly parallel
processor. Load and store instructions are the only instructions that transfer data between
registers and memory. The PowerPC registers are shown in Figure 1-1.

1-8

SUPERVISOR MODEL-OEA

USER MODEL-UISA
32 General-Purpose Registers (GPRs)

32 Floating-Point Registers (FPRs)
Condition Register (CR)

Floating-Point Status and Control Register (FPSCR)
XER

Link Register (LR)
Count Register (CTR)

USER MODEL-VEA
Time Base Facility (TBU and TBL)

(For reading)

32-bit implementations only
2 Optional

Configuration Registers
Machine State Register (MSR)

Processor Version Register (PVR)

Memory Management Registers
8 Instruction BAT Registers (IBATs)

8 Data BAT Registers (DBATs)
SDR1

16 Segment Registers (SRs)'

Exception Handling Registers
Data Address Register (DAR)

DSISR
Save and Restore Registers (SRRO/SRR1)

SPRGo-SPRG3
Floating-Point Exception Cause Register (FPECR) 2

Miscellaneous Registers
Time Base Facility (TBU and TBL) (For writing)

Decrementer Register (DEC)
Data Address Breakpoint Register (DABR) 2

Processor Identification Register (PIR) 2

External Access Register (EAR) 2

Figure 1-1. Programming Model-PowerPC Registers

PowerPC Microprocessor Family: The Programming Environments (32-BIt)

The programming model incorporates 32 GPRs, 32 FPRs, special-purpose registers
(SPRs), and several miscellaneous registers. Each implementation may have its own unique
set of hardware implementation (HID) registers that are not defined by the architecture.

PowerPC processors have two levels of privilege:

• Supervisor mode-used exclusively by the operating system. Resources defined by
the OEA can be accessed only supervisor-level software.

• User mode-used by the application software and operating system software (Only
resources defined by the UISA and VEA can be accessed by user-level software)

These two levels govern the access to registers, as shown in Figure 1-1. The division of
privilege allows the operating system to control the application environment (providing
virtual memory and protecting operating system and critical machine resources).
Instructions that control the state of the processor, the address translation mechanism, and
supervisor registers can be executed only when the processor is operating in supervisor
mode.

• User Instruction Set Architecture Registers-All UISA registers can be accessed II
by all software with either user or supervisor privileges. These registers include the
32 general-purpose registers (GPRs) and the 32 floating-point registers (FPRs), and
other registers used for integer, floating-point, and branch instructions.

• Virtual Environment Architecture Registers-The VEA defines the user-level VI
portion of the time base facility, which consists of the two 32-bit time base registers.
These registers can be read by user-level software, but can be written to only by
supervisor-level software.

• Operating Environment Architecture Registers-SPRs defined by the OEA are CD
used for system-level operations such as memory management, exception handling,
and time-keeping.

The PowerPC architecture also provides room in the SPR space for implementation­
specific registers, typically referred to as IDD registers. Individual HIDs are not discussed
in this manual.

1.2.2 Operand Conventions
Operand conventions are defined in two levels of the PowerPC architecture-user II
instruction set architecture (UISA) and virtual environment architecture (VEA). These VI
conventions define how data is stored in registers and memory.

1.2.2.1 Byte Ordering
The default mapping for PowerPC processors is big-endian, but the UISA provides the II
option of operating in either big- or little-endian mode. Big-endian byte ordering is shown
in Figure 1-2.

Chapter 1. Overview 1-9

MSB

+
Byte 1 ~~ __ -,--__ B..:..yt_e_N-,(,-m_ax...:..)_....J Byte 0

Big-Enclian Byte Ordering

Figure 1-2. Big-Endlan Byte and Bit Ordering

CD The OEA defines two bits in the MSR for specifying byte ordering-LE (little-endian
mode) and ILE (exception little-endian mode). The LE bit specifies whether the processor
is configured for big-endian or little-endian mode; the ILE bit specifies the mode when an
exception is taken by being copied into the LE bit of the MSR. A value of 0 specifies big­
endian mode and a value of 1 specifies little-endian mode.

1.2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with O. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
string/multiple instructions, a sequence of bytes or words. The address of a multiple-byte
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned.

1.2.2.3 Floating-Point Conventions
II The PowerPC architecture adheres to the IEEE-754 standard for 64- and 32-bit floating­

point arithmetic:

• Double-precision arithmetic instructions may have single- or double-precision
operands but always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision
values and always produce single-precision results. Single-precision values are
stored in double-precision format in the FPRs-these values are rounded such that
they can be represented in 32-bit, single-precision format (as they are in memory).

1.2.3 PowerPC Instruction Set and Addressing Modes
All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction
formats are. consistent among all instruction types, permitting decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

1.2.3.1 PowerPC Instruction Set
Although these categories are not defined by the PowerPC architecture, the PowerPC
instructions can be grouped as follows:

• Integer instructions-These instructions are defined by the UISA. They include II
computational and logical instructions.

- Integer arithmetic instructions

- Integer compare instructions
- Logical instructions

- Integer rotate and shift instructions

• Floating-point instructions-These instructions, defined by the UISA, include
floating-point computational instructions, as well as instructions that manipulate the
floating-point status and control register (FPSCR).

- Floating-point arithmetic instructions

- Floating-point multiply/add instructions

- Floating-point compare instructions
- Floating-point status and control instructions

- Floating-point move instructions

- Optional floating-point instructions

• Load/store instructions-These instructions, defined by the UISA, include integer
and floating-point load and store instructions.

- Integer load and store instructions

- Integer load and store with byte reverse instructions

- Integer load and store multiple instructions
- Integer load and store string instructions

- Floating-point load and store instructions

• The UISA also provides a set of load/store with reservation instructions (Iwarx and
stwcx.) that can be used as primitives for constructing atomic memory operations.
These are grouped under synchronization instructions.

• Synchronization instructions-The VISA and VEA define instructions for memory
synchronizing, especially useful for multiprocessing:

- Load and store with reservation instructions-These UISA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

- The Synchronize instruction (sync)-This UISA-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

- Enforce In-Order Execution of 110 (eieio)- The eieio instruction provides an ."
ordering function for the effects of load and store operations executed by a
processor.

Chapter 1. Overview 1-11

• Flow control instructions-These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

II - The UISA defines numerous instructions that control the program flow,
including branch, trap, and system call instructions as well as instructions that
read, write, or manipulate bits in the condition register.

eD - The OEA defines two flow control instructions that provide system linkage.
These instructions are used for entering and returning from supervisor level.

• Processor control instructions-These instructions are used for synchronizing
memory accesses and managing caches and translation lookaside buffers (TLBs)
(and segment registers in 32-bit implementations). These instructions include move
to/from special-purpose register instructions (mtspr and mfspr).

'VI • Memory/cache control instructions-These instructions provide control of caches,
eD TLBs, and segment registers.

- The VEA defines several cache control instructions.

- The OEA defines one cache control instruction and several memory control
instructions.

'VI • External control instructions-The VEA defines two optional instructions for use
with special input/output devices.

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions. This is not defined by the PowerPC
architecture.

1.2.3.2 Calculating Effective Addresses
II The effective address (EA), also called the logical address, is the address computed by the

processor when executing a memory access or branch instruction or when fetching the next
sequential instruction. Unless address translation is disabled, this address is converted by
the MMU to the appropriate physical address. (Note that the architecture specification uses
only the term effective address and not logical address.)

The PowerPC architecture supports the following simple addressing modes for memory
access instructions:

• EA = (rAIO) (register indirect)
• . EA = (rAIO) + offset (including offset = 0) (register indirect with immediate index)

• EA = (rAIO) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.

1-12 PowerPC Microprocessor Family: The Programming Environments (32-8it)

1.2.4 PowerPC Cache Model
The VEA and OEA portions of the architecture define aspects of cache implementations for 'VI
PowerPC processors. The PowerPC architecture does not define hardware aspects of cache CD
implementations. For example, some PowerPC processors may have separate instruction
and data caches (Harvard architecture), while others have a unified cache.

The PowerPC architecture allows implementations to control the following memory access
modes on a page or block basis:

• Write-backlwrite-through mode
• Caching-inhibited mode
• Memory coherency
• Guarded/not guarded against speculative accesses

Coherency is maintained on a cache block basis, and cache control instructions perform
operations on a cache block basis. The size of the cache block is implementation­
dependent. The term cache block should not be confused with the notion of a block in
memory, which is described in Section 1.2.6, "PowerPC Memory Management Model."

The VEA portion of the PowerPC architecture defines several instructions for cache
management. These can be used by user-level software to perform such operations as touch
operations (which cause the cache block to be speculatively loaded), and operations to
store, flush, or clear the contents of a cache block. The OEA portion of the architecture CD
defines one cache management instruction-the Data Cache Block Invalidate (dchi)
instruction.

1.2.5 PowerPC Exception Model
The PowerPC exception mechanism, defined by the OEA, allows the processor to change
to supervisor state as a result of external signals, errors, or unusual conditions arising in the
execution of instructions. When exceptions occur, information about the state of the
processor is saved to various registers and the processor begins execution at an address
(exception vector) predetermined for each type of exception. Exception handler routines
begin execution in supervisor mode. The PowerPC exception model is described in detail
in Chapter 6, "Exceptions." Note also that some aspects regarding exception conditions are
defined at other levels of the architecture. For example, floating-point exception conditions
are defined by the VISA, whereas the exception mechanism is defined by the OEA.

PowerPC architecture requires that exceptions be handled in program order (excluding the
optional floating-point imprecise modes and the reset and machine check exception);
therefore, although a particular implementation may recognize exception conditions out of
order, they are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet begun to execute, are required to complete before the
exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,

Chapter 1. Overview 1-13

- but are not handled until all instructions currently executing successfully complete
processing and report their results.

The OEA supports four types of exceptions:

• Synchronous, precise
Synchronous, imprecise

• Asynchronous, mask able

• Asynchronous, nonmaskable

e 1.2.6 PowerPC Memory Management Model
The PowerPC memory management unit (MMU) specifications are provided by the
PowerPC OEA. The primary functions of the MMU in a PowerPC processor are to translate
logical (effective) addresses to physical addresses for memory accesses and I/O accesses
(most I/O accesses are assumed to be memory-mapped), and to provide access protection
on a block or page basis. Note that many aspects of memory management are
implementation-dependent. The description in Chapter 7, "Memory Management,"
describes the conceptual model of a PowerPC MMU; however, PowerPC processors may
differ in the specific hardware used to implement the MMU model of the OEA.

PowerPC processors require address translation for two types of transactions-instruction
accesses and data accesses to memory (typically generated by load and store instructions).

The memory management specification of the PowerPC OEA includes models for both 64-
and 32-bit implementations. The MMU of a 32-bit PowerPC processor provides 232 bytes
of logical address space accessible to supervisor and user programs with a 4-Kbyte page
size and 256-Mbyte segment size.

In 32-bit implementations, the entire 4-Gbyte memory space is defined by sixteen 256-
Mbyte segments. Segments are configured through the 16 segment registers. In 64-bit
implementations there are more segments than can be maintained in architecture-defined
registers, so segment descriptors are maintained in segment table entries (STEs) in memory
and are accessed through the use of a hashing algorithm much like that used for accessing
page table entries (PTEs).

PowerPC processors also have a block address translation (BAT) mechanism for mapping
large blocks of memory. Block sizes range from 128 Kbyte to 256 Mbyte and are software­
selectable. In addition, the MMU of 32-bit PowerPC processors uses an interim virtual
address (52 bits) and hashed page tables in the generation of 32-bit physical addresses.

Two types of accesses generated by PowerPC processors require address translation:
instruction accesses, and data accesses to memory generated by load and store instructions.
The address translation mechanism is defined in terms of segment tables (or segment
registers in 32-bit implementations) and page tables used by PowerPC processors to locate
the logical-to-physical address mapping for instruction and data accesses. The segment

1-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

information translates the logical address to an interim virtual address, and the page table
information translates the virtual address to a physical address.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors
to keep recently-used page table entries on-chip. Although their exact characteristics are not
specified by the architecture, the general concepts that are pertinent to the system software
are described. Similarly, 64-bit implementations may contain segment lookaside buffers
(SLBs) on-chip that contain recently-used segment table entries, but for which the
PowerPC architecture does not define the exact characteristics.

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs); refer to
Chapter 7, "Memory Management," for more information.

1.3 Changes in This Revision of The Programming
Environments Manual

This book reflects changes made to the PowerPC architecture after the publicationof Rev. 0
of The Programming Environments Manual and before Dec. 13, 1994 (Rev. 0.1). In
addition, it reflects changes made to the architecture after the publication of Rev. 0.1 of The
Programming Environments Manual and before Aug. 6, 1996 (Rev. 1). Although there are
many changes in this revision, this section summarizes only the most significant changes
and clarifications to the architecture specification.

The main substantive change from Rev. 0 to Rev. 1 for 32-bit processors is the phasing out
of the direct-store facility. This facility defined segments that were used to generate direct­
store interface accesses on the external bus to communicate with specialized I/O devices; it
was not optimized for performance in the PowerPC architecture and was present for
compatibility with older devices only. As of this revision of the architecture (Rev. 1), direct­
store segments are an optional processor feature. However, they are not likely to be
supported in future implementations and new software should not use them.

Table 1-1 and Table 1-2 list changes made to the VISA that are reflected in this book and
identify the chapters affected by those changes. Note that many of the changes made in the
VISA are reflected in both the VEA and OEA portions of the architecture as well.

Chapter 1. Overview 1-15

Table 1-1. UISA Changes-Rev. 0 to Rev. 0.1

Change Chapter(a) Affected

The rules for handling of reserved bits in registers are clarified. 2

Clarified that layne does not wait for memory accesses to be performed. 4,8

CRO[o-2) are undefined for some instructions in 64-bitmode. . 4,8

Clarified intermediate result with respect to floating-point operations (the intermediate 3
result has infinite precision and unbounded exponent range).

Clarified the definition of rounding such that rounding always occurs (specifically, FR and 3
FI flags are always affected) for arithmetic, rounding, and conversion instructions.

Clarified the definition of the term 'tiny' (detected before rounding). 3

In 0.3.2, "Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word," 0
changed value in FPR 3 from 232 to 232 - 1 (in 32-bit implementation description).

Noted additional POWER h1compatibilily for Store Floating-Point Single (atla) instruction. B

Table 1-2. UISA Changes-Rev. 0.1 to Rev. 1.0

Change Chapter(a) Affecled

Although the atflwx instruction is an optional instruction, itwJ1l likely be required for future 4,8,A
processors.

Added the new Data Cache Block Allocate (deba) instruction. 4,5,8,A

Deleted some warnings about generating misaligned little-endian access. 3
..

Table 1-3 and Table 1-4 list changes made to the YEA that are reflected in this book and the
chapters that are affected by those changes. Note that some changes to the UISA ar.e
reflected in the YEA and in tum, some changes to the YEA affect the OEA as well.

Table 1-3. VEA ChangeS-:-Rev. 0 to Rev. 0.1

Change Chapter{a) Affected

Clarified conditions under which a cache block is considered modified. 5

WIMG bits have meaning only when the effective address is translated. 2,5,7

Clarified that layne does not wait for memory accesses to be perfOrmed. . 4,5,7,8

Clarified paging implications of eelwx and ecowx. 4,5,7,8

Table 1-4. VEA Changes-Rev. 0.1 to Rev. 1.0

Change Chapter{a) Affected

Added the requirement that caching-inhibited guarded store operations are ordered. 5

Clarified use of the debf instruction in keeping instruction cache coherency in the case of a 5
combined instruction/data cache in a multiprocessor system.

1-16 Powe.·PC Microprocessor Family: The Programming Environments (32-Blt)

Table 1-5 and Table 1-6 list changes made to the OEA that are reflected in this book and the
chapters that are affected by those changes. Note that some changes to the VISA and VEA
are reflected in the OEA as well.

Table 1-5. OEA Changes-Rev. 0 to Rev. 0.1

Change Chapter(s) Affected

Restricted several aspects of out-of-order operations. 2,4,5,6,7

Clarified instruction fetching and instruction cache paradoxes. 4,5

Specified that IBATs contain Wand G bits and that software must not write 1s to them. 2, 7

Corrected the description of coherence when the W bit differs among processors. 5

Clarified that referenced and changed bits are set for virtual pages. 7

Revised the description of changed bit setting to avoid depending on the TLB. 7

Tightened the rules for setting the changed bit out of order. 5, 7

Specified which multiple DSISR bits may be set due to simultaneous DSI exceptions. 6

Removed software synchronization requirements for reading the TB and DEC. 2

More flexible DAR setting for a DABR exception. 6

Table 1-6. OEA Changes-Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected

Changed definition of direct-store segments to an optional processor feature that is not 2, 6, 7
likely to be supported in future implementations and new software should not use it.

Changed the ranges of bits saved from MSR to SRR1 (and restored from SRR1 to MSR on 2,6
rfl) on an exception.

Clarified the definition of execution synchronization. Also clarified that the mtmsr and 2,4,8
mtmsrd instructions are not execution synchronizing.

Clarified the use of memory allocated for predefined uses (including the exception 6, 7
vectors).

Revised the page table update synchronization requirements and recommended code 7
sequences.

Chapter 1. Overview 1-17

Chapter 2
PowerPC Register Set
This chapter describes the register organization defined by the three levels of the PowerPC I!I
architecture-user instruction set architecture (VISA), virtual environment architecture V
(VEA), and operating environment architecture (OEA). The PowerPC architecture defines CD
register-to-register operations for all computational instructions. Source data for these
instructions are accessed from the on-chip registers or are provided as immediate values
embedded in the opcode. The three-register instruction format allows specification of a
target register distinct from the two source registers, thus preserving the original data for
use by other instructions and reducing the number of instructions required for certain
operations. Data is transferred between memory and registers with explicit load and store
instructions only.

Note that the handling of reserved bits in any register is implementation-dependent.
Software is permitted to write any value to a reserved bit in a register. However, a
subsequent reading of the reserved bit returns 0 if the value last written to the bit was 0 and
returns an undefined value (may be 0 or 1) otherwise. This means that even if the last value
written to a reserved bit was 1, reading that bit may return O.

2.1 PowerPC UISA Register Set
The PowerPC VISA registers, shown in Figure 2-1, can be accessed by either user- or I!I
supervisor-level instructions (the architecture specification refers to user-level and
supervisor-level as problem state and privileged state respectively). The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed as instruction operands.
Access to registers can be explicit (that is, through the use of specific instructions for that
purpose such as Move to Special-Purpose Register (mtspr) and Move from Special­
Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction.
Some registers are accessed both explicitly and implicitly.

The number to the right of the register names indicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the XER is SPR 1).

Note that the general-purpose registers (GPRs), link register (LR), and count register (CTR)
are 64 bits wide on 64-bit implementations and 32 bits wide on 32-bit implementations.

Chapter 2. PowerPC Register Set 2-1

/ ... ""'"
! SUPERVISOR MODEL \ I/······ .. ·~·~~-~-····· .. ·--~ .. ·~~·· .. ····"·\ OEA

i,' USER MODEL 1,'. Configuration Registers
UISA Machine State Register Processor Version flegister 1

General-Purpose Registers MSR (tH/32) c.:.:'.Y..~ .. (~)~i. J SPR 287

GPRO (64/32)

GPR1 (64/32)

• • •
GPR31 (64132)

Floating-Point Registers

FPRO (64)

FPR1 (64)

• • •
FPR31 (64)

Condition Register 1

CR(32)

Floating-Point Status
and Control Register 1

FPSCR(32)

XER Register 1

XER (32)

Link Register

SPR 1

LR (64/32) SPR 8

Count Register

CTR (64132) SPR 9

USER MODEL
VEA.

Time Base Faci!ity ,
(For Reading)

Tf.lH2&8

Memory Management Registers
lnsiruction BAT Registers Daia BAT Registers

528 'SPF{ 536

SPR 537

Segment Registers '1.<

SORi

Csr:';-R'i'(i;;;i~'2) ! SPR;;5

Address Space Register 3

1--AS~g"«~~ 1 SPR 23fJ

Exception Handling Registers
Oat,J Address Regbt,Jr nSISR '

SPR ~:73

,.......-----..,
DSiSR ~S2) SPR 16

,':;PR 2(;

Sf'n 27

Floating-Point Exception
Cause Register (OpUonal)

L:~:~':::;f.·(;·~::~::] (':;PRI022

; TGR269!

\,'--------~.)
I These registers are 32-bit registers only.
2.These registers are on 32-bit implementations only.
3 These registers are on 64-bit implementations only.

Figure 2-1. UISA Programming Model-User-Level Registers

2-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The user-level registers can be accessed by all software with either user or supervisor
privileges. The user-level register set includes the following:

• General-purpose registers (GPRs). The general-purpose register file consists of 32
GPRs designated as GPRO-GPR31. The GPRs serve as data source or destination
registers for all integer instructions and provide data for generating addresses. See
Section 2.1.1, "General-Purpose Registers (GPRs)," for more information.

• Floating-point registers (FPRs). The floating-point register file consists of 32 FPRs
designated as FPRO--FPR31; these registers serve as the data source or destination
for all floating-point instructions. While the floating-point model includes data
objects of either single- or double-precision floating-point format, the FPRs only
contain data in double-precision format. For more information, see Section 2.1.2,
"Floating-Point Registers (FPRs)."

• Condition register (CR). The CR isa 32-bit register, divided into eight 4-bit fields,
CRO--CR7, that reflects the results of certain arithmetic operations and provides a
mechanism for testing and branching. For more information, see Section 2.1.3,
"Condition Register (CR)."

• Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable bits,
and rounding control bits needed for compliance with the IEEE 754 standard. For
more information, see Section 2.1.4, "Floating-Point Status and Control Register
(FPSCR)." (Note that the architecture specification refers to exceptions as
interrupts.)

• XER register (XER). The XER indicates overflows and carry conditions for integer
operations and the number of bytes to be transferred by the load/store string indexed
instructions. For more information, see Section 2.1.5, "XER Register (XER)."

• Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instructions, and can optionally be used to hold
the effective address of the instruction that follows a branch with link update
instruction in the instruction stream, typically used for loading the return pointer for
a subroutine. For more information, see Section 2.1.6, "Link Register (LR)."

• Count register (CTR). The CTR holds a loop count that can be decremented during
execution of appropriately coded branch instructions. The CTR can also provide the
branch target address for the Branch Conditional to Count Register (bcctrx)
instructions. For more information, see Section 2.1.7, "Count Register (CTR)."

2.1.1 General-Purpose Registers (GPRs)
Integer data is manipulated in the processor's 32 GPRs shown in Figure 2-2. These registers
are 64-bit registers in 64-bit implementations and 32-bit registers in 32-bit
implementations. The GPRs are accessed as source and destination registers in the
instruction syntax.

Chapter 2. PowerPC Register Set 2-3

GPRO

GPR1

• • •
GPR31

o 63

Figure 2-2. General-Purpose Registers (GPRs)

2.1.2 Floating-Point Registers (FPRs)
The PowerPC architecture provides thirty-two 64-bit FPRs as shown in Figure 2-3. These
registers are accessed as source and destination registers for floating-point instructions.
Each FPR supports the double-precision floating-point format. Every instruction that
interprets the contents of an FPR as a floating-point value uses the double-precision
floating-point format for this interpretation. Note that FPRs are 64 bits on both 64-bit and
32-bit processor implementations.

All floating-point arithmetic instructions operate on data located in FPRs and, with the
exception of compare instructions, place the result into an FPR. Information about the
status of floating-point operations is placed into the FPSCR and in some cases, into the CR
after the completion of instruction execution. For information on how the CR is affected for
floating-point operations, see Section 2.1.3, "Condition Register (CR)."

Load and store double-word instructions transfer 64 bits of data between memory and the
FPRs with no conversion. Load single instructions are provided to read a single-precision
floating-point value from memory, convert it to double-precision floating-point format, and
place it in the target floating-point register. Store single-precision instructions are provided
to read a double-precision floating-point value from a floating-point register, convert it to
single-precision floating-point format, and place it in the target memory location.

Single- and double-precision arithmetic instructions accept values from the FPRs in
double-precision format. For single-precision arithmetic and store instructions, all input
values must be representable in single-precision format; otherwise, the result placed into
the target FPR (or the memory location) and the setting of status bits in the FPSCR and in
the condition register (if the instruction's record bit, Rc, is set) are undefined.

The floating-point arithmetic instructions produce intermediate results that may be
regarded as infinitely precise and with unbounded exponent range. This intermediate result
is normalized or denormalized if required, .and then rounded to the destination format. The
final result is then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction. Refer to Section 3.3, "Floating-Point Execution
Models-UISA:' for more information.

2-4 Powei'PC Microprocessor Family: The Programming Envlronmerits(32-Blt)

FPRO

FPR1

• • •
FPR31

o 63

Figure 2-3. Floating-Point Registers (FPRs)

2.1.3 Condition Register (CR)
The condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing and branching. The bits in the CR are grouped into
eight 4-bit fields, CRO-CR7, as shown in Figure 2-4.

CRO CR1 CR2 CR3 CR4 CRS I CR6 I CR7 I
o 3 4 7 8 1112 1516 19 ~ 2324 V28 31

Figure 2-4. Condition Register (CR)

The CR fields can be set in one of the following ways:

• Specified fields of the CR can be set from a GPR by using the mtcrf instruction.

• The contents of XER[0--3] can be moved to another CR field by using the mcrf
instruction.

• A specified field of the XER can be copied to a specified field of the CR by using the
mcrxr instruction.

• A specified field of the FPSCR can be copied to a specified field of the CR by using
the mcrfs instruction.

• Condition register logical instructions can be used to perform logical operations on
specified bits in the condition register.

• CRO can be the implicit result pf an integer instruction.

• CRt can be the implicit result of a floating-point instruction.

• A specified CR field can indicate the result of either an integer or floating-point
compare instruction.

Note that branch instructions are provided to test individual CR bits.

Chapter 2. PowerPC Register Set 2-5

-
2.1.3.1 Condition Register CRO Field Definition
For all integer instructions, when the CR is set to reflect the result of the operation (that is,
when Rc = 1), and for addie., andi., and andis., the first three bits of CRO are set by an
algebraic comparison of the result to zero; the fourth bit of CRO is copied from XER[SO].
For integer instructions, CR bits 0-3 are set to reflect the result as a signed quantity.

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined,
the value placed into the first three bits of CRO is undefined.

Table 2-1. Bit Settings for CRO Field of CR

CRO
Description

Bit

0 Negative (Ln-This bit is set when the result is negative.

1 Positive (GT)-This bit is set when the result is positive (and not
zero).

2 Zero (EQ)-This bit is set when the result is zero.

3 Summary overflow (SO)-This is a copy of the final state of XER[SO)
at the completion of the instruction.

Note that CRO may not reflect the true (that is, infinitely precise) result if overflow occurs.

2.1.3.2 Condition Register CR1 Field Definition
In all floating-point instructions when the CR is set to reflect the result of the operation (that
is, when the instruction's record bit, Rc, is set), CRI (bits 4-7 of the CR) is copied from
bits 0-3 of the FPSCR and indicates the floating-point exception status. For more
information about the FPSCR, see Section 2.1.4, "Floating-Point Status and Control
Register (FPSCR)." The bit settings for the CRI field are shown in Table 2-2.

Table 2-2. Bit Settings for CR1 Field of CR

CR1
Description

Bit

4 Floating-point exception (FX)-This is a copy of the final state of
FPSCR[FX) at the completion of the instruction.

5 Floating-point enabled exception (FEX)-This is a copy of the final
state of FPSCR[FEX) at the completion of the instruction.

6 Floating-point invalid exception (VX)-This is a copy of the final state
of FPSCR[VX) at the completion of the instruction.

7 Floating-point overflow exception (OX)-This is a copy of the final
state of FPSCR[OX) at the completion of the instruction.

2-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

2.1.3.3 Condition Register CRn Field-Compare Instruction
For a compare instruction, when a specified CR field is set to reflect the result of the
comparison, the bits of the specified field are interpreted as shown in Table 2-3.

Table 2-3. CRn Field Bit Settings for Compare Instructions

CRn
Description2

Bit1

0 Less than or floating-point less than (LT, FL).
For integer compare instructions: rA < SIMM or rB (signed comparison) or

rA < UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA < frB.

1 Greater than or floating-point greater than (GT, FG).
For integer compare instructions: rA > SIMM or rB (signed comparison) or

rA > UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA > frB.

2 Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA = frB.

3 Summary overflow or floating-point unordered (SO, FU).
For integer compare instructions: This is a copy of the final state of XER[SO)

at the completion of the instruction.
For floating-point compare instructions: One or both of frA and frB is a Not a

Number (NaN).

Notes: 1 Here, the bit indicates the bit number in anyone of the 4-bit subfields, CRO-CR7.
2For a complete description of instruction syntax conventions, refer to Table 8-2 on
page 8-2.

2.1.4 Floating-Point Status and Control Register (FPSCR)
The FPSCR, shown in Figure 2-5, contains bits that do the following:

• Record exceptions generated by floating-point operations

• Record the type of the result produced by a floating-point operation

• Control the rounding mode used by floating-point operations
• Enable or disable the reporting of exceptions (invoking the exception handler)

Bits 0-23 are status bits. Bits 24-31 are control bits. Status bits in the FPSCR are updated
at the completion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid
operation exception summary (VX), the exception condition bits in the FPSCR (bits 0-12
and 21-23) are sticky. Once set, sticky bits remain set until they are cleared by an merfs,
mtfsfi, mtfsf, or mtfsbO instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not
listed among the FPSCR bits directly affected by thevarious instructions.

Chapter 2. PowerPC Register Set 2-7

Il!I Reserved

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1920 21 22 23 24 25 26 27 28 29 30 31

Figure 2-5. Floating-Point Status and Control Register (FPSCR)

A listing of FPSCR bit settings is shown in Table 2-4.

Table 2-4. FPSCR Bit Settings

Blt(s) Name Description

0 FX Floating-point exception summary. Every floating-point instruction, except mtfstl and mtfst,
implicitly sets FPSCR[FX) if that instruction causes any of the floating-point exception bits in
the FPSCR to transition from 0 to 1. The mcrts, mtfsti, mtfst, mtfsbO, and mtfsb1
instructions can alter FPSCR[FX) explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary. This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits
masked by their respective enable bits (FEX = (VX & VEl A (OX & OE) A (UX & UE) A (ZX &
ZE) A (XX & XE». The mcrts, mtfst, mtfsti, mtfsbO, and mtfsb1 instructions cannot alter
FPSCR[FEX) explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exceptions. The
mcrts, mtfst, mtfsti, mtfsbO, and mtfsb1 instructions cannot alter FPSCR[VX) explicitly. This
is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, "Overflow,
Underflow, and Inexact Exception Conditions:'

4 UX Floating-point underflow exception. This is a stiCky bit. See Section 3.3.6.2.2, "Underflow
Exception Condition:'

5 ZX Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, "Zero Divide
Exception Condition."

6 XX Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, "Inexact Exception
Condition:'
FPSCR[XX) is the sticky version of FPSCR[FI). The following rules describe how FPSCR[XX)
is set by a given instruction:
• If the instruction affects FPSCR[FI], the new value of FPSCR[XX) is obtained by logically

ORing the old value of FPSCR[XX) with the new value of FPSCR[FI) .
• If the instruction does not affect FPSCR[FI), the value of FPSCR[XX) is unchanged.

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. See Section 3.3.6.1.1,
"Invalid Operation Exception Condition."

8 VXISI Floating-point invalid operation exception for 00 - 00. This is a sticky bit. See Section 3.3.6.1.1,
"Invalid Operation Exception Condition."

9 VXIDI Floating-point invalid operation exception for 00 + 00. This is a sticky bit. See Section 3.3.6.1.1,
"In~lid Operation Exception Condition."

10 VXZDZ Floating-point invalid operation exception for 0 + O. This is a sticky bit. See Section 3.3.6.1.1,
"Invalid Operation Exception Condition."

2-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 2-4. FPSCR Bit Settings (Continued)

Bit(s) Name Description

11 VXIMZ Floating-point invalid operation exception for 00 * O. This is a sticky bit. See Section 3.3.6.1.1,
"Invalid Operation Exception Condition.'

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit. See
Section 3.3.6.1.1, "Invalid Operation Exception Condition."

13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that
rounded the intermediate result incremented the fraction. See Section 3.3.5, "Rounding.' This
bit is not sticky.

14 FI Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction
either rounded the intermediate result (producing an inexact fraction) or caused a disabled
overflow exception. See Section 3.3.5, "Rounding:' This is not a sticky bit. For more
information regarding the relationship between FPSCR[FI) and FPSCR[XX), see the
description of the FPSCR[XX) bit.

15-19 FPRF Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is
based on the result placed into the target register, except that if any portion of the result is
undefined, the value placed here is undefined.
15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion

instructions may set this bit with the FPCC bits to indicate the class of the result as
shown in Table 2-5.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic,
rounding, and conversion instructions may set the FPCC bits with the C bit to
indicate the class of the result. Note that in this case the high-order three bits of the
FPCC retain their relational significance indicating that the value is less than,
greater than, or equal to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or »
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)

Note that these are not sticky bits.

20 - Reserved

21 VXSOFT Floating-point invalid operation exception for software request. This is a sticky bit. This bit can
be altered only by the merts, mtfsfi, mtfsf, mtfsbO, or mtfsb1 instructions. For more detailed
information, refer to Section 3.3.6.1.1, "Invalid Operation Exception Condition.'

22 VXSQRT Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more
detailed information, refer to Section 3.3.6.1.1, "Invalid Operation Exception Condition.'

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See
Section 3.3.6.1.1 , "Invalid 'Operation Exception Condition."

24 VE Floating-point invalid operation exception enable. See Section 3.3.6.1.1, "Invalid Operation
Exception Condition."

25 OE IEEE floating-point overflow exception enable. See Section 3.3.6.2, "Overflow, Underflow, and
Inexact Exception Conditions."

26 UE IEEE floating-point underflow exception enable. See Section 3.3.6.2.2, "Underflow Exception
Condition."

27 ZE IEEE floating-point zero divide exception enable. See Section 3.3.6.1.2, "Zero Divide
Exception Condition."

28 XE Floating-point inexact exception enable. See Section 3.3.6.2.3, "Inexact Exception Condition."

Chapter 2. PowerPC Register Set 2-9

Table 2-4. FPSCR Bit Settings (Continued)

Bil(s) Name Description

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards
and the other FPSCR bits may have meanings other than those described here. If the bit is set
and if all implementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero
(retaining the sign of the denormalized number). Any other effects associated with setting this
bit are described in the user's manual for the implementation (the effects are implementation-
dependent).

30-31 RN Floating-point rounding control. See Section 3.3.5, "Rounding."
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward -infinity

Table 2-5 illustrates the floating-point result flags used by PowerPC processors. The result
flags correspond to FPSCR bits 15-19.

Table 2-5. Floating-Point Result Flags in FPSCR

Result Flags (Bits 15-19)
Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 -Infinity

0 1 0 0 0 -Normalized number

1 1 0 0 0 -Denormalized number

1 0 0 1 0 -Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

2-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

2.1.5 XER Register (XER)
The XER register (XER) is a 32-bit, user-level register shown in Figure 2-6.

WI Reserved

Byte count

o 1 2 3 2425 31

Figure 2-6. XER Register

The bit definitions for XER, shown in Table 2-6, are based on the operation of an
instruction considered as a whole, not on intermediate results. For example, the result of the
Subtract from Carrying (subfcx) instruction is specified as the sum of three values. This
instruction sets bits in the XER based on the entire operation, not on an intermediate sum.

Table 2-6. XER Bit Definitions

Bit(s) Name Description

0 SO Summary overflow. The summary overflow bit (SO) is set whenever an instruction (except mtspr)
sets the overflow bit (OV). Once set, the SO bit remains set until it is cleared by an mtspr
instruction (specifying the XER) or an mcrxr instruction. It is not altered by compare instructions,
nor by other instructions (except mtspr to the XER, and mcrxr) that cannot overflow. Executing
an mtspr instruction to the XER, supplying the values zero for SO and one for OV, causes SO to
be cleared and OV to be set.

1 OV Overflow. The overflow bit (OV) is set to indicate that an overflow has occurred during execution
of an instruction. Add, subtract from, and negate instructions having OE = 1 set the OV bit if the
carry out of the msb is not equal to the carry out of the msb + 1, and clear it otherwise. Multiply
low and divide instructions having OE = 1 set the OV bit if the result cannot be represented in 64
bits (mulld, dlvd, dlvdu) or in 32 bits (mullw, dlvw, dlvwu), and clear it otherwise. The OV bit is
not altered by compare instructions that cannot overflow (except mtspr to the XER, and mcrxr).

2 CA Carry. The carry bit (CA) is set during execution of the following instructions:
• Add carrying, subtract from carrying, add extended, and subtract from extended instructions

set CA if there is a carry out of the msb, and clear it otherwise .
• Shift right algebraic instructions set CA if any 1 bits have been shifted out of a negative

operand, and clear it otherwise.
The CA bit is not altered by compare instructions, nor by other instructions that cannot carry
(except shift right algebraic, mtspr to the XER, and mcrxr).

3-24 - Reserved

25-31 This field specifies the number of bytes to be transferred by a Load String Word Indexed (Iswx) or
Store String Word Indexed (stswx) instruction.

2.1.6 Link Register (LR)
The link register (LR) is a 64-bit register in 64-bit implementations and a 32-bit register in
32-bit implementations. The LR supplies the branch target address for the Branch
Conditional to Link Register (bclrx) instructions, and in the case of a branch with link
update instruction, can be used to hold the logical address of the instruction that follows the

Chapter 2. PowerPC Register Set 2-11

branch with link update instruction (for returning from a subroutine) . .The format of LR is
shown in Figure 2-7.

Branch Address

o 63

Figure 2-7. Link Register (LR)

Note that although the two least-significant bits can accept any values written to them, they
are ignored when the LR is used as an address. Both conditional and unconditional branch
instructions include the option of placing the logical address of the instruction following
the branch instruction in the LR.

The link register can be also accessed by the mtspr and mfspr instructions using SPR 8.
Prefetching instructions along the target path (loaded by an mtspr instruction) is possible
provided the link register is loaded sufficiently ahead of the branch instruction (so that any
branch prediction hardware can calculate the branch address). Additionally, PowerPC
processors can prefetch along a target path loaded by a branch and link instruction.

Note that some PowerPC processors may keep a stack of the LR values most recently set
by branch with link update instructions. To benefit from these enhancements, use of the link
register should be restricted to the manner described in Section 4.2.4.2, "Conditional
Branch Control."

2.1.7 Count Register (CTR)
The count register (CTR) is a 64-bit register in 64-bit implementations and a 32-bit register
in 32-bit implementations. The CTR can hold a loop count that can be decremented during
execution of branch instructions that contain an appropriatelr: coded BO field. If the value
in CTR is 0 before being decremented, it is OxFFFF _FFFF (2 2_1) afterward. The CTR can
also provide the branch target address for the Branch Conditional to Count Register
(bcctrx) instruction. The CTR is shown in Figure 2-8.

eTR

o 63

Figure 2-8. Count Register (CTR)

Prefetching instructions along the target path is also possible provided the count register is
loaded sufficiently ahead of the branch instruction (so that any branch prediction hardware
can c~culate the correct value of the loop count).

The count register can also be accessed by. the mtspr and mfspr instructions by specifying
SPR 9. In branch conditional instructions, the BO field specifies the conditions under which

2·12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

the branch is taken. The first four bits of the BO field specify how the branch is affected by
or affects the CR and the CTR. The encoding for the BO field is shown in Table 2-7.

Table 2-7. BO Operand Encodings

80 Description

OOOOy Decrement the CTR, then branch if the decremented CTR * 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR * 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1200y Decrement the CTR, then branch if the decremented CTR l' O.

1201y Decrement the CTR, then branch if the decremented CTR = O.

1z1zz Branch always.

Notes: The y bit provides a hint about whether a conditional branch is likely to be taken and is used by
some PowerPC implementations to improve performance. Other implementations may ignore the
ybit.

The z indicates a bit that is ignored. The z bits should be cleared (zero), as they may be assigned
a meaning in a future version of the PowerPC UISA.

2.2 PowerPC VEA Register Set-Time Base
The PowerPC virtual environment architecture (VEA) defines registers in addition to those V
defined by the UISA. The PowerPC VEA register set can be accessed by all software with
either user- or supervisor-level privileges. Figure 2-9 provides a graphic illustration of the
PowerPC VEA register set. Note that the following programming model is similar to that
found in Figure 2-1, however, the PowerPC VEA registers are now included.

The PowerPC VEA introduces the time base facility (TB), a 64-bit structure that consists
of two 32-bit registers-time base upper (TBU) and time base lower (TBL). Note that the
time base registers can be accessed by both user- and supervisor-level instructions. In the
context of the VEA, user-level applications are permitted read-only access to the TB. The
OEA defines supervisor-level access to the TB for writing values to the TB. See
Section 2.3.12, "Time Base Facility (TB)-OEA," for more information.

In Figure 2-9, the numbers to the right of the register name indicates the number that is used
in the syntax of the instruction operands to access the register (for example, the number
used to access the XER is SPR 1).

Note that the general-purpose registers (GPRs), link register (LR) , and count register (CTR)
are 64 bits on 64-bit implementations and 32 bits on 32-bit implementations. These
registers are described fully in Section 2.1, "PowerPC UISA Register Set."

Chapter 2. Power PC Register Set 2-13

/--------------------'--------------_.""
SUPERVISOR MODEL \

USER MODEL
UISA

General-Purpoae Registera

GPRO (64132)

GPR1 (64132)

• • •
GPR31 (64132)

Floating-Point Registera

FPRO(64)

FPR1 (64)

• • •
FPR31 (64)

Condition Register 1

CR(32)

Floating-Point Ststus
and Control Register 1

1 FPSCR (32)1
XER Register 1

XER (32) SPR 1

Link Register

LR (64132) 1 SPR 8

Count Register

em (64132) 1 SPR 9

USER MODEL
VEA

TIme Base Facility 1
(For Reading)

TBR2es4
1----'--'---1

TBR269
'---"";"'-'---'

OEA
Configuration Registers

MachiM State Register Processor Version Register 1

[~~~iiWi~~L] I PVR (a21 i SPR 287

Memory Management Registers
instruction BAT Registers Data BAT Registers

18A''()U '64i32\ i <'1"" "28
............. : : .. : ... :.: : ... ~o H .. , ..

iBATOt (fW:32} i SPR 529

~-·ieA·r1·u(i~~~2}···1 SPA 530

,SAT1 L (64.'32) i SPR5:J1

·,5AT2u··(64/32)·· .. i SPR 532

··i·8~12;::··i~i4;~"ii··:·l SPR 5~~S
SPR534

·····iB~~T3i: .. (G,4;~2)·-·! SPR 535
............ _ ;

SDR1
rm·sp·"ii .. ·(ii4;:sii·· .. ··1 SPR 25

Address Space Register S r-.. ·· .. ··AS·R··if,4;--·_·! SPR 280

D6AH)U (tI4m) ,! SPR 536

"-DBATOL'(64132)"'1 SPR 537

···osi.r-i·tj··(fWS2)··1 SPR 538

D"'t;;'ll '641')'" 'SPR ""') ~ ... :.:. ~ ... -~-::!. ... i . ""n

DBAT2U (64/32) i SPR 540

"-D8A12;::"{f,4;~ii}"i SPR 541

D6Al~,U (tI4i:!2) ,SPR 542

DeAT3i.~i64i32)···1 SPR 543
.. ..J

Segment Registers '.2
··-.... ··SRO·(3~i·· .. ········!

" " "
SA15(32)

Exception Handling Registers
Data Address Register DSISR 1

DAR (134,132) I SPR 19 !"""· .. · .. OSiSA·(3ii·-] t~PR 18 1 _ _; _--'----'_

SPRGs
I SPAGO (Q4f32) SPR 2i~

I SPRGI (64/32) SPR 2"73
t·-;;-··-·::;:.·~-;·-··;;.~······ "..,
, "PR,>.!. (M;.",,) SPR c., 4

SPA<?:3 {64f~l2} SPR 275

Save Ilnd Restore Registers
· .. sp.Rii .. (($~:12)·····j SPA 21,

SRR1 (tl4i32) I SPR 27

Floating-Point EXception
Cause Register (Optional)

L .. _ .. ~~?!.2_! SPR 1022

Miscellaneous Registers
Time Bilse Facility!
(For Writing)
····---;:Bi:··i32i···_····! SPR 284

············TBU··(?iii···········j SPA 285

Decrementer j

Processor Identification
Register (Optional)

Data Address
Breakpoint Register
{Optional)

L~:~.5.~:'~!! SPR HilS

Externa! Access Register
{Optional} ;
r·_·· .. ··EA·R··(32)· .. · .. _·! SPR 282

~ ... _ _ .. _ _ _ _ .. _ _L:::=:;:::;.::.~-·:::-=::!. .. =:.:.~ .. ~.~~ ______ . __ .. _ _ _ /
These regllllers are 32-bIt registers only.

2 These regllllers are on 32-b1t implementations only.
3 These regllllers are on 64-b1timplementations only.
4 In 64-bIt implementations. TBR2~ Is read as a 64-bIt value.

Figure 2-9. VEA Programming Model-User-Level Registers Plus Time Base

2-14 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

The time base (TB), shown in Figure 2-10, is a 64-bit structure that contains a 64-bit
unsigned integer that is incremented periodically. Each increment adds 1 to the low-order
bit (bit 31 ofTBL). The frequency at which the counter is incremented is implementation­
dependent.

TBU-Upper 32 bits of time base TBL-Lower 32 bits of time base

o 31 0 31

Figure 2-10. Time Base (TB)

The TB increments until its value becomes OxFFFF _FFFF _FFFF _FFFF (264 - 1). At the
next increment its value becomes OxOOOO_OOOO_OOOO_OOOO. Note that there is no explicit
indication that this has occurred (that is, no exception is generated).

The period of the time base depends on the driving frequency. The TB is implemented such
that the following requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time base.

2. Storing a GPR to the time base replaces the value in the time base with the value in
the GPR.

The PowerPC VEA does not specify a relationship between the frequency at which the time
base is updated and other frequencies, such as the processor clock. The TB update
frequency is not required to be constant; however, for the system software to maintain time
of day and operate interval timers, one of two things is required:

• The system provides an implementation-dependent exception to software whenever
the update frequency of the time base changes and a means to determine the current
update frequency; or

• The system software controls the update frequency of the time base.

Note that if the operating system initializes the TB to some reasonable value and the update
frequency of the TB is constant, the TB can be used as a source of values that increase at a
constant rate, such as for time stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically
increasing (except when the TB wraps from 264 - 1 to 0). If a trace entry is recorded each
time the update frequency changes, the sequence of TB values can be postprocessed to
become actual time values.

However, successive readings of the time base may return identical values due to
implementation-dependent factors such as a low update frequency or initialization.

Chapter 2. PowerPC Register Set 2-15

2.2.1 Reading the Time Base
The mftb instruction is used to read the time base; For specific details on usingthe mftb
instruction, see Chapter 8, "Instruction Set." For information on writing the time base, see
Section 2.3.12.1, "Writing to the Time Base."

On 32-bit implementations, it is not possible to read the entire 64-bit time base in a single
instruction. the ·mftb simplified mnemonic moves from the lower half of the time base
register (TBL) to a GPR, and the mftbu simplified mnemonic moves from the upper half
of the time base (TBU) to a GPR.

Because of the possibility of a carry from TBL to TBU occurring between reads of the TBL
and TBU, a sequence such as the following example is necessary to read the time base on
32-bit implementations:

loop:
mftbu rx #load from TBU
mftb ry #load from TBL
mftbu rz Hoad from TBU
cmpw rz,rx #see if 'old' = 'new'
bile loop #loop if carry occurred

The comparison and loop are necessary to ensure that a consistent pair of values has been
obtained. The previous example will also work on 64-bit implementations running in either
64-bit or 32-bitmode.

2.2.2 Computing Time of Day from the Time Base
Since the update frequency of the time base.is system-dependent, the algorithm for
converting the current valuein the time base to time of day is also system-dependent.

In a system in which the update frequency of the time base may change over time, it is not
possible to convert an isolated time base value into time of day. Instead, a time base value
has meaning only with respect to the current update frequency and the time of day that the
update frequency was last changed. Each time. the update frequency changes, either the
system software is notified of the change via an exception, or else the change was instigated
by the system software itself. At each such change, the system software must compute the
current time. of day using the old update frequency, compute a new value of ticks-per­
second for the new frequency, and save the time of day, time base value, and tick rate.
Subsequent calls to compute time of day use the current time base value and the sav~ data.

A generalized service to compute time of day could take the following as input:

• Time of day at beginning of current epoch
• Time base value at beginning of current epoch

• Time base update frequency
• Time base value for which time of day is desired

2·16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

For a PowerPC system in which the time base update frequency does not vary, the first three
inputs would be constant.

2.3 PowerPC OEA Register Set
The PowerPC operating environment architecture (OEA) completes the discussion of CD
PowerPC registers. Figure 2-11 shows a graphic representation of the entire PowerPC
register set-VISA, VEA, and OEA. In Figure 2-11 the numbers to the right of the register
name indicates the number that is used in the syntax of the instruction operands to access
the register (for example, the number used to access the XER is SPR 1).

All of the SPRs in the OEA can be accessed only by supervisor-level instructions; any
attempt to access these SPRs with user-level instructions results in a supervisor-level
exception. Some SPRs are implementation-specific. In some cases, not all of a register's
bits are implemented in hardware.

If a PowerPC processor executes an mtspr/mfspr instruction with an undefined SPR
encoding, it takes (depending on the implementation) an illegal instruction program
exception, a privileged instruction program exception, or the results are boundedly
undefined. See Section 6.4.7, "Program Exception (Ox00700)," for more information.

Note that the GPRs, LR, CTR, TBL, MSR, DAR, SDR1, SRRO, SRR1, and
SPRGO-SPRG3 are 64 bits wide on 64-bit implementations and 32 bits wide on 32-bit
implementations.

Chapter 2. PowerPC Register Set 2-17

USER MODEL
UISA

General-Purpose Registers

GPRO (64/32)

GPRI (64/32)

• • •
GPR31 (64/32)

Floating-Point Registers

FPRO (64)

FPRI (64)

• • •
FPR31 (64)

Condition Register 1

CR(32)

Floating-Point Status
and Control Register 1

FPSCR (32) I
XER Register 1

XER (32) SPR 1

Link Register

lR (64/32) SPR 8

Count Register

CTR (64/32) SPR 9

USER MODEL
VEA

Time Base Facility 1
(For Reading)

TBR 2684

1-_____ ='--1 TBR 269

SUPERVISOR MODEL
OEA

Configuration Registers
Machine State Register Processor Version Register 1

I MSR (64/32) I PVR (32) I SPR 287

Memory Management Registers
Instruction BAT Registers Data BAT Registers

IBATOU (64/32)

IBATOl (64/32)

IBATIU (64/32)

IBATI l (64132)

IBAT2U (64/32)

IBAT2l (64/32)

IBAT3U (64/32)

IBAT3l (64/32)

SDR1

SPR528

SPR529

SPR530

SPR 531

SPR532

SPR533

SPR534

SPR535

I SORI (64/32) SPR 25

Address Space Register 3

ASR (64) I SPR 280

OBATOU (64/32)

OBATOl (64/32)

OBATIU (64/32)

OBAT1l (64/32)

OBAT2U (64/32)

OBAT2l (64/32)

OBAT3U (64/32)

OBAT3l (64/32)

SPR536

SPR537

SPR538

SPR539

SPR540

SPR541

SPR542

SPR543

Segment Registers 1.2

SRO (32)

SRI (32)

• • •
SR15 (32)

Exception Handling Registers
Data Address Register DSISR 1

I DAR (64/32) I SPR 19 .----O-SI-SR=--(3-2)---. SPR 18

SPRGs
SPRGO (64/32) SPR 272

SPRGI (64/32) SPR 273

SPRG2 (64/32) SPR 274

SPRG3 (64/32) SPR 275

SPR27

Floating-Point Exception
Cause Register (Optional)

I FPECR I SPR 1022

Miscellaneous Registers
Time Base Facility 1 Data Address
(For Writing) Breakpoint Register

TBl (32) SPR 284 (Optional)
I------'--'---l SPR 285 I OABR (64/32) I SPR 1013

Decrementer 1

DEC (32) I SPR 22

Processor Identification
Register (Optional)

I PIR I SPR 1023

External Access Register
(Optional) 1

I EAR (32) I SPR 282

1 These registers are 32-bit registers only.
2 These registers are on 32-bit implementations only.
3 These registers are on 64-bit implementations only.
4 In 64-bit implementations, TBR268 is read as a 64-bH value

Figure 2-11. OEA Programming Model-All Registers

2-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

A description of the PowerPC OEA supervisor-level registers follows:

• Configuration registers

- Machine state register (MSR). The MSR defines the state of the processor. The
MSR can be modified by the Move to Machine State Register (mtmsr), System
Call (sc), and Return from Interrupt (rfi) instructions. It can be read by the Move
from Machine State Register (mfmsr) instruction. For more information, see
Section 2.3.1, "Machine State Register (MSR)."

- Processor version register (PVR). This register is a read-only register that
identifies the version (model) and revision level of the PowerPC processor. For
more information, see Section 2.3.2, "Processor Version Register (PVR)."

• Memory management registers

- Block-address translation (BAT) registers. The PowerPC OEA includes eight
block-address translation registers (BATs), consisting offour pairs of instruction
BATs (IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of data BATs
(DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-11 for a list of the
SPR numbers for the BAT registers. Refer to Section 2.3.3, "BAT Registers," for
more information.

- SDRI. The SDRI register specifies the page table base address used in virtual­
to-physical address translation. For more information, see Section 2.3.4,
"SDRl." (Note that physical address is referred to as real address in the
architecture specification.)

- Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SRI5). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit O. For more information, see
Section 2.3.5, "Segment Registers."

• Exception handling registers

- Data address register (DAR). After a DSI or an alignment exception, DAR is set
to the effective address generated by the faulting instruction. For more
information, see Section 2.3.6, "Data Address Register (DAR)."

- SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use. For more information, see Section 2.3.7, "SPRGO-SPRG3."

- DSISR. The DSISR defines the cause ofDSI and alignment exceptions. For more
information, refer to Section 2.3.8, "DSISR."

Chapter 2. PowerPC Register Set 2-19

- Machine status save/restore register 0 (SRRO). The SRRO register is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed. For more information, see Section 2.3.9, "Machine
Status SavelRestore Register 0 (SRRO)."

- Machine status save/restore register 1 (SRR1). The SRRI register is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed. For more information, see Section 2.3.10, "Machine
Status SavelRestore Register 1 (SRR1)."

- Floating-point exception cause register (FPECR). This optional register is used
to identify the cause of a floating-point exception.

• Miscellaneous registers

- Time base (TB). The TB is a 64-bit structure that maintains the time of day and
operates interval timers. The TB consists of two 32-bit registers-time base
upper (TBU) and time base lower (TBL). Note that the time base registers can be
accessed by both user- and supervisor-level instructions. For more information,
see Section 2.3.12, "Time Base Facility (TB)--OEA" and Section 2.2,
"PowerPC VEA Register Set-Time Base."

- Decrementer register (DEC). This register is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock. For
more information, see Section 2.3.13, "Decrementer Register (DEC)."

- External access register (EAR). This optional register is used in conjunction with
the eciwx and ecowx instructions. Note that the EAR register and the eciwx and
ecowx instructions are optional in the PowerPC architecture and may not be
supported in all PowerPC processors that implement the OEA. For more
information about the external control facility, see Section 4.3.4, "External
Control Instructions."

- Data address breakpoint register (DABR). This optional register is used to
control the data address breakpoint facility. Note that the DABR is optional in
the PowerPC architecture and may not be supported in all PowerPC processors
that implement the OEA. For more information about the data address
breakpoint facility, see Section 6.4.3, "DSI Exception (Ox00300)."

- Processor identification register (PIR). This optional register is used to hold a
value that distinguishes an individual processor in a multiprocessor environment.

2.3.1 Machine State Register (MSR)
The machine state register (MSR) is a 64-bit register on 64-bit implementations and a 32-
bit register in 32-bit implementations (see Figure 2-12). The MSR defines the state of the
processor. When an exception occurs, MSR bits, as described in Table 2-8, are altered as
determined by the exception. The MSR can also be modified by the mtmsr, SC, and rfi
instructions. It can be read by the mfmsr instruction.

2-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fill Reserved

o 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728 29 3031

Figure 2-12. Machine State Register (MSR)

Table 2-8 shows the bit definitions for the MSR.

Table 2-8. MSR Bit Settings

Bit(s) Name Description

0-12 - Reserved

13 POW Power management enable
0 Power management disabled (normal operation mode)
1 Power management enabled (reduced power mode)
Note: Power management functions are implementation-dependent. If the function
is not implemented, this bit is treated as reserved.

14 - Reserved

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into
MSR[LE) to select the endian mode for the context established by the exception.

16 EE External interrupt enable
0 While the bit is cleared, the processor delays recognition of external interrupts

and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer

exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including

floating-point loads, stores, and moves.
1 The processor can execute floating-point instructions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FEO Floating-point exception mode 0 (see Table 2-9).

21 SE Single-step trace enable (Optional)
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful

execution of the next instruction.
Note: If the function is not implemented, this bit is treated as reserved.

22 BE Branch trace enable (Optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the

execution of a branch instruction, regardless of whether the branch was taken.
Note: If the function is not implemented, this bit is treated as reserved.

Chapter 2. PowerPC Register Set 2-21

Table 2-8. MSR Bit Settings (Continued)

Blt(s) Name ~scrlptlon

23 FE1 Floating-point exception mode 1 (See Table 2-9).

24 - Reserved

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset
is prepended with Fs or Os; In the following description, nnnnn is the offset of the
exception vector. See Table 6-2.
0 Exceptions are vectored to the physical address OxOOOn_nnnn in 32-bit

implementations and OxOOOO_OOOO_OOOn_nnnn in 64-bit implementations.
1 Exceptions are vectored to the physical address OxFFFn_nnnn in 32-bit

implementations andOxOOOO_OOOO_FFFn_nnnn in .64-bit implementations.
In most systems, IP is set to 1 during system initialization, and then cleared to 0
when initialization is complete.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information, see Chapter 7, "Memory Management."

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information, see Chapter 7, "Memory Management."

28-29 - Rese(Ved

30 RI Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
1 Exception is recoverable.
For more information, see Chapter 6, "Exceptions."

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

The floating-point exception mode bits (FED-FEI) are interpreted as shown in Table 2-9.

Table 2-9. Floating-Point Exception Mode Bits

FEO FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode

2-22 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

Table 2-10 indicates the initial state of the MSR at power up.

Table 2-10. State of MSR at Power Up

Bit(s) Name
32-Bit

Default Value

0-12 - Unspecified 1

13 POW 0

14 - Unspecified 1

15 ILE 0

16 EE 0

17 PR 0

18 FP 0

19 ME 0

20 FEO 0

21 SE 0

22 BE 0

23 FE1 0

24 - Unspecified1

25 IP 12

26 IR 0

27 DR 0

28-29 - Unspecified1

30 RI 0

31 LE 0

1 Unspecified can be either 0 or 1
2 1 is typical, but might be 0

2.3.2 Processor Version Register (PVR)
The processor version register (PVR) is a 32-bit, read-only register that contains a value
identifying the specific version (model) and revision level of the PowerPC processor (see
Figure 2-13). The contents of the PVR can be copied to a GPR by the mfspr instruction.
Read access to the PVR is supervisor-level only; write access is not provided.

Version Revision

o 1516 31

Figure 2-13. Processor Version Register (PVR)

Chapter 2. PowerPC Register Set 2-23

-
The PVR consists of two 16-bit fields:

• Version (bits 0-15)-A 16-bit number that uniquely identifies a particular processor
version. This number can be used to determine the version of a processor; it may not
distinguish between different end product models if more than one model uses the
same processor.

• Revision (bits 16-31)-A 16-bit number that distinguishes between various releases
of a particular version (that is, an engineering change level). The value of the
revision portion of the PVR is implementation-specific. The processor revision level
is changed for each revision of the device.

2.3.3 BAT Registers
The BAT registers (BATs) maintain the address translation information for eight blocks of
memory. The BATs are maintained by the system software and are implemented as eight
pairs of special-purpose registers (SPRs). Each block is defined by a pair of SPRs called
upper and lower BAT registers. These BAT registers define the starting addresses and sizes
of BAT areas.

The PowerPC OEA defines the BAT registers as eight instruction block-address translation
(IBAT) registers, consisting of four pairs of instruction BATs, or IBATs (IBATOU-IBAT3U
and IBATOL-IBAT3L) and eight data BATs, or DBATs, (DBATOU-DBAT3U and
DBATOL-DBAT3L). See Figure 2-11 for a list of the SPR numbers for the BAT registers.

Figure 2-14 and Figure 2-15 show the format of the upper and lower BAT registers for
32-bit PowerPC processors.

• Reserved

BEPI BL

o 14 15 18 19

Figure 2-14. Upper BAT Register

• Reserved

BRPN

o 14 15 2425 28 29 30 31

*W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.

Figure 2-15. Lower BAT Register

Table 2-11 describes the bits in the BAT registers.

2-24 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 2-11. BAT Registers-Field and Bit Descriptions

Upper/Lower
Bits Name Description

BAT

Upper BAT 0-14 BEPI Block effective page index. This field is compared with high-order bits of
Register the logical address to determine if there is a hit in that BAT array entry.

(Note that the architecture specification refers to logical address as
effective address.)

15-18 - Reserved

19-29 BL Block length. BL is a mask that encodes the size of the block. Values for
this field are listed in Table 2-12.

30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if
there is a match with the logical address. For more information, see
Section 7.4.2, "Recognition of Addresses in BAT Arrays."

31 Vp User mode valid bit. This bit also interacts with MSR[PR] to determine if
there is a match with the logical address. For more information, see
Section 7.4.2, "Recognition of Addresses in BAT Arrays."

Lower BAT 0-14 BRPN This field is used in conjunction with the BL field to generate high-order
Register bits of the physical address of the block.

15-24 - Reserved

25-28 WIMG Memory/cache access mode bits
W Write-through
I Caching-inhibited
M Memory coherence
G Guarded
Attempting to write to the Wand G bits in IBAT registers causes
boundedly-undefined results. For detailed information about the WIMG
bits, see Section 5.2.1, "Memory/Cache Access Attributes."

29 - Reserved

30-31 PP Protection bits for block. This field determines the protection for the block
as described in Section 7.4.4, "Block Memory Protection."

Chapter 2. PowerPC Register Set 2-25

Table 2-12 lists the BAT area lengths encoded in BAT[BL].

Table 2·12. BAT Area Lengths

BAT Area BL Encoding
Length

128 Kbytes 000 0000 0000

256 Kbytes 000 0000 0001

512 Kbytes 0000000 0011

1 Mbyte 000 0000 0111

2 Mbytes 0000000 1111

4 Mbytes 00000011111

8 Mbytes 000 00111111

16 Mbytes 000 01111111

32 Mbytes 000 11111111

64 Mbytes 00111111111

128 Mbytes 01111111111

256 Mbytes 11111111111

Only the values shown in Table 2-12 are valid for the BL field. The rightmost bit of BL is
aligned with bit 14 of the logical address. A logical address is determined to be within a
BAT area if the logical address matches the value in the BEPI field.

The boundary between the cleared bits and set bits (Os and Is) in BL determines the bits of
logical address that participate in the comparison with BEPI. Bits in the logical address
corresponding to set bits in BL are cleared for this comparison. Bits in the logical address
corresponding to set bits in the BL field, concatenated with the 17 bits of the logical address
to the right (less significant bits) of BL, form the offset within the BAT area. This is
described in detail in Chapter 7, "Memory Management."

The value loaded into BL determines both the length of the BAT area and the alignment of
the area in both logical and physical address space. The values loaded into BEPI and BRPN
must have at least as many low-order zeros as there are ones in BL.

Use of BAT registers is described in Chapter 7, "Memory Management."

2·26 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

2.3.4 SDR1
The SDRI is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The 32-bit implementation of SDRI is shown in Figure 2-16.

III Reserved

HTABORG HTABMASK

o 15 16 22 23 31

Figure 2-16. SDR1

The bits of the 32-bit implementation of SDRI are described in Table 2-13.

Table 2-13. SDR1 Bit Settings

Bits Name Description

0--15 HTABORG The high-order 16 bits of the 32-bit physical address of the page table

16-22 - Reserved

23-31 HTABMASK Mask for page table address

In 32-bit implementations, the HTABORG field in SDRI contains the high-order 16 bits of
the 32-bit physical address of the page table. Therefore, the page table is constrained to lie
on a 216-byte (64 Kbytes) boundary at a minimum. At least 10 bits from the hash function
are used to index into the page table. The page table must consist of at least 64 Kbytes (210

PTEGs of 64 bytes each).

The page table can be any size 2n where 16::; n ::; 25. As the table size is increased, more
bits are used from the hash to index into the table and the value in HTABORG must have
more of its low-order bits equal to O. The HTABMASK field in SDRI contains a mask value
that determines how many bits from the hash are used in the page table index. This mask
must be of the form ObOO ... Ol1...1; that is, a string of 0 bits followed by a string of Ibits.
The 1 bits determine how many additional bits (at least 10) from the hash are used in the
index; HTABORG must have this same number of low-order bits equal to O. See
Figure 7-23 for an example of the primary PTEG address generation in a 32-bit
implementation.

For example, suppose that the page table is 8,192 (213), 64-byte PTEGs, for a total size of
219 bytes (512 Kbytes). Note that a 13-bit index is required. Ten bits are provided from the
hash initially, so 3 additional bits form the hash must be selected. The value in
HTABMASK must be Ox007 and the value in HTABORG must have its low-order 3 bits
(bits 13-15 of SDR1) equal to O. This means that the page table must begin on a
23 + 10 + 6 = 219 = 512 Kbytes boundary.

For more information, refer to Chapter 7, "Memory Management."

Chapter 2. PowerPC Register Set 2-27

2.3.5 Segment Registers
The segment registers contain the segment descriptors for 32-bit implementations. For 32-
bit processors, the OEA defines a segment register file of sixteen 32-bit registers. Segment
registers can be accessed by using the mtsr/mfsr and mtsrinlmfsrin instructions. The
value of bit 0, the T bit, determines how the remaining register bits are interpreted.
Figure 2-17 shows the format of a segment register when T = O.

III Reserved

VSID

o 1 2 3 4 78 31

Figure 2-17. Segment Register Format (T = 0)

Segment register bit settings when T = 0 are described in Table 2-14.

Table 2-14. Segment Register Bit Settings (T = 0)

Bits N,me Description

0 T T = 0 selects this format

1 Ks Supervisor·state protection key

2 Kp User·state protection key

3· N No-execute protection

4-7 - Reserved

8-31 VSIO Virtual segment 10

Figure 2-18 shows the bit definition when T = 1.

BUID Controller-Specific Information

o 1 2 3 11 12 31

Figure 2-18. Segment Register Format (T = 1)

2-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The bits in the segment register when T = 1 are described in Table 2-15.

Table 2-15. Segment Register Bit Settings (T = 1)

Bits Name Description

0 T T = 1 selects this format.

1 Ks Supervisor-state protection key

2 Kp User-state protection key

3-11 BUID Bus unit 10

12-31 CNTLR_SPEC Device-specific data for 1/0 controller

If an access is translated by the block address translation (BAT) mechanism, the BAT
translation takes precedence and the results of translation using segment registers are not
used. However, if an access is not translated by a BAT, and T = 0 in the selected segment
register, the effective address is a reference to a memory-mapped segment. In this case, the
52-bit virtual address (VA) is formed by concatenating the following:

• The 24-bit VSID field from the segment register
• The 16-bit page index, EA[4-19]
• The 12-bit byte offset, EA[20--31]

The VA is then translated to a physical address as described in Section 7.5, "Memory
Segment Model."

If T = 1 in the selected segment register (and the access is not translated by a BAT), the
effective address is a reference to a direct-store segment. No reference is made to the page
tables. However, note that the direct-store facility is being phased out of the architecture and
will not likely be supported in future devices. Thus, all new programs should write a value
of zero to the T bit. For further discussion of address translation when T = 1, see
Section 7.7 , "Direct-Store Segment Address Translation."

2.3.6 Data Address Register (DAR)
The DAR is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The DAR is shown in Figure 2-19.

DAR

o 31

Figure 2-19. Data Address Register (DAR)

The effective address generated by a memory access instruction is placed in the DAR if the
access causes an exception (for example, an alignment exception). For information, see
Chapter 6, "Exceptions."

Chapter 2. PowerPC Register Set 2-29

2.3.7 SPRGO-SPRG3
SPRGO-SPRG3 are 64-bit or 32-bit registers, depending on the type of Power PC processor.
They are provided for general operating system use, such as performing a fast state save or
for supporting mUltiprocessor implementations. The formats of SPRGO-SPRG3 are shown
in Figure 2-20.

SPRGO

SPRG1

SPRG2

SPRG3
o 31

Figure 2-20. SPRGo-SPRG3

Table 2-16 provides a description of conventional uses of SPRGO through SPRG3.

Table 2-16. Conventional Uses of SPRGO-SPRG3

Register Description

SPRGO Software may load a unique physical addresS in this register to identify an area of memory
reserved for use by the first-level exception handler. This area must be unique for each processor
in the system.

SPRG1 This register may be used as a scratch register by the first-level exception handler to save the
content of a GPR. That GPR then can be loaded from SPRGO and used as a base register to
save other GPRs to memory.

SPRG2 This register may be used by the operating system as needed.

SPRG3 This register may be used by the operating system as needed.

2.3.8 DSISR
The 32-bit DSISR, shown in Figure 2-21, identifies the cause of DSI and alignment
exceptions.

DSISR

o 31

Figure 2-21. DSISR

For information about bit settings, see Section 6.4.3, "DSI Exception (OxOO300)," and
Section 6.4.6, ''Alignment Exception (OxOO600)."

2-30 PowerPC Microprocessor Family: The Programmi.ng Environments (32-8It)

2.3.9 Machine Status Save/Restore Register 0 (SRRO)
The SRRO is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. SRRO is used to save machine status on exceptions and restore machine
status when an rfi instruction is executed. It also holds the EA for the instruction that
follows the System Call (sc) instruction. The format of SRRO is shown in Figure 2-22.

III Reserved

SRRO -o 29 30 31

Figure 2-22. Machine Status Save/Restore Register 0 (SRRO)

When an exception occurs, SRRO is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has begun execution.
When an rfi instruction is executed, the contents of SRRO are copied to the next instruction
address (NIA)-the 64- or 32-bit address of the next instruction to be executed. The
instruction addressed by SRRO may not have completed execution, depending on the
exception type. SRRO addresses either the instruction causing the exception or the
immediately following instruction. The instruction addressed can be determined from the
exception type and status bits.

Note that in some implementations, every instruction fetch performed while MSR[lR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRRO.

For information on how specific exceptions affect SRRO, refer to the descriptions of
individual exceptions in Chapter 6, "Exceptions."

2.3.10 Machine Status Save/Restore Register 1 (SRR1)
The SRRI is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. SRRI is used to save machine status on exceptions and to restore
machine status when an rfi instruction is executed. The format of SRRI is shown in
Figure 2-23.

SRR1

o 31

Figure 2-23. Machine Status Save/Restore Register 1 (SRR1)

Chapter 2. PowerPC Register Set 2·31

-
When an exception occurs, bits 1-4 and 10-15 of SRR1 are loaded with exception-specific
information and bits 16-23, 25-27,and 30-31 ofMSR are placed into the corresponding
bit positions of SRRl.When rfi is executed, MSR[16-23, 25-27, 30-31] are loaded from
SRR1[16-23, 25-27, 30-31].

The remaining bits of SRR1 are defined as reserved. An implementation may define one or
more of these bits, and in this case, may also cause them to be saved from MSR on an
exception and restored to MSR from SRR1 on an rfi.

Note that, in some implementations, every instruction fetch when MSR[lR] = 1, and every
instruction execution requiring address translation when MSR[DR] = 1, may modify SRRI.

For information on how specific exceptions affect SRR1, refer to the individual exceptions
in Chapter 6, "Exceptions."

2.3.11 Floating-Point Exception Cause Register (FPECR)
The FPECR register may be used to identify the cause of a floating-point exception. Note
that the FPECR is an optional register in the PowerPC architecture and may be
implemented differently (or not at all) in the design of each processor. The user's manual
of a specific processor will describe the functionality of the FPECR, if it is implemented in
that processor.

2.3.12 Time Base Facility (TB)-OEA
As described in Section 2.2, "PowerPC VEA Register Set-Time Base," the time base (TB)
provides a long-period counter driven by an implementation-dependent frequency. The
VEA defines user-level read-only access to the TB. Writing to the TB is reserved for
supervisor-level applications such as operating systems and boot-strap routines. The OEA
defines supervisor-level, write access to the TB.· .

The TB is a volatile resource and must be initialized during reset. Some implementations
may initialize the TB with a known value; however, there is no guarantee of automatic
initialization of the TB when the processor is reset. The TB runs continuously at start-up.

For more information on the user-level aspects of the time base, refer to Section 2.2,
"PowerPC VEA Register Set-Time Base."

2.3.1'2.1 Writing to the Time Base
Note that writing to the TB is reserved for supervisor-level software.

The simplified mnemonics, mttbl and mttbu, write the lower and upper halves of the TB,
respectively. The simplified mnemonics listed above are for the mtspr instruction; see
Appendix F, "Simplified Mnemonics," for more information. The mtspr, mttbl, and mttbu
instructions treat TBL and TBU as separate 32-bit registers; setting one leaves the other
unchanged. It is not possible to write the entire 64-bit time base in a single instruction.

2·32 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The instructions for writing the time base are not dependent on the implementation or
mode. Thus, code written to set the TB on a 32-bit implementation will work correctly on
a 64-bit implementation running in either 64- or 32-bit mode.

The TB can be written by a sequence such as:

lwz
lwz
1i
mttbl
mttbu
mttbl

rX,upper
ry,lower
rz,O
rz
rx
ry

#load 64-bit value for
TB into rx and ry

#force TBL to 0
#set TBU
#set TBL

Provided that no exceptions occur while the last three instructions are being executed,
loading 0 into TBL prevents the possibility of a carry from TBL to TBU while the time base
is being initialized.

For information on reading the time base, refer to Section 2.2.1, "Reading the Time Base."

2.3.13 Decrementer Register (DEC)
The decrementer register (DEC), shown in Figure 2-24, is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a programmable
delay. The DEC frequency is based on the same implementation-dependent frequency that
drives the time base.

DEC

o 31

Figure 2-24. Decrementer Register (DEC)

2.3.13.1 Decrementer Operation
The DEC counts down, causing an exception (unless masked by MSR[EE]) when it passes
through zero. The DEC satisfies the following requirements:

• The operation of the time base and the DEC are coherent (that is, the counters are
driven by the same fundamental time base).

• Loading a GPR from the DEC has no effect on the DEC.

• Storing the contents of a GPR to the DEC replaces the value in the DEC with the
value in the GPR.

• Whenever bit 0 of the DEC changes from 0 to 1, a decrementer exception request is
signaled. Multiple DEC exception requests may be received before the first
exception occurs; however, any additional requests are canceled when the exception
occurs for the first request.

• If the DEC is altered by software and the content of bit 0 is changed from 0 to 1, an
exception request is signaled.

Chapter 2. PowerPC Register Set 2-33

2.3.13.2 Writing and Reading the DEC
The content of the DEC can be read or written using the mfspr and mtspr instructions, both
of which are supervisor-level when they refer to the DEC. Using a simplified mnemonic for
the mtspr instruction, the DEC may be written from GPR rA with the Jollowing:

mtdec rA

Using a simplified mnemonic for the mfspr instruction, the DEC may be read into GPR rA
with the following:

mfdec rA

2.3.14 Data Address Breakpoint Register (DABR)
The optional data address breakpoint facility is controlled by an optional SPR, the DABR.
The DABR is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The data address breakpoint facility is optional to the PowerPC
architecture. However, if the data address breakpoint facility is implemented, it is
recommended, but not required, that it be implemented as described in this section.

The data address breakpoint facility provides a means to detect accesses to a designated
double word. The address comparison is done on an effective address, and it applies to data
accesses only. It does not apply to instruction fetches.

The DABR is shown in Figure 2-25.

DAB

o

Figure 2-25. Data Address Breakpoint Register (DABR)

Table 2-17 describes the fields in the DABR.

Table 2-17. DABR-.Bit Settings

Bits Name Description

0-28 DAB Data address breakpoint

29 BT Breakpoint translation enable

30 OW Data write enable

31 DR Data read enable

28 29 30 31

2-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

A data address breakpoint match is detected for a load or store instruction if the three
following conditions are met for any byte accessed:

• EA[0-28] = DABR[DAB]

• MSR[DR] = DABR[BT]

• The instruction is a store and DABR[DW] = 1, or the instruction is a load and
DABR[DR] = 1.

Even if the above conditions are satisfied, it is undefined whether a match occurs in the
following cases:

• A store string instruction (stwex.) in which the store is not performed

• A load or store string instruction (Iswx or stswx) with a zero length

• A debz, debz, eciwx, or eeowx instruction. For the purpose of determining whether
a match occurs, eciwx is treated as a load, and debz, deba, and eeowx are treated as
stores.

The cache management instructions other than debz and deba never cause a match. If debz
or deba causes a match, some or all of the target memory locations may have been updated.

A match generates a DSI exception. Refer to Section 6.4.3, "DSI Exception (OxOO300)," for
more information on the data address breakpoint facility.

2.3.15 External Access Register (EAR)
The EAR is an optional 32-bit SPR that controls access to the external control facility and
identifies the target device for external control operations. The external control facility
provides a means for user-level instructions to communicate with special external devices.
The EAR is shown in Figure 2-26.

iii! Reserved

o 1 25 26 31

Figure 2-26. External Access Register (EAR)

The high-order bits of the resource ID (RID) field beyond the width of the RID supported
by a particular implementation are treated as reserved bits.

The EAR register is provided to support the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (eeowx) instructions, which are described in Chapter 8,
"Instruction Set." Although access to the EAR is supervisor-level, the operating system can
determine which tasks are allowed to issue external access instructions and when they are
allowed to do so. The bit settings for the EAR are described in Table 2-18. Interpretation of
the physical address transmitted by the eciwx and ecowx instructions and the 32-bit value
transmitted by the eeowx instruction is not prescribed by the PowerPC OEA but is

Chapter 2. PowerPC Register Set 2-35

determined by the target device. The data access of eciwx and ecowx is performed as
though the memory access mode bits (WIMG) were 0101.

For example, if the external control facility is used to support a graphics adapter, the ecowx
instruction could be used to send the translated physical address. of a buffer containing
graphics data to the graphics device. The eciwx instruction could be used to load status
information from the graphics adapter.

Table 2-18. External Access Register (EAR) Bit Settings

Bit Name Description

0 E Enable bit
1 Enabled
0 Disabled

If this bit is set, the eclwx and ecowx instructions can perform the
specified external operation. If the bit is cleared, an sclwx or scowx
instruction causes a DSI exception.

1-25 - Reserved

26-31 RID Resource 10

This register can also be accessed by using the mtspr and mfspr instructions.
Synchronization requirements for the EAR are shown in Table 2-19 and Table 2-20.

2.3.16 Processor Identification Register (PIR)
The PIR register is used to differentiate between individual processors in a multiprocessor
environment. Note that the PIR is an optional register in the PowerPC architecture and may
be implemented differently (or not at all) in the design of each processor. The user's manual
ofa specific processor will describe the functionality of the PIR, if it is implemented in that
processor.

2.3.17 Synchronization Requirements for Special Registers and for
Lookaside Buffers

Changing the value in certain system registers, and invalidating TLB entries, can cause
alteration of the context in which data addresses and instruction addresses are interpreted,
and in which instructions are executed. An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or in which instructions are executed, is
called a context-altering instruction. The context synchronization required for context­
altering instructions is shown in Table 2-19 for data access and Table 2-20 for instruction
fetch and execution.

A context-synchronizing exception (that is, any exception except nonrecoverable system
reset or nonrecoverable machine check) can be used instead of a context-synchronizing
instruction. In the tables, if no software synchronization is required before (after) a context­
altering instruction, the synchronizing instruction before (after) the context-altering
instruction should be interpreted as meaning the context-altering instruction itself.

2-36 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

A synchronizing instruction before the context-altering instruction ensures that all
instructions up to and including that synchronizing instruction are fetched and executed in
the context that existed before the alteration. A synchronizing instruction after the context­
altering instruction ensures that all instructions after that synchronizing instruction are
fetched and executed in the context established by the alteration. Instructions after the first
synchronizing instruction, up to and including the second synchronizing instruction, may
be fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no
instructions that are affected by any ofthe context alterations, no software synchronization
is required within the sequence.

Note that some instructions that occur naturally in the program, such as the rfi at the end of
an exception handler, provide the required synchronization.

No software synchronization is required before altering the MSR (except when altering the
MSR[POW] or MSR[LE] bits; see Table 2-19 and Table 2-20), because mtmsr is execution
. synchronizing. No software synchronization is required before most of the other alterations
shown in Table 2-20, because all instructions before the context-altering instruction are
fetched and decoded before the context-altering instruction is executed (the processor must
determine whether any of the preceding instructions are context synchronizing).

Table 2-19 provides information on data access synchronization requirements.

Table 2-19. Data Access Synchronization

InstructlonlEvent Required Prior Required After

Exception 1 None None

rfil None None

sc 1 None None

Trap 1 None None

mtmsr (ILE) None None

mtmsr(PR) None Context-synchronizing instruction

mtmsr(ME)2 None Context-synchronizing instruction

mtmsr(DR) None Context-synchronizing instruction

mtmsr (LE) 3 - -
mtsr [or mtsrin] Context-synchronizing instruction Context-synchronizing instruction

mtspr (SDR1) 4,5 sync Context-synchronizing instruction

mtspr (DBAT) Context-synchronizing instruction Context-synchronizing instruction

mtspr (DABR) 6 - -
mtspr(EAR) Context-synchronizing instruction Context-synchronizing instruction

Chapter 2. PowerPC Register Set 2-37

Table 2-19. Data Access Synchronization (Continued)

InstructionlEvent Required Prior R~ui~After

tlble 7, 7 Context-synchronizing instruction Context-synchronizing instruction or
sync

tibia 7, 7 Context-synchronizing instruction Context-synchronizing instruction or
sync

Notes:
1 Synchronization requirements' for changing the power conserving mode are implementation-dependent.

2 A context synchronizing instruction is required aiter modification of the MSR[ME) bit to ensure that the
modification takes effect for subsequent machine check exceptions, which may not be recoverable and
therefore may not be context synchronizing. ' ,

3 Synchronization requirements for changing from one endian mode to the other are implementation-dependent.

4 SDR1 must not be altered when MSR[DR) = 1 or MSR[IR) = 1; if it is, the results are undefined.

5 A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby
the location of the referenced and changed (R and C) bits. To ensure that Rand C bits are updated in the
correct page table, SDR1 must not be altered until all Rand C bit updates due to instructions before the mtspr
have' completed. A sync instruction guarantees this synchronization of Rand C bit updates, while neither a
context synchronizing operation nor the instruction fetching mechanism does so.

B Synchronization requirements for changing the DABR are implementation-dependent.

7 Multiprocessor systems have other requirements to synchronize TlB invalidate.

For information on instruction access synchronization requirements, see Table 2-20.

Table 2-20. Instruction Access Synchronization

InstructionlEvent Required Prior Required After .,:

Exception 1 None None

rft1 None None

sc 1 None None

Trap 1 None None

mtmsr (POW) 1 - -
mtmsr(ILE) None None

mtmsr(EE) 2 'None None

mtmsr(PR) None Context-synchronizing instruction

mtmsr(FP) None Context-synchronizing instruction

mtmsr (ME) 3 None .Context-synchronizing instruction

mtmsr (FEO, FE1) None Context-synchronizing instruction

mtmsr (SE, BE) None Context-synchronizing instruction

mtmsr(IP) None None

mtmsr (IR) 4 None Context-synchronizing instruction

mtmsr(RI) None None

2-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 2-20. Instruction Access Synchronization (Continued)

Instruction/Event Required Prior Required After

mtmsr (LE) 5 - -

mtsr [or mtsrln) 4 None Context-synchronizing instruction

mtspr (SDR1) 6, 7 sync Context-synchronizing instruction

mtspr (IBAT) 4 None Context-synchronizing instruction

mtspr (DEC) 8 None None

tlbie 10,9 None Context-synchronizing instruction or sync

tibia 10,9 None Context-synchronizing instruction or sync

Notes:

1 Synchronization requirements for changing the power conserving mode are implementation-dependent.

2 The effect of altering the EE bit is immediate as follows:

• If an mtmsr sets the EE bit to 0, neither an external interrupt nor a decrementer exception can occur after
the instruction is executed.

• If an mtmsr sets the EE bit to 1 when an external interrupt, decrementer exception, or higher priority
exception exists, the corresponding exception occurs immediately after the mtmsr is executed, and
before the next instruction is executed in the program that set MSR[EE).

3 A context synchronizing instruction is required after modification of the MSR[ME) bit to ensure that the
modification takes effect for subsequent machine check exceptions, which may not be recoverable and therefore
may not be context synchronizing.

4 The alteration must not cause an implicit branch in physical address space. The physical address of the context­
altering instruction and of each subsequent instruction, up to and including the next context synchronizing
instruction, must be independent of whether the alteration has taken effect.

5 Synchronization requirements for changing from one endian mode to the other are implementation-dependent.

6 SDR1 must not be altered when MSR[DR) = 1 or MSR[IR) = 1; if it is, the results are undefined.

7 A sync instruction is required before the mtspr instruction because SDR 1 identifies the page table and thereby
the location of the referenced and changed (R and C) bits. To ensure that Rand C bits are updated in the correct
page table, SDR1 must not be altered until all Rand C bit updates due to instructions before the mtspr have
completed. A sync instruction guarantees this synchronization of Rand C bit updates, while neither a context
synchronizing operation nor the instruction fetching mechanism does so.

B The elapsed time between the content of the decrementer becoming negative and the signaling of the
decrementer exception is not defined.

9 Multiprocessor systems have other requirements to synchronize TLB invalidate.

Chapter 2. PowerPC Register Set 2-39

Chapter 3
Operand Conventions
This chapter describes the operand conventions as they are represented in two levels of the
PowerPC architecture-user instruction set architecture (VISA) and virtual environment
architecture (VEA). Detailed descriptions are provided of conventions used for storing
values in registers and memory, accessing PowerPC registers, and representing data in these
registers in both big- and little-endian modes. Additionally, the floating-point data formats
and exception conditions are described. Refer to Appendix D, "Floating-Point Models," for
more information on the implementation of the IEEE floating-point execution models.

3.1 Data Organization in Memory and Data Transfers I!I
In a PowerPC microprocessor-based system, bytes in memory are numbered consecutively
starting with O. Each number is the address of the corresponding byte. Memory operands
may be bytes, half words, words, or double words, or, for the load and store mUltiple and
the load and store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

The following sections describe the concepts of alignment and byte ordering of data, and
their significance to the PowerPC architecture.

3.1.1 Aligned and Misaligned Accesses
The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned. Instructions are always four
bytes long and word-aligned.

Chapter 3. Operand Conventions 3-1

Operands for single-register memory access instructions have the characteristics shown in
Table 3-1. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.)

Table 3-1. Memory Operand Alignment

Operand Length Aligned Addr(6D-63)

Byte 8 bits xxxx

Hall word 2 bytes xxxO

Word 4 bytes xxOO

Double word 8 bytes xOOO

Quad word 16 bytes 0000

Note: An x in an address bit position indicates that the bit can be 0 or 1
independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

3.1.2 Byte Ordering
If individual data items were indivisible, the concept of byte ordering would be
unnecessary. The order of bits or groups of bits within the smallest addressable unit of
memory is irrelevant, because nothing can be observed about such order. Order matters
only when scalars, which the processor and programmer regard as indivisible quantities,
can be made up of more than one addressable unit of memory.

For PowerPC processors, the smallest addressable memory unit is the byte (8 bits),and
scalars are composed of one or more sequential bytes. When a 32-bit scalar is moved from
a register to memory, it occupies four consecutive bytes in memory, and a decision must be
made regarding the order of these bytes in these four addresses.

Although the choice of byte ordering is arbitrary, only two orderings are practical-big­
endiati and little-endian. The PowerPC architecture supports both big- and little-endian
byte ordering. The default byte ordering is big-endian.

3.1.2.1 Big-Endian Byte Ordering
For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting)
address while the least-significant byte (LSB) is stored at the highest (or ending) address.
This is called big-endian because the big end of the scalar comes first in memory.

3·2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.1.2.2 Little-Endian Byte Ordering
For little-endian scalars, the least-significant byte is stored at the lowest (or starting)
address while the most-significant byte is stored at the highest (or ending) address. This is
called little-endian because the little end of the scalar comes first in memory.

3.1.3 Structure Mapping Examples
Figure 3-1 shows a C programming example that contains an assortment of scalars and one
array of characters (a string). The value presumed to be in each structure element is shown
in hexadecimal in the comments (except for the character array, which is represented by a
sequence of characters, each enclosed in single quote marks).

struct
int a; /* Oxlll2_13l4 word */
double b; /* Ox2l22_2324 _2526_2728 double word */
char * c; /* Ox3132_3334 word */
char d[7] ; /* ILl, 'M', IN', 'a', 'pl I IQ' I 'RI array of bytes */
short e; /* Ox5l52 half word */

int f; /* Ox6l62 - 6364 word */
} S;

Figure 3-1. C Program Example-Data Structure S

The data structure S is used throughout this section to demonstrate how the bytes that
comprise each element (a, b, c, d, e, and}) are mapped into memory.

Chapter 3. Operand Conventions 3-3

3.1.3.1 Big-Endian Mapping
The big-endian mapping of the structure, S, is shown in Figure 3-2. Addresses are shown in
hexadecimal below each byte. The content of each byte, as shown in the preceding C
programming example, is shown in hexadecimal and, for the character array, as characters
enclosed in single quote marks. Note that the most-significant byte of each scalar is at the
lowest address.

Contents 11 12 13 14 (xl (xl (xl (xl

Address 00 01 02 03 04 05 06 07

Contents 21 22 23 24 25 26 27 28

Address 08 09 OA OB OC 00 OE OF

Contents 31 32 33 34 'I.: 'M' 'N' '0'

Address 10 11 12 13 14 15 16 17

Contents 'P' 'Q' 'R' (xl 51 52 (xl (xl

Address 18 19 1A 1B 1C 10 1E iF

Contents 61 62 63 64 (xl (xl (xl (xl

Address 20 21 22 23 24 25 26 27

Figure 3-2. Big-Endian Mapping of Structure S

The structure mapping introduces padding (skipped bytes indicated by (x) in Figure 3-18)
in the map in order to align the scalars on their proper boundaries-four bytes between
elements a and b, one byte between elements d and e, and two bytes between elements e
and f Note that the padding is dependent on the compiler; it is not a function of the
architecture.

3-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.1.3.2 Little-Endian Mapping
Figure 3-3 shows the structure, S, using Ii ttle-endian mapping. Note that the least-
significant byte of each scalar is at the lowest address.

Contents I 14 13 12 11 (xl (xl (xl (xl

Address 00 01 02 03 04 05 06 07

Contents 28 27 26 25 24 23 22 21

Address 08 09 OA OB OC 00 OE OF

Contents 34 33 32 31 'I.: 'M' 'N' '0'

Address 10 11 12 13 14 15 16 17

Contents 'P' '0' 'R' (xl 52 51 (xl (xl

Address 18 19 1A 1B 1C 10 1E 1F

Contents 64 63 62 61 (xl (xl (xl (xl

Address 20 21 22 23 24 25 26 27

Figure 3-3. Little-Endian Mapping of Structure S

Figure 3-3 shows the sequence of double words laid out with addresses increasing from left
to right. Programmers familiar with little-endian byte ordering may be more accustomed to
viewing double words laid out with addresses increasing from right to left, as shown in
Figure 3-4. This allows the Iittle-endian programmer to view each scalar in its natural byte
order of MSB to LSB. However, to demonstrate how the PowerPC architecture provides
both big- and little-endian support, this section uses the convention of showing addresses
increasing from left to right, as in Figure 3-3.

Chapter 3. Operand Conventions 3-5

Contents (x) (x) (x) (x) 11 12 13 14

Address 07 06 05 04 03 02 01 00

Contents I 21 22 23 24 25 26 27 28

Address OF OE 00 OC OB OA 09 08

Contents '0' 'N' 'M' 't.: 31 32 33 34

Address 17 16 15 14 13 12 11 10

Contents (x) (x) 51 52 (x) 'R' 'a' 'p'

Address 1F 1E 10 1C 1B 1A 19 18

Contents (x) (x) (x) (x) 61 62 63 64

Address 27 26 25 24 23 22 21 20

Figure 3-4. Little-Endian Mapping of Structure S -Alternate View

3.1.4 PowerPC Byte Ordering
The PowerPC architecture supports both big- and little-endian byte ordering. The default
byte ordering is big-endian. However, the code sequence used to switch from big- to little­
endian mode may differ among processors.

The PowerPC architecture defines two bits in the MSR for specifying byte ordering-LE
(little-endian mode) and ILE (exception little-endian mode). The LE bit specifies the endian
mode in which the processor is currently operating and ILE specifies the mode to be used
when an exception handler is invoked. That is, when an exception occurs, the ILE bit (as
set for the interrupted process) is copied into MSR[LE] to select the endian mode for the
context established by the exception. For both bits, a value of 0 specifies big-endian mode
and a value of 1 specifies little-endian mode.

The PowerPC architecture also provides load and store instructions that reverse byte
ordering. These instructions have the effect of loading and storing data in the endian mode
opposite from that which the processor is operating. See Section 4.2.3.4, "Integer Load and
Store with Byte-Reverse Instructions," for more information on these instructions.

3.1.4.1 Aligned Scalars in Little-Endian Mode
Chapter 4, ''Addressing Modes and Instruction Set Summary," describes the effective
address calculation for the load and store instructions. For processors in little-endian mode,
the effective address is modified before being used to access memory. The three low-order
address bits of the effective address are exc1usive-ORed (XOR) with a three-bit value that
depends on the length of the operand (1, 2,4, or 8 bytes), as shown in Table 3-2. This
address modification is called 'munging'. Note that although the process is described in the

3-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

architecture, the actual term 'munging' is not defined or used in the specification. However,
the term is commonly used to describe the effective address modifications necessary for
converting big-endian addressed data to little-endian addressed data.

Table 3-2. EA Modifications

Data Width (Bytes) EA ModHlcation

8 No change

4 XOR with Ob100

2 XOR with Ob110

1 XOR with Ob111

The munged physical address is passed to the cache or to main memory, and the specified
width of the data is transferred (in big-endian order-that is, MSB at the lowest address,
LSB at the highest address) between a GPR or FPR and the addressed memory locations
(as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as little-
endian, when in fact they are stored in big-endian order, but at different byte addresses
within double words. Only the address is modified, not the byte order.

Taking into account the preceding description of munging, in little-endian mode, structure
S is placed in memory as shown in Figure 3-5.

Contents (x) (x) (x) (x) 11 12 13 14

Address 00 01 02 03 04 05 06 07

Contents 21 22 23 24 I 25 26 27 28

Address 08 09 OA OB OC 00 OE OF

Contents '0' 'N' 'M' 't: 31 32 33 34

Address 10 11 12 13 14 15 16 17

Contents (x) (x) 51 52 (x) 'R' 'a' 'P'

Address 18 19 1A 18 1C 10 1E 1F

Contents (x) (x) (x) (x) 61 62 63 64

Address 20 21 22 23 24 25 26 27

Figure 3-5. Munged Little-Endian Structure S as Seen by the Memory Subsystem

Chapter 3. Operand Conventions 3-7

Note that the mapping shown in Figure 3-5 is not a true Iittle-endian mapping of the
structure S. However, because the processor munges the address when accessing memory,
the physical structure S shown in Figure 3-5 appears to the processor as the structure S
shown in Figure 3-6.

Contents 14 13 12 11

Address 00 01 02 03 04 05 06 07

Contents 28 27 26 25 24 23 22 21

Address 08 09 OA 08 OC 00 OE OF

Contents 34 33 32 31 '(.: 'M' 'N' '0'

Address 10 11 12 13 14 15 16 17

Contents 'P' '0' 'R' 52 51

Address 18 19 1A 18 1C 10 1E 1F

Contents 64 63 62 61

Address 20 21 22 23 24 25 26 27

Figure 3-6. Munged Little-Endian Structure S as Seen by Processor

Note that as seen by the program executing in the processor, the mapping for the structure
S (Figure 3-6) is identical to the little-endian mapping shown in Figure 3-3. However, from
outside of the processor, the addresses of the bytes making up the structure S are as shown
in Figure 3 -5. These addresses match neither the big -endian mapping of Figure 3-2 nor the
true little-endian mapping of Figure 3-3. This must be taken into account when performing
110 operations in little-endian mode; this is discussed in Section 3.1.4.5, "PowerPC
Input/Output Data Transfer Addressing in Little-Endian Mode."

3-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.1.4.2 Misaligned Scalars in Little-Endian Mode
Performing an XOR operation on the low-order bits of the address works only if the scalar
is aligned on a boundary equal to a multiple of its length. Figure 3-7 shows a true little­
endian mapping of the four-byte word Ox 1112_1314, stored at address 05.

Contents 14 13 12
~ __ ~ ____ -L ____ J-____ L-__ ~ ____ -L ____ J-__ ~

Address 00 01 02 03 04 05 06 07

Contents 11

Address 08 09 OA 08 OC OD OE OF

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05

For the true little-endian example in Figure 3-7, the least-significant byte (Ox14) is stored
at address OxOS, the next byte (Ox13) is stored at address Ox06, the third byte (Ox12) is
stored at address Ox07, and the most-significant byte (Oxll) is stored at address Ox08.

When a PowerPC processor, in little-endian mode, issues a single-register load or store
instruction with a misaligned effective address, it may take an alignment exception. In this
case, a single-register load or store instruction means any of the integer load/store,
load/store with byte-reverse, memory synchronization (excluding sync), or floating-point
load/store (including stfiwx) instructions. PowerPC processors in little-endian mode are not
required to invoke an alignment exception when such a misaligned access is attempted. The
processor may handle some or all such accesses without taking an alignment exception.

The PowerPC architecture requires that half words, words, and double words be placed in
memory such that the little-endian address of the lowest-order byte is the effective address
computed by the load or store instruction; the little-endian address of the next-lowest-order
byte is one greater, and so on. However, because PowerPC processors in little-endian mode
munge the effective address, the order of the bytes of a misaligned scalar must be as if they
were accessed one at a time.

Using the same example as shown in Figure 3-7, when the least-significant byte (Ox14) is
stored to address OxOS, the address is XORed with Ob111 to become Ox02. When the next
byte (Ox 13) is stored to address Ox06, the address is XORed with Ob 111 to become OxO 1.
When the third byte (Ox 12) is stored to address Ox07, the address is XORed with Ob 111 to
become OxOO. Finally, when the most-significant byte (Ox11) is stored to address Ox08, the
address is XORed with Ob 111 to become OxOF. Figure 3-8 shows the misaligned word,
stored by a little-endian program, as seen by the memory subsystem.

Chapter 3. Operand Conventions 3-9

Contents 12 13 14
L-__ ~ ____ ~ ____ ~ ____ L-__ ~ ____ ~ ____ ~ __ ~

Address 00 01 02 03 04 05 06 07

Contents 11
L-__ ~ ____ ~ ____ ~ ____ L-__ ~ ____ ~ ____ ~ __ ~

Address 08 09 OA 08 OC 00 OE OF

Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory
Subsystem

Note that the misaligned word in this example spans two double words. The two parts of
the misaligned word are not contiguous as seen by the memory system. An implementation
may support some but not all misaligned little-endian accesses. For example, a misaligned
little-endian access that is contained within a double word may be supported, while one that
spans double words may cause an alignment exception.

3.1.4.3 Nonscalars
The PowerPC architecture has two types of instructions that handle nonscalars (multiple
instances of scalars):

• Load and store multiple instructions

• Load and store string instructions

Because these instructions typically operate on more than one word-length scalar, munging
cannot be used. These types of instructions cause alignment exception conditions when the
processor is executing in little-endian mode. Although string accesses are not supported,
they are inherently byte-based operations, and can be broken into a series of word-aligned
accesses.

3.1.4.4 PowerPC Instruction Addressing in Little-Endian Mode
Each PowerPC instruction occupies an aligned word of memory. PowerPC processors fetch
and execute instructions as if the current instruction address is incremented by four for each
sequential instruction. When operating in little-endian mode, the instruction address is
munged as described in Section 3.1.4.1, "Aligned Scalars in Little-Endian Mode;' for
fetching word-length scalars; that is, the instruction address is XORed with ObI 00. A
program is thus an array of little-endian words with each word fetched and executed in
order (not including branches).

3-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

All instruction addresses visible to an executing program are the effective addresses that are
computed by that program, or, in the case of the exception handlers, effective addresses that
were or could have been computed by the interrupted program. These effective addresses
are independent of the endian mode. Examples for little-endian mode include the
following:

• An instruction address placed in the link register by branch and link operation, or an
instruction address saved in an SPR when an exception is taken, is the address that
a program executing in little-endian mode would use to access the instruction as a
word of data using a load instruction.

• An offset in a relative branch instruction reflects the difference between the
addresses of the branch and target instructions, where the addresses used are those
that a program executing in little-endian mode would use to access the instructions
as data words using a load instruction.

• A target address in an absolute branch instruction is the address that a program
executing in little-endian mode would use to access the target instruction as a word
of data using a load instruction.

• The memory locations that contain the first set of instructions executed by each kind
of exception handler must be set in a manner consistent with the endian mode in
which the exception handler is invoked. Thus, if the exception handler is to be
invoked in little-endian mode, the first set of instructions comprising each kind of
exception handler must appear in memory with the instructions within each double
word reversed from the order in which they are to be executed.

3.1.4.5 PowerPC Input/Output Data Transfer Addressing in Little-
Endian Mode

For a PowerPC system running in big-endian mode, both the processor and the memory
subsystem recognize the same byte as byte O. However, this is not true for a PowerPC
system running in little-endian mode because of the munged address bits when the
processor accesses memory.

For I/O transfers in little-endian mode to transfer bytes properly, they must be performed
as if the bytes transferred were accessed one at a time, using the little-endian address
modification appropriate for the single-byte transfers (that is, the lowest order address bits
must be XORed with Oblll). This does not mean that I/O operations in little-endian
PowerPC systems must be performed using only one-byte-wide transfers. Data transfers
can be as wide as desired, but the order of the bytes within double words must be as if they
were fetched or stored one at a time. That is, for a true little-endian I/O device, the system
must provide a mechanism to munge and unmunge the addresses and reverse the bytes
within a double word (MSB to LSB).

Chapter 3. Operand Conventions 3-11

In earlier processors, VO operations can also be performed with certain devices by storing
to or loading from addresses that are associated with the devices (this is referred to as
direct-store interface operations). However, the direct-store facility is being phased out of
the architecture and will not likely be supported in future devices. Care must be taken with
such operations when defining the addresses to be used because these addresses are
subjected to munging as described in Section 3.1.4.1, ''Aligned Scalars in Little-Endian
Mode." A load or store that maps to a control register on an external device may require the
bytes of the value transferred to be reversed. If this reversal is required, the load and store
with byte-reverse instructions may be used. See Section 4.2.3.4, "Integer Load and Store
with Byte-Reverse Instructions," for more information on these instructions.

3.2 Effect of Operand Placement on
Performance-YEA

VThe PowerPC VEA states that the placement (location and alignment) of operands in
memory affects the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries: For more information
on memory access ordering and atomicity, refer to Section 5.1, "The Virtual Environment."

3.2.1 Summary of Performance Effects
To obtain the best performance across the widest range of PowerPC processor
implementations, the programmer should assume the performance model described in
Table 3-3 and Table 3-4 with respect to the placement of memory operands.

The performance of accesses varies depending on the following:

• Operand size
• Operand alignment
• Endian mode (big-endian or little-endian)

• Crossing no boundary
• Crossing a cache block boundary
• Crossing a page boundary
• Crossing a BAT boundary
• Crossing a segment boundary

3-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 3-3 applies when the processor is in big-endian mode.

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode

Operand Boundary Crossing

Size
Byte

Alignment
None Cache Block Page BATlSegment

Integer

8 byte 8 Optimal - - -
4 Good Good Poor Poor
<4 Poor Poor Poor Poor

4 byte 4 Optimal - - -
<4 Good Good Poor Poor

2 byte 2 Optimal - - -
<2 Good Good Poor Poor

1 byte 1 Optimal - - -
Imw,stmw 4 Good Good Good1 Poor

String - Good Good Poor Poor

floating Point None C8cheBlock Page BATlSegment

8 byte 8 Optimal - - -
4 Good Good Poor Poor
<4 Poor Poor Poor Poor

4 byte 4 Optimal - - -
<4 Poor Poor Poor Poor

Note: 1 Note that crossing a page boundary where the memory/cache access attributes of the two
pages differ is equivalent to crossing a segment boundary, and thus has poor performance.

Table 3-4 applies when the processor is in little-endian mode.

Chapter 3. Operand Conventions 3-13

Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode

Operand Boundary Crossing

Size
Byte

Alignment
None Cache Block Page BAT/Segment

Integer

8 byte 8 Optimal - - -
<8 Poor Poor Poor Poor

4 byte 4 Optimal - - -
<4 Poor Poor Poor Poor

2 byte 2 Optimal - - -
<2 Poor Poor Poor Poor

1 byte 1 Optimal - - -
Floating Point None Cache Block Page BAT/Segrnent

8 byte 8 Optimal - - -
<8 Poor Poor Poor Poor

4 byte 4 Optimal - -
<4 Poor Poor Poor Poor

The load/store multiple and the load/store string instructions are supported only in big­
endian mode. The load/store multiple instructions are defined by the PowerPC architecture
to operate only on aligned operands. The load/store string instructions have no alignment
requirements.

3.2.2 Instruction Restart
If a memory access crosses a page, BAT, or segment boundary, a number of conditions
could abort the execution of the instruction after part of the access has been performed. For
example, this may occur when a program attempts to access a page it has not previously
accessed or when the processor must check for a possible change in the memory/cache
access attributes when an access crosses a page boundary. When this occurs, the processor
or the operating system may restart the instruction. If the instruction is restarted, some bytes
at that location may be loaded from or stored to the target location a second time.

The following rules apply to memory accesses with regard to restarting the instruction:

• Aligned accesses-A single-register instruction that accesses an aligned operand is
never restarted (that is, it is not partially executed).

• Misaligned accesses-A single-register instruction that accesses a misaligned
operand may be restarted if the access crosses a page, BAT, or segment boundary, or
if the processor is in little-endian mode.

• Load/store mUltiple, load/store string instructions-These instructions may be
restarted if, in accessing the locations specified by the instruction, a page, BAT, or
segment boundary is crossed.

3-14 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

The programmer should assume that any misaligned access in a segment might be restarted.
When the processor is in big-endian mode, software can ensure that misaligned accesses
are not restarted by placing the misaligned data in BAT areas, as BAT areas have no internal
protection boundaries. Refer to Section 7.4, "Block Address Translation," for more
information on BAT areas.

3.3 Floating-Point Execution Models-UISA
There are two kinds of floating-point instructions defined for the PowerPC architecture: I!I
computational and noncomputational. The. computational instructions consist of those
operations defined by the IEEE-754 standard for 64- and 32-bit arithmetic (those that
perform addition, subtraction, multiplication, division, extracting the square root, rounding
conversion, comparison, and combinations of these) and the multiply-add and reciprocal
estimate instructions defined by the architecture. The noncomputational floating-point
instructions consist of the floating-point load, store, and move instructions. While both the
computational and noncomputational instructions are considered to be floating-point
instructions governed by the MSR[FP] bit (that allows floating-point instructions to be
executed), only the computational instructions are considered floating-point operations
throughout this chapter.

The IEEE standard requires that single-precision arithmetic be provided for single­
precision operands. The standard permits double-precision arithmetic instructions to have
either (or both) single-precision or double-precision operands, but states that single­
precision arithmetic instructions should not accept double-precision operands. The
guidelines are as follows:

• Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithm~tic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections. Appendix D, "Floating-Point Models;' has additional detailed information on the
execution models for IEEE operations as well as the other floating-point instructions.

Although the double-precision format specifies an II-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second

Chapter 3. Operand Conventions 3-15

bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1 (exceptions are referred to as
interrupts in the architecture specification):

• Underflow during multiplication using a denormalized operand

• Overflow during division using a denormalized divisor

3.3.1 Floating-Point Data Format
The PowerPC VISA defines the representation of a floating-point value in two different
binary, fixed-length formats. The format is a 32-bit format for a single-precision floating­
point value or a 64-bit format for a double-precision floating-point value. The single­
precision format may be used for data in memory. The double-precision format can be used
for data in memory or in floating-point registers (FPRs).

The lengths of the exponent and the fraction fields differ between these two formats. The
layout of the single-precision format is shown in Figure3-9; the layout of the double­
precision format is shown in Figure 3-10.

EXP FRACTION

o 1 8 9 31

Figure 3-9. Floating-Point Single-Precision Format

EXP FRACTION

o 1 1112 63

Figure 3-10. Floating-Point Double-Precision Format

Values in floating-point format consist of three fields:

• S (sign bit)
• EXP (exponent + bias)
• FRACTION (fraction)

If only a portion of a floating-point data item in memory is accessed, as with a load or store
instruction for a byte or half word (or word in the case of floating-point double-precision
format), the value affected depends on whether the PowerPC system is using big- or little­
endian byte ordering, which is described in Section 3.1.2, "Byte Ordering." Big-endian
mode is the default.

3-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

For numeric values, the significand consists of a leading implied bit concatenated on the
right with the FRACTION. This leading implied bit is a 1 for normalized numbers and a 0
for denormalized numbers and is the first bit to the left of the binary point. Values
representable within the two floating-point formats can be specified by the parameters
listed in Table 3-5.

Table 3-5. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023

Maximum exponent +127 +1023
(unbiased)

Minimum exponent -126 -1022
(unbiased)

Format width 32 bits 64 bits

Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits

Fraction width 23 bits 52 bits

Significand width 24 bits 53 bits

The true value of the exponent can be determined by subtracting 127 for single-precision
numbers and 1023 for double-precision numbers. This is shown in Table 3-6. Note that two
exponent values are reserved to represent special-case values. Setting all bits indicates that
the value is an infinity or NaN and clearing all bits indicates that the number is either zero
or denormalized.

Table 3-6. Biased Exponent Format

Biased Exponent Single-Precision Double-Precision
(Binary) (Unbiased) (Unbiased)

11 11 Reserved for infinities and NaNs

11 10 +127 +1023

11 01 +126 +1022

10 00 1 1

01 11 0 0

01 10 -1 -1

Chapter 3. Operand Conventions 3-17

Table 3-6. Biased Exponent Format (Continued)

Biased Exponent Single-Precision Double-Precision
(Binary) (Unbiased) (Uriblas8d)

00 01 -126 -1022

00 00 Reserved for zeros and denormaIized numbers

3.3.1.1 Value Representation
The PowerPC UISA defines numerical and nonnumerical values representable within
single- and double-precision formats. The numerical values are approximations to the real
numbers and include the normalized numbers, denormalized numbers, and zero values. The
nonnumerical values representable are the positive and negative infinities and the NaNs.
The positive and negative infinities are adjoined to the real numbers but are not numbers
themselves, and the standard rules of arithmetic do not hold when they appear in an
operation. They are related to the real numbers by order alone. It is possible, however, to
define restricted operations among numbers and infinities as defined below. The relative
location on the real number line for each of the defined numerical entities is shown in
Figure 3-11. Tiny values include denormalized numbers and all numbers that are too small
to be represented for a particular precision format; they do not include ±O.

Tiny Tiny
-0 +0

+00

Unrepresentable, small numbers __ -'--___ ..J

Figure 3-11. Approximation to Real Numbers

The positive and negative NaNs are encodings that convey diagnostic infonilation such as
the representation of uninitialized variables and are not related to the numbers, ±oo, or each
other by order or value.

Table 3-7 describes each of the floating-point formats.

Table 3-7. Recognized Floating-Point Numbers

Sign Bit Biased Exponent Implied Bit Fraction Value

0 Maximum x Nonzero NaN

0 Maximum x Zero +Infinity

0 o < Exponent < Maximum 1 x +Normalized

0 0 0 Nonzero +Denormalized

0 0 x Zero +0

3-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 3-7. Recognized Floating-Point Numbers (Continued)

Sign Bit Biased Exponent Implied Bit Fraction Value

1 0 x Zero -0

1 0 0 Nonzero -Denormalized

1 o < Exponent < Maximum 1 x -Normalized

1 Maximum x Zero -Infinity

1 Maximum x Nonzero NaN

The following sections describe floating-point values defined in the architecture.

3.3.1.2 Binary Floating-Point Numbers
Binary floating-point numbers are machine-representable values used to approximate real
numbers. Three categories of numbers are supported-normalized numbers, denormalized
numbers, and zero values.

3.3.1.3 Normalized Numbers (±NORM)
The values for normalized numbers have a biased exponent value in the range:

• 1-254 in single-precision format

• 1-2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:

NORM = (_1)8 X 2E x (1. fraction)

The variable (s) is the sign, (E) is the unbiased exponent, and (l.fraction) is the significand
composed of a leading unit bit (implied bit) and a fractional part. The format for normalized
numbers is shown in Figure 3-12.

MIN < EXPONENT < MAX
(BIASED)

SIGN BIT, 0 OR 1

FRACTION = ANY BIT PATIERN

Figure 3-12. Format for Normalized Numbers

The ranges covered by the magnitude (M) of a normalized floating-point number are
approximated in the following decimal representation:

Single-precision format:

1.2x10-~ S M S 3.4xl0~

Double-precision format:

2.2x10-~ S M S 1.8xl0~

Chapter 3. Operand Conventions 3-19

3.3.1.4 Zero Values (±O)
Zero values have a biased exponent value of zero and fraction of zero. This is shown in
Figure 3-13. Zeros can have a positive or negative sign. The sign of zero is ignored by
comparison operations (that is, comparison regards +0 as equal to -0). Arithmetic with zero
results is always exact and does not signal any exception, except when an exception occurs
due to the invalid operations as described in Section 3.3.6.1.1, "Invalid Operation
Exception Condition." Rounding a zero result only affects the sign (±O).

EXPONENT=O
(BIASED)

SIGN BIT, 0 OR 1

FRACTION =0

Figure 3-13. Format for Zero Numbers

3.3.1.5 Denormalized Numbers (±DENORM)
Denormalized numbers have a biased exponent value of zero and a nonzero fraction. The
format for denormalized numbers is shown in Figure 3-14.

EXPONENT = 0
(BIASED)

SIGN BIT, 0 OR 1

FRACTION = ANY NONZERO
BIT PATTERN

Figure 3-14. Format for Denormalized Numbers

Denormalized numbers are nonzero numbers smaller in magnitude than the normalized
numbers. They are values in which the implied unit bit is zero. Denormalized numbers are
interpreted as follows:

DENORM = (_i)" x 2Emin x (0. fraction)

The value Emin is the minimum unbiased exponent value for a normalized number (-126
for single-precision, -1022 for double-precision).

3-20 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

3.3.1.6 Infinities (±oo)
These are values that have the maximum biased exponent value of 255 in the single­
precision format, 2047 in the double-precision format, and a zero fraction value. They are
used to approximate values greater in magnitude than the maximum normalized value.
Infinity arithmetic is defined as the limiting case of real arithmetic, with restricted
operations defined among numbers and infinities. Infinities and the real numbers can be
related by ordering in the affine sense:

-00 < every finite number < +00

The format for infinities is shown in Figure 3-15.

I I EXPONENT = MAXIMUM
.. (BIASED) FRACTION=O

LI _______ SIGN BIT, 0 OR 1

Figure 3-15. Format for Positive and Negative Infinities

Arithmetic using infinite numbers is always exact and does not signal any exception, except
when an exception occurs due to the invalid operations as described in Section 3.3.6.1.1,
"Invalid Operation Exception Condition."

3.3.1.7 Not a Numbers (NaNs)
NaNs have the maximum biased exponent value and a nonzero fraction. The format for
NaNs is shown in Figure 3-16. The sign bit of NaN does not show an algebraic sign; rather,
it is simply another bit in the NaN. If the highest-order bit of the fraction field is a zero, the
NaN is a signaling NaN; otherwise it is a quiet NaN (QNaN).

EXPONENT = MAXIMUM
(BIASED)

SIGN BIT (ignored)

FRACTION = ANY NONZERO
BIT PATTERN

Figure 3-16. Format for NaNs

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as attempts to perform
arithmetic operations on infinities or NaNs, when the invalid operation exception is
disabled (FPSCR[VE] = 0). Quiet NaNs propagate through all operations, except ftoating­
point round to single-precision, ordered comparison, and conversion to integer operations,
and signal exceptions only for ordered comparison and conversion to integer operations.
Specific encodings in QNaNs can thus be preserved through a sequence of operations and
used to convey diagnostic information to help identify results from invalid operations.

Chapter 3. Operand Conventions 3-21

When a QNaN results from an operation because an operand is a NaN or because aQNaN
is generated due to a disabled invalid operation exception, the following rule is applied to .
determine the QNaN to be stored as the result:

If (frA) is a NaN
Then frO +- (frA)
Else if (frB) is a NaN

Then if instruction is frap
Then frO +- (frB) [0-34lll (29) 0
Else frO +- (frB)

Else if (frC) is a NaN
Then frO +- (frC)
Else if generated QNaN

Then frO +- generated QNaN

If the operand specified by frA is a NaN, that NaN is stored as the result. Otherwise, if the
operand specified by frB is a NaN (if the instruction specifies an frB operand), that NaN is
stored as the result, with the low-order 29 bits cleared. Otherwise, if the operand specified
by frC is a NaN (if the instruction specifies an fre operand), that NaN is stored as the result.
Otherwise, if a QNaN is generated by a disabled invalid operation exception, that QNaN is
stored as the result. If a QNaN is to be generated as a result, the QNaN generated has a sign
bit of zero, an exponent field of all ones, and a highest-order fraction bit of one with all
other fraction bits zero. An instruction that generates a QNaN as the result of a disabled
invalid operation generates this QNaN. This is shown in Figure 3-17.

111...1 1000 0

... 1 _______ SIGN BIT (Ignored)

Figure 3-17. Representation of Generated QNaN

3.3.2 Sign of Result
The following rules govern the sign of the result of an arithmetic operation, when the
operation does not yield an exception. These rules apply even when the operands or results
are ±O or ±co:

• The sign of the result of an addition operation is the sign of the source operand
having the larger absolute value. If both operands have the same sign, the sign of the
result of an addition operation is the same as the sign of the operands. The sign of
the result of the subtraction operation, x - y, is the same as the sign of the result of
the addition operation, x + (-y).

• When the sum of two operands with opposite sign, or the difference of two operands
with the same sign, is exactly zero, the sign of the result. is positive in all rounding
modes except round toward negative infinity (-00), in which case the sign is negative.

• The sign of the result of a multiplication or division operation is the XOR of the
signs of the source operands.

3-22 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

• The sign of the result of a round to single-precision or convert to/from integer
operation is the sign of the source operand.

• The sign of the result of a square root or reciprocal square root estimate operation is
always positive, except that the square root of -0 is -0 and the reciprocal square root
of -0 is -infinity.

For multiply-add instructions, these rules are applied first to the multiplication operation
and then to the addition or subtraction operation (one of the source operands to the addition
or subtraction operation is the result of the multiplication operation).

3.3.3 Normalization and Denormalization
The intermediate result of an arithmetic or Floating Round to Single-Precision (frspx)
instruction may require normalization and/or denormalization. When an intermediate result
consists of a sign bit, an exponent, and a nonzero significand with a zero leading bit, the
result must be normalized (and rounded) before being stored to the target.

A number is normalized by shifting its significand left and decrementing its exponent by
one for each bit shifted until the leading significand bit becomes one. The guard and round
bits are also shifted, with zeros shifted into the round bit; see Section 0.1, "Execution
Model for IEEE Operations," for information about the guard and round bits. During
normalization, the exponent is regarded as if its range were unlimited.

If an intermediate result has a nonzero significand and an exponent that is smaller than the
minimum value that can be represented in the format specified for the result, this value is
referred to as 'tiny' and the stored result is determined by the rules described in Section
3.3.6.2.2, "Underflow Exception Condition." These rules may involve denormalization.
The sign of the number does not change.

An exponent can become tiny in either of the following circumstances:

• As the result of an arithmetic or Floating Round to Single-Precision (frspx)
instruction or

• As the result of decrementing the exponent in the process of normalization.

Normalization is the process of coercing the leading significand bit to be a 1 while
denormalization is the process of coercing the exponent into the target format's range. In
denormalization, the significand is shifted to the right while the exponent is incremented
for each bit shifted until the exponent equals the format's minimum value. The result is then
rounded. If any significand bits are lost due to the rounding of the shifted value, the result
is considered inexact. The sign of the number does not change.

Chapter 3. Operand Conventions 3-23

3.3.4 Data Handling and Precision
There are specific instructions for moving floating-point data between the FPRs and
memory. For double-precision format data, the data is not altered during the move. For
single-precision data, the format is converted to double-precision format when data is
loaded from memory into an FPR. A format conversion from double- to single-precision is
performed when data from an FPR is stored as single-precision. These operations do not
cause floating-point exceptions. .

All floating-point arithmetic, move, and select instructions use floating-point double­
precision format.

Floating-point single-precision formats are obtained by using the following four types of
instructions:

• Load floating-point single-precision instructions-These instructions access a
single-precision operand in single-precision format in memory, convert it tq double­
precision, and load it into an FPR. Floating-point exceptions do not occur during the
load operation.

• Floating Round to Single-Precision (frspx) instruction-The frspx instruction
rounds a double-precision operand to single-precision, checking the exponent for·
single-precision range and handling any exceptions according to respective enable
bits in the FPSCR. The instruction places that operand into an FPRas a double- .
precision operand. For results produced by single-precision arithmetic instructions
and by single-precision loads, this operation does not alter the value.

• Single-precision arithmetic instructions-These instructions take operands from the
FPRs in double-precision format, perform the operation as if it produced an
intermediate result correct to infinite precision and with unbounded range, and then
force this intermediate result to fit in single-precision format. Status bits in the
FPSCR and iIi the condition register are set to reflect the single-precision result. The
result is then converted to double-precision format and placed into an ppR.The
result falls within the range supported by the single-precision format.·

Source operands for these instructions must be representable in single-precision
format. Otherwise, the result placed into the target FPR and the setting of status bits
in the FPSCR, and in the condition register if update mode is selected, areundefined.

• Store floating-point single-precision instructions-These instructions convert a
double-precision operand to single-precision format and store that operand into
memory. If the operand requires de.normalization in order to fit in single-precision
format, it is automatically denormalized prior to being stored. No excepti()ns are
detected on the store operation (the value being stored is effectively assumed to be
the result of an instruction of one of the preceding three types).

When the result of a Load Floating-Point Single (Ifs), Floating Round to Single-Precision
(frspx), or single-precision arithmetic instruction is stored in an FPR, the low-order 29
fraction bits are zero. This is shown in Figure 3-18.

3-24 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

lsi
Bit35 =-t

EXP \ xxxx xxxooooo 0000 \

o 1 11 12 63

Figure 3-18. Single-Precision Representation in an FPR

The frspx instruction allows conversion from double- to single-precision with appropriate
exception checking and rounding. This instruction should be used to convert double­
precision floating-point values (produced by double-precision load and arithmetic
instructions) to single-precision values before storing them into single-format memory
elements or using them as operands for single-precision arithmetic instructions. Values
produced by single-precision load and arithmetic instructions can be stored directly, or used
directly as operands for single-precision arithmetic instructions, without being preceded by
an frspx instruction.

A single-precision value can be used in double-precision arithmetic operations. The reverse
is true only if the double-precision value can be represented in single-precision format.
Some implementations may execute single-precision arithmetic instructions faster than
double-precision arithmetic instructions. Therefore, if double-precision accuracy is not
required, using single-precision data and instructions may speed operations in some
implementations.

3.3.5 Rounding
All arithmetic, rounding, and conversion instructions defined by the PowerPC architecture
(except the optional Floating Reciprocal Estimate Single (fresx) and Floating Reciprocal
Square Root Estimate (frsqrtex) instructions) produce an intermediate result considered to
be infinitely precise and with unbounded exponent range. This intermediate result is
normalized or denormalized if required, and then rounded to the destination format. The
final result is then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction.

The IEEE-754 specification allows loss of accuracy to be defined as when the rounded
result differs from the infinitely precise value with unbounded range (same as the definition
of 'inexact'). In the PowerPC architecture, this is the way loss of accuracy is detected.

Let Z be the intermediate arithmetic result (with infinite precision and unbounded range) or
the operand of a conversion operation. If Z can be represented exactly in the target format,
then the result in all rounding modes is exactly Z. If Z cannot be represented exactly in the
target format, let Zl and Z2 be the next larger and next smaller numbers representable in
the target format that bound Z; then Zl or Z2 can be used to approximate the result in the
target format.

Chapter 3. Operand Conventions 3-25

Figure 3-19 shows a graphical representation of Z, Zl, and Z2 in this case.

B . rib fZ y Incremen Ing s 0

Infinitely precise value

By truncating after Isb

J
I

Z2 Z1 0 Z2 Z1

Z Z
Negative values __ +-__ Positive values

Figure 3-19. Relation of Z1 and Z2

Four rounding modes are available through the floating-point rounding control field (RN)
in the FPSCR. See Section 2.1.4, "Floating-Point Status and Control Register (FPSCR)."
These are encoded as follows in Table 3-8.

Table 3-8. FPSCR Bit Settings-RN Field

RN Rounding Mode Rules

00 Round to nearest Choose the best approximation (Z1 or Z2). In case of a tie,
choose the one that is even (least-significant bit 0).

01 Round toward zero Choose the smaller in magnitude (Z1 or Z2).

10 Round toward +infinity Choose Z1.

11 Round toward -infinity ChooseZ2.

See Section D.I, "Execution Model for IEEE Operations," for a detailed explanation of
rounding. Rounding occurs before an overflow condition is detected. This means that while
an infinitely precise value with unbounded exponent range may be greater than the greatest
representable value, the rounding mode may allow that value to be rounded to a
representable value. In this case, no overflow condition occurs.

3-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

However, the underflow condition is tested before rounding. Therefore, if the value that is
infinitely precise and with unbounded exponent range falls within the range of
unrepresentable values, the underflow condition occurs. The results in these cases are
defined in Section 3.3.6.2.2, "Underflow Exception Condition." Figure 3-20 shows the
selection of Zl and Z2 for the four possible rounding modes that are provided by
FPSCR[RN].

Ziits
target format

~
otherwise

~ Z1 I PO' Fig,re 3-19

FPSCR[RN] = 01

~~.~re (~'d-i

FPSCR[RN] = 11 otherwise Z < 0 Z > 0
(round toward~) r ""l

~ l~ ~
FPSCR[RN] = 00 FPSCR[RN] = 10
(round to nearest) (round toward +00)

frO r Best approx (Z1 or Z2) -.h-
If tie, choose even (Z1 or Z2 w/lsb 0) ~

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes

All arithmetic, rounding, and conversion instructions affect FPSCR bits FR and FI,
according to whether the rounded result is inexact (FI) and whether the fraction was
incremented (FR) as shown in Figure 3-21. If the rounded result is inexact, FI is set and FR
may be either set or cleared. If rounding does not change the result, both FR and FI are
cleared. The optional fresx and frsqrtex instructions set FI and FR to undefined values;
other floating-point instructions do not alter FR and FI.

Chapter 3. Operand Conventions 3·27

otherwise

AC­Gill

Zround ~ Z

.~
fraction otherwise

incremented -----,

S ~
Figure 3-21. Rounding Flags in FPSCR

3.3.6 Floating-Point Program Exceptions
The computational instructions of the PowerPC architecture are the only instructions that
can cause floating-point enabled exceptions (subsets of the program exception). In the
processor, floating-point program exceptions are signaled by condition bits set in the
floating-point status and control register (FPSCR) as described in this section and in
Chapter 2, "PowerPC Register Set." These bits correspond to those conditions identified as
IEEE floating-point exceptions and can cause the system floating-point enabled exception
error handler to be invoked. Handling for floating-point exceptions is described in
Section 6.4.7, "Program Exception (Ox00700)."

The FPSCR is shown in Figure 3-22.

Ill] Reserved

VXIDI ------, r----- VXZDZ ~---VXSOFT

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 3-22. Floating-Point Status and Control Register (FPSCR)

3-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

A listing of FPSCR bit settings is shown in Table 3-9.

Table 3-9. FPSCR Bit Settings

Bit(s) Name Description

0 FX Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf,
implicitly sets FPSCR[FX) if that instruction causes any of the floating-point exception bits in
the FPSCR to transition from 0 to 1. The mcrts, mtfsfl, mtfsf, mtfsbO, and mtfsb1
instructions can alter FPSCR[FX) explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary. This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits
masked by their respective enable bits (FEX = (VX & VEl " (OX & OE) " (UX & UE) "(ZX &
ZE) " (XX & XE». The mcrts, mtfsf, mtfsfl, mtfsbO, and mtfsb1 instructions cannot alter
FPSCR[FEX) explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exception bits as
described in Section 3.3.6.1.1, "Invalid Operation Exception Condition." The mcrts, mtfsf,
mtfsfi, mtfsbO, and mtfsb1 instructions cannot alter FPSCR[VX) explicitly. This is not a sticky
bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, "Overflow,
Underflow, and Inexact Exception Conditions."

4 UX Floating-point underflow exception. This is a sticky bit. See Section 3.3.6.2.2, "Underflow
Exception Condition:'

5 ZX Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, "Zero Divide
Exception Condition."

6 XX Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, "Inexact Exception
Condition."
FPSCR[XX) is the sticky version of FPSCR[FI). The following rules describe how FPSCR[XX]
is set by a given instruction:
• If the instruction affects FPSCR[FI), the new value of FPSCR[XX) is obtained by logically

ORing the old value of FPSCR[XX) with the new value of FPSCR[FI) .
• If the instruction does not affect FPSCR[FI), the value of FPSCR[XX) is unchanged.

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. See Section 3.3.6.1.1,
"Invalid Operation Exception Condition."

8 VXISI Floating-point invalid operation exception for 00 - 00. This is a sticky bit. See Section 3.3.6.1.1,
"Invalid Operation Exception Condition."

9 VXIDI Floating-point invalid operation exception for 00 + 00. This is a sticky bit. See Section 3.3.6.1.1,
"Invalid Operation Exception Condition."

10 VXZDZ Floating-point invalid operation exception for 0 + O. This is a sticky bit. See Section 3.3.6.1.1,
"Invalid Operation Exception Condition."

11 VXIMZ Floating-point invalid operation exception for 00 • O. This is a sticky bit. See Section 3.3.6.1.1,
"Invalid Operation Exception Condition."

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Section
3.3.6.1.1, "Invalid Operation Exception Condition."

13 FR Floating-point fraction rounded. The last arithmetic, rounding, or conversion instruction
incremented the fraction. See Section 3.3.5, "Rounding:' This bit is not sticky.

Chapter 3. Operand Conventions 3-29

Table 3-9. FPSCR Bit Settings (Continued)

Bit(s) Name Description

14 FI Floating-point fraction inexact. The last arithmetic, rounding, or conversion instruction either
produced an inexact result during rounding or caused a disabled overflow exception. See
Section 3.3.5, "Rounding." This is not a sticky bit. For more information regarding the
relationship between FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.

15-19 FPRF Floating-point result flags. For arithmetic, rounding, and conversion instructions the field is
based on the result placed into the target register, except that if any portion of the result is
undefined, the value placed here is undefined.
15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion

instructions may set this bit with the FPCC bits to indicate the class of the result as
shown in Table 3-10.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic,
rounding, and conversion instructions may set the FPCC bits with the C bit to
indicate the class of the result. Note that in this case the high-order three bits of the
FPCC retain their relational significance indicating that the value is less than,
greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or »
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)
Note that these are not sticky bits.

20 - Reserved

21 VXSOFT Floating-point invalid operation exception for software request. This is a sticky bit. This bit can
be altered only by the mcrfs, mtfsfi, mtfsf, mtfsbO, or mtfsb1 instructions. For more detailed
information, refer to Section 3.3.6.1.1, "Invalid Operation Exception Condition."

22 VXSQRT Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more
detailed information, refer to Section 3.3.6.1.1, "Invalid Operation Exception Condition."

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See
Section 3.3.6.1.1, "Invalid Operation Exception Condition:'

24 VE Floating-point invalid operation exception enable. See Section 3.3.6.1.1, "Invalid Operation
Exception Condition:'

25 OE IEEE floating-point overflow exception enable. See Section 3.3.6.2, "Overflow, Underflow, and
Inexact Exception Conditions."

26 UE IEEE floating-point underflow exception enable. See Section 3.3.6.2.2, "Underflow Exception
Condition."

27 ZE IEEE floating-point zero divide exception enable. See Section 3.3.6.1.2, "Zero Divide
Exception Condition:'

28 XE Floating-point inexact exception enable. See Section 3.3.6.2.3, "Inexact Exception Condition."

3-30 PowerPC Microprocessor Family: The Programming Environments (32-8it)

Table 3-9. FPSCR Bit Settings (Continued)

Blt(s) Name Description

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards
and the other FPSCR bits may have meanings other than those described here. If the bit is set
and if alilinplementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero
(retaining the sign of the denormalized number). Any other effects associated with selting this
bit are described in the user's manual for the implementation.
Effects of the setting of this bit are implementation-dependent.

30-31 RN Floating-point rounding control. See Section 3.3.5, "Rounding:'
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward -infinity

Table 3-10 illustrates the floating-point result flags used by PowerPC processors. The result
flags correspond to FPSCR bits 15-19 (the FPRF field).

Table 3-10. Floating-Point Result Flags - FPSCR[FPRF]

Result Flags (Bits 15-19)
Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 -Infinity

0 1 0 0 0 -Normalized number

1 1 0 0 0 -Denormalized number

1 0 0 1 0 -Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

The following conditions that can cause program exceptions are detected by the processor.
These conditions may occur during execution of computational floating-point instructions.
The corresponding bits set in the FPSCR are indicated in parentheses:

• Invalid operation exception condition (VX)

- SNaN condition (VXSNAN)

- Infinity - infinity condition (VXISI)

- Infinity + infinity condition (VXIDI)

- Zero + zero condition (VXZDZ)

- Infinity * zero condition (VXIMZ)

Chapter 3. Operand Conventions 3-31

- Invalid compare condition (VXVC)

- Software request condition (VXSOFT)

- Invalid integer convert condition (VXCVI)

- Invalid square root condition (VXSQRT)

These exception conditions are described in Section 3.3.6.1.1, "Invalid Operation
Exception Condition."

• Zero divide exception condition (ZX). These exception conditions are described in
Section 3.3.6.1.2, "Zero Divide Exception Condition."

• Overflow Exception Condition (OX). These exception conditions are described in
Section 3.3.6.2.1, "Overflow Exception Condition."

• Underflow Exception Condition (UX). These exception conditions are described in
Section 3.3.6.2.2, "Underflow Exception Condition."

• Inexact Exception Condition (XX). These exception conditions are described in
Section 3.3.6.2.3, "Inexact Exception Condition."

Each floating-point exception condition and each category of invalid IEEE floating-point
operation exception condition has a corresponding exception bit in the FPSCR which
indicates the occurrence of that condition. Generally, the occurrence of an exception
condition depends only on the instruction and its arguments (with one deviation, described
below). When one or more exception conditions arise during the execution of an
instruction, the way in which the instruction completes execution depends on the value of
the IEEE floating-point enable bits in the FPSCR which govern those exception conditions.
If no governing enable bit is set to 1, the instruction delivers a default result. Otherwise,
specific condition bits and the FX bit in the FPSCR are set and instruction execution is
completed by suppressing or delivering a result. Finally, after the instruction execution has
completed, a nonzero FX bit in the FPSCR causes a program exception if either PEO or FE1
is set in the MSR (invoking the system error handler). The values in the FPRs immediately
after the occurrence of an enabled exception do not depend on the PEO and FE1 bits.

The floating-point exception summary bit (FX) in the FPSCR is set by any floating-point
instruction (except mtfsfi and mtfsf) that causes any of the exception bits in the FPSCR to
change from 0 to I, or by mtfsfi, mtfsf, and mtfsbl instructions that explicitly set one of
these bits. FPSCR[PEX] is set when any of the exception condition bits is set and the
exception is enabled (enable bit is one).

A single instruction may set more than one exception condition bit only in the following
cases:

• The inexact exception condition bit (FPSCR[XX]) may be set with the overflow
exception condition bit (FPSCR[OX]).

• The inexact exception condition bit (FPSCR[XX]) may be set with the underflow
exception condition bit (FPSCR[UX]).

3-32 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

• The invalid IEEE floating-point operation exception condition bit (SNaN) may be
set with invalid IEEE floating-point operation exception condition bit (00*0)
(FPSCR[VXIMZ]) for multiply-add instructions.

• The invalid operation exception condition bit (SNaN) may be set with the invalid
IEEE floating-point operation exception condition bit (invalid compare)
(FPRSqVXVC]) for compare ordered instructions.

• The invalid IEEE floating-point operation exception condition bit (SNaN) may be
set with the invalid IEEE floating-point operation exception condition bit (invalid
integer convert) (FPSCR[VXCVI]) for convert-to-integer instructions.

Instruction execution is suppressed for the following kinds of exception conditions, so that
there is no possibility that one of the operands is lost:

• Enabled invalid IEEE floating-point operation

• Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written to the
destination specified by the instruction causing the exception condition. The result may
depend on whether the condition is enabled or disabled. The kinds of exception conditions
that deliver a result are the following:

• Disabled invalid IEEE floating-point operation

• Disabled zero divide
• Disabled overflow

• Disabled underflow

• Disabled inexact

• Enabled overflow
• Enabled underflow

• Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the
action taken when they are detected.

The IEEE standard specifies the handling of exception conditions in terms of traps and trap
handlers. In the PowerPC architecture, an FPSCR exception enable bit being set causes
generation of the result value specified in the IEEE standard for the trap enabled case-the
expectation is that the exception is detected by software, which will revise the result. An
FPSCR exception enable bit of 0 causes generation of the default result value specified for
the trap disabled (or no trap occurs or trap is not implemented) case-the expectation is that
the exception will not be detected by software, which will simply use the default result. The
result to be delivered in each case for each exception is described in the following sections.

Chapter 3. Operand Conventions 3-33

The IEEE default behavior when an exception occurs, which is to generate a default value
and not to notify software, is obtained by clearing all FPSCR exception enable bits and
using ignore exceptions mode (see Table 3-11). In this case the system floating-point
enabled exception error handler is not invoked, even if floating-point exceptions occur. If
necessary, software can inspect the FPSCR exception bits to determine whether exceptions
have occurred.

If the system error handler is to be invoked, the corresponding FPSCR exception enable bit
must be set and a mode other than ignore exceptions mode must be used. In this case the
system floating-point enabled exception error handler is invoked if an enabled floating­
point exception condition occurs.

Whether and how the system floating-point enabled exception error handler is invoked if an
enabled floating-point exception occurs is controlled by MSR bits FEO and FE1 as shown
in Table 3-11. (The system floating-point enabled exception error handler is never invoked
if the appropriate floating-point exception is disabled.)

Table 3-11. MSR[FEO] and MSR[FE1] Bit Settings for FP Exceptions

FEO FE1 Description

0 0 Ignore exceptions mode-Floating-point exceptions do not cause the program exception error
handler to be invoked.

0 1 Imprecise nonrecoverable mode-When an exception occurs, the exception handler is invoked at
some pOint at or beyond the instruction that caused the exception. It may not be possible to identify
the excepting instruction or the data that caused the exception. Results from the excepting instruction
may have been used by or affected subsequent instructions executed before the exception handler
was invoked.

1 0 Imprecise recoverable mode- When an enabled exception occurs, the floating-point enabled
exception handler is invoked at some point at or beyond the instruction that caused the exception.
Sufficient information is provided to the exception handler that it can identify the excepting instruction
and correct any faulty results. In this mode, no results caused by the excepting instruction have been
used by or affected subsequent instructions that are executed before the exception handler is
invoked.

1 1 Precise mode-The system floating-point enabled exception error handler is invoked precisely at the
instruction that caused the enabled exception.

In precise mode, whenever the system floating-point enabled exception error handler is
invoked, the architecture ensures that all instructions logically residing before the excepting
instruction have completed and no instruction after the excepting instruction has been
executed. In an imprecise mode, the instruction flow may not be interrupted at the point of
the instruction that caused the exception. The instruction at which the system floating-point
exception handler is invoked has not been executed unless it is the excepting instruction and
the exception is not suppressed.

In either of the imprecise modes, an FPSCR instruction can be used to force the occurrence
of any invocations of the floating-point enabled exception handler, due to instructions
initiated before the FPSCR instruction. This forcing has no effect in ignore exceptions
mode and is superfluous for precise mode.

3-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Instead of using an FPSCR instruction, an execution synchronizing instruction or event can
be used to force exceptions and set bits in the FPSCR; however, for the best performance
across the widest range of implementations, an FPSCR instruction should be used to
achieve these effects.

For the best performance across the widest range of implementations, the following
guidelines should be considered:

• If IEEE default results are acceptable to the application, FEO and FEI should be
cleared (ignore exceptions mode). All FPSCR exception enable bits should be
cleared.

• If IEEE default results are unacceptable to the application, an imprecise mode
should be used with the FPSCR enable bits set as needed.

• Ignore exceptions mode should not, in general, be used when any FPSCR exception
enable bits are set.

• Precise mode may degrade performance in some implementations, perhaps
substantially, and therefore should be used only for debugging and other specialized
applications.

3.3.6.1 Invalid Operation and Zero Divide Exception Conditions
The flow diagram in Figure 3-23 shows the initial flow for checking floating-point
exception conditions (invalid operation and divide by zero conditions). In any of these cases
of floating-point exception conditions, if the FPSCR[FEX] bit is set (implicitly) and
MSR[FEO-FEI] '* 00, the processor takes a program exception (floating-point enabled
exception type). Refer to Chapter 6, "Exceptions," for more information on exception
processing. The actions performed for each floating-point exception condition are
described in greater detail in the following sections.

Chapter 3. Operand Conventions 3-35

otherwise

otherwise

FP Computational
Instructions

Invalid Operand
Exception Condition

Perform Actions per Section 3.3.6.1.1

Zero Divide
Exception Condition

(FPSCR[FEX] = 1) &
(MSR[FEO-FE1) ~ 00)

Perform Actions per Section 3.3.6.1.2

(FPSCR[FEX) = 1) &
(MSR[FEG-FE1) ~ 00)

Execute Instruction;
x +-Intermediate Result

(Infinitely Precise and with Unbounded Range)

x = (0) or (:too)

• xround +- Rounded x (per FPSCR[RN))
• frO +-xround
• Set FPSCR[FI, FR, FPRF) appropriately

Continue Instruction
Execution

otherwise

(see Figure 3-24)

Figure 3-23. Initial Flow for Floating-Point Exception Conditions

3-36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.3.6.1.1 Invalid Operation Exception Condition
An invalid operation exception occurs when an operand is invalid for the specified
operation. The invalid operations are as follows:

• Any operation except load, store, move, select, or mtfsf on a signaling NaN (SNaN)

• For add or subtract operations, magnitude subtraction of infinities (00 - 00)

• Division of infinity by infinity (00 + 00)

• Division of zero by zero (0 + 0)

• Multiplication of infinity by zero (00 * 0)

• Ordered comparison involving a NaN (invalid compare)

• Square root or reciprocal square root of a negative, nonzero number (invalid square
root). Note that if the implementation does not support the optional floating-point
square root or floating-point reciprocal square root estimate instructions, software
can simulate the instruction and set the FPSCR[VXSQRT] bit to reflect the
exception.

• Integer convert involving a number that is too large in magnitude to be represented
in the target format, or involving an infinity or a NaN (invalid integer convert)

FPSCR[VXSOFf] allows software to cause an invalid operation exception for a condition
that is not necessarily associated with the execution of a floating-point instruction. For
example, it might be set by a program that computes a square root if the source operand is
negative. This allows PowerPC instructions not implemented in hardware to be emulated.

Any time an invalid operation occurs or software explicitly requests the exception via
FPSCR[VXSOFf], (regardless of the value of FPSCR[VED, the following actions are
taken:

• One or two invalid operation exception condition bits is set
FPSCR[VXSNAN] (if SNaN)
FPSCR[VXISI] (if 00 - 00)
FPSCR[VXIDI] (if 00 + 00)
FPSCR[VXZDZ] (if 0 + 0)
FPSCR[VXIMZ] (if 00 * 0)
FPSCR[VXVC] (if invalid comparison)
FPSCR[VXSOFf] (if software request)
FPSCR[VXSQRT] (if invalid square root)
FPSCR[VXCVI] (if invalid integer convert)

• If the operation is a compare,
FPSCR[FR, FI, C] are unchanged
FPSCR[FPCC] is set to reflect unordered

• If software explicitly requests the exception,
FPSCR[FR, FI, FPRF] are as set by the mtfsfi, mtfsf, or mtfsbl instruction.

Chapter 3. Operand Conventions 3-37

There are additional actions performed that depend on the value of FPSCR[VE]. These are
described in Table 3-12.

Table 3-12. Additional Actions Performed for Invalid FP Operations

Action Performed
Invalid Operation Result Category

FPSCR[VE] = 1 FPSCR[VE] = 0

Arithmetic or floating· pOint round frD Unchanged QNaN
to single

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] SetforQNaN Unchanged

Convert to 64-bit integer frD[D-63) Unchanged Most positive 64-bit
(positive number or +00) integer value

FPSCR[FR, FI) Cleared Cleared

FPSCR[FPRF) Set for QNaN Undefined

Convert to 64-bit integer frD[D-63) Unchanged Most negative 64-bit
(negative number, NaN, or-oo) integer value

FPSCR[FR, FI) Cleared Cleared

FPSCR[FPRF) SetforQNaN Undefined

Convert to 32-bit integer frD[G-31) Unchanged Undefined
(positive number or +00)

frD[32-63) Unchanged Most positive 32-bit
integer value

FPSCR[FR, FI) Cleared Cleared

FPSCR[FPRF) SetforQNaN Undefined

Convert to 32-bit integer frD[G-31) Unchanged Undefined
(negative number, NaN, or-oo)

frD[32-63) Unchanged Most negative 32-bit
integer value

FPSCR[FR, FI) Cleared Cleared

FPSCR[FPRF) SetforQNaN Undefined

All cases FPSCR[FEX) Implicitly set Unchanged
(causes exception)

3.3.6.1.2 Zero Divide Exception Condition
A zero divide exception condition occurs when a divide instruction is executed with a zero
divisor value and a finite, nonzero dividend value or when an fres or frsqrte instruction is
executed with a zero operand value. This exception condition indicates an exact infinite
result from finite operands exception condition corresponding to a mathematical pole
(divide or fres) or a branch point singularity (frsqrte).

3-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

When a zero divide condition occurs, the following actions are taken:

• Zero divide exception condition bit is set FPSCR[ZX] = 1.

• FPSCR[FR, FI] are cleared.

Additional actions depend on the setting of the zero divide exception condition enable bit,
FPSCR[ZE], as described in Table 3-13.

Table 3-13. Additional Actions Performed for Zero Divide

Action Performed
Result Category

FPSCR[ZE] = 1 FPSCR[ZE] = 0

frD Unchanged ±~ (sign determined by XOR of the
signs of the operands)

FPSCR[FEX) Implicitly set (causes exception) Unchanged

FPSCR[FPRF) Unchanged Set to indicate ~

3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions
As described earlier, the overflow, underflow, and inexact exception conditions are detected
after the floating-point instruction has executed and an infinitely precise result with
unbounded range has been computed. Figure 3-24 shows the flow for the detection of these
conditions and is a continuation of Figure 3-23. As in the cases of invalid operation, or zero
divide conditions, if the FPSCR[FEX] bit is implicitly set as described in Table 3-9 and
MSR[FEO-FEl] ::F- 00, the processor takes a program exception (floating-point enabled
exception type). Refer to Chapter 6, "Exceptions," for more information on exception
processing. The actions performed for each of these floating-point exception conditions
(including the generated result) are described in greater detail in the following sections.

Chapter 3. Operand Conventions 3-39

Check for Overflow,
Underflow, and Inexact

(from Figure 3-23)

xnorm f- Normalized x
(xnormlnfinitely Precise and with Unbounded Range)

xnorm is tiny

'.SCRIUE]' ~"'
(underflow disabled) 0 e se

o ~enorm f- Oenormalized xnorm magnitude of xr und > magnitude of
largest finite numger in result precision

(overflow)
o Round ~enorm (per FPSCR[RN])
o frO f- xround f- Rounded ~enorm
o inexact f- xround "# xdenorm
olf 'inexact', FPSCR[UX] f- 1

3-40

• FPSCR[UX] f- 1
• FPSCR[FEX] = 1 (implicitly)

otherwise FPSCR[OE] = 0
(overflow disabled)

• Xadjustf-Adj. Exp. of xnorm per Table 3-14

o FPSCR[FEX] = 1 (implicitly) • Round Xadjust (per FPSCR[RN])
• frO f- xround f- Rounded Xadjust o Adjust Exponent per Table 3-14

o frO f- xround (adjusted) • inexact f- xround '" Xadjust

otherwise

o inexact f- xround "# xnorm

inexact = 1
............

FPSCR[XX] f- 1 (inexact)

otherwise
FPSCR[XE] = 0

(inexact disabled)

If (FPSCR[FEX] = 1) & (MSR[FEQ-FE1] '" 00),
then take FP Program Exception;

otherwise, continue

o Get default fromTable 3-15
• frO f- default
• FPSCR[FI] f- 1
• FPSCR[FR] f- undefined

Figure 3-24. Checking of Remaining Floating-Point Exception Conditions

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3.3.6.2.1 Overflow Exception Condition
Overflow occurs when the magnitude of what would have been the rounded result (had the
exponent range been unbounded) is greater than the magnitude of the largest finite number
of the specified result precision. Regardless of the setting of the overflow exception
condition enable bit of the FPSCR, the following action is taken:

• The overflow exception condition bit is set FPSCR[OX] = 1.

Additional actions are taken that depend on the setting of the overflow exception condition
enable bit of the FPSCR as described in Table 3-14.

Table 3-14. Additional Actions Performed for Overflow Exception Condition

Action Performed
Condition Result Category

FPSCR[OE] = 1 FPSCR[OE] = 0

Double-precision Exponent of normalized Adjusted by subtracting 1536 -
arithmetic instructions intermediate result

Single-precision Exponent of normalized Adjusted by subtracting 192 -
arithmetic and frspx intermediate result
instruction

All cases frD Rounded result (with adjusted Default result per Table 3-15
exponent)

FPSCR[XX] Set if rounded result differs Set
frorti intermediate result

FPSCR[FEX) Implicitly set (causes Unchanged
exception)

FPSCR[FPRF] Set to indicate ±normal number Set to indicate ±oo or
±normal number

FPSCR[FI) Reflects rounding Set

FPSCR[FR) Reflects rounding Undefined

When the overflow exception condition is disabled (FPSCR[OE] = 0) and an overflow
condition occurs, the default result is determined by the rounding mode bit (FPSCR[RN])
and the sign of the intennediate result as shown in Table 3-15.

Chapter 3. Operand Conventions 3-41

Table 3-15. Target Result for Overflow Exception Disabled Case

FPSCR[RN).
Sign of Intermediate frD

Result

Round to nearest Positive +Infinity

Negative -Infinity

Round toward zero Positive Format's largest finite positive number

Negative Format's most negative finite number

Round toward +infinity Positive +Infinity

Negative Formal's most negative finite number

Round toward -infinity Positive Format's largest finite positive number

Negative -Infinity

3.3.6.2.2 Underflow exception Condition
The underflow exception condition is defined separately for the enabled and disabled states:

• Enabled-Underflow occurs when the intermediate result is tiny.

• Disabled-Underflow occurs when the intermediate result is tiny and the rounded
result is inexact.

In this context, the term 'tiny' refers to a floating-point value that is too small to be
represented for a particular precision format.

As shown in Figure 3-24, a tiny result is detected before rounding, when a nonzero
intermediate result value computed as though it had infinite precision and unbounded
exponent range is less in magnitude than the smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit is cleared
(FPSCR[UE] = 0), the intermediate result is denormalized (see Section 3.3.3,
"Normalization and Denormalization") and rounded (see Section 3.3.5, "Rounding")
before being stored in an FPR. In this case, if the rounding causes the delivered result value
to differ from what would have been computed were both the exponent range and precision
unbounded (the result is inexact), then underflow occurs and FPSCR[UX] is set.

3-42 PowerPC Microprocessor Family: The Programming Environments (32-8It)

The actions performed for underflow exception conditions are described in Table 3-16.

Table 3-16. Actions Performed for Underflow Conditions

Action Performed
Condition Result Category

FPSCR[UE] = 1 FPSCR[UE] = 0

Double-precision Exponent of normalized Adjusted by adding 1536 -
arithmetic instructions intermediate result

Single-precision Exponent of normalized Adjusted byadding192 -
arithmetic and frspx intermediate result
instructions

All cases frD Rounded result (with Denormalized and
adj usted exponent) rounded result

FPSCR[XX] Set if rounded result Set if rounded result
differs from intermediate differs from intermediate
result result

FPSCR[UX] Set Set only if tiny and inexact
after denormalization and
rounding

FPSCR[FPRF] Set to indicate Set to indicate
±normalized number ±denormalized number or

±Zero

FPSCR[FEX] Implicitly set (causes Unchanged
exception)

FPSCR[FI] Reflects rounding Reflects rounding

FPSCR[FR] Reflects rounding Reflects rounding

Note that the FR and FI bits in the FPSCR allow the system floating-point enabled
exception error handler, when invoked because of an underflow exception condition, to
simulate a trap disabled environment. That is, the FR and FI bits allow the system floating­
point enabled exception error handler to unround the result, thus allowing the result to be
denormalized.

3.3.6.2.3 Inexact Exception Condition
The inexact exception condition occurs when one of two conditions occur during rounding:

• The rounded result differs from the intermediate result assuming the intermediate
result exponent range and precision to be unbounded. (In the case of an enabled
overflow or underflow condition, where the exponent of the rounded result is
adjusted for those conditions, an inexact condition occurs only if the significand of
the rounded result differs from that of the intermediate result.)

• The rounded result overflows and the overflow exception condition is disabled.

Chapter 3. Operand Conventions 3-43

When an inexact exception condition occurs, the following actions are taken independently
of the setting of the inexact exception condition enable bit of the FPSCR:

• Inexact exception condition bit in the FPSCR is set FPSCR[XX] = 1.
• The rounded or overflowed result is placed into the target FPR.
• FPSCR[FPRF] is set to indicate the class and sign of the result.

In addition, if the inexact exception condition enable bit in the FPSCR (FPSCR[XE]) is set,
and an inexact condition exists, then the FPSCR[FEX] bit is implicitly set, causing the
processor to take a floating-point enabled program exception.

In PowerPC implementations, running with inexact exception conditions enabled may have
greater latency than enabling other types of floating-point exception conditions.

3-44 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Chapter 4
Addressing Modes and Instruction Set
Summary
This chapter describes instructions and addressing modes defined by the three levels of the II
PowerPC architecture-user instruction set architecture (VISA), virtual environment VI
architecture (VEA), and operating environment architecture (OEA). These instructions are CD
divided into the following functional categories:

• Integer instructions-These include arithmetic and logical instructions. For more
information, see Section 4.2.1, "Integer Instructions."

• Floating-point instructions-These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 4.2.2, "Floating-Point Instructions."

• Load and store instructions-These include integer and floating-point load and store
instructions. For more information, see Section 4.2.3, "Load and Store Instructions."

• Flow control instructions-These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 4.2.4, "Branch and Flow Control
Instructions."

• Processor control instructions-These instructions. are used for synchronizing
memory accesses and managing of caches, TLBs, and the segment registers. For
more information, see Section 4.2.5, "Processor Control Instructions-VISA,"
Section 4.3.1, "Processor Control Instructions-VEA," and Section 4.4.2,
"Processor Control Instructions-OEA."

• Memory synchronization instructions-These instructions control the order in
which memory operations are completed with respect to asynchronous events, and
the order in which memory operations are seen by other processors or memory
access mechanisms. For more information, see Section 4.2.6, "Memory
Synchronization Instructions-VISA," and Section 4.3.2, "Memory
Synchronization Instructions-VEA."

Chapter 4. Addressing Modes and Instruction Set Summary 4-1

• Memory control instructions-These include cache management instructions (user­
level and supervisor-level), segment register manipulation instructions, and
translation lookaside buffer management instructions. For more information, see
Section 4.3.3, "Memory Control Instructions-VEA," and Section 4.4.3, "Memory
Control Instructions-OEA." (Note that user-level and supervisor-level are referred
to as problem state and privileged state, respectively, in the architecture
specification.)

• External control instructions-These instructions allow a user-level program to
communicate with a special-purpose device. For more information, see
Section 4.3.4, "External Control Instructions."

This grouping of instructions does not necessarily indicate the execution unit that processes
a particular instruction or group of instructions within a processor implementation.

II Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point operands. The
PowerPC architecture uses instructions that are four bytes long and word-aligned. It
provides for byte, half-word, and word operand fetches and stores between memory and a
set of 32 general-purpose registers (GPRs). It also provides for word and double-word
operand fetches and stores between memory and a set of 32 floating-point registers (FPRs).
The FPRs are 64 bits wide in all PowerPC implementations. The GPRs are 32 bits wide in
32-bit implementations and 64 bits wide in 64-bit implementations.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
PowerPC-compliant assemblers support the mnemonics and operand lists. To simplify
assembly language programming, a set of simplified mnemonics (referred to as extended
mnemonics in the architecture specification) and symbols is provided for some of the most
frequently-used instructions; see Appendix F, "Simplified Mnemonics," for a complete list
of simplified mnemonics.

II The instructions are organized by functional categories while maintaining the delineation
'VI of the three levels of the PowerPC architecture-VISA, VEA, and OEA; Section 4.2
G) discusses the VISA instructions, followed by Section 4.3 that discusses the VEA

instructions and Section 4.4 that discusses the OEA instructions. See Section 1.1.2, "The
Levels of the PowerPC Architecture," for more information about the various levels defined
by the PowerPC architecture.

4·2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.1 Conventions
This section describes conventions used for the PowerPC instruction set. Descriptions of I!I
computation modes, memory addressing, synchronization, and the PowerPC exception
summary follow.

4.1.1 Sequential Execution Model
The PowerPC processors appear to execute instructions in program order, regardless of
asynchronous events or program exceptions. The execution of a sequence of instructions
may be interrupted by an exception caused by one of the instructions in the sequence, or by
an asynchronous event. (Note that the architecture specification refers to exceptions as
interrupts.)

For exceptions to the sequential execution model, refer to Chapter 6, "Exceptions." For
information about the synchronization required when using store instructions to access
instruction areas of memory, refer to Section 4.2.3.3, "Integer Store Instructions," and
Section 5.1.5.2, "Instruction Cache Instructions." For information regarding instruction
fetching, and for information about guarded memory refer to Section 5.2.1.5, "The
Guarded Attribute (G)."

4.1.2 Computation Modes
The PowerPC architecture allows for the following types of implementations:

• 64-bit implementations, in which all general-purpose and floating-point registers,
and some special-purpose registers (SPRs) are 64 bits long, and effective addresses
are 64 bits long. All 64-bit implementations have two modes of operation: 64-bit
mode (which is the default) and 32-bit mode. The mode controls how the effective
address is interpreted, how condition bits are set, and how the count register (CTR)
is tested by branch conditional instructions. All instructions provided for 64-bit
implementations are available in both 64- and 32-bit modes.

• 32-bit implementations, in which all registers except the FPRs are 32 bits long, and I!I
effective addresses are 32 bits long.

This chapter describes only the instructions defined for 32-bit implementations.
Instructions defined only for 64-bit implementations are illegal in 32-bit implementations,
and vice versa.

4.1.3 Classes of Instructions
PowerPC instructions belong to one of the following three classes:

• Defined

• Illegal
• Reserved

Chapter 4. Addressing Modes and Instruction Set Summary 4-3

Note that while the definitions of these tenns are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruction that
is specific to 64-bit implementations is considered defined for 64-bit implementations but
illegal for 32-bit implementations.

The class is determined by examining the primary opcode, and the extended opcode if any.
If the opcode, or the combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may
become defined (by being added to the architecture) or reserved (by being assigned to one
of the special purposes). Likewise, reserved instructions may become defined.

4.1.3.1 Definition of Boundedly Undefined
The results of executing a given instruction are said to be boundedly undefined if they could
have been achieved by executing an arbitrary sequence of instructions, starting in the state
the machine was in before executing the given instruction. Boundedly undefined results for
a given instruction may vary between implementations, and between different executions
on the same implementation.

4.1.3.2 Defined Instruction Class
Defined instructions contain all the instructions defined in the PowerPC VISA, VEA, and
OEA. Defined instructions are guaranteed to be supported in all PowerPC implementations.
The only exceptions are instructions that are defined only for 64-bit implementations,
instructions that are defined only for 32-bit implementations, and optional instructions, as
stated in the instruction descriptions in Chapter 8, "Instruction Set." A PowerPC processor
may invoke the illegal instruction error handler (part of the program exception handler)
when an unimplemented PowerPC instruction is encountered so that it may be emulated in
software, as required.

A defined instruction can have invalid fonns, as described in Section 4.1.3.2.2, "Invalid
Instruction Forms."

4.1.3.2.1 Preferred Instruction Forms
A defined instruction may have an instruction form that is preferred (that is, the instruction
will execute in an efficient manner). Any form other than the preferred form will take
significantly longer to execute. The following instructions have preferred forms:

• Load/store multiple instructions

• Load/store string instructions
• Or immediate instruction (preferred form of no-op)

4-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.1.3.2.2 Invalid Instruction Forms
A defined instruction may have an instruction form that is invalid if one or more operands,
excluding opcodes, are coded incorrectly in a manner that can be deduced by examining
only the instruction encoding (primary and extended opcodes). Attempting to execute an
invalid form of an instruction either invokes the illegal instruction error handler (a program
exception) or yields boundedly-undefined results. See Chapter 8, "Instruction Set," for
individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a
reserved bit (shown as '0') is coded as '1'.

The following instructions have invalid forms identified in their individual instruction
descriptions:

• Branch conditional instructions

• Load/store with update instructions

• Load multiple instructions

• Load string instructions

• Integer compare instructions (in 32-bit implementations only)

• Load/store floating-point with update instructions

4.1.3.2.3 Optional Instructions
A defined instruction may be optional. The optional instructions fall into the following
categories:

• General-purpose instructions-fsqrt and fsqrts

• Graphics instructions-fres, frsqrte, and fsel

• External control instructions-eciwx and ecowx V
• Lookaside buffer management instructions-tlbia, tlbie, and tlbsync (with

conditions, see Chapter 8, "Instruction Set," for more information)

Note that the stfiwx instruction is defined as optional by the PowerPC architecture to ensure II
backwards compatibility with earlier processors; however, it will likely be required for
subsequent PowerPC processors.

Also, note that additional categories may be defined in future implementations. If an
implementation claims to support a given category, it implements all the instructions in that
category.

Any attempt to execute an optional instruction that is not provided by the implementation
will cause the illegal instruction error handler to be invoked. Exceptions to this rule are
stated in the instruction descriptions found in Chapter 8, "Instruction Set."

Chapter 4. Addressing Modes and Instruction Set Summary 4-5

4.1.3.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions that are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions. The following primary opcodes are defined as illegal but
may be used in future extensions to the architecture:

1,4,5,6,56,57,60,61

• Instructions that are implemented in the PowerPC architecture but are not
implemented in a specific PowerPC implementation. For example, instructions
specific to 64-bit PowerPC processors are illegal for 32-bit processors.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on 32-bit implementations:

2,30,58,62

• All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, "Instructions Sorted by Opcode," and
Section 4.1.3.4, "Reserved Instructions." Notice that extended opcodes for
instructions that are defined onfy for 64~bit implementations are illegal in 32-bit
implementations. The following primary opcodes have unused extended opcodes.

19,31,59,63 (primary opcodes 30 and 62 are illegal for 32-bitimplementations;but
as 64-bit opcodes they have some unused extended opcodes)

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the illegal instruction error handler (a program exception). Note
that if only the primary opcode consists of all zeros, the instruction is considered a
reserved instruction, as described in Section 4.1.3.4, "Reserved Instructions."

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 6.4.7, "Program Exception
(Ox00700)," for additional information about illegal instruction exception.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the PowerPC architecture.

4.1.3.4 Reserved Instructions
Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
Section 6.4.7, "Program Exception (Ox00700)," for additional information about illegal
instruction exception.

4-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The following types of instructions are included in this class:

1. Instructions for the POWER architecture that have not been included in the
PowerPC architecture.

2. Implementation-specific instructions used to conform to the PowerPC
architecture specifications (for example, Load Data TLB Entry (tlhld) and
Load Instruction TLB Entry (tlhU) instructions for the PowerPC 603™
microprocessor).

3. The instruction with primary opcode 0, when the instruction does not consist
entirely of binary zeros

4. Any other implementation-specific instructions that are not defined in the VISA,
VEA,orOEA

4.1.4 Memory Addressing
II

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches V
the next sequential instruction. CD

4.1.4.1 Memory Operands
Bytes in memory are numbered consecutively starting with zero. Each number is the II
address of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian;
see Section 3.1.2, "Byte Ordering," for more information.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the "natural" address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, "Operand Conventions."

4.1.4.2 Effective Address Calculation
An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Chapter 4. Addressing Modes and Instruction Set Summary 4-7

In all implementations (including 32-bit mode in 64-bit implementations), the three Iow­
order bits of the calculated effective address may be modified by the processor before
accessing memory if the PowerPC system is operating in Iittle-endian mode. See
Section 3.1.2, "Byte Ordering," for more information about Iittle-endian mode.

Load and store operations have three categories of effective address generation that depend
on the operands specified:

• Register indirect with immediate index mode
• Register indirect with index mode

• Register indirect mode

See Section 4.2.3.1, "Integer Load and Store Address Generation," for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate addressing.
• Link register indirect

• Count register indirect

See Section 4.2.4.1, "Branch Instruction Address Calculation," for a detailed
description of effective address generation for branch instructions.

Branch instructions can optionally load the LR with the next sequential instruction address
(current instruction address + 4).

4.1.5 Synchronizing Instructions
e The synchronization described in this section refers to the state of activities within the

processor that is performing the synchronization. Refer to Section 6.1.2,
"Synchronization," for more detailed information about other conditions that can cause
context and execution synchronization.

4.1.5.1 Context Synchronizing Instructions
The System Call (sc), Return from Interrupt (rft), and Instruction Synchronize (isync)
instructions perform context synchronization by allowing previously issued instructions to
complete before performing a context switch. Execution of one of these instructions
ensures the following:

4-8

1. No higher priority exception exists (sc) and instruction dispatching is halted.

2. AIl previous instructions have completed to a point where they can no longer cause
an exception.

If a prior memory access instruction causes one or more direct-store interface error
exceptions, the results are guaranteed to be determined before this instruction is
executed. However, note that the direct-store facility is being phased out of the
architecture and will not likely be supported in future devices.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3. Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

4. The instructions following the sc, rfi, or isync instruction execute in the context
established by these instructions.

4.1.5.2 Execution Synchronizing Instructions
An instruction is execution synchronizing if it satisfies the conditions of the first two items
described above for context synchronization. The sync instruction is treated like isync with
respect to the second item described above (that is, the conditions described in the second
item apply to the completion of sync). The sync and mtmsr instructions are examples of
execution-synchronizing instructions.

All context-synchronizing instructions are execution-synchronizing. Unlike a context
synchronizing operation, an execution synchronizing instruction need not ensure that the
instructions following it execute in the context established by that instruction. This new
context becomes effective sometime after the execution synchronizing instruction
completes and before or at a subsequent context synchronizing operation.

4.1.6 Exception Summary
PowerPC processors have an exception mechanism for handling system functions and error II
conditions in an orderly way. The exception model is defined by the OEA. There are two
kinds of exceptions-those caused directly by the execution of an instruction and those
caused by an asynchronous event. Either may cause components of the system software to
be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program
exception) error handler to be invoked. An attempt by a user-level program to
execute the supervisor-level instructions listed below causes the privileged
instruction (program exception) handler to be invoked.

The PowerPC architecture provides the following supervisor-level instructions: II
dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi, tibia, t1bie, ."
and tlbsync (defined by OEA). Note that the privilege level of the mfspr and mtspr CD
instructions depends on the SPR encoding.

• The execution of a defined instruction using an invalid form causes either the illegal II
instruction error handler or the privileged instruction handler to be invoked.

• The execution of an optional instruction that is not provided by the implementation
causes the illegal instruction error handler to be invoked.

• An attempt to access memory in a manner that violates memory protection, or an
attempt to access memory that is not available (page fault), causes the DSI exception
handler or lSI exception handler to be invoked.

Chapter 4. Addressing Modes and Instruction Set Summary 4·9

~ An attempt to access memory with an effectiveaddfess alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

• The execution of an sc instruction permits a program to call on the system to perform
a service, by causing a system call exception handler to be invoked.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable exception handler.

• The execution of an instruction that causes a floating-point exception that is enabled
invokes the floating-point enabled exception handler.

• The execution of a floating-point instruction that requires system software assistance
causes the floating-point assist exception handler to be invoked. The conditions
under which such software assistance is required are implementation-dependent.

Exceptions caused by asynchronous events are described in Chapter 6, "Exceptions:'

4.2 PowerPC UISA Instructions
The PowerPC user instruction set architecture (VISA) includes the base user-level
instruction set (excluding a few user-level cache-control. synchronization, and time base
instructions), user-level registers, programming model, data types, and addressing modes.
This section discusses the instructions defined in the UISA.

4.2.1 Integer Instructions
The integer instructions consist of the following:

• Integer arithmetic instructions

• Integer compare instructions
• Integer logical instructions

• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs. Integer arithmetic, shift, rotate, and string move instructions may update or read
values from the XER, and the condition register (CR) fields may be updated if the Rc bit of
the instruction is set.

These instructions treat the source operands as signed integers unless the instruction is
explicitly identified as ptfrforming an unsigned operation. For example, Multiply High­
Word Unsigned (mulhwu) and Divide Word Unsigned (divwu) instructions interpret both
operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer
arithmetic instruction, addic., set CR bits 0-3 (CRO) to characterize the result of the
operation. CRO is set to reflect a signed comparison of the result to zero.

4-10 Powe,'PC Microprocessor Family: The Programming Environments (32-Bit)

The integer arithmetic instructions, addie, addie., subfie, adde, subfe, adde, subfe,
addme, subfme, addze, and subfze, always set the XER bit, CA, to reflect the carry out of
bit O. Integer arithmetic instructions with the overflow enable (OE) bit set in the instruction
encoding (instructions with 0 suffix) cause the XER[SO] and XER[OV] to reflect an
overflow of the result. Except for the mUltiply low and divide instructions, these integer
arithmetic instructions reflect the overflow of the result.

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit
(CA) may delay the execution of subsequent instructions.

Unless otherwise noted, when CRO and the XER are set, they reflect the value placed in the
target register.

4.2.1.1 Integer Arithmetic Instructions
Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Table 4-1. Integer Arithmetic Instructions

Name Mnemonic
Operand Operation Syntax

Add Immediate addl rD,rA,SIMM The sum (rAIO) + SIMM is placed into rD.

Add Immediate addis rD,rA,SIMM The sum (rAIO) + (SIMM II OxOOOO) is placed into rD.
Shifted

Add add rD,rA,rB The sum (rA) + (rB) is placed into rD.
add. add Add
addo add. Add with CR Update. The dot suffix enables the update of the
addo. CR.

addo Add with Overflow Enabled. The 0 suffix enables the overflow
bit (OV) in the XER.

addo. Add with Overflow and CR Update. The o. suffix enables the
update of the CR and enables the overflow bit (OV) in the
XER.

Subtract From subf rD,rA,rB The sum ~ (rA) + (rB) +1 is placed into rD.
subf. subl Subtract From
subfo subl. Subtract from with CR Update. The dot suffix enables the
subfo. update of the CR.

sublo Subtract from with Overflow Enabled. The 0 suffix enables the
overflow bit (OV) in the XER.

sublo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit
(OV) in the XER.

Add Immediate addle rD,rA,SIMM The sum (rA) + SIMM is placed into rD.
Carrying

Add Immediate addic. rD,rA,SIMM The sum (rA) + SIMM is placed into rD. The CR is updated.
Carrying and
Record

Subtract from subfic rD,rA,SIMM The sum ~ (rA) + SIMM + 1 is placed i.nto rD.
Immediate
Carrying

Chapter 4. Addressing Modes and Instruction Set Summary 4-11

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation Syntax

Add Carrying addc rD,rA,rB The sum (rA) + (rB) is placed into rD.
addc. addc Add Carrying
addco
addco.

addc. Add Carrying with CR Update. The dot suffix enables the
update of the CR.

addco Add Carrying witli Overflow Enabled. The 0 suffix enables the
overflow bit (OV) in the XER.

addco. Add Carrying with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit
(OV) in the XER.

Subtract from subfc rD,rA,rB The sum..., (rA) + (rB) + 1 is placed into rD.
Carrying subfc. subfc Subtract from Carrying

subfco subfc. Subtract from Carrying with CR Update. The dot suffix
subfco. enables the update of the CR.

subfco Subtract from Carrying with Overflow. The 0 suffix enables the
overflow bit (OV) in the XER.

subfco. Subtract from Carrying with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

Add adde rD,rA,rB The sum (rA) + (rB) + XER[CA] is placed into rD.
Extended adde. adde Add Extended

addeo adde. Add Extended with CR Update. The dot suffix enables the
addeo. update of the CR.

addeo Add Extended with Overflow. The 0 suffix enables the
overflow bit (OV) in the XER.

addeo. Add Extended with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit
(OV) in the XER.

Subtract from subfe rD,rA,rB The sum..., (rA) + (rB) + XER[CA] is placed into rD.
Extended subfe. subfe Subtract from Extended

subfeo subfe. Subtract from Extended with CR Update. The dot suffix
subfeo. enables the update of the CR.

subfeo Subtract from Extended with Overflow. The 0 suffix enables
the overflow bit (OV) in the XER.

subfeo. Subtract from Extended with Overflow and .CR Update. The o.
suffix enables the update of the CR and enables the overflow
(OV) bit in the XER.

Add to Minus add me rD,rA The sum (rA) + XER[CA] added to OxFFFF _FFFF is placed into rD.
One EX\ended addme. addme Add to Minus One Extended

addmeo addme. Add to Minus One Extended with CR Update. The dot suffix
addmeo. enables the update of the CR.

addmeo Add to MiQus One Extended with Overflow. The 0 suffix .
enables the overflow bit (OV) in the XER.

addmeo. Add to Minus One Extended with Overflow and CR Update.
The o. suffix enables the update of the CR and enables the
overflow (OV) bit in the XER.

4-12 PowerPC Microproce.ssor Family: The Programming Environments (32-Bit)

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Operation Syntax

Subtract from subfme rD,rA The sum..., (rA) + XER[CA] added to OxFFFF _FFFF is placed into rD.
Minus One subfme. subfme Subtract from Minus One Extended
Extended subfmeo subfme. Subtract from Minus One Extended with CR Update. The dot

subfmeo. suffix enables the update of the CR.
subfmeo Subtract from Minus One Extended with Overflow. The 0 suffix

enables the overflow bit (OV) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and CR

Update. The o. suffix enables the update of the CR and
enables the overflow bit (OV) in the XER.

Add to Zero addze rD,rA The sum (rA) + XER[CA] is placed into rD.
Extended addze. addze Add to Zero Extended

addzeo addze. Add to Zero Extended with CR Update. The dot suffix enables
addzeo. the update of the CR.

addzeo Add to Zero Extended with Overflow. The 0 suffix enables the
overflow bit (OV) in the XER.

addzeo. Add to Zero Extended with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

Subtract from subfze rD,rA The sum..., (rA) + XER[CA] is placed into rD.
Zero Extended subfze. subfze Subtract from Zero Extended

subfzeo subfze. Subtract from Zero Extended with CR Update. The dot suffix
subfzeo. enables the update of the CR.

subfzeo Subtract from Zero Extended with Overflow. The 0 suffix
enables the overflow bit (OV) in the XER.

subfzeo. Subtract from Zero Extended with Overflow and CR Update.
The o. suffix enables the update of the CR and enables the
overflow bit (OV) in the XER.

Negate neg rD,rA The sum..., (rA) + 1 is placed into rD.
neg. neg Negate
nego neg. Negate with CR Update. The dot suffix enables the update of
nego. the CR.

nego Negate with Overflow. The 0 suffix enables the overflow bit
(OV) in the XER.

nego. Negate with Overflow and CR Update. The o. suffix enables
the update of the CR and enables the overflow bit (OV) in the
XER.

Multiply Low mulli rD,rA,SIMM The low-order 32 bits of the product (rA) * SIMM are placed into rD.
Immediate This instruction can be used with mulhdx or mulhwx to calculate a full

54-bit product.

Chapter 4. Addressing Modes and Instruction Set Summary 4-13

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation Syntax

Multiply Low mullw rD,rA,rB The 32-bit product (rA) * (rB) is placed into registerrD.
mullw. This instruction can be used with mulhwxto calculate a full 54-bit
mullwo product.
mullwo.

mullw Multiply Low
mullw. Multiply Law with CR Update. The dot suffix enables the

update of the CR.
mullwo Multiply Low with Overflow. The a suffix enables the overflow

bit (OV) in the XER.
mullwo. Multiply Low with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables the
overflow bit (OV) in the XER.

Multiply High mulhw rD,rA,rB The contents of rA and rB are interpreted as 32-bit signed integers. The
Word mulhw. 54-bit product is formed. The high-order 32 bits of the 54-bit product are

placed into rD.

mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix enables

the update of the CR.

Multiply High mulhwu rD,rA,rB The contents of rA and of rB are interpreted as 32-bit unsigned integers.
Word Unsigned mulhwu. The 54-bit product is formed. The high-order 32 bits of the 54-bit product

are placed into rD.

mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot suffix

enables the update of the CR.

Divide Word dlvw rD,rA,rB The dividend is the signed value of rA. The divisor is the signed value of
dlvw. rB. The quotient is placed into rD. The remainder is not supplied as a
dlvwo result.
dlvwo. dlvw Divide Word

dlvw. Divide Word with CR Update. The dot suffix enables the update
of the CR.

divwo Divide Word with Overflow. The a suffix enables the overflow bit
(OV) in the XER.

dlvwo. Divide Word with Overflow and CR Update. The o. suffix enables
the update of the CR and enables the overflow bit (OV) in the
XER.

Divide Word divwu rD,rA,rB The dividend is the zero-extended value in rA. The diviSOr is the zero-
UnSigned dlvwu. extended value in rB. The quotient is placed into rD. The remainder. is not

dlvwuo supplied as a result.
dlvwuo. dlvwu Divide Word Unsigned

dlvwu. Divide Word Unsigned with CR Update. The dot suffix enables
the update of the CR.

dlvwuo Divide Word Unsigned with Overflow. The 0 suffix enables the
overflow bit (OV) in the XER.

dlvwuo. Divide Word Unsigned with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

4-14 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

Although there is no "Subtract Immediate" instruction, its effect can be achieved by using
an addi instruction with the immediate operand negated. Simplified mnemonics are
provided that include this negation. The subfinstructions subtract the second operand (rA)
from the third operand (rB). Simplified mnemonics are provided in which the third operand
is subtracted from the second operand. See Appendix F, "Simplified Mnemonics," for
examples.

4.2.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpI instructions. Table 4-2
summarizes the integer compare instructions.

Appendix F, "Simplified MnemonicsFor 32-bit implementations, the L field must be
cleared, otherwise the instruction form is invalid.

The integer compare instructions (shown in Table 4-2) set one of the leftmost three bits of
the designated CR field, and clear the other two. XER[SO] is copied into bit 3 of the CR
field.

Table 4-2. Integer Compare Instructions

Name Mnemonic Operand Syntax Operation

Compare cmpi crfD,L,rA,SIMM The value in register rA is compared with the sign-extended value of
Immediate the SIMM operand, treating the operands as signed integers. The

result of the comparison is placed into the CR field specified by
operand crfD.

Compare cmp crfD,L,rA,rB The value in register rA is compared with the value in register rB,
treating the operands as signed integers. The result of the comparison
is placed into the CR field specified by operand crfD.

Compare cmpli crfD,L,rA,UIMM The value in register rA is compared with OxOOOO II UIMM, treating the
Logical operands as unsigned integers. The result of the comparison is placed
Immediate into the CR field specified by operand crfD.

Compare cmpl crfD,L,rA,rB The value in register rA is compared with the value in register rB,
Logical treating the operands as unsigned integers. The result of the

comparison is placed into the CR field specified by operand crfD.

The crtD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crtD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, "Simplified Mnemonics."

Chapter 4. Addressing Modes and Instruction Set Summary 4-15

4.2.1.3 Integer Logical Instructions
The logical instructions shown in Table 4-3 perform bit-parallel operations on 32-bit
operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO (bits 0 to 2) to characterize the result of the
logical operation. Logical instructions without CR update and the remaining logical
instructions do not modify the CR. Logical instructions do not affect the XER[SO],
XER[OV], and XER[CA] bits.

See Appendix F, "Simplified Mnemonics," for simplified mnemonic examples for integer
logical operations.

Table 4-3. Integer Logical Instructions

Name Mnemonic
Operand

Operation
Syntax

AND andi. rA,rS,UIMM The contents of rS are ANDed with OxOOOO II UIMM and the result is placed
Immediate into rA.

The CR is updated.

AND andis. rA,rS,UIMM The content of rS are ANDed with UIMM II OxOOOO and the result is placed
Immediate into rA.
Shifted The CR is updated.

OR orl rA,rS,UIMM The contents of rS are ORed with OxOOOO II UIMM and the result is placed
Immediate into rA.

The preferred no-op is ori 0,0,0

OR oris rA,rS,UIMM The contents of rS are ORed with UIMM II OxOOOO and the result is placed
Immediate into rA.
Shifted

XOR xori rA,rS,UIMM The contents of rS are XORed with OxOOOO II UIMM and the result is placed
Immediate into rA.

XOR xoris rA,rS,UIMM The contents of rS are XORed with UIMM II OxOOOO and the result is placed
Immediate into rA.
Shifted

AND and rA,rS,rB The contents of rS are ANDed with the contents of register rB and the result
and. is placed into rA.

and AND
and. AND with CR Update. The dot suffix enables the update of the CR.

OR or rA,rS,rB The contents of rS are ORed with the contents of rB and the result is placed
or. into rA.

or OR
or. OR with CR Update. The dot suffix enables the update of the CR.

XOR xor rA,rS,rB The contents of rS are XORed with the contents of rB and the result is
xor. placed into rA.

xor XOR
xor. XOR with CR Update. The dot suffix enables the update of the CR.

4-16 Powel PC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-3. Integer Logical Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

NAND nand rA,rS,rB The contents of rS are ANDed with the contents of rB and the one's
nand. complement of the result is placed into rA.

nand NAND
nand. NAND with CR Update. The dot suffix enables the update of CR.

Note that nandx, with rS = rB, can be used to obtain the one's complement.

NOR nor rA,rS,rB The contents of rS are ORed with the contents of rB and the one's
nor. complement of the result is placed into rA.

nor NOR
nor. NOR with CR Update. The dot suffix enables the update of the CR.

Note that norx, with rS = rB, can be used to obtain the one's complement.

Equivalent eqv rA,rS,rB The contents of rS are XORed with the contents of rB and the
eqv. complemented result is placed into rA.

eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the update of

the CR.

AND with andc rA,rS,rB The contents of rS are ANDed with the one's complement of the contents of
Complement andc. rB and the result is placed into rA.

andc AND with Complement
andc. AND with Complement with CR Update. The dot suffix enables the

update of the CR.

OR with orc rA,rS,rB The contents of rS are ORed with the complement of the contents of rB and
Complement orc. the result is placed into rA.

orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix enables the

update of the CR.

Extend Sign extsb rA,rS The contents of the low-order eight bits of rS are placed into the low-order
Byte extsb. eight bits of rA. Bit 24 of rS is placed into the remaining high-order bits of

rA.

extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the

update of the CR.

Extend Sign extsh rA,rS The contents of the low-order 16 bits of rS are placed into the low-order 16
Half Word extsh. bits of rA. Bit 16 of rS is placed into the remaining high-order bits of rA.

extsh Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix enables the

update of the CR.

Count cntlzw rA,rS A count of the number of consecutive zero bits starting at bit 0 of rS is
Leading cntlzw. placed into rA. This number ranges from 0 to 32, inclusive.
Zeros Word

If Rc = 1 (dot suffix), LT is cleared in CRO.

cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix enables

the update of the CR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-17

4.2.1.4 Integer Rotate and Shift Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. The rotation operations rotate a 32-bit quantity left by a
specified number of bit positions. Bits that exit from positio~ 0 enter at position 31.

The rotate and shift instructions employ a mask generator. The mask is 32 bits long and
consists of '1' bits from a start bit, Mstart, through and including a stop bit, Mstop, and '0'
bits elsewhere. The values of Mstart and Mstop range from 0 to 31. If Mstart > Mstop, the
'1' bits wrap around from position 31 to position O. Thus the mask is formed as follows:

if Mstart ::;; Mstop then

mask[mstart-mstop] = ones
mask[all other bits] = zeros

else
mask[mstart-31] = ones
mask[O-mstop] = ones
mask[all other bits] = zeros

It is not possible to specify an all-zero mask. The use of the mask is described in the
following sections.

If CR updating is enabled, rotate and shift instructions set CRO[0-2] according to the
contents of rA at the completion of the instruction. Rotate and shift instructions do not
change the values of XER[OV] and XER[SO] bits. Rotate and shift instructions, except
algebraic right shifts, do not change theXER[CA] bit.

See Appendix F, "Simplified Mnemonics," for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

4.2.1.4.1 Integer Rotate Instructions
Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

Rotate left instructions allow right-rotation of the contents of a register to be performed by
a left-rotation of 64 - n, where n is the number of bits by which to rotate right. It also allows
right-rotation of the contents of the low-order 32 bits of a register to be performed by a left­
rotation of 32 - n, where n is the number of bits by which to rotate right.

4-18 PowerPC Microprocessor Family: The Programming Environments (32-Sit)

The integer rotate instructions are summarized in Table 4-4.

Table 4-4. Integer Rotate Instructions

Name Mnemonic Operand Syntax Operation

Rotate Left rlwinm rA,rS,SH,MB,ME The contents of register rS are rotated left by the number of bits
Word rlwlnm. specified by operand SH. A mask is generated having 1 bits from
Immediate the bit specified by operand MB through the bit specified by
then AND with operand ME and 0 bits elsewhere. The rotated data is ANDed with
Mask the generated mask and the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with

CR Update. The dot suffix enables the update of the
CR.

Rotate Left rlwnm rA,rS,rB,MB,ME The contents of rS are rotated left by the number of bits specified
Word then rlwnm. by operand in the low-order five bits of rB. A mask is generated
AND with having 1 bits from the bit specified by operand MB through the bit
Mask specified by operand ME and 0 bits elsewhere. The rotated word is

ANDed with the generated mask and the result is placed into rA.

rlwnm Rotate Left Word then AND with Mask
rlwnm. Rotate Left Word then AND with Mask with CR Update.

The dot suffix enables the update of the CR.

Rotate Left rlwlml rA,rS,SH,MB,ME The contents of rS are rotated left by the number of bits specified
Word rlwiml. by operand SH. A mask is generated having 1 bits from the bit
Immediate specified by operand MB through the bit specified by operand ME
then Mask and 0 bits elsewhere. The rotated word is inserted into rA under
Insert control of the generated mask.

rlwlml Rotate Left Word Immediate then Mask
rlwimi. Rotate Left Word Immediate then Mask Insert with CR

Update. The dot suffix enables the update of the CR.

4.2.1.4.2 Integer Shift Instructions
The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, "Simplified
Mnemonics") are provided to make coding of such shifts simpler and easier to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by
2n. The setting ofXER[CA] by the shift right algebraic instruction is independent of mode.

Multiple-precision shifts can be programmed as shown in Appendix C, "Multiple-Precision
Shifts."

Chapter 4. Addressing Modes and Instruction Set Summary 4-19

The integer shift instructions are summarized in Table 4-5.

Table 4-5. Integer Shift Instructions

Name Mnemonic Operand Operation
Syntax

Shift Left slw rA,rS,rB The contents of rS are shifted left the number of bits specified by operand in
Word slw. the low-order,six bits of rB. Bits shifted out of position 0 are lost. Zeros are

supplied to the vacated positions on the right. The 32-bit result is placed into
rA.

slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables the update

of the CA.

Shift Right srw rA,rS,rB The contents of. rS are shifted right the number of bits specified by the low-
Word srw. order six bits of rB. Bits shifted out of position 31 are lost. Zeros are supplied

to the vacated positions on the left. The 32-bit result is placed into rA.

srw Shift Right Word
srw. Shift Right Word with CR Update. The dot suffix enables the

update of the CA.

Shift Right srawl rA,rS,SH The contents of rS are shifted right the number of bits specified by operand
Algebraic srawi. SH. Bits shifted out of position 31are lost. The result is sign extended and
Word placed into rA.
Immediate srawl Shift Right Algebraic Word Immediate

srawi. Shift Right Algebraic Word Immediate with CR Update. The dot
suffix enables the update of the CR.

Shift Right sraw rA,rS,rB The contents of rS are shifted right the number of bits specified by the low-
Algebraic sraw. order six bits 01 rB. Bits shifted out of position 31 are lost. The result is
Word placed into rA.

sraw Shift Right Algebraic Word
sraW. Shift Right Algebraic Word with CR Update. The dot suffix

enables the update of the CA.

4.2.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

•
•
•
•
•
•

Floating-point arithmetic instructions
Floating-point multiply-add instructions

Floating-point rounding and conversion instructions
Floating-point compare instructions

Floating-point status and control register instructions
Floating-point move instructions

Note that MSR[FP] must be set in order for any of these instructions (including the floating­
point loads and stores) to be executed. If MSR[FP] = 0 when any floating-point instruction
is attempted, the floating-point unavailable exception is taken (see Section 6.4.8, "Floating­
Point Unavailable Exception (Ox00800)"). See Section 4.2.3, "Load and Store
Instructions," for information about floating-point loads and stores.

4-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The PowerPC architecture supports a floating-point system as defined in the IEEE-754
standard, but requires software support to conform with that standard. Floating-point
operations conform to the IEEE-754 standard, with the exception of operations performed
with the fmadd, fres, fsel, and frsqrte instructions, or if software sets the non-IEEE mode
bit (NI) in the FPSCR. Refer to Section 3.3, "Floating-Point Execution Models-VISA,"
for detailed information about the floating-point formats and exception conditions. Also,
refer to Appendix D, "Floating-Point Models," for more information on the floating-point
execution models used by the PowerPC architecture.

4.2.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 4-6.

Table 4-6. Floating-Point Arithmetic Instructions

Name Mnemonic
Operand Operation
Syntax

Floating fadd frD,frA,frB The floating-point operand in register frA is added to the floating-point
Add fadd. operand in register frB. If the most significant bit of the resultant significand
(Double- is not a one the result is normalized. The result is rounded to the target
Precision) precision under control of the floating-point rounding control field RN of the

FPSCR and placed into register frD.

fadd Floating Add (Double-Precision)
fadd. Floating Add (Double-Precision) with CR Update. The dot suffix

enables the update of the CR.

Floating fadds frD,fr A,frB The floating-point operand in register frA is added to the floating-point
Add Single fadds. operand in register frB. If the most significant bit of the resultant significand

is not a one, the result is normalized. The result is rounded to the target
precision under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

fadds Floating Add Single
fadds. Floating Add Single with CR Update. The dot suffix enables the

update of the CR.

Floating fsub frD,frA,frB The floating-point operand in register frB is subtracted from the floating-
Subtract fsub. point operand in register frA. If the most significant bit of the resultant
(Double- significand is not 1, the result is normalized. The result is rounded to the
Precision) target precision under control of the floating-point rounding control field RN

of the FPSCR and placed into register frD.

fsub Floating Subtract (Double-Precision)
fsub. Floating Subtract (Double-Precision) with CR Update. The dot

suffix enables the update of the CR.

Floating fsubs frD,fr A,frB The floating-point operand in register frB is subtracted from the floating-
Subtract fsubs. point operand in register frA. If the most Significant bit of the resultant
Single significand is not 1, the result is normalized. The result is rounded to the

target precision under control of the floating-point rounding control field RN
of the FPSCR and placed into frD.

fsubs Floating Subtract Single
fsubs. Floating Subtract Single with CR Update. The dot suffix enables

the update of the CR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-21

Table 4-6. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Floating fmul frD,frA,frC The floating-point operand in register frA is multiplied by the floating-point
Multiply fmul. operand in register frC.
(Double- fmul Floating Multiply (Double-Precision)
Precision)

fmul. Floating Multiply (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.

Floating fmula frD,frA,frC The floating-point operand in register frA is multiplied by the floating-point
Multiply fmula. operand in register frC.
Single fmuls Floating Multiply Single

fmuls. Floating Multiply Single with CR Update. The dot suffix enables
the update of the CR.

Floating fdlv frD,frA,frB The floating-point operand in register frA is divided by the floating-point
Divide fdlv. operand in register frB. No remainder is preserved.
(Double-

fdlv Floating Divide (Double-Precision)
Precision)

fdlv. Floating Divide (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.

Floating fdivs frD,frA,frB The floating-point operand in register frA is divided by the floating-point
Divide fdlvs. operand in register frB. No remainder is preserved.
Single

fdlvs Floating Divide Single
fdlvs. Floating Divide Single with CR Update. The dot suffix enables

the update of the CR.

Floating faqrt frD,frB The square root of the floating-point operand in register frB is placed into
Square faqrt. register frO.
Root

fsqrt Floating Square Root (Double-Precision)
(Double-

faqrt. Floating Square Root (Double-Precision) with CR Update. The
Precision) dot suffix enables the update of the CR.

This instruction is optional.

Floating fsqrts frD,frB The square root of the floating-point operand in register frB is placed into
Square fsqrts. register frO.
Root faqrts Floating Square Root Single
Single

fsqrts. Floating Square Root Single with CR Update. The dot suffix
enables the update of the CR.

This instruction is optional.

Floating fres frD,frB A single-precision .estimate of the reciprocal of the floating-point operand in
Reciprocal fres. register frB is placed into frO. The estimate placed into frO is correct to a
Estimate precision of one part in 256 of the reciprocal of frB.
Single

fres Floating Reciprocal Estimate Single
fres. Floating Reciprocal Estimate Single with CR Update. The dot

suffix enables the update of the CR.
This instruction is optional.

4-22 PowerPC Microprocessor Family: The Programming Environments (32~Bit)

Table 4-6. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Floating frsqrte frD,frB A double-precision estimate of the reciprocal of the square root of the
Reciprocal frsqrte. floating-point operand in register frB is placed into frD. The estimate
Square placed into frD is correct to a precision of one part in 32 of the reciprocal of
Root the square root of frB.
Estimate frsqrte Floating Reciprocal Square Root Estimate

frsqrte. Floating Reciprocal Square Root estimate with CR Update. The
dot suffix enables the update of the CR.

This instruction is optional.

Floating fsel frD, fr A, frC, frB The floating-point operand in frA is compared to the value zero. If the
Select operand is greater than or equal to zero; frD is set to the contents of frC. If

the operand is less than zero or is a NaN, frD is set to the contents of frB.
The comparison ignores the sign of zero (that is, regards +0 as equal to
-0).

fsel Floating Select
fsel. Floating Select with CR Update. The dot suffix enables the

update of the CR.

This instruction is optional.

4.2.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

Status bits are set as follows:

• Overflow, underflow, and inexact exception bits, the FR and FI bits, and the FPRF
field are set based on the final result of the operation, and not on the result of the
multiplication.

• Invalid operation exception bits are set as if the multiplication and the addition were
performed using two separate instructions (fmuls, followed by fadds orfsubs). That
is, multiplication of infinity by zero or of anything by an SNaN, and/or addition of
an SNaN, cause the corresponding exception bits to be set.

The floating-point multiply-add instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax Operation

Floating fmadd frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Multiply- fmadd. pOint operand in register frC. The floating-point operand in register frB
Add is added to this intermediate result.
(Double-

fmadd Floating Multiply-Add (Double-Precision)
Precision)

fmadd. Floating Multiply-Add (Double-Precision) with CR Update.
The dot suffix enables the update of the CR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-23

Table 4-7. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Floating fmadds frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Multiply- fmadds. point operand in register frC. The floating-point operand in register frB
Add is added to this intermediate result.
Single fmadds Floating Multiply-Add Single

fmadds. Floating Multiply-Add Single with CR Update. The dot suffix
enables the update of the CR.

Floating fmsub frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Multiply- fmsub. point operand in register frC. The floating-point operand in register frB
Subtract is subtracted from this intermediate result.
(Double-

fmsub Floating Multiply-Subtract (Double-Precision)
Precision)

fmsub. Floating Multiply-Subtract (Double-Precision) with CR
Update. The dot suffix enables the update of the CR.

Floating fmsubs frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Multiply- fmsubs. point operand in register frC. The floating-point operand in register frB
Subtract is subtracted from this intermediate result.
Single fmsubs Floating Multiply-Subtract Single

fmsubs. Floating Multiply-Subtract Single with CR Update. The dot
suffix enables the update of the CR.

Floating fnmadd frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floa.ting-
Negative fnmadd. point operand in register frC. The floating-point operand in reQister frB
Multiply- is added to this intermediate result.
Add

fnmadd Floating Negative Multiply-Add (Double-Precision)
(Double- fnmadd. Floating Negative Multiply-Add (Double-Precision) with CR
Precision) Update. The dot suffix enables update of the CR.

Floating fnmadds frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Negative fnmadds. point operand in register frC. The floating-point operand in register frB
Multiply- is added to this intermediate result.
Add fnmadds Floating Negative Multiply-Add Single
Single fnmadds. Floating Negative Multiply-Add Single with CR Update. The

dot suffix enables the update of the CR.

Floating fnmsub frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Negative fnmsub. point operand in register frC. The floating-point operand in register frB
Multiply- is subtracted from this intermediate result.
Subtract fnmsub Floating Negative Multiply-Subtract (Double-Precision)
(Double- fnmsub. Floating Negative Multiply-Subtract (Double-Precision) with
Precision) CR Update. The dot suffix enables the update of the CR.

Floating fnmsubs frD,frA,frC,frB The floating-point operand in register IrA is multiplied by the floating-
Negative fnmsubs. point operand in register frC. The floating-point operand in register frB
Multiply- is subtracted from this intermediate result.
Subtract fnmsubs Floating Negative Multiply-Subtract Single
Single fnmsubs. Floating Negative Multiply-Subtract Single with CR Update.

The dot suffix enables the update of the CR.

For more information on multiply-add instructions, refer to Section D.2, "Execution Model
for Multiply-Add Type Instructions."

4-24 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.2.3 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating­
point convert instructions convert a 64-bit double-precision floating-point number to a 32-
bit signed integer number.

The PowerPC architecture defines bits 0-31 of floating-point register frD as undefined
when executing the Floating Convert to Integer Word (fctiw) and Floating Convert to
Integer Word with Round toward Zero (fctiwz) instructions. The floating-point rounding
instructions are shown in Table 4-8.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, "Floating-Point Models."

Table 4-8. Floating-Point Rounding and Conversion Instructions

Name Mnemonic
Operand

Operation
Syntax

Floating Round frsp frO,frB The fioating-point operand in frB is rounded to single-precision using the
to Single- frsp. rounding mode specified by FPSCR[RN) and placed into frO.
Precision

frsp Floating Round to Single-Precision
frsp. Floating Round to Single-Precision with CR Update. The dot

suffix enables the update of the CR.

Floating Convert fctiw frO,frB The fioating-point operand in register frB is converted to a 32-bit signed
to Integer Word fctiw. integer, using the rounding mode specified by FPSCR[RN), and placed in

the low-order 32 bits of frO. Bits 0-31 of frO are undefined.

fctiw Floating Convert to Integer Word
fctiw. Floating Convert to Integer Word with CR Update. The dot suffix

enables the update of the CR.

Floating Convert fctiwz frO,frB The fioating-point operand in register frB is converted to a 32-bit signed
to Integer Word fctiwz. integer, using the rounding mode Round toward Zero, and placed in the low-
with Round order 32 bits of frO. Bits 0-31 of frO are undefined.
toward Zero

fctiwz Floating Convert to Integer Word with Round toward Zero
fctiwz. Floating Convert to Integer Word with Round toward Zero with

CR Update. The dot suffix enables the update of the CR.

4.2.2.4 Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point registers
and the comparison ignores the sign of zero (that is +0 = -0). The comparison can be
ordered or unordered. The comparison sets one bit in the designated CR field and clears the
other three bits. The FPCC (floating-point condition code) in bits 16-19 of the FPSCR
(floating-point status and control register) is set in the same way.

Chapter 4. Addressing Modes and Instruction Set Summary 4-25

The CR field and the FPCC are interpreted as shown in Table 4-9.

Table 4-9. CR Bit Settings

Bit Name Description

0 FL (fr A) < (frS)

1 FG (frA) > (frS)

2 FE (frA) = (frS)

3 FU (frA) ? (frB) (unordered)

The floating-point compare instructions are summarized in Table 4-10.

Table 4-10. Floating-Point Compare Instructions

Name Mnemonic
Operand

Operation
Syntax

Floating fcmpu crfD,frA,frB The floating-point operand in frA is compared to the floating-point operand
Compare in frB. The result of the compare is placed into crfD and the FPCC.
Unordered

Floating fcmpo crfD,frA,frB The floating-point operand in frA is compared to the floating-point operand
Compare in frS. The result of the compare is placed into crfD and the FPC,?
Ordered

4.2.2.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. In particular:

• All exceptions caused by the previously initiated instructions are recorded in the
FPSCR before the FPSCR instruction is initiated.

• All invocations of the floating-point exception handler caused by the previously
initiated instructions have occurred before the FPSCR instruction is initiated.

• No subsequent floating-point instruction that depends on or alters the settings of any
FPSCR bits appears to be initiated until the FPSCR instruction has completed.

Floating-point memory access instructions are not affected by the execution of the FPSCR
instructions.

4-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The FPSCR instructions are summarized in Table 4-11.

Table 4-11. Floating-Point Status and Control Register Instructions

Name Mnemonic
Operand

Operation
Syntax

Move from mffs frO The contents of the FPSCR are placed into bits 32-63 of frO. Bits 0-31 of
FPSCR mffs. frO are undefined.

mffs Move from FPSCR
mffs. Move from FPSCR with CR Update. The dot suffix enables the

update of the CR.

Move to mcrfs crfO,crfS The contents of FPSCR field specified by operand crfS are copied to the
Condition CR field specified by operand crfO. All exception bits copied (except FEX
Register from and VX bits) are cleared in the FPSCR.
FPSCR

Move to mtfsfl crfO,lMM The contents of the IMM field are placed into FPSCR field crfO. The
FPSCR Field mtfsfi. contents of FPSCR[FX] are altered only if crfO = O.
Immediate mtfsfl Move to FPSCR Field Immediate

mtfsfi. Move to FPSCR Field Immediate with CR Update. The dot
suffix enables the update of the CR.

Move to mtfsf FM,frB Bits 32-63 of frB are placed into the FPSCR under control of the field
FPSCR Fields mtfsf. mask specified by FM. The field mask identifies the 4-bit fields affected.

Let; be an integer in the range 0-7. If FM[/] = 1, FPSCR field; (FPSCR
bits 4*; through 4* ;+3) is set to the contents of the corresponding field of
the low-order 32 bits of frB.

The contents of FPSCR[FX] are altered only if FM[O] = 1.

mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix enables

the update of the CR.

Move to mtfsbO crbO The FPSCR bit location specified by operand crbO is cleared.
FPSCR Bit 0 mtfsbO.

Bits 1 and 2 (FEX and VX) cannot be reset explicitly.

mtfsbO Move to FPSCR Bit 0
mtfsbO. Move to FPSCR Bit 0 with CR Update. The dot suffix enables

the update of the CR.

Move to mtfsb1 crbO The FPSCR bit location specified by operand crbO is set.
FPSCR Bit 1 mtfsb1. Bits 1 and 2 (FEX and VX) cannot be set explicitly.

mtfsb1 Move to FPSCR Bit 1
mtfsb1. Move to FPSCR Bit 1 with CR Update. The dot suffix enables

the update of the CR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-27

4.2.2.6 Floating-Point Move Instructions
Floating-point move instructions copy data from one FPR to another, altering the sign bit
(bit 0) as described for the fneg, fabs, and fnabs instructions in Table 4-12. The fneg, fabs,
and fnabs instructions may alter the sign bit of a NaN. The floating-point move instructions
do not modify the FPSCR. The CR update option in these instructions controls the placing
ofresult status into CRl. If the CR update option is enabled, CRI is set; otherwise, CRI is
unchanged.

Table 4-12 provides a summary ofthe floating-point move instructions.

Table 4-12. Floating-Point Move Instructions

Name Mnemonic Operand Syntax Operation

Floating fmr frO,frS The contents of frS are placed into frO.
Move fmr. fmr Floating Move Register
Register fmr. Floating Move Register with CR Update. The dot suffix

enables the update of the CR.

Floating fneg frO,frS The contents of frS with bit 0 inverted are placed into frO.
Negate fneg. fneg Floating Negate

fneg. Floating Negate with CR Update. The dot suffix enables the
update of the CR.

Floating fabs frO,frS The contents of frS with bit 0 cleared are placed into frO.
Absolute tabs.

fabs Floating Absolute Value
Value

fabs. Floating Absolute Value with CR Update. The dot suffix
enables the update of the CR.

Floating fnabs frO,frS The contents of IrS with bit 0 set are placed into frO.
Negative fnabs. fnabs Floating Negative Absolute Value
Absolute fnabs. Floating Negative Absolute Value with CR Update. The dot
Value

suffix enables the update of the CR.

4.2.3 Load and Store Instructions
Load and store instructions are issued and translated in program· order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

• Integer load instructions

• Integer store instructions
• Integer load and store with byte-reverse instructions
• Integer load and store multiple instructions

• Floating-point load instructions

• Floating-point store instructions
• Memory synchronization instructions

4·28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.3.1 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 4.1.4.2, "Effective Address Calculation," for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 6.4.6.1, "Integer Alignment
Exceptions:' for additional information about load and store address alignment exceptions.

4.2.3.1.1 Register Indirect with Immediate Index Addressing for Integer
Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended, and added to the contents of a general-purpose register
specified in the instruction (rA operand) to generate the effective address. If the rA field of
the instruction specifies rO, a value of zero is added to the immediate index (d operand) in
place of the contents of rOo The option to specify r A or 0 is shown in the instruction
descriptions as (rAIO).

Figure 4-1 shows how an effective address is generated when using register indirect with
immediate index addressing.

o

o

o 56 1011 1516

Instruction Encoding:

o
Sign Extension

Yes

No

GPR(rA) Effective Address

63 Store
GPR (rD/rS) Load

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer
Loads/Stores

Chapter 4. Addressing Modes and Instruction Set Summary

31

63

4-29

4.2.3.1.2 Register Indirect with Index Addressing for Integer Loads and
Stores

Instructions using this addressing mode cause the contents of two general-purpose registers
(specified as operands rA and rB) to be added in the generation of the effective address. A
zero in place of the rA operand causes a zero to be added to the contents of the general­
purpose register specified in operand rB (or the value zero for lswi and stswi instructions).
The option to specify rA or 0 is shown in the instruction descriptions as (rAIO).

Figure 4-2 shows how an effective address is generated when using register indirect with
index addressing.

o 5 6 1011 1516 2021 30 31
[I) Reserved Instruction Encoding:

GPR (rB)
Yes

rA=O?

No

0 63

GPR (rA) Effective Address

0 63 Store
GPR (rD/rS) Load

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores

4.2.3.1.3 Register Indirect Addressing for Integer Loads and Stores
Instructions using this addressing mode use the contents of the general-purpose register
specified by the rA operand as the effective address. A zero in the rA operand causes an
effective address of zero to be generated. The option to specify rA or 0 is shown in the
instruction descriptions as (rAIO).

Figure 4-3 shows how an effective address is generated when using register indirect
addressing.

4-30 Power pc Microprocessor Family: The Programming Environments (32-Bit)

o
Instruction Encoding:

30 31
1:11 Reserved ~--~~--~--~--~--------

~--~~--~~~--~--------

Yes
o 63

00000000000000

o 63

63

o 63

Figure 4-3. Register Indirect Addressing for Integer Loads/Stores

4.2.3.2 Integer Load Instructions
For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if rA::F­
o and rA::F- rD (otherwise invalid), the EA is placed into rA and the memory element (byte,
half word, word, or double word) addressed by the EA is loaded into rD. Note that the
PowerPC architecture defines load with update instructions with operand rA = 0 or
rA = rD as invalid forms.

The default byte and bit ordering is big-endian in the PowerPC architecture; see
Section 3.1.2, "Byte Ordering," for information about little-endian byte ordering.

Note that in some implementations of the architecture, the load word algebraic instructions
(lha, lhax, lwa, lwax) and the load with update (lbzu, lbzux, lhzu, lhzux, lhau, lhaux,
lwaux, ldu, ldux) instructions may execute with greater latency than other types of load
instructions. Moreover, the load with update instructions may take longer to execute in
some implementations than the corresponding pair of a non update load followed by an add
instruction.

Chapter 4. Addressing Modes and Instruction Set Summary 4-31

Table 4-13 summarizes the integer load instructions.

Table 4~13. Integer load Instructions

Name Mnemonic
Operand

Operation
Syntax

Load Byte and Ibz rD,d(rA) The EA is the sum (rAIO) + d. The byte in memory addressed by the EA is
Zero loaded into the low-order eight bits of rD. The remaining bits in rD are

cleared.

Load Byte and Ibzx rD,rA,rB The EA is the sum (rAIO) + (rB). The byte in memory addressed by the EA is
Zero Indexed loaded into the low-order eight bits of rD. The remaining bits in rD are

cleared.

Load Byte and Ibzu rD,d(rA) The EA is the sum (rA) + d. The byte in memory addressed by the EA is
Zero with loaded into the low-order eight bits of rD. The remaining bits in rD are
Update cleared. The EA is placed into rA.

Load Byte and Ibzux rD,rA,rB The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is
Zero with loaded into the low-order eight bits of rD. The remaining bits in rD are
Update Indexed cleared. The EA is placed into rA.

Load Half Word 1hz rD,d(rA) The EA is the sum (rAIO) + d. The half word in memory addressed by the EA
and Zero is loaded into the low-order 16 bits of rD. The remaining bits in rDare

cleared.

Load Half Word Ihzx rD,rA,rB The EA is the sum (rAIO) + (rB). The half word in memory addressed by the
and Zero EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
Indexed cleared.

Load Half Word Ihzu rD,d(rA) The EA is the sum (rA) + d. The half word in memory addressed by the EA is
and Zero with loaded into the low-order 16 bits of rD. The remaining bits in rD are cleared.
Update The EA is placed into rA.

Load Half Word Ihzux rD,rA,rB The EA is the sum (rA) + (rB). The half word in memory addressed by the EA
and Zero with is loaded into the low-order 16 bits of rD. The remaining bits in rD are
Update Indexed cleared. The EA is placed into rA.

Load Half Word Iha rD,d(rA) The EA is the sum (rAIO) + d. The half word in memory addressed by the EA
Algebraic is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled

with a copy of the most significant bit of the loaded half word.

Load Half Word Ihax rD,rA,rB The EA is the sum (rAIO) + (rB). The half word in memory addressed by the
Algebraic EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
Indexed filled with a copy of the most significant bit of the loaded half word.

Load Half Word Ihau rD,d(rA) The EA is the sum (rA) + d. The half word in memory addressed by the EA is
Algebraic with loaded into the low-order 16 bits of rD. The remaining bits in rD are filled with
Update a copy of the most significant bit of the loaded half word. The EA is placed

into rA.

Load Half Word Ihaux rD,rA,rB The EA is the sum (rA) + (rB). The half word in memory addressed by the EA
Algebraic with is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
Update Indexed with a copy of the most significant bit of the loaded half word. The EA is

placed into rA.

Load Word and Iwz rD,d(rA) The EA is the sum (rAIO) + d. The word in memory addressed by the EA is
Zero loaded into rD.

Load Word and Iwzx rD,rA,rB The EA is the sum (rAIO) + (rB). The word in memory addressed by the EA is
Zero Indexed loaded into rD.

4·32 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-13. Integer Load Instructions (Continued)

Name Mnemonic Operand Operation
Syntax

Load Word and Iwzu rD,d(rA) The EA is the surri (rA) + d. The word in memory addressed by the EA is
Zero with loaded into rD. The EA is placed into rA.
Update

Load Word and Iwzux rD,rA,rB The EA is the sum (rA) + (rB). The word in memory addressed by the EA is
Zero with loaded into rD. The EA is placed into rA.
Update Indexed

4.2.3.3 Integer Store Instructions
For integer store instructions, the contents of rS are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

• IfrA;¢: 0, the effective address is placed into rA.

• If rS = r A, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

In general, the PowerPC architecture defines a sequential execution model. However, when
a store instruction modifies a memory location that contains an instruction, software
synchronization is required to ensure that subsequent instruction fetches from that location
obtain the modified version of the instruction.

If a program modifies the instructions it intends to execute, it should call the appropriate
system library program before attempting to execute the modified instructions to ensure
that the modifications have taken effect with respect to instruction fetching.

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 4-14 provides
a summary of the integer store instructions. .

Table 4-14. Integer Store Instructions

Name Mnemonic Operand Operation
Syntax

Store Byte atb rS,d(rA) The EA is the sum (rAIO) + d. The contents of the low-order eight bits
of rS are stored into the byte in memory addressed by the EA.

Store Byte Indexed stbx rS,rA,rB The EA is the sum (rAIO) + (rB). The contents of the low-order eight
bits of rS are stored into the byte in memory addressed by the EA.

Store Byte with stbu rS,d(rA) The EA is the sum (rA) + d. The contents of the low-order eight bits of
Update rS are stored into the byte in memory addressed by the EA. The EA is

placed into rA.

Chapter 4. Addressing Modes and Instruction Set Summary 4-33

Table 4-14. Integer Store Instructions (Continued)

Name Mnemonic Operand Operation Syntax

Store Byte with stbux rS,rA,rB The EA is the sum (rA) + (rB). The contents of the low-order eight bits
Update Indexed of rS are stored into the byte in memory addressed by the EA. The EA

is placed into rA.

Store Half Word sth rS,d(rA) The EA is the sum (rAIO) + d. The contents of the low-order 16 bits of
rS are stored into the half word in memory addressed by the EA.

Store Half Word sthx rS,rA,rB The EA is the sum (rAIO) + (rB). The contents of the low-order 16 bits
Indexed of rS are stored into the half word in memory addressed by the EA.

Store Half Word with sthu rS,d(rA) The EA is the sum (rA) + d. The contents of the low-order 16 bits of rS
Update are stored into the half word in memory addressed by the EA. The EA

is placed into rA.

Store Half Word with sthux rS,rA,rB The EA is the sum (rA) + (rB). The contents of the low-order 16 bits of
Update Indexed rS are stored into the half word in memory addressed by the EA. The

EA is placed into rA.

Store Word stw rS,d(rA) The EA is the sum (rAIO) + d. The contents of rS are stored into the
word in memory addressed by the EA.

Store Word Indexed stwx rS,rA,rB The EA is the sum (rAIO) + (rB). The contents of rS are stored into the
word in memory addressed by the EA.

Store Word with stwu rS,d(rA) The EA is the sum (rA) + d. The contents of rS are stored 111to the
Update word in memory addressed by the EA. The EA is placed into rA.

Store Word with stwux rS,rA,rB The EA is the sum (rA) + (rB). The contents of rS are stored into the
Update Indexed word in memory addressed by the EA. The EA is placed into rA.

4.2.3.4 Integer Load and Store with Byte-Reverse Instructions
Table 4-15 describes integer load and store with byte-reverse instructions. Note that in
some PowerPC implementations, load byte-reverse instructions may have greater latency
than other load instructions.

When used in a PowerPC system operating with the default big-endian byte order, these
instructions have the effect of loading and storing data in little-endian order. Likewise,
when used in a PowerPC system operating with little-endian byte order, these instructions
have the effect of loading and storing data in big-endian order. For more information about
big-endian and little-endian byte ordering, see Section 3.1.2, "Byte Ordering."

4-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-15. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic
Operand

Operation
Syntax

Load Half Ihbrx rD,rA,rB The EA is the sum (r AIO) + (rB). The high-order eight bits of the half word
Word Byte- addressed by the EA are loaded into the low-order eight bits of rD. The next eight
Reverse higher-order bits of the half word in memory addressed by the EA are loaded into
Indexed the next eight lower-order bits of rD. The remaining rD bits are cleared.

Load Iwbrx rD,rA,rB The EA is the sum (rAIO) + (rB). Bits 0-7 of the word in memory addressed by
Word Byte- the EA are loaded into the low-order eight bits of rD. Bits 8-15 of the word in
Reverse memory addressed by the EA are loaded into bits 18-23 of rD. Bits 18-23 of the
Indexed word in memory addressed by the EA are loaded into bits 8-15. Bits 24-31 of

the word in memory addressed by the EA are loaded into bits 0-7. The
remaining bits in rD are cleared.

Store Half sthbrx rS,rA,rB The EA is the sum (rAIO) + (rB). The contents of the low-order eight bits of rS are
Word Byte- stored into the high-order eight bits of the half word in memory addressed by the
Reverse EA. The contents of the next lower-order eight bits of rS are stored into the next
Indexed eight higher-order bits of the half word in memory addressed by the EA.

Store Word stwbrx rS,rA,rB The effective address is the sum (rAIO) + (rB). The contents of the low-order
Byte- eight bits of rS are stored into bits 0-7 of the word in memory addressed by EA.
Reverse The contents of the next eight lower-order bits of rS are stored into bits 8-15 of
Indexed the word in memory addressed by the EA. The contents of the next eight lower-

order bits of rS are stored into bits 18-23 of the word in memory addressed by
the EA. The contents of the next eight lower-order bits of rS are stored into bits
24-31 of the word addressed by the EA.

4.2.3.5 Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.
Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EA and rD (rS) is such that
the low-order byte of GPR31 is loaded from or stored into the last byte of an aligned quad
word in memory; if the effective address is not correctly aligned, it may take significantly
longer to execute.

In some PowerPC implementations operating with little-endian byte order, execution of an
Imw or stmw instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, "Byte Ordering," for more information.

Chapter 4. Addressing Modes and Instruction Set Summary 4-35

The PowerPC architecture defines the load multiple word (lmw) instruction with rA in the
range of registers to be loaded, including the case in which rA :;: 0, as an invalid form.

Table 4-16. Integer Load and Store Multiple Instructions

Name Mnemonic
Operand

Operation
Syntax

Load Multiple Word Imw rD,d(rA) The EA is the sum (rAIO) + d. n = (32 - rD).

Store Multiple Word stmw rS,d(rA) The EA is the sum (rAIO) + d. n = (32 - rS).

4.2.3.6 Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate .a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 4-17
summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently when rD or rS :;: 5, and the last
register loaded or stored is less than or equal to 12.

In some PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, "Byte Ordering," for more information.

Table 4-17. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax Operation

Load String Word Immediate Iswi rD,rA,NB The EA is (rAIO).

Load String Word Indexed Iswx rD,rA,rB The EA is the sum (rAIO) + (rB).

Store String Word Immediate stswl rS,rA,NB The EA is (rAIO).

Store String Word Indexed stswx rS,rA,rB The EA is the sum (rAIO) + (rB).

Load string and store string instructions may involve operands that are not word-aligned.
As described in Section 6.4.6, "Alignment Exception (Ox00600)," a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non-word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

4·36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.3.7 Floating-Point Load and Store Address Generation
Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads, and stores are not supported for direct-store interface accesses.
The use of floating-point loads and stores for direct-store interface accesses results in an
alignment exception. Note that the direct-store facility is being phased out of the
architecture and is not likely to be supported in future devices.

4.2.3.7.1 Register Indirect with Immediate Index Addressing for Floating-
Point Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended to 32 bits, and added to the contents of a GPR specified
in the instruction (rA operand) to generate the effective address. If the rA field of the
instruction specifies rO, a value of zero is added to the immediate index (d operand) in place
of the contents of rOo The option to specify r A or 0 is shown in the instruction descriptions
as (rAIO).

Figure 4-4 shows how an effective address is generated when using register indirect with
immediate index addressing for floating-point loads and stores.

1011 1516 31

o
Sign Extension

Yes

No

o 63

GPR (rA) Effective Address

o 63 Store
FPR (frDlfrS) Load

Figure 4-4. Register Indirect with Immediate Index Addressing for Floating-Point
Loads/Stores

Chapter 4. Addressing Modes and Instruction Set Summary 4-37

4.2.3.7.2 Register Indirect with Index Addressing for Floating-Point Loads
and Stores

Instructions using this addressing mode add the contents of two GPRs (specified in
operands rA and rB) to generate the effective address. A zero in therA operand causes a
zero to be added to the contents of the GPR specified in operand rB. This is shown in the
instruction descriptions as (rAIO).

Figure 4-5 shows how an effective address is generated when using register indirect with
index addressing.

o 56 1011 1516 2021 30 31
III Reserved Instruction Encoding:

o 63

Yes

o 63

o

Figure 4-5. Register Indirect with Index Addressing for Floating-Point LoadS/Stores

The PowerPC architecture defines floating-point load and store with update instructions
(Ifsu,lfsux,lfdu,lfdux, stfsu, stfsux, stfdu, stfdux) with operand rA = 0 as invalid forms
of the instructions. In addition, it defines floating-point load and store instructions with the
CR updating option enabled (Rc bit, bit 31 = 1) to be an invalid form.

The PowerPC architecture defines that the FPSCR[UE] bit should not be used to determine
whether denormalization should be performed on floating-point stores.

4.2.3.8 Floating-Point Load Instructions
There are two forms of the floating-point load instruction-single-precision and double­
precision operand formats. Because the FPRs support only the floating-point double­
precision format, single-precision floating-point load instructions convert single-precision
data to double-precision format before loading the operands into the target FPR. This
conversion is described fully in Section D.6, "Floating-Point Load Instructions."
Table 4-18 provides a summary ofthe floating-point load instructions.

4-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Note that the PowerPC architecture defines load with update instructions with rA = 0 as an
invalid form.

Table 4-18. Floating-Point Load Instructions

Name Mnemonic
Operand

Operation
Syntax

Load Floating- Ifs frD,d(rA) The EA is the sum (rAID) + d.
Point Single

The word in memory addressed by the EA is interpreted as a floating-point
single-precision operand. This word is converted to floating-point double-
precision format and placed into frD.

Load Floating- Ifsx frD,rA,rB The EA is the sum (rAID) + (rB).
Point Single

The word in memory addressed by the EA is interpreted as a floating-point
Indexed single-precision operand. This word is converted to floating-point double-

precision format and placed into frD.

Load Floating- Ifsu frD,d(rA) The EA is the sum (rA) + d.
Point Single The word in memory addressed by the EA is interpreted as a floating-point
with Update single-precision operand. This word is converted to floating-point double-

precision format and placed into frD.

The EA is placed into the register specified by rA.

Load Floating- Ifsux frD,rA,rB The EA is the sum (rA) + (rB).
Point Single The word in memory addressed by the EA is interpreted as a floating-point
with Update single-precision operand. This word is converted to floating-point double-
Indexed precision format and placed into frD.

The EA is placed into the register specified by rA.

Load Floating- Ifd frD,d(rA) The EA is the sum (rAID) + d.
Point Double The double word in memory addressed by the EA is placed into register frD.

Load Floating- Ifdx frD,rA,rB The EA is the sum (rAID) + (rB).
Point Double The double word in memory addressed by the EA is placed into register frD.
Indexed

Load Floating- Ifdu frD,d(rA) The EA is the sum (rA) + d.
Point Double

The double word in memory addressed by the EA is placed into register frD.
with Update

The EA is placed into the register specified by rA.

Load Floating- Ifdux frD,rA,rB The EA is the sum (rA) + (rB).
Point Double The double word in memory addressed by the EA is placed into register frD.
with Update
Indexed The EA is placed into the register specified by rA.

Chapter 4. Addressing Modes and Instruction Set Summary 4-39

4.2.3.9 Floating-Point Store Instructions
This section describes floating-point store instructions. There are three basic forms of the
store instruction-single-precision, double-precision, and integer. The integer form is
supported by the stfiwx instruction. (Note that the stfiwx instruction is defined as optional
by the PowerPC architecture to ensure backwards compatibility with earlier processors;
however, it will likely be required for subsequent PowerPC processors.) Because the FPRs
support only floating-point, double-precision format for floating-point data, single­
precision floating-point store instructions convert double-precision data to single-precision
format before storing the operands. The conversion steps are described fully in Section D.7,
"Floating-Point Store Instructions." Table 4-19 provides a summary of the floating-point
store instructions.

Note that the PowerPC architecture defines store with update instructions with rA = 0 as an
invalid form.

Table 4-19 provides the floating-point store instructions for the PowerPC processors.

Table 4-19. Floating-Point Store Instructions

Name Mnemonic Operand Syntax Operation

Store Floating- sHs IrS,d(rA) The EA is the sum (rAIO) + d.
Point Single The contents of IrS are converted to single-precision and stored

into the word in memory addressed by the EA.

Store Floating- stfsx IrS,rA,rB The EA is the sum (rAIO) + (rB).
Point Single The contents of IrS are converted to Single-precision and.stored
Indexed into the word in memory addressed by the EA.

Store Floating- stfsu IrS,d(rA) The EA is the sum (rA) + d.
Point Single The contents of IrS are converted to single-precision and stored
with Update into the word in memory addressed by the EA.

The EA is placed into rA.

Store Floating- sHsux IrS,rA,rB The EA is the sum (rA) + (rB).
Point Single

The contents of IrS are converted to Single-precision and stored
with Update

into the word in memory addressed by the EA.
Indexed

The EA is placed into the rA.

Store Floating- sHd IrS,d(rA) The EA is the sum (rAIO) + d.
Point Double

The contents of IrS are stored into the double word in memory
addressed by the EA.

Store Floating- stfdx IrS,rA,rB The EA is the sum (rAIO) + (rB).
Point Double The contents of IrS are stored into the double word in memory
Indexed

addressed by the EA.

Store Floating- sHdu IrS,d(rA) The EA is the sum (rA) + d.
Point Double The contents of IrS are stored into the double word in memory
with Update addressed by the EA.

The EA is placed into rA.

4-40 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-19. Floating-Point Store Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Store Fioating- stfdux frS,rA,rB The EA is the sum (rA) + (rB).
Point Double The contents of frS are stored into the double word in memory
with Update addressed by EA.
Indexed

The EA is placed into register rA.

Store Floating- stfiwx frS,rA,rB The EA is the sum (rAIO) + (rB).
Point as The contents of the low-order 32 bits of frS are stored, without
Integer Word

conversion, into the word in memory addressed by the EA.
indexed

Note: The stfiwx instruction is defined as optional by the PowerPC
architecture to ensure backwards compatibility with earlier
processors; however, it will likely be required for subsequent
PowerPC processors.

4.2.4 Branch and Flow Control Instructions
Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch may either be predicted using the y bit (as described in Table 4-20) or by using
dynamic prediction. The interlock is monitored while instructions are fetched for the
predicted branch. When the interlock is cleared, the processor determines whether the
prediction was correct based on the value of the CR bit. If the prediction is correct, the
branch is considered completed and instruction fetching continues. If the prediction is
incorrect, the fetched instructions are purged, and instruction fetching continues along the
alternate path.

4.2.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits ofthe generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative
• Branch conditional to relative address
• Branch to absolute address
• Branch conditional to absolute address
• Branch conditional to link register
• Branch conditional to count register

Chapter 4. Addressing Modes and Instruction Set Summary 4-41

In the 32-bit mode of a 64-bit implementation, the final step in the address computation is
clearing the high-order 32 bits of the target address.

4.2.4.1.1 Branch Relative Addressing Mode
Instructions that use branch relative addressing generate the next instruction address by
sign extending and appending ObOO to the immediate displacement operand LI, and adding
the resultant value to the current instruction address. Branches using this addressing mode
have the absolute addressing option disabled (AA field, bit 30, in the instruction
encoding = 0). Thelink register (LR) update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-6 shows how the branch target address is generated when using the branch relative
addressing mode.

o 5 6 2930 31

Instruction Encoding:
L-______ ~ ____________ _.------------------~~

o 37 38 61 62 63 r-------,--------------L-------------------
LI

o 63

o 63

!1llil Reserved

Figure 4-6. Branch Relative Addressing

4.2.4.1.2 Branch Conditional to Relative Addressing Mode
If the branch conditions are met, instructions that use the branch conditional to relative
addressing mode generate the next instruction address by sign extending and appending
ObOO to the immediate displacement operand (BD) and adding the resultant value to the
current instruction address. Branches using this addressing mode have the absolute
addre~sing option disabled (AA field, bit 30, in the instruction encoding = 0). The link
register update option can be enabled (LK field, bit 31, in the instruction encoding = 1).
This option causes the effective address of the instruction following the branch instruction
to be placed in the LR.

Figure 4-7 shows how the branch target address is generated when using the branch
conditional relative addressing mode.

4-42 Power pc Microprocessor Family: The Programming Environments (32-Bit)

o 1516 30 31
Instruction Encoding: BO LK III Reserved

No o 63
Next Sequential Instruction Address

o

Figure 4-7. Branch Conditional Relative Addressing

4.2.4.1.3 Branch to Absolute Addressing Mode
Instructions that use branch to absolute addressing mode generate the next instruction
address by sign extending and appending ObOO to the LI operand. Branches using this
addressing mode have the absolute addressing option enabled (AA field, bit 30, in the
instruction encoding = 1). The link register update option can be enabled (LK field, bit 31,
in the instruction encoding = 1). This option causes the effective address ofthe instruction
following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to
absolute addressing mode.

29 30 31

Instruction Encoding:
~------~-------------.------------------~~

LI A

61 62 63

LI o 0

o 61 62 63

Branch Target Address o 0

Figure 4-8. Branch to Absolute Addressing

Chapter 4. Addressing Modes and Instruction Set Summary 4-43

4.2.4.1.4 Branch Conditional to Absolute Addressing Mode
If the branch conditions are met, instructions that use the branch conditional to absolute
addressing mode generate the next instruction address by sign extending and appending
ObOO to the BD operand. Branches using this addressing mode have the absolute addressing
option enabled (AA field, bit 30, in the instruction encoding = 1). The link register update
option can be enabled (LK field, bit 31, in the instruction encoding = 1). This option causes
the effective address of the instruction following the branch instruction to be placed in the
LR.

Figure 4-9 shows how the branch target address is generated when using the branch
conditional to absolute addressing mode.

o 5 6 1011 1516 2930 31

Instruction Encoding: 1L-1_6_LI _BO----lpd_B_1 +-__ B_D_--LIA_~L-.JLKI

o 63

Next Sequential Instruction Address

o 61 6263

Sign Extension BD 0 0

o 61 6263

Branch Target Address o 0

Figure 4-9. Branch Conditional to Absolute Addressing

4-44 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.4.1.5 Branch Conditional to Link Register Addressing Mode
If the branch conditions are met, the branch conditional to link register instruction generates
the next instruction address by fetching the contents of the LR and clearing the two low­
order bits to zero. The link register update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-10 shows how the branch target address is generated when using the branch
conditional to link register addressing mode.

o 1516 2021 30 31
Instruction Encoding: .------~----r"-- ----.. III Reserved

o 61 6263

Figure 4-10. Branch Conditional to Link Register Addressing

Chapter 4. Addressing Modes and Instruction Set Summary 4·45

4.2.4.1.6 Branch Conditional to Count Register Addressing Mode
If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by fetching the contents of the count register (CTR)
and clearing the two low-order bits to zero. The link register update option can be enabled
(LKfield, bit 31, in the instruction encoding = 1). This option causes the effective address
of the instruction following the branch instruction to be placed in the LR.

Figure 4-11 shows how the branch target address is generated when using the branch
conditional to count register addressing mode.

o
III Reserved Instruction Encoding: 1...-_---1 __ 1...-_

o 63

o 61 6263

Figure 4-11. Branch Conditional to Count Register Addressing

4-46 PowerPC Microprocessor Family~ The Programming Environments (32-Bit)

4.2.4.2 Conditional Branch Control
For branch conditional instructions, the BO operand specifies the conditions under which
the branch is taken. The first four bits of the BO operand specify how the branch is affected
by or affects the condition and count registers. The fifth bit, shown in Table 4-20 as having
the value y, is used by some PowerPC implementations for branch prediction as described
below.

The encodings for the BO operands are shown in Table 4-20.

Table 4-20. 80 Operand Encodings

80 Description

OOOOy Decrement the CTR, then branch if the decremented CTR # 0 and the condition is FALSE.

0OO1y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR # O.

1z01y Decrement the CTR, then branch if the decremented CTR = O.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The ybit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

The branch always encoding of the BO operand does not have a y bit.

Clearing the y bit indicates a predicted behavior for the branch instruction as follows:

• For bex with a negative value in the displacement operand, the branch is taken.

• In all other cases (bex with a non-negative value in the displacement operand, bclrx,
or bcctrx), the branch is not taken.

Setting the y bit reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an
absolute address. The default value for the y bit should be 0, and should only be set to 1 if
software has determined that the prediction corresponding to y = 1 is more likely to be
correct than the prediction corresponding to y = O. Software that does not compute branch
predictions should clear the y bit.

Chapter 4. Addressing Modes and Instruction Set Summary 4-47

In most cases, the branch should be predicted to be taken if the value of the following
expression is I, and predicted to fall through ifthe value is o.
«BO[O] & BO[2]) I S).:: BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is the sign
bit of the displacement operand if the instruction has a displacement operand and is 0 if the
operand is reserved. BO[4] is the y bit, or 0 for the branch always encoding of the BO
operand. (Advantage is taken of the fact that, for belrx and bcctrx, bit 16 of the instruction
is part of a reserved operand and therefore must be 0.)

The 5-bit BI operand in branch conditional instructions specifies which of the 32 bits in the
CR represents the condition to test.

When the branch instructions contain immediate addressing operands, the target addresses
can be computed sufficiently ahead of the branch instruction that instructions can be
fetched along the target path. If the branch instructions use the link and count registers,
instructions along the target path can be fetched if the link or count register is loaded
sufficiently ahead of the branch instruction.

Branching can be conditional or unconditional, and optionally a branch return address is
created by the access of the effective address of the instruction following the branch
instruction in the LR after the branch target address has been computed. This is done
regardless of whether the branch is taken. Some processors may keep a stack of the link
register values most recently set by branch and link instructions, with the possible
exception of the form shown below for obtaining the address of the next instruction. To
benefit from this stack, the following programming conventions should be used.

In the following examples, let A, B, and Glue represent subroutine labels:

• Obtaining the address of the next instruction- use the following form of branch and
link:

bel 20,31,$+4

• Loop counts:

Keep them in the count register, and use one of the branch conditional instructions
to decrement the count and to control branching (for example, branching back to the
start of a loop if the decremented counter value is nonzero).

• Computed GOTOs, case statements, etc.:

4-48

Use the count register to hold the address to branch to, and use the bcctr instruction
with the link register option disabled (LK = 0) to branch to the selected address.

PowerPC Microprocessor Family: The Programming .Environments (32-Bit)

• Direct subroutine linkage-where A calls Band B returns to A. The two branches
should be as follows:

- A calls B: use a branch instruction that enables the link register (LK = 1).

- B returns to A: use the belr instruction with the link register option disabled
(LK = 0) (the return address is in, or can be restored to, the link register).

• Indirect subroutine linkage:

Where A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a
calling sequence is common in linkage code used when the subroutine that the
programmer wants to call, here B, is in a different module from the caller: the binder
inserts "glue" code to mediate the branch.) The three branches should be as follows:

- A calls Glue: use a branch instruction that sets the link register with the link
register option enabled (LK = 1).

- Glue calls B: place the address of B in the count register, and use the bcctr
instruction with the link register option disabled (LK = 0).

- B returns to A: use the belr instruction with the link register option disabled
(LK = 0) (the return address is in, or can be restored to, the link register).

4.2.4.3 Branch Instructions
Table 4-21 describes the branch instructions provided by the PowerPC processors.

Table 4-21. Branch Instructions

Name Mnemonic Operand Syntax Operation

Branch b targecaddr b Branch. Branch to the address computed as the sum of the
ba immediate address and the address of the current instruction.
bl ba Branch Absolute. Branch to the absolute address specified.
bla bl Branch then Link. Branch to the address computed as the sum

of the immediate address and the address of the current
instruction. The instruction address following this instruction is
placed into the link register (LR).

bla Branch Absolute then Link. Branch to the absolute address
specified. The instruction address following this instruction is
placed into the LR.

Branch bc BO,BI,target_addr The BI operand specifies the bit in the CR to be used as the condition
Conditional bca of the branch. The BO operand is used as described in Table 4-20.

bcl bc Branch Conditional. Branch conditionally to the address
bcla computed as the sum of the immediate address and the

address of the current instruction.
bca Branch Conditional Absolute. Branch conditionally to the

absolute address specified.
bcl Branch Conditional then Link. Branch conditionally to the

address computed as the sum of the immediate address and
the address of the current instruction. The instruction address
following this instruction is placed into the LR.

bcla Branch Conditional Absolute then Link. Branch conditionally to
the absolute address specified. The instruction address
following this instruction is placed into the LR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-49

Table 4-21. Branch Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Branch bclr BO,BI The BI operand specifies the bit in the CR to be used as the condition
Conditional bclrl of the branch. The BO operand is used as described in Table 4-20.
to Link bclr Branch Conditional to Link Register. Branch conditionally to
Register the address in the LR.

bclrl Branch Conditional to Link Register then Link. Branch
conditionally to the address specified in the LA. The instruction
address following this instruction is then placed into the LA.

Branch bcctr BO,BI The BI operand specifies the bit in the CR to be used as the condition
Conditional bcctrl of the branch. The BO operand is used as described in Table 4-20.
to Count

bcctr Branch Conditional to Count Register. Branch conditionally to
Register

the address specified in the count register.
bcctrl Branch Conditional to Count Register then Link. Branch

conditionally to the address specified in the count register.
The instruction address following this instruction is placed into
the LA.

Note: If the "decrement and test CTR" option is specified (BO[2) = 0),
the instruction form is invalid.

4.2.4.4 Simplified Mnemonics for Branch Processor Instructions
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for the most frequently used forms of branch conditional, compare, trap, rotate
and shift, and certain other instructions. See Appendix F, "Simplified Mnemonics," for a
list of simplified mnemonic examples.

4.2.4.5 Condition Register Logical Instructions
Condition register logical instructions, shown in Table 4-22, and the Move Condition
Register Field (meri) instruction are also defined as flow control instructions.

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

Table 4-22. Condition Register Logical Instructions

Name Mnemonic Operand Syntax Operation

Condition crand crbD,crbA,crbB The CR bit specified by crbA is ANDed with the CR bit specified
Register AND by crbB. The result is placed into the CR bit specified by crbD.

Condition cror crbD,crbA,crbB The CR bit specified by crbA is ORed with the CR bit specified
Register OR by crbB. The result is placed into the CR bit specified by crbD.

Condition crxor crbD,crbA,crbB The CR bit specified by crbA is XORed with the CR bit specified
Register XOR by crbB. The result is placed into the CR bit specified by crbD.

Condition crnand crbD,crbA,crbB The CR bit specified by crbA is ANDed with the CR bit specified
Register NAND by crbB. The complemented result is placed into the CR bit

specified by crbD.

4-50 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-22. Condition Register Logical Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Condition crnor crbD,crbA,crbB The CR bit specified by crbA is ORed with the CR bit specified
Register NOR by crbB. The complemented result is placed into the CR bit

specified by crbD.

Condition creqv crbD,crbA, crbB The CR bit specified by crbA is XORed with the CR bit specified
Register by crbB. The complemented result is placed into the CR bit
Equivalent specified by crbD.

Condition crandc crbD,crbA, crbB The CR bit specified by crbA is ANDed with the complement of
Register AND the CR bit specified by crbB and the result is placed into the CR
with Complement bit specified by crbD.

Condition crorc crbD,crbA, crbB The CR bit specified by crbA is ORed with the complement of
Register OR with the CR bit specified by crbB and the result is placed into the CR
Complement bit specified by crbD.

Move Condition mcrf crfD,crfS The contents of crfS are copied into crfD. No other condition
Register Field register fields are changed.

4.2.4.6 Trap Instructions
The trap instructions shown in Table 4-23 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally. See Appendix F, "Simplified Mnemonics:' for a complete set of simplified
mnemonics.

Table 4-23. Trap Instructions

Name Mnemonic
Operand

Operand Syntax
Syntax

Trap Word twi TO,rA,SIMM The contents of rA are compared with the sign-extended SIMM operand.
Immediate If any bit in the TO operand is set and its corresponding condition is met

by the result of the comparison, the system trap handler is invoked.

Trap Word tw TO,rA,rB The contents of rA are compared with the contents of rB. If any bit in the
TO operand is set and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

Chapter 4. Addressing Modes and Instruction Set Summary 4-51

4.2.4.7 System Linkage Instruction-UISA
Table 4-24 describes the System Call (sc) instruction that permits a program to call on the
system to perform a service. See Section 4.4.1, "System Linkage Instructions-OEA," for
a complete description of the sc instruction.

Table 4-24. System Linkage Instruction-UISA

Name Mnemonic
Operand

Operation
Syntax

System sc - This instruction calls the operating system to perform a service. When control is
Call returned to the program that executed the system call, the content of the registers

will depend on the register conventions used by the program providing the system
service. This instruction is context synchronizing as described in Section 4.1.5.1,
"Context Synchronizing Instructions."

See Section 4.4.1, "System Linkage Instructions-oEA," for a complete description
of the sc instruction.

4.2.5 Processor Control Instructions-UISA
I!I Processor control instructions are used to read from and write to the condition register
'V (CR), machine state register (MSR), and special-purpose registers (SPRs). See
Ci) Section 4.3.1, "Processor Control Instructions-VEA," for the mfth instruction and

Section 4.4.2, "Processor Control Instructions-OEA;' for information about the
instructions used for reading from and writing to the MSR and SPRs.

4.2.5.1 Move to/from Condition Register Instructions
I!I Table 4-25 summarizes the instructions for reading from or writing to the condition register.

Table 4-25. Move to/from Condition Register Instructions

Name Mnemonic
Operand

Operation
Syntax

Move to Condition mtcrf CRM,rS The contents of rS are placed into the CR under control of the field
Register Fields mask specified by operand CRM. The field mask identifies the 4-bit

fields affected. Let i be an integer in the range Q-7.lf CRM(/) = 1, CR
field i (CR bits 4 • ithrough 4 • i + 3) is set to the contents of the
corresponding field of rS.

Move to Condition mcrxr crfO The contents of XER[Q-3] are copied into the condition register field
Register from XER designated by crfO. All other CR fields remain unchanged. The

contents of XER[Q-3] are cleared.

Move from mfcr rO The contents of the CR are placed into rD.
Condition Register

4-52 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 4-26 provides a brief description of the mtspr and mfspr instructions. For more
detailed information refer to Chapter 8, "Instruction Set."

Table 4-26. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic
Operand Operation
Syntax

Move to Special- mtspr SPR,rS The value specified by rS are placed in the specified SPA.
Purpose Register

Move from Special- mfspr rD,SPR The contents of the specified SPR are placed in rD.
Purpose Register

4.2.6 Memory Synchronization Instructions-UISA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms.

The number of cycles required to complete a sync instruction depends on system
parameters and on the processor's state when the instruction is issued. As a result, frequent
use of this instruction may degrade performance slightly. The eieio instruction may be more
appropriate than sync for many cases.

The PowerPC architecture defines the sync instruction with CR update enabled (Rc field,
bit 31 = 1) to be an invalid form.

The proper paired use of the Iwarx with stwcx. instructions allows programmers to emulate II
common semaphore operations such as test and set, compare and swap, exchange memory, V
and fetch and add. Examples of these semaphore operations can be found in Appendix E,
"Synchronization Programming Examples." The lwarx instruction must be paired with an
stwcx. instruction with the same effective address specified by both instructions of the pair.
The only exception is that an unpaired stwcx. instruction to any (scratch) effective address
can be used to clear any reservation held by the processor. Note that the reservation
granularity is implementation-dependent.

The concept behind the use of the Iwarx and stwcx. instructions is that a processor may
load a semaphore from memory, compute a result based on the value of the semaphore, and
conditionally store it back to the same location. The conditional store is performed based
upon the existence of a reservation established by the preceding lwarx instruction. If the
reservation exists when the store is executed, the store is performed and a bit is set in the
CR. If the reservation does not exist when the store is executed, the target memory location
is not modified and a bit is cleared in the CR.

The lwarx and stwcx. primitives allow software to read a semaphore, compute a result
based on the value of the semaphore, store the new value back into the semaphore location
only if that location has not been modified since it was first read, and determine if the store

Chapter 4. Addressing Modes and Instruction Set Summary 4-53

was successful. If the store was successful, the sequence of instructions from the read of the
semaphore to the store that updated the semaphore appear to have been executed atomically
(that is, no other processor or mechanism modified the semaphore location between the
read and the update), thus providing the equivalent of a real atomic operation. However, in
reality, other processors may have read from the location during this operation.

The lwarx and stwex. instructions require the EA to be aligned.

In general, the lwarx and stwex. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequent Iwarx instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
Iwarx instruction.

A reservation held by the processor is cleared (or may be cleared, in the case of the fourth
and fifth bullet items) by one of the following:

• The processor holding the reservation executes another Iwarx instruction; this clears
the first reservation and establishes a new one.

• The processor holding the reservation executes any stwex. instruction whether its
address matches that of the lwarx.

• Some other processor executes a store or debz to the same reservation granule, or
modifies a referenced or changed bit in the same reservation granule.

• Some other processor executes a debtst, debst, debf, or debi to the same reservation
granule; whether the reservation is cleared is undefined.

• Some other processor executes a deba to the same reservation granule. The
reservation is cleared if the instruction causes the target block to be newly
established in the data cache or to be modified; otherwise, whether the reservation is
cleared is undefined.

• Some other mechanism modifies a memory location in the same reservation granule.

4-54

Note that exceptions do not clear reservations; however, system software invoked by
exceptions may clear reservations.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-27 summarizes the memory synchronization instructions as defined in the UISA. II
See Section 4.3.2, "Memory Synchronization Instructions-VEA," for details about
additional memory synchronization (eieio and isync) instructions.

Table 4-27. Memory Synchronization Instructions-UISA

Name Mnemonic Operand Operation
Syntax

Load Word Iwarx rD,rA,rB The EA is the sum (rAIO) + (rB). The word in memory addressed by the EA is
and Reserve loaded into rD.
Indexed

Store Word stwex. rS,rA,rB The EA is the sum (rAJO) + (rB).
Conditional If a reservation exists and the effective address specified by the stwex.
Indexed instruction is the same as that specified by the load and reserve instruction

that established the reservation, the contents of rS are stored into the word in
memory addressed by the EA, and the reservation is cleared.

If a reservation exists but the effective address specified by the stwex.
instruction is not the same as that specified by the load and reserve
instruction that established the reservation, the reservation is cleared, and it is
undefined whether the contents of rS are stored into the word in memory
addressed by the EA.

If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

Synchronize sync - Executing a sync instruction ensures that all instructions preceding the sync
instruction appear to have completed before the sync instruction completes,
and that no subsequent instructions are initiated by the processor until after
the sync instruction completes. When the sync instruction completes, all
memory accesses caused by instructions preceding the sync instruction will
have been performed with respect to all other mechanisms that access
memory.

See Chapter 8, "Instruction Set," for more information.

4.2.7 Recommended Simplified Mnemonics
To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). Assemblers should provide the simplified
mnemonics listed in Section F.9, "Recommended Simplified Mnemonics." Programs
written to be portable across the various assemblers for the PowerPC architecture should
not assume the existence of mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, "Simplified Mnemonics."

Chapter 4. Addressing Modes and Instruction Set Summary 4-55

-

4.3 PowerPC VEA Instructions
III The PowerPC virtual environment architecture (VEA) describes the semantics of the
V memory model that can be assumed by software processes, and includes descriptions of the
CD cache model, cache-control instructions, address aliasing, and other related issues.

Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

4.3.1 Processor Control Instructions-VEA
V The VEA defines the mftb instruction (user-level instruction) for reading the contents of

the time base register; see Chapter 5, "Cache Model and Memory Coherency," for more
information. Table 4-28 describes the mftb instruction.

Simplified mnemonics are provided (See Section E8, "Simplified Mnemonics for Special­
Purpose Registers") for the mftb instruction so it can be coded with the TBR name as part
of the mnemonic rather than requiring it to be coded as an operand. The simplified
mnemonics Move from Time Base (mftb) and Move from Time Base Upper (mftbu) are
variants of the mftb instruction rather than of the mfspr instruction. The mftb instruction
serves as both a basic and simplified mnemonic. Assemblers recognize an mftb mnemonic
with two operands as the basic form, and an mftb mnemonic with one operand as the
simplified form.

On 32-bit implementations, it is not possible to read the entire 64-bit time base register in
a single instruction. The mftb simplified mnemonic moves from the lower half of the time
base register (TBL) to a GPR, and the mftbu simplified mnemonic moves from the upper
half of the time base (TBU) to a GPR.

Table 4-28. Move from Time Base Instruction

Name Mnemonic Operand Syntax Operation

Move mftb rD, TBR The TBR field denotes either time base lower or time base upper, encoded
from as shown in Table 4-29 and Table 4-30. The contents of the designated
Time register are copied to rD.
Base

Table 4-29 summarizes the time base (TBUI'BU) register encodings to which user-level
access (using mftb) is permitted (as specified by the VEA).

Table 4-29. User-Level TBR Encodings (VEA)

Decimal Value
tbr[0-4] tbr[5-9]

Register
Description

inTBR Field Name

268 0110001000 TBl Time base lower (read-only)

269 0110101000 TBU Time base upper (read-only)

4-56 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-30 summarizes the TBL and TBU register encodings to which supervisor-level
access (using mtspr) is permitted.

Table 4-30. Supervisor-Level TBR Encodings (VEA)

Decimal Value in
spr[0-4] spr[5-9] Register Name Description

SPR Field

284 1110001000 TBll Time base lower (write only)

285 1110101000 TBUl Time base upper (write only)

IMoving from the time base (TBl and TBU) can also be accomplished with the mftb instruction.

4.3.2 Memory Synchronizatic., Instructions-VEA
Memory synchronization instructions control the order in which memory operations are II
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 5, "Cache Model
and Memory Coherency," for additional information about these instructions and about
related aspects of memory synchronization.

System designs that use a second-level cache should take special care to recognize the V
hardware signaling caused by a sync operation and perform the appropriate actions to
guarantee that memory references that may be queued internally to the second-level cache
have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce In­
Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions; see
Table 4-31. The number of cycles required to complete an eieio instruction depends on
system parameters and on the processor's state when the instruction is issued. As a result,
frequent use of this instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behind the isync instruction).

Chapter 4. AddreSSing Modes and Instruction Set Summary 4-57

Table 4-31. Memory Synchronization Instructions-VEA

Name Mnemonic
Operand

Operation
Syntax

Enforce In-Order eieio - The eieio instruction provides an ordering function for the effects of loads
Execution of I/O and stores executed by a processor.

Instruction Isync - Executing an isync instruction ensures that all previous instructions
Synchronize complete before the Isync instruction co.mpletes, although memory

accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that the
processor initiates no subsequent instructions until the Isync instruction
completes. Finally, it causes the processor to discard any prefetched
instructions, so subsequent instructions will be fetched and executed in
the context established by the instructions preceding the Isync
instruction.

This instruction does not affect other processors or their caches.

4.3.3 Memory Control Instructions-VEA
V Memory control instructions include the following types:

CD • Cache management instructions (user-level and supervisor-level)
• Segment register manipulation instructions
• Segment lookaside buffer management instructions
• Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See Section 4.4.3, "Memory Control Instructions-OEA," for more information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

4.3.3.1 User-level Cache Instructions-VEA
VThe instructions summarized in this section provide user-level programs the ability to

manage on-chip caches if they are implemented. See Chapter 5, "Cache Model and
Memory Coherency," for more information about cache topics.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

CD Note that when data address translation is disabled (MSR[DR] = 0), the Data Cache Block
Clear to Zero (dcbz) and the Data Cache Block Allocate (dcba) instructions allocate a
cache block in the cache and may not verify that the physical address (referred to as real
address in the architecture specification) is valid. If a cache block is created for an invalid
physical address, a machine check condition may result when an attempt is made to write
that cache block back to memory. The cache block could be written back as a result of the

4-58 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

execution of an instruction that causes a cache miss and the invalid addressed cache block
is the target for replacement or a Data Cache Block Store (dcbst) instruction.

Any cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op. However, note that
the direct-store facility is being phased out of the architecture and will not likely be
supported in future devices.

Table 4-32 summarizes the cache instructions defined by the VEA. Note that these V
instructions are accessible to user-level programs.

Table 4-32. User-Level Cache Instructions

Name Mnemonic
Operand

Operation Syntax

Data dcbt rA,rB The EA is the sum (rAIO) + (rB).
Cache This instruction is a hint that performance will probably be improved if the block
Block
Touch

containing the byte addressed by EA is fetched into the data cache, because
the program will probably soon load from the addressed byte.

Data dcbtst rA,rB The EA is the sum (rAIO) + (rB).
Cache This instruction is a hint that performance will probably be improved if the block
Block
Touch for

containing the byte addressed by EA is fetched into the data cache, because

Store
the program will probably soon store into the addressed byte.

Data dcba rA,rB The EA is the sum (rAIO) + (rB).
Cache If the cache block containing the byte addressed by the EA is in the data cache,
Block
Allocate

all bytes of the cache block are made undefined, but the cache block is still
considered valid. Note that programming errors can occur if the data in this
cache block is subsequently read or used inadvertently.

If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
allocated (and made valid) in the data cache without fetching the block from
main memory, and the value of all bytes of the cache block is undefined.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x), this instruction is treated as a no-op.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcba instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording,
and the ordering enforced by elelo or by the combination of caching-inhibited
and guarded attributes for a page.

This instruction is optional in the PowerPC architecture.

(In the PowerPC OEA, the dcba instruction is additionally defined to clear all
bytes of a newly established block to zero in the case that the block did not
already exist in the cache.)

Chapter 4. Addressing Modes and Instruction Set Summary 4-59

Table 4-32. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Data dcbz rA,rB The EA is the sum (rAIO) + (rB);
Cache If the cache block containing the byte addressed by the EA is in the data cache,
Block
Clear to

all bytes of the cache block are cleared to zero.

Zero If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
established in the data cache without fetching the block from main memory, and
all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x) or write-through (WIM = 1xx), either all bytes of the area of main
memory that corresponds to the addressed cache block are cleared to zero, or
an alignment exception occurs.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording,
and the ordering enforced by elelo or by the combination of caching-inhibited
and guarded attributes for a page.

Data dcbst rA,rB The EA is the sum(rAIO) + (rB).
Cache If the cache block containing the byte addressed by the EA is located in a page
Block Store marked memory coherent (WIM = xx1), and a cache block containing the byte

addressed by EA is in the data cache of any processor and has been modified,
the cache block is written to main memory.

If the cache block containing the byte addressed by the EA is located in a page
not marked memory coherent (WIM = xxO), and a cache block containing the
byte addressed by EA is in the data cache of this processor and has been
modified, the cache block is written to main memory.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The dcbst instruction is treated as a load from the addressed byte with respect
to address translation and memory protection. It may also be treated as a load
for referenced and changed bit recording except that referenced and changed
bit recording may not occur.

4-60 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-32. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand

Operation Syntax

Data dcbt rA,rB The EA is the sum (rAIO) + (rB).
Cache The action taken depends on the memory mode associated with the target, and
Block Flush on the state of the block. The following list describes the action taken for the

various cases, regardless of whether the page or block containing the
addressed byte is designated as write-through or if it is in the caching-inhibited
or caching-allowed mode. . Coherency required (WIM = xx1)

- Unmodified block-Invalidates copies of the block in the caches of all
processors.

- Modified block-Copies the biock to memory. Invalidates copies of the
biock in the caches of all processors.

- Absent block-If modified copies of the block are in the caches of other
processors, causes them to be copied to memory and invalidated. If
unmodified copies are in the caches of other processors, causes those
copies to be invalidated. . Coherency not required (WIM = xxO)

- Unmodified block-Invalidates the block in the processor's cache.
- Modified block-Copies the biock to memory. Invalidates the block in the

processor's cache.
- Absent block-Does nothing.

The function of this instruction is independent of the write-throughlwrite-back
and caching-inhibitedlcaching-allowed modes of the cache block containing the
byte addressed by the EA.

The dcbt instruction is treated as a load from the addressed byte with respect
to address translation and memory protection. It may also be treated as a load
for referenced and changed bit recording except that referenced and changed
bit recording may not occur.

Instruction Icbl rA,rB The EA is the sum (rAIO) + (rB).
Cache If the cache block containing the byte addressed by EA is located in a page
Block
Invalidate

marked memory coherent (WIM = xx1), and a cache block containing the byte
addressed by EA is in the instruction cache of any processor, the cache block is
made invalid in all such instruction caches, so that the next reference causes
the cache block to be refetched.

If the cache block containing the byte addressed by EA is located in a page not
marked memory coherent (WIM = xxO), and a cache biock containing the byte
addressed by EA is in the instruction cache of this processor, the cache block is
made invalid in that instruction cache, so that the next reference causes the
cache block to be refetched.

The function of this instruction is independent of the write-throughlwrite-back
and caching-inhibitedlcaching-allowed modes of the cache block containing the
byte addressed by the EA.

The Icbl instruction is treated as a load from the addressed byte with respect to
address translation and memory protection. It may also be treated as a load for
referenced and changed bit recording except that referenced and changed bit
recording may not occur.

Chapter 4. Addressing Modes and Instruction Set Summary 4-61

4.3.4 External Control Instructions
The external control instructions allow a user-level program to communicate with a special­
purpose device. Two instructions are provided and are summarized in 'table 4-33.

Table 4-33. External Control Instructions

Name Mnemonic
Operand Operation
Syntax

External eclwx rD,rA,rB The EA is the sum (rAIO) + (rB).
Control In A load word request for the physical address corresponding to the EA is sent to
Word
Indexed

the device identified by the EAR[RID) (bits 26-31), bypassing the cache. The
word returned. by the device is placed into rD. The EA sent to the device must be
word-aligned.

This instruction is treated as a load from the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering performed by eleio.

This instruction is optional.

External ecowx rS,rA,rB The EA is the sum (rAIO) + (rB).
Control A store word request for the physical address corresponding to the EA and the
Out Word
Indexed

contents of rS are sent to the device identified by EAR[RID) (bits 26-31),
bypassing the cache. The EA sent to the device must be word-aligned.

This instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering performed by elelo. Software synchronization is required in order to
ensure that the data access is performed in program order with respect to data
accesses caused by other store or ecowx instructions, even though the
addressed byte is assumed to be caching-Inhibited and guarded.

This instruction is optional.

4-62 PowerPC Microprocessor Family: The Programming Environments (32-8it)

4.4 PowerPC OEA Instructions
The PowerPC operating environment architecture (OEA) includes the structure of the II
memory management model, supervisor-level registers, and the exception model. VI
Implementations that conform to the OEA also adhere to the VISA and the VEA. This CD
section describes the instructions provided by the OEA.

4.4.1 System Linkage Instructions-OEA
This section describes the system linkage instructions (see Table 4-34). The sc instruction CD
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The rfi instruction is a supervisor­
level instruction that is useful for returning from an exception handler.

Table 4-34. System Linkage Instructions-OEA

Name Mnemonic
Operand

Operation Syntax

System Be - When executed, the effective address of the instruction following the Be instruction
Call is placed into SRRO. Bits 1-4, and 10-15 of SRR1 are cleared. Additionally, bits

16-23,25-27, and 30-31 of the MSR are placed into the corresponding bits of
SRR1. Depending on the implementation, additional bits of MSR may also be
saved in SRR1. Then a system call exception is generated. The exception causes
the MSR to be altered as described in Section 6.4, "Exception Definitions."

The exception causes the next instruction to be fetched from offset OxCOO from
the base physical address indicated by the new setting of MSR[IPj.

This instruction is context synchronizing.

Return rfi - Bits 16-23, 25-27, and 30-31 of SRR1 are placed into the corresponding bits of
from the MSR. Depending on the implementation, additional bits of MSR may also be
Interrupt restored from SRR1. If the new MSR value does not enable any pending
(32-blt exceptions, the next instruction is fetched, under control of the new MSR value,
only) from the address SRRO[0-29jll ObOO.

If the new MSR value enables one or more pending exceptions, the exception
associated with the highest priority pending exception is generated; in this case
the value placed into SRRO (machine status save/restore 0) by the exception
processing mechanism is the address of the instruction that would have been
executed next had the exception not occurred.

This is a supervisor-level instruction and is context-synchronizing.

This instruction is defined only for 32-bit implementations. The use of the rfI
instruction on a 64-bit implementation will invoke the system exception handler.

Chapter 4. Addressing Modes and Instruction Set Summary 4-63

4.4.2 Processor Control Instructions-OEA
This section describes the processor control instructions that are used to read. from and
write to the MSR and the SPRs.

4.4.2.1 Move to/from Machine State Register Instructions
Table 4-35 summarizes the instructions used for reading from and writing to the MSR.

Table 4-35. Move toifrom Machine State Register Instructions

Name Mnemonic Operand Operation Syntax

Move to Machine mtmsr rS The contents of rS are placed into the MSR.
State Register This instruction is a supervisor-level instruction and is context
(32-blt only) synchronizing except with respect to alterations to the POW and LE

bits. Refer to Section 2.3.17, "Synchronization Requirements for
Special Registers and for Lookaside Buffers," for more information.

Move from Machine mlmsr rD The contents of the MSR are placed into rD. This is a supervisor-level
State Register instruction.

4.4.2.2 Move to/from S.pecial-Purpose Register Instructions (OEA)
Provided is a brief description of the mtspr and mfspr instructions (see Table 4-36). For
more detailed information, see Chapter 8, "Instruction Set." Simplified mnemonics are
provided for the mtspr and mfspr instructions in Appendix F, "Simplified Mnemonics:'
For a discussion of context synchronization requirements when altering certain SPRs, refer
to Appendix E, "Synchronization Programming Examples."

Table 4-36. Move toifrom Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Operation Syntax

Move to mtspr SPR,rS The SPR field denotes a special-purpose register. The contents of rS
Special- are placed into the deSignated SPR. For SPRs that are 32 bits long,
Purpose the contents of rS are placed into the SPR.
Register For this instruction, SPRs TBL and TBU are treated as separate 32-

bit registers; setting one leaves the other unaltered.

Move from mfspr rD,SPR The SPR field denotes a special-purpose register. The contents of the
Special- designated SPR are placed into rD.
Purpose
Register

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a lO-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 16-20 of the instruction encoding and the low-order 5 bits in bits 11-15.

4-64 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

For information on SPR encodings (both user- and supervisor-level), see Chapter 8,
"Instruction Set." Note that there are additional SPRs specific to each implementation; for
implementation-specific SPRs, see the user's manual for that particular processor.

4.4.3 Memory Control Instructions-OEA
Memory control instructions include the following types of instructions:

• Cache management instructions (supervisor-level and user-level)
• Segment register manipulation instructions

• Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 4.3.3,
"Memory Control Instructions-VEA," for more information about user-level cache
management instructions.

4.4.3.1 Supervisor-Level Cache Management Instruction
Table 4-37 summarizes the operation of the only supervisor-level cache management
instruction. See Section 4.3.3.1, "User-Level Cache Instructions-VEA," for cache
instructions that provide user-level programs the ability to manage the on-chip caches.

Note that any cache control instruction that generates an effective address that corresponds
to a direct-store segment (segment descriptor[T] = 1) is treated as a no-op. However, note
that the direct-store facility is being phased out of the architecture and will not likely be
supported in future devices.

Chapter 4. Addressing Modes and Instruction Set Summary 4-65

Table 4-37. Cache Management Supervisor-Level Instruction

Name Mnemonic
Operand

Operation
Syntax

Data dcbi rA,rB The EA is the sum (rAIO) + (rB).
Cache

The action taken depends on the memory mode associated with the target, and
Block
Invalidate

the state (modified, unmodified) of the ca.che block. The following list describes
the action to take if the cache block containing the byte addressed by the EA is or
is not in the cache. . Coherency required (WIM = xx1)

- Unmodified cache block-Invalidates copies of the cache block in the
caches of all processors.

- Modified cache block-Invalidates copies of the cache block in the caches
of all processors. (Discards the modified contents.)

- Absent cache block-If copies are in the caches of any other processor,
causes the copies to be invalidated. (Discards any modified contents.) . Coherency not required (WIM = xxO)

- Unmodified cache block-Invalidates the cache block in the local cache.
- Modified cache block-Invalidates the cache block in the local cache.

(Discards the modified contents.)
- Absent cache block-No action is taken.

When data address translation is enabled, MSR[DT]=1, and the logical (effective)
address has no translation, a data access exception occurs.

The function of this instruction is independent of the write-through and cache-
inhibited/allowed modes determined by the WIM bit settings of the block
containing the byte addressed by the EA.

This instruction is treated as a store to the addressed byte with respect to
address translation and protection, except that the change bit need not be set,
and if the change bit is not set then the reference bit need not be set.

4.4.3.2 Segment Register Manipulation Instructions
The instructions listed in Table 4-38 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to Section 2.3.17, "Synchronization Requirements for Special
Registers and for Lookaside Buffers," for serialization requirements and other
recommended precautions to observe when manipulating the segment registers.

4-66 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-38. Segment Register Manipulation Instructions

Name Mnemonic
Operand

Operation
Syntax

Move to Segment mtsr SR,rS The contents of rS are placed into segment register specified by
Register operand SA.
(32-blt only)

This is a supervisor-level instruction.

Move to Segment mtsrln rS,rB The contents of rS are copied to the segment register selected by bits
Register Indirect 0-3 of rB.
(32-bit only)

This is a supervisor-level instruction.

Move from Segment mfsr rD,SR The contents of the segment regil!ler specified by operand SR are
Register placed into rD.
(32-blt only)

This is a supervisor-level instruction.

Move from Segment mfsrln rD,rB The contents of the segment register selected by bits 0-3 of rB are
Register Indirect copied into rD.
(32-blt only)

This is a supervisor-level instruction.

4.4.3.3 Translation Lookaside Buffer Management Instructions
The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical-to-physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
tables and page tables in memory, respectively.

For performance reasons, many processors implement one or more translation lookaside
buffers on-chip. These are caches of portions of the page table. As changes are made to the
address translation tables, it is necessary to maintain coherency between the TLB and the
updated tables. This is done by invalidating TLB entries, or occasionally by invalidating the
entire TLB, and allowing the translation caching mechanism to ref etch from the tables.

Each PowerPC implementation that has a TLB provides means for invalidating an
individual TLB entry and invalidating the entire TLB.

If a processor does not implement a TLB, it treats the corresponding instructions (tlbie,
tibia, and tlbsync) either as no-ops or as illegal instructions.

Chapter 4. Addressing Modes and Instruction Set Summary 4-67

Refer to Chapter 7, "Memory Management," for more information about TLB operation.
Table 4-39 summarizes the operation of the SLB and TLB instructions.

Table 4-39. Translation Lookaside Buffer Management Instructions

Name Mnemonic Operand Operation
Syntax

TLB tlble rB The EA is the contents of rB. If the TLB contains an entry corresponding to the
Invalidate EA, that entry is removed from the TLB. The TLB search is performed
Entry regardless of the settings of MSR[lRj and MSR[DRj. Block address translation

for the EA, if any, is ignored.

This instruction causes the target TLB entry to be invalidated in all processors.

The operation performed by this instruction is treated as a caching inhibited
and guarded data access with respect to the ordering performed by eieio.

This is a supervisor-level instruction and optional in the PowerPC architecture.

TLB tibia - All TLB entries are made invalid. The TLB is invalidated regardless of the
Invalidate All settings of MSR[IRj and MSR[DR].

This instruction does not cause the entries to be invalidated in other
processors.

This is a supervisor-level instruction and optional in the PowerPC architecture.

TLB tlbsync - Executing a tlbsync instruction ensures that all tlble instructions previously
Synchronize executed by the processor executing the tlbsync instruction have completed

on all processors.

The operation performed by this instruction is treated as a caching-inhibited
and guarded data access with respect to the ordering performed by elelo.

This is a supervisor-level instruction and optional in the PowerPC architecture.

Because the presence and exact semantics of the translation lookaside buffer management
instructions is implementation-dependent, system software should incorporate uses of the
instruction into subroutines to minimize compatibility problems.

4-68 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Chapter 5
Cache Model and Memory Coherency
This chapter summarizes' the cache model as defined by the virtual environment II
architecture (VEA) as well as the built-in architectural controls for maintaining memory V
coherency. This chapter describes the cache control instructions and special concerns for CD
memory coherency in single-processor and multiprocessor systems. Aspects of the
operating environment architecture (OEA) as they relate to the cache model and memory
coherency are also covered.

The PowerPC architecture provides for relaxed memory coherency. Features such as write­
back caching and out-of-order execution allow software engineers to exploit the
performance benefits of weakly-ordered memory access. The architecture also provides the
means to control the order of accesses for order-critical operations.

In this chapter, the term multiprocessor is used in the context of maintaining cache
coherency. In this context, a system could include other devices that access system memory,
maintain independent caches, and function as bus masters.

Each cache management instruction operates on an aligned unit of memory. The VEA
defines this cacheable unit as a block. Since the term 'block' is easily confused with the unit
of memory addressed by the block address translation (BAT) mechanism, this chapter uses
the term 'cache block' to indicate the cacheable unit. The size of the cache block can vary
by instruction and by implementation. In addition, the unit of memory at which coherency
is maintained is called the coherence block. The size of the coherence block is also
implementation-specific. However, the coherence block is often the same size as the cache
block.

5.1 The Virtual Environment
The user instruction set architecture (UISA) relies upon a memory space of 232 bytes for
applications. The VEA expands upon the memory model by introducing virtual memory, V
caches, and shared memory multiprocessing. Although many applications will not need to
access the features introduced by the VEA, it is important that programmers are aware that
they are working in a virtual environment where the physical memory may be shared by
multiple processes running on one or more processors.

Chapter 5. Cache Model and Memory Coherency 5-1

This section describes load and store ordering, atomicity, the cache model, memory
coherency, and the VEA cache management instructions. The features of the VEA are
accessible to both user-level and supervisor-level applications (referred to as problem state
and privileged state, respectively, in the architecture specification).

The mechanism for controlling the virtual memory space is defined by the OEA. The
features of the OEA are accessible to supervisor-level applications only (typically operating
systems). For more information on the address translation mechanism, refer to Chapter 7;
"Memory Management."

5.1.1 Memory Access Ordering
The VEA specifies a weakly consistent memory model for shared memory multiprocessor
systems. This model provides an opportunity for significantly improved performance over
a model that has stronger consistency rules, but places the responsibility for access ordering
on the programmer. When a program requires strict access ordering for proper execution,
the programmer must insert the appropriate ordering or synchronization instructions into
the program. .

The order in which the processor performs memory accesses, the order in which those
accesses complete in memory, and the order in which those accesses are viewed as
occurring by another processor may all be different. A means of enforcing memory access
ordering is provided to allow programs (or instances of programs) to share memory. Similar
means are needed to allow programs executing on a processor to share memory with some
other mechanism, such as an 110 device, that can also access memory.

Various facilities are provided that enable programs to control the order in which memory
accesses are performed by separate instructions. First, if separate store instructions access
memory that is designated as both caching-inhibited and guarded, the accesses are
performed in the order specified by the program. Refer to Section 5.1.4, "Memory
Coherency," and Section 5.2.1, "Memory/Cache Access Attributes," for a complete
description of the caching-inhibited and guarded attributes. Additionally, two instructions,
eieio and sync, are provided that enable the program to control the order in which the
memory accesses caused by separate instructions are performed.

No ordering should be assumed among the memory accesses caused by a single instruction
(that is, by an instruction for which multiple accesses are not atomic), and no means are
provided for controlling that order. Chapter 4, ''Addressing Modes and Instruction Set
Summary," contains additional information about the sync and eieio instructions.

5.1.1.1 Enforce In-Order Execution of 1/0 Instruction
The eieio instruction permits the program to control the order in which loads and stores are
performed when the accessed memory has certain attributes, as. described in Chapter 8,
"Instruction Set." For example, eieio can be used to ensure that a sequence of load and store
operations to an 110 device's control registers updates those registers in the desired order.

5-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The eieio instruction can also be used to ensure that all stores to a shared data structure are
visible to other processors before the store that releases the lock is visible to them.

The eieio instruction may complete before memory accesses caused by instructions
preceding the eieio instruction have been performed with respect to system memory or
coherent storage as appropriate.

If stronger ordering is desired, the sync instruction must be used.

5.1.1.2 Synchronize Instruction
When a portion of memory that requires coherency must be forced to a known state, it is
necessary to synchronize memory with respect to other processors and mechanisms. This
synchronization is accomplished by requiring programs to indicate explicitly in the
instruction stream, by inserting a sync instruction, that synchronization is required. Only
when sync completes are the effects of all coherent memory accesses previously executed
by the program guaranteed to have been performed with respect to all other processors and
mechanisms that access those locations coherently.

The sync instruction ensures that all the coherent memory accesses, initiated by a program,
have been performed with respect to all other processors and mechanisms that access the
target locations coherently, before its next instruction is executed. A program can use this
instruction to ensure that all updates to a shared data structure, accessed coherently, are
visible to all other processors that access the data structure coherently, before executing a
store that will release a lock on that data structure. Execution of the sync instruction does
the following:

• Performs the functions described for the sync instruction in Section 4.2.6, "Memory
Synchronization Instructions-VISA."

• Ensures that consistency operations, and the effects of icbi, dcbz, dcbst, dcbf, dcba,
and dcbi instructions previously executed by the processor executing sync, have
completed on such other processors as the memory/cache access attributes of the
target locations require.

• Ensures that TLB invalidate operations previously executed by the processor
executing the sync have completed on that processor. The sync instruction does not
wait for such invalidates to complete on other processors.

• Ensures that memory accesses due to instructions previously executed by the
processor executing the sync are recorded in the Rand C bits in the page table and
that the new values of those bits are visible to all processors and mechanisms; refer
to Section 7.5.3, "Page History Recording."

The sync instruction is execution synchronizing. It is not context synchronizing, and
therefore need not discard prefetched instructions.

Chapter 5. Cache Model and Memory Coherency 5·3

For memory that does not require coherency, the sync instruction operates as described
above except that its· only effect on memory operations is to ensure that all previous
memory operations have completed, with respect to the processor executing the sync
instruction, to the level of memory specified by the memory/cache access attributes
(including the updating of R and C bits).

5.1.2 Atomicity
An access is atomic if it is always performed in its entirety with no visible fragmentation.
Atomic accesses are thus serialized--each happens in its entirety in some order, even when
that order is neither specified in the program nor enforced between processors.

Only the following single-register accesses are guaranteed to be atomic:

• Byte accesses (all bytes are aligned on byte boundaries)
• Half-word accesses aligned on half-word boundaries

• Word accesses aligned on word boundaries

No other accesses are guaranteed to be atomic. In particular, the accesses caused by the
following instructions are not guaranteed to be atomic:

• Load and store instructions with misaligned operands
• Imw, stmw, Iswi, Iswx, stswi, or stswx instructions

• Floating-point double-word accesses in 32-bit implementations

• Any cache management instructions

The Iwarxlstwcx. instruction combinations can be used to perform atomic memory
references. The Iwarx instruction is a load from a word-aligned location that has two side
effects:

1. A reservation for a subsequent stwcx. instruction is created.

2. The memory coherence mechanism is notified that a reservation exists for the
memory location accessed by the Iwarx.

The stwcx. instruction is a store to a word-aligned location that is conditioned on the
existence of the reservation created by Iwarx and on whether the same memory location is
specified by both instructions and whether the instructions are issued by the same
processor.

In a multiprocessor system, every processor (other than the one executing Iwarxlstwcx.)
that might update the location must configure the addressed page as memory coherency
required. The Iwarxlstwcx. instructions function in caching-inhibited, as well as in
caching-allowed, memory. If the addressed memory is in write-through mode, it is
implementation-dependent whether these instructions function correctly or cause the DSI
exception handler to be invoked. (Note that exceptions are referred to as interrupts in the
architecture specification.)

5-4 PowerPC Microprocessor Family: The Programming Environments (32-8It)

The lwarxlstwcx. instruction combination is described in Section 4.2.6, "Memory
Synchronization Instructions-UISA," and Chapter 8, "Instruction Set."

5.1.3 Cache Model
The PowerPC architecture does not specify the type, organization, implementation, or even
the existence of a cache. The standard cache model has separate instruction and data caches,
also known as a Harvard cache model. However, the architecture allows for many different
cache types. Some implementations will have a unified cache (where there is a single cache
for both instructions and data). Other implementations may not have a cache at all.

The function of the cache management instructions depends on the implementation of the
cache(s) and the setting of the memory/cache access modes. For a program to execute
properly on all implementations, software should use the Harvard model. In cases where a
processor is implemented without a cache, the architecture guarantees that instructions
affecting the non implemented cache will not halt execution (note that dcbz may cause an
alignment exception on some implementations). For example, a processor with no cache
may treat a cache instruction as a no-op. Or, a processor with a unified cache may treat the
icbi instruction as a no-op. In this manner, programs written for separate instruction and
data caches will run on all compliant implementations.

5.1.4 Memory Coherency
The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. The VEA and OEA define coherency controls that
facilitate synchronization, cooperative use of shared resources, and task migration among
processors. These controls include the memory/cache access attributes, the sync and eieio
instructions, and the lwarxlstwcx. instruction pair. Without these controls, the processor
could not support a weakly-ordered memory access model.

A strongly-ordered memory access model hinders performance by requiring excessive
overhead, particularly in multiprocessor environments. For example, a processor
performing Ii store operation in a strongly-ordered system requires exclusive access to an
address before making an update, to prevent another device from using stale data.

The YEA defines a page as a unit of memory for which protection and control attributes are
independently specifiable. The OEA (supervisor level) specifies the size of a page as
4 Kbytes. It is important to note that the VEA (user level) does not specify the page size.

Chapter 5. Cache Model and Memory Coherency 5-5

5.1.4.1 Memory/Cache Access Modes
The OEA defines the set of memory/cache access modes and the mechanism to implement
these modes. Refer to Section 5.2.1, "Memory/Cache Access Attributes," for more
information. However, the VEA specifies that at the user level, the operating system can be
expected to provide the following attributes for each page of memory:

• Write-through or write-back
• Caching-inhibited or caching-allowed
• Memory coherency required or memory coherency not required

• Guarded or not guarded

User-level programs specify the memory/cache access attributes through an operating
system service.

5.1.4.1.1 Pages Designated as Write-Through
When a page is designated as write-through, store operations update the data in the cache
and also update the data in main memory. The processor writes to the cache and through to
main memory. Load operations use the data in the cache, if it is present.

In write-back mode, the processor is only required to update data in the cache. The
processor may (but is not required to) update main memory. Load and store operations use
the data in the cache, if it is present. The data in main memory does not necessarily stay
consistent with that same location's data in the cache. Many implementations automatically
update main memory in response to a memory access by another device (for example, a
snoop hit). In addition, the debst and debf instructions can be used to explicitly force an
update of main memory.

The write-through attribute is meaningless for locations designated as caching-inhibited.

5.1.4.1.2 Pages Designated as Caching-Inhibited
When a page is designated as caching-inhibited, the processor bypasses the cache and
performs load and store operations to main memory. When a page is designated as caching­
allowed, the processor uses the cache and performs load and store operations to the cache
or main memory depending on the other memory/cache access attributes for the page.

It is important that all locations in a page are purged from the cache prior to changing the
memory/cache access attribute for the page from caching-allowed to caching-inhibited. It
is considered a programming error if a caching-inhibited memory location is found in the
cache. Software must ensure that the location has not previously been brought into the
cache, or, if it has, that it has been flushed from the cache. If the programming error occurs,
the result of the access is boundedly undefined.

5-6 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

5.1.4.1.3 Pages Designated as Memory Coherency Required
When a page is designated as memory coherency required, store operations to that location
are serialized with all stores to that same location by all other processors that also access
the location coherently.This can be implemented, for example, by an ownership protocol
that allows at most one processor at a time to store to the location. Moreover, the current
copy of a cache block that is in this mode may be copied to main storage any number of
times, for example, by successive debst instructions.

Coherency does not ensure that the result of a store by one processor is visible immediately
to all other processors and mechanisms. Only after a program has executed the sync
instruction are the previous storage accesses it executed guaranteed to have been performed
with respect to all other processors and mechanisms. .

5.1.4.1.4 Pages Designated as Memory Coherency Not Required
For a memory area that is configured such that coherency is not required, software must
ensure that the data cache is consistent with main storage before changing the mode or
allowing another device to access the area.

Executing a debst or debf instruction specifying a cache block that is in this mode causes
the block to be copied to main memory if and only if the processor modified the contents
of a location in the block and the modified contents have not been written to main memory.

In a single-cache system, correct coherent execution may likely not require memory
coherency; therefore, using memory coherency not required mode improves performance.

5.1.4.1.5 Pages Designated as Guarded
The guarded attribute pertains to out-of-order execution. Refer to Section 5.2.1.5.3, "Out­
of-Order Accesses to Guarded Memory," for more information about out-of-order
execution.

When a page is designated as guarded, instructions and data cannot be accessed out of
order. Additionally, if separate store instructions access memory that is both caching­
inhibited and guarded, the accesses are performed in the order specified by the program.
When a page is designated as not guarded, out-of-order fetches and accesses are allowed.

5.1.4.2 Coherency Precautions
Mismatched memorylcache attributes cause coherency paradoxes in both single-processor
and mUltiprocessor systems. When the memory/cache access attributes are changed, it is
critical that the cache contents reflect the new attribute settings. For example, if a block or
page that had allowed caching becomes caching-inhibited, the appropriate cache blocks
should be flushed to leave no indication that caching had previously been allowed.

Although coherency paradoxes are considered programming errors, specific
implementations may attempt to handle the offending conditions and minimize the negative
effects on memory coherency. Bus operations that are generated for specific instructions
and state conditions are not defined by the architecture.

Chapter 5. Cache Model and Memory Coherency 5-7

5.1.5 VEA Cache Management Instructions
The VEA defines instructions for controlling both the instruction and data caches. For
implementations that have a unified instruction/data cache, instruction cache control
instructions are valid instructions, but may function differently.

Note that any cache control instruction that generates an EA that corresponds to a direct­
store segment (SR[T] = 1) is treated as a no-op. However, the direct-store facility is being
phased out of the architecture and will not likely be supported in future devices. Thus,
software should not depend on its effects.

This section briefly describes the cache management instructions available to programs at
the user privilege level. Additional descriptions of coding the VEA cache management
instructions is provided in Chapter 4, "Addressing Modes and Instruction Set Summary,"
and Chapter 8, "Instruction Set." In the following instruction descriptions, the target is the
cache block containing the byte addressed by the effective address.

5.1.5.1 Data Cache Instructions
Data caches and unified caches must be consistent with other caches (data or unified),
memory, and liD data transfers. To ensure consistency, aliased effective addresses (two
effective addresses that map to the same physical address) must have the same page offset.
Note that physical address is referred to as real address in the architecture specification.

5.1.5.1.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst) Instructions

These instructions provide a method for improving performance through the use of
software-initiated prefetch hints. However, these instructions do not guarantee that a cache
block will be fetched.

A program uses the debt instruction to request a cache block fetch before it is needed by
the program. The program can then use the data from the cache rather than fetching from
main memory.

The debtst instruction behaves similarly to the debt instruction. A program uses debtst to
request a cache block fetch to guarantee that a subsequent store will be to a cached location.

The processor does not invoke the exception handler for translation or protection violations
caused by either of the touch instructions. Additionally, memory accesses caused by these
instructions are not necessarily recorded in the page tables. If an access is recorded, then it
is treated in a manner similar to that of a load from the addressed byte. Some
implementations may not take any action based on the execution of these instructions, or
they may prefetch the cache block corresponding to the EA into their cache. For
information about the R and C bits, see Section 7.5.3, "Page History Recording."

5-8 PowerPC Microprocessor Family: The Programming Envlronments'(32-Bit)

Both debt 'and debtst are provided for performance optimization. These instructions do not
affect the correct execution of a program, regardless of whether they succeed (fetch the
cache block) or fail (do not fetch the cache block). If the target block is not accessible to
the program for loads, then no operation occurs.

5.1.5.1.2 Data Cache Block Set to Zero (dcbz) Instruction
The debz instruction clears a single cache block as follows:

• If the target is in the data cache, all bytes of the cache block are cleared.

• If the target is not in the data cache and the corresponding page is caching -allowed,
the cache block is established in the data cache (without fetching the cache block
from main memory), and all bytes of the cache block are cleared.

• If the target is designated as either caching-inhibited or write-through, then either all
bytes in main memory that correspond to the addressed cache block are cleared, or
the alignment exception handler is invoked. The exception handler should clear all
the bytes in main memory that correspond to the addressed cache block.

• If the target is designated as coherency required, and the cache block exists in the
data cache(s) of any other processor(s), it is kept coherent in those caches.

The debz instruction is treated as a store to the addressed byte with respect to address
translation, protection, referenced and changed recording, and the ordering enforced by
eieio or by the combination of caching-inhibited and guarded attributes for a page.

Refer to Chapter 6, "Exceptions;' for more information about a possible delayed machine
check exception that can occur by using debz when the operating system has set up an
incorrect memory mapping.

5.1.5.1.3 Data Cache Block Store (dcbst) Instruction
The debst instruction permits the program to ensure that the latest version of the target
cache block is in main memory. The debst instruction executes as follows:

• Coherency required-If the target exists in the data cache(s) of any processor(s) and
has been modified, the data is written to main memory.

• Coherency not required-If the target exists in the data cache of the executing
processor and has been modified, the data is written to main memory.

The function of this instruction is independent of the write-throughlwrite-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused by a debst instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation (not as a store
operation).

Chapter 5. Cache Model and Memory Coherency 5-9

5.1.5.1.4 Data Cache Block Flush (dcbf) Instruction
The action taken depends on the memory/cache access mode associated with the target, and
on the state of the cache block. The following list describes the action taken for the various
cases:

• Coherency required

Unmodified cache block-Invalidates copies of the cache block in the data caches
of all processors.

Modified cache block-Copies the cache block to memory. Invalidates copies of the
cache block in the data caches of all processors.

Target block not in cache-If a modified copy of the cache block is in the data
cache(s) of any processor(s), debf causes the modified cache block to be copied to
memory and then invalidated. If unmodified copies are in the data caches of other
processors, debf causes those copies to be invalidated.

• Coherency not required

Unmodified cache block-Invalidates the cache block in the executing processor's
data cache.

Modified cache block-Copies the data cache block to memory and then invalidates
the cache block in the executing processor.

Target block not in cache-No action is taken.

The function of this instruction is independent of the write-throughlwrite-back and
caching-inhibitedlcaching-allowed attributes of the target.

The memory access caused by a debf instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation (not as a store
operation).

5.1.5.2 Instruction Cache Instructions
Instruction caches, if they exist, are not required to be consistent with data caches, memory,
or I/O data transfers. Software must use the appropriate cache management instructions to
ensure that instruction caches are kept coherent when instructions are modified by the
processor or by input data transfer. When a processor alters a memory location that may be
contained in an instruction cache, software must ensure that updates to memory are visible
to the instruction fetching mechanism. Although the instructions to enforce consistency
vary among implementations, the following sequence for a uniprocessor system is typical:

1. debst (update memory)

2. syne (wait for update)

3. icbi (invalidate copy in instruction cache)
4. isyne (perform context synchronization)

5-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Note that most operating systems will provide a system service for this function. These
operations are necessary because the memory may be designated as write-back. Since
instruction fetching may bypass the data cache, changes made to items in the data cache
may not otherwise be reflected in memory until after the instruction fetch completes.

For implementations used in multiprocessor systems, variations on this sequence may be
recommended. For example, in a multiprocessor system with a unified instruction/data
cache (at any level), if instructions are fetched without coherency being enforced, the
preceding instruction sequence is inadequate. Because the icbi instruction does not
invalidate blocks in a unified cache, a debf instruction should be used instead of a debst
instruction for this case.

5.1.5.2.1 Instruction Cache Block Invalidate Instruction (icbi)
The iebi instruction executes as follows:

• Coherency required

If the target is in the instruction cache of any processor, the cache block is made
invalid in all such processors, so that the next reference causes the cache block to be
refetched.

• Coherency not required

If the target is in the instruction cache of the executing processor, the cache block is
made invalid in the executing processor so that the next reference causes the cache
block to be refetched.

The icbi instruction is provided for use in processors with separate instruction and data
caches. The effective address is computed, translated, and checked for protection violations
as defined in Chapter 7, "Memory Management." If the target block is not accessible to the
program for loads, then a DSI exception occurs.

The function of this instruction is independent of the write-throughlwrite-back and
caching-inhibitedlcaching-allowed attributes of the target.

The memory access caused by an icbi instruction is not necessarily recorded in the page
tables. If the access is recorded, then it is treated as a load operation. Implementations that
have a unified cache treat the iebi instruction as a no-op except that they may invalidate the
target cache block in the instruction caches of other processors (in coherency required
mode).

5.1.5.2.2 Instruction Synchronize Instruction (isync)
The isyne instruction provides an ordering function for the effects of all instructions
executed by a processor. Executing an isyne instruction ensures that all instructions
preceding the isyne instruction have completed before the isyne instruction completes,
except that memory accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after the isyne instruction completes.

Chapter 5. Cache Model and Memory Coherency 5-11

Finally, it causes the processor to discard any prefetched instructions, with the effect that
subsequent instructions will be fetched and executed in the context established by the
instructions preceding the isync instruction. The isync instruction has no effect on other
processors or on their caches.

5.2 The Operating Environment
CD The OEA defines the mechanism for· controlling the memorylcache access modes

introduced in Section 5.1.4.1, "Memory/Cache Access Modes." This section describes the
cache-related aspects of the OEA including the memorylcache access attributes, out-of­
order execution, direct-store interface considerations, and the dcbi instruction. The features
of the OEA are accessible to supervisor-level applications only. The mechanism for
controlling the virtual memory space is described in Chapter 7, "Memory Management."

The memory model of PowerPC processors provides the following features:

• Flexibility to allow performance benefits of weakly-ordered memory access

• A mechanism to maintain memory coherency among processors and between a
processor and I/O devices controlled at the block and page level

• Instructions that can be used to ensure a consistent memory state

• Guaranteed processor access order

The memory implementations in PowerPC systems can take advantage of the performance
benefits of weak ordering of memory accesses between processors or between processors
and other external devices without any additional complications. Memory coherency can
be enforced externally by a snooping bus design, a centralized cache directory design, or
other designs that can take advantage of the coherency features of PowerPC processors.

Memory accesses performed by a single processor appear to complete sequentially from
the view of the programming model but may complete out of order with respect to the
ultimate destination in the memory hierarchy. Order is guaranteed at each level of the
memory hierarchy for accesses to the same address from the same processor. The dcbst,
debf, icbi, isync, sync, eieio, Iwarx, and stwcx. instructions allow the programmer to
ensure a consistent memory state.

5.2.1 Memory/Cache Access Attributes
All instruction and data accesses are performed under the control of the four memorylcache
access attributes:

• Write-through (W attribute)
• Caching-inhibited (I attribute)
• Memory coherency (M attribute)
• Guarded (G attribute)

5-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

These attributes are programmed in the PTEs and BATs by the operating system for each
page and block respectively. The Wand I attributes control how the processor performing
an access uses its own cache. The M attribute ensures that coherency is maintained for all
copies of the addressed memory location. When an access requires coherency, the processor
performing the access must inform the coherency mechanisms throughout the system that
the access requires memory coherency. The G attribute prevents out-of-order loading and
prefetching from the addressed memory location.

Note that the memory/cache access attributes are relevant only when an effective address is
translated by the processor performing the access. Note also that not all combinations of
settings of these bits is supported. The attributes are not saved along with data in the cache
(for cacheable accesses), nor are they associated with subsequent accesses made by other
processors.

The operating system programs the memory/cache access attribute for each page or block
as required. The WIMG attributes occupy four bits in the BAT registers for block address
translation and in the PTEs for page address translation. The WIMG bits are programmed
as follows:

• The operating system uses the mtspr instruction to program the WIMG bits in the
BAT registers for block address translation. The IBAT register pairs implement the
W or G bits; however, attempting to set either bit in IBAT registers causes
boundedly-undefined results.

• The operating system writes the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

Note that for data accesses performed in real addressing mode (MSR[DR] = 0), the WIMG
bits are assumed to be ObOOll (the data is write-back, caching is enabled, memory
coherency is enforced, and memory is guarded). For instruction accesses performed in real
addressing mode (MSR[lR] = 0), the WIMG bits are assumed to be ObOOOl (the data is
write-back, caching is enabled, memory coherency is not enforced, and memory is
guarded).

5.2.1.1 Write-Through Attribute (W)
When an access is designated as write-through (W = 1), if the data is in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
memory location. The definition of the memory location to be written to (in addition to the
cache) depends on the implementation of the memory system but can be illustrated by the
following examples:

• RAM-The store is sent to the RAM controller to be written into the target RAM.

• I/O device-The store is sent to the memory-mapped I/O controller to be written to
the target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the
memory hierarchy that is seen by all processors and devices.

Chapter 5. Cache Model and Memory Coherency 5·13

-

Multiple store instructions may be combined for write-through accesses except when the
store instructions are separated by a sync or eieio instruction. A store operation to a memory
location designated as write-through may cause.any part of the cache block to be written
back to main memory.

Accesses that correspond to W = 0 are considered write-back. For this case, although the
store operation is performed to the cache, the data is copied to memory only when a copy­
back operation is required. Use of the write-back mode (W = 0) can improve overall
performance for areas of the memory space that are seldom referenced by other processors
or devices in the system.

Accesses to the same memory location using two effective addresses for which the W bit
setting differs meet the memory-coherency requirements if the accesses are performed by
a single processor. If the accesses are performed by two or more processors, coherence is
enforced by the hardware only if the write-through attribute is the same for all the accesses.

5.2.1.2 Caching-Inhibited Attribute (I)
If I = 1, the memory access is completed by referencing the location in main memory,
bypassing the cache. During the access, the addressed location is not loaded into the cache
nor is the location allocated in the cache.

It is considered a programming error if a copy of the target location of an access to caching­
inhibited memory is resident in the cache. Software must ensure that the location has not
been previously loaded into the cache, or, if it has, that it has been flushed from the cache.

Data accesses from more than one instruction may be combined for cache-inhibited
operations, except when the accesses are separated by a sync instruction, or by an eieio
instruction when the page or block is also designated as guarded.

Instruction fetches, dcbz instructions, and load and store operations to the same memory
location using two effective addresses for which the I bit setting differs must meet the
requirement that a copy of the target location of an access to caching-inhibited memory not
be in the cache. Violation of this requirement is considered a programming error; software
must ensure that the location has not previously been brought into the cache or, if it has,
that it has been flushed from the cache. If the programming error occurs, the result of the
access is boundedly undefined. It is not considered a programming error if the target
location of any other cache management instruction to caching-inhibited memory is in the
cache.

5-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

5.2.1.3 Memory Coherency Attribute (M)
This attribute is provided to allow improved performance in systems where hardware­
enforced coherency is relatively slow, and software is able to enforce the required
coherency. When M = 0, there are no requirements to enforce data coherency. When M = 1,
the processor enforces data coherency.

When the M attribute is set, and the access is performed to memory, there is a hardware
indication to the rest of the system that the access is global. Other processors affected by
the access must then respond to this global access. For example, in a snooping bus design,
the processor may assert some type of global access signal. Other processors affected by
the access respond and signal whether the data is being shared. If the data in another
processor is modified, then the location is updated and the access is retried.

Because instruction memory does not have to be coherent with data memory, some
implementations may ignore the M attribute for instruction accesses. In a single-processor
(or single-cache) system, performance might be improved by designating all pages as
memory coherency not required.

Accesses to the same memory location using two effective addresses for which the M bit
settings differ may require explicit software synchronization before accessing the location
with M = 1 if the location has previously been accessed with M = O. Any such requirement
is system-dependent. For example, no software synchronization may be required for
systems that use bus snooping. In some directory-based systems, software may be required
to execute debf instructions on each processor to flush all storage locations accessed with
M = 0 before accessing those locations with M = 1.

5.2.1.4 W, I, and M Bit Combinations
Table 5-1 summarizes the six combinations of the WIM bits supported by the OEA. The
combinations where WIM = llx are not supported. Note that either a zero or one setting
for the G bit is allowed for each of these WIM bit combinations.

Table 5-1. Combinations of W, I, and M Bits

WIMSeHing Meaning

000 The processor may cache data (or instructions).
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

001 Data (or instructions) may be cached.
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor enforces memory coherency for accesses it initiates.

010 Caching is inhibited.
The access is performed to memory. completely bypassing the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

011 Caching is inhibited.
The access is performed to memory. completely bypassing the cache.
The processor enforces memory coherency for accesses it initiates.

Chapter 5. Cache Model and Memory Coherency 5-15

Table 5·1. Combinations of W,I, and M Bits (Continued)

WIMSetting Meaning

100 Data (or instructions) may be cached.
A load operation whose target hits in the cache may use that entry in the cache.
Store operations are written to memory. The target location of the store may be cached and is
updated on a hit.
The processor does not need to enforce memory coherency for accesses it initiates.

101 Data (or instructions) may be cached.
A load operation whose target hits in the cache may use that entry in the cache.
Store operations are written to memory. The target location of the store may be cached and is
updated on a hit.
The processor enforces memory coherency for accesses it initiates.

5.2.1.5 The Guarded Attribute (G)
When the guarded bit is set, the memory area (block or page) is designated as guarded. This
setting can be used to protect certain memory areas from read accesses made by the
processor that are not dictated directly by the program. If there are areas of physical
memory that are not fully populated (in other words, there are holes in the physical memory
map within this area), this setting can protect the system from undesired accesses caused
by out-of-order load operations or instruction prefetches that could lead to the generation
of the machine check exception. Also, the guarded bit can be used to prevent out-of-order
(speculative) load operations or prefetches from occurring to certain peripheral devices that
produce undesired results when accessed in this way.

5.2.1.5.1 Performing Operations Out of Order
An operation is said to be performed in-order if it is guaranteed to be required by the
sequential execution model. Any other operation is said to be performed out of order.

Operations are performed out of order by the hardware on the expectation that the results
will be needed by an instruction that will be required by the sequential execution model.
Whether the results are really needed is contingent on everything that might divert the
control flow away from the instruction, such as branch, trap, system call, and rfi
instructions, and exceptions, and on everything that might change the context in which the
instruction is executed.

5-16 PowerPC Microprocessor Family: The Programming Environments (32-8it)

Typically, the hardware performs operations out of order when it has resources that would
otherwise be idle, so the operation incurs little or no cost. If subsequent events such as
branches or exceptions indicate that the operation would not have been performed in the
sequential execution model, the processor abandons any results of the operation (except as
described below).

Most operations can be performed out of order, as long as the machine appears to follow
the sequential execution model. Certain out-of-order operations are restricted, as follows.

Stores

A store instruction may not be executed out of order in a manner such that the
alteration of the target location can be observed by other processors or mechanisms.

• Accessing guarded memory

The restrictions for this case are given in Section 5.2.1.5.3, "Out-of-Order Accesses
to Guarded Memory."

No error of any kind other than a machine check exception may be reported due to an
operation that is performed out of order, until such time as it is known that the operation is
required by the sequential execution model. The only other permitted side effects (other
than machine check) of performing an operation out of order are the following:

• Referenced and changed bits may be set as described in Section 7.2.5, "Page History
Information."

• Nonguarded memory locations that could be fetched into a cache by in-order
execution may be fetched out of order into that cache.

5.2.1.5.2 Guarded Memory
Memory is said to be well behaved if the corresponding physical memory exists and is not
defective, and if the effects of a single access to it are indistinguishable from the effects of
multiple identical accesses to it. Data and instructions can be fetched out of order from
well-behaved memory without causing undesired side effects.

Memory is said to be guarded if either (a) the G bit is 1 in the relevant PTE or DBAT
register, or (b) the processor is in real addressing mode (MSR[lR] = 0 or MSR[DR] = 0 for
instruction fetches or data accesses respectively). In case (b), all of memory is guarded for
the corresponding accesses. In general, memory that is not well-behaved should be
guarded. Because such memory may represent an I/O device or may include locations that
do not exist, an out-of-order access to such memory may cause an I/O device to perform
incorrect operations or may result in a machine check.

Note that if separate store instructions access memory that is both caching-inhibited and
guarded, the accesses are performed in the order specified by the program. If an aligned,
elementary load or store to caching-inhibited, guarded memory has accessed main memory
and an external, decrementer, or imprecise-mode floating-point enabled exception is
pending, the load or store is completed before the exception is taken.

Chapter 5. Cache Model and Memory Coherency 5-17

5.2.1.5.3 Out-of-Order Accesses to Guarded Memory
The circumstances in which guarded memory may be accessed out of order are as follows:

• Load instruction

If a copy of the target location is in a cache, the location may be accessed in the
cache or in main memory.

• Instruction fetch

In real addressing mode (MSR[lR] = 0), an instruction may be fetched if any of the
following conditions is met:

- The instruction is in a cache. In this case, it may be fetched from that cache.

- The instruction is in the same physical page as an instruction that is required by
the sequential execution model or is in the physical page immediately following
such a page.

IfMSR[IR] = 1, instructions may not be fetched from either no-execute segments or
guarded memory. If the effective address of the current instruction is mapped to
either of these kinds of memory when MSR[lR] = 1, an lSI exception is generated.
However, it is permissible for an instruction from either of these kinds of memory
to be in the instruction cache if it was fetched into that cache when its effective
address was mapped to some other kind of memory. Thus, for example, the
operating system can access an application's instruction segments as no-execute
without having to invalidate them in the instruction cache.

Additionally, instructions are not fetched from direct-store segments (only applies
when MSR[lR] = 1). If an instruction fetch is attempted from a direct-store segment,
an lSI exception is generated. Note that the direct-store facility is being phased out
of the architecture and will not likely be supported in future devices. Thus, software
should not depend on its effects.

Note that software should ensure that only well-behaved memory is loaded into a cache,
either by marking as caching-inhibited (and guarded) all memory that may not be well­
behaved, or by marking such memory caching-allowed (and guarded) and referring only to
cache blocks that are well-behaved.

If a physical page contains instructions that will be executed in real addressing mode
(MSR[IR] = 0), software should ensure that this physical page and the next physical page
contain only well-behaved memory.

5-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

5.2.2 1/0 Interface Considerations
The PowerPC architecture defines two mechanisms for accessing 110:

• Memory-mapped 110 interface operations. SR[T] = o. These operations are
considered to address memory space and are therefore subject to the same coherency
control as memory accesses. Depending on the specific 110 interface, the
memory/cache access attributes (WIMG) and the degree of access ordering
(requiring eieio or sync instructions) need to be considered. This is the
recommended way of accessing 110.

• Direct-store segment operations. SR[T] = 1. These operations are considered to
address the noncoherent and noncacheable direct-store segment space; therefore,
hardware need not maintain coherency for these operations, and the cache is
bypassed completely. Although the architecture defines this direct-store
functionality, it is being phased out of the architecture and will not likely be
supported in future devices. Thus, its use is discouraged, and new software should
not use it or depend on its effects.

5.2.3 OEA Cache Management Instruction-
Data Cache Block Invalidate (dcbi)

As described in Section 5.1.5, "VEA Cache Management Instructions," the VEA defines
instructions for controlling both the instruction and data caches, The OEA defines one
instruction, the data cache block invalidate (dcbi) instruction, for controlling the data
cache. This section briefly describes the cache management instruction available to
programs at the supervisor privilege level. Additional descriptions of coding the dcbi
instruction are provided in Chapter 4, "Addressing Modes and Instruction Set Summary,"
and Chapter 8, "Instruction Set." In the following description, the target is the cache block
containing the byte addressed by the effective address.

Any cache management instruction that generates an EA that corresponds to a direct-store
segment (SR[T] = 1) is treated as a no-op. However, note that the direct-store facility is
being phased out of the architecture and will not likely be supported in future devices. Thus,
software should not depend on its effects.

The action taken depends on the memory/cache access mode associated with the target, and
on the state of the cache block. The following list describes the action taken for the various
cases:

• Coherency required

Unmodified cache block-Invalidates copies of the cache block in the data caches
of all processors.

Modified cache block-Invalidates copies of the cache block in the data caches of
all processors. (Discards the modified data in the cache block.)

Chapter 5. Cache Model and Memory Coherency 5-19

Target block not in cache-If copies of the target are in the data caches of other
processors, dcbi causes those copies to be invalidated, regardless of whether the data.
is modified or unmodified.

• Coherency not required

Unmodified cache block-Invalidates the cache block in the executing processor's
data cache.

Modified cache block-Invalidates the cache block in the executing processor's data
cache. (Discards the modified data in the cache block.)

Target block not in cache-No action is taken.

The processor treats the dcbi instruction as a store to the addressed byte with respect to
address translation and protection. It is not necessary to set the referenced and changed bits.

The function of this instruction is independent of the write-throughlwrite-back and
caching-inhibitedlcaching-allowed attributes of the target. To ensure coherency, aliased
effective addresses (two effective addresses that map to the same physical address) must
have the same page offset.

5-20 PowerPC Microprocessor Family: The Programming Environments (32-8It)

Chapter 6
Exceptions
The operating environment architecture (OEA) portion of the PowerPC architecture defines
the mechanism by which PowerPC processors implement exceptions (referred to as CD
interrupts in the architecture specification). Exception conditions may be defined at other
levels of the architecture. For example, the user instruction set architecture (UISA) defines
conditions that may cause floating-point exceptions; the OEA defines the mechanism by
which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception-for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction­
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the
appropriate machine state if it is desired to allow control to ultimately return to the
excepting program.

Chapter 6. Exceptions 6-1

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRRI soon after the exception is taken to prevent this information froin
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition

Taken

Handling

6-2

Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor
mode (referred to as privileged state in the architecture
specification).

PowerPC Microprocessor Family: The Programming Environments (32~Bit)

6.1 Exception Classes
As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor's execution; synchronous exceptions are caused by
instructions.

The PowerPC exception types are shown in Table 6-1.

Table 6-1. PowerPC Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine Check
System Reset

Asynchronous/maskable External interrupt
Decrementer

Synchronous/precise Instruction-caused exceptions, excluding noating-
point imprecise exceptions

Synchronouslimprecise Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Exceptions, their offsets, and conditions that cause them, are summarized in Table 6-2. The
exception vectors described in the table correspond to physical address locations,
depending on the value of MSR[IP]. Refer to Section 7.2.1.2, "Predefined Physical
Memory Locations," for a complete list of the predefined physical memory areas.
Remaining sections in this chapter provide more complete descriptions of the exceptions
and of the conditions that cause them.

Chapter 6. Exceptions 6-3

Table 6-2. Exceptions and Conditions-Overview

Exception Vector Offset Causing Conditions Type (hex)

System 00100 The causes of system reset exceptions are implementation-dependent. If the conditions
reset that cause the exception also cause the processor state to be corrupted such that the

contents of SRRO and SRRl are no longer valid or such that other processor resources
are so corrupted that the processor cannot reliably resume execution, the copy of the RI
bit copied from the MSR 10 S.RRl is cleared.

Machine 00200 The causes for machine check exceptions are implementation-dependent, but typically
check these causes are related to conditions such as bus parity errors or attempting to access

an invalid physical address. Typically, these exceptions are triggered by an input signal to
the processor. Note that not all processors provide the same level of error checking.
The machine check exception is disabled when MSR[ME] = O. If a machine check
exception condition exists and the ME bit is cleared, the processor goes into the
checkstop state.
If the conditions that cause the exception also cause the processor state to be corrupted
such that the contents of SRRO and SRRl are no longer valid or such that other
processor resources are so corrupted that the processor cannot reliably resume
execution, the copy of the RI bit written from the MSR to SRRl is cleared.
(Note that physical addre.ss is referred to as real address in the architecture
specification.)

OSI 00300 A OSI exception occurs when a data memory access cannot be performed for any of the
reasons described in Section S.4.3, "OSI Exception (OXO0300)." Such accesses can be
generated by load/store instructions, certain memory control instructions, and certain
cache control instructions.

lSI 00400 An lSI exception occurs when an instruction fetch cannot be performed for a variety of
reasons described in Section S.4.4, "lSI Exception (OXOO400):'

External 00500 An external interrupt is generated only when an external interrupt is pending (typically
interrupt signalled by a signal defined by the implementation) and the interrupt is enabled

(MSR[EE] = 1).

Alignment OOSOO An alignment exception may occur when the processor cannot perform a memory
access for reasons described in Section S.4.S, "Alignment Exception (OXOOSOO)."
Note that an implementation is allowed to perform the operation correctly and not cause
an alignment exception.

6-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 6-2. Exceptions and Conditions-Overview (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Program 00700 A program exception is caused by one of the following exception conditions, which
correspond to bit settings in SRR1 and arise during execution of an instruction:

· Floating-point enabled exception-A floating-point enabled exception condition is
generated when MSR[FEQ-FE1] # 00 and FPSCR[FEX] is set. The settings of FEO
and FE1 are described in Table 6-3.
FPSCR[FEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of a Move to FPSCR instruction that sets both
an exception condition bit and its corresponding enable bit in the FPSCR. These
exceptions are described in Section 3.3.6, "Floating-Point Program Exceptions."

· Illegal instruction-An illegal instruction program exception is generated when
execution 01 an instruction is attempted with an illegal opcode or illegal combination of
opcode and extended opcode fields or when execution of an optional instruction not
provided in the specific implementation is attempted (these do not include those
optional instructions that are treated as no-ops). The PowerPC instruction set is
described in Chapter 4, "Addressing Modes and Instruction Set Summary." See
Section 6.4.7, "Program Exception (Ox00700)," for a complete list of causes for an
illegal instruction program exception.

· Privileged instruction-A privileged instruction type program exception is generated
when the execution of a privileged instruction is attempted and the MSR user
privilege bit, MSR[PR], is set. This exception is also generated for mtspr or mfspr
with an invalid SPR field if spr[O] = 1 and MSR[PR] = 1.

· Trap--A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

For more information, refer to Section 6.4.7, "Program Exception (Ox00700):'

Floating- 00800 A floating-point unavailable exception is caused by an attempt to execute a floating-point
point instruction (including floating-point load, store, and move instructions) when the floating-
unavailable point available bit is cleared, MSR[FP] = o.
Oecrementer 00900 The decrementer interrupt exception is taken if the exception is enabled (MSR[EE] = 1),

and it is pending. The exception is created when the most-significant bit of the
decrementer changes from 0 to 1. If it is not enabled, the exception remains pending until
it is taken.

Reserved OOAOO This is reserved for implementation-specific exceptions. For example, the 601 uses this
vector offset for direct-store exceptions.

Reserved 00600 -
System call OOCOO A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00000 Implementation of the trace exception is optional. If implemented, it occurs if either the
MSR[SE] = 1 and almost any instruction successfully completed or MSR[6E] = 1 and a
branch instruction is completed. See Section 6.4.11, ''Trace Exception (OxOOOOO)." for
more information.

Floating- OOEOO Implementation of the floating-point assist exception is optional. This exception can be
point assist used to provide software assistance for infrequent and complex floating-point operations

such as denormalization.

Reserved 00E1Q-OOFFF -
Reserved 01000-02FFF This is reserved for implementation-specific purposes. May be used for implementation-

specific exception vectors or other uses.

Chapter 6. Exceptions 6-5

6.1.1 Precise Exceptions
When any precise exceptions occur, SRRO is set to point to an instruction such that all prior
instructions in the instruction stream have completed execution and no subsequent
instruction has begun execution. However, depending on the exception type, the instruction
addressed by SRRO may not have completed execution.

When an exception occurs, instruction dispatch (the issuance of instructions by the
instruction fetch unit to any instruction execution mechanism) is halted and the following
synchronization is performed:

1. The exception mechanism waits for all previous instructions in the instruction
stream to complete to a point where they report all exceptions they will cause.

2. The processor ensures that all previous instructions in the instruction stream
complete in the context in which they began execution.

3. The exception mechanism implemented in hardware and the software handler is
responsible for saving and restoring the processor state;

The synchronization described conforms to the requirements for context synchronization.
A complete description of context synchronization is described in the following section.

6.1.2 Synchronization
The synchronization described in this section refers to the state of activities within the
processor that performs the synchronization.

6.1.2.1 Context Synchronization
An instruction or event is context synchronizing if it satisfies all the requirements listed
below. Such instructions and events are collectively called context-synchronizing
operations. Examples of context-synchronizing operations include the sc and rfi
instructions and most exceptions. A context-synchronizing operation has the following
characteristics:

6-6

1. The operation causes instruction dispatching (the issuance of instructions by the
instruction fetch mechanism to any instruction execution mechanism) to be halted.

2. The operation is not initiated or, in the case of isync, does not complete, until all
instructions in execution have completed to a point at which they have reported all
exceptions they will cause.

If a prior memory access instruction causes one or more direct-store interface error
exceptions, the results are guaranteed to be determined before this instruction is
executed. However, note that the direct-store facility is being phased out of the
architecture and will not likely be supported in future devices.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

3. Instructions that precede the operation complete execution in the context (for
example, the privilege, translation mode, and memory protection) in which they
were initiated.

4. If the operation either directly causes an exception (for example, the sc instruction
causes a system call exception) or is an exception, the operation is not initiated until
no exception exists having higher priority than the exception associated with the
context-synchronizing operation.

A context-synchronizing operation is necessarily execution synchronizing. Unlike the sync
instruction, a context-synchronizing operation need not wait for memory-related operations
to complete on other processors, or for referenced and changed bits in the page table to be
updated.

6.1.2.2 Execution Synchronization
An instruction is execution synchronizing if it satisfies the conditions of the first two items
described above for context synchronization. The sync instruction is treated like isync with
respect to the second item described above (that is, the conditions described in the second
item apply to the completion of sync). The sync and mtmsr instructions are examples of
execution-synchronizing instructions.

All context-synchronizing instructions are execution-synchronizing. Unlike a context­
synchronizing operation, an execution-synchronizing instruction need not ensure that the
subsequent instructions execute in the context established by that instruction. This new
context becomes effective sometime after the execution-synchronizing instruction
completes and before or at a subsequent context-synchronizing operation.

6.1.2.3 Synchronous/Precise Exceptions
When instruction execution causes a precise exception, the following conditions exist at the
exception point:

• Depending on the type of exception, SRRO addresses either the instruction causing
the exception or the immediately following instruction. The instruction addressed
can be determined from the exception type and status bits, which are defined in the
description of each exception.

• All instructions that precede the excepting instruction complete before the exception
is processed. However, some memory accesses generated by these preceding
instructions may not have been performed with respect to all other processors or
system devices.

• The instruction causing the exception may not have begun execution, may have
partially completed, or may have completed, depending on the exception type.
Handling of partially executed instructions is described in Section 6.1.4, "Partially
Executed Instructions."

• Architecturally, no subsequent instruction has begun execution.

Chapter 6. Exceptions 6-7

While instruction parallelism allows the possibility of multiple instructions reporting
exceptions during the same cycle, they are handled one at a time in program order.
Exception priorities are described in Section 6.1.5, "Exception Priorities."

6.1.2.4 Asynchronous Exceptions
There are four asynchronous exceptions-system reset and machine check, which are
nonmaskable and highest-priority exceptions, and external interrupt and decrementer
exceptions which are maskable and low-priority. These two types of asynchronous
exceptions are discussed separately.

6.1.2.4.1 System Reset and Machine Check Exceptions
System reset and machine check exceptions have the highest priority and can occur while
other exceptions are being processed. Note that nonmaskable, asynchronous exceptions are
never delayed; therefore, if two of these exceptions occur in immediate succession, the state
information saved by the first exception may be overwritten when the subsequent exception
occurs. Note that these exceptions are context-synchronizing if they are recoverable
(MSR[RI] is copied from the MSR to SRRI if the exception does not cause loss of state.)
If the RI bit is clear (nonrecoverable), the exception is context-synchronizing only with
respect to subsequent instructions.

These exceptions cannot be masked by using the MSR[EE] bit. However, if the machine
check enable bit, MSR[ME], is cleared and a machine check exception condition occurs,
the processor goes directly into checkstop state as the result of the exception condition.
When one of these exceptions occur, the following conditions exist at the exception point:

• For system reset exceptions, SRRO addresses the instruction that would have
attempted to execute next if the exception had not occurred.

• For machine check exceptions, SRRO holds either an instruction that would have
completed or some instruction following it that would have completed if the
exception had not occurred.

• An exception is generated such that all instructions preceding the instruction
addressed by SRRO appear to have completed with respect to the executing
processor.

Note that a bit in the MSR (MSR[RI]) indicates whether enough of the machine state was
saved to allow the processor to resume processing.

6·8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.1.2.4.2 External Interrupt and Decrementer Exceptions
For the external interrupt and decrementer exceptions, the following conditions exist at the
exception point (assuming these exceptions are enabled (MSR[EE) bit is set»:

• All instructions issued before the exception is taken and any instructions that
precede those instructions in the instruction stream appear to have completed before
the exception is processed.

• No subsequent instructions in the instruction stream have begun execution.

• SRRO addresses the instruction that would have been executed had the exception not
occurred.

That is, these exceptions are context-synchronizing. The external interrupt and decrementer
exceptions are maskable. When the machine state register external interrupt enable bit is
cleared (MSR[EE) = 0), these exception conditions are not recognized until the EE bit is
set. MSR[EE) is cleared automatically when an exception is taken, to delay recognition of
subsequent exception conditions. No two precise exceptions can be recognized
simultaneously. Exception handling does not begin until all currently executing instructions
complete and any synchronous, precise exceptions caused by those instructions have been
handled. Exception priorities are described in Section 6.1.5, "Exception Priorities."

6.1.3 Imprecise Exceptions
The PowerPC architecture defines one imprecise exception, the imprecise floating-point
enabled exception. This is implemented as one of the conditions that can cause a program
exception.

6.1.3.1 Imprecise Exception Status Description
When the execution of an instruction causes an imprecise exception, SRRO contains
information related to the address of the excepting instruction as follows:

• SRRO contains the address of either the instruction that caused the exception or of
some instruction following that instruction.

• The exception is generated such that all instructions preceding the instruction
addressed by SRRO have completed with respect to the processor.

• If the imprecise exception is caused by the context-synchronizing mechanism (due
to an instruction that caused another exception-for example, an alignment or DSI
exception), then SRRO contains the address of the instruction that caused the
exception, and that instruction may have been partially executed (refer to
Section 6.1.4, "Partially Executed Instructions").

• If the imprecise exception is caused by an execution-synchronizing instruction other
than sync or isync, SRRO addresses the instruction causing the exception.
Additionally, besides causing the exception, that instruction is considered not to
have begun execution. If the exception is caused by the sync or isync instruction,
SRRO may address either the sync or isync instruction, or the following instruction.

Chapter 6. Exceptions 6-9

• If the imprecise exception is not forced by either the context-synchronizing
mechanism or the execution-synchronizing mechanism, the instruction addressed by
SRRO is considered not to have begun execution if it is not the instruction that caused
the exception.

• When an imprecise exception occurs, no instruction following the instruction
addressed by SRRO is considered to have begun execution.

6.1.3.2 Recoverability of Imprecise Floating-Paint Exceptions
The enabled IEEE floating-point exception mode bits in the MSR (FEO and FEl) together
define whether IEEE floating-point exceptions are handled precisely, imprecisely, or
whether they are taken at all. The possible settings are shown in Table 6-3. For further
details, see Section 3.3.6, "Floating-Point Program Exceptions."

Table 6-3. IEEE Floating-Point Program Exception Mode Bits

FEO FE1 Mode

0 0 Floating-point exceptions ignored

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode

As shown in the table, the imprecise floating-point enabled exception has two
modes-nonrecoverable and recoverable. These modes are specified by setting the
MSR[FEO] and MSR[FE1] bits and are described as follows:

• Imprecise nonrecoverable floating-point enabled mode. MSR[FEO] = 0;
MSR[FE1] = 1. When an exception occurs, the exception handler is invoked at some
point at or beyond the instruction that caused the exception. It may not be possible
to identify the excepting instruction or the data that caused the exception. Results
from the excepting instruction may have been used by or affected subsequent
instructions executed before the exception handler was invoked.

• Imprecise recoverable floating-point enabled mode. MSR[FEO] = 1; MSR[FE1] = O.
When an exception occurs, the floating-point enabled exception handler is invoked
at some point at or beyond the instruction that caused the exception. Sufficient
information is provided to the exception handler that it can identify the excepting
instruction and correct any faulty results. In this mode, no incorrect results caused
by the excepting instruction have been used by or affected subsequent instructions
that are executed before the exception handler is invoked.

Although these exceptions are maskable with these bits, they differ from other maskable
exceptions in that the masking is usually controlled by the application program rather than
by the operating system.

6-10 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

6.1.4 Partially Executed Instructions
The architecture permits certain instructions to be partially executed when an alignment
exception or DSI exception occurs, or an imprecise floating-point exception is forced by an
instruction that causes an alignment or DSI exception. They are as follows:

• Load multiple/string instructions that cause an alignment or DSI exception-Some
registers in the range of registers to be loaded may have been loaded.

• Store multiple/string instructions that cause an alignment or DSI exception-Some
bytes in the addressed memory range may have been updated.

• Non-multiple/string store instructions that cause an alignment or DSI
exception-Some bytes just before the boundary may have been updated. If the
instruction normally alters CRO (stwcx.), CRO is set to an undefined value. For
instructions that perform register updates, the update register (rA) is not altered.

• Floating-point load instructions that cause an alignment or DSI exception-The
target register may be altered. For update forms, the update register (rA) is not
altered.

• A load or store to a direct-store segment that causes a DSI exception due to a direct­
store interface error exception-Some of the associated address/data transfers may
not have been initiated. All initiated transfers are completed before the exception is
reported, and the transfers that have not been initiated are aborted. Thus the
instruction completes before the DSI exception occurs. However, note that the
direct-store facility is being phased out of the architecture and will not likely be
supported in future devices.

In the cases above, the number of registers and the amount of memory altered are
implementation-, instruction-, and boundary-dependent. However, memory protection is
not violated. Furthermore, if some of the data accessed is in a direct-store segment and the
instruction is not supported for use in such memory space, the locations in the direct-store
segment are not accessed. Again, note that the direct-store facility is being phased out of
the architecture and will not likely be supported in future devices.

Partial execution is not allowed when integer load operations (except multiple/string
operations) cause an alignment or DSI exception. The target register is not altered. For
update forms of the integer load instructions, the update register (rA) is not altered.

Chapter 6. Exceptions 6-11

6.1.5 Exception Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other
exceptions-system reset and machine check exceptions (although the machine
check exception condition can be disabled so that the condition causes the processor
to go directly into the checkstop state). These two types of exceptions in this class
cannot be delayed by exceptions in other classes, and do not wait for the completion
of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. If an imprecise exception exists (the instruction that caused the exception has been
completed and is required by the sequential execution model), exceptions signaled
by instructions subsequent to the instruction that caused the exception are not
permitted to change the architectural state of the processor. The exception causes an
imprecise program exception unless a machine check or system reset exception is
pending.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
have lowest priority.

The exceptions are listed in Table 6-4 in order of highest to lowest priority.

Table 6-4. Exception Priorities

Exception
Priority Exception Class

Nonmaskable, 1 System reset-The system reset exception has the highest priority of all exceptions. 1/ this
asynchronous exception exists, the exception mechanism ignores all other exceptions and generates a

system reset exception. When the system reset exception is generated, previously issued
instructions can no longer generate exception conditions that cause a nonmaskable
exception.

2 Machine check-The machine check exception is the second-highest priority exception. If
this exception occurs, the exception mechanism ignores all other exceptions (except reset)
and generates a machine check exception. When the machine check exception is
generated, previously issued instructions can no longer generate exception conditions that
cause a nonmaskable exception.

6-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 6-4. Exception Priorities (Continued)

Exception Priority Exception Class

Synchronous, 3 Instruction dependent- When an instruction causes an exception, the exception
precise mechanism waits for any instructions prior to the excepting instruction in the instruction

stream to complete. Any exceptions caused by these instructions are handled first. It then
generates the appropriate exception if no higher priority exception exists when the
exception is to be generated.
Note that a single instruction can cause multiple exceptions. When this occurs, those
exceptions are ordered in priority as indicated in the following:
A. Integer loads and stores

a.Alignment
b.OSI
c. Trace (if implemented)

B. Floating-point loads and stores
a. Floating-point unavailable
b.Alignment
c.OSI
d. Trace (if implemented)

C. Other floating-point instructions
a. Floating-point unavailable
b. Program-Precise-mode floating-point enabled exception
c. Floating-point assist (if implemented)
d. Trace (if implemented)

D.rfl and mtmsr
a. Program-Privileged Instruction
b. Program-Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsr only
If precise-mode IEEE floating-point enabled exceptions are enabled and the
FPSCR[FEX) bit is set, a program exception occurs no later than the next
synchronizing event.

E. Other instructions
a. These exceptions are mutually exclusive and have the same priority:

-Program: Trap
- System call (ac)
-Program: Privileged Instruction
-Program: illegal Instruction

b. Trace (if implemented)
F. lSI exception
The lSI exception has the lowest priority in this category. It is only recognized when all
instructions prior to the instruction causing this exception appear to have completed and
that instruction is to be executed. The priority of this exception is specified for
completeness and to ensure that it is not given more favorable treatment. An
implementation can treat this exception as though it had a lower priority.

Imprecise 4 Program imprecise floating-point mode enabled exceptions-When this exception occurs,
the exception handler is invoked at or beyond the floating-point instruction that caused the
exception. The PowerPC architecture supports recoverable and nonrecoverable imprecise
modes, which are enabled by setting MSR[FEO)". MSR[FE1). For more information see,
Section 6.1.3, "Imprecise Exceptions."

Chapter 6. Exceptions 6-13

Table 6-4. Exception Priorities (Continued)

Exception Priority Exception
Class

Maskable, 5 External interrupt-The external interrupt mechanism waits for instructions currently or
asynchronous previously dispatched to complete execution. After all such instructions are completed, and

any exceptions caused by those instructions have been handled, the exception mechanism
generates this exception if no higher priority exception exists. This exception is enabled
only if MSR[EE) is currently set. If EE is zero when the exception is detected, it is delayed
until the bit is set.

6 Decrementer-This exception is the lowest priority exception. When this exception is
created, the exception mechanism waits for all other possible exceptions to be reported. It
then generates this exception if no higher priority exception exists. This exception is
enabled only if MSR[EE) is currently set. If EE is zero when the exception is detected, it is
delayed until the bit is set.

Nonmaskable, asynchronous exceptions (namely, system reset or machine check
exceptions) may occur at any time. That is, these exceptions are not delayed if another
exception is being handled (although machine check exceptions can be delayed by system
reset exceptions). As a result, state information for the interrupted exception handler may
be lost.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized. Only one
synchronous, precise exception can be reported at a time. If a maskable, asynchronous or
an imprecise exception condition occurs while instruction-caused exceptions are being
processed, its handling is delayed until all exceptions caused by previous instructions in the
program flow are handled and those instructions complete execution.

6.2 Exception Processing
When an exception is taken, the processor uses the save/restore registers, SRRI and SRRO,
respectively, to save the contents of the MSR for the interrupted process and to help
determine where instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in SRRO is used to help calculate where
instruction processing should resume when the exception handler returns control to the
interrupted process. Depending on the exception, this may be the address in SRRO or at the
next address in the program flow. All instructions in the program flow preceding this one
will have completed execution and no subsequent instruction will have begun execution.
This may be the address of the instruction that caused the exception or the next one (as in
the case of a system call or trap exception). The SRRO register is shown in Figure 6-1.

6-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

61 Reserved

SRRO (holds EA for instruction in interrupted program flow)

o 293031

Figure 6-1. Machine Status SavelRestore Register 0

The save/restore register 1 (SRRI) is used to save machine status (selected bits from the
MSR and other implementation-specific status bits as well) on exceptions and to restore
those values when rfi is executed. SRRI is shown in Figure 6-2.

Exception-specific information and MSR bit values

o 31

Figure 6-2. Machine Status SavelRestore Register 1

When an exception occurs, SRRI bits 1-4 and 10-15 are loaded with exception-specific
information and MSR bits 16-23,25-27, and 30-31 are placed into the corresponding bit
positions of SRRI. Depending on the implementation, additional bits of the MSR may be
copied to SRRI.

Note that, in some implementations, every instruction fetch when MSR[lR] = 1, and every
data access requiring address translation when MSR[DR] = I, may modify SRRO and
SRRI.

The MSR is 32 bits wide as shown in Figure 6-3. Note that the 32-bit implementation of
the MSR is comprised of the 32 least-significant bits of the 64-bit MSR.

III Reserved

o 12 13 14 15 16171819 20 2122 23 2425262728293031

Figure 6-3. Machine State Register (MSR)

Chapter 6. Exceptions 6-15

Table 6-5 shows the bit definitions for the MSR.

Table 6-5. MSR Bit Settings

Blt(s) Name Description

0-12 - Reserved

13 POW Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Note: Power management functions are implementation-dependent. If the function is not

implemented, this bit is treated as reserved.

14 - Reserved

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE) to select the
endian mode for the context established by the exception.

16 EE External interrupt enable
0 While the bit is cleared the processor delays recognition of external interrupts and decrementer

exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point loads,

stores, and moves.
1 The processor can execute floating-pOint instructions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FEO Floating-point exception mode 0 (see Table 2-10).

21 SE Single-step trace enable (Optional)
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of the

next instruction.
Note: If the function is not implemented, this bit is treated as reserved.

22 BE Branch trace enable (Optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the execution of a branch

instruction, regardless of whether or not the branch was taken.
Note: If the function is not implemented, this bit is treated as reserved.

23 FE1 Floating-point exception mode 1 (See Table 2-10).

24 - Reserved

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or Os. In the following description, nnnnn is the offset of the exception vector. See Table 6-2.
0 Exceptions are vectored to the physical address OxOOOn_nnnn .
1 Exceptions are vectored to the physical address OxFFFn_nnnn.
In most systems, IP is set to 1 during system initialization, and then cleared to 0 when initialization is
complete.

6-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 6-5. MSR Bit Settings (Continued)

Blt(s) Name Description

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 7, "Memory Management."

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 7, "Memory Management."

28-29 - Reserved

30 RI Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
1 Exception is recoverable.
For more information see Section 6.4.1, ·System Reset Exception (OxOO100),-and Section 6.4.2,

"Machine Check Exception (OX00200)."

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Those MSR bits that are written to SRRI are written when the first instruction of the
exception handler is encountered. The data address register (DAR) is used by several
exceptions (for example, DSI and alignment exceptions) to identify the address of a
memory element.

6.2.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition as follows:

• IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FEO] and MSR[FEl] are cleared. If either of these bits is set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.

• Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] = 0, recognition
of these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken to delay recognition of conditions causing those exceptions.

• A machine check exception can only occur if the machine check enable bit,
MSR[ME], is set. IfMSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs.

Chapter 6. Exceptions 6-17

6.2.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruction­
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1. The machine status savelrestore register 0 (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. SRRI bits 1-4 and 10-15 are loaded with information specific tothe exception type.

3. MSR bits 16-23,25-27, and 30-31 are loaded with a copy ofthe corresponding bits
of the MSR. Note that depending on the implementation, additional bits from the
MSR may be saved in SRRI.

4. The MSR is set as described in Table 6-7. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Also, note that the MSR[ILE] bit setting at the time of the exception is copied to
MSR[LE] when the exception is taken (as shown in Table 6-7).

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector offset (see Table 6-2) to the base address determined by MSR[IP]. IfIP is
cleared, exceptions are vectored to the physical address OxOOOn_nnnn. If IP is set,
exceptions are vectored to the physical address OxFFFn_nnnn. For a machine check
exception that occurs when MSR[ME] = 0 (machine check exceptions are disabled),
the checkstop state is entered (the machine stops executing instructions). See
Section 6.4.2, "Machine Check Exception (Ox00200)."

In some implementations, any instruction fetch with MSR[IR] = 1 and any load or store
with MSR[DR] = 1 may cause SRRO and SRRI to be modified.

6-18 PowtlrPC Microprocessor Family: The Programming Environments (32-Bit)

6.2.3 Returning from an Exception Handler
The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process.
Execution of the rfi instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause
an exception.

If a previous instruction causes a direct-store interface error exception, the results
are determined before this instruction is executed. However, note that the direct­
store facility is being phased out of the architecture and will not likely be supported
in future devices.

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The rfi instruction copies SRRI bits back into the MSR.

• The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Section 6.1.2.1, "Context
Synchronization."

6.3 Process Switching
The operating system should execute the following when processes are switched:

• The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes.

• The isync instruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

• The stwcx. instruction, to clear any outstanding reservations, which ensures that an
lwarx instruction in the old process is not paired with an stwcx. instruction in the
new process.

The operating system should handle MSR[RI] as follows:

• In machine check and system reset exception handlers-Ifthe SRRI bit
corresponding to MSR[RI] is cleared, the exception is not recoverable.

• In each exception handler-When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

• At the end of each exception handler-Clear MSR[RI], set the SRRO and SRRI
registers appropriately, and then execute rfi.

Chapter 6. Exceptions 6-19

Note that the RI bit being set indicates that, with respect to the processor, enough processor
state data is valid for the processor to continue, but it does not guarantee that the interrupted
process can resume.

6.4 Exception Definitions
Table 6-6 shows all the types of exceptions that can occur and certain MSR bit settings
when the exception handler is invoked. Depending on the exception, certain of these bits
are stored in SRRI when an exception is taken. The following subsections describe each
exception in detail.

Table 6-6. MSR Setting Due to Exception

MSR Bit
Exception Type

POW ILE EE PR FP ME FEO SE BE FE1 IP IR DR RI LE

System reset 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Machine check 0 - 0 0 0 0 0 0 0 0 - 0 0 0 ILE

Data access 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Instruction access 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

External 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Alignment 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Program 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Floating-point 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE
unavailable

Decrementer 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

System call 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Trace exception 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Floating-point 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE
assist exception

o Bit is cleared
1 Bit is set
ILE Bit is copied from the ILE bit in the MSA.

Bit is not altered
Reading of reserved bits may return 0, even if the value last written to it was 1.

6-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.4.1 System Reset Exception (Ox00100)
The system reset exception is a nonmaskable, asynchronous exception signaled to the
processor typically through the assertion of a system-defined signal; see Table 6-7.

Table 6-7. System Reset Exception-Register Settings

Register Setting Description

SRRa Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

SRR1 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30 Loaded from the equivalent MSR bit. MSR[RIJ. if the exception is recoverable;

otherwise cleared.
31 Loaded with equivalent bit from the MSR

Note that depending on the implementation. additional bits in the MSR may be copied to SRR1.
If the processor state is corrupted to the extent that execution cannot resume reliably. the bit
corresponding to MSR[RIJ. (SRR1[3O». is cleared.

MSR POW a FP a BE a DR a
ILE - ME - FE1 a RI a
EE a FEa a IP - LE Set to value of ILE
PR a SE a IR a

When a system reset exception is taken, instruction execution continues at offset OxOOlOO
from the physical base address determined by MSR[IP].

If the exception is recoverable, the value of the MSR[RI] bit is copied to the corresponding
SRRI bit. The exception functions as a context-synchronizing operation. If a reset
exception causes the loss of:

• an external exception (interrupt or decrementer),

• direct-store error type DSI (the direct-store facility is being phased out of the
architecture-not likely to be supported in future devices), or

• floating-point enabled type program exception,

then the exception is not recoverable. If the SRRI bit corresponding to MSR[RI] is cleared,
the exception is context-synchronizing only with respect to subsequent instructions. Note
that each implementation provides a means for software to distinguish between power-on
reset and other types of system resets (such as soft reset).

Chapter 6. Exceptions 6-21

6.4.2 Machine Check Exception (Ox00200)
If no higher-priority exception is pending (namely, a system reset exception), the processor
initiates a machine check exception when the appropriate condition is detected. Note that
the causes of machine check exceptions are implementation- and system-dependent, and
are typically signalled to the processor by the assertion of a specified signal on the
processor interface.

When a machine check condition occurs and MSR[ME] = 1, the exception is recognized
and handled .. If MSR[ME] = 0 and a machine check occurs, the processor generates an
internal checkstop condition. When a processor is in checkstop state, instruction processing
is suspended and generally cannot continue without resetting the processor. Some
implementations may preserve some or all of the internal state of the processor when
entering the checkstop state, so that the state can be analyzed as an aid in problem
determination.

In general, it is expected that a bus error signal would be used by a memory controller to
indicate a memory parity error or an uncorrectable memory ECC error. Note that the
resulting machine check exception has priority over any exceptions caused by the
instruction that generated the bus operation.

If a machine check exception causes an exception that is not context-synchronizing, the
exception is not recoverable. Also, a machine check exception is not recoverable if it causes
the loss of one of the following:

• An external exception (interrupt or decrementer)

• .Direct-store error type J:)SI (the direct-store facility is being phased out of the
architecture and is not likely to be supported in future devices)

• Floating-point enabled type program exception

If the SRRI bit corresponding to MSR[RI] is cleared, the exception is context­
synchronizing only with respect to subsequent instructions. If the exception is recoverable,
the SRRI bit corresponding to MSR[RI] is set and the exception is context-synchronizing.

Note that if the error is caused by the memory subsystem, incorrect data could be loaded
into the processor and register contents could be corrupted regardless of whether the
exception is considered recoverable by the SRRI bit corresponding to MSR[RI].

On some implementations, a machine check exception may be caused by referring to a
nonexistent physical (real) address, either because translation is disabled (MSR[lR] or
MSR[DR] = 0) or through an invalid translation. On such a system, execution of the dcbz
or dcba instruction can cause a delayed machine check exception by introducing a block
into the data cache that is associated with an invalid physical (real) address. A machine
check exception could eventually occur when and if a subsequent attempt is made to store
that block to memory (for example, as the block becomes the target for replacement, or as
the result of executing a dcbst instruction).

6-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

When a machine check exception is taken, registers are updated as shown in Table 6-S.

Table 6-8. Machine Check Exception-Register Settings

Register Setting Description

SRRO On a best-effort basis, implementations can set this to an EA of some instruction that was
executing or about to be executing when the machine check condition occurred.

SRRl Bit 30 is loaded from MSR[RI) if the processor is in a recoverable state. Otherwise cleared. The
setting of all other SRRl bits is implementation-dependent.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME' - FEl 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ILE
PR 0 SE 0 IR 0

• Note that when a machine check exception is taken, the exception handler should set MSR[ME) as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

IfMSR[RI] is set, the machine check exception may still be unrecoverable in the sense that
execution cannot resume in the same context that existed before the exception.

When a machine check exception is taken, instruction execution resumes at offset Ox00200
from the physical base address determined by MSR[IP].

6.4.3 OSI Exception (Ox00300)
A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The condition that caused the DSI exception can be determined by
reading the DSISR, a supervisor-level SPR (SPRIS) that can be read by using the mfspr
instruction. Bit settings are provided in Table 6-9. Table 6-9 also indicates which memory
element is pointed to by the DAR. DSI exceptions can be generated by load/store
instructions, cache-control instructions (iebi, debi, debz, debst, and deb!), or the
eciwxleeowx instructions for any of the following reasons:

• A load or a store instruction results in a direct-store error exception. Note that the
direct-store facility is being phased out of the architecture and is not likely to be
supported in future devices.

• The effective address cannot be translated. That is, there is a page fault for this
portion of the translation, so a DSI exception must be taken to retrieve the
translation, for example from a storage device such as a hard disk drive.

• The instruction is not supported for the type of memory addressed.

- For lwarxlstwex. instructions that reference a memory location that is write­
through-required. If the exception is not taken, the instructions execute correctly.

- For lwarxlstwex. or eciwxlecowx instructions that attempt to access direct-store
segments (direct-store facility is being phased out of the architecture-not likely
to be supported in future devices). If the exception does not occur, the results are
boundedly undefined.

Chapter 6. Exceptions 6·23

• The access violates memory protection.

• The execution of an eciwx or ecowx instruction is disallowed because the external
access register enable bit (EAR[E]) is cleared.

• A data address breakpoint register (DABR) match occurs. The DABR facility is
optional to the PowerPC architecture, but if one is implemented, it is recommended,
but not required, that it be implemented as follows. A data address breakpoint match
is detected for a load or store instruction if the three following conditions are met for
any byte accessed:

- EA[0--28] = DABR[DAB]

- MSR[DR] = DABR[BT]

- The instruction is a store and DABR[DW] = 1, or the instruction is a load and
DABR[DR] = 1.

The DABR is described in Section 2.3.14, "Data Address Breakpoint Register
(DABR)." DAR settings are described in Table 6-9. If the above conditions are
satisfied, it is undefined whether a match occurs in the following cases:

- The instruction is store conditional but the store is not performed.

- The instruction is a load/store string of zero length.

- The instruction is dcbz, eciwx, or ecowx.

The cache management instructions other than dcbz never cause a match. If dcbz
causes a match, some or all of the target memory locations may have been updated.
For the purpose of determining whether a match occurs, eciwx is treated as a load,
and ecowx and dcbz are treated as stores.

If an stwcx. instruction has an EA for which a normal store operation would cause aDS!
exception but the processor does not have the reservation from lwarx, whether aDS!
exception is taken is implementation-dependent.

If the value in XER[25-31] indicates that a load or store string instruction has a length of
zero, a DSI exception does not occur, regardless of the effective address.

The condition that caused the exception is defined in the DSISR. As shown in Table 6-9,
this exception also sets the data address register (DAR).

Table 6-9. OSI Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that caused the exception.

SRR1 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

6-24 PowtlrPC Microprocessor Family: The Programming Environments (32-8It)

Register

MSR

DSISR

Table 6-9. OSI Exception-Register Settings (Continued)

POW 0 FP 0
ILE - ME -
EE 0 FEO 0
PR 0 SE 0

Setting Description

BE 0
FE1 0
IP -
IR 0

DR 0
RI 0
LE Set to value of ILE

o Set if a load or store instruction results in a direct-store error exception; otherwise cleared. Note
that the direct-store facility is being phased out of the architecture and is not likely to be
supported in future devices.

1 Set if the translation of an attempted access is not found in the primary hash table entry group
(HTEG), or in the rehashed secondary HTEG, or in the range of a DBAT register (page fault
condition); otherwise cleared.

2-3 Cleared
4 Set if a memory access is not permitted by the page or DBAT' protection mechanism; otherwise

cleared.
5 Set if the eclwx, ecowx, Iwane, or stwcx. instruction is attempted to direct-store interface space,

or if the Iwarx or stwcx instruction is used with addresses that are marked as write-through.
Otherwise cleared to O. Note that the direct-store facility is being phased out of the architecture
and is not likely to be supported in future devices.

6 Set for a store operation and cleared for a load operation.
7-8 Cleared
9 Set if a DABR match occurs. Otherwise cleared.
10 Cleared
11 Set if the instruction is an eclwx or ecowx and EARlE) = 0; otherwise cleared.
12-31 Cleared
Due to the multiple exception conditions possible from the execution of a single instruction, the
following combinations of bits of DSISR may be set concurrently:
oBits 1 and 11
oBits 4 and 5
oBits 4 and 11
oBits 5 and 11
Additonally, bit 6 is set if the instruction that caused the exception is a store, ecowx, dcbz, dcba, or
dcbl and bit 6 would otherwise be cleared. Also, bit 9 (DABR match) may be set alone, or in
combination with any other bit, or with any of the other combinations shown above.

DAR Set to the effective address of a memory element as described in the following list:
o A byte in the first word accessed in the segment or BAT area that caused the 051 exception, for a

byte, half word, or word memory access (to a segment or BAT area).
o ' A byte in the first double word accessed in the segment or BAT area that caused the 051 exception,

for a double-word memory access (to a segment or BAT area).
o A byte in the block that caused the exception for a cache management instruction.
o Any EA in the memory range addressed (for direct-store error exceptions). Note that the direct-store

facility is being phased out of the architecture and is not likely to be supported in future devices.
o The EA computed by the instruction for the attempted execution of an eclwx or ecowx instruction

when EARlE) is cleared.
olf the exception is caused by a DABR match, the DAR is set to the effective address of any byte in the
range from A to B inclusive, where A is the effective address of the word (for a byte, haH word,or word
access) or double word (for a double word access) specified by the EA computed by the instruction,
and B is the EA of the last byte in the word or double word in which the match occurred.

When a DSI exception is taken, instruction execution resumes at offset OxOO300 from the
physical base address determined by MSR[IP].

Chapter 6. Exceptions 6-25

6.4.4 lSI Exception (Ox00400)
An lSI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction to be executed fails for any of the following reasons:

• The effective address cannot be translated. For example, when there is a page fault
for this portion of the translation, an lSI exception must be taken to retrieve the page
(and possibly the translation), typically from a storage device.

• An attempt is made to fetch an instruction from a no-execute segment.

• An attempt is made to fetch an instruction from guarded memory and MSR[IR] = 1.

• The fetch access violates memory protection.

• An attempt is made to fetch an instruction from a direct-store segment. Note that the
direct-store facility is being phased out of the architeCture and is not likely to be
supported in future devices.

Register settings for lSI exceptions are shown in Table 6-10.

Table 6-10. lSI Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present (if the exception occurs on attempting to fetch a branch target,
SRRO is set to the branch target address).

SRR1 1 Set if the translation of an attempted access is not found in the primary hash
table entry group (HTEG), or in the rehashed secondary HTEG, or in the
range of an IBAT register (page fault condition); otherwise cleared.

2 Cleared
3 Set if the fetch access occurs to a direct-store segment (SR[T] = 1), to a no-

execute segment (N bit set in segment descriptor), or to guarded memory
when MSR[IR] = 1. Otherwise, cleared. Note that the direct-store facility is
being phased out of the architecture and is not likely to be supported in future
devices.

4 Set if a memory access is not permitted by the page or IBAT protection
mechanism, described in Chapter 7,"Memory Management"; otherwise
cleared.

10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that only one of bits 1, 3, and 4 can be set.
Also, note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME - FE1 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ,ILE
PR 0 SE 0 IR 0

When an lSI exception is taken, instruction execution resumes at offset OxOO400 from the
physical base address determined by MSR[IP].

6-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.4.S External Interrupt (OxOOSOO)
An external interrupt exception is signaled to the processor by the assertion of the external
interrupt signal. The exception may be delayed by other higher priority exceptions or if the
MSR[EE] bit is zero when the exception is detected. Note that the occurrance of this
exception does not cancel the external request.

The register settings for the external interrupt exception are shown in Table 6-11.

Table 6-11. External Interrupt-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no interrupt conditions were present.

SRRl 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME - FEl 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ILE
PR 0 SE 0 IR 0

When an external interrupt exception is taken, instruction execution resumes at offset
OxOO500 from the physical base address determined by MSR[IP].

6.4.6 Alignment Exception (Ox00600)
This section describes conditions that can cause alignment exceptions in the processor.
Similar to DSI exceptions, alignment exceptions use the SRRO and SRRI to save the
machine state and the DSISR to determine the source of the exception. An alignment
exception occurs when no higher priority exception exists and the implementation cannot
perform a memory access for one of the following reasons:

• The operand of a floating-point load or store instruction is not word-aligned.

• The operand of Imw, stmw, Iwarx, stwcx., eciwx, or ecowx is not aligned.

• The instruction is Imw, stmw, Iswi, Iswx, stswi, or stswx and the processor is in
little-endian mode.

• The operand of an elementary or string load or store crosses a protection boundary.

• The operand of Imw or stmw crosses a segment or BAT boundary.

Chapter 6. Exceptions 6-27

• The operand of dcbz is in memory that is write-through-required or caching
inhibited, or dcbz is executed in an implementation that has either no data cache or
a write-through data cache.

• The operand of a floating-point load or store instruction is in a direct-store segment
(T = 1). Note that the direct-store facility is being phased out of the architecture and
is not likely to be supported in future devices.

For Imw, stmw, Iswi, Iswx, stswi, and stswx instructions in little-endian mode, an
alignment exception always occurs. For Imw and stmw instructions with an operand that is
not aligned in big-endian mode, and for Iwarx, stwcx., eciwx, and ecowx with an operand
that is not aligned in either endian mode, an implementation may yield boundedly­
undefined results instead of causing an alignment exception (for eciwx and ecowx when
EAR[E] = 0, a third alternative is to cause a DSI exception). For all other cases listed above,
an implementation may execute the instruction correctly instead of causing an alignment
exception. For the dcbz instruction, correct execution means clearing each byte of the block
in main memory. See Section 3.1, "Data Organization in Memory and Data Transfers," for
a complete definition of alignment in the PowerPC architecture.

The term, 'protection boundary', refers to the boundary between protection domains. A
protection domain is a segment, a block of memory defined by a BAT entry, a virtual 4-
Kbyte page, or a range of unmapped effective addresses. Protection domains are defined
only when the corresponding address translation (instruction or data) is enabled (MSR[IR]
or MSR[DR] = 1).

The register settings for alignment exceptions are shown in Table 6-12.

Table 6-12. Alignment Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that caused the exception.

SRR1 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME - FE1 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ILE
PR 0 SE 0 IR 0

6-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 6-12. Alignment Exception-Register Settings (Continued)

Register Setting Description

DSISR 0-14 Cleared
15-16 For instructions that use register indirect with index addressing-set to bits 29-30 of the

instruction encoding.
For instructions that use register indirect with immediate index addressing---<:Ieared

17 For instructions that use register indirect with index addressing-set to bit 25 01 the instruction
encoding.
For instructions that use register indirect with immediate index addressing- set to bit 5 of the
instruction encoding.

18-21 For instructions that use register indirect with index addressing-set to bits 21-24 of the
instruction encoding.
For instructions that use register indirect with immediate index addressing-set to bits 1-4 of the
instruction encoding.

22-26 Set to bits 6-10 (identifying either the source or destination) of the instruction encoding.
Undefined for dcbz.

27-31 Set to bits 11-15 of the instruction encoding (rA) for update-form instructions
Set to either bits 11-15 of the instruction encoding or to any register number not in the range of
registers loaded by a valid form instruction for Imw, Iswi, and Iswx instructions. Otherwise
undefined.

Note that for load or store instructions that use register indirect with index addressing, the DSISR can
be set to the same value that would have resulted if the corresponding instruction uses register indirect
with immediate index addressing had caused the exception. Similarly, for load or store instructions that
use register indirect with immediate index addressing, DSISR can hold a value that would have resulted
from an instruction that uses register indirect with index addressing. For example, a misaligned Iwarx
instruction that crosses a protection boundary would normally cause the DSISR to be set to the
following binary value:

00000000000000001 00101 IItIt ?????
The value tllIt refers to the destination and ????? indicates undefined bits.
However, this register may be set as if the instruction were Iwa, as follows:
000000000000 10 0 00 0 1101 Ittlt ?????
If there is no corresponding instruction, no alternative value can be specified.

The instruction pairs that can use the same DSISR values are as follows:
Ibzllbzx Ibzu/lbzux Ihzllhzx Ihzullhzux Ihallhax
Iwzllwzx Iwzullwzux Iwallwax stb/stbx stbu/stbux
sthu/sthux stw/stwx stwu/stwux Ifsllfsx Ifsu/lfsux
stfsu/stfsux

IhaU/lhaux
sth/sthx
stfs/stfsx

DAR Set to the EA of the data access as computed by the instruction causing the alignment exception.

The architecture does not support the use of a misaligned EA by load/store with reservation
instructions or by the eciwx and ecowx instructions. If one of these instructions specifies a
misaligned EA, the exception handler should not emulate the instruction but should treat
the occurrence as a programming error.

Chapter 6. Exceptions 6-29

6.4.6.1 Integer Alignment Exceptions
Operations that are not naturally aligned may suffer performance degradation, depending
on the processor design, the type of operation, the boundaries crossed, and the mode that
the processor is in during execution. More specifically, these operations may either cause
an alignment exception or they may cause the processor to break the memory access into
multiple, smaller accesses with respect to the cache and the memory subsystem.

6.4.6.1.1 Page Address Translation Access Considerations
A page address translation access occurs when MSR[DR] is set, SR[T] is cleared, and there
is no BAT match. Note that a dcbz instruction causes an alignment exception if the access
is to a page or block with the W (write-through) or I (cache-inhibit) bit set.

Misaligned memory accesses that do not cause an alignment exception may not perform as
well as an aligned access of the same type. The resulting performance degradation due to
misaligned accesses depends on how well each individual access behaves with respect to
the memory hierarchy.

Particular details regarding page address translation is implementation-dependent; the
reader should consult the user's manual for the appropriate processor for more information.

6.4.6.1.2 Direct-Store Interface Access Considerations
The following apply for direct-store interface accesses:

• If a 256-Mbyte boundary will be crossed by any portion of the direct-store interface
space accessed by an instruction (the entire string for strings/multiples), an
alignment exception is taken.

• Floating-point loads and stores to direct-store segments may cause an alignment
exception, regardless of operand alignment.

• The load/store word with reservation instructions that map into a direct-store
segment always cause a DSI exception. However, if the instruction crosses a
segment boundary an alignment exception is taken instead.

Note that the direct-store facility is being phased out of the architecture and is not likely to
be supported in future devices.

6.4.6.2 Little-Endian Mode Alignment Exceptions
The OEA allows implementations to take alignment exceptions on misaligned accesses (as
described in Section 3.1.4, "PowerPC Byte Ordering") in little-endian mode but does not
require them to do so. Some implementations may perform some misaligned accesses
without taking an alignment exception.

6-30 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.4.6.3 Interpretation of the DSISR as Set by an Alignment Exception
For most alignment exceptions, an exception handler may be designed to emulate the
instruction that causes the exception. To do this, the handler requires the following
characteristics of the instruction:

• Load or store

• Length (half word or word)

• String, multiple, or normalloadlstore

• Integer or floating-point

• Whether the instruction performs update

• Whether the instruction performs byte reversal

• Whether it is a dcbz instruction

The PowerPC architecture provides this information implicitly, by setting opcode bits in the
DSISR that identify the excepting instruction type. The exception handler does not need to
load the excepting instruction from memory. The mapping for all exception possibilities is
unique except for the few exceptions discussed below.

Table 6-13 shows the inverse mapping-how the DSISR bits identify the instruction that
caused the exception.

The alignment exception handler cannot distinguish a floating-point load or store that
causes an exception because it is misaligned, or because it addresses the direct-store
interface space. However, this does not matter; in either case it is emulated with integer
instructions. Note that the direct-store facility is being phased out of the architecture and is
not likely to be supported in future devices.

Table 6-13. DSISR(15-21) Settings to Determine Misaligned Instruction

DSISR[15-21] Instruction DSISR[15-21] Instruction

0000000 Iwarx, Iwz, special cases 1 01 1 0010 -
00 0 0010 - 01 1 0101 Iwaux

00 00010 stw 1000010 stwcx.

0000100 1hz 1000011 -
00 0 0101 Iha 1001000 Iwbrx

0000110 sth 1001010 stwbrx

0000111 Imw 1001100 Ihbrx

0001000 Ifs 1001110 sthbrx

00 01001 - 101 0100 eciwx

0001010 sHs 1010110 ecowx

0001011 - 1011111 dcbz

Chapter 6. Exceptions 6-31

Table 6-13. DSISR(15-21) Settings to Determine Misaligned Instruction (Continued)

6-32

DSISR[l5-21] Instruction DSISR[l5-21] Instruction

0001101 Id,lwa 2 1100000 Iwzx

0001111 sid 1100010 stwx

00 10000 Iwzu 1100100 Ihzx

00 10010 stwu 1100101 Ihax

00 10100 Ihzu 1100110 sthx

00 10101 lhau 1101000 Ifsx

0010110 sthu 1101001 -

00 10111 stmw 1101010 slfsx

00 11000 Ifsu 1101011 -
001 1001 - 1101111 stflwx

00 11010 stfsu 1110000 Iwzux

0011011 - 1110010 stwux

0100000 - 1110100 Ihzux

0100010 - 111 0101 Ihaux

0100101 Iwax 1110110 sthux

0101000 Iswx 1111000 Ifsux

0101001 lawl 111 1001 -
01 01010 stswx 111 1010 slfsux

0101011 stawl 1111011 -
0110000 - - -
I.
The instructIons Iwz and Iwarx gIve the same DSISR bits <all zero). But If Iwarx causes an
alignment exception, it is an invalid form, so it need not be emulated in any precise way. It is
adequate for the alignment exception handler to simply emulate the instruction as if it were an
Iwz. It is important that the emulator use the address in the DAR, rather than computing it
from rAlrBlD, because Iwz and Iwarx use different addressing modes.

I! opcode 0 <"illegal or reservedj can cause an alignment exception, it will be indistiguishable
to the exception handler from lwarx and Iwz.

2These instructions are distinguished by DSISR[12-131, which are not shown in this table.

PowerPC Microprocessor Family: The Programming Environments (32-8It)

6.4.7 Program Exception (Ox00700)
A program exception occurs when no higher priority exception exists and one or more of
the following exception conditions, which correspond to bit settings in SRRl, occur during
execution of an instruction:

• System IEEE floating-point enabled exception-A system IEEE floating-point
enabled exception can be generated when FPSCR[FEX] is set and either (or both)
of the MSR[FEO] or MSR[FE 1] bits is set.

FPSCR[FEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of a "move to FPSCR" type instruction that
sets an exception bit when its corresponding enable bit is set. Floating-point
exceptions are described in Section 3.3.6, "Floating-Point Program Exceptions."

• Illegal instruction-An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal combination
of opcode and extended opcode fields (these include PowerPC instructions not
implemented in the processor), or when execution of an optional or a reserved
instruction not provided in the processor is attempted.

Note that implementations are permitted to generate an illegal instruction program
exception when encountering the following instructions. If an illegal instruction
exception is not generated, then the alternative is shown in parenthesis.

- An instruction corresponds to an invalid class (the results may be boundedly
undefined)

- An Iswx instruction for which rA or rB is in the range of registers to be loaded
(may cause results that are boundedly undefined)

- A move to/from SPR instruction with an SPR field that does not contain one of
the defined values

- MSR[PR] = 1 and spr[O] = 1 (this can cause a privileged instruction program
exception)

- MSR[PR] = 0 or spr[O] = 0 (may cause boundedly-undefined results.)

- An unimplemented floating-point instruction that is not optional (may cause a
floating-point assist exception)

• Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
processor is operating in user mode (MSR[PR] is set). It is also generated for mtspr
or mfspr instructions that have an invalid SPR field that contain one of the defined
values having spr[O] = 1 and if MSR[PR] = 1. Some implementations may also
generate a privileged instruction program exception if a specified SPR field (for a
move to/from SPR instruction) is not defined for a particular implementation, but
spr[O] = 1; in this case, the implementation may cause either a privileged instruction
program exception, or an illegal instruction program exception may occur instead.

Chapter 6. Exceptions 6-33

• Trap-A trap program exception is generated when any of the conditions specified
in a trap instruction is met. Trap instructions are described in Section 4.2.4.6, ''Trap
Instructions."

The register settings when a program exception is taken are shown in Table 6-14.

Table 6-14. Program Exception-Register Settings

Register Setting Description

SAAO The contents of SAAO differ according to the following situations:

· For all program exceptions except floating-point enabled exceptions when operating in Imprecise
mode (MSA[FEO) '# MSR[FE1J), SRRO contains the EA of the excepting instruction.

· When the processor is in floating-point imprecise mode, SRRO may contain the EA of the excepting
instruction or that of a subsequent unexecuted instruction. If the subsequent instruction Is sync or
Isync, SAAO points no more than four bytes beyond the sync or Isync instruction.

· If FPSCR[FEX) = 1, but IEEE floating-point enabled exceptions are disabled (MSR[FEO) =
MSR[FE1) = 0), the program exception occurs before the next synchronizing event if an instruction
alters those bits (thuS enabling the program exception). When this occurs, SRRO points to the
instruction that would have executed next and not to the instruction that modified MSA.

SRR1 1-4 Cleared
10 Cleared
11 Set for an IEEE floating-point enabled program exception; otherwise cleared.
12 Set for an illegal instruction program exception; otherwise cleared.
13 Set for a privileged instruction program exception; otherwise cleared.
14 Set for a trap program exception; otherwise cleared.
15 Cleared if SRRO contains the address of the instruction causing the

exception, and set if SRRO contains the address of a subsequent instruction.
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME - FE1 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ILE
PA 0 SE 0 IA 0

When a program exception is taken, instruction execution resumes at offset OxOO700 from
the physical base address determined by MSR[lP].

6.4.S Floating-Point Unavailable Exception (OxOOSOO)
A floating-point unavailable exception occurs when no higher priority exception exists, an
attempt is made to execute a floating-point instruction (including floating-point load, store,
or move instructions), and the floating-point available bit in the MSR is cleared,
(MSR[FP] = 0).

6-34 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

The register settings for floating-point unavailable exceptions are shown in Table 6-15.

Table 6-15. Floating-Point Unavailable Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that caused the exception.

SRR1 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME - FE1 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ILE
PR 0 SE 0 IR 0

When a floating-point unavailable exception is taken, instruction execution resumes at
offset OxOO800 from the physical base address determined by MSR[IP].

6.4.9 Decrementer Exception (Ox00900)
A decrementer exception occurs when no higher priority exception exists, a decrementer
exception condition occurs (for example, the decrementer register has completed
decrementing), and MSR[EE] = 1. The decrementer register counts down, causing an
exception request when it passes through zero. A decrementer exception request remains
pending until the decrementer exception is taken and then it is cancelled. The decrementer
implementation meets the following requirements:

• The counters for the decrementer and the time-base counter are driven by the same
fundamental time base.

• Loading a GPR from the decrementer does not affect the decrementer.

• Storing a GPR value to the decrementer replaces the value in the decrementer with
the value in the GPR.

• Whenever bit 0 of the decrementer changes from 0 to 1, a decrementer exception
request is signaled. If multiple decrementer exception requests are received before
the first can be reported, only one exception is reported. The occurrence of a
decrementer exception cancels the request.

• If the decrementer is altered by software and if bit 0 is changed from 0 to 1, an
exception request is signaled.

Chapter 6. Exceptions 6-35

The register settings for the decrementer exception are shown in Table 6-16.

Table 6-16. Decrementer Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME - FE1 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ILE
PR 0 SE 0 IR 0

When a decrementer exception is taken, instruction execution resumes at offset Ox00900
from the physical base address determined by MSR[IP).

6.4.10 System Call Exception (OxOOCOO)
A system call exception occurs when a System Call (sc) instruction is executed. The
effective address of the instruction following the sc instruction is placed into SRRO. MSR
bits are saved in SRR 1, as shown in Table 6-17. Then a system call exception is generated.

The system call exception causes the next instruction to be fetched from offset OxOOCOO
from the physical base address determined by the new setting of MSR[IP). As with most
other exceptions, this exception is context-synchronizing. Refer to Section 6.1.2.1,
"Context Synchronization," for more information on the actions performed by a context­
synchronizing operation. Register settings are shown in Table 6-17.

Table 6-17. System Call Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction following the System Call instruction

SRR1 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME - FE1 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ILE
PR 0 SE 0 IR 0

6·36 PowerPC Microprocessor Family: The Programming Environments (32-8It)

When a system call exception is taken, instruction execution resumes at offset OxOOCOO
from the physical base address determined by MSR[IP].

6.4.11 Trace Exception (OxOODOO)
The trace exception is optional to the PowerPC architecture, and specific information about
how it is implemented can be found in user's manuals for individual processors.

The trace exception provides a means of tracing the flow of control of a program for
debugging and performance analysis purposes. It is controlled by MSR bits SE and BE as
follows:

• MSR[SE] = 1: the processor generates a single-step type trace exception after each
instruction that completes without causing an exception or context change (such as
occurs when an se, rfi, or a load instruction that causes an exception, for example,
is executed).

• MSR[BE] = 1: the processor generates a branch-type trace exception after
completing the execution of a branch instruction, whether or not the branch is taken.

If this facility is implemented, a trace exception occurs when no higher priority exception
exists and either of the conditions described above exist. The following are not traced:

• rfi instruction
• se, and trap instructions that trap
• Other instructions that cause exceptions (other than trace exceptions)

• The first instruction of any exception handler
• Instructions that are emulated by software

MSR[SE, BE] are both cleared when the trace exception is taken. In the normal use of this
function, MSR[SE, BE] are restored when the exception handler returns to the interrupted
program using an rfi instruction.

Chapter 6. Exceptions 6-37

Register settings for the trace mode are described in Table 6-18.

Table 6-18. Trace Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the next instruction to be executed in the program for which the trace
exception was generated.

SRR1 1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME - FEl 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ILE
PR 0 SE 0 IR 0

When a trace exception is taken, instruction execution resumes at offset OxOODOO from the
base address determined by MSR[IP].

6-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

6.4.12 Floating-Point Assist Exception (OxOOEOO)
The floating-point assist exception is optional to the PowerPC architecture. It can be used
to allow software to assist in the following situations:

• Execution of floating -point instructions for which an implementation uses software
routines to perfonn certain operations, such as those involving denonnalization.

• Execution of floating-point instructions that are not optional and are not
implemented in hardware. In this case, the processor may generate an illegal
instruction type program exception instead.

Register settings for the floating-point assist exceptions are described in Table 6-19.

Table 6-19. Floating-Point Assist Exception-Register Settings

Register Setting Description

SRRO Set to the address of the next instruction to be executed in the program for which the floating-point
assist exception was generated.

SRR1 1-4 Implementation-specific information
10-15 Implementation-specific information
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR POW 0 FP 0 BE 0 DR 0
ILE - ME - FE1 0 RI 0
EE 0 FEO 0 IP - LE Set to value of ILE
PR 0 SE 0 IR 0

When a floating-point assist exception is taken, instruction execution resumes as offset
OxOOEOO from the base address determined by MSR[IP].

Chapter 6. Exceptions 6-39

Chapter 7
Memory Management
This chapter describes the memory management unit (MMU) specifications provided by e
the PowerPC operating environment architecture (OEA) for PowerPC processors. The
primary function of the MMU in a PowerPC processor is to translate logical (effective)
addresses to physical addresses (referred to as real addresses in the architecture
specification) for memory accesses and 110 accesses (most 110 accesses are assumed to be
memory-mapped). In addition, the MMU provides various levels of access protection on a
segment, block, or page basis. Note that there are many aspects of memory management
that are implementation-dependent. This chapter describes the conceptual model of a
PowerPC MMU; however, PowerPC processors may differ in the specific hardware used to
implement the MMU model of the OEA, depending on the many design trade-offs inherent
in each implementation.

Two general types of memory accesses generated by PowerPC processors require address
translation-instruction accesses and data accesses generated by load and store
instructions. In addition, the addresses specified by cache instructions and the optional
external control instructions also require translation. Generally, the address translation
mechanism is defined in terms of the segment descriptors and page tables PowerPC
processors use to locate the effective to physical address mapping for memory accesses.
The segment information translates the effective address to an interim virtual address, and
the page table information translates the virtual address to a physical address.

The definition of the segment and page table data structures provides significant flexibility
for the implementation of performance enhancement features in a wide range of processors.
Therefore, the performance enhancements used to store the segment or page table
information on-chip vary from implementation to implementation.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors
to keep recently-used page address translations on-chip. Although their exact
characteristics are not specified in the OEA, the general concepts that are pertinent to the
system software are described.

Chapter 7. Memory Management 7-1

The segment information, used to generate the interim virtual addresses, is stored as
segment descriptors. These descriptors may reside in on-chip segment registers (32-bit
implementations) or as segment table entries (STEs) in memory (64-bit implementations).
In much the same way that TLBs cache recently-used page address translations, 64-bit
processors may contain segment lookaside buffers (SLBs) on-chip that cache recently-used
segment table entries. Although the exact characteristics of SLBs are not specified, there is
general information pertinent to those implementations that provide SLBs.

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs).

The MMU, together with the exception processing mechanism, provides the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 6, "Exceptions." Section 2.3.1, "Machine State Register (MSR)," describes the
MSR, which controls some of the critical functionality of the MMU. (Note that the
architecture specification refers to exceptions as interrupts.)

Information about 64-bit-only features can be found in PowerPC Microprocessor Family:
The Programming Environments, which describes both the 32- and 64-bit memory models
defined by the PowerPC architecture.

7.1 MMU Features
The MMU of a 32-bit PowerPC processor provides 4 Gbytes of effective address space, a
52-bit interim virtual address, and physical addresses that are ~ 32 bits in length. Note that
this chapter describes address translation mechanisms from the perspective of the
programming model. As such, it describes the structure of the page and segment tables, the
MMU conditions that cause exceptions, the instructions provided for programming the
MMU, and the MMU registers. The hardware implementation details of a particular MMU
(including whether the hardware automatically performs a page table search in memory)
are not contained in the architectural definition of PowerPC processors and are invisible to
the PowerPC programming model; therefore, they are not described in this document. In
the case that some of the OEA model is implemented with some software assist mechanism,
this software should be contained in the area of memory reserved for implementation­
specific use and should not be visible to the operating system.

7-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7.2 MMU Overview
The PowerPC MMU and exception models support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; the term demand paged implies that individual pages are loaded into physical
memory from backing storage only as they are accessed by an executing program.

The memory management model includes the concept of a virtual address that is not only
larger than that of the maximum physical memory allowed but a virtual address space that
is also larger than the effective address space. Effective addresses are 32 bits wide. In the
address translation process, the processor converts an effective address to a 52-bit virtual
address, as per the information in the selected descriptor. Then the address is translated
back to a physical address the size (or less) of the effective address.

Note that in the cases that implementations support a physical address range that is smaller
than 32 bits, the high-order bits of the effective address may be ignored in the address
translation process. The remainder of this chapter assumes that implementations support
the maximum physical address range.

The operating system manages the system's physical memory resources. Consequently, the
operating system initializes the MMU registers (segment registers, BAT registers, and
SDRI register) and sets up page tables in memory appropriately. The MMU then assists the
operating system by managing page status and optionally caching the recently-used address
translation information on-chip for quick access.

Effective address spaces are divided into 256-Mbyte regions called segments or into other
large regions called blocks (128 Kbyte-256 Mbyte). Segments that correspond to memory­
mapped areas can be further subdivided into 4-Kbyte pages. For each block or page, the
operating system creates an address descriptor (page table entry (PTE) or BAT array entry);
the MMU then uses these descriptors to generate the physical address, the protection
information, and other access control information each time an address within the block or
page is accessed. Address descriptors for pages reside in tables (as PTEs) in physical
memory; for faster accesses, the MMU often caches on-chip copies of recently-used PTEs
in an on-chip TLB. The MMU keeps the block information on-chip in the BAT array
(comprised ofthe BAT registers).

This section provides an overview of the high-level organization and operational concepts
of the MMU in PowerPC processors, and a summary of all MMU control registers. For
more information about the MSR, see Section 2.3.1, "Machine State Register (MSR)."
Section 7.4.3, "BAT Register Implementation of BAT Array," describes the BAT registers,
Section 7.5.2.1, "Segment Descriptor Definitions," describes the segment registers, and
Section 7.6.1.1, "SDRI Register Definitions," describes the SDRI.

Chapter 7. Memory Management 7-3

7.2.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described throughout this chapter. The memory subsystem uses the physical
address for the access.

7.2.1.1 Effective Addresses in 32-Bit Mode
In addition to the 64-and 32-bit memory management models defined by the OEA, the
PowerPC architecture also defines a 32-bit mode of operation for 64-bit implementations.
In this 32-bit mode (MSR[SF] = 0), the 64-bit effective address is first calculated as usual,
and then the high-order 32 bits of the EA are treated as zero for the purposes of addressing
memory. This occurs for both instruction and data accesses, and occurs independently from
the setting of the MSR[lR] and MSR[DR] bits that enable instruction and data address
translation, respectively. The truncation of the EA is the only way in which memory
accesses are affected by the 32-bit mode of operation.

For a complete discussion of effective address calculation, see Section 4.1.4.2, "Effective
Address Calculation."

7.2.1.2 Predefined Physical Memory Locations
There are four areas of the physical memory map that have predefined uses. The first 256
bytes of physical memory (or if MSR[lP] = I, the first 256 bytes of memory located at
physical address OxFFFO_OOOO) are assigned for arbitrary use by the operating system. The
rest of that first page of physical memory defined by the vector base address (determined
by MSR[IP]) is either used for exception vectors, or reserved for future exception vectors.
The third predefined area of memory consists of the second and third physical pages of the
memory map, which are used for implementation-specific purposes. In some
implementations, the second and third pages located at physical address
OxFFFO_lOOOwhen MSR[IP] = 1 are also used for implementation-specific purposes.
Fourthly, the system software defines the locations in physical memory that contain the
page address translation tables. These predefined memory areas are summarized in
Table 7-1 in terms of the variable 'Base'.

Table 7-1. Predefined Physical Memory Locations

Memory Area Physical Address Range Predefined Use

1 Base II OxO_OOOo-Base IIOxO_OOFF Operating system

2 Base II OxO_010o-Base II OxO_OFFF Exception vectors

3 Base II OxO_100O-Sase II OxO_2FFF Implementation-specific 1

4 Software-specifi~ontiguous sequence of physical pages Page table

10nly valid for MSR[IP] = 1 on some implementations

7-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 7-2 decodes the actual value of 'Base'. Refer to Chapter 6, "Exceptions," for more
detailed information on the assignment of the exception vector offsets.

Table 7-2. Value of Base for Predefined Memory Use

MSR[IP] Value of Base

0 Base =OxOOO

1 Base = OxFFF

7.2.2 MMU Organization
Figure 7-1 shows a conceptual block diagram of the MMU in a 32-bit implementation. The
32-bit MMU implementation differs from the 64-bit implementation in that after an address
is generated, the high-order bits of the effective address, EAO-EAI9 (or a smaller set of
address bits, EAO-EAn, in the cases of blocks), are translated into physical address bits
PAO-PAI9. The low-order address bits, A20-A31 are untranslated and therefore identical
for both effective and physical addresses. After translating the address, the MMU passes the
resulting 32-bit physical address to the memory subsystem.

Chapter 7. Memory Management 7-5

A20-A31

PAo-PA31

Figure 7-1. MMU Conceptual Block Diagram

7-6 PowerPC Microprocessor Family: The Programming Environments (32-8it)

7.2.3 Address Translation Mechanisms
PowerPC processors support the following three types of address translation:

• Page address translation-translates the page frame address for a 4-Kbyte page size

• Block address translation-translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte

• Real addressing mode address translation-when address translation is disabled, the
physical address is identical to the effective address.

In addition, earlier processors implement a direct-store facility that is used to generate
direct-store interface accesses on the external bus. Note that this facility is not optimized
for performance and was present for compatibility with POWER devices. Future devices
are not likely to support it; software should not depend on its effects and new software
should not use it.

Figure 7-2 shows the address translation mechanisms provided by the MMU. The segment
descriptors shown in the figure control both the page and direct-store segment address
translation mechanisms. When an access uses the page or direct-store segment address
translation, the appropriate segment descriptor is required. One of the ·16 on-chip segment
registers (which contain the segment descriptors) is selected by the highest-order effective
address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to a direct-store segment. Note that the direct-store interface
is present to allow certain older I/O devices to use this interface. When an access is
determined to be to the direct-store interface space, the implementation invokes an
elaborate hardware protocol for communication with these devices. The direct-store
interface protocol is not optimized for performance, and therefore, its use is discouraged.
The most efficient method for accessing I/O is by memory-mapping the I/O areas.

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In some cases, the physical address for the page resides in an
on-chip TLB and is available for quick access. However, if the page address translation
misses in a TLB, the MMU searches the page table in memory (using the virtual address
information and a hashing function) to locate the required physical address. Some
implementations may have dedicated hardware to perform the page table search
automatically, while others may define an exception handler routine that searches the page
table with software.

Because blocks are larger than pages, there are fewer upper-order effective address bits to
be translated into physical address bits (more low-order address bits (at least 17) are
untranslated to form the offset into a block) for block address translation. Also, instead of
segment descriptors and a page table, block address translations use the on-chip BAT

Chapter 7. Memory Management 7-7

registers as a BAT array. If an effective address matches the corresponding field ofa BAT
register, the information in the BAT register is used to generate the physical address; in this
case, the results of the page translation (occurring in parallel) are ignored. Note that a
matching BAT array entry takes precedence over a translation provided by the segment
descriptor in all cases (even if the segment is a direct-store segment).

o

Direct-Store Segment
Translation

(see Section 7.7)

Page
Address

31

o 31
Effective Address

Look Up in
Page Table

51

Address Translation Disabled

(MSR[IR) = O. or MSR[DR) = O}

Translation
(see Section 7.4)

Real Addressing Mode
EIIectiIIe Address = Physical Address

(see Section 7.3)

Implementation-Dependent

Figure 7-2. Address Translation Types

7-8 PowerPC Microprocessor Family: The Programming Environments (32-8It)

Direct-store address translation is used when the optional direct-store translation control bit
(T bit) in the corresponding segment descriptor is set. In this case, the remaining
information in the segment descriptor is interpreted as identifier information that is used
with the remaining effective address bits to generate the protocol used in a direct-store
interface access on the external interface; additionally, no TLB lookup or page table search
is performed. Note that this facility is not likely to be supported in future processors.

When the processor generates an access, and the corresponding address translation enable
bit in MSR is cleared, the resulting physical address is identical to the effective address and
all other translation mechanisms are ignored. Instruction and data address translation is
enabled by setting the MSR[IR] and MSR[DR] bits, respectively. See Section 7.2.6.1,
"Real Addressing Mode and Block Address Translation Selection," for more information.

7.2.4 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the MMU
provides access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute. Table 7-3 shows the eight protection options
supported by the MMU for pages.

Table 7-3. Access Protection Options for Pages

Option

Supervisor-only

Supervisor-only-no-execute

Supervisor-write-only

Supervisor-write-only-no-execute

Both user/supervisor

Both (user/supervisor)-no-execute

Both (user/supervisor) read-only

Both (user/supervisor) read-only-no-execute

" Access permitted
- Protection violation

Chapter 7. Memory Management

User Read

"'Fetch Data

- -

- -

" " - " " " - " " " - "

User
Supervisor Read

Write
I-Fetch Data

- " " - - " - " " - - " " " " " - " - " " - - "

Supervisor
Write

" " " " " " -

-

7-9

The no-execute option provided in the segment descriptor lets the operating system
program whether or not instructions can be fetched from an area of memory. The remaining
options are enforced based on a combination of information in the segment descriptor and
the page table entry. Thus,the supervisor-only option allows only read and write operations
generated while the processor is operating in supervisor mode (MSR[PR] = 0) to access the
page. User accesses that map into a supervisor-only page cause an exception.

Note that independently of the protection mechanisms, care must be taken when writing to
instruction areas as coherency must be maintained with on-chip copies of instructions that
may have been prefetched into a queue or an instruction cache. Refer to Section 5.1.5.2,
"Instruction Cache Instructions," for more information on coherency within instruction
areas.

As shown in the table, the supervisor-write-only option allows both user and supervisor
accesses to read from the page, but only supervisor programs can write to that area. There
is also an option that allows both supervisor and user programs read and write access (both
user/supervisor option), and finally, there is an option to designate a page as read-only, both
for user and supervisor programs (both read-only option).

For areas of memory that are translated by the block address translation mechanism, the
protection options are similar, except that blocks are translated by separate mechanisms for
instruction and data, blocks do not have a no-execute option, and blocks can be designated
as enabled for user and supervisor accesses independently. Therefore, a block can be
designated as supervisor-only, for example, but this block can be programmed such that all
user accesses simply ignore the block translation, rather than take an exception in the case
of a match. This allows a flexible way for supervisor and user programs to use overlapping
effective address space areas that map to unique physical address areas (without exceptions
occurring).

For direct-store segments, the MMU calculates a key bit based on the protection values
programmed in the segment descriptor and the specific user/supervisor and read/write
information for the particular access. However, this bit is merely passed on to the system
interface to be transmitted in the context of the direct-store interface protocol. TheMMU
does not itself enforce any protection or cause any exception based on the state of the key
bit for these accesses. The I/O controller device or other external hardware can optionally
use this bit to enforce any protection required. Note that future devices are not likely to
implement the direct-store facility.

Finally, a facility in the VEA and OEA allows pages or blocks to be designated as guarded,
preventing out-of-order accesses that may cause undesired side effects. For example, areas
of the memory map used to control I/O devices can be marked as guarded so accesses do
not occur unless they are explicitly required by the program. Refer to Section 5.2.1.5.3,
"Out-of-Order Accesses to Guarded Memory," for a complete description of how accesses
to guarded memory are restricted.

7-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7.2.5 Page History Information
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. The operating system can use these bits to determine which areas of memory to write
back to disk when new pages must be allocated in main memory. While these bits are
initially programmed by the operating system into the page table, the architecture specifies
that the Rand C bits are maintained by the processor and the processor updates these bits
when required.

7.2.6 General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses. Note that although there are
references to the concept of an on-chip TLB, these entities may not be present in a particular
hardware implementation for performance enhancement (and a particular implementation
may have one or more TLBs). Thus, they are shown here as optional and only the software
ramifications of the existence of a TLB are discussed.

7.2.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode translation is
used (physical address equals effective address) and the access continues to the memory
subsystem as described in Section 7.3, "Real Addressing Mode."

Figure 7-3 shows the flow the MMU uses in determining whether to select real addressing
mode, block address translation, or the segment descriptor (to select either direct-store or
page address translation).

Chapter 7. Memory Management 7-11

-

Effective Address
Generated

I-access D-access

Ins!ructi?n ~uction
Translation Disabled Translation Enabled

------- Data ~ata ~ Translation Disabled
Translation Enabled (MSR[DR) = 0)

(MSR[IR) = 0) (MSR[IR) = 1 (MSR[DR) = 1)

Perform Real
Addressing Mode

Translation
Compare Address with
Instruction or Data BAT
Array (as appropriate)

(See Figure 7-6)

Perform Real
Addressing Mode

Translation

BAT Array
Miss

BAT Array (See Figure 7-11)

Perform Address Translation
with Segment Descriptor

(see Figure 7-4)

Hit

Acce~ Access

Access Faulted

Protected Permitted

Continue Access
to Memory
Subsystem

Figure 7-3. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access is determined to be protected (not allowed), an exception (lSI
or DSI exception) is generated.

7.2.6.2 Page and Direct-Store Address Translation Selection
If address translation is enabled (real addressing mode translation not selected) and the
effective address information does not match a BAT array entry, the segment descriptor
must be located. When the segment descriptor is located, the T bit in the segment descriptor
selects whether the translation is to a page or to a direct-store segment as shown in
Figure 7-4. In addition, Figure 7-4 also shows the way in which the no-execute protection
is enforced; if the N bit in the segment descriptor is set and the access is an instruction fetch,
the access is faulted.

7-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Address Translation with
Segment Descriptor

Locate Segment
Descriptor

(See Figure 7-6)

Page Address
Translation

(T =0)

~ Perform Direct-Store
Segment Translation

otherwise

Generate 52-Bit Virtual
Address from Segment

Descriptor

Compare Virtual
Address with TLB

Entries 1 ____________ .

TLB
Miss

I-Fetch with N bit set in
Segment Descriptor

(no-execute)

". TLB
Hit .,(~ee Figure 7-16)

Access
Permitted

(See Figure 7-27)

ccess
Protected

Access Faulted

PTE Not
Found

Notes:

PTE Found

r - - - -'- - - - ~
1 Load TLB Entry : 1 ______ ---

• Not allowed for instruction accesses
(causes lSI exception)

. - - Implementation-specific

Continue Access
to Memory Subsystem

Figure 7-4. General Flow of Page and Direct-Store Address Translation

Chapter 7. Memory Management 7-13

-

For 32-bit implementations, the segment descriptor for an access is contained in one of 16
on-chip segment registers; effective address bits EAO-EA3 select one of the 16 segment
registers.

7.2.6.2.1 Selection of Page Address Translation
If SR[T] = 0, page address translation is selected. The information in the segment descriptor
is then used to generate the 52-bit virtual address. The virtual address is then used to
identify the page address translation information (stored as page table entries (PTEs) in a
page table in memory). Once again, although the architecture does not require the existence
of a TLB, one or more TLBs may be implemented in the hardware to store copies of
recently-used PTEs on-chip for increased performance.

If an access hits in the TLB, the page translation occurs and the physical address bits are
forwarded to the memory subsystem. If the translation is not found in the TLB, the MMU
requires a search of the page table. The hardware of some implementations may perform
the table search automatically, while others may trap to an exception handler for the system
software to perform the page table search. If the translation is found, a new TLB entry is
created and the page translation is once again attempted. This time, the TLB is guaranteed
to hit. When the PTE is located, the access is qualified with the appropriate protection bits.
If the access is determined to be protected (not allowed), an exception (lSI or DSI
exception) is generated.

If the PTE is not found by the table search operation, an lSI or DSI exception is generated.

7.2.6.2.2 Selection of Direct-Store Address Translation
When the segment descriptor has the T bit set, the access is considered a direct-store access
and the direct -store interface protocol of the external interface is used to perform the access.
The selection of address translation type differs for instruction and data accesses only in
that instruction accesses are not allowed from direct-store segments; attempting to fetch an
instruction from a direct-store segment causes an lSI exception.

Note that this facility is not optimized for performance, was present for compatibility with
POWER devices, and is being removed from the architecture. Future devices are not likely
to support it; software should not depend on its effects and new software should not use it.
See Section 7.7, "Direct-Store Segment Address Translation," for more detailed
information about the translation of addresses in direct-store segments in those processors
that implement this.

7-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7.2.7 MMU Exceptions Summary
To complete any memory access, the effective address must be translated to a physical
address. A translation exception condition occurs if this translation fails for one of the
following reasons:

• There is no valid entry in the page table for the page specified by the effective
address (and segment descriptor) and there is no valid BAT translation.

• There is no valid segment descriptor and there is no valid BAT translation.

• An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions cause either the lSI or the DSI exception to be taken
as shown in Table 7 -4. The state saved by the processor for each of these exceptions
contains information that identifies the address of the failing instruction. Refer to
Chapter 6, "Exceptions," for a more detailed description of exception processing, and the
bit settings of SRRI and DSISR when an exception occurs.

Table 7-4. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and no I access: lSI exception
matching BAT array entry) SRR1[1) = 1

D access: DSI exception
DSISR[1) = 1

Block protection violation Conditions described in Table 7-11 for block I access: lSI exception
SRR1[4) = 1

D access: DSI exception
DSISR[4) = 1

Page protection violation Conditions described in Table 7-18 for page I access: lSI exception
SRR1[4) = 1

D access: DSI exception
DSISR[4) = 1

No-execute protection violation Attempt to fetch instruction when SR[N) = 1 lSI exception
SRR1[3) = 1

Instruction fetch from direct-store Attempt to fetch instruction when SR[T) = 1 lSI exception
segment-note that the direct- SRR1[3) = 1
store facility is optional and being
removed from the architecture.

Instruction fetch from guarded Attempt to fetch instruction when MSR[IR) = 1 lSI exception
memory and either: SRR1[3) = 1

matching xBAT[G) = 1, or
no matching BAT entry and PTE[G) = 1

In addition to the translation exceptions, there are other MMU-related conditions (some of
them implementation-specific) that can cause an exception to occur. These conditions map
to the exceptions as shown in Table 7-5. The only MMU exception conditions that occur

Chapter 7. Memory Management 7-15

when MSR[DR] = 0 are those that cause the alignment exception for data accesses. For
more detailed information about the conditions that cause the alignment exception (in
particular for string/multiple instructions), see Section 6.4.6, "Alignment Exception
(Ox00600)." Refer to Chapter 6, "Exceptions," for a complete description of the SRRI and
DSISR bit settings for these exceptions.

Table 7-5. Other MMU Exception Conditions

Condition Description Exception

dcbz with W = 1 or I = 1 (may cause dcbz instruction to write-through Alignment exception
exception or operation may be or cache-inhibited segment or (implementation-dependent)
performed to memory) block

Iwarx or stwcx. with W = 1 (may Reservation instruction to write- DSI exception (implementation-
cause exception or execute correctly) through segment or block dependent)

DSISR[5) = 1

Iwarx, stwcx., eciwx, or ecowx Reservation instruction or DSI exception (implementation-
instruction to direct-store segment external control instruction when dependent)
(may cause exception or may produce SRrT) = 1 DSISR[5) = 1
boundedly-undefined results)-note
that the direct-store facility is optional
and being removed from the
architecture

Floating-point load or store to direct- Floating-point memory access Alignment exception
store segment (may cause exception when SRrT) = 1 (implementation-dependent)
or instruction may execute
correctly)-note that the direct-store
facility is optional and being removed
from the architecture

Load or store operation that causes a Direct-store interface protocol DSI exception
direct-store error-note that the direct- signalled with an error condition DSISR[O) = 1
store facility is optional and being
removed from the architecture

eclwx or ecowx attempted when eclwx or ecowx attempted with DSI exception
external control facility disabled EAR[E)=0 DSISR[11) = 1

Imw, stmw, Iswl, Iswx, stswl, or Imw, stmw, Iswl, Iswx, stswl, or Alignment exception
stswx instruction attempted in little- stswx instruction attempted
endian mode while MSR[LE) = 1

Operand misalignment Translation enabled and operand Alignment exception (some of these
is misaligned as described in cases are implementation-
Chapter 6, "Exceptions." dependent)

7-16 PowerPC Microprocessor Family: The Programming Environments (32-8it)

7.2.8 MMU Instructions and Register Summary
The MMU instructions and registers allow the operating system to set up the segment
descriptors. Additionally, the operating system has the resources to set up the block address
translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, there must be a software protocol for maintaining coherency between these caches
and the tables in memory whenever the tables in memory are modified. Therefore, the
PowerPC OEA specifies that a processor implementing a TLB is guaranteed to have a
means for doing the following:

• Invalidating an individual TLB entry

• Invalidating the entire TLB

When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

A processor may implement one or more of the instructions described in this section to
support table invalidation. Alternatively, an algorithm may be specified that performs one
of the functions listed above (a loop invalidating individual TLB entries may be used to
invalidate the entire TLB, for example), or different instructions may be provided.

A processor may also perform additional functions (not described here) as well as those
described in the implementation of some of these instructions. For example, the tlbie
instruction may be implemented so as to purge all TLB entries in a congruence class (that
is, all TLB entries indexed by the specified EA which can include corresponding entries in
data and instruction TLBs) or the entire TLB.

Note that if a processor does not implement an optional instruction it treats the instruction
as a no-op or as an illegal instruction, depending on the implementation. Also, note that the
segment register and TLB concepts described here are conceptual; that is, a processor may
implement parallel sets of segment registers (and even TLBs) for instructions and data.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be encapsulated into subroutines
to minimize the impact of migrating across the family of implementations.

Table 7-6 summarizes the PowerPC instructions that specifically control the MMU. For
more detailed information about the instructions, refer to Chapter 8, "Instruction Set."

Table 7-6. Instruction Summary-Control MMU

Instruction Syntax Description

Move to Segment Register mtsrSR,rS SR[SR1~rS
32-bit implementations only

Chapter 7. Memory Management 7-17

-

Table 7-6. Instruction Summary-Control MMU (Continued)

Instruction Syntax Description

Move to Segment Register mtsrin rS,rB SR[rB[Q-3))f-rS
Indirect 32-bit implementations only

Move from Segment Register mfsr rD,SR rDf-SR[SR)
32-bit implementations only

Move from Segment Register mfsrin rD,rB rDf-SR[rB[Q-311
Indirect 32-bit implementations only

Translation Lookaside Buffer tibia For all TLB entries, TLB[V)f-O
Invalidate All (optional) Causes invalidation of TLB entries only for processor that

executed the tibia

Translation Lookaside Buffer tlbie rB If TLB hit (for effective address specified as rB), TLBMf-O
Invalidate Entry (optional) Causes TLB invalidation of entry in all processors in system

Translation Lookaside Buffer tlbsync Ensures that all tlbie instructions previously executed by the
Synchronize (optional) processor executing the tlbsync instruction have completed on

all processors

Table 7-7 summarizes the registers that the operating system uses to program the MMU.
These registers are accessible to supervisor-level software only (supervisor level is referred
to as privileged state in the architecture specification). These registers are described in
detail in Chapter 2. "PowerPC Register Set."

Table 7-7. MMU Registers

Register Description

Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of the
(SRQ-SR15) PowerPC architecture. Figure 7-13 shows the format of a segment register. The fields in the

segment register are interpreted differently depending on the value of bit o. The segment
registers are accessed by the mtsr, mtsrin, mfsr, and mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined as 32-bit
DBATOU-DBAT3U, and registers in 32-bit implementations. These are special-purpose registers that are accessed
DBATOL -DBAT3L) by the mtspr and rnfspr instructions.

SDR 1 register The SDR1 register specifies the base and size of the page tables in memory. SDR1 is
defined as a 32-bit register for 32-bit implementations. This is a special-purpose register that
is accessed by the mtspr and mfspr instructions.

7.2.9 TLB Entry Invalidation
Optionally. PowerPC processors implement TLB structures that store on-chip copies ofthe
PTEs that are resident in physical memory. These processors have the ability to invalidate
resident TLB entries through the use of the tlbie and tibia instructions. Additionally. these
instructions may also enable a TLB invalidate signalling mechanism in hardware so that
other processors also invalidate their resident copies of the matching PTE. See Chapter 8.
"Instruction Set." for detailed information about the tlbie and tibia instructions.

7-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7.3 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as a real addressing mode address translation. If an implementation has a smaller
physical address range than effective address range, the extra high-order bits of the effective
address may be ignored in the generation of the physical address.

Section 2.3 .17, "Synchronization Requirements for Special Registers and for Lookaside
Buffers," describes the synchronization requirements for changes to MSR[IR] and
MSR[DR].

The addresses for accesses that occur in real addressing mode bypass all memory protection
checks as described in Section 7.4.4, "Block Memory Protection," and Section 7.5.4, "Page
Memory Protection" and do not cause the recording of referenced and changed information
(described in Section 7.5.3, "Page History Recording").

For data accesses that use real addressing mode, the memory access mode bits (WIMG) are
assumed to be Ob0011. That is, the cache is write-back and memory does not need to be
updated immediately (W = 0), caching is enabled (I = 0), data coherency is enforced with
memory, I/O, and other processors (caches) (M = 1, so data is global), and the memory is
guarded. For instruction accesses in real addressing mode, the memory access mode bits
(WIMG) are assumed to be either Ob0001 or ObOOll. That is, caching is enabled (I = 0) and
the memory is guarded. Additionally, coherency mayor may not be enforced with memory,
I/O, and other processors (caches) (M = 0 or 1, so data mayor may not be considered
global). For a complete description of the WIMG bits, refer to Section 5.2.1,
"Memory/Cache Access Attributes."

Note that the attempted execution of the eciwx or ecowx instructions while MSR[DR] = 0
causes boundedly-undefined results.

Whenever an exception occurs, the processor clears both the MSR[IR] and MSR[DR] bits.
Therefore, at least at the beginning of all exception handlers (including reset), the processor
operates in real addressing mode for instruction and data accesses. If address translation is
required for the exception handler code, the software must explicitly enable address
translation by accessing the MSR as described in Chapter 2, "PowerPC Register Set."

Note that an attempt to access a physical address that is not physically present in the system
may cause a machine check exception (or even a checkstop condition), depending on the
response by the system for this case. Thus, care must be taken when generating addresses
in real addressing mode. Note that this can also occur when translation is enabled and the
SDRI register sets up the translation such that nonexistent memory is accessed. See
Section 6.4.2, "Machine Check Exception (Ox00200)," for more information on machine
check exceptions.

Chapter 7. Memory Management 7-19

7.4 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

The following sections describe the implementation of block address translation in
PowerPC processors, including the block protection mechanism, followed by a block
translation summary with a detailed flow diagram.

7.4.1 BAT Array Organization
The block address translation mechanism in PowerPC processors is implemented as a
software-controlled BAT array. The BAT array maintains the address translation
information for eight blocks of memory. The BAT array in PowerPC processors is
maintained by the system software and is implemented as a set of 16 special-purpose
registers (SPRs). Each block is defined by a pair of SPRs called upper and lower BAT
registers that contain the effective and physical addresses for the block.

The BAT registers can be read from or written to by the mfspr and mtspr instructions;
access to the BAT registers is privileged. Section 7.4.3, "BAT Register Implementation of
BAT Array," gives more information about the BAT registers. Note that the BAT array
entries are completely ignored for TLB invalidate operations detected in hardware and in
the execution of the tlbie or tibia instruction.

Figure 7-5 shows the organization of the BAT array. Four pairs of BAT registers are
provided for translating instruction addresses and four pairs of BAT registers are used for
translating data addresses. These eight pairs of BAT registers comprise two four-entry
fully-associative BAT arrays (each BAT array entry corresponds to a pair of BAT registers).
The BAT array is fully-associative in that any address can reside in any BAT. In addition,
the effective address field of all four corresponding entries (instruction or data) is
simultaneously compared with the effective address of the access to check for a match.

7·20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Unmasked bits of EAQ-EA 14, MSR[PR]
Instruction Accesses BEPI,

_~vs~,~V~P~--~~nJ--~ IBATOU SPR 528

Unmasked bits of EAQ-EA14, MSR[PR]
Data Accesses BEPI,

Vs,Vp

IBATOL

· .. - --- - ... -- ---_ -- -_ ...

BAT Array HiVMiss

DBATOU
DBATOL

• ... -- -_ -- -- ---_ - ...

· --- -_ -- ---- -- ----

'----___________ BAT Array Hit/Miss

Figure 7-5. BAT Array Organization

535

536

543

Each pair of BAT registers defines the starting address of a block in the effective address
space, the size of the block, and the start of the corresponding block in physical address
space. If an effective address is within the range defined by a pair of BAT registers, its
physical address is defined as the starting physical address of the block plus the low-order
effective address bits.

Blocks are restricted to a finite set of sizes, from 128 Kbytes (217 bytes) to 256 Mbytes (228

bytes). The starting address of a block in both effective address space and physical address
space is defined as a multiple of the block size.

It is an error for system software to program the BAT registers such that an effective address
is translated by more than one valid IBAT pair or more than one valid DBAT pair. If this
occurs, the results are undefined and may include a spurious violation of the memory
protection mechanism, a machine check exception, or a checkstop condition.

The equation for determining whether a BAT entry is valid for a particular access is as
follows:

BAT_entry_valid = (Vs & -.MSR[PR]) I (Vp & MSR[PR])

Chapter 7. Memory Management 7-21

If a BAT entry is not valid for a given access, it does not participate in address translation
for that access. Two BAT entries may not map an overlapping effective address range and
be valid at the same time.

Entries that have complementary settings ofV[s] and V[p] may map overlapping effective
address blocks. Complementary settings would be as follows:

BAT entry A: Vs = I, Vp = 0

BAT entry B: Vs = 0, Vp = 1

7.4.2 Recognition of Addresses in BAT Arrays
The BAT arrays are accessed in parallel with segmented address translation to determine
whether a particular effective address corresponds to a block defined by the BAT arrays. If
an effective address is within a valid BAT area, the physical address for the memory access
is determined as described in Section 7.4.5, "Block Physical Address Generation."

. Block address translation is enabled only when address translation is enabled
(MSR[lR] = 1 and/or MSR[DR] = 1). Also, a matching BAT array entry always takes
precedence over any segment descriptor translation, independent of the setting of the
SR[T] bit, and the segment descriptor information is completely ignored.

Figure 7-6 shows the flow of the BAT array coinparison used in block address translation.
When an instruction fetch operation is required, the effective address is compared with the
four instruction BAT array entries; similarly, the effective addresses of data accesses are
compared with the four data BAT array entries. The BAT arrays are fully-associative in that
any of the four instruction or data BAT array entries can contain a matching entry (for an
instruction or data access, respectively). ",

Note that Figure 7-6 assumes that the protection bits, BATL[PP], allow an access to occur.
If not, an exception is generated, as described in Section 7 .4.4, "Blo~k Memory
Protection."

7·22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Compare Address
with BAT Array

Instruction Access

Compare EAo-EA 14
with IBATO[BEPI]-IBAT3[BEPI)

BEPI (0-3) = EAo-EA3, and
BEPI (4-14) = (EA4-EA14) & (.., Bl)

Supervisor Access User Access
(MSR[PR) = 0) (MSR[PR) = 1)

Data Access

~T[vS)=1 ~ otherwise
otherwise Matching_BAT[Vp) = 1

BAT Array Miss

BAT Array Hit (See Figure 7-11)

Figure 7-6. BAT Array Hit/Miss Flow

Two BAT array entry fields are compared to determine if there is a BAT array hit-a block
effective page index (BEPI) field, which is compared with the high-order effective address
bits, and one of two valid bits (Vs or Vp), which is evaluated relative to the value of
MSR[PR]. Note that the figure assumes a block size of 128 Kbytes (all bits of BE PI are used
in the comparison); the actual number of bits of the BEPI field that are used are masked by
the BL field (block length) as described in Section 7.4.3, "BAT Register Implementation of
BAT Array."

Chapter 7. Memory Management 7-23

Thus, the specific criteria for determining a BAT array hit are as follows:

• The upper-order 15 bits ofthe effective address, subject to a mask, must match the
BEPI field of the BAT array entry.

• The appropriate valid bit in the BAT array entry must set to one as follows:

- MSR[PR] =0 corresponds to supervisor mode; in this mode, Vs is checked.
- MSR[PR] = 1 corresponds to user mode; in this mode, Vp is checked.

The matching entry is then subject to the protection checking described in Section 7.4.4,
"Block Memory Protection," before it is used as the source for the physical address. Note
that if a user mode program performs an access with an effective address that matches the
BEPI field of a BAT area defined as valid only for supervisor accesses (Vp = 0 and Vs = 1)
for example, the BAT mechanism does not generate a protection violation and the BAT
entry is simply ignored. Thus, a supervisor program can use the block address translation
mechanism to share a portion of the effective address space with a user program (that uses
page address translation for this area).

If a memory area is to be mapped by the BAT mechanism for both instruction and data
accesses, the mapping must be set up in both an IBAT and DBAT entry; this is the case even
on implementations that do not have separate instruction and data caches.

Note that a block can be defined to overlay part of a segment such that the block portion is
nonpaged although the rest of the segment can be paged. This allows nonpaged areas to be
specified within a segment. Thus, if an area of memory is translated by an instruction BAT
entry and data accesses are not also required to that same area of memory, PTEs are not
required for that area of memory. Similarly, if an area of memory is translated by a data
BAT entry, and instruction accesses are not also required to that same area of memory, PTEs
are not required for that area of memory.

7.4.3 BAT Register Implementation of BAT Array
Recall that the BAT array is comprised of four entries used for instruction accesses and four
entries used for data accesses. Each BAT array entry consists of a pair of BAT registers-an
upper and a lower BAT register for each entry. The BAT registers are accessed with the
mtspr and mfspr instructions and are only accessible to supervisor-level programs. See
Appendix F, "Simplified Mnemonics," for a list of simplified mnemonics for use with the
BAT registers. (Note that simplified mnemonics are referred to as extended mnemonics in
the architecture specification.)

The format and bit definitions of the upper and lower BAT registers are shown in Figure 7-7
and Figure 7-8, respectively.

7-24 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

III Reserved

BEPI BL

14 15 18 19

Figure 7-7. Format of Upper BAT Registers

III Reserved

BRPN

o 14 15 24 25 28 29 30 31

'Wand G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.

Figure 7-8. Format of Lower BAT Registers

The BAT registers contain the effective-to-physical address mappings for blocks of
memory. This mapping information includes the effective address bits that are compared
with the effective address of the access, the memory/cache access mode bits (WIMG), and
the protection bits for the block. In addition, the size of the block and the starting address
of the block are defined by the physical block number (BRPN) and block size mask (BL)
fields_

Table 7-8 describes the bits in the upper and lower BAT registers_ Note that the Wand G
bits are defined for BAT registers that translate data accesses (DBAT registers); attempting
to write to the Wand G bits in IBAT registers causes boundedly-undefined results_

Chapter 7. Memory Management 7-25

The BL field in the upper BAT register is a mask that encodes the size of the block.

Table 7-8. BAT Registers-Field and Bit Descriptions

Upper/Lower
Bits Name Description

BAT

Upper BAT 0-14 BEPI Block effective page index. This field is compared with high-order bits of
Register the logical address to determine if there is a hit in that BAT array entry.

(Note that the architecture specification refers to logical address as
effective address.)

15-18 - Reserved

19-29 BL Block length. BL is a mask that encodes the size of the block. Values for
this field are listed in Table 2-12.

30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if
there is a match with the logical address. For more information, see
Section 7.4.2, "Recognition of Addresses in BAT Arrays."

31 Vp User mode valid bit. This bit also interacts with MSR[PR] to determine if
there is a match with the logical address. For more information, see
Section 7.4.2, "Recognition of Addresses in BAT Arrays:'

Lower BAT 0-14 BRPN This field is used in conjunction with the BL field to generate high-order
Register bits of the physical address of the block.

15-24 - Reserved

25-28 WIMG Memory/cache access mode bits
W Write-through
I Caching-inhibited
M Memory coherence
G Guarded
Attempting to write to the Wand G bits in IBAT registers causes
boundedly-undefined results. For detailed information about the WIMG
bits, see Section 5.2.1, "Memory/Cache Access Attributes."

29 - Reserved

30-31 PP Protection bits for block. This field determines the protection for the block
as described in Section 7.4.4, "Block Memory Protection."

Table 7-9 defines the bit encodings for the BL field of the upper BAT register.

Table 7-9. Upper BAT Register Block Size Mask Encodings

Block Size BL Encoding

128 Kbytes 000 0000 0000

256 Kbytes 000 0000 0001

512 Kbytes 000 0000 0011

1 Mbyte 000 0000 0111

2 Mbytes 00000001111

4 Mbytes 000 0001 1111

7-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 7-9. Upper BAT Register Block Size Mask Encodings (Continued)

Block Size BL Encoding

8 Mbytes 000 0011 1111

16 Mbytes 00001111111

32 Mbytes 00011111111

64 Mbytes 001 1111 1111

128 Mbytes 011 1111 1111

256 Mbytes 11111111111

Only the values shown in Table 7-9 are valid for BL. An effective address is determined to
be within a BAT area if the appropriate bits (determined by the BL field) of the effective
address match the value in the BEPI field of the upper BAT register, and if the appropriate
valid bit (Vs orVp) is set. Note that for an access to occur, the protection bits (PP bits) in
the lower BAT register must be set appropriately, as described in Section 7.4.4, "Block
Memory Protection."

The number of zeros in the BL field determines the bits of the effective address that are used
in the comparison with the BEPI field to determine if there is a hit in that BAT array entry.
The rightmost bit of the BL field is aligned with bit 14 of the effective address; bits of the
effective address corresponding to ones in the BL field are then cleared to zero for the
comparison.

The value loaded into the BL field determines both the size of the block and the alignment
of the block in both effective address space and physical address space. The values loaded
into the BEPI and BRPN fields must have at least as many low-order zeros as there are ones
in BL. Otherwise, the results are undefined. Also, if the processor does not support 32 bits
of physical address, software should write zeros to those unsupported bits in the BRPN field
(as the implementation treats them as reserved). Otherwise, a machine check exception can
occur.

7.4.4 Block Memory Protection
After an effective address is determined to be within a block defined by the BAT array, the
access is validated by the memory protection mechanism. If this protection mechanism
prohibits the access, a block protection violation exception condition (DSI or lSI exception)
is generated.

The memory protection mechanism allows selectively granting read access, granting
read/write access, and prohibiting access to areas of memory based on a number of control
criteria. The block protection mechanism provides protection at the granularity defined by
the block size (128 Kbyte to 256 Mbyte).

Chapter 7. Memory Management 7-27

As the memory protection mechanism used by the block and page address translation is
different, refer to Section 7.5.4, "Page Memory Protection," for specific information unique
to page address translation.

For block address translation, the memory protection mechanism is controlled by the PP
bits (which are located in the lower BAT register), which define the access options for the
block. Table 7-10 shows the types of accesses that are allowed for the possible PP bit
combinations.

Table 7-10. Access Protection Control for Blocks

pp Accesses Allowed

00 No access

xl Read only

10 Reacllwrite

Thus, any access attempted (read or write) when PP = 00 results in a protection violation
exception condition. When PP = xl, an attempt to perform a write access causes a
protection violation exception condition, and when PP = 10, all accesses are allowed. When
the memory protection mechanism prohibits a reference, one of the following occurs,
depending on the type of access that was attempted:

• For data accesses, a DSI exception is generated and bit 4 of DSISR is set.
• For instruction accesses, an lSI exception is generated and SRRI bit 4 is set.

See Chapter 6, "Exceptions," for more information about these exceptions.

Table 7-11 shows a summary of the conditions that cause exceptions for supervisor and
user read and write accesses within a BAT area. Each BAT array entry is programmed to be
either used or ignored for supervisor and user accesses via the BAT array entry valid bits,
and the PP bits enforce the read/write protection options. Note that the valid bits (Vs and
Vp) are used as part of the match criteria for a BAT array entry and are not explicitly part
of the protection mechanism.

7-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Va

o
o

Vp

o

Table 7-11. Access Protection Summary for BAT Array

pp
Field

xx

Block Type

No BAT array match

Note: The term 'Not used' implies that the access is not translated by the BAT array and is translated by the
page address translation mechanism described in Section 7.5, "Memory Segment Model,· instead.

Note that because access to the BAT registers is privileged, only supervisor programs can
modify the protection and valid bits for the block.

Chapter 7. Memory Management 7-29

Figure 7-9 expands on the actions taken by the processor in the case of a memory protection
violation. Note that the debt and debtstinstructions do not cause exceptions; in the case of
a memory protection violation for the attempted execution of one of these instructions, the
translation is aborted and the instruction executes as a no-op (no violation is reported).
Refer to Chapter 6, "Exceptions," for a complete description of the SRRI and DSISR bit
settings for the protection violation el(ceptions.

7-30

Block Memory
Protection Violation

otherwise

I_~
Access Access

(From Figure 7-11)

debt/debtst
Instruction

~
(Abort Access)

Figure 7-9. Memory Protection Violation Flow for Blocks

PowerPC Microprocessor Family: The Programming Environments (32-Blt)

7.4.5 Block Physical Address Generation
Access to the physical memory within the block is made according to the memory/cache
access mode defined by the WIMG bits in the lower BAT register. These bits apply to the
entire block rather than to an individual page as described in Section 5.2.1,
"Memory/Cache Access Attributes."

o 34 1415 31

Effective Address 17 Bit

Block Size Mask

17 Bit

Physical Block Number

31

Physical Address 17 Bit

Figure 7-10. Block Physical Address Generation

Chapter 7. Memory Management 7-31

7.4.6 Block Address Translation Summary
Figure 7-11 is an expansion of the 'BAT Array Hit' branch of Figure 7"-3 and shows the
translation of address bits for 32-bit implementations; Note that the figure does not show
when many ·of the exceptions in Table 7-5 are detected or taken as this is implementation­
specific.

PAo-PA63 = BRPN (0-3) II
BRPN (4-14) OR
«EA4-EA14) & (Bl» II
EA15-EA31

Continue Access to Memory
Subsystem with WIMG in lower­

BAT Register

BAT Array Hit

Write Access with
pp = any of

00
x1

Read Access with
pp=oo

Memory Protection
Violation Aow

(See Figure 7-9)

Figure 7·11. Block Address Translation Flow

7.5 Memory Segment Model
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (52 bits).

A page address translation may be superseded by a matching block address translation as
described in Section 7.4, "Block Address Translation." If not, the page translation proceeds
in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. from virtual address to physical address.

The page address translation mechanism is described in the following sections, followed by
a summary of page address translation with a detailed flow diagram.

7-32 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

7.5.1 Recognition of Addresses in Segments
The page address translation uses segment descriptors, which provide virtual address and
protection information, and page table entries (PTEs), which provide the physical address
and page protection information. The segment descriptors are programmed by the operating
system to provide the virtual ID for a segment. In addition, the operating system also creates
the page table in memory that provides the virtual-to-physical address mappings (in the
form of PTEs) for the pages in memory.

Segments in the OEA can be classified as one of the following two types:

• Memory segment-An effective address in these segments represents a virtual
address that is used to define the physical address of the page.

• Direct-store segment-References made to direct-store segments do not use the
virtual paging mechanism of the processor. Note that the direct-store facility is
optional and being removed from the architecture. See Section 7.7, "Direct-Store
Segment Address Translation," for a complete description of the mapping of direct­
store segments for those processors that implement it.

The T bit in the segment descriptor selects between memory segments and direct-store
segments, as shown in Table 7-12.

Table 7-12. Segment Descriptor Types

Segment Descriptor
Segment Type TBlt

0 Memory segment

1 Direct-store segment---optional, but being removed from the
architecture. Its use is discouraged.

7.5.1.1 Selection of Memory Segments
All accesses generated by the processor can be mapped to a segment descriptor; however,
if translation is disabled (MSR[lR] = 0 or MSR[DR] = 0 for an instruction or data access,
respectively), real addressing mode translation is performed as described in Section 7.3,
"Real Addressing Mode." Otherwise, ifT = 0 in the corresponding segment descriptor (and
the address is not translated by the BAT mechanism), the access maps to memory space and
page address translation is performed:

After a memory segment is selected, the processor creates the virtual address for the
segment and searches for the PTE that dictates the physical page number to be used for the
access. Note that 110 devices can be easily mapped into memory space and used as
memory-mapped 110.

Chapter 7. Memory Management 7-33

7.5.1.2 Selection of Direct-Store Segments
As described for memory segments, all accesses generated by the processor (with
translation enabled) map to a segment descriptor. If T = 1 for the selected segment
descriptor, the access maps to the direct-store interface space and the access proceeds as
described in Section 7.7 , "Direct-Store Segment Address Translation." Because the direct­
store interface is present only for compatibility with existing 110 devices that used this
interface and because the direct-store interface protocol is· not optimized for performance,
its use is discouraged. Additionally, future devices are not likely to support it. Thus,
software should not depend on its results and new software should not use it. The most
efficient method for accessing 110 is by mapping the 110 areas to memory segments.

7.5.2 Page Address Translation Overview
The translation of effective addresses to physical addresses is shown in Figure 7-12. The
address translation is as follows:

• Bits 0-3 of the effective address comprise the segment register number used to select
a segment descriptor, from which the virtual segment ID (VSID) is extracted.

• Bits 4-19 of the effective address correspond to the page number within the
segment; these are concatenated with the VSID from the segment descriptor to form
the virtual page number (VPN). The VPN is used to search for the PTE in either an
on-chip TLB or the page table. The PTE then provides the physical page number
(RPN).

• Bits 20-31 of the effective address are the byte offset within the page; these are
concatenated with the RPN field of a PTE to form the physical address used to
access memory:

7-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

32-Bit Effective Address

o

52-Bit Virtual Address

32-Bit Physical Address

o 34

API
(6 Bit)

1920 31

Byte Offset
(12 Bit)

Page Index (l6-bit)

Virtual Segment 10 (VSIO)
(24 Bit)

23 24

Virtual Page Number (VPN)

39 40 51

Page Index Byte Offset
(16 Bit) (12 Bit)

Byte Offset
(12 Bit)

31

Figure 7-12. Page Address Translation Overview

7.5.2.1 Segment Descriptor Definitions
The fields in the segment descriptors are interpreted differently depending on the value of
the T bit within the descriptor. When T = 1, the segment descriptor defines a direct-store
segment, and the format is as described in Section 7.7.1, "Segment Descriptors for Direct­
Store Segments."

7.5.2.1.1 Segment Descriptor Format
The segment descriptors are 32 bits long and reside in one of 16 on-chip segment registers.
Figure 7-13 shows the format of a segment register used in page address translation (T = 0).

III Reserved

VSIO

o 1 2 3 4 78 31

Figure 7-13. Segment Register Format for Page Address Translation

Chapter 7. Memory Management 7-35

Table 7-13 provides the corresponding bit definitions of the segment register.

Table 7-13. Segment Register Bit Definition for Page Address Translation

Bit Name Description

0 T T = 0 selects this format

1 Ks Supervisor-state protection key

2 Kp User-state protection key

3 N No-execute protection bit

4-7 - Reserved

8-31 VSIO Virtual segment 10

The Ks and Kp bits partially define the access protection for the pages within the segment.
The page protection provided in the PowerPC OEA is described in Section 7.5.4, "Page
Memory Protection." The virtual segment ID field is used as the high-order bits of the
virtual page number (VPN) as shown in Figure 7-12.

The segment registers are programmed with specific instructions that reference the segment
registers. However, since the segment registers described here are merely a conceptual
model, a processor may implement separate segment registers for instructions and for data,
for example. In this case, it is the responsibility of the hardware to maintain the consistency
between the multiple sets of segment registers.

The segment register instructions are summarized in Table 7-6. These instructions are
privileged in that they are executable only while operating in supervisor .mode. See
Section 2.3.17, "Synchronization Requirements for Special Registers and for Lookaside
Buffers," for information about the synchronization requirements when modifying the
segment registers. See Chapter 8, "Instruction Set:' for more detail· on the encodings of
these instructions.

7-36 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

7.5.2.2 Page Table Entry (PTE) Definitions
Page table entries (PTEs) are generated and placed in page table in memory by the
operating system using the hashing algorithm described in Section 7.6.1.3, "Page Table
Hashing Functions." The PowerPC OEA defines PTEs that are 64 bits in length. Some of
the fields are defined as follows:

• The virtual segment ID field corresponds to the high-order bits of the virtual page
number (VPN), and, along with the H, V, and API fields, it is used to locate the PTE
(used as match criteria in comparing the PTE with the segment information).

• The Rand C bits maintain history information for the page as described in
Section 7.5.3, "Page History Recording."

• The WIMG bits define the memory/cache control mode for accesses to the page.

• The PP bits define the remaining access protection constraints for the page. The
page protection provided by PowerPC processors is described in Section 7.5.4,
"Page Memory Protection."

Conceptually, the page table in memory mustbe searched to translate the address of every
reference. For performance reasons, however, some processors use on~chip TLBs to cache
copies of recently-used PTEs so that the table search time is eliminated for most accesses.
In this case, the TLB is searched for the address translation first. If a copy of the PTE is
found, then no page table search is performed. As TLBs are noncoherent caches of PTEs,
software that changes the page table in any way must perform the appropriate TLB
invalidate operations to keep the on-chip TLBs coherent with respect to the page table in
memory.

7.5.2.2.1 PTE Format
Figure 7-14 shows the format of the two words that comprise a PTE for 32-bit
implementations.

III Reserved

o 1 2425 26 31

VSID

RPN

o 19 20 22 23 24 25 28293031

Figure 7-14. Page Table Entry Format

Table 7-14 lists the corresponding bit definitions for each word in a PTE as defined above.

Chapter 7. Memory Management 7-37

Table 7-14. PTE Bit Definitions

Word Bit Name Description

0 0 V Entry valid (V = 1) or invalid (V = 0)

1-24 VSID Virtual segment ID

25 H Hash function identifier

26-31 APi Abbreviated page index

1 0-19 RPN Physical page number

20-22 - Reserved

23 R Referenced bit

24 C Changed bit

25-28 WIMG Memory/cache control bits

29 - Reserved

30-31 PP Page protection bits

In this case, the PTE contains an abbreviated page index rather than the complete page
index field because at least ten of the low-order bits of the page index are used in the hash
function to select a PTEG address (PTEG addresses define the location of a PTE).
Therefore, these ten low-order bits are not repeated in the PTEs of that PTEG.

7.5.3 Page History Recording
Referenced (R) and changed (C) bits in each PTE keep history information about the page.
The operating system then uses this information to determine which areas of memory to
write back to disk when new pages must be allocated in main memory. Referenced and
changed recording is performed only for accesses made with page address translation and
not for translations made with the BAT mechanism or for accesses that correspond to direct­
store (T = 1) segments. Furthermore, Rand C bits are maintained only for accesses made
while address translation is enabled (MSR[lR] = 1 or MSR[DR] = 1).

7-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

In general, the referenced and changed bits are updated to reflect the status of the page
based on the access, as shown in Table 7-15.

Table 7-15. Table Search Operations to Update History Bits

Rand C bits Processor Action

00 Read: Table search operation to update R
Write: Table search operation to update Rand C

01 Combination doesn't occur

10 Read: No special action
Write: Table search operation to update C

11 No special action for read or write

In processors that implement a TLB, the processor may perform the Rand C bit updates
based on the copies of these bits resident in the TLB. For example, the processor may
update the C bit based only on the status of the C bit in the TLB entry in the case of a TLB
hit (the R bit may be assumed to be set in the page tables if there is a TLB hit). Therefore,
when software clears the Rand C bits in the page tables in memory, it must invalidate the
TLB entries associated with the pages whose referenced and changed bits were cleared. See
Section 7.6.3, "Page Table Updates," for all of the constraints imposed on the software
when updating the referenced and changed bits in the page tables.

The R bit for a page may be set by the execution of the debt or debtst instruction to that
page. However, neither of these instructions cause the C bit to be set.

The update of the referenced and changed bits is performed by PowerPC processors as if
address translation were disabled (real addressing mode address).

7.5.3.1 Referenced Bit
The referenced bit for each virtual page is located in the PTE. Every time a page is
referenced (by an instruction fetch, or any other read or write access) the referenced bit is
set in the page table. The referenced bit may be set immediately, or the setting may be
delayed until the memory access is determined to be successful. Because the reference to a
page is what causes a PTE to be loaded into the TLB, some processors may assume the R
bit in the TLB is always set. The processor never automatically clears the referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this
include the following:

• Fetching of instructions not subsequently executed
• Accesses generated by an lswx or stswx instruction with a zero length
• Accesses generated by an stwex. instruction when no store is performed
• Accesses that cause exceptions and are not completed

Chapter 7. Memory Management 7-39

7.5.3.2 Changed Bit
The changed bit for each virtual page is located both in the PTE in the page table and in the
copy of the PTE loaded into the TLB (if a TLB is implemented). Whenever a data store
instruction is executed successfully, if the TLB search (for page address translation) results
in a hit, the changed bit in the matching TLB entry is checked. If it is already set, it is not
updated. If the TLB changed bit is 0, it is set and a table search operation is performed to
set the C bit in the corresponding PTE in the page table.

Processors cause the changed bit (in both the PTE in the page tables and in the TLB if
implemented) to be set only when a store operation is allowed by the page memory
protection mechanism and the store is guaranteed to be in the execution path, unless an
exception, other than those caused by one of the following occurs:

• System-caused interrupts (system reset, machine check, external, and decrementer
interrupts)

• Floating-point enabled exception type program exceptions when the processor is in
an imprecise mode

• Floating-point assist exceptions for instructions that cause no other kind of precise
exception

Furthermore, the following conditions may cause the C bit to be set:

• The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

• The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
zero.

• A dcba or dcbi instruction is executed.

No other cases cause the C bit to be set.

7.5.3.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) used by PowerPC
processors that maintain the referenced and changed bits automatically in hardware, in the
setting of the Rand C bits. In some scenarios, the bits are guaranteed to be set by the
processor; in some scenarios, the architecture allows that the bits may be set (not absolutely
required); and in some scenarios, the bits are guaranteed to not be set. Note that when the
hardware updates the R and C bits in memory, the accesses are performed as a physical
memory access, as if the WIMG bit settings were ObOOlO (that is, as unguarded cacheable
operations in which coherency is required).

In implementations that do not maintain the R and C bits in hardware, software assistance
is required. For these processors, the information in this section still applies, except that the
software performing the updates is constrained to the rules described (that is, must set bits
shown as guaranteed to be set and must not set bits shown as guaranteed to not be set). Note

7-40 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

that this software should be contained in the area of memory reserved for implementation­
specific use and should be invisible to the operating system.

Table 7-16 defines a prioritized list of the Rand C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructions that are treated as loads with respect
to address translation. Similarly, store operations include those operations generated by
store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as stores with respect to address translation.

Table 7-16. Model for Guaranteed Rand C Bit Settings

Priority Scenario
Causes Setting Causes Setting

of R Bit of C Bit

1 No-execute protection violation No No

2 Page protection violation Maybe No

3 Out-of-order instruction fetch or load operation Maybe No

4 Out-of-order store operation for instructions that will Maybe1 Maybe1
cause no other kind of precise exception (in the
absence of system-caused, imprecise, or floating-point
assist exceptions)

5 All other out-of-order store operations Maybe1 No

6 Zero-length load (Iswx) Maybe No

7 Zero-length store (stswx) Maybe1 Maybe1

8 Store conditional (stwex.) that does not store Maybe1 Maybe1

9 In-order instruction fetch Ves2 No

10 Load instruction or eclwx Ves No

11 Store instruction, eeowx, debz, or deba 3 instruction Ves Ves

12 lebl, debt, debtst, debst, or deb,f instruction Maybe No

13 debi instruction Maybe1 Maybe1

Notes:
1 If C is set, R is guaranteed to also be set
2 This includes the case in which the instruction was fetched out of order and R was not set
3 For a deba instruction that does not modify the target block, it is possible that neither bit is set.

Chapter 7. Memory Management 7-41

7.5.3.4 Synchronization of Memory Accesses and Referenced and
Changed Bit Updates

Although the processor updates the referenced and changed bits in the page tables
automatically, these updates are not guaranteed to be immediately visible to the program
after the load, store, or instruction fetch operation that caused the update. If processor A
executes a load or store or fetches an instruction, the following conditions are met with
respect to performing the access and performing any Rand C bit updates:

• If processor A subsequently executes a sync instruction, both the updates to the bits
in the page table and the load or store operation are guaranteed to be performed with
respect to all processors and mechanisms before the sync instruction completes on
processor A.

• Additionally, if processor B executes a tlbie instruction that

- signals the invalidation to the hardware,

- invalidates the TLB entry for the access in processor A, and

- is detected by processor A after processor A has begun the access,

and processor B executes a tlbsync instruction after it executes the tlbie, both the
updates to the bits and the original access are guaranteed to be performed with
respect to all processors and mechanisms before the tlbsync instruction completes
on processor A.

7.5.4 Page Memory Protection
In addition to the no-execute option that can be programmed at the segment descriptor level
to prevent instructions from being fetched from a given segment (shown in Figure 7-4),
there are a number of other memory protection options that can be programmed at the page
level. The page memory protection mechanism allows selectively granting read access,
granting read/write access, and prohibiting access to areas of memory based on a number
of control criteria.

The memory protection used by the block and page address translation mechanisms is
different in that the page address translation protection defines a key bit that,in conjunction
with the PP bits, determines whether supervisor and user programs can access a page. For
specific information about block address translation, refer to Section 7.4.4, "Block
Memory Protection."

For page address translation, the memory protection mechanism is controlled by the
following:

• MSR[PR], which defines the mode of the access as follows:

- MSR[PR] = 0 corresponds to supervisor mode

- MSR[PR] = 1 corresponds to user mode

• Ks and Kp, the supervisor and user key bits, which define the key for the page

• The PP bits, which define the access options for the page

7-42 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

The key bits (Ks and Kp) and the PP bits are located as follows for page address translation:

• Ks and Kp are located in the segment descriptor.

• The PP bits are located in the PTE.

The key bits, the PP bits, and the MSR[PR] bit are used as follows:

• When an access is generated, one of the key bits is selected to be the key as follows:

- For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is ignored
- For user accesses (MSR[PR] = I), the Kp bit is used and Ks is ignored

That is, key = (Kp & MSR[PRD I (Ks & -.MSR[PRD

• The selected key is used with the PP bits to determine if instruction fetching, load
access, or store access is allowed.

Table 7-17 shows the types of accesses that are allowed for the general case (all possible
Ks, Kp, and PP bit combinations), assuming that the N bit in the segment descriptor is
cleared (the no-execute option is not selected).

Table 7-17. Access Protection Control with Key

Key1 pp2 PageType

0 00 Readlwrite

0 01 Read/write

0 10 Read/write

0 11 Read only

1 00 No access

1 01 Read only

1 10 Readlwrite

1 11 Read only

Notes:

1 Ks or Kp selected by state of MSR[PR)
2 PP protection option bits in PTE

Thus, the conditions that cause a protection violation (not including the no-execute
protection option for instruction fetches) are depicted in Table 7-18 and as a flow diagram
in Figure 7-17. Any access attempted (read or write) when the key = 1 and PP = 00, causes
a protection violation exception condition. When key == 1 and PP = 01, an attempt to
perform a write access causes a protection violation exception condition. When PP = 10, all
accesses are allowed, and when PP = II, write accesses always cause an exception. The
processor takes either the lSI or the DSI exception (for an instruction or data access,
respectively) when there is an attempt to violate the memory protection.

Chapter 7. Memory Management 7-43

Table 7-18. Exception Conditions for Key and PP Combinations

Key PP
Prohibited
Accesses

0 Ox None

1 00 Read/write

1 01 Write

x 10 None

x 11 Write

Any combination of the Ks, Kp, and PP bits is allowed. One example is if the Ks and Kp
bits are programmed so that the value of the key bit for Table 7-17 directly matches the
MSR[PR] bit for the access. In this case, the encoding of Ks = 0 and Kp = 1 is used for the
PTE, and the PPbits then enforce the protection options shown in Table 7-19.

Table 7-19. Access Protection Encoding of PP Bits for Ks = 0 and Kp = 1

PP User Read User Write
Supervisor Supervisor

Field
Option

(Key = 1) (Key = 1)
Read Write

(Key =0) (Key =0)

00 Supervisor'only Violation Violation " " 01 Supervisor-write-only " Violation " " 10 Both user/supervisor " " " " 11 Both read-only " Violation " Violation

However, if the setting Ks = 1 is used, supervisor accesses are treated as user reads and
writes with respect to Table 7-19. Likewise, if the setting Kp = 0 is used, user accesses to
the page are treated as supervisor accesses in relation to Table 7-19. Therefore, by
modifying one of the key bits (in the segment descriptor), the way the processor interprets
accesses (supervisor or user) in a particular segment can easily be changed. Note, however,
that only supervisor programs are allowed to modify the key bits for the segment descriptor.
Access to the segment registers is privileged.

7-44 PowerPC Microprocessor Family: The Programming Environments (32-8it)

When the memory protection mechanism prohibits a reference, the flow of events is similar
to that for a memory protection violation occurring with the block protection mechanism.
As shown in Figure 7-15, one ofthe following occurs depending on the type of access that
was attempted:

• For data accesses, a DSI exception is generated and DSISR[4] is set. If the access is
a store, DSISR[6] is also set.

• For instruction accesses,

- an lSI exception is generated and SRR1[4] is set, or

- an lSI exception is generated and SRRl[3] is set if the segment is designated as
no-execute.

The only difference between the flow shown in Figure 7-15 and that of the block memory
protection violation is the lSI exception that can be caused by an attempt to fetch an
instruction from a segment that has been designated as no-execute (N bit set in the segment
descriptor). See Chapter 6, "Exceptions," for more information about these exceptions.

Page Memory
Protection Violation

otherwise

Instruction ~ Data

NBitSetin ~
Segment Descriptor I .

otherwise

Access Access

lSI Exception

debt/debtst
Instruction

~
(Abort Access)

Figure 7-15. Memory Protection Violation Flow for Pages

Chapter 7. Memory Management 7-45

If the page protection mechanism prohibits a store operation, the changed bit is not set (in
either the TLB or in the page tables in memory); however, a prohibited store access may
cause a PTE to be loaded into the TLB and consequently cause the referenced bit to be set
in a PTE (both in the TLB and in the page table in memory).

7.5.5 Page Address Translation Summary
Figure 7-16 provides the detailed flow for the page address translation mechanism. The
figure includes the checking of the N bit in the segment descriptor and then expands on the
'TLB Hit' branch of Figure 7 -4. The detailed flow for the 'TLB Miss' branch of Figure 7-4
is described in Section 7.6.2, "Page Table Search Operation." The checking of memory
protection violation conditions for page address translation is shown in Figure 7-17. The
'Invalidate TLB Entry' box shown in Figure 7-16 is marked as implementation-specific as
this level of detail for TLBs (and the existence of TLBs) is not dictated by the architecture.
Note that the figure does not show the detection of all exception conditions shown in
Table 7-4 and Table 7-5; the flow for many of these exceptions is implementation-specific.

7·46 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Note: - _ Implementation-specific

Effective Address
Generated

othe~ I-Fetch with N Bit Set in
Segment Descriptor

(No-Execute)

Page Address
Translation

Generate 52-Bit
Virtual Address from
Segment Descriptor

I Compare Virtual Address
: with TLB Entries

TLBHit
Case

Check Page Memory
Protection Violation Conditions

(See Figure 7-17)

ACcess Prohibited

(See
Figure 7-15)

Page Memory
Protection Violation

Continue Access to
Memory Subsystem with

WIMG bits from PTE

Figure 7-16. Page Address Translation Flow-TLB Hit

Chapter 7. Memory Management 7-47

Check Page Memory
Protection Violation

Conditions

Select Key:

Access Permitted

If MSR[PR) = 0, key = Ks
If MSR[PR) = 1, key = Kp

Write Access with
key II PI' = any of:

011
100
101
111

Access Prohibited (See Figure 7-15)

Figure 7-17. Page Memory Protection Violation Conditions for Page Address
Translation

7.6 Hashed Page Tables
If a copy of the PTE corresponding to the VPN for an access is not resident in a TLB
(corresponding to a miss in the TLB, provided a TLB is implemented), the processor must
search for the PTE in the page tables set up by the operating system in main memory.

The algorithm specified by the architecture for accessing the page tables includes a hashing
function on some of the virtual address bits. Thus, the addresses for PTEs are allocated
more evenly within the page tables and the hit rate of the page tables is maximized. This
algorithm must be synthesized by the operating system for it to correctly place the page
table entries in main memory.

If page table search operations are performed automatically by the hardware, they are
performed using physical addresses and as if the memory access attribute bit M = 1
(memory coherency enforced in hardware). If the software performs the page table search
operations, the accesses must be performed in real addressing mode (MSR[DR] = 0); this
additionally guarantees that M = 1.

This section describes the format of the page tables and the algorithm used to access them.
In addition, the constraints imposed on the software in updating the page tables (and other
MMU resources) are described.

7-48 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7.6.1 Page Table Definition
The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, its
starting address is a multiple of its size, and the table must reside in memory with the
WIMG attributes of ObOOlO.

The page table contains a number of page table entry groups (PTEGs). For 32-bit
implementations, a PTEG contains eight PTEs of eight bytes each; therefore, each PTEG
is 64 bytes long. PTEG addresses are entry points for table search operations. Figure 7-18
shows two PTEG addresses (PTEGaddrl and PTEGaddr2) where a given PTE may reside.

Page Table

PTE7 PTEGO

PTEGaddr1 PTE7

PTEGaddr2 PTE7

PTEGn

Figure 7-18. Page Table Definitions

A given PTE can reside in one of two possible PTEGS-one is the primary PTEG and the
other is the secondary PTEG. Additionally, a given PTE can reside in any of the PTE
locations within an addressed PTEG. Thus, a given PTE may reside in one of 16 possible
locations within the page table. If a given PTE is not in either the primary or secondary
PTEG, a page table miss occurs, corresponding to a page fault condition.

Chapter 7. Memory Management 7-49

-

A table search operation is defined as the search for a PTE within a primary and secondary
PTEG. When a table search operation commences, a primary hashing function is performed
on the virtual address. The output of the hashing function is then concatenated with bits
programmed into the SDRI register by the operating system to create the physical address
of the primary PTEG. The PTEs in the PTEG are then checked, one by one, to see if there
is a hit within the PTEG. If the PTE is not located, a secondary hashing function is
performed, a new physical addressis generated for the PTEG, and the PTE is searched for
again, using the secondary PTEG address.

Note, however, that although a given PTE may reside in one of 16 possible locations, an
address that is a primary PTEG address for some accesses also functions as a secondary
PTEG address for a second set of accesses (as defined by the secondary hashing function).
Therefore, these 16 possible locations are really shared by two different sets of effective
addresses. Section 7.6.1.6, "Page Table Structure Examples," illustrates how PTEs map
into the 16 possible locations as primary and secondary PTEs.

7.6.1.1 SDR1 Register Definitions
The SDRI register contains the control information for the page table structure in that it
defines the high-order bits for the physical base address of the page table and it defines the
size of the table. Note that there are certain synchronization requirements for writing to
SDRI that are described in Section 2.3.17, "Synchronization Requirements for Special
Registers and for Lookaside Buffers." The format of the SDRI register is shown in the
following sections.

Figure 7-19 shows the format of the SDRI register.

Ill! Reserved

HTABORG HTABMASK

o 15 16 22 23 31

Figure 7-19. SDR1 Register Format

Bit settings are described in Table 7-20.

Table 7-20. SDR1 Register Bit Settings

Bits Name Description

0-15 HTABORG Physical base address of page table

16-22 - Reserved

23-31 HTABMASK Mask for page table address

7·50 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The HTABORG field in SOR1 contains the high-order 16 bits of the 32-bit physical address
of the page table. Therefore, the beginning of the page table lies on a 216 byte (64 Kbyte)
boundary at a minimum. If the processor does not support 32 bits of physical address,
software should write zeros to those unsupported bits in the HTABORG field (as the
implementation treats them as reserved). Otherwise, a machine check exception can occur.

A page table can be any size 2n bytes where 16 S n S 25. The HTABMASK field in SOR1
contains a mask value that determines how many bits from the output of the hashing
function are used as the page table index. This mask must be of the form ObOO ... Oll ... 1 (a
string of 0 bits followed by a string of 1 bits). As the table size increases, more bits are used
from the output of the hashing function to index into the table. The 1 bits in HTABMASK
determine how many additional bits (beyond the minimum of 10) from the hash are used in
the index; the HTABORG field must have the same number of low-order bits equal to 0 as
the HTABMASK field has low-order bits equal to 1.

Example:

Suppose that the page table is 16,384 (214) 128-byte PTEGs, for a total size of 221 bytes
(2 Mbytes). A 14-bit index is required. Eleven bits are provided from the hash to start with,
so 3 additional bits from the hash must be selected. Thus the value in HTABMASK must
be 3 and the value in HTABORG must have its low-order 3 bits (SOR1[31-33]) equal to O.
This means that the page table must begin on a 2 <3 + 11 + 7> = 2 21 = 2-Mbyte boundary.

7.6.1.2 Page Table Size
The number of entries in the page table directly affects performance because it influences
the hit ratio in the page table and thus the rate of page fault exception conditions. If the table
is too small, not all virtual pages that have physical page frames assigned may be mapped
via the page table. This can happen if more than 16 entries map to the same
primary/secondary pair of PTEGs; in this case, many hash collisions may occur.

In a 32-bit implementation, the minimum size for a page table is 64 Kbytes (210 PTEGs of
64 bytes ea~h). However, it is recommended that the total number of PTEGs in the page
table be at least half the number of physical page frames to be mapped. While avoidance of
hash collisions cannot be guaranteed for any size page table, making the page table larger
than the recommended minimum size reduces the frequency of such collisions by making
the primary PTEGs more sparsely populated, and further reducing the need to use the
secondary PTEGs.

Table 7-21 shows some example sizes for total main memory in a 32-bit system. The
recommended minimum page table size for these example memory sizes are then outlined,
along with their corresponding HTABORG and HTABMASK settings in SORt. Note that
systems with less than 8 Mbytes of main memory may be designed with 32-bit processors,
but the minimum amount of memory that can be used for the page tables in these cases is
64 Kbytes.

Chapter 7. Memory Management 7-51

Table 7-21. Minimum Recommended Page Table Sizes

Recommended Minimum
Settings for Recommended

Minimum

Total Main Memory
Number of HTABORG

Memory for Page
Mapped

.... umberof
(Maskable HTABMASK

Tables
Pages (PTEs)

PTEGs
Bits 7-15)

8Mbytes(~~ 64 Kbytes (216) 213 210 xxxXxxxxx 000000000

16 Mbytes (~4) 128 Kbytes (217) 214 211 xxxxxxxxO 000000001

32 Mbytes (~5) 256 Kbytes (218) 215 212 xxxxxxxOO 000000011

64 Mbytes (~6) 512 Kbytes (21'1 216 213 xxxxxxOOO 000000111

128 Mbytes (~7) 1 Mbyte (~Dj 217 214 x xxxx 0000 000001111

256 Mbytes (228) 2 Mbytes (~1) 218 215 xxxxOOOOO 000011111

512 Mbytes (229) 4 Mbytes (~2) 219 216 xxxOOOOOO 000111111

1 Gbytes (2~ 8 Mbytes (~3) ~o 217 xXOOOOOOO 001111111.

2 Gbytes (231) 16 Mbytes (~4) ~1 218 x 0000 0000 011111111

4 Gbytes (232) 32 Mbytes (~5) ~2 219 000000000 111111111

As an example, if the physical memory size is 229 bytes (512 Mbyte) , then there are
229 - 212 (4 Kbyte page size) = 217 (128 Kbyte) total page frames. If this number of page
frames is divided by 2, the resultant minimum recommended page table size is 216 PTEGs,
or 222 bytes (4 Mbytes) of memory for the page tables.

7.6.1.3 Page Table Hashing Functions
The MMU uses two differerit hashing functions, a primary and a secondary, in the creation
of the physical addresses used in a page table search operation. These hashing functions
distribute the PTEs within the page table, in that there are two possible PTEGs where a
given PTE can reside. Additionally, there are eight possible PTE locations within a PTEG
where a given PTE can reside. If a PTE is not found using the primary hashing functiolJ,
the secondary hashing function is performed, and the secondary PTEG is searched. Note
that these two functions must also be used by the operating system to set up the page tables
in memory appropriately.

Typically, the hashing functions provide a high probability that a required PTE is resident
in the page table, without requiring the definition of all possible PTEs in main memory.
However, if a PTE is not found in the secondary PTEG, a page fault occurs and an exception
is taken. Thus, the required PTE can then be placed into either the primary or secondary
PTEG by the system software, and on the next TLB miss to this page (in those processors
that i~plement a TLB), the PTE will be found in the page tables (and loaded into an on­
chipTLB).

7-52 PowerPC Microprocessor Family: The Programming Environments (32-8It)

The address of a PTEG is derived from the HTABORG field of the SDRI register, and the
output of the corresponding hashing function (primary hashing function for primary PTEG
and secondary hashing function for a secondary PTEG). The value in the HTABMASK
field determines how many of the high-order hash value bits are masked and how many are
used in the generation of the physical address of the PTEG.

Figure 7-20 depicts the hashing functions defined by the PowerPC OEA for 32-bit
implementations. The inputs to the primary hashing function are the low-order 19 bits of
the VSID field of the selected segment register (bits 5-23 of the 52-bit virtual address), and
the page index field of the effective address (bits 24-39 of the virtual address) concatenated
with three zero high-order bits. The XOR of these two values generates the output of the
primary hashing function (hash value 1).

When the secondary hashing function is required, the output of the primary hashing
function is complemented with one's complement arithmetic, to provide hash value 2.

Primary Hash:

VA5 VA23

low-Order 19 Bits of VSID (from Segment Register)

XOR
24 39

Page Index (from Effective Address)

Output of Hashing Function 1

o 8 9 18
~I------------~I~I----------------~~I

Secondary Hash:

o

o

Hash Value 1

+ One's Complement Function

Output of Hashing Function 2

8 9

18

18
~----------~II~------------------~

Hash Value 1

Hash Value 2

Figure 7-20. Hashing Functions for Page Tables

Chapter 7. Memory Management 7-53

7.6.1.4 Page Table Addresses
The following sections illustrate the generation of the addresses used for accessing the
hashed page tables. As stated earlier, the operating system must synthesize the table search
algorithm for setting up the tables.

Two of the elements that define the virtual address (the VSID field of the segment descriptor
and the page index field of the effective aqdress) are used as inputs into a hashing function.
Depending on whether the primary or secondary PrEG is to be accessed, the processor uses
either the primary or secondary hashing· function as described in Section 7.6; 1.3, "Page
Table Hashing Functions."

Note that unless all accesses to be performed by the processor can be translated by the BAT
mechanism when address translation is enabled (MSR[DR] or MSR[lR] = 1), the SDRI
must point to a valid page table. Otherwise, a machine check exception can occur.

Additionally, care should be given that page table addresses not conflict with those that
correspond to areas of the physical address map reserved for the exception vector table or
other implementation-specific purposes (refer to Section 7.2.1.2, "Predefined Physical
Memory Locations").

For 32-bit implementations, the base address of the page table is defined by the high-order
bits of SDR1[HTABORG].

Effectively, bits 7-15 of the PrEG address are derived from the masking of the high-order
bits of the hash value (as defined bySDR1[HTABMASK]) concatenated with
(implemented as an OR function) the high-order bits of SDR1[HTABORG] as defined by
HTABMASK. Bits 16-25 of the PrEG address are the 10 low-order bits of the hash value,
and bits 26-31 of the PrEG address are zero. In the process of searching for a PrE, the
processor checks up to eight PTEs located in the primary PrEG and up to eight PrEs
located in the secondary PrEG, if required, searching for a match. Figure 7-21 provides a
graphical description of the generation of the PTEG addresses for 32-bit implementations.

7·54 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

Virtual Page Number (VPN)

52-Bit Virtual Address

SDR1
o 67

xxxxxx 00
.1

Base
Address

o

OR

67

o 45

1516

Virtual Segment 10
(24 Bit)

AND

2526

_____ !.!:EG Select I

PTE
01

32-Bit Physical Address of Page Table Entry

242526 31 0

31 . . .
. .

'.

2324 2930

API I
(6 Bit)

3940

Byte Offset
(12 Bit)

Page Index (16 Bit)

.
~TEGO

PTEGn , , , , ,

10 Bits

PAGE TABLE

• • •

----"- 64 Bytes -- .. •
19 23 25 29 31

II VSID II API Physical Page Number (RPN)
(24 Bit) (6 Bit) (20 Bit)

t t
V H

32-Bit Physical Address

Figure 7-21. Generation of Addresses for Page Tables

Chapter 7. Memory Management

Byte Offset
(12 Bit)

51

7-55

-

7.6.1.5 Page Table Structure Summary
In the process of searching for a PTE, the processor interprets the values read from memory
as described in Section 7.5.2.2, "Page Table Entry (PTE) Definitions." The VSID and the
abbreviated page index (API) fields of the virtual address of the access are compared to
those same fields of the PTEs in memory. In addition, the valid (V) bit and the hashing
function (H) bit are also checked. For a hit to occur, the V bit of the PTE in memory must
be set. If the fields match and the entry is valid, the PTE is considered a hit if the H bit is
set as follows:

• If this is the primary PTEG, H = 0
• If this is the secondary PTEG, H = 1

The physical address of the PTE(s) to be checked is derived as shown in Figure 7-31 and
Figure 7-21, and the generated address is the address of a group of eight PTEs (a PTEG).
During a table search operation, the processor comparel! up to 16 PTEs:PTEO-PTE7 of the
primary PTEG (defined by the primary hashing function) and PTEO-PTE7 of the secondary
PTEG (defined by the secondary hashing function).

If the VSID and API fields do not match (or if V or H are not set appropriately) for any of
these PTEs, a page fault occurs and an exception is taken. Thus, if a valid PTE is located in
the page tables, the page is considered resident; if no matching (and valid) PTE is found for
an access, the page in question is interpreted as nonresident (page fault) and the operating
system must load the page into main memory and update the PTE accordingly.

The architecture does not specify the order in which the PTEs are checked. Note that for
maximum performance however, PTEs should be allocated by the operating system first
beginning with the PTEO location within the primary PTEG, then PTE 1 , and so on. If more
than eight PTEs are required within the address space that defines a PTEG address, the
secondary PTEG can be used (again, allocation of PTEO of the secondary PTEG first, and
so on is recommended). Additionally, it may be desirable to place the PTEs that will require
most frequent access at the beginning of a PTEG and reserve the PTEs in the secondary
PTEG for the least frequently accessed PTEs.

The architecture also allows for multiple matching entries. to be found within a table search
operation. Multiple matching PTEs are allowed if they meet the match criteria described
above, as well as have identical RPN, WIMG, and PP values, allowing for differences in the
Rand C bits. In this case, one of the matching PTEs is used and the Rand C bits are updated
according to this PTE. In the case that multiple PTEs are found that meet the match criteria
but differ in the RPN, WIMG or PP fields, the translation is undefined and the resultant R
and C bits in the matching entries are also undefined.

Note that multiple matching entries can also differ in the setting of the H bit, but the H bit
must be set according to whether the PTE was located in the primary or secondary PTEG,
as described above.

7·56 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7.6.1.6 Page Table Structure Examples
Figure 7-22 shows the structure of an example page table. The base address of the page
table is defined by SDRl[HTABORG] concatenated with 16 zero bits. In this example, the
address is identified by bits 0-13 in SDRl[HTABORG]; note that bits 14 and 15 of
HTABORG must be zero because the low-order two bits of HTABMASK are ones. The
addresses for individual PTEGs within this page table are then defined by bits 14-25 as an
offset from bits 0-13 of this base address. Thus, the size of the page table is defined as 4096
PTEGs.

HTABORG
Example: o

Given: SDR1 11010 0110 0000 0000

Base Address

HTABMASK
15 23 31

0000 0000 0000 0011 1

Page Table

$A600 0000 PTE7 PTEGO

PTEGaddr1 PTE7

PTEGaddr2 PTE7

PTEG4095

0 14 25 31
I I

PTEGaddr1 1010 0110 0000 OOmm aaaa aaaa aaOO 0000

0 14 25 31
I I

PTEGaddr2 = 1010 0110 0000 OOnn bbbb bbbb bbOO 0000

Figure 7·22. Example Page Table Structure

Chapter 7. Memory Management 7-57

1\vo example PTEG addresses are shown in the figure as PTEGaddrl and PTEGaddr2. Bits
14-25 of.each PTEG address in this example page table are derived from the output of the
hashing function (bits 26-31 are zero to start with PTEO of the PTEG). In this example, the
'b' bits in PTEGaddr2 are the one's complement of the 'a' bits in PTEGaddrl. The 'n' bits
are also the one's complement of the 'm' bits, but these two bits are generated from bits 7-8
of the output of the hashing function, logically ORed with bits 14-15 of the HTABORG
field (which must be zero). If bits 14-25 ofPTEGaddr1 were derived by using the primary
hashing function, then PTEGaddr2 corresponds to the secondary PTEG.

Note, however. that bits 14-25 in PTEGaddr2 can also be derived from a combination of
effective address bits, segment register bits, and the primary hashing function. In this case,
then PTEGaddrl corresponds to the secondary PTEG. Thus. while a PTEG may be
considered a primary PTEG for some effective addresses (and segment register bits), it may
also correspond to the secondary PTEG for a different effective address (and segment
register value) .

. It is the value of the H bit in each of the individual PTEs that identifies a particular PTE as
either primary or secondary (there may be PTEs that correspond to a primary PTEG and
PTEs that correspond to a secondary PTEG, all within the same physical PTEG address
space). Thus, only the PTEs that have H = ° are checked for a hit during a primary PTEG
search. Likewise, only PTEs with H = 1 are checked in the case of a secondary PTEG
search.

7.6.1.7 PTEG Address Mapping Examples
This section contains two examples of an effective address and how its address translation
(the PTE) maps into the primary PTEG in physical memory. The examples illustrate how
the processor generates PTEG addresses for a table search operation; this is also the
algorithm that must be used by the operating system in creating page tables.

Figure 7-23 shows an example ofPTEG address generation for a 32-bit implementation. In
the example, the value in SDR1 defines a page table at address OxOF98_0000 that contains
8192 PTEGs. The example effective address selects segment register ° (SRO) with the
highest order four bits. The contents of Sft0 are then used along with bits 4-31 of the
effective address to create the 52-bit virtual address.

To generate the address of the primary PTEG, bits 5-23, and bits 24-39 of the virtual
address are then used as inputs into the primary hashing function (XOR) to generate hash
value 1. The low-order 13 bits of hash value 1 are then concatenated with the high-order 16
bits of HTABORG and with six low-order ° bits. defining the address of the primary PTEG
(OxOF9F _F980).

7-58 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

HTABORG HTABMASK
Example: 0 15 23 31

I I

Given: SDR1
1
0000 1111 1001 1000 0000 0000 0000 0111 I
0 4 19 20 31

EA= 0000 1111 1111 1010 0000 0001 1011

Segment Register Select Byte Offset

OxC A 7 0 C

SRO 1 0010 0000 1100 1010 0111 0000 0001 1100 I
8 31

I I
Virtual Address: IVSID Page Index

I I
1100 1010 0111 0000 0001 1100 0000 1111 1111 1010 0000 0001 1011

39

Primary Hash:

Hash Value 1

Primary PTEG Address:

HTABORG 12 16 25 Start at PTEO

0000 1111 1001 1111 1001 1000 0000

x' 0 F 9 F 9 8 O'

Figure 7-23. Example Primary PTEG Address Generation

Figure 7-24 shows the . generation of the secondary PTEG address for this example. If the
secondary PTEG is required, the secondary hash function is performed and the low-order
13 bits of hash value 2 are then ORed with the high-order 16 bits ofHTABORG (bits 13-15
should be zero), and concatenated with six low-order 0 bits, defining the address of the
secondary PTEG (OxOF98_0640).

As described in Figure 7-21, the 10 low-order bits of the page index field are always used
in the generation of a PTEG address (through the hashing function) for a 32-bit
implementation. This is why only the abbreviated page index (API) is defined for a PTE
(the entire page index field does not need to be checked). For a given effective address, the
low-order 10 bits of the page index (at least) contribute to the PTEG address (both primary
and secondary) where the corresponding PTE may reside in memory. Therefore, if the high-

Chapter 7. Memory Management 7-59

-

order 6 bits (the API field as defined for 32-bit implementations) of the page index match
with the API field of a PTE within the specified PTEG, the PTE mapping is guaranteed to
be the unique PTE required.

Hash Value 1: 010 0111 1111 1110 0110

Secondary Hash:

Hash Value 2:

Secondary PTEG Address:

HTABORG 16 25 Start at PTEO

0000 1111 1001 0000 0110 0100 0000

OxO F 9 8 o 6 4 0

1) First compare 8 PTEs

at OxOF9F _F980 JtoXOF98_0640

2) Then compare 8 PTEs
at OxOF98_0640,

if necessary OxOF9F _F980

PTEOI' I 1-"1

~ I 1---1

I 1PTE7

I 1PTE7

Figure 7-24. Example Secondary PTEG Address Generation

PTEGO

PTEG25

PTEG8166

PTEG8191

Note that a given PTEG address does not map back to a unique effective address. Not only
can a giveo'PTEG be considered both a primary and a secondary PTEG (as described in
Section 7.6.1.6, "Page Table Structure Examples"), but in this example, bits 24-26 of the
page index field of the virtual address are not used to generate the PTEG address. Therefore,
any of the eight combinations of these bits will map to the same primary PTEG address.
(However, these bits are part of the API and are therefore compared for each PTE within
the PTEG to determine if there is a hit.) Furthermore, an effective address can select a
different segment register with a different value such that the output of the primary (or
secondary) hashing function happens to equal the hash values shown in the example. Thus,
these effective addresses would also map to the same PTEG addresses shown.

7·60 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

7.6.2 Page Table Search Operation
An outline of the page table search process performed by a 32-bit implementation is as
follows:

1. The 32-bit physical addresses of the primary and secondary PTEGs are generated as
described in Section 7.6.1.4.2, "Page Table Address Generation for 32-Bit
Implementations."

2. As many as 16 PTEs (from the primary and secondary PTEGs) are read from
memory (the architecture does not specify the order of these reads, allowing
multiple reads to occur in parallel). PTE reads occur with an implied WIM
memory/cache mode control bit setting of ObOOl. Therefore, they are considered
cacheable.

3. The PTEs in the selected PTEGs are tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

- PTE[H] = 0 for primary PTEG; PTE[H] = 1 for secondary PTEG

- PTE [V] = 1
- PTE[VSID] = VA[0-23]

- PTE[API] = VA[24-29]

4. If a match is not found within the eight PTEs of the primary PTEG and the eight
PTEs of the secondary PTEG, an exception is generated as described in step 8. If a
match (or multiple matches) is found, the table search process continues.

5. If multiple matches are found, all of the following must be true:

- PTE[RPN] is equal for all matching entries
- PTE[WIMG] is equal for all matching entries

- PTE[PP] is equal for all matching entries

6. If one of the fields in step 5 does not match, the translation is undefined, and R and
C bit of matching entries are undefined. Otherwise, the R and C bits are updated
based on one of the matching entries.

7. A copy of the PTE is written into the on-chip TLB (if implemented) and the R bit is
updated in the PTE in memory (if necessary). If there is no memory protection
violation, the C bit is also updated in memory (if necessary) and the table search is
complete.

8. If a match is not found within the primary or secondary PTEG, the search fails, and
a page fault exception condition occurs (either an lSI or DSI exception).

Reads from memory for page table search operations are performed (that is, as unguarded
cacheable operations in which coherency is required).

Chapter 7. Memory Management 7·61

7.6.2.1 Flow for Page Table Search Operation
Figure 7-25 provides a detailed flow diagram of a page table search operation. Note that the
references to TLBs are shown as optional because TLBs are not required; if they do exist,
the specifics of how they are maintained are implementation-specific. Also, Figure 7-25
shows only a few cases of R-bit and C-bit updates. For a complete list of the R- and C-bit
updates dictated by the architecture, refer to Table 7-16.

7-62 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Page Fault

Notes:

Implementation-specific

PTE [VSID, API, V] = Seg Desc [VSID), EA[API), 1
PTE [H) = 0 (Primary PTEG) or
PTE [H) = 1 (Secondary PTEG)

otherwiseApTE(RPN, WIMG, PP)
equal for all matching PTEs

:-wr~e PTE:
I intoTLB I
11.. ______ •

Check Memory Protection
Violation Conditions

Access
Permitted

(See Figure 7-17)

Access
Prohibited

./ Page Memory

h "~S' " Protection Violatio
ot erwlse tore operalion (S F")

Page Table
Search Complete

with PTE[C] = 0 ee Igure 7-15

--~----I
:_T:~[~TE~C~) ~_1.

Page Table
Search Complete

Figure 7-25. Page Table Search Flow

Chapter 7. Memory Management 7-63

7.6.3 Page Table Updates
This section describes the requirements on the software when updating page tables in
memory via some pseudocode examples. Multiprocessor systems must follow the rules
described in this section so that all processors operate with a consistent set of page tables.
Even single processor systems must follow certain rules, because software changes must be
synchronized with the other instructions in execution and with automatic updates that may
be made by the hardware (referenced and changed bit updates). Updates to the tables
include the following operations:

• Adding a PTE
• Modifying a PTE, including modifying the R and C bits of a PTE

• Deleting a PTE

PTEs must be locked on multiprocessor systems. Access to PTEs must be appropriately
synchronized by software locking of (that is, guaranteeing exclusive access to) PTEs or
PTEGs if more than one processor can modify the table at that time. In the examples below,
software locks should be performed to provide exclusive access to the PTE being updated.
However, the architecture does not dictate the specific protocol to be used for locking (for
example, a single lock, a lock per PTEG, or a lock per PTE can be used). See Appendix E,
"Synchronization Programming Examples," for more information about the use of the
reservation instructions (such as the Iwarx and stwcx. instructions) to perform software
locking.

When TLBs are implemented they are defined as noncoherent caches of the page tables.
TLB entries must be invalidated explicitly with the TLB invalidate entry instruction (tlbie)
whenever the corresponding PTE is modified. In a multiprocessor system, the t1bie
instruction must be controlled by software locking, so that the tlbie is issued on only one
processor at a time.

The PowerPC OEA defines the t1bsync instruction that ensures that TLB invalidate
operations executed by this processor have caused all appropriate actions in other
processors. In a system that contains multiple processors, the tlbsync functionality must be
used in order to ensure proper synchronization with the other PowerPC processors. Note
that a sync instruction must also follow the tlbsync to ensure that the t1bsync has
completed execution on this processor.

On single processor systems,. PTEs need not be locked and the eieio instructions (in
between the tlbie and tlbsync instructions) and the t1bsync instructions themselves are not
required. The sync instructions shown are required even for single processor systems (to
ensure that all previous changes to the page tables and all preceding tlbie instructions have
completed).

Any processor, including the processor modifying the page table, may access the page table
at any time in an attempt to reload a TLB entry. An inconsistent PTE must never
accidentally become visible (if V = 1); thus, there must be synchronization between
modifications to the valid bit and any other modifications (to avoid corrupted data).

7·64 PowerPC Microprocessor Family: The Programming Environments (32-SIt)

In the pseudocode examples that follow, changes made to a PTE shown as a single line in
the example is assumed to be performed with an atomic store instruction. Appropriate
modifications must be made to these examples if this assumption is not satisfied.

Updates of Rand C bits by the processor are not synchronized with the accesses that cause
the updates. When modifying the low-order half of a PTE, software must take care to avoid
overwriting a processor update of these bits and to avoid having the value written by a store
instruction overwritten by a processor update. The processor does not alter any other fields
of the PTE.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering
PTEs or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. This kind of
side effect is defined as an implicit branch. Therefore, PTEs must not be changed in a
manner that causes an implicit branch. Section 2.3.17, "Synchronization Requirements for
Special Registers and for Lookaside Buffers," lists the possible implicit branch conditions
that can occur when system registers and MSR bits are changed.

For a complete list of the synchronization requirements for executing the MMU
instructions, see Section 2.3 .17, "Synchronization Requirements for Special Registers and
for Lookaside Buffers."

The following examples show the required sequence of operations. However, other
instructions may be interleaved within the sequences shown.

7.6.3.1 Adding a Page Table Entry
Adding a page table entry requires only a lock on the PTE in a multiprocessor system. The
first bytes in the PTE are then written (this example assumes the old valid bit was cleared),
the eieio instruction orders the update, and then the second update can be made. A sync
instruction ensures that the updates have been made to memory.

10ck(PTE)
PTE[RPN,R,C,WIMG,PP] ~ new values
elelO 1* order 1 st PTE update befor 2nd
PTE[VSID,H,API,V] ~ new values (V:;: 1)
sync 1* ensure updates completed
unlock(PTE)

Chapter 7. Memory Management 7-65

7.6.3.2 Modifying a Page Table Entry
This section describes several scenarios for modifying a PTE.

7.6.3.2.1 General Case
Consider the general case where a currently-valid PTE must be changed. To do this, the
PTE must be locked, marked invalid, updated, invalidated from the TLB, marked valid
again, and unlocked. The sync instruction must be used at appropriate times to wait for
modifications to complete.

Note that the tlbsync and the sync instruction that follows it are only required if software
consistency must be maintained with other PowerPC processors in a mUltiprocessor system
(and the software is to be used in a multiprocessor environment).

lock(PTE)
PTE [V] ~ 0 1* (other fields don't matter)
sync 1* ensure update completed
PTE[RPN,R,C,WIMG,PP] ~ new values
tlbie(old_EA) I*invalidate old translation
elelO 1* order before tlbsync and order 2nd PTE update before 3rd
PTE[VSID,H,API, V] ~ new values (V = 1)
tlbsync 1* ensure tlbie completed on all processors
sync 1* ensure tlbsync and last update completed
unlock(PTE)

7.6.3.2.2 Clearing the Referenced (R) Bit
When the PTE is modified only to clear the R bit to 0, a much simpler algorithm suffices
because the R bit need not be maintained exactly.

10ck(PTE)

oldR ~PTE[R]
if oldR = I, then

PTE[R] ~O
tlbie(PTE)
eieio
tlbsync
sync

unlock(PTE)

I*getold R

1* store byte (R = 0, other bits unchanged)
1* invalidate entry
1* order tlbie before tlbsync
1* ensure tlbie completed on all processors
1* ensure tlbsync and update completed

Since only the Rand C bits are modified by the processor, and since they reside in different
bytes, the R bit can be cleared by reading the current contents of the byte in the PTE
containing R (bits 16-23 of the second word), ANDing the value with OxFE, and storing
the byte back into the PTE.

7-66 PowerPC Microprocessor Family: The Programming Environments (32-8it)

7.6.3.2.3 Modifying the Virtual Address
If the virtual address is being changed to a different address within the same hash class
(primary or secondary), the following flow suffices:

10ck(PTE)
PTE[VSID,API,H,V] f- new values (V = 1)

sync 1* ensure update completed
tlbie(old_EA) 1* invalidate old translation
eieio
tlbsync
sync

unlock(PTE)

1* order tlbie before tlbsync
1* ensure tlbie completed on all processors
1* ensure tlbsync completed

In this pseudocode flow, the tlbsync and the sync instruction that follows it are only
required if consistency must be maintained with other PowerPC processors in a
multiprocessor system (and the software is to be used in a multiprocessor environment).

In this example, if the new address is not a cache synonym (alias) of the old address, care
must be taken to also flush (or invalidate) from an on-chip cache any cache synonyms for
the page. Thus, a temporary virtual address that is a cache synonym with the page whose
PrE is being modified can be assigned and then used for the cache flushing (or
invalidation).

To modify the WIMG or PP bits without overwriting an R or C bit update being performed
by the processor, a sequence similar to the one shown above can be used, except that the
second line is replaced by a loop containing an lwarxlstwcx. instruction pair that emulates
an atomic compare and swap of the low-order word of the PTE.

7.6.3.3 Deleting a Page Table Entry
In this example, the entry is locked, marked invalid, invalidated in the TLB, and unlocked.

Again, note that the tlbsync and the sync instruction that follows it are only required if
consistency must be maintained with other PowerPC processors in a multiprocessor system
(and the software is to be used in a multiprocessor environment).

lock(PrE)
PrE [V] f- 0
sync
tlbie(old_EA)
eieio
tlbsync
sync
unlock(PTE)

1* (other fields don't matter)
1* ensure update completed
1* invalidate old translation
1* order tlbie before tlbsync
1* ensure tlbie completed on all processors
1* ensure tlbsync completed

Chapter 7. Memory Management 7-67

7.6.4 Segment Register Updates
Synchronization requirements for using the move to segment register instructions are
described in Section 2.3.17, "Synchronization Requirements for Special Registers and for
Lookaside Buffers."

7.7 Direct-Store Segment Address Translation
As described for memory segments, all accesses generated by the processor (with
translation enabled) that do not map to a BAT area, map to a segment descriptor. If T = 1
for the selected segment descriptor, the access maps to the direct-store interface, invoking
a specific bus protocol for accessing I/O devices.

Direct-store segments are provided for POWER compatibility. As the direct-store interface
is present only for compatibility with existing I/O devices that used this interface and the
direct-store interface protocol is not optimized for performance, its use is discouraged. This
functionality is considered optional (to allow for those earlier devices that implemented it).
However, future devices are not likely to support it. Thus, software should not depend on
its results and new software should not use it. Applications that require low-latency
load/store access to external address space should use memory-mapped I/O, rather than the
direct-store interface.

7.7.1 Segment Descriptors for Direct-Store Segments
The format of many of the fields in the segment descriptors depends on the value of the
T bit. In 32-bit implementations, the segment descriptors reside in one of 16 on-chip
segment registers. Figure 7-26 shows the register format for the segment registers when the
Tbit is set.

BUID CNTLR..SPEC

o 1 2 3 11 12 31

Figure 7-26. Segment Register Format for Direct-Store Segments

Table 7-22 shows the bit definitions for the segment registers when the T bit is set for 32-bit
implementations.

Table 7-22. Segment Register Bit Definitions for Direct-Store Segments

Bit Name Description

0 T T = 1 selects this format.

1 Ks Supervisor-state protection key

2 Kp User-state protection key

3-11 BUID Bus unit ID

12--31 CNTLR_SPEC Device-specific data for I/O controller

7-68 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

7.7.2 Direct-Store Segment Accesses
When the address translation process determines that the segment descriptor has T = 1,
direct-store segment address translation is selected; no reference is made to the page tables
and neither the referenced or changed bits are updated. These accesses are performed as if
the WIMG bits were Ob0101; that is, caching is inhibited, the accesses bypass the cache,
hardware-enforced coherency is not required, and the accesses are considered guarded.

The specific protocol invoked to perform these accesses involves the transfer of address and
data information; however, the PowerPC OEA does not define the exact hardware protocol
used for direct-store accesses. Some instructions may cause multiple address/data
transactions to occur on the bus. In this case, the address for each transaction is handled
individually with respect to the MMU.

The following describes the data that is typically sent to the memory controller by
processors that implement the direct-store function:

• One of the Kx bits (Ks or Kp) is selected to be the key as follows:

- For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is ignored.

- For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored.

• An implementation-dependent portion of the segment descriptor.

• An implementation-dependent portion of the effective address.

7.7.3 Direct-Store Segment Protection
Page-level memory protection as described in Section 7.5.4, "Page Memory Protection," is
not provided for direct-store segments. The appropriate key bit (Ks or Kp) from the segment
descriptor is sent to the memory controller, and the memory controller implements any
protection required. Frequently, no such mechanism is provided; the fact that a direct-store
segment is mapped into the address space of a process may be regarded as sufficient
authority to access the segment.

7.7.4 Instructions Not Supported in Direct-Store Segments
The following instructions are not supported at all and cause either a DSI exception or
boundedly-undefined results when issued with an effective address that selects a segment
descriptor that has T = 1:

• lwarx
• stwcx.

• eciwx
• ecowx

Chapter 7. Memory Management 7-69

7.7.5 Instructions with No Effect in Direct-Store Segments
The following instructions are executed as no-ops when issued with an effective address
that selects a segment where T = 1:

• deba
• debt
• debtst

• debf
• debi
• debst
• debz

• iebi

7.7.6 Direct-Store Segment Translation Summary Flow
Figure 7-27 shows the flow used by the MMU when direct-store segment address
translation is selected. This figure expands the Direct-Store Segment Translation stub found
in Figure 7-4 for both instruction and data accesses. In the case of a floating-point load or
store operation to a direct-store segment, it is implementation-specific whether the
alignment exception occurs. In the case of an eciwx, eeowx, Iwarx, or stwex. instruction,
the implementation either sets the DSISR as shown and causes the DSI exception, or causes
boundedly-undefined results.

7-70 PowerPC Microprocessor Family: The Programming Environments (32-8It)

Note:

Direct-Store
Segment Translation

T=1

Instruction Access Data Access

1-Floating-Point
Load or Store

otherwise - - - - ~

A :!~i~~~~! ~~~~~ j
eclwx, ecowx, Iwa~ __ I

Idarx, or stwex. otherwise
Instruction 1

_____ L _ _ ~ Cache Instruction (debt,
: DSISR[5] ~ 1 : otheiwise debtst, debf, debl, debet, _________ . debz,orlebl)

DSI Exception or Boundedly
Undefined Results

Implementation-specific

Perform Direct-Store
Interface Access

~
C No-Op)
"-----~

Figure 7-27. Direct-Store Segment Translation Flow

Chapter 7. Memory Management 7-71

Chapter 8
Instruction Set
This chapter lists the PowerPC instruction set in alphabetical order by mnemonic. Note that
each entry includes the instruction formats and a quick reference 'legend' that provides
such information as the level(s) of the PowerPC architecture in which the instruction may
be found-user instruction set architecture (VISA), virtual environment architecture I!I
(VEA), and operating environment architecture (OEA); and the privilege level of the V
instruction-user- or supervisor-level (an instruction is assumed to be user-level unless the CD
legend specifies that it is supervisor-level); and the instruction formats. The format
diagrams show, horizontally, all valid combinations of instruction fields; for a graphical
representation of these instruction formats, see Appendix A, "PowerPC Instruction Set
Listings." The legend also indicates if the instruction is 32-bit, and/or optional. A
description of the instruction fields and pseudocode conventions are also provided. For
more information on the PowerPC instruction set, refer to Chapter 4, "Addressing Modes
and Instruction Set Summary."

Note that the architecture specification refers to user-level and supervisor-level as problem
state and privileged state, respectively.

8.1 Instruction Formats
Instructions are four bytes long and word-aligned, so when instruction addresses are I!I
presented to the processor (as in branch instructions) the two low-order bits are ignored.
Similarly, whenever the processor develops an instruction address, its two low-order bits
are zero.

Bits 0-5 always specify the primary opcode. Many instructions also have an extended
opcode. The remaining bits of the instruction contain one or more fields for the different
instruction formats.

Some instruction fields are reserved or must contain a predefined value as shown in the
individual instruction layouts. If a reserved field does not have all bits cleared, or if a field
that must contain a particular value does not contain that value, the instruction form is
invalid and the results are as described in Chapter 4, "Addressing Modes and Instruction Set
Summary."

Chapter 8. Instruction Set 8-1

8.1.1 Split-Field Notation
Some instruction fields occupy more than one contiguous sequence of bits or occupy a
contiguous sequence of bits used in permuted order. Such a field is called a split field. Split
fields that represent the concatenation of the sequences from left to right are shown in
lowercase letters. These split fields- spr and tbr-are described in Table 8-1.

Table 8-1. Split-Field Notation and Conventions

Field Description

spr (11-20) This field is used to specify a special-purpose register for the mtspr and mfspr instructions. The
encoding is described in Section 4.4.2.2, "Move tolfrom Special-Purpose Register Instructions
(OEA)."

tbr (11-20) This field is used to specify either the time base lower (TBl) or time base upper (TBU).

Split fields that represent the concatenation of the sequences in some order, which need not
be left to right (as described for each affected instruction), are shown in uppercase letters.
These split fields-MB, ME, and SH-are described in Table 8-2.

8.1.2 Instruction Fields
Table 8-2 describes the instruction fields used in the various instruction formats.

Table 8-2. Instruction Syntax Conventions

Field Description

AA (30) Absolute address bit.
o The immediate field represents an address relative to the current instruction address (CIA). (For

more information on the CIA, see Table 8-3.) The effective (logical) address of the branch is
either the sum of the LI field Sign-extended to 32 bits and the address of the branch instruction
or the sum of the BO field sign-extended to 32 bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address (EA) of the branch is
the LI field Sign-extended to 32 bits or the BO field sign-extended to 32 bits.

BO (16-29) Immediate field specifying a 14-bit signed two's complement branch displacement that is
concatenated on the right with ObOO and sign-extended to 32 bits.

BI(11-15) This field is used to specify a bit in the CR to be used as the condition of a branch conditional
instruction.

BO (6-10) This field is used to specify options for the branch conditional instructions. The encoding is
described in Section 4.2.4.2, "Conditional Branch Control."

crbA (11-15) This field is used to specify a bit in the CR to be used as a source.

crbB (16-20) This field is used to specify a bit in the CR to be used as a source.

crbO (6-10) This field is used to specify a bit in the CR, or in the FPSCR, as the destination of the result of an
instruction.

crfO (6-8) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a destination.

crfS (11-13) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a source.

CRM (12-19) This field mask is used to identify the CR fields that are to be updated by the mtcrf instruction.

8-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 8-2. Instruction Syntax Conventions (Continued)

Field Description

d (16-31) Immediate field specifying a 16-bit signed two's complement integer that is sign-extended to 32
bits.

FM (7-14) This field mask is used to identify the FPSCR fields that are to be updated by the mtfsf instruction.

frA (11-15) This field is used to specify an FPR as a source.

frB (16-20) This field is used to specify an FPR as a source.

frC (21-25) This field is used to specify an FPR as a source.

frO (6-10) This field is used to specify an FPR as the destination.

frS (6-10) This field is used to specify an FPR as a source.

IMM (16-19) Immediate field used as the data to be placed into a field in the FPSCA.

LI (6-29) Immediate field specifying a 24-bit signed two's complement integer that is concatenated on the
right with ObOO and sign-extended to 32 bits.

LK (31) Link bit.
o Does not update the link register (LR).
1 Updates the LA. If the instruction is a branch instruction, the address of the instruction following

the branch instruction is placed into the LA.

MB (21-25) and These fields are used in rotate instructions to specify a 32-bit mask as described in
ME (26-30) Section 4.2.1.4, "Integer Rotate and Shift Instructions:'

NB (16-20) This field is used to specify the number of bytes to move in an immediate string load or store.

OE (21) This field is used for extended arithmetic to enable setting OV and SO in the XEA.

OPCD (0-5) Primary opcode field

rA (11-15) This field is used to specify a GPR to be used as a source or destination.

rB (16-20) This field is used to specify a GPR to be used as a source.

Rc (31) Record bit.
o Does not update the condition register (CR).
1 Updates the CR to reflect the result of the operation.

For integer instructions, CR bits 0-2 are set to reflect the result as a signed quantity and CR bit
3 receives a copy of the summary overflow bit, XER[SO). The result as an unsigned quantity or
a bit string can be deduced from the EQ bit. For floating-point instructions, CR bits 4-7 are set
to reflect floating-point exception, floating-point enabled exception, floating-point invalid
operation exception, and floating-point overflow exception.

(Note that exceptions are referred to as interrupts in the architecture specification.)

rD (6-10) This field is used to specify a GPR to be used as a destination.

rS (6-10) This field is used to specify a GPR to be used as a source.

SH (16-20) This field is used to specify a shift amount.

SIMM (16-31) This immediate field is used to specify a 16-bit signed integer.

Chapter 8. Instruction Set 8-3

-

Table 8-2. Instruction Syntax Conventions (Continued)

Field Description

SR (12-15) This field is used to specify one of the 16 segment registers.

TO (6-10) This field is used to specify the conditions on which to trap. The encoding is described in
Section 4.2.4.6, 'Trap Instructions."

UIMM (16-31) This immediate field is used to specify a 16-bit unsigned integer.

XO (21-30, Extended opcode field.
22-30,26-30)

8.1.3 Notation and Conventions
The operation of some instructions is described by a semiformal language (pseudocode).
See Table 8-3 for a list of pseudocode notation and conventions used throughout this
chapter.

Table 8-3. Notation and Conventions

Notation/Convention Meaning

~ Assignment

~iea Assignment of an instruction effective' address.

., NOT logical operator

* Multiplication

+ Division (yielding quotient)

+ Two's·complement addition

- Two's·complement subtraction, unary minus

=,;0 Equals and Not Equals relations

<,S,>,~ Signed comparison relations

. (period) Update. When used as a character of an instruction mnemonic, a period (.) means that the
instruction updates the condition register field.

c Carry. When used as a character of an instruction mnemonic, a 'c' indicates a carry out in
XER[CA].

e Extended Precision.
When used as the last character of an instruction mnemonic, an 'e' indicates the use of
XER[CA] as an operand in the instruction and records a carry out in XER[CA].

0 Overflow. When used as a character of an instruction mnemonic, an '0' indicates the record of
an overflow in XER[OV] and CRO[SO] for integer instructions or CR 1 [SO] for floating-point
instructions.

<U,>U Unsigned comparison relations

? Unordered comparison relation

&,1 AND, OR logical operators

II Used to describe the concatenation of two values (that is, 010 11111 is the same as 010111)

8-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 8-3. Notation and Conventions (Continued)

Notation/Convention Meaning

$,= Exclusive-OR, Equivalence logical operators (for example, (a == b) = (a EB ' b»

Obnnnn A number expressed in binary format.

Oxnnnn A number expressed in hexadecimal format.

(n)x The replication of x, n times (that is, x concatenated to itself n - 1 times).
(n)O and (n)1 are special cases. A description of the special cases follows:

o (n)O means a field 01 n bits with each bit equal to o. Thus (5)0 is equivalent to
ObOOOOO.

o (n)1 means a field of n bits with each bit equal to 1. Thus (5)1 is equivalent to
Ob11111.

(rAIO) The contents of rA if the rA field has the value 1-31, or the value 0 if the rA field is O.

(rX) The contents of rX

x[nJ n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer;;:: x

Characterization Reference to the setting of status bits in a standard way that is explained in the text.

CIA Current instruction address.
The 32-bit address of the instruction being described by a sequence of pseudocode. Used by
relative branches to set the next instruction address (NIA) and by branch instructions with
LK = 1 to set the link register. Does not correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to O. This operation is used for rotate and
shift instructions.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can
be used to scale a known non-negative array index by the width of an element. These
operations are used for rotate and shift instructions.

Cleared Bits are set to O.

Do Do loop.
o Indenting shows range.
o "To" and/or "by" clauses specify incrementing an iteration variable.
o "While" clauses give termination conditions.

DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point double-
precision format.

Extract Select a field of n bits starting at bit position b in the source register, right or left justify this
field in the target register, and clear all other bits of the target register to zero. This operation
is used for rotate and shift instructions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General-purpose register x

if .. .then ... else ... Conditional execution, indenting shows range, else is optional.

Chapter 8. Instruction Set 8-5

Table 8-3. Notation and Conventions (Continued)

Notation/Convention Meaning

Insert Select a field of n bits in the source register, insert this field starting at bit position b of the
target register, and leave other bits of the target register unchanged. (No simplified
mnemonic is provided for insertion of a field when operating on double words; such an
insertion requires more than one instruction.) This operation is used for rotate and shift
instructions. (Note that simplified mnemonics are referred to as extended mnemonics in the
architecture specification.)

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros elsewhere.

MEM(x,y) Contents of y bytes of memory starting at address x.

NIA Next instruction address, which is the32-bit address of the next instruction to be executed
(the branch destination) after a successful branch. In pseudocode, a successful branch is
indicated by assigning a value to NIA. For instructions which do not branch, the next
instruction address is CIA + 4. Does not correspond to any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This operation is used for
rotate and shift instructions.

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 64-bit value x II)(left y positions, where x is 32 bits long

Set Bits are set to 1.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift). This
operation is used for rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to floating-point single-
precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another, and from one
execution to another on the same implementation.

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture

8-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 8-4 describes instruction field notation conventions used throughout this chapter.

Table 8-4. Instruction Field Conventions

The Architecture
Equivalent to: Specification

BA,BB,BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

0 d

OS ds

FLM FM

FRA,FRB,FRC,FR~FRS fr A, frB, frC, frO, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

I, II, 11/ 0 ... 0 (shaded)

Precedence rules for pseudocode operators are summarized in Table 8-5.

Table 8-5. Precedence Rules

Operators Associativity

x[nJ, function evaluation Left to right

(n)x or replication, Right to left
x(n) or exponentiation

unary-, Right to left

*,+ Left to right

+,- Left to right

II Left to right

=,*,<,~,>,~,<U,>U,? Left to right

&, E9,= Left to right

I Left to right

- (range) None

f-, f-iea None

Chapter 8. Instruction Set 8-7

Operators higher in Table 8-5· are applied before those lower in the table. Operators at the
same level in the table associate from left to right, from right to left, or not at all, as shown.
For example, "-" (unary minus) associates from left to right, so a -b - c = (a - b) - c.
Parentheses are used to override the evaluation order implied by Table 8-5, or to increase
clarity; parenthesized expressions are evaluated before serving as operands.

8.1.4 Computation Modes
The PowerPC architecture allows for the following types of implementations:

• 64-bit implementations, in which all registers except some special-purpose registers
(SPRs) are 64 bits long and effective addresses are 64 bits long. All 64-bit
implementations have two modes of operation: 64-bit mode (which is the default)
and 32-bit mode. The mode controls how the effective address is interpreted, how
condition bits are set, and how the count register (CTR) is tested by branch
conditional instructions. All instructions provided for 64-bit implementations are
available in both 64- and 32-bit modes.

• 32-bit implementations, in which all registers except the FPRs are 32 bits long and
effective addresses are 32 bits long.

Note that the all pseudocode examples provided in this chapter are for 32-bit
implementations. For more information on 64-bit and 32-bit modes, refer to Section 1.1.1,
"The 64-Bit PowerPC Architecture and the 32-Bit Subset."

8-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

8.2 PowerPC Instruction Set
The remainder of this chapter lists and describes the instruction set for the PowerPC
architecture. The instructions are listed in alphabetical order by mnemonic. Figure 8-1
shows the format for each instruction description page.

Instruction name

I nstruction syntax

Equivalent POWER mnemonics ----i

Instruction encoding

lion
on

Pseudocode descrip
of instruction operati
Text description of
instruction operation
Registers altered by instruction

Quick reference lege nd

addx
Add

add rD,rA,rB

add. rD,rA,rB

addo rD,rA,rB

addo. rD,rA,rB
[POWER mnemonics: cax. cax •• caxo. caxo.\

I 31 I D I A I B IOEI
0 5 6 1011 15 16 20 21 22

rD+- (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CRO field):

Affected: LT. GT. EQ. SO(if Rc = I)

• XER:

Affected: SO. OV(if OE = I)

PowerPC Arohitecture level Superviaorlavel Optio

I UISA I I

Figure 8-1. Instruction Description

addx

(OE=O Rc =0)

(OE=ORc=l)

(OE= 1 Rc=O)

(OE= I Rc= 1)

256 IRcl
30 31

Fo ...

I lID I

Note that the execution unit that executes the instruction may not be the same for all
PowerPC processors.

Chapter 8. Instruction Set 8-9

addx
Add

add rD,rA,rB (OE=ORc=O)
add. rD,rA,rB (OE=ORc= 1)
addo rD,rA,rB (OE= 1 Rc=O)
addo. rD,rA,rB (OE= 1 Rc= 1)

[POWER mnemonics: cax, cax., caxo, caxo.]

31 o A B 266

o 5 6 10 11 15 16 20 21 22

rD~ (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

The add instruction is preferred for addition because it sets few status bits.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

addx

3031

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: SO, OV (ifOE=I)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

8·10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

addcx
Add Carrying

adde
adde.
addeo
addeo.

rD,rA,rB
rD,rA,rB
rD,rA,rB
rD,rA,rB

[POWER mnemonics: a, a., ao, ao.]

31 o A

o 5 6 10 11

rD~ (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

(OE=ORc=O)
(OE=ORc= 1)
(OE= 1 Rc= 0)
(OE= 1 Rc= 1)

B

15 16 20 21 22

(ifRc = 1)

addcx

10

3031

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (ifOE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

Chapter 8. Instruction Set 8-11

addex
Add Extended

adde
adde.
addeo
addeo.

rD,rA,rB
rD,rA,rB
rD,rA,rB
rD,rA,rB

(OE=ORc=O)
(OE=ORc= 1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

[POWER mnemonics: ae, ae., aeo, aeo.]

31 D A B

o 5 6 10 11 15 16

rD~ (rA) + (rB) + XER[CA]

The sum (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CRO field):

20 21 22

Affected: LT, GT, EQ, SO (ifRc = 1)

addex

138

3031

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (ifOE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

8-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

addi addi
Add Immediate

addi rD,rA,SIMM

[POWER mnemonic: cal]

14 o A SIMM

o 5 6 10 11 15 16 31

if rA = 0 then rD ~ EXTS (SIMM)
else rD ~ rA + EXTS (SIMM)

The sum (rAIO) + SIMM is placed into rD.

The addi instruction is preferred for addition because it sets few status bits. Note that addi
uses the value 0, not the contents of GPRO, if r A = O.

Other registers altered:

• None

Simplified mnemonics:

Ii rD,value
la rD,disp(rA)
subi rD,rA,value

equivalent to
equivalent to
equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

addi rD,O,value
addi rD,rA,disp
addi rD,rA,-value

Supervisor Level Optional Form

o

8-13

addic
Add Immediate Carrying

addic rD,rA,SIMM

[POWER mnemonic: ail

12 o A SIMM

o 5 6 10 11 15 16

rD+- (rA) + IDrl'S(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• XER:

Affected: CA

Simplified mnemonics:

subic rD,rA,value equivalent to

PowerPC Architecture Level

UISA

addic rD,rA,-value

Supervisor Level Optional

addic

31

Form

D

8-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

addic. addic.
Add Immediate Carrying and Record

addic. rD,rA,SIMM

[POWER mnemonic: ai.]

13 o A SIMM

o 5 6 10 11 15 16 31

rDt- (rAJ + EXTS(SIMMj

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Simplified mnemonics:

subic. rD,rA,value equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

addic. rD,r A,-value

Supervisor Level Optional Form

o

8-15

addis addis
Add Immediate Shifted

addis rD,rA,SIMM

[POWER mnemonic: caul

15 o A SIMM

o 5 6 10 11 15 16 31

if rA = 0 then rDf- EXTS(SIMM II (16)0)
else rDf- (rA) + EXTS(SIMM II (16)0)

The sum (rAIO) + (SIMM II OxOOOO) is placed into rD.

The addis instruction is preferred for addition because it sets few status bits. Note that
addis uses the value 0, not the contents of GPRO, if r A = O.

Other registers altered:

• None

Simplified mnemonics:

lis rD,value
subis rD,rA,value

equivalent to
equivalent to

PowerPC Architecture Level

UISA

addis rD,O,value
addis rD,r A,-value

Supervisor Level Optional Form

o

8-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

addmex addmex
Add to Minus One Extended

addrne rD,rA (OE= 0 Rc = 0)
addrne. rD,rA (OE=ORc= 1)

addrneo rD,rA (OE= 1 Rc=O)
addrneo. rD,rA (OE= 1 Rc= 1)

[POWER mnemonics: arne, arne., arneo, arneo.]

Iill Reserved

31 D A 234

o 5 6 10 11 3031

rD~ (rA) + XER[CA] - 1

The sum (rA) + XER[CA] + OxFFFF _FFFF is placed into rD.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (ifOE= 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

Chapter 8. Instruction Set 8-17

addzex
Add to Zero Extended

addze
addze.
addzeo
addzeo.

rD,rA
rD,rA
rD,rA
rD,rA

(OE=ORc=O)
(OE=O Rc = 1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

[POWER mnemonics: aze, aze., azeo,azeo.]

31 o A

o 5 6 10 11

rDf- (rA) + XER[CAl

The sum (rA) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

addzex

111 Reserved

202

30 31

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XERbelow).

• XER:

Affected: CA

Affected: SO, OV (ifOE= 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

8-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

andx andx
AND

and rA,rS,rB (Rc = 0)
and. rA,rS,rB (Rc = 1)

31 S A B 28 IRcl
0 5 6 10 11 15 16 20 21 30 31

rA~ (rS) & (rB)

The contents of rS are ANDed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-19

-

andcx
AND with Complement

andc
andc.

o
31 s

5 6

rA~ (rS) + ..., (rB)

rA,rS,rB
rA,rS,rB

10 11

A

(Rc = 0)
(Rc = 1)

B 60

15 16 20 21

andcx

3031

The contents of rS are ANDed with the one's complement of the contents of rB and the
result is placed into rA.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

andi. andi.
AND Immediate

andi. rA,rS,UIMM

[POWER mnemonic: andil.]

28 s A UIMM

o 5 6 10 11 15 16 31

rA+- (rS) & ((16) 0 II UIMM)

The contents of rS are ANDed with OxOOOO II UIMM and the result is placed into r A.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

Chapter 8. Instruction Set 8·21

and is. and is.
AND Immediate Shifted

andis. r A,rS, UIMM

[POWER mnemonic: andiu.]

29 s A UIMM

o 5 6 10 11 15 16 31

rA+- (rS) + (UIMM II (16) 0)

The contents of rS are ANDed with UIMM II OxOOOO and the result is placed into rA.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

8-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

bx
Branch

b
ba
bl
bla

o
18

5 6

targecaddr
targeCaddr

targeCaddr
targeCaddr

(AA=OLK=O)
(AA= 1 LK=O)
(AA=OLK= 1)
(AA= 1 LK= 1)

LI

if AA then NIA +-iea EXTS (Ll II ObOO)
else NIA+-iea CIA + EXTS(Ll ObOO)
if LK then LR +-iea CIA + 4

targecaddr specifies the branch target address.

bx

2930 31

If AA = 0, then the branch target address is the sum of LI II ObOO sign-extended and the
address of this instruction.

If AA = 1, then the branch target address is the value LI II ObOO sign-extended.

If LK = 1, then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers altered:

Affected: Link Register (LR) (ifLK= 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA

Chapter 8. Instruction Set 8-23

bcx
Branch Conditional

be
bca
bel
bela

o
16

BO,BI,targeCaddr
BO,BI,targecaddr
BO,BI,targeCaddr
BO,BI,targecaddr

BO BI

5 6 10 11

if ., 00[2] then CTR +- CTR - 1

(AA=OLK=O)
(AA= 1 LK=O)
(AA=OLK= 1)
(AA= 1 LK= 1)

15 16

ctcok +- 00[2] I «CTR:t:. 0) ED 00[3])
cond.....ok +-00[0] I (CR[BI] ;: 00[1])
if ctr_ok & cond_ok then
if AA then NIA +-lea EXTS(BD II ObOO)
else NIA +-lea CIA + EXTS(BD ObOO)
if LK then LR +-lea CIA + 4

bcx

BD

293031

The BI field specifies the bit in the condition register (CR) to be used as the condition of
the branch. The BO field is encoded as described in Table 8-6. Additional information about
BO field encoding is provided in Section 4.2.4.2, "Conditional Branch Control."

Table 8-6. 80 Operand Encodings

BO Description

OOOOy Decrement the CTR, then branch if the decremented CTR '" 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition Is FALSE.

oo1zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR '" 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

l.z00y Decrement the CTR, then branch if the decremented CTA '" O.

1201y Decrement the CTR, then branch if the decremented CTR = O.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.

8·24

Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The ybit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

targecaddr specifies the branch target address.

If AA = 0, the branch target address is the sum of BD II ObOO sign-extended and the address
of this instruction.

If AA = I, the branch target address is the value BD II ObOO sign-extended.

If LK = I, the effective address of the instruction following the branch instruction is placed
into the link register.

Other registers altered:

Affected: Count Register (CTR)

Affected: Link Register (LR)

Simplified mnemonics:

bit target
bne er2,target
bdnz target

equivalent to
equivalent to
equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

(if BO[2] = 0)

(ifLK= 1)

be
be
be

12,O,target
4,10,target
16,O,target

Supervisor Level Optional Form

B

8·25

bcctrx bcctrx
Branch Conditional to Count Register

beetr
beetrl

BO,BI
BO,BI

[POWER mnemonics: bee, beel]

19 80

o 5 6 10 11

81

15 16

cond_ok f- 00[0] (CR[BI] '" 00[1])
if cond_ok then

NIA He. CTR II ObOO
if LK then LR He. CIA + 4

(LK=O)
(LK= 1)

20 21

528

Ill! Reserved

30 31

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is encoded as described in Table 8-7. Additional information about
BO field encoding is provided in Section 4.2.4.2, "Conditional Branch Control."

Table 8-7. BO Operand Encodings

80 Description

OOOOy Decrement the CTR, then branch if the decremented CTR ~ 0 and the condition is FALSE.

0OO1y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR ~ 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ~ O.

1z01y Decrement the CTR, then branch if the decremented CTR = O.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

The branch target address is CTR II ObOO.

If LK = 1, the effective address of the instruction following the branch instruction IS placed
into the link register.

8-26 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

If the "decrement and test CTR" option is specified (BO[2] = 0), the instruction form is
invalid.

Other registers altered:

Affected: Link Register (LR)

Simplified mnemonics:

bltctr
bnectr cr2

equivalent to
equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

(ifLK = 1)

bcctr 12,0
bcctr 4,10

Supervisor Level Optional Form

XL

8-27

bclrx bclrx
Branch Conditional to Link Register

belr
belrl

BO,BI
BO,BI

[POWER mnemonics: ber, berl]

(LK=O)

(LK= 1)

II Reserved

o
19 BO BI

5 6 10 11 15 16

if .., 00[2] then CTR +- CTR - 1
ctcok +- 00[2] I «CTR *" 0) ED 00[3])
concLok +- 00[0] I (CR[BI] .. 00[1])
if ctr_ok & cond_ok then
NIA Hea LR II ObOO
if LK then LR Hea CIA + 4

16

20 21 30 31

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is encoded as described in Table 8-8. Additional information about
BO field encoding is provided in Section 4.2.4.2, "Conditional Branch Control."

Table 8-8. BO Operand Encodings

BO Description

OOODy Decrement the CTR, then branch if the decremented CTR *" 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR *" 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1200y Decrement the CTR, then branch if the decremented CTR *" O.

1201y Decrement the CTR, then branch if the decremented CTR = O.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of
the PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by
some PowerPC implementations to improve performance.

The branch target address is LR II ObOO.

8-28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

If LK = 1, then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers altered:

Affected: Count Register (CTR)

Affected: Link Register (LR)

Simplified mnemonics:

bltlr
bnelr cr2
bdnzlr

equivalent to
equivalent to
equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

(if BO[2] = 0)

(ifLK=l)

belr
belr
belr

12,0
4,10
16,0

Supervisor Level Optional Form

XL

8-29

cmp cmp
Compare

cmp crfD,L,rA,rB

III Reserved

31 crfD A B 0000000000 • o 5 6 8 9 10 11

if L = 0 then a .- EXTS (rA)
b .- EXTS (rB)

else a .- (rA)
b.- (rB)

if a < b then c .- OblOO
else if a > b then c .- ObOlO
else c .- ObOOl

15 16

CR[4 * crfD-4 * crfo + 3] .- c II XER[SO]

20 21 3031

The contents of rA are compared with the contents of rB. treating the operands as signed
integers. The result of the comparison is placed into CR field criO.

Other registers altered:

• Condition Register (CR field specified by operand criO):

Affected: LT. GT. EQ. SO

Simplified mnemonics:

cmpd rA,rB
cmpw cr3,rA,rB

equivalent to
equivalent to

PowerPC Architecture Level

UISA

cmp O,l,rA,rB
cmp 3,O,rA,rB

Supervisor Level Optional Form

x

8-30 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

cmpi
Compare Immediate

cmpi

o

crtD,L,r A,SIMM

11 crfD IIII L I A

5 6 8 9 10 11 15 16

a f- (rA)
if a < EXTS(SIMM) then c f- OblOO
else if a > EXTS(SIMM) then C f- ObOIO
else C f- ObOOI
CR[4 * crfD-4 * crfD + 3) f- C II XER[SO)

cmpi

II] Reserved

SIMM

31

The contents of r A are compared with the sign-extended value of the SIMM field, treating
the operands as signed integers. The result of the comparison is placed into CR field crfD.

In 32-bit implementations, if L = 1 the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpdirA,value
cmpwi cr3,rA,value

equivalent to
equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

cmpi O,l,rA,value
cmpi 3,O,rA,value

Supervisor Level Optional Form

D

8-31

cmpl
Compare Logical

cmpl

0

31

5 6

a+- (rA)
b +- (rB)

crfO

crfD,L,rA,rB

• ll A

8 9 10 11

if a <U b then c +- OblOO
else if a >U b then c +- Ob010
else c +- ObOOl

15 16

CR[4 * crfD-4 * crfD + 3) +- c II XER[SO)

cmpl

II Reserved

B 32 • 20 21 31

The contents of r A are compared with the contents of rB, treating the operands as unsigned
integers. The result of the comparison is placed into CR field crfD.

In 32-bit implementations, if L = 1 the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldrA,rB
cmplw cr3,rA,rB

equivalent to
equivalent to

PowerPC Architecture level

UISA

cmpl O,l,rA,rB
cmpl 3,O,rA,rB

Supervisor level Optional Form

x

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

cmpli
Compare Logical Immediate

cmpli

o

crtD,L,r A,UIMM

10 crfD 111 L 1 A

5 6 8 9 10 11 15 16

a +- (rA)
if a <u «16) 0 II UIMM) then c +- Ob100
else if a >U «16) 0 II UIMM) then c +- Ob010
else c +- ObO01
CR[4 * crfD-4 * crfD + 3] +- c II XER[Sa]

cmpli

III Reserved

UIMM

31

The contents of r A are compared with OxOOOO II UIMM, treating the operands as unsigned
integers. The result of the comparison is placed into CR field crtD.

In 32-bit implementations, if L = 1 the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operand crtD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldir A, value
cmplwi cr3,rA,value

equivalent to
equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

cmpli O,l,rA,value
cmpli 3,O,rA,value

Supervisor Level Optional Form

o

8-33

cntlzwx
Count Leading Zeros Word

cntlzw
cntlzw.

rA,rS
rA,rS

[POWER mnemonics: cntlz, cntlz.]

o
31 s

5 6 10 11

n+-O
do while n < 32
if rS[n] = 1 then leave
n+-n+l
rA +- n

A

(Rc =0)
(Rc= 1)

cntlzwx

III Reserved

26

30 31

A count ofthe number of consecutive zero bits starting at bit 0 ofrS is placed into rA. This
number ranges from 0 to 32, inclusive.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

Note: If Rc = 1, thenLT is cleared in the CRO field.

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-34 PowerPC Microprocessor Family: The Programming Environments .(32-Bit)

crand crand
Condition Register AND

crand crbD,crbA,crbB

III Reserved

19 erbD erbA erbS 257.

o 5 6 10 11 15 16 20 21 30 31

CR[crbD] +- CR[crbA] & CR[crbB]

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

Chapter 8. Instruction Set 8-35

crandc crandc
Condition Register AND with Complement

crandc crbD,crbA,crbB

Ill! Reserved

19 crbD crbA crbS 129 IIIIIII1
o 5 6 10 11 15 16 20 21 3031

CR[crbD] f- CR[crbA] & , CR[crbB]

The bit in the condition register specified by crbA is ANDed with the complement of the
bit in the condition register specified by crbB and the result is placed into the condition
register bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

8-36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

creqv creqv
Condition Register Equivalent

creqv crbD,crbA,crbB

III Reserved

19 crbD crbA crbB 289

o 5 6 10 11 15 16 20 21 30 31

CR[crbD) f- CR[crbA) '" CR[crbB)

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

Simplified mnemonics:

crset crbD equivalent to creqv crbD,crbD,crbD

PowerPC Architecture level Supervisor level Optional Form

UISA Xl

Chapter 8. Instruction Set 8-37

crnand crnand
Condition Register NAND

cmand crbD,crbA,crbB

IIJ Reserved

19 crbD erbA erbB .225.

o 5 6 10 11 15 16 20 21 30 31

CR[crbD] +- -, (CR[crbA] & CR[crbBll

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

8-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

crnor crnor
Condition Register NOR

crnor crbD,crbA,crbB

iii Reserved

19 crbD crbA crbB 33

o 5 6 10 11 15 16 20 21 30 31

CR[crbD) f- ..., (CR[crbA) I CR[crbB)

The bit in the condition register specified by crbA is ORed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

Simplified mnemonics:

crnot crbD,crbA equivalent to crnor crbD,crbA,crbA

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

Chapter 8. Instruction Set 8-39

cror cror
Condition Register OR

cror crbD,crbA,crbB

III Reserved

19 crbD crbA crbS 449 II
o 5 6 10 11 15 16 20 21 30 31

CR[crbD] ~ CR[crbA] I CR[crbB]

The bit in the condition register specified by crbA is ORed with the bit in the condition
register specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

Simplified mnemonics:

crmove crbD,crbA equivalent to cror crbD,crbA,crbA

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

8·40 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

crorc crorc
Condition Register OR with Complement

crorc crbD,crbA,crbB

III Reserved

19 crbD crbA crbB 417

o 5 6 10 11 15 16 20 21 3031

CR[crbD] r CR[crbA] I ., CR[crbB]

The bit in the condition register specified by crbA is ORed with the complement of the
condition register bit specified by crbB and the result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

Chapter 8. Instruction Set 8-41

crxor· crxor
Condition Register XOR

crxor crbD,crbA,crbB

III Reserved

19 crbO elbA crbB 193.

o 56 1011 1516 2021 3031

CR[crbO] +- CR[crbA] ED CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the result is placed into the condition register specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by crbD

Simplified mnemonics:

crclr crbD equivalent to

PowerPC Architecture Level

UISA

crxor crbD,crbD,crbD

Supervisor Level Optional Form

Xl

8-42 PowerPC Microproces8or Family: The Programming Environments (32-BIt)

deba deba
Data Cache Block Allocate

dcba rA,rB

111 Reserved

31 A B 758

o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO) + (rB).

The dcba instruction allocates the block in the data cache addressed by EA, by marking it
valid without reading the contents of the block from memory; the data in the cache block
is considered to be undefined after this instruction completes. This instruction is a hint that
the program will probably soon store into a portion of the block, but the contents of the rest
of the block are not meaningful to the program (eliminating the need to read the entire block
from main memory), and can provide for improved performance in these code sequences.

The dcba instruction executes as follows:

• If the cache block containing the byte addressed by EA is in the data cache, the
contents of all bytes are made undefined but the cache block is still considered valid.
Note that programming errors can occur if the data in this cache block is
subsequently read or used inadvertently.

• If the cache block containing the byte addressed by EA is not in the data cache and
the corresponding memory page or block is caching-allowed, the cache block is
allocated (and made valid) in the data cache without fetching the block from main
memory, and the value of all bytes is undefined.

• If the addressed byte corresponds to a caching-inhibited page or block (i.e. if the I
bit is set), this instruction is treated as a no-op.

• If the cache block containing the byte addressed by EA is in coherency-required
mode, and the cache block exists in the data cache(s) of any other processor(s), it is
kept coherent in those caches (i.e. the processor performs the appropriate bus
transactions to enforce this).

This instruction is treated as a store to the addressed byte with respect to address translation,
memory protection, referenced and changed recording and the ordering enforced by eieio
or by the combination of caching-inhibited and guarded attributes for a page (or block).
However, the DSI exception is not invoked for a translation or protection violation, and the
referenced and changed bits need not be updated when the page or block is cache-inhibited
(causing the instruction to be treated as a no-op).

This instruction is optional in the PowerPC architecture.

Chapter 8. Instruction Set 8-43

Other registers altered:

• None

In the PowerPC OEA, the dcba instruction is additionally defined to clear all bytes of a
newly established block to zero in the case that the block did not already exist in the cache.

Additionally, as the dcba instruction may establish a block in the data cache without
verifying that the associated physical address is valid, a delayed machine check exception
is possible. See Chapter 6, "Exceptions," for a discussion about this type of machine check
exception.

PowerPC Architecture Level Supervisor Level Optional Form

VEA x

8-44 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

debf debf
Data Cache Block Flush

debf rA,rB

III Reserved

31 A B 86 Itfl
o 5 6 10 11 15 16 20 21 3031

EA is the sum (rAIO) + (rB).

The debf instruction invalidates the block in the data cache addressed by EA, copying the
block to memory first, if there is any dirty data in it. If the processor is a multiprocessor
implementation (for example, the 601, 604,and 604e) and the block is marked coherency­
required, the processor will, if necessary, send an address-only broadcast to other
processors. The broadcast of the debf instruction causes another processor to copy the
block to memory, if it has dirty data, and then invalidate the block from the cache.

The action taken depends on the memory mode associated with the block containing the
byte addressed by EA and on the state of that block. The list below describes the action
taken for the various states of the memory coherency attribute (M bit).

• Coherency required

- Unmodified block-Invalidates copies of the block in the data caches of all
processors.

- Modified block-Copies the block to memory. Invalidates copies of the block in
the data caches of all processors.

- Absent block-If modified copies of the block are in the data caches of other
processors, causes them to be copied to memory and invalidated in those data
caches. If unmodified copies are in the data caches of other processors, causes
those copies to be invalidated in those data caches.

• Coherency not required

- Unmodified block-Invalidates the block in the processor's data cache.

- Modified block-Copies the block to memory. Invalidates the block in the
processor's data cache.

- Absent block (target block not in cache)-No action is taken.

The function of this instruction is independent of the write-through, write-back and
caching-inhibited/allowed modes of the block containing the byte addressed by EA.

Chapter 8. Instruction Set 8-45

This instruction is treated as a load from the addressed byte with respect to address
translation and memory protection. It is also treated as a load for referenced and changed
bit recording except that referenced and changed bit recording may not occur.

Other registers altered:

• None

PowerPC Architecture Lewl Supervisor Level Optional Form

VEA x

8-46 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

dcbi dcbi
Data Cache Block Invalidate

dcbi rA,rB

Ill! Reserved

31 A B 470

o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO) + (rB).

The action taken is dependent on the memory mode associated with the block containing
the byte addressed by EA and on the state of that block. The list below describes the action
taken if the block containing the byte addressed by EA is or is not in the cache.

• Coherency required

- Unmodified block-Invalidates copies of the block in the data caches of all
processors.

- Modified block-Invalidates copies of the block in the data caches of all
processors. (Discards the modified contents.)

- Absent block-If copies of the block are in the data caches of any other
processor, causes the copies to be invalidated in those data caches. (Discards any
modified contents.)

• Coherency not required

- Unmodified block-Invalidates the block in the processor's data cache.
- Modified block-Invalidates the block in the processor's data cache. (Discards

the modified contents.)
- Absent block (target block not in cache)-No action is taken.

When data address translation is enabled, MSR[DR] = 1, and the virtual address has no
translation, a DSI exception occurs.

The function of this instruction is independent of the write-through and caching­
inhibited/allowed modes of the block containing the byte addressed by EA. This instruction
operates as a store to the addressed byte with respect to address translation and protection.
The referenced and changed bits are modified appropriately.

This is a supervisor-level instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA x

Chapter 8. Instruction Set 8-47

dcbst dcbst
Data Cache Block Store

dcbst rA,rB

!iii Reserved

31 A B 54 II
o 5 6 10 11 15 16 20 21 3031

EA is the sum (rAIO) + (rB).

The dcbst instruction executes as follows:

• If the block containing the byte addressed by EA is in coherency-required mode, and
a block containing the byte addressed by EA is in the data cache of any processor
and has been modified, the writing of it to main memory is initiated.

• If the block containing the byte addressed by EA is in coherency-not-required mode,
and a block containing the byte addressed by EA is in the data cache of this
processor and has been modified, the writing of it to main memory is initiated.

The function of this instruction is independent of the write-through and caching­
inhibited/allowed modes of the block containing the byte addressed by EA.

The processor treats this instruction as a load from the addressed byte with respect to
address translation and memory protection. It is also treated as a load for referenced and
changed bit recording except that referenced and changed bit recording may not occur.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA x

8-48 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

debt debt
Data Cache Block Touch

debt rA,rB

II) Reserved

31 ... A B 278 • o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing
the byte addressed by EA is fetched into the data cache, because the program will probably
soon load from the addressed byte. If the block is caching-inhibited, the hint is ignored and
the instruction is treated as a no-op. Executing debt does not cause the system alignment
error handler to be invoked.

This instruction is treated. as a load from the addressed byte with respect to address
translation, memory protection, and reference and change recording except that referenced
and changed bit recording may not occur. Additionally, no exception occurs in the case of
a translation fault or protection violation.

The program uses the debt instruction to request a cache block fetch before it is actually
needed by the program. The program can later execute load instructions to put data into
registers. However, the processor is not obliged to load the addressed block into the data
cache. Note that this instruction is defined architecturally to perform the same functions as
the debtst instruction. Both are defined in order to allow implementations to differentiate
the bus actions when fetching into the cache for the case of a load and for a store.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA x

Chapter 8. Instruction Set 8-49

dcbtst dcbtst
Data Cache Block Touch for Store

debtst rA,rB

III Reserved

31 A B 246

o 5 6 10 11 15 16 20 21 3031

EA is the sum (rAIO) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing
the byte addressed by EA is fetched into the data cache, because the program will probably
soon store from the addressed byte. If the block is caching-inhibited, the hint is ignored and
the instruction is treated as a no-op. Executing debtst does not cause the system alignment
error handler to be invoked.

This instruction is treated as a load from the addressed byte with respect to address
translation, memory protection, and reference and change recording except that referenced
and changed bit recording may not occur. Additionally, no exception occurs in the case of
a translation fault or protection violation.

The program uses debtst to request a cache block fetch to potentially improve performance
for a subsequent store to that EA, as that store would then be to a cached location. However,
the processor is not obliged to load the addressed block into the data cache. Note that this
instruction is defined architecturally to perform the same functions as the debt instruction.
Both are defined in order to allow implementations to differentiate the bus actions when
fetching into the cache for the case of a load and for a store.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA x

8·50 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

dcbz dcbz
Data Cache Block Clear to Zero

dcbz rA,rB

[POWER mnemonic: dclz]

III Reserved

31 A B 1014

o 15 16 20 21 3031

EA is the sum (rAIO) + (rB).

The dcbz instruction executes as follows:

• If the cache block containing the byte addressed by EA is in the data cache, all bytes
are cleared.

• If the cache block containing the byte addressed by EA is not in the data cache and
the corresponding memory page or block is caching-allowed, the cache block is
allocated (and made valid) in the data cache without fetching the block from main
memory, and all bytes are cleared.

• If the page containing the byte addressed by EA is in caching-inhibited or write­
through mode, either all bytes of main memory that correspond to the addressed
cache block are cleared or the alignment exception handler is invoked. The
exception handler can then clear all bytes in main memory that correspond to the
addressed cache block.

• If the cache block containing the byte addressed by EA is in coherency-required
mode, and the cache block exists in the data cache(s) of any other processor(s), it is
kept coherent in those caches (i.e. the processor performs the appropriate bus
transactions to enforce this).

This instruction is treated as a store to the addressed byte with respect to address translation,
memory protection, referenced and changed recording. It is also treated as a store with
respect to the ordering enforced by eieio and the ordering enforced by the combination of
caching-inhibited and guarded attributes for a page (or block).

Other registers altered:

• None

Chapter 8. Instruction Set 8-51

-

ThePowerPC OEA describes how the dcbz instruction may establish a block in the data
cache without verifying that the associated physical address is valid. This scenario can
cause a delayed machine check exception; see Chapter 6, "Exceptions," for a discussion
about this type of machine check exception.

PowerPC Architecture Level Supervisor Level Optional Form

VEA x

8·52 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

divwx
Divide Word

divw
divw.
divwo
divwo.

31

o
0

5 6

dividend+- (rA)
divisor +- (rB)

rD,rA,rB
rD,rA,rB
rD,rA,rB
rD,rA,rB

10 11

rD +- dividend + divisor

divwx

(OE=O Rc=O)
(OE=ORc= 1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

A B 10EI 491

15 16 20 21 22 30 31

The dividend is the contents ofrA. The divisor is the contents ofrB. The 32-bit quotient is
formed and placed in rD. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the
unique signed integer that satisfies the equation-dividend = (quotient * divisor) + r where ° ~ r < Idivisorl (if the dividend is non-negative), and -Idivisorl < r ~ ° (if the dividend is
negative).

If an attempt is made to perform either of the divisions-Ox8000_0000 + -lor
<anything> + 0, then the contents of rD are undefined, as are the contents of the LT, GT,
and EQ bits of the eRO field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit signed remainder of dividing the contents of rA by the contents of rB can be
computed as follows, except in the case that the contents ofrA = _231 and the contents of
rB =-1.

divw
mullw
subf

rD,rA,rB
rD,rD,rB
rD,rD,rA

Chapter 8. Instruction Set

rD = quotient
rD = quotient * divisor
rD = remainder

8-53

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

• XER:

Affected: SO, OV (ifOE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects
overflow of the 32-bit result.

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

8-54 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

divwux
Divide Word Unsigned

divwu
divwu.
divwuo
divwuo.

31

o
D

5 6

dividend ~ (rA)
divisor ~ (rB)

rD,rA,rB
rD,rA,rB
rD,rA,rB
rD,rA,rB

10 11

rD ~ dividend + divisor

A

(OE=ORc=O)
(OE=ORc= 1)
(OE= 1 Rc=O)
(OE= 1 Rc = 1)

B

15 16

divwux

459

20 21 22 3031

The dividend is the contents of rA. The divisor is the contents of rB. A 32-bit quotient is
formed. The 32-bit quotient is placed into rD. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as unsigned integers, except that if Rc = 1
the first three bits of CRO field are set by signed comparison of the result to zero. The
quotient is the unique unsigned integer that satisfies the equation-dividend = (quotient *
divisor) + r (where 0 ~ r < divisor). If an attempt is made to perform the
division-<anything> + O-then the contents of rD are undefined as are the contents of the
LT, GT, and EQ bits of the CRO field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit unsigned remainder of dividing the contents of rA by the contents of rB can be
computed as follows:

divwu
mullw
subf

rD,rA,rB
rD,rD,rB
rD,rD,rA

Chapter 8. Instruction Set

rD = quotient
rD = quotient * divisor
rD = remainder

8-55

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

• XER:

Affected: SO, OV (ifOE= 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects
overflow of the 32-bit result.

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

8-56 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

• • eClwx eClwx
External Control In Word Indexed

eciwx rO,rA,rB

III Reserved

31 0 A B 310 • 0 5 6 10 11 15 16 20 21 30 31

The eciwx instruction and the EAR register can be very efficient when mapping special
devices such as graphics devices that use addresses as pointers.

if rA = 0 then b +- 0
else b+- (rA)
FA +- b + (rB)
paddr +- address translation of FA
send load word request for paddr to device identified by FAR[RID]
rD +- word from device

EA is the sum (rAIO) + (rB).

A load word request for the physical address (referred to as real address in the architecture
specification) corresponding to EA is sent to the device identified by EAR[RID], bypassing
the cache. The word returned by the device is placed in rO.

EAR[E] must be 1. If it is not, a OSI exception is generated.

EA must be a multiple of four. If it is not, one of the following occurs:

• A system alignment exception is generated.
• A OSI exception is generated (possible only if EAR[E] = 0).

• The results are boundedly undefined.

The eciwx instruction is supported for EAs that reference memory segments in which
SR[T] = 1 and for BAs mapped by the OBAT registers. If the EA references a direct-store
segment (SR[T] = 1), either a OSI exception occurs or the results are boundedly undefined.
However, note that the direct-store facility is being phased out of the architecture and will
not likely be supported in future devices. Thus, software should not depend on its effects.

If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are
boundedly undefined.

This instruction is treated as a load from the addressed byte with respect to address
translation, memory protection, referenced and changed bit recording, and the ordering
performed by eieio.

This instruction is optional in the Pow~rPC architecture.

Chapter 8. Instruction Set 8-57

Other registers altered:

• None

PowerPC Architecture Level

VEA

Supervisor Level Optional Form

x

8-58 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

ecowx ecowx
External Control Out Word Indexed

ecowx rS,rA,rB

III Reserved

31 S A B ~8 • o 5 6 10 11 15 16 20 21 3031

The ecowx instruction and the EAR register can be very efficient when mapping special
devices such as graphics devices that use addresses as pointers ..

ifzoA= 0 thenb+-O
else b +- (zoA)
FA +- b + (zoB)
paddr +- address translation of FA
send store word request for paddr to device identified by EAR[RIDj
send zos to device

EA is the sum (rAIO) + (rB).

A store word request for the physical address corresponding to EA and the contents of rS
are sent to the device identified by EAR[RID], bypassing the cache.

EAR[E] must be 1, if it is not, a OSI exception is generated. EA must be a multiple of four.
If it is not, one of the following occurs:

• A system alignment exception is generated.

• A OSI exception is generated (possible only if EAR[E] = 0).
• The results are boundedly undefined.

The ecowx instruction is supported for effective addresses that reference memory segments
in which SR[T] = 0), and for EAs mapped by the OBAT registers. If the EA references a
direct-store segment (SR[T] = 1), either a OSI exception occurs or the results are boundedly
undefined. However, note that the direct-store facility is being phased out of the architecture
and will not likely be supported in future devices. Thus, software should not depend on its
effects.

If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are
boundedly undefined.

This instruction is treated as a store from the addressed byte with respect to address
translation, memory protection, and referenced and changed bit recording, and the ordering
performed by eieio. Note that software synchronization is required in order to ensure that
the data access is performed in program order with respect to data accesses caused by other
store or ecowx instructions, even though the addressed byte is assumed to be caching­
inhibited and guarded.

Chapter 8. Instruction Set 8-59

This instruction is optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional

VEA

Form

x

8·60 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

eieio eieio
Enforce In-Order Execution of 1/0

II) Reserved

854

21 30 31

The eieio instruction provides an ordering function for the effects of load and store
instructions executed by a processor. These loads and stores are divided into two sets, which
are ordered separately. The memory accesses caused by a debz or a deba instruction are
ordered like a store. The two sets follow:

1. Loads and stores to memory that is both caching-inhibited and guarded, and stores
to memory that is write-through required.

The eieio instruction controls the order in which the accesses are performed in main
memory. It ensures that all applicable memory accesses caused by instructions
preceding the eieio instruction have completed with respect to main memory before
any applicable memory accesses caused by instructions following the eieio
instruction access main memory. It acts like a barrier that flows through the memory
queues and to main memory, preventing the reordering of memory accesses across
the barrier. No ordering is performed for debz if the instruction causes the system
alignment error handler to be invoked.

All accesses in this set are ordered as a single set-that is, there is not one order for
loads and stores to caching-inhibited and guarded memory and another order for
stores to write-through required memory.

2. Stores to memory that have all of the following attributes--caching-allowed, write­
through not required, and memory-coherency required.

The eieio instruction controls the order in which the accesses are performed with
respect to coherent memory. It ensures that all applicable stores caused by
instructions preceding the eieio instruction have completed with respect to coherent
memory before any applicable stores caused by instructions following the eieio
instruction complete with respect to coherent memory.

With the exception of debz and deba, eieio does not affect the order of cache operations
(whether caused explicitly by execution of a cache management instruction, or implicitly
by the cache coherency mechanism). For more information, refer to Chapter 5, "Cache
Model and Memory Coherency." The eieio instruction does not affect the order of accesses
in one set with respect to accesses in the other set.

The eieio instruction may complete before memory accesses caused by instructions
preceding the eieio instruction have been performed with respect to main memory or
coherent memory as appropriate.

Chapter 8. Instruction Set 8·61

Theeieio instruction is intended for use in managing shared data structures, in acCessing
memory-mapped 110, and in preventing load/store combining operations in maln memory.
For the first use, the shared data structure and the lock that protects it must be altered only
by stores that are in the same set (lor 2; see previous discussion). For the second use, eieio
can· be thought of as placing a barrier into the stream of memory accesses issued by a
processor, such that any given memory access appears to be on the same side of the barrier··
to both the processor and,the 110 device.

Because the processor performs store operations in order to memory that is designated as
both caching-inhibited and guarded (refer to Section 5.1.1, "Memory Access Ordering"),
the eieio instruction is needed for such memory only when loads· must be ordered with
respect to stores or with respect to other loads.

Note that the eieio instruction does not connect hardware considerations to it such as
multiprocessor implementations that send an eieio address~only broadcast (useful in some
designs). For example, if a design has an external buffer that re-orders loads and stores for
better bus efficiency, the eieio broadcast signals to that buffer that previous loads/stores
(marked caching-inhibited, guarded, or write-through required) must complete bef()re any
following loads/stores (marked caching-inhibited, g~arded, or wnte-through required).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA x

8-62 PowerPC Microprocessor Family: The Programming Environments (32·8it)

eqvx eqvx
Equivalent

eqv rA,rS,rB (Rc=O)
eqv. rA,rS,rB (Rc = 1)

31 S A B 284 IRcl
0 5 6 10 11 15 16 21 22 3031

rA f- (rS) '" (rB)

The contents of rS are XORed with the contents of rB and the complemented result is
placed into r A.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

PowerPC Architecture Lewl Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-63

extsbx
Extend Sign Byte

extsb
extsb.

S +- rS[24]

rA,rS
rA,rS

rA[24-31] +- rS[24-31]
rA[O-23] +- (24)S

(Rc=O)

(Rc = 1)

extsbx

II) Reserved

The contents of rS[24-31] are placed into rA[24-31]. Bit 24 of rS is placed into rA[0-23].

Other registers altered:

• Condition Register (CRO field):

Affected: LT, OT, EQ, SO (ifRc = 1)

PowerPC Architecture Lewl Supervisor Level Optional Form

UISA x

8-64 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

extshx
Extend Sign Half Word

extsh
extsh.

rA,rS
rA,rS

[POWER mnemonics: exts, exts.]

o
31 s

5 6 10 11

s ~ rS[16]
rA[16-31] ~ rS[16-31]
rA[O-15] ~ (16)S

A

15 16

(Rc =0)
(Rc= 1)

20 21

extshx

• Reserved

922

3031

The contents ofrS[16-31] are placed into rA[16-31]. Bit 16 ofrS is placed into rA[0-15].

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-65

fabsx
Floating Absolute Value

fabs
fabs.

o

frD,frB

frD,frB

10 11 15 16

(Rc=O)
(Rc = 1)

B

2021

The contents of frB with bit 0 cleared are placed into frO.

fabsx

III Reserved

264

3031

Note that the fabs instruction treats NaNs just like any other kind of value. That is, the sign
bit of a NaN may be altered by fabs. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-66 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

faddx
Floating Add (Double-Precision)

fadd
fadd.

frD,frA,frB
frD,frA,frB

[POWER mnemonics: fa, fa.]

63 o
o 5 6 10 11

A

15 16

(Rc = 0)

(Rc = 1)

B

20 21

faddx

III Reserved

21

2526 3031

The floating-point operand in frA is added to the floating-point operand in frB. If the most­
significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to double-precision under control of the floating-point rounding control field RN
of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two
significands. The exponents of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal. The two significands are then added or
subtracted as appropriate, depending on the signs of the operands. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for invalid
operation exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

Chapter 8. Instruction Set 8-67

faddsx
Floating Add Single

fadds
fadds.

59

o 5 6

D

frD,frA,frB
frD,frA,frB

10 11

A

15 16

(Rc = 0)
(Rc = 1)

B

20 21

faddsx

III Reserved

21

2526 3031

The floating-point operand in frA is added to the floating-point operand in frB. If the most­
significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to the single-precision under control ofthe floating-point rounding control field
RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two
significands. The exponents of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal. The two significands are then added or
subtracted as appropriate, depending on the signs of the operands. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for invalid
operation exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CRt field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

8-68 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fcmpo
Floating Compare Ordered

fcmpo crtD,fr A,frB

o
63

5

if (frA) is a NaN or
(frB) is a NaN then c ~ ObOOOl

else if (frA)< (frB) then c ~ OblOOO
else if (frA» (frB) then c ~ ObOlOO
else c ~ ObOOlO

FPCC~c

CR[4 * crfD-4 * crfl) + 3] ~ c

if (frA) is an SNaN or
(frB) is an SNaN then
VXSNAN~l

ifVE = 0 then VXVC ~ I
else if (fr A) is a QNaN or

A

(frB) is a QNaN then VXVC ~ 1

fcmpo

fII Reserved

B

15 16 20 21

The floating-point operand in frA is compared to the floating-point operand in frB. The
result of the compare is placed into CR field crtD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR field crtD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set,
and if invalid operation is disabled (VE = 0) then VXVC is set. Otherwise, if one of the
operands is a QNaN, then VXVC is set.

Other registers altered:

• Condition Register (CR field specified by operand crtD):

Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:

Affected: FPCC, FX, VXSNAN, VXVC

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-69

fcmpu
Floating Compare Unordered

fcmpu crtD,fr A,frB

if (frA) is a NaN or
(rrB) is a NaN then c ~ ObOOOl

else if (rr A) < (rrB) then c ~ Ob 1000
else if (frA) > (frB) then c ~ ObOlOO
else c ~ ObOOlO

FPCC~c

CR[4 * crID-4 * crffi + 3] ~ c

if (frA) is an SNaN or
(frB) is an SNaN then
VXSNAN~l

fcmpu

III Reserved

B 0000000000

20 21 3031

The floating-point operand in register frA is compared to the floating-point operand in
register frB. The result of the compare is placed into CR field crtD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR field crtD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set.

Other registers altered:

• Condition Register (CR field specified by operand crtD):

Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:

Affected: FPCC, FX, VXSNAN

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-70 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fctiwx fctiwx
Floating Convert to Integer Word

fctiw frD,frB (Rc = 0)
fctiw. frD,frB (Rc = 1)

1!1 Reserved

63 0 B 14

0 5 6 10 11 15 16 20 21 3031

The floating-point operand in register frB is converted to a 32-bit signed integer, using the
rounding mode specified by FPSCR[RN], and placed in bits 32-63 of frD. Bits 0-31 of frD
are undefined.

lithe operand in frB are greater than 231 - 1, bits 32-63 of frD are set to Ox7FFF _FFFF.

If the operand in frB are less than _231 , bits 32-63 offrD are set to Ox8000_0000.

The conversion is described fully in Section D.4.2, "Floating-Point Convert to Integer
Model."

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined.
FPSCR[FR] is set if the result is incremented when rounded. FPSCR[FI] is set if the result
is inexact.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-71

fctiwzx
Floating Convert to Integer Word with Round toward Zero

fctiwz
fctiwz.

63

o
o

5 6

frO,frB
frO,frB

10 11 15 16

(Rc=O)

(Rc = 1)

B

20 21

fctiwzx

Ill! Reserved

15

30 31

The floating-point operand in register frB is converted to a 32-bit signed integer, using the
rounding mode round toward zero, and placed in bits 32-63 of frO. Bits 0-31 of frO are
undefined.

If the operand in frB is greater than 231 - 1, bits 32-63 of frO are set to Ox7FFF _FFFF.

If the operand in frB is less than _231, bits 32-63 of frO are set to Ox 8000_0000.

The conversion is described fully in Section 0.4.2, "Floating-Point Convert to Integer
Model."

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined.
FPSCR[FR] is set if the result is incremented when rounded. FPSCR(FI] is set if the result
is inexact.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-72 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fdivx
Floating Divide (Double-Precision)

fdiv
fdiv.

frD,frA,frB
frD,frA,frB

[POWER mnemonics: fd, fd.]

63 o
o 5 6 10 11

A

15 16

(Rc = 0)
(Rc = 1)

20 21 2526

fdivx

III Reserved

30 31

The floating-point operand in register frA is divided by the floating-point operand in
register frB. The remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, PEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: PPRP, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

Chapter 8. Instruction Set 8-73

fdivsx
Floating Divide Single

fdivs
fdivs.

o
59 o

5 6

frD,frA,frB
frD,frA,frB

10 11

A

15 16

(Rc = 0)
(Rc = 1)

B

20 21

fdivsx

18

2526 3031

The floating-point operand in register frA is divided by the floating-point operand in
register frB. The remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

Other registers altered:

• Condition Register (CRt field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

8-74 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fmaddx
Floating Multiply-Add (Double-Precision)

fmadd
fmadd.

frD,frA,frC,frB
frD,frA,frC,frB

[POWER mnemonics: fma, fma.]

63 0 A

(Re = 0)
(Re= 1)

fmaddx

o 5 6 10 11 15 16 20 21 2526 30 31

The following operation is performed:

frD f- (frA * fre) + frB

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frO.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CRl field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

Chapter 8. Instruction Set 8-75

fmaddsx
Floating Multiply-Add Single

fmadds
fmadds.

frD,fr A,frC,frB
frD,frA,frC,frB

59 0 A

o 5 6 10 11

The following operation is performed:

frD ~ (frA * frC) + frB

(Rc=O)

(Rc = 1)

fmaddsx

15 16 20 21 25 26 30 31

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

8-76 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fmrx
Floating Move Register

fmr
fmr.

63

frD,frB
frD,frB

(Rc = 0)

(Rc = 1)

B

o 5 6 1011 1516 20 21

The contents of register frB are placed into frD.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional

UISA

Chapter 8. Instruction Set

fmrx

Ill! Reserved

72

30 31

Form

x

8-77

fmsubx
Floating Multiply-Subtract (Double-Precision)

fmsub
fmsub.

frD,frA,frC,frB
frD,fr A,frC,frB

[POWER mnemonics: fms, fms.]

63 0 A

(Rc = 0)
(Rc= 1)

fmsubx

o 5 6 10 11 15 16 20 21 2526 3031

The following operation is performed:

frD +- [frA * frC] - frB

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frO.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

8·78 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fmsubsx
Floating Multiply-Subtract Single

fmsubs
fmsubs.

frD,frA,frC,frB
frD,frA,frC,frB

59 0 A

o 5 6 10 11

The following operation is performed:

frD E- [frA * frC] - frB

(Rc =0)
(Rc= 1)

fmsubsx

15 16 20 21 2526 3031

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

Chapter 8. Instruction Set 8-79

fmulx
Floating Multiply (Double-Precision)

frnul
frnul.

frD,frA,frC
frD,frA,frC

[POWER mnemonics: frn, frn.]

63 o
o 5 6 10 11

A

15 16

(Rc=O)
(Rc = I)

20 21

c
2526

fmulx

II) Reserved

25

30 31

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the
significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

8-80 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

fmulsx
Floating Multiply Single

fmuls
fmuls.

o
59

5 6

D

frD,frA,frC
frD,frA,frC

10 11

A

(Rc= 0)
(Rc = 1)

C

2526

fmulsx

ill Reserved

25

30 31

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the
significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

Chapter 8. Instruction Set 8-81

-

fnabsx
Floating Negative Absolute Value

fnabs
fnabs.

o

frD,frB
frD,frB

(Rc =0)
(Rc = 1)

B

20 21

The contents of register frB with bit 0 set are placed into frD.

fnabsx

III Reserved

136

2526 3031

Note that the fnabs instruction treats NaNs just like any other kind of value. That is, the
sign bit of a NaN may be altered by fnabs. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-82 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fnegx fnegx
Floating Negate

fneg frD,frB (Rc =0)
fneg. frD,frB (Rc = 1)

!ill Reserved

D B 40

10 11 15 16 20 21 30 31

The contents of register frB with bit 0 inverted are placed into frO.

Note that the fneg instruction treats NaNs just like any other kind of value. That is, the sign
bit of a NaN may be altered by fneg. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-83

fnmaddx
Floating Negative Multiply-Add (Double-Precision)

fnmadd
fnmadd.

frD,fr A,frC,frB
frD,fr A,frC,frB

[POWER mnemonics: fnma, fnma.]

(Rc=O)
(Rc = 1)

fnmaddx

63 DAB C 31 IRcl
o 5 6 10 11 15 16 20 21 2526 30 31

The following operation is performed:

frD +- - ([frA * f:t'C] + frB)

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is added to this intermediate result.
If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of thefloating-poirit rounding
control field RN of the FPSCR, then negated and placed into frO.

This instruction produces the same result as would be obtained by using the Floating
Multiply-Add (fmaddx) instruction and then negating the result, with the following
exceptions:

• QNaNs propagate with no effect on their sign bit.

• QN aN s that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

8-84 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

fnmaddsx fnmaddsx
Floating Negative Multiply-Add Single

fnmadds frD,frA,frC,frB (Rc = 0)
fnmadds. frD,frA,frC,frB (Rc = 1)

59 0 A B C 31 IRcl
0 5 6 10 11 15 16 20 21 2526 3031

The following operation is performed:

frD +-- - ([frA * frC] + frB)

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is added to this intermediate result.
If the most-significant bit of the resultant significand is not a one. the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR. then negated and placed into frD.

This instruction produces the same result as would be obtained by using the Floating
Multiply-Add Single (fmaddsx) instruction and then negating the result. with the following
exceptions:

• QNaNs propagate with no effect on their sign bit.

• QN aN s that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result. except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CRl field):

Affected: FX. FEX. VX. OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF. FR. Fl. FX. OX. UX. XX. VXSNAN. VXISI. VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

Chapter 8. Instruction Set 8-85

fnmsubx
Floating Negative Multiply-Subtract (Double-Precision)

fnmsub frD,fr A,frC,frB
fnmsub. frD,frA,frC,frB
[POWER mnemonics: fnms, fnms.]

63 0 A

(Rc=O)

(Rc = 1)

fnmsubx

o 5 6 10 11 15 16 20 21 2526 3031

The following operation is performed:

frD r - ([frA * frC] - frB)

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result obtained by negating the result of a Floating
Multiply-Subtract (fmsubx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QN aN s that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field)

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

8-86 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fnmsubsx fnmsubsx
Floating Negative Multiply-Subtract Single

fnmsubs frD,frA,frC,frB (Rc =0)
fnmsubs. frD,frA,frC,frB (Rc = 1)

59 0 A B C 30 IRcl
0 5 6 10 11 15 16 20 21 2526 3031

The following operation is performed:

frD ~ - ([frA * frC] - frB)

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result obtained by negating the result of a Floating
Multiply-Subtract Single (fmsubsx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QN aN s that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CRI field)

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

Chapter 8. Instruction Set 8-87

fresx
Floating Reciprocal Estimate Single

fres
fres.

o
59

frD,frB
frD,frB

(Rc =0)
(Rc = 1)

fresx

III Reserved

A single-precision estimate of the reciprocal of the floating-point operand in register frB is
placed into register frD. The estimate placed into register frD is correct to a precision of
one part in 256 of the reciprocal of frB. That is,

[estimate-G)] I

ABS m ~256

where x is the initial value in frB. Note that the value placed into register frD may vary
between implementations, and between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

Operand Result Ex~tiQn

-0 None

-0 -00* ZX

+0 +00* ZX

+00 +0 None

SNaN QNaN** VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[ZE] = 1

** No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

Note that the PowerPC architecture makes no provision for a double-precision version of
the fresx instruction. This is because graphics applications are expected to need only the
single-precision version, and no other important performance-critical applications are
expected to require a double-precision version of the fresx instruction.

This instruction is optional in the PowerPC architecture.

8-88 PowerPC Microprocessor Family: The Programming EnvIronments (32-Blt)

Other registers altered:

• Condition Register (CRt field):

Affected: FX, FEX, VX, OX (ifRc= 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR (undefined), PI (undefined), FX, OX, UX, ZX, VXSNAN

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

Chapter 8. Instruction Set 8-89

frspx
Floating Round to Single

frsp
frsp.

63

o 5 6

frD,frB
frD,frB

(Rc =0)
(Rc= 1)

frspx

III Reserved

The floating-point operand in register frB is rounded to single-precision using the rounding
mode specified by FPSCR[RN] and placed into frD.

The rounding is described fully in Section D.4.I, "Floating-Point Round to Single­
Precision Model."

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = I.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = I)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8·90 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

frsqrtex
Floating Reciprocal Square Root Estimate

frsqrte
frsqrte.

frD,frB
frD,frB

(Rc = 0)

(Rc = 1)

~ B

o 5 6

frsqrtex

[lI Reserved

26

30 31

A double-precision estimate of the reciprocal of the square root of the floating-point
operand in register frB is placed into register frD. The estimate placed into register frD is
correct to a precision of one part in 32 of the reciprocal of the square root of frB. That is,

[estimate-(7x)] < 1

ABS (~) -32

where x is the initial value in frB. Note that the value placed into register frD may vary
between implementations, and between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

Operand Result Exctaltion

QNaN** VXSQRT

<0 QNaN** VXSQRT

-0 -00* zx:
+0 +00* zx:
+00 +0 None

SNaN QNaN** VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[ZEj = 1

** No result ifFPSCR[VEj = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

Note that no single-precision version of the frsqrte instruction is provided; however, both
frB and frD are representable in single-precision format.

This instruction is optional in the PowerPC architecture.

Chapter 8. Instruction Set 8-91

Other registers altered:

• Condition Register (CRI field):

Affected: FX. FEX. VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR (undefined), PI (undefined), FX, ZX, VXSNAN, VXSQRT

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

8-92 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fselx
Floating Select

fsel
fsel.

frD,frA,frC,frB
frD,frA,frC,frB

63 0 A

(Rc= 0)
(Rc = 1)

fselx

o 5 6 10 11 1516 2021 2526 3031

if (frA) ~ 0.0 then frDf- (frC)
else frD f- (frB)

The floating-point operand in register fr A is compared to the value zero. If the operand is
greater than or equal to zero, register frD is set to the contents of register frC. If the operand
is less than zero or is a NaN, register frD is set to the contents of register frB. The
comparison ignores the sign of zero (that is, regards +0 as equal to -0).

Care must be taken in using fsel if IEEE compatibility is required, or if the values being
tested can be NaNs or infinities.

For examples of uses of this instruction, see Section D.3, "Floating-Point Conversions,"
and Section D.S, "Floating-Point Selection."

This instruction is optional in the PowerPC architecture.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional

UISA

Chapter 8. Instruction Set

Form

A

8·93

fsqrtx
Floating Square Root (Double-Precision)

fsqrt
fsqrt.

frD,frB
frD,frB

(Rc= 0)
(Rc = 1)

fsqrtx

III Reserved

The square root of the floating-point operand in register frB is placed into register frD.

If the most-significant bit of the resultant significand is not a one the result is normalized.
The result is rounded to the target precision under control of the floating-point rounding
control field RN of the FPSCR and placed into register frD.

Operation with various special values of the operand is summarized below:

~ Result Ex~~tion

QNaN* VXSQRT

<0 QNaN* VXSQRT

--{) --{) None

+00 +00 None

SNaN QNaN* VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

This instruction is optional in the PowerPC architecture.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, XX, VXSNAN, VXSQRT

PowerPC Architecture Level Supervisor Level Optional

UISA

Form

A

8-94 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

fsqrtsx
Floating Square Root Single

fsqrts
fsqrts.

frD,frB
frD,frB

(Rc =0)

(Rc = 1)

fsqrtsx

III Reserved

22

30 31

The square root of the floating-point operand in register frB is placed into register frO.

If the most-significant bit of the resultant significand is not a one the result is normalized.
The result is rounded to the target precision under control of the floating-point rounding
control field RN of the FPSCR and placed into register frO.

Operation with various special values of the operand is summarized below.

~ &&lili Exception

-00 QNaN* VXSQRT

<0 QNaN* VXSQRT

-0 -0 None

+- +- None

SNaN QNaN* VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

This instruction is optional in the PowerPC architecture.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, XX, VXSNAN, VXSQRT

PowerPC ArchiteCture Lewl Supervisor Level Optional

UISA

Chapter 8. Instruction Set

Form

A

8·95

fsubx
Floating Subtract (Double-Precision)

fsub frD,fr A,frB
fsub. frD,frA,frB
[POWER mnemonics: fs, fs.]

63 0 A

o 5 6 10 11

(Rc=O)
(Rc = 1)

fsubx

III Reserved

20

30 31

The floating-point operand in register frB is subtracted from the floating-point operand in
register fr A. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to double-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofrD.

. .
The execution of the fsub inStruction is identical to that of fadd, except that the contents of
frB participate in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (ifRc= 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Optional Form

UISA A

8-96 PowerPC Microprocessor Family: The Programming Environments (32·Blt)

fsubsx fsubSx
Floating Subtract Single

fsubs frD,frA,frB (Rc=O)
fsubs. frD,frA,frB (Rc = 1)

III Reserved

59 0 A B 20

0 5 6 10 11 15 16 20 21 2526 30 31

The floating-point operand in register frB is subtracted from the floating-point operand in
register fr A. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to single-precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

The execution of the fsubs instruction is identical to that of fadds, except that the contents
of frB participate in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

PowerPC Architecture lewIl Supervisor Level Optional Form

UISA I A

Chapter 8. Instruction Set 8-97

icbi
Instruction Cache Block Invalidate

icbi rA,rB

31

o 5 6 10 11

EA is the sum (rAIO) + (rB).

A B

15 16 20 21

982

- b­ICI·

III Reserved

3031

If the block containing the byte addressed by EA is in coherency-:required mode, and a
block containing the byte addressed by EA is in the instruction cache of any processor, the
block is made invalid in all such instruction caches, so that subsequent references cause the
block to be refetched.

If the block containing the byte addressed by EA is in coherency~not-requiredmode, and a
block containing the byte addressed by EA is in the instruction cache of this processor, the
block is made invalid in that instruction cache, so that subsequent references cause the
block to be refetched.

The function of this instruction is independent of the write-through, write-back, and
caching-inhibited/allowed modes of the block containing the byte addressed by EA.

This instruction is treated as a load from the addressed byte with respect to address
translation and memory protection. It may also be treated as a load for referenced and
changed bit recording except that referenced and changed bit recording may not occur.
Implementations with a combined data and instruction cache treat the icbi instruction as a
no-op, except that they may invalidate the target block in the instruction caches of other
processors if the block is in coherency-required mode.

The icbi instruction invalidates the block at EA (rAIO + rB). If the processor is a
multiprocessor implementation (for example, the 601, 604, or 620) and the block is marked
coherency-required, the processor will send an address-only broadcast to other processors
causing those processors to invalidate the block from their instruction caches.

For faster processing, many implementations will not compare the entire EA (rAIO + rB)
with the tag in the instruction cache. Instead, they will use the bits in the EA to locate the
set that the block is in, and invalidate all blocks in that set.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA x

8-98 POWtirPC Microprocessor Family: The Programming Environments (32-Blt)

isync isync
Instruction Synchronize

Isync

[POWER mnemonic: ics]

!Ill Reserved

19 150

o 5 6 10 11 15 16 20 21 30 31

The isync instruction provides an ordering function for the effects of all instructions
executed by a processor. Executing an isync instruction ensures that all instructions
preceding the isync instruction have completed before the isync instruction completes,
except that memory accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after the isync instruction completes.
Finally, it causes the processor to discard any prefetched instructions, with the effect that
subsequent instructions will be fetched and executed in the context established by the
instructions preceding the isync instruction. The isync instruction has no effect on the other
processors or on their caches.

This instruction is context synchronizing.

Context synchronization is necessary after certain code sequences that perform complex
operations within the processor. These code sequences are usually operating system tasks
that involve memory management. For example, if an instruction A changes the memory
translation rules in the memory management unit (MMU), the isync instruction should be
executed so that the instructions following instruction A will be discarded from the pipeline
and ref etched according to the new translation rules.

Note that all exceptions and the rfi instruction are also context synchronizing.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA XL

Chapter 8. Instruction Set 8-99

Ibz Ibz
Load Byte and Zero

Ibz rD,d(rA)

34 D A d

o 5 6 10 11 15 16 31

ifrA=Othenb+-O
else b +- (rA)
FA +- b + EXTS(d)
rD +- (24)0 II MEM(FA, 1)

EA is the sum (rAIO) + d. The byte in memory addressed by EA is loaded into the low-order
eight bits of rD. The remaining bits in rD are cleared.

Other registers altered:

• None

. PowerPC Architecture Level Supervisor Level Optional Form

UISA o

8-100 PowerPC Microprocessor Family: The Programming Environments (32·8It)

Ibzu
Load Byte and Zero with Update

Ibzu

o

rD,d(rA)

35 o
5 6 10 11

EA ~ (rA) + EXTS(d)
rD~ (24) 0 II MEM(EA, 1)
rA~ EA

Ibzu

A d

15 16 31

EA is the sum (rA) + d. The byte in memory addressed by EA is loaded into the low-order
eight bits of rD. The remaining bits in rD are cleared.

EA is placed into rA.

If r A = 0, or r A = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional

UISA

Chapter 8. Instruction Set

Form

o

8-101

Ibzux
Load Byte and Zero with Update Indexed

Ibzux

o

rD,rA,rB

31 D A

5 6 10 11

FA f- (rA) + (rB)
rD f- (24)0 II MEM(FA, 1)
rA f- FA

B 119

15 16 20 21

Ibzux

• Reserved - I1II1
30 31

EA is the sum (rA) + (rB). The byte in memory addressed by EA is loaded into the low­
order eight bits of rD. The remaining bits in rD are cleared.

EA is placed into rA.

If rA = 0 or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional

UISA

Form

x

8-102 PowerPC Microprocessor Family: The Programming: Environments (32-Bit)

Ibzx Ibzx
Load Byte and Zero Indexed

Ibzx rD,rA,rB

Ill! Reserved

31 0 A B 87 • 0 5 6 10 11 15 16 20 21 3031

ifrA=Othenb+-O
else b +- (rA)
EA +- b + (rB)
rD +- (24)0 II MEM(EA, 1)

EA is the sum (rAIO) + (rB). The byte in memory addressed by EA is loaded into the low­
order eight bits of rD. The remaining bits in rD are cleared.

Other registers altered:

• None

PowerPC Archit~ure Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8·103

.Ifd
Load Floating-Point Double

Ifd

o

frD,d(rA)

50 o
5 6 10 11

ifzoA=Othenbt-O
else b t- (ZOA)
FA t- b + EXTS(d)
fzoD +- MEM(FA, 8)

EA is the sum (rAIO) + d.

A

15 16 ,

The double word in memory addressed by EA is pl~ into frD.

Other registers altered:

• None

d

PowerPC Architecture Lewl Supervisor Level Optional

UISA

Ifd

31

Form

D

8·104 POWf:rPC Microprocessor Family: The Programming Environments {32-BIt)

Ifdu
load Floating-Point Double with Update

Ifdu

o

frD,d(rA)

51 o
5 6 10 11

FA +- (rA) + EXTS(d)
frD +- MEM(FA, 8)
rA +- FA

EA is the sum (rA) + d.

A

15 16

The double word in memory addressed by EA is placed into frO.

EA is placed into r A.

If r A = 0, the instruction form is invalid.

Other registers altered:

• None

d

PowerPC Architecture Level Supervisor Level Optional

UISA

Chapter 8. Instruction Set

Ifdu

31

Form

o

8-105

Ifdux
Load Floating-Point Double with Update Indexed

Ifdux frD,rA,rB

31 o A B ~1

o 5 6 10 11

FA f- (rA) + (rB)
frD f-MEM(FA, 8)
rA f- FA

EA is the sum (rA) + (rB).

15 16 20 21

The double word in memory addressed by EA is placed into frD.

EA is placed into rA.

IfrA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Supervisor Level Optional Form

x

Ifdux

• Reserved

• 30 31

8-106 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

Ifdx
Load Floating-Point Double Indexed

Ifdx frD,rA,rB

31 o A B 599

o 5 6 10 11 15 16 20 21

ifrA=Othenbt--O
else b t-- (rA)
EA t-- b + (rB)
frD t-- MEM(EA, 8)

EA is the sum (rAIO) + (rB).

The double word in memory addressed by EA is placed into frD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional

UISA

Chapter 8. Instruction Set

Form

x

Ifdx

Il1Sl Reserved

3031

8-107

Ifs Ifs
Load Floating-Point Single

Ifs frD,d(rA)

48 o A d

o 5 6 10 11 15 16 31

ifrA=Othenb~O
else b ~ (rA)
FA ~ b + EXTS(d)
frD ~ OOUBLE(MEM(FA, 4»

EA is the sum (rAID) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see Section D.6,
"Floating-Point Load Instructions") and placed into frD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

8-108 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Ifsu
Load Floating-Point Single with Update

Ifsu

o

frD,d(rA)

49 o
5 6 10 11

EA +- (rA) + EXTS(d)
fro +- DOUBLE(MEM(EA, 4»
rA +- EA

EA is the sum (rA) + d.

A

Ifsu

d

15 16 31

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see Section 0.6,
"Floating-Point Load Instructions") and placed into frO.

EA is placed into r A.

IfrA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Lewl

UISA

Chapter 8. Instruction Set

Supervisor Lewl Optional Form

o

8-109

Ifsux
Load Floating-Point Single with Update Indexed

Ifsux

o

frD,rA,rB

31 D A

5 6 10 11

FA +- (rA) + (rB)
frD +- OOUBLE(MEM(FA, 4»
rA +- FA

EA is the sum (rA) + (rB).

B $7

15 16 20 21

Ifsux

III Reserved

• 30 31

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see Section D.6,
"Floating-Point Load Instructions") and placed into frD.

EA is placed into r A.

IfrA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Supervisor Level ,Optional Form

x

8-110 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

Ifsx Ifsx
Load Floating-Point Single Indexed

Ifsx frD,rA,rB

IllI Reserved

31 o A B 535

o 5 6 10 11 15 16 20 21 30 31

ifrA=Othenb~O
else b ~ (rA)
EA ~ b + (rB)
frD ~ OOUBLE(MEM(EA, 4»

EA is the sum (rAIO) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see Section D.6,
"Floating-Point Load Instructions") and placed into frD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-111

Iha Iha
Load Half Word Algebraic

Iha rD,d(rA)

42 o A· d

o 5 6 10 11 15 16 31

ifrA;Othenb+-O
else b +- (rA)
FA +- b + EXTS(d)
rO +- EXTS(MEM(FA, 2»

EA is the sum (r AIO) + d. The half word in memory addressed by EA is loaded into the low­
order 16 bits ofrD. The remaining bits in rD are filled with a copy of the most-significant
bit of the loaded half word.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Supervisor Level Optional Form

D

8·112 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

Ihau
Load Half Word Algebraic with Update

Ihau

o

rD,d(rA)

43 o
5 6 10 11

FA +- (rA) + EXTS(d)
rD +- EXTS(MEM(FA. 2»
rA +- FA

A

Ihau

d

15 16 31

EA is the sum (rA) + d. The half word in memory addressed by EA is loaded into the low­
order 16 bits ofrD. The remaining bits in rD are filled with a copy of the most-significant
bit of the loaded half word.

EA is placed into r A.

IfrA = 0 or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional

UISA

Chapter 8. Instruction Set

Form

o

8-113

Ihaux
Load Half Word Algebraic with Update Indexed

Ihaux

0

rD,rA,rB

31 0

5 6 10 11

FA Co- (rA) + (rB)
rD Co- EXTS(MEM(FA, 2»
rA Co- FA

A

15 16

Ihaux

,. Reserved

B 375 • 20 21 30 31

EA is the sum (rA) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits in rD are filled with a copy of the most­
significant bit of the loaded half word.

EA is placed into r A.

If r A = 0 or r A = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture leIIel Supervisor leIIel Optional

UISA

Form

x

8-114 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Ihax Ihax
Load Half Word Algebraic Indexed

Ihax rD,rA,rB

III Reserved

31 D A B 343 • 0 5 6 10 11 15 16 20 21 30 31

ifrA=Othenb+-O
else b +- (rA)
FA +- b + (rB)
rD +- EXTS(MEM(FA, 2»

EA is the sum (rAIO) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits in rD are filled with a copy of the most­
significant bit of the loaded half word.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-115

Ihbrx Ihbrx
Load Half Word Byte-Reverse Indexed

Ihbrx rD,rA,rB

III Reserved

31 0 A B 790 • 0 5 6 10 11 15 16 20 21 30 31

ifrA=Othenb+-O
else b +- (rA)
FA +- b + (rB)
rD +- (16}O II MEM(FA + 1, 1) II MEM(FA, 1)

EA is the sum (rAIO)+ (rB). Bits 0-7 of the half word in memory addressed by EA are
loaded into the low-order eight bits of rD. Bits 8-15 of the half word in memory addressed
by EA are loaded into the subsequent low-order eight bits of rD. The remaining bits in rD
are cleared.

The PowerPC architecture cautions programmers that some implementations of the
architecture may run the lhbrx instructions with greater latency than other types of load
instructions.

Other registers altered:

• None

PowerPC Architecture Lewl

UISA

Supervisor Level Optional Form

x

8-116 PowerPC Microprocessor Family: The Programming Environments (32-8it)

1hz
Load Half Word and Zero

1hz

o

rD,d(rA)

40 o
5 6 10 11

if :rA = 0 then b+- 0
else b +- (:rA)
FA+-b + EXTS(d)

:rD +- (16) 0 II MEM(FA, 2)

1hz

A d

15 16 31

EA is the sum (rAIO) + d. The half word in memory addressed by EA is loaded into the low­
order 16 bits of rD. The remaining bits in rD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Fonn

UISA o

Chapter 8. Instruction Set 8-117

Ihzu Ihzu
Load Half Word and Zero with Update

Ihzu rD,d(rA)

41 o A d

o 5 6 10 11 15 16 31

EA r rA + EXTS(d)
rD r (16) 0 II MEM(EA, 2)
rAr EA

EA is the sum (rA) + d. The half word in memory addressed by EA is loaded into the low­
order 16 bits of rD. The remaining bits in rD are cleared.

EA is placed into rA.

IfrA = 0 or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional

UISA

Form

D

8-118 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Ihzux
Load Half Word and Zero with Update Indexed

Ihzux

o

rD,rA,rB

31 o A

5 6 10 11

EA +- (rA) + (rB)
rD+- (16) 0 II MEM(EA, 2)
rA+- EA

B 311

15 16 20 21

Ihzux

III Reserved

3031

EA is the sum (rA) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits in rD are cleared.

EA is placed into rA.

IfrA = 0 or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional

UISA

Chapter 8. Instruction Set

Form

x

8-119

Ihzx Ihzx
Load Half Word and Zero Indexed

Ihzx rD,rA,rB

III Reserved

31 D A B 279 • 0 5 6 10 11 15 16 20 21 3031

if :rA = 0 then b+- 0
else b +- (:rA)
FA +- b + (:rB)
:rD +- (16) 0 II MEM(FA, 2)

EA is the sum (r AIO) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits in rD are cleared.

Other registers altered:

• None

PowerPC Architecture Lewl Supervisor Level Optional Form

UISA x

8·120 Pow.rPC Microprocessor Family: The Programming Environments (32-Blt)

Imw
Load Multiple Word

Imw rD,d(rA)

[POWER mnemonic: 1m]

o
46 o

5 6 10 11

if rA = 0 then b f- 0
else b f- (rA)
EAf-b + rurrS(d)

rf- rD
do while r ~ 31

GPR(r) f- MEM(EA, 4)
rf-r + 1
EAf-EA + 4

EA is the sum (rAIO) + d.

n= (32-rD).

A d

15 16

n consecutive words starting at EA are loaded into GPRs rD through r31.

Imw

31

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, "DSI Exception (OxOO300)."

If r A is in the range of registers specified to be loaded, including the case in which r A = 0,
the instruction form is invalid.

Note that, in some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

Chapter 8. Instruction Set 8-121

Iswi
Load String Word Immediate

Iswi rD,rA,NB

[POWER mnemonic: lsi]

o
31 o A

5 6 10 11

if rA = 0 then EA +- 0
else EA +- (rA)
if NB = 0 then n+- 32
elsen+- NB
r+-rD-1
i +- 0
do while n> 0

if i = 32 then
r+- r + 1 (mod 32)
GPR(r) +- 0

GPR(r) [i-i + 7] +- MEM(EA, 1)
i+-i+8
if i = 32 then i +- 0
EA+-EA+1
n+-n-1

EAis (rA I 0).

NB 597

15 16 20 21

Let n = NB if NB -::f:. 0, n = 32 if NB = 0; n is the number of bytes to load.
Let nr = CEIL(n + 4); nr is the number of registers to be loaded with data.

Iswi

Ill! Reserved

30 31

n consecutive bytes starting at EA are loaded into GPRs rD through rD + nr - 1.

Bytes are loaded left to right in each register. The sequence of registers wraps around to rO
if required. If the 4 bytes of register rD + nr - 1 are only partially filled, the unfilled low­
order byte(s) ofthat register are cleared.

If r A is in the range of registers specified to be loaded, including the case in which r A = 0,
the instruction form is invalid.

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, "DSI Exception (Ox00300)."

8-122 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Note that, in some implementations, this instruction is likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-123

Iswx
Load String Word Indexed

Iswx rD,rA,rB

[POWER mnemonic: Isx]

o
31 o

5 6 10 11

if rA = 0 then b+- 0
else b +- (rA)
FA+- b + (rB)
n+- XER[25-31]
r+-rD-1
i +- 32
rD +- undefined
do while n> 0
if i = 32 then

r +- r + 1 (mod 32)
GPR(r) +- 0

A

GPR(r) [i-i + 7] +- MEM(FA, 1)
i+-i+8
if i = 32 then i +- 0
FA+-FA+1
n+-n-1

Iswx

III Reserved

B 533 • 15 16 20 21 3031

EA is the sum (rAIO) + (rB). Let n = XER[25-31]; n is the number of bytes to load. Let
nr = CEIL(n + 4); nr is the number of registers to receive data. If n > 0, n consecutive bytes
starting at EA are loaded into GPRs rD through rD + nr - 1.

Bytes are loaded left to right in each register. The sequence of registers wraps around
through rO if required. If the four bytes of rD + nr - 1 are only partially filled, the unfilled
low-order byte(s) of that register are cleared. If n =0, the contents ofrD are undefined.

If rA or rB is in the range of registers specified to be loaded, including the case in which
rA = 0, either the system illegal instruction error handler is invoked or the results are
boundedly undefined.

If rD = rA or rD = rB, the instruction form is invalid.

If rD and rA both specify GPRO, the form is invalid.

8·124 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, "DSI Exception (Ox00300)."

Note that, in some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-125

Iwarx
Load Word and Reserve Indexed

Iwarx

o

rD,rA,rB

31 o A

5 6 10 11

if rA = 0 then bf-- 0
else b f-- (rA)
FA f-- b + (rE)

RESERVE f-- 1
RESERVE_ADDR f-- physical_addr (FA)
rD f-- MEM(FA,4)

EA is the sum (rAIO) + (rB).

B 20

15 16 20 21

The word in memory addressed by EA is loaded into rD.

Iwarx

III Reserved

III1II
30 31

This instruction creates a reservation for use by a store word conditional indexed
(stwcx.)instruction. The physical address computed from EA is associated with the
reservation, and replaces any address previously associated with the reservation.

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, "DSI Exception (OxOO300)."

When the RESERVE bit is set, the processor enables hardware snooping for the block of
memory addressed by the RESERVE address. If the processor detects that another
processor writes to the block of memory it has reserved, it clears the RESERVE bit. The
stwcx. instruction will only do a store if the RESERVE bit is set. The stwcx. instruction sets
the CRO[EQ] bit if the store was successful and clears it if it failed. The Iwarx and stwcx.
combination can be used for atomic read-modify-write sequences. Note that the atomic
sequence is not guaranteed, but its failure can be detected if CRO[EQ] = 0 after the stwcx.
instruction.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Supervisor Level Optional Form

x

8-126 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Iwbrx Iwbrx
Load Word Byte-Reverse Indexed

Iwbrx rD,rA,rB

[POWER mnemonic: Ibrx]

Ill! Reserved

31 o A B 534

o 5 6 10 11 15 16 20 21 30 31

if rA = 0 then bf-O
else b f- (rA)
EAf- b + (rB)

rDf- MEM(EA + 3, 1) II MEM(EA + 2, 1) II MEM(EA + 1, 1) II MEM(EA, 1)

EA is the sum (rAIO) + rB. Bits 0-7 of the word in memory addressed by EA are loaded
into the low-order 8 bits of rD. Bits 8-15 of the word in memory addressed by EA are
loaded into the subsequent low-order 8 bits of rD. Bits 16-23 of the word in memory
addressed by EA are loaded into the subsequent low-order eight bits of rD. Bits 24-31 of
the word in memory addressed by EA are loaded into the subsequent low-order 8 bits of
rD.

The PowerPC architecture cautions programmers that some implementations of the
architecture may run the Iwbrx instructions with greater latency than other types of load
instructions.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

Supervisor Level Optional Form

x

8-127

Iwz
Load Word and Zero

Iwz rD,d(rA)

[POWER mnemonic: I]

o
32 D

5 6 10 11

if rA = 0 then bf- 0
else b f- (rA)
EAf- b + EXTS(d)
rD f- MEM(EA, 4)

Iwz

A d

15 16 31

EA is the sum (rAIO) + d. The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

8-128 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Iwzu
Load Word and Zero with Update

Iwzn

[POWER mnemonic: In]

o
33 o

5 6

EA ~ rA + EXTS(d)
rD ~ MEM(EA, 4)

rA~ EA

rD,d(rA)

10 11

Iwzu

A d

15 16 31

EA is the sum (rA) + d. The word in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA = 0, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional

UISA

Chapter 8. Instruction Set

Form

D

8-129

Iwzux
Load Word and Zero with Update Indexed

lwzux rD,rA,rB
[POWER mnemonic: lux]

o
31 o A

5 6 10 11

EA f- (rA) + (rB)
rD f- MEM(EA, 4)

rAf- EA

B 55

15 16 20 21

Iwzux

Ill! Reserved

3031

EA is the sum (rA) + (rB). The word in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA = 0, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional

UISA

Form

x

8-130 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Iwzx Iwzx
Load Word and Zero Indexed

Iwzx rD,rA,rB

[POWER mnemonic: Ix]

31 o A B 23

o 5 6 10 11 15 16 20 21 30 31

if rA = 0 then b+- 0
else b +- (rA)
EA+- b + rB
rD +- MEM(EA, 4)

EA is the sum (rAIO) + (rB). The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-131

mcrf mcrf
Move Condition Register Field

mcrf crfD,crfS

1[1 Reserved

19 0000000000

o 5 3031

CR[4 * crfD-4 * crfD + 3] Eo- CR[4 * crfS-4 * crfS + 3]

The contents of condition register field crfS are copied into condition register field crfD.
All other condition register fields remain unchanged.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

8·132 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

mcrfs mcrfs
Move to Condition Register from FPSCR

merfs erfD,erfS

III Reserved

63 64

0 5 6 8 9 10 11 3031

The contents of FPSCR field erfS are copied to CR field erfD. All exception bits copied
(except FEX and VX) are cleared in the FPSCR.

Other registers altered:

• Condition Register (CR field specified by operand erfD):

Affected: FX, FEX, VX, OX

• Floating-Point Status and Control Register:

Affected: FX, OX (if erfS = 0)

Affected: UX, ZX, XX, VXSNAN (if erfS = 1)

Affected: VXISI, VXIDI, VXZDZ, VXIMZ (if erfS = 2)

Affected: VXVC

Affected: VXSOFf, VXSQRT, VXCVI

(iferfS = 3)

(if erfS = 5)

PowerPG Architecture Level Supervisor Level Optlohal

UISA

Chapter 8. Instruction Set

Form

x

8-133

mcrxr
Move to Condition Register from XER

mcrxr crfD

31

o 5

CR[4 * crfo-4 * arfD + 3] +- XER[O-3]
XER[O-3] +- ObOOOO

mcrxr

III Reserved

The contents of XER[0-3] are copied into the condition register field designated by crfD.
All other fields of the condition register remain unchanged. XER[0-3] is cleared.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT. GT. EQ. SO

• XER[0-3]

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-134 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

mfcr mfcr
Move from Condition Register

mfcr rD

III Reserved

31 19

o 56 10 11 15 16 20 21 30 31

rD~ CR

The contents of the condition register (CR) are placed into rD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-135

mffsx mffsx
Move from FPSCR

mtTs frD (Rc=O)
mtTs. frD (Rc = 1)

III Reserved

63 583

0 56 10 11 15 16 20 21 30 31

frD[32-63] +-FPSCR

The contents of the floating-point status and control register (FPSCR) are placed into the
low-order bits of register frD. The high-order bits of register frD are undefined.

Other registers altered:

• Condition Register (CRt field):

Affected: FX, FEX, VX, OX (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8·136 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

mfmsr mfmsr
Move from Machine State Register

mfmsr rD

III Reserved

31 83

o 56 10 11 15 16 20 21 30 31

ro~MSR

The contents of the MSR are placed into rD.

This is a supervisor-level instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA x

Chapter 8. Instruction Set 8-137

mfspr
Move from Special-Purpose Register

mfspr rD,SPR

31 o sp~

o 56 10 11
-Note: This Is a split field.

n+- spr[5-9] II spr[0-4]
zoO +- sPR(n)

mfspr

III Reserved

339 . • 20 21 30 31

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-9. The contents of the designated special-purpose register are placed into rD.

Table 8-9. PowerPC UISA SPR Encodlngs for mfspr

SPR"
Register Name

Decimal sprj6-9] sprjD-4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

... Note that the order of the two 5-bit halves of the SPR
number is reversed compared with the actual instruction
coding.

If the SPR field contains any value other than one of the values shown in Table 8-9 (and the
processor is in user mode), one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor-level instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:

• None

8-138 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

Simplified mnemonics:

mfxerrD
mflr rD
mfctr rD

equivalent to
equivalent to
equivalent to

mfsprrD,l
mfsprrD,8
mfspr rD,9

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-10. The contents of the designated SPR are placed into rD.

SPR[O] = 1 if and only if reading the register is supervisor-level. Execution of this
instruction specifying a defined and supervisor-level register when MSR[PR] = 1 will result
in a privileged instruction type program exception.

IfMSR[PR] = I, the only effect of executing an instruction with an SPR number that is not
shown in Table 8-10 and has SPR[O] = 1 is to cause a supervisor-level instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[O] = O. If the SPR field contains any value that is not shown in
Table 8-10, either an illegal instruction type program exception occurs or the results are
boundedly undefined.

Other registers altered:

• None

Table 8-10. PowerPC OEA SPR Encodings for mfspr

SPR1
Register

Access
Decimal spr[5-9] spr[0-4]

Name

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRRO Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRGO Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

287 01000 11111 PVR Supervisor

Chapter 8. Instruction Set 8-139

8-140

Table 8-10. PowerPC OEA SPR Encodings for mfspr (Continued)

SPR1
Register

Access
Decimal spr[5-9] spr[0-4]

Name

528 10000 10000 IBATOU Supervisor

529 10000 10001 IBATOL Supervisor

530 10000 10010 IBAT1U Supervisor

531 10000 10011 IBAT1L Supervisor

532 10000 10100 IBAT2U Supervisor

533 10000 10101 IBAT2L Supervisor

534 10000 10110 IBAT3U Supervisor

535 10000 10111 IBAT3L Supervisor

536 10000 11000 DBATOU Supervisor

537 10000 11001 DBATOL Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

1013 11111 10101 DABA Supervisor

1 Note that the order of the two 5-bit halves of the SPA number is reversed
compared with actual instruction coding.

For mtspr and mfspr instructions, the SPA number coded in assembly
langua~ does not appear directly as a lO-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction, with the high-order five bits appearing in bits
16-20 of the instruction and the low-order five bits in bits 11-15.

PowerPC Architecture Level Supervisor Level Optional Form

UISAlOEA ,,* XFX

* Note that mfspr is supervisor-level only if SPAIO] = 1.

PowerPC Microprocessor Family: The Programming Environments (32-8it)

mfsr mfsr
Move from Segment Register

mfsr rD,SR

Ill! Reserved

31 o SR 595

o 5 6 10 11 12 15 16 20 21 30 31

rD t- SroREG(SR)

The contents of segment register SR are placed into rD.

This is a supervisor-level instruction.

This instruction is defined only for 32-bit implementations; using it on a 64-bit
implementation causes an illegal instruction type program exception.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA x

Chapter 8. Instruction Set 8-141

mfsrin mfsrin
Move from Segment Register Indirect

mfsrin rD,rB

III Reserved

31 B 659

o 56 10 11 15 16 20 21 30 31

rD t- SEGREG (rB [0-3])

The contents of the segment register selected by bits 0-3 of rB are copied into rD.

This is a supervisor-level instruction.

This instruction is defined only for 32-bit implementations. Using it on a 64-bit
implementation causes an illegal instruction type program exception.

Note that the rA field is not defined for the rnfsrin instruction in the PowerPC architecture.
However, rnfsrin performs the same function in the PowerPC architecture as does the rnfsri
instruction in the POWER architecture (if rA = 0).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA x

8-142 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

mftb
Move from Time Base

mftb rD,TBR

31 D

o 5 6 10 11

"Note: This is a split field.

n +- tbr[5-9] II tbr[O-4]
if n = 268 then

rD+-TBL
else if n = 269 then

rD+- TBU

mftb

III Reserved

Ibr* 371 • 20 21 30 31

The contents of TBL or TBU are copied into rD, as designated by the value in TBR,
encoded as shown in Table 8-11.

Table 8-11. TBR Encodlngs for mftb

TBR*
Register

Aceess
Decimal tbr[5-9] tbr[G-4]

Name

268 01000 01100 TBl User

269 01000 01101 TBU User

"Note that the order of the two 5-bit halves of the TBR number is
reversed.

If the TBR field contains any value other than one of the values shown in Table 8-11, then
one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor-level instruction error handler is invoked.
• The results are boundedly undefined.

It is important to note that some implementations may implement mftb and mfspr
identically, therefore, a TBR number must not match an SPR number.

For more information on the time base refer to Section 2.2, "PowerPC VEA Register
Set-Time Base."

Chapter 8. Instruction Set 8·143

Other registers altered:

• None

Simplified mnemonics:

mftb rD
mftburD

equivalent to
equivalent to

PowerPC Architec:ture Lewl

VEA

mftb rD,268
mftb rD,269

Supervisor Level Optional Form

XFX

8·144 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

mtcrf
Move to Condition Register Fields

mtcrf CRM,rS

31 s I CRM I
o 5 6 10 11 12 192021

mask+- (4) (CRM[O) II (4) (CRM[l) II ... (4) (CRM[7)
CR +- (rS & mask) I (CR & ., mask)

mtcrf

III Reserved

144

30 31

The contents of rS are placed into the condition register under control of the field mask
specified by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in
the range 0-7. If CRM(i) = 1, CR field i (CR bits 4 * i through 4 * i + 3) is set to the contents
of the corresponding field of rS.

Note that updating a subset of the eight fields of the condition register may have
substantially poorer performance on some implementations than updating all of the fields.

Other registers altered:

• CR fields selected by mask

Simplified mnemonics:

mtcr rS equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

mtcrf OxFF,rS

Supervisor Level Optional Form

XFX

8-145

mtfsbOx
Move to FPSCR Bit 0

mtfsbO
mtfsbO.

o 56

crbD
crbD

10 11

Bit crbD of the FPSCR is cleared.

Other registers altered:

• Condition Register (CRI field):

Affected: FX. FEX. VX. OX

15 16

(Rc=O)
(Rc = 1)

20 21

(ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR bit crbD

Note: Bits 1 and 2 (FEX and VX) cannot be explicitly cleared.

PowerPC Architecture Level Supervisor Level Optional

UISA

mtfsbOx

• Reserved

3031

Form

x

8-146 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

mtfsb1x
Move to FPSCR Bit 1

mtfsbl
mtfsbl.

o
63

56

crbD
crbD

10 11

Bit crbD of the FPSCR is set.

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX

15 16

(Rc =0)
(Rc = 1)

20 21

(ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR bit crbD and FX

Note: Bits 1 and 2 (PBX and VX) cannot be explicitly set.

PowerPC Architecture Level Supervisor Level Optional

UISA

Chapter 8. Instruction Set

mtfsb1x

III Reserved

38

30 31

Form

x

8-147

mtfsfx mtfsfx
Move to FPSCR Fields

mtfsf FM,frB (Rc=O)
mtfsf. FM,frB (Rc = 1)

III Reserved

63 III FM III B 711 IRcl
0 567 1415 16 2021 3031

The low-order 32 bits of frB are placed into the FPSCR under control of the field mask
specified by FM. The field mask identifies the 4-bit fields affected. Let i be an integer in the
range 0-7. If FM[i] = 1, FPSCR field i (FPSCR bits 4 * i through 4 * i + 3) is set to the
contents of the corresponding field of the low-order 32 bits of register frB.

FPSCR[FX] is altered only if FM[O] = 1.

Updating fewer than all eight fields of the FPSCR may have substantially poorer
performance on some implementations than updating all the fields.

When FPSCR[0-3] is specified, bits 0 (FX) and 3 (OX) are set to the values offrB[32] and
frB[35] (that is, even if this instruction causes OX to change from 0 to 1, FX is set from
frB[32] and not by the usual rule that FX is set when an exception bit changes from 0 to 1).
Bits 1 and 2 (FEX and VX) are set according to the usual rule and not from frB[33-34].

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR fields selected by mask

PowerPC Architecture Level Supervisor Level Optional Form

UISA XFL

8·148 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

mtfsfix
Move to FPSCR Field Immediate

mtfsfi
mtfsfi.

o
63

5 6

crtD,IMM
crtD,IMM

8 9 10 11 12

FPSCR[crfD] +- IMM

1516

(Rc = 0)
(Rc = 1)

192021

The value of the IMM field is placed into FPSCR field crtD.

FPSCR[FX] is altered only if crtD = O.

mtfsfix

Ii'! Reserved

134

3031

When FPSCR[0-3] is specified, bits 0 (FX) and 3 (OX) are set to the values of IMM[O] and
IMM[3] (that is, even if this instruction causes OX to change from 0 to 1, FX is set from
IMM[O] and not by the usual rule that FX is set when an exception bit changes from 0 to
1). Bits 1 and 2 (FEX and VX) are set according to the usual rule and not from IMM[1-2].

Other registers altered:

• Condition Register (CRI field):

Affected: FX, FEX, VX, OX (ifRc=l)

• Floating-Point Status and Control Register:

Affected: FPSCR field crtD

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-149

mtmsr mtmsr
Move to Machine State Register

mtmsr rS

III Reserved

S 146

o 5 6 10 11 15 16 20 21 3031

MSR+- (rS)

The contents of rS are placed into the MSR.

This is a supervisor-level instruction. It is also an execution synchronizing instruction
except with respect to alterations to the POW and LE bits. Refer to Section 2.3.17,
"Synchronization Requirements for Special Registers and for Lookaside Buffers;' for more
information.

In addition, alterations to the MSR[EE] and MSR[RI] bits are effective as soon as the
instruction completes. Thus if MSR[EE] = 0 and an external or decrementer exception is
pending, executing an mtmsr instruction that sets MSR[EE] = 1 will cause the external or
decrementer exception to be taken before the next instruction is executed, if no higher
priority exception exists.

This instruction is defined only for 32-bit implementations. Using it on a 64-bit
implementation causes an illegal instruction type program exception.

Other registers altered:

• MSR

PowerPC Architecture Level Supervisor Level Optional Form

OEA x

8-150 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

mtspr
Move to Special-Purpose Register

mtspr SPR,rS

31 s sp~

o 5 6 10 11

*Note: This is a split field.

n spr[5-9] II spr[O-4]
SPR(n) (rS)

mtspr

III Reserved

467 I
20 21 30 31

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-12. The contents ofrS are placed into the designated special-purpose register.-

Table 8-12. PowerPC UISA SPR Encodlngs for mtspr

SPR**
Register Name

Decimal sprj5-9] sprjCl-4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note that the order of the two 5-bit halves of the SPR
number is reversed compared with actual instruction
coding.

If the SPR field contains any value other than one of the values shown in Table 8-12, and
the processor is operating in user mode, one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:

• See Table 8-12.

Simplified mnemonics:

mtxerrD
mtlr rD
mtctr rD

Chapter 8. Instruction Set

equivalent to
equivalent to
equivalent to

mtsprl,rD
mtspr8,rD
mtspr9,rD

8-151

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-13. The contents of rS are placed into the designated special-purpose register. -

For this instruction, SPRs TBL and TBU are treated as separate 32-bit registers; setting one
leaves the other unaltered.

The value of SPR[O] = 1 if and only if writing the register is a supervisor-level operation.
Execution of this instruction specifying a defined and supervisor-level register when
MSR[PR] = 1 results in a privileged instruction type program exception.

If MSR[PR] = 1 then the only effect of executing an instruction with an SPR number that
is not shown in Table 8-13 and has SPR[O] = 1 is to cause a privileged instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[O] = 0, if the SPR field contains any value that is not shown in
Table 8-13, either an illegal instruction type program exception occurs or the results are
boundedly undefined.

Other registers altered:

• See Table 8-13.

Table 8-13. PowerPC OEA SPR Encodings for mtspr

SPR1
~eglster

Access
Decimal spr[5-9] spr[G-4]

Name

1 00000 00001 XER User

8 00000 01000 lR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDRl Supervisor

26 00000 11010 SRRO Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRGO Supervisor

273 01000 10001 SPRGl Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

284 01000 11100 TBl Supervisor

285 01000 11101 TBU Supervisor

8-152 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

Table 8-13. PowerPC OEA SPR Encodings for mtspr (Continued)

SPR1
Register

Name Access
Decimal spr[5-9] spr[D-4]

528 10000 10000 IBATOU Supervisor

529 10000 10001 IBATOL Supervisor

530 10000 10010 IBAT1U Supervisor

531 10000 10011 IBAT1L Supervisor

532 10000 10100 IBAT2U Supervisor

533 10000 10101 IBAT2L Supervisor

534 10000 10110 IBAT3U Supervisor

535 10000 10111 IBAT3L Supervisor

536 10000 11000 DBATOU Supervisor

537 10000 11001 DBATOL Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

1013 11111 10101 DABR Supervisor

lNote that the order of the two 5-bit halves of the SPR number is reversed. For mtspr
and mfspr instructions, the SPR number coded in assembly language does not appear
directly as a 10-bit binary number in the instruction. The number coded is split into two
5-bit halves that are reversed in the instruction, with the high-order five bits appearing
in bits 16-20 of the instruction and the low-order five bits in bits 11-15.

PowerPC Architecture Level Supervisor Level Optional Form

UISAlOEA XFX

• Note that mtspr is supervisor-level only if SPR[O) = 1.

Chapter 8. Instruction Set 8-153

mtsr mtsr
Move to Segment Register

mtsr SR,rS

III Reserved

31 210

o 56 10 11 12 15 16 20 21 30 31

SEGREG(SR) +- (rS)

The contents of rS are placed into SR.

This is a supervisor-level instruction.

This instruction is defined only for 32-bit implementations. Using it on a 64-bit
implementation causes an illegal instruction type program exception.

Other registers altered:

• None

PowerPC Architecture level Supervisor level Optional Form

OEA x

8-154 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

mtsrin mtsrin
Move to Segment Register Indirect

mtsrin rS,rB

[POWER mnemonic: mtsri]

III Reserved

31 s B 242

o 5 6 10 11 15 16 20 21 30 31

SEGREG(rB[O-3]) +- (rS)

The contents of rS are copied to the segment register selected by bits 0--3 ofrB.

This is a supervisor-level instruction.

This instruction is defined only for 32-bit implementations. Using it on a 64-bit
implementation causes an illegal instruction type program exception.

Note that the PowerPC architecture does not define the rA field for the mtsrin instruction.
However, mtsrin performs the same function in the PowerPC architecture as does the mtsri
instruction in the POWER architecture (if rA = 0).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA x

Chapter 8. Instruction Set 8-155

mulhwx
Multiply High Word

mulhw
mulhw.

31

o 5 6

o

rD,rA,rB
rD,rA,rB

10 11

prod[O-63] +- rA * rB
rD+- prod

A

15 16

(Rc=O)

(Rc = 1)

B I
20 21 22

mulhwx

III Reserved

75

3031

The 32-bit product is formed from the contents ofrA andrB. The high-order 32 bits of the
64-bit product of the operands are placed into rD.

Both the operands and the product are interpreted as signed integers.

This instruction may execute faster on some implementations if rB contains the operand
having the smaller absolute value.

Other registers altered:

• Condition Register (CRO field):

8.156

Affected: LT, GT, EQ, SO (ifRc = 1)

Note: The setting of CRO bits LT, GT, and EQ is mode-dependent, and reflects
overflow of the 32-bit result.

PowerPC Architecture Level Supervisor Level Optional Form

UISA xo

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

mulhwux
Multiply High Word Unsigned

mulhwu
mulhwu.

31

o 5 6

D

rD,rA,rB
rD,rA,rB

10 11

prod[O-63] +- rA * rB
rD +- prod[O-31]

A

15 16

(Rc=O)
(Rc = 1)

B • 20 21 22

mulhwux

• Reserved

11

3031

The 32-bit operands are the contents of rA and rB. The high-order 32 bits of the 64-bit
product of the operands are placed into rD.

Both the operands and the product are interpreted as unsigned integers, except that if
Rc = 1 the first three bits of CRO field are set by signed comparison of the result to zero.

This instruction may execute faster on some implementations if rB contains the operand
having the smaller absolute value.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

Note: The setting of CRO bits LT, GT, and EQ is mode-dependent, and reflects
overflow of the 32-bit result.

PowerPC Architecture Level Supervisor Level Optional i=orm

UISA XO

Chapter 8. Instruction Set 8-157

mulli
Multiply Low Immediate

mulli rD,rA,SIMM

[POWER mnemonic: muli]

o
07 o

5 6 10 11

prod[0-48] ~ (rA) * SIMM
rD ~ prod[16-48]

.mulH

A SIMM

15 16 31

The 32-bit first operand is (rA). The 16-bit second operand is the value of the SIMM field.
The low-order 32-bits of the 48-bit product of the operands are placed into rD.

Both the operands and the product are interpreted as signed integers. The low-order 32 bits
of the product are calculated independently of whether the operands are treated as signed
or unsigned 32.:bit integers.

This instruction can be used with mulhdx or mulhwx to calculate a full 64-bit product.

The low-order 32 bits of the product are the correct 32-bit product for 32 .. bit
implementations.

Other registers altered:

• None

PowerPC Architecture Level Supervisor level Optional Form

UISA D

8·158 PowerPC Microprocessor Family: The Programming Environments (32-8It)

mullwx
Multiply Low Word

mullw
mullw.
mullwo
mullwo.

rD,rA,rB
rD,rA,rB
rD,rA,rB
rD,rA,rB

(OE=ORc=O)
(OE=ORc= 1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

[POWER mnemonics: muls, muls., mulso, mulso.]

31 o A B

o 5 6 10 11 15 16

rD+- rA* rB

mullwx

loel 235

20 21 22 3031

The 32-bit operands are the contents of rA and rB. The low-order 32 bits of the 64-bit
product (rA) * (rB) are placed into rD.

The low-order 32 bits of the product are the correct 32-bit product for 32-bit
implementations. The low-order 32-bits of the product are independent of whether the
operands are regarded as signed or unsigned 32-bit integers.

If OE = 1, then OV is set if the product cannot be represented in 32 bits. Both the operands
and the product are interpreted as signed integers.

Note that this instruction may execute faster on some implementations if rB contains the
operand having the smaller absolute value.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: SO, OV (ifOE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects
overflow of the 32-bit result.

PowerPC Architecture Level Supervisor Level Optional Form

UISA xo

Chapter 8. Instruction Set 8-159

nandx nandx
NAND

nand rA,rS,rB (Rc=O)
nand. rA,rS,rB (Rc = 1)

31 s A B I 476 IRcl
0 5 6 10 11 15 16 20 21 30 31

rA +- ., «rS) & (rB))

The contents of rS are ANDed with the contents of rB and the complemented result is
placed into rA.

nand with rS = rB can be used to obtain the one's complement.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

PowerPC Architecture Lewl··· Supervisor Level Optional

UISA

Form

x

8·160 PowerPC Microprocessor Family: The Programming Environments (32-81t)

negx
Negate

neg
neg.
nego
nego.

D

rD~ ., IrA) + 1

rD,rA
rD,rA
rD,rA
rD,rA

10 11

A

(OE=ORc=O)
(OE=ORc= 1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

104

negx

• Reserved

30 31

The value 1 is added to the complement of the value in rA, and the resulting two's
complement is placed into rD.

If rA contains the most negative 32-bit number (Ox8000_0000), the result is the most
negative number and, if OE = 1, OV is set.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

• XER:

Affected: SO OV (ifOE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

Chapter 8. Instruction Set 8-161

norx norX
NOR

nor rA,rS,rB (Rc =0)
nor. rA,rS,rB (Rc = 1)

31 S A B 124 IRcl
0 5 6 10 11 15 16 20 21 3031

rA +- -. «rS) (rB»

The contents of rS are ORed with the contents of rB and the complemented result is placed
into rA.

nor with rS = rB can be used to obtain the one's complement.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

not rD,rS equivalent to

PowerPC Architecture Level

UISA

(ifRc = 1)

nor r A,rS,rS

Supervisor Level Optional Form

x

8-162 PowerPC Microprocessor Family: The Programming Environments (32-8It)

orx orX
OR

or rA,rS,rB (Rc=O)
or. rA,rS,rB (Rc = 1)

31 S A B 444 IRcl
0 5 6 10 11 15 16 20 21 3031

rA f-- (rS) I (rB)

The contents of rS are ORed with the contents of rB and the result is placed into rA.

The simplified mnemonic mr (shown below) demonstrates the use of the or instruction to
move register contents.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

mr rA,rS equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

(ifRc = 1)

or rA,rS,rS

Supervisor Level Optional Form

x

8-163

orcx
OR with Complement

ore
ore.

o
31

rA,rS,rB
rA,rS,rB

S A

5 6 1011

rA ~ (rS) I .., (rB)

(Rc=O)
(Rc = 1)

B 412

15 16 20 21

orcx

3031

The contents of rS are ORed with the complement of the contents of rB and the result is
placed into r A.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-164 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

ori ori
OR Immediate

ori rA,rS,UIMM

[POWER mnemonic: oril]

24 s A UIMM

o 5 6 10 11 15 16 31

rAE- IrS) I «16)0 II UIMM)

The contents ofrS are ORed with OxOOOO II UIMM and the result is placed into rA.

The preferred no-op (an instruction that does nothing) is ori 0,0,0.

Other registers altered:

• None

Simplified mnemonics:

nop equivalent to ori 0,0,0

PowerPC Architecture Lewl Supervisor Level Optional Form

UISA D

Chapter 8. Instruction Set 8·165

oris • oris
OR Immediate Shifted

oris rA,rS,UIMM

[POWER mnemonic: oriu]

25 S A UIMM

o 5 6 10 11 15 16 31

rA~ (rS) I (UIMM II (16)0)

The contents of rS are ORed with UIMM II OxOOOO and the result is placed into r A.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

8-166 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

rfi
Return from Interrupt

o
19

MSR [16-23, 25-27, 30-311 +- SRR1 [16-23, 25-27, 30-311
NIA He.SRRO [0-291 II ObOO

rfi

III Reserved

50

30 31

Bits SRR1[l6-23, 25-27, 30-31] are placed into the corresponding bits of the MSR. lithe
new MSR value does not enable any pending exceptions, then the next instruction is
fetched, under control of the new MSR value, from the address SRRO[0-29] II ObOO. If the
new MSR value enables one or more pending exceptions, the exception associated with the
highest priority pending exception is generated; in this case the value placed into SRRO by
the exception processing mechanism is the address of the instruction that would have been
executed next had the exception not occurred. Note that an implementation may define
additional MSR bits, and in this case, may also cause them to be saved to SRRI from MSR
on an exception and restored to MSR from SRRI on an rfi.

This is a supervisor-level, context synchronizing instruction. This instruction is defined
only for 32-bit implementations. Using it on a 64-bit implementation causes an illegal
instruction type program exception.

Other registers altered:

• MSR

PowerPC Architecture Level Supervisor Level Optional Form

OEA XL

Chapter 8. Instruction Set 8-167

rlwimix rlwimix
Rotate Left Word Immediate then Mask Insert

rlwimi
rlwimi.

rA,rS,SH,MB,ME
r A,rS,SH,MB,ME

[POWER mnemonics: rlimi, rlimi.]

20 S A

o 5 6 10 11

n~ SH
r~ROTL{rS, n)

m~ MASK{MB, ME)
rA~ (r & m) I IrA & -, m)

(Rc=O)
(Rc = 1)

SH MB ME IRcl
15 16 20 21 2526 3031

The contents of rS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The rotated data
is inserted into rA under control of the generated mask.

Note that rlwimi can be used to insert a bit field into the contents ofrA using the methods
shown below:

• To insert an n-bit field, that is left-justified rS, into rA starting at bit position b, set
SH = 32 - b, MB = b, and
ME = (b + n) - 1.

• To insert an n-bit field, that is right-justified in rS, into rA starting at bit position b,
set SH = 32 - (b + n), MB = b, and ME = (b + n) - 1.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

(ifRc = 1)

inslwi r A,rS,n,b
insrwi rA,rS,n,b (n > 0)

equivalent to rlwimi
equivalent to rlwimi

rA,rS,32 - b,b,b + n - 1
rA,rS,32 - (b + n),b,(b + n) - 1

PowerPC Architecture Level Supervisor Level Optional Form

UISA M

8·168 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

rlwinmx rlwinmx
Rotate Left Word Immediate then AND with Mask

rlwinm
rlwinm.

r A,rS,SH,MB,ME
r A,rS,SH,MB,ME

(Rc =0)

(Rc = 1)

[POWER mnemonics: rlinm, rlinm.]

o
21 S A

5 6 1011

n+- SH

r+- ROTL(rS, n)

m+- MASK(MB, ME)

rA+-r&m

SH MB ME IRcl
15 16 20 21 2526 3031

The contents of rS[32-63] are rotated left the number of bits specified by operand SH. A
mask is generated having 1 bits from bit MB through bit ME and ° bits elsewhere. The
rotated data is ANDed with the generated mask and the result is placed into rA.

Note that rlwinm can be used to extract, rotate, shift, and clear bit fields using the methods
shown below:

• To extract an n-bit field, that starts at bit position b in rS, right-justified into rA
(clearing the remaining 32 - n bits of rA), set SH = b + n,
MB = 32-n, and ME= 31.

• To extract an n-bit field, that starts at bit position b in rS, left-justified into rA
(clearing the remaining 32 - n bits of rA), set SH = b, MB = 0, and ME = n - 1.

• To rotate the contents of a register left (or right) by n bits, set SH = n (32 - n),
MB = 0, and ME = 31.

• To shift the contents of a register right by n bits, by setting SH = 32 - n, MB = n, and
ME = 31. It can be used to clear the high-order b bits of a register and then shift the
result left by n bits by setting SH = n, MB = b - n and ME = 31 - n.

• To clear the low-order n bits of a register, by setting SH = 0, MB = 0, and
ME= 31-n.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

Chapter 8. Instruction Set 8-169

Simplified mnemonics:

extlwi rA,rS,n,b (n > 0)
extrwi rA,rS,n,b (n > 0)
rotlwi rA,rS,n
rotrwi r A,rS,n
slwi rA,rS,n (n < 32)
srwi rA,rS,n (n < 32)
c1rlwi r A,rS,n (n < 32)
c1rrwi rA,rS,n (n < 32)
c1rlslwi rA,rS,b,n (n $ b < 32)

equivalent to
equivalent to
equivalent to
equivalent to
equivalent to
equivalent to
equivalent to
equivalent to
equivalent to

rlwinm r A,rS,b,O,n - 1
rlwinm rA,rS,b + n,32 - n,31
r1winm rA,rS,n,O,31
rlwinm rA,rS,32 - n,0,31
r1winm r A,rS,n,O,31-n
rlwinm rA,rS,32 - n,n,31
rlwinm rA,rS,O,n,31
r1winm r A,rS,O,O,31 - n
rlwinm rA,rS,n,b-n,31-n

PowerPC Architecture Level Supervisor Level Optional Form

UISA M

8-170 PowerPC Microprocessor Family: The Programming Environments (32-8it)

rlwnmx
Rotate Left Word then AND with Mask

rlwnm
rlwnm.

r A,rS,rB,MB,ME
rA,rS,rB,MB,ME

[POWER mnemonics: rlnm, rlnm.]

23 S A

o 5 6 10 11

n~ rB[27-31]
r ~ ROTL(rS, n)

m~ MASK(MB, ME)

rA~ r & m

(Rc = 0)
(Rc = 1)

rlwnmx

15 16 20 21 2526 30 31

The contents of rS are rotated left the number of bits specified by the low-order five bits of
rB. A mask is generated having 1 bits from bit MB through bit ME and 0 bits elsewhere.
The rotated data is ANDed with the generated mask and the result is placed into rA.

Note that rlwnm can be used to extract and rotate bit fields using the methods shown as
follows:

• To extract an n-bit field, that starts at variable bit position bin rS, right-justified into
rA (clearing the remaining 32 - n bits of rA), by setting the low-order five bits of
rB to b + n, MB = 32 - n, and ME = 31.

• To extract an n-bit field, that starts at variable bit position b in rS, left-justified into
rA (clearing the remaining 32 - n bits of rA), by setting the low-order five bits of
rB to b, MB = 0, and ME = n - 1.

• To rotate the contents of a register left (or right) by n bits, by setting the low-order
five bits ofrB to n (32 - n), MB = 0, and ME = 31.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

rotlw r A,rS,rB equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

(ifRc = 1)

rlwnmrA,rS,rB,O,31

Supervisor Level Optional Form

M

8·171

SC sc
System Call

[POWER mnemonic: svca]

II) Reserved

17

o 5 6 10 11 15 16 293031

In the PowerPC VISA, the sc instruction calls the operating system to perform a service.
When control is returned to the program that executed the system call, the content of the
registers depends on the register conventions used by the program providing the system
service.

This instruction is context synchronizing, as described in Section 4.1.5.1, "Context
Synchronizing Instructions."

Other registers altered:

• Dependent on the system service

In PowerPC OEA, the sc instruction does the following:

SRRO Hea CIA + 4
SRR1[1-4. 10-15] f- 0
SRR1[16-23. 25-27. 30-31] f- MSR[16-23. 25-27. 30-31]
MSR f- new_value (see below)
NIA Hea base_ea + OXCOO (see below)

The EA of the instruction following the sc instruction is placed into SRRO. Bits 16-23,
25-27, and 30-31 ofthe MSR are placed into the corresponding bits of SRR1, and bits 1-
4 and 10-15 of SRRI are set to undefined values. Note that an implementation may define
additional MSR bits, and in this case, may also cause them to be saved to SRRI from MSR
on an exception and restored to MSR from SRRI on an rfi.

Then a system call exception is generated. The exception causes the MSR to be altered as
described in Section 6.4, "Exception Definitions."

The exception causes the next instruction to be fetched from offset OxCOO from the physical
base address determined by the new setting of MSR[IP].

Other registers altered:

• SRRO

• SRRI

• MSR

PowerPC Architecture Level Supervisor Level Optional Form

UISAlOEA SC

8-172 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

slwx
Shift Left Word

slw

slw.

rA,rS,rB

rA,rS,rB

[POWER mnemonics: sl, sl.]

31 S

o 5 6 10 11

nf- rB [27-31]
r f- RCYrL(rS, n)
if rB[58] = a then

A

(Rc = 0)

(Rc= 1)

B 24

15 16 20 21

slwx

3031

If bit 26 of rB = 0, the contents of rS are shifted left the number of bits specified by
rB[27-31]. Bits shifted out of position 0 are lost. Zeros are supplied to the vacated positions
on the right. The 32-bit result is placed into r A. If bit 26 of rB = 1, 32 zeros are placed into
rA.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

PowerPC Archi1ecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-173

srawx
Shift Right Algebraic Word

sraw
sraw.

rA,rS,rB
rA,rS,rB

[POWER mnemonics: sra, sra.]

o
31 S A

5 6 10 11

n~ rB[27-3l]
r ~ ROTL(rS, n)
if rB[26] = 0 then
m~ MASK(n)

else m~ (32)0
S ~ rS
rA~r&m I S&-.m
XER[CA] ~ S & (r & -. m ¢ 0

(Rc=O)
(Rc= 1)

B 792

15 16 20 21

srawx

3031

If rB [26] = O,then the contents of rS are shifted right the number of bits specified by
.rB[27-31]. Bits shifted out of position 31 are lost. The result is padded on the left with sign
bits before being placed into rA. If rB[26] = 1, then rA is filled with 32 sign bits (bit 0)
from rS. CRO is set based on the value written into rA. XER[CA] is set if rS contains a
negative number and any 1 bits are shifted out of position 31; otherwise XER[CA] is
cleared. A shift amount of zero causes XER[CA] to be cleared.

Note that the sraw instruction, followed by addze, can by used to divide quickly by 2n. The
setting of the XER[CA] bit, by sraw, is independent of mode.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-174 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

srawix
Shift Right Algebraic Word Immediate

srawi
srawi.

rA,rS,SR
rA,rS,SR

[POWER mnemonics: srai, srai.]

o
31 S

5 6 10 11

n~ SH

r~ ROTL(rS, 32 - n)
II*- MASK (n)
S ~ rS
rA~r&mIS&-'m

A

XER[CA] ~ S & ((r & .., m) ¢". 0)

(Rc=O)
(Rc= 1)

SH 824

15 16 20 21

srawix

3031

The contents of rS are shifted right the number of bits specified by operand SR. Bits shifted
out of position 31 are lost. The shifted value is sign-extended before being placed in rA.
The 32-bit result is placed into rA. XER[CA] is set if rS contains a negative number and
any 1 bits are shifted out of position 31; otherwise XER[CA] is cleared. A shift amount of
zero causes XER[CA] to be cleared.

Note that the srawi instruction, followed by addze, can be used to divide quickly by 2n.
The setting of the CA bit, by srawi, is independent of mode.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-175

srwx
Shift Right Word

srw
srw.

rA,rS,rB
rA,rS,rB

[POWER mnemonics: sr, sr.]

31 S

o 5 6 10 11

n f- rB [27-31]
rf- ROTL{rS, 32 -n)

A

(Rc = 0)
(Rc= 1)

B ~6

15 16 20 21

srwx

3031

The contents of rS are shifted right the number of bits specified by the low-order six bits of
rB. Bits shifted out of position 31 are lost. Zeros are supplied to the vacated positions on
the left. The result is placed into rA.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-176 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

stb
Store Byte

stb

o

rS,d(rA)

38 s
5 6 10 11

if rA = 0 then b~ 0
else b~ (rA)
FA~ b + EXTS(d)
MEM(FA, 1) ~ rS[24-31]

stb

A d

15 16 31

EA is the sum (r AIO) + d. The contents of the low-order eight bits of rS are stored into the
byte in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

Chapter 8. Instruction Set 8-177

stbu
Store Byte with Update

stbu rS,d(rA)

39 s
o 5 6 10 11

EA~ (rA) + EXTS(d)

MEM(EA, 1) ~ rS[24-31]

rA~ EA

stbu

A d

15 16 31

EA is the sum (rA) + d. The contents of the low-order eight bits of rS are stored into the
byte in memory addressed by EA.

EA is placed into rA.

IfrA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Supervisor Level Optional Form

o

8-178 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

stbux
Store Byte with Update Indexed

stbux

o

rS,rA,rB

31 s
5 6 10 11

EA f- (rA) + (rB)

MEM(EA, 1) f- rS[24-31]
rAf- EA

stbux

III Reserved

A B 247

15 16 21 22 30 31

EA is the sum (r A) + (rB). The contents of the low-order eight bits of rS are stored into the
byte in memory addressed by EA.

EA is placed into rA.

If r A = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

Supervisor Level Optional Form

x

8-179

-

stbx stbx
Store Byte Indexed

stbx rS,rA,rB

iii Reserved

31 S A B 215

o 5 6 10 11 15 16 21 22 3031

if rA = 0 then bf-O
else b f- (rA)
EAf- b + (rB)
MEM(EA, 1) f- rS[24-31]

EA is the sum (rAID) + (rB). The contents of the low-order eight bits of rS are stored into
the byte in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-180 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

stfd
Store Floating-Point Double

stfd

o

frS,d(rA)

54 5

5 6 10 11

if rA = 0 then b t- 0
else b +- (rA)
FA+- b + EXTS(d)
MEM(FA. 8) +- (frS)

EA is the sum (rAIO) + d.

stfd

A d

15 16 30 31

The contents of register frS are stored into the double word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

Chapter 8. Instruction Set 8-181

stfdu
Store Floating-Point Double with Update

stfdu

o

frS,d(rA)

55 s
5 6 10 11

FA+- (rA) + EXTS(d)
MEM(EA, 8) +- (frS)
rA+- EA

EA is the sum (rA) + d.

A

15 16

stfdu

d

31

The contents of register frS are stored into the double word in memory addressed by EA.

EA is placed into r A.

If r A = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

I UISA

Supervisor Level Optional Form

o

8-182 PowerPC Microprocessor Family: The Programming Environments (32-8It)

stfdux
Store Floating-Point Double with Update Indexed

stfdux frS,rA,rB

o
31 s

5 6

EA f-- (rA) + (rB)

MEM(EA, 8) f-- (frS)

rAf-- EA

10 11

EA is the sum (rA) + (rB).

A B 759

15 16 20 21

stfdux

iii Reserved

30 31

The contents of register frS are stored into the double word in memory addressed by EA.

EA is placed into rA.

IfrA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

Supervisor Level Optional Form

x

8-183

stfdx
Store Floating-Point Double Indexed

stfdx

o

frS,rA,rB

31 S

5 6 10 11

ifrA=Othenb+-O
else b +- (rA)
EA+- b + (rB)
MEM(EA. 8) +- (frS)

EA is the sum (rAIO) + rB.

A

stfdx

III Reserved

B n7 • 15 16 20 21 3031

The contents of register frS are stored into the double word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Lewl Supervisor Level Optional Form

UISA x

8-184 PowerPC Microprocessor Family: The Programming Environments (32-8It)

stfiwx
Store Floating-Point as Integer Word Indexed

stfiwx

o

frS,rA,rB

31 s
5 6 10 11

if rA = 0 then b f- 0
else b f- (rAJ
EAf- b + (rB)

MEM{EA. 4) f- frS

EA is the sum (rAID) + (rB).

A B 983

15 16 20 21

stfiwx

G2l Reserved

3031

The contents of frS are stored, without conversion, into the word in memory addressed by
EA.

If the contents of register frS were produced, either directly or indirectly, by an Ifs
instruction, a single-precision arithmetic instruction, or frsp, then the value stored is
undefined. The contents of frS are produced directly by such an instruction if,frS is the
target register for the instruction. The contents of frS are produced indirectly by such an
instruction if frS is the final target register of a sequence of one or more floating-point move
instructions, with the input to the sequence having been produced directly by such an
instruction.

This instruction is defined as optional by the PowerPC architecture to ensure backwards
compatibility with earlier processors; however, it will likely be required for subsequent
PowerPC processors.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8·185

stfs
Store Floating-Point Single

stfs

o

frS,d(rA)

52 s
5 6 10 11

if rA = 0 then b..- 0
else b..- (rA)
FA"- b + EXTS (d)
MEM(FA, 4)..- SINGLE (frS)

EA is the sum (rAIO) + d.

stfs

A d

15 16 31

The contents of register frS are converted to single-precision and stored into the word in
memory addressed by EA. Note that the value to be stored should be in single-precision
format prior to the execution of the stfs instruction. For a discussion on floating-point store
conversions, see Section D.7, "Floating-Point Store Instructions."

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

8-186 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

stfsu
Store Floating-Point Single with Update

stfsu

o

frS,d(rA)

53 S

5 6 10 11

EA f- (rA) + EXTS (d)

MEM(EA, 4) f- SINGLE(frS)

rAf- EA

EA is the sum (rA) + d.

A

stfsu

d

15 16 31

The contents of frS are converted to single-precision and stored into the word in memory
addressed by EA. Note that the value to be stored should be in single-precision format prior
to the execution of the stfsu instruction. For a discussion on floating-point store
conversions, see Section D.7, "Floating-Point Store Instructions."

EA is placed into rA.

If r A = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

Supervisor Level Optional Form

o

8-187

-

stfsux stfsux
Store Floating-Point Single with Update Indexed

stfsux frS,rA,rB

III Reserved

31 s A B 695

o 5 6 10 11 15 16 20 21 30 31

EA ~ (rA) + (rB)

MEM(EA, 4) ~ SINGLE (frS)
rA~ EA

EA is the sum (rA) + (rB).

The contents of frS are converted to single-precision and stored into the word in memory
addressed by EA. For a discussion on floating-point store conversions, see Section D.7,
"Floating-Point Store Instructions."

EA is placed into rA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Supervisor Level Optional Form

x

8-188 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

stfsx stfsx
Store Floating-Point Single Indexed

stfsx frS,rA,rB

!Ill Reserved

31 s A B 663

o 5 6 10 11 15 16 20 21 3031

if rA = 0 then b +- 0
else b +- (rA)
EA+- b + (rB)
MEM(EA, 4) +- SINGLE(frS)

EA is the sum (rAIO) + (rB).

The contents of register frS are converted to single-precision and stored into the word in
memory addressed by EA. For a discussion on floating-point store conversions, see
Section D. 7, "Floating-Point Store Instructions."

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-189

sth
Store Half Word

stb

o

rS,d(rA)

44 s
5 6 10 11

if rA = 0 then b +- 0
else b +- (rA)
FA+- b + EXTS(d)
MEM(FA, 2) +- rS[16-31)

sth

A d

15 16 31

EA is the sum (rAIO) + d. The contents of the low-order 16 bits ofrS are stored into the half
word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

8-190 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

sthbrx sthbrx
Store Half Word Byte-Reverse Indexed

sthbrx rS,rA,rB

III Reserved

31 S A B 918 • o 5 6 10 11 15 16 20 21 30 31

if rA = 0 then bt- 0
else b t- (rA)
FAt- b + (rB)

MEM(FA, 2) t- rS[24-3l] I I rS[16-23]

EA is the sum (rAIO) + (rB). The contents of the low-order eight bits of rS are stored into
bits 0-7 of the half word in memory addressed by EA. The contents of the subsequent low­
order eight bits of rS are stored into bits 8-15 of the half word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-191

sthu
Store Half Word with Update

sthu

o

rS,d(rA)

45 S

5 6 10 11

FA~ (zoA) + EXTS(d)
MEM(FA, 2) ~ zoS[16-31]

zoA~ FA

sthu

A d

15 16 31

EA is the sum (r A) + d. The contents of the low-order 16 bits of rS are stored into the half
word in memory addressed by EA.

EA is placed into rA.

If r A = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

, Supervisor Level Optional Form

o

8-192 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

sthux
Store Half Word with Update Indexed

sthux

o

rS,rA,rB

31 S A

5 6 1011

EA +- (rA) + (rB)

MEM(EA. 2) +- rS[16-31)
rA+- EA

sthux

• Reserved

B ~9 • 15 16 20 21 3031

EA is the sum (rA) + (rB). The contents of the low-order 16 bits of rS are stored into the
half word in memory addressed by EA.

EA is placed into rA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

Supervisor Level Optional Form

x

8·193

sthx sthx
Store Half Word Indexed

sthx rS,rA,rB

III Reserved

31 S A B 407 • 0 5 6 10 11 15 16 20 21 30 31

if rA = 0 then b4- 0
else b 4- (rA)
FA 4- b + (rB)
MEM(FA, 2) 4- rS[16-31)

EA is the sum (r AIO) + (rB). The contents of the low-order 16 bits of rS are stored into the
half word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8·194 PowwrPC Microprocessor Family: The Programming Environments (32-8It)

stmw
Store Multiple Word

stmw rS,d(rA)

[POWER mnemonic: stm]

o
47 s

5 6 10 11

if rA = 0 then b+- 0
else b +- (rA)
FA +- b + EXTS (d)

r+- rS
do while r S 31

MEM(FA. 4) +- GPR(r)
r+- r + 1
FA+- FA + 4

EA is the sum (rAIO) + d.

n = (32 - rS).

stmw

A d

15 16 31

n consecutive words starting at EA are stored from the GPRs rS through r31. For example,
if rS = 30, 2 words are stored.

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, "DSI Exception (Ox00300)."

Note that, in some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

Chapter 8. Instruction Set 8-195

stswi
Store String Word Immediate

stswi rS,rA,NB

[POWER mnemonic: stsi]

31 S A NB ns
o 5 6 1011 15 16 20 21

if rA = 0 then FA+- 0
else FA +- (rA)
if NB = 0 then n+- 32
else n+- NB
r+-rS-l
i+- 32
do while n> 0

if i = 32 then r+- r + 1 (mod 32)
MEM(FA, 1) +- GPR(r) [i-i + 71
i+-i+8
if i = 64 then i +- 32
FA+- FA + 1
n +- n- 1

stswi

III Reserved

• 3031

EA is (r AIO). Let n = NB if NB :F. 0, n = 32 if NB = 0; n is the number of bytes to store. Let
nr = CEIL(n + 4); nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS + nr - 1. Bytes are
stored left to right from each register. The sequence of registers wraps around through rO if
required.

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, "DSI Exception (OxOO300)."

Note that, in some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-196 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

stswx
Store String Word Indexed

stswx rS,rA,rB

[POWER mnemonic: stsx]

31 s A B 661

o 5 6 10 11 15 16 20 21

if rA = 0 then b+- 0
else b +- (rA)
EA+- b + (rB)
n +- XER[25-31]
r+-rS-1
i +- 32
do while n> 0

if i = 32 then r +- r + 1 (Irod 32)
MEM(EA, 1) +- GPR(r) [i-i + 7]
i+-i+B
if i = 64 then i +- 32
EA+-EA+1
n+-n- 1

stswx

III Reserved

• 30 31

EA is the sum (rAIO) + (rB). Let n = XER[25-31]; n is the number of bytes to store. Let
nr = CEIL(n + 4); nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS + nr - 1. Bytes are
stored left to right from each register. The sequence of registers wraps around through rO if
required. If n = 0, no bytes are stored.

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, "DSI Exception (Ox00300)."

Note that, in some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-197

stw
Store Word

stw rS,d(rA)

[POWER mnemonic: st]

o
36 s

5 6 10 11

if rA = 0 then b +- 0
else b +- (rA)
EA+- b + EXTS(d)
MEM(EA. 4) +- rS

stw

A d·

15 16 31

EA is the sum (rAIO) + d. The contents of rS are stored into the word in memory addressed
byEA.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Supervisor Level Optional Form

o

8-198 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

stwbrx stwbrx
Store Word Byte-Reverse Indexed

stwbrx rS,rA,rB

[POWER mnemonic: stbrx]

lIB Reserved

31 S A B 662 • o 5 6 10 11 15 16 20 21 3031

if rA = 0 then b +- 0
else b +- (rA)
EA+- b + (rB)

MEM(EA. 4) +-rS[24-31] II rS[16-23] II rS[8-15] II rS[O-7]

EA is the sum (rAID) + (rB). The contents of the low-order eight bits of rS are stored into
bits 0-7 of the word in memory addressed by EA. The contents of the subsequent eight low­
order bits of rS are stored into bits 8-15 of the word in memory addressed by EA. The
contents of the subsequent eight low-order bits of rS are stored into bits 16-23 of the word
in memory addressed by EA. The contents of the subsequent eight low-order bits of rS are
stored into bits 24-31 of the word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-199

stwcx.
Store Word Conditional Indexed

stwcx. rS,rA,rB

31 S A

0 5 6 10 11 15 16

if rA = 0 then bto- 0
else b to- (rA)
EAto- b + (rB)
if RESERVE then
if RES~ = physical_addr(EA)

MEM(EA, 4) to- rS
CRO to- ObOO II ObI II XER[SO]

else
u to- undefined I-bit value
if u then MEM(EA, 4) to- rS
CRO to- ObOO II u II XER[SO]

RESERVE to- 0
else

CRO to- ObOO II ObO II XER[SO]

stwCX.

B 150 11 1
20 21 30 31

EA is the sum (rAIO) + (rB). If the reserved bit is set, the stwcx. instruction stores rS to
effective address (rA + rB), clears the reserved bit, and sets CRO[EQ]. If the reserved bit
is not set, the stwcx. instruction does not do a store; it leaves the reserved bit cleared and
clears CRO[EQ]. Software must look at CRO[EQ] to see if the stwcx. was successful.

The reserved bit is set by the lwarx instruction. The reserved bit is cleared by any stwcx.
instruction to any address, and also by snooping logic if it detects that another processor
does any kind of store to the block indicated in the reservation buffer when reserved is set.

If a reservation exists, and the memory address specified by the stwcx. instruction is the
same as that specified by the load and reserve instruction that established the reservation,
the contents of rS are stored into the word in memory addressed by EA and the reservation
is cleared.

If a reservation exists, but the memory address specified by the stwcx. instruction is not the
same as that specified by the load and reserve instruction that established the reservation,
the re~ervation is cleared, and it is undefined whether the contents of rS are stored into the
word in memory addressed by EA.

If no reservation exists, the instruction completes without altering memory.

CRO field is set to reflect whether the store operation was performed as follows.

CRO[LT GT EO SO] =ObOO II store-performed II XER[SO]

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, "DSI Exception (OxOO300)."

8-200 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

The granularity with which reservations are managed is implementation-dependent.
Therefore, the memory to be accessed by the load and reserve and store conditional
instructions should be allocated by a system library program.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-201

stwu
Store Word with Update

stwu rS,d(rA)

[POWER mnemonic: stu]

o
37 S

5 6 10 11

FAf- (rA) + EXTS(d)

MEM(FA, 4) f- rS
rAf- FA

stwu

A d

15 16 31

EA is the sum (rA) + d. The contents of rS are stored into the word in memory addressed
by EA.

EA is placed into r A.

IfrA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Supervisor Level Optional Form

o

8-202 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

stwux
Store Word with Update Indexed

stwux rS,rA,rB

[POWER mnemonic: stux]

o
31 S

5 6

EA +- (rA) + (rB)

MEM(EA, 4) +- rS

rA+- EA

10 11

stwux

III Reserved

A B 183 IIIII11
15 16 20 21 3031

EA is the sum (r A) + (rB). The contents of rS are stored into the word in memory addressed
by EA.

EA is placed into rA.

If r A = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

Supervisor Level Optional Form

x

8-203

stwx
Store Word Indexed

stwx rS,rA,rB

[POWER mnemonic: stx]

o
31 s

5 6 10 11

if rA = 0 then b +- 0
else b +- (rA)
FA+- b + (rB)

MEM(FA, 4) +- rS

stwx

III Reserved

A B 151 Illllll
15 16 20 21 3031

EA is the sum (rAIO) + (rB). The contents of rS are is stored into the word in memory
addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

8-204 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

subfx
Subtract From

subf rD,rA,rB (OE=ORc=O)
subf. rD,rA,rB (OE=ORc= 1)
subfo rD,rA,rB (OE= 1 Rc=O)
subfo. rD,rA,rB (OE= 1 Rc= 1)

31 D A B IOEI 40

0 5 6 10 11 15 16 20 21 22

rD +-., (rA) + (rB) + 1

The sum'" (rA) + (rB) + 1 is placed into rD.

The subf instruction is preferred for subtraction because it sets few status bits.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO

• XER:

Affected: SO, OV

Simplified mnemonics:

sub rD,rA,rB equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

(ifRc = 1)

(ifOE= 1)

subf rD,rB,rA

Supervisor Level Optional Form

xo

subfx

IRcl
30 31

8-205

subfcx
Subtract from Carrying

subfe
subfe.
subfeo
subfeo.

rD,rA,rB
rD,rA,rB
rD,rA,rB
rD,rA,rB

[POWER mnemonics: sf, sf., sfo, sfo.]

31 D A

o 5 6 10 11

rDf- .., (rA) + (rB) + 1

(OE=ORc=O)
(OE=ORc= 1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

I B

15 16 20 21 22

The sum.., (rA) + (rB) + 1 is placed into rD.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

subfcx

8

3031

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV

Simplified mnemonics:

sube rD,rA,rB equivalent to

PowerPC Architecture Level

UISA

(ifOE = 1)

subfe rD,rB,rA

Supervisor Level Optional Form

xo

8-206 PowerPC Microprocessor Family: The Programming Environments (32~Bit)

subfex
Subtract from Extended

subfe
subfe.
subfeo
subfeo.

rD,rA,rB
rD,rA,rB
rD,rA,rB
rD,rA,rB

(OE=ORc=O)
(OE=ORc= 1)
(OE= 1 Rc=O)
(OE= 1 Rc= 1)

[POWER mnemonics: sfe, sfe., sfeo, sfeo.]

31 o A

o 5 6 10 11 15 16

rDf- .., (rA) + (rB) + XER[CA]

The sum..., (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CRO field):

20 21 22

Affected: LT, GT, EQ, SO (ifRc = 1)

subfex

136

3031

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (ifOE= 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

Chapter 8. Instruction Set 8-207

subfic subfic
Subtract from Immediate Carrying

subftc rD,rA,SIMM

[POWER mnemonic: sft]

08 D A SIMM

o 5 6 10 11 15 16 31

rD ~ ., (rA) + EXTS (SIMM) + 1

The sum.., (rA) + EXTS(SIMM) + 1 is placed into rD.

Other registers altered:

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

8-208 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

subfmex subfmex
Subtract from Minus One Extended

subfme rD,rA (OE=ORc=O)
subfme. rD,rA (OE=ORc= 1)

subfmeo rD,rA (OE= 1 Rc=O)

subfmeo. rD,rA (OE= 1 Rc= 1)

[POWER mnemonics: sfme, sfme., sfmeo, sfmeo.]

III Reserved

31 D A 232

o 5 6 10 11 3031

rO +- ., IrA) + XER[CA] - 1

The sum'" (rA) + XER[CA] + (32)1 is placed into rD.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, OT, EQ, SO (ifRc = 1)

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (ifOE= 1)

PowerPC Architecture leWIl Supervisor leWIl Optional Form

UISA XO

Chapter 8. Instruction Set 8·209

subfzex subfzex
Subtract from Zero Extended

subfze rD,rA (OE=ORc=O)
subfze. rD,rA (OE=ORc= 1)
subfzeo rD,rA (OE= 1 Rc=O)
subfzeo. rD,rA (OE= 1 Rc= 1)

[POWER mnemonics: sfze, sfze., sfzeo, sfzeo.]

III Reserved

31 0 A 200

o 5 6 10 11 30 31

rO +-., (rA) + XER[CA]

The sum ... (rA) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CRO field):

Affected: LT. GT. EQ. SO (ifRc = 1)

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see
XERbelow).

• XER:

Affected: CA

Affected: SO. OV (ifOE= 1)

PowerPC Architecture level Supervisor Level Optional Form

UISA xo

8-210 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

sync sync
Synchronize

[POWER mnemonic: dcs]

Ii!i Reserved

31 598

o 5 6 10 11 15 16 2021 30 31

The sync instruction provides an ordering function for the effects of all instructions
executed by a given processor. Executing a sync instruction ensures that all instructions
preceding the sync instruction appear to have completed before the sync instruction
completes, and that no subsequent instructions are initiated by the processor until after the
sync instruction completes. When the sync instruction completes, all external accesses
caused by instructions preceding the sync instruction will have been performed with
respect to all other mechanisms that access memory. For more information on how the sync
instruction affects the VEA, refer to Chapter 5, "Cache Model and Memory Coherency."

Multiprocessor implementations also send a sync address-only broadcast that is useful in
some designs. For example, if a design has an external buffer that re-orders loads and stores
for better bus efficiency, the sync broadcast signals to that buffer that previous loads/stores
must be completed before any following loads/stores.

The sync instruction can be used to ensure that the results of all stores into a data structure,
caused by store instructions executed in a "critical section" of a program, are seen by other
processors before the data structure is seen as unlocked.

The functions performed by the sync instruction will normally take a significant amount of
time to complete, so indiscriminate use of this instruction may adversely affect
performance. In addition, the time required to execute sync may vary from one execution
to another.

The eieio instruction may be more appropriate than sync for many cases.

This instruction is execution synchronizing. For more information on execution
synchronization, see Section 4.1.5, "Synchronizing Instructions."

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-211

tibia tibia
Translation Lookaside Buffer Invalidate All

III Reserved

31 370

o 5 6 10 11 15 16 20 21 30 31

All TLB entries +- invalid

The entire translation lookaside buffer (TLB) is invalidated (that is, all entries are
removed).

The TLB is invalidated regardless of the settings of MSR[lR] and MSR[DR]. The
invalidation is done without reference to the SLB, segment table, or segment registers.

This instruction does not cause the entries to be invalidated in other processors.

This is a supervisor-level instruction and optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA x

8-212 PowerPC Microprocessor Family: The Programming Enviro.nments (32-Bit)

tlbie tlbie
Translation Lookaside Buffer Invalidate Entry

tlbie rB

[POWER mnemonic: tlbi]

• Reserved

o
31

5 6 10 11 15 16

VPS f- rB[4-19]
Identify TLB entries corresponding to VPS
Each such TLB entry f- invalid

B 30k6

20 21 30 31

EA is the contents of rB. If the translation lookaside buffer (TLB) contains an entry
corresponding to EA, that entry is made invalid (that is, removed from the TLB).

Multiprocessing implementations (for example, the 601, and 604) send a tlbie address-only
broadcast over the address bus to tell other processors to invalidate the same TLB entry in
their TLBs.

The TLB search is done regardless of the settings of MSR[lR] and MSR[DR]. The search
is done based on a portion of the logical page number within a segment, without reference
to the segment registers. All entries matching the search criteria are invalidated.

Block address translation for EA, if any, is ignored. Refer to Section 7.5.3.4,
"Synchronization of Memory Accesses and Referenced and Changed Bit Updates," and
Section 7.6.3, "Page Table Updates," for other requirements associated with the use of this
instruction.

This is a supervisor-level instruction and optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA x

Chapter 8. Instruction Set 8-213

tlbsync tlbsync
TLB Synchronize

• Reserved

31 566

o 30 31

If an implementation sends a broadcast for tlbie then it will also send a broadcast for
tlbsync. Executing a tlbsync instruction ensures that all t1bie instructions previously
executed by the processor executing the tlbsync instruction have completed on all other
processors.

The operation performed by this instruction is treated as a caching-inhibited and guarded
data access with respect to the ordering done by eieio.

Note that the 601 expands the use of the sync instruction to cover tlbsync functionality.

Refer to Section 7.5.3.4, "Synchronization of Memory Accesses and Referenced and
Changed Bit Updates," and Section 7.6.3, "Page Table Updates," for other requirements
associated with the use of this instruction.

This instruction is supervisor-level and optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA x

8-214 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

tw
Trap Word

tw TO,rA,rB

[POWER mnemonic: t]

o
31 TO A

5 6 10 11

a+- EXTS(rA)

b+- EXTS(rB)
if (a < b) & TO[O] then TRAP
if (a > b) & TO[l] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

tw

II) Reserved

B 4 111'1
15 16 20 21 3031

The contents of rA are compared with the contents of rB. If any bit in the TO field is set
and its corresponding condition is met by the result ofthe comparison, then the system trap
handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

tweq rA,rB
twlge rA,rB
trap

equivalent to
equivalent to
equivalent to

PowerPC Architecture Level

UISA

Chapter 8. Instruction Set

tw
tw
tw

4,rA,rB
5,rA,rB
31,0,0

Supervisor Level Optional Form

x

8-215

twi
Trap Word Immediate

twi TO,rA,SIMM

[POWER mnemonic: ti]

o
03 TO A

5 6 10 11 15 16

a~ EXTS(rA)
if (a < EXTS(SIMM» & TO[O] then TRAP
if (a> EXTS(SIMM» & TO[l] then TRAP
if (a = EXTS(SIMM» & TO[2] then TRAP
if (a <u EXTS(SIMM» & TO[3] then TRAP
if (a >U EXTS(SIMM» & TO[4] then TRAP

twi

SIMM

31

The contents of rA are compared with the sign-extended value of the SIMM field. If any
bit in the TO field is set and its corresponding condition is met by the result of the
comparison, then the system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

twgti rA,value
twllei rA,value

equivalent to
equivalent to

PowerPC Architecture Level

UISA

twi 8,rA,value
twi 6,rA,value

Supervisor Level Optional Form

D

8-216 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

xorx xorx
XOR

xor rA,rS,rB (Rc = 0)
xor. rA,rS,rB (Rc = 1)

31 S A B 316 IRCI
0 5 6 10 11 15 16 20 21 3031

rA f- (rS) ffi (rB)

The contents of rS is XORed with the contents of r B and the result is placed into r A.

Other registers altered:

• Condition Register (CRO field):

Affected: LT, GT, EQ, SO (ifRc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA x

Chapter 8. Instruction Set 8-217

xori • xorl
XOR Immediate

xori rA,rS,UIMM

[POWER mnemonic: xoril]

26 s A UIMM

o 5 6 10 11 15 16 31

rAf- (rS) €I) ((16)0 II UIMM)

The contents ofrS are XORed with OxOOOO II UIMM and the result is placed into rA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

8-218 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

xoris xoris
XOR Immediate Shifted

xoris rA,rS,UIMM

[POWER mnemonic: xoriu]

27 s A UIMM

o 5 6 10 11 15 16 31

rA~ (rS) E9 (UIMM II (16)0)

The contents of rS are XORed with UIMM II OxOOOO and the result is placed into rA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA o

Chapter 8. Instruction Set 8-219

Appendix A
PowerPC Instruction Set Listings
This appendix lists the PowerPC architecture's instruction set. Instructions are sorted by
mnemonic, opcode, function, and form. Also included in this appendix is a quick reference
table that contains general information, such as the architecture level, privilege level, and
form, and indicates if the instruction is optional.

Note that split fields, which represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, "Instruction Set."

A.1 Instructions Sorted by Mnemonic
Table A-I lists the instructions implemented in the PowerPC architecture in alphabetical
order by mnemonic.

Key:

Reserved bits

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

31 D A B 266

31 D A B 10

31 D A B 138

addi 14 D A SIMM

addlc 12 D A SIMM

addlc. 13 D A SIMM
r---------~--------+_------_+----------------------------~

addis 15 D A SIMM

31 D A 234

31 D A 202

31 S A B 28

31 S A B 60

andl. 28 S A UIMM

Appendix A. PowerPC Instruction Set Listings A-1

-

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andis. 29 S UiMM

bx 18 LI

bcx 16 BO

19 528

19 16

cmp 31 erfO 0

cmpi 11 erfO SIMM

cmpl 31 erfO 32

cmpll 10 erfO UIMM

31 S 26

crand 19 crbO erbA crbB 257

crandc 19 crbO erbA erbB 129

creqv 19 erbO erbA erbB 289

crnand 19 erbO crbA erbB 225

crnor 19 erbO erbA erbB 33

cror 19 erbO erbA erbB

crorc 19 crbO erbA erbB - crxor 19 crbO crbA crbB

dcba 1

dcbf

dcbi 2

dcbst

dcbt

dcbtst

dcbz

31

31

eciwx 31

ecowx 31

eieio 31

eqvx 31

extsbx 31

31

A-2 Power PC Microprocessor Family: The Programming Environments (32·Bit)

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabsx 63 D

faddx 63 D

faddsx 59 B

fcmpo 63 crfD B

fcmpu 63 crfD B

fctiwx 63 B

fctlwzx 63 D

fdivx 63 D

fdivsx 59 D A B

63 D A B

59 D A B C 29

63 72

63 C 28

59 C 28

63 C 25

59 C 25

63 136

fnegx 63 40 -fnmaddx 63 D A B C 31

fnmaddsx 59 D A B C 31

fnmsubx 63 D A B C 30

fnmsubsx 59 D

fresx 1 59 D

frspx 63 D

frsqrtex 1 63 D

fselx 1 63 D

fsqrtx 1 63 D

fsqrtsx 1 59 D

fsubx 63 D

fsubsx 59

Icbl 31

Isync 19 150

Ibz 34 d

Appendix A. PowerPC Instruction Set Listings A-3

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ibzu 35 D A d

Ibzux 31 D A B 119

Ibzx 31 D A B 87

Ifd 50 D A d

Ifdu 51 D A d

Ifdux 31 D A B 631

Ifdx 31 D A B 599

Ifs 48 D A d

Ifsu 49 D A d

Ifsux 31 D A B 567

Ifsx 31 D A B 535

Iha 42 D A d

Ihau 43 D A d

Ihaux 31 D A B 375

Ihax 31 D A B 343

Ihbrx 31 D A B 790

1hz 40 D A d - Ihzu 41 D A d

Ihzux 31 D A B 311

Ihzx 31 D A B 279

Imw 3 46 D A d

Iswl 3 31 D A NB 597

Iswx 3 31 D A B 533

Iwarx 31 D A B 20

Iwbrx 31 D A B 534

Iwz 32 D A d

Iwzu 33 D A d

Iwzux 31 D 55

Iwzx 31 D 23

mcrf 19 crfD 0

mcrfs 63 crfD 64

mcrxr 31 crfD 512

mfcr 31 D 19

A-4 Power PC Microprocessor Family: The Programming Environments (32-Bit)

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mffsx 63 583

mfmsr 3 31 83

mfspr 4 31 339

mfsr 3 31 595

mfsrin 3 31 659

mftb 31 371

mtcrf 31 144

63 70

63 38

63 711

63 134

mtmsr 3 31 146

mtspr 4 31 467

mtsr 3 31 210

mtsrin 3 31 242

mulhwx 31 D A B 75

mulhwux 31 D A B 11

mulll 7 D A -mullwx 31 D A 235

nandx 31 S A 476

negx 31 D A 104

31 S A B 124

31 S A B 444

31 S A B 412

24 S A UIMM

25 UIMM

19 50

20 MB ME

21 MB ME

23

sc 17

slwx 31

srawx 31 S A B 792

Appendix A. PowerPC Instruction Set Listings A-5

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

srawix 31 S A SH 824 IRe
srwx 31 S A B 536 IRe

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247

stbx 31 S A B 215

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759

stfdx 31 S A B 727

s tfiwxl 31 S A B 983

stfs 52 S A d

stfsu 53 S A d

I stfsux 31 S A B 695

stfsx 31 S A B 663

sth 44 S A d

sthbrx 31 S A B 918 I .. sthu 45 S A d

sthux 31 S A B 439

sthx 31 S A B 407

stmw 3 47 S A d

stswi 3 31 S A NB 725

~ tswx 3 31 S A B 661

stw 36 S A d

s

stwbrx 31 S A B 662 111~!;1
stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183

stwx 31 S A B 151

subfx 31 D A B OE 40 IRe
subfcx 31 D A B OE 8 IRe
subfex 31 D A B OE 136 IRe
subflc 08 D A SIMM

A-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

subfmex

sync

tibia 1,3

tlbie 1,3

tlbsync1,3

tw

twi

xor

xori

xoris

31

31

31

31

31

31

31

03 TO

31 S

26 S

27 S

Notes:
1 Optional instruction

2 Supervisor-level instruction

3 Load/store string/multiple instruction

4 Supervisor- and user-level instruction

Appendix A. PowerPC Instruction Set Listings

232

200

598

370

306

566

4

A SIMM

A B 316

A UIMM

A UIMM

A·7

-

..

A.2 Instructions Sorted by Opcode
Table A-2 lists the instructions defined in the PowerPC architecture in numeric order by
opcode.

Key:

Reserved bits

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

twi 000011 TO A SIMM

mulli 000111 D A SIMM

subtie 001000 D A SIMM

empli 0 0 1 0 1 0 erfD A UIMM
r-----------r-----

em pi 0 0 1 0 1 1 erfD A SIMM
r-----------r---~

addle 0 0 1 1 0 0 D A SIMM

addie. 001101 D A SIMM

addl 001110 D A SIMM

addis 001111 D A SIMM

bex 010000

se 010001

bx 010010

merf 010011 0000000000

belrx 010011 0000010000

ernor 010011 0000100001

010011 0000110010

erande 010011 0010000001

isyne 010011 0010010110

erxor o 1 0 0 1 1 erbD erbA erbB 0 0 1 1 0 0 0 0 0 1

ernand 010011 erbD erbA erbB 0011100001

erand o 1 0 0 1 1 erbD erbA erbB 0 1 0 0 0 0 0 0 0 1

ereqv 0 1 0 0 1 1 erbD erbA erbB 0 1 0 0 1 0 0 0 0 1
~--------~--------~-------+--------+------------------

erore o 1 0 0 1 1 erbD erbA erbB 0 1 1 0 1 0 0 0 0 1

eror o 1 0 0 1 1 erbD erbA 0 1 1 1 0 0 0 0 0 1

beetrx 010011 BO BI

rlwimix 010100 S A

A-a PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SASH MB ME

S A B MB ME

1000 S A UIMM

oris 0 1 1 0 0 1 S A UIMM
~--------~--------+--------+----------------------------~

xorl 0 1 1 0 1 0 S A UIMM
~--------~--------r_------~--------------------------~

xorls 0 1 1 0 1 1 S A UIMM
~--------~--------r_------~----------------------------~

andi. 0 1 1 1 0 0 S A UIMM
~--------~~--------~------~~----------------------------~

andis. 0 1 1 1 0 1 S A UIMM
~----------~----

emp 011111 erfD A B 0000000000
~----------~----

M 011111 TO A B 0000000100
~--------~--------r_------~--------+_._---------------

subfex 0 1 1 1 1 1 DAB 0 0 0 0 0 0 1 0 0 0
~--------~--------r_------_+--------+_+_--------------~~

addex 011111 DAB 0000001010
~----------~--------~--------~--------

mulhwux 0 1 1 1 1 1 D 0 0 0 0 0 0 1 0 1 1
~----------~--------

mfer 011111 D 0000010011

Iwarx 011111 D 0000010100
~--------~--------+--------+--------+------------------

Iwzx 011111 D A 0000010111

011111 S A 0000011000

011111 S A 0000011010

011111 A 0000011100 -011111 erfD A B 0000100000

011111 A B 0000101000

011111 A B 0000110110

011111 A B 0000110111

011111 A B 0000111100

011111 0001001011

mfmsr1 011111 0001010011
~---------

debf 011111 0001010110
1-----------

Ibzx 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1
I-----------r---------r---------

negx 011111 D A 0001101000
~--------~~--------~--------

Ibzux 011111 D A 0001110111
~--------~--------r_------_+--------+_-----------------

norx 0 1 1 1 1 1 S ABO 0 0 1 1 1 1 1 0 0
~--------~--------r_------_+--------+_._--------------~~

subfex 0 1 1 1 1 1 DAB 0 0 1 0 0 0 1 0 0 0
~--------~--------r_------_+--------+_+_--------------~~

addex 011111 DAB 0010001010

Appendix A. PowerPC Instruction Set Listings A-9

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 22 23 24 25 26 27 28 29 30 31

mtcrf 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0

mtmsr 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0

stwcx. 011111 0010010110

stwx 011111 0010010111

stwux 011111 0010110111

subfzex 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0

addzex 011111 0011001010

mtsr 1 011111 0011010010

stbx 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1

011111 0011101000

011111 0011101010

011111 0011101011

mtsrln 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0
\-------

dcbtst 011111 0011110110
1-------

stbux 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1
I-------r----r-----+----+-.----------

~dx 011111 0100001010
1-------

dc~ 011111 0100010110
1-------- Ihzx 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1

eqvx 0 1 1 1 1 1 0 1 000 1 1 1 00
1-------

tlble 1,2 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0

eciwx 011111 DAB 0100110110

Ihzux 011111 DAB 0100110111

xorx 0 1 1 1 1 1 S ABO 1 00 1 1 1 1 00
\-------r----r----~----+----------

mfspr 3 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1
I-------I------I------r-----~---------

Ihax 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1

tibia 1,2 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0

mftb 011111 D tbr 0101110011

Ihaux 0 1 1 1 1 1 DAB 0 1 0 1 1 1 0 1 1 1
\-------r----+-----+-----+-----------

sthx 011111 S A B 0110010111

orcx 011111 S A B 0110011100

ecowx 011111 S A B 0110110110

sthux 011111 S A B 0110110111

orx 011111 S A B 0110111100

A-10 PowerPC Microprocessor Family: The Programming Environments (32-8it)

Name 0 567 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dlvwux 011111 0 A 0111001011

mtspr 3 011111

dcbi 1 011111 A

nandx 011111 A

divwx 011111 0111101011

mcrxr 011111 crfD 1000000000

Iswx 4 011111 1000010101

Iwbrx 011111 0 A B 1000010110

Ifsx 011111 0 A B 1000010111

011111 1000011000

tlbsync 12,2 011111 1000110110

Ifsux 011111 1000110111

mfsr 2 011111 1001010011

Iswi 4 011111 1001010101

sync 011111 1001010110

Ifdx 011111 1001010111

Ifdux 011111 1001110111

mfsrin 2 011111 1010010011 -stswx 4 011111 S A B 1010010101

stwbrx 011111 S A B 1010010110

stfsx 011111 S A B 1010010111

stfsux 011111 S A B 1010110111

stswl 4 011111 S A NB 1011010101

stfdx 011111 S A B 1011010111

dcba 2 B 1011110110

stfdux 011111 S A B 1011110111

Ihbrx 011111 0 A B 1100010110

srawx 011111 S A B 1100011000

011111 S A SH 1100111000

011111 1101010110

011111 1110010110

011111

011111

Appendix A. PowerPC Instruction Set Listings A-11

Name 0 56789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

icbi 1111010110

stfiwx2

dcbz 1111110

Iwz 100000 0 A d

Iwzu 100001 0 A d

Ibz 100010 0 A d

Ibzu 100011 0 A d

stw 100100 S A d

stwu 100101 S A d

stb 100110 S A d

stbu 100111 S A d

1hz 101000 0 A d

Ihzu 101001 0 A d

Iha 101010 0 A d

Ihau 101011 0 A d

sth 101100 S A d

sthu 101101 S A d

• Imw4 101110 0 A d

stmw 4 101111 S A d

Ifs 110000 0 A d

Ifsu 110001 0 A d

Hd 110010 0 A d

Ifdu 110011 0 A d

stfs 110100 S A d

stfsu 110101 S A d

stfd 110110 S A d

stfdu 110111 S A d

111011 0

111011 0

faddsx 111011 0

fsqrtsx2 111011 0

fresx 2 111011 0

fmulsx 111011 0

A-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

111011 0 A B C 11100

111011 0 A

111011 0 A

111011 0 A

fcmpu 111111 crfD B 0000000000

frspx 111111 0 B 0000001100

fctlwx 111111 0 B 0000001110

fctlwzx 111111 0

fdlvx 111111 0

fsubx 111111 0

faddx 111111 0

fsqrtx 2 111111 0

fselx 2 111111 0

fmulx 111111 0 A C 11001

fmsubx 111111 0 A C 11100

fmaddx 111111 0 A B C 11101

111111 0 A B C 1 1 110

fnmaddx 111111 0 A B C 1 1 1 1 1 -fcmpo 111111 0000100000

111111 0000100110

111111 0000101000

111111 0001000000

111111 0001000110

111111 0001001000

111111 0010000110

111111 0010001000

111111 0100001000

mffsx 111111 1001000111

mtfsfx 111111 1011000111

Notes:
1 Supervisor-level instruction

2 Optional instruction

3 Supervisor- and user-level instruction

4 Load/store string/multiple instruction

Appendix A. Power PC Instruction Set Listings A-i3

A.3 Instructions Grouped by Functional Categories
Table A-3 through Table A-30 list the PowerPC instructions grouped by function.

Key: 'all Reserved bits

Table A-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

31 D A B 266

31 D A B 10

31 D A B 138

addl 14 D A SIMM

addlc 12 D A SIMM

addlc. 13 D A SIMM

addis 15 0 A SIMM

31 D A 234

31 D A 202

dlvwx 31 D A 491

dlvwux 31 0 A 459

mulhwx 31 D A 75 - mulhwux 31 D A 11

mulII 07 D A

mullwx 31 0 A 235

negx 31 D A 104

subfx 31 D A 40

31 D A 8

08 D A SIMM

31 D A 136

31 D A 232

31 D A 200

Table A-4. Integer Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD A B

cmpl 11 crfD A

cmpl 31 crfD A B

A-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

cmpliLI ___ 1_0 __ -L_c_rt_D~lwl~J~L~IL-___ A ____ -L ______________ U_IM_M ______________ ~

Table A-S. Integer Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 lRc

andcx 31 S A B 60 lRc

andi. 28 S A UIMM

andls. 29 S A UIMM

c ntlzwx 31 S A 26 IRc

eqvx 31 S A B 284 IRc

e xtsbx 31 S A 954 Rc

extshx 31 S A 922 Rc

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

orl 24 S A UIMM

oris 25 S A UIMM

xorx 31 S A B 316 IRc

xorl 26 S A UIMM
_1-

T

xorls 27 S A UIMM

Appendix A. PowerPC Instruction Set Listings A-15

-

Name 0

rlwlmlx

rlwlnmx

rlwnmx

Name 0

slwx

srawx

srawlx

srwx

A-16

22

20

21

31

31

31

31

Table A-6. Integer Rotate Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S A SH MB ME Rc

S A SH MB ME Rc

S A SH MB ME Rc

Table A-7.lnteger Shift Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S A B 24 Rc

S A B 792 Rc

S A SH 824 Rc

S A B 536 Rc

PowerPC Microprocessor Family: The Programming Environments (32-8It)

Table A-S. Floating-Point Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D
r------r--------+--------+---------

faddsx 59 D

63 D

59 D

63 D

59 D

59 D

63 D

63 D

59 D

fsalx 1 63 D

fsqrtx 1 63 D
1------+-------

fsqrtsx 1 59 D

Note:
1 Optional instruction

Table A-9. Floating-Point Multiply-Add Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx

fmaddsx

fmsubx

fmsubsx

fnmaddx

fnmaddsx

fnmaubx

fnmsubsx

63

59

63

59

63

59

63

59

D A

D A

D A

D A

D A

D A

D A

D A

Appendix A. PowerPC Instruction Set Listings

B C 29 Rc

B C 29 Rc

B C 28 Rc

B C 28 Rc

B C 31 Rc

B C 31 Rc

B C 30 Rc

B C 30 Rc

A-17

-

Table A-10. Floating-Point Rounding and Conversion Instructions

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

B 14

B 15

B 12

Table A-11. Floating-Point Compare Instructions

Name 0 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tcmpo 63 crfD A B 32
~---I---

tcmpu 63 crfD A B o L-.. __ --1... __

Table A-12. Floating-Point Status and Control Register Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

64

583

70

38

711 • 134

A·18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table A-13. Integer Load Instructions

Name 0

Ibz

Ibzu

Ibzux

Ibzx

Iha

Ihau

Ihaux

Ihax

1hz

Ihzu

Ihzux

Ihzx

Iwz

Iwzu

Iwzux

Iwzx

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

34 D A d

35 D A d

31 D A B 119

31 D A B 87

42 D A d

43 D A d

31 D A B 375

~ 31 D A B 343

D A d

41 D A d

31 D A B 311

31 D A B 279

32 D A d

33 D A d

I 31 D A B 55

31 D A B 23

Appendix A. PowerPC Instruction Set Listings A·19

-

..

Name 0

stb

stbu

stbux

stbx

sth

sthu

sthux

sthx

stw

stwu

stwux

stwx

38

39

31

31

44

45

31

31

36

37

31

31

Table A-14.lnteger Store Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S A d

S A d

S A B 247

~ S A B 215

S A d

S A d

S A B 439

S A B 407

S A d

S A d

I S A B 183

S A B 151

Table A-15. Integer Load and Store with Byte Reverse Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 262728293031

Ihbrx 31 D A B 790

Iwbrx 31 D A B 534

sthbrx 31 S A B 918

stwbrx 31 S A B 662

Table A-16.lnteger Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Imw11 46 DAd

stmw
1

:===4=7==::====S====::====A====::===============d===============:
Note:

Name 0

A-20

Iswi 1

Iswx'

stswi'

1 Load/store string/multiple instruction

Table A-17. Integer Load and Store String Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

31 D A NB 597

31 D A B 533

31 S A NB 725

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

stswx 1 I 31 S A B 661

Note:
1 Load/store string/multiple instruction

Table A-18. Memory Synchronization Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

elelo 31 854

Isync 19 150
1------

Iwarx 31 20

stwcx. 31 150

sync 31 598

Table A-19. Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31

Ifd

Ifdu

Ifdux

Ifdx

Its

Itsu

Ifsux

Ifsx

50

51

31

31

48

49

31

31

D A

D A

D A

D A

D A

D A

D A

D A

Appendix A. PowerPC Instruction Set Listings

d

d i

B 631

~ B 599

d

d

I B 567

B 535

A-21

-

Table A-20. Floating-Point Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31

atfd 54 S A d I
a tfdu 55 S A d

atf dux 31 S A B 759

a tfdx 31 S A B 727

atfl wx 1 31 S A B 983

atfa 52 S A d

a tfau 53 S A d

atf aux 31 S A B 695

tfax a 31 S A B 663
up"cnal ..

Table A-21. Floating-Point Move Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

63 D B 264

63 D B 72

63 D B 136 - 63 D B 40

Table A-22. Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI

bcx 16 BO BI BD

bcctrx 19 BO BI 528

19 BO BI 16

A-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table A-23. Condition Register Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

erand 19 crbD crbA crbB 257

erande 19 crbD crbA erbB 129

ereqv 19 crbD crbA crbB 289

ernand 19 crbD crbA crbB 225

ernor 19 crbD crbA crbB 33

eror 19 crbD crbA crbB 449

erore 19 crbD crbA crbB 417

erxor 19

merf 19 crfD

Table A-24. System Linkage Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18.19 20 21 22 23 24 25 26 27 28 29 30 31

se 17

Note:
1 Supervisor-level instruction

Table A-25. Trap Instructions •• T

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

~1~--::--~----::----+----:----4---_B----~---S-IM-M--_4--------~I~~

Appendix A. PowerPC Instruction Set Listings A-23

Table A-26. Processor Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

merxr 31 erfS 512

mfer 31 D 19

mfmsr 1 31 D 83

mfspr 2 31 D 339

mftb 31 D 371

mterf 31 S 144

mtmsr 1 31 S 146

mtspr 2 31 D 467

Notes:
1 Supervisor-level instruction

2 Supervisor- and user-level instruction

Table A-27. Cache Management Instructions

Name 0 5 6 7 8 9 1011 12131415161718192021 22232425262728293031

deba 1 31 B 758

debf 31 B 86

- debl 2 31 B 470

dcbst 31 B 54

debt 31 B 278

debtst 31 B 246

debz 31 B 1014

iebl 31 B 982

Notes:
1 Optional instruction

2 Supervisor-level instruction

A-24 PowerPC Microprocessor Family: The Programming Environments (32-8it)

Table A-28. Segment Register Manipulation Instructions.

Name 0 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1 31 D 595

mfsrln 1 31 D 659

mtsr 1 31 S 210

mtsrin 1 31 S 242

Note:

1 Supervisor-level instruction

Table A-29. Lookaside Buffer Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tibia 1,2 31 370

tlbie 1,2 31 306

tlbsync 1 31 566

Notes:

Name 0

1 Supervisor-level instruction

2 Optional instruction

Table A-30. External Control Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

.::::I~===:=:==~~====:====:~====:====~~====:====:~========:=~=0=========1:·~:1

Appendix A. PowerPC Instruction Set Listings A-25

-

A.4 Instructions Sorted by Form
Table A-31 through list the PowerPC instructions grouped by form.

Key:

• Reserved bits

Table A-31. I-Form

opeD LI

Specific Instruction

Name 0 5 6 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bxl 18 LI HLKI

Table A-32. B-Form

opeD BO BI BD IAA]LKI

Specific Instruction

Name 0 5 6 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcxLI ___ 16 __ ~ ____ B_O ____ ~ ___ B_I __ ~ _____________ B_D ____________ ~~~L~KI

Table A-33. SC-Form -
Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc

Table A-34. D-Form

opeD D A d

opeD D A SIMM

opeD S A d

opeD S A UIMM

opeD crfD L A SIMM

opeD crfD L A UIMM

opeD TO A SIMM

A-26 PowerPC Microprocessor Family: The Programming Environments (32-8It)

Name 0

addl

addlc

addic.

addis

andl

andis

cmp

cmpl

Ibz

Ibzu

Ifd

Ifdu

Hs

Ifsu

lha

Ihau

I

I

1hz

Ihzu

Imw 1

Iwz

Iwzu

mull I

I or

oris

stb

stbu

slfd

slfdu

slfs

slfsu

sth

sthu

stmw 1

14

12

13

15

28

29

11

10

34

35

50

51

48

49

42

43

40

41

46

32

33

7

24

25

38

39

54

55

52

53

44

45

47

Specific Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

D A SIMM

D A SIMM

D A SIMM

D A SIMM

S A UIMM

S A UIMM

erfD L A SIMM

erfD L A UIMM

D A d

D A d

D A d

D A d

D A d

D A d

D A d

D A d

D A d

D A d

D A d

D A d

D A d

D A SIMM

S A UIMM

S A UIMM

S A d

S A d

S A d

S A d

S A d

S A d

S A d

S A d

S A d

Appendix A. PowerPC Instruction Set Listings A·27

-

stw 36 5 A d

stwu 37 5 A d

subfle 08 D A SIMM

twl 03 TO A SIMM

xorl 26 5 A UIMM

xorls 27 5 A UIMM

Note:
1 Load/store string/multiple instruction

Table A-3S. X-Form

opeD D xo
opeD D xo
opeD D xo
opeD D xo
opeD D xo
opeD 5 A B xo
opeD 5 A B xo
opeD 5 A B xo
opeD 5 A NB XO - opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo
opeD xo

A·28 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

XO

31 S B 28

31 S B 60

31 erfD B 0

31 erfD 32

26

758

debf 31 A B 86

debl 2 31 A B 470

debst 31 A B 54

debt 31 A B 278

debtst 31 A B 246

debz 31 A B 1014

eelwx 31 A B 310

eeowx 31 438

854

284

31 954 -31 922

63 264

63 erfD B 32

63 erfD B 0

63 B 14

63 0 B 15

63 0 B 72

63 0 B 136

63 0 B 40

B 12

B 982

Ibzux 31 0 A B 119

Ibzx 31 0 A B 87

Ifdux 31 0 A B 631

Ifdx 31 0 A B 599

Appendix A. PowerPC Instruction Set Listings A-29

"sux 31 D A B 567

Ifsx 31 D A B 535

Ihaux 31 D A B 375

Ihex 31 D A B 343

Ihbrx 31 A B 790

Ihzux 31 D A B 311

Ihzx 31 D A B 279

Iswl 3 31 D A NB 597

Iswx4 31 D A B 533

Iwarx 31 D A B 20

Iwbrx 31 D A B

Iwzux 31 D A B 55

Iwzx 31 D A B 23

merfs 63 erfD 64

merxr 31 erfD 512

mfer 31 D 19

mffsx 63 D 583

mfmsr 3 31 D 83

- mfsr 3 31 D 5.95

mfsrln 3 31 D 659

63 erbD 70

63 38

63 erbD

31 S

31 S

31 S 242

31 S B 476

norx 31 S A B 124

orx 31 S A B 444

orex 31 S A B 412

slwx 31 S A B 24

31 S A B 792

31 S A SH 824

31 S A B 536

stbux 31 S A B 247

A-30 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

stbx 31 S A B

stfdux 31 S A B

stfdx 31 S A B 727

stflwx 1 31 S A B 983

stfsux 31 S A B 695

stfsx 31 S A B 663

sthbrx 31 S A B

sthux 31 S A B

sthx 31 S A B

stswl 4 31 S A NB

stswx 4 31 S A B

stwbrx 31 S A B

stwcx. 31 S A B

stwux 31 S A B

stwx 31 S A B

sync 31

tibia 2, 3 31

tlble 2, 3 31

tlbsync 2, 3 31 -tw 31 TO A B

31 S A B

Notes:
1 Optional instruction

2 Supervisor-level instruction

3 Load/store string/multiple instruction

Appendix A. PowerPC Instruction Set Listings A-31

Table A-36. XL-Form

xo

xo

xo

xo

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctrx 19 BO BI 528

bclrx 19 BO BI 16

crand 19 crbD erbA erbB 257

crandc 19 erbD erbA erbB 129

creqv 19 erbD erbA erbB 289

crnand 19 erbD erbA erbB 225

crnor 19 erbD erbA crbB 33

. cror 19 crbD crbA erbB 449

crorc 19 crbD crbA erbB 417

crxor 193

layne 150 • mcrf 0

rfl1 50

rfld 1 18

Note:
1 Supervisor-level instruction

Table A-37. XFX-Form

opeD D spr XO

opeD D CRM XO

opeD S spr XO

opeD D tbr XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 1 31 D spr 339
~-----+--------+-----------------~-----------------

mftb 31 D tbr 371

mtcrf 31 S CRM 144

A-32 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

mtspr1LI ___ 3_1 __ ~ _____ D ____ ~ _________ s_pr ________ ~ __________ 46_7 ________ ~I~I~J
Note:

1 Supervisor- and user-level instruction

Table A-3S. XFL-Form

opeD 111\11 FM lii~11 B xo

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsfxl'--_63_-"I!I_III'--__ FM __ --""I!,~!llll.!JI __ B _-'-___ 71_1 ___ L-JIRCI

Table A-39. XO-Form

opeD D A xo

opeD D A xo

opeD D A XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A 266

31 D A 10

31 D A 138 -D A 31 234

31 D A 202

31 D A 491

31 D A 459

31 D A 75

31 D A 11

31 D A 235

31 D A 104

31 D A 40

31 D A 8

31 D A 136

31 D A 232

subfzex 31 D A 200

Appendix A. Power PC Instruction Set Listings A-33

Table A-40. A-Form

OPCD D

OPCD D

OPCD D

OPCD D

Specific Instructions

Name 0 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

63 D A B

59 D A B

63 D A B

59 D A B

63 D A B

59 D A B C 29

63 D A B C 28

59 D A B C 28

63 D A C 25

fmulsx 59 D A C 25

fnmaddx 63 D A B C 31 - fnmaddsx 59 D A B C 31

fnmsubx 63 D A B C 30

fnmsubsx 59 D

fresx 1 59 D

frsqrtex 1 63 D

fselx 1 63 D

fsqrtx 1 63 D

fsqrtsx 1 59 D

fsubx 63 D

59 D A B

Note:
1 Optional instruction

A-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table A-41. M-Form

OPCD

I~
SH MB S A ME

OPCD S MB ME A B

Specific Instructions

Name 0

rlwimix

rlwinmx

rlwnmx

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

20 S A SH MB ME Rc

21 S A SH MB ME Rc

23 S A B MB ME Rc

Appendix A. PowerPC Instruction Set Listings A·35

-

-

A.S Instruction Set Legend
Table A-42 provides general information on the PowerPC instruction set (such as the
architectural level, privilege level, and form).

Table A-42. PowerPC Instruction Set Legend

UISA VEA OEA Supervisor Level Optional Form

addx .,j XO

addex .,j XO

addex .,j XO

addl .,j D

addle .,j D

addle. .,j D

addis .,j D

addmex .,j XO

addzex .,j XO

andx .,j X

andex .,j X

andl. .,j D

andls. .,j D

bx .,j I

bcx .,j B

bcetrx .,j XL

belrx .,j XL

emp .,j X

empl .,j D

empl .,j X

empll .,j D

entlzwx .,j X

erand .,j XL

erande .,j XL

ereqv .,j XL

ernand .,j XL

crnor .,j XL

cror .,j XL

crorc .,j XL

A-36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table A-42. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form

erxor " XL

deba " " X

debf " X

debl " " X

debst " X

debt " X

debtst " X

debz " X

dlvwx " XO

divwux " XO

eelwx " " X

eeowx " " X

eielo " X

eqvx " X

extsbx " X

extshx " X

fabsx " X

faddx " A -faddsx " A

fempo " X

fempu " X

fetiwx " X

fetiwzx " X

fdlvx " A

fdlvsx " A

fmaddx " A

fmaddsx " A

fmrx " X

fmsubx " A

fmsubsx " A

fmulx " A

fmulsx " A

Appendix A. PowerPC Instruction Set Listings A-37

Table A-42. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form

fnabsx " X

fnegx " X

fnmaddx " A

fnmaddsx " A

fnmsubx " A

fnmsubsx " A

fresx " " A

frspx " X

frsqrtex " " A

fselx " " A

fsqrtx " " A

fsqrtsx " " A

fsubx " A

fsubsx " A

icbl " X

isync " XL

- Ibz " D

Ibzu " D

Ibzux " X

Ibzx " X

Ifd " D

Ifdu " D

Ifdux " X

Ifdx " X

Ifs " D

Ifsu " D

Ifsux " X

Ifsx " X

Iha " D

Ihau " D

Ihaux " X

Ihax " X

A-38 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table A-42. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form

Ihbrx " X

1hz " 0

Ihzu " 0

Ihzux " X

Ihzx " X

Imw 2 " 0

Iswi 2 " X

Iswx 2 " X

Iwarx " X

Iwbrx " X

Iwz " 0

Iwzu " 0

Iwzux " X

Iwzx " X

mcrf " XL

mcrfs " X

mcrxr " X

mfcr " X -mffs " X

mfmsr " " X

mfspr1 " " " XFX

mfsr " " X

mfsrin " " X

mftb " XFX

mtcrf " XFX

mtfsbOx " X

mtfsb1x " X

mtfsfx " XFL

mtfsfix " X

mtmsr " " X

mtspr1 " " " XFX

mtsr " " X

Appendix A. PowerPC Instruction Set Listings A-39

Table A-42. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form

mtsrin

'" '"
X

mulhwx

'"
XO

mulhwux

'"
XO

mulll

'"
D

mullwx

'"
XO

nandx

'"
X

negx

'"
XO

norx

'"
X

orx

'"
X

orcx

'"
X

orl

'"
D

oris

'"
D

rfl

'" '"
XL

rlwlmlx

'"
M

rlwinmx

'"
M

rlwnmx

'"
M

- se

'" '"
SC

slwx

'"
X

srawx

'"
X

srawix
'"

X

srwx

'"
X

stb

'"
D

stbu

'"
D

stbux

'"
X

stbx

'"
X

stfd

'"
D

stfdu

'"
D

stfdux

'"
X

stfdx

'"
X

stfiwx

'"
X

stfs

'"
D

stfsu
'"

D

A-40 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table A-42. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form

stfsux ..j X

stfsx ..j X

sth ..j 0

sthbrx ..j X

sthu ..j 0

sthux ..j X

sthx ..j X

stmw 2 ..j 0

stswi 2 ..j X

stswx 2 ..j X

stw ..j 0

stwbrx ..j X

stwcx. ..j X

stwu ..j 0

stwux ..j X

stwx ..j X

subfx ..j XO

subfcx ..j XO -subfex ..j XO

subflc ..j 0

subfmex ..j XO

subfzex ..j XO

sync ..j X

tlbiax ..j ..j ..j X

tlbiex ..j ..j ..j X

tlbsync ..j ..j X

tw ..j X

twl ..j 0

xorx ..j X

Appendix A. Power PC Instruction Set Listings A-41

Table A-42. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form

xorl ..; D

xoris ..; D

Notes:

1 Supervisor- and user-level instruction

2 Load/store string or multiple instruction

-

A-42 PowerPC Microprocessor Family:The Programming Environments (32-Bit)

Appendix B
POWER Architecture Cross Reference
This appendix identifies the incompatibilities that must be managed in migration from the
POWER architecture to PowerPC architecture. Some of the incompatibilities can, at least
in principle, be detected by the processor, which traps and lets software simulate the
POWER operation. Others cannot be detected by the processor.

In general, the incompatibilities identified here are those that affect a POWER application
program. Incompatibilities for instructions that can be used only by POWER system
programs are not discussed. Note that this appendix describes incompatibilities with
respect to the PowerPC architecture in general.

B.1 New Instructions, Formerly Supervisor-Level
Instructions

Instructions new to PowerPC typically use opcode values (including extended opcode) that
are illegal in the POWER architecture. A few instructions that are supervisor-level in the
POWER architecture (for example, dclz, called dcbz in the PowerPC architecture) have
been made user-level in the PowerPC architecture. Any POWER program that executes one
of these now-valid, or now-user-Ievel, instructions expecting to cause the system illegal
instruction error handler (program exception) or the system supervisor-level instruction
error handler to be invoked, will not execute correctly on PowerPC processors. (Note that,
in the architecture specification, user- and supervisor-level are referred to as problem and
privileged state, respectively, and exceptions are referred to as interrupts.)

B.2 New Supervisor-Level Instructions
The following instructions are user-level in the POWER architecture but are supervisor­
level in PowerPC processors.

• mfmsr

• mfsr

Appendix B. POWER Architecture Cross Reference B-1

M:M

-

B.3 Reserved Bits in Instructions
These are shown as zeros and the bit field is shaded in the instruction opcode definitions.
In the POWER architecture such bits are ignored by the processor. In the PowerPC
architecture they must be zero or the instruction form is invalid. In several cases, the
PowerPC architecture assumes that such bits in POWER instructions are indeed zero. The
cases include the following:

• cmpi, cmp, cmpli, and cmpl assume that bit 10 in the POWER instructions is o.
• mtspr and mfspr assume that bits 16-20 in the POWER instructions are O.

B.4 Reserved Bits in Registers
The POWER architecture defines these bits to be zero when read, and either zero or one
when written to. In the PowerPC architecture it is implementation-dependent for each
register, whether these bits are zero when read, and ignored when written to, or are copied
from source to destination when read or written to.

B.S Alignment Check
The AL bit in the POWER machine state register, MSR[24], is not supported in the
PowerPC architecture. The bit is reserved in the PowerPC architecture. The low-order bits
of the EA are always used. Notice that value zero--the normal value for a reserved SPR
bit-means ignore the low-order EA bits in the POWER architecture, and value one means
use the low-order EA bits. However, MSR[24] is not assigned new meaning in the PowerPC
architecture.

B.6 Condition Register
The following instructions specify a field in the condition register (CR) explicitly (via the
crtD field) and also have the record bit (Rc) option. In the PowerPC architecture, if Rc = 1
for these instructions the instruction form is invalid. In the POWER architecture, if Rc = 1
the instructions execute normally except as shown in Table B-1.

Table B-1. Condition Register Settings

Instruction Setting

cmp CRO is undefined if Re = 1 and erfD "" 0

cmpl CRO is undefined if Re = 1 and erfD "" 0

merxr CRO is undefined if Re = 1 and crfD "" 0

fempu CR1 is undefined if Re = 1

fempo CR1 is undefined if Re = 1

merfs CR1 is undefined if Re = 1 and erfD "" 1

8-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

B.7 Inappropriate Use of LK and Rc bits
For the instructions listed below, if LK = 1 or Rc = I, POWER processors execute the
instruction normally with the exception of setting the link register (if LK = 1) or the CRO
or CRl fields (if Rc = 1) to an undefined value. In the PowerPC architecture, such
instruction forms are invalid.

The PowerPC instruction form is invalid if LK = l:

• sc (svcx in the POWER architecture)

• Condition register logical instructions (that is, crand, crandc, creqv, crnand,
crnor, cror, crorc, and crxor)

• mcrf

• isync (ics in the POWER architecture)

The PowerPC instruction form is invalid if Rc = l:
• Integer X-form load and store instructions:

- X-form load instructions-Ibzux, Ibzx, lhaux, lhax, lhbrx, Ihzux, lhzx, lswi,
lswx, lwarx, lwbrx, lwzux, lwzx

- X-form store instructions-stbux, stbx, sthbrx, sthux, sthx, stswi, stswx,
stwbrx, stwcx., stwux, stwx

• Integer X-form compare instructions (that is, cmp, cmpl)

• X-form trap instruction (that is, td)

• mtspr, mfspr, mtcd, mcrxr, mfcr

• Floating-point X-form load and store instructions and floating-point compare
instructions

- Floating-point X-form load instructions-lfdux, lfdx, lfsux, lfsx

- Floating-point X-form store instructions-stfdux, stfdx, stfiwx, stfsux, stfsx

- Floating-point X-form compare instruction-fcmpo, fcmpu

• mcrfs

• dcbz (dclz in the POWER architecture)

B.8 BO Field
The POWER architecture shows certain bits in the BO field-used by branch conditional
instructions-as x without indicating how these bits are to be interpreted. These bits are
ignored by POWER processors.

The PowerPC architecture shows these bits as either z or y. The z bits are ignored, as in
POWER. However, the y bit need not be ignored, but rather can be used to give a hint about
whether the branch is likely to be taken. If a POWER program has the incorrect value for
this bit, the program will run correctly but performance may suffer.

Appendix B. POWER Architecture Cross Reference 8-3

..

-

B.9 Branch Conditional to Count Register
For the case in which the count register is decremented and tested (that is, the case in which
BO[2] = 0), the POWER architecture specifies only that the branch target address is
undefined, implying that the count register, and the link register (if LK = 1), are updated in
the normal way. The PowerPC architecture considers this instruction form invalid.

B.10 System Call/Supervisor Call
The System Call (sc) instruction in the PowerPC architecture is called Supervisor Call
(svcx) in the POWER architecture. Differences in implementations are as follows:

• The POWER architecture provides a version of the svcx instruction (bit 30 = 0) that
allows instruction fetching to continue at anyone of 128 locations. It is used for "fast
Supervisor Calls." The PowerPC architecture provides no such version. If bit 30 of
the instruction is zero the instruction form is invalid.

• The POWER architecture provides a version of the svcx instruction
(bits 30-31 = ObI 1) that resumes instruction fetching at one location and sets the
link register (LR) to the address of the next instruction. The PowerPC architecture
provides no such version; if Rc = 1, the instruction form is invalid.

• For the POWER architecture, information from the MSR is saved in the count
register (CTR). For the PowerPC architecture, this information is saved in the
machine status save/restore register 1 (SRR1).

• The POWER architecture permits bits 16-29 of the instruction to be nonzero, while
in the PowerPC architecture, such an instruction form is invalid.

• The POWER architecture saves the low-order 16 bits of the svcx instruction in the
CTR; the PowerPC architecture does not save them.

• The settings of the MSR bits by the system call exception differ between the
POWER architecture and the PowerPC architecture.

B.11 XER Register
Bits 16-23 ofthe XER are reserved in the PowerPC architecture, whereas in the POWER
architecture they are defined to contain the comparison byte for the Iscbx instruction, which
is not included in the PowerPC architecture.

B.12 Update Forms of Memory Access
The PowerPC architecture requires that rA not be equal to either rD (integer load only) or
zero. If the restriction is violated, the instruction form is invalid. See Section 4.1.3, "Classes
of Instructions," for information about invalid instructions. The POWER architecture
permits these cases and simply avoids saving the EA.

8-4 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

B.13 Multiple Register Loads
When executing instructions that load multiple registers, the PowerPC architecture requires
that rA, and rB if present in the instruction format, not be in the range of registers to be
loaded, while the POWER architecture permits this and does not alter r A or r B in this case.
(The PowerPC architecture restriction applies even if rA = 0, although there is no obvious
benefit to the restriction in this case since rA is not used to compute the effective address
if rA = 0.) If the PowerPC architecture restriction is violated, either the system illegal
instruction error handler is invoked or the results are boundedly undefined.

The instructions affected are listed as follows:

• lmw (1m in the POWER architecture)

• lswi (lsi in the POWER architecture)

• lswx (lsx in the POWER architecture)

For example, an lmw instruction that loads all 32 registers is valid in the POWER
architecture but is an invalid form in the PowerPC architecture.

B.14 Alignment for Load/Store Multiple
When executing load/store multiple instructions, the PowerPC architecture requires the EA
to be word-aligned and yields an alignment exception or boundedly-undefined results if it
is not. The POWER architecture specifies that an alignment exception occurs (if AL = 1).

B.15 Load and Store String Instructions
In the PowerPC architecture, an lswx instruction with zero length leaves the content of rD
undefined (if rD:¢; rA and rD:¢; rB) or is an invalid instruction form (if rD = rA or
rD = rB), while in the POWER architecture the corresponding instruction (lsx) is a no-op
in these cases.

Note also that, in the PowerPC architecture, an lswx instruction with zero length may alter
the referenced bit, and an stswx instruction with zero length may alter the referenced and
changed bits, while in the POWER architecture the corresponding instructions (lsx and
stsx) do not alter the referenced and changed bits.

B.16 Synchronization
The sync instruction (called des in the POWER architecture) and the isync instruction
(called the ics in the POWER architecture) cause a much more pervasive synchronization
in the PowerPC architecture than in the POWER architecture. For more information, refer
to Chapter 8, "Instruction Set."

Appendix B. POWER Architecture Cross Reference 8-5

-

B.17 Move to/from SPR
Differences in how the Move to/from Special Purpose Register (mtspr and mfspr)
instructions function· are as follows:

• The SPR field is 10 bits long in the PowerPC architecture, but only 5 bits in POWER
architecture.

• The mfspr instruction can be used to read the decrementer (DEC) register in
problem state (user mode) in the POWER architecture, but only in supervisor state
in the PowerPC architecture.

• If the SPR value specified in the instruction is not one of the defined values, the
POWER architecture behaves as follows:

- Ifthe instruction is executed in user-level privilege state and SPR[O] = 1, a
supervisor-level instruction type program exception occurs. No architected
registers are altered except those set by the exception.

- If the instruction is executed in supervisor-level privilege state and SPR[O] = 0,
no architected registers are altered.

In this same case, the PowerPC architecture behaves as follows:
- If the instruction is executed in user-level privilege state and SPR[O] = 1, either

an illegal instruction type program exception or a supervisor-level instruction
type program exception occurs. No architected registers are altered except those
set by the exception.

- Otherwise, (the instruction is executed in supervisor-level privilege state or
SPR[O] = 0), either an illegal instruction type program exception occurs (in
which case no architected registers are altered except those set by the exception)
or the results are boundedly undefined.

B.18 Effects of Exceptions on FPSCR Bits FR and FI
For the following cases, the POWER architecture does not specify how the FR and Flbits
are set, while the PowerPC architecture preserves them for illegal operation exceptions
caused by compare instructions and clears them otherwise.

• Invalid operation exception (enabled or disabled)

• Zero divide exception (enabled or disabled)

• Disabled overflow exception

8-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

B.19 Floating-Point Store Single Instructions
There are several respects in which the PowerPC architecture is incompatible with the
POWER architecture when executing store floating-point single instructions.

The POWER architecture uses FPSCR[UE] to help determine whether denormalization
should be done, while the PowerPC architecture does not. Note that in the PowerPC
architecture, if FPSCR[UE] = 1 and a denormalized single-precision number is copied from
one memory location to another by means of an Ifs instruction followed by an stfs
instruction, the two "copies" may not be the same. Refer to Section 3.3.6.2.2, "Underflow
Exception Condition," for more information about underflow exceptions.

For an operand having an exponent that is less than 874 (an unbiased exponent less than -
149), the POWER architecture specifies storage of a zero (if FPSCR[UE] = 0), while the
PowerPC architecture specifies the storage of an undefined value.

B.20 Move from FPSCR
The POWER architecture defines the high-order 32 bits of the result of mffs to be
OxFFFF _FFFF. In the PowerPC architecture they are undefined.

B.21 Clearing Bytes in the Data Cache
The dclz instruction of the POWER architecture and the dcbz instruction of the PowerPC
architecture have the same opcode. However, the functions differ in the following respects.

• The dclz instruction clears a line; dcbz clears a block.

• The dclz instruction saves the EA in rA (if rA:¢:. 0); dcbz does not.

• The dclz instruction is supervisor-level; dcbz is not.

B.22 Segment Register Instructions
The definitions of the four segment register instructions (mtsr, mtsrin, mfsr, and mfsrin)
differ in two respects between the POWER architecture and the PowerPC architecture.
Instructions similar to mtsrin and mfsrin are called mtsri and mfsri in the POWER
architecture. The definitions follow:

• Privilege-mfsr and mfsri are problem state instructions in the POWER
architecture, while mfsr and mfsrin are supervisor-level in the PowerPC
architecture.

• Function-the indirect instructions (mtsri and mfsri) in the POWER architecture
use an r A register in computing the segment register number, and the computed EA
is stored into r A (if r A:¢:. 0 and r A:¢:. rD); in the PowerPC architecture mtsrin and
mfsrin have no r A field and EA is not stored.

Appendix B. POWER Architecture Cross Reference 8-7

-

The mtsr, mtsrin (mtsrl), and mfsr instructions have the same opcodes in the PowerPC
architecture as in the POWER architecture. The mfsrl instruction in the POWER
architecture and the mfsrin instruction in PowerPC architecture have different opcodes.

B.23 TLB Entry Invalidation
The tlbi instruction in the POWER architecture and the tlbie instruction in the PowerPC
architecture have the same opcode. However, the functions differ in the following respects.

• The tlbi instruction computes the EA as (rAIO) + rB, while tlbie lacks an rA field
and computes the EA as rB.

• The tlbi instruction saves the EA in rA (if rA *" 0); tlbie lacks an rA field and does
not save the EA.

B.24 Floating-Point Exceptions
Both the PowerPC and the POWER architectures use bit 20 of the MSR to control the
generation of exceptions for floating-point enabled exceptions. However, in the PowerPC
architecture this bit is part of a 2-bit value which controls the occurrence, precision, and
recoverability of the exception, whereas, in the POWER architecture this bit is used
independently to control the occurrence of the.exception (in the POWER architecture all
floating-point exceptions are precise).

B.25 Timing Facilities
This section describes differences between the POWER architecture and the PowerPC
architecture timer facilities.

B.25.1 Real-Time Clock
The POWER real-time clock (RTC) is not supported in the PowerPC architecture. Instead,
the PowerPC architecture provides a time base register (TB). Both the RTC and the TB are
64-bit special-purpose registers, but they differ in the following respects:

8-8

• The RTC counts seconds and nanoseconds, while the TB counts ticks. The
frequency of the TB is implementation-dependent.

• The RTC increments discontinuously-l is added to RTCU when the value in RTCL
passes 999_999_999. The TB increments continuously-l is added to TBU when
the value in TBL passes OxFFFF _FFFF.

• The RTC is written and read by the mtspr and mfspr instructions, using SPR
numbers that denote the RTCU and RTCD. The TB is written by the mtspr
instruction (using new SPR numbers) and read by the new mftb instruction.

• The SPR numbers that denote POWER architectures's RTCL and RTCU are invalid
in the PowerPC architecture.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

• The RTC is guaranteed to increment at least once in the time required to execute ten
Add Immediate (addi) instructions. No analogous guarantee is made for the TB.

• Not all bits of RTCL need be implemented, while all bits of the TB must be
implemented.

8.25.2 Decrementer
The decrementer (DEC) register differs, in the PowerPC and POWER architectures, in the
following respects:

• The PowerPC architecture DEC register decrements at the same rate that the TB
increments, while the POWER decrementer decrements every nanosecond (which is
the same rate that the RTC increments).

• Not all bits of the POWER DEC need be implemented, while all bits of the PowerPC
DEC must be implemented.

• The exception caused by the DEC has its own exception vector location in the
PowerPC architecture, but is considered an external exception in the POWER
architecture.

8.26 Deleted Instructions
The following instructions, shown in Table B-2, are part of the POWER architecture but
have been dropped from the PowerPC architecture.

Table B-2. Deleted POWER Instructions

Mnemonic Instruction
Primary Extended
Opcode Opcode

abs Absolute 31 360

clcs Cache Line Compute Size 31 531

clf Cache Line Flush 31 118

cll Cache Line Invalidate 31 502

dclst Data Cache Line Store 31 630

div Divide 31 331

dlvs Divide Short 31 363

doz Difference or Zero 31 264

dozl Difference or Zero Immediate 09 -
Iscbx Load String and Compare Byte Indexed 31 277

maskg Mask Generate 31 29

maskir Mask Insert from Register 31 541

mfsrin Move from Segment Register Indirect 31 627

mul Multiply 31 107

Appendix B. POWER Architecture Cross Reference 8-9

M:M

-

B-10

Table B-2. Deleted POWER Instructions (Continued)

Mnemonic Instruction
Primary Extended
Opcode Opcode

naba Negative Absolute 31 488

rac Real Address Compute 31 818

rlml Rotate Left then Mask Insert 22 -

rrlb Rotate Right and Insert Bit 31 537

ale Shift Left Extended 31 153

aleq Shift Left Extended with Me 31 217

aliq Shift Left Immediate with MQ 31 184

alllq Shift Left Long Immediate with Me 31 248

allq Shift Left Long with Me 31 216

alq Shift Left with MQ 31 152

aralq Shift Right Algebraic Immediate with Me 31 952

araq Shift Right Algebraic with Me 31 920

are Shift Right Extended 31 665

area Shift Right ExtendedAlgebraic 31 921

ar&q Shift Right Extended with Me 31 729

arlq Shift Right Immediate with Me 31 696

arliq Shift Right Long Immediate with Me 31 760

arlq Shift Right Long with Me 31 728

arq Shift Right with Me 31 664

Note: Many of these instructions use the Me register. The Me is not defined in the
PowerPC architecture.

PowerPC Microprocessor Family: The Programming Environments (32-Blt)

8.27 POWER Instructions Supported by the PowerPC
Architecture

Table B-3 lists the POWER instructions implemented in the PowerPC architecture.

Table B-3. POWER Instructions Implemented in PowerPC Architecture

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

ax Add addcx Add Carrying

aex Add Extended addex Add Extended

al Add Immediate addlc Add Immediate Carrying

ai. Add Immediate and Record addlc. Add Immediate Carrying and Record

amex Add to Minus One Extended addmex Add to Minus One Extended

andU. AND Immediate Lower and!. AND Immediate

andlu. AND Immediate Upper andls. AND Immediate Shifted

azex Add to Zero Extended addzex Add to Zero Extended

bccx Branch Conditional to Count Register bcctrx Branch Conditional to Count Register

bcrx Branch Conditional to Link Register bclrx Branch Conditional to Link Register

cal Compute Address Lower addl Add Immediate

cau Compute Address Upper addis Add Immediate Shifted

caxx Compute Address addx Add

cntlzx Count Leading Zeros cntlzwx Count Leading Zeros Word

dclz Data Cache Line Set to Zero dcbz Data Cache Block Set to Zero

des Data Cache Synchronize sync Synchronize

extsx Extend Sign extshx Extend Sign Half Word

fax Floating Add faddx Floating Add

fdx Floating Divide fdivx Floating Divide

fmx Floating Multiply fmulx Floating Multiply

fmax Floating Multiply-Add fmaddx Floating Multiply-Add

fmsx Floating Multiply-Subtract fmsubx Floating Multiply-Subtract

fnmax Floating Negative Multiply-Add fnmaddx Floating Negative Multiply-Add

fnmsx Floating Negative Multiply-Subtract fnmsubx Floating Negative Multiply-Subtract

fsx Floating Subtract fsubx Floating Subtract

les Instruction Cache Synchronize Isync Instruction Synchronize

I Load Iwz Load Word and Zero

Ibrx Load Byte-Reverse Indexed Iwbrx Load Word Byte-Reverse Indexed

Appendix B. POWER Architecture Cross Reference 8-11

M:M

Table B-3. POWER Instructions Implemented In PowerPC Architecture (Continued)

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

1m Load Multiple Imw Load Multiple Word

lsi Load String Immediate lawl Load String Word .Immediate

Isx Load String Indexed Iswx Load String Word Indexed

lu Load with Update Iwzu Load Word and Zero with Update

lux Load with Update Indexed Iwzux Load Word and Zero with. Update
Indexed

Ix Load Indexed Iwzx Load Word and Zero Indexed

mtsrl Move to Segment Register Indirect mtsrln Move to Segment Register Indirect •

mull Multiply Immediate mulll Multiply Low Immediate

mulsx Multiply Short mullwx Multiply Low

oril OR Immediate Lower orl OR Immediate

orlu OR Immediate Upper oris OR Immediate Shifted

rlimlx Rotate Left Immediate then Mask rlwimlx Rotate Left Word Immediate then Mask
Insert Insert

rlinmx Rotate Left Immediate then AND With rlwlnmx Rotate Left Word Immediate then AND
Mask with Mask

rlnmx Rotate Left then AND with Mask rlwnmx Rotate Left Word then AND with Mask

sfx Subtract from subfcx Subtract from Carrying

sfex Subtract from Extended subfex Subtract from Extended - sfi Subtract from Immediate subflc Subtract from Immediate Carrying

sfmex Subtract from Minus One Extended subfmex Subtract from Minus One Extended

sfzex Subtract from Zero Extended subfzex Subtract from Zero Extended

six Shift Left slwx Shift Left Word

srx Shift Right srwx Shift Right Word

srax Shift Right Algebraic srawx Shift Right Algebraic Word

sralx Shift Right Algebraic Immediate srawlx Shift Right Algebrai,c Word Immediate

st Store stw Store Word

stbrx Store Byte-Reverse Indexed stwbrx Store Word Byte-Reverse Indexed

stm Store Multiple stmw Store Multiple Word

stsi Store String Immediate stawl Store String Word Immediate

stsx Store String Indexed stawx Store String Word Indexed

stu Store with Update stwu Store Word with Update

6012 PowerPC Microprocessor Family: The Programming Environments (32-8It)

Table 8-3. POWER Instructions Implemented in PowerPC Architecture (Continued)

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

stux Store with Update Indexed stwux Store Word with Update Indexed

six Store Indexed stwx Store Word Indexed

svca Supervisor Call sc System Call

t Trap tw Trap Word

tl Trap Immediate twi Trap Word Immediate *

tlbl TLB Invalidate Entry tibia Translation Lookaside Buffer Invalidate
Entry

xorll XOR Immediate Lower xorl XOR Immediate

xorlu XOR Immediate Upper xoris XOR Immediate Shifted

* Supervisor-level instruction

-

Appendix B. POWER Architecture Cross Reference 8-13

Appendix C
Multi pie-Precision Sh ifts
This appendix gives examples of how multiple precision shifts can be programmed. A
multiple-precision shift is initially defined to be a shift of an n-word quantity, where n >
1. The quantity to be shifted is contained in n registers. The shift amount is specified either
by an immediate value in the instruction or by bits 27-31 of a register.

The examples shown below distinguish between the cases n = 2 and n > 2. However if n >
2, the shift amount must be in the range 0-31 for the examples to yield the desired result.
The specific instance shown for n > 2 is n = 3: extending those instruction sequences to
larger n is straightforward, as is reducing them to the case n = 2 when the more stringent
restriction on shift amount is met. For shifts with immediate shift amounts, only the case n
= 3 is shown because the more stringent restriction on shift amount is always met.

In the examples it is assumed that GPRs 2 and 3 (and 4) contain the quantity to be shifted,
and that the result is to be placed into the same registers. For non-immediate shifts, the shift
amount is assumed to be in bits 27-31 of GPR6. For immediate shifts, the shift amount is
assumed to be greater than zero. GPRs 0-31 are used as scratch registers. For n > 2, the
number of instructions required is 2n - 1 (immediate shifts) or 3n - 1 (non-immediate
shifts).

The following sections provide examples of multiple-precision shifts.

Appendix C. Multiple-Precision Shifts C-1

-

-

C.1 Multiple-Precision Shifts in 32-Bit
Implementations

Shift Left Immediate, n = 3 (Shift Amount < 32)
rlwinm r2,r2,sh,O,31 - sh
rlwimi r2,r3,sh,32 - sh,31
rlwinm r3,r3,sh,O,31 - sh
rlwimi r3,r4,sh,32 - sh,31
rlwinm r4,r4,sh,O,31 - sh

Shift Left, n = 2 (Shift Amount < 64)
subfie
slw
srw
or
addi
slw
or
slw

r31,r6,32
r2,r2,r6
rO,r3,r31
r2,r2,rO
r31,r6,-32
rO,r3,r31
r2,r2,rO
r3,r3,r6

Shift Left, n = 3 (Shift Amount < 32)
subfie r31,r6,32
slw r2,r2,r6
srw rO,r3,r31
or r2,r2,rO
slw r3,r3,r6
srw rO,r4,r31
or r3,r3,rO
slw r4,r4,r6

Shift Right Immediate, n = 3 (Shift Amount < 32)
rlwinm r4,r4,32 - sh,sh,31
rlwimi r4,r3,32 - sh,O,sh - 1
rlwinm r3,r3,32 - sh,sh,31
rlwimi r3,r2,32 - sh,O,sh - 1
rlwinm r2,r2,32 - sh,sh,31

Shift Right, n = 2 (Shift Amount < 64)
subfie r31,r6,32
srw r3,r3,r6
slw rO,r2,r31
or r3,r3,rO
addi r31,r6, -32
srw rO,r2,r31
or r3,r3,rO
srw r2,r2,r6

Shift Right, n = 3 (Shift Amount < 32)
subfie r31,r6,-32
srw r4,r4,r6
slw rO,r3,r31
or r4,r4,rO
srw r3,r3,r6
slw rO,r2,r31
or r3,r3,rO
srw r2,r2,r6

C-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Shift Right Algebraic Immediate, n = 3 (Shift Amount < 32)
rlwinm
rlwhDi
rlwimn
rlwhDi
srawi

r4,r4,32 - sh,sh,31
r4,r3,32 - sh,O,sh - 1
r3,r3,32 - sh,sh,31
r3,r2,32 - sh,O,sh - 1
r2,r2,sh

Shift Right Algebraic, n = 2 (Shift Amount < 64)
subfie r31,r6,32
srw r3,r3,r6
slw rO,r2,r31
or r3,r3,rO
addie. r31,r6,-32
sraw rO,r2,r31
ble $+8
ori r3,rO,O
sraw r2,r2,r6

Shift Right Algebraic, n = 3 (Shift Amount < 32)
subfie r31,r6,32
srw r4,r4,r6
slw rO,r3,r31
or r4,r4,rO
srw r3,r3,r6
slw rO,r2,r31
or r3,r3,rO
sraw r2,r2,r6

Appendix C. Multiple-Precision Shifts

-

C-3

Appendix D
Floating-Point Models
This appendix describes the execution model for IEEE operations and gives examples of
how the floating~point conversion instructions can be used to perform various conversions
as well as providing models for floating-point instructions.

0.1 Execution Model for IEEE Operations
The following description uses double-precision arithmetic as an example; single-precision
arithmetic is similar except that the fraction field is a 23-bit field and the single-precision
guard, round, and sticky bits (described in this section) are logically adjacent to the 23-bit
FRACTION field.

IEEE-conforming significand arithmetic is performed with a floating-point accumulator
where bits 0-55, shown in Figure D-I, comprise the significand ofthe intermediate result.

o 1 52 55

Figure 0-1. IEEE 64-Bit Execution Model

The bits and fields for the IEEE double-precision execution model are defined as follows:

• The S bit is the sign bit.

• The C bit is the carry bit that captures the carry out of the significand.

• The L bit is the leading unit bit of the significand that receives the implicit bit from
the operands.

• The FRACTION is a 52-bit field that accepts the fraction of the operands.

• The guard (G), round (R), and sticky (X) bits are extensions to the low-order bits of
the accumulator. The G and R bits are required for postnormalization of the result.
The G, R, and X bits are required during rounding to determine if the intermediate
result is equally near the two nearest representable values. The X bit serves as an
extension to the G and R bits by representing the logical OR of all bits that may

Appendix D. Floating-Point Models 0-1

I.M

M.M·

appear to the low-order side of the R bit, due to either shifting the accumulator right
or to other generation of low-order result bits. The G and R bits participate in the left
shifts with zeros being shifted into the R bit.

Table D-l shows the significance of the G, R, and X bits with respect to the intermediate
result (IR), the next lower in magnitude representable number (NL), and the next higher in
magnitude representable number (NH).

Table 0-1. Interpretation of G, R, and X Bits

G R X Interpretation

0 0 0 IR is exact

0 0 1 j

0 1 0 IR closer to NL

0 1 1

1 0 0 IR midway between NL & NH

1 0 1

1 1 0 IR cioser to NH

1 1 1

The significand of the intermediate result is made up of the L bit, the FRACTION, and the
G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in bits L,
FRACTION, G, R, and X of the floating-point accumulator. ,
After normalization, the intermediate result is rounded, using the rounding mode specified
by FPSCR[RN]. If rounding causes a carry into C, the significand is shifted right one
position and the exponent is incremented by one. This causes an inexact result and possibly
exponent overflow. Fraction bits to the left of the bit position used for rounding are stored
into the FPR, and low-order bit positions, if any, are set to zero.

Four user-selectable rounding modes are provided through FPSCR[RN] as described in
Section 3.3.5, "Rounding." For rounding, the conceptual guard, round, and sticky bits are
defined in terms of accumulator bits.

Table D-2 shows the positions of the guard, round, and sticky bits for double-precision and
single-precision floating-point numbers in the IEEE execution model.

0-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 0-2. Location of the Guard, Round, and Sticky Bits-IEEE Execution Model

Format Guard Round Sticky

Double Gbit Rbit X bit

Single 24 25 OR of 26-52 G,R,X

Rounding can be treated as though the significand were shifted right, if required, until the
least-significant bit to be retained is in the low-order bit position of the FRACTION. If any
of the guard, round, or sticky bits are nonzero, the result is inexact.

Zl and Z2, defined in Section 3.3.5, "Rounding," can be used to approximate the result in
the target format when one of the following rules is used:

• Round to nearest

- Guard bit = 0: The result is truncated. (Result exact (GRX = 000) or closest to
next lower value in magnitude (GRX = 001, 010, or 011).

- Guard bit = 1: Depends on round and sticky bits:

Case a: If the round or sticky bit is one (inclusive), the result is incremented
(result closest to next higher value in magnitude (GRX = 101, 110, or 111».

Case b: If the round and sticky bits are zero (result midway between closest
representable values) then if the low-order bit of the result is one, the result is
incremented. Otherwise (the low-order bit of the result is zero) the result is
truncated (this is the case of a tie rounded to even).

If during the round-to-nearest process, truncation of the unrounded number
produces the maximum magnitude for the specified precision, the following action
is taken:

- Guard bit = 1: Store infinity with the sign of the unrounded result.

- Guard bit = 0: Store the truncated (maximum magnitude) value.

• Round toward zero-Choose the smaller in magnitude of Zl or Z2. If the guard,
round, or sticky bit is nonzero, the result is inexact.

• Round toward +infinity-Choose Zl.

• Round toward -infinity-Choose Z2.

Where the result is to have fewer than 53 bits of precision because the instruction is a
floating round to single-precision or single-precision arithmetic instruction, the
intermediate result either is normalized or is placed in correct denormalized form before
being rounded.

Appendix D. Floating-Point Models 0-3

M.M

elM

0.2 Execution Model for Multiply-Add Type
Instructions

The PowerPC architecture makes use of a special instruction form that performs up to three
operations in one instruction (a multiply, an add, and a negate). With this added capability
comes the special ability to produce a more exact intermediate result as an input to the
rounder. Single-precision arithmetic is similar except that the fraction field is smaller. Note
that the rounding occurs only after add; therefore, the computation of the sum and product
together are infinitely precise before the final result is rounded to a representable format.

The multiply-add significand arithmetic is considered to be performed with a floating-point
accumulator, where bits 1-106 comprise the significand of the intermediate result. The
format is shown in Figure D-2.

FRACTION

o 1 105

Figure 0-2. Multiply-Add 64-Bit Execution Model

The first part of the operation is a multiply. The multiply has two 53-bit significands as
inputs, which are assumed to be prenormalized, and produces a result conforming to the
above model. If there is a carry out of the significand (into the C bit), the significand is
shifted right one position, placing the L bit into the most-significant bit of the FRACTION
and placing the C bit into the L bit. All 106 bits (L bit plus the fraction) of the product take
part in the add operation. If the exponents of the two inputs to the adder are not equal, the
significand of the operand with the smaller exponent is aligned (shifted) to the right by an
amount added to that exponent to make it equal to the other input's exponent. Zeros are
shifted into the left of the significand as it is aligned and bits shifted out of bit 105 of the
significand are ORed into the X' bit. The add operation also produces a result conforming
to the above model with the X' bit taking part in the add operation.

The result of the add is then normalized, with all bits of the add result, except the X' bit,
participating in the shift. The normalized result serves as the intermediate result that is input
to the rounder.

For rounding, the conceptual guard, round, and sticky bits are defined in terms of
accumulator bits. Table D-3 shows the positions of the guard, round, and sticky bits for
double-precision and single-precision floating-point numbers in the multiply-add execution
model.

Table 0-3. Location of the Guard, Round, and Sticky Bits-Multiply-Add Execution
Model

Format Guard Round Sticky

Double 53 54 OR of 55-105, X'

Single 24 25 OR of 26-105, X'

0-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The rules for rounding the intermediate result are the same as those given in Section 0.1,
"Execution Model for IEEE Operations."

If the instruction is floatin~ negative multiply-add or floating negative multiply-subtract,
the final result is negated.

Floating-point multiply-add instructions combine a multiply and an add operation without
an intermediate rounding operation. The fraction part of the intermediate product is 106 bits
wide, and all 106 bits take part in the add/subtract portion of the instruction.

Status bits are set as follows:

• Overflow, underflow, and inexact exception bits, the FR and PI bits, and the FPRF
field are set based on the final result of the operation, and not on the result of the
multiplication.

• Invalid operation exception bits are set as if the multiplication and the addition were
performed using two separate instructions (for example, an fmul instruction
followed by an fadd instruction). That is, multiplication of infinity by 0 or of
anything by an SNaN, causes the corresponding exception bits to be set.

0.3 Floating-Point Conversions
This section provides examples of floating-point conversion instructions. Note that some of
the examples use the optional Floating Select (fsel) instruction. Care must be taken in using
fsel ifIEEE compatibility is required, or if the values being tested can be NaNs or infinities.

0.3.1 Conversion from Floating-Point Number to Signed Fixed-Point
Integer Word

The full convert to signed fixed-point integer word function can be implemented with the
following sequence, assuming that the floating-point value to be converted is in FPR1, the
result is returned in GPR3, and a double word at displacement (disp) from the address in
GPRI can be used as scratch space.

fctiw[z]f2,fl iconvert to fx int
.tfd f2,disp(rl) istore float
1wa r3,disp + 4(rl) iload word algebraic

i(use lw~ on a 32-bit implementation)

Appendix D. Floating-Point Models 0-5

-

0.3.2 Conversion from Floating-Point Number to Unsigned Fixed-
Point Integer Word

In a 32-bit i,nplementation, the full convert to unsigned fixed-point integer word function
can be implemented with the sequence shown below, assuming that the floating-point value
to be converted is in FPRl, the value zero is in FPRO, the value 232 - 1 is in FPR3, the value
231 is in FPR4, the result is returned in GPR3, and a double word at displacement (disp)
from the address in GPRI can be used as scratch space.

fsel f2,f1,f1,fO
fsub f5,f3,f1
fsa1 f2,f5,f2,f3
fsub f5,f2,f4
fcmpu cr2,f2,f4
fsa1 f2,f5,f5,f2
fctiw[z]f2,f2
stfd f2,disp(r1)
1wz r3,disp + 4(r1)
b1t cr2,$+8
xoris r3,r3,Ox8000

#use 0 if < 0
#use max if > max

#subtract 2**31
#use diff if ~ 2**31

#convert to fx int
#store float
#load word
#add 2**31 if input
#was ~ 2**31

0.4 Floating-Point Models
This section describes models for floating-point instructions.

0.4.1 Floating-Point Round to Single-Precision Model
The following algorithm describes the operation of the Floating Round to Single-Precision
(frsp) instruction.

IffrB[I-II] < 897 and frB[I-63] > 0 then
Do

If FPSCR[UE] = 0 then goto Disabled Exponent Underflow
If FPSCR[UE] = I then goto Enabled Exponent Underflow

End

IffrB[I-Il] > 1150 and frB[I-Il] < 2047 then
Do

If FPSCR[OE] = 0 then goto Disabled Exponent Overflow
If FPSCR[OE] = I then goto Enabled Exponent Overflow

End

IffrB[I-Il] > 896 and frB[I-Il] < 1151 then goto Nonna! Operand

IffrB[1-63] = 0 then goto Zero Operand

IffrB[I-Il] = 2047 then
Do

If frB [I 2-63] = 0 then goto Infinity Operand
IffrB[12] = 1 then goto QNaN Operand
IffrB[12] = 0 and frB[13-63] > 0 then goto SNaN Operand

End

Disabled Exponent Underflow:
sign +- frB[O]
IffrB[I-Il] = 0 then

Do
exp+--I022
frac[0-52] +- ObO II frB[12-63]

End
IffrB[l-Il] > 0 then

0-6 PowerPC Microprocessor Family: The Programming Environments (32.8it)

Do
exp ~ frB[I-II]-I023
frac[0-52] ~ ObI II frB[12--63]

End
Oenonnalize operand:

GIIRIIX~ObOOO
Do while exp < -126

exp ~exp + I
frac[0-52]II G II R II X ~ ObO II frac II G II (R I X)

End
FPSCR[UX] ~ frac[24-52]II G II R II X > 0
Round single(sign,exp,frac[O-52] ,G,R,X)
FPSCR[XX] ~ FPSCR[XX]I FPSCR[FI]
If frac[0-52] = 0 then

Do
frO[O] ~ sign
frO[I-63] ~ 0
If sign = 0 then FPSCR[FPRF] ~ "+zero"
If sign = I then FPSCR[FPRF] ~ "-zero"

End
Iffrac[0-52] > 0 then

Do
If fractO] = I then

Do
If sign = 0 then FPSCR[FPRF] ~ "+normal number"
If sign = I then FPSCR[FPRF] ~ "-nonnal number"

End
If fractO] = 0 then

Do
If sign = 0 then FPSCR[FPRF] ~ "+denonnalized number"
If sign = I then FPSCR[FPRF] ~ "--{\enonnalized number"

End
Nonnalize operand:

Do while fractO] = 0
exp ~exp-I
frac[0-52] ~ frac[I-52] II ObO

End
frO[O] ~ sign
frO[l-ll] ~ exp + 1023
frO[I2-63] ~ frac[I-52]

End
Done

Enabled Exponent Underflow
FPSCR[UX] ~ I
sign ~ frB[O]
IffrB[I-ll] =Othen

Do
exp~-I022
frac[0-52] ~ ObO II frB[12-63]

End
IffrB[I-II] > 0 then

Do
exp ~ frB[I-II]- 1023
frac[0-52] ~ ObI II frB[l2-63]

End

Nonnalize operand:
Do while fractO] = 0

exp ~exp-I
frac[0-52] ~ frac[I-52]II ObO

End
Round single(sign,exp,frac[0-52],O,O,O)
FPSCR[XX] ~ FPSCR[XX]I FPSCR[FI]
exp ~ exp + 192
frO[O] ~ sign

Appendix D. Floating-Point Models

..

0-7

-

frO[I-ll] +- exp + 1023
fr0[12-63] +- frac[I-52]
If sign = 0 then FPSCR[FPRF] +- "+normal number"
If sign = I then FPSCR[FPRF] +- "-normal number"
Oone

Disabled Exponent Overflow
FPSCR[OX] +- I
IfFPSCR[RN] = ObOO then 1* Round to Nearest *1

Do
If frB[O] = 0 then frO +- Ox7FFO_OOOO_OOOO_OOOO
IffrB[O] = I then frO +- OxFFFO_OOOO_OOOO_OOOO
If frB[O] = 0 then FPSCR[FPRF] +- "+infinity"
If frB[O] = I then FPSCR[FPRF] +- "-infinity"

End
IfFPSCR[RN] = ObOl then 1* Round Truncate *1

Do
If frB[O] = 0 then frO +- Ox47EF _FFFF _EOOO_OOOO
If frB[O] = I then frO +- OxC7EF _FFFF _EOOO_OOOO
If frB[O] = 0 then FPSCR[FPRF] +- "+normal number"
If frB[O] = I then FPSCR[FPRF] +- "-normal number"

End
IfFPSCR[RN] = OblO then 1* Round to +Infinity *1

00
If frB[O] = 0 then frO +- Ox7FFO_OOOO_OOOO_OOOO
IffrB[O] = I then frO +- OxC7EF _FFFF _EOOO_OOOO
If frB[O] = 0 then FPSCR[FPRF] +- "+infinity"
If frB[O] = I then FPSCR[FPRF] +- "-normal number"

End
IfFPSCR[RN] = ObI I then 1* Round to -Infinity *1

Do
IffrB[O] = 0 then frO +- Ox47EF _FFFF _EOOO_OOOO
IffrB[O] = I then frO +- OxFFFO_OOOO_OOOO_OOOO
IffrB[O] = 0 then FPSCR[FPRF] +- "+normal number"
IffrB[O] = I then FPSCR[FPRF] +- "-infinity"

End
FPSCR[FR] +- undefined
FPSCR[FI] +- I
FPSCR[XX] +- I
Done

Enabled Exponent Overflow
sign +- frB[O]
exp +- frB[I-ll] - 1023

frac[0-52] +- ObI II frB[12-63]
Round single(sign,exp,frac[0-52],0,0,0)
FPSCR[XX] +- FPSCR[XX] I FPSCR[FI]

Enabled Overflow
FPSCR[OX] +- I
exp +- exp -192
frO[O] +- sign
frO[I-II] +- exp + 1023
frO[12-63] +- frac[1-52]
If sign = 0 then FPSCR[FPRF] +- "+normal number"
If sign = I then FPSCR[FPRF] +- "-normal number"

Oone

Zero Operand
fro +-frB
If frB[O) = 0 then FPSCR[FPRF) +--+zero·
If frB[O) = 1 then FPSCR[FPRF) +---zero·
FPSCR[FR FI) +- ObOO
Done

0-8 PowerPC Microprocessor Family: The Programming. Environments (32-81t)

Infinity Operand
frD +- frB
If frB[O]
If frB[O]
Done

° then FPSCR[FPRF] +-"+infinity"
1 then FPSCR[FPRF] +-"-infinity"

QNaN Operand:
frD +- frB[0-34] II ObO_OOO(U)OOO_OOOO_()()(XUXlOO_O()()(UJOOO
FPSCR[FPRF] +- "QNaN"
FPSCR[FR PI] +- ObOO
Done

SNaN Operand
FPSCR[VXSNAN] +- 1
If FPSCR[VE] = 0 then

Do
frD[O-II] +- frB[O-II]
frD[12] +- I
frD[13-63] +- frB[13-34] II ObO_OOOO_OOOO_OOOO_OOOO_OOOO_OOOO_OOOO
FPSCR[FPRF] +- "QNaN"

End
FPSCR[FR PI] +- ObOO
Done

Normal Operand
sign +- frB [0]
exp +-frB[1-11] - 1023
frac[0-52] +-Ob1 II frB[12-63]
Round sing1e(sign,exp,frac[0-52] ,0,0,0)
FPSCR[XX] +- FPSCR[XX] I FPSCR[FI]
If exp > +127 and FPSCR[OE] ° then go to Disabled Exponent Overflow
If exp > +127 and FPSCR[OE] = 1 then go to Enabled Overflow
frD[O] +- sign
frD[1-11] +- exp + 1023
frD[12-63] +-frac[1-52]
If sign ° then FPSCR[FPRF] +-"+norma1 number"
If sign = 1 then FPSCR[FPRF] +-"-norma1 number·
Done

Round Single (sign,exp,frac[0-52],G,R,X)
inc +- 0
Isb +- frac[23]
gbit +- frac[24]
rbit +- frac[25]
xbit +- (frac[26-52]II G II R II X) '" 0
If FPSCR[RN] = ObOO then

Do
If sign 111sb II gbit II rbit II xbit = Obu 11 uu then inc +- 1
If sign 1I1sb II gbit II rbit II xbit = ObuOll u then inc +- 1
If sign 111sb II gbit II rbit II xbit = ObuOl u 1 then inc +- 1

End
If FPSCR[RN] = Ob 1 0 then

Do
If sign 1I1sb II gbit II rbit II xbit = ObOu 1 uu then inc +- 1
If sign 111sb II gbit II rbit II xbit = ObOuu 1 u then inc +- 1
If sign 111sb II gbit II rbit II xbit = ObOuuu 1 then inc +- 1

End
If FPSCR[RN] = Obll then

Do
If sign I1lsb II gbit II rbit II xbit = Ob 1 u 1 uu then inc +- 1
If sign 111sb II gbit II rbit II xbit = Ob 1 uu 1 u then inc +- 1
If sign I1lsb II gbit II rbit II xbit = Ob 1 uuu 1 then inc +- 1

End

Appendix D. Floating-Point Models

-

0-9

-

frac[O-23] +- frac[0-23] + inc
If carry_out =1 then

Do
frac[0-23] +- Obi II frac[0-22]
exp +-exp+ I

End
frac[24-52] +-(29)0
FPSCR[FR] +- inc
FPSCR[FI] +- gbit I rbit I xbit
Return

0.4.2 Floating-Point Convert to Integer Model
The following algorithm describes the operation of the floating-point convert to integer
instructions. In this example. 'u' represents an undefined hexadecimal digit.

If Floating Convert to Integer Word
Then Do

Then round_mode +- FPSCR[RN]
tgcprecision +- "32-bit integer"

Fnd
If Floating Convert to Integer Word with round toward Zero

Then Do
round_mode +- 0b01
tgt-precision +- ''32-bit integer"

End
If Floating Convert to Integer Double Word

Then Do
round_mode +- FPSCR[RN]
tgt-precision +- "64-bit integer"

End
If Floating Convert to Integer Double Word with Round toward Zero

Then Do
round_mode +- ObOl
tgCprecision +- "64-bit integer"

End
sign +- frB[O]
IffrB[I-II] = 2047 and frB[12-63] = 0 then goto Infinity Operand
If frB[I-1 I] = 2047 and frB[12] = 0 then goto SNaN Operand
If frB[I-II] = 2047 and frB[12] = I then goto QNaN Operand
IffrB[I-ll] > 1054 then goto Large Operand

IffrB[I-ll] > 0 then exp +- frB[1-11] - 1023/* exp - bias *1
IffrB[I-II] = 0 then exp +- -1022
IffrB[I-ll] > 0 then frac[0-64]+- ObOlli frB[12-63] II (ll)O/*norrnal*1
IffrB[1-11] = 0 then frac[0-64]+- ObOO II frB[12-63] II (11)0 l*denorrnal*1

gbit II rbit II xbit +- ObOOO
Do i = 1,63 - exp I*do the loop 0 times if exp = 63*1

frac[0-64] II gbit II rbit II xbit +- ObO II frac[0-64] II gbit II (rbit I xbit)
End

Round Integer (sign,frac[0-64],gbit,rbit,xbit,round_mode)
In this example. 'u' represents an undefined hexadecimal digit. Comparisons ignore the u
bits.

If sign = I then frac[0-64] +- frac[0-64] + 1/* needed leading 0 for _264 < frB < _263*1

Iftgt-precision = "32-bit integer" and frac[0-64] > +231 _1
then goto Large Operand

0-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Iftgcprecision = "64-bit integer" and frac[0-64] > +263 -I
then goto Large Operand

If tgCprecision = "32-bit integer" and frac[0-64] < _231 then goto Large Operand

FPSCR[XX] f- FPSCR[XX] I FPSCR[PI]

If tgCprecision = "64-bit integer" and frac[0-64] < _263 then goto Large Operand
If tgCprecision = "32-bit integer"

then frO f- Oxxuuu_uuuu II frac[33--64]
IftgCprecision = "64-bit integer" then frO f- frac[I-64]
FPSCR[FPRF] f- undefined
Done

Round Integer(sign,frac[O-64],gbit,rbit,xbit,round_IDode)
In this example, 'u' represents an undefined hexadecimal digit. Comparisons ignore the u
bits.

inc f-O
If round_mode = ObOO then

Do
If sign II frac[64]II gbit II rbit II xbit = Obulluu then inc f- 1
If sign II frac[64]II gbit II rbit II xbit = ObuOllu then inc f- 1
If sign II frac[64]II gbit II rbit II xbit = ObuOlul then inc f- 1

End
If round_mode = Ob 10 then

Do
If sign II frac[64]II gbit II rbit II xbit = ObOul uu then inc f-I
If sign II frac[64]II gbit II rbit II xbit= ObOuulu then inc f-I
If sign II frac[64]II gbit II rbit II xbit = ObOuuul then inc f- 1

End
If round_mode = Ob II then

Do
If sign II frac[64]II gbit II rbit II xbit = Obluluu then inc f- 1
If sign II frac[64]II gbit II rbit II xbit= Obluulu then inc f-I
If sign II frac[64]II gbit II rbit II xbit = Obluuul then inc f-I

End
frac[0-64] f- frac[0-64] + inc
FPSCR[FR] f- inc
FPSCR[PI] f- gbit I rbit I xbit
Return

Infinity Operand
FPSCR[FR FI VXCVI] f- ObOOI
If FPSCR[VE] = 0 then Do

If tgcprecision = "32-bit integer" then
Do

If sign = 0 then frO f- Oxuuuu_uuuu_7FFF _FFFF
If sign = I then frO f- Oxuuuu_uuuu_8000_0000

End
Else

Do
If sign = 0 then frO f- Ox7FFF _FFFF _FFFF _FFFF
If sign = I then frO f- Ox8000_0000_0000_0000

End
FPSCR[FPRF] f- undefined
End

Done

SNaN Operand
FPSCR[FR PI VXCVI VXSNAN] f- ObOOll
IfFPSCR[VE] = 0 then

Do

Appendix O. Floating-Point Models 0-11

-

-

If tgCprecision = "32-bit integer"
then frO ~ Oxuuuu_uuuu_8000_0000

If tgcprecision = "64-bit integer"
then frO ~ Ox8000_0000_0000_0000

FPSCR[FPRF] ~ undefined
End

Oone

QNaN Operand
FPSCR[FR FI VXCVI] ~ ObOOI
If FPSCR[VE] = ° then

00
Iftgcprecision = "32-bit integer" then frO ~ Oxuuuu_uuuu_8000_0000
IftgCprecision = "64-bit integer" then frO ~ Ox8000_0000_0000_0000
FPSCR[FPRF] ~ undefined

End
Oone

Large Operand
FPSCR[FR PI VXCVI] ~ ObOOI
If FPSCR[VE] = ° then 00

If tgcprecision = "32-bit integer" then
00

If sign = ° then frO ~ Oxuuuu_uuuu_7FFF_FFFF
If sign = I then frO ~ Oxuuuu_uuuu_8000_0000

End
Else

Do
If sign = ° then frO ~ Ox7FFF _FFFF _FFFF _FFFF
If sign = I then frO ~ Ox8000_0000_0000_0000

End
FPSCR[FPRF] ~ undefined
End

Oone

0.4.3 Floating-Point Convert from Integer Model
The following describes, algorithmically, the operation of the floating-point convert from
integer instructions.

sign ~ frB[O]
exp~63
frac[0-63] ~ frB

If frac[0-63] = ° then go to Zero Operand

If sign = I then frac[0-63] ~ frac[0-63] + I

00 while frac[O] = °
frac[0-63] ~ frac[l-63]II '0'
exp~exp-I

End

Round Float(sign,exp,frac[0-63),FPSCR[RN)
If sign = I then FPSCR[FPRF] ~ "-normal number"
If sign = ° then FPSCR[FPRF] ~ "+normal number"
frO[O] ~ sign
frO[I-II] ~ exp + 1023
frO[l2-63] ~ frac[I-52]
Oone

0-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Zero Operand
FPSCR[FR FI] +- ObOO
FPSCR[FPRF] +- "+zero"
frD +- OxOOOO_OOOO_OOOO_OOOO
Done

Round Float(sign,exp,frac[0-63],round_mode)
In this example 'u' represents an undefined hexadecimal digit. Comparisons ignore the u
bits.

inc +-0
Isb +- frac[S2]
gbit +- frac[S3]
rbit +- frac[S4]
xbit +- frac[SS-63] > 0
If round_mode = ObOO then

Do

If sign IIlsb II gbit II rbit II xbit = Obu II uu then inc +- I
If sign IIlsb II gbit II rbit II xbit = Obu011 u then inc +- I
If sign IIlsb II gbit II rbit II xbit = ObuOlul then inc +- I

End
If round_mode = OblO then

Do
If sign IIlsb II gbit II rbit II xbit = ObOuluu then inc +- 1
If sign IIlsb II gbit II rbit II xbit = ObOuu I u then inc +- I
Ifsign IIlsb II gbit II rbit II xbit = ObOuuul then inc +-1

End
If round_mode = Obi I then

Do
If sign IIlsb II gbit II rbit II xbit = Ob I u I uu then inc +- I
If sign IIlsb II gbit II rbit II xbit = Ob I uu I u then inc +- I
If sign IIlsb II gbit II rbit II xbit = Ob I uuu I then inc +- I

End
frac[O-S2] +- frac[O-S2] + inc
If carry_out = I then exp +- exp + I
FPSCR[FR] +- inc
FPSCR[FI] +- gbit I rbit I xbit
FPSCR[XX] +- FPSCR[XX] I FPSCR[FI]
Return

0.5 Floating-Point Selection
The following are examples of how the optional fsel instruction can be used to implement
floating-point minimum and maximum functions, and certain simple forms of if-then-else
constructions, without branching.

The examples show program fragments in an imaginary, C-like, high-level programming
language, and the corresponding program fragment using fsel and other PowerPC
instructions. In the examples, a, b, x, y, and z are floating-point variables, which are
assumed to be in FPRsja,jb,jx,fy, andft;. FPRjs is assumed to be available for scratch
space.

Additional examples can be found in Section D.3, "Floating-Point Conversions."

Note that care must be taken in using fsel if IEEE compatibility is required, or if the values
being tested can be NaNs or infinities; see Section D.5.4, "Notes."

Appendix D. Floating-Point Models 0-13

•

•

0.5.1 Comparison to Zero
This section provides examples in a program fragment code sequence for the comparison
to zero case.

High-level language:
if a <:: 0.0 then x f- y

else x f- z

ifa> 0.0 then x f- y
else x f- z

ifa= 0.0 then x f- y
else x f- z

PowerPC:
fsel fx, fa, fy, fz (see Section 0.5.4, "Notes" number I)

fneg fs, fa
fsel fx, fs, fz, fy (see Section 0.5.4, "Notes" numbers 1 and 2)

fsel fx, fa, fy, fz
fneg fs, fa
fsel fx, fs, fx, fz (see Section 0.5.4, "Notes" number I)

0.5.2 Minimum and Maximum
This section provides examples in a program fragment code sequence for the minimum and
maximum cases.

High-level language:
x f- min(a, b)

x f- max(a, b)

PowerPC:
fsub fs, fa, fb (see Section 0.5.4, "Notes" numbers 3, 4, and 5)
fsel fx, Cs, fb, fa

fsub fs, fa, fb (see Section 0.5.4, "Notes" numbers 3, 4, and 5)
fsel fx, fs, fa, fb

0.5.3 Simple If-Then-Else Constructions
This section provides examples in a program fragment code sequence for simple if-then­
else statements.

High-level language:
ifa<::bthenxf-y

else x f- z

ifa>bthenxf-y
else x f- z

ifa=bthenxf-y
else x f- z

0.5.4 Notes

PowerPC:
fsub fs, fa, fb
fsel fx, fs, fy, fz (see Section 0.5.4, "Notes" numbers 4 and 5)

fsub fs, fb, fa
fsel fx, fs, fz, fy (see Section 0.5.4, "Notes" numbers 3, 4, and 5)

fsub fs, fa, fb
fsel fx, fs, fy, fz
fneg fs, fs
fsel fx, fs, fx, fz (see Section 0.5.4, "Notes" numbers 4 and 5)

The following notes apply to the examples found in Section 0.5.1, "Comparison to Zero,"
Section 0.5.2, "Minimum and Maximum," and Section 0.5.3, "Simple If-Then-Else
Constructions," and to the corresponding cases using the other three arithmetic relations «,
:S, and :;t:). These notes should also be considered when any other use offsel is contemplated.

D-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

In these notes the "optimized program" is the PowerPC program shown, and the
"unoptimized program" (not shown) is the corresponding PowerPC program that uses
fempu and branch conditional instructions instead of fsel.

1. The unoptimized program affects the VXSNAN bit of the FPSCR, and therefore
may cause the system error handler to be invoked if the corresponding exception is
enabled, while the optimized program does not affect this bit. This property of the
optimized program is incompatible with the IEEE standard. (Note that the
architecture specification also refers to exceptions as interrupts.)

2. The optimized program gives the incorrect result if 'a' is a NaN.

3. The optimized program gives the incorrect result if 'a' and/or 'b' is a NaN (except
that it may give the correct result in some cases for the minimum and maximum
functions, depending on how those functions are defined to operate on NaNs).

4. The optimized program gives the incorrect result if 'a' and 'b' are infinities of the
same sign. (Here it is assumed that invalid operation exceptions are disabled, in
which case the result of the subtraction is a NaN. The analysis is more complicated
if invalid operation exceptions are enabled, because in that case the target register of
the subtraction is unchanged.)

5. The optimized program affects the OX, UX, XX, and VXISI bits of the FPSCR, and
therefore may cause the system error handler to be invoked if the corresponding
exceptions are enabled, while the unoptimized program does not affect these bits.
This property of the optimized program is incompatible with the IEEE standard.

0.6 Floating-Point Load Instructions
There are two basic forms of load instruction-single-precision and double-precision.
Because the FPRs support only floating-point double format, single-precision load floating­
point instructions convert single-precision data to double-precision format prior to loading
the operands into the target FPR. The conversion and loading steps follow:

Let WORD[0-31] be the floating point single-precision operand accessed from memory.

Normalized Operand
If WORD[l-B] > 0 and WORD[1-8] < 255

frD[O-l] ~ WORD[O-l]
frD[2] ~ , WORD[l]
frD[3] ~ , WORD[l]
frD[4] ~ , WORD[l]
frD[5-63] ~ WORD[2-31] II (29)0

Denormalized Operand
If WORD[1-8] = 0 and WORD[9-31] * 0

sign ~ WORD[O]
exp ~ -126
frac[0-52] ~ ObO II WORD[9-31] II (29)0
normalize the operand

Do while frac[O] = 0
frac ~ frac[1-52] II ObO

Appendix D. Floating-Point Models 0-15

-

exp~exp-l

End
frD[O] ~ sign
frD[l-ll] ~ exp + 1023
frD[12-63] ~ frac[1-52]

Infinity I QNaN I SNaN I Zero
If WORD[1-8] = 255 or WORD[1-3l] = 0

frD[O-l] ~ WORD[O-l]
frD[2] ~ WORD[l]
frD[3] ~ WORD[l]
frD[4] ~ WORD[l]
frD[5-63] ~ WORD[2-31] II (29)0

For double-precision floating-point load instructions, no conversion is required as the data
from memory is copied directly into the FPRs.

Many floating-point load instructions have an update form in which register rA is updated
with the EA. For these forms, if operand rA '# 0, the effective address (EA) is placed into
register rA and the memory element (word or double word) addressed by the EA is loaded
into the floating-point register specified by operand frD; if operand rA = 0, the instruction
form is invalid.

Recall that rA, rB, and rD denote GPRs, while frA, frB, frC, frS, and frD denote FPRs.

0.7 Floating-Point Store Instructions
There are three basic forms of store instruction-single-precision, double-precision, and
integer. The integer form is provided by the optional stfiwx instruction. Because the FPRs
support only floating-point double format for floating-point data, single-precision store
floating-point instructions convert double-precision data to single-precision format prior to
storing the operands into memory. The conversion steps follow:

Let WORD[0-31] be the word written to in memory.

No Denormalization Required (includes ZerolInfinity/NaN)
if frS[l-ll] > 896 or frS[1-63] = 0 then

WORD[O-l] ~ frS[O-l]
WORD[2-3l] ~ frS[5-34]

Denormalization Required
if 874 ~ frS[l-ll] ~ 896 then

sign ~ frS[O]
exp ~ frS[l-ll] - 1023
frac ~ Obl I I frS[12-63]
Denormalize operand

Do while exp < -126

End

frac ~ ObO I I frac[0-62]
exp ~ exp + 1

WORD[O] ~ sign
WORD[1-8] ~ OxOO
WORD[9-3l] ~ frac[1-23]

else WORD ~ undefined

0-16 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

Notice that if the value to be stored by a single-precision store floating-point instruction is
larger in magnitude than the maximum number representable in single format, the first case
mentioned, "No Denormalization Required," applies. The result stored in WORD is then a
well-defined value, but is not numerically equal to the value in the source register (that is,
the result of a single-precision load floating-point from WORD will not compare equal to
the contents of the original source register).

Note that the description of conversion steps presented here is only a model. The actual
implementation may vary from this description but must produce results equivalent to what
this model would produce.

It is important to note that for double-precision store floating-point instructions and for the
store floating-point as integer word instruction no conversion is required as the data from
the FPR is copied directly into memory.

Appendix o. Floating-Point Models 0-17

•

Appendix E
Synchronization Programming
Examples
The examples in this appendix show how synchronization instructions can be used to
emulate various synchronization primitives and how to provide more complex forms of
synchronization.

For each of these examples, it is assumed that a similar sequence of instructions is used by
all processes requiring synchronization of the accessed data.

E.1 General Information
The following points provide general information about the lwarx and stwcx. instructions:

• In general, lwarx and stwcx. instructions should be paired, with the same effective
address (EA) used for both. The only exception is that an unpaired stwcx. instruction
to any (scratch) effective address can be used to clear any reservation held by the
processor.

• It is acceptable to execute an lwarx instruction for which no stwcx. instruction is
executed. Such a dangling lwarx instruction occurs in the example shown in
Section E.2.S, "Test and Set," if the value loaded is not zero.

• To increase the likelihood that forward progress is made, it is important that looping
on lwarxlstwcx. pairs be minimized. For example, in the sequence shown in
Section E.2.S, "Test and Set," this is achieved by testing the old value before
attempting the store-were the order reversed, more stwcx. instructions might be
executed, and reservations might more often be lost between the lwarx and the
stwcx. instructions.

• The manner in which lwarx and stwcx. are communicated to other processors and
mechanisms, and between levels of the memory subsystem within a given processor,
is implementation-dependent. In some implementations, performance may be
improved by minimizing looping on an lwarx instruction that fails to return a
desired value. For example, in the example provided in Section E.2.S, "Test and
Set," if the program stays in the loop until the word loaded is zero, the programmer
can change the "bne- $+ 12" to "bne- loop."

Appendix E. Synchronization Programming Examples E-1

•

•

In some implementations, better performance may be obtained by using an ordinary
load instruction to do the initial checking of the value, as follows:

loop: lwz r5,O(r3) #load the word
cmpwi r5,O #loop back if word
bne- loop #not equal to °
lwarx r5,O,r3 #try again, reserving
cmpwi r5,O #(likely to succeed)
bne loop #try to store nonzero
stwcx. r4,O,r3 #
bne- loop #loop if lost reservation

• In a multiprocessor, livelock (a state in which processors interact in a way such that
no processor makes progress) is possible if a loop containing an Iwarxlstwcx. pair
also contains an ordinary store instruction for which any byte of the affected
memory area is in the reservation granule of the reservation. For example, the first
code sequence shown in Section E.5, "List Insertion;' can cause livelock if two list
elements have next element pointers in the same reservation granule.

E.2 Synchronization Primitives
The following examples show how the Iwarx and stwcx. instructions can be used to
emulate various synchronization primitives. The sequences used to emulate the various
primitives consist primarily of a loop using the Iwarx and stwcx. instructions. Additional
synchronization is unnecessary, because the stwcx. will fail, clearing the EQ bit, if the word
loaded by Iwarx has changed before the stwcx. is executed.

E.2.1 Fetch and No-Op
The fetch and no-op primitive atomically loads the current value in a word in memory. In
this example, it is assumed that the address of the word to be loaded is in GPR3 and the data
loaded are returned in GPR4.

loop: lwarx r4,O,r3 #load and reserve
stwcx. r4,O,r3 #store old value if still reserved
bne- loop #loop if lost reservation

The stwcx., if it succeeds, stores to the destination location the same value that was loaded
by the preceding Iwarx. While the store is redundant with respect to the value in the
location, its success ensures that the value loaded by the Iwarx was the current value (that
is, the source of the value loaded by the Iwarx was the last store to the location that
preceded the stwcx. in the coherence order for the location) .

E·2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

E.2.2 Fetch and Store
The fetch and store primitive atomically loads and replaces a word in memory.

In this example, it is assumed that the address of the word to be loaded and replaced is in
GPR3, the new value is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,O,r3 #load and reserve
stwcx. r4,O,r3 #store new value if still reserved
bne- loop #loop if lost reservation

E.2.3 Fetch and Add
The fetch and add primitive atomically increments a word in memory.

In this example, it is assumed that the address of the word to be incremented is in GPR3,
the increment is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,O,r3
add rO,r4,r5
stwcx. rO,O,r3
bne- loop

E.2.4 Fetch and AND

#load and reserve
#increment word
#store new value if still reserved
#loop if lost reservation

The fetch and AND primitive atomically ANDs a value into a word in memory.

In this example, it is assumed that the address of the word to be ANDed is in GPR3, the
value to AND into it is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,O,r3 #load and reserve
and rO,r4,r5 #AND word
stwcx. rO,O,r3 #store new value if still reserved
bne- loop #loop if lost reservation

This sequence can be changed to perform another Boolean operation atomically on a word
in memory, simply by changing the AND instruction to the desired Boolean instruction
(OR, XOR, etc.).

E.2.5 Test and Set
This version of the test and set primitive atomically loads a word from memory, ensures that
the word in memory is a nonzero value, and sets CRO[EQ] according to whether the value
loaded is zero.

In this example, it is assumed that the address of the word to be tested is in GPR3, the new
value (nonzero) is in GPR4, and the old value is returned in GPR5.

loop: lwarx
cmpwi
bne
stwcx.
bne-

r5,O,r3
r5, °
$+12
r4,O,r3
loop

#load and reserve
#done if word
#not equal to °
#try to store non-zero
#loop if lost reservation

Appendix E. Synchronization Programming Examples E·3

•

•

E.3 Compare and Swap
The compare and swap primitive atomically compares a value in a register with a word in
memory. If they are equal, it stores the value from a second register into the word in
memory. If they are unequal, it loads the word from memory into the first register, and sets
the EQ bit of the CRO field to indicate the result of the comparison.

In this example, it is assumed that the address of the word to be tested is in GPR3, the word
that is compared is in GPR4, the new value is in GPR5, and the old value is returned in
GPR4.

loop:

exit:

Notes:

l_rx
CJIIPW
bne­
stwcx.
bne­
Dar

r6,O,r3
r4,r6
exit
r5,O,r3
loop
r4,r6

#load and reserve
#first 2 operands equal ?
#skip if not
#store new value if still reserved
#loop if lost reservation
#return value from memory

1. The semantics in this example are based on the IBM Systeml370™ compare and
swap instruction. Other architectures may define this instruction differently.

2. Compare and swap is shown primarily for pedagogical reasons. It is useful on
machines that lack the better synchronization facilities provided by the Iwarx and
stwcx. instructions. Although the instruction is atomic, it checks only for whether
the current value matches the old value. An error can occur if the value had been
changed and restored before being tested.

3. In some applications, the second boe- instruction and/or the mr instruction can be
omitted. The first boe- is needed only if the application requires that if the EQ bit of
CRO field on exit indicates not equal, then the original compared value in r4 and r6
are in fact not equal. The mr is needed only if the application requires that if the
compared values are not equal, then the word from memory is loaded into the
register with which it was compared (rather than into a third register). If either, or
both, of these instructions is omitted, the resulting compare and swap does not obey
the IBM Systeml370 semantics .

E-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

E.4 Lock Acquisition and Release
This example provides an algorithm for locking that demonstrates the use of
synchronization with an atomic read/modify/write operation. GPR3 provides a shared
memory location, the address of which is an argument of the lock and unlock procedures.
This argument is used as a lock to control access to some shared resource such as a data
structure. The lock is open when its value is zero and locked when it is one. Before
accessing the shared resource, a processor sets the lock by having the lock procedure call
TEST _AND _SET, which executes the code sequence in Section E.2.S, "Test and Set." This
atomically sets the old value of the lock, and writes the new value (1) given to it in GPR4,
returning the old value in GPRS (not used in the following example) and setting the EQ bit
in eRO according to whether the value loaded is zero. The lock procedure repeats the test
and set procedure until it successfully changes the value in the lock from zero to one.

The processor must not access the shared resource until it sets the lock. After the bne­
instruction that checks for the successful test and set operation, the processor executes the
isync instruction. This delays all subsequent instructions until all previous instructions have
completed to the extent required by context synchronization. The sync instruction could be
used but performance would be degraded because the sync instruction waits for all
outstanding memory accesses to complete with respect to other processors. This is not
necessary here.

lock: li
loop: bl

bne-

isync

r4,1
test_and_set
loop

#obtain lock
#test and set
#retry until old = °
#delay subsequent instructions until
#previous ones complete

blr #return

The unlock procedure writes a zero to the lock location. If the access to the shared resource
includes write operations, most applications that use locking require the processor to
execute a sync instruction to make its modification visible to all processors before releasing
the lock. For this reason, the unlock procedure in the following example begins with a sync.

unlock: sync
li
stw
blr

rl,O
rl,O(r3)

#delay until prior stores finish

#store zero to lock location
#return

Appendix E. Synchronization Programming Examples E-5

..

E.S List Insertion
The following example shows how the lwarx and stwcx. instructions can be used to
implement simple LIFO (last-in-first-out) insertion into a singly-linked list. (Complicated
list insertion, in which multiple values must be changed atomically, or in which the correct
order of insertion depends on the contents of the elements, cannot be implemented in the
manner shown below, and requires a more complicated strategy such as using locks.)

The next element pointer from the list element after which the new element is to be inserted,
here called the parent element, is stored into the new element, so that the new element
points to the next element in the list-this store is performed unconditionally. Then the
address of the new element is conditionally stored into the parent element, thereby adding
the new element to the list.

In this example, it is assumed that the address of the parent element is in GPR3, the address
of the new element is in GPR4, and the next element pointer is at offset zero from the start
of the element. It is also assumed that the next element pointer of each list element is in a
reservation granule separate from that of the next element pointer of all other list elements.

loop: lwarx r2,O,r3 #get next pointer
stw r2,O(r4)#store in new element
sync #let store settle (can omit if not MP)
stwcx. r4,O,r3 #add new element to list
bne- loop #loop if stwcx. failed

In the preceding example, if two list elements have next element pointers in the same
reservation granule in a multiprocessor system, livelock can occur.

If it is not possible to allocate list elements such that each element's next element pointer
is in a different reservation granule, livelock can be avoided by using the following
sequence:

lwz
loopl: mr

stw
sync

loop2 : lwarx
c~w

bne­
stwcx.
bne-

E-6

r2,O(r3)#get next pointer
r5,r2 #keep a copy
r2,O(r4)#store in new element

r2,O,r3
r2,r5
loopl
r4,O,r3
loop2

#let store settle
#get it again
#loop if changed (someone
#else progressed)
#add new element to list
#loop if failed

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Appendix F
Simplified Mnemonics
This appendix is provided in order to simplify the writing and comprehension of assembler
language programs. Included are a set of simplified mnemonics and symbols that define the
simple shorthand used for the most frequently-used forms of branch conditional, compare,
trap, rotate and shift, and certain other instructions. (Note that the architecture specification
refers to simplified mnemonics as extended mnemonics.)

F.1 Symbols
The symbols in Table F-l are defined for use in instructions (basic or simplified
mnemonics) that specify a condition register (CR) field or a bit in the CR.

Table F-1. Condition Register Bit and Identification Symbol Descriptions

Symbol Value
Bit Field

Description
Range

It 0 - Less than. Identifies a bit number within a CR field.

gt 1 - Greater than. Identifies a bit number within a CR field.

eq 2 - Equal. Identifies a bit number within a CR field.

so 3 - Summary overflow. Identifies a bit number within a CR field.

un 3 - Unordered (after floating-point comparison). Identifies a bit number in a CR field.

crO 0 0-3 CROfield

cr1 1 4-7 CR1 field

cr2 2 8-11 CR2 field

cr3 3 12-15 CR3fieid

cr4 4 16-19 CR4fieid

cr5 5 20-23 CR5fieid

crS 6 24-27 CR6fieid

cr7 7 28-31 CR7fieid

Note: To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added to a bit-number­
within-CR-field symbol can be used.

Appendix F. Simplified Mnemonics F-1

•

Note that the simplified mnemonics in Section F.5.2, "Basic Branch Mnemonics," and
Section F.6, "Simplified Mnemonics for Condition Register Logical Instructions," require
identification of a CR bit-if one of the CR field symbols is used, it must be multiplied by
4 and added to a bit-number-within-CR-field (value in the range of 0-3, explicit or
symbolic). The simplified mnemonics in Section F.5.3, "Branch Mnemonics Incorporating
Conditions," and Section F.3, "Simplified Mnemonics for Compare Instructions," require
identification of a CR field-if one of the CR field symbols is used, it must not be multiplied
by 4. (For the simplified mnemonics in Section F.5.3, "Branch Mnemonics Incorporating
Conditions," the bit number within the CR field is part of the simplified mnemonic. The CR
field is identified, and the assembler does the multiplication and addition required to
produce a CR bit number for the BI field of the underlying basic mnemonic.)

F.2 Simplified Mnemonics for Subtract Instructions
This section discusses simplified mnemonics for the subtract instructions.

F.2.1 Subtract Immediate
Although there is no subtract immediate instruction, its effect can be achieved by using an
add immediate instruction with the immediate operand negated. Simplified mnemonics are
provided that include this negation, making the intent of the computation more clear.

subi rD,rA,value (equivalent to addi rD,rA,-value)

subis rD,rA,value

subie rD,rA,value

subie. rD,rA,value

(equivalent to

(equivalent to

(equivalent to

addis rD,rA,-value)

addic rD,rA,-value)

addie. rD,rA,-value)

F.2.2 Subtract
The subtract from instructions subtract the second operand (rA) from the third (rB).
Simplified mnemonics are provided that use the more normal order in which the third
operand is subtracted from the second. Both these mnemonics can be coded with an 0 suffix
and/or dot (.) suffix to cause the OE and/or Rc bit to be set in the underlying instruction.

sub rD,rA,rB (equivalent to subf rD,rB,rA)

sube rD,rA,rB (equivalent to subfe rD,rB,rA)

F-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

F.3 Simplified Mnemonics for Compare Instructions
The crfD field can be omitted if the result of the comparison is to be placed into the CRO
field. Otherwise, the target CR field must be specified as the first operand. One of the CR
field symbols defined in Section F.I, "Symbols," can be used for this operand.

Note that the basic compare mnemonics of PowerPC are the same as those of POWER, but
the POWER instructions have three operands while the PowerPC instructions have four.
The assembler recognizes a basic compare mnemonic with the three operands as the
POWER form, and generates the instruction with L = O. The crtD field can normally be
omitted when the CRO field is the target.

F.3.1 Word Comparisons
The instructions listed in Table F-2 are simplified mnemonics that should be supported by
assemblers for all PowerPC implementations.

Table F-2. Simplified Mnemonics for Word Compare Instructions

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crfD,rA,SIMM cmpi crfD,O,rA,SIMM

Compare Word cmpw crfD,rA,rB cmp crfD,O,rA,rB

Compare Logical Word Immediate cmplwi crfD,rA,UIMM cmpli crfD,O,rA,UIMM

Compare Logical Word cmplw crfD,rA,rB cmpl crfD,O,rA,rB

Following are examples using the word compare mnemonics.

1. Compare rA with immediate value 100 as signed 32-bit integers and place result in
CRO.
cmpwi rA,lOO (equivalent to cmpi O,O,rA,lOO)

2. Same as (1), but place results in CR4.
cmpwi cr4,rA,lOO (equivalent to cmpi 4,O,rA,lOO)

3. Compare rA and rBas unsigned 32-bit integers and place result in CRO.
cmplw rA,rB (equivalent to cmpIO,O,rA,rB)

Appendix F. Simplified Mnemonics F-3

-

..

F.4 Simplified Mnemonics for Rotate and Shift
Instructions

The rotate and shift instructions provide powerful and general ways to manipulate register
contents, but can be difficult to understand. Simplified mnemonics that allow some of the
simpler operations to be coded easily are provided for the following types of operations:

• Extract-Select a field of n bits starting at bit position b in the source register; left
or right justify this field in the target register; clear all other bits of the target register.

• Insert-Select a left-justified or right-justified field of n bits in the source register;
insert this field starting at bit position b of the target register; leave other bits of the
target register unchanged. (No simplified mnemonic is provided for insertion of a
left-justified field, when operating on double words, because such an insertion
requires more than one instruction.)

• Rotate-Rotate the contents of a register right or left n bits without masking.

• Shift-Shift the contents of a register right or left n bits, clearing vacated bits
(logical shift).

• Clear-Clear the leftmost or rightmost n bits of a register.

• Clear left and shift left-Clear the leftmost b bits of a register, then shift the register
left by n bits. This operation can be used to scale a (known non-negative) array index
by the width of an element.

F.4.1 Operations on Words
The operations shown in Table F-3 are available in all implementations. All these
mnemonics can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying
instruction .

F-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table F-3. Word Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent to:

Extract and left justify immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,O,n - 1

Extract and right justify immediate extrwl rA,rS,n,b (n > 0) rlwlnm rA,rS,b + n, 32 - n,31

Insert from left immediate Inslwl rA,rS,n,b (n > 0) rlwiml rA,rS,32 - b,b,(b + n) - 1

Insert from right immediate Insrwi rA,rS,n,b (n > 0) rlwiml rA,rS,32 - (b + n),b,(b + n) - 1

Rotate left immediate rotlwl rA,rS,n rlwinm rA,rS,n,O,31

Rotate right immediate rotrwi rA,rS,n rlwinm rA,rS,32 - n,O,31

Rotate left rotlw rA,rS,rB rlwnm rA,rS,rB,O,31

Shift left immediate slwl rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 - n

Shift right immediate srwl rA,rS,n (n < 32) rlwinm rA,rS,32 - n,n,31

Clear left immediate clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31

Clear right immediate clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 - n

Clear left and shift left immediate clrlslwi rA,rS,b,n (n ~ b ~ 31) rlwinm rA,rS,n,b- n,31 - n

Examples using word mnemonics follow:

1. Extract the sign bit (bit 0) of rS and place the result right-justified into r A.
extrwi rA,rS,l,O (equivalent to rlwinm rA,rS,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.
insrwi rB,rA,l,O (equivalent to rlwimi rB,rA,31,O,O)

3. Shift the contents of rA left 8 bits.
slwi rA,rA,8 (equivalent to rlwinm rA,rA,8,O,23)

4. Clear the high-order 16 bits of rS and place the result into rA.
clrlwi rA,rS,16 (equivalent to rlwinm rA,rS,O,16,31)

•
Appendix F. Simplified Mnemonics F-5

F.S Simplified Mnemonics for Branch Instructions
Mnemonics are provided so that branch conditional instructions can be coded with the
condition as part of the instruction mnemonic rather than as a numeric operand. Some of
these are shown as examples with the branch instructions.

The mnemonics discussed in this section are variations of the branch conditional
instructions.

F.S.1 BO and BI Fields
The 5-bit BO field in branch conditional instructions encodes the following operations.

• Decrement count register (CTR)

• Test CTR equal to zero
• Test CTR not equal to zero
• Test condition true
• Test condition false
• Branch prediction (taken, fall through)

The 5-bit BI field in branch conditional instructions specifies which ofthe 32 bits in the CR
represents the condition to test.

To provide a si"lflified mnemonic for every possible combination of BO and BI fields
would require 21 = 1024 mnemonics and most of these would be only marginally useful.
The abbreviated set found in Section F.5.2, "Basic Branch Mnemonics," is intended to
cover the most useful cases. Unusual cases can be coded using a basic branch conditional
mnemonic (be, belr, beetr) with the condition to be tested specified as a numeric operand.

F.S.2 Basic Branch Mnemonics
The mnemonics in Table F-4 allow all the common BO operand encodings to be specified
as part of the mnemonic, along with the absolute address (AA), and set link register (LR)
bits.

Notice that there are no simplified mnemonics for relative and absolute unconditional
branches. For these, the basic mnemonics b, ba, bl, and bla are used.

Table F-4 provides the abbreviated set of simplified mnemonics for the most commonly
performed conditional branches.

F-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table F-4. Simplified Branch Mnemonics

lR Update Not Enabled lR Update Enabled

Branch Semantics
be bca bclr bcctr bcl bcla bclrl bcctrl
Relative Absolute tolR toCTR Relative Absolute tolR toCTR

Branch unconditionally - - blr bctr - - blrl bctrl

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition bf bfa bflr bfctr bfl bfla bfIrl bfctrl
false

Decrement CTR, bdnz bdnza bdnzlr - bdnzl bdnzla bdnilrl -
branch if CTR non-zero

Decrement CTR; bdnzt bdnzta bdnztlr - bdnztl bdnztla bdnztlrl -
branch if CTR non-zero
AND condition true

Decrement CTR, bdnzf bdnzfa bdnzflr - bdnzfl bdnzfla bdnzflrl -
branch if CTR non-zero
AND condition false

Decrement CTR, bdz bdza bdzlr - bdzl bdzla bdzlrl -
branch if CTR zero

Decrement CTR, bdzt bdzta bdztlr - bdztl bdztla bdztlrl -
branch if CTR zero
AND condition true

Decrement CTR, bdzf bdzfa bdzflr - bdzfl bdzfla bdzIlri -
branch if CTR zero
AND condition false

The simplified mnemonics shown in Table F-4 that test a condition require a corresponding
CR bit as the first operand of the instruction. The symbols defined in Section E1,
"Symbols," can be used in the operand in place of a numeric value.

The simplified mnemonics found in Table F-4 are used in the following examples:

1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a
count loaded into CTR).
bdnz target (equivalent to be 16,O,target)

2. Same as (1) but branch only if CTR is non-zero and condition in CRO is "equal."
bdnzt eq,target (equivalent to be 8,2,target)

3. Same as (2), but "equal" condition is in CR5.
bdnzt 4 * er5 + eq,target (equivalent to be 8,22,target)

4. Branch if bit 27 of CR is false.
bf 27,target (equivalent to be 4,27,target)

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 27 ,target (equivalent to bcl4,27,target)

Appendix F. Simplified Mnemonics F-7

-

•

Table F-5 provides the simplified mnemonics for the be and bca instructions without link
register updating, and the syntax associated with these instructions. Note that the default
condition register specified by the simplified mnemonics in the table is CRO.

Table F-S. Simplified Branch Mnemonics for bc and bca Instructions without Link
Register Update

LR Update Not Enabled

Branch Semantics
bc Simplified bea Simplified

Relative Mnemonic Absolute Mnemonic

Branch unconditionally - - - -
Branch if condition true bc l2,O,target bt O,target bca l2,O,target bta O,target

Branch if condition false bc 4,O,target bf O,target bca 4,O,target bfa O,target

Decrement eTR, branch if eTR nonzero bc16,O,target bdnztarget bca l6,O,target belnza target

Decrement eTR, branch if eTR nonzero bc 8,O,target belnzt O,target bca 8,O,target belnzta O,target
AND condition true

Decrement eTR, branch if eTR nonzero bc O,O,target belnzf O,target bea O,O,target bdnzfa O,target
AND condition false

Decrement eTR, branch if eTR zero bc18,O,target bdz target bea l8,O,target bdza target

Decrement eTR, branch if eTR zero bcl0,O,target bdzt O,target bca 10,O,target bdzta O,target
AND conaltion true

Decrement eTR, branch if eTR zero bc 2,O,target belzf O,target bca 2,O,target bdzfa O,target
AND condition false

F·8 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

Table F-6 provides the simplified mnemonics for the belr and bcelr instructions without
link register updating, and the syntax associated with these instructions. Note that the
default condition register specified by the simplified mnemonics in the table is eRO.

Table F-6. Simplified Branch Mnemonics for bclr and bcclr Instructions without
Link Register Update

LR Update Not Enabled

Branch Semantics
bclr Simplified Simplified

to LR Mnemonic
bcctrto eTR

Mnemonic

Branch unconditionally bclr20,0 blr bcctr 20,0 bctr

Branch if condition true bclr 12,0 btlrO bcctr 12,0 btctr 0

Branch if condition false bclr 4,0 bflrO bcctr 4,0 bfctr 0

Decrement eTR, branch if eTR bclr 16,0 bdnzlr - -
nonzero

Decrement eTR, branch if eTR bclr 10,0 bdztlr 0 - -
nonzero AND condition true

Decrement eTR, branch if eTR bclr 0,0 bdnzflrO - -
nonzero AND condition false

Decrement eTR, branch if eTR bclr 18,0 bdzlr - -
zero

Decrement eTR, branch if eTR bclr 10,0 bdztlr 0 - -
zero AND condition true

Decrement eTR, branch if eTR bcctr 0,0 bdzflrO - -
zero AND condition false

Appendix F. Simplified Mnemonics F-9

-

•

Table F-7 provides the simplified mnemonics for the bel and bela instructions with link
register updating, and the syntax associated with these instructions. Note that the default
condition register specified by the simplified mnemonics in the table is eRO.

Table F-7. Simplified Branch Mnemonics for bcl and bcla Instructions with Link
Register Update

LA Update Enabled

Branch Semantics
Simplified Simplified bcl Relative
Mnemonic

bcla Absolute
Mnemonic

Branch unconditionally - - - -
Branch if condition true bcl1 2,O,target btl O,target bcla 12,O,target btla O,target

Branch if condition false bcl 4,O,target btl O,target bcla 4,O,target btla O,target

Decrement CTR, branch if CTR bcl 16,O,target bdnzl target bcla 16,O,target bdnzla target
nonzero

Decrement CTR, branch if CTR bcl 8,O,target bdnztl O,target bcla 8,O,target bdnztla O,target
nonzero AND condition true

Decrement CTR, branch if CTR bcl O,O,target bdnzfl O,target bcla O,O,target bdnzfla O,target
nonzero AND condition false

Decrement CTR, branch if CTR bcl18,O,target bdzl target bcla 18,O,target bdzla target
zero

Decrement eTR, branch if eTR bcl10,O,target bdztl O,target bcla 10,O,target bdztla O,target
zero AND condition true

Decrement eTR, branch if eTR bcl 2,O,target bdzfl O,target bcla 2,O,target bdzfla O,target
zero AND condition false

F-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table F-8 provides the simplified mnemonics for the belrl and bcctrl instructions with link
register updating, and the syntax associated with these instructions. Note that the default
condition register specified by the simplified mnemonics in the table is eRO.

Table F-8. Simplified Branch Mnemonics for bclrl and bcctrllnstructions with Link
Register Update

LR Update Enabled

Branch Semantics
bclrl Simplified bcctrl Simplified
toLR Mnemonic toCTR Mnemonic

Branch unconditionally bclrl20,O blrl bcctrl20,O bctrl

Branch if condition true bclrl12,O btirlO bcctrl12,O btctrlO

Branch if condition false bclrl4,O bflrlO bcctrl4,O bfctrlO

Decrement eTR, branch if eTR bclrl16,O bdnzlrl - -
nonzero

Decrement eTR, branch if eTR bclrlB,O bdnztlrlO - -
nonzero AND condition true

Decrement eTR, branch if eTR bclrlO,O bdnzflrlO - -
nonzero AND condition false

Decrement CTR, branch if CTR zero bclrl1B,O bdzlrl - -
Decrement CTR, branch if eTR zero bdztlrlO bdztlrlO - -
AND condition true

Decrement eTR, branch if eTR zero bclrl4,O bflrlO - -
AND condition false

Appendix F. Simplified Mnemonics F-11

-

•

F.S.3 Branch Mnemonics Incorporating Conditions
The mnemonics defined in Table F-4 are variations of the branch if condition true and
branch if condition false BO encodings, with the most useful values of BI represented in
the mnemonic rather than specified as a numeric operand.

A standard set of codes (shown in Table F-9) has been adopted for the most common
combinations of branch conditions.

Table F-9. Standard Coding for Branch Conditions

Code Description

It Less than

Ie Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

un Unordered (after floating-point comparison)

nu Not unordered (after floating-point comparison)

F-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table F-IO shows the simplified branch mnemonics incorporating conditions.

Table F-10. Simplified Branch Mnemonics with Comparison Conditions

LR Update Not Enabled LR Update Enabled

Branch Semantics
bc bca bclr bcctr bcl bcla bclrl bcctrl

Relative Absolute to LR toCTR Relative Absolute to LR toCTR

Branch if less than bit blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or ble blea blelr blectr blel blela blelrl blectrl
equal

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than bge bgea bgelr bgectr bgel bgela bgelrl bgectrl
or equal

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater bng bnga bnglr bngctr bngl bngla bnglrl bngctrl
than

Branch if summary bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl
overflow

Branch if not summary bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl
overflow

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

Instructions using the mnemonics in Table F-IO specify the condition register field in an
optional first operand. If the CR field being tested is CRO, this operand need not be
specified. One of the CR field symbols defined in Section F.1, "Symbols," can be used for
this operand.

The simplified mnemonics found in Table F-IO are used in the following examples:

1. Branch if CRO reflects condition "not equal."
boe target (equivalent to be 4,2,target)

2. Same as (1) but condition is in CR3.
boe er3,target (equivalent to be 4,14,target)

3. Branch to an absolute target if CR4 specifies "greater than," setting the link register.
This is a form of conditional "call."
bgtla er4,target (equivalent to bela 12,17,target)

4. Same as (3), but target address is in the CTR.
bgtetrl er4 (equivalent to beetrI12,17)

Appendix F. Simplified Mnemonics F-13

-

-

Table F-II shows the simplified branch mnemonics for the be and bea instructions without
link register updating, and the syntax associated with these instructions. Note that the
default condition register specified by the simplified mnemonics in the table is CRO.

Table F-11. Simplified Branch Mnemonics for bc and bca Instructions without
Comparison Conditions and Link Register Updating

LR Update Not Enabled

Branch Semantlca
Simplified Simplified

be Relative Mnemonic bea Absolute Mnemonic

Branch if less than be 12,O,target bit target bca 12,O,target bits target

Branch illess than or equal be 4,1,target bletarget bca 4,1 ,target blea target

Branch if equal be 12,2, target beq target bca 12,2,target beqatarget

Branch if greater than or equal be 4,O,target bgetarget bca 4,O,target bgeatarget

Branch if greater than be 12,1 ,target bgt target bca 12,1 ,target bgts target

Branch if not less than be 4,O,target bnl target bca 4,O,target bnla target

Branch if not equal be 4,2,target bne target bca 4,2,target bneatarget

Branch if not greater than be 4,1 ,target bngtarget bca 4,1 ,target bngatarget

Branch if summary overflow be 12,3,target bso target bea 12,3,target baoa target

Branch if not summary overflow bc 4,3,target bns target bca 4,3,target bnsatarget

Branch if unordered bc 12,3, target bun target bca 12,3,target bunatarget

Branch if not unordered be 4,3,target bnu target bea 4,3,target bnua target

F-14 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

Table F-12 shows the simplified branch mnemonics for the belr and bcctr instructions
without link register updating, and the syntax associated with these instructions. Note that
the default condition register specified by the simplified mnemonics in the table is eRO.

Table F-12. Simplified Branch Mnemonics for bclr and bcctr Instructions without
Comparison Conditions and Link Register Updating

LR Update Not Enabled

Branch Semantics
Simplified Simplified

bclrto LR
Mnemonic

bcctrtoCTR
Mnemonic

Branch if less than bclr 12,0 bltlr bcctr 12,0 bltctr

Branch if less than or equal bclr4,1 blelr bcctr 4,1 blectr

Branch if equal bclr 12,2 beqlr bcctr 12,2 beqctr

Branch if greater than or equal bclr4,O bgelr bcctr4,O bgectr

Branch if greater than bclr 12,1 bgtlr bcctr 12,1 bgtctr

Branch if not less than bclr4,O bnllr bcctr4,O bnlctr

Branch if not equal bclr4,2 bnelr bcctr4,2 bnectr

Branch if not greater than bclr4,1 bnglr bcctr4,1 bngctr

Branch if summary overflow bclr 12,3 bsolr bcctr 12,3 bsoctr

Branch if not summary overflow bclr4,3 bnslr bcctr4,3 bnsctr

Branch if unordered bclr 12,3 bunlr bcctr 12,3 bunctr

Branch if not unordered bclr4,3 bnulr bcctr4,3 bnuctr

Appendix F. Simplified Mnemonics F-15

-

-

Table F-13 shows the simplified branch mnemonics for the bel and bela instructions with
link register updating, and the syntax associated with these instructions. Note that the
default condition register specified by the simplified mnemonics in the table is CRO.

Table F-13. Simplified Branch Mnemonics for bcl and bcla Instructions with
Comparison Conditions and Link Register Update

LR Update Enabled

Branch Semantics
Simplified Simplified

bel Relative Mnemonic bela Absolute Mnemonic

Branch if less than bcl12,O,target bltl target bcla 12,O,target bltla target

Branch if less than or equal bcl 4,1 ,target blel target bcla 4,1 ,target blela target

Branch if equal·· beql target beql target bcla 12,2,target beqla target

Branch if greater than or equal bel 4,O,target bga! target bcla 4,O,target bgela target

Branch if greater than bel 12,1 ,target bgtl target . bela 12,1 ,target bgtla target

Branch if not less than bcl 4,O,target bnll target bcla 4,O,target bnllatarget

Branch if not equal bcl 4,2,target bnel target bcla 4,2,target bnela target

Branch if not greater than bcl 4,1 ,target bngl target bcla 4,1 ,target bngla target

Branch if summary overflow bel 12,3,target bsol target bela 12,3,target bsola target

Branch if not summary bcl 4,3,target bnsl target bcla 4,3,target bnsla target
overflow

Branch if unordered bcl 12,3,target bunl target bcla 12,3,target bunla target

Branch if not unordered bel4,3,target bnul target bela 4,3,target bnula target

F-16 PowerPC Microprocessor Family: The Programming Environments (32-BIt)

Table F-14 shows the simplified branch mnemonics for the belrl and beetl instructions with
link register updating, and the syntax associated with these instructions. Note that the
default condition register specified by the simplified mnemonics in the table is CRO.

Table F-14. Simplified Branch Mnemonics for bclrl and bcctllnstructlons with
Comparison Conditions and Link Register Update

LR Update Enabled

Branch Semantics
Simplified Simplified

bclrlto LR
Mnemonic

bcctrlto eTR
Mnemonic

Branch if less than bclrl12,O bltlrl 0 bcctrl12,O bltctrlO

Branch if less than or equal bclrl4,1 blelrlO bcctrl4,1 blectrl 0

Branch if equal bclrl12,2 beqlrl 0 bcctrl12,2 beqctrlO

Branch if greater than or equal bclrl4,O bgelrlO bcctrl4,O bgectrl 0

Branch if greater than bclrl12,1 bgtlrlO bcctrl12,1 bgtctrlO

. Branch if not less than bclrl4,O bnllrlO bcctrl4,O bnlctrl 0

Branch if not equal bclrl4,2 bnelrl 0 bcctrl4,2 bnectrlO

Branch if not greater than bclrl4,1 bnglrl 0 bcctrl4,1 bngctrl 0

Branch if summary overflow bclr112,3 bsolrlO bcctrl12,3 bsoctrlO

Branch if not summary overflow bclrl4,3 bnslrlO bcctrl4,3 bnsctrlO

Branch if unordered bclrl12,3 bunlrlO bcctrl12,3 bunctrlO

Branch if not unordered bclrl4,3 bnulrlO bcctrl4,3 bnuctrl 0

F.S.4 Branch Prediction
In branch conditional instructions that are not always taken, the low-order bit (y bit) of the
BO field provides a hint about whether the branch is likely to be taken. See Section 4.2.4.2,
"Conditional Branch Control," for more information on the y bit.

Assemblers should clear this bit unless otherwise directed. This default action indicates the
following:

• A branch conditional with a negative displacement field is predicted to be taken.

• A branch conditional with a non-negative displacement field is predicted not to be
taken (fall through).

• A branch conditional to an address in the LR or CTR is predicted not to be taken (fall
through).

Appendix F. Simplified Mnemonics F-17

-

-

If the likely outcome (branch or fall through) of a given branch conditional instruction is
known, a suffix can be added to the mnemonic that tells the assembler how to set the y bit.
That is, '+' indicates that the branch is to be taken and '-' indicates that the branch is not
to be taken. Such a suffix can be added to any branch conditional mnemonic, either basic
or simplified.

For relative and absolute branches (bc[l][a]), the setting of the y bit depends on whether the
displacement field is negative or non-negative. For negative displacement fields, coding the
suffix '+' causes the bit to be cleared, and coding the suffix '-' causes the bitto be set. For
non-negative displacement fields, coding the suffix '+' causes the bit to be set, and coding
the suffix '-' causes the bit to be cleared.

For branches to an address in the LR or CTR (bcclr[l] or bcctr[l]), coding the suffix '+'
causes the y bit to be set, and coding the suffix '-' causes the bit to be cleared.

Examples of branch prediction follow:

1. Branch if CRO reflects condition "less than," specifying that the branch should be
predicted to be taken.
blt+ target

2. Same as (1), but target address is in the LR and the branch should be predicted not
to be taken.
bltlr-

F.6 Simplified Mnemonics for Condition Register
Logical Instructions

The condition register logical instructions, shown in Table F-15, can be used to set, clear,
copy, or invert a given condition register bit. Simplified mnemonics are provided that allow
these operations to be coded easily. Note that the symbols defined in Section F.1,
"SymbOls," can be used to identify the condition register bit.

Table F-15. Condition Register Logical Mnemonics

Operation Simplified Mnemonic Equivalent to

Condition register set crset bx creqv bX,bx,bx

Condition register clear crclr bx crxor bX,bx,bx

Condition register move crmove bx,by cror bX,by,by

Condition register not crnotbx,by cmor bX,by,by

F-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Examples using the condition register logical mnemonics follow:

1. Set CR bit 25.
crset 25

2. Clear the SO bit of CRO.

(equivalent to creqv 25,25,25)

crclr so (equivalent to crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.
crclr 4 * cr3 + so (equivalent to crxor 15,15,15)

4. Invert the EQ bit.
crnot eq,eq (equivalent to crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into
the EQ bit of CR5.
crnot 4 * cr5 + eq, 4 * cr4 + eq (equivalent to crnor 22,18,18)

F. 7 Simplified Mnemonics for Trap Instructions
A standard set of codes, shown in Table F-16, has been adopted for the most common
combinations of trap conditions.

Table F-16. Standard Codes for Trap Instructions

Code Description TO Encoding < > = <U >U

It Less than 16 1 0 0 0 0

Ie Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt· Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

lit Logically less than 2 0 0 0 1 0

lie Logically less than or equal 6 0 0 1 1 0

Ige Logically greater than or equal 5 0 0 1 0 1

Igt Logically greater than 1 0 0 0 0 1

Inl Logically not less than 5 0 0 1 0 1

Ing Logically not greater than 6 0 0 1 1 0

- Unconditional 31 1 1 1 1 1

Note: The symbol "<U· indicates an unsigned less than evalyation will be performed. The symbol ">U· indi­
cateS an unsigned greater than evaluation will be performed.

Appendix F. Simplified Mnemonics F-19

-

..

The mnemonics defined in Table F-IS are variations of trap instructions, with the most
useful values of TO represented in the mnemonic rather than specified as a numeric
operand.

Table F-18. Trap Mnemonics

32·Blt Comparison
Trap Semantics

twllmmadlate tw Register

Trap unconditionally - trap

Trap if less than twltl twit

Trap if less than or equal twlei twle

Trap if equal tweql tweq

Trap if greater than or equal twgel twge

Trap if greater than twgtl twgt

Trap if not less than twnll twnl

Trap if not equal twnel twne

Trap if not greater than twngl twng

Trap If logically less than twlltl twllt

Trap if logically less than or equal twllel twlle

Trap if logically greater than or equal twlgel twig.

Trap if logically greater than twlgtl twlgt

Trap if logically not less than twlnll twlnl

Trap if logically not greater than twlngl twlng

F·20 PowerPC Microprocessor Family: The Programming Environments (32-8It)

Examples of the uses of trap mnemonics, shown in, Table F-18follow:

1. Trap if register rA is not zero.
twnei rA,O (equivalent to twi 24,r A,O)

2. Trap if register rA is not equal to rB.
twne rA, rB (equivalent to tw 24,rA,rB)

3. Trap if r A is logically greater than Ox7FF.
twlgti rA, Ox7FF (equivalent to twi 1,rA, Ox7FF)

4. Trap unconditionally.
trap (equivalent to tw 31,0,0)

Trap instructions evaluate a trap condition as follows:

• The contents of register r A are compared with either the sign-extended SIMM field
or the contents of register rB, depending on the trap instruction.

The comparison results in five conditions which are ANDed with operand TO. If the result
is not 0, the trap exception handler is invoked. (Note that exceptions are referred to as
interrupts in the architecture specification.) See Table F-19 for these conditions.

Table F-19. TO Operand Bit Encoding

TOBit ANDed with Condition

0 Less than. using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

F.8 Simplified Mnemonics for Special-Purpose
Registers

The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric
operand. Simplified mnemonics are provided that represent the SPR in the mnemonic rather
than requiring it to be coded as a numeric operand. Table F-20 provides a list of the
simplified mnemonics that should be provided by assemblers for SPR operations.

Appendix F. Simplified Mnemonics F-21

-

Table F-20. Simplified Mnemonics for SPRs

MovetoSPR Move from SPR

Special-Purpose Register
Simplified Simplified
Mnemonic

Equivalent to
Mnemonic

Equivalent to

XER mtxerrS mtspr l,rS mfxerrD mfspr rD,l

Link register mtlrrS mtspr8,rS mflrrD mfspr rD,8

Count register mtctr rS mtspr 9,rS mfctr rD mfspr rD,9

DSISR mtdslsrrS mtspr l8,rS mfdslsr rD mfspr rD,18

Data address register mtdarrS mtspr 19,rS mfdarrD mfspr rD,19

Deerementer mtdec rS mtspr22,rS mfdecrD mfspr rD,22

SDRl mtsdrl rS mtspr25,rS mfsdrl rD mfspr rD,25

Save and restore register 0 mtsrrO rS mtspr26,rS mfsrrO rD mfspr rD,26

Save and restore register 1 mtsrrl rS mtspr27,rS mfsrrl rD mfspr rD,27

SPRGO-SPRG3 mtspr n, rS mtspr 272 + n,rS mfsprg rD, n mfspr rD,272 + n

Address space register mtasr rS mtspr 280,rS mfasrrD mfspr rD,280

External access register mtearrS mtspr 282,rS mfearrD mfspr rD,282

Time base lower mttbl rS mtspr 284,rS mftb rD mftb rD,268

Time base upper mttbu rS mtspr 285,rS mftburD mftb rD,269

Processor version register - - mfpvr rD mfspr rD,287

IBAT register, upper mtlbatu n, rS mtspr 528 + (2 • n),rS mflbatu rD, n mfspr rD,528 + (2 * n)

IBAT register, lower mtlbatl n, rS mtspr 529 + (2 * n),rS mflbatl rD, n mfspr rD,529 + (2 * n)

DBAT register, upper mtdbatu n, rS mtspr 536 + (2 *n),rS mfdbatu rD, n mfspr rD,536 + (2 * n)

DBAT register, lower mtdbatl n, rS rntspr 537 + (2 * n),tS mfdbatl rD, n mfspr rD,537 + (2 * n)

Following are examples using the SPR simplified mnemonics found in Table F-20:

1. Copy the contents ofrS to the XER.
mtxer rS (equivalent to mtspr 1,rS)

2 .. Copy the contents of the LR to rS.
mflr rS (equivalent to mfsprrS,8)

- 3. Copy the contents of rS to the CTR.
mtctr rS (equivalent to mtspr 9,rS)

F-22 PowerPC Microprocessor Family: The Programming Environments (32-Blt)

F.9 Recommended Simplified Mnemonics
This section describes some of the most commonly-used operations (such as no-op, load
immediate, load address, move register, and complement register).

F.9.1 No-Op (nop)
Many PowerPC instructions can be coded in a way thaf, effectively, no operation is
performed. An additional mnemonic is provided for the preferred form of no-op. If an
implementation performs any type of run-time optimization related to no-ops, the preferred
form is the no-op that triggers the following:

nop (equivalent to ori 0,0,0)

F.9.2 Load Immediate (Ii)
The addi and addis instructions can be used to load an immediate value into a register.
Additional mnemonics are provided to convey the idea that no addition is being performed
but that data is being moved from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value into rD.
Ii rD,value (equivalent to addi rD,O,value)

2. Load a 16-bit signed immediate value, shifted left by 16 bits, into rD.
lis rD,value (equivalent to addis rD,O,value)

F.9.3 Load Address (Ia)
This mnemonic permits computing the value of a base-displacement operand, using the
addi instruction which normally requires a separate register and immediate operands.

la rD,d(rA) (equivalent to addi rD,rA,d)

The la mnemonic is useful for obtaining the address of a variable specified by name,
allowing the assembler to supply the base register number and compute the displacement.
If the variable V is located at offset dv bytes from the address in register rll, and the
assembler has been told to use register rV as a base for references to the data structure
containing V, the following line causes the address of v to be loaded into register rD:

la rD, v (equivalent to addi rD,r v,d v

F.9.4 Move Register (mr)
Several PowerPC instructions can be coded to copy the contents of one register to another.
A simplified mnemonic is provided that signifies that no computation is being performed,
but merely that data is being moved from one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded
with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

mr rA,rS (equivalent to or rA,rS,rS)

Appendix F. Simplified Mnemonics F-23

-

..

F.9.S Complement Register (not)
Several PowerPC instructions can be coded in a way that they complement the contents of
one register and place the result into another register. A simplified mnemonic is provided
that allows this operation to be coded easily.

The following instruction complements the contents of rS and places the result into rA.
This mnemonic can be coded with a dot (.) suffix to cause the Rc bit to be set in the
underlying instruction.

not rA,rS (equivalent to nor rA,rS,rS)

F.9.6 Move to Condition Register (mtcr)
This mnemonic permits copying the contents of a GPR to the condition register, using the
same syntax as the mfcr instruction.

mtcrrS (equivalent to mtcrf OxFF,rS)

F-24 PowlIrPC Microprocessor Family: The Programming Environments (32-Bit)

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Std. 754-1985, IeEE Standardfor Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Note that some terms are defined in the context of how they are used in this book.

A Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for a family of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external to
the processor's execution. In this document, the term 'asynchronous
exception' is used interchangeably with the word interrupt.

Atomic access. A bus access that attempts to be part of a read-write operation
to the same address uninterrupted by any other access to that address
(the term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
Iwarxlstwcx. instruction pair.

B BAT (block address translation) mechanism. A software-controlled array
that stores the available block address translations on-chip.

Biased exponent. An exponent whose range of values is shifted by a constant
(bias). Typically a bias is provided to allow a range of positive values
to express a range that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1,2,3, with 0
being the most-significant byte. See Little-endian.

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte, whose
size, translation, and protection attributes are controlled by the BAT
mechanism.

Glossary ofTerms and Abbreviations Glossary-1

Boundedly undefined. A characteristic of results of certain operations that
are not rigidly prescribed by the PowerPC architecture. Boundedly­
undefined results for a given operation may vary among
implementations, and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for
when results are allowed to be boundedly undefined, the results of
executing instructions in contexts where results are allowed to be
boundedly undefined are constrained to ones that could have been
achieved by executing an arbitrary sequence of defined instructions,
in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

C Cache. High-speed memory component containing recently-accessed data

Glossary-2

and/or instructions (subset of main memory).

Cache block. A small region of contiguous memory that is copied from
memory into a cache. The size of a cache block may vary among
processors; the maximum block size is one page. In PowerPC
processors, cache coherency is maintained on a cache-block basis.
Note that the term 'cache block' is often used interchangeably with
'cache line'.

Cache coherency. An attribute wherein an accurate and common view of
memory is provided to all devices that share the same memory
system. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor's cache.

Cache flush. An operation that removes from a cache any data from a
specified address range. This operation ensures that any modified
data within the specified address range is written back to main
memory. This operation is generated typically by a Data Cache
Block Flush (debt) instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed
and the load or store is performed to or from main memory.

Cast-outs. Cache blocks that must be written to memory when a cache miss
causes a cache block to be replaced.

Changed bit. One of two page history bits found in each page table entry
(PTE). The processor sets the changed bit if any store is performed
into the page. See also Page access history bits and Referenced bit.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Context synchronization. An operation that ensures that all instructions in
execution complete past the point where they can produce an
exception, that all instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
are fetched and executed in the new context. Context synchronization
may result from executing specific instructions (such as isync or rfi)
or when certain events occur (such as an exception).

Copy-back. An operation in which modified data in a cache block is copied
back to memory.

D Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Direct-store. Interface available on PowerPC processors only to support
direct-store devices from the POWER architecture. When the T bit
of a segment descriptor is set, the descriptor defines the region of
memory that is to be used as a direct-store segment. Note that this
facility is being phased out of the architecture and will not likely be
supported in future devices. Therefore, software should not depend
on it and new software should not use it.

E Effective address (EA). The 32- or 64-bit address specified for a load, store,
or an instruction fetch. This address is then submitted to the MMU
for translation to either a physical memory address or an I/O address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector offset defined by the architecture and a prefix selected via the
MSR.

Glossary ofTerms and Abbreviations Glossary-3

F

Extended opcode. A secondary opcode field generally located in instruction
bits 21-30, that further defines the instruction type. All PowerPC
instructions are one word in length. The most significant 6 bits of the
instruction are the primary opcode, identifying the type of
instruction. See also Primary opcode.

Execution synchronization. A mechanism by which all instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the
exponent is the component that normally signifies the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

Fetch. Retrieving instructions from either the cache or main memory and
placing them into the instruction queue.

Floating-point register (FPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination results for floating-point instructions. Load instructions
move data from memory to FPRs and store instructions move data
from FPRs to memory. The FPRs are 64 bits wide and store floating­
point values in double-precision format.

Fraction. In the binary representation of a floating-point number, the field of
the significand that lies to the right of its implied binary point.

Fully-associative. Addressing scheme where every cache location (every
byte) can have any possible address.

G General-purpose register (GPR). Any of the 32 registers in the general-

Glossary-4

purpose register file. These registers provide the source operands and
destination results for all integer data manipulation instructions.
Integer load instructions move data from memory to GPRs and store
instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a
page is designated as guarded, instructions and data cannot be
accessed out-of-order.

PowerPC Microprocessor Family: The Programming Environments (a2-Bit)

H Harvard architecture. An architectural model featuring separate caches for
instruction and data.

Hashing. An algorithm used in the page table search process.

I IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations and representations of binary
floating -point arithmetic.

Illegal instructions. A class of instructions that are not implemented for a
particular PowerPC processor. These include instructions not defined
by the PowerPC architecture. In addition, for 32-bit
implementations, instructions that are defined only for 64-bit
implementations are considered to be illegal instructions. For 64-bit
implementations instructions that are defined only for 32-bit
implementations are considered to be illegal instructions.

Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation of optional features. The PowerPC architecture has
many different implementations.

Implementation-dependent. An aspect of a feature in a processor's design
that is defined by a processor's design specifications rather than by
the PowerPC architecture.

Implementation-specific. An aspect of a feature in a processor's design that
is not required by the PowerPC architecture, but for which the
PowerPC architecture may provide concessions to ensure that
processors that implement the feature do so consistently.

Imprecise exception. A type of synchronous exception that is allowed not to
adhere to the precise exception model (see Precise exception). The
PowerPC architecture allows only floating-point exceptions to be
handled imprecisely.

Inexact. Loss of accuracy in an arithmetic operation when the rounded result
differs from the infinitely precise value with unbounded range.

In-order. An aspect of an operation that adheres to a sequential model. An
operation is said to be performed in-order if, at the time that it is
performed, it is known to be required by the sequential execution
model. See Out-of-order.

Glossary of Terms and Abbreviations Glossary-5

B'·I

.C.I

Instruction latency. The total number of clock cycles necessary to execute
an instruction and make ready the results of that instruction.

Instruction parallelism. A feature of PowerPC processors that allows
instructions to be processed in parallel.

Interrupt. An asynchronous exception. On PowerPC processors, interrupts
are a special case of exceptions. See also asynchronous exception.

Invalid state. State of a cache entry that does not currently contain a valid
copy of a cache block from memory.

K Key bits. A set of key bits referred to as Ks and Kp in each segment register
and each BAT register. The key bits determine whether supervisor or
user programs can access a page within that segment or block.

Kill. An operation that causes a cache block to be invalidated.

L L2 cache. See Secondary cache.

Least-significant bit (Isb). The bit of least value in an address, register, data
element, or instruction encoding.

Least-significant byte (LSB). The byte of least value in an address, register,
data element, or instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1,0, with 3
being the most-significant byte. See Big-endian.

M MESI (modifiedlexclusivelsharedlinvalid). Cache coherency protocol used

Glossary-6

to manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MESI protocol to ensure cache coherency.

Memory access ordering. The specific order in which the processor
performs load and store memory accesses and the order in which
those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or block
address translation mechanisms provided by the MMU and that
occur externally with the bus protocol defined for memory.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Memory coherency. An aspect of caching in which it is ensured that an
accurate view of memory is provided to all devices that share system
memory.

Memory consistency. Refers to agreement of levels of memory with respect
to a single processor and system memory (for example, on-chip
cache, secondary cache, and system memory).

Memory management unit (MMU). The functional unit that is capable of
translating an effective (logical) address to a physical address,
providing protection mechanisms, and defining caching methods.

Microarchitecture. The hardware details of a microprocessor's design. Such
details are not defined by the PowerPC architecture.

Mnemonic. The abbreviated name of an instruction used for coding.

Modified state. When a cache block is in the modified state, it has been
modified by the processor since it was copied from memory. See
MESI.

Munging. A modification performed on an effective address that allows it to
appear to the processor that individual aligned scalars are stored as
little-endian values, when in fact it is stored in big-endian order, but
at different byte addresses within double words. Note that munging
affects only the effective address and not the byte order. Note also
that this term is not used by the PowerPC architecture.

Multiprocessing. The capability of software, especially operating systems,
to support execution on more than one processor at the same time.

Most-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding.

N NaN. An abbreviation for 'Not a Number'; a symbolic entity encoded in
floating-point format. There are two types of NaNs-signaling NaNs
(SNaNs) and quiet NaNs (QNaNs).

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

Normalization. A process by which a floating-point value is manipulated
such that it can be represented in the format for the appropriate
precision (single- or double-precision). For a floating-point value to

Glossary of Terms and Abbreviations Glossary-7

be representable in the single- or double-precision format, the
leading implied bit must be a 1.

o OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model, supervisor­
level registers, synchronization requirements, and the exception
model. It also defiries the time-base feature from a supervisor-level
perspective. Implementations that conform to the PowerPC OEA
also conform to the PowerPC VISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that is
defined by the PowerPC architecture but not required to be
implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahead
of one that may have preceded it in the sequential model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model. See
In-order. .

Out-of-order execution. A technique that allows instructions to be issued
and completed in an order that differs from their sequence in the
instruction stream.

Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are multiplied, the result may not
be representable in 32 bits.

P Page. A region in memory. The OEA defines a page as a 4-Kbyte area of

Glossary-8

memory, aligned on a 4-Kbyte boundary.

Page access history bits. The changed and referenced bits in the PTE keep
track of the access history within the page. The referenced bit is set
by the MMU whenever the page is accessed for a read or write
operation. The changed bitis set when the page is stored into. See
Changed bit and Referenced bit.

Page fault. A page fault is a condition that occurs when the processor
attempts to access a memory location that does not reside within a
page not currently resident in physical memory. On PowerPC
processors, . a page fault exception condition occurs when a
matching, valid page table entry (PTE[V] = 1) cannot be located.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Q

Page table. A table in memory is comprised of page table entries, or PTEs.
It is further organized into eight PTEs per PTEG (page table entry
group). The number of PTEGs in the page table depends on the size
of the page table (as specified in the SDRI register).

Page table entry (PTE). Data structures containing information used to
translate effective address to physical address on a 4-Kbyte page
basis. A PTE consists of 8 bytes of information in a 32-bit processor
and 16 bytes of information in a 64-bit processor.

Physical memory. The actual memory that can be accessed through the
system's memory bus.

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has completed.

Precise exceptions. A category of exception for which the pipeline can be
stopped so instructions that preceded the faulting instruction can
complete, and subsequent instructions can be flushed and
redispatched after exception handling has completed. See Imprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0-5) of the instruction
encoding that identifies the type of instruction. See Secondary
opcode.

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, a BAT
area, or a range of unmapped effective addresses. It is defined only
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Quad word. A group of 16 contiguous locations starting at an address
divisible by 16.

Quiet NaN. A type of NaN that can propagate through most arithmetic
operations without signaling exceptions. A quiet NaN is used to
represent the results of certain invalid operations, such as invalid
arithmetic operations on infinities or on NaNs, when invalid. See
Signaling NaN.

Glossary ofTerms and Abbreviations Glossary-9

R rA. The rA instruction field is used to specify a GPR to be used as a source

Glossary-10

or destination.

rD. The rB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a
destination. .

rS. The rS instruction field is used to specify aGPR to be used as a source.

Real address mode. An MMU mode when no address translation is
performed and the effective address specified is the same as the
physical address. The processor's MMU is operating in real address
mode if its ability to perform address translation has been disabled
through the MSR registers IR and/or DR bits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reflect the result of the
operation.

Referenced bit. One of two page hlstory bits found in each page table entry
(PTE). The processor sets the referenced bit whenever the page is
accessed for a read or write. See also Page access history bits.

Register indirect addressing. A form of addressing that specifies one GPR
that contains the address for the load or store.

Register indirect with immediate index addressing. A form of addressing
that specifies an immediate value to be added to the contents of a
specified GPR to form the target address for the load or store.

Register indirect with index addressing. A form of addressing that specifies
that the contents of two GPRs be added together to yield the target
address for the load or store.

Reservation. The processor establishes a reservation on a cache block of
memory space when it executes an lwarx instruction to read a
memory semaphore into a GPR.

Reserved field. In a register, a reserved field is one that is not assigned a
function. A reserved field may be a single bit. The handling of
reserved bits is implementation-dependent. Software is permitted to
write any value to such a bit. A subsequent reading of the bit returns
o if the value last written to the bit was 0 and returns an undefined
value (0 or 1) otherwise.

PowerPC Microprocessor Family: The Programming Environments (32~Blt)

s

RISC (reduced instruction set computing). An architecture characterized
by fixed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses.

Scalability. The capability of an architecture to generate implementations
specific for a wide range of purposes, and in particular
implementations of significantly greater performance and/or
functionality than at present, while maintaining compatibility with
current implementations.

Secondary cache. A cache memory that is typically larger and has a longer
access time than the primary cache. A secondary cache may be
shared by multiple devices. Also referred to as L2, or level-2, cache.

Segment. A 256-Mbyte area of virtual memory that is the most basic memory
space defined by the PowerPC architecture. Each segment is
configured through a unique segment descriptor.

Segment descriptors. Information used to generate the interim virtual
address. The segment descriptors reside in 16 on-chip segment
registers for 32-bit implementations. For 64-bit implementations, the
segment descriptors reside as segment table entries in a hashed
segment table in memory.

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The
term 'set' may also be used to generally describe the updating of a
bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given
location in anyone of the sets, typically corresponding to its lower­
order address bits. Because several memory locations can map to the
same location, cached data is typically placed in the set whose cache
block corresponding to that address was used least recently. See Set­
associative.

Set-associative. Aspect of cache organization in which the cache space is
divided into sections, called sets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Signaling NaN. A type of NaN that generates an invalid operation program
exception when· it is specified as arithmetic operands. See Quiet
NaN.

Glossary ofTerms and Abbreviations Glossary-11

Glossary-12

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

Simplified mnemonics. Assembler mnemonics that represent a more
complex form of a common operation.

Static branch prediction. Mechanism by which software (for example,
compilers) can give a hint to the machine hardware about the
direction a branch is likely to take.

Sticky bit. A bit that when set must be cleared explicitly.

Strong ordering. A memory access model that requires exclusive access to
an address before making an update, to prevent another device from
using stale data.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

Synchronization. A process to ensure that operations occur strictly in order.
See Context synchronization and Execution synchronization.

Synchronous exception. An exception that is generated by the execution of
a particular instruction or instruction sequence. There are two types
of synchronous exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

T TLB (translation lookaside buffer) A cache that holds recently-used page
table entries.

Throughput. The measure of the number of instructions that are processed
per clock cycle.

Tiny. A floating-point value that is too small to be represented for a particular
precision format, including denormalized numbers; they do not
include ±O.

U UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers. data types,
floating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

Underflow. An error condition that occurs during arithmetic operations when
the result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In other
words, the result is too small to be represented accurately.

Unified cache. Combined data and instruction cache.

User mode. The unprivileged operating state of a processor used typically by
application software. In user mode, software can only access certain
control registers and can access only user memory space. No
privileged operations can be performed. Also referred to as problem
state.

V VEA (virtual environment architecture). The level of the architecture that
describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time-base facility
from a user-level perspective. Implementations that conform to the
PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

Virtual address. An intermediate address used in the translation of an
effective address to a physical address.

Glossary ofTerms and Abbreviations Glossary-13

Virtual memory. The address space created using the memory management
facilities of the processor. Program access to virtual memory is
possible only when it coincides with physical memory.

W Weak ordering. A memory access model that allows bus operations to be

Glossary-14

reordered dynamically, which improves overall performance and in
particular reduces the effect of memory latency on instruction
throughput.

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles
are directly written only to the cache. External memory is updated
only indirectly, for example, when a modified cache block is cast out
to make room for newer data.

Write-through. A cache memory update policy in which all processor write
cycles are written to both the cache and memory.

PowerPC Microprocessor Family: The Programming Environments (32-Bit)

A
Accesses

access order, 5-2
atomic accesses (guaranteed), 5-4
atomic accesses (not guaranteed), 5-4
misaligned accesses, 3-1

Acronyms and abbreviated terms, list, xxxiii
add, 4-11,8-10
addc, 4-12, 8-11
adde, 4-12, 8-12
addi, 4-11, 8-13, F-23
addic, 4-11, 8-14
addic., 4-11,8-15
addis, 4-11, 8-16, F-23
addme, 4-12, 8-17
Address calculation

branch instructions, 4-41
load and store instructions, 4-29

Address mapping examples, PfEG, 7-58
Address translation, see Memory management unit
Addressing conventions

alignment, 3-1
byte ordering, 3-2, 3-6
110 data transfer, 3-11
instruction memory addressing, 3-10
mapping examples, 3-3
memory operands, 3-2

Addressing modes
branch conditional to absolute, 4-44
branch conditional to count register, 4-46, B-4
branch conditional to link register, 4-45
branch conditional to relative, 4-42
branch relative, 4-42
branch to absolute, 4-43
register indirect

integer, 4-30
with immediate index, floating-point, 4-37
with immediate index, integer, 4-29
with index, floating-point, 4-38
with index, integer, 4-30

addze, 4-13, 8-18
Aligned data transfer, 1-10, 3-1
Aligned scalars, LE mode, 3-6

Index

INDEX

Alignment
AL bit in MSR, POWER, B-2
alignment exception

description, 6-27
integer alignment exception, 6-30
interpreting the DSISR settings, 6-31
LE mode alignment exception, 6-30
MMU-related exception, 7-16
overview, 6-4
partially executed instructions, 6-11
register settings, 6-28

alignment for load/store multiple, B-5
rules, 3-1, 3-6

and, 4-16, 8-19
andc, 4-17,8-20
andi., 4-16, 8-21
andis., 4-16, 8-22
Architecture, xxv
Arithmetic instructions

floating-point, 4-21, A-17
integer, 4-2, 4-11, A-14

Asynchronous exceptions
causes, 6-3
classifications, 6-3
decrementer exception, 6-5, 6-9, 6-35
external interrupt, 6-4,6-9,6-27
machine check exception, 6-4, 6-8, 6-22
system reset, 6-4, 6-8, 6-21
types, 6-8

Atomic memory references
atomicity, 5-4

B

ldarxlstdcx., 4-53, 5-4, E-l
lwarxlstwcx., 4-53, 5-4, B-1

b, 4-49, 8-23
BAT registers, see Block address translation
bc, 4-49, 8-24
bectr, 4-50, 8-26
bclr, 4-50, 8-28
Biased exponent format, 3-17
Big-endian mode

blocks, 7-3
byte ordering, 1-9, 3-2
concept, 3-2
mapping, 3-4
memory operand placement, 3-13 -

Index-1

-

Block address translation
BAT array

access protection summary, 7-29
address recognition, 7-22
BAT register implementation, 7-24
fully-associative BAT arrays, 7-20
organization, 7-20

BAT registers
access translation, 2-29
BAT area lengths
general information, 2-24
implementation of BAT array, 7-24
WIMG bits, 2-25, 5-13, 7-26

block address translation flow, 7-11, 7-32
block memory protection, 7-27-7-30, 7-42
block size options, 7-26
definition, 2-24, 7-7
selection of block address translation, 7-7, 7-22
summary, 7-32

BO operand encodings, 2-13, 4-47, B-3
Boundedly undefined, definition, 4-4
Branch instructions

address calculation, 4-41
BO operand encodings, 2-13, 4-47
branch conditional

absolute addressing mode, 4-44
CTR addressing mode, 4-46, B-4
LR addressing mode, 4-45
relative addressing mode, 4-42

branch instructions, 4-49, A-22, F-6
branch, relative addressing mode, 4-42
condition register logical, 4-50, A-23, F-18
conditional branch control, 4-47
description, 4-49, A-22
simplified mnemonics, F-6
system linkage, 4-52, 4-63, A-23
trap, 4-51, A-23

branch instructions
BO operand encodings, B-3

Byte ordering
aligned scalars, LE mode, 3-6
big-endian mode, default, 3-2, 3-2, 3-6
concept, 3-2
default, 1-9,4-7
LE and ILE bits in MSR, 1-10,3-6
least-significant bit (lsb), 3-26
least-significant byte (LSB), 3-2
Iittle-endian mode

description, 3-3
instruction addressing, 3-10

misaligned scalars, LE mode, 3-9
most-significant byte (MSB), 3-2
nonscalars, 3-10

INDEX

C
Cache

atomic access, 5-4
block, definition, 5-1
cache coherency maintenance, 5-1
cache model, 5-1, 5-5
clearing a cache block, 5-9
Harvard cache model, 5-5
synchronization, 5-3
unified cache, 5-5

Cache block, definition, 5-1
Cache coherency

copy-back operation, 5-14
memory/cache access modes, 5-6
WIMG bits, 5-12, 7-65
write-back mode, 5-14

Cache implementation, 1-13
Cache management instructions

dcbf, 4-61, 5-10, 8-45
dcbi,4-66, 5-19,8-47
dcbst, 4-60, 5-9, 8-48
debt, 4-59, 5-8, 8-49
dcbtst, 4-59, 5-8, 8-50
dcbz, 4-59,4-60,5-9,8-51
eieio, 4-58, 5-2, 8-61
icbi, 4-61, 5-11, 8-98
isync, 4-58, 5-11, 8-99
list of instructions, 4-59, 4-66, A-24

Cache model, Harvard, 5-5
Caching-inhibited attribute (I)

caching-inhibitedl-a1lowed operation, 5-6, 5-14
Changed (C) bit maintenance

page history information, 7-11
recording, 7-11, 7-38, 7-40, 7-40
updates, 7-64

Changes in this revision, summary, 1-7, 1-15
Classes of instructions, 4-3, 4-3
Classifications, exception, 6-3
cmp, 4-15,8-30
cmpi, 4-15,8-31
cmpl, 4-15,8-32
cmpli, 4-15, 8-33
cntlzw, 4-17, 8-34
Coherence block, definition, 5-1
Compare and swap primitive, E-4
Compare instructions

floating-point, 4-25, A-18
integer, 4-15, A-14
simplified mnemonics, F-3

Computation modes
effective address, 4-3
PowerPC architecture, 1-4, 4-3

Conditional branch control, 4-47

Index-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

INDEX

Context synchronization
data access, 2-37
description, 6-6
exception, 2-36
instruction access, 2-38
requirements, 2-36
return from exception handler, 6-19

Context-altering instruction, definition, 2-36
Context-synchronizing instructions, 2-36, 4-8
Conventions

instruction set
classes of instructions, 4-3
computation modes, 4-3
memory addressing, 4-7
sequential execution model, 4-3

operand conventions
architecture levels represented, 3-1
biased exponent values, 3-19
significand value, 3-17
tiny, definition, 3-18
underflow/overflow, 3-16

terminology, xxxv
CR (condition register)

bit fields, 2-5
CR bit and identification symbols, P-l
CR logical instructions, 4-50, A-23
CR settings, 4-26, B-2
CRO/CRI field definitions, 2-6-2-6
CRn field, compare instructions, 2-7
move to/from CR instructions, 4-52
simplified mnemonics, P-18

CR logical instructions, 4-50, A-23, P-18
crand, 4-50,8-35
crandc,4-51,8-36
creqv, 4-51, 8-37
cmand, 4-50, 8-38
cmor, 4-51, 8-39
cror, 4-50, 8-40
crorc, 4-51,8-41
crxor, 4-50, 8-42
CTR (count register)

BO operand encodings, 2-13
branch conditional to count register, 4-46, B-4

D
DABR (data address breakpoint register), 2-34, 6-24
DAR (data address register)

alignment exception register settings, 6-29
description, 2-29
DSI exception register settings, 6-25

Data cache
clearing bytes, B-7
instructions, 5-8

Data cache block allocate instruction, 8-43

Index

Data handling and precision, 3-24
Data organization, memory, 3-1
Data transfer

aligned data transfer, 1-10, 3-1
110 data transfer addressing, LE mode, 3-11

Data types
aligned scalars, 3-6
misaligned scalars, 3-9
nonscalars, 3-10

dcba, 8-43
dcbf, 4-61, 5-10, 8-45
dcbi, 4-66, 5-19, 8-47
dcbst, 4-60, 5-9, 8-48
debt, 4-59, 5-8, 8-49
dcbtst, 4-59, 5-8, 8-50
dcbz, 4-59, 4-60, 5-9, 8-51, 8-7
DEC (decrementer register)

decrementer operation, 2-33
POWER and PowerPC, B-9
writing and reading the DEC, 2-34

Decrementer exception, 6-5, 6-9, 6-35
Defined instruction class, 4-4
Denormalization, definition, 3-23
Denormalized numbers, 3-20
Direct -store segment

description, 7-68
direct -store address translation

definition, 7-7
selection, 7-9, 7-13, 7-34, 7-68

direct -store facility, 7-7
110 interface considerations, 5-19
instructions not supported, 7-69
integer alignment exception, 6-30
key bit description, 7-10
keyIPP combinations, conditions, 7-44
no-op instructions, 7-70
protection, 7 -1 °
segment accesses, 7-69
translation summary flow, 7-70

divw, 4-14,8-53
divwu, 4-14, 8-55
DSI exception

description, 6-4
partially executed instructions, 6-11,6-23

DSISR register
settings for alignment exception, 6-29
settings for DSI exception, 6-25
settings for misaligned instruction, 6-31

Index-3

INDEX

E
EAR (external access register)

bit fonnat, 2-36
eciwx, 4-62, 8-57
ecowx,4-62,8-59
Effective address calculation

address translation, 2-29, 7-1
branches, 4-7, 4-41
EA modifications, 3-7
loads and stores, 4-7,4-29, 4-37

eieio, 4-58, 5-2, 8-61
eqv, 4-17,8-63
Exceptions

alignment exception, 6-4, 6-27
asynchronous exceptions, 6-3, 6-8
classes of exceptions, 6-3, 6-12
conditions for keylPP combinations, 7-44
context synchronizing exception, 2-36
decrementer exception, 6-5, 6-9, 6-35
DSI exception, 6-4, 6-11, 6-23
enabling/disabling exceptions, 6-17
exception classes, 6-3, 6-12
exception conditions

inexact, 3-43
invalid operation, 3-37
MMU exception conditions, 7-16
overflow, 3-41
overview, 6-4
program exception conditions, 6-5, 6-33, 6-33
recognizinglhandling, 6-1
underflow, 3-42
zero divide, 3-38

exception defmitions, 6-20
exception model, overview, 1-13
exception priorities, 6-12
exception processing

description, 6-14
stages, 6-2
steps, 6-18

exceptions, effects on FPSCR, B-6
external interrupt, 6-4, 6-9, 6-27
FP assist exception, 6-5, 6-39
FP exceptions, B-8
FP program exceptions, 3-28, 6-5, 6-33, 6-33
FP unavailable exception, 6-5, 6-34
FPECR register, 2-20
IEEE FP enabled program exception

condition, 6-5, 6-33
illegal instruction program exception

condition, 6-5, 6-33
imprecise exceptions, 6-9
instruction causing conditions, 4-9
integer alignment exception, 6-30
lSI exception, 6-4, 6-26

LE mode alignment exception, 6-30
machine check exception, 6-4, 6-8, 6-22
MMU-related exceptions, 7-15
overview, 1-13
precise exceptions, 6-6
privileged instruction type program exception

condition, 6-5, 6-33
program exception

conditions, 6-5, 6-33, 6-33
register settings

FPSCR,3-28
MSR,6-20
SRROISRRl,6-14

reset exception, 6-4, 6-8, 6-21, 6-21
return from exception handler, 6-19
summary, 4-9, 6-4
synchronous/precise exceptions, 6-3, 6-7
system call exception, 6-5, 6-36
terminology, 6-2
trace exception, 6-5, 6-37
translation exception conditions, 7-15
trap program exception condition, 6-5, 6-34
vector offset table, 6-4

Exclusive OR (XOR), 3-6
Execution model

floating-point, 3-15
IEEE operations, D-l
in-order execution, 5-16
multiply-add instructions, D-4
out-of-order execution, 5-16
sequential execution, 4-3

Execution synchronization, 4-9, 6-7
Extended mnemonics, see Simplified mnemonics
Extended/primary opcodes, 4-4
External control instructions, 4-62, 8-57-8-59, A-25
Ex~ernal interrupt, 6-4, 6-9, 6-27
extsb, 4-17, 8-64
extsh, 4-17,8-65

F
fabs, 4-28, 8-66
fadd, 4-21, 8-67
fadds, 4-21, 8-68
fcmpo, 4-26, 8-69
fcmpu, 4-26, 8-70
fctiw, 4-25,8-71
fctiwz, 4-25, 8-72
fdiv, 4-22, 8-73
fdivs, 4-22, 8-74

Index-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Floating-point model
biased exponent format, 3-17
binary FP numbers, 3-19
data handling, 3-24
denormailized numbers, 3-20
execution model

floating-point, 3-15
IEEE operations, D-l
multiply-add instructions, D-4

FEOIFEI bits, 2-22
FP arithmetic instructions, 4-21, A-17
FP assist exceptions, 6-5
FP compare instructions, 4-25, A-18
FP data formats, 3-16
FP execution model, 3-15
FP load instructions, 4-38, A-21, D-15
FP move instructions, 4-28, A-22
FP multiply-add instructions, 4-23, A-17
FP program exceptions

description, 3-28, 6-33
exception conditions, 6-5
FEOIFEI bits, 6-10
POWERlPowerPC, MSR bit 20, B-8

FP rounding/conversion instructions, 4-25, A-18
FP store instructions, 4-40, A-22, B-7, D-16
FP unavailable exception, 6-5, 6-34
FPRO-FPR31,2-4
FPSCR instructions, 4-26, A-18
IEEE floating-point fields, 3-17
IEEE-754 compatibility, 1-10, 3-17
infinities, 3-21
models for FP instructions, D-6
NaNs, 3-21
normalizationldenormalization, 3-23
normalized numbers, 3-19
precision handling, 3-24
program exceptions, 3-28
recognized FP numbers, 3-18
rounding, 3-25
sign of result, 3-22
single-precision representation in FPR, 3-25
value representation, FP model, 3-18
zero values, 3-20

Flow control instructions
branch instruction address calculation, 4-41
condition register logical, 4-50
system linkage, 4-52, 4-63
trap, 4-51

fmadd, 4-23, 8-75
fmadds, 4-24, 8-76, 8-76
fmr,4-28,8-77
fmsub, 4-24, 8-78
fmsubs, 4-24, 8-79
fmul, 4-22, 8-80
fmuls, 4-22, 8-81, 8-81

Index

INDEX

fnabs, 4-28, 8-82
fneg, 4-28, 8-83
fnmadd, 4-24, 8-84
fnmadds, 4-24, 8-85, 8-85
fnmsub, 4-24, 8-86
fnmsubs, 4-24, 8-87, 8-87
FP assist exception, 6-39
FP exceptions, 6-34, 6-39
FPCC (floating-point condition code), 4-25
FPECR (floating-point exception cause register), 2-32
FPRO-FPR31 (floating-point registers), 2-4
FPSCR (floating-point status and control register)

bit settings, 2-8, 3-29
FP result flags in FPSCR, 3-31
FPCC, 4-25
FPSCR instructions, 4-26, A-18
FR and PI bits, effects of exceptions, B-6
move from FPSCR, B-7
RN field, 3-26

fres, 4-22, 8-88
frsp, 3-24, 4-25, 8-90
frsqrte, 4-23, 8-91
fsel, 4-23, 8-93, D-5
fsqrt, 4-22, 8-94
fsqrts, 4-22, 8-95
fsub, 4-21, 8-96
fsubs, 4-21, 8-97

G
GPRO-GPR31 (general purpose registers), 2-3
Graphics instructions

fres, 4-22, 8-88
frsqrte, 4-23, 8-91
fsel, 4-23, 8-93
stfiwx, 4-41, 8-185

Guarded attribute (G)

H

G-bit operation, 5-7, 5-16
guarded memory, 5-17
out-of-order execution, 5-16

Harvard cache model, 5-5
Hashed page tables, 7-48
Hashing functions

page table
primary PTEG, 7-52, 7-59
secondary PTEG, 7-52, 7-60

110 data transfer addressing, LE mode, 3 -11
110 interface considerations

direct-store operations, 5-19
memory-mapped 110 interface operations, 5-19

Index-5

INDEX

icbi, 4-61,5-11,8-98
IEEE 64-bit execution model, D-l
IEEE FP enabled program exception

condition, 6-5, 6-33
Illegal instruction class, 4-6
Illegal instruction program exception

condition, 6-5, 6-33
Imprecise exceptions, 6-9
Inexact exception condition, 3-43
In-order execution, 5-16
Instruction addressing

LE mode examples, 3-11
Instruction cache instructions, 5-10
Instruction restart, 3-14
Instruction set conventions

classes of instructions, 4-3
computation modes, 4-3
memory addressing, 4-7
sequential execution model, 4-3

Instructions
64-bit bridge instructions

optional instructions, 4-5
boundedly undefined, definition, 4-4
branch instructions .

branch address calculation, 4-41
branch conditional

absolute addressing mode, 4-44
CTR addressing mode, 4-46
LR addressing mode, 4-45
relative addressing mode, 4-42

branch instructions, 4-49, A-22, F-6
condition register logical, 4-50
conditional branch control, 4-47
description, 4-49, A-22
effective address calculation, 4-41
system linkage, 4-52, 4-63
trap, 4-51

cache management instructions
dcbf, 4-61, 5-10, 8-45
dcbi, 4-66, 5-19, 8-47
dcbst, 4-60, 5-9, 8-48
dcbt, 4-59, 5-8, 8-49
dcbtst, 4-59, 5-8, 8-50
dcbz, 4-59,4-60,5-9,8-51
eieio, 4-58, 5-2, 8-61
icbi, 4-61, 5-11, 8-98
isync, 4-58, 5-11, 8-99
list of instructions, 4-59, 4-66, A-24

classes of instructions, 4-3
condition register logical, 4-50, A-23
conditional branch control, 4-47
context-altering instructions, 2-36
context-synchronizing instructions, 2-36, 4-8
defined instruction class, 4-4

execution synchronization, 3-35
external control instructions, 4-5, 4-62, A-25
floating-point

arithmetic, 4-21, 8-73, A-17
compare, 4-25, 8-69, A-18, F-3
computational instructions, 3-15
FP conversions, D-5
FP load instructions, 4-38, A-21, D-15
FP move instructions, 4-28, A-22
FP store instructions, A-22, B-7, D-16
FPSCR instructions, 4-26, A-18
models for FP instructions, D-6
multiply-add, 4-23, A-17, D-4
noncomputational instructions, 3-15
rounding/conversion, 4-25, ??-8-72, A-18

flow control instructions
branch address calculation, 4-41
CR logical, 4-50
system linkage, 4-52, 4-63
trap, 4-51

graphics instructions
fres, 4-22, 8-88
frsqrte, 4-23, 8-91
fsel, 4-23, 8-93
stfiwx, 4-41, 8-185

illegal instruction class, 4-6
instruction fetching

branch/flow control instructions, 4-41
direct-store segment, 7-15
exception processing steps, 6-18
exception synchronization steps, 6-6
instruction cache instructions, 5-10
integer store instructions, 4-33
multiprocessor systems, 5-11
precise exceptions, 6-6
uniprocessor systems, 5-10

instruction field conventions, xxxvi
instructions not supported, direct-store, 7-69
integer

arithmetic, 4-2, 4-10, A-14
compare, 4-15, A-14, F-3
load, 4-31, A-19, A-19
load/store multiple, 4-35, A-20, B-5
load/store string, 4-36, A-20, B-5
load/store with byte reverse, 4-34, A-20
logical, 4-2, 4-16, A-IS
rotate/shift, 4-18-4-19, A-I6--A-16, F-4
store, 4-33, A-20

invalid instruction forms, 4-5

Index-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

INDEX

load and store
address generation, floating-point, 4-37
address generation, integer, 4-29
byte reverse instructions, 4-34, A-20
floating-point load, 4-38, A-21
floating-point move, 4-28, A-22
floating-point store, 4AO, B-7
integer load, 4-31, A-19, A-19
integer store, 4-33, A-20
memory synchronization, 4-53, 4-55, 4-57, A-21
multiple instructions, 4-35, A-20, B-5
string instructions, 4-36, A-20, B-5

lookaside buffer management
instructions, 4-65,4-67, A-25

memory control instructions, 4-58, 4-65
memory synchronization instructions

eieio, 4-58, 5-2, 8-61
isync, 4-58, 5-11, 8-99
list of instructions, 4-55, 4-57, A-21
Iwarx, 4-55, 8-126
stwcx., 4-55, 8-200
sync, 4-55, 5-3, 8-211, B-5

new instructions
mtrnsrd, 7-65

no-op, 4A, F-23
optional instructions, 4-5
partially executed instructions, 6-11
POWER instructions

deleted in PowerPC, B-9
supported in PowerPC, B-ll

PowerPC instructions, list, A-I, A-8, A-14
preferred instruction forms, 4A
processor control

instructions, 4-52, 4-56, 4-64, A-24
reserved bits, POWER and PowerPC, B-2
reserved instructions, 4-6
segment register manipulation

instructions, 4-66, A-25
SLB management instructions, 4-67
supervisor-level cache management

instructions, 4-65
supervisor-level instructions, 4-9
system linkage instructions, 4-52, 4-63, A-23
TLB management instructions, 4-67, A-25
trap instructions, 4-51, A-23

Integer alignment exception, 6-30
Integer arithmetic instructions, 4-2, 4-10, A-14
Integer compare instructions, 4-15, A-14, F-3
Integerload instructions, 4-31, A-19, A-19
Integer logical instructions, 4-2, 4-16, A-IS
Integer rotate and shift instructions, FA
Integer rotate/shift

instructions, 4-18-4-19, A-I6-A-16, F-4

Index

Integer store instructions
description, 4-33
instruction fetching, 4-33
list, A-20

Interrupts, see Exceptions
Invalid instruction forms, 4-5
Invalid operation exception condition, 3-37
lSI exception, 6A, 6-26
isync, 4-58, 5-11, 8-99

K
Key (Ks, Kp) protection bits, 7A2

L
Ibz, 4-32, 8-100
Ibzu, 4-32, 8-101
Ibzux, 4-32, 8-102
Ibzx, 4-32, 8-103
Idarxlstdcx.

general information, SA, E-l
Ifd, 4-39, 8-104
Ifdu, 4-39, 8-105
Ifdux, 4-39, 8-106
Ifdx, 4-39, 8-107
Ifs, 4-39, 8-108
Ifsu, 4-39, 8-109
Ifsux, 4-39, 8-110
Ifsx, 4-39,8-111
Iha, 4-32, 8-112
Ihau, 4-32, 8-113
Ihaux, 4-32,8-114
Ihax, 4-32, 8-115
Ihbrx, 4-35, 8-116
1hz, 4-32, 8-117
Ihzu, 4-32, 8-118
Ihzux, 4-32, 8-119
Ihzx, 4-32, 8-120
Little-endian mode

alignment exception, 6-30
byte ordering, 3-3, 3-6
description, 3-3
I/O data transfer addressing, 3-11
instruction addressing, 3-10
LE and ILE bits, 3-6
mapping, 3-5
misaligned scalars, 3-9
munged structure S, 3-7-3-8

LK bit, inappropriate use, B-3
Imw, 4-36, 8-121, B-5

-
Index-7

-

INDEX

Load/store
address generation, floating-point, 4-38
address generation, integer, 4-29
byte reverse instructions, 4-34, A-20
floating-point load instructions, 4-38, A-21
floating-point move instructions, 4-28, A-22
floating-point store instructions, 4-40, A-22, 8-7
integerload instructions, 4-31, A-19, A-19
integer store instructions, 4-33, A-20
load/store multiple instructions, 4-35, A-20, 8-5
memory synchronization instructions, 4-53, A-21
string instructions, 4-36, A-20, 8-5

Logical addresses
translation into physical addresses, 7-1

Logical instructions, integer, 4-2, 4-16, A-15
Lookaside buffer management

instructions, 4-65, 4-67, A-25
Iswi, 4-36, 8-122, 8-5
Iswx, 4-36,8-124,8-5
Iwarx, 4-53, 4-55, 8-126
Iwarxlstwcx.

general information, 5-4, E-l
list insertion, E-6
Iwarx, 4-55, 8-126
semaphores, 4-53
stwcx., 4-55, 8-200
synchronization primitive examples, E-2

Iwbrx, 4-35, 8-127
Iwz, 4-32,8-128
Iwzu, 4-33,8-129
Iwzux, 4-33,8-130
Iwzx, 4-32, 8-131

M
Machine check exception

causing conditions, 6-4, 6-8, 6-22
non-recoverable, causes, 6-22
register settings, 6-23

mcrf, 4-51, 8-132
mcrfs, 4-27,8-133
mcrxr, 4-52,8-134
Memory access

ordering, 5-2
update forms, 8-4

Memory addressing, 4-7
Memory coherency

coherency controls, 5-5
coherency precautions, 5-7
M-bitoperation, 5-7, 5-7, 5-15
memory access modes, 5-6
sync instruction, 5-3

Memory control instructions
segment register manipulation, 4-66, A-25
SL8 management, 4-67
supervisor-level cache management, 4-65
TLB management, 4-67
user-level cache, 4-58

Memory management unit
address translation flow, 7-11
address translation mechanisms, 7 -7, 7-11
address translation types, 7-8
block address translation, 7-7, 7-11, 7-20
conceptual block diagram, 7-6
direct-store address translation, 7-13, 7-68
exceptions summary, 7-15
hashing functions, 7-52
instruction summary, 7-17
memory addressing, 7-4
memory protection, 7-9, 7-30, 7-42
MMU exception conditions, 7-16
MMU organization, 7-5
MMU registers, 7-18
MMU-related exceptions, 7-15
overview, 1-14,7-3
page address translation, 7-7, 7-13, 7-46
page history status, 7-11, 7-38, 7-40
page table search operation, 7-48
real addressing mode translation, 7-11, 7-19, 7-33
register summary, 7-18
segment model, 7-32

Memory operands, 3-2, 4-7
Memory segment model

description, 7-32
memory segment selection, 7-33
page address translation

overview, 7-34
PTE definitions, 7-37
segment descriptor definitions, 7-35
summary, 7-46

page history recording
changed (C) bit, 7-40
description, 7-38
referenced (R) bit, 7-39
table search operations, update history, 7-39

page memory protection, 7-42
recognition of addresses, 7-33
referenced/changed bits

changed (C) bit, 7-40
guaranteed bit settings, model, 7-41
recording scenarios, 7-40
referenced (R) bit, 7-39
synchronization of updates, 7-42
table search operations, update history, 7-39
updates to page tables, 7-64

Index-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Memory syncfrronization
eieio, 4-58, 5-2, 8-61
isync, 4-58, 5-11, 8-99
list of instructions, 4-55, 4-57, A-21
lwarx, 4-53, 4-55, 8-126
stwcx., 4-53, 4-55, 8-200
sync, 4-55, 5-3, 8-211, B-5

Memory, data organization, 3-1
Memory/cache access modes, see WIMG bits
mfcr, 4-52, 8-135
mffs, 4-27, 8-136
mfmsr,4-64, 8-137, B-1
mfspr, 4-53, 4-64, 8-138, B-6
mfsr (64-bit bridge), 4-67, 8-141, B-1
mfsrin (64-bit bridge), 4-67, 8-142
mftb, 4-56,8-143
Migration to PowerPC, B-1
Misaligned accesses and alignment, 3-1
Mnemonics

recommended mnemonics, F-23
simplified mnemonics, F-l

Move to/from CR instructions, 4-52
MSR (machine state register)

EE bit, 6-17
FEOIFEI bits, 2-22, 6-lO
FEOIFEI bits and FP exceptions, 3-34
LE and ILE bits, l-lO, 3-6
RI bit, 6-19
settings due to exception, 6-20

mtcrf, 4-52, 8-145
mtfsbO, 4-27, 8-146
mtfsbl, 4-27, 8-147
mtfsf, 4-27, 8-148
mtfsfi, 4-27, 8-149
mtmsr (64-bit bridge), 4-64, 8-150
mtmsrd,7-65
mtspr, 4-53, 4-64, 8-151, B-6
mtsr (64-bit bridge), 4-67,8-154
mtsrin (64-bit bridge), 4-67,8-155
mulhw, 4-14, 8-156
mulhwu, 4-14, 8-157
mulli, 4-13, 8-158
mullw, 4-14,8-159
Multiple register loads, B-5
Multiple-precision shift examples, C-l
MUltiply-add

execution model, D-4
instructions, floating-point, 4-23, A-17

Multiprocessor, usage, 5-1
Munging

description, 3-6
LE mapping, 3-7-3-8

Index

INDEX

N
nand, 4-17, 8-160
NaNs (Not a Numbers), 3-21
neg, 4-13,8-161
No-execute protection, 7-9, 7-12
Nonscalars,3-10
No-op, 4-4, F-23
nor, 4-17, 8-162
Normalization, definition, 3-23
Normalized numbers, 3-19

o
OEA (operating environment architecture)

cache model and memory coherency, 5-1
definition, xxvi, 1-5
general changes to the architecture, 1-17, 1-17
implementing exceptions, 6-1
memory management specifications, 7-1
programming model, 2-18
register set, 2-17

Opcodes, primary/extended, 4-4
Operands

BO operand encodings, 2-13, 4-47, B-3
conventions, description, 1-9, 3-1
memory operands, 4-7
placement

effect on performance, summary, 3-12
instruction restart, 3-14

Operating environment architecture, see OEA
Optional instructions, 4-5, A-36
or, 4-16, 8-163
orc, 4-17,8-164
ori, 4-16,8-165
oris, 4-16, 8-166
Out-of-order execution, 5-16
Overflow exception condition, 3-41

p
Page address translation

definition, 7-7
integer alignment exception, 6-30
overview, 7-34
page address translation flow, 7-46
page memory protection, 7-28, 7-42
page size, 7-32
page tables in memory, 7-48
PTE definitions, 7-37
segment descriptors, 7-33, 7-35
selection of page address translation, 7-7, 7-13
summary, 7-46

Index-9

INDEX

Page history status
making R and C bit updates to page tables, 7-64
R and C bit recording, 7-11, 7-38, 7-40
Rand C bit updates, 7-64

Page memory protection, see Protection of memory
areas

Page tables
allocation ofPTEs, 7-56
definition, 7-49
example table structures, ??-7-58
hashed page tables, 7-48
hashing functions, 7-52, 7-59
organized as PTEGs, 7-49
page table size, 7-51
page table structure summary, 7-56
page table updates, 7-64
PTEG addresses, 7-54, 7-58
table search flow, 7-62
table search for PTE, 7-61

Page, definition, 5-5
Performance

effect of operand placement, summary, 3-12
instruction restart, 3-14

Physical address generation
generation ofPTEG addresses, 7-54, 7-58
memory management unit, 7-1

Physical memory
physical vs. virtual memory, 5-1
predefined locations, 7-4

PIR (processor identification register), 2-36
POWER architecture

AL bit in MSR, 8-2
alignment for load/store multiple, 8-5
branch conditional to CTR, 8-4
differences in implementations, 8-4
FP exceptions, 8-8
instructions

dclzJdcbz instructions, differences, 8-7
deleted in PowerPC, 8-9
load/store multiple, alignment, 8-5
load/store string instructions, 8-5
move from FPSCR, 8-7
move to/from SPR, 8-6
reserved bits, POWER and PowerPC, 8-2
SR instructions, differences from PowerPC, 8-7
supported in PowerPC, 8-11
svcxlsc instructions, differences, 8-4

memory access update forms, 8-4
migration to PowerPC, 8-1
POWERlPowerPC incompatibilities, 8-1
registers

CR settings, 8-2
decrementer register, 8-9
multiple register loads, 8-5

reserved bits, POWER and PowerPC, 8-2
RTC (real-time clock), 8-8
synchronization, 8-5
timing facilities, POWER and PowerPC, 8-8
TL8 entry invalidation, 8-8

PowerPC architecture
alignment for load/store multiple, 8-5
byte ordering, 3-6
cache model, Harvard, 5-5
changes in this revision, summary, 1-7, 1-15
computation modes, 1-4,4-3
differences in implementations, 8-4
features summary

defined features, 1-3, 1-6
features not defined, 1-7

IJO data transfer addressing, 3-11
instruction addressing, 3-10
instruction list, A-I, A-8, A-14
instructions

dcbzJdclz instructions, differences, 8-7
deleted in POWER, 8-9
load/store multiple, alignment, 8-5
load/store string instructions, 8-5
move from FPSCR, 8-7
move to/from SPR, 8-6
reserved bits, POWER and PowerPC, 8-2
SR instructions, differences from POWER, 8-7
supported in POWER, 8-11
svcxlsc instructions, differences, 8-4

levels of the PowerPC architecture, 1-5-1-6
memory access update forms, 8-4
operating environment architecture, xxvi, 1-5
overview, 1-2
POWERlPowerPC, incompatibilities, 8-1
registers

CR settings, 8-2
decrementer register, 8-9
multiple register loads, 8-5
programming model, 1-8,2-2,2-14,2-18
reserved bits, POWER and PowerPC, 8-2

synchronization, 8-5
timing facilities, POWER and PowerPC, 8-8
TL8 entry invalidation, 8-8
user instruction set architecture, xxv, 1-5
virtual environment architecture, xxv, 1-5

PP protection bits, 7-42
Precise exceptions, 6-3, 6-6, 6-7
Preferred instruction forms, 4-4
Primary/extended opcodes, 4-4
Priorities, exception, 6-12

Index-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

INDEX

Privilege levels
external control instructions, 4-62
supervisor/user mode, 1-9
supervisor-level cache control instruction, 4-65
TBR encodings, 4-56
user-level cache control instructions, 4-58

Privileged instruction type program exception
condition, 6-5, 6-33

Privileged state, see Supervisor mode
Problem state, see User mode
Process switching, 6-19
Processor control instructions, 4-52, 4-56, 4-64, A-24
Program exception

description, 3-28, 6-5, 6-33, 6-33
five (5) program exception conditions, 6-5, 6-33
move to/from SPR, B-6

Programming model
all registers (OEA), 2-18
user-level plus time base (VEA), 2-14
user-level registers (VISA), 2-2

Protection of memory areas
block access protection, 7-27, 7-28, 7-30, 7-42
direct-store segment protection, 7-10, 7-69
no-execute protection, 7-9, 7-12
options available, 7-9, 7-42
page access protection, 7-28, 7-30, 7-42
programming protection bits, 7-42
protection violations, 7-15, 7-30, 7-43

PTEGs (PTE groups)
definition, 7-49
example primary and secondary PTEGs, 7-58
generation ofPTEG addresses, 7-54
table search operation, 7-61

PTEs (page table entries)
adding a PTE, 7-65
modifying a PTE, 7-66
page table definition, 7-49
page table search operation, 7-61
page table updates, 7-64
PTE bit definitions, 7-38

PVR (processor version register), 2-23

Q

Quiet NaNs (QNaNs)
description, 3-21
representation, 3-22

R
Real address (RA), see Physical address generation
Real addressing mode address translation (translation

disabled)
data/instruction accesses, 7-11,7-19,7-33
definition, 7-7

Index

Real numbers, approximation, 3-18
Record bit (Rc)

description, 8-3
inappropriate use, B-3

Referenced (R) bit maintenance
page history information, 7 -11
recording, 7-11, 7-38, 7-39, 7-40
updates, 7-64

Registers
configuration registers

MSR,2-20
PVR,2-23

exception handling registers
DAR,2-29
DSISR,2-30
FPECR (optional), 2-32
list, 2-19
SPRGO-SPRG3, 2-30
SRRO/SRRl,2-31

FPECR register (optional), 2-20
memory management registers

BATs, 2-24
list, 2-19
SDRl,2-27
SRs, 2-28

misceJlaneous registers
DABR (optional), 2-34
DEC, 2-33
EAR (optional), 2-35
list, 2-20
PIR (optional), 2-36
TBUTBU, 2-15

MMU registers, 7-18
multiple register loads, B-5
OEA register set, 2-17
optional registers

DABR,2-34
EAR,2-35
FPECR,2-32
PIR,2-36

reserved bits, POWER and PowerPC, B-2
supervisor-level

BATs, 2-24, 7-25
DABR,6-24
DABR (optional), 2-34
DAR,2-29
DEC, 2-33, B-9
DSISR,2-30
EAR (optional), 2-35
FPECR (optional), 2-32
MSR,2-20
PIR (optional), 2-36
PVR,2-23
SDRl,2-27
SPRGO--SPRG3, 2-30 l1li

Index-11

l1li

INDEX

SRRO/SRR1,2-31
SRs, 2-28
TBUfBU, 2-15

UISA register set, 2-1
user-level

CR,2-5
CTR,2-12
FPRO-FPR31,2-4
FPSCR,2-7
GPRO-GPR31,2-3
LR,2-11
TBUfBU, 2-32
XER, 2-11, B-4

VEA register set, 2-l3
Reserved instruction class, 4-6
Reset exception, 6-4, 6-8, 6-21
Return from exception handler, 6-19
rfi (64-bit bridge), 4-63,8-167
rlwimi, 4-19, 8-168
rlwinm, 4-19, 8-169
rlwnm, 4-19,8-171
Rotate/shift instructions, 4-18-4-19, A-I6-A-16, F-4
Rounding, floating-point operations, 3-25
Rounding/conversion instructions, FP, 4-25
RTC (real time clock), B-8

s
sc

differences in implementation, POWER and
PowerPC, B-4

for context synchronization, 4-8
occurrence of system call exception, 6-36
user-level function, 4-52, 4-63, 8-172

Scalars
aligned, LE mode, 3-6
big-endian, 3-2
description, 3-2
little-endian, 3-2

SDRI register
definitions, 7-50
format, 7-50
generation of PTEG addresses, 7-54, 7-58

Segment registers
instructions

POWERIPowerPC, differences, B-7
segment descriptor

definitions, 7-35
format, 7-35

SR manipulation instructions, 4-66, 4-66, A-25
T = 1 format (direct-store), 7-68
T-bit, 2-28, 7-33

Segmented memory model, see Memory management
unit

Sequential execution model, 4-3

Shift/rotate instructions, 4-18-4-19, A-I6-A-16, F-4
Signaling NaNs (SNaNs), 3-21
Simplified mnemonics

branch instructions, F-6
compare instructions, F-3
CR logical instructions, F-18
recommended mnemonics, 4-55, F-23
rotate and shift, F-4
special-purpose registers (SPRs), F-21
subtract instructions, F-2
trap instructions, F-19

SLB management instructions, 4-67
slw, 4-20, 8-173
SNaNs (signaling NaNs), 3-21
Special-purpose registers (SPRs), F-21
SPRGO-SPRG3, conventional uses, 2-30
sraw,4-20,8-174
srawi,4-20, 8-175
SRRO/SRRI (status save/restore registers)

format, 2-31, 2-31
machine check exception, register settings, 6-23

srw, 4-20,8-176
stb, 4-33,8-177
stbu, 4-33, 8-178
stbux, 4-34, 8-179
stbx, 4-33, 8-180
stdcx.lldarx

general information, 5-4, E-l
stfd, 4-40,8-181
stfdu, 4-40, 8-182
stfdux, 4-41,8-183
stfdx, 4-40, 8-184
stfiwx, 4-41,8-185, D-16
stfs, 4-40, 8-186
stfsu, 4-40, 8-187
stfsux, 4-40, 8-188
stfsx, 4-40, 8-189
sth, 4-34, 8-190
sthbrx,4-35,8-191
sthu, 4-34, 8-192
sthux, 4-34, 8-193
sthx, 4-34,8-194
stmw, 4-36, 8-195
Structure mapping examples, 3-3
stswi, 4-36, 8-196
stswx, 4-36,8-197
stw, 4-34, 8-198
stwbrx, 4-35, 8-199
stwcx., 4-53, 4-55, 8-200

Index-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

INDEX

stwcx./lwarx
general infonnation, 5-4, E-I
Iwarx, 4-55, 8-126
semaphores, 4-53
stwcx., 4-55, 8-200
synchronization primitive examples, E-2

stwu, 4-34, 8-202
stwux, 4-34, 8-203
stwx, 4-34, 8-204
subf, 4-11, 8-205
subfc, 4-12, 8-206
subfe, 4-12, 8-207
subfic, 4-11, 8-208
subfme, 4-13,8-209
subfze, 4-13, 8-210
Subtract instructions, F-2
Summary of changes in this revision, 1-7, I-IS
Supervisor mode, see Privilege levels
sync, 4-55,5-3,8-211, B-5
Synchronization

compare and swap, E-4
context/execution synchronization, 2-36, 4-8, 6-6
context -altering instruction, 2-36
context-synchronizing exception, 2-36
context-synchronizing instruction, 2-36
data access synchronization, 2-37
execution of rfi, 6-19
implementation-dependent

requirements, 2-38, 2-39
instruction access synchronization, 2-38
list insertion, E-6
lock acquisition and release, E-5
memory synchronization instructions, 4-53, A-21
overview, 6-6
requirements for lookaside buffers, 2-36
requirements for special registers, 2-36
rftlrfid, 2-37
synchronization primitives, E-2
synchronization programming examples, E-I
synchronizing instructions, 1-11,2-37

Synchronous exceptions
causes, 6-3
classifications, 6-3
exception conditions, 6-7

System call exception, 6-5, 6-36
System IEEE FP enabled program exception

condition, 6-5, 6-33
System linkage instructions

list of instructions, A-23
rfi,8-167
sc, 4-52, 4-63, 8-172

System reset exception, 6-4, 6-8, 6-21

Index

T
Table search operations

hashing functions, 7-52
page table algorithm, 7-61
page table definition, 7-49
SDRI register, 7-50
table search flow (primary and secondary), 7-62

Terminology conventions, xxxv
Time base

computing time of day, 2-16
reading the time base, 2-16
TBUTBU, 2-15
timer facilities, POWER and PowerPC, B-8
writing to the time base, 2-32

Tiny values, definition, 3-18
TLB invalidate

TLB entry invalidation, B-8
TLB invalidate broadcast operations, 7-18, 7-64
TLB management instructions, A-25
tlbie instruction, 7-18, 7-64

TLB management instructions, 4-67
tibia, 4-68, 8-212
tlbie, 4-68, 8-213, B-8
tlbsync,4-68,8-214
tlbsync instruction emulation, 7-64
TO operand, F-21
Trace exception, 6-5, 6-37
Trap instructions, 4-51, F-19
Trap program exception condition, 6-5, 6-34
tw, 4-51, 8-215
twi, 4-51, 8-216

U
VISA (user instruction set architecture)

definition, xxv, 1-5
general changes to the architecture, 1-16
programming model, 2-2
register set, 2-1

Underflow exception condition, 3-42
User instruction set architecture, see UISA
User mode, see Privilege levels
User-level registers, list, 2-2, 2-14

V
VEA (virtual environment architecture)

cache model and memory coherency, 5-1
definition, xxv, 1-5
general changes to the architecture, 1-16, 1-16
programming model, 2-14
register set, 2-13
time base, 2-15

Vector offset table, exception, 6-4

Index-13
-

-

Virtual address
formation, 2-29

Virtual environment architecture, see VEA
Virtual memory

implementation, 7-3
virtual vs. physical memory, 5-1

W
WIMG bits, 5-6, 7-65

description, 5-12
G-bit,5-16
in BAT register, 7-26
in BAT registers, 5-13
WIM combinations, 5-15

Write-back mode, 5-14
Write-through attribute (W)

write-throughlwrite-back operation, 5-6, 5-13

x
XER register

bit definitions, 2-11
difference from POWER architecture, B-4

xor, 4-16, 8-217
XOR (exclusive OR), 3-6
xori, 4-16, 8-218
xoris, 4-16,8-219

Z
Zero divide exception condition, 3-38
Zero numbers, format, 3-20
Zero values, 3-20

INDEX

Index-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

1211196

MOTOROLA AUTHORIZED DISTRIBUTOR & WORLDWIDE SALES OFFICES
NORTH AMERICAN DISTRIBUTORS

UNITED STATES
ALABAMA

Huntsville
Arrow/Schweber Electronics ... (205)837-6955
FAI •..•..................... (205)837-9209
Future Electronics (205)830-2322
Hamilton/Hallmark (205)837-8700
Newark•................ (205)837-9091
Time Electronics .•......... 1-600-789-TIME
Wyle Electronics (205)830-1119

ARIZONA
Phoenix

FAI (602)731-4661
Future Electronics (602)968-7140
Hamilton/Hallmark (602)41<h'lOOO
Wyle Electronics•... (602)804-7000

Scottsdale
Alliance Electronics (602)483-9400

Tempe
Arrow/Schweber Electronics ... (602)431-0030
Newark (602)966-6340
PENSTOCK•.•....•. (602)967-1620
Time Electronics •....•..•.. 1-600-789-TIME

CALIFORNIA
Agoura Hills

Future Electronics ...•........ (818)865-0040
Time Electronics Corporate .. 1-600-789-TIME

Calabassas
Arrow/Schweber Electronics ... (818)880-9686
Wyle Electronics ..•.••......• (818)880-9000

Chatsworth
Time Electronics ...•.•..... 1-600-789-TIME

Costa Mesa
Hamilton/Hallmark (714)789-4100

Culver City
Hamilton/Hallmark •.......... (3tO)558-2000

Garden Grove
Newark•.....•.. (714)893-4909

Irvine
Arrow/Schweber Electronics •.. (714)587-0404
FAI•......•••.•..•.•.. (714)753-4778
Future Electronics .•••...••... (714)453-1515
Wyle Laboratories Corporate .. (714)753-9953
Wyle Electronics•.. (714)863-9953

Los Angeles
FAI (818)879-1234
Wyle Electronics (818)880-9000

Manhattan Beach
PENSTOCK• (310)546-6953

Newberry Park
PENSTOCK ..•.•..•••..•.•.. (805)375-6680

Palo Alto
Newark •............•.•..... (415)812-6300

Riverside
Newark (909)980-21 05

Rocklin
Hamilton/Hallmark•... (916)632-4500

Sacramento
FAI (916)782-7882
Newark •.•..•...•.••...•.... (916)565-1760
Wyle Electronics • . .. (916)638-5282

San Diego
Arrow/SchweberElectronics ... (619)565-4800
FAI .•..•••...•••............ (619)623-2888
Future Electronics (619)625-2800
Hamilton/Hallmark (619)571-7540
Newark ..••................. (619)453--8211
PENSTOCK .•......•..•..... (619)623-9100
Wyle Electronics ...•......... (619)565-9171

San Jose
Arrow/Schweber Electronics ... (408)441-9700
Arrow/Schweber Electronics ... (408)426-6400
FAI•. " .•..•....••••.•• (408)434-0369
Future Electronics ...•..•..•.. (408)434-1122

Santa Clara
Wyle Electronics. (408)727-2500

Santa Fe Springs
Newark (310)929-9722

Sierra Madre
PENSTOCK .•.•.......•.... (818)355-6775

Sunnyvale
Hamilton/Hallmark (408)435-3500
PENSTOCK (408)730-0300
Time Electronics .•......... 1--800-789-TIME

Thousand Oaks
Newark (805)449-1480

Torrance
Time Electronics 1-800-789-TIME

Tustin
Time Electronics 1-800-789-TIME

Woodland Hills
Hamilton/Hallmark (818)594-0404

COLORADO
Lakewood

FAI (303)237-1400
Future Electronics•..... (303)232-2008

Denver
Newark (303)373-4540

Englewood
Arrow/Schweber Electronics ... (303)799-D258
Hamilton/Hallmark ..••.•..•.. (303)790-1662
PENSTOCK ..•....•.......•. (303)799-7845
Time Electronics••.. 1--800-789-TIME

Thornton
Wyle Electronics .•.....•...•• (303)457-9953

CONNECTICUT
Bloomfield

Newark (203)243-1731
Cheshire

FAI (203)250-1319
Future Electronics (203)250-0083
Hamilton/Hallmark•. (203)271-2844

Southbury
Time Electronics 1-800-789-TIME

Wallingfort
ArrowTSchweber Electronics .•. (203)265-7741

FLORIDA
Altamonte Springs

Future Electronics•• (407)865-7900
Clearwater

FAI (813)530-1665
Future Electronics (813)530-1222

Deerfield Beach
Arrow/Schweber Electronics ... (305)429-8200
Wyle Electronics•... (305)420-0500

Ft. Lauderdale
FAI (305)428-9494
Future Electronics ..•......... (305)435-4043
Hamilton/Hallmark (305)484-5482
Newark (305)485-1151
Time Electronics 1-800-789-TIME

Lake Mary
Arrow/Schweber Electronics ... (407)333-9300

LargolTampaiSt. Petersburg
Hamilton/Hallmark (813)547-5000
Newark (813)287-1578
Wyle Electronics (813)575-3004
Time Electronics 1-800-789-TIME

Orlando
FAI (407)865-9555
Newark (407)896-8350

Tallahassee
FAI (904)668-7772

Tampa
Newark (813)287-1578
PENSTOCK•... (813)247-7556

Winter Park
Hamilton/Hallmark•... (407)657-3300
PENSTOCK•.•.......... (407)672-1114

GEORGIA
Atlanta

FAI (404)447-4767
Time Electronics•.. 1-800-789-TIME
Wyle Electronics• (404)441-9045

Duluth
Arrow/Schweber Electronics." (404)497-1300
Hamilton/Hallmark•.... (404)623-4400

Norcross
Future Electronics•.... (770)441-7676
Newark (770)448-1300
PENSTOCK•.... (770)734-9990
Wyle Electronics (770)441-9045

IDAHO
Boise

FAI (208)376--8080
Newark (208)342-4311

ILLINOIS
Addison

Wyle Laboratories (708)620-0969
Bensenville

Hamilton/Hallmark•..• (708)797-7322
Chicago

FAI (708)843-0034
Newark Electronics Corp ... 1--800-4NEWARK

Hoffman Estates
Future Electronics (708)882-1255

Itasca
Arrow/Schweber Electronics ... (708)250-0500

Palatine
PENSTOCK•... (708)934-3700

Schaumburg
Newark (708)310--8980
Time Electronics 1-800-789-TIME

INDIANA
Indianapolis

Arrow/Schweber Electronics ... (317)299-2071
Bailey's Electronics•.. (317)848-9958
Hamilton/Hallmark (317)575-3500
FAI (317)469-0441
Future Electronics•..... (317)469-0447
Newark (317)259-0085
Time Electronics 1-800-789-TIME

Ft. Wayne
Newark (219)484-0766
PENSTOCK (219)432-1277

IOWA
Cedar Rapids

Newark (319)393-3800
Time Electronics 1-800-789-TIME

KANSAS
Kansas City

FAI (913)381-6800
Lenexa

Arrow/Schweber Electronics (913)541-9542
Hamilton/Hallmark (913)663-7900

Olathe
PENSTOCK• (913)829-9330

Overland Park
Future Electronics ..•......... (913)649-1531
Newark (913)677-0727
Time Electronics•... 1-800-789-TIME

MARYLAND
Baltimore

FAI (410)312-0833
Columbia

Arrow/Schweber Electronics ... (301)596-7800
Future Electronics ..•...•..... (410)290-0600
Hamilton/Hallmark (410)720-3400
Time Electronics ...•.....•. 1--800-789-TIME
PENSTOCK• (410)290-3746
Wyle Electronics.,••...•• (410)312-4844

Hanover
Newark ..••...•.......•.•..• (410)712-6922

For changes to this information contact Technical Publications at FAX (602) 244-6560

1211/96

AUTHORIZED DISTRIBUTORS - continued
UNITED STATES -continued

MASSACHUSETTS
Boston

Arrow/Schweber Electronics ... (508)658-0900
FAI (508)779-3111
Newark 1-800-4NEWARK

Bolton
Future Corporate (508)779-3000

Burlington
PENS'OCK (617)229-9100
Wyle Electronics (617)271-9953

Peabody
Time Electronics 1-800-789-TIME
Hamilton/Hallmark (508)532-9893

Woburn
Newark (617)935-8350

MICHIGAN
Detroit

FAI (313)513-0015
Future Electronics (616)698-6800

Grand Rapids
Newark (616)954-6700

Livonia
Arrow/Schweber Electronics ... (810)455-0850
Future Electronics (313)261-5270
Hamilton/Hallmark (313)418-5800
Time Electronics 1-800-789-TIME

Troy
Newark • (81 0)583-2899

MINNESOTA
Bloomington

Wyle Electronics (612)853-2280
Burnsville

PENSTOCK (612)882-7630
Eden Prairie

Arrow/Schweber Electronics ... (612)941-5280
FAI (612)947-0909
Future Electronics (612)944-2200
Hamilton/Hallmark (612)881-2600
Time Electronics 1-800-789-TIME

MinneapoliS
Newark (612)331-<)350

Earth City
HamiltonlHalimark (314)291-5350

MISSOURI
SI. Louis

Arrow/Schweber Electronics ..• (314)567-8888
Future Electronics (314)469-6805
FAI (314)542-9922
Newark (314)453-9400
Time Electronics 1-800-789-TIME

NEW JERSEY
Bridgewater

PElilsTOCK (908)575-9490
Cherry Hili

Hamilton/Hallmark (609)424-0110
East Brunswick

Newark (908)937-8600
Fairfield

FAI (201)331-1133
Marlton

Arrow/Schweber ElectroniCS , ... (609)598-8000
FAI (609)988-1500
Future Electronics .. , , .. , (609)598-4080

Plnebrook
Arrow/Schweber Electronics ... (201)227-7880
Wyle Electronics , (201)882-8358

Parsippany
Future Electronics , (201)299-0400
Hamilton/Hallmark., .. , .. ,." (201)515-1641

Wayne
, Time Electronics 1-800-789-TIME

NEW MEXICO
Albuquerque

Hamilton/Hallmark (505)828-1058
Newark•.......... (505)828-1878

NEW YORK
Bohemia

Newark (516)567-4200

Hauppauge
Arrow/Sc~weber Electronics ... (516)231-1000
Future Electronics , ... (516)234-4000
Hamilton/Hallmark ... , ... , ... (516)434-7400
Newark , 1-800-4NEWARK
PENSTOCK ,., ... , (516)724-9580

Konkoma
Hamilton/Hallmark ,.,. (516)737-0600

Long Island
FAI (516)348-3700

Melville
Wyle Laboratories , " (516)293-8446

Pittsford
Newark " (716)381-4244

Rochester
Arrow/Schweber Electronics ... (716)427-0300
Future Electronics, .. , .. , . , .. , (716)387-9550
FAI ' (716)387-9600
Hamilton/Hallmark ,., .. ,." .. (716)272-2740
Time Electronics 1-800-789-TIME

Syracuse
FAI (315)451-4405
Future Electronics ... , .. ,." .. (315)451-2371
Newark (315)457-4873
Time Electronics, ,' 1-800-789-TIME

NORTH CAROLINA
Charlotte

FAI .•.. , (704)548-9503
Future Electronics (704)547-1107
Newark , . , , . , ... , (704)535-5650

Raleigh
Arrow/Schweber Electronics ... (919)876-3132
FAI , .. , (919)878-0088
Future Electronics" (919)790-7111
Hamilton/Hallmark.,., .. , .. ,. (919)872-0712
Newark , . , , .. , 1-800-4NEWARK
Time Electronics 1-800-789-TIME

OHIO
Centerville

Arrow/Schweber Electronics .. , (513)435-5563
Cleveland

FAI ,.,."., (216)448-0061
Newark (216)391-9330
Time Electronics ... , 1-800-789-TIME

Columbus
Newark , ... , ... , (614)326-0352
Time Electronics, 1-800-789-TlME

Dayton
FAI (513)427-6090
Future Electronics, (513)426-0090
Hamilton/Hallmark , (513)439-6735
Newark (513)294-8980
Time Electronics ... , .. ,.,., 1-800-789-TIME

Mayfield Heights
Future Electronics , (216)449-6996

Solon
Arrow/Schweber Electronics.,. (216)248-3990
Hamilton/Hallmark (216)498-1100

Worthington
Hamilton/Hallmark (614)888-3313

OKLAHOMA
Tulsa

FAI , (918)492-1500
Hamilton/Hallmark , .. (918)459-8000
Newark. , . , , .. (918)252-5070

OREGON
Beaverton

Arrow/Almac Electronics Corp, . (503)629-8090
Future Electronics ... , (503)645-9454
Hamilton/Hallmark ,.,.' .. (503)526-6200
Wyle Electronics ... , .. '., (503)643-7900

Portland
FAI , (503)297-5020
Newark, , (503)297-1984
PENSTOCK• (503)648-1670
Time Electronics 1-800-789-TIME

PENNSYLVANIA
Coatesville

PENSTOCK , (610)383-9536

Ft. Washington
Newark , (215)654-1434

MI. Laurel
Wyle Electronics (609)439-9110

Philadelphia
Time Electronics 1-800-789-TIME
Wyle Electronics• (609)439-9110

Pittsburgh
Arrow/Schweber Electronics ... (412)963-6807
Newark (412)788-4790
Time Electronics 1-800-789-TIME

TENNESSEE
Knoxville

Newark .. , (615)588-8493

TEXAS
Austin

Arrow/Schweber Electronics, .. (512)835-4180
Future Electronics (512)502-0991
FAI (512)348-8426
Hamilton/Hallmark , (512)219-3700
Newark (972)458-2528
PENSTOCK , ... , .. (512)348-9762
Time Electronics. , , 1-800-789-TIME
Wyle Electronics , .. , (512)833-9953

Benbrook
PENSTOCK , , , (817)248-0442

Caroliton
Arrow/Schweber Electronics ... (214)380-8464

Dallas
FAI , (214)231-7195
Future Electronics (214)437-2437
Hamilton/Hallmark (214)553-4300
Newark (214)458-2528
Time Electronics , .. , ... 1-800-789-TIME
Wyle Electronics (214)235-9953

EIPaso
FAI ,. (915)577-9531
Newark (915)772-8367

Ft. Worth
Allied Electronics ... , , (817)338-5401

Houston
Arrow/Schweber Electronics .. , (713)647-8868
FAI , (713)952-7088
Future Electronics., (713)785-1155
Hamilton/Hallmark .. ,.".",. (713)781-8100
Newark , (713)894-9334
Time Electronics.,., 1-800-789-TIME
Wyle Electronics , .. "., (713)879-9953

Richardson"
PENSTOCK , (214)479-9215

San Antonio
FAI (210)738-3330
Newark (210)734-7960

UTAH
Salt Lake City

Arrow/Schweber Electronics ... (801)973-6913
FAI (801)467-9696
Future Electronics (801)467-4448
Hamilton/Hallmark (801)268-2022
Newark , ... (801)261-5660
Wyle Electronics , ... (801)974-9953

West Valley City
Time Electronics, .. , 1-800-789-TIME
Wyle Electronics , , ,. (801)974-9953

WASHINGTON
Bellevue

Almac Electronics Corp. , (206)643-9992
PENSTOCK. (206)454-2371

Bothell
Future Electronics " . , , .. (206)489-3400

Kirkland
Newark (206)814-6230

Redmond
Hamilton/Hallmark , (206)882-7000
Time Electronics ". 1-800-789-TIME
Wyle Electronics (206)881-1150

Seattle
FAI , (206)485-8616
Wyle Electronics (206)881-1150

For changes to this Information contact Technical Publications at FAX (602) 244-6560

1211/96

AUTHORIZED DISTRIBUTORS - continued

UNITED STATES - continued
WISCONSIN

Brookfield
Arrow/Schweber Electronics ... (414)792-0150
Future Electronics (414)879-0244
Wyle Electronics (414)521-9333

Madison
Newark (608)278-0177

Milwaukee
FAI (414)792-9778
TIme Electronics 1-800-789-TIME

New Berlin
Hamilton/Hallmark (414)780-7200

Wauwatosa
Newark•...••... (414)453-9100

CANADA
ALBERTA

Calgary
Electro Sonic Inc. (403)255-9550
FAI•.... (403)291-5333
Future Electronics (403)250-5550
Hamilton/Hallmark (800)663-5500

Edmonton
FAI (403)438-5888
Future Electronics (403)438-2858
Hamilton/Hallmark (800)663-5500

Saskatchewan
Hamilton/Hallmark (800)663-5500

BRITISH COLUMBIA
Vancouver

Arrow Electronics (604)421-2333
Electro Sonic Inc (604)273-2911
FAI 00 ••••••••••••••• (604)654-1050
Future Electronics (604)294-1166
Hamilton/Hallmark (604)420-4101

MANITOBA
Winnipeg

Electro Sonic Inc. (204)783-3105
FAI , (204)786-3075
Future Electronics (204)944-1446
Hamilton/Hallmark•..•... (800)663-5500

ONTARIO
Kanata

PENSTOCK•...... (613)592-6088
London

Newark 00 • • (519)686-4280
Misslssauga

PENSTOCK " (905)403-0724
Newark (905)670-2888

Ottawa
Arrow Electronics (613)226--e903
Electro Sonic Inc (613)728-8333
FAI ...•...•................. (613)820-8244
Future Electronics (613)727-1800
Hamilton/Hallmark (613)226-1700

Toronto
Arrow Electronics (905)670-7769
Electro Sonic Inc (416)494-1666
FAI ...•..................... (905)612-9888
Future Electronics ... " '" (905)612-9200

. Hamilton/Hallmark (905)564-8060
Newark (905)670-2888

QUEBEC
Montreal

Arrow Electronics•.. (514)421-7411
FAI (514)694-8157
Future Electronics•..... (514)694-7710
Hamilton/Hallmark•.. (514)335-1000

MI. Royal
Newark (514)738-4488

Quebec City
Arrow Electronics ..•.•....... (418)687-4231
FAI (418)682-5775
Future Electronics (418)877-43666.

INTERNATIONAL DISTRIBUTORS

AUSTRALIA
AVNETVSI Electronics (Aus!.) (61)29878-1299
Veltek Australia Ply Ltd (61)39574-9300

AUSTRIA
EBV Elektronik (43) 1 8941774
SEI/Elbatex GmbH (43) 1 866420
Spoerle Electronic (43) 1 31872700

BELGIUM
Spoerls Electronic. •. (32) 2 725 4660
EBV Elektronik•........ (32) 2 716 0010
SEI/Rodelco B.V. (32) 2 460 0560

BULGARIA
Macro Group (359) 2708140

CZECH REPUBLIC
Spoerle Electronic (42) 2731355
SEI/Elbatex•........ (42) 24763707
Macro Group (42) 23412182

CHINA
Advanced Electronics Ltd. ... (852)2 305-3633
AVNET WKK Components Ltd. ... (852)2357-8888
China EI. App. Corp. XiaMan Co .. (86)106818-9750
Nanco Electronics Supply Ltd .. (852) 2 765-3025
........•..........•.... or (852) 2 333-5121

Qing Cheng Enterprises Ltd ... (852) 2 493-4202
DENMARK

Arrow Exatec (45) 44 927000
Avnet Nortec AlS (45) 44 880800
EBV Ele.ktronik (45) 39690511

ESTONIA
Arrow Field Eesti (372) 6503288
Avnet Baltronic (372) 6397000

FINLAND
Arrow Field OY (35) 89777571
Avnet Nortec OY (35) 89613181

FRANCE
Arrow Electronique (33) 1 49 78 49 78
Avnet Components. (33) 1 49 65 25 00
EBV Elektronik (33) 1 64 68 86 00
Future Electronics .•......•... (33) 1 69821111
Newark (33)1-30954060
SEI/Scaib • (33) 1 69 19 89 00

GERMANY
AvnetE2000•.... (49) 894511001
EBV Elektronik GmbH (49) 89 99114-0
Future Electronics GmbH ...• (49) 89-957 270
SEI/Jermyn GmbH (49) 6431-5080
Newark•........ (49)2154-70011

GERMANY - continued
SascoSemiconductor (49)89-46110
Spoerle Electronic (49) 6103-304-0

GREECE
EBV Elektronik (30) 13414300

HOLLAND
EBV Elektronik (31) 3465 623 53
Spoerle Electronic (31) 4054 5430
SEI/Rodelco B.V. (31) 7657 227 00

HONG KONG
AVNET WKK Components Ltd. ... (852)2357-8888
Nanshing Clr. &Chem. Co. Ltd ... (852)2333-5121

INDIA
Canyon Products Ltd (91) 80 558-7758

INDONESIA
P.T.Ometraco (62) 21619-8166

IRELAND
Arrow (353) 14595540
Future Electronics•.... (353) 6541330
Macro Group (353) 16766904

ITALY
AVNET EMG SRL (39) 2 381901
EBV Elektronik (39) 2 660961
Future Electronics ... ,•..•. (39) 2 660941
Silverstar Ltd. SpA•..•.• (39) 2 66 1251

JAPAN
AMSC Co., Ltd 81-422-54-8800
Fuji Electronics Co., Ltd 81-3-'3814-1411
Marubun Corporation 81-3-'3639-8951
Nippon Motorola Micro Elec .. 81-3-3280-7300
OMRON Corporation•. 81-3-3779-9053
Tokyo Electron Ltd 81-3-'5561-7254

KOREA
Jung Kwang Sa• (82)2278-5333
Lite-On Korea Ltd•...• (82)2858-3853
Nasco Co. Ltd (82)23772-43800

LATVIA
Avnet (371) 8821118

LITHUANIA
Macro Group•..... (370) 7751487

NEW ZEALAND
AVNET VSI (NZ) Ltd (64)9638-7801

NORWAY
Arrow Tahonic AlS (47)22378440
Avnet Nortee AlS Norway (47) 66 846210

PHILIPPINES
Alexan Commercial (63) 2241-9493

POLAND
Macro Group•......... (48) 22 224337
SEI/Elbatex•.•........ (48) 22 6254877
Spoerle Electronic ..•....•... (48) 22 6060447

PORTUGAL
Amitron Arrow •..•........... (35) 114714806

ROMANIA
Macro Group (401) 6343129

RUSSIA
MacroGroup (781)25311476

SCOTLAND
EBV Elektronik•.. (44) 161 4993434

SINGAPORE
Future Electronics ..•.......... (65) 479-1300
Strong Pte. Ltd (65) 278-3996
Uraco Technologies Pte Ltd ..•.. (65) 545-7811

SLOVAKIA
Macro Group (42) 89634181

SLOVENIA
SEI/Elbatex•.. (48) 22 6254877

SPAIN
Amitron Arrow (34) 1 304 30 40
EBV Elektronik (34) 1 804 32 56
SEI/Selco S.A (34) 1 637 10 11

SWEDEN
Arrow-Th:s (46) 8 362970
Avnet Nortec AB (46) 8 6291400

SWITZERLAND
EBV Elektronik (41) 1 7456161
SEI/Elbatex AG (41) 564375111
SpoerleElectronic (41) 18746262

S.AFRICA
Advanced (27) 11 4442333
Reuthec Components (27) 11 8233357

THAILAND
Shapiphat Ltd ... (66)2221-0432 or 2221-5384

TAIWAN
Avnet-Mercuries Co .. Ltd •.. (886)2516-7303
Solomon Technology Corp. .. (886)2788-8989
Strong Electronics Co. Ltd ... (886)2917-9917

UNITED KINGDOM
Arrow Electronics (UK) Ltd .• (44) 1 234270027
Avnet/Access .•........... (44) 1 462488500
EBV Elektronik•..... (44) 1 628783688
Future Electronics Ltd. (44) 1 753763000
Macro Group •............. (44) 1 628 60600
Newark (44) 1 420543333

For changes to this Information contact Technlca.1 Publications at FAX (602) 244·6560

1211/96

MOTOROLA WORLDWIDE SALES OFFICES
UNITED STATES

ALABAMA
Huntsville (205)464-6800

ALASKA (800)635-6291
ARIZONA

Tempe (602)302-8056
CALIFORNIA

Calabasas (818)876-8800
Irvine (714)753-7360
Los Angeles (818)876-8800
San Diego (619)541-2163
Sunnyvale (408)749-0510

COLORADO
Denver (303)337-3434

CONNECTICUT
Wallingford . . . • (203)949-4100

FLORIDA
Clearwater•......... (813)524-4177
Maitland (407)628-2636
Pompano BeachiFt. Lauderdale .•... (954)351-8040

GEORGIA
Atlanta (770)729-7100

IDAHO
Boise (208)323-9413

ILLINOIS
Chicago/Schaumburg. . • • (847)413-2500

INDIANA
Indianapolis (317)571-0400
Kokomo (317)455-5100

IOWA
Cedar Rapids. • (319)378-0383

KANSAS
Kansas CHy/Mission .•.•...... (913)451-8555

MARYLAND
Columbia (410)381-1570

MASSACHUSETTS
Marlborough•.•.....• (508)357-8200
Woburn (617)932-9700

MICHIGAN
Detroit (810)347-8800
Literature (800)392-2016

MINNESOTA
Minnetonka (612)932-1500

MISSOURI
SI. Louis .•..•...•.......•... (314)275-7380

NEW JERSEY
Fairfield (201)808-2400

NEW YORK
Fairport (716)425-4000
Fishkill (914)898-0511
Hauppauge (516)361-7QOO

NORTH CAROLINA
Raleigh (919)870-4355

OHIO
Cleveland (216)349-3100
Columbus/Worthington .•.....• (614)431-8492
Dayton (937)436-8800

OKLAHOMA
Tulsa (918)459-4565

OREGON
Portland (503)641-3681

PENNSYLVANIA
Colmar (215)997-1020
PhiiadelphiaIHorsham •... , •.. (215)957-4100

TENNESSEE
Knoxville (423)584-4841

TEXAS
Austin (512)502-2100
Houston (713)251-{)006
Plano (972)518-5100

VIRGINIA
Richmond (804)285-2100

UTAH
CSllnc (801)572-4010

WASHINGTON
Bellevue (206)454-4160
Seattle Access ...•.......... (206)622-9960

WISCONSIN
Milwaukee/Brookfield (414)792-{)122

Field Applications Engineering Available
Through All Sales Offices

CANADA

BRITISH COLUMBIA
Vancouver•.......... (604)606-8502

ONTARIO
Ottawa (613)228-3491
Toronto•.............. (416)497-8181

QUEBEC
Montreal (514)333-3300

INTERNATIONAL
AUSTRALIA

Melbourne ...•.•.........•. (61-3)98870711
Sydney (61-2)99661071

BRAZIL
Sao Paulo 55(11)815-4200

CHINA
Beijing 88-10-88437222
Guangzhou .•.•.....•..•.. 88-20-87537888
Shanghai••....... 88-21-63747668
Tianjin 88-22-5325072

DENMARK
Denmark (45) 43488393

FINLAND
Helsinki 358-<l-351 61191
carphone 358(49)211501

FRANCE
Paris 33134635900

GERMANY
LangenhageniHanover ..•.... 49(511)786880
Munich 498992103-0
Nuremberg 4991196-3190
Sindelfingen 49703179710
Wiesbaden • • • .. 49 611 973050

HONG KONG
Kwai Fong 852-2-810-8888
Tai Po 852-2-666-8333

INDIA
Bangalore .•...............• 91-80-5598615

ISRAEL
Herzlia 972-9-590222

ITALY
Milan • 39(2)82201

JAPAN
Kyusyu 81-92-725-7583
Gotanda ..•............... 81-3-5487-8311
Nagoya 81-52-232-3500
Osaka•.... 81-6-305-1801
Sendai 81-22-268-4333
Takamatsu .•.............. 81-878-37-9972
Tokyo 81-3-3440-3311

KOREA
Pusan 62(51)4635-035
Seoul 82(2)554-5118

MALAYSIA
Penang ..•.................. 60(4)228-2514

MEXICO
Mexico City ...•............. 52(5)262-{)230
Guadalajara 52(36)21-8977
Zapopan Jalisco .•......•.... 52(36)78-0750
Marketing 52(36)21-2023
Customer Service 52(36)669-9160

NETHERLANDS
Best (31)499861211

PHILIPPINES
Manila. (63)2822-{)625

PUERTO RICO
San Juan (809)262-2300

SINGAPOR.E (65)4818188
SPAIN

Madrid 34(1)457-8204
or 34(1)457-8254

SWEDEN
Solna•.. 46(8)734-8800

SWITZERLAND
Geneva 41(22)7991111
Zurich 41(1)730-4074

TAIWAN
Taipei 886(2)717-7089

THAILAND
Bangkok 66(2)254-4910

UNITED KINGDOM
Aylesbury 441 (296)395252

FULL LINE REPRESENTATIVES

CALIFORNIA, Loomis
Galena Technology Group (916)652-{)268

NEVADA, Reno
Galena Tech. Group (702)748-0642

NEW MEXICO, Albuquerque
S&S Technologies, Inc (505)414-1100

UTAH, Salt Lake City
Utah Compo Sales, Inc (801)572-4010

WASHINGTON, Spokane
Doug Kenley .•.•..••...•.... (509)924-2322

HYBRID/MCM COMPONENT SUPPLIERS

Chip Supply (407)298-7100
Elmo Semiconductor (818)768-7400
Minco Technology Labs Inc. . .. (512)834-2022
Semi Dice Inc•...... (310)594-4631

For changes to this information contact Technical Publications at FAX (602) 244-6560

