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Introduction

1.1 Purpose of Book

The purpose of this book is simple: to introduce programmers to the concepts of
assembly language programming for PowerPC processors. Beyond simply pre-
senting the information required to write functional code, this book presents the
information necessary to write efficient code, and it also discusses the tricks that
compilers use to produce fast code.

The vast majority of people reading this book may have little need to write a
significant amount of code in assembly language. But the techniques presented
here will be useful to the high-level programmer who needs to read compiler-
generated code as part of the debugging process.

1.2 Intended Audience

This book is intended for programmers who have had some sort of experience
with high-level languages such as C or Pascal, or with assembly language for
another processor.

This book will not spend time defining basic concepts such as hexadecimal nota-
tion nor expounding the virtues of null-terminated over length-encoded strings.
It will, however, present definitions for any term that is used. For example, con-
cepts like latency and throughput will be defined before being used.
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§1.3 Why Assembly Language on a RISC Processor?

1.3 Why Assembly Language on a RISC Processor?

The first question that many people ask is something like: “Why would any sane
person be interested in learning assembly language for a RISC processor?” The
reasoning behind this question is the belief that properly written RISC assembly
language routines are significantly more difficult to write than similar CISC
assembly routines, and that today’s compilers produce far better code than code
generated by hand, so why bother?

The question is also valid because the computer industry has been moving away
from programming in low-level languages and emphasizing languages that
promise robustness, easy verification of correctness, and so on. Assembly lan-
guage can promise none of those things. So, again, why bother?

The truth of the matter is that there are two major reasons for wanting to be
familiar with assembly language for any processor (RISC or not). The first is that
you need complete control of all processor resources to make the code as fast or
small as possible. The second reason is that you need to debug your code (or
someone else’s) and see what's really going on. A source-level debugger may
not be sufficient (or even available).

The first reason may sound like it’s only for anal-retentive speed freaks, but
there are reasons for normal human beings to want to hand-code assembly. It is
a sad fact that many of the commercially available compilers do not generate
highly optimized code. The best-selling compilers are typically those with the
fastest edit-compile-run times, and a proper optimizer takes a bit of time to run.
Thus, while it’s true that a properly written optimizing compiler can generate
code that is better than the code an average assembly language programmer
would produce, many compilers are not properly written and thus, do not pro-
duce properly optimized code.

In addition, a compiler is limited by the source language. As a programmer in
assembly language, you know exactly what you need and when you need it
(and when you no longer need it). The compiler must try to figure out as much
about the program as it can from the source, and when it’s in doubt, it must play
it safe and produce less efficient code. In the C programming language, the pro-
grammer is given such flexibility with addresses and pointers that it becomes
extremely difficult for the compiler to determine if a range of memory can be
modified by a section of code. Because of the compiler’s inability to guarantee
that the memory won’t be modified, it may not be able to risk applying certain
optimizations.

Debugging is another situation that causes programmers to drop down into
assembly. Sometimes (one hopes rarely), compilers do not produce correct code.
More commonly, you may find that your program works fine in some circum-
stances, but dies a horrible death when it interacts with other programs. Lacking
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CISC versus RISC

the source code to the other program, assembly may be the only course of action
available.

Of course, there’s a reason high-level languages exist. The vast majority of your
coding and debugging will be done in some sort of high-level language. You
should need to use assembly only when you have a routine that needs to be as
fast as possible.

To correctly respond to whether RISC assembly is more difficult than CISC
assembly, the terms RISC and CISC must first be discussed in more detail.

CISC versus RISC

There is a lot of confusion surrounding the differences between a RISC and a
CISC architecture arising from misuse of the terms and from various marketing
departments propagating the “RISC is always faster/better than CISC” myth.
Unfortunately, part of the confusion also comes from the fact that there is no
clear line between the two design philosophies: some architectures are clearly
RISC, others are clearly CISC, while still others fall somewhere in between.

The most important thing to note is that RISC (“Reduced Instruction Set Com-
puter”) and CISC (“Complex Instruction Set Computer”) are terms that are
properly applied to an Instruction Set Architecture (ISA) and not to a particular
implementation of an ISA. Common usage allows a processor to be called a
“RISC processor,” but what is really meant is that the processor is an implemen-
tation of a RISC architecture.

This difference between an ISA and a hardware implemention of that ISA is fun-
damental to understanding RISC and CISC.

What RISC Is

The following is a list of features that are commonly associated with RISC ISA’s:

e Alarge uniform register set

e Aload/store architecture

¢ A minimal number of addressing modes

*  Asimple fixed-length instruction encoding

¢ No/minimal support for misaligned accesses

This set of “rules” is designed to make fast processors easier to implement.
Notice that the list contains no requirements as to the number of instructions,
nor does it indicate how the processor should be implemented. These are
issues that are commonly mistaken as features required for a RISC processor.
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§1.3 Why Assembly Language on a RISC Processor?

A processor implementing a RISC ISA is not necessarily a fast processor—per-
formance is dependent on how the processor is implemented. However, because
the features listed were designed to make it easier to implement fast processors,
one can infer that a RISC processor is likely to be faster than a CISC processor of
equivalent technology.

As an example to drive this point home, one can imagine two implementations
of a particular RISC ISA: one that doesn’t use pipelines or superscalar dispatch
(these concepts are discussed later in this book); and another one that does. The
first processor would perform very poorly when compared to the other proces-
sor, and it might even perform worse than many currently available CISC pro-
cessors. However, just because this processor performs poorly does not mean
that it is not a RISC processor.

If you think of RISC as standing for “Reduced Instruction Set Complexity,” then
you may be less likely to be confused by the term.

What CISC Is

Given the definition of RISC, the original definition of CISC is trivially easy to
define: CISC is anything that is not RISC.

When the designers of the first RISC architectures devised the term “RISC,” they
meant to differentiate their simpler, reduced processor from the current crop of
complex processors. Thus, “CISC” was used as a pejorative term that meant
non-RISC architectures.

This lack of a real definition has contributed to some of the confusion surround-
ing RISC and CISC. Today, a CISC architecture typically has:

¢ Many instruction types that access memory directly
¢ Alarge number of addressing modes
Variable-length instruction encoding

Support for misaligned accesses,

although architectures vary widely.

What RISC/CISC Are Not

4

Note that the above lists do not require:

¢ Aninstruction pipeline.
e Asuperscalar instruction dispatch.
* Hardwired or microcoded instructions.

Chapter 1



Is RISC Assembly More Difficult than CISC Assembly?

These are all implementation issues that any processor may make use of, regard-
less of its ISA. RISC processors have become associated with these features
because RISC ISAs are designed to facilitate the implementation of these fea-
tures. However, the presence of these features does not indicate that the proces-
sor in question is an implementation of a RISC ISA.

As an example, Intel’s Pentium™ processor has an instruction pipeline with a
superscalar dispatch. These implementation issues do not change the fact that
the Pentium is just another (albeit fast) implementation of a CISC instruction set
architecture.

Is RISC Assembly More Difficult than CISC Assembly?

So this brings us back to the original question: Is a RISC processor more difficult
to program than a CISC processor? The answer to this question lies somewhere
between “There’s no way to tell” and “That’s a silly question.”

It's difficult to answer the question because the programming challenges
depend more on the specific processor architecture (that is, 68K, 186, PowerPC)
than on the general category (that is, RISC or CISC) of the processor architecture.

An easy way to make this clear is to compare the 68K and the i86 processor fam-
ilies. They are both CISC architectures, but the 68K is widely regarded as being
much easier to program in assembly, mostly because of its large store of general
purpose registers and flexible addressing modes. The same comparison can be
made for RISC architectures: some RISC processor families will be easy to pro-
gram while others will be more difficult.

In fact, an argument can be made that RISC assembly language programming is
easier than CISC assembly. The large register store and the fact that most instruc-
tions have one cycle throughput reduces some of the complexity of assembly
language programming.

For today’s processors, the most complicated aspect of programming in assem-
bly language is the instruction scheduling that is necessary on pipelined imple-
mentations. Because pipelines can exist on either RISC or CISC processors, this
scheduling problem exists on processors of both architecture types. Since RISC
simplifies the other aspects of programming, this becomes more manageable.

1.4 PowerPC as a RISC ISA

The preceding sections have spoken in general terms of RISC processors and
how they fit into the general scheme of things. This section talks about how the
PowerPC fits into the RISC category.
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§1.4 PowerPC as a RISC ISA

As mentioned earlier, five basic features are commonly found on RISC proces-
sors. We'll touch on each one and discuss how the PowerPC fits.

A Large, Uniform Register Set

The PowerPC architecture defines 32 general purpose registers and 32 floating-
point registers. All of these registers are general purpose in that any of the regis-
ters can be used as arguments to any of the instructions.

The only exception to this is GPR r0. Some instructions (like the non-Update
Load and Store instructions) use a register specification of 0 as a special case to
indicate that no register should be used in the calculation.

A Load/Store Architecture

The only instructions that access memory are the Load and Store instructions.
Thus, the PowerPC ISA qualifies as a Load/Store architecture.

A Minimal Number of Addressing Modes

Only two classes of instructions require addressing modes: the load/store
instructions and the branch instructions. All other instructions operate on regis-
ters or immediate values.

The load/ store instructions allow three addressing modes (register indirect, reg-
ister indirect with register index, or register indirect with immediate index); and
the branch instructions allow three modes (absolute, PC relative, or SPR indi-
rect).

Contrast this with the 68000 (a CISC processor), which has a seemingly infinite
number of addressing modes, with more coming out with each generation of the
processor family.

A Simple Fixed-length Instruction Encoding

Every PowerPC instruction is encoded in 32 bits. There are no exceptions to this
rule. Instruction encodings that do not require the full 32 bits are padded with 0
bits so that they fill all 32 bits.

No/Minimal Support for Misaligned Accesses

This is where the PowerPC architecture deviates from the standard RISC design
principles. Following the RISC philosophy, misaligned accesses should never
occur, so support for them needlessly complicates the implementation.
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Overview of this Book

However, one of the design considerations of the original POWER architecture
(the PowerPC'’s parent) was that it be able to emulate other processors efficiently.
Because many of the processors that were likely to be emulated allowed mis-
aligned accesses, it made sense to include support for misaligned accesses in the
POWER/PowerPC architecture.

1.5 Overview of this Book

The book is divided conceptually into four parts: an architecture and instruction
set description (Chapters 2 through 12), a basic programming section (Chapter
13), an advanced programming section (Chapters 14 through 16), and an instruc-
tion set summary (Appendices A and B).

Chapter 2 begins with a basic overview of the PowerPC architecture: the stan-
dard data types and the functional units of the processor; and introduces the
differences between the 32-bit and 64-bit PowerPC implementations.

Chapter 3 contains a brief summary of the notation used in the remaining
instruction set chapters. The following chapters (4 through 9) focus on a specific
instruction type, such as floating-point or branch instructions. These are useful
chapters to read through at least once, because they give a feel for which opera-
tions the PowerPC instruction set provides.

Chapters 10 through 12 provide basic information about memory hierarchies
and pipelines.

Chapter 11 describes the standard function-calling mechanism that most
PowerPC based systems will use. Note that the information provided in this
chapter is not in any way enforced by the processor. It's just a set of conventions
that allow routines generated by different compilers to interface consistently.
This chapter will be of interest to programmers who need to debug high-level
code at the assembly level.

The remaining chapters define more advanced architectural concepts and
describe some implementation details for the PowerPC 601 processor. This
information is then used in discussions that describe techniques for optimizing
code sequences so that they use the processor resources efficiently.

The instruction set summaries in Appendices A and B provide easy-to-use
instruction references, alphabetically organized by mnemonic. Appendix A
devotes a page to each PowerPC instruction and includes the obsolete POWER
instructions found on the 601. Appendlx B lists every POWER and PowerPC
instruction and all the extended mnemonics, and also gives the mapping of each
extended mnemonic into standard instructions. Appendix B is quite useful for
reading code that uses the extended mnemonics, because it isn’t always appar—
ent from which base instruction the extended form was derived.

Introduction 7






PowerPC
Architecture
Overview

Before the instruction set can be discussed, the basic architecture of the processor
must first be defined. This chapter describes the data types and functional units
of the PowerPC architecture.

2.1 Data Organization

An understanding of how data is organized is the best place to begin, because
everything else in this book assumes you know this. If you are familiar with
assembly language for another processor, then nothing in this section should
surprise you, and you should be able to quickly skim the information presented
here. This section is included for the sake of completeness and to give people
completely new to assembly language a good starting point.

Basic Data Types

The PowerPC provides six basic data types: byte, halfword, word, doubleword,
and single- and double-precision floating-point. In addition, there is a quad-
word data type that is useful because quadword alignment is desirable in some
circumstances. Table 2-1 summarizes these data types.

PowerPC Architecture Overview 9



§2.1 Data Organization

Table 2-1 Standard PowerPC Data Types

Lower 8 Bits
Data Type Data Size of Address?
(if aligned to this type)
Byte 8bit |  —mm= —-e-
Halfword 16-bit |  —==m —-- 0
Word 32bit | —=-- -- 00
Doubleword” 64-bit ---- =000
Quadword® 128-bit ---- 0000
Floating-point single 32-bit [ ==-- -- 00
Floating-point double 64-bit ---- -000
a. A ‘="in the address indicates that the bit may be either a O or a 1.
b. Fixed-point instructions that operate directly on doublewords are found on 64-bit PowerPC
implementations only. )
c. Other than cache instructions, no instructions operate directly on quadwords.

Of these data types, the byte, halfword, word, and the two floating-point types
are the most commonly used. The doubleword data type is available only on 64-
bit PowerPC implementations. The quadword data type is included for com-
pleteness.

Data Alignment

Alignment refers to the placement of a data type in memory. Most processors are
designed to operate more efficiently when data is aligned properly, so it is
important to be aware of this concept. A data type is considered to be aligned if
its address is an integral multiple of the data type size.

Thus, the address of an aligned word value must be a multiple of four. Halfword
and doubleword values must have addresses that are multiples of two and
eight, respectively, for proper alignment. Because bytes are one byte wide, they
are always considered to be aligned. '

When the addresses are viewed in binary, it is relatively easy to determine if the
quantity is aligned. A multiple of 2 (halfword) always has a low order bit of b0;
a multiple of four (word) has b00 for the low order bits; and a multiple of eight
(doubleword) has b000.
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Byte Ordering

Byte Ordering

When storing values that require more than one byte, some convention for the
order of the bytes must be agreed upon or else the data could potentially be
misinterpreted. Figures 2-1 and 2-2 show the two possible organizations for the
halfword (2-byte) value 0x0A0B.

Figure 2-1 Big-endian Byte Ordering for 0X0OA0B

l 0A | 0B |

Figure 2-2  Little-endian Byte Ordering for 0x0A0B

i 0B | 0A |

For the four-byte word 0XOAOBOCOD, there are 24 (4! = 24) possible combina-
tions of bytes, but only the two shown in Figures 2-3 and 2-4 make sense.

Figure 2-3  Big-endian Byte Ordering for 0x0A0BOCOD

| 0A [ 0B [ 0C | 0D

Figure 2-4  Little-endian Byte Ordering for 0x0A0B0CO0D

l 0D | 0C | 0B ] 0A |

In both of these figures, the first encoding method stores the most significant
byte, or big-end, first, and the second encoding stores the least significant byte,
or little-end, first. Hence, the first method is referred to as big-endian and the sec-
ond is referred to as little-endian.

By default, the PowerPC processors operate in big-endian mode, but there are
switches to allow user-level or interrupt operations to occur in little-endian
mode.

Bit Numbering

Just as the bytes within words are organized using a big-endian scheme, the bits
within each byte or word are numbered using a big-endian numbering scheme.
Thus, as Figure 2-5 shows, the most significant bit (msb) is bit #0 and the least
significant bit (Isb) is bit #31.

Figure 2-5 Little-endian Bit Numbering for a 32-bit Register

0 1 2 3 © .. 28 29 30 31

msb Isb
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§2.2 Functional Units

When representing data in registers, the msb will always be on the left and the Isb
will always be on the right so that the displayed data is intelligible.

In general, it doesn’t matter how the bits are ordered or numbered within a reg-
ister, because one typically uses the entire register at a time. However, with the
PowerPC, there are instructions that require a starting or ending bit, and for
these instructions it is important to be aware of the numbering scheme.

2.2 Functional Units

It is convenient to divide a PowerPC processor into five conceptional units: the
Fixed-Point or Integer Unit (IU), the Floating-Point Unit (FPU), the Branch Pro-
cessor Unit (BPU), the System Register Unit (SRU), and the Load/Store Unit
(LSU).

It is important to note that these are conceptual functional units. Although these
units will be present in some form on each PowerPC implementation, they will
not necessarily be these five particular units. Some units may be combined, or
there may be multiple units of the same type. For example, the 601 combines the
IU, LSU, and SRU into a unified Integer Unit. Future PowerPC processors will
offer multiple IUs to increase integer performance.

Integer Unit (IU)

The Integer Unit performs all of the integer instructions. These instructions
include the arithmetic, logical, and shift/ rotate instructions.

The IU has a store of General Purpose Registers (GPRs) that are used to perform
the calculations. In addition, there is a Fixed-Point Exception Register (XER) that
contains status information.

The IU is sometimes called the Fixed-Point Unit (FXU).

Floating-Point Unit (FPU)

The Floating-Point Unit performs all of the floating-point operations that the
PowerPC supports. These operations conform to the IEEE 754 floating-point
standard for floating-point arithmetic and include all of the required data types
(normalized, denormalized, NotANumbers, and others).

The FPU also includes a Floating-Point Status and Control Register (FPSCR) that
controls how floating-point operations are performed and provides status infor-
mation.
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Branch Processor Unit (BPU)

Branch Processor Unit (BPU)

The Branch Processor Unit handles all of the predictions and resolutions for the
branch instructions. When a branch cannot be completely resolved, the BPU pre-
dicts whether or not the branch will be taken and fetches the appropriate
instructions.

There are three SPRs associated with the BPU: the Link Register (LR), the Count
Register (CTR), and the Condition Register (CR). Both the LR and the CTR can
be used to hold target addresses for branching, although this is a secondary
function for the CTR. The CR and CTR are used by the conditional branch
instructions to hold the conditions that the branch depends on. The CR holds the
relational information (less than, greater than, or equal) that is calculated by one of
the compare instructions, and the CTR holds a count that can be automatically
decremented to facilitate the coding of loop structures.

Load/Store Unit (LSU)

The Load/Store Unit handles all of the load and store instructions executed by
the processor. Because these instructions are the only interface between the pro-
cessor registers and the memory subsystem, the LSU can be considered the data
interface for the processor.

System Register Unit (SRU)

The System Register Unit provides access to the various Special Purpose Regis-
ters (SPRs) that the PowerPC provides. This unit also implements the various
Condition Register logical operations.

2.3 Processor Registers

This section provides an overview of both the user- and supervisor-level regis-
ters that the PowerPC specifies. In general, only the user-level registers will be
useful to the programmer, but the supervisor-level registers are defined here to
give a complete summary.

Remember that bits within registers are numbered using the big-endian scheme.
That is, the left-most or most-significant bit is bit 0, and the right-most or least
significant bit is bit 31 (or 63). Because some registers can be different widths on
different implementations, this can cause some confusion about bit numbering.
See §2.4, “32- versus 64-bit Implementations,” for more information.
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§2.3 Processor Registers

User-Level Registers

The user-level registers are the only registers that most programs are likely to
need.

General Purpose Registers (GPRs)

Figure 2-6  General Purpose Register

0 [3
| GPR

There are 32 general purpose registers. These registers are referred to as GPRO -
GPR31, or simply r0 - r31. The size of these registers depends on the PowerPC
implementation: they are 32-bits wide on 32-bit implementations and 64-bits
wide on 64-bit implementations.

When instructions that operate on 32-bit data are executed on a 64-bit PowerPC
implementation, only the lower (right-most) 32 bits are used.

Floating-Point Registers (FPRs)

Figure 2-7  Floating-Point Register

0 63
! FPR |

There are 32 floating-point registers. These registers are referred to as FPRO -
FPR31, or simply £r0 - £r31. The floating-point registers are always 64 bits in
width and always contain double-precision floating-point values.

Condition Register (CR)

Figure 2-8 Condition Register

0 3 4 7 8 1 12 15 16 19 20 23 24 27 28 31
| CRO | CRl1 | CR2 | CR3 | CR4 | CRS | CR6 | Cr7 |

The Condition Register is a 32-bit-wide register that contains eight 4-bit wide
condition fields. These eight fields can be specified as the destination for the
result of the comparison operations or as the source for the conditional branch
operations.

These eight fields are referred to as cr£0 - cr£7, or CR{0} - CR{7}. As with the
bit numbering, the fields are numbered from left to right. Thus, cr£0 corre-
sponds to CR[0:3], crf1l = CR[4.7], ..., and cr£7 = CR[28:31].
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Condition Register (CR)

How the four bits in each field are interpreted depends on the instruction that
was used to set the field. Figure 2-9 shows how the bits of the field are set for
fixed-point compare operations. In the figure, 0, 1, 2, and 3 specify the corre-
sponding bit within the given CR field.

Figure 2-9  CR Field Bits Resulting from Fixed-Point Compare Operations

0 LT
1 GT
2 EQ
3 SO

LT |GT |EQ| SO

Less Than

Greater Than

Equal

Summary Overflow

Figure 2-10 shows how the bits are set for floating-point compare operations.

Figure 2-10  CR Field Bits Resulting from Floating-Point

0 FL
1 FG
2 FE
3 FU

Compare Operations

FL |FG | FE | FU

FP Less Than
FP Greater Than
FP Equal

FP Unordered

CR field 0 is implicitly set by fixed-point instructions and CR field 1 is implicitly
set by floating-point instructions that have their Record bit set. Fixed-point
instructions with the Record bit set update the CR field 0 as Figure 2-11 shows.
In this figure, 0, 1, 2, and 3 are the bits within CR field 0, that is, CR[0:3].

Figure 2-11
0 LT
1 GT
2 EQ
3 SO

CR Field Bits Resulting from Fixed-Point Operations with

Record Bit

LT |GT |[EQ| SO

Negative (Less Than Zero)
Positive (Greater Than Zero)
Zero (Equal to Zero)
Summary Overflow
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Figure 2-12 shows the interpretation of the bits of CR field 1 after a floating-point
instruction with the Record bit set has been executed. In this figure, 0, 1, 2, and 3
are the bits within CR field 1, that is, CR[4:7].

Figure 2-12  CR Field Bits Resulting from FP Operations with Record Bit

FX|FEX| VX | OX

FX  FP Exception Summary

FEX FP Enabled Exception Summary

VX  FP Invalid Operation Exception Summary
OX  FP Overflow Exception

WINR=RO

Fixed-Point Exception Register (XER)

Figure 2-13  Fixed-Point Exception Register

01 2 3 15 16 23 24 25 31
[solov[ca[0 0 0 0 0 0 0 0 0 0 0 0 O] Bytecomparevalue [0]  Bytecount |

The XER (see Figure 2-13) contains information about the operation of integer
instructions, such as the Carry bit, the Overflow bit, and a Summary Overflow
bit. The XER also contains special-purpose fields that are used by some instruc-
tions.

The Summary Overflow (SO) bit is the same as the Overflow (OV) bit except that
it is sticky. A bit that is sticky is one that will remain set once it has been set—it
must be explicitly cleared by using the mtxer or merxr instructions. This is con-
trasted with the OV bit, which will be updated (cleared or set) by the next
instruction that provides overflow information. The SO bit can be used to check
if any of a sequence of instructions has caused an overflow, thus eliminating the
need to explicitly check after each instruction that could cause an overflow.

The “Byte compare value” and “Byte count” fields of the XER are used by some
of the Load String and Store String instructions. The “Byte compare value” is used
only on the 601 to support the obsolete POWER instruction 1scbx.

A full definition of the XER bits is given in Appendix C.

Floating-Point Status and Control Register (FPSCR)

The FPSCR is a 32-bit register that contains the control and status bits for the
FPU (see Figure 2-14). The control bits include enable bits for the various float-
ing-point exceptions and rounding bits for controlling how the FPU performs
rounding operations. The status bits record any floating-point exceptions that
may have occurred.
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Link Register (LR)

Figure 2-14  Floating-Point Status and Control Register

2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

DECCEEE

[ L [ [ [mlm[ ere  [O] [ [ [ve[osusze]xe[0] =~ |
VXSNAN VXVC VXCVI
VXISI VXIMZ VXSQRT
VXIDI VXZDZ L VXSOFT

A full definition of the FPSCR bits is given in Appendix C.

Link Register (LR)

The Link Register (see Figure 2-15) is used to hold the target address for a
branch. Certain forms of the branch instruction will automatically update the LR
with the address of the instruction immediately following the branch. This latter
use is well suited for performing subroutine calls: when the branch is taken (that
is, the subroutine is called), the LR contains the return address and the subrou-
tine can return to the caller with a simple Branch to LR instruction.

Figure 2-15  Link Register

31
0 63.

| LR

Counter Register (CTR)

The primary function of the Count Register (see Figure 2-16) is to provide a
counter that can be set to specify the number of iterations for a loop. Some forms
of the conditional branch instructions automatically decrement this counter and
use the new counter value as part of the expression to determine if the branch
should be taken or not.

Figure 2-16  Count Register

0 [
I CTR

The CTR can also be used to hold branch addresses. By using the CTR, the target
address can be calculated and branched to without affecting the contents of the
Link Register. It is mostly operating system (OS) glue routines that take advan-
tage of this use of the CTR, although user programs can safely do the same thing.

Supervisor-Level Registers

The supervisor-level registers are registers that contain information that is criti-
cal to the proper operation of the system. To help prevent programs from inad-

PowerPC Architecture Overview 17



§2.3 Processor Registers

vertently accessing one of these registers and causing damage, access to all of
these registers is privileged. This means that the program must be running in
superv1sor mode or a privilege exception will occur.

Fortunately, there is rarely any need to access these registers.

Machine State Register (MSR)

The MSRisa 2 ] bit register that contains the status bits that define the current

state of the processor (see Figure 2-17). This includes the bits to indicate if the
processor is in 32- or 64-bit mode, if certain interrupts are enabled, if the proces-
sor is in big- or little-endian mode, and other bits.

On 32-bit PowerPC implementations, the bits are arranged as shown in Figure
2-17.
Figure 2-17 Machine State Register for 32-bit PowerPC Implementations

9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
010 0 0 0[0 0.0 0 0[0 00 0 [us[eefrrepum]se[eelm] 0 [ [m[ox 0 0[w[1s]

On 64-bit PowerPC Implementations, there are an additional 32 bits that are part
of the MSR, as shown in Figure 2-18. The bits of the 32-bit MSR are mapped into
the low-order 32 bits (bits 32 to 63) of the 64-bit MSR. Currently, there is only one
bit defined in the upper 32-bits of the 64-bit MSR: the processor mode bit (SF).
This bit indicates whether the processor is in 32-bit or 64-bit mode.

Figure 2-18  Machine State Register for 64-bit PowerPC Implementations

31
|st0000000000000000000000000000000|

3 3 36 42 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|0|0 00 0|0 000 0]0 0 0 [rov{ 0 [we[EE[PR]FPME]Feo|sE [BE[Fe1] 0 [P [IR [DR] 0 O [Ru]LE]

A full definition of the MSR bits is given in Appendix C.

Save/Restore Registers (SRR0, SRR1)

The two Save and Restore Registers are used to save the machine status when an
interrupt occurs and then to restore the original state when the interrupt has
been serviced. Thses two registers are shown in Figure 2-19.

Figure 2-19  Save and Restore Registers

31

0 | 63,
| SRRO
L0 &
SRR1
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Processor Version Register (PVK)

SRRO records the next instruction to be executed after the interrupt has been ser-
viced. SRR1 records the original state of the MSR. When an interrupt occurs, the

bits [%] , [34], and [52] are copied from the MSR and placed in the corre-
sponding bit positions of SRR1.

Processor Version Register (PVR)

The PVR is a read-only 32-bit register that provides a processor ID and revision
level (see Figure 2-20). The upper 16 bits define the processor (for example,
0x0001 = 601; 0x0003 = 603), and the lower 16 bits define the engineering revision
level.

Figure 2-20  Processor Version Register

0 15 16 31

Version T Revision

Data Address Register (DAR)

When a Data Storage Interrupt occurs, the DAR is loaded with the effective
address of the storage element that caused the access interrupt. Figure 2-21
shows the DAR.

Figure 2-21  Data Address Register

0 [&

DAR

Data Storage Interrupt Status Register (DSISR)

The DSISR is a 32-bit register that defines the cause of Data Storage and Align-
ment interrupts (see Figure 2-22).

Figure 2-22  Data Storage Interrupt Status Register

0 31

DSISR |

This register is sometimes referred to as the DAE/Source Instruction Service
Register.
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Instruction and Data Block Address Translation Registers (IBAT, DBAT)

The Block Address Translation registers (BATs) are used by the BAT mechanism
to record information about the range of memory pages that are considered to be
grouped together as a block.

Figure 2-23  Block Address Translation Registers

Upper BAT Register
0 L% [0 (&I
BEPI 0000 BL Vs |[vp|
Lower BAT Register
0 L] [Z[5] (I
| BRPN 00000000O0O0|] WIMG [0] PP |

There are four pairs of IBATs and four pairs of DBATSs (see Figure 2-23). There are
two sets of BAT registers because instruction and data references are handled
separately. On PowerPC implementation with unified caches (like the 601), only
the IBATs will be implemented.

General SPRs (SPRG0-SPRG3)

The four General SPRs are provided to give the operating system extra registers
to store whatever information it needs without tying up GPRs. These registers
are 32 bits on 32-bit implementations, and 64 bits on 64-bit implementations.
Figure 2-24 shows the format of these four registers.

Figure 2-24  General SPRs

31
0 63.

l SPRGn

Time Base Register (TBU, TBL)

The Time Base Register is a 64-bit register that maintains a counter. The fre-
quency of the counter is system-dependent—to convert the TBR value to calen-
dar values requires the update frequency value that the OS needs to maintain.
The two halves of the TBR are shown in Figure 2-25.

Figure 2-25 Time Base Register

[ TBU ]
32 63
l TBL j
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Decrementer (DEC)

The TBR can be accessed as if it were two 32-bit registers by specifying either the
upper or lower portion of the register. Read access to the TBR is user-level; write
access is supervisor-level.

This register is not defined on the 601.

Decrementer (DEC)

The DEC register is a 32-bit register (see Figure 2-26) that counts down (at the
same frequency as the Time Base Register) and generates a Decrementer inter-
rupt when the counter passes 0.

Figure 2-26  Decrementer

0 31
l DEC |

Because the 601 doesn’t have a Time Base Register, the frequency of the DEC on
the 601 is the same as for the Real-Time Clock (RTC) defined in the next section.

For compatibility with the POWER architecture, the 601 also provides user-level
read access to the DEC by using 6 instead of 22 as the SPR ID with the mfspr
instruction.

External Access Register (EAR)

The EAR is an optional 32-bit SPR that is used to specify the (system specific)
resource ID of the target external device that the eciwx and ecowx instructions
can communicate with. The fields of the EAR are given in Figure 2-27.

Figure 2-27  External Access Register

0 1 25 26 31
[E[0o 0000000000000000000000O0O0 O] RID |

Segment Registers (SRs)

The sixteen 32-bit SRs are used to calculate the virtual address from the 32-bit
effective address. These registers are defined for 32-bit implementations only.

The format of the Segment Registers is different depending on if the SR specified
an ordinary or a direct-store segment (see Chapter 10, “Memory & Caches,” for
more information about segments). For ordinary segments, the SR is arranged as
shown in Figure 2-28.

Figure 2-28  Segment Register for Ordinary Segments

31

0 1 2 3 7 8
[T [xs|xp[0 0 0 0 O] VSID
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For direct-store segments, the SR is arranged differently, as shown in Figure 2-29.

Figure 2-29  Segment Register for Direct-store Segments

01 2 3 112 31
LT IKS J KPJ BUID l controller specific

Address Spacé Register (ASR)

The ASR (Figure 2-30) is a 64-bit SPR that holds the address of the Segment
Table. It is defined only for 64-bit implementations.

Figure 2-30  Address Space Register

0 51 52 63
l Real Address of Segment Table | uwnused |

Storage Description Register 1 (SDR1)

The SDR1 contains the encoded size and the address of the Page Table. This reg-
ister is 32 bits wide on 32-bit implementations and 64 bits wide on 64-bit imple-
mentations, as shown in Figure 2-31.

Figure 2-31  Storage Description Register

0 45 46 58 59 63
] HTABORG | unused  [HrasizE]

This register is also referred to as the Page Table Search Description Register or
simply the Table Search Description Register.

Processor Specific Registers

This section discusses the registers that are not part of the PowerPC specification
but are defined by some implementation. These registers are provided by the
601 for POWER compatibility.

Multiply-Quotient Register (MQ)

The MQ register (Figure 2-32) is used to emulate the MQ register defined on
POWER processors. Certain (non-PowerPC) instructions use this register.

Figure 2-32  Multiply-Quotient Register

| MQ ]

This register is defined on the 601 only.
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Real-Time Clock Registers (RTCU, RTCL)

Real-Time Clock Registers (RTCU, RTCL)

The RTC registers provide access to the POWER architecture’s Real-Time Clock.
The upper register (RTCU) keeps track of the number of seconds and the lower
register (RTCL) keeps track of the number of nanoseconds since the beginning of
the current second. Both halves of this register are shown in Figure 2-33.

Figure 2-33  Real-Time Clock Register

0 31
| RTCU |

0 1 2 24 25 31
[0 0] RTCL 000000 O]

This register is defined on the 601 only.

2.4 32- versus 64-bit Implementations

This book describes both the 32-bit and 64-bit versions of the PowerPC architec-
ture. For the most part, the programming model is the same for both versions,
but there are some basic differences.

To avoid confusion, it is worth pointing out that the term “64-bit instruction” is
used in this section to refer to an instruction that is available on 64-bit implemen-
tations only. All of the PowerPC floating-point instructions operate on 64-bit
quantities, but are considered 32-bit instructions because they are available on
32-bit PowerPC implementations.

32/64-bit Operating Modes

There are some subtle differences between the 32-bit and 64-bit operating modes
for the PowerPC. In general, these differences affect only the instructions that
are available for use and the method by which effective addresses are calculated,
but in some instances instructions behave differently based on the operating
mode.

32-bit Mode on 32-bit Implementations

All 32-bit instructions are available. No 64-bit instructions are available.

64-bit Mode on 32-bit Implementations

Is not allowed. Any attempt to execute a 64-bit instruction on a 32-bit implemen-
tation will result in an Illegal Instruction exception.
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32-bit Mode on 64-bit Implementations

This compatibility mode for 32-bit implementations behaves just like the 32-bit
mode on 32-bit implementations with these exceptions:

¢ Instructions defined only for 32-bit implementations (for example, mfsr,
mtsr) are not available and will cause an Illegal Instruction exception.

* All effective address calculations are performed using all 64 bits of the source
registers. However, the upper 32 bits are set to 0 before accessing data or
fetching instructions.

* Instructions that always return a 64-bit result (for example, mulhd) will work
properly (that is, they will return a 64-bit result as expected) in 32-bit mode.
64-bit Mode on 64-bit Implementations

All instructions operate on all 64 bits of the source registers and produce 64-bit
results.

32/64-bit Registers

The most significant difference between 32- and 64-bit implementations is the
width of many of the processor registers. These differences are summarized in
this section.

GPRs

All of the GPRs are 32 bits wide for 32-bit implementations and 64 bits wide for
64-bit implementations. For 64-bit implementations, all 64 bits of the register are
affected, except when executing in 32-bit mode.

Counter Register

The Counter Register (CTR) is 32 or 64 bits wide, depending on the PowerPC
implementation. To insure that 64-bit implementations executing in 32-bit mode
operate the same as 32-bit implementations, only the low-order 32 bits of the
CTR are used when the processor is in 32-bit mode.

Machine State Register

The MSR is 32 bits wide on 32-bit implementations and 64 bits wide on 64-bit
implementations. The 32 additional bits for the 64-bit version are used to store
the current mode (32- or 64-bit), and to extend the reserved field from the 32-bit
MSR.
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Save/Restore Registers

Save/Restore Registers

These registers (SSR0 and SSR1) are 32 bits on 32-bit implementations and 64 bits
on 64-bit implementations. If an interrupt occurs on a 64-bit implementation
executing in 32-bit mode, the upper 32 bits of SSRO (the register that stores the
next instruction address) are set to 0 because the lower 32 bits are enough to hold
the address.

Segment Registers

The sixteen 32-bit SRs are present only on 32-bit implementations. The instruc-
tions to access the Segment Registers (mfsr, mfsrin, mtsr, and mtsrin)do not
exist on 64-bit implementations (not even in 32-bit mode). Trying to execute
them will result in an Illegal Instruction exception.

Address Space Register

The ASR is defined only for 64-bit implementations, and thus, does not exist on
any 32-bit PowerPC implementation.

Storage Description Register 1

The SDRI is 32 bits wide on 32-bit implementations and 64 bits wide on 64-bit
implementations. Although the SDR1 always contains Page Table information,
the format of the information is different for 32- and 64-bit implementations.
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Instruction Set
Overview

The next few chapters contain an overview of all the instructions and extended
instruction forms for the PowerPC ISA. The instructions are grouped according
to function under the following headings: Branch and Trap, Load and Store,
Integer, Rotate and Shift, Floating-Point, and System Register.

This chapter acts as an introduction to the following chapters. It describes the
basic instruction structures and provides a summary of the notation used to
describe the instructions and extended forms.

3.1 Instruction Groups

The instructions are grouped according to function within each of the major
headings. For example, in Chapter 6, “Integer Instructions,” there are subhead-
ings for Addition, Subtraction, Multiplication, and Division. Within these sub-
sections, all relevant instructions are presented along with a short textual
description of the instruction operation.

Each section also includes many tables that summarize the operations and the
syntax for each instruction form. These tables are meant to make it easy to see
the (sometimes subtle) differences between the various instructions of the same

type.
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3.2 Instruction Suffixes

Many instructions allow standard suffixes to be specified to tell the processor
to perform operations in addition to the basic instruction. For each instruction
that allows suffixes, each valid suffix for the instruction is enclosed in square
brackets (‘[" and ‘]’) immediately following the base mnemonic. If there are
multiple suffixes for an instruction, they will each be enclosed in a separate set
of brackets.

Integer Suffixes: ‘0o’ and *./

For integer instructions, valid suffixes are ‘o’ and *.”. Appending an ‘o’ tells the
instruction to update the Fixed-Point Exception Register (XER) to reflect
the Overflow (XER[OV]) and Summary Overflow (XER[SO]) information from
the instruction’s operation. Without this option, integer instructions do not sup-
ply the overflow information as part of the result.

When the ‘. suffix is appended to integer instructions, it indicates that the con-
dition information should be recorded in field 0 of the Condition Register
(CR{0}). This condition information records whether the result is less than zero,
greater than zero, or equal to zero, and it contains a shadow copy of the Sum-
mary Overflow bit in the XER (XER[SO]).

Floating-Point Suffixes: ‘s’ and *.

Most floating-point instructions allow two types of suffixes to be specified: ‘s’
and ‘.’. The ‘s’ suffix indicates that the operation should be performed by inter-
preting the registers as if they contained single-precision data. If the operand
registers do not truly contain single-precision values, then the result of instruc-
tions executed with the ‘s’ option is undefined.

All arithmetic floating-point instructions allow the “.” suffix to be specified. This
suffix tells the instruction to record the condition information in field 1 of the
Condition Register (CR{1}). This keeps track of any floating-point exceptions
that may be caused by the instruction. Floating-point is discussed in detail in
Chapter 8.

Branch Suffixes: ‘1’ and ‘a’

All branch instructions allow an ‘1’ suffix and some forms also allow an ‘a’ suf-
fix. The ‘1’ suffix indicates that the address of the following instruction should
be recorded in the Link Register as part of the instruction operation, and the ‘a’
suffix indicates that the specified address is an absolute (instead of a program
counter relative) value. These suffixes are described in greater detail in §4.1,
“Branch Instructions.”
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3.3 Extended Instruction Forms

Extended instruction forms are extra mnemonics that the assembler accepts and
converts into valid instruction forms. These forms are not instructions them-
selves but are special cases of valid instruction forms. Extended forms are useful
when the base form of an instruction is very general, as is the case with the
branch and rotate instructions. The special cases provided by the extended
forms can render an instruction that is complex and unwieldy (for example,
Rotate Left Word Immediate then AND with Mask) into something more under-
standable (for example, Shift Left Immediate).

The following chapters present both the standard instruction forms and the
extended forms. When an extended form is presented, the base mnemonic from
which the form is derived is given, along with a description of how the extended
form maps into the base instruction.

3.4 Obsolete Instructions

Obsolete instructions are instructions that were part of the POWER architecture
specification but were not included in the PowerPC ISA in an effort to streamline
the architecture. All obsolete instructions are clearly marked as being obsolete to
eliminate any confusion that might arise from the inclusion of these instructions.

The obsolete instructions listed in the next few chapters are implemented only
on the 601, for the purposes of backward compatibility only. New programs
should not make use of these instructions. No future PowerPC implementation
will support these instructions (although a computer system built using a Pow-
erPC processor may trap and emulate them in software).

Wherever possible, a brief explanation is given of why the instruction was
removed for the PowerPC architecture. In most cases, the instructions were
removed to eliminate bottlenecks caused by seldom-used functionality or to
reduce the complexity of PowerPC implementations.

3.5 Optional Instructions

The PowerPC ISA specification defines some instructions to be optional. These
instructions may or may not be present on a particular PowerPC implementa-
tion. In these chapters, all optional instructions are clearly noted as being
optional.

Before using these instructions, the programmer must first verify that the pro-
gram is running on an implementation that supports the given instruction. To
determine which PowerPC processors implement a particular instruction,
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instructions can be referenced in Appendix A, which contains an alphabetical list
of all instructions.

Most of the optional instructions are defined as belonging to one of a variety of
instruction groups, for example, the Graphical Group. A processor may imple-
ment any or all of the instructions in any of the groups, but if a processor claims
to support a given group, it must implement all of the instructions in the given

group.

At the moment, there are only two groups of optional instructions defined: the
General Purpose Group and the Graphical Group. The General Purpose Group
contains the £sqrt and £sqrts instructions, and the Graphical Group contains
stfiwx, fres, frsqrte, and fsel.

An optional instruction need not belong to any of the optional groups. For exam-
ple, eciwx and ecowx are both optional instructions, but they are not associated
with any group.

3.6 Notation

Because of the complexity of most of the instructions, a special notation is
needed to properly describe an instruction’s operation.

The following notation is used throughout this chapter to describe the operation
of instructions.

T Specifies any of the 32 General Purpose Registers (GPRs) that are part of
the Integer Unit. These registers may be 32 or 64 bits wide, depending on
the PowerPC implementation: 32 bits wide on 32-bit implementations and
64 bits wide on 64-bit implementations. For example, r 3 specifies GPR 3.

frT Specifies any of the 32 64-bit Floating-Point Registers (FPRs) that are part of
the Floating-Point Unit. For example, £r1 3 specifies FPR 13.

MQ Specifies the Multiply-Quotient Register. This register exists only on
POWER implementations and is used for multiply, divide and extended
shift and rotate operations.

CR Specifies the Condition Register. This register is commonly divided into
eight fields that are specified using CR{0} through CR{7}.

CIP Current Instruction Pointer. This is not a user-visible register on the
PowerPC, but the CIP notation is convenient when describing how an
instruction affects the flow of control. For example, CIP < LR indicates that
the next instruction to be executed is at the address contained in the Link
Register.
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(cT) Specifies the contents of the given register. The specified register may be
any GPR, FPR, or Special Purpose Register. For example, (r2) specifies the
contents of GPR 2; (£r4 ), which specifies the contents of FPR 4.

(x) Groups the expressions in x so that they are executed before expressions
outside of the parentheses.

[2] Specifies a number x. Two values of x are given: the top value (x1) is the

number for 32-bit PowerPC implementations, and the bottom value (x2) is
the number for 64-bit PowerPC implementations. This notation is used
when referring to bits in registers, since the bit numbering is slightly
different between the two implementation types.

rT[x]  Specifies the bit x in the given register. The specified register may be any
GPR, FPR, or Special Purpose Register. Note that bits are numbered using
the big-endian notation, thus bit 0 is the high-order or most-significant bit,
and bit 31 (or 63 for 64-bit implementation) is the low-order or least-
significant bit. For example, r2[4] refers to bit 4 of GPR 2.

1T [2] Specifies the bit x in the given register. Two values for x are given: the top

value (x1) specifies the bit for 32-bit PowerPC implementations, and the
lower value (x2) specifies the bit for 64-bit PowerPC implementations. This
is typically used only for GPRs since most other registers are the same size

on both implementation types. For example, r3 [3] refers to the sign bit
of the (low-order) word in GPR 3.

rTx:y] Specifies the range of bits from x to y in the given register. The specified
register may be any GPR, FPR, or Special Purpose Register. For example,
r1[0 : 7] refers to bits 0 through 7 in GPR 1.

T [z%;] Specifies the range of bits from x to y in the given register. Two ranges of x

and y are given: the upper range (xI:yl) for 32-bit PowerPC
implementations and the lower range (x2:y2) for 64-bit implementations.
This is typically used only for GPRs since most other registers are the same

24:31

size on both implementation types. For example, r3 [=5] refers to the

least significant byte of GPR 3.

rT{x}  Specifies the range of bits corresponding to field x in the given register. The
bits for a field n range from bit nx4 to bit nx4+3, thus, this notation is
equivalent to rT[(x x 4):(x x 4) + 3]. The specified register may be any GPR,
FPR, or Special Purpose Register. For example, CR{0} refers to field 0 (bits
0:3) of the Condition Register.

X Where X is any number of digits 0-9, specifies a decimal constant, for
example, 24.

bx Where X is any number of digits 0-1, specifies a binary constant, for
example, b0110.
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32

0xX

xX=y
xX#y
x>y
x<y
x2y

x<y

x|

~X

=X

x+y

Where X is any number of digits 0-9 or letters A-F, specifies a hexadecimal
constant. Hexadecimal constants will always be specified using uppercase
alphabetic characters, for example, 0XBABE.

Loads x with the value y. This is used to identify the value that gets
assigned to the instruction’s target register. For example, r T < 0 means
that register r T gets assigned a value of 0.

Loads the temporary variable x with the value y. Temporary variables are
used when the instruction operation is too complex to express in a single
expression. This separate assignment notation for temporary variables is
used to emphasize the fact that the variable x is not a processor resource
that is being updated. For example, m := (r2) means that the temporary
variable m is set equal to the contents of register r2.

Returns true if x is equal to y, false otherwise.

Returns true if x is not equal to y, false otherwise.

Returns true if x is greater than y, false otherwise.

Returns true if x is less than y, false otherwise.

Returns true if x is greater than or equal to y, false otherwise.
Returns true if x is less than or equal to y, false otherwise.

Returns a value that is approximately equal to x, for example, rT &< =~./2
assigns T with a value that is close to, but not necessarily equal to, the
square root of x.

Calculates the absolute value of x.

Calculates the one’s complement of x. A one’s complement operation
converts all binary ‘1’s in the source value to binary ‘0’s in the destination
value and vice versa. For example, ~001101010 becomes b10010101.

Negates x. This is the same as performing the two’s complement of x. The
two’s complement of a value is equal to the one’s complement plus 1. For
example, -b0110 becomes b1010.

Sign-extends the value x as appropriate. Sign-extension means that the
most significant bit of x (also called the sign bit) is replicated to the left to fill
all available bit positions. For example, ‘0x0042 sign-extends to
0x00000000 00000042 on 64-bit implementations; and "0XFADE
sign-extends to 0XFFFFFADE on 32-bit implementations.

Zero-extends the value x as appropriate. Zero-extension means that 0 bits
are used to the left of x to fill all available bit positions. For example,
°0xDEADF 00D zero-extends to 0XDEADF 00D on 32-bit implementations
and to 0x00000000 DEADF 00D on 64-bit implementations.

Adds x toy.
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Notation

x-y Subtracts y from x.

xXy  Multiplies x by y.

x+y  Dividesxbyy.

x%y  Calculates the remainder of x divided by y.

xly Concatenates x with y. For example, 0Xx5CAB L OXFACE becomes
0x5CABFACE.

x&y  Logically ANDs x and y. For example, b0110 & b1010 becomes b0010.
x|y  Logically ORs x and y. For example, b60110 | b1010 becomes b1110.
x®y  Logically XORs x and . For example, b0110 ® b1010 becomes b1100.

x=y  Calculates the equivalence of x and y. The result of the equivalence is 1
wherever the bits of x and y are the same and 0 wherever they differ. For
example, b0110=b1010 becomes b0011.

x«y  Shifts x left by y bits. For example, 10101111 « 2 becomes
bl0111100.

x»y  Shifts x right by y bits. For example, b10101111 » 2 becomes
b00101011.

x%y  Shifts x right algebraically by y bits. An algebraic shift duplicates the most
significant bit (bit 0 or the sign bit) as it shifts the data. For example,
b10101010 % 4 becomes b11111010; b01110101 % 4 becomes
b00000111.

xQy Rotates x left by y bits. For example, b11110000 ©Q 2  becomes
b11000011.

xQy Rotates x right by y bits. For example, b00001111 © 2  becomes
b11000011.

x?y:z Returns either y or z depending on the value of x, where x is a Boolean
expression. If x is true, then y is returned, otherwise z is returned. For
example, r T < (rA[26]=0) ? 0 : (r B) means that if bit rA[26] is 0, r T is set
equal to 0, otherwise it is set equal to the contents of rB.
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Branch and Trap
Instructions

The Branch, Trap, and System Call instructions are the only instructions that
change the flow of control of the processor. Since this potential change of control
can disrupt the smooth operation of the pipeline, these instructions are handled
by a separate branch processor that does its best to remove these instructions
from the instruction stream before passing the instructions on to the other exe-
cution units.

4.1 Branch Instructions

There are four basic types of branch instructions: Branch, Branch Conditional, and
Branch Conditional to either the Link Register or the Counter Register (see Table 4.1).
The first two of these instructions expect the target address to be encoded in the
branch instruction, while the second two branch instructions get the target
address from one of the processor’s Special Purpose Registers.

All four of the branch instructions allow an optional ‘1’ suffix to indicate that the
address of the instruction following the branch should be stored in the Link Reg-
ister (LR) as part of the branch operation. This provides a simple way of imple-
menting subroutines, since the return address can be saved in the LR using the
‘1" option, and the subroutine can return to the caller by using a Branch to Link
Register (blr) instruction.

The Branch (b) and Branch Conditional (bc) instructions have an additional
option ‘a’ that allows the target address to be specified as an absolute value.
Usually, the target address is specified relative to the current location counter,
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Table 4-1 Basic Branch Instructions

b[1l][a] addr ifl=1)
Branch LR<CIP+4
if(a=1)
CIP = “addr

else
CIP = CIP +addr

be[l][a] BO, BI, addr if(l=1)
Branch Conditional LR<CIP +4
if(condition)
if(a)
CIP <= “addr
else
CIP <= CIP + “addr
beetr[l] Bo, BT if(l=1)
Branch Conditional to Count Register LR&=CIP+4
if(condition)
CIP &< CTR
belr[1l] BoO, BI 0ldLR :=LR
Branch Conditional to Link Register if¢=1)
LR&CIP+4
if(condition)
CIP <= 0ldLR

that s, as a positive or negative offset from the address of the branch instruction.
If the “Absolute Address” option is set by using the ‘a’ option, then the target
address is taken directly from the branch instruction, without adjusting for the
current location counter.

As mentioned earlier, the Branch Conditional to Link Register (bclr) instruction is
useful for returning from a subroutine call when the return address is stored in
the LR. The Branch Conditional to Counter Register (bcctr) instruction is also use-
ful for this purpose. Technically, the Counter Register (CTR) is intended to be
used only as a counter for loops, and it doesn’t make sense to use it as a register
to branch through. However, the original system designers of the POWER archi-
tecture needed an extra register to branch through when they were implement-
ing the global linkage mechanism, so they added the bectr instruction since the
CTR was conveniently available in the branch processor. The global linkage
mechanism, which describes this use of the bcetr instruction, is discussed in
§13.13, “Linking with Global Routines.”

One important thing to note about the operation of the branch and link instruc-
tions (those with the ‘1" option specified) is that the Link Register is updated
with the value of the instruction following the branch even if the branch is not
taken. This shouldn’t cause problems if the LR is saved and restored according to
standard function calling conventions (see §9.4 “Subroutine Calling Conven-
tions”) but may cause problems for programmers who are trying to optimize
code by saving and restoring the LR only when necessary.
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The branch-on (BO) and bit (BI) parameters for the conditional branches provide
a mechanism for specifying a wide range of conditional branch instructions. The
branch-on parameter specifies which condition is used as a test for the branch
and the bit parameter specifies which bit of the Condition Register (0-31) is used
in the test.

Table 4-2 contains a list of the valid branch-on parameters. The parameters con-
trol how the CTR and the bit from the CR work together to determine if the
branch should be taken. For example, to encode an instruction that branches to
the contents of the LR if the equal (EQ) flag in CR{2} is set (ignoring the CTR
entirely), the belr instruction should be used with BO equal to b01100 and BI
set to 10. The BI parameter is set to 10 because CR field 2 ranges from bit 8 to bit
11, and the EQ flag is the third bit within a field.

Table 4-2 Branch-On (BO) Parameter for Branch Conditional Instructions

Decrement CTR
b0000Y | anchi CTR =0 AND CR[BI =0
Decrement CTR
b0001Y | panchif CTR = 0 AND CRIBI =0
b001zy |Branchif CR[BI]=0
Decrement CTR
bO0100Y |5 chif CTR #0 AND CRBI = 1
50101y Decrement CTR

Branch if CTR = 0 AND CR[BI] = 1
b01llzy |Branchif CR[B]]=1

Decrement CTR
b1lz00y Branch if CTR #0
blz01ly Decrement CTR

Branch if CTR =0

blzlzz |BranchAlways

2 bits are ignored but must be 0 for the instruction to be valid.
y bits encode hints as to whether the conditional branch is likely to be taken.

As can be seen from the example given in the preceding paragraph, using the BO
and BI parameters directly can be somewhat confusing and error-prone. For this
reason, a large number of extended instruction forms are provided for the most
commonly used conditional branches.

The next few sections deal with these extended branch forms. The first section,
“Contitional Branch Extended Forms, ” presents the extended forms for condi-
tional branch instructions when the target address is encoded in the instruction.
The next two sections, “Branch to LR Extended Forms” and “Branch to CTR
Extended Forms,” present the extended forms for branch instructions to the
Link and Counter Registers.
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Conditional Branch Extended Forms

The Conditional Branch extended forins are built on top of the Branch Conditional
(bc) instruction. Because of the large number of extended forms, this section is
divided into three parts: the bit test forms, the CTR-dependent forms, and the
forms with encoded conditions.

Bit Test Extended Forms

The Bit Test extended forms test a designated bit in the Condition Register and
branch to the encoded address depending on if the specified bit is set (‘1 or true)
or clear (‘0" or false) (see Table 4-3).

Table 4-3 Conditional Branch Extended Instruction Forms with Bit Tests

bt[1l][a] bit,addr
Branch if Condition True
extended form for be[1l][a] 12, bit,addr

bf[l][a] bit, addr

Branch if Condition False
extended form for be[l][a] 4,bit,addr

if(CR[bit] = 1)
branch to addr

if(CR[bit] = 0)
branch to addr

The Branch if Condition True (bt) form tests bit bit in the Condition Register and
branches to the target address addr if the bit is ‘1",

The Branch if Condition False (bf) form tests the bit bit in the Condition Register
and branches to the target address addr if the bit is ‘0".

CTR-Dependent Extended Forms

The CTR-Dependent Conditional Branch forms use the predecremented value of
the Counter Register to determine if the branch should be taken.

Table 4-4 summarizes the two basic types of CTR Conditional Branches: those
that depend solely on the CTR and those that depend on the CTR and a condi-
tion in the CR.

The first two CTR extended forms are the Branch if Decremented CTR is Non-Zero
(bdnz) and the Branch if Decremented CTR is Zero (bdz). These instructions
depend only on the CTR. They decrement the CTR and then compare the new
CTR value with 0 to determine if the branch should be taken. The first form
branches if the new CTR is not equal to 0, while the second form branches if it is
equal to 0.

The remaining four CTR-based Conditional Branches depend on both the CTR
and a specified bit in the Condition Register. The four forms cover all possibili-
ties of the CTR being zero or non-zero and the bit in the CR being ‘0" or “1".
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Extended Forms with Encoded Conditions

Table 4-4 Conditional Branch Extended Forms with CTR Conditions

bdnz[l][a] addr CTR = CTR-1
Branch if Decremented CTR is Non-Zero if(CTR #0)
extended form for be[1][a] 16,0, addr branch to addr
bdz[l][a] addr CIR<CTR-1
Branch if Decremented CTR is Zero if(CTR = 0)
extended form for be[1][a] 18,0, addr branch to addr
bdnzt[l][a] bit,addr CTR & CTR-1
Branch 1f l?ecremented CTR is Non-Zero and if((CTR # 0) AND (CR[bit] = 1))
Condition True branch to add
extended form for be[1]la] 8,bit,addr ranch to adar
bdnzf[l][a] bit, addr CTR <« CTR - 1

Branch if Decremented CTR is Non-Zero and . 1
Condition False if((CTR # 0) AND (CR[bit] = 0))

extended form for be[1][a] 0,bit,addr branch to addr

bdzt[1l][a] bit,addr CTR & CTR -1

Branch if ]?ecremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 1))
Condition True b h to add

extended form for be[1][a] 10, bit,addr ranch to addr

bdzf[l][a] bit, addr CTR & CTR - 1

Branch if ]?ecremented CTR is Zero and if((CTR = 0) AND (CRJbit] = 0))
Condition False branch to addr

extended form for be[1][a] 2,bit,addr

The Branch if Decremented CTR is Non-Zero and Condition True (bdnzt) form dec-
rements the CTR and branches if the new value of the CIR is not equal to 0 and
the specified bit in the CRis ‘1’ (true). The bdnz £ form is identical, except that it
requires that the bit in the CR be ‘0" (false) in order for the branch to be taken.

The last two forms, bdzt and bdz £, are similar to bdnzt and bdnz £, except that

they branch only if the decremented CTR is equal to 0 and the appropriate con-
dition holds.

Extended Forms with Encoded Conditions

Because the Condition Register is divided into eight fields, it is convenient to use
instructions which operate on fields in the CR instead of individual bits. The
Conditional Branches with Encoded Conditions are extended forms which pro-
vide this convenience by building on top of the standard Branch Conditional (bc)
instruction.

The 12 conditional branch forms listed in Table 4-5 have the condition encoded
as part of the mnemonic. These forms operate on a field of the CR that is speci-
fied as one of the parameters. However, the CR field is an optional parameter. If
a CR field isn’t specified explicitly, the instruction is assumed to refer to CR{0}.
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The beq form branches if the EQ bit (bit 2) of the given CR field is ‘1". The bne

Table 4-5 Condition Branch Extended Forms with Encoded Conditions

beq[1l][a] [crf,laddr
Branch if Equal
extended form for be[l][la] 12, crf*4+2,addr

if(CR[crf*4+2] = 1)
branch to addr

bne[l][a] [crf,]addr
Branch if Not Equal
extended form for be[1][a] 4, crf*4+2,addr

if(CR[crf*4+2] = 0)
branch to addr

blt[1l][a] [erf,]addr
Branch if Less Than
extended form for be[1][a] 12, crf*4+0,addr

if(CR[crf*4+0] = 1)
branch to addr

ble[l][a] [erf,]addr
Branch if Less Than or Equal
extended form for be[l][a] 4,crf*4+1,addr

if(CR[crf *4+1] = 0)
branch to addr

bgt[l][a] [erf,]addr
Branch if Greater Than
extended form for be[l][a] 12, crf*4+1,addr

if(CR[crf*4+1] = 1)
branch to addr

bge[l][a] [erf,]addr
Branch if Greater Than or Equal
extended form for be[l]la] 4,crf*4+0,addr

if(CR[crf *4+0] = 0)
branch to addr

bnl[l][a] [erf, |addr
Branch if Not Less Than
extended form for be[1][a] 4,crf*4+0,addr

if(CR[crf *4+0] = 0)
branch to addr

bng[l][a] [erf,]laddr
Branch if Not Greater Than
extended form for be[l][a] 4,crf*4+1,addr

if(CR[crf*4+1] = 0)
branch to addr

bso[l][a] [erf,]addr
Branch if Summary Overflow
extended form for be[l][a] 12, crf*4+3,addr

if(CR[crf*4+3] = 1)
branch to addr

bns[1l][a] [erf,laddr
Branch if Not Summary Overflow
extended form for be[1l][a] 4,crf*4+3,addr

if(CR[crf*4+3] = 0)
branch to addr

bun[l][a] [erf,]addr
Branch if Unordered
extended form for be[l][a] 12, crf*4+3,addr

if(CRIcrf*4+3] = 1)
branch to addr

bnu[l][a] [crf,]addr
Branch if Not Unordered
extended form for be[1][a] 4, crf*4+3,addr

if(CR[crf *4+3] = 0)
branch to addr

form is similar, but it branches if that bit is ‘0’.

The b1t and bgt forms check the less than (LT) and greater than (GT) bits (respec-

tively) of the specified CR field and branch if the bit is set.
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Branch to LR Extended Forms

The ble and bng forms are two mnemonics that map to the same instruction.
They both check the GT (greater than) bit of the specified CR field and branch if
that bit is ‘0.

The bge and bn1 forms also map to the same instruction. They check the LT (less
than) bit of CR{crf} and branch if the bit is clear.

The last four extended branch forms depend on the state of bit 3 of the desig-
nated CR field. This bit has different meanings depending on how the bit was
set, and there is a set of extended forms for the two most common of these bit
interpretations.

The first set of forms assumes that the CR field was set by an integer arithmetic
or compare instruction. For these instructions, bit 3 contains the summary over-
flow (SO) bit that is copied from the XER. The bso and bns instructions branch
if the SO bit is ‘1" or ‘0’, respectively.

The second set of extended forms assumes that the CR field has been set by a
floating-point compare instruction. Floating-point compare instructions set the
unordered flag (bit 3) of the destination CR field if one or both of the numbers
being compared is Not 2 Number (NaN). The bun instruction branches if the com-
parison returned an unordered result, and the bnu instruction branches if an
unordered result was not returned.

Branch to LR Extended Forms

There are four major types of extended forms for the bc1r instruction: uncondi-
tional branch forms, bit test forms, CTR-dependent forms, and forms with
encoded conditions.

Most of these forms are identical to their Branch Conditional (bc) counterparts,
except that the branch destination is taken from the Link Register (LR) instead of
encoded directly in the instruction.

Branch Unconditional

There is one extended form that unconditionally branches to the contents of the
Link Register (see Table 4-6).

Table 4-6 Unconditional Branch to LR Extended Instruction Form

blr[1]
Branch to LR branch via LR
extended form for belr[1] 20,0

The blr instruction branches directly to the address stored in LR. If the ‘1’
option is specified, the LR is updated with the address of the instruction imme-
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diately following the branch. The new LR value is stored after the old LR value
has been used for the branch operation.

Bit Test Extended Forms

As with the Branch Conditional forms described in the preceding section, the Bit
Test extended forms (see Table 4-7) test a given bit in the Condition Register and
branch depending on the current value of the specified CR bit. These forms dif-
fer in that they branch to the address stored in the LR instead of the address
encoded in the branch instruction.

Table 4-7 Branch to LR Extended Instruction Forms with Bit Tests

btlr[l] bit
Branch to LR if Condition True
extended form for belr[1l] 12,bit

bflr[l] bit

Branch to LR if Condition False
extended form for bclr[1l] 4,bit

if(CR[bit] = 1)
branch via LR

if(CRIbit] = 0)
branch via LR

The bt1lr form branches to the LR if the specified bit in the CR is ‘1’. The bf1lr
form branches if CR[bit] is ‘0’.

CTR-Dependent Extended Forms

The CTR-dependent Branch to Link Register forms (see Table 4-8) use the decre-
mented value of the Counter Register and an optional condition to determine if
the branch should be taken.

All six of these forms are identical to the Branch Conditional forms described in
the previous section, except for the fact that they branch via the LR instead of to
the address encoded in the instruction.

The first two CTR extended forms are the Branch to LR if Decremented CTR is Non-
Zero (bdnzlr) and the Branch to LR if Decremented CTR is Zero (bdzlr). These
instructions depend only on the CTR. The bdnzlr instruction decrements the
CTR and branches if the new value of the CTR is not equal to 0. The bdzlr
instruction performs a similar operation but branches if the CTR is equal to 0.

The remaining four CTR dependent Conditional Branches depend on both the
CTR and a specified bit in the Condition Register. These four forms cover all
possibilities of the CTR being zero or non-zero, and the bit in the CR being ‘0’
or ‘1.
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Table 4-8 Branch to LR Extended Instruction Forms with CTR Conditions

Branch to LR if Decremented CTR is Non-Zero
and Condition True
extended form for bc1r[1] 8,bit

bdnzlr[l] CTR < CTIR-1
Branch to LR if Decremented CTR is Non-Zero | if(CTR #0)
extended form for bclr[1] 16,0 branch via LR
bdzlr[1] CTR < CIR-1
Branch to LR if Decremented CTR is Zero if(CTR = 0)
extended form for bclr[1] 18,0 branch via LR
bdnztlr[l] bit CTR < CTR -1

if((CTR # 0) AND (CR[bit] = 1))
branch via LR

bdnzflr[l] bit

Branch to LR if Decremented CTR is Non-Zero
and Condition False

extended form for bc1r[1] 0,bit

CTR < CTR-1
if((CTR # 0) AND (CR[bit] = 0))
branch via LR

bdztlr[l] bit

Branch to LR if Decremented CTR is Zero and
Condition True

extended form for bc1r[1l] 10,bit

CIR<=CIR-1
if((CTR = 0) AND (CR[bit] = 1))
branch via LR

bdzflr[l] bit

. . CIR<CIR-1
Branch to .LR if Decremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 0))
Condition False .
branch via LR

extended form for bc1r[1] 2,bit

The Branch to LR if Decremented CTR is Non-Zero and Condition True (bdnztlr)
form decrements the CTR and branches if the new value of the CTR is not equal
to 0 and the specified bit in the CR is ‘1" (true). The bdnzf1r form is identical,
except that it requires that the bit in the CR be ‘0’ (false) in order for the branch
to be taken.

The last two forms, bdztlr and bdzf1r, are similar to bdnzt1lr and bdnzf1lr,
except that they branch only if the decremented CTR is equal to 0.
Extended Forms with Encoded Conditions

The 12 conditional Branch to LR forms listed in Table 4-9 have the condition
encoded as part of the mnemonic. These 12 forms are the same as the 12 Branch
Conditional forms described in the previous section and presented in Table 4-5.

All of these forms operate on a field of the CR that is specified as one of the
parameters. However, the CR field is an optional parameter. If it isn’t specified
explicitly, the instruction is assumed to refer to CR{0}.
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Table 4-9 Branch to LR Extended Forms with Encoded Conditions

beqlr[l] [crf]
Branch to LR if Equal
extended form for bc1r[1] 12, crf*4+2

bnelr[l] [crf]
Branch to LR if Not Equal
extended form for bc1r[l] 4,crf*4+2

bltlr[l] [erf]
Branch to LR if Less Than
extended form for bclr[1] 12, crf*4+0

blelr[l] [crf]
Branch to LR if Less Than or Equal
extended form for bclr[1l] 4,crf*4+1

bgtlr[l] [ecrf]
Branch to LR if Greater Than
extended form for bclr[1] 12, crf*4+1

bgelr[l] [crf]
Branch to LR if Greater Than or Equal
extended form for bclr[1l] 4,crf*4+0

bnllr[l] [erf]
Branch to LR if Not Less Than
extended form for bclr[l] 4,crf*4+0

bnglr[l] [crf]
Branch to LR if Not Greater Than
extended form for bc1r[l] 4,crf*4+1

bsolr[l] [crf]
Branch to LR if Summary Overflow
extended form for bc1lr[1] 12, crf*4+3

bnslr[l] [erf]
Branch to LR if Not Summary Overflow
extended form for bc1r[l] 4,crf*4+3

bunlr[l] [crf]
Branch to LR if Unordered
extended form for bc1lr[l] 12,crf*4+3

bnulr[l] [crf]
Branch to LR if Not Unordered
extended form for bc1r[1] 4,crf*4+3

if(CR[crf*4+2] = 1)
branch via LR

if(CR[crf*4+2] = 0)
branch via LR

if(CR[crf *4+0] = 1)
branch via LR

if(CR[crf*4+1] = 0)
branch via LR

if(CRcrf*4+1] = 1)
branch via LR

if(CR[crf *4+0] = 0)
branch via LR

if(CR[crf *4+0] = 0)
branch via LR

if(CR[crf*4+1] = 0)
branch via LR

if(CR[crf*4+3] = 1)
branch via LR

if(CR[crf *4+3] = 0)
branch via LR

if(CR[crf*4+3] = 1)
branch via LR

if(CR[crf *4+3] = 0)
branch via LR

The beqlr form branches if the EQ bit (bit 2) of the given CR field is ‘1. The
bnelr form branches if that bit is ‘0".

The bltlr and bgtlr forms check the LT and GT bits (respectively) of the spec-
ified CR field and branch if the bit is set.
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The blelr and bnglr forms are two mnemonics that map to the same instruc-
tion. They both check the GT bit of the specified CR field and branch if the bit is
‘0.

The bgelr and bnllr forms also map to the same instruction. They check the
LT bit of CR{crf} and branch if the bit is clear.

The last four extended branch forms depend on the state of bit 3 of the desig-
nated CR field. The bsolr and bnslr forms interpret this bit as indicating the
CR field’s summary overflow status, and they indicate that the branch should be
taken if the bit is set (bsolr) or if it is not set (bns1r).

The bunlr and bnulr extended forms interpret bit 3 of a CR field as containing
the unordered result flag of a floating-point compare. The bunlr and bnulr
instructions branch if this bit is ‘1 or ‘0’, respectively.

Branch to CTR Extended Forms

There are three major types of extended forms for the beetr instruction: uncon-
ditional branch forms, bit test forms, and forms with encoded conditions. There
are no forms that use the CTR as part of the condition since these types of
instructions are not sensible.

Branch Unconditional

There is one extended form (see Table 4-10) that provides a simple way of encod-
ing an unconditional branch to the Counter Register.

Table 4-10 Unconditional Branch to CTR Extended Instruction Form

betr[l]
Branch to CTR branch via CTR
extended form for bcctr[1l] 20,0

The betr instruction branches directly to the address stored in the CTR.

Bit Test Extended Forms

As with the Branch Conditional forms described earlier in “Conditional Branch
Extended Forms,” the Bit Test extended forms (see Table 4-11) test a given bit in
the Condition Register and branch to the address contained in the CTR depend-
ing on the current value of the specified CR bit.
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Table 4-11 Branch to CTR Extended Instruction Forms with Bit Tests

btctr[l] bit
Branch to CTR if Condition True
extended form for bcctr[l] 12,bit

bfctr[l] bit
Branch to CTR if Condition False
extended form for bcctr[l] 4,bit

if(CRIbit] = 1)
branch via CTR

if(CR[bit] = 0)
branch via CTR

The btctr form tests CR[bit] and branches to the address stored in the CTR if
the bit is ‘1" The bfctr form tests the same bit but branches via the CTR if the
bitis ‘0.

Extended Forms with Encoded Conditions

The 12 conditional Branch to CTR forms listed in Table 4-12 have the condition
encoded as part of the mnemonic. These 12 forms are the same as the 12 Branch
Conditional forms described in “Conditional Branch Extended Forms” and pre-
sented in Table 4-5.

All of these forms operate on a field of the CR that is specified as one of the
parameters. However, the CR field is an optional parameter. If it isn’t specified
explicitly, the instruction is assumed to refer to CR{0}.

Table 4-12 Branch to CTR Extended Forms with Encoded Conditions
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beqctr[l] [erf]
Branch to CTR if Equal
extended form for bcctr[l] 12, crf*4+2

if(CRcrf*4+2] = 1)
branch via CTR

bnectr[l] [crf]
Branch to CTR if Not Equal
extended form for bcctr[l] 4,crf*4+2

if(CR[crf *4+2] = 0)
branch via CTR

bltctr[l] [erf]
Branch to CTR if Less Than
extended form for bcctr[l] 12, crf*4+0

if(CR[crf*4-+0] = 1)
branch via CTR

blectr[l] [crf]
Branch to CTR if Less Than or Equal
extended form for bcctr[l] 4, crf*4+1

if(CR[crf*4+1] = 0)
branch via CTR

bgtctr[l] [erf]
Branch to CTR if Greater Than
extended form for bcctr[l] 12, crf*4+1

if(CR[crf*4+1] = 1)
branch via CTR

bgectr[l] [crf]
Branch to CTR if Greater Than or Equal
extended form for bcctr[l] 4, crf*4+0

if(CR[crf *4+0] = 0)
branch via CTR

bnlctr[l] [crf]
Branch to CTR if Not Less Than
extended form for bcctr[l] 4, crf*4+0

if(CR[crf *4+0] = 0)
branch via CTR
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bngctr[l] [crf] if(CRIcrf*4+1] =
Branch to CTR if Not Greater Than #C b[g{l ch vi]a CO%R
extended form for bcctr[l] 4,crf¥4+1

bsoctr[l] [crf] . * -
Branch to CTR if Summary Overflow lf(CI;[;:;{ICi+3i]a Cl'I)'R
extended form for bcctr[l] 12, crf*4+3

bnsctr[l] [ecrf] . *443] =
Branch to CTR if Not Summary Overflow 1f(CI;[:;’{1Ch 31]a CQI)'R

extended form for bcctr[l] 4,crf*4+3

bunctr[l] [crf] . *

-+, =
Branch to CTR if Unordered lf(CI;[f;{l;‘ \?i]a CIT)R
extended form for bcctr[l] 12, crf*4+3

bnuctr[l] [crf] . .

+3] =
Branch to CTR if Not Unordered lf(Clz[f_;{mi x:ji]a COT)R
extended form for bcctr[l] 4, cri*4+3

The beqgctr form branches if the EQ bit (bit 2) of the given CR field is ‘1". The
bnectr form branches if that bit is ‘0’.

The bltctr and bgtctr forms check the LT and GT bits (respectively) of the
specified CR field and branch if the bit is set.

The blectr and bngctr forms are two mnemonics that map to the same
instruction. They both check the GT bit of the specified CR field and branch if the
bitis ‘0’.

The bgectr and bnlctr forms also map to the same instruction. They check
the LT bit of CR{crf} and branch if the bit is clear.

The last four extended branch forms depend on the state of bit 3 of the desig-
nated CR field. The bsoctr and bnsctr forms interpret this bit as indicating
the CR field’s Summary Overflow status, and they indicate that the branch
should be taken if the bit is set (bsoctr) or if it is not set (bnsctr).

The bunctr and bnuctr extended forms interpret bit 3 of a CR field as contain-
ing the unordered result flag of a floating-point compare. The bunctr and
bnuctr instructions branch if this bit is ‘1" or ‘0’, respectively.

4.2 Branch Prediction

Branches present some of the worst pipeline hazards since they disrupt the
steady flow of instructions to the rest of the processor. Using a scheme such as
Branch Prediction can help alleviate the penalties associated with branches.

Note that the PowerPC architecture does not require any sort of branch predic-
tion mechanism, but it does allow implementations of the architecture to pro-
vide whatever sort of branch prediction is deemed necessary.
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What is Branch Prediction?

Branch Prediction is a mechanism for the processor to guess whether or not a
particular branch will be taken. The ability to generate some sort of reasonable
prediction is quite useful since the processor is not always able to completely
resolve a branch before it needs to be executed.

On heavily pipelined processors, some sort of branch prediction is practically a
requirement, because the alternative is to stall the processor until the branch is
resolved.

A good prediction scheme is a great benefit to code throughput because of the
penalties associated with a mispredicted branch. In the worst case, a mispre-
dicted branch may require that the pipeline be flushed and then stalled while the
correct instructions are fetched from memory.

Branch Prediction Types

There are two common types of branch prediction: static branch prediction and
dynamic branch prediction.

Static Branch Prediction

Static Branch Prediction has a default prediction for each type of branch based
on branch direction and other branch parameters. For example, backward
branches are assumed to be taken, and forward branches are assumed to be not
taken. Many static prediction schemes also have a reverse prediction flag to indi-
cate that the default prediction should be reversed.

The advantages of a static prediction implementation are that it is simple to
implement and it is powerful enough to characterize branch behavior in most
situations.

The disadvantage is that this system requires the programmer (or compiler) to
analyze the branches and set the appropriate instruction bits so that the instruc-
tion is predicted as desired.

Dynamic Branch Prediction

Dynamic Branch Prediction uses additional hardware to record whether or not a
branch was taken the last few times it was encountered. By analyzing the past
operation of the instruction, the processor can formulate a prediction as to
whether the branch is likely to be taken.

The benefit of a dynamic prediction scheme is that the programmer or compiler
doesn’t need to analyze branches and set instruction bits in order to have
branches predicted “correctly.”
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The disadvantages are that this type of system is costly to implement and the
benefits are not significantly better than for a simple static prediction mecha-
nism.

Note that Dynamic Branch Prediction still requires some sort of default predic-
tion mechanism to apply when the processor encounters a branch for the first
time.

Branch Prediction on PowerPC Processors
The 601 implements a simple static branch prediction that follow these rules:

e Ifitis a forward branch, the branch is assumed to be not taken.
e If it is a backward branch, the branch is assumed to be taken.
o Conditional branches to the LR or CTR are assumed to be not taken.

The rational behind these rules is:

e Abackward branch is assumed to be the closing instruction of a loop,
and since loops are generally executed more than once, the branch
should be taken back to the beginning of the loop most of the time.

e A forward branch is assumed to be not taken because forward
branches have roughly a 50% likelihood of being taken or not taken
and one of these operations had to be chosen as the default.

These assumptions obviously do not apply to every forward or backward
branch, so this simple static prediction will make mistakes. The branch predic-
tions were optimized for looping structures, which is presumably where many
programs spend a majority of their time.

Branch Prediction Hints

Since the static branch prediction is not always correct, a mechanism for overrid-
ing the default prediction is provided. This mechanism is in the form of a branch
prediction reverse bit, which is encoded in the BO parameter of a branch instruc-
tion (see §Table 4-2 “Branch-On (BO) Parameter for Branch Conditional Instruc-
tions”).

The reverse bit in a conditional branch instruction tells the processor that the
standard predictions should be reversed for this instruction. Thus, a forward
branch is assumed to be taken, and a backward branch is assumed to be not
taken.

Note that the setting of this bit does not guarantee that the branch will be taken or
not taken. It merely provides a hint as to whether or not the branch is likely to be
taken. The processor can use this hint to pre-fetch instructions, or it can ignore it.
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Encoding Branch Predictions

By convention, PowerPC assemblers accept a ‘+” suffix for conditional branch
instructions to indicate that the reverse prediction bit should be set. If this suffix
is not provided, the reverse bit is set to ‘0’.

beq cr0,*-10 # predicted taken
beq cr0,*+10 # predicted not taken
beg+ cr0,*-10 # predicted not taken

beqg+ cr0,*+10 # predicted taken

The reverse bit can also be set by directly setting the appropriate bit in the BO
field for the branch. The BO field is described in Table 4-2 “Branch-On (BO)
Parameter for Branch Conditional Instructions.”

be 0x0C,2,adr # same as beq cr0,adr
be 0x0D,2,adr # same as beq+ cr0,adr

4.3 Trap Instructions

The trap instructions listed in Table 4-13 provide a mechanism for invoking the
system trap handler based on a comparison between the provided instruction
operands.

Table 4-13 Trap Instructions

tw TO,rA,rB if(condition) _

Trap Word invoke system trap handler
twi TO,raA,sl6 if(condition)

Trap Word Immediate invoke system trap handler
td TO,rA,rB

if(condition)

Trap Doubleword invoke system trap handler

64-bit implementations only

tdi TO,rA,s16
Trap Doubleword Immediate
64-bit implementations only

if(condition)
invoke system trap handler

For each of the word and doubleword varieties of the trap instruction, there are
two instruction forms: one compares two registers, and the other compares a
register with an immediate value.

The type of comparison performed depends on the value of the Trap-On (TO)
parameter (see Table 4-14). Setting any of the five bits means that the trap han-
dler should be invoked if the conditions associated with those bits is satisfied.
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Table 4-14 Trap-On (TO) Parameter for Trap Instructions

000001 Trap if Less Than

000010 Trap if Greater Than
0b00100 Trap if Equal

0b01000 Trap if Logically Less Than
0b10000 Trap if Logically Greater Than

Coding the TO parameter, while not nearly as tedious as the BO and BI parame-
ters for the conditional branch instructions, is not quite as much fun one might
initially imagine it to be. To make coding the Trap instructions more enjoyable, a
set of extended mnemonics that encode the condition as part of the instruction
mnemonic is provided.

These 15 extended forms are summarized in Table 4-15 and described in detail
in Table 4-16.

Table 4-15 Summary of Extended TO Encodings

0bl11111 Trap Unconditionally
0000100 Trap if Equal

0b11000 Trap if Not Equal

0b10000 Trap if Less Than

Trap if Less Than or Equal
Trap if Not Greater Than
0b01000 Trap if Greater Than

Trap if Greater Than or Equal
Trap if Not Less Than
000010 Trap if Logically Less Than
Trap if Logically Less Than or Equal

0b10100

0b01100

000110

Trap if Logically Not Greater Than
000001 Trap if Logically Greater Than

Trap if Logically Greater Than or Equal
Trap if Logically Not Less Than

0b00101

Table 4-16 is an overview of the trap extended instruction forms. This table con-
tains summaries of all the trap forms, including the word, doubleword, register,
and immediate forms of the instructions.
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Table 4-16 Extended Trap Conditional Instructions

Trap Alw.
P AWAE | word register trap
extended form for tw 31,r0,r0
Trap if Equal .
rap if Equ register tweq rA,rB
extended form for tw 4,rA,rB
word -
. ediate tweqgi rA, s16.'
extended form for twi 4,rA,slé
register tdeq ra,rB
doubleword extended form for td 4,rA,rB
64-bit onl, :
Y immediate tdeqi ra, 516_-
extended form for tdi 4,rA,slé6
Trap if Not . twne rA,rB
ste !
Equal register extended form for tw 24,rA,rB
word -
immediate twnei rA, slff'
extended form for twi 24,rA,sl6
. tdne rA,rB
register !
doubleword gt extended form for td 24,rA,rB
64-bit onl :
Y immediate tdnei ra, sltf
extended form for tdi 24,rA,s16
Trap if Less revister twlt rA,rB
Than & extended form for tw 16,rA,rB
word -
immediate twlti ra, slff
extended form for twi 16,rA,sl6
register tdlt rA,rB
doubleword extended form for td 16,rA,rB
64-bit onl, i
Y . ediate tdlti raA, sl€
extended form for tdi 16,rA,sl16
Trap if Less twle rA,rB
Than or Equal register twng ]’.‘A, rB
extended form for tw 20,rA,rB
or word
twlei ra,slé
Trap if Not immediate | twngi ra, sié
Greater Than extended form for twi 20,ra,sl16
tdle rA,rB
register tdng raA,rB
doubleword extendedform for td 20,rA,rB
64-bit only tdlei raA,sl6
immediate | tdngi raA, s16

extended form for tdi 20,ra,s16
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Trap if
Greater Than

word

register

twgt rA,rB
extended form for tw 8,rA,rB

immediate

twgti ra, slé
extended form for twi 8,rA,sl6

doubleword
64-bit only

register

tdgt rA,rB
extended form for td 8,rA,rB

immediate

tdgti rA, slé
extended form for tdi 8,rA,sl16

Trap if
Greater Than
or Equal

or

Trap if Not
Less Than

word

register

twge rA,rB
twnl rA,rB
extended form for tw 12,rA,rB

immediate

twgei rA,slé
twnli rAa,slé
extended form for twi 12,rA,s16

doubleword
64-bit only

register

tdge rA,rB
tdnl rA,rB
extended form for td 12,rA,rB

immediate

tdgei raA,slé
tdnli rA,slé
extended form for tdi 12,rA,s16

Trap if
Logically
Less Than

word

register

twllt rA,rB
extended form for tw 2,rA,rB

immediate

twllti rA,sié
extended form for twi 2,rA,slé6

doubleword
64-bit only

register

tdllt rA,rB
extended form for td 2,rA,rB

immediate

tdlliti ra, slé6
extended form for tdi 2,rA,sl6

Trap if
Logically
Less Than or
Equal

or
Trap if

Logically Not
Greater Than

word

register

twlle rA,rB

twlng rA,rB
extended form for tw 6,rA,rB

immediate

twllei ra,slé
twlngi rA,slé
extended form for twi 6,rA,sl16

doubleword
64-bit only

register

tdlle rA,rB
tdlng rA,rB
extended form for td 6,rA,rB

immediate

tdllei rA,sl6

tdlngi rA,slé
extended form for tdi 6,rA,sl6
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Trap if register twlgt rA,rB
Logically & extended form for tw 1,rA,rB
Greater Than | word -
. . twlgti raA,slé
immediate .
extended form for twi 1,rA,sl16
. tdlgt rA,rB
register
doubleword extended form for td 1,rA,rB
64-bit onl, 4
Y immediate tdlgti ra, 81,6
extended form for tdi 1,rA,sl16
Trap if twlge rA,rB
Logically register twlnl rA,rB
Greater Than extended form for tw 5,rA,rB
or Equal word
twlgel rA,slié6
or immediate twlnli ra,slié
extended form for twi 5,rA,sl16
Trap if
Logically Not . tdlge rA,rB
Less Than register tdlnl rA,rB
doubleword extended form for td 5,rA,rB
64-bit only tdlgei ra,slé6
immediate | tdlnli rA, s16
extended form for tdi 5,rA,s16

4.4 System Linkage Instructions

The system linkage instructions listed in Table 4-17 provide a mechanism so that
programs can call on the operating system to perform a function or service.

Table 4-17 System Linkage Instructions

sc SRRO<CIP +4
System Call ,59, 16
ystem L-a SRR1 & MSR [mrinzi-]
if(MSR][IP])
CIP < “0xFFF0 0C00
else
CIP < °0x0000 0C00
rii MSR & SRR1 [

Return From Interrupt

CIP < SRRO [£] L1b00

061

The System Call (sc) instruction saves the current machine state in the SRRn reg-
isters and passes control to the system handler. This instruction can be used to
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request that an operation be performed by the operating system (OS). The call-
ing conventions and the services provided are entirely dependent on the struc-
ture of the OS. The sc instruction merely provides a standard method of
accessing OS functions.

The Return From Interrupt (rfi) instruction is used by the system handler to
return control to the user level program after the system call or interrupt has
been handled. This instruction restores the state of the system to what it was
when the system call or interrupt was invoked and then passes control back to
the original program.
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Load and Store
Instructions

The transfer of data from the memory store and the processor is handled by the
Load and Store instructions. These instructions load data from memory into a
register or store the contents of a register out into main memory.

5.1 Loads and Stores

Most of the Load and Store instructions have the same basic forms. There is a base
Load and Store form for each of the data types supported by the PowerPC, and
then there are the combinations of Indexed and Update forms. This section
describes the common forms to eliminate redundancy and so that the later sec-
tions can focus on deviations from this standard.

Loads
The four types of Load instructions are

e Load

o Load with Update

e Load Indexed

o Load Indexed with Update

The Load forms are the most basic forms, and they simply load the data from the
specified memory location into the designated target register (r 7). The memory
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location is calculated by adding a 16-bit signed offset (d) to the contents of the
source register (rA).

The Load with Update forms load the data into the target register as the Load forms
do, but they also update the source register rA by adding the offset d to rA after
the memory has been accessed. This can be used to pre-increment (or pre-
decrement) the data pointer in rA if the increment size is stored in d.

The Load Indexed forms also load the target register with the data from the spec-
ified memory location. However, the Indexed forms calculate the address from
two registers, rA and rB, instead of from a register and an offset.

The Load Indexed with Update forms are a combination of the Indexed and the
Update load forms. These forms load the target register with the data specified by
the two source registers and update one of the source registers (rAa) by adding
the contents of the other (rB) to it after the load has been performed.

For all of the Load instructions, if r0 is specified for the source register ra, then
the contents of rA (r0) are not used in the address calculation. Instead, the con-
stant 0 is used in the address calculation. This allows for the address to be calcu-
lated from just an immediate constant or from just the contents of one register
(rB). For the Indexed forms, if the contents of r0 need to be part of the address
calculation, r0 can be specified as rB.

If r0 is specified for rA for any of the Load with Update forms, then the instruction
is invalid. Instructions are also invalid if the register given for rA is the same as
that specified for rT.

For the Update forms, the POWER architecture allows r0 to be specified for ra,
and it allows rA to be the same register as r 7. If r0 is used or if rA is the same as
rT, the register is simply not updated with the new address. The PowerPC archi-
tecture does not allow these situations to be coded because it is not useful to
have an update form that cannot update, and the extra check to see if the register
is valid needlessly complicates the hardware.

Stores

As with the standard Load instructions, there are also four basic types of Store
instructions:

e Store

e Store with Update

®  Store Indexed

e Store Indexed with Update

The Store forms take the contents (or part of the contents) of a source register
(rS) and write it out to memory. The memory address at which the data is stored
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is calculated by adding a 16-bit signed offset (d) to the contents of the source
register (rA).

The Store with Update forms store the contents of the source register and update
the source register rA by adding the offset d to rA after the memory has been
written. This can be used to pre-increment the data pointer in rA if the increment
size is stored in d.

The Store Indexed forms store the target register contents to the specified memory
location. The Indexed forms calculate the address from two registers, rA and rB,
instead of from a register and an offset.

The Store Indexed with Update forms store the contents of the target register out to
memory and update one of the source registers (ra) by adding the contents of
the other register (rB) to it after the store operation has been performed.

For all of the Store with Update instructions, if r0 is specified for the source regis-
ter r A, then the instruction is invalid.

The POWER architecture allowed the update forms of the Store instructions to
specify r0 for rA. In this case, the updated address value would not be written
to rA. The PowerPC architecture does not recognize this as a valid form because
such an instruction would not be very useful and it would complicate imple-
mentations.

5.2 Load and Store Byte

The Load and Store Byte instructions listed in Tables 5-1 and 5-2 transfer eight bits
of information to or from a GPR. The 8-bits are transferred from the least signif-
icant byte of the GPR, thus, on 32-bit PowerPC implementations, data is moved
to and from bits 24:31. On 64-bit implementations, data is moved between mem-
ory and bits 56:63 of the GPR.

Table 5-1 Load Byte Instructions

1bz rT,d(rA) 1T < °Byte((rA | 0)+'d)

Load Byte and Zero
lbzu rT,d(rA) 1T < °Byte((rA)+'d)
Load Byte and Zero with Update rA < (rA)+d

lbzx rT,rA,rB 1T < °Byte((rA | 0)+(rB))

Load Byte and Zero Indexed
lbzux rT,rA,rB 1T < °Byte((rA)+(rB))
Load Byte and Zero with Update Indexed rA < (rA)+(rB)

Load and Store Instructions 59



§5.3 Load and Store Halfword

The four types of Load Byte and Zero instructions are standard Load instructions.
The value from the specified memory location is loaded into the low-order byte
of the target register r 7. The upper bytes of the target register are cleared to 0.

The four Store Byte instructions are also modelled after the standard Store
instructions. These instructions take the low-order byte in the source register rs

Table 5-2 Store Byte Instructions

stb rS,d(rA)
Store Byte

Byte((rA|0)+'d) <15 [25

stbu rs,d(ra)
Store Byte with Update

Byte((rA)+'d) <15 [23
rA < (tA)y+d

stbx rS,rA,rB
Store Byte Indexed

Byte((rA |0)+(tB)) < 1S [24:31

56:63

stbux rS,rA,rB
Store Byte with Update Indexed

Byte((rA)+(rB)) = 1S [23
rA & (rA)+(rB)

and store it at the specified memory location.

5.3 Load and Store Halfword

The Load and Store Halfword instructions listed in Tables 5-3 and 5-4 transfer six-

teen bits of information to or from a GPR.
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Table 5-3 Load Halfword Instructions

lhz rT,d(rA)
Load Halfword and Zero

1T « °Half((rA | 0)+'d)

lhzu rT,d(rA)
Load Halfword and Zero with Update

rT & °Half((rA)+d)
rA & (rA)+d

lhzx rT,rA,rB
Load Halfword and Zero Indexed

1T < °Half((rA | 0)+(rB))

lhzux rT,rA,rB
Load Halfword and Zero Indexed with Update

1T < °Half((rA)+(rB))
rA & (tA)+(B)

lha rT,d(rA)
Load Halfword Algebraic

1T < "Half((rA|0)+d)

lhau rT,d(rA)
Load Halfword Algebraic with Update

rT < “Half((rA)+'d)
rA < (rA)+d

lhax rT,rA,rB
Load Halfword Algebraic Indexed

1T < “Half((rA |1 0)+(rB))

lhaux r7T,rA,rB
Load Halfword Algebraic Indexed with Update

1T & “Half((tA)+(rB))
rA & (tA)+(rB)
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There are two basic types of Load Halfword instructions: Load Halfword and Zero
and Load Halfword Algebraic. Both of these types come in the four standard vari-
eties, making a total of eight different Load Halfword instructions.

The Load Halfword and Zero instructions load the data into the lower two bytes of
the target register and zero out the upper bytes.

The Load Halfword Algebraic instructions load the halfword data into the lower
two bytes of the target register and copy the sign bit from the loaded data into
the upper bytes.

There is also a Load Halfword instruction that loads the data in byte-reversed
order. This is described in §5.6 “Load and Store Byte-Reversed Data.”

Table 5-4 Store Halfword Instructions

sth rsS,d(rA) Half((rA10)+'d) < rS [ Lot

48:63

Store Halfword
sthu rS$,d(ra) Half(rA)y+'d) < 1S [12
Store Halfword with Update :

rA < (tA)+d
sthx rS,rA,rB 16:31
Store Halfword Indexed Half((rA10)+(rB)) & 1S [4873
sthux r$,rA,rB Half(rA)+(B)) < 1§ [22]

Store Halfword with Update Indexed
rA & (rA)+(rB)

The four Store Halfword instructions take the lower two bytes of the source regis-
ter and store it at the given memory location.

A Store Halfword instruction that handles byte-reversed data is also available. It
is discussed in §5.6 “Load and Store Byte-Reversed Data.”

5.4 Load and Store Word

The Load and Store Word instructions listed in Tables 5-5 and 5-6 transfer 32 bits
of information to and from a GPR. The 64-bit implementations also define an
algebraic form which sign-extends the loaded word value.

Table 5-5 Load Word Instructions

lwz rT,d(rA) T < °Word((rA 1 0)+'d)

Load Word and Zero
lwzu rT,d(rA) 1T < *Word((rA)+d)
Load Word and Zero with Update rA < (rtA)+d

lwzx rT,rA,rB

o
Load Word and Zero Indexed 1T & *Word((rA10)+(rB))
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lwzux rT,rA,rB 1T & °Word((rA)+(rB))
Load Word and Zero Indexed with Update rA & (tA)+(rB)

lwa rT,d(rA)

Load Word Algebraic rT < “"Word((rA | 0)+'d)

64-bit implementations only

lwax rT,rA,rB
Load Word Algebraic Indexed 1T < “Word((rA | 0)+(rB))
64-bit implementations only

lwaux xT,ra,rB , T & *Word((rA)+(B))
Load Word Algebraic Indexed with Update rA & (tA)+(B)

64-bit implementations only

As with the Load Halfword instructions, there are two types of Load Word instruc-
tions: Load Word and Zero and Load Word Algebraic. The algebraic forms are
defined only on 64-bit implementations since the two types perform the same
operation when the registers are 32 bits in size.

The Load Word and Zero instructions load the word at the specified address into
the target register. For 64-bit implementations, these instructions also clear out
the upper word of the loaded register.

The Load Word Algebraic instructions load the word into the low word of the reg-
ister and copy the sign bit from the loaded word into the upper bits of the target
register. Note that there is no non-Indexed Update form for the Load Word Alge-
braic instruction.

A special instruction is defined for loading words from memory with byte-
reversed data. This instruction is defined in §5.6 “Load and Store Byte-Reversed
Data.”

Table 5-6 Store Word Instructions

stw rS,d(ra) Word((rA | 0)+'d) &< rS [

Store Word 32:63
stwu rS,d(ra) Word((rtAy+'d) <15 [52
Store Word with Update ’

rA & (rA)y+d

stwx rS,ra,rB Word((rtA | 0)+(tB)) = 1S [

Store Word Indexed 3263
stwux rS,rd,rB Word((rA)+(B)) < 1S [
Store Word with Update Indexed ’

rA & (rA)+(rB)

The four standard Store Word instructions copy a word of data from the given
source register into the specified memory address.

62 Chapter 5



Load and Store Doubleword

One additional Store Word instruction is defined to handle byte-reversed data.
This instruction is presented in §5.6 “Load and Store Byte-Reversed Data.”

5.5 Load and Store Doubleword

The Load and Store Doubleword instructions listed in Tables 5-7 and 5-8 transfer 64
bits of information to or from a GPR. These instructions are defined only on 64-
bit PowerPC implementations. If they are executed on a 32-bit implementation,
they will cause the illegal instruction handler to be invoked.

Table 5-7 Load Doubleword Instructions

14 rT,d(ra)
Load Doubleword rT < Doubleword((rA | 0)+'d)
64-bit implementations only

ldu rT,d(ra) 1T < Doubleword((tA)+'d)
Load Doubleword with Update rA & (rA)+d

64-bit implementations only

ldx rT,rA,rB
Load Doubleword Indexed 1T < Doubleword((rA | 0)+(rB))
64-bit implementations only

I]:d:,]; rzll, rA,d rB‘thU tate Indexed T < Doubleword((rA)+(rB))
oad Doubleword with Update Indexe rA < (tA)+(rB)

64-bit implementations only

The four Load Doubleword forms allow a doubleword (eight bytes) of data to be
loaded into a register from memory.

Table 5-8 Store Doubleword Instructions

std rsS,d(ra)
Store Doubleword Doubleword((rA10)+'d) < S

64-bit implementations only

stdu rS,d(ra) Doubleword((rA)+'d) < rS
Store Doubleword with Update rA &« (rA)+d

64-bit implementations only

stdx rS,rA,rB
Store Doubleword Indexed Doubleword((rA | 0)+(rB)) < S
64-bit implementations only

stdux rS,rA,rB Doubleword((tA)+(tB)) & rS
Store Doubleword with Update Indexed rA < (tA)+(rB)

64-bit implementations only

The Store Doubleword forms store a doubleword of data into the specified mem-
ory location.
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5.6 Load and Store Byte-Reversed Data

The Load and Store Byte-Reversed instructions listed in Table 5-9 provide an easy
method for accessing data that is stored in the opposite byte-order than the pro-
cessor expects.

There are two common byte-orderings for halfwords and words: big-endian and
little-endian. Big-endian byte-ordering has the most significant byte (MSB) in the
lowest address position and the least significant byte (LSB) in the highest address
position. Little-endian is the reverse of big-endian, with the LSB at the lower
address and the MSB at the higher address.

If the processor is operating in big-endian mode, then these instructions allow
the program to load and store little-endian encoded data. Conversely, if the pro-
cessor is in little-endian mode, these instructions provide an easy way to access
big-endian data.

Table 5-9 Load/Store Byte-Reversed Data Instructions

lhbrx rT,rA,rB h := Half((rA | 0)+(rB))
Load Halfword Byte-Reversed Indexed rT < °(h[8:15] L h[0:7])
lwbrx rT,rA,rB w = Word((rA | 0)+(rB))
Load Word Byte-Reversed Indexed 1T < °(w[24:31] 1L w[16:23]
1 w[8:15] L w[0:7])
sthbrx rS,rA,rB 2431 1623
i h:=15 [==] LrS [=
Store Halfword Byte-Reversed Indexed 1S el LS [55

Half((rAl0)+(rB))=h

stwbrx rS,rA,rB o 2431 1623
w:=15 [=] L1rS [=

Store Word Byte-Reversed Indexed 5] [55
. _L rS [ 8:15 ] J_ rs [ 0:7

40:47 32:39

Word((rA | 0)+(rB))= w

The load word and halfword byte-reversed instructions (Lhbrx and lwbrx)
load the data from the target address into the destination register. If the loaded
data doesn’t fill the register completely, the data is zero-extended to fill the entire
register.

The store word and halfword byte-reversed instructions (sthbrx and stwbrx)
store the lower word or halfword from the source register into memory at the
calculated target address.

All of the byte-reversed storage instructions are indexed and expect the memory
address to be specified by the sum of the contents of the registers rA and rB.

The PowerPC architecture does not define instructions to load or store a double-
word of byte-reversed data.
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5.7 Load and Store Floating-Point Double-Precision

The Load and Store Floating-Point Double instructions listed in Tables 5-10 and
5-11 transfer 64 bits of data between the floating-point registers and memory.
Since the floating-point registers on the PowerPC always store double-precision
data, these instructions simply transfer the data back and forth.

Table 5-10 Load Floating-Point Double-Precision Instructions

1fd frT,d(rA)
Load FP Double

frT < FDouble((rA 10)+'d)

1fdu frT,d(rA)
Load FP Double with Update

frT < FDouble((rA)+'d)
rA < (rA)+d

1fdx frT,rA,rB
Load FP Double Indexed

frT < FDouble((rA | 0)+(rB))

1fdux frT,rA,rB
Load FP Double with Update Indexed

frT < FDouble((rA)+(rB))
rA & (tA)+(rB)

The Load Floating-Point Double instructions load the specified floating-point reg-

ister with the 64 bits of data starting at the given address.

Table 5-11 Store Floating-Point Double-Precision Instructions

stfd frs,d(rA)
Store FP Double

FDouble((rA10)+'d) < frS

stfdu frs,d(rAa)
Store FP Double with Update

FDouble((rA)+'d) < frS
rA < (rA)+'d

stfdx frS,rA,rB
Store FP Double Indexed

FDouble((rA | 0)+(rB)) < frS

stfdux frS,rA,rB
Store FP Double with Update Indexed

FDouble((rA)+(rB)) « frS
rA & (rA)+(rB)

The four Store Floating-Point Double forms provide standard instructions for stor-
ing floating-point values out to memory without any modification or transla-
tion.

5.8 Load and Store Floating-Point Single-Precision

Since floating-point registers always contain double-precision data, the Load
and Store Floating-Point Single instructions listed in Tables 5-12 and 5-13 must
translate between the 64-bit data in the floating-point registers and the 32-bit
data stored in memory.

The method for converting between the 32-bit and 64-bit forms of single-preci-
sion data is discussed in Chapter 8 “Floating-Point Instructions.”
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Table 5-12 Load Floating-Point Single-Precision Instructions

1fs frT,d(xra)

frT < FSingle((rA 1 0)+'d)

Load FP Single

1fsu frT,d(rA) T < FSingle((rA)+'d)
Load FP Single with Update rA < (tA)y+'d

l1fsx frT,rA,rB .

Load FP Single Indexed frT = FSingle((rA 10)+(rB))

lfsux frT,rA,rB
Load FP Single with Update Indexed

frT < FSingle((rA)+(rB))
rA & (rA)+(rB)

The Load Floating-Point Single instructions load a 32-bit value from memory,
translate it into a 64-bit double-precision floating-point value, and then store the
value into the target register.

Table 5-13 Store Floating-Point Single-Precision Instructions

stfs frS,d(rA)

FSingle((rA 10)+'d) < frS

Store FP Single

stfsu frsS,d(ra) FSingle((rA)+'d) < frS
Store FP Single with Update rA & (rA)+'d

stfsx frS,rA,rB .

Store FP Single Indexed FSingle((rA |0)+(rB)) «= frS

stfsux frS,rA,rB
Store FP Single with Update Indexed

FSingle((rA)+(rB)) < frS
rA < (rA)+(rB)

The Store Floating-Point Single instructions convert the double-precision value
in the source floating-point register into a 32-bit single-precision value and then
store the value into memory at the given location.

If the value in the source floating-point register cannot be represented as a
single-precision value, then the value stored in memory is undefined.

5.9 Load and Store Multiple

The Load and Store Multiple instructions listed in Table 5-14 provide an easy
facility for loading and storing multiple words of data between memory and the
processor’s general purpose registers. With one instruction, from one up to 32
registers can be loaded or stored.

It should be noted, however, that the multiple instructions are not favored in the
eyes of the PowerPC designers. These instructions are not very RISC-like in that
they perform multiple accesses to memory. This deviation from the standard
RISC design philosophy makes it a bit easier for the programmer to code register
saves and restores but it also complicates the processor implementation.
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The warnings that these instructions may take longer to execute than an equiva-
lent series of load or store instructions, and the absence of load and store multi-
ple instructions that support doubleword (or floating-point) transfers between
memory and the registers, should both serve as indications to just how little sup-
port these instructions are likely to receive in future PowerPC implementations.

It is likely that the only reason that the load and store multiple instructions were
carried over from the POWER to the PowerPC architecture is because of the
number of old applications that make use of them.

Table 5-14 Load/Store Multiple Instructions

lmw rT,d(xrA) ea:=(rA10)+d
Load Multiple Word R==‘ T
while(R £31)
1R <= °Word(ea)
ea:=ea+4
R:=R+1
stmw rS,d(rA) ea:=(rAl0)+d
Store Multiple Word R=T
while(R < 31)
Word(ea) <= rR [302—3613
ea:=ea+4
R=R+1

The Load Multiple Word instruction loads all of the GPRs from rT up to r31
(inclusive) with the data starting at the memory address calculated from adding
the offset d to the contents of rA. If r0 is specified for ra, then the address is
simply d.

If rA is in the range of register being loaded, or if rT and rA are both r0, the
instruction is considered invalid. The POWER architecture handles the case
where rA is in the range to be loaded by skipping rA and discarding the data
that would have been loaded into it, but this behavior was not considered useful
enough to warrant including it in the PowerPC specification.

The Store Multiple Word instruction performs the inverse operation of the Load
Multiple Word. It takes the low-order word from each of the registers between rs
and r31 and stores it into the memory block starting at the calculated address.

For both the Load and Store Multiple instructions, the address calculated form ra
and d should be a multiple of four (for the address to be properly word aligned).
If the computed address is not a multiple of four, then one of three things may
happen:

¢ The operation may proceed normally.
* The alignment error handler may be invoked.
* The results may be (boundedly) undefined.

Load and Store Instructions 67



§5.10 Load and Store String

Which of the three occurs depends on the particular PowerPC implementation
and whether a page boundary has been crossed. On the 601, misaligned Load
and Store Multiple operations proceed normally unless a page boundary is
crossed, in which case the alignment error handler is invoked. Other PowerPC
processors will either always invoke the alignment error handler or produce
results that are boundedly undefined.

The PowerPC architecture also defines preferred forms for the Load and Store
Multiple instructions. The preferred forms for these instructions are structured
so that the last byte to be loaded or stored matches the last byte of an aligned
quadword in memory. Thus r31 is loaded from or stored into the low-order
word of an aligned quadword. This is shown in Figure 5-1

Figure 5-1 Alignment for Preferred Form of Load and Store Multiple

low addresses

starting address —> < word alignment 00
tS/tT T XXXX XXXX XXXX XX
[ ]
L]
L]
131 <« quadword alignment
© XXXX XXXX XXxx 0000

high addresses

Load and Store Multiple operations that do not conform to this preferred form
may execute more slowly than forms that do conform.

5.10 Load and Store String

The Load and Store String instructions listed in Tables 5-15 and 5-16 provide a
simple way of accessing unaligned data, like character strings.

These instructions are more properly referred to as Move Assist instructions,
since they are useful for more than just moving character strings around. These
instructions can also be used to copy structures and fields without being con-
cerned about proper data alignment.
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Table 5-15 Load String Instructions

1swi rT,rA,nBytes ea:=(rAl0)
Load String Word Immediate R=T-1
i= [l
if(nBytes = 0)
nBytes := 32
while(nBytes > 0)
ifi= [5])
R:=(R+1)%32
rR<=0
rR[i:(i+7)] <= Byte(ea)
i=i+8

ifi= [5])

. 0
i= [zl
ea:=ea+1
nBytes := nBytes - 1
lswx rT,rA,rB ea:=(rA10)+(rB)

Load String Word Indexed R:=T-1
nBytes := XER[25:31]

i= [3]
while(nBytes > 0)
ifi= [5])
R=R+1)%32
rR<0
rR[i:(i+7)] <= Byte(ea)
i=1i+8

ifti= [£])

ea:=ea+l
nBytes := nBytes - 1

The two Load String Word instructions load a number of bytes from memory into
a series of GPRs. The two forms, Load String Word Immediate (1swi) and Load
String Word Indexed (Lswx), differ in how the memory address is calculated and
where the number of bytes to copy comes from.

For the immediate (non-indexed) form, the number of bytes is specified as an
immediate value, nBytes, and the memory address where the data to be loaded
begins is stored in rA. The number of bytes specified in the immediate value can
be anywhere from 1 to 32.

The Indexed form calculates the memory address from the sum of two registers,
(rAl0) and rB, and gets the number of bytes to copy from bits 25 to 31 of the
Fixed-Point Exception Register (XER). This value can be anywhere between 0
and 127, although if the number of bytes to be copied is 0, then the contents of
rT are undefined.
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For both of these instructions, each byte is copied into the register starting with
the high-order byte (of the low-order word when in 64-bit mode) and working
down to the low-order byte. When each register is full, the next register sequen-

tially is loaded, wrapping around from r31 to r0 if necessary.

The last register to be loaded may be only partially filled. In this situation, the
lower bytes of that register are cleared to 0.

The Load String instructions do not load bytes into the upper word when execut-

ing in 64-bit mode. These upper bytes are always set to 0.

If rA (or rB, for the Indexed form) is in the range of the register being loaded, or

if rTand rA are both r0, the instruction is considered invalid.

Table 5-16 Store String Instructions

stswi rS,rA,nBytes
Store String Word Immediate

ea:=(rAl0)
R:=S5-1
. 0
i 4]
if(nBytes = 0)
nBytes := 32
while(nBytes > 0)
ifti= [5])
R=R+1)%32
Byte(ea) <= rR[i:(i+7)]
i=i+8

ifi= [2])

. 0
i=[5]
ea:=ea+1
nBytes := nBytes - 1

stswx rS,rA,rB
Store String Word Indexed

en = (tA10)y+(rB)

R:=S5-1

nBytes := XER[25:31]

i= [5]

while(nBytes > 0)
ifti= [5])

R=(R+1)%32

Byte(ea) <= rR[i:(i+7)]
i=i+8
ifti= [Z])

. 0
i= [3]
ea:=ea+1
nBytes := nBytes - 1
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The two Store String instructions perform the opposite operation as the Load
String instructions: the bytes from the specified registers are written out to mem-
ory starting at the given memory address.

Both the Load and the Store String instructions have preferred forms that may
execute more quickly on certain PowerPC implementations. The requirements
of the preferred form are

® 32 bytes or less are being transferred.
e The first register (rSor rT)is r5.

These requirements imply that only registers r5 through r12 will be used by the
operation.

5.11 Load and Store Synchronization

The synchronization forms of the Load and Store instructions give the program-
mer control over the order in which storage operations are completed, as they
are seen by devices outside the processor. Tables 5-17 and 5-18 list these instruc-
tions.

Table 5-17 Load and Reserve Instructions

lwarx rT,rA,rB Reserve =1
Load Word and Reserve Indexed RAddr .= (rtA10)+(xB)
rT < °Word((rA 1 0)+(rB))
ldarx rT,xrA,rB Reserve .= 1
Load Doubleword and Reserve Indexed RAddr .= (tA10)+(rB)
64-bit implementations only T < DoubleWord((rA | 0)+(rB))

»

The Load and Reserve instructions load a word from memory and attach a reserva-
tion to the address from which the data was loaded. If there is a reservation from
a previous Load and Reserve instruction, the old reservation is replaced with the
new one.
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Table 5-18 Store Conditional Instructions

stwex. rS,rA,rB
Store Word Conditional Indexed

ea := (rA|0)+(rB)'
if((Reserve = 1) AND (RAddr = ea))
Word(ea)&=rS [ :2'%]
Reserve := 0
CR{0} <= b001 L XER[SO]
else
CR{0} <= b000 L XER[SO]

stdcx. rS,rA,rB
Store Doubleword Conditional Indexed
64-bit implementations only

ea := (rA|0)+(rB)
if((Reserve = 1) AND (RAddr = ea))
DoubleWord(ea)<=rS
Reserve :=0
CR{0} <= b001 L XER[SO]
else
CR{0} <= b000 L XER[SO]

The Store Conditional instructions store the contents of a register to a specified
address only if a reservation has been created using a Load and Reserve instruc-
tion. If a reservation does not exist, then these instructions do nothing.

The EQ bit (bit 2) of Field 0 of the Condition Register can be checked to see if the
store operation was completed successfully. This bit will be “1” if the store was

performed and ‘0" if it was not.

5.12 Obsolete Load String

There is only one obsolete load instruction (see Table 5-19), and that is Load
String and Compare Byte Indexed. This instruction loads bytes from memory and

compares each byte with a specified target byte.
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Table 5-19 Obsolete String Instructions

lscbx[.] rT,rA, rB ea = (rA|0)+(rB)
Load String and Compare Byte Indexed R:=T-1

obsolete POWER instruction nBytes := XER[25:31]
nBytesCopied := 0

matchByte := XER[16:23]
matchFound := 0
i=0
while(nBytes > 0)
if(i = 0)
Ri=R+1)%32
1R & undefined
if(matchFound = 0)
rR[i:(i+7)] <= Byte(ea)
nBytesCopied := nBytesCopied + 1
if(Byte(ea) = matchByte)
matchFound := 1
i=i+8
if(i = 32)
i=0
ea:=ea+1
nBytes := nBytes - 1
XER[25:31] <= nBytesCopied

The Load String and Compare Byte Indexed instruction loads bytes into the regis-
ters from r T to r31 until one of two conditions is met. These conditions are

* nBytes bytes have been loaded, or
* Abyte is loaded that matches matchByte.

The values for nBytes and matchByte come from the Fixed-Point Exception Reg-
ister (XER). nBytes is copied from the value in XER[25:31] and the matchByte is
contained in XER[16:23].

The target registers are loaded starting with the high-order byte and working
down to the low-order byte. Registers are not guaranteed to be cleared to 0
before they are loaded. Thus, the lower bytes of the last (partially filled) register
are undefined.

This instruction is not part of the PowerPC specification because of its com-
plexity.
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Instructions

The integer instructions defined by the PowerPC Architecture include instruc-
tions to perform logical (Boolean) operations and integer comparisons in addi-
tion to the standard arithmetic operations (add, subtract, multiply, and divide).

6.1 Addition

Addition is performed using variants of the Add instruction. The three basic
forms of this instruction listed in Table 6-1 allow two registers to be added and
provide control over how the Carry bit is affected by the instruction. There are
also two other addition instructions that allow the Carry bit to be combined with
a register and a constant. All of these instructions have options that allow the
overflow (‘0’) and condition (‘.”) information to be set based on the result of the
operation.

The most basic add instruction is, oddly enough, the Add (add) instruction. This
instruction adds the contents of registers rA and rB and stores the result in reg-
ister rT. The Carry bit in the XER is neither used nor affected by the execution of
this instruction.

The Add Carrying (addc) instruction performs the same operation as the add
instruction, but also updates the Carry bit in the XER. The Carry bit is set if there

is a carry out of bit [5] and is cleared otherwise.
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Table 6-1 Add Instructions

add[o][.] rT,rA,rB

Add 1T < (tA) + (rB)
addc[o][.] rT,rA,rB T < (rA) + (rB)

Add Carrying update XER[CA]

adde[o][.] rT,rA,rB 1T < (rA) + (rB) + XER[CA]
Add Extended update XER[CA]

addmelo][.] rT,rA 1T < (rA) + -1 + XER[CA]
Add to Minus One Extended update XER[CA]

addze[o][.] rT,rA 1T & (rA) + 0 + XER[CA]
Add to Zero Extended update XER[CA]

The Add Extended (adde) instruction performs basically the same operation as
the addc instruction, except that it also adds the Carry bit to the result before
storing the result in register r T and updates the Carry bit based on the result.

The final two register-based add instructions add the contents of rA with a con-
stant and the Carry bit and then store the result in r 7, updating the Carry bit in
the process. The constant can be either 0 (for addze) or -1 (for addme).

There is no add instruction which uses the Carry bit but does not update the
Carry information.

In addition to the register-based add instructions given earlier, the variants
listed in Table 6-2 allow 16-bit immediate data (sign-extended to 32 bits) to be
specified as one of the operands.

Table 6-2 Add Immediate Instructions

addi rT,rA,slé6 N

Add Immediate 1T &= (rA10) + 516

addis rT,rA,slé6 N

Add Immediate Shifted T &= (rA10) + (516 L 0x0000)
addic|.] rT,rA, sl6 1T < (rA) + 's16

Add Immediate Carrying update XER[CA]

These instructions are Add Immediate (addi), Add Immediate Shifted (addis), and
Add Immediate Carrying (addic). Only the addic instruction updates the Carry,
and none of these instructions uses the Carry as part of its operation.

On 64-bit implementations, the immediate data is sign-extended to 64 bits before
performing the addition operation.

Note that the addi and addis instructions do not allow the contents of register
r0 to be added with the immediate data. If r0 is specified as rA, then 0 will be
added to the sign-extended immediate data and the result will be placed in rT.
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This provides a convenient method of loading a register with an immediate 16-
or 32-bit value, as shown in Table 6-3.

Two extended forms are defined so that it is more readily apparent that the add
immediate instructions are being used to load a value into a register. These are
the Load Immediate and the Load Immediate Shifted forms.

Table 6-3 Load Immediate Extended Forms

1i rT,816
Load Immediate 1T < 516
extended form for addi rT,0,s16

lis rT,s816
Load Immediate Shifted 1T < “(s16 L 0x0000)
extended form for addis rT,0,s516

In order to load a 32-bit immediate value into a register, the 1is form can be
used with the OR Immediate instructions:

lis rT, <upper halfword>
ori r T, <lower halfword>

The 1is form loads the upper halfword and clears the lower halfword and the
ori instruction loads the proper value into the lower halfword.

Note that while it is possible to load a register with an immediate value using
extended forms of the Add Immediate instruction, the Add Immediate instructions
should not be used to add an immediate 32-bit value to a value already in a
register. This technique is not guaranteed to work since the most significant bit
of the lower halfword is (erroneously) interpreted as a sign bit and the value is
sign-extended to a word before the addition takes place. Thus, attempting to add
0x0100 8000 with the following sequence:

addis rT,0x0100
addi rT,0x8000

would result in adding 0x00FF 8000 because of the sign-extension of the lower
halfword. This method can work if the upper half of the value is adjusted (by
adding 1) to compensate for the sign-extension from the lower half. This adjust-
ment should only take place if the sign bit of the lower half is ‘1". The following
code sequence:

addis rT,0x0101
addi rT,0x8000

would produce the desired result of adding 0x0100 8000 to the value already in
rT. In any case, care should be taken when adding immediate 32-bit values.
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When loading an address into a register, the Load Address (1a) form of the Add
Immediate instruction listed in Table 6-4 can be used. This extended form makes
more explicit the fact that an address value is being loaded.

Table 6-4 Load Address Extended Forms

la rT,d(ra)
Load Address 1T < (rAl0) + 's16
extended form for addi rT,raA,d

la rT,d
Load Address (with implicit base register) rT < (rBase | 0) + “s16
extended form for addi rT,rBase,d

The two forms of the Load Address form allow for the base address to be specified
either explicitly by giving rA or by allowing the base register to be implicit. An
implicit base register is set up using an assembler directive such as the .using
directive in IBM’s AIX assembler.

6.2 Subtraction

The primary instructions for performing subtraction are the variants of the subf
(Subtract From) instruction listed in Table 6-5. The subf instruction variants pro-
vide control over the use of the Carry bit and allow registers to be subtracted
from predefined constants. All of these instructions have options that allow the
overflow (‘o’) and condition (“.”) information to be set based on the result of the
operation.

Table 6-5 Subtract From Instructions

subf[o][.] rT,rA,rB )

Subtract From T < (1B) - (r4)

subfc[o][.] rT,rA,rB 1T & (rB) - (tA)

Subtract From Carrying update XER[CA]

subfel[o][.] rT,rA,rB 1T < (tB) - (rA) + XER[CA] - 1
Subtract From Extended update XER[CA]

subfme[o][.] rT,rA 1T < -1 - (rA) + XER[CA] -1
Subtract From Minus One Extended update XER[CA]

subfze[o][.] rT,rA T < 0 - (rA) + XER[CA] - 1
Subtract From Zero Extended update XER[CA]

The basic form of the Subtract From (subf) instruction subtracts rA from rB and
stores the result in rT. This form of the instruction neither uses nor affects the
Carry bit in the XER.

The Subtract From Carrying (subfc) instruction performs the same operation as
the subf instruction, except that it updates the Carry bit based on the result of
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the operation. The Carry bit is normally cleared by this instruction but is set if
there is a carry out of bit [3].

The Subtract From Extended (subfe) instruction subtracts rA from rB and then
adds the Carry minus 1 to the result before storing it in register r T. The Carry bit
is updated based on the result.

The remaining two register based subf instructions subtract the contents of ra
from a constant and then add the Carry bit minus 1. The result is then stored in
the register rT. The constant can be either 0 (for subfze) or -1 (for subfme).

Because the operation of the subf instruction may be confusing given the regis-
ter order, the extended mnemonics listed in Table 6-6 are provided to allow the
programmer to specify the arguments in a more natural order.

Table 6-6 Subtract Extended Forms

sublo][.] rT,rA,rB
Subtract 1T < (rA) - (rB)
extended form for subf[o][.] rT,rB,rA

subc[o][.] rT,rA,rB
Subtract Carrying
extended form for subfc[o][.] rT,rB,rA

1T < (rA) - (rB)
update XER[CA]

The Subtract (sub) extended form subtracts rB from ra and places the result in
rT. This is the same operation as the subf instruction.

The Subtract Carrying (subc) extended form is identical to sub, except that the
Carry is updated to reflect the result of the operation. This is the same operation
as the subfc instruction.

Table 6-7 lists one instruction that allows the contents of a register to be sub-
tracted from a 16-bit sign-extended immediate constant. In addition, the three
extended forms listed in Table 6-8 allow a constant to be subtracted from the
contents of a register.

Table 6-7 Subtract From Immediate Instruction

subfic rT,rA,slé6 rT &< 's16 - (rA)
Subtract From Immediate Carrying update XER[CA]

The Subtract From Immediate Carrying (subfic) instruction subtracts the con-
tents of rA from the specified 16-bit value. The Carry bit in the XER is updated
to reflect the result of the operation.
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Table 6-8 Subtract Inmediate Extended Forms

subi rT,rA,sl6
Subtract Inmediate 1T & (tA10) - 516
extended form for addi rT,rA,-s16

subis rT,rA,slé6
Subtract Inmediate Shifted rT & (rA10) - *(s16 L 0x0000)
extended form for addis rT,rA,-sl16

subic[.] rT,rA,s16
Subtract Immediate Carrying
extended form for addic[.] rT,rA,-s16

1T & (rA) - 's16
update XER[CA]

The three Subtract Immediate (subi) extended forms are based on the addi
instructions: Add Immediate (addi), Add Immediate Shifted (addis), and Add
Immediate Carrying (addic). They perform the same operation as the equivalent
addi instructions with the immediate data negated.

6.3 Multiplication

On 32-bit PowerPC implementations, multiplying two 32-bit quantities has the
problem that the result can potentially require 64 bits when only 32 bits are avail-
able. A similar situation exists on 64-bit implementations where the result may
require 128 bits, thus overflowing the 64-bit registers.

The PowerPC defines instructions to multiply two 32-bit operands and return
either the high or the low word of the result. This works similarly on 64-bit
implementations when multiplying two 64-bit operands: there are instructions
to return either the high or low doubleword of the result. Tables 6-9 and 6-10 list
these instructions.

Table 6-9 Multiply Instructions

mullw[o][.] rT,rA,rB 32-bit:
Multiply Low Word 1T < LoWord((tA) x (tB))
64-bit:

1T < (tA[32:63]) x (rB[32:63])

mulld[o][.] rT,rA,rB ,
Multiply Low Doubleword rT < LoDWord((rA) x (rB))
64-bit implementations only

mulhw{[.] rT,rA,rB
MultiplyHigh Word (Signed)

mulhwu[.] rT,rA,rB
Multiply High Word Unsigned

rT < HiWord((tA) x (rB))

1T < HiWord((r4) x (rB))
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mulhd[.] rT,rA,rB
Multiply High Doubleword (Signed) 1T < HiDWord((rA) x (rB))
64-bit implementations only

mulhdu|[.] rT,rA,rB
Multiply High Doubleword Unsigned rT & HiDWord((rA) x (rB))
64-bit implementations only

For 32-bit operands, there are three instructions: Multiply Low Word (mullw),
Multiply High Word (mulhw) and Multiply High Word Unsigned (mulhwu). Only
one instruction is required to return the low word result since it is the same for
signed and unsigned multiplication operations.

64-bit implementations define three instructions that are analogous to the 32-bit
instructions but perform 64-bit multiplications. These instructions are Multiply
Low Doubleword (mulld), Multiply High Doubleword (mulhd), and Multiply High
Doubleword Unsigned (mulhdu).

When multiplying two 32-bit numbers on a 64-bit PowerPC implementation,
there is no need to calculate the upper and lower half separately since the entire
result is guaranteed to fit in 64 bits. For this reason, the mullw instruction is
defined to return the entire result in r T when executing on 64-bit implementa-
tions. The operands are considered to be signed for this calculation.

If the mulhw or mulhwu instructions are executed on 64-bit implementations,
they perform the same operation as on 32-bit implementations. The lower 32 bits
of rT contain the result and the upper 32 bits are undefined.

Table 6-10 Multiply Immediate Instructions

mulli r7T,rA,slé6

Multiply Low Immediate T = LoWord((rA) x s16)

The Multiply Low Immediate (mulli) instruction is also provided to allow a reg-
ister to be multiplied by a sign-extended 16-bit value. The low word of the 48-bit
result is returned in rT. On 64-bit implementations, the operation is the same
except that the low doubleword of the 80-bit result is returned in rT.

There is no instruction to access the upper word (or doubleword) of the Multiply
Immediate result.
6.4 Division

The division instructions listed in Table 6-11 divide the contents of one register
by the contents of another and store the quotient in a third register. The remain-
der is not provided as part of the instruction result.
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Table 6-11 Divide Instructions

divw[o][.] rT,rA,xrB fTe oA [£] + orB [

Divide Word (Signed) 26 526
divwul[o][.] rT,rA,rB o 0317 . o 031
Divide Word Unsigned ITe=1A [zg] + B [55
divd[o][.] rT,rA,rB

Divide Doubleword (Signed) T < (rA) + (tB)

64-bit implementations only

| divdu[o][.] rT,rA,rB
Divide Doubleword Unsigned 1T < (rA) + (rB)
64-bit implementations only

The Divide Word instructions divide the contents of source register rA by the con-
tents of rB and store the quotient in r7. Normally, the source registers are
treated as signed quantities, but the divwu instruction interprets the values as
unsigned and produces an unsigned result.

On 64-bit implementations, the divw and divwu instructions use only the lower
32 bits of rA and rB. These 32-bits operands are then zero-extended to 64 bits
before the division takes place. The quotient is placed in the lower 32 bits of rT
and the upper 32 bits are undefined.

The divd and divdu instructions perform the same division operation as the
word versions, but they use all 64 bits of the source registers and produce a 64-
bit result.

Note that there are no instructions to calculate the remainder. The recommended
way to calculate the remainder is by dividing to calculate the quotient and then
multiplying this quotient by the original divisor. The difference between this
value and the original dividend is the remainder. This can be done as follows:

divw[u] rT,rA,rB # rT = (rA-R)/rB
mullw rT,rT,rB # rT = rA-R
subf rT,rT,rA # r7T =R

The expression rT= (rA-R) /rBcomes from the fact that the remainder should
always be the same sign as rA and the magnitude of the remainder should be
less than the magnitude of the divisor (r B). This means that the quotient in rTis
always rounded towards 0. When calculating 64-bit remainders, divd[u] and
mulld should be used instead of divw[u] and mullw.

Even though this requires three instructions to calculate the final result, the pen-
alty for calculating the remainder this way is not unreasonable. First of all, the
divide operation is a costly one in terms of execution time (36 cycles in execution
on the 601), so adding the extra instructions increases the required number of
cycles only by 16 to 30 percent.
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Secondly, because the remainder does not need to be supplied as part of the
result, the hardware designers can employ different divide algorithms that can
be faster than algorithms that provide the remainder. This savings in execution
time partially offsets the penalty of requiring two additional instructions and
benefits all integer divide operations, whether or not the remainder is needed.

6.5 Miscellaneous Arithmetic Instructions

The three extra arithmetic instructions listed in Table 6-12—Count Leading Zeros,
Extend Sign, and Negate—do not fit neatly into the other categories.

Table 6-12 Miscellaneous Arithmetic Instructions

cntlzw[.] rA,rS
Count Leading Zeros Word

cntlzd[.] rA,rs
Count Leading Zeros Doubleword rA & LeadingZeros(rS)
64-bit implementations only

extsb[.] rA,rs
Extend Sign Byte

extsh[.] rA,rs
Extend Sign Halfword

rA & LeadingZeros(rS)

rAe1S [22

N 16:31
rA < 'rS [18_:6—3

extsw[.] rA,rS
Extend Sign Word rA < "r5[32:63]
64-bit implementations only

neglo][.] rT,rA

Negate T & -(rA)

The Count Leading Zeros instructions count the number of ‘0’ bits that are occu-
pying the high-order bits of rS. This number, which can range from 0 to 32 for
cntlzwand 0 to 64 for cntlzd, is then stored in rA.

There are three Extend Sign instructions: one extends a byte to a word (extsb),
another extends a halfword to a word (extsh), and a third which extends a
word to a doubleword (extsw). These instructions take the high-order (or sign)
bit from the quantity being extended (byte, halfword, or word) and replicate it
throughout the upper bits of the destination quantity (word or doubleword) to
produce the result.

The Negate instruction simply takes the two’s complement of the quantity in ra
and stores the result in r7.
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6.6 Comparison Instructions

The two basic forms of the Compare instructions listed in Tables 6-13 through 6-16
are defined in the PowerPC architecture. One form performs a standard signed
comparison and the other performs an unsigned or logical comparison.

Table 6-13 Compare Instructions (Register Based)

cmp crfT,L,rA,rB

Compare CR{CTfT} & SignedCompare(rA,rB)

cmpl crfT,L,rA,rB

Compare Logical CR({crfT} <= UnsignedCompare(rA,rB)

The Compare instruction compares the contents of rA with the contents of rBand
sets the bits in the specified CR field appropriately. The bits in the CR field are
set as follows:

LT is set if (r4) < (rB).
GT is set if (ra) > (rB).
e EQissetif (ra)=(rB).
e 50 is copied from XER[SO].

The Compare Logical instruction performs the same operation but treats the con-
tents of rA and rB as unsigned quantities for purposes of the comparison.

The L field for each of the Compare instructions determines if a 32-bit or a 64-bit
comparison should be performed. The L field must be 0 for 32-bit implementa-
tions.

Table 6-14 Compare Instructions (Immediate Data)

cmpi crfT,L,rA,sl6

. - 1
Compare Immediate CR{crfT} < signedCompare(rA, s16)

cmpli crfT,L,rA,ulé6

R < UnsignedC. A,°ul
Compare Logical Immediate CRierfT} &= UnsignedCompare(rA, *u16)

The Compare Immediate instruction compares the contents of ra with the sign-
extended immediate value and sets the bits in the specified CR field appropri-
ately. The bits in the CR field are set as follows:

e ITissetif (rA)< slé6.
e GTissetif (ra)>"sl6.
e EQissetif (ra)="s16.
e 50 is copied from XER[SO].
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The Compare Logical Immediate instruction compares the contents of rA with the
unsigned immediate value and updates the appropriate CR field. The CR field
bits are set as follows:

e LTissetif(ra)<®uls.
e GTissetif (ra)>°uls.
e EQissetif (ra)="°ulsé.
* SOis copied from XER[SO].

As with the non-immediate Compare instructions, the L field is used to switch
between 32-bit and 64-bit compares.

Since it soon becomes annoying to have to specify the L field for each compari-
son performed, extended forms are defined to perform word and doubleword
compares.

Table 6-15 Compare Word Extended Forms

cmpw crfT,rA,rB
Compare Word CR({crfT} < SignedCompare(rA,rB)
extended form for cmp crfT,0,rA,rB

cmplw crfT,rA,rB
Compare Logical Word CR({crfT} < UnsignedCompare(rA,rB)
extended form for cmpl crfT,0,rA,rB

cmpwi crfT,rA,SI
Compare Word Immediate CR{crfT} < SignedCompare(rA, s16)
extended form for cmpi crfT,0,rA,sl6

cmplwi crfT,rA,UI
Compare Logical Word Immediate CR{crfT} < UnsignedCompare(rA,°u16)
extended form for cmpli crfT,0,rA,ul6

The four Compare Word forms are the same as the four base Compare instructions,
except that they implicitly set the L field to 0 so that 32-bit compares are per-
formed.

The four Compare Doubleword forms are the same as the four base Compare
instructions, except that they implicitly set the L field to 1 so that 64-bit compares
are performed.
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Table 6-16 Compare Doubleword Extended Forms

cmpd crfT,rA,rB

Compare Doubleword

extended form for cmp crfT,1,rA,rB
64-bit implementations only

CR{crfT} < SignedCompare(rA,1B)

cmpld crfT,rA,rB

Compare Logical Doubleword
extended form for cmpl crfT,1,rA,rB
64-bit implementations only

CR{crfT} < UnsignedCompare(rA,rB)

cmpdi crfT,rA,SI

Compare Doubleword Immediate
extended form for cmpi crfT,1,rA,sl6
64-bit implementations only

CR({crfT} < SignedCompare(rA, s16)

cmpldi crfT,rA,UI

Compare Logical Doubleword Immediate
extended form for cmpli crfT,1,rA,ulé
64-bit implementations only

CR{crfT} < UnsignedCompare(rA,°u16)

6.7 Logical (Boolean) Instructions

The logical instructions listed in Tables 6-17, 6-18, and 6-19 perform bitwise
Boolean operations on registers. There are three basic bitwise operations that can
be performed: AND, OR, and XOR. By negating or complementing one of the
source registers or the result, additional logical operations can be constructed.
The PowerPC defines five additional operations that are built in this manner:

Equivalent, AND with Complement, OR with Complement, NAND, and NOR.

Table 6-17 Logical Instructions

) TA. s, tA = (1) & (1B)
andc[.] rA,rS,rB

AND with Complement rA & (t5) & ~(1B)
eqv|.| rA,rS,rB

E;Iuj‘[/allent rA & (r5)=(rB)
Eir;f,l,[ -1 xA, xS, xB rA & ~((tS) & (rB))
ng{[ -] £a, xS, xB rA & ~((tS) | (B))
?,‘,i[ -] xA, xS, xB tA < @S) | (tB)
orc|[.] rA,rS,rB 5

OR with Complement 1A & (t5) | ~(tB)
xor[.] ra,rS,rB

Exclu[si‘]'e OR rA & (t5) @ (rB)

86 Chapter 6




Logical (Boolean) Instructions

The AND instruction calculates the bitwise AND of the source registers. Each bit
in the target register (ra) is set if and only if the corresponding bits in both
source registers (rS and rB) are set.

The AND with Complement instruction calculates the bitwise AND of the source
register r S and the one’s complement of source register rB. Each bit in the target
register (rA) is set if and only if the corresponding bits in rS and ~rB are set.

The Equivalent instruction calculates the equivalence of the two source registers.
Each bit in the target register (r2) is set if and only if the corresponding bits in
the source registers (rS and rB) are equal to each other.

The NAND instruction calculates a bitwise AND like the AND instruction but
takes the ones’s complement of the result before storing it in rA.

The NOR instruction calculates a bitwise OR like the OR instruction but takes
the one’s complement of the result before storing it in ra.

The OR instruction calculates the bitwise OR of the source registers. Each bit in
the target register (rA) is set if either of the corresponding bits in the source reg-
isters (rS and rB) are set.

The OR with Complement instruction calculates the bitwise OR of the source reg-
ister rS and the one’s complement of source register rB. Each bit in the target reg-
ister (rA) is set if either of the corresponding bits in r S and ~rB are set.

The Exclusive OR instruction calculates the bitwise XOR of the source registers.
Each bit in the target register (ra) is set if the corresponding bit in one of the
source registers (either rS or rB) is set. If both source registers have the bit set,
or if neither of them do, then the target register bit is cleared. Note that this oper-
ation is equivalent to negating the result of the Equivalent instruction.

Table 6-18 Logical Immediate Instructions

andi. rA,rS,ulé6

o.
AND Immediate rA <= (t5) & *ul6
andis. rA,rS,ulé o
AND Immediate Shifted rA &= (r5) & *(ul6 L 0x0000)

ori rA,rS,ulé

OR Immediate rA &= (tS) | “ul6

oris rA,rS,ulé

OR Immediate Shifted rA &= (¢5) | *(u16 1 0x0000)

xori rA,rS,ulé

0.
XOR Immediate rA &= (r5) ® “ul6

xXoris rA,rS,ulé

XOR Immediate Shifted rA & (r5) ® °(u16 L. 0x0000)
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Logical Immediate forms are defined for the three basic Boolean operations: AND,
OR, and XOR. For each of these operations, there are two instructions: one
instruction zero extends the 16-bit immediate value before performing the logi-
cal operation, and the other shifts the immediate value 16 bits to the left (filling
with 0's from the right) before performing the logical operation.

On 64-bit implementations, the immediate data is zero-extended to 64 bits
before the operation is performed.

The logical instructions allow many simpler instructions to be constructed from
them. These three extended forms listed in Table 6-19 are the preferred forms for
implementing these operations. Implementations of the PowerPC architecture
that provide some sort of run-time optimization for these operations will look
for the preferred form to trigger the optimization.

Table 6-19 Extended Forms for Logical Instructions

mr[.] rA,rB
Move Register rA & (rB)
extended form for or rA,rB,rB

not[.] rA,rB

Not (One’s Complement) rA & ~(rB)
extended form for nor rA,rB,rB

nop
No-operation 10 <10
extended form for ori r0,r0,r0

The Move Register form provides an easy way to transfer the contents of one reg-
ister to another.

The Not instruction calculates the one’s complement of the source register and
stores it in the destination register.

The No-operation or No-op instruction does nothing. It can be useful as a place-
holder instruction that may be overwritten with a “real” instruction.

6.8 Obsolete Arithmetic Instructions

A variety of arithmetic instructions were defined for the POWER architecture
but were not included in the PowerPC specification. These instructions were
either unnecessarily complicated (as with the Absolute Value and Difference or
Zero instructions), or they made use of the MQ register (as with the Multiply and
Divide instructions).
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Obsolete Multiply

The obsolete POWER multiply instructions do not provide separate instructions
to return the upper and lower part of a 32-bit x 32-bit multiply result. Instead, a
single instruction listed in Table 6-20 is defined to return the 64-bit result split
across two registers: rT and MQ.

Table 6-20 Obsolete POWER Multiply Instructions

mulfo][.] rT,rA,rB
Multiply
obsolete POWER instruction

rT < HiWord((rA) x (rB))
MQ < LoWord((rA) x (rB))

Since the MQ register was removed for the PowerPC specification, this instruc-
tion has been removed also. Its complete functionality is provided via the mullw
and mulhw instructions.

Obsolete Divide

In contrast to the PowerPC divide instructions, the obsolete POWER divide
instructions listed in Table 6-21 provide both the quotient and the remainder as
part of the result. The quotient is returned in the specified register, and the
remainder is returned in the MQ register. Since the MQ register is not part of the
PowerPC specification, these divide instructions needed to be removed.

Table 6-21 Obsolete POWER Divide Instructions

div|[o][.] rT,rA,rB
Divide

obsolete POWER instruction
divs[o][.] rT,rA,rB
Divide Short

obsolete POWER instruction

1T & ((rA) L (MQ)) + (rB)
MQ < ((rA) L (MQ)) % (rB)

1T < (rA) + (rB)
MQ < (rA) % (rB)

The two obsolete divide instructions are Divide (div) and Divide Short (divs).

The Divide instruction divides a 64-bit value by a 32-bit value and returns the
quotient and the remainder. The 64-bit dividend is composed of the contents of
register rA concatenated with the contents of the MQ register, and the 32-bit
divisor is the contents of register rB. The quotient is returned in rT and the
remainder is returned in the MQ register.

The Divide Short instruction divides the 32-bit dividend in rA by the 32-bit divi-
sor in rB and returns the quotient in r T and the remainder in the MQ register.

For both the div and divs instructions, the remainder in MQ is guaranteed to
have the same sign as the dividend (rA).
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Other Obsolete Arithmetic Instructions

The POWER architecture also defines two additional operations listed in
Table 6-22 not found in the PowerPC architecture: integer Absolute Value and Dif-
ference or Zero. The instructions implementing these operations were removed
for the PowerPC specification in an effort to simplify the design.

These instructions were removed because the operation being performed is data
dependent. This means that the processor can’t simply perform an operation on
the data but must first examine the data to determine which operation to per-
form. For Absolute Value, the two operations are either to do nothing (if the
source is positive) or negate (if negative); and for the Difference or Zero instruc-
tion, the two operations are to subtract (if (rA) is less than the other value) or
return 0.

This data dependency requires an extra multiplexer in the arithmetic unit to
decide which of the two function results to save to the destination register. This
multiplexer is likely to be located on the critical execution path of the processor,
thus, supporting these instructions is likely to have the effect of slowing down
every other instruction while benefitting only these four instructions. Since these
instructions are infrequently used, they are not included as part of the PowerPC
specification.

Table 6-22 Obsolete POWER Arithmetic Instructions

abs|o][.] rT,rA
Absolute Value 1T < [ (rA)!
obsolete POWER instruction

nabsg|[o][.] rT,rA :
Negative Absolute Value 1T <-1(rA)l

obsolete POWER instruction

doz[o][.] rT,rA,rB 1T < ((tA) > (tB)) ?0
Difference Or Zero : ((rtB) - (rA))
obsolete POWER instruction ’

dozi rT,ra,slé 1T & ((rA) > s16) 20
Difference Or Zero Immediate : (’s16 - (rA))

obsolete POWER instruction

The two absolute value instructions are Absolute Value (abs) and Negative Abso-
lute Value (nabs). These instructions calculate the absolute value (or its negative)
of rA and store the result in rT. Both of these instructions have options which
allow the overflow and condition information to be set based on the result of the
operation.
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The two “difference or zero” instructions are Difference Or Zero (doz) and
Difference Or Zero Immediate (dozi). These instructions compare the two
operands and return 0 if rA is greater than the other operand or the differ-
ence of the two operands in all other cases. The end result is that the value
stored in r T'is guaranteed to be non-negative. The doz instruction compares
rA with another register, and doz i compares r A with a sign-extended 16-bit
quantity.
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Rotate and Shift
Instructions

The PowerPC architecture defines a complex set of rotate and shift operations
that can be used to perform a wide range of operations in one instruction. These
operations include

e Rotate the contents of a register to the left or right.
*  Shift the register contents to the left or right.

* Extract and shift a range of bits from a register.

» Shift and insert a range of bits into a register.

¢ (lear a range of bits in a register.

In addition, the rotate instructions’ built-in masking operation facilitates the
implementation of multiple-precision shifts and rotates.

7.1 Rotation Masks

The rotate instructions have a mask generation facility that allows a mask to be
specified. The rotated quantity is ANDed with this mask so that only a portion
of the rotated word is copied into the destination register. This allows complex
bit manipulation operations to be performed in one instruction by using an
appropriate mask.

This facility is limited by the restriction that only certain types of masks are
allowed. The valid types of masks vary depending on whether the mask is for a
32-bit or a 64-bit quantity.
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Word Masks

When specifying a mask for a word (for example, a 32-bit quantity), a valid mask
must be composed of either:

e A contiguous range of ‘1’s surrounded by ‘0’s.
* A contiguous range of ‘0’s surrounded by “1’s.
* A contiguous range of ‘1’s followed by ‘0’s.

¢ A contiguous range of ‘0’s followed by ‘1’s.

e AllTls.

Note that there is no way to specify a mask consisting of all ‘0’s. Such a mask
would not be very useful since it would entirely mask out the result of the rota-
tion operation.

Simplifying the acceptable masks in this fashion allows the mask to be encoded
by recording the starting bit (maskBegin) and the ending bit (maskEnd). These
mask bit values must be between 0 and 31. Figure 7-1  shows the five types of
acceptable word masks.

Valid Word Rotation Masks

Figure 7.
mBegin < mEnd

mBegin > mEnd

mBegin=0

mEnd =31

mBegin = mEnd+1

A mask that consists of a contiguous range of ‘1’s surrounded by ‘0’s is encoded
by setting maskBegin to the bit number of the first ‘1’ bit and maskEnd to the bit
number of the last ‘1’ bit. Thus, the mask 0x00FF FF00 would be encoded with
maskBegin = 8 and maskEnd = 23 (since the leftmost bit is bit 0). If maskBegin =
maskEnd, then a mask is generated with only one bit set.

A mask that consists of a contiguous range of ‘0’s surrounded by ‘1’s is encoded
by setting maskEnd to the bit number of the bit immediately before the first ‘0’ bit
and maskBegin to the bit number of the bit immediately after the last ‘0" bit. This
type of mask is identified by recognizing that maskBegin is greater than maskEnd.
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As an example, the mask 0xFF00 00FF would be encoded with maskBegin = 24
and maskEnd =7.

A mask that consists of a contiguous range of ‘1’s followed by a range of ‘0’s is
encoded by setting maskBegin to bit 0 and maskEnd equal to the last bit of the
mask. Thus, the mask OxFFF0 0000 would be encoded as maskBegin = 0 and
maskEnd = 11.

A mask that consists of a contiguous range of ‘0’s followed by a range of ‘1’s
is encoded by setting maskBegin to the first bit of the mask and maskEnd to bit
31. Thus, the mask 0x0000 OFFF would be encoded as maskBegin = 20 and
maskEnd = 31.

A mask of all “1’s is encoded by setting maskBegin equal to maskEnd+1 (wrapping
around to 0 if maskEnd+1 = 32). While any values for maskBegin and maskEnd that
satisfy the maskBegin = (maskEnd+1) % 32 equation define valid mask specifica-
tions, by convention the values maskBegin=0 and maskEnd=31 are used.

When specifying word masks on 64-bit implementations, the maskBegin and
maskEnd values are automatically offset by 32 so that they specify bits in the low-
order word of the 64-bit register. Thus, specifying a mask from bit 8 to bit 15 on
a 64-bit implementation actually results in a mask from bit 40 to bit 47.

Doubleword Masks

Doubleword masks are used by the doubleword rotate instructions that are
available on 64-bit PowerPC implementations. When specifying a mask for a
doubleword, the mask must be composed of either

* Aseries of '1’s followed by a series ‘0’s.
* Aseries of “0’s followed by a series ‘1’s.
e Allls.
e A contiguous range of ‘1’s surrounded by ‘0’s (with restrictions).
Note that there is no way to specify a mask consisting of all ‘0’s. As is the case

with word masks, such a mask would not be very useful since it would entirely
mask out the result of the rotation operation.

Figure 7-2  shows these four types of acceptable doubleword masks.
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Figure 7-2 Valid Doubleword Rotation Masks

mBegin I._ chift _I

Simplifying the acceptable masks in this fashion allows the mask to be encoded
by recording either just the starting bit (maskBegin) or just the ending bit (mask-
End). These mask bit values must be between 0 and 63. The maskBegin and mask-
End values cannot both be specified simultaneously because of instruction
encoding limitations. It is always clear from the context whether the bit value
being specified defines the beginning or the end of the mask.

Some instructions allow maskBegin to be specified and use an implicit maskEnd
that is generated from the instruction’s shift value. These are the only instruc-
tions that allow a range of ‘1’s surrounded by ‘0’s to be used as a mask.

A mask of “1’s followed by ‘0s is encoded by setting maskEnd to the bit number
of the last ‘1" bit, using 0 as an implicit maskBegin. A mask of ‘0’s followed by ‘1’s
is encoded by setting maskBegin to the bit number of the first ‘1’ bit, using 63 as
an implicit maskEnd. A mask of all “1’s can be constructed by setting either mask-
Begin to 0 or maskEnd to 63, depending on which value is available.

Instructions that permit the last type of mask record the maskBegin value and use
63-shift as the implicit maskEnd value. The maskEnd value cannot be controlled
independently of the shift value.

7.2 How Rotates and Shifts Update the CR

All of the shift and rotate instructions allow the “.” suffix to be appended to the
instruction mnemonic to have field 0 of the Condition Register updated to reflect
the result of the operation.

For 32-bit PowerPC implementations, these instructions set CR{0} by algebra-
ically comparing the shift or rotate result with 0.

For 64-bit implementations, the comparison is dependent on the mode that the
processor is currently in. When executing in 32-bit mode, the low-order word of
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the result is algebraically compared with a 0 word. In 64-bit mode, the entire
doubleword of the result is algebraically compared with a 0 doubleword.

Executing Word Instructions in 64-bit Mode

When the rotate and shift word instructions are executed on a 64-bit PowerPC
processor, the upper 32 bits of the result are always 0.

One side-effect of this is that the condition code values returned in CR{0} are
dependent on the mode in which the processor is currently executing. If the pro-
cessor is in 32-bit mode, only the lower 32-bit will be compared, a