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Introduction 

1.1 Purpose of Book 

The purpose of this book is simple: to introduce programmers to the concepts of 
assembly language programming for PowerPC processors. Beyond simply pre­
senting the information required to write functional code, this book presents the 
information necessary to write efficient code, and it also discusses the tricks that 
compilers use to produce fast code. 

The vast majority of people reading this book may have little need to write a 
significant amount of code in assembly language. But the techniques presented 
here will be useful to the high-level programmer who needs to read compiler­
generated code as part of the debugging process. 

1.2 Intended Audience 

This book is intended for programmers who have had some sort of experience 
with high-level languages such as C or Pascal, or with assembly language for 
another processor. 

This book will not spend time defining basic concepts such as hexadecimal nota­
tion nor expounding the virtues of null-terminated over length-encoded strings. 
It will, however, present definitions for any term that is used. For example, con­
cepts like latency and throughput will be defined before being used. 

Introduction 1 



§ 1.3 Why Assembly Language on a RISC Processor? 

1.3 Why Assembly Language on a RISe Processor? 

The first question that many people ask is something like: "Why would any sane 
person be interested in learning assembly language for a RISe processor?" The 
reasoning behind this question is the belief that properly written RIse assembly 
language routines are significantly more difficult to write than similar else 
assembly routines, and that today's compilers produce far better code than code 
generated by hand, so why bother? 

The question is also valid because the computer industry has been moving away 
from programming in low-level languages and emphasizing languages that 
promise robustness, easy verification of correctness, and so on. Assembly lan­
guage can promise none of those things. So, again, why bother? 

The truth of the matter is that there are two major reasons for wanting to be 
familiar with assembly language for any processor (RISe or not). The first is that 
you need complete control of all processor resources to make the code as fast or 
small as possible. The second reason is that you need to debug your code (or 
someone else's) and see what's really going on. A source-level debugger may 
not be sufficient (or even available). 

The first reason may sound like it's only for anal-retentive speed freaks, but 
there are reasons for normal human beings to want to hand-code assembly. It is 
a sad fact that many of the commercially available compilers do not generate 
highly optimized code. The best-selling compilers are typically those with the 
fastest edit-compile-run times, and a proper optimizer takes a bit of time to run. 
Thus, while it's true that a properly written optimizing compiler can generate 
code that is better than the code an average assembly language programmer 
would produce, many compilers are not properly written and thus, do not pro­
duce properly optimized code. 

In addition, a compiler is limited by the source language. As a programmer in 
assembly language, you know exactly what you need and when you need it 
(and when you no longer need it). The compiler must try to figure out as much 
about the program as it can from the source, and when it's in doubt, it must play 
it safe and produce less efficient code. In the e programming language, the pro­
grammer is given such flexibility with addresses and pointers that it becomes 
extremely difficult for the compiler to determine if a range of memory can be 
modified by a section of code. Because of the compiler's inability to guarantee 
that the memory won't be modified, it may not be able to risk applying certain 
optimizations. 

Debugging is another situation thqt causes programmers to drop down into 
assembly. Sometimes (one hopes rarely), compilers do not produce correct code. 
More commonly, you may find that your program works fine in some circum­
stances, but dies a horrible death when it interacts with other programs. Lacking 
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else versus RISe 

the source code to the other program, assembly may be the only course of action 
available. 

Of course, there's a reason high-level languages exist. The vast majority of your 
coding and debugging will be done in some sort of high-level language. You 
should need to use assembly only when you have a routine that needs to be as 
fast as possible. 

To correctly respond to whether RISC assembly is more difficult than CISC 
assembly, the terms RISC and CISC must first be discussed in more detail. 

clse versus RISe 

There is a lot of confusion surrounding the differences between a RISC and a 
CISC architecture arising from misuse of the terms and from various marketing 
departments propagating the "RISC is always faster/better than CISC" myth. 
Unfortunately, part of the confusion also comes from the fact that there is no 
clear line between the two design philosophies: some architectures are clearly 
RISC, others are clearly CISC, while still others fall somewhere in between. 

The most important thing to note is that RISC ("Reduced Instruction Set Com­
puter") and CISC ("Complex Instruction Set Computer") are terms that are 
properly applied to an Instruction Set Architecture (ISA) and not to a particular 
implementation of an ISA. Common usage allows a processor to be called a 
"RISC processor," but what is really meant is that the processor is an implemen­
tation of a RISC architecture. 

This difference between an ISA and a hardware implemention of that ISA is fun­
damental to understanding RISC and CISe. 

WhatRISCls 

The following is a list of features that are commonly associated with RISC ISA's: 

• A large uniform register set 
• A load/ store architecture 
• A minimal number of addressing modes 
• A simple fixed-length instruction encoding 
• No / minimal support for misaligned accesses 

This set of "rules" is designed to make fast processors easier to implement. 
Notice that the list contains no requirements as to the number of instructions, 
nor does it indicate how the processor should be implemented. These are 
issues that are commonly mistaken as features required for a RISC processor. 
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§ 1.3 Why Assembly Language on a RISC Processor? 

A processor implementing a RISC ISA is not necessarily a fast processor-per­
formance is dependent on how the processor is implemented. However, because 
the features listed were designed to make it easier to implement fast processors, 
one can infer that a RISC processor is likely to be faster than a CISC processor of 
equivalent technology. 

As an example to drive this point home, one can imagine two implementations 
of a particular RISC ISA: one that doesn't use pipelines or superscalar dispatch 
(these concepts are discussed later in this book); and another one that does. The 
first processor would perform very poorly when compared to the other proces­
sor, and it might even perform worse than many currently available CISC pro­
cessors. However, just because this processor performs poorly does not mean 
that it is not a RISC processor. 

If you think of RISC as standing for "Reduced Instruction Set Complexity," then 
you may be less likely to be confused by the term. 

What else Is 

Given the definition of RISC, the original definition of CISC is trivially easy to 
define: CISC is anything that is not RISe. 

When the designers of the first RISC architectures devised the term "RISC," they 
meant to differentiate their simpler, reduced processor from the current crop of 
complex processors. Thus, "CISC" was used as a pejorative term that meant 
non-RISC architectures. 

This lack of a real definition has contributed to some of the confusion surround­
ing RISC and CISe. Today, a CISC architecture typically has: 

• Many instruction types that access memory directly 
• A large number of addressing modes 
• Variable-length instruction encoding 
• Support for misaligned accesses, 

although architectures vary widely. 

What RISe/elSe Are Not 

Note that the above lists do not require: 

• An instruction pipeline. 
• A superscalar instruction dispatch. 
• Hardwired or microcoded instructions. 
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Is RIse Assembly More Difficult than else Assembly? 

These are all implementation issues that any processor may make use of, regard­
less of its ISA. RISC processors have become associated with these features 
because RISC ISAs are designed to facilitate the implementation of these fea­
tures. However, the presence of these features does not indicate that the proces­
sor in question is an implementation of a RISC ISA. 

As an example, Intel's Pentium™ processor has an instruction pipeline with a 
superscalar dispatch. These implementation issues do not change the fact that 
the Pentium is just another (albeit fast) implementation of a CISC instruction set 
architecture. 

Is RISe Assembly More Difficult than else Assembly? 

So this brings us back to the original question: Is a RISC processor more difficult 
to program than a CISC processor? The answer to this question lies somewhere 
between JlThere's no way to tell" and JlThat's a silly question." 

It's difficult to answer the question because the programming challenges 
depend more on the specific processor architecture (that is, 68K, i86, PowerPC) 
than on the general category (that is, RISC or CISC) of the processor architecture. 

An easy way to make this clear is to compare the 68K and the i86 processor fam­
ilies. They are both CISC architectures, but the 68K is widely regarded as being 
much easier to program in assembly, mostly because of its large store of general 
purpose registers and flexible addressing modes. The same comparison can be 
made for RISC architectures: some RISC processor families will be easy to pro­
gram while others will be more difficult. 

In fact, an argument can be made that RISC assembly language programming is 
easier than CISC assembly. The large register store and the fact that most instruc­
tions have one cycle throughput reduces some of the complexity of assembly 
language programming. 

For today's processors, the most complicated aspect of programming in assem­
bly language is the instruction scheduling that is necessary on pipelined imple­
mentations. Because pipelines can exist on either RISC or CISC processors, this 
scheduling problem exists on processors of both architecture types. Since RISC 
simplifies the other aspects of programming, this becomes more manageable. 

1.4 PowerPC as a RISC ISA 

The preceding sections have spoken in general terms of RISC processors and 
how they fit into the general scheme of things. This section talks about how the 
PowerPC fits into the RISC category. 
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§1.4 PowerPC as a RISC ISA 

As mentioned earlier, five basic features are commonly found on RISC proces­
sors. We'll touch on each one and discuss how the PowerPC fits. 

A Large, Uniform Register Set 

The PowerPC architecture defines 32 general purpose registers and 32 floating­
point registers. All of these registers are general purpose in that any of the regis­
ters can be used as arguments to any of the instructions. 

The only exception to this is GPR rOo Some instructions (like the non-Update 
Load and Store instructions) use a register specification of 0 as a special case to 
indicate that no register should be used in the calculation. 

A Load/Store Architecture 

The only instructions that access memory are the Load and Store instructions. 
Thus, the PowerPC ISA qualifies as a Load/Store architecture. 

A Minimal Number of Addressing Modes 

Only two classes of instructions require addressing modes: the load/ store 
instructions and the branch instructions. All other instructions operate on regis­
ters or immediate values. 

The load/ store instructions allow three addressing modes (register indirect, reg­
ister indirect with register index, or register indirect with immediate index); and 
the branch instructions allow three modes (absolute, PC relative, or SPR indi­
rect). 

Contrast this with the 68000 (a CISC processor), which has a seemingly infinite 
number of addressing modes, with more coming out with each generation of the 
processor family. 

A Simple Fixed-length Instruction Encoding 

Every PowerPC instruction is encoded in 32 bits. There are no exceptions to this 
rule. Instruction encodings that do not require the full 32 bits are padded with 0 
bits so that they fill all 32 bits. 

NolMinimal Support for Misaligned Accesses 

This is where the PowerPC architecture deviates from the standard RISC design 
principles. Following the RISC philosophy, misaligned accesses should never 
occur, so support for them needlessly complicates the implementation. 
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Overview of this Book 

However, one of the design considerations of the original POWER architecture 
(the PowerPC's parent) was that it be able to emulate other processors efficiently. 
Because many of the processors that were likely to be emulated allowed mis­
aligned accesses, it made sense to include support for misaligned accesses in the 
POWER/PowerPC architecture. 

1.5 Overview of this Book 

The book is divided conceptually into four parts: an architecture and instruction 
set description (Chapters 2 through 12), a basic programming section (Chapter 
13), an advanced programming section (Chapters 14 through 16), and an instruc­
tion set summary (Appendices A and B). 

Chapter 2 begins with a basic overview of the PowerPC architecture: the stan­
dard data types and the functional units of the processor; and introduces the 
differences between the 32-bit and 64-bit PowerPC implementations. 

Chapter 3 contains a brief summary of the notation used in the remaining 
instruction set chapters. The following chapters (4 through 9) focus on a specific 
instruction type, such as floating-point or branch instructions. These are useful 
chapters to read through at least once, because they give a feel for which opera­
tions the PowerPC instruction set provides. 

Chapters 10 through 12 provide basic information about memory hierarchies 
and pipelines. 

Chapter 11 describes the standard function-calling mechanism that most 
PowerPC based systems will use. Note that the information provided in this 
chapter is not in any way enforced by the processor. It's just a set of conventions 
that allow routines generated by different compilers to interface consistently. 
This chapter will be of interest to programmers who need to debug high-level 
code at the assembly level. 

The remaining chapters define more advanced architectural concepts and 
describe some implementation details for the PowerPC 601 processor. This 
information is then used in discussions that describe techniques for optimizing 
code sequences so that they use the processor resources efficiently. 

The instruction set summaries in Appendices A and B provide easy-to-use 
instruction references, alphabetically organized by mnemonic. Appendix A 
devotes a page to each PowerPC instruction and includes the obsolete POWER 
instructions found on the 601. Appendix B lists every POWER and PowerPC 
instruction and all the extended mnemonics, and also gives the mapping of each 
extended mnemonic into standard instructions. Appendix B is quite useful for 
reading code that uses the extended mnemonics, because it isn't always appar­
ent from which base instruction the extended form was derived. 
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PowerPC 
Architecture 

Overview 

Before the instruction set can be discussed, the basic architecture of the processor 
must first be defined. This chapter describes the data types and functional units 
of the PowerPC architecture. 

2.1 Data Organization 

An understanding of how data is organized is the best place to begin, because 
everything else in this book assumes you know this. If you are familiar with 
assembly language for another processor, then nothing in this section should 
surprise you, and you should be able to quickly skim the information presented 
here. This section is included for the sake of completeness and to give people 
completely new to assembly language a good starting point. 

Basic Data Types 

The PowerPC provides six basic data types: byte, halfword, word, doubleword, 
and single- and double-precision floating-point. In addition, there is a quad­
word data type that is useful because quadword alignment is desirable in some 
circumstances. Table 2-1 summarizes these data types. 
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§2.1 Data Organization 

Table 2-1 Standard PowerPC Data Types 

Lower 8 Bits 
Data Type Data Size of Addressa 

(if aligned to this type) 

Byte 8-bit ---- ----
Halfword 16-bit ---- ---0 

Word 32-bit ---- --00 

Doublewordb 64-bit ---- -000 

Quadwordc 128-bit ---- 0000 

Floating-point single 32-bit ---- --00 

Floating-point double 64-bit ---- -000 

a. A '-' in the address indicates that the bit may be either a a or a 1. 

b. Fixed-point instructions that operate directly on doublewords are found on 64-bit PowerPC 
implementations only. 

c. Other than cache instructions, no instructions operate directly on quadwords. 

Of these data types, the byte, halfword, word, and the two floating-point types 
are the most commonly used. The doubleword data type is available only on 64-
bit PowerPC implementations. The quadword data type is included for com­
pleteness. 

Data Alignment 

Alignment refers to the placement of a data type in memory. Most processors are 
designed to operate more efficiently when data is aligned properly, so it is 
important to be aware of this concept. A data type is considered to be aligned if 
its address is an integral multiple of the data type size. 

Thus, the address of an aligned word value must be a multiple of four. Halfword 
and doubleword values must have addresses that are multiples of two and 
eight, respectively, for proper alignment. Because bytes are one byte wide, they 
are always considered to be aligned. 

When the addresses are viewed in binary, it is relatively easy to determine if the 
quantity is aligned. A multiple of 2 (halfword) always has a low order bit of bO; 
a multiple of four (word) has bO 0 for the low order bits; and a multiple of eight 
(doubleword) has bOOO. 
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Byte Ordering 

Byte Ordering 

When storing values that require more than one byte, some convention for the 
order of the bytes must be agreed upon or else the data could potentially be 
misinterpreted. Figures 2-1 and 2-2 show the two possible organizations for the 
halfword (2-byte) value OxOAOB. 

Figure 2-1 Big-endian Byte Ordering for OxOAOB 

OA OB 

Figure 2-2 Little-endian Byte Ordering for OxOAOB 

OB OA 

For the four-byte word OxOAOBOCOD, there are 24 (4! = 24) possible combina­
tions of bytes, but only the two shown in Figures 2-3 and 2-4 make sense. 

Figure 2-3 Big-endian Byte Ordering for OxOAOBOCOD 

OA OB OC OD 

Figure 2-4 Little-endian Byte Ordering for OxOAOBOCOD 

OD OC OB OA 

In both of these figures, the first encoding method stores the most significant 
byte, or big-end, first, and the second encoding stores the least significant byte, 
or little-end, first. Hence, the first method is referred to as big-endian and the sec­
ond is referred to as little-endian. 

By default, the PowerPC processors operate in big-endian mode, but there are 
switches to allow user-level or interrupt operations to occur in little-endian 
mode. 

Bit Numbering 

Just as the bytes within words are organized using a big-endian scheme, the bits 
within each byte or word are numbered using a big-endian numbering scheme. 
Thus, as Figure 2-5 shows, the most significant bit (msb) is bit #0 and the least 
significant bit (lsb) is bit #31. 

Figure 2-5 Little-endian Bit Numbering for a 32-bit Register 

o 1 2 3 28 29 30 31 

I I I I I I I I I I 
msb lsb 
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§2.2 Functional Units 

When representing data in registers, the msb will always be on the left and the lsb 
will always be on the right so that the displayed data is intelligible. 

In general, it doesn't matter how the bits are ordered or numbered within a reg­
ister, because one typically uses the entire register at a time. However, with the 
PowerPC, there are instructions that require a starting or ending bit, and for 
these instructions it is important to be aware of the numbering scheme. 

2.2 Functional Units 

It is convenient to divide a PowerPC processor into five conceptional units: the 
Fixed-Point or Integer Unit (IU), the Floating-Point Unit (FPU), the Branch Pro­
cessor Unit (BPU), the System Register Unit (SRU), and the Load/Store Unit 
(LSU). 

It is important to note that these are conceptual functional units. Although these 
units will be present in some form on each PowerPC implementation, they will 
not necessarily be these five particular units. Some units may be combined, or 
there may be multiple units of the same type. For example, the 601 combines the 
IU, LSU, and SRU into a unified Integer Unit. Future PowerPC processors will 
offer multiple IUs to increase integer performance. 

Integer Unit (IU) 

The Integer Unit performs all of the integer instructions. These instructions 
include the arithmetic, logical, and shift/ rotate instructions. 

The IU has a store of General Purpose Registers (GPRs) that are used to perform 
the calculations. In addition, there is a Fixed-Point Exception Register (XER) that 
contains status information. 

The IU is sometimes called the Fixed-Point Unit (FXU). 

Floating-Point Unit (FPU) 

The Floating-Point Unit performs all of the floating-point operations that the 
PowerPC supports. These operations conform to the IEEE 754 floating-point 
standard for floating-point arithmetic and include all of the required data types 
(normalized, denormalized, NotANumbers, and others). 

The FPU also includes a Floating-Point Status and Control Register (FPSCR) that 
controls how floating-point operations are performed and provides status infor­
mation. 
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Branch Processor Unit (BPU) 

Branch Processor Unit (BPU) 

The Branch Processor Unit handles all of the predictions and resolutions for the 
branch instructions. When a branch cannot be completely resolved, the BPU pre­
dicts whether or not the branch will be taken and fetches the appropriate 
instructions. 

There are three SPRs associated with the BPU: the Link Register (LR), the Count 
Register (CTR), and the Condition Register (CR). Both the LR and the CTR can 
be used to hold target addresses for branching, although this is a secondary 
function for the CTR. The CR and CTR are used by the conditional branch 
instructions to hold the conditions that the branch depends on. The CR holds the 
relational information (less than, greater than, or equal) that is calculated by one of 
the compare instructions, and the CTR holds a count that can be automatically 
decremented to facilitate the coding of loop structures. 

Load/Store Unit (LSU) 

The Load/Store Unit handles all of the load and store instructions executed by 
the processor. Because these instructions are the only interface between the pro­
cessor registers and the memory subsystem, the LSU can be considered the data 
interface for the processor. 

System Register Unit (SRU) 

The System Register Unit provides access to the various Special Purpose Regis­
ters (SPRs) that the PowerPC provides. This unit also implements the various 
Condition Register logical operations. 

2.3 Processor Registers 

This section provides an overview of both the user- and supervisor-level regis­
ters that the PowerPC specifies. In general, only the user-level registers will be 
useful to the programmer, but the supervisor-level registers are defined here to 
give a complete summary. 

Remember that bits within registers are numbered using the big-endian scheme. 
That is, the left-most or most-significant bit is bit 0, and the right-most or least 
significant bit is bit 31 (or 63). Because some registers can be different widths on 
different implementations, this can cause some confusion about bit numbering. 
See §2.4, 1/32- versus 64-bit Implementations," for more information. 

PowerPC Architecture Overview 13 



§2.3 Processor Registers 

User-Level Registers 

The user-level registers are the only registers that most programs are likely to 
need. 

General Purpose Registers (GPRs) 

Figure 2-6 General Purpose Register 

o W] 
GPR 

There are 32 general purpose registers. These registers are referred to as GPRO -
GPR31, or simply rO - r31. The size of these registers depends on the PowerPC 
implementation: they are 32-bits wide on 32-bit implementations and 64-bits 
wide on 64-bit implementations. 

When instructions that operate on 32-bit data are executed on a 64-bit PowerPC 
implementation, only the lower (right-most) 32 bits are used. 

Floating-Point Registers (FPRs) 

Figure 2-7 Floating-Point Register 
o 63 

FPR 

There are 32 floating-point registers. These registers are referred to as FPRO -
FPR31, or simply frO - fr31. The floating-point registers are always 64 bits in 
width and always contain double-precision floating-point values. 

Condition Register (CR) 

Figure 2-8 Condition Register 
03478 U U ~ M W W ~ ~ ~ ~ n 

I CRO I CRt I CR2 I CR3 I CR4 I CR5 I CR6 I CR7 I 

The Condition Register is a 32-bit-wide register that contains eight 4-bit wide 
condition fields. These eight fields can be specified as the destination for the 
result of the comparison operations or as the source for the conditional branch 
operations. 

These eight fields are referred to as erfO - erf7, or CR{O} - CR{7}. As with the 
bit numbering, the fields are numbered from left to right. Thus, erfO corre­
sponds to CR[O:3], erfl = CR[4:7], ... , and erf7 = CR[28:31]. 
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Condition Register (CR) 

How the four bits in each field are interpreted depends on the instruction that 
was used to set the field. Figure 2-9 shows how the bits of the field are set for 
fixed-point compare operations. In the figure, 0, 1, 2, and 3 specify the corre­
sponding bit within the given CR field. 

Figure 2-9 CR Field Bits Resulting from Fixed-Point Compare Operations 

o LT 
1 GT 
2 EQ 
3 SO 

I LT I GT I EQ I so I 

Less Than 
Greater Than 
Equal 
Summary Overflow 

Figure 2-10 shows how the bits are set for floating-point compare operations. 

Figure 2-10 CR Field Bits Resulting from Floating-Point 
Compare Operations 

o FL 
1 FG 
2 FE 
3 FU 

FPLess Than 
FP Greater Than 
FPEqual 
FP Unordered 

CR field 0 is implicitly set by fixed-point instructions and CR field 1 is implicitly 
set by floating-point instructions that have their Record bit set. Fixed-point 
instructions with the Record bit set update the CR field 0 as Figure 2-11 shows. 
In this figure, 0, 1, 2, and 3 are the bits within CR field 0, that is, CR[0:3]. 

Figure 2-11 CR Field Bits Resulting from Fixed-Point Operations with 
Record Bit 

o LT 
1 GT 
2 EQ 
3 SO 

I LT I GT I EQ I so I 

Negative (Less Than Zero) 
Positive (Greater Than Zero) 
Zero (Equal to Zero) 
Summary Overflow 
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Figure 2-12 shows the interpretation of the bits of CR field 1 after a floating-point 
instruction with the Record bit set has been executed. In this figure, 0, 1, 2, and 3 
are the bits within CR field 1, that is, CR[4:7]. 

Figure 2-12 CR Field Bits Resulting from FP Operations with Record Bit 

o FX 
1 FEX 
2 VX 
3 OX 

FP Exception Summary 
FP Enabled Exception Summary 
FP Invalid Operation Exception Summary 
FP Overflow Exception 

Fixed-Point Exception Register (XER) 

Figure 2-13 Fixed-Point Exception Register 
o 1 2 3 15 16 23 24 25 31 

[SO]OV[CAI 0 0 0 0 0 0 0 0 0 0 0 0 0 I Byte compare value I 0 I Byte count I 

The XER (see Figure 2-13) contains information about the operation of integer 
instructions, such as the Carry bit, the Overflow bit, and a Summary Overflow 
bit. The XER also contains special-purpose fields that are used by some instruc­
tions. 

The Summary Overflow (SO) bit is the same as the Overflow (OV) bit except that 
it is sticky. A bit that is sticky is one that will remain set once it has been set-it 
must be explicitly cleared by using the mtxer or mcrxr instructions. This is con­
trasted with the OV bit, which will be updated (cleared or set) by the next 
instruction that provides overflow information. The SO bit can be used to check 
if any of a sequence of instructions has caused an overflow, thus eliminating the 
need to explicitly check after each instruction that could cause an overflow. 

The "Byte compare value" and "Byte count" fields of the XER are used by some 
of the Load String and Store String instructions. The "Byte compare value" is used 
only on the 601 to support the obsolete POWER instruction lscbx. 

A full definition of the XER bits is given in Appendix C. 

Floating-Point Status and Control Register (FPSCR) 

The FPSCR is a 32-bit register that contains the control and status bits for the 
FPU (see Figure 2-14). The control bits include enable bits for the various float­
ing-point exceptions and rounding bits for controlling how the FPU performs 
rounding operations. The status bits record any floating-point exceptions that 
may have occurred. 

16 Chapter 2 



Link Register (LR) 

Figure 2-14 Floating-Point Status and Control Register 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31 

VXSNAN~~ 1 ~Lvxvc 
VXISI~ ~VXIMZ 
VXIDI VXZDZ 

~LVXCVI 
~VXSQRT 

VXSOFT 

A full definition of the FPSCR bits is given in Appendix C. 

Link Register (LR) 

The Link Register (see Figure 2-15) is used to hold the target address for a 
branch. Certain forms of the branch instruction will automatically update the LR 
with the address of the instruction immediately following the branch. This latter 
use is well suited for performing subroutine calls: when the branch is taken (that 
is, the subroutine is called), the LR contains the return address and the subrou­
tine can return to the caller with a simple Branch to LR instruction. 

Figure 2-15 Link Register 

o 
LR 

Counter Register (CTR) 

The primary function of the Count Register (see Figure 2-16) is to provide a 
counter that can be set to specify the number of iterations for a loop. Some forms 
of the conditional branch instructions automatically decrement this counter and 
use the new counter value as part of the expression to determine if the branch 
should be taken or not. 

Figure 2-16 Count Register 

o [~§] 
CTR 

The CTR can also be used to hold branch addresses. By using the CTR, the target 
address can be calculated and branched to without affecting the contents of the 
Link Register. It is mostly operating system (OS) glue routines that take advan­
tage of this use of the CTR, although user programs can safely do the same thing. 

Supervisor-Level Registers 

The supervisor-level registers are registers that contain information that is criti­
cal to the proper operation of the system. To help prevent programs from inad-
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vertently accessing one of these registers and causing damage, access to all of 
these registers is privileged. This means that the program must be running in 
supervisor mode or a privilege exception will occur. 

Fortunately, there is rarely any need to access these registers. 

Machine State Register (MSR) 

The MSR is a [~] bit register that contains the status bits that define the current 

state of the processor (see Figure 2-17). This includes the bits to indicate if the 
processor is in 32- or 64-bit mode, if certain interrupts are enabled, if the proces­
sor is in big- or little-endian mode, and other bits. 

On 32-bit PowerPC implementations, the bits are arranged as shown in Figure 
2-17. 

Figure 2-17 Machine State Register for 32-bit PowerPC Implementations 

o 1 4 5 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

101000010000010 0 olPOwlollLEIEElpRIFPIMEIFEOISEIBEIFEllolIPlmlDRlo OIRIILEI 

Ort 64-bit PowerPC Implementations, there are an additional 32 bits that are part 
of the MSR, as shown in Figure 2-18. The bits of the 32-bit MSR are mapped into 
the low-order 32 bits (bits 32 to 63) of the 64-bit MSR. Currently, there is only one 
bit defined in the upper 32-bits of the 64-bit MSR: the processor mode bit (SF). 
This bit indicates whether the processor is in 32-bit or 64-bit mode. 

Figure 2-18 Machine State Register for 64-bit PowerPC Implementations 

,0 I 31 

1-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 

n~ %n ~G M~~~aGm~~~~~~~~~~M~M 

101000 010 0 0 0 010 0 olPOwlolILEIEElpRIFplMEIFEOlsEIBEIFElIOIIPllRlDRIO OIRIILEI 

A full definition of the MSR bits is given in Appendix C. 

SavelRestore Registers (SRRO, SRRl) 

The two Save and Restore Registers are used to save the machine status when an 
interrupt occurs and then to restore the original state when the interrupt has 
been serviced. Thses two registers are shown in Figure 2-19. 

Figure 2-19 Save and Restore Registers 

o 
SRRO 

o [m 
SRRI 
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Processor Version RegIster (PV K) 

SRRO records the next instruction to be executed after the interrupt has been ser­
viced. SRR1 records the original state of the MSR. When an interrupt occurs, the 

bits [O~2]' [3~':1]' and [!::~~] are copied from the MSR and placed in the corre­
sponding bit positions of SRRl. 

Processor Version Register (PVR) 

The PVR is a read-only 32-bit register that provides a processor ID and revision 
level (see Figure 2-20). The upper 16 bits define the processor (for example, 
OxOOO1 = 601; Ox0003 = 603), and the lower 16 bits define the engineering revision 
level. 

o 

Figure 2-20 Processor Version Register 

15 16 

Version Revision 

Data Address Register (DAR) 

31 

When a Data Storage Interrupt occurs, the DAR is loaded with the effective 
address of the storage element that caused the access interrupt. Figure 2-21 
shows the DAR. 

Figure 2-21 Data Address Register 

o 
DAR 

Data Storage Interrupt Status Register (DSISR) 

The DSISR is a 32-bit register that defines the cause of Data Storage and Align­
ment interrupts (see Figure 2-22). 

Figure 2-22 Data Storage Interrupt Status Register 

o 31 

DSISR 

This register is sometimes referred to as the DAE/Source Instruction Service 
Register. 
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1 

1 

0 

0 

Instruction and Data Block Address Translation Registers (IBAT, DBAT) 

The Block Address Translation registers (BATs) are used by the BAT mechanism 
to record information about the range of memory pages that are considered to be 
grouped together as a block. 

Figure 2-23 Block Address Translation Registers 

Upper BAT Register 

[WW] nmm mmmm 
BEPI 10 0 0 01 BL Ivslvpl 

Lower BAT Register 

W]W] [~mfl [~3]mmmm 
BRPN 10 0 0 0 0 000 o 01 WIMG 101 PP 1 

There are four pairs of IBATs and four pairs of DBATs (see Figure 2-23). There are 
two sets of BAT registers because instruction and data references are handled 
separately. On PowerPC implementation with unified caches (like the 601), only 
the IBATs will be implemented. 

General SPRs (SPRGO-SPRG3) 

The four General SPRs are provided to give the operating system extra registers 
to store whatever information it needs without tying up GPRs. These registers 
are 32 bits on 32-bit implementations, and 64 bits on 64-bit implementations. 
Figure 2-24 shows the format of these four registers. 

Figure 2-24 General SPRs 

SPRGn 

Time Base Register (TBU, TBL) 

The Time Base Register is a 64-bit register that maintains a counter. The fre­
quency of the counter is system-dependent-to convert the TBR value to calen­
dar values requires the update frequency value that the as needs to maintain. 
The two halves of the TBR are shown in Figure 2-25. 

Figure 2-25 Time Base Register 

o 31 

TBU 

32 63 

TBL 
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Decrementer (DEC) 

The TBR can be accessed as if it were two 32-bit registers by specifying either the 
upper or lower portion of the register. Read access to the TBR is user-level; write 
access is supervisor-level. 

This register is not defined on the 601. 

Decrementer (DEC) 

The DEC register is a 32-bit register (see Figure 2-26) that counts down (at the 
same frequency as the Time Base Register) and generates a Decrementer inter­
rupt when the counter passes O. 

Figure 2-26 Decrementer 

o 31 

DEC 

Because the 601 doesn't have a Time Base Register, the frequency of the DEC on 
the 601 is the same as for the Real-Time Clock (RTC) defined in the next section. 

For compatibility with the POWER architecture, the 601 also provides user-level 
read access to the DEC by using 6 instead of 22 as the SPR ID with the mfspr 
instruction. 

External Access Register (EAR) 

The EAR is an optional 32-bit SPR that is used to specify the (system specific) 
resource ID of the target external device that the eciwx and ecowx instructions 
can communicate with. The fields of the EAR are given in Figure 2-27. 

Figure 2-27 External Access Register 

o 1 25 26 31 

IElo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 RID I 

Segment Registers (SRs) 

The sixteen 32-bit SRs are used to calculate the virtual address from the 32-bit 
effective address. These registers are defined for 32-bit implementations only. 

The format of the Segment Registers is different depending on if the SR specified 
an ordinary or a direct-store segment (see Chapter 10, "Memory & Caches," for 
more information about segments). For ordinary segments, the SR is arranged as 
shown in Figure 2-28. 

Figure 2-28 Segment Register for Ordinary Segments 

o 1 2 3 7 8 31 

VSID 
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For direct-store segments, the SR is arranged differently, as shown in Figure 2-29. 

Figure 2-29 Segment Register for Direct-store Segments 

o 1 2 3 11 12 31 

Burn controller specific 

Address Space Register (ASR) 

The ASR (Figure 2-30) is a 64-bit SPR that holds the address of the Segment 
Table. It is defined only for 64-bit implementations. 

Figure 2-30 Address Space Register 

o 51 52 63 

Real Address of Segment Table I unused I 

Storage Description Register t (SORt) 

The SDR1 contains the encoded size and the address of the Page Table. This reg­
ister is 32 bits wide on 32-bit implementations and 64 bits wide on 64-bit imple­
mentations, as shown in Figure 2-3l. 

Figure 2-31 Storage Description Register 

o 45 46 58 59 63 

HTABORG I unused I HTABSlZE I 

This register is also referred to as the Page Table Search Description Register or 
simply the Table Search Description Register. 

Processor Specific Registers 

This section discusses the registers that are not part of the PowerPC specification 
but are defined by some implementation. These registers are provided by the 
601 for POWER compatibility. 

Multiply-Quotient Register (MQ) 

The MQ register (Figure 2-32) is used to emulate the MQ register defined on 
POWER processors. Certain (non-PowerPC) instructions use this register. 

Figure 2-32 Multiply-Quotient Register 

o 31 

MQ 

This register is defined on the 601 only. 
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Real-Time Clock Registers (RTCU, RTCL) 

The RTC registers provide access to the POWER architecture's Real-Time Clock. 
The upper register (RTCU) keeps track of the number of seconds and the lower 
register (RTCL) keeps track of the number of nanoseconds since the beginning of 
the current second. Both halves of this register are shown in Figure 2-33. 

Figure 2-33 Real-Time Clock Register 

o 31 

RTCU 

012 24 25 31 

10 01 RTCL 10 0 0 0 0 0 01 

This register is defined on the 601 only. 

2.4 32- versus 64-bit Implementations 

This book describes both the 32-bit and 64-bit versions of the PowerPC architec­
ture. For the most part, the programming model is the same for both versions, 
but there are some basic differences. 

To avoid confusion, it is worth pointing out that the term "64-bit instruction" is 
used in this section to refer to an instruction that is available on 64-bit implemen­
tations only. All of the PowerPC floating-point instructions operate on 64-bit 
quantities, but are considered 32-bit instructions because they are available on 
32-bit PowerPC implementations. 

32/64-bit Operating Modes 

There are some subtle differences between the 32-bit and 64-bit operating modes 
for the PowerPC. In general, these differences affect only the instructions that 
are available for use and the method by which effective addresses are calculated, 
but in some instances instructions behave differently based on the operating 
mode. 

32-bit Mode on 32-bit Implementations 

All 32-bit instructions are available. No 64-bit instructions are available. 

64-bit Mode on 32-bit Iinplementations 

Is not allowed. Any attempt to execute a 64-bit instruction on a 32-bit implemen­
tation will result in an Illegal Instruction exception. 
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32-bit Mode on 64-bit Implementations 

This compatibility mode for 32-bit implementations behaves just like the 32-bit 
mode on 32-bit implementations with these exceptions: 

• Instructions defined only for 32-bit implementations (for example, mfsr, 
mtsr) are not available and will cause an Illegal Instruction exception. 

• All effective address calculations are performed using all 64 bits of the source 
registers. However, the upper 32 bits are set to 0 before accessing data or 
fetching instructions. 

• Instructions that always return a 64-bit result (for example, mUlhd) will work 
properly (that is, they will return a 64-bit result as expected) in 32-bit mode. 

64-bit Mode on 64-bit Implementations 

All instructions operate on all 64 bits of the source registers and produce 64-bit 
results. 

32/64-bit Registers 

The most significant difference between 32- and 64-bit implementations is the 
width of many of the processor registers. These differences are summarized in 
this section. 

GPRs 

All of the GPRs are 32 bits wide for 32-bit implementations and 64 bits wide for 
64-bit implementations. For 64-bit implementations, all 64 bits of the register are 
affected, except when executing in 32-bit mode. 

Counter Register 

The Counter Register (CTR) is 32 or 64 bits wide, depending on the PowerPC 
implementation. To insure that 64-bit implementations executing in 32-bit mode 
operate the same as 32-bit implementations, only the low-order 32 bits of the 
CTR are used when the processor is in 32-bit mode. 

Machine State Register 

The MSR is 32 bits wide on 32-bit implementations and 64 bits wide on 64-bit 
implementations. The 32 additional bits for the 64-bit version are used to store 
the current mode (32- or 64-bit), and to extend the reserved field from the 32-bit 
MSR. 
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SaveIRestore Registers 

These registers (SSRO and SSR1) are 32 bits on 32-bit implementations and 64 bits 
on 64-bit implementations. If an interrupt occurs on a 64-bit implementation 
executing in 32-bit mode, the upper 32 bits of SSRO (the register that stores the 
next instruction address) are set to 0 because the lower 32 bits are enough to hold 
the address. 

Segment Registers 

The sixteen 32-bit SRs are present only on 32-bit implementations. The instruc­
tions to access the Segment Registers (mfsr, mfsrin, mtsr, and mtsrin) do not 
exist on 64-bit implementations (not even in 32-bit mode). Trying to execute 
them will result in an Illegal Instruction exception. 

Address Space Register 

The ASR is defined only for 64-bit implementations, and thus, does not exist on 
any 32-bit PowerPC implementation. 

Storage Description Register 1 

The SDRl is 32 bits wide on 32-bit implementations and 64 bits wide on 64-bit 
implementations. Although the SDRl always contains Page Table information, 
the format of the information is different for 32- and 64-bit implementations. 
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Instruction Set 
Overview 

The next few chapters contain an overview of all the instructions and extended 
instruction forms for the PowerPC ISA. The instructions are grouped according 
to function under the following headings: Branch and Trap, Load and Store, 
Integer, Rotate and Shift, Floating-Point, and System Register. 

This chapter acts as an introduction to the following chapters. It describes the 
basic instruction structures and provides a summary of the notation used to 
describe the instructions and extended forms. 

3.1 Instruction Groups 

The instructions are grouped according to function within each of the major 
headings. For example, in Chapter 6, "Integer Instructions," there are subhead­
ings for Addition, Subtraction, Multiplication, and Division. Within these sub­
sections, all relevant instructions are presented along with a short textual 
description of the instruction operation. 

Each section also includes many tables that summarize the operations and the 
syntax for each instruction form. These tables are meant to make it easy to see 
the (sometimes subtle) differences between the various instructions of the same 
type. 
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3.2 Instruction Suffixes 

Many instructions allow standard suffixes to be specified to tell the processor 
to perform operations in addition to the basic instruction. For each instruction 
that allows suffixes, each valid suffix for the instruction is enclosed in square 
brackets (T and ']') immediately following the base mnemonic. If there are 
multiple suffixes for an instruction, they will each be enclosed in a separate set 
of brackets. 

Integer Suffixes: 10 ' and I.' 

For integer instructions, valid suffixes are' 0' and' .'. Appending an '0' tells the 
instruction to update the Fixed-Point Exception Register (XER) to reflect 
the Overflow (XER[OV]) and Summary Overflow (XER[SO]) information from 
the instruction's operation. Without this option, integer instructions do not sup­
ply the overflow information as part of the result. 

When the ' .' suffix is appended to integer instructions, it indicates that the con­
dition information should be recorded in field 0 of the Condition Register 
(CR{O}). This condition information records whether the result is less than zero, 
greater than zero, or equal to zero, and it contains a shadow copy of the Sum­
mary Overflow bit in the XER (XER[SO]). 

Floating-Point Suffixes: IS' and I.' 

Most floating-point instructions allow two types of suffixes to be specified: 's' 
and ' • '. The's' suffix indicates that the operation should be performed by inter­
preting the registers as if they contained single-precision data. If the operand 
registers do not truly contain single-precision values, then the result of instruc­
tions executed with the's' option is undefined. 

All arithmetic floating-point instructions allow the ' • ' suffix to be specified. This 
suffix tells the instruction to record the condition information in field 1 of the 
Condition Register (CR{l}). This keeps track of any floating-point exceptions 
that may be caused by the instruction. Floating-point is discussed in detail in 
Chapter 8. 

Branch Suffixes: 11' and I a' 

All branch instructions allow an 'I' suffix and some forms also allow an 'a' suf­
fix. The 'I' suffix indicates that the address of the following instruction should 
be recorded in the Link Register as part of the instruction operation, and the 'a' 
suffix indicates that the specified address is an absolute (instead of a program 
counter relative) value. These suffixes are described in greater detail in §4.1, 
"Branch Instructions." 
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3.3 Extended Instruction Forms 

Extended instruction forms are extra mnemonics that the assembler accepts and 
converts into valid instruction forms. These forms are not instructions them­
selves but are special cases of valid instruction forms. Extended forms are useful 
when the base form of an instruction is very general, as is the case with the 
branch and rotate instructions. The special cases provided by the extended 
forms can render an instruction that is complex and unwieldy (for example, 
Rotate Left Word Immediate then AND with Mask) into something more under­
standable (for example, Shift Left Immediate). 

The following chapters present both the standard instruction forms and the 
extended forms. When an extended form is presented, the base mnemonic from 
which the form is derived is given, along with a description of how the extended 
form maps into the base instruction. 

3.4 Obsolete Instructions 

Obsolete instructions are instructions that were part of the POWER architecture 
specification but were not included in the PowerPC ISA in an effort to streamline 
the architecture. All obsolete instructions are clearly marked as being obsolete to 
eliminate any confusion that might arise from the inclusion of these instructions. 

The obsolete instructions listed in the next few chapters are implemented only 
on the 601, for the purposes of backward compatibility only. New programs 
should not make use of these instructions. No future PowerPC implementation 
will support these instructions (although a computer system built using a Pow­
erPC processor may trap and emulate them in software). 

Wherever possible, a brief explanation is given of why the instruction was 
removed for the PowerPC architecture. In most cases, the instructions were 
removed to eliminate bottlenecks caused by seldom-used functionality or to 
reduce the complexity of PowerPC implementations. 

3.5 Optional Instructions 

The PowerPC ISA specification defines some instructions to be optional. These 
instructions mayor may not be present on a particular PowerPC implementa­
tion. In these chapters, all optional instructions are clearly noted as being 
optional. 

Before using these instructions, the programmer must first verify that the pro­
gram is running on an implementation that supports the given instruction. To 
determine which PowerPC processors implement a particular instruction, 
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instructions can be referenced in Appendix A, which contains an alphabetical list 
of all instructions. 

Most of the optional instructions are defined as belonging to one of a variety of 
instruction groups, for example, the Graphical Group. A processor may imple­
ment any or all of the instructions in any of the groups, but if a processor claims 
to support a given group, it must implement all of the instructions in the given 
group. 

At the moment, there are only two groups of optional instructions defined: the 
General Purpose Group and the Graphical Group. The General Purpose Group 
contains the fsqrt and fsqrts instructions, and the Graphical Group contains 
stfiwx, fres, frsqrte, and fsel. 

An optional instruction need not belong to any of the optional groups. For exam­
ple, eciwx and ecowx are both optional instructions, but they are not associated 
with any group. 

3.6 Notation 

Because of the complexity of most of the instructions, a special notation is 
needed to properly describe an instruction's operation. 

The following notation is used throughout this chapter to describe the operation 
of instructions. 

rT Specifies any of the 32 General Purpose Registers (GPRs) that are part of 
the Integer Unit. These registers may be 32 or 64 bits wide, depending on 
the PowerPC implementation: 32 bits wide on 32-bit implementations and 
64 bits wide on 64-bit implementations. For example, r 3 specifies GPR 3. 

frT Specifies any of the 32 64-bit Floating-Point Registers (FPRs) that are part of 
the Floating-Point Unit. For example, fr13 specifies FPR 13. 

MQ Specifies the Multiply-Quotient Register. This register exists only on 
POWER implementations and is used for multiply, divide and extended 
shift and rotate operations. 

CR Specifies the Condition Register. This register is commonly divided into 
eight fields that are specified using CR{O} through CR{7}. 

CIP Current Instruction Pointer. This is not a user-visible register on the 
PowerPC, but the CIP notation is convenient when describing how an 
instruction affects the flow of control. For example, CIP ¢::: LR indicates that 
the next instruction to be executed is at the address contained in the Link 
Register. 
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(rT) Specifies the contents of the given register. The specified register may be 
any GPR, FPR, or Special Purpose Register. For example, (r2) specifies the 
contents of GPR 2; (fr4), which specifies the contents of FPR 4. 

(x) Groups the expressions in x so that they are executed before expressions 
outside of the parentheses. 

[~] Specifies a number x. Two values of x are given: the top value (xl) is the 
number for 32-bit PowerPC implementations, and the bottom value (x2) is 
the number for 64-bit PowerPC implementations. This notation is used 
when referring to bits in registers, since the bit numbering is slightly 
different between the two implementation types. 

rT[x] Specifies the bit x in the given register. The specified register may be any 
GPR, FPR, or Special Purpose Register. Note that bits are numbered using 
the big-endian notation, thus bit 0 is the high-order or most-significant bit, 
and bit 31 (or 63 for 64-bit implementation) is the low-order or least­
significant bit. For example, r 2 [ 4] refers to bit 4 of GPR 2. 

rT [~] Specifies the bit x in the given register. Two values for x are given: the top 

value (xl) specifies the bit for 32-bit PowerPC implementations, and the 
lower value (x2) specifies the bit for 64-bit PowerPC implementations. This 
is typically used only for GPRs since most other registers are the same size 

on both implementation types. For example, r3 [~] refers to the sign bit 

of the (low-order) word in GPR 3. 

rT[x:y] Specifies the range of bits from x to y in the given register. The specified 
register may be any GPR, FPR, or Special Purpose Register. For example, 
r 1 [0 : 7] refers to bits 0 through 7 in GPR 1. 

rT [~] Specifies the range of bits from x to y in the given register. Two ranges ofx 

and y are given: the upper range (xl:yl) for 32-bit PowerPC 
implementations and the lower range (x2:y2) for 64-bit implementations. 
This is typically used only for GPRs since most other registers are the same 

size on both implementation types. For example, r3 [~::!~] refers to the 

least significant byte of GPR 3. 

rT{x} Specifies the range of bits corresponding to field x in the given register. The 
bits for a field n range from bit nx4 to bit nx4+3, thus, this notation is 
equivalent to rT[(x x 4):(x x 4) + 3]. The specified register may be any GPR, 
FPR, or Special Purpose Register. For example, CR{O} refers to field 0 (bits 
0:3) of the Condition Register. 

X Where X is any number of digits 0-9, specifies a decimal constant, for 
example, 24. 

bx Where X is any number of digits 0-1, specifies a binary constant, for 
example, bO 110. 
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o xX Where X is any number of digits O~ 9 or letters A-F, specifies a hexadecimal 
constant. Hexadecimal constants will always be specified using uppercase 
alphabetic characters, for example, OxBABE. 

x ~ y Loads x with the value y. This is used to identify the value that gets 
assigned to the instruction's target register. For example, r T ~ 0 means 
that register r T gets assigned a value of O. 

x ;= y Loads the temporary variable x with the value y. Temporary variables are 
used when the instruction operation is too complex to express in a single 
expression. This separate assignment notation for temporary variables is 
used to emphasize the fact that the variable x is not a processor resource 
that is being updated. For example, m ;= (r2) means that the temporary 
variable m is set equal to the contents of register r2. 

x = y Returns true if x is equal to y, false otherwise. 

x "* y Returns true if x is not equal to y, false otherwise. 

x > y Returns true if x is greater than y, false otherwise. 

x < y Returns true if x is less than y, false otherwise. 

x ~ y Returns true if x is greater than or equal to y, false otherwise. 

x ~ y Returns true if x is less than or equal to y, false otherwise. 

=x Returns a value that is approximately equal to x, for example, rT ~ "" 12 
assigns rT with a value that is close to, but not necessarily equal to, the 
square root of x. 

I x I Calculates the absolute value of x. 

-x Calculates the one's complement of x. A one's complement operation 
converts all binary 'l's in the source value to binary 'D's in the destination 
value and vice versa. For example, -bO 11 0 1 0 1 0 becomes b 10010101. 

-x Negatesx. This is the same as performing the two's complement of x. The 
two's complement of a value is equal to the one's complement plus 1. For 
example, -bOllO becomes b1010. 

'x Sign-extends the value x as appropriate. Sign-extension means that the 
most significant bit of x (also called the sign bit) is replicated to the left to fill 
all available bit positions. For example, 'Ox0042 sign-extends to 
OxOOOOOOOO 00000042 on 64-bit implementations; and 'OxFADE 
Sign-extends to OxFFFFFADE on 32-bit implementations. 

Ox Zero-extends the value x as appropriate. Zero-extension means that 0 bits 
are used to the left of x to fill all available bit positions. For example, 
°OxDEADFOOD zero-extends to OxDEADFOOD on 32-bit implementations 
and to OxO 0 0 00 0 0 0 DEADFO OD on 64-bit implementations. 

x + y Adds x to y. 
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x - y Subtracts y from x. 

x x y Multiplies x by y. 

x + y Divides x by y. 

x % Y Calculates the remainder of x divided by y. 

x.l.y Concatenates x with y. For example, OxSCAB .1.. OxFACE becomes 
OxSCABFACE. 

x & Y Logically ANDs x and y. For example, bO 11 0 & b1 0 10 becomes bO 0 10. 

x I y Logically ORs x and y. For example, bO 11 0 I b10 1 0 becomes b111 O. 

x EEl y Logically XORs x and y. For example, bO 11 0 EEl b1 0 1 0 becomes b11 0 O. 

x == y Calculates the equivalence of x and y. The result of the equivalence is 1 
wherever the bits of x and yare the same and 0 wherever they differ. For 
example, bO 11 0 == b1 0 10 becomes bO 0 1I. 

x « y Shifts x left by y bits. For example, b 10101111 « 2 becomes 
b10llll00. 

x » y Shifts x right by Y bits. For example, b 1 0 1 0 1111 » 2 becomes 
b0010101I. 

x 5> Y Shifts x right algebraically by y bits. An algebraic shift duplicates the most 
significant bit (bit a or the sign bit) as it shifts the data. For example, 
b10101010 5> 4 becomes bllll1010; bOll10 101 5> 4 becomes 
bOOOOOllI. 

x Q y Rotates x left by y bits. For example, b 1111 0 0 0 0 Q 2 becomes 
bll00001I. 

x 0 y Rotates x right by Y bits. For example, bOOOOllll 0 2 becomes 
bll00001I. 

x ? Y : z Returns either y or z depending on the value of x, where x is a Boolean 
expression. If x is true, then y is returned, otherwise z is returned. For 
example, rT~ (rA[26]=0)? 0 : (rB) means that if bit rA[26] is 0, rT is set 
equal to 0, otherwise it is set equal to the contents of r B. 
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Branch and Trap 
Instructions 

The Branch, Trap, and System Call instructions are the only instructions that 
change the flow of control of the processor. Since this potential change of control 
can disrupt the smooth operation of the pipeline, these instructions are handled 
by a separate branch processor that does its best to remove these instructions 
from the instruction stream before passing the instructions on to the other exe­
cution units. 

4.1 Branch Instructions 

There are four basic types of branch instructions: Branch, Branch Conditional, and 
Branch Conditional to either the Link Register or the Counter Register (see Table 4.1). 
The first two of these instructions expect the target address to be encoded in the 
branch instruction, while the second two branch instructions get the target 
address from one of the processor's Special Purpose Registers. 

All four of the branch instructions allow an optional '1' suffix to indicate that the 
address of the instruction following the branch should be stored in the Link Reg­
ister (LR) as part of the branch operation. This provides a simple way of imple­
menting subroutines, since the return address can be saved in the LR using the 
'1' option, and the subroutine can return to the caller by using a Branch to Link 
Register (blr) instruction. 

The Branch (b) and Branch Conditional (be) instructions have an additional 
option 'a' that allows the target address to be specified as an absolute value. 
Usually, the target address is specified relative to the current location counter, 
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Table 4-1 Basic Branch Instructions 

b[l][a] addr if(l = 1) 

Branch LR ¢::: eIP + 4 
if(a = 1) 

err ¢::: 'addr 

else 
CIr ¢::: CIr + 'addr 

be[l][a] BO,BI,addr if(l = 1) 

Branch Conditional LR ¢::: CIr + 4 
if( condition) 

if(a) 

CIr ¢::: 'addr 

else 
elr ¢::: elr + 'addr 

beetr[l] BO,BI if(l=I) 

Branch Conditional to Count Register LR ¢::: CIr + 4 
if(condition) 

elr ¢::: eTR 

belr[l] BO,BI oldLR :=LR 

Branch Conditional to Link Register if(l = 1) 

LR ¢::: eIP + 4 
if( condition) 

elr ¢::: oldLR 

that is, as a positive or negative offset from the address of the branch instruction. 
If the" Absolute Address" option is set by using the 'a' option, then the target 
address is taken directly from the branch instruction, without adjusting for the 
current location counter. 

As mentioned earlier, the Branch Conditional to Link Register (belr) instruction is 
useful for returning from a subroutine call when the return address is stored in 
the LR. The Branch Conditional to Counter Register (bectr) instruction is also use­
ful for this purpose. Technically, the Counter Register (CTR) is intended to be 
used only as a counter for loops, and it doesn't make sense to use it as a register 
to branch through. However, the original system designers of the POWER archi­
tecture needed an extra register to branch through when they were implement­
ing the global linkage mechanism, so they added the bcctr instruction since the 
CTR was conveniently available in the branch processor. The global linkage 
mechanism, which describes this use of the bcctr instruction, is discussed in 
§13.13, "Linking with Global Routines." 

One important thing to note about the operation of the branch and link instruc­
tions (those with the '1' option specified) is that the Link Register is updated 
with the value of the instruction following the branch even if the branch is not 
taken. This shouldn't cause problems if the LR is saved and restored according to 
standard function calling conventions (see §9.4 "Subroutine Calling Conven­
tions") but may cause problems for programmers who are trying to optimize 
code by saving and restoring the LR only when necessary. 
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The branch-on (EO) and bit (EI) parameters for the conditional branches provide 
a mechanism for specifying a wide range of conditional branch instructions. The 
branch-on parameter specifies which condition is used as a test for the branch 
and the bit parameter specifies which bit of the Condition Register (0-31) is used 
in the test. 

Table 4-2 contains a list of the valid branch-on parameters. The parameters con­
trol how the CTR and the bit from the CR work together to determine if the 
branch should be taken. For example, to encode an instruction that branches to 
the contents of the LR if the equal (EQ) flag in CR{2} is set (ignoring the CTR 
entirely), the beIr instruction should be used with BO equal to bOllOO and BI 
set to 10. The BI parameter is set to 10 because CR field 2 ranges from bit 8 to bit 
11, and the EQ flag is the third bit within a field. 

Table 4-2 Branch-On (BO) Parameter for Branch Conditional Instructions 

bOOOOy Decrement CTR 
Branch if CTR '" 0 AND CR[BI] = 0 

bOOOly Decrement CTR 
Branch if CTR = 0 AND CR[BI] = 0 

bOOlzy Branch if CR[BI] = 0 

b0100y Decrement CTR 
Branch if CTR '" 0 AND CR[BI] = 1 

b010ly Decrement CTR 
Branch if CTR = 0 AND CR[BI] = 1 

bOllzy Branch if CR[BI] = 1 

blzOOy Decrement CTR 
Branch if CTR '" 0 

blzOly Decrement CTR 
Branch if CTR = 0 

blzlzz Branch Always 

z bits are ignored but must be 0 for the instruction to be valid. 
y bits encode hints as to whether the conditional branch is likely to be taken. 

As can be seen from the example given in the preceding paragraph, using the BO 
and BI parameters directly can be somewhat confusing and error-prone. For this 
reason, a large number of extended instruction forms are provided for the most 
commonly used conditional branches. 

The next few sections deal with these extended branch forms. The first section, 
"Contitional Branch Extended Forms, " presents the extended forms for condi­
tional branch instructions when the target address is encoded in the instruction. 
The next two sections, "Branch to LR Extended Forms" and "Branch to CTR 
Extended Forms," present the extended forms for branch instructions to the 
Link and Counter Registers. 
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Conditional Branch Extended Forms 

The Conditional Branch extended fonns are built on top of the Branch Conditional 
(be) instruction. Because of the large number of extended forms, this section is 
divided into three parts: the bit test forms, the CTR-dependent forms, and the 
forms with encoded conditions. 

Bit Test Extended Forms 

The Bit Test extended forms test a designated bit in the Condition Register and 
branch to the encoded address depending on if the specified bit is set ('I' or true) 
or clear ('0' or false) (see Table 4-3). 

Table 4-3 Conditional Branch Extended Instruction Forms with Bit Tests 

bt[l][a] bit, addr u(CR[bit] = 1) 
Branch if Condition True branch to addr 
extended form for bc[llla] 12, bi t, addr 

bf[l][a] bit, addr u(CR[bit] = 0) 
Branch if Condition False branch to addr 
extended form for bc[llla] 4, bi t, addr 

The Branch if Condition True (bt) form tests bit bit in the Condition Register and 
branches to the target address addr if the bit is '1'. 

The Branch if Condition False (bf) form tests the bit bit in the Condition Register 
and branches to the target address addr if the bit is '0'. 

CTR-Dependent Extended Forms 

The CTR-Dependent Conditional Branch forms use the predecremented value of 
the Counter Register to determine if the branch should be taken. 

Table 4-4 summarizes the two basic types of CTR Conditional Branches: those 
that depend solely on the CTR and those that depend on the CTR and a condi­
tion in the CR. 

The first two CTR extended forms are the Branch if Decremented CTR is Non-Zero 
(bdnz) and the Branch if Decremented CTR is Zero (bdz). These instructions 
depend only on the CTR. They decrement the CTR and then compare the new 
CTR value with 0 to determine if the branch should be taken. The first form 
branches if the new CTR is not equal to 0, while the second form branches if it is 
equal to O. 

The remaining four CTR-based Conditional Branches depend on both the CTR 
and a specified bit in the Condition Register. The four forms cover all possibili­
ties of the CTR being zero or non-zero and the bit in the CR being '0' or '1'. 
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Extended Forms with Encoded Conditions 

Table 4-4 Conditional Branch Extended Forms with CTR Conditions 

bdnz[lHa] addr CTR<= CTR-1 
Branch if Decremented CTR is Non-Zero if(CTR;to 0) 
extended form for bc[l][a] 16,0, addr branch to addr 

bdz[lHa] addr CTR<= CTR-1 
Branch if Decremented CTR is Zero if(CTR = 0) 
extended form for bc[l][a] 18,0, addr branch to addr 

bdnzt[lHa] bit, addr CTR<= CTR-1 
Branch if Decremented CTR is Non-Zero and if((CTR;to 0) AND (CR[bit] = 1)) 

Condition True 
extended form for bc[l][a] 8 ,bi t, addr 

branch to addr 

bdnzf[l][a] bit, addr CTR<= CTR-1 
Branch if Decremented CTR is Non-Zero and if((CTR;to 0) AND (CR[bit] = 0)) 

Condition False 
extended form for bc[l][a] 0, bi t, addr 

branch to addr 

bdzt[lHa] bit,addr CTR<= CTR-1 
Branch if Decremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 1)) 

Condition True 
extended form for bc[l][a] 10, bi t, addr 

branch to addr 

bdzf[lHa] bit, addr CTR<= CTR-1 
Branch if Decremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 0)) 

Condition False 
extended form for bc[l][a] 2, bi t, addr 

branch to addr 

The Branch if Decremented CTR is Non-Zero and Condition True (bdnzt) form dec­
rements the CTR and branches if the new value of the CTR is not equal to 0 and 
the specified bit in the CR is 'I' (true). The bdnzf form is identical, except that it 
requires that the bit in the CR be '0' (false) in order for the branch to be taken. 

The last two forms, bdzt and bdz f, are similar to bdnzt and bdnz f, except that 
they branch only if the decremented CTR is equal to 0 and the appropriate con­
dition holds. 

Extended Forms with Encoded Conditions 

Because the Condition Register is divided into eight fields, it is convenient to use 
instructions which operate on fields in the CR instead of individual bits. The 
Conditional Branches with Encoded Conditions are extended forms which pro­
vide this convenience by building on top of the standard Branch Conditional (be) 
instruction. 

The 12 conditional branch forms listed in Table 4-5 have the condition encoded 
as part of the mnemonic. These forms operate on a field of the CR that is speci­
fied as one of the parameters. However, the CR field is an optional parameter. If 
a CR field isn't specified explicitly, the instruction is assumed to refer to CR{O}. 
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Table 4-5 Condition Branch Extended Forms with Encoded Conditions 

beq[l][a] [erE, ]addr if(CR[crf*4+2] = 1) 
Branch if Equal branch to addr 
extended form for bc[llla] 12, crf*4+2, addr 

bne[l][a] [erE, ]addr if(CR[crj*4+2] = 0) 
Branch if Not Equal branch to addr 
extended form for bc[llla] 4, crf*4+2, addr 

blt[l][a] [erE, ]addr if(CR[crj*4+0] = 1) 
Branch if Less Than branch to addr 
extended form for bc[llla] 12, crf*4+0, addr 

ble[l][a] [erE, ]addr if(CR[crf*4+1] = 0) 
Branch if Less Than or Equal branch to addr 
extended form for bc[llla] 4, crf*4+1, addr 

bgt[l][a] [erE, ]addr if(CR[crj*4+1] = 1) 
Branch if Greater Than branch to addr 
extended form for bc[llla] 12, crf*4+1, addr 

bge[l][a] [erE, ]addr if(CR[crj*4+0] = 0) 
Branch if Greater Than or Equal branch to addr 
extended form for bc[llla] 4, crf*4+0, addr 

bnl[l][a] [erE, ]addr if(CR[crj*4+0] = 0) 
Branch if Not Less Than branch to addr 
extended form for bc[llla] 4, crf*4+0, addr 

bng[l][a] [erE, ]addr if(CR[crf*4+1] = 0) 
Branch if Not Greater Than branch to addr 
extended form for bc[llla] 4, crf*4+1, addr 

bso[l][a] [erE, ]addr if(CR[crj*4+3] = 1) 
Branch if Summary Overflow branch to addr 
extended form for bc[llla] 12, crf*4+3, addr 

bns[l][a] [erE, ]addr if(CR[crf*4+3] = 0) 
Branch if Not Summary Overflow branch to addr 
extended form for bc[llla] 4, crf*4+3, addr 

bun[l][a] [erE, ]addr if(CR[crf*4+3] = 1) 
Branch if Unordered branch to addr 
extended form for bc[llla] 12, crf*4+3, addr 

bnu[l][a] [erE, ]addr if(CR[crf*4+3] = 0) 
Branch if Not Unordered branch to addr 
extended form for bc[llla] 4, crf*4+3, addr 

The beq form branches if the EQ bit (bit 2) of the given CR field is 'I'. The bne 
form is similar, but it branches if that bit is '0'. 

The bl t and bgt forms check the less than (LT) and greater than (GT) bits (respec­
tively) of the specified CR field and branch if the bit is set. 
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Branch to LR Extended Forms 

The ble and bng forms are two mnemonics that map to the same instruction. 
They both check the GT (greater than) bit of the specified CR field and branch if 
that bit is '0'. 

The bge and bnl forms also map to the same instruction. They check the LT (less 
than) bit of CR{crf} and branch if the bit is clear. 

The last four extended branch forms depend on the state of bit 3 of the desig­
nated CR field. This bit has different meanings depending on how the bit was 
set, and there is a set of extended forms for the two most common of these bit 
interpretations. 

The first set of forms assumes that the CR field was set by an integer arithmetic 
or compare instruction. For these instructions, bit 3 contains the summary over­
flow (SO) bit that is copied from the XER. The bso and bns instructions branch 
if the SO bit is 'I' or 'a', respectively. 

The second set of extended forms assumes that the CR field has been set by a 
floating-point compare instruction. Floating-point compare instructions set the 
unordered flag (bit 3) of the destination CR field if one or both of the numbers 
being compared is Not a Number (NaN). The bun instruction branches if the com­
parison returned an unordered result, and the bnu instruction branches if an 
unordered result was not returned. 

Branch to LR Extended Forms 

There are four major types of extended forms for the belr instruction: uncondi­
tional branch forms, bit test forms, CTR-dependent forms, and forms with 
encoded conditions. 

Most of these forms are identical to their Branch Conditional (be) counterparts, 
except that the branch destination is taken from the Link Register (LR) instead of 
encoded directly in the instruction. 

Branch Unconditional 

There is one extended form that unconditionally branches to the contents of the 
Link Register (see Table 4-6). 

Table 4-6 Unconditional Branch to LR Extended Instruction Form 

blr[l] 
Branch to LR branch via LR 
extendedformforbclr[l] 20,0 

The blr instruction branches directly to the address stored in LR. If the '1' 
option is specified, the LR is updated with the address of the instruction imme-
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diately following the branch. The new LR value is stored after the old LR value 
has been used for the branch operation. 

Bit Test Extended Forms 

As with the Branch Conditional forms described in the preceding section, the Bit 
Test extended forms (see Table 4-7) test a given bit in the Condition Register and 
branch depending on the current value of the specified CR bit. These forms dif­
fer in that they branch to the address stored in the LR instead of the address 
encoded in the branch instruction. 

Table 4-7 Branch to LR Extended Instruction Forms with Bit Tests 

btlr[l] bit 
if(CR[bit] = 1) 

Branch to LR if Condition True 
branch via LR 

extendedformforbclr[l] 12,bit 

bflr[l] bit if(CR[bit] = 0) 
Branch to LR if Condition False 

branch via LR 
extended form for bclr[l] 4, bi t 

The btlr form branches to the LR if the specified bit in the CR is 'I'. The bflr 
form branches if CR[bit] is 'a'. 

CTR-Dependent Extended Forms 

The CTR-dependent Branch to Link Register forms (see Table 4-8) use the decre­
mented value of the Counter Register and an optional condition to determine if 
the branch should be taken. 

All six of these forms are identical to the Branch Conditional forms described in 
the previous section, except for the fact that they branch via the LR instead of to 
the address encoded in the instruction. 

The first two CTR extended forms are the Branch to LR if Decremented CTR is Non­
Zero (bdnzlr) and the Branch to LR if Decremented CTR is Zero (bdzlr). These 
instructions depend only on the CTR. The bdnzlr instruction decrements the 
CTR and branches if the new value of the CTR is not equal to O. The bdzlr 
instruction performs a similar operation but branches if the CTR is equal to O. 

The remaining four CTR dependent Conditional Branches depend on both the 
CTR and a specified bit in the Condition Register. These four forms cover all 
possibilities of the CTR being zero or non-zero, and the bit in the CR being 'a' 
or '1'. 
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Table 4-8 Branch to LR Extended Instruction Forms with CTR Conditions 

bdnzlr[l] CTR<:= CTR-1 
Branch to LR if Decremented CTR is Non-Zero i£(CTRot 0) 
extended form for bclr[l] 16,0 branch via LR 

bdzlr[l] CTR<:= CTR-1 
Branch to LR if Decremented CTR is Zero i£(CTR = 0) 
extended form for bclr[l] 18,0 branch via LR 

bdnztlr[l] bit CTR<:= CTR-1 
Branch to LR if Decremented CTR is Non-Zero i£((CTR ot 0) AND (CR[bit] = 1)) 

and Condition True 
extended form for bclr[l] 8, bi t branch via LR 

bdnzflr[l] bit CTR<:= CTR-1 
Branch to LR if Decremented CTR is Non-Zero if((CTR ot 0) AND (CR[bit] = 0)) 

and Condition False 
extended form for bclr[l] 0, bi t branch via LR 

bdztlr[l] bit CTR<:= CTR-1 
Branch to LR if Decremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 1)) 

Condition True 
extended form for bclr[l] 10, bi t branch via LR 

bdzflr[l] bit CTR<:= CTR-1 
Branch to LR if Decremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 0)) 

Condition False 
extended form for bclr[l] 2, bi t branch via LR 

The Branch to LR if Decremented CTR is Non-Zero and Condition True (bdnztlr) 
form decrements the CTR and branches if the new value of the CTR is not equal 
to a and the specified bit in the CR is '1' (true). The bdnzflr form is identical, 
except that it requires that the bit in the CR be '0' (false) in order for the branch 
to be taken. 

The last two forms, bdztlr and bdzflr, are similar to bdnztlr and bdnzflr, 
except that they branch only if the decremented CTR is equal to O. 

Extended Forms with Encoded Conditions 

The 12 conditional Branch to LR forms listed in Table 4-9 have the condition 
encoded as part of the mnemonic. These 12 forms are the same as the 12 Branch 
Conditional forms described in the previous section and presented in Table 4-5. 

All of these forms operate on a field of the CR that is specified as one of the 
parameters. However, the CR field is an optional parameter. If it isn't specified 
explicitlJr the instruction is assumed to refer to CR{O}. 
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Table 4-9 Branch to LR Extended Forms with Encoded Conditions 

beqlr[l] [erE] if(CR[crJ*4+2] = 1) 
Branch to LR if Equal branch via LR 
extended form for bclr[l] 12, crf*4+2 

bnelr[l] [erE] if(CR[crJ*4+2] = 0) 
Branch to LR if Not Equal branch via LR 
extended form for bclr[l] 4, crf*4+2 

bltlr[l] [erE] if(CR[crJ*4+0] = 1) 
Branch to LR if Less Than branch via LR 
extended form for bclr[l] 12, crf*4+0 

blelr[l] [erE] if(CR[crJ*4+ 1] = 0) 
Branch to LR if Less Than or Equal branch via LR 
extended form for bclr[l] 4, crf*4+1 

bgtlr[l] [erf] if(CR[crJ*4+1] = 1) 
Branch to LR if Greater Than branch via LR 
extended form for bclr[l] 12, crf*4+1 

bgelr[l] [erE] if(CR[crJ*4+0] = 0) 
Branch to LR if Greater Than or Equal branch via LR 
extended form for bclr[l] 4, crf*4+0 

bnllr[l] [erE] if(CR[crJ*4+0] = 0) 
Branch to LR if Not Less Than branch via LR 
extended form for bclr[l] 4, crf*4+0 

bnglr[l] [erE] if(CR[crJ*4+ 1] = 0) 
Branch to LR if Not Greater Than branch via LR 
extendedformforbclr[l] 4, crf*4+1 

bsolr[l] [erE] if(CR[crJ*4+3] = 1) 
Branch to LR if Summary Overflow branch via LR 
extended form for bclr[l] 12, crf*4+3 

bnslr[l] [erE] if(CR[crJ*4+3] = 0) 
Branch to LR if Not Summary Overflow branch via LR 
extended form for bclr[l] 4, crf*4+3 

bunlr[l] [erE] if(CR[crJ*4+3] = 1) 
Branch to LR if Unordered branch via LR 
extended form for bclr[l] 12, crf*4+3 

bnulr[l] [erE] if(CR[crJ*4+3] = 0) 
Branch to LR if Not Unordered branch via LR 
extended form for bclr[l] 4, crf*4+3 

The beqlr form branches if the EQ bit (bit 2) of the given CR field is 'I'. The 
bnelr form branches if that bit is '0'. 

The bl tIr and bgtIr forms check the LT and GT bits (respectively) of the spec­
ified CR field and branch if the bit is set. 
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Branch to CTR Extended Forms 

The blelr and bnglr forms are two mnemonics that map to the same instruc­
tion. They both check the GT bit of the specified CR field and branch if the bit is 
'0'. 

The bgelr and bnllr forms also map to the same instruction. They check the 
LT bit of CR{crj} and branch if the bit is clear. 

The last four extended branch forms depend on the state of bit 3 of the desig­
nated CR field. The bsolr and bnslr forms interpret this bit as indicating the 
CR field's summary overflow status, and they indicate that the branch should be 
taken if the bit is set (bsolr) or if it is not set (bnslr). 

The bunlr and bnulr extended forms interpret bit 3 of a CR field as containing 
the unordered result flag of a floating-point compare. The bunlr and bnulr 
instructions branch if this bit is 'I' or 'a', respectively. 

Branch to CTR Extended Forms 

There are three major types of extended forms for the bcctr instruction: uncon­
ditional branch forms, bit test forms, and forms with encoded conditions. There 
are no forms that use the CTR as part of the condition since these types of 
instructions are not sensible. 

Branch Unconditional 

There is one extended form (see Table 4-10) that provides a simple way of encod­
ing an unconditional branch to the Counter Register. 

Table 4-10 Unconditional Branch to CTR Extended Instruction Form 

bctr[l] 
Branch to CTR branch via CTR 
extended form for bcctr[l] 20,0 

The bctr instruction branches directly to the address stored in the CTR. 

Bit Test Extended Forms 

As with the Branch Conditional forms described earlier in "Conditional Branch 
Extended Forms," the Bit Test extended forms (see Table 4-11) test a given bit in 
the Condition Register and branch to the address contained in the CTR depend­
ing on the current value of the specified CR bit. 
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Table 4-11 Branch to CTR Extended Instruction Forms with Bit Tests 

btctr[l] bi t H(CR[bit] = 1) 
Branch to CTR if Condition True branch via CTR 
extendedformforbcctr[l] 12,bit 

bfctr[l] bit if(CR[bit] = 0) 
Branch to CTR if Condition False branch via CTR 
extended form for bcctr[l] 4, bi t 

The btctr form tests CR[bit] and branches to the address stored in the CTR if 
the bit is '1.' The bfctr form tests the same bit but branches via the CTR if the 
bit is '0.' 

Extended Forms with Encoded Conditions 

The 12 conditional Branch to CTR forms listed in Table 4-12 have the condition 
encoded as part of the mnemonic. These 12 forms are the same as the 12 Branch 
Conditional forms described in "Conditional Branch Extended Forms" and pre­
sented in Table 4-5. 

All of these forms operate on a field of the CR that is specified as one of the 
parameters. However, the CR field is an optional parameter. If it isn't specified 
explicitly, the instruction is assumed to refer to CR{O}. 

Table 4-12 Branch to CTR Extended Forms with Encoded Conditions 

beq:ctr[l] [erf] if(CR[crj*4+2] = 1) 
Branch to CTR if Equal branch via CTR 
extended form for bcctr[l] 12, crf*4+2 

bnectr[l] [erf] H(CR[crj*4+2] = 0) 
Branch to CTR if Not Equal branch via CTR 
extended form for bcctr[l] 4, crf*4+2 

bl tctr[l] [erf] if(CR[crj*4+0] = 1) 
Branch to CTR if Less Than branch via CTR 
extended form for bcctr[l] 12, crf*4+0 

blectr[l] [erf] if(CR[crj*4+ 1] = 0) 
Branch to CTR if Less Than or Equal branch via CTR 
extended form for bcctr[l] 4, crf*4+1 

bgtctr[l] [erf] H(CR[crj*4+1] = 1) 
Branch to CTR if Greater Than branch via CTR 
extended form for bcctr[l] 12, crf*4+1 

bgectr[l] [erf] if(CR[crj*4+0] = 0) 
Branch to CTR if Greater Than or Equal branch via CTR 
extended form for bcctr[l] 4, crf*4+0 

bnlctr[l] [erf] if(CR[crj*4+0] = 0) 
Branch to CTR if Not Less Than branch via CTR 
extended form for bcctr[l] 4, crf*4+0 
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bngetr[l] [erE) if(CR[crf*4+1] = 0) 
Branch to CTR if Not Greater Than branch via CTR 
extended form for bcctr[l] 4, crf*4+1 

bsoetr[l] [erf] if(CR[crf*4+3] = 1) 
Branch to CTR if Summary Overflow branch via CTR 
extended form for bcctr[l] 12, crf*4+3 

bnsetr[l] [erE) if(CR[crf*4+3] = 0) 
Branch to CTR if Not Summary Overflow branch via CTR 
extended form for bcctr[l] 4, crf*4+3 

bunetr[l] [erE) if(CR[crf*4+3] = 1) 
Branch to CTR if Unordered branch via CTR 
extended form for bcctr[l] 12, crf*4+3 

bnuetr[l] [erE) if(CR[crf*4+3] = 0) 
Branch to CTR if Not Unordered branch via CTR 
extended form for bcctr[l] 4, crf*4+3 

The beqetr form branches if the EQ bit (bit 2) of the given CR field is '1'. The 
bneetr form branches if that bit is '0'. 

The bl tetr and bgtetr forms check the LT and GT bits (respectively) of the 
specified CR field and branch if the bit is set. 

The bleetr and bngetr forms are two mnemonics that map to the same 
instruction. They both check the GT bit of the specified CR field and branch if the 
bit is '0'. 

The bgeetr and bnletr forms also map to the same instruction. They check 
the LT bit of CR{crj} and branch if the bit is clear. 

The last four extended branch forms depend on the state of bit 3 of the desig­
nated CR field. The bsoetr and bnsetr forms interpret this bit as indicating 
the CR field's Summary Overflow status, and they indicate that the branch 
should be taken if the bit is set (bsoetr) or if it is not set (bnsetr). 

The bunetr and bnuetr extended forms interpret bit 3 of a CR field as contain­
ing the unordered result flag of a floating-point compare. The bunetr and 
bnuetr instructions branch if this bit is '1' or '0', respectively. 

4.2 Branch Prediction 

Branches present some of the worst pipeline hazards since they disrupt the 
steady flow of instructions to the rest of the processor. Using a scheme such as 
Branch Prediction can help alleviate the penalties associated with branches. 

Note that the PowerPC architecture does not require any sort of branch predic­
tion mechanism, but it does allow implementations of the architecture to pro­
vide whatever sort of branch prediction is deemed necessary. 
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What is Branch Prediction? 

Branch Prediction is a mechanism for the processor to guess whether or not a 
particular branch will be taken. The ability to generate some sort of reasonable 
prediction is quite useful since the processor is not always able to completely 
resolve a branch before it needs to be executed. 

On heavily pipelined processors, some sort of branch prediction is practically a 
requirement, because the alternative is to stall the processor until the branch is 
resolved. 

A good prediction scheme is a great benefit to code throughput because of the 
penalties associated with a mispredicted branch. In the worst case, a mispre­
dicted branch may require that the pipeline be flushed and then stalled while the 
correct instructions are fetched from memory. 

Branch Prediction Types 

There are two common types of branch prediction: static branch prediction and 
dynamic branch prediction. 

Static Branch Prediction 

Static Branch Prediction has a default prediction for each type of branch based 
on branch direction and other branch parameters. For example, backward 
branches are assumed to be taken, and forward branches are assumed to be not 
taken. Many static prediction schemes also have a reverse prediction flag to indi­
cate that the default prediction should be reversed. 

The advantages of a static prediction implementation are that it is simple to 
implement and it is powerful enough to characterize branch behavior in most 
situations. 

The disadvantage is that this system requires the programmer (or compiler) to 
analyze the branches and set the appropriate instruction bits so that the instruc­
tion is predicted as desired. 

Dynamic Branch Prediction 

Dynamic Branch Prediction uses additional hardware to record whether or not a 
branch was taken the last few times it was encountered. By analyzing the past 
operation of the instruction, the processor can formulate a prediction as to 
whether the branch is likely to be taken. 

The benefit of a dynamic prediction scheme is that the programmer or compiler 
doesn't need to analyze branches and set instruction bits in order to have 
branches predicted /I correctly." 
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The disadvantages are that this type of system is costly to implement and the 
benefits are not significantly better than for a simple static prediction mecha­
nism. 

Note that Dynamic Branch Prediction still requires some sort of default predic­
tion mechanism to apply when the processor encounters a branch for the first 
time. 

Branch Prediction on PowerPC Processors 

The 601 implements a simple static branch prediction that follow these rules: 

• If it is a forward branch, the branch is assumed to be not taken. 
• If it is a backward branch, the branch is assumed to be taken. 
• Conditional branches to the LR or CTR are assumed to be not taken. 

The rational behind these rules is: 

• A backward branch is assumed to be the closing instruction of a loop, 
and since loops are generally executed more than once, the branch 
should be taken back to the beginning of the loop most of the time. 

• A forward branch is assumed to be not taken because forward 
branches have roughly a 50% likelihood of being taken or not taken 
and one of these operations had to be chosen as the default. 

These assumptions obviously do not apply to every forward or backward 
branch, so this simple static prediction will make mistakes. The branch predic­
tions were optimized for looping structures, which is presumably where many 
programs spend a majority of their time. 

Branch Prediction Hints 

Since the static branch prediction is not always correct, a mechanism for overrid­
ing the default prediction is provided. This mechanism is in the form of a branch 
prediction reverse bit, which is encoded in the BO parameter of a branch instruc­
tion (see §Table 4-2 "Branch-On (BO) Parameter for Branch Conditional Instruc­
tions"). 

The reverse bit in a conditional branch instruction tells the processor that the 
standard predictions should be reversed for this instruction. Thus, a forward 
branch is assumed to be taken, and a backward branch is assumed to be not 
taken. 

Note that the setting of this bit does not guarantee that the branch will be taken or 
not taken. It merely provides a hint as to whether or not the branch is likely to be 
taken. The processor can use this hint to pre-fetch instructions, or it can ignore it. 
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Encoding Branch Predictions 

By convention, PowerPC assemblers accept a '+' suffix for conditional branch 
instructions to indicate that the reverse prediction bit should be set. If this suffix 
is not provided, the reverse bit is set to '0'. 

beq crO,*-lO # predicted taken 
beq crO,*+lO # predicted not taken 

beq+ crO,*-lO # predicted not taken 
beq+ crO,*+lO # predicted taken 

The reverse bit can also be set by directly setting the appropriate bit in the BO 
field for the branch. The BO field is described in Table 4-2 "Branch-On (BO) 
Parameter for Branch Conditional Instructions." 

bc 
bc 

OxOC,2,adr 
OxOD,2,adr 

4.3 Trap Instructions 

# same as beq crO,adr 
# same as beq+ crO,adr 

The trap instructions listed in Table 4-13 provide a mechanism for invoking the 
system trap handler based on a comparison between the provided instruction 
operands. 

Table 4-13 Trap Instructions 

tw TO,rA,rB if( condition) 
Trap Word invoke system trap handler 

twi TO,rA,s16 u( condition) 
Trap Word Immediate invoke system trap handler 

td TO,rA,rB H( condition) 
Trap Doubleword invoke system trap handler 
64-bit iinplementations only 

tdi TO, rA, s16 H( condition) 
Trap Doubleword Immediate invoke system trap handler 
64-bit implementations only 

For each of the word and doubleword varieties of the trap instruction, there are 
two instruction forms: one compares two registers, and the other compares a 
register with an immediate value. 

The type of comparison performed depends on the value of the Trap-On (TO) 
parameter (see Table 4-14). Setting any of the five bits means that the trap han­
dler should be invoked if the conditions associated with those bits is satisfied. 
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Table 4-14 Trap-On (TO) Parameter for Trap Instructions 

ObOOOOl Trap if Less Than 

ObOOO1O Trap if Greater Than 

ObOO1OO Trap if Equal 

Ob01OOO Trap if Logically Less Than 

OblOOOO Trap if Logically Greater Than 

Coding the TO parameter, while not nearly as tedious as the BO and BI parame­
ters for the conditional branch instructions, is not quite as much fun one might 
initially imagine it to be. To make coding the Trap instructions more enjoyable, a 
set of extended mnemonics that encode the condition as part of the instruction 
mnemonic is provided. 

These 15 extended forms are summarized in Table 4-15 and described in detail 
in Table 4-16. 

Table 4-15 Summary of Extended TO Encodings 

Oblllll Trap Unconditionally 

ObOO1OO Trap if Equal 

ObllOOO Trap if Not Equal 

OblOOOO Trap if Less Than 

OblO1OO 
Trap if Less Than or Equal 

Trap if Not Greater Than 

Ob01OOO Trap if Greater Than 

ObOllOO 
Trap if Greater Than or Equal 

Trap if Not Less Than 

ObOOO1O Trap if Logically Less Than 

ObOOllO 
Trap if Logically Less Than or Equal 

Trap if Logically Not Greater Than 

ObOOOOl Trap if Logically Greater Than 

ObOO1Ol 
Trap if Logically Greater Than or Equal 

Trap if Logically Not Less Than 

Table 4-16 is an overview of the trap extended instruction forms. This table con­
tains summaries of all the trap forms, including the word, doubleword, register, 
and immediate forms of the instructions. 
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Table 4-16 Extended Trap Conditional Instructions 

Trap Always 
word register trap 

extended form for tw 31,rO,rO 

Trap if Equal 
register tweq rA,rB 

word 
extended form for tw 4,rA,rB 

immediate tweqi rA,s16 
extendedformfortwi 4,rA,s16 

register tdeq rA,rB 
doubleword extendedformfortd 4,rA,rB 

64-bit only 
immediate tdeqi rA,s16 

extended form for tdi 4, r A, s 16 

Trap if Not 
register twne rA,rB 

Equal extendedformfortw 24,rA,rB 
word 

immediate twnei rA,s16 
extended form for twi 24, rA, s16 

register tdne rA,rB 
doubleword extended form for td 24, rA, rB 

64-bit only 
immediate tdnei rA,s16 

extended form for tdi 24, rA, s16 

Trap if Less 
register twlt rA,rB 

Than extended form for tw 16, rA, rB 
word 

immediate twlti rA,s16 
extendedformfortwi 16,rA,s16 

register tdlt rA,rB 
doubleword extended form for td 16, rA, rB 

64-bit only 
immediate tdlti rA,s16 

extended form for tdi 16,rA,s16 

Trap if Less twle rA,rB 
Than or Equal register twng rA,rB 

word 
extended form for tw 20,rA,rB 

or 
twlei rA,s16 

Trap if Not immediate twngi rA,s16 
Greater Than extended form for twi 20,rA,s16 

tdle rA,rB 
register tdng rA,rB 

doubleword extended form for td 20,rA,rB 

64-bit only tdlei rA,s16 
immediate tdngi rA,s16 

extended form for tdi 20,rA,s16 
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Trap if 
register twgt rA,rB 

Greater Than extended form for tw 8,rA,rB 
word 

immediate twgti rA, s16 
extended form for twi 8, rA, s16 

register tdgt rA,rB 
doubleword extended form for td 8, r A, r B 

64-bit only 
immediate 

tdgti rA,s16 
extended form for tdi 8, rA, s16 

Trap if twge rA,rB 
Greater Than register twnl rA,rB 
or Equal extended form for tw 12,rA,rB 

word 
or twgei rA,s16 

immediate twnli rA,s16 
Trap if Not extended form for twi 12,rA,s16 
Less Than 

tdge rA,rB 
register tdnl rA,rB 

doubleword extended form for td 12,rA,rB 

64-bit only tdgei rA,s16 
immediate tdnli rA,s16 

extended form for tdi 12,rA,s16 

Trap if 
register twllt rA,rB 

Logically extended form for tw 2, rA, rB 
Less Than word 

immediate 
twllti rA,s16 
extendedformfortwi 2,rA,s16 

register tdllt rA,rB 
doubleword extended form for td 2, r A, r B 

64-bit only 
immediate tdllti rA,s16 

extended form for tdi 2,rA,s16 

Trap if twlle rA,rB 
Logically register twlng rA,rB 
Less Than or extended form for tw 6,rA,rB 
Equal word 

twllei rA,s16 
or immediate twlngi rA,s16 

extended form for twi 6,rA,s16 
Trap if 

tdlle rA,rB Logically Not 
Greater Than register tdlng rA,rB 

doubleword extended form for td 6,rA,rB 

64-bit only tdllei rA,s16 
immediate tdlngi rA,s16 

extended form for tdi 6, rA, s16 
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Trap if 
register 

twlgt rA,rB 
Logically extended form for tw 1,rA,rB 
Greater Than word 

immediate twlgti rA,s16 
extendedformfortwi 1,rA,s16 

register 
tdlgt rA,rB 

doubleword extended form for td 1, rA, rB 

64-bit only 
immediate tdlgti rA,s16 

extended form for tdi 1,rA,s16 

Trap if twlge rA,rB 
Logically register twlnl rA,rB 
Greater Than extended form for tw 5,rA,rB 
or Equal word 

twlgei rA,s16 
or immediate twlnli rA,s16 

extended form for twi 5,rA,s16 
Trap if 

tdlge rA,rB Logically Not 
Less Than register tdlnl rA,rB 

doubleword extended form for td 5,rA,rB 

64-bit only tdlgei rA,s16 
immediate tdlnli rA,s16 

extendedformfortdi 5,rA,s16 

4.4 System Linkage Instructions 

The system linkage instructions listed in Table 4-17 provide a mechanism so that 
programs can call on the operating system to perform a function or service. 

Table 4-17 System Linkage Instructions 

se SRRO{:::: CIP+4 
System Call 

SRRI {:::: MSR L3~~~:4~6::'63] 
if(MSR[IP]) 

CIP {:::: 'OxFFFO OCOO 
else 

CIP {:::: °OxOOOO OCOO 

rfi MSR {:::: SRRI [ 0,59. lWl ] 

Return From Interrupt 0:32, 37:41, 48:63 

CIP {:::: SRRO [~~~] ..l..bOO 

The System Call (se) instruction saves the current machine state in the SRRn reg­
isters and passes control to the system handler. This instruction can be used to 
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request that an operation be performed by the operating system (OS). The call­
ing conventions and the services provided are entirely dependent on the struc­
ture of the as. The Be instruction merely provides a standard method of 
accessing as functions. 

The Return From Interrupt (rfi) instruction is used by the system handler to 
return control to the user level program after the system call or interrupt has 
been handled. This instruction restores the state of the system to what it was 
when the system call or interrupt was invoked and then passes control back to 
the original program. 
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Load and Store 
Instructions 

The transfer of data from the memory store and the processor is handled by the 
Load and Store instructions. These instructions load data from memory into a 
register or store the contents of a register out into main memory. 

5.1 Loads and Stores 

Most of the Load and Store instructions have the same basic forms. There is a base 
Load and Store form for each of the data types supported by the PowerPC and 
then there are the combinations of Indexed and Update forms. This section 
describes the common forms to eliminate redundancy and so that the later sec­
tions can focus on deviations from this standard. 

Loads 

The four types of Load instructions are 

• Load 
• Load with Update 
• Load Indexed 
• Load Indexed with Update 

The Load forms are the most basic forms, and they simply load the data from the 
specified memory location into the designated target register (rT). The memory 
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location is calculated by adding a 16-bit signed offset (d) to the contents of the 
source register (rA). 

The Load with Update forms load the data into the target register as the Load forms 
do, but they also update the source register rA by adding the offset d to rA after 
the memory has been accessed. This can be used to pre-increment (or pre­
decrement) the data pointer in rA if the increment size is stored in d. 

The Load Indexed forms also load the target register with the data from the spec­
ified memory location. However, the Indexed forms calculate the address from 
two registers, rA and rB, instead of from a register and an offset. 

The Load Indexed with Update forms are a combination of the Indexed and the 
Update load forms. These forms load the target register with the data specified by 
the two source registers and update one of the source registers (rA) by adding 
the contents of the other (rB) to it after the load has been performed. 

For all of the Load instructions, if rO is specified for the source register rA, then 
the contents of rA (rO) are not used in the address calculation. Instead, the con­
stant a is used in the address calculation. This allows for the address to be calcu­
lated from just an immediate constant or from just the contents of one register 
(rB). For the Indexed forms, if the contents of rO need to be part of the address 
calculation, rO can be specified as rB. 

If rO is specified for rA for any of the Load with Update forms, then the instruction 
is invalid. Instructions are also invalid if the register given for rA is the same as 
that specified for r T. 

For the Update forms, the POWER architecture allows rO to be specified for rA, 
and it allows rA to be the same register as rT. If rO is used orif rA is the same as 
rT, the register is simply not updated with the new address. The PowerPC archi­
tecture does not allow these situations to be coded because it is not useful to 
have an update form that cannot update, and the extra check to see if the register 
is valid needlessly complicates the hardware. 

Stores 

As with the standard Load instructions, there are also four basic types of Store 
instructions: 

• Store 
• Store with Update 
• State Indexed 
• Store Indexed with Update 

The Store forms take the contents (or part of the contents) of a source register 
(r s) and write it out to memory. The memory address at which the data is stored 
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is calculated by adding a 16-bit signed offset (d) to the contents of the source 
register (rA). 

The Store with Update forms store the contents of the source register and update 
the source register rA by adding the offset d to rA after the memory has been 
written. This can be used to pre-increment the data pointer in rA if the increment 
size is stored in d. 

The Store Indexed forms store the target register contents to the specified memory 
location. The Indexed forms calculate the address from two registers, rA and rB, 
instead of from a register and an offset. 

The Store Indexed with Update forms store the contents of the target register out to 
memory and update one of the source registers (rA) by adding the contents of 
the other register (rB) to it after the store operation has been performed. 

For all of the Store with Update instructions, if rO is specified for the source regis­
ter rAt then the instruction is invalid. 

The POWER architecture allowed the update forms of the Store instructions to 
specify rO for rA. In this case, the updated address value would not be written 
to rA. The PowerPC architecture does not recognize this as a valid form because 
such an instruction would not be very useful and it would complicate imple­
mentations. 

5.2 Load and Store Byte 

The Load and Store Byte instructions listed in Tables 5-1 and 5-2 transfer eight bits 
of information to or from a GPR. The 8-bits are transferred from the least signif­
icant byte of the GPR, thus, on 32-bit PowerPC implementations, data is moved 
to and from bits 24:31. On 64-bit implementations, data is moved between mem­
ory and bits 56:63 of the GPR. 

Table 5-1 Load Byte Instructions 

1bz rT,d{rA) 
rT {= °Byte«rA I 0)+ 'd) 

Load Byte and Zero 

1bzu rT,d{rA) rT {= °Byte«rA)+ 'd) 
Load Byte and Zero with Update rA {= (rA)+ 'd 

1bzx rT,rA,rB 
rT {= °Byte«rA I O)+(rB» 

Load Byte and Zero Indexed 

1bzux rT,rA,rB rT {= °Byte«rA)+(rB» 
Load Byte and Zero with Update Indexed rA {= (rA)+(rB) 
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The four types of Load Byte and Zero instructions are standard Load instructions. 
The value from the specified memory location is loaded into the low-order byte 
of the target register rT. The upper bytes of the target register are cleared to O. 

Table 5-2 Store Byte Instructions 

stb rS, d(rA) 
Byte«rA I 0)+ 'd) ¢::: rS [:::1 

Store Byte 

stbu rS,d(rA) Byte«rA)+ 'd) ¢::: rS [:::1 
Store Byte with Update 

rA ¢::: (rA)+ 'd 

stbx rS,rA,rB 
Byte«rA I O)+(rB» ¢::: rS [::1 

Store Byte Indexed 

stbux rS,rA,rB Byte«rA)+(rB» ¢::: rS [::1 
Store Byte with Update Indexed 

rA ¢::: (rA)+(rB) 

The four Store Byte instructions are also modelled after the standard Store 
instructions. These instructions take the low-order byte in the source register r S 

and store it at the specified memory location. 

5.3 Load and Store Halfword 

The Load and Store Halfword instructions listed in Tables 5-3 and 5-4 transfer six­
teen bits of information to or from a GPR. 

Table 5-3 Load Halfword Instructions 

1hz rT,d(rA) rT ¢::: °Hal£«rA I 0)+ 'd) 
Load Halfword and Zero 

1hzu rT,d(rA) rT ¢::: °Half«rA)+ 'd) 
Load Halfword and Zero with Update rA ¢::: (rA)+ 'd 

1hzx rT,rA,rB rT ¢::: °Hal£«rA I O)+(rB» 
Load Halfword and Zero Indexed 

1hzux rT,rA,rB rT ¢::: °Hal£«rA)+(rB» 
Load Halfword and Zero Indexed with Update rA ¢::: (rA)+(rB) 

1ha rT,d(rA) rT ¢::: 'Half«rA I 0)+ 'd) 
Load Halfword Algebraic 

1hau rT,d(rA) rT ¢::: 'Half«rA)+ 'd) 
Load Halfword Algebraic with Update rA ¢::: (rA)+ 'd 

1hax rT,rA,rB 
rT ¢::: 'Half«rA I O)+(rB» 

Load Halfword Algebraic Indexed 

1haux rT,rA,rB rT ¢::: 'Hal£«rA)+(rB» 
Load Halfword Algebraic Indexed with Update rA ¢::: (rA)+(rB) 
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There are two basic types of Load Halfword instructions: Load Halfword and Zero 
and Load Halfword Algebraic. Both of these types come in the four standard vari­
eties, making a total of eight different Load Halfword instructions. 

The Load Halfword and Zero instructions load the data into the lower two bytes of 
the target register and zero out the upper bytes. 

The Load Halfword Algebraic instructions load the halfword data into the lower 
two bytes of the target register and copy the sign bit from the loaded data into 
the upper bytes. 

There is also a Load Halfword instruction that loads the data in byte-reversed 
order. This is described in §5.6 "Load and Store Byte-Reversed Data." 

Table 5-4 Store Halfword Instructions 

sth rS,d(rA) 
Half«rA I 0)+ 'd) ¢:: rS [~::] 

Store Halfword 

sthu rS,d(rA) Half«rA)+ 'd) ¢:: rS [~::] 
Store Halfword with Update 

rA ¢:: (rA)+ 'd 

sthx rS,rA,rB 
Half«rA I O)+(rB» ¢:: rS c:::] Store Halfword Indexed 

sthux rS,rA,rB Half«rA)+(rB» ¢:: rS c:::] 
Store Halfword with Update Indexed 

rA ¢::(rA)+(rB) 

The four Store Halfword instructions take the lower two bytes of the source regis­
ter and store it at the given memory location. 

A Store Halfword instruction that handles byte-reversed data is also available. It 
is discussed in §5.6 "Load and Store Byte-Reversed Data." 

5.4 Load and Store Word 

The Load and Store Word instructions listed in Tables 5-5 and 5-6 transfer 32 bits 
of information to and from a CPR. The 64-bit implementations also define an 
algebraic form which sign-extends the loaded word value. 

Table 5-5 Load Word Instructions 

lwz rT,d(rA) 
rT ¢:: °Word«rA I 0)+ 'd) 

Load Word and Zero 

lwzu rT,d(rA) rT ¢:: °Word«rA)+ 'd) 
Load Word and Zero with Update rA ¢:: (rA)+ 'd 

lwzx rT,rA,rB 
rT ¢:: °Word«rA I O)+(rB» 

Load Word and Zero Indexed 
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lwzux rT,rA,rB rT ~ °Word«rA)+(rB» 
Load Word and Zero Indexed with Update rA ~ (rA)+(rB) 

lwa rT,d(rA) 
Load Word Algebraic rT ~ 'Word«rA I 0)+ 'd) 
64-bit implementations only 

lwax rT,rA,rB 
Load Word Algebraic Indexed rT ~ 'Word«rA I O)+(rB» 
64-bit implementations only 

lwaux rT,rA,rB rT ~ 'Word«rA)+(rB» 
Load Word Algebraic Indexed with Update rA ~ (rA)+(rB) 
64-bit implementations only 

As with the Load Halfword instructions, there are two types of Load Word instruc­
tions: Load Word and Zero and Load Word Algebraic. The algebraic forms are 
defined only on 64-bit implementations since the two types perform the same 
operation when the registers are 32 bits in size. 

The Load Word and Zero instructions load the word at the specified address into 
the target register. For 64-bit implementations, these instructions also clear out 
the upper word of the loaded register. 

The Load Word Algebraic instructions load the word into the low word of the reg­
ister and copy the sign bit from the loaded word into the upper bits of the target 
register. Note that there is no non-Indexed Update form for the Load Word Alge­
braic instruction. 

A special instruction is defined for loading words from memory with byte­
reversed data. This instruction is defined in §5.6 "Load and Store Byte-Reversed 
Data." 

Table 5-6 Store Word Instructions 

stw rS,d(rA) 
Word«rA I 0)+ 'd) ~ rS [;~~:3] 

Store Word 

stwu rS,d(rA) Word«rA)+ 'd) ~ rS [;~~:3] 
Store Word with Update 

rA~ (rA)+'d 

stwx rS,rA,rB 
Word«rA I O)+(rB» ~ rS [ ;~~:3] Store Word Indexed 

stwux rS,rA,rB Word«rA)+(rB» ~ rS [;~~~] 
Store Word with Update Indexed 

rA ~ (rA)+(rB) 

The four standard Store Word instructions copy a word of data from the given 
source register into the specified memory address. 
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One additional Store Word instruction is defined to handle byte-reversed data. 
This instruction is presented in §5.6 "Load and Store Byte-Reversed Data." 

5.5 Load and Store Doubleword 

The Load and Store Doubleword instructions listed in Tables 5-7 and 5-8 transfer 64 
bits of infonnation to or from a GPR. These instructions are defined only on 64-
bit PowerPC implementations. If they are executed on a 32-bit implementation, 
they will cause the illegal instruction handler to be invoked. 

Table 5-7 Load Duubleword Instructions 

Id r'l', d(rA} 
Load Doubleword rT ¢::: Doubleword«rA I 0)+ 'd) 
64-bit implementations only 

Idu r'l',d(rA} rT ¢::: Doubleword«rA)+ 'd) 
Load Doubleword with Update rA ¢::: (rA)+ 'd 
64-bit implementations only 

Idx r'l',rA,rB 
Load Doubleword Indexed rT ¢::: Doubleword«rA I O)+(rB)) 
64-bit implementations only 

Idux r'l',rA,rB rT ¢::: Doubleword«rA)+(rB)) 
Load Doubleword with Update Indexed rA ¢::: (rA)+(rB) 64-bit implementations only 

The four Load Doubleword forms allow a doubleword (eight bytes) of data to be 
loaded into a register from memory. 

Table 5-8 Store Doubleword Instructions 

std rS,d(rA} 
Store Doubleword Doubleword«rA I 0)+ 'd) ¢::: rS 
64-bit implementations only 

stdu rS,d(rA} Doubleword«rA)+ 'd) ¢::: rS 
Store Doubleword with Update rA ¢::: (rA)+ 'd 64-bit implementations only 

stdx rS,rA,rB 
Store Doubleword Indexed Doubleword«rA I O)+(rB)) ¢::: rS 
64-bit implementations only 

stdux rS,rA,rB Doubleword«rA)+(rB)) ¢::: rS 
Store Doubleword with Update Indexed rA ¢::: (rA)+(rB) 
64-bit implementations only 

The Store Doubleword forms store a doubleword of data into the specified mem­
ory location. 
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5.6 Load and Store Byte-Reversed Data 

The Load and Store Byte-Reversed instructions listed in Table 5-9 provide an easy 
method for accessing data that is stored in the opposite byte-order than the pro­
cessor expects. 

There are two common byte-orderings for halfwords and words: big-endian and 
little-endian. Big-endian byte-ordering has the most significant byte (MSB) in the 
lowest address position and the least significant byte (LSB) in the highest address 
position. Little-endian is the reverse of big-endian, with the LSB at the lower 
address and the MSB at the higher address. 

If the processor is operating in big-endian mode, then these instructions allow 
the program to load and store little-endian encoded data. Conversely, if the pro­
cessor is in little-endian mode, these instructions provide an easy way to access 
big-endian data. 

Table 5-9 Load/Store Byte-Reversed Data Instructions 

lhbrx rT,rA,rB h := Half«rA I O)+(rB» 
Load Halfword Byte-Reversed Indexed rT <= O(h[8:15]..l h[O:7]) 

lwbrx rT,rA,rB w := Word«rA I O)+(rB)) 
Load Word Byte-Reversed Indexed rT <= O(w[24:31]..l w[16:23] 

..1 w[8:15] ..1 w[O:7]) 

sthbrx rS,rA,rB h := rS [~::~~] ..1 rS C~::s] 
Store Halfword Byte-Reversed Indexed 

Half«rA I O)+(rB))<= h 

stwbrx rS,rA,rB w:= rS [~:] ..1 rS [~~:~~] 
Store Word Byte-Reversed Indexed 

..1 rS [!::7] ..1 rS [3~:~9] 

Word«rA I O)+(rB»<= w 

The load word and halfword byte-reversed instructions (lhbrx and lwbrx) 
load the data from the target address into the destination register. If the loaded 
data doesn't fill the register completely, the data is zero-extended to fill the entire 
register. 

The store word and halfword byte-reversed instructions (sthbrx and stwbrx) 
store the lower word or halfword from the source register into memory at the 
calculated target address. 

All of the byte-reversed storage instructions are indexed and expect the memory 
address to be specified by the sum of the contents of the registers r A and r B. 

The PowerPC architecture does not define instructions to load or store a double­
word of byte-reversed data. 
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5.7 Load and Store Floating-Point Double-Precision 

The Load and Store Floating-Point Double instructions listed in Tables 5-10 and 
5-11 transfer 64 bits of data between the floating-point registers and memory. 
Since the floating-point registers on the PowerPC always store double-precision 
data, these instructions simply transfer the data back and forth. 

Table 5-10 Load Floating-Point Double-Precision Instructions 

lfd frT,d(rA) 
frT?= FDouble«rA I 0)+ 'd) 

Load FP Double 

lfdu frT, d(rA) frT?= FDouble«rA)+ 'd) 
Load FP Double with Update rA?= (rA)+ 'd 

lfdx frT, rA, rB 
frT ?= FDouble«rA I O)+(rB» 

Load FP Double Indexed 

lfdux frT,rA,rB frT?= FDouble«rA)+(rB» 
Load FP Double with Update Indexed rA?= (rA)+(rB) 

The Load Floating-Point Double instructions load the specified floating-point reg­
ister with the 64 bits of data starting at the given address. 

Table 5-11 Store Floating-Point Double-Precision Instructions 

stfd frS,d(rA) 
FDouble«rA I 0)+ 'd) ?= frS 

Store FP Double 

stfdu frS,d(rA) FDouble«rA)+ 'd) ?= frS 
Store FP Double with Update rA?= (rA)+ 'd 

stfdx frS,rA,rB 
FDouble«rA I O)+(rB»?= frS 

Store FP Double Indexed 

stfdux frS,rA,rB FDouble«rA)+(rB» ?= frS 
Store FP Double with Update Indexed rA ?= (rA)+(rB) 

The four Store Floating-Point Double forms provide standard instructions for stor­
ing floating-point values out to memory without any modification or transla­
tion. 

5.S Load and Store Floating-Point Single-Precision 

Since floating-point registers always contain double-precision data, the Load 
and Store Floating-Point Single instructions listed in Tables 5-12 and 5-13 must 
translate between the 64-bit data in the floating-point registers and the 32-bit 
data stored in memory. 

The method for converting between the 32-bit and 64-bit forms of single-preci­
sion data is discussed in Chapter 8 "Floating-Point Instructions." 
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Table 5-12 Load Floating-Point Single-Precision Instructions 

lfs frT,d(rA) 
frT ¢::: FSingle«rA I 0)+ 'd) 

Load FP Single 

Hsu frT,d(rA) frT ¢::: FSingle«rA)+ 'd) 
Load FP Single with Update rA ¢::: (rA)+ 'd 

lfsx frT, rA, rB 
frT ¢::: FSingle«rA I O)+(rB» 

Load FP Single Indexed 

lfsux frT,rA,rB frT ¢::: FSingle«rA)+(rB» 
Load FP Single with Update Indexed rA ¢::: (rA)+(rB) 

The Load Floating-Point Single instructions load a 32-bit value from memory, 
translate it into a 64-bit double-precision floating-point value, and then store the 
value into the target register. 

Table 5-13 Store Floating-Point Single-Precision Instructions 

stfs frS,d(rA) 
FSingle«rA I 0)+ 'd) ¢::: frS 

Store FP Single 

stfsu frS,d(rA) FSingle«rA)+ 'd) ¢::: frS 
Store FP Single with Update rA ¢::: (rA)+ 'd 

stfsx frS,rA,rB 
FSingle«rA I O)+(rB» ¢::: frS 

Store FP Single Indexed 

stfsux frS,rA,rB FSingle«rA)+(rB» ¢::: frS 
Store FP Single with Update Indexed rA ¢::: (rA)+(rB) 

The Store Floating-Point Single instructions convert the double-precision value 
in the source floating-point register into a 32-bit single-precision value and then 
store the value into memory at the given location. 

If the value in the source floating-point register cannot be represented as a 
single-precision value, then the value stored in memory is undefined. 

5.9 Load and Store Multiple 

The Load and Store Multiple instructions listed in Table 5-14 provide an easy 
facility for loading and storing multiple words of data between memory and the 
processor's general purpose registers. With one instruction, from one up to 32 
registers can be loaded or stored. 

It should be noted, however, that the multiple instructions are not favored in the 
eyes of the PowerPC designers. These instructions are not very RISC-like in that 
they perform multiple accesses to memory. This deviation from the standard 
RISC design philosophy makes it a bit easier for the programmer to code register 
saves and restores but it also complicates the processor implementation. 
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The warnings that these instructions may take longer to execute than an equiva­
lent series of load or store instructions, and the absence of load and store multi­
ple instructions that support doubleword (or floating-point) transfers between 
memory and the registers, should both serve as indications to just how little sup­
port these instructions are likely to receive in future PowerPC implementations. 

It is likely that the only reason that the load and store multiple instructions were 
carried over from the POWER to the PowerPC architecture is because of the 
number of old applications that make use of them. 

Table 5-14 Load/Store Multiple Instructions 

lmw rT, d(rA) ea := (rA I 0) + 'd 

Load Multiple Word R:=T 
while(R" 31) 

rR ¢= °Word(ea) 

ea:= ea + 4 
R:=R+1 

stmw rS,d(rA) ea := (rA I 0) + 'd 

Store Multiple Word R:=T 
while(R" 31) 

Word(ea) ¢= rR [:2-_3:J 
ea:=ea+4 
R:=R+1 

The Load Multiple Word instruction loads all of the GPRs from r T up to r 31 
(inclusive) with the data starting at the memory address calculated from adding 
the offset d to the contents of rA. If rO is specified for rA, then the address is 
simply d. 

If rA is in the range of register being loaded, or if rT and rA are both rO, the 
instruction is considered invalid. The POWER architecture handles the case 
where rA is in the range to be loaded by skipping rA and discarding the data 
that would have been loaded into it, but this behavior was not considered useful 
enough to warrant including it in the PowerPC specification. 

The Store Multiple Word instruction performs the inverse operation of the Load 
Multiple Word. It takes the low-order word from each of the registers between r S 

and r 31 and stores it into the memory block starting at the calculated address. 

For both the Load and Store Multiple instructions, the address calculated form rA 

and d should be a multiple of four (for the address to be properly word aligned). 
If the computed address is not a multiple of four, then one of three things may 
happen: 

• The operation may proceed normally. 
• The alignment error handler may be invoked. 
• The results may be (boundedly) undefined. 
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Which of the three occurs depends on the particular PowerPC implementation 
and whether a page boundary has been crossed. On the 601, misaligned Load 
and Store Multiple operations proceed normally unless a page boundary is 
crossed, in which case the alignment error handler is invoked. Other PowerPC 
processors will either always invoke the alignment error handler or produce 
results that are boundedly undefined. 

The PowerPC architecture also defines preferred forms for the Load and Store 
Multiple instructions. The preferred forms for these instructions are structured 
so that the last byte to be loaded or stored matches the last byte of an aligned 
quadword in memory. Thus r31 is loaded from or stored into the low-order 
word of an aligned quadword. This is shown in Figure 5-1 

Figure 5-1 Alignment for Preferred Form of Load and Store Multiple 

low addresses 

. dd word alignment 
starting a ress ....... 1-----------t~-xxxx xxxx xxxx xxOO 
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xxxx xxxx xxxx 0000 

high addresses 

Load and Store Multiple operations that do not conform to this preferred form 
may execute more slowly than forms that do conform. 

5.10 Load and Store String 

The Load and Store String instructions listed in Tables 5-15 and 5-16 provide a 
simple way of accessing unaligned data, like character strings. 

These instructions are more properly referred to as Move Assist instructions, 
since they are useful for more than just moving character strings around. These 
instructions can also be used to copy structures and fields without being con­
cerned about proper data alignment. 
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Table 5-15 Load String Instructions 

lswi rT, rA, nBytes ea:= (rA I 0) 

Load String Word Immediate R:= T-l 

i:= [f,] 
if(nBytes = 0) 

nBytes :=32 
while(nBytes > 0) 

if(i = [f,] ) 
R:=(R+l)%32 

rR ¢::: 0 

rR[i:(i+7)] ¢::: Byte(ea) 

i :=i + 8 

if(i = [~] ) 

i:= [~] 
ea:= ea + 1 
nBytes := nBytes - 1 

lswx rT,rA,rB ea := (rA 10)+(rB) 

Load String Word Indexed R:=T-l 
nBytes := XER[25:31] 

i:= [~] 
while(nBytes > 0) 

if(i = [~] ) 

R := (R + 1) % 32 

rR ¢::: 0 

rR[i:(i+7)] ¢::: Byte(ea) 

i:= i + 8 

if(i = [~] ) 

i := [~] 
ea:=ea+l 
nBytes := nBytes - 1 

The two Load String Word instructions load a number of bytes from memory into 
a series of GPRs. The two forms, Load String Word Immediate (lswi) and Load 
String Word Indexed (lswx), differ in how the memory address is calculated and 
where the number of bytes to copy comes from. 

For the immediate (non-indexed) form, the number of bytes is specified as an 
immediate value, nBytes, and the memory address where the data to be loaded 
begins is stored in r A. The number of bytes specified in the immediate value can 
be anywhere from 1 to 32. 

The Indexed form calculates the memory address from the sum of two registers, 
(rA I 0) and rE, and gets the number of bytes to copy from bits 25 to 31 of the 
Fixed-Point Exception Register (XER). This value can be anywhere between 0 
and 127, although if the number of bytes to be copied is 0, then the contents of 
r T are undefined. 
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For both of these instructions, each byte is copied into the register starting with 
the high-order byte (of the low-order word when in 64-bit mode) and working 
down to the low-order byte. When each register is full, the next register sequen­
tially is loaded, wrapping around from r31 to rO if necessary. 

The last register to be loaded may be only partially filled. In this situation, the 
lower bytes of that register are cleared to O. 

The Load String instructions do not load bytes into the upper word when execut­
ing in 64-bit mode. These upper bytes are always set to O. 

If rA (or r B, for the Indexed form) is in the range of the register being loaded, or 
if rT and rA are both rO, the instruction is considered invalid. 

Table 5-16 Store String Instructions 

stswi rS,rA,nBytes ea:= (rA I 0) 

Store String Word Immediate R:=S-l 

i:= [£] 
if(nBytes = 0) 

nBytes:= 32 
while(nBytes > 0) 

if(i= [£] ) 
R:=(R+l)%32 

Byte(ea) <= rR[i:(i+7)] 
i:=i+8 

if(i = [~] ) 

i:= [£] 
ea:=ea+l 
nBytes := nBytes - 1 

stswx rS,rA,rB ea := (rA I O)+(rB) 

Store String Word Indexed R:=S-l 
nBytes:= XER[25:31] 

i:= [£] 
while(nBytes > 0) 

if(i = [£] ) 
R:=(R+l)%32 

Byte(ea) <= rR[i:(i+7)] 
i:=i+8 

if(i = [~] ) 

i:= [£] 
ea:=ea+l 
nBytes := nBytes - 1 
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The two Store String instructions perform the opposite operation as the Load 
String instructions: the bytes from the specified registers are written out to mem­
ory starting at the given memory address. 

Both the Load and the Store String instructions have preferred forms that may 
execute more quickly on certain PowerPC implementations. The requirements 
of the preferred form are 

• 32 bytes or less are being transferred. 
• The first register (rS or rT) is r5. 

These requirements imply that only registers r 5 through r 12 will be used by the 
operation. 

5.11 Load and Store Synchronization 

The synchronization forms of the Load and Store instructions give the program­
mer control over the order in which storage operations are completed, as they 
are seen by devices outside the processor. Tables 5-17 and 5-18 list these instruc­
tions. 

Table 5-17 Load and Reserve Instructions 

lwarx rT, rA, rB Reserve:= 1 
Load Word and Reserve Indexed RAddr := (rA 10)+(rB) 

rT <= °Word«rA I O)+(rB)) 

Idarx rT,rA,rB Reserve:= 1 
Load Doubleword and Reserve Indexed RAddr := (rA I O)+(rB) 
64-bit implementations only rT <= DoubleWord«rA I O)+(rB)) 

The Load and Reserve instructions load a word from memory and attach a reserva­
tion to the address from which the data was loaded. If there is a reservation from 
a previous Load and Reserve instruction, the old reservation is replaced with the 
new one. 
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Table 5-18 Store Conditional Instructions 

stwcx. rS, rA, rB ea := (rA I O)+(rB)' 

Store Word Conditional Indexed if«Reserve = 1) AND (RAddr = ea)) 

Word(ea)¢=rS [;2-_3~] 

Reserve :=0 

eRloI ¢= b001 ..1 XER[SO] 
else 

eRloI ¢= bOOO.l XER[SO] 

stdcx. rS,rA,rB ea := (rA I O)+(rB) 

Store Doubleword Conditional Indexed if«Reserve = l)ANO (RAddr = ea» 

64-bit implementations only OoubleWord(ea)¢=rS 
Reserve:= 0 

eRloI ¢= b001 ..1 XER[SO] 
else 

eRloI ¢= bOOO.l XER[SO] 

The Store Conditional instructions store the contents of a register to a specified 
address only if a reservation has been created using a Load and Reserve instruc­
tion. If a reservation does not exist, then these instructions do nothing. 

The EQ bit (bit 2) of Field a of the Condition Register can be checked to see if the 
store operation was completed successfully. This bit will be 'I' if the store was 
performed and 'a' if it was not. 

5.12 Obsolete Load String 

There is only one obsolete load instruction (see Table 5-19), and that is Load 
String and Compare Byte Indexed. This instruction loads bytes from memory and 
compares each byte with a specified target byte. 
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Table 5-19 Obsolete String Instructions 

lscbx[.] rT, rA, rB 
Load String and Compare Byte Indexed 
obsolete POWER instruction 

ea := (rA 10)+(rB) 
R:= T-1 
nBytes := XER[25:31] 
nBytesCopied := 0 
matchByte := XER[16:23] 

matchFound := 0 

i :=0 
while(nBytes > 0) 

if(i = 0) 

R:= (R + 1) %32 

rR <= undefined 
if(matchFound = 0) 

rR[i:(i+7)] <= Byte(ea) 

nBytesCopied := nBytesCopied + 1 
H(Byte( ea) = matchByte) 

matchFound := 1 
i:=i+8 
H(i = 32) 

i :=0 
ea:= ea + 1 
nBytes := nBytes - 1 

XER[25:31] <= nBytesCopied 

The Load String and Compare Byte Indexed instruction loads bytes into the regis­
ters from r T to r 31 until one of two conditions is met. These conditions are 

• nBytes bytes have been loaded, or 
• A byte is loaded that matches matchByte. 

The values for nBytes and matchByte come from the Fixed-Point Exception Reg­
ister (XER). nBytes is copied from the value in XER[25:31] and the matchByte is 
contained in XER[16:23]. 

The target registers are loaded starting with the high-order byte and working 
down to the low-order byte. Registers are not guaranteed to be cleared to 0 
before they are loaded. Thus, the lower bytes of the last (partially filled) register 
are undefined. 

This instruction is not part of the PowerPC specification because of its com­
plexity. 
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Instructions 

The integer instructions defined by the PowerPC Architecture include instruc­
tions to perform logical (Boolean) operations and integer comparisons in addi­
tion to the standard arithmetic operations (add, subtract, multiply, and divide). 

6.1 Addition 

Addition is performed using variants of the Add instruction. The three basic 
forms of this instruction listed in Table 6-1 allow two registers to be added and 
provide control over how the Carry bit is affected by the instruction. There are 
also two other addition instructions that allow the Carry bit to be combined with 
a register and a constant. All of these instructions have options that allow the 
overflow (' 0') and condition (' . ') information to be set based on the result of the 
operation. 

The most basic add instruction is, oddly enough, the Add (add) instruction. This 
instruction adds the contents of registers rA and rB and stores the result in reg­
ister rT. The Carry bit in the XER is neither used nor affected by the execution of 
this instruction. 

The Add Carrying (addc) instruction performs the same operation as the add 
instruction, but also updates the Carry bit in the XER. The Carry bit is set if there 

is a carry out of bit [fz] and is cleared otherwise. 
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Table 6-1 Add Instructions 

add[o][.] rT,rA,rB rT ¢::: (rA) + (rB) 
Add 

addc[o][.] rT, rA, rB rT ¢::: (rA) + (rB) 
Add Carrying update XER[CA] 

adde[o][.] rT,rA,rB rT ¢::: (rA) + (rB) + XER[CA] 
Add Extended update XER[CA] 

addme[o][.] rT, rA rT ¢::: (rA) + -1 + XER[CA] 
Add to Minus One Extended update XER[CA] 

addze[o][.] rT, rA rT ¢::: (rA) + 0 + XER[CA] 
Add to Zero Extended update XER[CA] 

The Add Extended (adde) instruction performs basically the same operation as 
the addc instruction, except that it also adds the Carry bit to the result before 
storing the result in register rT and updates the Carry bit based on the result. 

The final two register-based add instructions add the contents of rA with a con­
stant and the Carry bit and then store the result in rT, updating the Carry bit in 
the process. The constant can be either 0 (for addze) or -1 (for addme). 

There is no add instruction which uses the Carry bit but does not update the 
Carry information. 

In addition to the register-based add instructions given earlier, the variants 
listed in Table 6-2 allow 16-bit immediate data (sign-extended to 32 bits) to be 
specified as one of the operands. 

Table 6-2 Add Immediate Instructions 

addi rT,rA,s16 rT ¢::: (rA I 0) + 's16 
Add Immediate 

addis rT,rA,s16 rT ¢::: (rA I 0) + '(s16 .L OxOOOO) 
Add Immediate Shifted 

addic[.] rT,rA,s16 rT ¢::: (rA) + 's16 
Add Immediate Carrying update XER[CA] 

These instructions are Add Immediate (addi), Add Immediate Shifted (addis), and 
Add Immediate Carrying (addic). Only the addic instruction updates the Carry, 
and none of these instructions uses the Carry as part of its operation. 

On 64-bit implementations, the immediate data is sign-extended to 64 bits before 
performing the addition operation. 

Note that the addi and addis instructions do not allow the contents of register 
rO to be added with the immediate data. If rO is specified as rA, then 0 will be 
added to the sign-extended immediate data and the result will be placed in rT. 
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This provides a convenient method of loading a register with an immediate 16-
or 32-bit value, as shown in Table 6-3. 

Two extended forms are defined so that it is more readily apparent that the add 
immediate instructions are being used to load a value into a register. These are 
the Load Immediate and the Load Immediate Shifted forms. 

Table 6-3 Load Immediate Extended Forms 

li rT,816 
Load Immediate rT <= '816 
extended form for addi rT,O,s16 

lis rT,816 
Load Immediate Shifted rT <= '(816.1 OxOOOO) 
extended form for addis rT, 0, s16 

In order to load a 32-bit immediate value into a register, the lis form can be 
used with the OR Immediate instructions: 

lis rT, <upper halfword> 
or i r T, <lower haIfword> 

The lis form loads the upper halfword and clears the lower halfword and the 
or i instruction loads the proper value into the lower halfword. 

Note that while it is possible to load a register with an immediate value using 
extended forms of the Add Immediate instruction, the Add Immediate instructions 
should not be used to add an immediate 32-bit value to a value already in a 
register. This technique is not guaranteed to work since the most significant bit 
of the lower halfword is (erroneously) interpreted as a sign bit and the value is 
sign-extended to a word before the addition takes place. Thus, attempting to add 
Ox0100 8000 with the following sequence: 

addis 
addi 

rT,OxOlOO 
rT,Ox8000 

would result in adding OxOOFF 8000 because of the sign-extension of the lower 
halfword. This method can work if the upper half of the value is adjusted (by 
adding 1) to compensate for the sign-extension from the lower half. This adjust­
ment should only take place if the sign bit of the lower half is '1'. The following 
code sequence: 

addis 
addi 

rT,OxOlOl 
rT,Ox8000 

would produce the desired result of adding OxOlOO 8000 to the value already in 
rT. In any case, care should be taken when adding immediate 32-bit values. 
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When loading an address into a register, the Load Address (la) form of the Add 
Immediate instruction listed in Table 6-4 can be used. This extended form makes 
more explicit the fact that an address value is being loaded. 

Table 6-4 Load Address Extended Forms 

la rT,d(rA) 
Load Address rT ¢::: (rA I 0) + '516 
extended form for addi rT, rA, d 

la rT,d 
Load Address (with implicit base register) rT ¢::: (rBa5e I 0) + '516 
extended form for addi r T, r Base, d 

The two forms of the Load Address form allow for the base address to be specified 
either explicitly by giving rA or by allowing the base register to be implicit. An 
implicit base register is set up using an assembler directive such as the • using 
directive in IBM's AIX assembler. 

6.2 Subtraction 

The primary instructions for performing subtraction are the variants of the subf 
(Subtract From) instruction listed in Table 6-5. The subf instruction variants pro­
vide control over the use of the Carry bit and allow registers to be subtracted 
from predefined constants. All of these instructions have options that allow the 
overflow (' 0') and condition (' .') information to be set based on the result of the 
operation. 

Table 6-5 Subtract From Instructions 

subf[o][.] rT,rA,rB 
rT ¢::: (rB) - (rA) 

Subtract From 

subfc[o][.] rT,rA,rB rT ¢::: (rB) - (rA) 
Subtract From Carrying update XER[CA] 

subfe[o][.] rT,rA,rB rT ¢::: (rB) - (rA) + XER[CA] - 1 
Subtract From Extended update XER[CA] 

sub fme [ 0][ .] rT, rA rT ¢::: -1- (rA) + XER[CA] -1 
Subtract From Minus One Extended update XER[CA] 

sUbfze[o][.] rT,rA rT ¢::: 0 - (rA) + XER[CA]-l 
Subtract From Zero Extended update XER[CA] 

The basic form of the Subtract From (subf) instruction subtracts rA from rB and 
stores the result in rT. This form of the instruction neither uses nor affects the 
Carry bit in the XER. 

The Subtract From Carrying (subfc) instruction performs the same operation as 
the subf instruction, except that it updates the Carry bit based on the result of 
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the operation. The Carry bit is normally cleared by this instruction but is set if 

there is a carry out of bit [fz]. 

The Subtract From Extended (subfe) instruction subtracts rA from rB and then 
adds the Carry minus 1 to the result before storing it in register rT. The Carry bit 
is updated based on the result. 

The remaining two register based subf instructions subtract the contents of rA 
from a constant and then add the Carry bit minus 1. The result is then stored in 
the register rT. The constant can be either 0 (for subfze) or -1 (for subfme). 

Because the operation of the subf instruction may be confusing given the regis­
ter order, the extended mnemonics listed in Table 6-6 are provided to allow the 
programmer to specify the arguments in a more natural order. 

Table 6-6 Subtract Extended Forms 

sub[o][. ] rT,rA,rB 
Subtract rT <= (rA) - (rB) 
extendedformfor subf[o][.] rT,rB,rA 

subc[o][. ] rT, rA,rB 
rT <= (rA) - (rB) 

Subtract Carrying 
extended form for subfc[o][.] rT,rB,rA 

update XER[CA] 

The Subtract (sub) extended form subtracts rB from rA and places the result in 
rT. This is the same operation as the subf instruction. 

The Subtract Carrying (subc) extended form is identical to sub, except that the 
Carry is updated to reflect the result of the operation. This is the same operation 
as the subfc instruction. 

Table 6-7 lists one instruction that allows the contents of a register to be sub~ 
tracted from a 16-bit sign-extended immediate constant. In addition, the three 
extended forms listed in Table 6-8 allow a constant to be subtracted from the 
contents of a register. 

Table 6-7 Subtract From Immediate Instruction 

subfic rT,rA,s16 
Subtract From Immediate Carrying 

rT <= 's16 - (rA) 
update XER[CA] 

The Subtract From Immediate Carrying (subfic) instruction subtracts the con­
tents of rA from the specified 16-bit value. The Carry bit in the XER is updated 
to reflect the result of the operation. 
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Table 6-8 Subtract Immediate Extended Forms 

subi rT,rA,s16 
Subtract Immediate rT ¢::: (rA I 0) - 's16 
extended form for addi rT,rA, -816 

subis rT,rA,s16 
Subtract Immediate Shifted rT ¢::: (rA I 0) - '(s16 ..1 OxOOOO) 
extendedformforaddis rT,rA,-816 

subie[. ] rT,rA, s16 
rT ¢::: (rA) - 's16 

Subtract Immediate Carrying 
extended form for addic[.J rT, rA, -816 

update XER[CA] 

The three Subtract Immediate (subi) extended forms are based on the addi 
instructions: Add Immediate (addi), Add Immediate Shifted (addis), and Add 
Immediate Carrying (addic). They perform the same operation as the equivalent 
addi instructions with the immediate data negated. 

6.3 Multiplication 

On 32-bit PowerPC implementations, multiplying two 32-bit quantities has the 
problem that the result can potentially require 64 bits when only 32 bits are avail­
able. A similar situation exists on 64-bit implementations where the result may 
require 128 bits, thus overflowing the 64-bit registers. 

The PowerPC defines instructions to multiply two 32-bit operands and return 
either the high or the low word of the result. This works similarly on 64-bit 
implementations when multiplying two 64-bit operands: there are instructions 
to return either the high or low doubleword of the result. Tables 6-9 and 6-10 list 
these instructions. 

Table 6-9 Multiply Instructions 

mullw[o][.] rT,rA,rB 32-bit: 

Multiply Low Word rT ¢::: LoWord«rA) X (rB)) 

64-bit: 

rT ¢::: (rA[32:63]) X (rB[32:63]) 

mulld[o][.] rT,rA,rB 
Multiply Low Doubleword rT ¢::: LoDWord«rA) X (rB)) 
64-bit implementations only 

mulhw[.] rT, rA, rB 
rT ¢::: HiWord«rA) X (rB)) 

MultiplyHigh Word (Signed) 

mulhwu[.] rT,rA,rB 
rT ¢::: HiWord«rA) X (rB)) 

Multiply High Word Unsigned 
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mulhd[.] rT,rA,rB 
Multiply High Doubleword (Signed) rT ~ HiDWord«rA) X (rB» 
64-bit implementations only 

mulhdu[.] rT, rA, rB 
Multiply High Doubleword Unsigned rT ~ HiDWord«rA) X (rB» 
64-bit implementations only 

For 32-bit operands, there are three instructions: Multiply Low Word (mullw), 
Multiply High Word (mulhw) and Multiply High Word Unsigned (mulhwu). Only 
one instruction is required to return the low word result since it is the same for 
signed and unsigned multiplication operations. 

64-bit implementations define three instructions that are analogous to the 32-bit 
instructions but perform 64-bit multiplications. These instructions are Multiply 
Low Doubleword (mulld), Multiply High Doubleword (mulhd), and Multiply High 
Doubleword Unsigned (mulhdu). 

When multiplying two 32-bit numbers on a 64-bit PowerPC implementation, 
there is no need to calculate the upper and lower half separately since the entire 
result is guaranteed to fit in 64 bits. For this reason, the mullw instruction is 
defined to return the entire result in rT when executing on 64-bit implementa­
tions. The operands are considered to be signed for this calculation. 

If the mulhw or mulhwu instructions are executed on 64-bit implementations, 
they perform the same operation as on 32-bit implementations. The lower 32 bits 
of rT contain the result and the upper 32 bits are undefined. 

Table 6-10 Multiply Immediate Instructions 

mulli rT,rA,s16 
Multiply Low Immediate 

rT ~ LoWord«rA) X 's16) 

The Multiply Low Immediate (mulli) instruction is also provided to allow a reg­
ister to be multiplied by a sign-extended 16-bit value. The low word of the 48-bit 
result is returned in rT. On 64-bit implementations, the operation is the same 
except that the low doubleword of the 80-bit result is returned in rT. 

There is no instruction to access the upper word (or doubleword) of the Multiply 
Immediate result. 

6.4 Division 

The division instructions listed in Table 6-11 divide the contents of one register 
by the contents of another and store the quotient in a third register. The remain­
der is not provided as part of the instruction result. 
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Table 6-11 Divide Instructions 

divw[oH .J rT,rA,rB 
rT ¢::: OrA [:~~6~] + OrB L~~:3] Divide Word (Signed) 

divwu[oJ[. J rT,rA,rB 
rT ¢::: orA [:~~6~] + OrB [:~~~] Divide Word Unsigned 

divd[o][ .J rT,rA,rB 
Divide Doubleword (Signed) rT ¢::: (rA) + (rB) 
64-bit implementations only 

divdu[oH· J rT,rA,rB 
Divide Doubleword Unsigned rT ¢::: (rA) + (rB) 
64-bit implementations only 

The Divide Word instructions divide the contents of source register rA by the con­
tents of rB and store the quotient in rT. Normally, the source registers are 
treated as signed quantities, but the di vwu instruction interprets the values as 
unsigned and produces an unsigned result. 

On 64-bit implementations, the di vw and di vwu instructions use only the lower 
32 bits of rA and rB. These 32-bits operands are then zero-extended to 64 bits 
before the division takes place. The quotient is placed in the lower 32 bits of rT 
and the upper 32 bits are undefined. 

the di vd and di vdu instructions perform the same division operation as the 
word versions, but they use all 64 bits of the source registers and produce a 64-
bit result. 

Note that there are no instructions to calculate the remainder. The recommended 
way to calculate the remainder is by dividing to calculate the quotient and then 
multiplying this quotient by the original divisor. The difference between this 
value and the original dividend is the remainder. This can be done as follows: 

divw[uJ rT,rA,rB 
mullw rT,rT,rB 
subf rT,rT,rA 

# rT 

# rT 
# rT 

(rA-R) IrB 
rA-R 
R 

the expression rT = (rA-R) I r B comes from the fact that the remainder should 
always be the same sign as rA and the magnitude of the remainder should be 
less than the magnitude of the divisor (r B). This means that the quotient in r Tis 
always rounded towards O. When calculating 64-bit remainders, divd[uJ and 
mulld should be used instead of divw[uJ and mullw. 

Even though this requires three instructions to calculate the final result, the pen­
alty for calculating the remainder this way is not unreasonable. First of all, the 
divide operation is a costly one in terms of execution time (36 cycles in execution 
ort the 601), so adding the extra instructions increases the required number of 
cycles only by 16 to 30 percent. 
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Secondly, because the remainder does not need to be supplied as part of the 
result, the hardware designers can employ different divide algorithms that can 
be faster than algorithms that provide the remainder. This savings in execution 
time partially offsets the penalty of requiring two additional instructions and 
benefits all integer divide operations, whether or not the remainder is needed. 

6.5 Miscellaneous Arithmetic Instructions 

The three extra arithmetic instructions listed in Table 6-12-Count Leading Zeros, 
Extend Sign, and Negate-do not fit neatly into the other categories. 

Table 6-12 Miscellaneous Arithmetic Instructions 

cntlzw[.] rA,rS rA ¢::: LeadingZeros(rS) 
Count Leading Zeros Word 

cntlzd[.] rA,rS 
Count Leading Zeros Doubleword rA ¢::: LeadingZeros(rS) 
64-bit implementations only 

extsb[.] rA,rS rA ¢::: 'rS [~!'~] Extend Sign Byte 

extsh[.] rA,rS 
rA ¢::: 'rS c:~] Extend Sign Halfword 

extsw[.] rA,rS 
Extend Sign Word rA ¢::: 'rS[32:63] 
64-bit implementations only 

neg[oH· ] rT,rA rT ¢::: -( rA) 
Negate 

The Count Leading Zeros instructions count the number of 'a' bits that are occu­
pying the high-order bits of r S. This number, which can range from a to 32 for 
cntlzw and a to 64 for cntlzd, is then stored in rA. 

There are three Extend Sign instructions: one extends a byte to a word (extsb), 
another extends a halfword to a word (extsh), and a third which extends a 
word to a doubleword (extsw). These instructions take the high-order (or sign) 
bit from the quantity being extended (byte, halfword, or word) and replicate it 
throughout the upper bits of the destination quantity (word or doubleword) to 
produce the result. 

The Negate instruction simply takes the two's complement of the quantity in rA 
and stores the result in r T. 
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6.6 Comparison Instructions 

The two basic forms of the Compare instructions listed in Tables 6-13 through 6-16 
are defined in the PowerPC architecture. One form performs a standard signed 
comparison and the other performs an unsigned or logical comparison. 

Table 6-13 Compare Instructions (Register Based) 

cmp crfT,L,rA,rB CR{crjT} ¢:= SignedCompare(rA,rB) 
Compare 

cmpl crfT,L,rA,rB CR{crjT} ¢:= UnsignedCompare(rA,rB) 
Compare Logical 

The Compare instruction compares the contents of r A with the contents of r Band 
sets the bits in the specified CR field appropriately. The bits in the CR field are 
set as follows: 

• LT is set if (rA) < (rB). 
• GT is set if (rA) > (rB). 
• EQ is set if (rA) = (rB). 
• 50 is copied from XER[50]. 

The Compare Logical instruction performs the same operation but treats the con­
tents of rA and rB as unsigned quantities for purposes of the comparison. 

The L field for each of the Compare instructions determines if a 32-bit or a 64-bit 
comparison should be performed. The L field must be 0 for 32-bit implementa­
tions. 

Table 6-14 Compare Instructions (Immediate Data) 

cmpi crfT,L,rA,s16 CR{crjT} ¢:= SignedCompare(rA, '816) 
Compare Immediate 

cmpli crfT,L,rA,u16 CR{crjT} ¢:= UnsignedCompare(rA,Ou16) 
Compare Logical Immediate 

The Compare Immediate instruction compares the contents of rA with the sign­
extended immediate value and sets the bits in the specified CR field appropri­
ately. The bits in the CR field are set as follows: 

• LT is set if (rA) < '816. 
• GT is set if (rA) > '816. 
• EQissetif(rA)='816. 
• 50 is copied from XER[50]. 
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The Compare Logical Immediate instruction compares the contents of rA with the 
unsigned immediate value and updates the appropriate CR field. The CR field 
bits are set as follows: 

• LTissetif(rA)<ou16. 

• GT is set if (rA) > °u16. 

• EQ is set if (rA) = °u16. 

• SO is copied from XER[SO]. 

As with the non-immediate Compare instructions, the L field is used to switch 
between 32-bit and 64-bit compares. 

Since it soon becomes annoying to have to specify the L field for each compari­
son performed, extended forms are defined to perform word and doubleword 
compares. 

Table 6-15 Compare Word Extended Forms 

cmpw crfT,rA,rB 
Compare Word CR{crjT} ¢::: SignedCompare(rA,rB) 
extended form for cmp cr fT, 0 , rA, r B 

cmplw crfT, rA, rB 
Compare Logical Word CR{crjT} ¢::: UnsignedCompare(rA,rB) 
extended form for cmpl cr fT, 0, r A, r B 

cmpwi crfT,rA,SI 
Compare Word Immediate CR{crjT} ¢::: SignedCompare(rA, 's16) 
extendedformforcmpi crfT,O,rA,s16 

cmplwi crfT,rA, UI 
Compare Logical Word Immediate CR{crjT} ¢::: UnsignedCompare(rA,Ou16) 
extended form for cmpli crfT, 0 ,rA, u16 

The four Compare Word forms are the same as the four base Compare instructions, 
except that they implicitly set the L field to a so that 32-bit compares are per­
formed. 

The four Compare Doubleword forms are the same as the four base Compare 
instructions, except that they implicitly set the L field to 1 so that 64-bit compares 
are performed. 
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Table 6-16 Compare Doubleword Extended Forms 

cmpd crfT,rA,rB 
Compare Doubleword CR{crjT} ~ SignedCompare(rArB) 
extended form for crop crfT, 1, rA,rB 
64-bit implementations only 

cmpld crfT,rA,rB 
Compare Logical Doubleword CR{crjT} ~ UnsignedCompare(rA,rB) 
extended form for crop1 crfT, 1, rA, rB 
64-bit implementations only 

cmpdi crfT,rA,SI 
Compare Doubleword Immediate CR{crjT} ~ SignedCompare(rA, 's16) 
extended form for cropi crfT, 1,rA, 816 
64-bit implementations only 

cmpldi crfT,rA, UI 
Compare Logical Doubleword Immediate CR{crjT} ~ UnsignedCompare(rA,Ou16) 
extended form for cropli crfT, 1 ,rA, u16 
64-bit implementations only 

6.7 Logical (Boolean) Instructions 

The logical instructions listed in Tables 6-17, 6-18, and 6-19 perform bitwise 
Boolean operations on registers. There are three basic bitwise operations that can 
be performed: AND, OR, and XOR. By negating or complementing one of the 
source registers or the result, additional logical operations can be constructed. 
The PowerPC defines five additional operations that are built in this manner: 
Equivalent, AND with Complement, OR with Complement, NAND, and NOR. 

Table 6-17 Logical Instructions 

and[.] rA, rS, rB rA ~ (r5) & (rB) 
AND 

andc[.] rA,rS,rB rA ~ (r5) & -(rB) 
AND with Complement 

eqv[.] rA, rS, rB 
rA ~ (r5) == (rB) 

Equivalent 

nand[.] rA, rS, rB 
rA ~ -«r5) & (rB» 

NAND 

nor[.] rA, rS, rB 
rA ~ -«r5) I (rB» 

NOR 

or[.] rA, rS, rB rA ~ (r5) I (rB) 
OR 

orc[.] rA, rS, rB rA ~ (r5) I -(rB) 
OR with Complement 

xor[.] rA, rS, rB rA ~ (r5) Et> (rB) 
Exclusive OR 
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The AND instruction calculates the bitwise AND of the source registers. Each bit 
in the target register (rA) is set if and only if the corresponding bits in both 
source registers (r sand r B) are set. 

The AND with Complement instruction calculates the bitwise AND of the source 
register r S and the one's complement of source register r B. Each bit in the target 
register (rA) is set if and only if the corresponding bits in rS and ~rB are set. 

The Equivalent instruction calculates the equivalence of the two source registers. 
Each bit in the target register (rA) is set if and only if the corresponding bits in 
the source registers (rs and rB) are equal to each other. 

The NAND instruction calculates a bitwise AND like the AND instruction but 
takes the ones's complement of the result before storing it in rA. 

The NOR instruction calculates a bitwise OR like the OR instruction but takes 
the one's complement of the result before storing it in rA. 

The OR instruction calculates the bitwise OR of the source registers. Each bit in 
the target register (rA) is set if either of the corresponding bits in the source reg­
isters (rS and rB) are set. 

The OR with Complement instruction calculates the bitwise OR of the source reg­
ister r S and the one's complement of source register r B. Each bit in the target reg­
ister (rA) is set if either of the corresponding bits in r S and ~rB are set. 

The Exclusive OR instruction calculates the bitwise XOR of the source registers. 
Each bit in the target register (rA) is set if the corresponding bit in one of the 
source registers (either r S or r B) is set. If both source registers have the bit set, 
or if neither of them do, then the target register bit is cleared. Note that this oper­
ation is equivalent to negating the result of the Equivalent instruction. 

Table 6-18 Logical Immediate Instructions 

andi. rA,rS,u16 rA ~ (rS) & °u16 
AND Immediate 

andis. rA,rS,u16 
rA ~ (rS) & O(u16.L OxOOOO) 

AND Immediate Shifted 

ori rA,rS,u16 
rA ~ (rS) I °u16 

OR Immediate 

oris rA,rS,u16 
rA ~ (rS) I O(u16.L OxOOOO) 

OR Immediate Shifted 

xori rA,rS,u16 
rA ~ (rS) EI1 °u16 

XOR Immediate 

xoris rA,rS,u16 
rA ~ (rS) EI1 O(u16.L OxOOOO) 

XOR Immediate Shifted 
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Logical Immediate forms are defined for the three basic Boolean operations: AND, 
OR, and XOR. For each of these operations, there are two instructions: one 
instruction zero extends the 16-bit immediate value before performing the logi­
cal operation, and the other shifts the immediate value 16 bits to the left (filling 
with O's from the right) before performing the logical operation. 

On 64-bit implementations, the immediate data is zero-extended to 64 bits 
before the operation is performed. 

The logical instructions allow many simpler instructions to be constructed from 
them. These three extended forms listed in Table 6-19 are the preferred forms for 
implementing these operations. Implementations of the PowerPC architecture 
that provide some sort of run-time optimization for these operations will look 
for the preferred form to trigger the optimization. 

Table 6-19 Extended Forms for Logical Instructions 

mr[. ] rA,rB 
Move Register rA ¢= (rB) 
extended form for or rA, rB, rB 

not[. ] rA,rB 
Not (One's Complement) rA ¢= ~(rB) 

extended form for nor rA,rB,rB 

nop 
No-operation rO ¢= rO 
extended form for or i rO,rO,rO 

The Move Register form provides an easy way to transfer the contents of one reg­
ister to another. 

The Not instruction calculates the one's complement of the source register and 
stores it in the destination register. 

The No-operation or No-op instruction does nothing. It can be useful as a place­
holder instruction that may be overwritten with a "real" instruction. 

6.8 Obsolete Arithmetic Instructions 

A variety of arithmetic instructions were defined for the POWER architecture 
but were not included in the PowerPC specification. These instructions were 
either unnecessarily complicated (as with the Absolute Value and Difference or 
Zero instructions), or they made use of the MQ register (as with the Multiply and 
Divide instructions). 
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Obsolete Multiply 

The obsolete POWER multiply instructions do not provide separate instructions 
to return the upper and lower part of a 32-bit x 32-bit multiply result. Instead, a 
single instruction listed in Table 6-20 is defined to return the 64-bit result split 
across two registers: rT and MQ. 

Table 6-20 Obsolete POWER Multiply Instructions 

mul[oH.] rT, rA, rB 
Multiply 
obsolete POWER instruction 

rT ¢::: HiWord«rA) x (rB)) 
MQ ¢::: LoWord((rA) X (rB)) 

Since the MQ register was removed for the PowerPC specification, this instruc­
tion has been removed also. Its complete functionality is provided via the mullw 
and mulhw instructions. 

Obsolete Divide 

In contrast to the PowerPC divide instructions, the obsolete POWER divide 
instructions listed in Table 6-21 provide both the quotient and the remainder as 
part of the result. The quotient is returned in the specified register, and the 
remainder is returned in the MQ register. Since the MQ register is not part of the 
PowerPC specification, these divide instructions needed to be removed. 

Table 6-21 Obsolete POWER Divide Instructions 

div[oH.] rT,rA,rB rT ¢::: ((rA) .1 (MQ)) + (rB) 
Divide MQ ¢::: ((rA) .1 (MQ)) % (rB) 
obsolete POWER instruction 

divs[oH.] rT, rA, rB rT ¢::: (rA) + (rB) 
Divide Short MQ ¢::: (rA) % (rB) 
obsolete POWER instruction 

The two obsolete divide instructions are Divide (div) and Divide Short (divs). 

The Divide instruction divides a 64-bit value by a 32-bit value and returns the 
quotient and the remainder. The 64-bit dividend is composed of the contents of 
register rA concatenated with the contents of the MQ register, and the 32-bit 
divisor is the contents of register rB. The quotient is returned in rT and the 
reinainder is returned in the MQ register. 

The Divide Short instruction divides the 32-bit dividend in rA by the 32-bit divi­
sor in rB and returns the quotient in rT and the remainder in the MQ register. 

For both the di v and di vs instructions, the remainder in MQ is guaranteed to 
have the same sign as the dividend (rA). 
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Other Obsolete Arithmetic Instructiol1.S 

The POWER architecture also defines two additional operations listed in 
Table 6-22 not found in the PowerPC architecture: integer Absolute Value and Dif­
ference or Zero. The instructions implementing these operations were removed 
for the PowerPC specification in an effort to simplify the design. 

These instructions were removed because the operation being performed is data 
dependent. This means that the processor can't simply perform an operation on 
the data but must first examine the data to determine which operation to per­
form. For Absolute Value, the two operations are either to do nothing (if the 
source is positive) or negate (if negative); and for the Difference or Zero instruc­
tion, the two operations are to subtract (if (rA) is less than the other value) or 
returnO. 

This data dependency requires an extra multiplexer m the arithmetic unit to 
decide which of the two function results to save to the destination register. This 
multiplexer is likely to be located on the critical execution path of the processor, 
thus, supporting these instructions is likely to have the effect of slowing doWn 
every other instruction while benefitting only these four instructions. Since these 
instructions are infrequently used, they are not included as part of the PowerPC 
specification. 

Table 6-22 Obsolete POWER Arithmetic Instructions 

aba[o][.] rT,rA 
Absolute Value rT~ 1 (tA)1 
obsolete POWER instruction 

nabs[o][.] rT, rA 
Negative Absolute Value rT ~ -I (rA) 1 
obsolete POWER instruction 

dOz[o][. ]rT, rA, rB rT ~ «rA) > (rB» ?O 
Difference Or Zero : «rB) - (rA» obsolete POWER instruction 

dozi rT,rA,s16 rT ~ «rA) > '816) ?O 
Difference Or Zero Immediate : ('816 - (rA» 
obsolete POWER instruction 

The two absolute value instructions are Absolute Value (abs) and Negative Abso­
lute Value (nabs). These instructions calculate the absolute value (or its ~egative) 
of rA and store the result in rT. Both of these instructions have options which 
allow the overflow and condition information to be set based on the result of the 
operation. 
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The two 1/ difference or zero" instructions are Difference Or Zero (do z) and 
Difference Or Zero Immediate (dozi). These instructions compare the two 
operands and return 0 if rA is greater than the other operand or the differ­
ence of the two operands in all other cases. The end result is that the value 
stored in rTis guaranteed to be non-negative. The doz instruction compares 
rA with another register, and dozi compares rA with a sign-extended 16-bit 
quantity. 
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Rotate and Shift 
Instructions 

The PowerPC architecture defines a complex set of rotate and shift operations 
that can be used to perform a wide range of operations in one instruction. These 
operations include 

• Rotate the contents of a register to the left or right. 
• Shift the register contents to the left or right. 
• Extract and shift a range of bits from a register. 
• Shift and insert a range of bits into a register. 

• Clear a range of bits in a register. 

In addition, the rotate instructions' built-in masking operation facilitates the 
implementation of multiple-precision shifts and rotates. 

7.1 Rotation Masks 

The rotate instructions have a mask generation facility that allows a mask to be 
specified. The rotated quantity is ANDed with this mask so that only a portion 
of the rotated word is copied into the destination register. This allows complex 
bit manipulation operations to be performed in one instruction by using an 
appropriate mask. 

This facility is limited by the restriction that only certain types of masks are 
allowed. The valid types of masks vary depending on whether the mask is for a 
32-bit or a 64-bit quantity. 
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§7.1 Rotation Masks 

Word Masks 

When specifying a mask for a word (for example, a 32-bit quantity), a valid mask 
must be composed of either: 

• A contiguous range of 'l's surrounded by 'O's. 
• A contiguous range of 'O's surrounded by 'l's. 
• A contiguous range of 'l's followed by 'O's. 
• A contiguous range of 'O's followed by 'l's. 

• AlII's. 

Note that there is no way to specify a mask consisting of all'O's. Such a mask 
would not be very useful since it would entirely mask out the result of the rota­
tion operation. 

Simplifying the acceptable masks in this fashion allows the mask to be encoded 
by recording the starting bit (maskBegin) and the ending bit (maskEnd). These 
mask bit values must be between 0 and 31. Figure 7-1 shows the five types of 
acceptable word masks. 

Figure 7-1 Valid Word Rotation Masks 

mBegin :::; mEnd 
mBegin mEnd .. .. mBegin > mEnd 

mEnd mBegin 

mBegin=O 

mEnd =31 
mBegin 

mBegin = mEnd+ 1 

A mask that consists of a contiguous range of 'l's surrounded by '0' s is encoded 
by setting maskBegin to the bit number of the first 'I' bit and maskEnd to the bit 
number of the last '1' bit. Thus, the mask OxOOFF FFOO would be encoded with 
maskBegin = 8 and maskEnd = 23 (since the leftmost bit is bit 0). If maskBegin = 
maskEnd, then a mask is generated with only one bit set. 

A mask that consists of a contiguous range of 'O's surrounded by 'l's is encoded 
by setting maskEnd to the bit number of the bit immediately before the first '0' bit 
and maskBegin to the bit number of the bit immediately after the last '0' bit. This 
type of mask is identified by recognizing that maskBegin is greater than maskEnd. 
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Doubleword Masks 

As an example, the mask OxFFOO OOFF would be encoded with maskBegin = 24 
and maskEnd = 7. 

A mask that consists of a contiguous range of 'l's followed by a range of 'O's is 
encoded by setting maskBegin to bit 0 and maskEnd equal to the last bit of the 
mask. Thus, the mask OxFFFO 0000 would be encoded as maskBegin = 0 and 
maskEnd = 11. 

A mask that consists of a contiguous range of 'O's followed by a range of 'l's 
is encoded by setting maskBegin to the first bit of the mask and maskEnd to bit 
31. Thus, the mask OxOOOO OFFF would be encoded as maskBegin = 20 and 
maskEnd = 31. 

A mask of all '1' s is encoded by setting maskBegin equal to maskEnd+ 1 (wrapping 
around to 0 if maskEnd+ 1 = 32). While any values for maskBegin and maskEnd that 
satisfy the maskBegin = (maskEnd+1) % 32 equation define valid mask specifica­
tions, by convention the values maskBegin=O and maskEnd=31 are used. 

When specifying word masks on 64-bit implementations, the maskBegin and 
maskEnd values are automatically offset by 32 so that they specify bits in the low­
order word of the 64-bit register. Thus, specifying a mask from bit 8 to bit 15 on 
a 64-bit implementation actually results in a mask from bit 40 to bit 47. 

Doubleword Masks 

Doubleword masks are used by the doubleword rotate instructions that are 
available on 64-bit PowerPC implementations. When specifying a mask for a 
doubleword, the mask must be composed of either 

• A series of 'l's followed by a series 'O's. 
• A series of 'O's followed by a series 'l's. 

• AlII's. 
• A contiguous range of 'l's surrounded by 'O's (with restrictions). 

Note that there is no way to specify a mask consisting of all'O's. As is the case 
with word masks, such a mask would not be very useful since it would entirely 
mask out the result of the rotation operation. 

Figure 7-2 shows these four types of acceptable doubleword masks. 

Rotate and Shift Instructions 95 



§7.2 How Rotates and Shifts Update the CR 

Figure 7-2 Valid Doubleword Rotation Masks 

mEnd 

mBEgin 

_I 
mBEgin f- <hift ~ 

Simplifying the acceptable masks in this fashion allows the mask to be encoded 
by recording either just the starting bit (maskBegin) or just the ending bit (mask­
End). These mask bit values must be between a and 63. The maskBegin and mask­
End values cannot both be specified simultaneously because of instruction 
encoding limitations. It is always clear from the context whether the bit value 
being specified defines the beginning or the end of the mask. 

Some instructions allow maskBegin to be specified and use an implicit maskEnd 
that is generated from the instruction's shift value. These are the only instruc­
tions that allow a range of 'l's surrounded by 'a's to be used as a mask. 

A mask of 'l's followed by 'O's is encoded by setting maskEnd to the bit number 
of the last 'I' bit, using 0 as an implicit maskBegin. A mask of 'O's followed by 'l's 
is encoded by setting maskBegin to the bit number of the first 'I' bit, using 63 as 
an implicit maskEnd. A mask of all 'l's can be constructed by setting either mask­
Begin to a or maskEnd to 63, depending on which value is available. 

Instructions that permit the last type of mask record the maskBegin value and use 
63-shift as the implicit maskEnd value. The maskEnd value cannot be controlled 
independently of the shift value. 

7.2 How Rotates and Shifts Update the eR 

All of the shift and rotate instructions allow the' .' suffix to be appended to the 
instruction mnemonic to have field 0 of the Condition Register updated to reflect 
the result of the operation. 

For 32-bit PowerPC implementations, these instructions set CR{O} by algebra­
ically comparing the shift or rotate result with O. 

For 64-bit implementations, the comparison is dependent on the mode that the 
processor is currently in. When executing in 32-bit mode, the low-order word of 
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Executing Word Instructions in 64-bit Mode 

the result is algebraically compared with a 0 word. In 64-bit mode, the entire 
doubleword of the result is algebraically compared with a 0 doubleword. 

Executing Word Instructions in 64-bit Mode 

When the rotate and shift word instructions are executed on a 64-bit PowerPC 
processor, the upper 32 bits of the result are always O. 

One side-effect of this is that the condition code values returned in CR{O} are 
dependent on the mode in which the processor is currently executing. If the pro­
cessor is in 32-bit mode, only the lower 32-bit will be compared, and if the pro­
cessor is in 64-bit mode, the entire 64-bit result will be involved in the 
comparison. 

As a demonstration of this, consider shifting OxFFFF FFFF to the left by eight 
with the Record Bit set. If the processor is in 32-bit mode, the result will be 
OxFFFF FFOO and the condition codes will be set to indicate that the result is neg­
ative. In 64-bit mode, this same instruction will return OxOOOO 0000 FFFF FFOO 
and the condition codes will indicate a positive result. 

Thus, all shift and rotate operations which produce "negative" results in 32-bit 
mode will produce positive results when executed in 64-bit mode. 

7.3 Rotate Instructions 

The rotate with mask instructions provide a powerful mechanism for extracting 
and inserting a range of bits to or from a register. There are only two basic types 
of rotate instructions: Rotate Left Word and Rotate Left Doubleword. There is no 
explicit Rotate Right instruction because it is trivial to construct a right rotate 
operation from a Rotate Left instruction (there are extended mnemonics that 
implement Rotate Right functionality). 

Even though there are obvious similarities between the word and doubleword 
rotate instructions, there are significant differences between these two instruc­
tion forms. These differences arise from the difficulty of encoding all of the nec­
essary information for a 64-bit rotate instruction in the 32 bits allowed for each 
instruction. It is these encoding limitations that led to the limited range of mask 
types for doubleword rotate instructions. 

Rotate Word Instructions 

The two basic types of rotate word with mask instructions are listed in Table 7-1: 
Rotate Left Word then AND with Mask and Rotate Left Word then Mask Insert. 
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§ 7.3 Rotate Instructions 

Table 7-1 Rotate Word Instructions 

rlwnm[. ] rA,rS,rB,mB,mE r:= (r5) Q rB [~~:~] 
Rotate Left Word then AND with Mask 

m := Mask(mB,mE) 
rA~(r&m) 

rlwinm[. ] rA,rS,n,mB,mE r:= (r5) Q n 
Rotate Left Word Immediate then AND with m := Mask(mB,mE) 

Mask rA~ (r&m) 

rlwimi[.] rA,rS,n,mB,mE r:= (r5) Q n 
Rotate Left Word Immediate then Mask Insert m := Mask(mB,mE) 

rA ~ (r & m) I «rA) & -m) 

The Rotate Left Word then AND with Mask instructions take the source register r S 
and rotate it by the specified amount. The rotated r S is then ANDed with the 
generated mask to produce the result. This is shown in Figure 7-3 . 

Figure 7-3 Rotate Left Word then AND with Mask Operation 

- Source rS 

// 
rS Rotated n Bits to Left 

Generated Mask 
mBegin mEnd 

Result 

The rotate amount can either be specified as an immediate value (using 
rlwinm), or it can be taken from a register (using rlwnm). When the rotate 
amount is given via a register, only the low order 5 bits of the register are used 
to insure that the rotate value lies between 0 and 3l. 

The Rotate Left Word then Mask Insert instruction rotates r S and then inserts a 
range of bits from the rotated word into the destination register, rA. 

This is basically the same operation as the Rotate Left Word then AND with Mask 
instruction with the exception of how the mask is used to generate the final 
result. Instead of simply ANDing the rotated word and mask to overwrite the 
entire destination register, the only bits in the destination register that are over~ 
written a'"e those where the mask is 'I'. This operation is presented in Figure 7.:. 
4 
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Rotate Word Instructions 

Figure 7-4 Rotate Left Word then Mask Insert Operation 

--- Source rS 

// 
rS Rotated n Bits to Left 

Generated Mask 
mBegin mEnd 

Source rA 

Result 

Note that there is no Rotate Left Word then Mask Insert form that allows the rota­
tion amount to be specified in a register. This instruction was originally part of 
the POWER architecture but not included in the PowerPC specification because 
it would require that the processor be able to read from three source registers 
(rA, rS, and rB) simultaneously, which would have made implementing the 
architecture more costly. 

Three rotate extended forms are provided to return the rotated contents of a reg­
ister without masking out any portion of the result. Table 7-2 lists these forms. 

Table 7-2 Rotate Word Extended Instruction Forms 

rotlw[. ] rA,rS,rB 
Rotate Left Word rA <= (rS) Q rB [~;~~] 
extended form for rlwnm rA, rS, rE, 0,31 

rotlwi[ .] rA,rS,n 
Rotate Left Word Immediate rA <= (rS) Q n 
extendedformfor rlwinm rA,rS,n,O,31 

rotrwi[ .] rA,rS,n 
Rotate Right Word Immediate rA <= (rS) Q n 
extended form for rlwinm rA, rS,32-n, 0,31 

The Rotate Left Word form (rotlw) rotates rS left rB [~;:!~] bits and stores the 

result in rA. Rotate Left Word Immediate (rotlwi) performs the same operation 
but obtains the rotate amount from an immediate value instead of from the 
lower bits of rB. 

To rotate a word right by an immediate amount n, the Rotate Right Word Immedi­
ate form can be used. This extended form rotates r S to the right n bits and stores 
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the result in rA. Since there is no primitive right rotate instruction, this form is 
implemented by rotating left by 32-n places, which produces exactly the same 
result. 

A Rotate Right Word extended form that accepts the rotate amount in a register is 
not provided because there is no primitive rotate right instruction. To use the 
r 1 wnrn instruction to implement this functionality, the rotate amount in r B must 
be subtracted from 32 and then that value should be used as the rotate amount. 

Optionally, the rotate amount can be calculated simply by negating r B. This 
works because the PowerPC rotate word instructions use only the lower 5 bits of 
rotate amount. 

Rotate Doubleword 

As mentioned earlier, the six Rotate Doubleword instructions listed in Table 7-3 
differ from the Rotate Word instructions in the types of masks that are accepted. 
The first four of these instructions are similar to the r 1 wnrn and r 1 winrn instruc­
tions for word quantities, except that two doubleword instructions are provided 
for each of the word instructions: one to mask the right portion and another to 
mask the left portion. The two remaining doubleword rotate instructions com­
pute the mask from a start bit and the rotate amount. 

Table 7-3 Rotate Doubleword Instructions 

rldcl[.] rA,rS,rB,mB r := (rS) Q rB[58:63] 
Rotate Left Doubleword then Clear Left m := Mask(mB,63) 
64-bit implementations only rA <== (r & m) 

rldcr[. ] rA,rS,rB,mE r := (rS) Q rB[58:63] 
Rotate Left Doubleword then Clear Right m := Mask(O,mE) 
64-bit implementations only rA <== (r& m) 

rldicl[. ] rA,rS,n,mB r:= (rS) Q n 
Rotate Left Doubleword Immediate then Clear m := Mask(mB,63) 

Left 
64-bit implementations only rA <== (r & m) 

rldicr[.] rA,rS,n,mE r:= (rS) Q n 
Rotate Left Doubleword Immediate then Clear m := Mask(O,mE) 

Right 
rA <== (r & m) 64-bit implementations only 

rldic[. ] rA,rS,n,mB r:= (rS) Q n 
Rotate Left Doubleword Immediate then Clear m:= Mask(mB,63-n) 
64-bit implementations only rA <== (r& m) 

rldirni[. ] rA,rS,n,mB r:= (rS) Q n 
Rotate Left Doubleword Immediate then Mask m := Mask(mB,63-n) 

Insert 
64-bit implementations only rA <== (r & m) I «rA) & ~m) 
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Rotate Doubleword 

The rldcl and rldcr instructions both rotate the source register rS by an 
amount stored in the lower six bits of r B. The rotated value is then ANDed with 
a different mask for each of these instructions: the r ldc 1 instruction masks out 
the high order bits ("clear"ing the left part of the result) and rldcr masks out 
the low order bits ("clear"ing right). The last parameter of these instructions is 
either the first bit (when clearing to the left in rldcl) or the last bit (when clear­
ing to the right in rldcr) to be copied to the result. 

The rldicl and rldicr instructions perform the same operation as the rldcl 
and r ldcr instructions, except that they get the rotate amount n from the imme­
diate value encoded as part of the instruction. 

The rldic instruction rotates r S and then masks out bits to the left and right of 
a bit field in the center of the result. The bit field that is copied into rA starts at 
bit position mB and extends out to the 63-nth bit, where n is the amount of the 
rotation. This is basically the same operation as the rlwinrn instruction, except 
that the mask end bit cannot be specified independently of the rotate amount. 

Similar to rlwirni except for how the mask is calculated, the rldirni instruc­
tion merges the rotated contents of r S with the current contents in rA. This 
instruction allows a right-justified bit field to be inserted into another register as 
shown in Figure 7-5. The mask is calculated in the same manner as the rldic 
instruction: the mask extends from bit mB to bit 63-n. 

Figure 7-5 Rotate Left Doubleword then Insert Operation 

- Source rS 

// 
rS Rotated n Bits to Left 

Generated Mask 
ruBegin 63-n 

Source rA 

Result 

As with the rotate word instructions, there are three extended forms for rotating 
a 64-bit quantity without masking out any of the bits. Table 7-4 lists these forms. 
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Table 7-4 Rotate Doubleword Extended Instruction Forms 

rotld[. ] rA,rS,rB 
Rotate Left Doubleword rA <= (rS) Q rB[58:63] 
extended form for rIdel rA, rS ,rE, 0 
64-bit implementations only 

rotldi[. ] rA,rS,n 
Rotate Left Doubleword Immediate rA <= (rS) Q n 
extendedformforrldiel rA,rS,n,O 
64-bit implementations only 

rotrdi[ .] rA,rS,n 
Rotate Right Doubleword Immediate rA <= (rS) Q n 
extended form for rIdiel rA, rS, 64-n, 0 
64-bit implementations only 

The Rotate Left Doubleword form (rotld) rotates rsleft rB[58:63] bits and stores 
the result in rA. Rotate Left Doubleword Immediate (rotldi) performs the same 
operation, but obtains the rotate amount from an immediate value instead of 
from rB. 

To rotate a doubleword to the right by an immediate amount n, the Rotate Right 
Doubleword Immediate form is defined. This form rotates r S to the right n bits and 
stores the result in rA. This form is implemented by using the rldicl instruc­
tion to rotate the doubleword to the left by 64 - n places, which performs the 
same operation as rotating right by n bits. 

As with the Rotate Right Word forms, a Rotate Right Doubleword extended form 
that accepts the rotate amount in a register is not provided. To use the rldcl 
instruction to implement this functionality, the rotate amount in r B must be sub­
tracted from 64 and then that value should be used as the rotate amount. The 
rotate amount can also be calculated simply by negating r B since only the lower 
6 bits of the rotate amount are used. 

7.4 Shift Instructions 

Considering how powerful the rotate and mask instructions are, it might at first 
seem somewhat redundant to provide separate shift instructions since the shift 
functionality can be constructed using the rotate instructions with an appropri­
ate mask. 

However, the PowerPC shift instructions differ from the rotate instructions in 
two significant ways. First, the shift instructions provide a shift operation where 
the shift amount can be specified in a register, whereas the rotate instructions 
can only be used to implement shift operations where the shift amount is sup­
plied as an immediate value. Even the r 1 wnm instruction (which allows the 
rotate amount to be specified in r B) is not useful for this purpose because it 
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Shift Left 

requires that the mask be specified using immediate values, thus precluding its 
use for shift operations. 

Secondly, the shift instructions provide additional functionality in that they per­
form more than just a basic shift around a word (or doubleword) quantity. The 

shift instructions allow the shift amount to range between [~;~7]' which allows 

the bits to be completely "shifted out" to the right or left (if the shift amount is 

greater than or equal to [~]). While this may not seem incredibly useful at first, 

this feature allows multi-word (or multi-doubleword) shift operations to be con­
structed easily from a series of shift, add, and or instructions. This technique is 
described in §7.6 "Multiple-Precision Shifts." 

The Shift Right Algebraic instructions represent another set of forms that could 
not be implemented using the rotate and mask instructions without adding a 
few extra instructions. These shift instructions replicate the sign bit so that the 
shifted result retains the same sign as the source operand. As with the other shift 

instructions, the shift amount can be in the range [~;~7] to facilitate multi-word 

algebraic shifts. 

Shift Left 

Figure 7-6 shows how the Shift Left instructions shift the contents of the source 
register rsto the left by the amount specified in rB and save the result in rA. 'D's 
are shifted in from the right to fill in the bits as the value is shifted to the left. 

Figure 7-6 Shift Left Operation 

o !hift - Source rS 

/ / 
~I Result 

I-- shift --I 

Table 7-5 lists the two types of shift left instructions: the first type operates on 
words, and the other operates on doublewords. 
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Table 7-5 Shift Left Instructions 

slw[. ] rA,rS,rB 
rA {=: (r5) «rB [~:::] 

Shift Left Word 

sld[. ] rA,rS,rB 
Shift Left Doubleword rA {=: (r5) « rB[57:63] 
64-bit implementations only 

The Shift Left Word instruction shifts the word in r S to the left by the amount 
specified in rB[26:31]. The shift amount can range from a to 63; if the shift 
amount is greater than 31, the quantity in rS is completely shifted out and the 
value a is stored in rA as the result. 

The Shift Left Doubleword instruction shifts the doubleword quantity in r S to the 
left by the amount specified in rB[S7:63]. The shift amount can range from a to 
127; if the shift amount is greater than 63, r S is completely shifted out and the 
result of the instruction is O. 

No Shift Left instructions accept the shift amount as an immediate value, but the 
Shift Left Immediate forms listed in Table 7-6 can be constructed from the rotate 
left with mask instructions. Two extended Shift Left Immediate forms are defined, 
one each for words and doublewords. Since these instructions are built from the 

rotate instructions, the shift amount must range between [~~~]. 

Table 7-6 Shift Left Immediate Extended Instruction Forms 

slwi[.] rA,rS,n 
Shift Left Word Immediate rA {=: (r5) « n 
extended form for rlwinm rA,rS,n, 0, 31-n 

sldi[. ] rA,rS,n 
Shift Left Doubleword Immediate rA {=: (r5) « n 
extended form for rldicr rA, rS,n, 63-n 
64-bit implementations only 

The Shift Left Word Immediate (slwi) extended form shifts the source register rS 

to the left by n bits and stores the result in rA. 

The Shift Left Doubleword Immediate (sldi) form performs the same operation as 
slwi but operates on a doubleword quantity instead of a word quantity. 

Shift Right 

Figure 7-7 shows how the Shift Right instructions shift the contents of the source 
register r S to the right by the amount specified in r B and save the result in r A. 

'a's are shifted in from the left to fill in the bits as the value is shifted to the right. 
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Shift Right 

Figure 7-7 Shift Right Operation 

I--shift ---1 
_ SourcerS 

~ ~~ 
I ~ Result 

The two forms of the Shift Right instruction listed in Table 7-7 operate on word 
or doubleword quantities. The shift amount is always specified in the lower bits 
of rB. 

Table 7-7 Shift Right Instructions 

srw[ .] rA,rS, rB 
rA <= (rS) »rB G:!~] Shift Right Word 

srd[. ] rA, rS, rB 
Shift Right Doubleword rA <= (rS) » rB[57:63] 
64-bit implementations only 

The Shift Right Word instruction shifts the word in r S to the right by the amount 
specified in rB[26:31]. The shift amount can range from 0 to 63; if the shift 
amount is greater than 31, the quantity in r S is completely shifted out and the 
value 0 is stored in rA as the result. 

The Shift Right Doubleword instruction shifts the doubleword quantity in r S to 
the right by the amount specified in rB[57:63]. The shift amount can range from 
o to 127 if the shift amount is greater than 63, r S is completely shifted out and 0 
is returned as the result. 

Two extended forms of the rotate left with mask instructions listed in Table 7-8 
are defined to make coding the Shift Right Immediate instructions a bit easier. 
Since these instructions are built from the rotate instructions, the shift amount 

must range between [~~~]. 

Table 7-8 Shift Right Immediate Extended Instruction Forms 

srwi[.] rA,rS,n 
Shift Right Word Immediate rA <= (rS)>> n 
extended form for rlwinm rA, rS, 32-n,n, 31 

srdi[. ] rA,rS,n 
Shift Right Doubleword Immediate rA <= (rS)>> n 
extended form for r1dicl rA, rs, 64-n, n 
64-bit implementations only 
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The Shift Right Word Immediate (srwi) extended form shifts the source register 
r s to the left by n bits and stores the result in rA. 

The Shift Right Doubleword Immediate (srdi) form performs the same operation 
as srwi but operates on a doubleword quantity instead of a word. 

Shift Right Algebraic 

Figure 7-8 shows how an algebraic shift differs from a normal shift in that the 
sign bit of the source register is replicated so that the result of the operation has 
the same sign as the source value. 

Figure 7-8 Shift Right Algebraic Operation 

o 1 t-- shift ---i 
Source rS 

Result 

Since the sign is always recorded in the most significant bit (MSB), or bit 0, of a 
register, the sign can be maintained during the operation by shifting copies of 
the sign bit in from the left. This way, the sign of the result is the same as the sign 
of the source value. 

The algebraic shift instructions listed in Table 7-9 are the only shift operations 
that affect the Carry bit in the XER. The Carry bit is normally set to '0', but it is 
set to 'I' if the source value is negative and any 'I' bits have been shifted out the 
right side of the register. This carry value is useful when the Shift Right Algebraic 
instructions are being applied to perform division operations as described in 
§16.3 under "Using Algebraic Right Shifts for Division." 

Table 7-9 Shift Right Algebraic Instructions 

sraw[. ] rA,rS,rB rA <= (rS) » rB [~:~] 
Shift Right Algebraic Word 

update XER[CA] 

srawi[.] rA,rS,n rA <= (rS)>> n 
Shift Right Algebraic Word Immediate update XER[CA] 

srad[. ] rA, rS, rB 
rA <= (rS) » rB[57:63] 

Shift Right Algebraic Doubleword 
64-bit implementations only 

update XER[CA] 

sradi[. ] rA,rS,n 
rA <= (rS)>> n 

Shift Right Algebraic Doubleword Immediate 
64-bit implementations only 

update XER[CA] 
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The Shift Right Algebraic instructions that operate on word quantities are the Shift 
Right Algebraic Word (sraw) and Shift Right Algebraic Word Immediate (srawi) 
instructions. These instructions accept a shift amount, either as an immediate 
value or from a register, and algebraically shift register r S to the right that many 
bits, storing the result in rA. 

The Shift Right Algebraic Doubleword (srad) and Shift Right Algebraic Doubleword 
Immediate (sradi) instructions perform the same operation as their word-sized 
counterparts, but they operate on doubleword quantities instead of words. 

7.5 Extended Rotate Instruction Forms 

While the rotate with mask instructions provide a powerful mechanism for per­
forming bit manipulation operations, using the base instruction forms directly 
can be somewhat confusing and error prone. For this reason, three general types 
of extended forms are defined that allow extraction, insertion, clearing, and 
"clear and shift"ing of a range of bits in the source register. 

Extract and Justify Extended Instruction Forms 

The Extract and Justify extended form provides an easy instruction form for 
extracting a range of bits and then justifying the bits to either the right or the left 
of the destination register. A justify operation involves shifting the bits all the 
way to the right or left of the register. There are both word and doubleword ver­
sions of these forms. 

These forms accept a starting bit, b, and a number of bits, n, as parameters. The 
n-bit field in the source register (r s) that starts at bit b is shifted to the right or 
left and then extracted. The result of this extraction is stored in the destination 
register (rA). 

Figure 7-9 shows the operation of this form when performing a left justify. For 
this form, r S is rotated b bits to the left and then ANDed with a mask composed 
of the high-order n bits (0 to n-l). 

Rotate and Shift Instructions 107 



§7.5 Extended Rotate Instruction Forms 

Figure 7-9 Extract and Left-Justify Operation 

b 

I--n----1 
_ SourcerS 

// 
_ rS Rotated bBits to Left 

_ Generated Mask 
n-l 

Result 

For the right-justify extended forms, rS needs to be rotated to the right [~] -

(b+n) bits (or equivalently, left rotated b+n bits) and then ANDed with a mask 
composed of the low-order n bits. This is shown in Figure 7-10 . 

Figure 7-10 Extract and Right-Justify Operation 

b 

I--n--l 
_SourcerS 

~~ 
_ rS Rotated b+n Bits to Left 

I Generated Mask 
~n----1 

~ Result 

Extract and Justify Word 

The word versions of the Extract and Justify extended form are based on the 
rlwinm instruction. Table 7-10 summarizes these two forms and shows how 
they map into the rlwinm instruction. 
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Extract and Justify Doubleword 

Table 7-10 Extract and Justify Word Extended Instruction Forms 

extlwi[.] rA,rS,n,b 
m:= Mask( [~], [~]+(n-l)) 

Extract and Left Justify Word Immediate 
extended form for rlwinm rA, rS, b, 0, n-l rA ¢= ((rS) « b) & m 

extrwi[ .] rA,rS,n,b 
Extract and Right Justify Word Immediate m := Mask( [~]-n, [~] ) 
extended form for rA ¢= ((rS) « (b+n)) & m 

rlwinm rA,rS,b+n,32-n,31 

The extlwi form extracts the n-bit field starting at bit bin r s and stores the left­
justified bit field in r A. The extrwi form performs the same operation, except 
that the bit field is justified to the right before the value is stored in rA. 

To prevent invalid rlwinminstructions from being generated by these extended 
forms, n must be :?: 1 and (b+n) must be ::; 32. 

Extract and Justify Doubleword 

The Extract and Justify doubleword forms are based on the rldicr and rldicl 
instructions. Table 7-11 summarizes the two separate instructions that are 
needed because only the start or the end of the mask can be specified when using 
64-bit rotate instructions. 

Table 7-11 Extract and Justify Doubleword Extended Instruction Forms 

extldi[.] rA,rS,n,b 
Extract and Left Justify Doubleword m:= Mask(O,n-l) 

Immediate 
rA ¢= ((rS) « b) & m 

extended form for rldicr rA,rS,b,n-l 
64-bit implementations only 

extrdi[.] rA,rS,n,b 
Extract and Right Justify Doubleword m := Mask(64-n,63) 

Immediate rA ¢= ((rS) « (b+n)) & m 
extended form for rldicl rA, rs, b+n, 64-n 
64-bit implementations only 

The extldi and extrdi forms are identical to the word-based Extract and Jus­
tify forms, except that they operate on doubleword quantities. A bit field is 
extracted from r s and stored in r A after it has been justified to the left or right. 

To prevent invalid r Idicr or r Idic 1 instructions from being generated by this 
extended form, n must be :?: 1 and (b+n) must be ::; 64. 

Insert Extended Instruction Forms 

The Insert extended forms can be viewed as the opposite of the Extract and Justify 
forms. These forms take a bit field that is justified to either the left or right of a 
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register and insert that field into another register at a specified bit offset. Figures 
7-11 and 7-12 show this operation for the Insert from Left and Insert from Right 
forms. 

Figure 7-11 Insert from Left Operation 

_ rS Rotated b Bits to Right 
r-b--j 

I .... Generated Mask 

Source rA 

Result 

The Insert from Left form takes the high-order n bits and inserts them into rA 

starting at bit position b. This operation is accomplished by rotating the source 
register to the right b bit positions and then inserting via the appropriate mask. 

Figure 7-12 Insert from Right Operation 

I--n---l 
_ SourcerS 

~~ 
__ rS Rotated b+n Bits to Right 

Generated Mask 

Source rA 
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Insert Word 

The Insert from Right form also inserts a n-bit field into rA starting at bit position 
b, but the bit field comes from the low-order n bits of r sinstead of the high-order 
bits. This is done by rotating b+n bits to the right before inserting with the mask. 

Insert Word 

The two Insert Word forms listed in Table 7-12 are built from the rlwimi instruc­
tion. 

Table 7-12 Insert Word Extended Instruction Forms 

inslwi[. ] rA,rS,n,b 
m := Mask( [fz]+b, [fz]+(b+n)-l) Insert from Left Word Immediate 

extended form for rA ¢::: «rS) « ( [H]-b)) & m 
rlwimi rA,rS,32-b,b,(b+n)-1 

insrwi[.] rA,rS,n,b 
m := Mask( [fz]+b, [fz]+(b+n)-l) Insert from Right Word Immediate 

extended form for rA ¢::: «rS) « ( [H]-(b+n))) & m 
rlwimi rA,rS,32-(b+n),b,(b+n)-1 

These two forms insert a bit field from either the left (inslwi) or right (insrwi) 
of the source register r S and insert it into the destination register rA starting at 
bit position b. 

The parameter n should be ;e:: 1 and the inequality (b+n) :::; 32 should hold true in 
order for these extended forms to map into valid rlwimi instructions. 

Insert Doubleword 

The only Insert Doubleword form is the Insert from Right Doubleword Immediate 
(insrdi) form listed in Table 7-13. Limitations with how masks can be specified 
for doubleword rotate operations preclude defining an extended form that 
would implement the Insert from Left Doubleword Immediate functionality in one 
instruction. However, such an operation can be constructed using a rldicl 
r S, r S, n, 0 instruction to right justify the bit field followed by a insrdi 
r A, r S , n , b instruction. 

Table 7-13 Insert Doubleword Extended Instruction Form 

insrdi[.] rA, rS, n, b 
Insert from Right Doubleword Immediate 
extended form for rldimi rA, rs, 64- (b+n) ,b 
64-bit implementations only 

m:= Mask(b,(b+n)-l) 
rA ¢::: «rS) « (64-(b+n))) & m 

The insrdi form takes an n-bit, right-justified bit field from the source register 
r S and inserts it at bit position b into r A. For this form to make sense, (b+n) must 
be :::; 64, and n must be ;e:: 1. 
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Clear Extended Instruction Forms 

The Clear extended forms provide a simple method of clearing all of the bits on 
one side of a given bit in the source register. There are two types of Clear 
extended forms: one clears all bits to the left, and the other clears all bits to the 
right. Both of these forms come in word and doubleword flavors. 

The Clear Word and Doubleword forms don't perform any sort of rotation on the 
source register and are considered rotate forms only because they are con­
structed on top of the standard rotate instructions. 

The most useful characteristic of these forms is that they allow a left- or right­
justified bit field to be extracted without requiring a complete mask to be speci­
fied as an argument. Since such a mask would need to be 32 or 64 bits in size, it 
would obviously not fit into an instruction encoding (which is limited to 32 bits). 
The mask would need to be stored elsewhere, and extra instructions would be 
reqUired to get the mask from memory, resulting in additional memory accesses. 

While the Clear extended forms do not allow every possible type of mask to be 
encoded, they do optimize one of the more common types of register mask oper­
ation. When the Clear forms can be used, they allow the operation to be encoded 
as one instruction with no unnecessary memory accesses. 

The Clear Left operation clears out the high-order n bits from the source register 
and stores the result in the destination register. Figure 7-13 shows this rela­
tively simple operation. Because of the fact that bits in registers are numbered 
using a big-endian scheme (that is, the most significant bit is bit 0), this operation 
can be viewed as clearing all the bits to the left of bit position n. 

Figure 7-13 Clear Left Operation 

I n I 
_ SourcerS 

Generated Mask 
n 31 

~ Result 

The Clear Right operation clears out the low-order n bits from the source register 
and then copies the result into the destination register. Figure 7-14 shows this 
operation. It is important to be aware of the fact that n represents the number of 
bits to be cleared, not an absolute bit position. With the Clear Left operation, the 
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Clear Word 

programmer can be confused about the true meaning of n and things will work 
as expected, but this is not the case for the Clear Right operation. 

Figure 7-14 Clear Right Operation 

I n I 
_ SourcerS 

Generated Mask 

Result 

Clear Word 

The two versions of the Clear Word form listed in Table 7-14 clear the n bits at the 
extreme left or right of the specified 32-bit register. If these forms are executed on 
64-bit PowerPC implementations, only the lower word is affected by this 
instruction; the upper word of the result is always cleared to zeros. 

Table 7-14 Clear Word Extended Instruction Forms 

clrlwi[.] rA,rS,n 
m := Mask( [~]+n, [~]) 

Clear Left Word Immediate 
extended form for rlwinm rA, rS, 0, n, 31 rA {:= (r5) & m 

clrrwi[. ] rA,rS,n m := Mask( [~], [~] -n) 
Clear Right Word Immediate 
extended form for rlwinm rA, r S, 0,0, 31-n rA {:= (r5) & m 

The Clear Left Word Immediate (clrlwi) form accepts the number of bits, n, and 
generates the appropriate rlwinm instruction so that the left-most n bits of rS 
are cleared and the result is copied into rA. The clrlri form performs a similar 
operation, except that it clears out the right-most n bits before copying the result 
into rA. 

Clear Doubleword 

The two doubleword versions of the Clear Left and Clear Right forms listed in 
Table 7-15 are based on the rldicl and rldicr instructions, respectively. 
These forms clear the n bits at the extreme left or right of the specified 64-bit 
register. 
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Table 7-15 Clear Doubleword Extended Instruction Forms 

clrldi[.] rA,rS,n 
Clear Left Doubleword Immediate m := Mask(n,63) 
extended form for rldicl rA, rS, 0, n rA ¢::: (rS) & m 
64-bit implementations only 

clrrdi[.] rA,rS,n 
Clear Right Doubleword Immediate m := Mask(O,63-n) 
extended form for rldicr rA, rS, 0, 63-n rA ¢::: (rS) & m 
64-bit implementations only 

The clrldi and clrrdi forms are identical to the Clear Word forms, except that 
they operate on an entire 64-bit register instead of just the low-order word. 

Clear Left and Shift Left Extended Instruction Forms 

The Clear Left and Shift Left forms listed in Table 7-16 provide a simpler interface 
to the masked rotate instructions for performing an operation to extract a right­
justified field and left shift it to a desired bit position. 

These forms take two parameters: the first bit of the right-justified field and the 
number of bits to. shift to the right. The first bit of the field can alternatively be 
viewed as the number of bits to the left that should be cleared before performing 
the shift. 

Figure 7-15 shows the Clear Left and Shift Left operation. This is the same oper­
ation as the rlwinm instruction. The only difference is how the parameters for 
the shift and mask are specified. 

Figure 7-15 Clear Left and Shift Left Operation 

I n I 
_SourcerS 

// 
_ rS Rotated fit Bits to Left 

Generated Mask 

Result 
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Multiple-Precision Shifts 

Table 7-16 Clear Left and Shift Left Extended Instruction Forms 

clrlslwi[. ] rA,rS,n,sh r:= (r5) Q sh 
Clear Left and Shift Left Word Immediate 

m := Mask( [~]+n-sh, [~]-sh) extended form for 
rlwinm rA,rS,sh,n-sh,31-sh rA ¢= r&m 

clrlsldi[. ] rA,rS,n,sh 
Clear Left and Shift Left Doubleword r:= (r5) Q sh 

Immediate m := Mask(n-sh,63-sh) 
extended form for rldic rA, rS, sh, n-sh rA ¢=r&m 
64-bit implementations only 

The two Clear Left and Shift Left forms, clrlslwi and clrlsldi, take a right­
justified bit field starting at bit n from source register r S, shift it to the left sh 
places, and then store the bit field into the destination register r A. The remaining 
bits in the destination register are cleared to O. In order for these forms to gener­
ate coherent rotate instructions, n must be ~ sh. 

There is no predefined form to perform a Clear Right and Shift Right Word Imme­
diate operation, but one could be constructed by defining clrrsrwi[.] 
rA, rS,n, sh to map to rlwinm[.] rA,rS, 32-sh, sh, 31+sh-n. 

As with the Insert forms, doubleword mask restrictions prevent a similar Clear 
Right and Shift Right form from being defined for doubleword quantities. 
Arldicl rS,rS,n,O instruction can be used in conjunction with 
clrlsldi rA,rS,n, sh to perform this operation. 

7.6 Multiple-Precision Shifts 

A multiple-precision shift is a shift which operates on quantities larger than a 
word (or doubleword, in the case of processors executing in 64-bit mode) in size. 

The best method for performing a multiple-precision shift depends on these fac­
tors: 

• Whether the shift is being performed on words or doublewords. 
• Whether the shift amount is less than [~] or less than [i¥s]. 

• Whether the shift amount is an immediate value or from a register. 
• Whether the direction of the shift is to the left or right. 

Methods for performing shifts greater than [i¥s] are not presented in this sec­

tion, but they can be constructed from the algorithms presented here. 
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Multiple-Precision Left Shifts 

Figure 7-16 shows how a multiple-precision left shift is performed when the 
shift amount is less than the shift register size (that is, the shift amount is less 
than 32 for 32-bit implementations or 64-bit implementations in 32-bit mode and 
less than 64 for 64-bit implementations in 64-bit mode). In this figure, the con­
tents of registers A, B, and C are concatenated together and shifted to the left to 
produce the result A', B', and C'. 

Figure 7-16 Multiple-Precision Left Shifts (shift < 32) 

A B c 

For each register in the shift except the last, the final result is the sum of two 
quantities: the shifted low-order bits from the current register and the high­
order bits from the register immediately to the right. The last register is calcu­
lated simply by shifting its low-order bits by the shift amount. 

Most of these shift operations are performed inline, that is, the register that con­
tains A on entry will contain A' on exit. In the code examples, r A will be used to 
denote the register that holds A and A' and likewise with r Band r C. 

Multiple-Precision Left Shift 

Performing multiple left shifts is a straightforward operation: each half of each 
register is calculated, and then the halves are merged together to produce the 
result for each register. Since this operation is basically the same for word and 
doubleword sized shifts, this section discusses only word shifts and then pro­
vides Table 7-17, a summary of both types of shifts. 

Before we can begin shifting, we must first calculate and save the counter shift 
amount. This is the amount that we need to shift right to move the high-order 
bits down into their proper position, and it is equal to 32 - shift for word shifts. 
If register r S contains the shift amount, we can compute the counter shift using 

subfic rSl,rS,32 

where rSl is the register in which we are storing the counter shift. 
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Long Multiple-Precision Left Shift 

A' can now be calculated by left shifting the low-order bits in A and right shift­
ing the high-order bits in B. When these two values are ORed together, the result 
isA'. 

slw rA,rA,rS 

srw rT,rB,rSl 

or rA,rA,rT 

Note that A is shifted to the left by the shift amount and B is shifted to the right 
by the counter shift amount. rT is just a temporary register used to hold the 
result of the right shift. This sequence of instructions needs to be repeated for 
each register being shifted except for the last one. 

The last register (C in Figure 7-16 ) is calculated simply by shifting rC to the 
left, which can be accomplished by using 

slw rC, rC, rS 

The code sequence for this operation is summarized in Table 7-17. 

Table 7-17 Multiple-Precision Left Shift Code Summary (shift < [~]) 

Shift Stage Word Doubleword 
Initialization subfic rSl,rS,32 subfic rSl,rS,64 

For each register 
slw rN,rN,rS sld rN,rN,rS 

except the last 
srw rT,r(N+l) ,rSl srd rT,r(N+l) ,rSl 
or rN,rN,rT or rN,rN,rT 

For the last 
slw 

register 
rN,rN,rS sld rN,rN,rS 

Only two changes are needed for handling doubleword shifts. The first is that 
the counter shift must be based on a shift around 64 bits, and the other change is 
that the doubleword shift instructions must be used instead of the word shift. 

Long Multiple-Precision Left Shift 

Long multiple-precision shifts are shifts that are larger than the width of one 
register. Thus, word shifts that can range from 0 to 63 and doubleword shifts that 
can range from 0 to 127 are considered to be long shifts. This can be seen in Fig­
ure 7-17, where the value being shifted out of C ends up in A' and B'. For the sake 
of simplicity, shifts greater than two registers (that is, word shifts :?: 64 and 
doubleword shifts:?: 128) are not considered. 

To simplify the discussion, long word shifts will be described first, and then the 
changes necessary for long doubleword shifts will be given. 
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Figure 7-17 Multiple-Precision Left Shifts (32 ~ shifts < 64) 
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A' 
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Long shifts need to be able to handle situations where the shift amount is 
between 0 and 31 and where the shift amount is between 32 and 63. This could 
be implemented by using a test and a conditional branch, but branches can stall 
the instruction pipeline and so they should be avoided wherever possible. The 
technique described in this section takes advantage of the properties of the Shift 
instructions to eliminate the need for any branches. 

The technique that we use to calculate long shifts is to first handle the case where 
the shift amount is less than 32, making sure that the result is 0 if the shift is 
greater than or equal to 32. Then we handle the opposite case, where the shift 
amount is between 32 and 63, and make sure that the result is 0 if the shift 
amount is less than 32. Once this is done, we can simply OR the two results 
together and know that every possible shift value is handled correctly. 

In order to do this, we need to pre-calculate three counter shift values: 32 - shift, 
shift - 32, and 64 - shift. These counter shift values will be referred to as shiftl (for 
32 - shift), shift2 (for shift - 32), and shift3 (for 64 - shift) to differentiate them from 
the real shi ft value. These values can be calculated using 

subfic rSl ,rS, 32 
subic rS2,rS,32 
subfic rS3,rS,64 

For each register that needs to be shifted, we need to handle the two situations 
where 0 ~ shift < 32 and 32 ~ shift < 64. We'll handle the case where shift < 32 by 
using the same code that we used at the beginning of this section, for shift 
amounts that are always less than 32. 

slw rA,rA,rS 
srw rT,rB,rSl 
or rA,rA,rT 

118 Chapter 7 



Long Multiple-Precision Left Shift 

Notice that when the shift amount in rS is greater than or equal to 32, two things 
happen: 

• The slw instruction returns a result of a because the shift amount is 
greater than 31. 

• The srw instruction returns a result of a because the shiftl amount is a 
negative number. Since only the low-order six bits from rSl are used 
for the shift amount, the srw instruction interprets this as a very large 
number and shifts the value completely out. 

Thus, we properly handle the case where shift < 32 and return a a if shift ~ 32. To 
handle the case where shift is between 32 and 63, we need to get the proper val­
ues from the two registers to the right of the current one. That is, in order to 
calculate the shifted value of A, we need to manipulate the values in Band C. 

slw 
or 
srw 

rT,rB,rS2 
rA,rA,rT 
rT,rC,rS3 

or rA,rA,rT 

# get lower bits of B 

# get upper bits of C 

This code correctly handles shift values between 32 and 63 and returns a if the 
shift amount is less than 32. Whenever the shift amount is less than 32, shift2 
becomes a negative number (effectively a large positive number), and shift3 is 
greater than 32. For both of these shift values, the value in rB and rC is com­
pletely shifted out of the register and a is returned. 

Note that we write the result to a temporary register and OR the value into rA 

after each stage. We need to do this because we want this result to be merged 
with the result we calculated earlier. We don't want to overwrite the previous 
value of rA. 

Computing the last two registers of a multiple word shift is the same as for the 
other registers, except that some of the operations can be omitted because the 
required registers are not present. To compute the next to last register, we do not 
need to get the upper bits from the register two places over, thus we have 

# calculate if shift < 32 
slw rB,rB,rS 
srw rT,rC,rSl 
or rB,rB,rT 

# calculate if 32 <= shift < 64 
slw rT,rC,rS2 # get lower bits of C 
or rB,rB,rT 
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The very last register is even easier, since we only need to account for the situa­
tion when shift is less than 32. We simply have to shift the register value over by 
the specified shift amount. 

slw rC,rC,rS 

As mentioned earlier in this section, a long doubleword shift is performed in the 
same manner as the long word shift. Table 7-18 summarizes the code required 
for long shift operations on word and doubleword quantities. 

Table 7-18 Long Multiple-Precision Left Shift Code Summary (shift < [162~]) 

Shift Stage Word Doubleword 
subfic rSl,rS,32 subfic rSl,rS,64 

Initialization subic rS2,rS,32 subic rS2,rS,64 
subfic rS3,rS,64 subfic rS3,rS,128 

slw rN,rN,rS sld rN,rN,rS 
srw rT,r(N+l) ,rSl srd rT,r(N+l) ,rSl 

For each register 
or rN,rN,rT or rN,rN,rT 

except the last 2 
slw rT,r(N+l) ,rS2 sld rT,r(N+l) ,rS2 
or rN,rN,rT or rN,rN,rT 

srw rT,r(N+2) ,rS3 srd rT,r(N+2) ,rS3 
or rN,rN,rT or rN,rN,rT 

slw rN,rN,rS sld rN,rN,rS 

For the next to 
srw rT,r(N+l) ,rSl srd rT,r(N+l) ,rSl 

last register 
or rN,rN,rT or rN,rN,rT 
slw rT,r(N+l) ,rS2 sld rT,r(N+l) ,rS2 
or rN,rN,rT or rN,rN,rT 

For the last 
slw sld 

register 
rN,rN,rS rN,rN,rS 

Note that since the shift3 counter shift value is not used by the last two registers, 
the initialization instruction that calculates this value can be omitted when only 
two registers are being shifted. 

Multiple-Precision Immediate Left Word Shift 

When the shift amount is an immediate value, multiple-precision left shifts can 
be rewritten to take advantage of the rlwimi instruction, which allows a rotate 
and an insert operation to be performed in one instruction. One important limi­
tation of the technique presented here is that it can only be used when the shift 
amount is less than 32. However, supporting shift amounts larger than 32 is triv­
ially handled by applying the shifts to the appropriately selected registers. This 
is straightforward since the shift amount is an immediate constant. 

For example, Po: can be calculated from A and B by using the code: 
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slwi rA, rA, shift 
rlwimi rA,rB,shift,32-shift,31 

where shift is the shift amount. 

The first instruction (slwi, an extended form for rlwinm) takes the low-order 
bits of A and shifts them over to the proper position for N. The second instruc­
tion (rlwimi) takes the high-order bits of B, shifts them down to the proper 
position for N, and inserts the bits into N. The old value of Ais overwritten with 
the new value N by this operation. 

The last register (C in Figure 7-16 ) is calculated simply by shifting C to the left, 
which can be accomplished by using 

slwi rC,rC,shift 

Table 7-19 summarizes the left word operation when the shift amount is specifed 
as an immediate value. 

Table 7-19 Multiple-Precision Immediate Left Word Shift Code Summary 

Shift Stage Word 
For each register slwi rN,rN,shift 
except the last rlwimi rN,r(N+l),shift,32-shift,31 

For the last 
slwi rN, rN, shift 

register 

Multiple-Precision Immediate Left Doubleword Shift 

Because of mask limitations in the doubleword rotate instructions, performing 
shifts on multiple doubleword quantities is more complicated than it is for mul­
tiple word quantities. 

The major limitation is that the r Idimi instruction cannot rotate a quantity and 
have a mask that extends all the way to the least significant bit of the register. 
This is because the maskEnd value is automatically calculated from the specified 
rotate amount. 

There are many ways to overcome this limitation, the easiest of which is to sim­
ply avoid it by manually building each half of each shifted register and then 
ORing the results together. This is the same method used to calculate the 
multiple-precision left shifts when the shift amount is from a register. This is 
done using the code: 

sldi 
srdi 
or 

rA,rA,shift 
rT, rB, 64-shift 
rA,rA,rT 
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This method is not as efficient as the word version because it requires more 
instructions for each register being shifted. It's inefficient because it doesn't take 
advantage of the rldimi instruction's ability to insert into another register. In 
order to produce a code sequence as efficient as the word version, we need to 
restructure our shifting algorithm. One way is to work from the low-order regis­
ter up to the high-order register instead of downwards from the high-order reg­
ister. 

However, working from low-order to high-order means that we can't perform 
the shift operation inline, that is, we need to store each register result in a differ­
ent register. This doesn't cause any real problems other than the fact that it 
becomes slightly more difficult to describe. 

Figure 7-18 shows the basic structure of the multiple-precision shift double­
word operation when only two registers are being shifted. The important thing 
to note in this figure is that each "column" represents a separate register. This 
means that the register that holds B on entry contains N of the result on exit. The 
remaining two registers in this example contain only input values (A) or only 
output values (B'). To help avoid confusion in this example, ra is used to refer to 
the register that contains AI -, r{3 refers to BI N, and rrrefers to -/B'. 

Figure 7-18 Multiple-Precision Immediate Left Doubleword Shifts 

A' B' 

The key to this technique is recognizing that we can take the low-order bits from 
A (in ra), insert them into B (in rf3), and then rotate r{3to produce N. Figure 7-19 
shows how this technique works. The insert operation doesn't require any shift­
ing of bits, and since we're inserting the low-order bits, we can use the rldimi 
instruction. 
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Figure 7-19 Calculating Shifted A (A') from A and B 

Source registers 

Insert rA into rB 

~::::;::.:::}:::::~ Rotate rB 

A' 

Of course, in order to do this properly, we need to copy the low-order bits of B 
from r/3 into another register before we overwrite them with the bits from A. 
This is why we use the extra register (ry) to hold the low-order register of the 
result. 

The low-order register can be calculated with 

sldi ry, r/3, sh # calculate B' from B 

The remaining register can now be calculated by inserting and rotating using the 
code: 

rldimi r/3, ra, 0, sh 
rotldi r/3,r/3,sh 

# insert A into B 
# rotate to produce A' 

The rldimi instruction copies the low-order bits in A (ra) from sh to 63 into B 
(r /3). The rotldi operation (an extended form for r ldic 1) takes the value in r /3 
and rotates it sh places, resulting in k. 

If there are more than two registers being shifted, they can be calculated by 
applying this technique to each register by working from right to left. 

Table 7-20 summarizes the code necessary to implement a multiple-precision left 
shift on doubleword quantities when the shift amount is an immediate value. 
Note that the last register must be shifted first, and then the other registers can 
be shifted from right to left. 

Table 7-20 Multiple-Precision Immediate Left Doubleword Shift Summary 

Shift Stage Doubleword 
For the last 

sldi r(N+l) ,rN, shift 
register 
For each register rldimi rN,r(N-l),O,shift 

except the first rotldi rN,rN,shift 
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Note that the register containing the first doubleword doesn't need to be shifted 
explicitly. This is because the necessary bits from this register have already been 
included in the results in the register immediately to its right. Also, as was 
shown in Figure 7-18, the register that contains the first doubleword on entry 
doesn't contain any portion of the result on exit. 

Multiple-Precision Right Shift 

With the exception of the direction of the shift, multiple-precision right shifts are 
performed using the same algorithm as multiple-precision left shifts. The most 
significant difference is that the registers involved in the shift are calculated from 
right to left instead of from left to right. 

Figure 7-20 shows the right shift operation. As with the left shifts, each desti­
nation word is composed of an upper and a lower half: one of the halves shifted 
from the same register and the other half from an adjacent register. 

Figure 7-20 Multiple-Precision Right Shifts (shift < 32) 

A B 
~;i;l::Ii::::::'ii'i::::il 

~ ~~ 
~,!,'i 

A' B' C' 

Multiple-Precision Right Shift 

When the shift amount is less than [~], a multiple-precision right shift is per­

formed using the same algorithm as for a multiple-precision left shift. The only 
difference is that, for right shifts, the register immediately to the left is merged 
with the current register instead of the register immediately to the right. This 
slight modification changes only the arguments to the srw (srd) and sIw (sId) 
instructions. 

Table 7-21 contains the code necessary to perform both the word and the double­
word versions of the multiple-precision right shift operation. Note that these 
operations must be performed from the low-order register up to the high-order 
register. 
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Long Multiple-Precision Right Shift 

Table 7-21 Multiple-Precision Right Shift Code Summary 

Shift Stage Word Doubleword 
Initialization subfic rSl,rS,32 subfic rSl,rS,64 

For each register srw rN,rN,rS srd rN,rN,rS 

except the first slw rT,r(N-l) ,rSl sld rT,r(N-l) ,rSl 
or rN,rN,rT or rN,rN,rT 

For the first 
register srw rN,rN,rS srd rN,rN,rS 

Long Multiple-Precision Right Shift 

As with the right shift code described in the previous section, the long versions 
of the right shift are basically the same as the long versions of the left shift. The 
only difference is the parameters passed to the Shift Left and Shift Right instruc­
tions to account for the changed shift direction. 

Table 7-22 summarizes the required code for the long multiple-precision right 
shift operation. This is the same as the code presented in Table 7-18 for long left 
shifts except that the code inserts bits from the two registers immediately to the 
left of the current register. 

Table 7-22 Long Multiple-Precision Right Shift Code Summary 

Shift Stage Word Doubleword 
subfic rSl,rS,32 subfic rSl,rS,64 

Initialization subic rS2,rS,32 subic rS2,rS,64 
subfic rS3,rS,64 subfic rS3,rS,128 

srw rN,rN,rS srd rN,rN,rS 
slw rT,r(N-l) ,rSl sld rT,r(N-l) ,rSl 

For each register or rN,rN,rT or rN,rN,rT 
except the first srw rT,r(N-l) ,rS2 srd rT,r(N-l) ,rS2 
two or rN,rN,rT or rN,rN,rT 

slw rT,r(N-2) ,rS3 sld rT,r(N-2) ,rS3 
or rN,rN,rT or rN,rN,rT 

srw rN,rN,rS srd rN,rN,rS 

For the second slw rT,r(N-l) ,rSl sld rT,r(N-l) ,rSl 

register or rN,rN,rT or rN,rN,rT 
srw rT,r(N-l) ,rS2 srd rT,r(N-l) ,rS2 
or rN,rN,rT or rN,rN,rT 

For the first 
register srw rN,rN,rS srd rN,rN,rS 

Multiple-Precision Immediate Right Word Shift 

Just like left shifts, the multiple-precision immediate right shifts can be rewritten 
to take advantage of the rlwimi instruction. The extended form Insert from 
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Right Word Immediate (insrwi) can be used to take the lower bits of a register 
and insert them into another register starting at bit position O. Table 7-23 sum­
marizes this shift operation for word quantities. 

Table 7-23 Multiple-Precision Immediate Left Word Shift Code Summary 

Shift Stage Word 
For each register srwi rN,rN,shift 
except the first insrwi rN,r(N-l),shift,O 

For the first 
srwi rN,rN,shift register 

Multiple-Precision Immediate Right Doubleword Shift 

The masking limitations that restricted the immediate multi-doubleword left 
shift operations fortunately do not adversely affect the equivalent right shift 
operations. The same algorithm can be used, but the shift can be done inline 
(that is, using the same registers that contain the source values) instead of requir­
ing the result to roll into another register. 

As with the left shift equivalent, the key to this technique is recognizing that we 
can take the low-order bits from A, insert them into B, and then rotate B to pro­
duce B'. This is exactly the same operation that we used for the multi-double­
word left shift shown in Figure 7-19 . The only difference is that we're using 
this operation to calculate B' instead of A:. 

All of the registers except the first (that is, the most significant) one can be shifted 
right using the code: 

rldimi rB,rA,O,64-sh # insert A into B 
rotrdi rB,rB,sh # rotate to produce B' 

The r ldimi instruction inserts the bits from A into B, and then the rotrdi form 
rotates the bits into the proper position to produce B'. 

The high-order register can be calculated with 

srdi rA,rA,sh # calculate A' from A 

This multiple-doubleword shift operation is summarized in Table 7-24. 

Table 7-24 Multiple-Precision Immediate Right Doubleword Shift Summary 

Shift Stage Doubleword 
For each register rldimi rN,r(N-l),O,shift 
except the first rotrdi rN,rN,shift 

For the first 
srdi rN,rN,shift register 
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Multiple-Precision Right Shift Algebraic 

Performing a multiple-precision algebraic right shift differs from a normal multi­
ple-precision right shift only in how the upper registers are shifted. 

Multiple-Precision Right Shift Algebraic 

When the shift amount is less than the size of one register, an algebraic right shift 
is the same as a normal right shift with the exception of how the high-order reg­
ister needs to be shifted. For this register, we need to use an algebraic shift 
instead of a standard shift. 

Table 7-25 contains a summary of the code necessary to perform a multiple-preci­
sion algebraic right shift for both word and doubleword quantities. The only dif­
ference between this table and Table 7-21 is that Shift Right Algebraic instructions 
(displayed in boldface in Table 7-25) are used for the first register instead of 
Shift Right instructions. 

Table 7-25 Multiple-Precision Right Shift Algebraic Code Summary 

Shift Stage Word Doubleword 
Initialization subfic rSl,rS,32 subfic rSl,rS,64 

For each register srw rN,rN,rS srd rN,rN,rS 

except the first slw rT,r(N-l) ,rSl sld rT,r(N-l) ,rSl 
or rN,rN,rT or rN,rN,rT 

For the first 
rN,rN,rS srad rN,rN,rS register sraw 

Long Multiple-Precision Right Shift Algebraic 

A long multiple-precision algebraic right shift is similar to the long non­
algebraic right shift but has the added concern that the sign from the high-order 
register may need to be merged with the two high-order registers of the result. 
This causes problems because of the differences between the Shift Right Alge­
braic and Shift Right instructions. 

The method that we used to support word shifts up to 63 and doubleword shifts 
up to 127 involved implementing "short" (0-31 or 0-63) and "long" (32-63 or 64-
127) shifts separately and then ORing the results together. This works because 
the code is set up to handle the appropriate case or return a 0 (so that the partial 
results can be merged easily). 

The key feature of the Shift Right instruction that is used to implement the long 
shift right is the fact that the Shift Right instructions return 0 if the shift amount 
is greater than the size of one register. This is not the case with the Shift Right 
Algebraic instructions. The algebraic right shifts return a register full of sign bits, 
which can be either 0 (all bits set to 0) or -1 (all bits set to 1). 
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Because one-half of the calculated result can now return a non-zero value when 
the partial result is not needed, we cannot blindly OR in the value but must 
branch over the or instruction when it doesn't apply. This necessitates two 
changes to our previous algorithm: we need to determine when we need to 
branch, and we need to perform a conditional branch over the or. 

These differences between a long algebraic right shift and a long right shift are 
summarized as follows: 

• The Shift Right Algebraic instructions are used instead of the Shift 
Right instructions when calculating portions of the high-order 
register of "short" shifts and the high-order two registers of "long" 
shifts. 

• subic. is used instead of subic when calculating shift2. This is used 
to determine when the branch should be taken. 

• A branch instruction (bIe) is added to branch over the sraw result 
when it is not applicable. This is only needed when calculating the 
result from the second register. 

The fact that a branch instruction is needed is unfortunate, but the branch can be -
folded out if the subic. instruction is far enough ahead of the branch instruc­
tion. This is discussed more in Chapter 16 "Instruction Scheduling." 

In Table 7-26, instructions that are different for Algebraic Right Shifts (when 
compared to the non-algebraic variety of right shift) are displayed in boIdf ace. 

Table 7-26 Long Multiple-Precision Right Shift Algebraic Code Summary 

Shift Stage Word Doubleword 
subfic rSl,rS,32 subfic rSl,rS,64 

Initialization subic. rS2,rS,32 subic. rS2,rS,64 
subfic rS3,rS,64 subfic rS3 ,rS, 128 

srw rN,rN,rS srd rN,rN,rS 

slw rT,r(N-l) ,rSl sId rT,r(N-l) ,rSl 
For each register or rN,rN,rT or rN,rN,rT 
except the first srw rT,r(N-l) ,rS2 srd rT,r(N-l) ,rS2 
two or rN,rN,rT or rN,rN,rT 

slw rT,r(N-2) ,rS3 sId rT,r(N-2) ,rS3 

or rN,rN,rT or rN,rN,rT 

srw rN,rN,rS srd rN,rN,rS 
slw rT,r(N-l) ,rSl sId rT,r(N-l) ,rSl 

For the second or rN,rN;rT or rN,rN,rT 
register sraw rT,r(N-l) ,rS2 srad rT,r(N-l) ,rS2 

ble @nextReg ble @nextReg 
or rN,rN,rT or rN,rN,rT 

For the first 
rN,rN,rS srad rN,rN,rS 

register 
sraw 

128 Chapter 7 



Multiple-Precision Immediate Right Shift Algebraic 

Multiple-Precision Immediate Right Shift Algebraic 

Algebraic immediate right shifts are performed the same way as standard 
immediate right shifts with the exception of the high-order register. Just like the 
other algebraic right shift operations, the high-order register must be shifted 
using one of Shift Right Algebraic instructions. 

Table 7-27 shows the instruction sequence required to implement a multiple­
precision algebraic right shift withthe shift amount specified as an immediate 
value. The only difference between this code sequence and the code required for 
a non-algebraic right shift is the Shift Right Algebraic Immediate instruction used 
to calculate the high-order register. 

Table 7-27 Multiple-Precision Immediate Right Shift Algebraic Summary 

Shift Stage Word Doubleword 

For each register srwi rN,rN,sh 
rldimi rN,r(N-l) ,0,64-

sh 
except the first insrwi rN,r(N-l),sh,O 

rotrdi rN,rN,sh 

For the first 
srawi rN,rN,sh sradi rN,rN,sh 

register 

7.7 Obsolete Rotate and Shift Instructions 

The POWER architecture defines a large number of shift and rotate instructions 
that are not included in the PowerPC architecture in an effort to reduce the com­
plexity and cost of PowerPC implementations. 

The 601 supports all of these instructions in hardware, but no other PowerPC 
implementation will do so. The instructions listed in this section should not be 
used, and the descriptions are provided for reference purposes only. 

Obsolete Mask Instructions 

The POWER architecture defines two mask-related instructions that are not 
included as part of the PowerPC specification. These instructions, listed in Table 
7-28, are Mask Generate, which generates a mask from the maskBegin and maskEnd 
parameters, and Mask Insert from Register, which inserts a register into another 
based on a specified mask. 
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Table 7-28 Obsolete Mask Instructions 

maskg[.] rA, rS, rB mStart:= rS[27:31] 

Mask Generate mEnd:= rB[27:31] 

obsolete POWER instruction if(mStart = mEnd+ 1) 
m := OxFFFF FFFF 

if(mStart < mEnd+1) 
m := Mask(mStart,mEnd) 

if(mStart> mEnd+l) 
m:= -Mask(mEnd+l,mStart-l) 

rA~m 

maskir[.] rA,rS,rB 
Mask Insert from Register rA ~ ((rB) & (rS» I (-(rB) & (rA)) 

obsolete POWER instruction 

The Mask Generate (maskg) instruction generates a mask in the same manner as 
the standard word mask facility described in §7.1 under "Word Masks;" The 
mask begins at the specified start bit and continues to the end bit, wrapping 
around the word if necessary. 

The main difference between this instruction and the mask generation facility 
found in the rotate instructions is that the Mask Generate instruction allows the 
begin and end bits to be specified in a register. This allows the masks to be spec­
ified dynamically during runtime instead of being statically defined once the 
instruction is assembled. For the PowerPC,the maskg instruction was removed 
in an effort to simplify the mask generation hardware. 

The Mask Insert from Register (maskir) instruction uses the contents of a register 
(r B) as a mask to determine how the remaining two source registers (r Sand r A) 
should be merged. This instruction is not part of the PowerPC specification 
because it requires three source registers, which would make implementations 
more costly. 

Obsolete Rotate Instructions 

The POWER architecture defines two rotate operations: Rotate Right and Insert 
Bit (rrib) and Rotate Left then Mask Insert (rlmi). Listed in Table 7-29, these 
instructions are not part of the PowerPC architecture because they both require 
three source operands. 

Table 7-29 Obsolete Rotate Instructions 

rrib[. ] rA,rS,rB 
Rotate Right and Insert Bit rA[rB[27:31]] ~ rS[O] 
obsolete POWER instruction 

rlmi[. ] rA,rS,rB,mB,mE r:= (rS) Q rB[27:31] 
Rotate Left then Mask Insert m := Mask(mB,mE) 
obsolete POWER instruction rA~(r&m) I «rA)&-m) 
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The Rotate Right and Insert Bit instruction rotates bit 0 (the most significant bit or 
the sign bit) of rSto the right by the amount stored in rB[27:31]. This bit is then 
inserted into r A. 

The Rotate Left then Mask Insert instruction is identical to the Rotate Left Word 
Immediate then Mask Insert (rlwirni) instruction, except that the shift amount is 
specified in a register instead of as an immediate value. This rotates a source 
register (rs) and inserts the rotated result into another register (rA) based on a 
specified mask. 

Obsolete Shift Instructions 

There are fifteen shift instructions-six left shifts, six right shifts, and three alge­
braic right shifts-are part of the POWER architecture, but not part of the Pow­
erPC architecture. These instructions are listed in Tables 7-30, 7-31, and 7-32. All 
of these shift instructions use the MQ register as either a source or destination 
register (or both). Since the MQ register is not part of the PowerPC specification, 
all of these instructions needed to be eliminated. 

The worst "feature" of these instructions is that the mnemonics are inconsistent 
and non-intuitive. Since these instructions have been removed, it is probably not 
worth the effort of remembering (or even trying to figure out) what each of these 
instructions does. 

Table 7-30 Obsolete Shift Left Instructions 

sle[. ] rA,rS,rB 
rA ¢= (rS) « rB[27:31] 

Shift Left Extended 
MQ ¢= (rS) Q rB[27:31] obsolete POWER instruction 

sleq[. ] rA,rS,rB r := (rS) Q rB[27:31] 

Shift Left Extended with MQ m := Mask(O,31-rB[27:31]) 

obsolete POWER instruction rA¢=(r&m) I (MQ&-m) 

MQ¢=r 

sliq[. ] rA,rS,n 
rA ¢= (rS)« n 

Shift Left Immediate with MQ 
MQ¢=(rS)Qn 

obsolete POWER instruction 

slliq[. ] rA,rS,n r:= (rS) Q n 

Shift Left Long Immediate with MQ m:= Mask(O,31-n) 

obsolete POWER instruction rA¢=(r&m) I (MQ&-m) 

MQ¢=r 
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sllq[ 0] rA,rS,rB r := (rS) Q rB[27:31] 

Shift Left Long with MQ m := Mask(0,31-rB[27:31]) 

obsolete POWER instruction if(rB[26] = 0) 

rA{::::(r&m) I (MQ&-m) 
else 

rA{::::(MQ&m) 

slq[ 0] rA,rS,rB if(rB[26] = 0) 

Shift Left with MQ rA {:::: (rS) « rB[27:31] 

obsolete POWER instruction else 
rA{::::O 

MQ {:::: (rS) Q rB[27:31] 

The sle instruction left shifts rS by the amount specified by rB[27:31] and 
places the result in rA. The MQ register gets the value of rS left rotated by 
rB[27:31]. 

The sleq instruction is the same as the sle instruction, except that the value 
stored in r A is a combination of the original MQ register and the shifted r s. 

The sliq instruction is identical to the sle instruction, except that the shift 
amount is specified as an immediate value. 

The slliq instruction is identical to the sleq instruction, except that the shift 
amount is specified as an immediate value. 

The sllq instruction is the same as the sleq instruction, except that the shift 
value is specified in rB[26:31]. This allows the shift value to range from a to 63. 
If the shift value is greater than 31, the value returned in rA is copied from the 
MQ register. Unlike the sleq instruction, this instruction does not update the 
MQ register. 

The slq instruction is identical to the sle instruction, except that the left shift 
value is specified in rB[26:31], allowing the range of shift values to be between a 
and 63. If the shift value is greater than 31, a is returned in rA. 

Table 7-31 Obsolete Shift Right Instructions 

sre[ 0] rA,rS,rB 
rA {:::: (rS)>> rB[27:31] 

Shift Right Extended 
MQ {:::: (rS) Q rB[27:31] obsolete POWER instruction 

sreq[ 0] rA,rS,rB r:= (rS) Q rB[27:31] 

Shift Right Extended with MQ m := Mask(rB[27:31],31) 

obsolete POWER instruction rA{::::(r&m) I (MQ&-m) 

MQ{::::r 

sriq[ 0] rA,rS,D 
rA {:::: (rS)>> n 

Shift Right Immediate with MQ 
MQ{::::(rS)Qn 

obsolete POWER instruction 
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srliq[.] rA,rS,n r:= (rS) Q n 

Shift Right Long Immediate with MQ m := Mask(n,31) 

obsolete POWER instruction rA¢::::(r&m) I (MQ&-m) 

MQ¢::::r 

srlq[. ] rA,rS,rB r:= (rS) Q rB[27:31] 

Shift Right Long with MQ m:= Mask(rB[27:31],31) 

obsolete POWER instruction if(rB[26] = 0) 

rA¢::::(r&m) I (MQ&-m) 

else 

rA¢::::(MQ&m) 

srq[. ] rA,rS,rB if(rB[26] = 0) 

Shift Right with MQ rA ¢:::: (rS)) rB[27:31] 

obsolete POWER instruction else 

rA¢::::O 

MQ ¢:::: (rS) Q rB[27:31] 

The six obsolete Shift Right instructions are analagous to the six obsolete Shift Left 
instructions, and follow the same bizarre naming convention. 

The sre instruction right shifts rS by the amount specified by rB[27:31] and 
places the result in rA. The MQ register gets the value of r S right rotated by 
rB[27:3l]. 

The sreq instruction is the same as the sre instruction, except that the value 
stored in rA is a combination of the original MQ register and the shifted rS. 

The sriq instruction is identical to the sre instruction, except that the shift 
amount is specified as an immediate value. 

The srIiq instruction is identical to the sreq instruction, except that the shift 
amount is specified as an immediate value. 

The srIq instruction is the same as the sreq instruction, except that the shift 
value is specified in rB[26:31]. This allows the shift value to range from 0 to 63. 
If the shift value is greater than 31, the value returned in rA is copied from the 
MQ register. Unlike the sreq instruction, this instruction does not update the 
MQ register. 

The srq instruction is identical to the sre instruction, except that the right shift 
value is specified in r B[26:31], allowing the range of shift values to be between 0 
and 63. If the shift value is greater than 31,0 is returned in rA. 
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Table 7-32 Obsolete Shift Right Algebraic Instructions 

sraiq[ .] rA, rS, II rA <= (rS) ~ n 

Shift Right Algebraic Immediate with MQ MQ<=(rS)Qn 
obsolete POWER instruction update XER[CA] 

sraq[.] rA,rS,rB if(rB[26] = 0) 

Shift Right Algebraic with MQ rA <= (rS) ~ rB[27:31] 

obsolete POWER instruction else 
rA<=rS[O] 

MQ <= (rS) Q rB[27:31] 
update XER[CA] 

srea[ .] rA,rS,rB rA <= (rS) ~ rB[27:31] 

Shift Right Extended Algebraic MQ <= (rS) Q rB[27:31] 
obsolete POWER instruction update XER[CA] 

The sraiq instruction is the same as the sriq instruction, except that it per­
forms an algebraic right shift. 

The sraq instruction is the same as the srq instructions, except that an alge­
braic right shift is performed. If the shift amount is greater than 31, the value in 
r A is a word of sign bits from r s. This can be either OxOOOO 0000 or OxFFFF FFFF. 

The srea instruction performs an algebraic right shift operation on r S but is 
otherwise identical to the sre instruction. 

All three of the algebraic shift instructions update the Carry bit in the XER. The 
Carry is set to '1' if the shifted value is negative and any 'I' bits have been shifted 
out the right side of the register. This is useful when using the algebraic right 
shift to perform quick divide operations. 
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Floating-Point 
Instructions 

Floating-point arithmetic operations are significantly more complicated than 
their fixed-point counterparts. The underlying principles of floating-point are 
not conceptually difficult, but a lot of background needs to be presented before 
the floating-point instructions can be understood. 

After providing a general introduction to floating-point concepts and data for­
mats, this chapter discusses the instructions that implement the various floating­
point operations defined by the IEEE floating-point specification (IEEE-754) as 
implemented in the PowerPC specification. These include instructions to per­
form arithmetic, comparison, and conversion operations. 

This chapter does not include descriptions of the floating-point load and store 
instructions. These instructions are discussed in Chapter 5 "Load and Store 
Instructions." 

S.l Floating-Point Data Representation 

Floating-point arithmetic on a computer is performed using a binary floating­
point representation. This floating-point format is analogous to the decimal 
floating-point system commonly known as scientific notation. 

In scientific notation, a number is represented by allowing the decimal or radix 
point to be variable or "float," and a new number, the exponent, is introduced to 
keep track of where the current radix point is relative to the actual radix point. 
Thus, a number like 5280 is represented by two numbers: a significand of 5.28 
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and an exponent of 3 (because the radix point was shifted three places to the 
left). Since this is a decimal (base 10) number, each shift of the decimal point 
increases (or decreases) the value of the number by a power of 10, thus, this 
number is commonly written as 5.28 x 103• 

One advantage of this system is that it allows very large and very small numbers 
to be expressed easily, for example, 2.9979246 x 10 8 (the speed of light in a vac­
uum meters / sec) and 6.626176 x 10 -34 (Planck's constant Joulesxsec). Numbers like 
these are unwieldy in a system where the radix point is not allowed to float. 

Binary floating-point values are represented in a way that is very similar to sci­
entific notation. The only differences are that the values are binary (base 2) val­
ues and that it is a binary point that floats to the left or right. As an example, the 
decimal value 868 is represented in binary as b1101100100. This would be stored 
as a binary floating-point value as b1.1011001 x b10 blO0l or 1.6953125 x 29. 

One additional convention that is used for floating-point numbers is the concept 
of normalization. A normalized number is one where there is only one digitto the 
left of the radix point, and that one digit is non-zero. For example, 2.998 and 6.63 
are both normalized numbers. The advantage of using normalized numbers is 
that it allows two floating-point numbers to be compared by simply comparing 
the exponents and then, if the exponents are equal, comparing the significands. 
Other arithmetic operations are also greatly simplified when operating on nor­
malized values. 

Floating-Point Formats 

A binary floating-point number is represented by recording three values: the 
sign, the significand and the exponent, which are related in the following manner. 

(-1) sign. significand . 2exponent 

The sign is a one-bit value that is either 0 (for positive numbers) or 1 (for negative 
numbers). The significand and exponent are binary values that are interpreted as 
described in the previous section. 

The PowerPC architecture supports the two basic IEEE-754 floating-point for­
mats: 32-bit single-precision and 64-bit double-precision. For the single-preci­
sion format, the sign is one bit, the exponent is represented in eight bits and the 
significand is represented by a 23-bit value. For double-precision values, the sign 
is one bit, the exponent is 11 bits and the significand is 52 bits. These formats are 
shown in Figure 8-1 and Figure 8-2 . 
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Figure 8-1 Format of Single-PrecisionValues 
o 1 8 9 31 

Is I exponent I significand 

Figure 8-2 Format of Double-Precision Values 
o 1 11 12 63 

Is I exponent significand 

The fact that there are two precision types may seem to cause a small problem on 
the PowerPC since the floating-point registers are all 64 bits in width. This width 
is ideal for double-precision values, but something must be done to handle the 
single-precision values. The PowerPC architecture eliminates this problem by 
storing all floating-point values in registers as double-precision. 

Single-precision values (when stored in registers) are thus identical to double­
precision values with respect to how the bits are interpreted. The only differ­
ences between register-based single- and double-precision values are 

• The range of the exponent (double-precision allows 11 bits for the 
exponent; single-precision allows only eight bits). 

• The accuracy of the fraction (only the leftmost 23 of the 52 fraction bits 
are used for single-precision values; the remaining bits should be 0). 

Exponent Bias 

The exponent value is not stored directly in the exponent field. A bias term is 
added to the exponent so that the stored exponent value is always a positive 
number. This biased value is referred to as the biased exponent and is related to 
the exponent by the equation: 

biased exponent = exponent + bias 

The bias value is 127 for single-precision values and 1023 for double-precision 
values. This gives an potential exponent range of 2 -127 to 2 128 for single-precision 
and 2 -1023 to 2 1024 for the double-precision format. However, the minimum and 
maximum exponent values are used to represent special floating-point values 
(discussed later). This reduces the effective exponent range down to 2 -126 to 2127 
for single-precision and 2 -1022 to 2 1023 for double-precision. Table 8-1 shows the 
relationship between the exponent and the biased exponent values for single- and 
double-precision numbers. 
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Table 8-1 Exponent Encodings for Single- and Double-Precision Numbers 

Single-Precision Double-Precision 

exponent 
biased exponent 

biased exponent 
single1 double2 

1023 - - LU4b 

lUZL - - 2U45 
- -... ... 

127 L!>4 lltlU lltlU 

126 253 1149 1149 
... ... ... ... 
0 ILl lULJ lULJ 
... ... ... '" 

-125 2 1Sj/lS IS':IIS 

-126 1 897 8':17 
... - - ... 

-lULl - - L 

-lU22 - - 1 

1 The single-precision biased exponent is used when a single-precision value is 
stored using the single-precision format (as in when a single-precision value is 
stored in memory). 

2 The double-pi'ecision biased exponent is used when a single-precision value is 
stored using the double-precision format (as in when a single-precision value is 
storeq in a floating-point register). 

In this chapter, the exponent value will be used almost exclusively. When a biased 
exponent value is referred to, it will always be explicitly noted as a biased expo­
nent to eliminate any potential ambiguity. 

Representing Floating-Point Values 

There are five classes of floating-point values: 

• Normalized Numbers 
• Denormalized Numbers 

• Zeros 
• Infinities 
• Not a Numbers (NaNs) 

The first four of these classes represent real numbers, and the last class (NaN) is 

used to represent invalid numbers (for example, H or 00 + oo). 

Normalized numbers are the most prevalent of the number classes. The range of 
the magnitude of normalized numbers extends to include values that are very 
small and values that are very large. The range of normalized numbers was cho­
sen to coincide with the range of non-O values in common use. 

Denormalized numbers are used to represent very small non-O values whose 
magnitude is below the range of normalized numbers. 
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Zeros are used to represent zero values. A zero value can be either positive or 
negative, but most operations treat both forms identically. 

Infinities are used to represent values whose magnitude is too large to fit within 
the range of normalized numbers. Infinities may be positive or negative. 

Table 8-2 summarizes these first four classes of floating-point numbers and gives 
an indication of how they are ordered with respect to each other and what range 
of values they can accept. 

Table 8-2 Allowable Ranges for Floating-Point Numbers 

Approximate Range of Values 

Single Double 

+ Infinity +00 +00 

+ Normalized 10 -38 to 10 38 10-308 to 10 308 

+ Denormalized 10 -45 to 10 -38 10 -324 to 10 -308 

+ Zero +0 +0 

- Zero -0 -0 

- Denormalized -10-38 to -10-45 _10-308 to _10-324 

- Normalized -10 38 to -10 -38 _10 308 to -10 -308 

- Infinity _00 -00 

The last class of floating-point numbers are the Not a Numbers. There are two 
types of NaNs: Signalling and Quiet. Signalling NaNs cause an exception to 
occur when they are used as operands to most floating-point operations while 
Quiet NaN s do not. 

Table 8-3 shows how these numbers are encoded. 

Table 8-3 Exponent and Fraction Encodings for Floating-Point Numbers 

Biased Exponent 
Fraction 

single double 

Quiet NaN 255 2047 
non-O 

high-order bit set 

Signalling NaN 255 2047 
non-O 

high-order bit clear 

Infinity 255 2047 0 

Normalized 1 to 254 1 to 2046 any 

Denormalized 0 non-O 

Zero 0 0 
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Normalized Numbers 

Binary floating-point values are normalized using the definition of normalized 
given earlier. All of the bits to the left of the binary point, except for the unit bit, 
must be '0', and the unit bit must be non-D. The unit bit is the bit that is in the unit 
position, that is, the position immediately to the left of the binary point. Thus, 
b1.101 is a normalized binary floating-point value while bl01.001 and bO.OOll 
are not. 

Since the unit position is forced to be non-'O', the unit position must be a 'I' (the 
only other possibility for a binary number). And since the unit position is always 
a 'I', there is no reason for it to be stored explicitly. Hence, all normalized float­
ing-point numbers have an implicit unit bit of 'I'. This bit is not stored as part of 
the significand, which gives the significand an extra bit of precision. The portion 
of the significand without the implicit unit bit is known as the fraction. 

The relationship given earlier for floating-point values can be modified slightly 
to account for normalized numbers using the equation: 

(-1) sign. l.fraction . 2exponent 

As an example, the value 0.1875 (binary: 0.0011) is stored in single-precision by 
converting the value to b1.1 x 2-3 and then storing -3 for the exponent (biased 
exponent = 127 + -3 = 124), and recording bl00 0000 0000 0000 0000 0000 (1.1 with 
the 'I' stored implicitly) as the significand. 

The range of values representable as normalized numbers is summarized in 
Table 8-4. 

Table 8-4 Range of Values for Normalized Floating-Point Numbers 

Floating-Point Format 

Single-Precision Double-Precision 

Biased exponent range Ito 254 1 to 2046 

Exponent range -126 to 127 -1022 to 1023 

1 x 2 -126 1 x 2 -1022 

Minimum representable value 
'" 1.18 x 10-38 '" 2.23 x 10 -308 

",2x2 127 '" 2 X 2 1023 

Maximum representable value 
'" 3.40 x 10 38 '" 1.80 X 10 308 

Denormalized Numbers 

Denormalized numbers provide a mechanism for representing numbers that are 
smaller in magnitude than the smallest representable normalized number. 
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Zero values 

Denormalized values have an exponent value that is always equal to the small­
est allowable exponent (I-bias) for normalized numbers (corresponding to a 
biased exponent of 0), but they do not require the significand to be in normalized 
form. Since the exponent is not allowed to vary, the range of values for denor­
malized numbers comes from the ability to vary the fraction. 

A consequence of a non-normalized fraction is that there is no implict 'I' bit in 
the unit position for denormalized numbers, and there may be any number of 
'a's immediately to the right of the binary point. Both bO.lOO x 2 -126 and bO.OOll x 
2 -126 are examples of single-precision values in denormalized form. 

Denormalized numbers can be interpreted as 

(-1) sign . o. fraction . 2 (l - bias) 

The range of values representable as denormalized numbers is summarized in 
Table 8-5. 

Table 8-5 Range of Values for Denormalized Numbers 

Floating-Point Format 

Single-Precision Double-Precision 

Exponent -126 -1022 

1 X 2(-126-23) 1 x 2 (-1022 -52) 
Minimum representable value 

"" 1.40 x 10 -45 "" 4.94 X 10-324 

"" 1 x 2 -126 "" 1 x 2 -1022 
Maximum representable value 

"" 1.18 x 10 -38 "" 2.23 X 10-308 

Zero values 

Zero values are represented by a biased exponent of a (just like denormalized 
numbers) and a fraction of o. As with denormalized numbers, there is no 
implicit ''1'' bit prefix for the significand. 

Note that zero values can be either positive or negative. For most operations, 
negative zeros are identical to positive zeros. There are, however, cases where a 
negative zero will be returned as the result of an operation. For example, x - x 
when in Round to -00 mode and the square root of -0 both return -0 as the result. 

Infinities 

Infinity values are used to represent values that are greater in magnitude than 
the largest normalized floating-point value. Infinities can be either positive or 
negative, with positive infinity defined as being greater than all other represent-
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able numbers and negative infinity defined as being less than all other represent­
able numbers. 

Infinity values can be generated when certain exceptions are disabled and an 
overflow or a division by a occurs. In the case of divide by 0, the returned infin­
ity value will be of the proper sign. 

Not a Numbers (NaNs) 

The Not a Number (NaN) values are used to encode values that are not valid 
floating-point numbers. These values can occur when variables are uninitialized 
or when certain operations are performed (for example, the square root of a 
value less than 0). 

NaNs do not fit on the number line of valid numbers. If a NaN is compared with 
a real number, an unordered result will be returned since NaNs are neither greater 
than, less than, or equal to any real value. 

There are two types of NaN values: Signalling and Quiet. A Signalling NaN 
(SNaN) causes an exception if it is used as an operand for a floating-point oper­
ation. A Quiet NaN (QNaN) is the most common type and silently propagates 
through most floating-point operations. 

SNaNs are never created by floating-point operations but may be created manu­
ally (for example, to identify uninitialized memory). 

8.2 Floating-Point Operation 

This section discusses some of the general issues that apply to almost all of the 
floating-point operations. These issues include a description of normalization 
and rounding and also describe how floating-point exceptions and interrupts 
are handled by the processor. 

Normalization and Denormalization 

Values calculated by the floating-point operations are typically not in a normal­
ized form. However, before the result can be stored in a floating-point register, 
the value must be normalized. The normalization process is quite simple, but it 
requires that the intermediate value is sufficiently precise so that the normalized 
result has the required precision. 

A number is normalized by shifting the fraction one bit to the left and decre­
menting the exponent until the unit bit of the significand is '1.' Since normaliza­
tion involves decrementing the exponent, it is possible that an exponent 
underflow exception will occur. 
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Rounding 

A number is denormalized when it is too small (in magnitude) to fit in the nor­
malized representation. Denormalization is performed by shifting the signifi­
cand to the right while incrementing the exponent. Note that this operation may 
cause a loss of accuracy due to bits dropping off the right side of the fraction. If a 
loss of accuracy occurs, then the Underflow Exception bit of the FPSCR 
(FPSCR[UX]) will be set. 

Rounding 

Rounding is necessary because most of the floating-point operations can pro­
duce intermediate results that are more precise than can be represented in sin­
gle- or double-precision values. Rounding provides a way of generating the 
"best" representable value and gives the programmer some control over how 
the best value is determined. 

There are four defined rounding modes: 

• Round to Nearest 
• Round toward Zero 
• Round toward +Infinity 
• Round toward -Infinity 

Rounding is performed by choosing one of two rounding candidates. These candi­
dates are the representable numbers immediately above and below (in terms of 
magnitude) the actual value. The lower value is calculated by truncating the 
low-order bits of the actual value so that it will fit in the target representation. 
The upper value is derived from the lower value by incrementing the least sig­
nificant bit of the fraction. One way of understanding these two values is by 
noting that the lower candidate is always closer to zero than the actual value, 
while the upper candidate is further from zero (closer to + /- 00). 

Table 8-6 summarizes how the sign of the result and the rounding mode com­
bine to select one of the two rounding candidates. In this table, 'L' refers to th~ 
lower candidate and 'V' refers to the upper candidate. 

Table 8-6 Choosing the Best Rounding Candidate 

Rounding Mode 
Sign of Actual Value 

+ -
Round to Nearest choose best approximation 

Round toward Zero L L 

Round toward +Infinity U L 

Round toward -Infinity L U 
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For Round to Nearest mode, the candidate closest to the actual value is chosen. 
In the case of a tie, the even candidate (least significant bit of 0) is chosen. 

Rounding is further complicated when one of the two rounding candidates does 
not exist, for example, when there is no number larger than the actual value that 
will fit in the target representation. In these cases, either an Overflow or an 
Underflow exception will be signalled. If the upper candidate does not exist, 
then an Overflow Exception will be signalled. If the lower candidate does not 
exist, then an Underflow Exception will be signalled. These exceptions are dis­
cussed later in the "Exceptions" section. 

Interrupts 

An interrupt is a mechanism through which the processor can change state to 
handle abnormal conditions, errors, or external signals. Interrupts are related to 
exceptions in that an exception may cause an interrupt to be generated. 

A floating-point exception does not always result in an interrupt. A floating­
point interrupt handler is invoked only when all of the following conditions are 
met: 

• An exception must have occured. 
• That type of exception must be enabled. Each exception type has a 

corresponding enable bit in the FPSCR that must be set to 1 for an 
interrupt of that type to occur. 

• Floating-point exceptions must be enabled by setting the Floating­
Point Exception Mode bits in the Machine State Register 
(MSR[FEO,FE1]) to an appropriate value. 

Note that the "Exception Enable" bits in the FPSCR and the "Exception Mode" 
bits in the MSR do not control whether the corresponding exception will occur. 
The exception will occur and the appropriate bit in the FPSCR will be set regard­
less of whether the exception is "enabled" or not. The "Exception Enable" bits 
merely control whether or not an interrupt will be generated in response to the 
exception. The only exception to this occurs with the Underflow Exception. In 
this case, the setting of the Underflow Exception Enable bit in the FPSCR affects 
the conditions under which an Underflow Exception will occur in addition to 
controlling whether or not an interrupt should be generated. 

Interrupts (floating-point and otherwise) are discussed in greater detail in 
Chapter 12 "Exceptions & Interrupts." 

Exceptions 

Floating-point exceptions are caused by abnormal circumstances during the exe­
cution of a floating-point instruction or through a software request. 

144 Chapter 8 



Invalid Operation Exception 

When an exception occurs, the processor responds by performing one of three 
tasks: 

• Set a flag in the FPSCR. 
• Invoke an interrupt handler. 
• Set a flag and invoke an interrupt handler. 

Which action the processor performs depends on the type of exception and on 
the settings of the "Exception Enable" bits in the FPSCR and the "Exception 
Mode" bits in the MSR. 

There are five types of floating-point exceptions that may be generated: Invalid 
Operation, Zero Divide, Overflow, Underflow, and Inexact. 

Invalid Operation Exception 

The Invalid Operation Exception is signalled if either of the operands is invalid 
for the operation being performed. The eight types of operations that cause the 
Invalid Operation Exception are 

• Any arithmetic operation involving a Signalling NaN (Load, Store, 
Move, and Select operations do not cause this exception.) 

• 00-00 

• 0 x 00 

• 0/0 or 00 / 00 

• JX, where x < 0 (Only on processors that implement one of the 
square root instructions.) 

• Invalid floating-point to integer conversion (A float to int conversion 
involving overflow, infinity, or NaN.) 

• Invalid comparison (Using any sort of NaN as an operand to fempo.) 
• Software request (By setting FPSCR[VXSOFT]).) 

The details of how the target and result flags are updated differ for each type of 
invalid operation. In general, if Invalid Operation Exceptions are enabled 
(FPSCR[VE]=l), then the result will be unchanged. If Invalid Operation Excep­
tions are disabled, then the result will be a Quiet NaN. 

Zero Divide Exception 

The Zero Divide Exception is signalled when a finite, non-O number is divided 
by O. This exception can be generated by the divide instructions or any of the 
optional reciprocal estimate instructions (fres, frsqrte). 

A Zero Divide Exception always causes the FPSCR to be updated by setting the 
Zero Divide Exception (ZE) bit and clearing the Fraction Rounded (FR) and 
Fraction Inexact (FI) bits. 
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1£ Zero Divide Exceptions are enabled (FPSCR[ZE]=l), the target register is left 
Unchanged. 

If Zero Divide Exceptions are disabled (FPSCR[ZE]=O), the target register is set 
to a properly signed 00, and the FP Result Flags (FPRF) are set to indicate that the 
result is + / - Infinity. 

Overflow Exception 

The Overflow Exception is signalled whenever the magnitude of the rounded 
result (assuming the exponent range is unbounded) exceeds·the magnitude of 
the destination format. The Overflow Exception bit (FPSCR[OX]) is always set in 
response to an overflow exception. Additional actions depend on the current set­
ting of the Overflow Exception Enable bit (FPSCR[OE]). 

If FPsCR[OE] = 1,then the overflow interrupt handler is invoked, which adjusts 
the exponent of the result so that it fits in the range of normalized numbers and 
then stores the new result in the target register. The exponent is adjusted by sub­
tracting 1536 for double-precision instructions and by subtracting 192 for single­
precision instructions and the frsp instruction. FPSCR[FPRF] is also set to indi­
cate the class and sign of the result (which will be + / - Normalized Number). 

If FPSCR[OE] = 0, then the overflow interrupt handler is not invoked and the 
result is adjusted based on the current rounding mode before being stored in the 
target register. The result is adjusted according to Tabie 8-7. 

Table 8-7 Rounded Overflow Result Based on Rounding Mode 

Rounding Mode Sign 1 Result 

Round to Nearest 
+ + Infinity 

- -Infinity 

Round toward Zero 
+ + Largest normalized number 

- - Largest normalized number 

+ + Infinity 
Round toward +lnfiriity 

- - Largest noimalized number 

+ + Largest normalized number 
Rourid toward -Infinity 

- -Infinity 

1 Sign is the sign of the intermediate result before rounding 

In addition, the Inexact Exception (XX) and Fraction Inexact (PI) bits of the 
FPSCR are set and the Fraction Rounded (FR) bit is set to an undefined value. 
The FP Result Flags (FPsCR[FPRF]) are aiso set to indicate the class and sign of 
the result (which will be either + / - Normalized Number or + / - Infinity). 
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Underflow Exception 

The conditions that cause an Underflow Exception are different depending on 
whether Underflow Exceptions are currently enabled (FPSCR[UE]=I) or dis­
abled (FPSCR[UE]=O). The basic underflow conditions are 

• If the intermediate result is tiny (a tiny result is a non-O value that is 
smaller than the smallest normalized number). 

• If there is any loss of accuracy (loss of accuracy occurs when fraction 
bits are shifted out to the right during denormalization). 

If FPSCR[UE] = I, any tiny result will cause underflow. If FPSCR[UE] = 0, then 
the result must be tiny and there must be a loss of accuracy for underflow to 
occur. 

If underflow occurs, then the Underflow Exception bit in the FPSCR 
(FPSCR[UXD is always set. Additional actions depend on whether or not Under­
flow Exceptions are currently enabled. 

If Underflow Exceptions are enabled, then the underflow interrupt handler is 
invoked, which adjusts the exponent of the result so that it fits in the range of 
normalized numbers and then stores the new result in the target register. The 
exponent is adjusted by adding 1536 for double-precision instructions and by 
adding 192 for single-precision instructions and the frsp instruction. 

If Underflow Exceptions are disabled, then the underflow interrupt handler is 
not invoked and the result is rounded and placed in the target register. 

Regardless of the current enabled/ disabled state of Underflow Exceptions, 
FPSCR[FPRF] is always set to indicate the class and sign of the result. The 
value of FPRF will be +/- Normalized Number if exceptions are enabled, and 
either + / - Denormalized Number or + / - Zero if exceptions are currently dis­
abled. 

Inexact Exception 

An Inexact Exception occurs whenever the rounded result differs from the calcu­
lated intermediate result (assuming that the intermediate result was of unlim­
ited range and precision). An Inexact Exception also occurs when the rounding 
operation results in an overflow and Overflow Exception.s are disabled 
(FPSCR[OE] = 0). 

An interrupt is not invoked in response to an Inexact Exception. When an Inex­
act Exception occurs, the result is placed in the target register, the Inexact Excep­
tion bit (FPSCR[XXD is set, and the FP Result Flags (FPSCR[FPRFl) are set to 
reflect the class and sign of the stored result. 
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8.3 Floating-Point Instructions 

All of the floating-point instructions (except the compare) allow a ' .' suffix and 
many also allow an's' suffix to be appended to the base mnemonic. 

The' .' suffix sets the record bit for the instruction. For floating-point instructions, 
this means that exception information is copied from the FPSCR and placed in 
field 1 of the Condition Register (CR{l}), after the completion of the operation. 

The interpretation of the bits in CR{l} is summarized in Table 8-8. 

Table 8-8 CR{l} After Executing an FP Instruction with the Record Bit Set 

CR{1} 
Name Description 

bit 

a FX 
FP Exception Summary 
Set whenever any exception bit is set. This bit is the logical OR of all 
of the other exception bits. 

1 FEX 
FP Enabled Exception 
Set whenever any enabled exception bit is set. This bit is the logical 
OR of all of the exception bits that are currently enabled. 

2 VX 
FP Invalid Operation Exception Summary 
Set whenever any sort of invalid operation occurs. This bit is the 
logical OR of all of the invalid operation exception bits. 

3 OX 
FP Overflow Exception 
Set whenever the exponent of the rounded result is larger than the 
largest valid exponent. 

The's' suffix indicates that the operation should be performed by interpreting 
the values in the operand registers as if they contained single-precision data. 
Since floating-point registers always contain double-precision data, the's' suffix 
more accurately indicates that the double-precision data in the specified source 
registers is representable in the single-precision format. If the input values to a 
single-precision operation are not representable as single-precision values, then 
the result is placed in the output register, and the status bits in the FPSCR and 
CR (if the record bit is set) are undefined. 

FP Move Instructions 

The four floating-point instructions listed in Table 8-9 move the contents of one 
floating-point register into another floating-point register. One of these instruc­
tions (fmr) moves the data unaltered, while the others modify the sign bit of the 
value before storing it in the destination register. 

These instructions do not interpret the data being moved in any way. Thus, it is 
possible to perform non-sensible operations such as taking the absolute value of 
a Signalling NaN and instruction will cause no exceptions will be raised. 
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In addition, none of these instructions affect the FPSCR. 

Table 8-9 Floating-Point Move Instructions 

fabs[.] frT, frB 
frT <= I (frA) I 

FP Absolute Value 

fmr[.] frT, frB 
frT <= (frB) 

FP Move Register 

fnabs[.] frT, frB frT <= - I (frB) I 
FP Negative Absolute Value 

fneg[. ] frT, frB 
frT <= -(frB) 

FP Negate 

The fabs instruction takes the absolute value of frB and places it in frT. The 
absolute value is calculated by forcing the sign of the result to be O. 

The fmr instruction simply copies the contents of frB into frT. 

The fnabs instruction takes the negative of the absolute value of frB and places 
it in frT. The negative absolute value is calculated by forcing the sign of the 
result to be 1. 

The fneg instruction negates the value of frB and places it in frT. The value is 
negated by inverting the sign of frB. 

FP Arithmetic Instructions 

The four basic arithmetic operations listed in Table 8-10 are supported directly 
by PowerPC instructions. These operations are add, subtract, multiply, and 
divide. 

All of these instructions allow the I .' suffix to be specified. This suffix causes the 
four high-order status bits from the FPSCR to be copied into field 1 of the Con­
dition Register. The copied bits are: FX (FP Exception Summary), FEX (FP 
Enabled Exception Summary), VX (FP Invalid Operation Summary), and OX (FP 
Overflow Exception). 

There are two variants for each of the instructions: a double-precision version 
and a single-precision version. Each version operates on operands of the appro­
priate size and returns a result of the same size. If a single-precision instruction 
contains data that is not representable as single-precision data, then the results 
stored in the target register and status register (FPSCR and CR) are undefined. 
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Table 8-10 Floating-Point Arithmetic Instructions 

fadd[s][. ] frT, frA, frB 
frT <= (frA) + (frB) 

FP Add [Single-Precision] 

fdiv[s][.] frT,frA,frB 
frT <= (frA) + (frB) 

FP Divide [Single-Precision] 

fmul[s][. ] frT, frA, fre 
frT <= (frA) X (frC) 

FP Multiply [Single-Precision] 

fsub[s][. ] frT, frA, frB 
frT <= (frA) - (frB) 

FP Subtract [Single-Precision] 

The Floating-Point Add instruction calculates the result of adding the two oper­
ands and places the result in the target register. The add operation is imple­
mented by comparing the exponents of the two operands and adding (or 
subtracting, if the signs of the two operands are not the same) the fractions. If the 
exponents do not match, the fraction of the operand with the smaller exponent 
is shifted to the right until the exponents match, and then the fractions are added 
together and rounded to produce the result in the appropriate format. 

The divide operation is performed by subtracting the exponents and dividing 
the fractions of the operands. 

The multiply operation is implemented by adding the exponents of the two 
operands and multiplying the two fractions to produce the result. 

The Floating-Point Subtract instruction performs the same operation as the FP 
Add instruction, except that the operands (fractions) are subtracted instead of 
added. 

In addition to the basic arithmetic operations described above, the PowerPC also 
defines a variety of Multiply-Add instructions. Listed in Table 8-11, these instruc­
tions provide a multiply and an add as a single operation, without an intermedi­
ate rounding step (which would be necessary if the operation was implemented 
as two separate instructions). This benefits both the speed and the accuracy of 
the computed result. 

Table 8-11 Floating-Point Multiply-Add Instructions 

fmadd[ s][ . ] frT, frA, fre, frB 
frT <= (frA) x (frC) + (frB) 

FP Multiply-Add [Single-Precision] 

fmsub[s][.] frT, frA, fre, frB 
frT <= (frA) X (frC) - (frB) 

FP Multiply-Subtract [Single-Precision] 

fnmadd[s][.] frT, frA, fre, frB 
frT <= -«frA) X (frC) + (frB» 

FP Negative Multiply-Add [Single-Precision] 

fnmsub[s][. ] frT, frA, fre, frB 
FP Negative Multiply-Subtract [Single- frT <= -«frA) X (frC) - (frB» 

Precision] 
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The fmadd instruction is the basic Multiply-Add instruction: it first multiplies frA 
with frC, and then it adds frB to the result and stores the final value in frT. 

The fmsub instruction is the same as the fmadd instruction except that the con­
tents of frB are subtracted from the multiplied result. 

The remaining two Multiply-Add instructions are variants of the first two. These 
instructions, fnmadd and fnmsub, negate the result before storing the value in 
frT. 

FP Comparison Instructions 

The two instructions listed in Table 8-12 which compare the contents of two 
floating-point registers and return the result in one of the Condition Register 
fields. The only difference between these two compare instructions is how they 
handle NaN operands. 

Table 8-12 Floating-Point Compare Instructions 

fempo erfT,frA,frB 
CR{crfT} ¢= OFCmp(frA,frB) 

FP Compare Ordered 

fempu crfT,frA,frB 
CR{crfT} ¢= UFCmp(frA,frB) 

FP Compare Unordered 

The FP Compare instructions compare the contents of the two floating-point reg­
isters and place the result of the compare in the specified field of the Condition 
Register. Table 8-13 tells how the bits of the target CR field are interpreted. 

Table 8-13 CR Field Bit Interpretations after Floating-Point Compare 

CR{crfl} 
Name Description 

Bit 

a FL FPLess Than 
Set if (frA) < (frB) 

1 FG FP Greater Than 
Set if (frA) > (frB) 

2 FE FPEqual 
Set if (frA) = (frB) 

3 FU FP Unordered 
Set if either of the two values being compared is NaN 

The two compare instructions differ in how they handle NaN operands: the 
fcmpo instruction will flag an invalid operation if it encounters any sort of NaN, 
while the fcmpu instruction will only flag Signalling NaNs. 
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The fcmpo instruction reacts in the following manner when NaN operands are 
encountered. First, if either of the operands is a Signalling NaN, then the VXS­
NAN (FP Invalid Operation Exception for Signalling NaN) bit of the FPSCR 
is set. 

Additionally, the VXVC (FP Invalid Operation Exception for Invalid Compare) 
bit of the FPSCR will be set if either of these conditions are true: 

• If either of the two operands is a Signalling NaN and the VE (FP 
Invalid Operation Exception Enable) bit of the FPSCR is 0 (disabled). 

• If at least one of the operands is a Quiet NaN and neither of the 
operands is a Signalling NaN. 

Note that if FPSCR[VE] is enabled and one of the operands is a Signalling NaN, 
then the Invalid Operation Exception handler will always be invoked (because 
FPSCR[VXSNAN] will be set). Thus, it is unnecessary to set FPSCR[VXVC] in 
this case. If FPSCR[VE] is not enabled, then the handler will not be invoked and 
FPSCR[VXVC] needs to be set to indicate that the compare operation is invalid. 

The fcmpu instruction will set FPSCR[VXSNAN] if a Signalling NaN is specified 
as one of the operands, but will never set FPSCR[VXVC]. 

Table 8-14 summarizes the situations under which the floating-point compare 
instructions cause exceptions. An 'X' indicates that an Invalid Operation Excep­
tion will be invoked, and a '-' indicates that the instruction will complete with­
out causing any exceptions. 

Table 8-14 Operands that Cause Exceptions for FP Compare 

fcmpo fcmpu 

operand2 operand2 

SNaN QNaN normal SNaN QNaN normal 

..... SNaN X X X X X X 
"0 
~ QNaN X X X X - -
'" OJ 
0.. normal X X 0 - X - -

FP Conversion Instructions 

The floating-point conversion instructions listed in Tables 8-15, 8-16, and 8-17 
provide a simple method of converting between the various numeric formats 
provided for by the PowerPC architecture. 

§8.4 "Floating-Point Conversions" provides more information about converting 
between various number formats. 
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Table 8-15 Floating-Point Rounding Instruction 

frsp[.] frT,frB 
FP Round to Single-Precision 

frT ¢::: Double2Single(frB) 

The FP Round to Single-Precision instruction takes the double-precision value 
stored in f r B, rounds it to single-precision, and then stores the rounded result in 
frT. If the value in frB is already in single-precision range, its value is simply 
copied into frT. 

Table 8-16 Floating-Point Convert to Integer Instructions 

fetiw[.] frT, frB 
frT[32:63] ¢::: FPtoInt32(frB) 

FP Convert to Integer Word 

fetiwz[.] frT, frB 
FP Convert to Integer Word with Round toward frT[32:63] ¢::: FPtoInt32RndO(frB) 

Zero 

fetid[. ] frT, frB 
FP Convert to Integer Doubleword frT ¢::: FPtoInt64(frB) 
64-bit implementations only 

fetidz[.] frT,frB 
FP Convert to Integer Doubleword with Round frT ¢::: FPtoInt64RndO(frB) 

toward Zero 
64-bit implementations only 

The fetiw instruction converts the double-precision value in frB to an integer 
word using the current rounding mode (defined by FPSCR[RN]). 

The fetiwz instruction converts the double-precision value in frB to an integer 
word using the Round to Zero (truncate) rounding mode. 

The fetid and fetidz instructions perform the same operation as fetiw and 
fetiwz, but they convert the va:lue to a doubleword. 

Table 8-17 Floating-Point Convert from Integer Instruction 

fefid[.] frT, frB 
FP Convert from Integer Doubleword 
64-bit implementations only 

frT ¢::: Int64toFP(frB) 

The fefid instrUction takes the 64-bit integer stored in frB and converts it to a 
double-precision floating-point value. The result is stored in frT. 

Optional Floating-Point Instructions 

Currently, the four floating:.point instructions listed in Table 8-18 are defined as 
optional. Three of these instructions are part of the Graphical Group, and the 
fourth instruction belongs to the General Group. 

Floating-Point Instructions 153 



§8.3 Floating-Pomt Instructions 

Table 8-18 Optional Floating-Point Instructions 

fres[. ] frT,frB 1 
FP Reciprocal Estimate Single-Precision frT ¢::: "" (frB) 
part of the Graphical group of optional instructions 

fr~qrte[.] frT, frB 1 
FP Reciprocai Square Root Estimate frT ¢::: -

J(frB) part of the Graphical group of optional instructions 

fSel[.] frT, frA, fre, frB frT ¢::: ( (frA) ~ 0.0) ? (frC) 
FP Select : (frB» part of the Graphical group of optional instructions 

fsqrt[s][. ] frT,frB 
FP Square Root [Single-Precision] frT ¢::: J (frB) 
part of the General group of optional instructions 

The fres instructiort calculates a single-precision approximation of the recipro­
cal of the source operand and stores the result in the destination register. The 
precision of the estimated result is correct to within one part in 256 of the actual 
value. 

The frsqrte instruction calculates a double-precision estimate of the reciprocal 
of the square root of the source operand frB and stores the result in frT. The 
precision of the estimated result is correct to within one part in 32 of the actual 
reciprocal-square root value. 

The fsel instruction provides an operation similar to the conditional operator 
in the high-level language C. This instruction selects one of the operands based 
on the value of a third operand. If frA is greater than or equal to 0.0, then fre is 
returned as the result; otherwise frB is returned. This instruction does not cause 
exceptions-if frA is NaN, then frB is returned as the result. 

Table 8-19 summarizes which of the optional floating-point instructions are 
implemented on which PowerPC processor. 

Table 8-19 Optional Floating-Point Instructions vs. PowerPC Processor 

Graphical General 

fres frsqrt fsel fsqrt[s] 

601 no no no no 

603 yes yes yes no 

Using one of these instructions on a processor that does not support it will cause 
an Illegal Instruction Program Interrupt to occur. 
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8.4 Floating-Point Conversions 

The PowerPC architecture defines various instructions for converting between 
different numeric formats. This section summarizes these instructions by con­
version type and "fills in the blanks" by providing algorithms for performing 
conversions that are not directly supported by the instruction set. 

Converting Between Single- and Double-Precision 

Double-Precision to Single-Precision 

Double-precision floating-point values can be converted to single-precision by 
using the FP Round to Single-Precision (frsp) or Store Floating-Point Single-Preci­
sion (stfs, stfsu, stfsx, or stfsux) instructions. 

The frsp instruction converts the double-precision value to single-precision 
and stores the converted value into a floating-point register. 

The Store Floating-Point Single-Precision instructions convert the double-preci­
sion value to single-precision and store the converted value into memory. 

One important difference between these two operations is that the frsp instruc­
tion will raise an exception if an invalid conversion operation is attempted. The 
store instructions do not raise any type of floating-point exceptions. 

Single-Precision to Double-Precision 

There is no need for a register-based single- to double-precision conversion 
operation since single-precision values are always stored in registers using the 
double-precision floating-point format. 

As a consequence of this, simply loading a single-precision value into a register 
with one of the Load Floating-Point Single-Precision (1£s, 1£su, 1£sx, or 1£sux) 
instructions will automatically convert a value to double-precision. 

Conversion Between Integer Words and Double-Precision 

Double-Precision to Integer Word 

There are two instructions to convert from floating-point values to integer 
words: fctiwand fctiwz. These instructions convert the value to a word by 
using either the current rounding mode (fctiw) or the Round to Zero (truncate) 
rounding mode (fctiwz). 

One difficulty with these instructions is that they store the integer result in one 
of the floating-point registers, and there is no simple instruction to move values 
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from the floating-point to the general-purpose registers. The standard way of 
transferring data between the register sets is to write the value to memory and 
then read it back. This can be done as 

# temporary storage for intermediate value 
temp: .word OxO,OxO 

# fO <= converted int from frl 
fctiw frO, frl 

# move the converted result into r3 
stfd frO,temp(rl) 
lwz r3, temp+4 (rl ) 

Integer Word to Double-Precision 

There is no instruction to easily convert integer words into floating-point values. 
Assuming that the word to be converted is in register r 3, the following sequence 
of instructions will place the floating-point equivalent value in frO: 

# zero value = 2 A 52 * OxlOOOOO 80000000 
# the lower 32-bits of the fraction are equivalent 
# to 0 (for signed integer words) 
zero: .word Ox43300000,Ox80000000 

# a place to build the intermediate fp value 
temp: • word Ox43300000,OxO 

# built the intermediate value by setting it equal 
# to: Ox43300000 <int32-with-inverted-sign> 
# which is: 2 A 52 * OxlOOOOO <int32> 
xoris 
stw 

lfd 
lfd 
fsub 

r3,r3,Ox8000 # invert sign of int 
r3,temp+4(rl) 

fO,temp(rl) 
f1,zero(rl) 
fO,fO,f1 

This works by first inverting the sign of the word that is to be converted. This 
sign-inversion offsets the value of the word so that the smallest negative number 
(Ox8000 0000) is mapped to OxOOOO 0000 and the largest positive number 
(Ox7FFF FFFF) is mapped to OxFFFF FFFF. 

This sign-inverted word is then used as the lower 32 bits of the fraction for a 
double-precision floating-point value. The magnitude of this number is set so 
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that all 32 bits of the word are to the left of the actual binary point, that is, the 
exponent is set to 52 (since there are 52 bits in the fraction). 

As the final step, a zero constant is subtracted from the constructed floating-point 
value. This constant is set up so that the lower 32 bits of the fraction are equal to 
the zero-point of the sign-inverted word. By subtracting this constant from the 
constructed floating-point value, the sign of the original word will be preserved. 
The subtraction operation also serves to properly normalize the result. 

To modify this algorithm so that it works for unsigned integer words, 
Ox43300000 00000000 should be used as the zero constant and the xoris instruc­
tion should be removed. 

Conversion Between Integer Doublewords and Double-Precision 

Note: the conversion instructions discussed in this section exist only on 64-bit 
PowerPC implementations. 

Double-Precision to Integer Doubleword 

There are two instructions to convert from floating-point values to integer dou­
blewords: fetid and fetidz. These instructions convert the value to a double­
word by using either the current rounding mode (fetid) or the Round to Zero 
(truncate) rounding mode (fetidz). 

One difficulty with these instructions is that they store the integer result in one 
of the floating-point registers, and there is no simple instruction to move values 
from the floating-point to the general-purpose registers. The standard way of 
transferring data between the register sets is to write the value to memory and 
then read it back. This can be done as 

# temporary storage for intermediate value 
temp: .word OxO,OxO 

# fO <= converted int from frl 
fetid frO, frl 

# move the converted result into r3 
stfd frO,temp(rl) 
ld r3,temp(rl) 

Integer Doubleword to Double-Precision 

The fefid instruction is defined for 64-bit PowerPC implementations to con­
vert a doubleword to a double-precision floating-point value. 
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As with the conversion from floating-point to fixed-point, this operation is com­
plicated by the lack of an instruction to move values directly between the float­
ing-point and general-purpose registers. This is overcome by writing the value 
to memory and then reading it back into the proper register set. This can be done 
as 

# temporary storage for intermediate value 
temp: .word OxO,OxO 

# move the contents of r3 into frO 
std r3,temp(rl) 
lfd frO,temp(rl) 

# convert frO to double-precision 
fcfid frO, frO 
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System Register 
Instructions 

A large number of instructions and extended instruction forms can be used to 
access the various system registers of the PowerPC processors. Other than the 
Condition Register (CR) instructions, most of these will not be used by normal 
programs. 

9.1 CR Instructions 

The Condition Register is the most common of the special-purpose registers and 
thus, the largest number of instructions operate on it. CR fields a or 1 can be set 
implicitly by instructions that set the record bit; and any CR field can be updated 
when it is specified as the target of a compare instruction. Otherwise, the only 
way that the CR field values can be updated is through the CR Logical instruc­
tions and the CR Move instructions. 

The CR Logical instructions allow the values in the CR fields to be combined 
using Boolean logic operations. These permit complex Boolean expressions to be 
built from the simple operations provided by the compare instructions. 

The CR Move instructions provide a mechanism for moving the values in a CR 
field to other fields in the CR or to other registers. These instructions also allow 
values to be written into the CR. 
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Condition Register Logical 

The CR Logical instructions provide the basic Boolean operations-AND, OR, 
and XOR-plus variations involving bit complements. The eight operations pro­
vided are AND, OR, and XOR; Not AND, Not OR, and Equivalent (which is the 
same as Not XOR); and AND with Complement and OR with Complement. Table 9-1 
lists these instructions. 

Table 9-1 Condition Register Logical Instructions 

crand bitT,bitA,bitB CR[T] ¢= CR[A] & CR[B] 
CRAND 

crandc bitT,bitA,bitB CR[T] ¢= CR[A] & -CR[B] 
CR AND with Complement 

creqv bitT,bitA,bitB CR[T] ¢= CR[A] == CR[B] 
CR Equivalent 

crnand bitT,bitA,bitB CR[T] ¢= -(CR[A] & CR[B]) 
CR Not AND 

crnor bitT,bitA,bitB CR[T] ¢= -(CR[A] I CR[B]) 
CRNotOR 

cror bitT,bitA,bitB CR[T] ¢= CR[A] I CR[B] 
CROR 

crorc bitT,bitA,bitB CR[T] ¢= CR[A] I -CR[B] 
CR OR with Complement 

crxor bitT,bitA,bitB CR[T] ¢= CR[A] Et> CR[B] 
CRXOR 

The mapping from the mnemonic to the operation is fairly straightforward. The 
instructions corresponding to the eight CR Logical instructions operations are 
crand, cror, crxor; crnand, crnor, creqv, crandc and crorc. 

All of these instructions take three operands, the target bit where the result of the 
operation should be stored, and the two source bits. 

Four additional extended forms listed in Table 9-2 make simple CR bit opera­
tions easy to perform. These are crclr, crmove, crnot, and crset. 

Table 9-2 Condition Register Logical Extended Forms 

crclr bitT 
CRClear CR[bitT] ¢= 0 
extended form for crxor bi tT, bi tT, bi tT 

crmove bitT,bitA 
CRMove CR[bitT] ¢= CR[bitA] 
extended form for cror bi tT, bi tA,bi tA 
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ernot bitT,bitA 
CRNot CR[bitn ¢::: -CR[bitA] 
extended form for crnor bi tT, bi tA,bi tA 

erset bitT 
CRSet CR[bitn ¢::: 1 
extended form for creqv bi tT, bi tT I bi tT 

These forms can be used to set (erset) or clear (erelr) a bit in the CR; to copy 
a CR bit to another bit position (ermove); or to negate a CR bit and place the 
negated bit in another bit in the CR (ernot). 

Condition Register Move 

The CR Move instructions are used to perform three tasks: to move the fields of 
the CR around within the CR; to copy fields from the CR into a register; or to 
copy fields into the CR. 

There is one instruction for copying CR fields within the CR: merf, an abbrevia­
tion for Move CR Field (see Table 9-3). 

Table 9-3 Move within Condition Register Instruction 

merf crfT,crfA 
Move CR Field 

CR{crjT} ¢::: CR{crfA} 

The merf instruction requires a target CR field T and a source CR field A. CR 
field T is overwritten with the data from the CR field A. 

To copy data out of the Condition Register, the only instruction available is 
mfer, which copies the data into a designated GPR (see Table 9-4). 

Table 9-4 Move from Condition Register Instruction 

I mfer rT 
Move from CR to GPR 

I rT ¢::: O(CR) 

The entire destination register is overwritten with the contents of the CR. For 64-
bit implementations, the upper 32 bits of the register are cleared to O. 

The PowerPC architecture specifies many instructions that move data into the 
CR. These instructions can be used to conditionally branch based on the value of 
a bit in the FPSCR, XER, or a GPR. The interesting bits can be first copied into the 
CR, and then anyone of the standard conditional branch instructions can be 
used. 

The three Move to CR instructions listed in Table 9-5 are merfs, merxr, and 
mterf. 
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Table 9-5 Move to Condition Register Instruction 

mcrfs crfT,crfA CR{crjT} <= FPSCR{crfA} 
Move to CR from FPSCR FPSCR{crfA} <= 0 

mcrxr erfT CR{crjT} <= XER{O} 
Move to CR from XER XER{O} <= 0 

mtcrf CRmask,rS 
CR{T} <= (rS) & mask 

Move to CR Fields from GPR 

The mcrf s instruction is used to copy a field from the FPSCR to a field in the CR. 
The mcrxr instruction is similar, except that it copies only from field 0 of the 
XER into a field of the CR. After the execution of a mcrfs or mcrxr instruction, 
the bits that were copied out of the FPSCR or XER are cleared to O. Thus, after 
execution of a mcrxr instruction, XER{O} will always be bOOOO. 

The mtcrf instruction can be used to copy CR fields from the given register into 
the CR. Only the fields specified in the mask are updated by this instructions; the 
other CR fields are unchanged. 

An extended form (mtcr) is provided to facilitate restoring the entire CR from a 
register where it was saved earlier. The rotcr form overwrites the entire CR with 
the data in the given register (see Table 9-6). 

Table 9-6 Move to Condition Register Extended Form 

rotcr rS 
Move to CR from GPR CR <= rS [~;~] 
extended form formtcrf OxFF, r S 

9.2 FPSCR Instructions 

The Floating-Point Status and Control Register also has a set of special instruc­
tions devoted to it. These instructions allow the FPSCR to be copied to and from 
a designated FPR, and they allow specific bits within the FPSCR to be modified. 

To move a copy of the FPSCR into a floating-point register, the roff s instruction 
should be used (see Table 9-7). 

Table 9-7 Move from FPSCR Instruction 

roffs[.] frT 
Move from FPSCR 

frT <= (FPSCR) 

The rof f s instruction copies the FPSCR into the lower 32 bits of the specified 
FPR. The upper 32 bits of the FPR are undefined. 
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Table 9-8 lists other options available for writing data into the FPSCR. Instruc­
tions are provided to directly set a bit of the FPSCR and to set an FPSCR field 
from an FPR or immediate value. 

Table 9-8 Move to FSPCR Instructions 

mtfsbO[.] bitT 
FPSCR[bitT] ¢::: 0 

Move to FPSCR Bit 0 

mtfsbl[.] bi tT FPSCR[bitT] ¢::: 1 
Move to FPSCR Bit 1 

mtfsf[.] fpscrMask,frB 
FPSCR ¢::: (frB) & mask 

Move to FPSCR Fields 

mtfsfi[.] fpscrfT, val 
FPSCR{fPscrfT} ¢::: val 

Move to FPSCR Fields Immediate 

The mtfsbO and mfsbl instructions can be used to clear or set a bit in the 
FPSCR. The only restriction is that bits 1 and 2 (FEX and VX) of the FPSCR can­
not be modified using these instructions. 

The mtfsfi instruction can be used to copy an immediate value into a desig­
nated FPSCR field. As with the other instructions that write into the FPSCR, bits 
1 and 2 are not copied from the immediate value when FPSCR{O} is specified as 
the target field. 

Similar to the mtcrf instruction, mtfsf can be used to copy fields from an FPR 
back into the FPSCR. The same restriction with bits 1 and 2 applies to this 
instruction also. 

The mtfs form is just a shortcut for mtfsf when all of the fields are being cop­
ied from the FPR (see Table 9-9). The FPSCR (except for bits 1 and 2) is copied 
from the lower 32 bits of the specified FPR. 

Table 9-9 Move to FSPCR Extended Form 

mtfs[.] frB 
Move to FPSCR 
extended form for mtfsf[.J OxFF, frE 

9.3 MSR Instructions 

FPSCR ¢::: (frB) 

The two instructions listed in Table 9-10 provide supervisor-level access to the 
Machine State Register (MSR). These instructions are quite simple: copy the 
MSR to or from the given GPR. 
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Because the MSR and the GPRs are always the same size (32 bits on 32-bit imple­
mentations and 64 bits on 64-bit implementations), the entire GPR is used for the 
copy operation. 

Table 9-10 Move from/to MSR Instructions 

mfmsr rT 
Move from Machine State Register rT¢= (MSR) 
supervisor-level instruction 

mtmsr rS 
Move to Machine State Register MSR¢= (rS) 
supervisor-level instruction 

These instructions, mfmsr and mtmsr, copy the MSR from a GPR (mfmsr), or 
copy the MSR into a GPR (mtmsr). 

9.4 SPR Instructions 

Most of the SPRs are accessed using the Move To and Move From SPR instructions 
listed in Table 9-11. These instructions allow an SPR to be specified by its ID so 
that contents can be read into or written from a GPR. 

Table 9-11 Move from/to SPR Instructions 

mfspr rT, SPR rT¢= (SPR) 
Move from Special Purpose Register 

mtspr SPR,rS SPR ¢= (rS) 
Move to Special Purpose Register 

In their standard form, these instructions are not very readable because the SPR 
ID encodings are not tied to the SPR in any meaningful way. In general, one of 
the many extended forms based on the mfspr and mtspr instructions is used 
instead. 

Because there are so many extended forms for the SPR instructions, they are dis­
cussed next in separate sections and grouped by the level of privilege required 
to access the registers. 

9.S User-Level SPR Extended Forms 

The three SPRs listed in Table 9-12 have user-level access: the XER, the LR, and 
the CTR. All three of these registers allow both read and write access at the user 
level. 
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Table 9-12 User-Level Move from SPR Extended Forms 

mfctr rT 
Move from Count Register rT ¢::: O(CTR) 
extended form for mfspr rT, 9 

mflr rT 
Move from Link Register rT ¢::: (LR) 
extended form for mfspr rT, S 

mfxer rT 
Move from Fixed-Point Exception Register rT ¢::: O(XER) 
extended form for mfspr rT, 1 

To copy values from these registers into a GPR, the mfXxxinstruction should be 
used, where xxx is either ctr, lr, or xer. Because the CTR and XER are always 
32 bits in width, 64-bit PowerPC implementations will have the upper 32 bits of 
the destination register cleared to 0 as a result of the mfctr or mfxer instruc­
tions. 

Like the three mfxxx instructions, the mtxXxinstructions listed in Table 9-13 are 
used to copy values into these SPRs from GPRs. On 64-bit PowerPC implemen­
tations, only the low-order 32 bits of the register are copied into the CTR or XER. 

Table 9-13 User-Level Move to SPR Extended Forms 

mtctr rS 
Move to Count Register CTR ¢::: rS [~~;~] 
extended form for mtspr 9, r S 

mtlr rS 
Move to Link Register LR ¢::: (rS) 
extended form for mtspr S,rS 

mtxer rS 
Move to Fixed-Point Exception Register XER ¢::: rS [~3~] 
extended form for mts pr 1, r S 

Obsolete User-Level SPR Forms 

In addition to the SPRs described earlier, the four other obsolete SPRs listed in 
Table 9-14 have some sort of user-level access: the MQ the DEC, and the two 
RTC registers. None of these registers (except for the DEC) are part of the Pow­
erPC architecture, but they are included on the 601 for compatibility with the 
POWER architecture. No other PowerPC implementation will implement these 
registers. 

The MQ and the RTC registers exist only on the 601. At the user level, the MQ 
can be both read from and written to, but the RTC registers can only be read 
from. 
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The DEC register is a special case. On POWER machines (and thus, on the 601), 
user-level read access is allowed. Therefore, for POWER compatibility, the 601 
allows read access to the DEC by specifying SPR #6 to the rnfspr instruction. In 
the PowerPC architecture, this register is properly accessed (supervisor level 
only) by specifying SPR #22. 

Table 9-14 Obsolete User-Level Move from SPR Extended Forms 

rnfdec rT 
Move from Decrement Register rT<= (DEC) 
extended form for mfspr rT,6 
user-level on POWER and 601 only 

rnfrnq rT 
Move from MQ Register 

rT<= (MQ) 
extended form for mfspr rT,O 
defined on POWER and 601 only 

rnfrtcl rT 
Move from Real Time Counter Lower rT<= (RTCL) 
extended form for mfspr rT,5 
defined on POWER and 601 only 

rnfrtcu rT 
Move from Real Time Counter Upper 

rT<= (RTCU) 
extended form for mf s pr r T, 4 
defined on POWER and 601 only 

As mentioned earlier, the only obsolete SPR that allows user-level read access is 
the MQ resister. 

Table 9-15 Obsolete User-Level Move to SPR Extended Forms 

rntrnq rS 
Move to MQ Register 
extended form for mtspr 0, r S 
defined on POWER and 601 only 

MQ <= (r5) 

The rntrnq extended form is used to copy a new value into the MQ. 

9.6 Supervisor-Level SPR Extended Forms 

Table 9-16 lists the many supervisor-level SPRs that can be accessed via the 
rnfspr and rntspr instructions. The majority of programmers will never need to 
access these registers, so this section can be safely skipped. 
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Table 9-16 Supervisor-Level Move from SPR Extended Forms 

mfasr rT 
Move from Address Space Register 
extendedformformfspr rT,280 rT ¢::: (ASR) 
supervisor-level instruction 
64-bit implementations only 

mfdar rT 
Move from Data Address Register rT ¢::: (DAR) 
extended form for mfspr rT, 19 
supervisor-level instruction 

mfdbatl rT,n 
Move from Data BAT Register Lower rT ¢::: (DBATL[n]) 
extended form for mfspr rT,537+2*n 
supervisor-level instruction 

mfdbatu rT,n 
Move from Data BAT Register Upper rT ¢::: (DBATU[n]) 
extended form for mfspr rT, 536+2 * n 
supervisor-level instruction 

mfdec rT 
Move from Decrement Register rT ¢::: (DEC) 
extendedformformfspr rT,22 
supervisor-level instruction 

mfdsisr rT 
Move from DSISR rT ¢::: (DSISR) 
extendedformformfspr rT,18 
supervisor-level instruction 

mfear rT 
Move from External Access Register rT ¢::: (EAR) 
extended form for mfspr rT,282 
supervisor-level instruction 

mfibatl rT,n 
Move from Instruction BAT Register Lower rT ¢::: (IBATL[n]) 
extendedformformfspr rT,529+2*n 
supervisor-level instruction 

mfibatu rT,n 
Move from Instruction BAT Register Upper rT ¢::: (IBATU[ n ]) 
extended form for mfspr rT, 528+2 * n 
supervisor-level instruction 

mfpvr rT 
Move from Processor Version Register rT ¢::: (PVR) 
extended form for mfspr rT,287 
supervisor-level instruction 

mfsdrl rT 
Move from Storage Descriptor Register 1 rT ¢::: (SDR1) 
extended form for mfspr rT,25 
supervisor-level instruction 
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mfsprg rT,n 
Move from Special Purpose Register Gn rT <= (SPRG[n]) 
extended form for mfspr rT,272+n 
supervisor-level instruction 

mfsrrO rT 
Move from SavelRestore Register 0 rT<= (SRRO) 
extended form for mf s pr r T, 2 6 
supervisor-level instruction 

mfsrrl rT 
Move from SavelRestore Register 1 rT <= (SRRl) 
extended form for mfspr rT, 2 7 
supervisor-level instruction 

The Move To SPR forms listed in Table 9-17 are the same as the Move From forms 
with one exception: there is no instruction provided to write to the PVR. The 
PVR is a read-only register, so it makes no sense to write to it (processor 
upgrades cannot be performed in software). 

Table 9-17 Supervisor-Level Move to SPR Extended Forms 

mtasr rS 
Move to Address Space Register 
extended form for mtspr 280, r S ASR<= (r5) 
supervisor-level instruction 
64-bit implementations only 

mtdar rS 
Move to Data Address Register DAR<= (r5) 
extended form for mtspr 19, rS 
supervisor-level instruction 

mtdbatl n,rS 
Move to Data BAT Register Lower DBATL[n] <= (r5) 
extended formformtspr 537+2*n,rS 
supervisor-level instruction 

mtdbatu n,;r:S 
Move to Data BAT Register Upper DBATU[n] <= (r5) 
extendedformformtspr 536+2*n,rS 
supervisor-level instruction' 

mtdec rS 
Move to Decrement Register DEC <= (r5) 
extended form for mtspr 22, r S 
supervisor-level instruction 

mtdsisr rS 
Move to DSISR DSISR <= (r5) 
extended form for mtspr 18, rS 
supervisor-level instruction 
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rntear rS 
Move to External Access Register EAR<= (rS) 
extended form for mtspr 282, rS 
supervisor-level instruction 

rntibatl n,rS 
Move to Instruction BAT Register Lower IBATL[n] <= (rS) 
extended form for mtspr 529+2*n,rS 
supervisor-level instruction 

rntibatu n,rS 
Move to Instruction BAT Register Upper IBATU[n] <= (rS) 
extendedformformtspr 528+2*n,rS 
supervisor-level instruction 

rntsdrl rS 
Move to Storage Descriptor Register 1 SDRI <= (rS) 
extended form for mts pr 25, r S 
supervisor-level instruction 

rntsprg n,rS 
Move to Special Purpose Register Gn SPRG[n] <= (rS) 
extendedformformtspr 272+n,rS 
supervisor-level instruction 

rntsrrO rS 
Move to Save/Restore Register 0 SRRO <= (rS) 
extended form for mtspr 26, rS 
supervisor-level instruction 

rntsrrl rS 
Move to Save/Restore Register 1 SRRI <= (rS) 
extended form for mtspr 27, r S 
supervisor-level instruction 

Obsolete Supervisor-Level SPR Instructions 

The two obsolete SPRs listed in Table 9-18 have supervisor write access only­
the RTC registers. 

Table 9-18 Obsolete Supervisor-Level Move from Extended Forms 

rntrtcl rT 
Move to Real Time Counter Lower 
extended form for mtspr rT,20 RTCL<= (rT) 
supervisor-level instruction 
defined on POWER and 601 only 

rntrtcu rT 
Move to Real Time Counter Upper 
extendedformformtspr rT,21 RTCU <= (rT) 
supervisor-level instruction 
defined on POWER and 601 only 
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Note that the SPR ill used for these registers with the mtspr instruction is dif­
ferent from that used with the mfspr instruction. The IDs 20 and 21 are used 
with mtspr, and IDs 4 and 5 are used with mfspr. 

9.7 Time Base Register Instructions 

Access to the Time Base Register (TBR) is provided by the mftb (Table 9-19) and 
mtspr (Table 9-20) instructions. The mftb instruction is a user-level instruction 
that provides read access to the TBR, and mtspr can be used at the supervisor 
level to update the TBR. 

Table 9-19 Move from Time Base Instructions 

mftb rT,TBR 
Move from Time Base Register 

H(TBR = 268) 
rT{::::: (TBRL) 

else H(TBR = 269) 
rT {::::: (TBRU) 

The mftb instruction requires that a code be provided to specify which half of 
the TBR is required, the upper or the lower half. 

To make the mftb instruction easier to use by eliminating the need to remember 
the code for the upper and lower portion of the TBR, two extended forms are 
defined. 

Table 9-20 Move from Time Base Extended Forms 

mftb rT 
Move from Time Base Register (Lower) rT{::::: (TBRL) 
extended form for mftb r T, 268 

mftbu rT 
Move from Time Base Register Upper rT{::::: (TBRU) 
extended form for mftb rT,269 

The mftb form uses the same mnemonic as the instruction from which it is 
derived. Assemblers differentiate between the two by examining the arguments 
provided. 

The two extended forms (based on mtspr) for updating the TBR are privileged 
(Table 9-21). Given a source GPR, these instructions will copy the contents of the 
register into the upper or lower portion of the TBR. 
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Table 9-21 Move to Time Base Extended Forms 

mttbl rS 
Move to Time Base Register Lower TBRL <== rS [~d3~] 
extendedformformtspr 284,rS 
supervisor-level instruction 

mttbu rS 
Move to Time Base Register Upper TBRU <== rS [~d;~] 
extended form for mtspr 285, rS 
supervisor-level instruction 

Because each half of the TBR is 32 bits wide, 64-bit PowerPC implementations 
will only use the low-order 32 bits of the source register. 

9.8 Segment Register Instructions 

All 32-bit PowerPC implementations use Segment Registers instead of a Seg­
ment Table. These registers can be accessed at the supervisor level using the 
instructions given in this section. 

The mfsr and mfsrin instructions listed in Table 9-22 copy the contents of the 
specified Segment Register into the specified target GPR. For mfsr, the SR is 
specified by an immediate value, and for mfsrin, the SR is specified by the 
upper four bits (bits 0:3) of the source register rB. 

Table 9-22 Move from Segment Register Instructions 

mfsr rT,SR 
Move from Segment Register rT <== SR[SR] 
supervisor-level instruction 
32-bit implementations only 

mfsrin rT,rB 
Move from Segment Register Indirect rT <== SR[rB[O:3]] 
supervisor-level instruction 
32-bit implementations only 

The mtsr and mtsrin instructions listed in Table 9-23 copy the contents of the 
source GPR into the target Segment Register. The SR is selected in the same fash­
ion as the mfsr /mfsrin instructions: formtsr, the SR is specified by an imme­
diate value, and for mtsrin, the SR is specified by the upper four bits (bits 0:3) 
of the source register rB. 
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Table 9-23 Move to Segment Register Instructions 

mtsr SR,rS 
Move to Segment Register SR[SR] ¢= (rS) 
supervisor-level instruction 
32-bit implementations only 

mtsrin rS,rB 
Move to Segment Register Indirect SR[rB[O-3]] ¢= (rS) 
supervisor-level instruction 
32-bit implementations only 
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Memory and 
Caches 

All computer programs and data must be loaded into memory before they can 
be used. It is important to be aware of the memory structures because they can 
have a significant effect (both positive and negative) on the performance of a 
program. 

10.1 Introduction 

Computer users want an unlimited amount of fast memory. No matter how fast 
computers may become, users always want something just a bit faster. A mem­
ory subsystem that can't keep pace with the processor slows the entire system 
down. 

Unfortunately, even a moderate (much less an unlimited) amount of fast memory 
tends to be quite expensive. These same computer users who want gobs of mem­
ory typically don't want to pay a lot of money for it. 

This conflict (speed versus $$$) causes a lot of problems for the computer 
designer. The only good side to all this is that many of these problems have been 
addressed over the years with a reasonable amount of success. The remainder of 
this chapter is devoted to describing how memory systems work in general and 
gives specific information about the PowerPC memory system. 
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10.2 Memory and Cache Overview 

In an ideal computer system, the CPU-memory interaction would be as simple 
as Figure 10-1. There would be a CPU, and a large store of memory, and they 
would talk to each other. Whenever the CPU needed to access a storage location, 
it would send a request to the memory store, which would handle the request 
directly. 

Figure 10-1 Simple Memory Model Showing Basic CPUIMemory Interaction 

1 CPU 1---1 Memory 1 
Many real-world issues, however, make this ideal a naIve expectation. The most 
important of these real-world issues is cost. 

Using the fastest available memory can result in a system that is either very 
expensive or very limited (due to lack of memory). Using less expensive mem­
ory can result in a system too slow to keep pace with the processor. It would be 
nice if there were some way of using a large amount of slow (and inexpensive) 
memory that performed as if fast memory were used. 

This is where caches come in. A cache provides a mechanism for increasing the 
apparent speed of slow memory by using a small amount of fast memory. A 
cache can be used to design a system with a large amount of slow memory that 
still performs as if it had a much faster memory store available. 

The performance of a cache varies greatly. In the best case, a program can run 
almost entirely from the cache and the memory system will appear to be just as 
fast as the cache. In the worst case, performance could be slightly worse than if 
the cache were not present. Fortunately, in most cases, caches perform quite 
well, and they significantly speed up memory accesses. 

Memory Caches 

The type of cache that we have been talking about so far is a memory cache. This 
type of cache uses a small store of high-speed memory to cache data from main 
memory (which is typically much larger and slower). 

When the CPU needs to access memory, it sends the request to the cache. If the 
cache can handle the request by itself, it does so and fulfills the memory request 
without accessing main memory. If it cannot handle the request, it sends the 
request to the main memory store and then passes the returned data along to the 
CPU. Figure 10-2 illustrates this process. 
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Figure 10-2 Memory Organization with a Cache 

I CPU I-I Cache I-I Memory I 

Other Types of Caches 

Memory caches aren't the only type of caches commonly found in computer sys­
tems. Creating a cache is a general technique that can be used to speed up many 
types of access. 

Disk Cache 

A disk cache uses the computer's main memory as a cache for a slow I/O device, 
like a hard disk or a CD-ROM drive. 

Instead of the computer accessing the hard disk directly, as shown in Figure 10-3, 

Figure 10-3 System with Simple MemorylDisk Interface 

-[ Memory 

CPU 

--I Hard Disk 

... all hard disk accesses are sent to the disk cache, which handles the request 
from memory (if possible) and only goes to the hard disk if necessary. This is 
shown in Figure 10-4. 

Figure 10-4 System with a Disk Cache between the CPU and Hard Disk 

-I Memory III 
~ 

CPU 

Disk cache architectures typically differ from other types of cache architectures 
in that the access time between the hard disk and memory is quite large (mem­
ory accesses are typically 1000 times faster than hard drive accesses). In this 
extra time disk caches can utilize more complex (and presumably more accurate) 
algorithms for deciding what belongs in the cache and what should be removed. 
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Virtual Memory 

Virtual Memory (VM) is similar to a disk cache in that it uses main memory to 
cache accesses to a hard disk. However, the actual setup and operation of VM 
differs greatly from a simple disk cache. 

The interesting thing about VM is that it applies the concept of a cache in 
reverse. The goal of VM (at least as originally implemented) was not to make 
memory accesses faster, but to make more memory available. Using VM is 
slower than using memory directly, because all accesses must go through the 
extra stages of address translation, and they may need to access the hard drive. 

Figure 10-5 shows VM in its most primitive form. It works by pretending that all 
(or most) of main memory is actually just a cache for a portion of memory from 
a secondary storage device like a hard disk. 

Figure 10-5 Simplified Virtual Memory Organization 

I CPU I-I Memory 1- Virtual Memory 

Backing Store 

Current virtual memory implementations are actually far more complex than 
this overview would suggest. More detail is provided later in §10.7, "Virtual 
Memory." 

10.3 Cache Architecture 

In computer science, a cache is a small area of fast storage that is used to tempo­
rarily store data that would normally be directly accessed from a large area of 
slow storage. The terms small/large and fast/ slow are relative terms-there is 
no requirement that the cache be particularly fast, only that it be faster than the 
storage area that is being cached. Caches are commonly used to speed up 
accesses to memory or to secondary storage devices like hard drives. For discus­
sion purposes, this chapter will always refer to a memory cache, that is, a cache 
that is caching accesses to main memory. 

A cache operates by handling all memory-read requests and checking to see if 
the request can be handled with data in the cache. If so, then the data is returned 
directly from the cache, without accessing the main memory. This is known as a 
cache hit. 

If the memory read request is not located in the cache, then the cache must 
request the data from main memory. This is known as a cache miss. A cache miss 
is slightly slower than accessing main memory directly because of the overhead 
of the cache. 
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Write requests are handled in a slightly different fashion. If the storage location 
being stored to is already loaded in the cache, the cache updates its local copy 
and then optionally sends the new data to main memory. If the cache sends the 
new data to main memory, then the cache is referred to as write-through. If the 
cache does not immediately pass the new data to memory, it is known as a write 
back cache. Write back caches wait and send the updated cache data to memory 
only when necessary. 

If the storage location being stored to is not currently loaded in the cache, the 
cache again has two options. It can read the requested data from memory and 
then treat the access as a write hit, or it can send the write request directly to 
main memory and have it bypass the cache entirely. If the cache fetches the block 
on a write miss, it is known as a write allocate cache. Caches that pass the write 
directly to memory are known as write around caches. 

Why Caches Work 

There is one small problem with caches: they require that the data already be in 
the cache for the cache to be of any benefit. The cache needs to have some 
method for analyzing past memory accesses and predicting future memory 
accesses. Fortunately the principle of locality of reference allows caches to predict 
reasonably well which data should be kept and which data should be removed 
from the cache. 

The principle of locality of reference states simply that there are two types of 
reference locality for standard computer programs: locality in time (temporal 
locality) and locality in space (spacial locality). 

• Temporal locality implies that if an item is referenced, then it is likely 
to be referenced again in the near future. 

• Spacial locality implies that if an item is referenced, then items close 
to that item are likely to be referenced again in the near future. 

A cache can take advantage of temporal locality by timestamping each memory 
reference made through the cache and discarding the oldest entry when the 
cache is full and a new item needs to be added. This is commonly known as the 
LRU (Least Recently Used) algorithm. 

A cache can take advantage of spacial locality by defining a block size that is the 
smallest unit that the cache will read from main memory. This will force the 
bytes surrounding each reference to be read into the cache, thus making them 
available for future accesses to the cache. 
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How Caches Work 

Figure 10-6 shows how a cache is typically arranged as a set of N cache lines, 
each of which contains M bytes, where M is an integral number of words and N 
is an integral power of 2. The overall cache size is thus N x M (N lines of M 
bytes). Additionally, a cache line can be divided into an integral number of cache 
sectors, although in many cases the line size and the sector size are the same. 
Cache operations always affect an entire cache sector at a time. 

Note that common terminology also includes the terms cache block and cache sub­
block, which are equivalent to the terms cache line and cache sector defmed earlier. 
To make matters worse, sometimes block is used to mean sector. To eliminate any 
confusion about this ambiguous terminology, the terms from the preceding 
paragraph (line and sector) will always be used in this book. However, it is 
important to be aware of these alternate terms because they may be used in 
other documentation. 

Figure 10-6 General Cache Organization 

Tag Sector 1 Sector 2 

N 

In addition to the data that is being cached, each cache line must also contain 
some housekeeping information: a cache line tag and a valid bit for each sector 
in the cache line. The tag identifies the memory location that corresponds to each 
cache line. The valid bit indicates whether or not the cache sector contains valid 
data. 

Hash Functions 

A hash function is a simple algorithm that is used to associate memory 
addresses with cache lines. When the cache needs to check for the presence of a 
particular address, it takes the address and applies the hash function to deter­
mine which cache lines need to be searched. 
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Because the hash function must be applied for every memory access, it is essen­
tial that it be trivial to compute. The majority of hash functions are simple bit 
manipulations such as taking the upper or middle n bits of the address. 

Figure 10-7 Effective Address Fields, as Interpreted by the Hash Function 

I tag I hash key byte offset 

The hash function that will be used in most of the following examples divides 
the effective address into three fields: a tag, a hash key, and a byte offset. The hash 
key is used to determine which cache lines to search and the tag is used to deter­
mine if the cache line contains the correct data. The byte offset is used to identify 
the correct byte within the cache line after the cache line has been found. 

Cache Associativity 

The number and size of the cache lines is not enough to fully describe the cache 
geometry. The associativity of the cache is an important parameter that greatly 
affects how well the cache performs. 

The associativity of a cache defines how the lines of the cache are grouped for 
searching and replacing purposes. This grouping, while not necessary, is useful 
for implementing high-speed caches because it limits the number of cache line 
entries that need to be searched. 

There are three types of cache line groupings: direct mapped, fully associative, 
and n-way set associative. 

The simplest cache is the direct mapped cache shown in Figure 10-8. This type of 
cache has one cache line in each group, thus, after the hash function is applied to 
the address, only one cache line needs to be checked. If that cache line contains 
the address, then the desired data has been found; otherwise, the data is not 
contained in the cache. 

Figure 10-8 Direct Mapped Cache with Simple Hash Function 

address: 
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tag select byte Tag 
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In any case, it only takes a check of one cache line in the cache to deternrine if the 
cache contains the address. This makes the direct mapped cache the easiest type 
of cache to implement. 

One potential problem with direct mapped caches is that the cache can be under­
utilized if the hash function does not mesh well with the access pattern for the 
data being cached. If many addresses hash to the same cache line, there can be a 
large number of cache misses even though there are unused cache lines in the 
cache. This is a worst-case scenario, and, in general, this type of cache works 
reasonably well for memory caches. 

The opposite end of the spectrum from a simple direct mapped cache is the fully 
associative cache illustrated in Figure 10-9. This organization allows the data for 
an address to be stored anywhere in the cache. As a result, the cache is com­
pletely utilized before it needs to overwrite any of the cache lines. 

Figure 10-9 Fully Associative Cache (No Hash Function Necessary) 

address: 

tag 

This organization of the fully associative cache implies a few very crucial things. 
First, because an address can be located anywhere in the cache, the entire cache 
needs to be searched to deternrine if the address is in the cache or not. For a disk 
cache (where there's plenty of time available to implement a complex algo­
rithm), this may be acceptable. For a memory cache, however, there isn't enough 
time to search sequentially through the cache lines, and the additional hardware 
necessary to perform a parallel search would quickly become unmanageable for 
a reasonably-sized cache. 

The second important implication for a fully associative cache is that it requires 
some sort of line replacement algorithm to decide which cache line to discard when 
the cache is full and a new line needs to be added. This algorithm can also cost 
time because all of the cache lines may need to be analyzed to deternrine which 
one is the least likely to be used soon. A direct mapped cache doesn't need a line 
replacement algorithm because the data is allowed to reside in only one line and 
that is the line that needs to be replaced. 

Because of the additional complexity needed to find and replace the cache lines, 
fully associative caches are not typically used for memory caches. Fully associa-
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tive caches are more common with disk caches or virtual memory systems 
where the difference between the memory and the secondary storage access 
times is large. 

There is fortunately a happy medium between the mindless simplicity of the 
direct mapped cache and the unmanageable complexity of the fully associative 
cache. In between these two extremes is the n-way set associative cache illustrated 
in Figure 10-10. 

A set associative cache maps the cache into distinct sets, each of which contains 
n cache lines. When data needs to be accessed from a cache, the address is 
hashed, and then all n of the cache lines in the target set are searched in parallel 
for the address. 

Figure 10-10 N-way Set Associative Cache with Simple Hash Function 
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Typical values for n are 2 and 4. Studies have shown that increasing n above 4 
results in small performance benefits and greatly complicates (and thus, tends to 
slow down) the cache search circuitry. 

By reducing the number of cache lines that need to be searched in parallel to 4 or 
less, the set associative cache organization makes the search circuitry reasonable 
to implement and allows the cache size to be reasonably large without affecting 
the search time. 

It should be noted that the definition for an n-way set associative cache is actu­
ally general enough to encompass the direct mapped and fully associative cache 
organizations. A direct mapped cache is simply a set associative cache with 
n = 1, and a fully associative cache is a set associative cache with n = N (where N 
is the number of cache lines). 

Line Replacement Algorithms 

The n-way set and fully associative caches require some sort of replacement 
algorithm to determine which cache line to replace when the cache (or set) is 
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completely occupied. Of the various possible strategies, two are commonly 
used: 

• Least Recently Used (LRU) 

• Random 

The LRU algorithm checks the timestamps and chooses the cache line that was 
accessed least recently. The idea for this algorithm is based on the principle of 
temporal locality mentioned earlier. The more recently used cache lines are more 
likely to be used again soon, so the cache hit rate should be least affected by 
removing the least recent cache line. 

The Random algorithm merely picks a random cache line to replace. Oddly 
enough, cache simulations have demonstrated that large caches using the Ran­
dom algorithm have hit rates almost identical to rates of similar caches using the 
LRU algorithm. Another benefit of the Random algorithm is that it is far simpler 
to implement than the LRU algorithm. 

Split Caches 

When the processor accesses memory, it generally knows whether the memory 
being accessed is program data or program instructions. It knows the difference 
because it generates all of the instruction references (when it performs instruc­
tion fetches), and it assumes that all program references to memory are data ref­
erences. 

This allows the processor to have two separate caches: one for data and another 
for instructions. This type of cache organization is known by various names: split 
cache, dual cache, or Harvard architecture cache. This cache organization is differ­
ent from the unified or mixed cache, where all of the memory (whether accessed 
as instruction or data) is stored in a single cache. In this book, the terms split 
cache and unified cache refer to these two cache architectures. 

The advantage of a split cache is that the instruction cache can be architected to 
better handle instruction accesses, and the data cache can be architected to better 
handle data accesses. For example, instructions are read-only, so the instruction 
cache doesn't need to worry about recording and flushing changes out to the 
next level of memory, because modifications to instruction data aren't allowed. 
A processor could also implement a separate data path to each of the caches, so 
that an instruction and a data access could be handled in parallel. 

The disadvantage of split caches is the amount of cache that is allocated for 
instructions and data is fixed in hardware. A small loop of code that accesses a lot 
of data will fully utilize the data cache but will underutilize the instruction cache. 

Split caches are also bad for self-modifying code. When the program loads the 
instructions so that it can modify them, the processor treats the memory access 
as a data access, thus the instructions enter the data cache. This may produce 
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two copies of the instructions: one in the instruction cache (for execution) and 
another in the data cache (for modification). When the program modifies the 
instruction, only the data cache is updated. The next time the updated instruc­
tion needs to be executed, old data from the instruction cache may be used, pro­
ducing unexpected results. 

Fortunately, this isn't a major concern for most people because self-modifying 
code is considered a Bad Thing for many other reasons. Hardware checks could 
be added, but because self-modifying code is frowned upon by the computer 
science community, it is not worth the effort. A software solution is to flush the 
instruction cache whenever instructions are modified, but flushing the cache 
tends to negatively affect performance. 

Multiple Cache Levels 

Not surprisingly, there can be many levels of caches in a particular system. For 
example, Figure 10-11 shows how a small amount of very fast memory on the 
processor could cache data from another cache of fast external memory which, 
in tum, is caching data from a large store of slow memory. 

Figure 10-11 Memory Hierarchy with Multiple Caches 

I CPU I-I L1 Cache I-I L2 Cache I-I Memory I 
To differentiate between levels of caches, the terms "Ll cache," "L2 cache," and 
so on, are used. The Ll cache is the cache closest to the processor, and as caches 
become progressively further away from the processor, their level numbers 
increase. For split caches, the numbering: "LlI," "LID," "L2I," "L2D," ... is com­
monly used to denote the instruction and data caches at each cache level. 

Performance analysis of programs using multi-level caches quickly becomes 
quite complex. In general, programmers tune their code by conceptualizing a 
single-level cache, and the results carry over fairly well. 

Cache Coherency 

One problem with caches arises because multiple copies of the same data are 
now in memory: the original in main memory and all the copies in the caches. 

If the processor is the only device accessing memory, then there is no problem 
because the processor always accesses memory through the cache. When 
another device is added that accesses memory, there can be problems with old or 
stale copies of the data sitting in memory or in one of the caches. 

Consider an output device like a display which reads the screen image directly 
from a screen buffer in memory. If the cache uses a write back write policy, then 
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new data written to the screen buffer will be stored in the cache and the output 
device will be reading stale data from memory. Write through caches do not 
exhibit this problem. 

An input device causes another problem for caches. If a device is writing new 
data to an already cached storage location, the cache will have no way of know­
ing that it contains stale data. A processor read from this location will get the old 
value from the cache instead of the current value from memory. Solutions to this 
problem include marking certain memory pages as uncacheable or requiring the 
input device to flush the cache containing the address that was written to. 

Multi-Processor Systems 

The cache coherency problem becomes even more acute when multiple proces­
sors are accessing the same data. One processor can reach into main memory 
and get an old data value because another processor has updated the value in its 
caches, but hasn't yet sent the changes back to main memory. 

Two standard mechanisms handle multi-processor coherency. The first, known 
as directory based, involves using a directory that is shared by all of the processors 
in the system. 

The other mechanism for coherency is called snooping. This protocol requires 
that each cache be connected to a common bus so that they can monitor or snoop 
all memory accesses to determine if they have a copy of a shared memory block. 
Most processors that snoop have an extra read port that is used exclusively for 
snooping so that the snooping operation does not interfere with the normal 
cache operation-the processor is interrupted only when a coherency problem 
needs to be addressed. 

The keys to maintaining coherency are that each cache must insure that it has the 
most recent copy of the data when it needs to perform a read, and each cache 
must have exclusive write access when it needs to perform a write. On a write, 
the cache may either broadcast the new data to the other caches, or it may simply 
inform them that they need to invalidate their local copy of the data. The former 
technique is known as write broadcast, and the latter is called write invalidate. 

10.4 PowerPC Cache Geometry 

The PowerPC ISA does not specify such implementation details as the cache 
organization, but it does outline a set of assumptions that the programmer may 
safely make when dealing with the processor's caches. It also provides a set of 
instructions that provide basic cache control. 

According to the PowerPC ISA, the programmer should assume that the proces­
sor has a split (instruction/ data) cache, and that the processor will not automat-
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ically keep the instruction cache consistent with data written via the store 
instructions (that is, with the data cache). 

Caches in the PowerPC 601 

The 601 has a unified 32K, eight-way set associative cache. The cache geometry 
is summarized as: 

• 64 cache sets with 8 cache lines per set 
• 64 x 8 = 512 cache lines with 64 bytes per line 
• Two 32-byte sectors in each cache line 

The main difference between the 601 cache and the "standard" PowerPC cache 
structure is that the 601 has one unified cache instead of split instruction/ data 
caches. 

10.5 PowerPC Cache Coherency 

The caches keep track of the data in the cache by recording the MESI state for 
each sector. The term "MESI" comes from the four allowable states for each sec­
tor: Modified, Exclusive, Shared, or Invalid. These states are defined as: 

• A Modified sector contains valid data that has been changed with 
respect to main memory. The sector is valid only in this cache. 

• An Exclusive sector is valid in this cache only, and that is consistent 
with main memory. 

• A Shared sector is valid in this cache and at least one other cache in 
the system. Because the sector is shared it must be consistent with 
main memory. 

• An Invalid sector does not exist in the current cache. 

The MESI information is automatically maintained by the hardware in the Pow­
erPC processors, so there is little need for user-level programs to be aware of it. 
A supervisor-level program can control the allowable memory accesses by set­
ting the WIMG bits for memory blocks or pages. These bits are described later in 
§10.9 "PowerPC Memory Access Modes." 

10.6 PowerPC Storage Control Instructions 

The instructions described in this section give the programmer control over the 
processor caches and over how loads and stores are seen by external devices. 
There is also one instruction (not part of the PowerPC specification) that is 
defined on the 601 for POWER compatibility. 
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Data Cache 

The instructions listed in Table 10-1 provide control over the processor's data 
caches. If the processor has a unified cache architecture (like the 601), then these 
instructions apply to the unified datal instruction cache. 

The instruction descriptions in this section are simplified. The actual operation 
of these instructions depends on whether the cache line is in the cache, the cur­
rent settings for the page containing the cached data, and the current system 
coherency mode. Appendix A provides more detailed descriptions of these 
instructions. 

Table 10-1 Condition Register Logical Extended Forms 

debf rA,rB flush the data cache line 
Data Cache Block Flush 

debi rA,rB 
Data Cache Block Invalidate invalidate the data cache line 
supervisor-level instruction 

debst rA,rB store the data cache line to memory 
Data Cache Block Store 

debt rA,rB touch the data cache line 
Data Cache Block Touch 

debtst rA,rB touch (jar store) the data cache line 
Data Cache Block Touch for Store 

debz rA,rB clear the data cache line 
Data Cache Block Zero 

The Data Cache Block Flush (debf) instruction writes the cache line out to mem­
ory if it has been modified and then invalidates the cache line. 

The Data Cache Block Invalidate (debi) instruction invalidates the cache line. If 
the cache line was modified, the changes are discarded. The debi instruction 
requires that the processor be in supervisor mode. 

The Data Cache Block Store (debst) instruction writes the specified cache line out 
to main memory. 

The Data Cache Block Touch (debt) instruction gives a hint to the processor that 
the specified cache line is likely to be loaded from in the near future. The proces­
sor may ignore this hint, or it may load the specified cache line. 

The Data Cache Block Touch for Store (debtst) instruction is similar to the debt 
in that it gives a hint to the processor, but it hints that the specified cache line is 
likely to be stored to in the near future. As with debt, the processor may treat 
this instruction as a no-op, or it may load the specified cache line. In no situation 
does this instruction perform a store operation. 
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The Data Cache Block Zero (dcbz) instruction sets all of the bytes in the specified 
cache line to O. 

Instruction Cache 

If the processor provides a separate instruction cache, the instruction in Table 10-2 
can be used to invalidate the cache. As with the data cache descriptions, the 
description in this section is somewhat simplified. A more thorough description 
is given in Appendix A. 

Table 10-2 Condition Register Logical Extended Forms 

icbi rT,rA 
Instruction Cache Block Invalidate 

invalidate the instruction cache line 

The Instruction Cache Block Invalidate (icbi) instruction invalidates the cache line 
in the instruction cache. On implementations with combined instruction-data 
caches, this instruction acts as a no-op. 

Cache Synchronization 

The two instructions listed in Table 10-3 provide a way of insuring that all cache 
related operations have completed execution before dispatching any subsequent 
instructions. 

Table 10-3 Condition Register Logical Extended Forms 

sync synchronize the data cache 
Data Cache Synchronize 

isync synchronize the instruction cache 
Instruction Cache Synchronize 

The sync instruction makes sure that all instructions that were dispatched 
before the sync instruction appear to complete before the sync instruction com­
pletes. It also insures that no subsequent instructions are dispatched until after it 
completes. 

The isync instruction waits for all previous instructions to complete operation, 
and then it discards any prefetched instructions. This forces all subsequent 
instructions to be reloaded from storage. 

Enforce In-Order Execution of I/O 

The eieio instruction (Table 10-4) is used to control the execution of I/O 
instructions as they are seen by external devices. 
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Table 10-4 Condition Register Logical Extended Forms 

eieio 
Enforce In-Order Execution of I/O 

wait for all loads and stores to 
complete execution 

The eieio instruction makes sure that all of the load and store instructions that 
were dispatched before the eieio instruction are completed (that is, written out 
to main storage) before any load or store instruction after the eieio instruction 
is dispatched. 

It acts as barrier in the instruction stream, preventing the processor from com­
bining loads or stores that are on different sides of the barrier. This is useful to 
insure that the processor and the I/O device are executing the storage instruc­
tion in the correct order. 

Obsolete Cache Instructions 

The lone instruction in Table 10-5 is provided for compatibility with the POWER 
architecture. Only the 601 will implement this instruction. 

Table 10-5 Condition Register Logical Extended Forms 

eles rT,rA 
Cache Line Compute Size 
defined on POWER and 601 only 

rT ~ size of requested cache line 

The Cache Line Compute Size instruction returns the size of the cache line spec­
ified by rA into rT. The value of rA can specify the data cache line size, the 
instruction cache line size, or the minimum or maximum cache line size. The 601 
returns 64 for all of these cache line sizes. 

10.7 Virtual Memory 

Virtual memory (VM) has evolved from a simple method of fooling the operat­
ing system to increase the address space, into a complex unit that manages 
memory protection for multiple processes. 

If you're comfortable with the concept of caching, then most of the basic under­
lying principles of virtual memory will be familiar. One potential source of con­
fusion is the difference in terminology between caches and VM. These 
differences are mostly due to the separate evolution of the two concepts. 

In VM, a "cache line" is referred to as a page or a segment, which is typically not 
divided into sectors. A "cache miss" is called a page fault or address fault. 
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What does VM provide? 

Virtual memory was originally developed to provide a larger "virtual" primary 
memory by using the main memory as a cache for a pre-allocated chunk of stor­
age on a secondary storage device, such as a hard disk. 

As computers and operating systems became more complex, the basic goal of 
VM changed from simply providing additional addressable memory to provid­
ing a suite of memory management functions, like memory protection and pro­
gram relocation. 

Current VM systems typically provide: 

• A separate virtual address space for each process. 
• Demand paged memory so that only memory that is currently being 

used is loaded. 
• Protection to prevent a process from overwriting the memory 

allocated to another process. 

Operating system complexity has grown to the point where most OSs require 
that these VM services be available. 

HowVMWorks 

The basic service of VM is to take a virtual address from an executing process, 
verify that the address is valid for that process, and then translate the virtual 
address into a physical address. The physical address can then be used to satisfy 
the memory request of the process. 

A virtual address is an address in the local address space of the process. A phys­
ical address is an address in the "real" address space of main memory. Storage 
can only be accessed by using a real address, so all virtual addresses must be 
translated to a physical address. 

It's important to be aware that the virtual address space for a process doesn't 
necessarily exist as a contiguous chunk of memory anywhere in the computer. 
As Figure 10-12 shows, the virtual addresses are used to map the memory 
accesses to the appropriate place in physical memory. 

In the figure, memory is divided into pages, simply contiguous chunks of mem­
ory that the VM system uses for convenience. The size of a page varies depend­
ing on the implementation, but typical values range from 512 bytes to 16 Kb. 
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Figure 10-12 A Sample Virtual to Physical Address Mapping 
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One thing that may not be apparent from Figure 10-12 is how VM uses memory 
efficiently. Only the pages that are actually being used by this process are loaded 
into physical memory-when a new page is needed, an unused block is dis­
carded so that the new page can be loaded. Because the new page can be loaded 
anywhere in physical memory, the VM system is free to choose the page that is 
least likely to be used. 

Note how this also allows the physical address space to be shared by multiple 
processes. Pages that are not being used by this process can be allocated to other 
processes so that all of physical memory is being used efficiently. 

Missing from Figure 10-12 is the structure that maps the relationship between 
the virtual and physical pages. This structure is known as a page table. A page 
table takes a virtual address page and translates it into a physical address page. 
Figure 10-13 shows how the page table is used to arrive at the physical address. 

In its simplest form, a page table is simply a large array that is indexed by the 
upper bits of the virtual address. For example, in Figure 10-13 with 1000-byte 
pages, the physical address of virtual address 4100 can be found by looking at 
the fourth (4100/ 1000 = 4) entry in the page table, which in this case contains 
the value 6000. The offset into the page, 100 can be added to the base address of 
the physical page to obtain the physical address, 6100. 
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Figure 10-13 Mapping from a Virtual to a Physical Address via the Page Table 
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What really happens 

One point was glossed over in the previous section: the page table must be 
stored somewhere in memory. Because the virtual address space (and thus, the 
page table) can be quite large, it typically isn't feasible to cache the entire table. 
In most systems, the page table resides in main memory and is paged in and out 
of the cache like other memory accesses. 

This can cause a serious performance problem because now a memory access 
can potentially require two memory accesses: one to load the relevant portion of 
the page table, and another to get the requested data. This is known as a double 
page fault, and the double memory access penalty associated with it is generally 
unacceptable. 

Fortunately, the page table accesses can take advantage of the principle of local­
ity of reference by caching recent page table translations in a separate cache, 
known as a translation lookaside buffer or TLB for short. 

A TLB is a simple cache that stores associations between the recently used vir­
tual addresses and the corresponding physical address. In addition to the phys­
ical address, most TLBs also store information (like protection level) about the 
page. 
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10.8 PowerPC Memory Management 

Memory is managed in a similar fashion for all PowerPC processors, but differ­
ences do exist between the 32-bit and 64-bit PowerPC implementations. 

It is necessary to define a few terms before jumping into the address translation 
mechanisms of the PowerPC. First of all, a page is defined as being 4Kb and a 
segment is 256Mb for all processors, regardless of whether the processor is a 32-
or 64-bit implementation. 

An effective address is an address as the program sees it. User-level programs 
typically deal with effective addresses exclusively, and these programs never 
need to worry about how the system translates this address. 

A virtual address is a temporary address that the translation mechanism builds 
as it is calculating the physical address. The virtual address never exists as an 
entity because it is only needed for a short time. 

A physical, or real, address is the address as it really exists in the computer's 
memory. As mentioned above, a program rarely needs to be aware of the actual 
storage location in memory, because all accesses are translated automatically. 

Address Translation Overview 

Two mechanisms present in PowerPC processors handle the translation from an 
effective to a physical address. These mechanisms are known as Segmented 
Address Translation and Block Address Translation (BAT). In addition, there is Direct 
Address Translation, which is used only when the other translations are disabled. 

Segmented Address Translation, the translation mechanism most commonly 
used, supports two types of segments: direct-store and ordinary. For a direct-store 
segment, the effective address is directly converted into an 1/ 0 address and 
passed to the 1/ 0 subsystem. For an ordinary segment, the effective address is 
translated into a virtual address, which is then translated into a physical address 
before being used. 

Block Address Translation is used when a range of pages need to be contiguous 
in physical memory. This grouping of pages is technically known as a block, but 
the term BAT area will be used instead to avoid confusion. 

Direct Address Translation is used when the other translation mechanisms are 
disabled. In these "translations," the effective address is the same as the physical 
address, and no paging is performed. 

When the memory management unit on a processor is given an effective 
address, the address is passed simultaneously to both of the translation mecha­
nisms (if they are enabled), with the assumption that only one of them should 
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successfully translate the address. If neither mechanism succeeds, then a storage 
exception results. If both succeed, then the Block Address Translation is taken 
over the Segmented Address Translation. 

Segmented Address Translation 

The Segmented Address Translation (sometimes referred to as Page Address 
Translations) mechanism involves translating an effective address into a virtual 
address, and then converting that virtual address into a physical or real address. 
Figure 10-14 illustrates this process. To simplify the discussion, these addresses 
will be abbreviated as EA (effective address), VA (virtual address), and RA (real 
address). 

I 

Figure 10-14 Converting EAs into RAs Using Segmented Address 
Translation 
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The EA is first divided into three fields: the segment portion, the page portion, 
and the byte portion. The page and byte fields specify the page and the byte-offset 
into the page of the address. These fields are always 16 bits and 12 bits, respec­
tively. The segment field occupies the remaining bits of the EA and specifies 
which 256Mb segment to use. Thus, the segment specification is 4 bits wide on 
32-bit implementations and 36 bits wide on 64-bit implementations. 

The segment information from the EA is then used to determine the Virtual Seg­
ment ID (VSID) of the address. The exact mechanism used differs for 32-bit and 
64-bit implementations, but the general idea is that the segment specified in the 
EA is used to index into a Segment Table (or register store), which returns the 
appropriate VSID. If the segment table identifies the segment as a direct-store 
segment, then the address translation stops and the processor proceeds as 
described later in IJDirect-store Segments." 
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Note that a complete VA is never really calculated because it is never needed. If 
it were needed, a VA could be constructed by concatenating the VSID, the page, 
and the byte-offset. 

The VSID is then concatenated with the page from the EA to form the virtual page 
number (VPN) to use as a look-up key into the Page Table. The page table returns 
the real page number (RPN), which can then be concatenated with the EA's byte 
field to construct the final RA. 

32-bit Implementations 

The Segmented Address Translation for 32-bit implementations deviates from 
the general translation described earlier in two significant ways: the size of the 
addresses and how the segment information is used to determine the VSID. 

The EA is 32 bits wide, with a 4-bit Segment Register specification, a 16-bit page 
specification, and a 12-bit byte offset. One important thing to note is that the 
segment specification field contains the ID of a Segment Register (SR). 

The 16 Segment Registers store information about the segment. For ordinary 
segments, the SRs contain a 24-bit VSID, and two bits (Ks and Kp) that contain 
the state storage key. The Tbit (bit 0) of the SR is always 0 for ordinary segments. 
Figure 10-15 illustrates this structure. 

Figure 10-15 Segment Register Structure 
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The 24-bit VSID from the Segment Register can then be concatenated with the 
16-bit page specification and the 12-bit byte offset to produce the 52-bit virtual 
address. As mentioned earlier, the VA is never actually built because only its 
upper portion is needed. The upper portion of the VA is known as the virtual 
page number (VPN) and consists of the VSID and the page. 

64-bit Implementations 

Not surprisingly, the Segmented Address Translation for 64-bit implementations 
deviates from the general description similar to how the 32-bit implementations 
do: by the size of the addresses, and how the segment information is used to 
determine the VSID. 

The EA is 64 bits wide, with a 36-bit effective segment ID (ESID) specification, a 16-
bit page specification, and a 12-bit byte offset. One important thing to note is that 
the segment specification field contains the ESID that is used to index into the 
Segment Table to find the segment table entry (STE) corresponding to this seg­
ment. 
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Each STE stores the same information about the segment that a Segment Regis­
ter would in 32-bit implementations. The only difference is that the stored VSID 
is 52 bits wide instead of only 24. 

The 52-bit VSID from the STE can then be concatenated with the 16-bit page 
specification and the 12-bit byte offset to produce the 80-bit virtual address. As 
mentioned earlier, the VA is never actually built because only its upper portion 
is needed. The upper portion of the VA is known as the virtual page number 
(VPN) and consists of the VSID and the page. 

Direct-store Segments 

A direct-store segment directly maps effective addresses into an external ad­
dress space, such as an I/O bus. Direct-store segments are provided mostly for 
POWER compatibility, and their use is discouraged. 

The value sent to the external storage controller depends on the PowerPC imple­
mentation. Thirty-two-bit PowerPC implementations send: 

• A one-bit field that represents the storage access privilege. 
• The low-order 29 bits from the appropriate Segment Register. 
• The low-order 28 bits of the EA. 

64-bit implementations send: 

• A one-bit field that represents the storage access privilege. 
• The 32-bit 10 field from the appropriate STE. 
• The low-order 28 bits of the EA. 

Many instructions-lwarx, Idarx, eeiwx, eeowx, stwex, and stdex-do not 
make sense for direct-store segments, and will cause a Data Storage interrupt if 
they are executed with an EA from a direct-store segment. Optionally, these 
instruction may produce results that are merely boundedly undefined. 

Other instructions-debt, debtst, debt, debi, debst, debz, and iebi-will 
simply behave as no-ops if they are used with an EA from a direct-store seg­
ment. 

Block Address Translation 

Block Address Translation is used when a range of virtual addresses need to 
map into real memory so that the physical addresses are contiguous. If a BAT 
and a Segmented Address Translation both exist for a particular address, the 
BAT takes precedence. 
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o 

o 

Each range of addresses is known as a BAT area and is defined by the special 
BAT registers. These registers contain the starting address (in both effective and 
real address space) and the size of each BAT area. 

The BAT registers are arranged as shown in Figure 10-16. There are two sets of 
BAT registers, one set for translating instruction addresses (IBATs) and another 
for data addresses (DBATs). For implementations with unified caches (like the 
601), there is only one set of BAT registers that map to the IBAT registers. Each 
set consists of four pairs of registers, numbered from 0 to 3. Each pair has an 
upper and a lower register. The upper register, BATnU, contains the page index 
of the EA, the length of the BAT area, and some state flags. The lower register, 
BATnL, contains the real page number of the block, storage access controls, and 
protection bits. 

Figure 10-16 Block Address Translation Register (Upper/Lower) Structure 
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Only certain sizes are allowed for BAT areas. The smallest valid size is 128Kb 
and the largest is 256 Mb. BAT area sizes must be an integral power of 2. 

Direct Address Translation 

Direct Address Translation is the default translation used when all other address 
translations are disabled. Direct Address Translation is basically the same as no 
address translation. 

When this address translation is used, no paging is performed and all stores to 
the cache are write-through. 

10.9 PowerPC Memory Access Modes 

Both Segmented Address Translation and Block Address Translation provide 
mode control bits that are used to specify the storage mode for all accesses to the 
page (or block, for BAT). 
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The PowerPC specification defines four mode control bits: W, I, M, and G. These 
letters are abbreviations for Write Through, Caching Inhibited, Memory Coher­
ence, and Guarded Storage. 

• If the Write Through (W) control bit is set, then all writes to the page 
are written directly to main memory also. This forces the cache to be 
consistent with main memory. 

• Pages with the Caching Inhibited (I) bit set are not cached. All 
memory accesses are passed through the cache directly to main 
storage. 

• The Memory Coherence (M) bit controls whether or not the 
hardware should enforce the memory coherence protocols. It is 
sometimes desirable to disable this bit when coherence can be 
enfored more efficiently via software. 

• Guarded Storage (G) is not well behaved with respect to prefetching. 
For example, the storage could represent an I/O device that changes 
regularly or has memory gaps that are invalid addresses. 

Ignoring the G bit (which may be on or off), Table 10-6 lists the eight possible 
combinations of the WIM bits. Of these eight modes, only six make sense 
because the Wand I bits may not be set together. 

Table 10-6 Interpretation of WIM access modes 

W I M Description 

0 0 a Data from this page may be cached. 
Storage consistency is not enforced by hardware. 

a a 1 Data from this page may be cached. 
Storage consistency is enforced by hardware. 

a 1 a Data from this page may not be cached. 
Storage consistency is not enforced by hardware. 

a 1 1 Data from this page may not be cached. 
Storage consistency is enforced by hardware. 
Data from this page may be cached. 

1 a a Write operations must be passed to main memory. 
Stora;;;e consistency is not enforced by hardware. 
Data from this page may be cached. 

1 a 1 Write operations must be passed to main memory. 
Storage consistency is enforced by hardware. 

1 1 a not allowed 
1 1 1 not allowed 

PowerPC 601 Access Modes 

The 601 supports the W, I, and M control modes for pages but does not support 
guarded storage (G). 
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10.10 PowerPC Lookaside Buffer Instructions 

Most PowerPC implementations will provide lookaside buffers for the common 
address translation tables. The instructions described in this section provide the 
programmer with some control over the contents of these buffers. 

TLB Instructions 

Because most PowerPC implementations will use a TLB to cache Page Table 
entries, the standard TLB instructions listed in Table 10-7 are defined. Any Pow­
erPC processor that provides a TLB must provide mechanisms for invalidating 
a TLB entry (tlbie) and invalidating the entire TLB (tlbia). 

If an implementation does not implement a TLB, then these instructions will be 
treated as no-ops. 

Table 10-7 Condition Register Logical Extended Forms 

tIbia 
TLB Invalidate All Invalidate entire TLB. 
supervisor-level instruction 
this is an optional part of the PowerPC specification 

tlbie rB 
TLB Invalidate Entry Invalidate TLB entry containing (rB). 
supervisor-level instruction 
this is an optional part of the PowerPC specification 

tIbsync 
TLB Synchronize Wait for all pending TLB instructions 
supervisor-level instruction to complete. 
this is an optional part of the PowerPC specification 

The tIbia instruction invalidates the entire contents of the TLB. 

The tlbie instruction looks up the TLB entry associated with the effective 
address contained in rB and invalidates that entry (if present). 

The tlbsync instruction forces the processor to wait until all of the previously 
executed tlbie and tIbia instructions from this processor have completed 
execution on all other processors. Thus, this instruction stalls the current proces­
sor until the TLBs of all the processors are synchronized. 

5LB Instructions 

An SLB is defined on 64-bit PowerPC implementations that want to cache 
entries of the Segment Table. Trying to execute the instructions listed in 
Table 10-8 on a 32-bit implementation will result in an illegal instruction excep­
tion. 
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SLB Instructions 

If a 64-bit PowerPC implementation does not implement an SLB, then these 
instructions will be treated as no-ops. 

Table 10-8 Condition Register Logical Extended Forms 

albia 
5LB Invalidate All 
supervisor-level instruction Invalidate entire SLB. 
64-bit implementations only 
this is an optional part of the PowerPC specification 

albie rB 
5LB Invalidate Entry 
supervisor-level instruction Invalidate SLB entry containing (rB). 
64-bit implementations only 
this is an optional part of the PowerPC specification 

The s lbia instruction invalidates the entire contents of the SLB. 

The s lbie instruction looks up the SLB entry associated with the effective 
address contained in rB and invalidates that entry (if present). 
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Pipelining 

Although nothing in the PowerPC specification requires a pipeline, a pipeline is 
an architectural feature commonly used to achieve high processor throughput. It 
is important to understand the fundamentals of pipelining because many 
advanced optimization techniques are based on taking advantage of pipeline 
architecture to avoid pipeline conflicts. 

11.1 What is a Pipeline? 

A pipeline is an implementation technique that allows the execution of multiple 
instructions to be overlapped in the processor. This means that at any time, the 
processor may be in the middle of processing many instructions instead of just 
one. 

Pipelines take advantage of the fact that the execution of any instruction can be 
broken into a set of stages that must be performed sequentially. For example, 
instead of executing an instruction as one unit, a hypothetical processor could 
divide instruction execution into five distinct stages, named simply stage 1 
through stage 5 to avoid introducing unnecessary complexity and terminology at 
this time. Figure 11-1 shows these stages. 
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Figure 11-1 The Execution of an Instruction (at top) Can Be Conceptually 
Broken Up into Distinct Stages (shown at bottom) 

To execute an instruction, the instruction must pass through each of the stages in 
order. Thus, the instruction passes from stagel ~ stage2 ~ ... ~ stageS, at which 
point the instruction has completed execution and all the results have been writ­
ten to the proper places. 

It's important to note in this execution scheme that after one stage of an instruc­
tion has completed execution, the instruction no longer needs the portion of the 
processor dedicated to executing that stage. This means that stage is free for the 
next instruction to use; the next instruction can begin execution before the first 
instruction has completed. This overlapped execution is shown in Figure 11-2. 

Figure 11-2 Overlapped Instruction Execution in a Pipeline 

11121314151 
11121314151 

11121314151 

11.2 Basic Pipeline Functions 

This section describes a simple pipeline and its operation. It introduces various 
terms and concepts that you need to understand before jumping in and tackling 
a real-world pipeline implemented for various PowerPC processors. 

The first step in implementing a pipeline is dividing the instruction execution 
into discrete stages. This division doesn't come free; a certain amount of over­
head associated with the extra logic is required to control the flow of instructions 
through the pipeline stages. The end result is that it actually takes longer for any 
one particular instruction to execute from start to finish (commonly referred to 
as the instruction latency) than it would on a properly implemented non-pipe­
lined implementation. However, this minor detriment is more than offset by the 
overall increase in instruction throughput. 

This comparison is shown in Figure 11-3. 
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Basic Pipeline Functions 

Figure 11-3 To Keep the Stages Synchronized, the Longest Stage (Stage 2 in 
this Figure) Defines How Wide All the Stages Must Be 

I 1 I 2 

Note that the longest stage determines the length of time taken to execute each 
stage. Stages that require less time finish early and waste time, so that all of the 
stages remain synchronized. 

Consider three instructions executing on a non-pipelined processor and a pipe­
lined procession. Instruction 1 is dispatched (that is, execution begins) at the same 
time on both systems. Because of the reduced latency of the non-pipelined sys­
tem, the first instruction retires (completes) before the same instruction on the 
pipelined system. 

However, the second (and subsequent) instructions show the real advantage of 
the pipelined architecture. In the non-pipelined system, the second instruction 
must wait until the first one is completely done before it can begin execution, as 
illustrated in Figure 11-4. 

Figure 11-4 Three Sample Instructions in a Non-pipelined (above) and 
Pipelined System (below) 

The pipelined system doesn't need to wait before dispatching the second 
instruction. It dispatches one instruction per cycle (ideally) and retires one 
instruction per cycle after the pipeline has been filled, in a situation known as 
"one instruction per cycle throughput." The term throughput refers to the num­
ber of instructions completed per cycle, ignoring the set-up time required to fill 
the processor pipelines. 
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Not surprisingly, the situation is actually more complicated than suggested so 
far. Consider this code fragment: 

add r3,r2,rl 
add r3,r3,r4 

In this case, we have a data dependency: the second instruction (r3 = r3 + r4) 
depends on the result of the first instruction (r3 = r2 + rl). This is not a problem 
in non-pipelined systems because we don't dispatch the second instruction until 
the first instruction is completed. However, a pipelined implementation will 
have to handle this condition gracefully or an incorrect value of r 3 will be added 
to r4. 

One simple way to handle this case is to stall the second instruction in the pipe 
until the results of the first instruction are available, as shown in Figure 11-5. 
This is less than ideal, but it's more important that the instructions execute prop­
erly than execute quickly (imagine a very fast divide operation that only some­
times gave the correct answer). 

Figure 11-5 A Data Dependency Causing Two Stall Cycles 

add r3,r2,rl 

add r3,r3,r4 

To minimize the impact of the stall, the pipeline can be set up so that it forwards 
the results of the first instruction to the second instruction as soon as they are 
available. The results of an instruction are typically calculated a few cycles 
before the instruction is complete, so this can save a few cycles. The second 
instruction doesn't have to wait for the results to be written to the register store 
before continuing. This technique, known as data feed-forwarding, is illustrated in 
Figure 11-6. 

Figure 11-6 Data Feed-forwarding Can Eliminate Many Dependency Stalls 

add r3,r2,rl 

add r3,r3,r4 

Of course, the best way to eliminate the stalls due to data dependencies is by 
rescheduling the code so that there are independent instructions between the 
load and use of the register. Known as instruction scheduling, this is covered later 
in the chapters on instruction timing and resource scheduling. 
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11.3 PowerPC 601 Pipeline Description 

The 601's pipeline is, of course, much more complicated than a simple pipeline 
with a few stages. The three basic pipelines in the 601 each handle a specific class 
of instructions. In addition, a dispatcher takes the instructions to be executed 
and passes them along to the appropriate pipeline for execution. 

Coordinating and synchronizing these three pipelines complicates the simple 
pipeline model considerably. 

Functional Units of the 601 

There are seven basic units in the 601's processor core: 

• Fetch Arbitration Unit (FAU) 
• Cache Access Unit (CAU) 
• Dispatch Unit (DU) 
• Integer Unit (IU) 
• Floating-Point Unit (FPU) 
• Branch Processing Unit (BPU) 
• Data Access Queueing Unit (DAQU) 

All instructions that are executed pass through the FA, CAU, and DU before they 
are passed to the appropriate pipeline: BPU for branches, IU for integer and 
load / store instructions, and FPU for floating-point instructions. The DAQU is a 
special queueing unit that is used only by the store instructions. 

The flow of instructions through the pipeline units is shown in Figure 11-7. Note 
that the DAQU does not directly process instructions and is not in this figure. 

Figure 11-7 Instruction Path through the 601's Pipeline 

IU 

__ F_'A_U_:--'.~I CAU 

BPU 

The flow of data through the pipeline units is shown in Figure 11-8. This figure 
also includes the instruction flow from the previous figure. Here the DAQU has 
been added to the data path between the IU and the CAU. 
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Figure 11-8 Instruction (Thick Lines) and Data (Thin Lines) Paths in the 601 

Fetch Arbitration Unit (FAU) 

The FAU is responsible for determining which instructions need to be fetched 
from memory. After the address of the next fetch group is generated, it is sent to 
the CAU so that the instructions can be fetched from memory. 

Cache Access Unit (CAU) 

The CAU provides an interface between the processor core units and the mem­
ory system. The CAU responds to requests from both the FAU (for instruction 
fetches) and the IU (for instructions that access memory). 

Requests from the FAU are instruction groups that need to be loaded and dis­
patched. The results of these accesses are sent directly to the DU. 

Requests from the IU are data load/ store requests. Store requests are sent to the 
memory system, and load requests are sent to either the IU or FPU, as appropri­
ate. 

Dispatch Unit (DU) 

The DU is an eight-instruction queue from which instructions are dispatched to 
the BPU, FPU, or IU. Up to three instructions (one to each unit) can be dis­
patched each cycle. 

Integer Unit (IU) 

The integer unit executes these instruction types: 

• Integer arithmetic and logical instructions 
• All load and store instructions (integer and floating-point) 
• Condition Register instructions 
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Floating-Point Unit (FPU) 

• Special Purpose Register instructions 
• Memory management instructions 

The IU consists of a four-stage pipeline with an extra writeback stage for integer 
load instructions. 

Floating-Point Unit (FPU) 

The FPU executes these instruction types: 

• Floating-point arithmetic and compare instructions 
• Floating-point store instructions 

The FPU consists of a five-stage pipeline with an extra writeback stage for float­
ing-point load instructions. 

Note that the FPU and the IU both handle floating-point store instructions. The 
instructions must pass through both pipelines simultaneously. 

Branch Processing Unit (BPU) 

The BPU executes branch instructions by either resolving the branch and send­
ing the target address to the FAU, or by predicting the branch (using a static 
prediction scheme), sending the address to the FAU, and then waiting until the 
branch is resolved. 

If the branch prediction is incorrect, the BPU is responsible for cancelling the 
invalid instructions and initiating the fetch of the correct instructions. 

Data Access Queueing Unit (DAQU) 

The DAQU contains an Integer Buffer and a Floating-Point Store Buffer (ISB and 
FPSB) that are used to buffer accesses to the memory unit when the cache is busy 
or the data to be stored is not yet available. Each of these queues is one element 
deep. 

The 601 Fetch Arbitration Unit (FAU) 

The FAU is responsible for determining the address of the next instruction group 
to load from memory. This address is then sent to the CAU so that the instruc­
tions can be loaded and executed. 

The address is calculated from either the: 

• Mispredict Recovery address (from the MR stage of the BPU) 
• Branch target address (from the branch in the BE stage of the BPU) 
• Next sequential address 
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These sources are listed in order of priority, so an MR address takes precedence 
over a branch target address, and the next sequential address is only used as a 
last resort. 

There is only one stage in the FAU, the Fetch Arbitrate (FA) stage. 

The 601 Cache Access Unit (CAU) 

The CAU consists of the two stages, Cache Arbitration (CARB) and Cache 
Access (CACC), shown in Figure 11-9. The CARB stage queues up all the cache 
access requests and decides which one gets passed along to the CACC stage. The 
CACC stage performs the cache access. 

Figure 11-9 The Two Stages of the Cache Access Unit 

~_C_A_R_B __ ~--~.~I CACC 

Cache Arbitration (CARB) 

During the CARB stage, all of the pending cache requests fight it out to deter­
mine which request gets sent to the CACC stage. The winner of this battle is 
determined by choosing the request with the highest priority, because each type 
of cache request has a different priority. These priorities are discussed in §12.6 
"Cache Access Timings." 

Cache Access (CACC) 

The CACC stage is where the cache is accessed and the requested data is sent to 
or retrieved from the cache. 

After the data is loaded from the cache, it is forwarded to the appropriate part of 
the processor. Instruction fetches are passed on to the Dispatch Unit, and load 
operations are passed directly to the appropriate unit (either the IU or the FPU). 

The 601 Dispatch Unit (DU) 

The Dispatch Unit illustrated in Figure 11-10 is an Instruction Queue that can 
hold up to eight instructions that are waiting to be dispatched. Each element in 
this queue is considered a different stage of the DU, so there are effectively eight 
stages, named IQ7 through IQO. 
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The 601 Integer Unit (IV) 

Figure 11-10 The Eight IQ Stages of the Dispatch Unit 

from 
cache 

toIU 
to BPU/FPU 

The DU analyzes the instructions in the bottom half of the instruction queue 
(IQ3 - IQO) and identifies the instruction type (branch, integer, or floating-point) 
for each instruction. After the instruction types have been identified, the DU can 
then dispatch one of each instruction type to the respective units. 

The only restriction is that an integer instruction can only be dispatched from the 
IQO position. This restriction simplifies the task of synchronizing the various 
pipelines. 

The 601 Integer Unit (IU) 

The Integer Unit consists of five stages, only four of which are considered part of 
the primary pipeline. The fifth stage is only used by integer load instructions. 

Figure 11-11 shows the conceptual arrangement of the four primary stages and 
the primary path most integer instructions use. 
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Figure 11-11 The Primary Pipeline of the Integer Unit 

the pipeline path for mteger loads is slightly different ahd is shown in 
Figure 11-12. Floating-point loads are the same except that the FWL stage in 
the FPU is used instead of the IU's IWL stage. 

Figure 11-12 The Pipeline Usage for Integer Load Instructions 
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Integer Decode (ID) 

The ID stage is where the integer instructions are decoded and the operands are 
fetched from the GPRs. This stage is typically entered in the same cycle that the 
instruction enters the IQO stage of the DU. 

Integer Execute (IE) 

The IE stage is where all of the arithmetic integer instructions are executed and 
where the effective address for loads and stores is calculated. 

The results of an instruction in IE can be forwarded to the instruction currently 
in ID to prevent data dependency stalls in the IU. 

Integer Completion (IC) 

The IC stage indicates that the instruction has been committed, even though it is 
not yet complete. This signals other execution units that the instruction is essen­
tially complete and needs only to write the results in the proper place. 

The IC stage is always executed in parallel with another stage, usually the IWA 
or CACC stages. 
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Integer Arithmetic Writeback (IWA) 

The IWA stage is used by the arithmetic instructions to perform the writeback of 
the calculated results into the GPRs. 

Integer Load Writeback (IWL) 

The IWL stage is used by the integer load instructions to write the loaded data 
into the GPRs. 

The 601 Floating-Point Unit (FPU) 

There are six stages in the Floating-Point Unit, four of which are considered part 
of the primary floating-point pipeline. One of the remaining two stages is an 
additional instruction buffer, and the other is only used by floating-point load 
instructions. 

The four primary stages, and the buffer, are conceptually arranged as shown in 
Figure 11-13. This figure shows the primary path that the majority of the float­
ing-point instructions use. Note that the buffer stage (F1) is only used if neces­
sary. If the FD stage is available, instructions skip F1 and go directly to FD. 

FromIQ 

"'= I Fl 

Figure 11-13 The Primary Floating-Point Pipeline 

~ 
~I FD H FPM H FPA H FWA 

Figure 11-14 shows the pipeline path for floating-point loads. It's completely dif­
ferent from other floating-point operations because all load instructions (includ­
ing floating-point loads) are handled by the Integer Unit. The only FPU stage 
used by floating-point loads is the FWL stage, which is used in much the same 
way as the IWL stage is used for integer load operations. 

Figure 11-14 Pipeline Flow for Floating-Point Load Instructions 
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Floating-Point Instruction Queue (Fl) 

The FP1 stage is a one-instruction buffer used only if the FD stage is currently 
occupied by a previous floating-point instruction. If the FD stage is available, the 
instruction skips this stage and proceeds directly to PD. 

Floating-Point Decode (FD) 

The FD stage is where the floating-point instructions are decoded and any 
required operands are fetched from the FP register store. 

Floating-Point Multiply (FPM) 

The FPM stage is where the Floating-Point Unit performs a 27 x 53 bit multiply 
operation. 

Double-precision floating-point instructions that involve multiplication (fmul, 
fmadd, fmsub, fnmadd, fnmsub) require two cycles in this stage and may stall 
subsequent floating-point instructions. 

Floating-point divide operations require 16/30 cycles (for single- / double­
precision) in this stage. 

Floating-Point Add (FPA) 

The FPA stage is where the floating-point addition/ subtraction is performed. 

Floating-Point Arithmetic Writeback (FWA) 

The FWA stage is when most of the floating-point instructions write their results 
back into the FPRs. The results are also made available to the instruction cur­
rently in FD, if necessary. 

Floating-Point Load Writeback (FWL) 

The FWL stage is used only by the floating-point load instructions to write the 
data into the FPRs. If this data is required by the instruction currently in FD, then 
the data is made available to that instruction simultaneously with the writeback. 

The 601 Branch Processing Unit (BPU) 

The BPU has a simple three-stage pipeline that is arranged as shown in 
Figure 11-15. 
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Branch Execute (BE) 

Figure 11-15 Stages of the Branch Processing Unit 
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MR 

It's important to note that while all the branch instructions need to use the BE 
stage, the MR and BW stages are only used if necessary. A non-conditional 
branch that doesn't need to update the LR or CTR requires only one stage of 
execution in BE. 

Branch Execute (BE) 

During the BE stage, the branch target address is calculated and conditional 
branches are predicted (if necessary). If the branch is determined or predicted to 
be taken, the branch also initiates a fetch for the instructions at the target 
address. The FA stage for this fetch occurs in parallel with the BE stage. 

Mispredict Recovery (MR) 

The MR stage is when all conditional branches that needed to be predicted 
remain until the branch is resolved. After the branch is resolved, the prediction 
is determined to be either correct or incorrect. 

Correct predictions require no action other than allowing the branch to leave the 
MRstage. 

An incorrect prediction requires that the MR stage purge all the incorrectly dis­
patched instructions and initiate a fetch of the correct instructions so that they 
can be dispatched. 

Branch Writeback (BW) 

The BW stage is when the branch instructions stay until they are able to write 
results back into the LR or CTR. 

Not all branch instructions need to writeback results. Those that don't need to 
update the LR or CTR skip the BW stage entirely. 

The 601 Data Access Queueing Unit (DAQU) 

The DAQU contains two buffers used to queue store instructions that have been 
committed by the IU, but can't yet be written to memory because either the 
cache is busy handling other requests, or the required data is not available from 
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the FPU. These buffers are quite useful because they free the IE stage in the IU 
and allow additional integer instructions to be processed. 

There are only two stages in the DAQU; the Floating-Point Store Buffer (FPSB) 
and the Integer Store buffer (ISB). 

Floating-Point Store Buffer (FPSB) 

The FPSB is used to queue one outstanding floating-point store instruction that 
has completed in the IU but is either waiting for data from the FPU or waiting to 
gain access to the processor cache. 

Integer Store Buffer (ISB) 

The ISB stage is used to queue one integer store instruction that has completed 
in IU but is waiting to gain access to the processor cache so that it can write the 
data to memory. 
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PowerPC 601 
Instruction Timing 

This chapter gives an overview of the instruction timings for the PowerPC 601 
processor. It's important to note that the timings given here do not take into 
account the conflicts that might arise when multiple instructions need to use the 
same processor resource. This resource conflict problem is covered in Chapter 
15, "Resource Scheduling." 

12.1 Reading the Timing Tables 

Two types of timing tables will be used in this chapter. The first type shows the 
timing for a single instruction and identifies the number of cycles that the 
instruction will spend in each pipeline stage. Here's an example of a timing table 
for a generic integer instruction. 

I #ofCyc1es 1 1 1 

I Stages ID IE 
IC 

IWA 

This instruction spends one cycle in ID, followed by one cycle in IE, and then 
another one cycle simultaneously in both the IC and IWA stages. The overall 
latency (from start to finish) for this instruction is three cycles. 

The second type of timing table shows the timing for a sequence of instructions 
to demonstrate how the instructions interact with each other. Here's an example 
of this type of timing table. 
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Cycle#: 1 2 3 4 5 6 7 

cmp erfO,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

FA 
IQ1 

beq erfO,target 
CARB 

CACC BE MR - - -
MR 

and rO,rO,r1 
FA 

CACC IQ2 
IQO 

IE 
IC 

CARB ID IWA 
-

nand r2,r2,r3 
FA 

CACC IQ3 IQ1 
IQO 

IE 
IC 

CARB ID IWA 

In this table, each row represents a different instruction and each column repre­
sents successive cycles. This makes it easy to identify which stage each instruc­
tion is in for each cycle of execution. 

12.2 Instruction Dispatch Timing 

All instructions that are executed must pass from the processor caches into the 
dispatch buffers. 

Retrieving Instructions from the Cache 

The first stage of instruction execution is determining which instructions need to 
be executed next. This task is accomplished by the Fetch Arbitration (FA) stage 
of the Fetch Arbitration Unit (FAU). 

After the address has been generated by FA, it is passed to the Cache Access Unit 
(CAU), which arbitrates for the cache and then retrieves the data from the cache. 
This is done in two stages, with Cache Arbitration (CARB) stage arbitrating, and 
the Cache Access (CACC) stage retrieving data. 

After the instruction reaches the Dispatch Unit, it is placed in one of the eight 
Instruction Queue entries (IQ7 - IQO). The term Dispatch Stage, or DS, is some­
times used to refer to an instruction in the IQ buffer. 

Thus, tne timing for an instruction passing through the initial pipeline stages 
would be: 

# of Cycles: 1 1 1 

Stages: 
FA 

CACC DS 
CARB 

As with most of the cache timings in this chapter, the CARB takes one cycle exe­
cuted in parallel with another pipeline stage (in this case, FA). The CACC stage 
also takes only one cycle. Both of these are ideal timings that do not always hold 
true. A complete discussion of Cache Access timings is in §12.6, "Cache Access 
Timings." 
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Instruction Dispatching 

From the DS stage, the instruction is then dispatched to the appropriate execu­
tion unit: branches. to the BPU, integer instructions to the IU, and floating-point 
instructions to the FPU. Because the 601 supports out-of-order dispatch, this dis­
patch process is more interesting than it may initially appear. 

First of all, there are eight IQ buffer entries, but instructions can only be dis­
patched from the lower four IQ entries, IQ3 - IQO. After an instruction enters the 
lower half of the IQ buffer, it is a candidate for dispatch. Dispatching follows 
these rules: 

• One integer instruction can be dispatched to the IU from IQO. 
• One floating-point instruction can be dispatched to the FPU from 

IQO-IQ3. If there are multiple floating-point instructions in the lower 
half of the IQ buffer, the lowest one (closest to IQO) is dispatched. 

• One branch instruction can be dispatched to the BPU from IQO-IQ3. If 
there are multiple branch instructions in the lower half of the IQ 
buffer, the one closest to IQO is dispatched. 

A graphic representation of these rules is given in Figure 12-1. 

Figure 12-1 Dispatching from the Lower Four of the Eight IQ Buffers 

~ 
to BPU / FPU to IV 

This gives a best case dispatch of three instructions per cycle. Note that these 
dispatch rules are such that instructions are always executed in order with 
respect to each execution unit. This means that all instructions from a particular 
execution unit are executed in order with respect to other instructions from that 
saine unit. However, instructions from other execution units may be executed 
out of order with respect to these instructions. 

A good way to demonstrate this is to analyze a sequence of instructions and 
track which IQ stage they are in during each cycle. (The other pipeline stages are 
omitted for clarity.) To help simplify this example, both of the branches in the 
code sequence are assumed to be fully resolved and not-taken. 
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Cycle#: 1 2 3 4 

fsubl (lQO) - - -
branchl (lQ1) - - -
addl IQ2 (lQO) - -
add2 IQ3 IQl (IQO) -
fsub2 IQ4 (IQ2) - -
fsub3 IQ5 IQ3 (IQll -
add3 IQ6 IQ4 IQ2 (IQO) 

branch2 IQ7 IQ5 (IQ3) -

During the first cycle, the fsub! and the branch! instructions (shown in bold 
with parentheses) are dispatched. The integer instruction add! cannot be dis­
patched because it is not in the IQO position. 

In the second cycle, all the instructions shift down as far as they can. Now the 
add! instruction is in IQO, so it can be dispatched. Two floating-point instruc­
tion candidates, fsub2 in IQ2 and fsub3 in IQ3, could be dispatched. The 
fsub2 instruction is dispatched because it is in the lower IQ entry. 

In the third cycle, all the instructions shift down again. The fsub3 instruction 
shifts down two entries because fsub2 has been removed from the IQ. This 
brings branch2 into the IQ3 position so that it can be dispatched. The add2 and 
fsub3 instructions are also dispatched at this time. 

In the fourth cycle, add3 enters IQO and is dispatched. Presumably, the instruc­
tions following branch2 would be in the lower half of the IQ buffer by now 
and, thus, would also be candidates for dispatch. 

Another way of viewing this same sequence of instructions is to watch the IQ 
stages as the instructions pass through them. 

Cycle#: 1 2 3 4 

IQ7: branch2 - - -
IQ6: add3 - - -
IQ5: fsub3 branch2 - -
IQ4: fsub2 add3 - -
IQ3: add2 fsiIb3 (branch2) -
IQ2: addl (fsub2) add3 -
IQ1: (branch1) add2 (fsub3) -
IQO: (fsubl) (addl) (add2) (add3) 

The instruction dispatching is identical to the earlier example, but here it is more 
apparent that the instructions are being dispatched from the bottom half of the 
IQ and that the integer instructions are dispatched only from the bottom (IQO) 
position. 
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12.3 Fixed-Point Instruction Timings 

The fixed-point, or integer, instructions are the easiest to time because the inte­
ger pipeline is simple and almost all of the instructions have the same timing. 

Of the five stages in the IU pipeline, one (the IWL stage) is used only by integer 
load instructions. This leaves four stages that are commonly used by integer 
instructions: Integer Decode (lO), Integer Execute (IE), Integer Completion (IC), 
and Integer Arithmetic Writeback (IWA). 

Of these remaining four stages, the ID stage is almost always executed in paral­
lel with the IQO stage in the Dispatch Unit. The only time that integer instruc­
tions are not passed directly from IQO to ID is when the lO stage is currently 
occupied by a previous instruction due to a pipeline stall. 

The IC and IWA stages are also executed in parallel. As a result, the integer pipe­
line is effectively only three stages from decode to writeback. Almost all of the 
integer instructions spend only one cycle in each stage, resulting in a three-cycle 
latency for most instructions. 

Integer Add and Subtract Instructions 

All of the add and subtract instructions require one cycle in lO, IE, IC, and IWA. 
The IC and IWA stages are executed in parallel so that the total latency is only 
three cycles. 

# of Cycles 

Stages ID 

The Negate, Absolute Value, and Difference or Zero instructions are commonly 
grouped with the add and subtract instructions because they all allow the Over­
flow Exception and Record bits to be set in the instruction encoding. These 
instructions have the same timing as the add and subtract instructions. 

Integer Multiply Instructions 

The integer multiply instructions require one cycle in ID, either five, nine, or ten 
cycles in IE, and a shared cycle in IC/lWA. The number of cycles spent in IE 
depends on the instruction and the data that is being multiplied. 

The Multiply Low Immediate (mulli) instruction always takes five cycles in IE. 

# of Cycles 1 5 1 

Stages ID IE 
IC 

IWA 
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The length of time that the other multiply instructions spend in IE is dependent 
on the data contained in rB. If the upper 16 bits of rB are all sign bits, then the 
instruction spends five cycles in IE, otherwise it spends nine cycles. This means 
that the lesser (in magnitude) of the two arguments should be placed in rB 

because there is a potential savings offour cycles if _215 :s; (rB) < 215_1. 

#ofCycles 1 5/9 1 

Stages ID IE 
IC 

IWA 

For the Multiply High Word Unsigned instruction, the timing is the same except 
that ten cycles will be spent in IE if the high-order bit of rB is a '1'. 

# of Cycles 1 5/9/10 1 

Stages ID IE 
IC 

IWA 

Integer Divide Instructions 

The integer divide instructions require one cycle in 10, 36 cycles in IE, and a 
shared cycle in IC/IWA. 

#of Cycles 1 36 1 

Stages ID IE 
IC 

IWA 

From this information, it should be apparent that the integer divide instructions 
should be avoided whenever possible. 

Integer Boolean Instructions 

The Boolean logic instructions (and the extend sign and count leading zeros 
instructions) need one cycle in each of the ID, IE, and IC/IWA stages. 

#ofCycles 1 1 1 

Stages ID IE 
IC 

IWA 

Shift, Rotate, and Mask Instructions 

All the shift, rotate and mask instructions require the standard one cycle in the 
10, IE, and IC/IWA stages. 

#ofCycles 1 1 1 

Stages ID IE 
IC 

IWA 
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Integer Compare Instructions 

Integer Compare Instructions 

All integer compare instructions spend one cycle in ID, one cycle in IE, and a 
shared cycle in IC/IWA. The results of the compare are written into the CR and 
forwarded to the BPU during the IE stage. 

I #of Cycles 1 1 1 

I Stages ID IE 
IC 

IWA 

Integer Load Instructions 

The Integer Unit handles all of the load instructions, including the floating-point 
load instructions. For the simple case where the operand being loaded does not 
cross a doubleword boundary, only one cycle in IE / CARB is required. 

# of Cycles 1 1 1 1 I 
Stages ID 

CARB CACC 
IWL I IE IC 

The Load with Update forms have similar timings, except that the instruction 
must also spend a cycle in IWA, which is in parallel with the cycle spent in IC 

#ofCycies 1 1 1 1 

CARB 
CACC 

Stages ID 
IE 

IC IWL 
IWA 

Timings for misaligned data loads are given in §12.8, "Abnormal Integer Condi­
tions." 

Timings for the floating-point load instructions are the same as given above, 
except that the FWL stage (in the FPU) is used for writeback instead of the IWL 
stage. Timings for misaligned floating-point loads are given in §12.9, "Abnormal 
Floating-Point Conditions." 

Load Multiple and Load String Instructions 

The Load Multiple and Load String instructions require one cycle in IE for each 
register of data that is being loaded. If n registers are being loaded and the data 
is word-aligned, then the instruction timing is: 

# of Cycles 1 1 1 n-2 1 1 

CARB CARB 

Stages ID 
CARB CACC CACC CACC 

IWL 
IE IE IE IWL 

IC IWL 

Timings for misaligned Load Multiple and Load String accesses are given in §12.8, 
" Abnormal Integer Conditions." 
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Integer Store Instructions 

The Integer Unit also handles all of the store instructions, including all of the 
floating-point store instructions. For the simple case where the operand being 
stored does not cross a doubleword boundary, only one cycle in IE / CARB is 
required. 

The primary difference between the store and the load instructions (which were 
discussed earlier) is that the store instructions do not need to write the results 
into registers during a IWL stage. 

I #of Cycles I 1 1 1 

I Stages I ID 
CARB CACC 

IE IC 

The Store with Update forms have similar timings, except that the instruction 
must also spend a cycle in IWA, which is in parallel with the cycle spent in IC 

#of Cycles 1 1 1 

CARB 
CACC 

Stages ID 
IE 

IC 
IWA 

Timings for misaligned data stores are given in §12.8, "Abnormal Integer Condi­
tions." 

Timings for the floating-point store instructions are significantly different and 
are given later in §12.4, "Floating-Point Instruction Timings." 

Store Conditional Word Instruction 

The Store Conditional Word (stwcx.) is a special case of the integer store 
instructions because it needs to update the EQ bit of CR field 0 to indicate 
whether or not the store was successfully performed. 

If the store is performed, then the timing is: 

#ofCycies 1 1 1 1 

CACC 

Stages ID 
CARB (IE) (IE) 

IE IC IWA 
IWA 

If the store is not performed, the timing is: 

#of Cycles 1 1 1 

CACC 

Stages ID 
CARB (IE) 

IE IC 
IWA 
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Store Multiple and Store String Instructions 

In these timing tables, note that the stwcx. instruction makes use of the 
resources in the IE stage while it is in IWA-this is how the instruction updates 
the CR. This is indicated in the timing tables by placing the IE stage in parenthe­
ses for these cycles. The store conditional instruction isn't technically occupying 
the IE stage, but it is preventing another instruction from performing useful 
work in IE. 

While the stwcx. instruction is in IWA, another instruction may be in IE, but it 
will be stalled there until stwcx. leaves IWA and frees the IE resources. 

Store Multiple and Store String Instructions 

The Store Multiple and Store String instructions require one cycle in IE for each 
register of data that is being stored. If n registers are being stored and the data is 
word-aligned, then the instruction timing is: 

#ofCycles 1 1 1 n-2 1 

CARB 
CARB 

Stages ID 
CARB CACC 

CACC CACC 
IE IE 

IC 
IE 

Timings for misaligned Store Multiple and Store String accesses are given in §12.8, 
"Abnormal Integer Conditions." 

Move to/from SPR Instructions 

The timings for instructions that move data to and from SPRs depend on the SPR 
being accessed or updated. 

#ofCycles 1 n m 

Stages ID IE 
IC 

IWA 

The values for nand m are determined by using the SPR as an index into this 
table: 

# of Cycles 
Move Special Purpose Registers 

n m 

1 1 to/from 
CR, LR, elK, MQ XbR, PIR, DABR, bAR, 

RTCL, DEC, SDR1, SR 

2 1 to SPRGn, DSISR, DAR, RTCU, SRRO, SRR1 

2 2 from MSR 

2 4 from 
SPRGn, DSISR, DAR, HIDO, HIDl, HID2, 

RTCU, SRRO, SRR1 

2 7 from PVR 

2 11 to HIDO 

2 12 to HID1 

2 17 to HID2, MSR (when FPSCR[FEX]-O) 

2 20 to MSR (when FPSCR[FEX]-l) 
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Of these 5PR instructions, the mtmsr instruction is unique in that it stalls in ID 
until all previous instructions (in program order) have completed execution. 

Cache Instructions 

The timings for the cache instructions depend on many factors, including the 
current ME51 state for the block being operated on, the current state of the pro­
cessor bus, and the speed of the bus (relative to the processor speed). 

When the debt, dcbst, or debz instructions are used on a block in the ME51 
"Modified" (M) state (for all three instructions) or the ME51 "Exclusive" (E) state 
(dcbz only), they do not require access to the processor bus. The timings for 
these operations are thus very similar to that of the load instructions. The only 
difference is the absence of the IWL stage. 

I # of Cycles I 
Stages ID 

The cache instructions that require access to the processor bus must spend at 
least six cycles in the CACC/IC stage. These instructions are tlbi, sync, debi, 
and debt and debst (when operating on E, 5, and I blocks), and debz (when 
operating on 5 and I blocks). 

Trap Instructions 

The trap instructions spend one cycle in ID and IE and then spend either one 
cycle or 22 cycles in IC/IWA, depending on whether or not the trap is taken. If 
the trap is not taken (the common case), then the instruction takes one cycle in 
IC/IWA; otherwise it requires 22 cycles. 

ID IE 

1/22 
IC 

IWA 

System CalVRetum from Interrupt Instructions 

Both of these instructions take two cycles in IE and either 13 or 16 cycles in ICI 
IWA. The se instruction requires 16 cycles in IC/IWA. 

#ofCycles I 1 

Stages ID 
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Floating-Point Instruction Timings 

The rfi instruction requires 13 cycles in IC/IWA. 

# of Cycles 1 2 13 

Stages ID IE 
IC 

IWA 

12.4 Floating-Point Instruction Timings 

The floating-point pipeline is somewhat more complex than the integer pipeline 
due to both the increased number of stages and the inherent complexity of float­
ing-point calculations. 

In general, there are four basic stages in the floating-point pipeline: FP Decode 
(FD), FP Multiply (FPM), FP Add (FPA), and FP Arithmetic Writeback (FWA). 
One additional stage, FP Load Writeback (FWL), is only used by floating-point 
load instructions. 

Also, a special, one-entry, Floating-point Instruction Queue (Fl) stage is used 
only when an instruction needs to be dispatched to the FPU and the FD stage is 
already occupied (because a previous instruction is stalling the pipeline). 

Unlike the integer instructions, floating-point instructions do not enter FD (or 
Fl) simultaneously with the cycle spent in the IQ buffer. The FD stage is not 
entered until the cycle after the instruction has been dispatched, as the timing for 
the f add instruction shows. 

Cycles: 1 2 3 4 5 6 7 

fadd fr1,fr1,fr2 
FA 

CACC IQO FD FPM FPA FWA 
CARB 

Note that all of the timings given in this chapter assume that the instructions are 
being used under "normal circumstances": the instruction operands and results 
are valid floating-point values that do not require pre-normalization or denor­
malization. For floating-point timings under these conditions see §12.9, " Abnor­
mal Floating-Point Conditions." 

Floating-Point Add and Subtract Instructions 

All the floating-point add and subtract instructions require one cycle in each of 
the FD, FPM, FPA, and FWA stages. This is true for both single- and double­
precision operations. 

# of Cycles I 
Stages FD FPM FPA FWA 
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Floating-Point Multiply/Multiply-Accumulate Instructions 

The floating-point multiply and the multiply-accumulate (such as fmadd and 
fmsub) operations have a latency of either four or five cycles, depending on 
whether the calculation is single- or double-precision. 

Single-precision multiplies / multiply-accumulates are similar to floating-point 
adds in that they require one cycle in each of the four major FPU stages. 

I # of Cycles I 
Stages FD FPM FPA FWA 

Double-precision multiplies / multiply-accumulates require two cycles in each of 
the FD, FPM, and FPA stages. This means that the next floating-point instruction 
cannot enter FD immediately after the multiply (it must stall for one cycle). The 
instruction is IJself-pipelining," so that many of the stages overlap in execution 
and the resulting latency is only five cycles. 

# of Cycles 1 1 1 1 1 

Stages FD 
FD FPM 

FPA FWA 
FPM FPA 

Floating-Point Divide Instructions 

The floating-point divide instructions have very large latencies and stall the FPU 
until the operation reaches the last cycle of FWA stage. 

Single-precision divides have a latency of 18 cycles; in 14 of these cycles the FD, 
FPM, FPA, and FWA stages are all occupied. A floating-point instruction imme­
diately following a divide instruction must stall for 16 cycles. 

#ofCycies 1 1 1 14 1 

FD 
FD 

Stages FD 
FD 

FPM 
FPM 

FWA 
FPM FPA 

FPA 
FWA 

Double-precision divides are just like single-precision divides except that they 
hog up all four pipeline stages twice as long. 

#ofCycies 1 1 1 28 1 

FD 
FD 

Stages FD 
FD 

FPM 
FPM 

FWA 
FPM FPA 

FPA 
FWA 

Floating-Point Load Instructions 

Floating-point load instructions are primarily handled by the Integer Unit, 
except the load writeback stage is handled by the FWL stage of the FPU instead 
of the IWL stage in the IU. 
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Floating-Point Store Instructions 

When the loaded operand does not cross a doubleword boundary, only one 
cycle in IE / CARB is required. 

#ofCycles 1 1 1 1 

Stages ID 
CARB CACC 

FWL 
IE IC 

The floating-point Load with Update forms have similar timings, except that the 
instruction must also spend a cycle in IWA, which is in parallel with the cycle 
spent in IC 

# of Cycles 1 1 1 1 

CARB 
CACC 

Stages ID 
IE 

IC FWL 
IWA 

Timings for misaligned floating-point loads are given in §12.9, II Abnormal Float­
ing-Point Conditions." 

Floating-Point Store Instructions 

Even though the Integer Unit handles most of the work for the floating-point 
store instructions, the FPU must provide the properly formatted data that is to 
be stored. For this reason, all floating-point store instructions propagate through 
both the IU and the FPU pipelines. 

If the operand being stored does not cross a doubleword boundary, only one 
cycle in IE is required. 

# of Cycles 1 1 1 1 1 1 

Stages 
ID IE 

IC 
FPSB 

CARB 
CACC 

(IU/CAU/DAQU) FPSB FPSB 
Stages - FD FPM FPA FWA -
(FPU) 

Note that the store instruction finishes in the integer pipeline first and then waits 
in the Floating-Point Store Buffer (FPSB) until the data to be stored is ready in 
the FWA stage of the floating-point pipeline. When the data is ready, the instruc­
tion arbitrates for the cache (CARB) and then stores the data. 

The Store with Update forms have similar timings, except that the instruction 
must also spend a cycle in IWA, which is in parallel with the cycle spent in IC 

# of Cycles 1 1 1 1 1 1 

Stages 
IC 

CARB 
ID IE IWA FPSB CACC 

(IU/CAU/DAQU) 
FPSB 

FPSB 

Stages - FD FPM FPA FWA -(FPU) 

Timings for misaligned floating-point stores are given in §12.9, II Abnormal 
Floating-Point Conditions." 
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Move to FPSCR Instructions 

The Move to FPSCR instructions (mtfsfi, mtfsf, mtfsbO, and mrfsbl) cause 
the FPU pipeline to stall in FD for three cycles. 

# of Cycles 1 1 1 1 

FO FO 

Stages FD 
FO FPM FPM 

FPM FPA FPA FWA 

Note that the Move from FPSCR instructions (mff sand mcrf s) do not stall in FD 
and progress through the pipeline as normal floating-point instructions should. 

Other Floating-Point Instructions 

All other floating-point instructions require one cycle in each of the FD, FPM, 
FPA, and FWA stages. 

I # of Cycles I 
Stages FO FPM FPA FWA 

12.5 Branch Instruction Timings 

Timing branch instructions is more difficult because it is very dependent on the 
instructions around the branch. Because of this, the timings presented in this 
section will involve not only the branch in question, but also some surrounding 
instructions to provide some context for the branch. 

Simple Branches 

Because describing the timing for branch instructions is complicated, it is best to 
start with a simple (non-conditional) branch that is always taken. Later sections 
will deal with the more complicated conditional branches. 

Branch, Branch Absolute 

For simple (non-conditional) branches, the timing chart is quite simple. After the 
instruction enters one of the lower four stages of dispatch (IQ3 - IQO), it enters 
BE and is complete. 

# of Cycles 

Stages 
os 
BE 

However, this simple timing chart only gives a (very small) part of the picture. 
Because the branch is passing control from one part of the code to another, the 
timing of the surrounding instructions is also significant. 
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Branch, Branch Absolute 

The timing chart is also misleading because it implies that the branch instruction 
requires one cycle, which is not exactly the case. If the branch is executed early 
enough, it is likely to take zero cycles because the branch can be completely 
"folded" out of the instruction stream. 

For example, consider this sequence of instructions: 

and rO,rO,rl 
nand r2,r2,r3 
b target 
or r4,r4,r5 

target: 
nor r6,r6,r7 
xor r8,r8,r9 

Some Boolean instructions have been added to this sequence to provide context 
and to fill up the pipeline to demonstrate the zero cycle branching. The register 
assignments for these instructions can be ignored-they were chosen simply to 
avoid resource conflicts. 

This instruction sequence would have the following timing: 

Cycle#: 1 2 3 4 5 6 7 8 

and rO,rO,r1 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- - -

nand r2,r2,r3 
FA 

CACC IQ1 
IQO 

IE 
IC 

CARB ID IWA 
- -

b target 
FA 

CACC 
IQ2 

CARB BE 
- - - - -

or r4,r4,r5 
FA 

CACC IQ3 
CARB 

- - - - -

- - - - - - - -... 

nor r6,r6,r7 
FA 

CACC 
IQO 

IE 
IC - - CARB ID IWA -

xor r8,r8,r9 
FA 

CACC IQ1 
IQO 

IE 
IC 

- -
CARB ID IWA 

In this example, the And and Branch instructions are executed simultaneously in 
the third cycle. When the branch is executed (during cycle 3), the target instruc­
tions enter the FA stage so that they will be fetched into the dispatch queue. 

The end result is that the processor completes one Boolean instruction per cycle 
starting with cycle 5: and, nand, nor, and then xor. The branch instruction has 
been effectively removed from the instruction stream. 
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Branch with Link, Branch with Link Absolute 

When the Link bit of a simple branch is set, the LR needs to be updated in the 
BW stage. This takes a variable number of cycles because the writeback cannot 
occur until all fixed-point instructions before the branch have completed. 

#ofCycies 1 n 

Stages 
DS 

BW 
BE 

As is the case with non-Link branches, this table doesn't give the full picture. 

Consider the same code sequence given above with a Branch with Link instruc­
tion used instead of a Branch instruction. 

Cycle#: 1 2 3 4 5 6 7 8 

and rO,rO,rl 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- - -

nand r2,r2,r3 
FA 

CACC IQl 
IQO 

IE 
IC 

CARB ID IWA - -
LR tag = nand - - - ID IE IC - -
hi target 

FA 
CACC 

IQ2 
BW BW BW 

CARB BE - -

orr4,r4,r5 
FA 

CACC IQ3 
CARB - - - - -

- - - -... - - - -
nor r6,r6,r7 

FA 
CACC 

IQO 
IE 

IC - - CARB ID IWA -

xor r8,r8,r9 
FA 

CACC IQl 
IQO 

IE 
IC - -

CARB ID IWA 

In this case the branch instruction needs to stay in BW until the LR can be 
updated, which can't occur until after the nand instruction completes. After the 
nand instruction reaches the IC stage (cycle 6), the proper value can be written 
into the LR (during the same cycle). 

The mechanism for properly updating the LR involves tagging the branch 
instruction to the previous integer instruction (in this case, nand), and tempo­
rarily writing the LR value into one of the two shadow LRs created for just this 
purpose. 

The interesting thing to note about this timing is that the non-branch instruc­
tions are not affected by the extra stages branch instruction requires to perform 
the writeback. 

Branch Tags & Bubbles 

Before continuing with the timings for conditional branches, it is worth stepping 
aside and covering branch tags and bubbles because they playa very important 
role in branch timings. 
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Types of Branch Tags 

Branch tags are carried through the integer pipeline by either an integer instruc­
tion or a pipeline bubble. These tags synchronize the different pipelines so that 
the instructions appear to complete in sequential order even though they are 
dispatched out of order for performance reasons. Not every type of branch 
needs to use tags: only conditional branches and branches that need to update 
the LR or CTR generate tags. 

In general, the branch tag is placed on the last integer instruction before the 
branch, but there are situations when this is not possible and an imaginary inte­
ger instruction (called a bubble) must be created to carry the tag through the inte­
ger pipeline. 

In this code sample: 

and 
nand 
fadd 
bl 

rO,rO,rl 
r2,r2,r3 
frO,frO,frl 
target 

the tag for the branch instruction is carried by the nand instruction because it is 
the last integer instruction before the branch. 

Types of Branch Tags 

There are three different types of branch tags: 

• LR tags for branch instructions that update the LR. 
• CTR tags for branch instructions that update the CTR. 
• Predicted branch tags for conditional branches that are unresolved. 

An integer instruction can carry only one of each type of tag. If a branch instruc­
tion needs to tag an integer instruction that already has a tag of that type, a bub­
ble will be created to carry the tag. The bubble will be placed between the integer 
instruction and the branch. 

LRlCTR Tags 

LR and CTR branch tags are synchronization tags that tell the branch instruction 
when it's time to update the LR or CTR, respectively. The tag is placed on the last 
instruction that needs to execute before the register should be "officially" 
updated by the branch processor. 

To understand how the LR and CTR tags are used, consider the following non­
sensical code fragment, which uses LR tags (CTR tags are identical): 

and 
nand 

rO,rO,rl 
r2,r2,r3 
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bl target! 

target!: 
bl target2 

target2: 
or r4,r4,r5 

The timing for this code would be: 

Cycle#: 1 2 3 4 5 6 7 8 

and rO,rO,rl 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- - -

nand r2,r2,r3 
FA 

CACC IQl 
IQO 

IE 
IC 

CARB ID IWA 
- -

LR tag-nand - - - ID IE IC - -

bI targett 
FA 

CACC 
IQ2 

BW BW BW 
CARB BE 

- -

- - - - - - - -... 
LR tag =bubble - - - - - IE IC -

bI target2 
FA 

CACC 
IQO 

BW BW - -
CARB BE 

-

- - - - - - - -... 
or r4,r4,r5 

FA 
CACC 

IDO 
IE - - - - CARB ID 

The first branch instruction enters BE during cycle 3. At this time, it adds an LR 
tag to the nand instruction currently in IQl so that it knows when it's safe to 
update the LR. 

In cycle 5, when the second bl instruction tries to enter IQO, the processor real­
izes that there is no integer instruction to accept this instruction's LR tag (since 
the nand instruction already has· one). A bubble is created to float through the 
integer pipeline (with the tag) while the branch enters BE. When the bubble 
reaches IC, the second branch instruction updates the LR. 

Predicted Branch Tags 

Predicted branch tags are completely different from the LR/ CTR tags in that 
they are not pipeline synchronization tags. Rather, they are tags used internally 
by the branch processor so that it can keep track of instructions before and after 
a conditional branch. 

These tags are used as a barrier in the pipeline between the nonspeculative 
instructions before the branch (the instructions that must be executed regardless 
of whether or not the branch is taken) and the speculative instructions after the 
branch (the instructions that may need to be purged if the branch prediction is 
incorrect). After the branch is resolved, the tag is removed along with any incor­
rectly dispatched instructions. 
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Conditional Branches 

The predicted branch tags are special because they are not allowed to progress 
beyond the IE stage of the Ill. This stalls all of the speculative integer instruc­
tions in the ID stage. The BPU and FPU are a little more flexible because they 
allow speculative instructions to progress through the pipeline. 

It should be noted that, although a predicted branch tag is not allowed to 
progress beyond the IE stage, the instruction that is carrying the tag can. In this 
case, the tag will separate from the instruction so that the tag remains in IE while 
the instructions continues through the pipeline. 

Another implication of the fact that the branch tags stalls in IE is that there can 
only be one unresolved conditional branch at a time. A second conditional 
branch will stall in the IQ buffer. 

Also, after an instruction is given a predicted branch tag, it is not allowed to 
accept any other tags. This makes sense because tags for speculative instructions 
(after the branch) should not be placed on nonspeculative instructions (the 
instruction or bubble holding the predicted branch tag). 

The next section covers conditional branches and uses these branch tags exten­
sively. 

Conditional Branches 

Conditional branches complicate matters because the branch instructions are 
executed out of program order, and many times the processor is unable to deter­
mine if the branch will be taken or if it will fall through. 

If the processor cannot figure out if the branch is going to be taken or not, the 
branch is considered to be unresolved and must be predicted. The prediction 
involves deciding whether or not the branch is likely to be taken. Because this 
prediction is Simply a guess, it may be correct or incorrect. Correct guesses are 
useful because the processor doesn't have to wait for the branch to be resolved 
before continuing. However, the processor must have some way of cancelling 
incorrectly dispatched instructions due to misprediction. 

Of course, if the processor has enough information to resolve the branch, then a 
prediction is not necessary and the branch timing is the same as for non­
conditional branches. 

The simple timing chart for conditional branch instructions is: 

# of Cycles 1 k 

DS 
Stages BE MR 

MR 
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where k is the number of cycles necessary to resolve the branch. The additional 
stage is the Mispredict Recovery (MR) stage that the branch must stay in until 
the branch is resolved. 

As mentioned earlier, if k=O (that is, if the branch can be resolved during BE), 
then this table simplifies to that for a non-conditional branch. 

For conditional branches that need to update the LR or eTR, the branch waits for 
two external events: the branch to be resolved and the previous instruction to 
complete (for writeback). If the number of cycles required for the branch to be 
resolved is k and the number of cycles until writeback can be performed is n, 
then if n > k the timing will be: 

#ofCycles 1 k n-k 

DS 
MR 

Stages BE BW BW 
MR 

and if k > n: 

# of Cycles 1 n k-n 

DS 
MR 

Stages BE BW 
MR 

MR 

In short, the branch will stay in whatever stages it needs for however long it 
needs to. 

Branch Prediction 

By default, forward conditional branches are predicted to be not-taken and back­
ward conditional branches are predicted to be taken (because they are assumed 
to be loop-closing branches). Also, an encoding bit in each branch instruction 
reverses the default prediction. 

As suggested earlier, this leads to four situations that can occur for conditional 
branches: 

• predicted not-taken correctly-the branch is predicted not-taken and 
the branch is not-taken. 

• predicted not-taken incorrectly-the branch is predicted not-taken 
and the branch is taken. 

• predicted taken correctly-the branch is predicted taken and the 
branch is taken. 

• predicted· taken incorrectly-the branch is predicted taken and the 
branch is not-taken. 
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Predicted Not-taken Correctly 

In the next few sections, the following code sample will be examined under each 
of the situations listed. Each situation must be treated separately because the 
timing characteristics are significantly different. 

cmp crfO,r30,r31 
beq crfO,target 
and rO,rO,rl 
nand r2,r2,r3 

target: 
or r4,r4,r5 
nor r6,r6,r7 

The important aspect of this code sample is that the branch is dependent on the 
results of the compare operation immediately preceding it. The surrounding 
instructions are just for context. 

The beq instruction will be given a '+' or' -' suffix as a reminder that the branch 
is being predicted taken ('+') or not-taken ('-'). Since the target address of the 
beq instruction is after the branch, the '+' suffix corresponds to setting the 
reverse-prediction bit in the branch instruction. The '-' suffix is not used by 
assemblers but is used here to make the branch prediction explicit. 

Predicted Not-taken Correctly 

The timing table for the predicted not-taken correctly case is quite simple: 

Cycle#: 1 2 3 4 5 6 7 

emp crfO,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

phr tag = emp - - - IE - - -

FA 
IQl 

beq- crfO,target 
CARB 

CACC BE MR - - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO 

IE 
IC 

CARB ID IWA 
-

nand r2,r2,r3 
FA 

CACC IQ3 IQl 
IQO 

IE 
IC 

CARB ID IWA 

- - - - - - -... 
or r4,r4,r5 - - - - - - -
nor r6,r6,r7 - - - - - - -

During cycle 3, the branch instruction is executed. Because it can't be resolved, it 
must be predicted. It is predicted as being not-taken because it is a forward 
branch. In the next cycle, the information from the cmp instruction is made avail­
able to the MR stage of the BPU, which determines that the branch was pre­
dicted correctly. The predicted branch tag is purged, and the remaining 
instructions proceed through execution as they would if the branch was not 
present. 
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§ 12.5 Branch Instruction Timings 

Predicted Not-taken Incorrectly 

If the branch is predicted as not-taken, but later determined to be taken, then the 
timing changes: 

Cycle #: 1 2 3 4 5 6 7 

cmp crfO,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

pbr tag = cmp - - - IE - - -

FA 
IQl 

beq- crfO,target 
CARB 

CACC BE MR - - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO 

CARB ID 
- - -

nand r2,r2,r3 
FA 

CACC IQ3 IQl 
CARB 

- - -

- - - - - - -... 

or r4,r4,r5 
FA 

CACC 
IQO 

IE - - -
CARB ID 

nor r6,r6,r7 
FA 

CACC IQl 
IQO 

- - -
CARB ID 

Here, the first three cycles are identical to the previous case. In the fourth cycle, 
the BPU figures out that the prediction was wrong, and it begins fetching the 
correct instructions. The incorrect instructions are discarded in the next cycle. In 
this case, two cycles are "lost." 

The statement that the two cycles are "lost" is somewhat misleading. In this 
branching case, the two cycles can easily be "regained" if we can assume that 
there are two independent instructions between the compare and the branch. 
This is known as code scheduling to make maximal use of the pipeline resources 
and is covered in Chapter 15, "Resource Scheduling." 

Predicted Taken Correctly 

If the above branch is encoded to reverse the default prediction, then the timing 
will obviously be different. For the case where the branch is correctly predicted 
to be taken, the timing chart is: 

Cycle#: 1 2 3 4 5 6 7 

cmp crfO,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

pbr tag = cmp - - - IE - - -

FA 
IQl 

beq+ crfO,target 
CARB 

CACC BE MR - - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO 

CARB ID 
- - -

nand r2,r2,r3 
FA 

CACC IQ3 IQl 
CARB 

- - -
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Predicted Taken Incorrectly 

- - - - - - -... 

or r4,r4,r5 
FA 

CACC 
IQO 

IE 
IC - -

CARB ID IWA 

nor r6,r6,r7 
FA 

CACC IQl 
IQO 

IE - -
CARB ID 

As usual, the branch is predicted during cycle 3. Because the branch is predicted 
as being taken, the target instructions enter FA during this cycle. The sequential 
instructions (and and nand) are left in the Instruction Queue until either the 
branch has been resolved or the target instructions have been fetched. This gives 
the processor the opportunity to correct a misprediction if it can catch it early 
enough. In this case, however, the branch is resolved to be correct in cycle 4 and 
the instructions and tags are removed or overwritten with the target instructions 
in cycle 5. 

Similar to the situation with the predicted not-taken incorrectly example, the lost 
cycle can be "regained" if we simply include a few extra instructions before the 
compare in our timing sample. This is not a scheduling optimization, but is actu­
ally a timing problem that is discussed in the subsection "Timing an Instruction 
Sample That Is Too Small" in §12.10, "Timing Pitfalls." 

Predicted Taken Incorrectly 

If the branch is predicted to be taken, but later discovered to be not-taken, the 
timing would be: 

Cycle#: 1 2 3 4 5 6 7 

emp crfO,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

pbr tag- emp - - - IE - - -

FA 
IQl 

beq+ crfO,target 
CARB 

CACC BE MR - - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO 

IE 
IC 

CARB ID IWA 
-

nand r2,r2,r3 
FA 

CACC IQ3 IQl 
IQO 

IE 
IC 

CARB ID IWA 

- - - - - - -... 

or r4,r4,r5 
FA 

CACC - -
CARB 

- - -

nor r6,r6,r7 
FA 

CACC - -
CARB 

- - -

Here again the branch is predicted in cycle 3 and resolved in cycle 4, but in this 
case the branch was predicted incorrectly so the target instructions (or and nor) 
must be purged and replaced with the correct instructions. 

Fortunately, the misprediction is caught early enough so that sequential instruc­
tions (and and nand) are still in the IQ buffer when the branch is resolved. The 
target instructions are purged, and the sequential instructions are allowed to 
continue. 

PowerPC 601 Instruction Timing 237 



§ 12.6 Cache Access Timings 

If the misprediction couldn't be caught until the next cycle, then the target 
instructions would have overwritten the sequential instructions before the 
misprediction was recognized. The sequential instructions would have to be 
refetched from the cache, causing a significant delay. 

12.6 Cache Access Timings 

To make the timings in this chapter manageable, the examples ignore the effects 
of cache misses. However, it should come as no surprise that cache misses can 
profoundly affect code performance. In addition to simple cache misses, some 
other features of the Cache Access Unit (CAU) can also subtly affect instruction 
timings. 

Cache Priorities 

If there are multiple cache access requests during Cache Arbitration (CARB), the 
CAU decides which cache access request to grant. It uses a simple priority 
scheme, listed from highest priority to lowest priority: 

• Cache Maintenance Requests 
• Data Load Requests 
• Data Store Requests 
• Instruction Fetch Requests 

The Cache Maintenance Requests come from the memory subsystem and 
include operations like cache line reloads due to a cache miss. 

Note that the instruction fetch request is a relatively low priority operation. This 
is why the IQ buffer can store up to eight instructions. When the instruction 
fetch request gains access to the cache, it needs to utilize it fully because it may 
have to wait a while before another request is granted. 

Cache Timings 

Timing cache hits and misses can be quite complicated. However, a few rules of 
thumb that can be used to get a general idea of how these accesses will affect 
instruction timing. 

Cache Hits 

Cache hits are simple to time because there are basically three cycles of operation 
for a cache hit. The first two cycles are the CARB and CACC stages of the CAU 
pipeline. What happens during the third cycle depends on the type of cache 
access. 
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Cache Misses 

For instruction fetch accesses, the timing is: 

Cycle#: 1 2 3 

instruction fetch 
FA CACC DS CARS 

This should look familiar because it is the timing used for instruction fetches in 
all of the timing examples in this chapter. Here, the cache arbitration (CARB) 
occurs in cycle 1 and the cache is accessed (CACq in cycle 2. The data from the 
cache hit is returned during cycle 2, and the instructions are available for dis­
patch in cycle 3. 

For data load accesses, the timing is: 

I Cycle #: I 1 2 3 
data load CARS CACC IWL 

As above, the CARB and CACC stages occur in cycles 1 and 2. If an instruction 
in IE is waiting for the loaded data, it is forwarded to the IE during cycle 2. The 
standard writeback (in IWL or FWL) occurs during the third cycle. 

Cache Misses 

Cache misses are horrible, difficult-to-time events. Part of the difficulty arises 
because the number of cycles that the cache miss will take depends on both the 
clock frequency of the system bus, which is obviously system dependent, and 
the current state of the bus, which may be difficult to keep track of. 

The best case situation occurs when the system bus clock frequency is the same 
as the processor clock frequency. This is known as a 1:1 bus-to-processor clock 
frequency ratio. 

Cycle#: 1 2 3 4 5 6 7 8 

fetch/load CARS CACC CACC CACC CACC CACC CACC DS 
IWL 

There are (at least) six cycles between entering CACC and the data being avail­
able in the IQ buffer or for writeback. As with the cache hit case, if the data is 
needed it will be forwarded to IE in the cycle before the data is available for 
writeback, cycle 7 for this example. 

But the diagram doesn't tell the entire story. Even after the required data has 
been delivered, the cache is still busy servicing the request for two additional 
cycles. This means that a new cache request cannot be granted until cycle 10 at 
the earliest. 

To reiterate, the above cycle count represents a best case situation for a 1:1 bus­
to-processor clock ratio. Even on systems with a 1:1 ratio, the actual timings may 
be worse than these timings would suggest. When the bus clock is slower than 
the processor clock, the timings become progressively worse. 
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§ 12.7 Pipeline Synchronization 

Some simple formulCE for calculating the best case timings for systems with dif­
ferent bus-to-processor clock ratios are: 

. .. (processor clock ) 
# of cycles untzl data IS avazlable = 3 + 3 x . b I k 

memory us c oc 

and: 

# of cycles until cache operation is complete = 3 + (5 x processor clock ) 
memory bus clock 

So a 1:2 bus-to-processor clock ratio will require nine cycles until the data is 
available for writeback and 13 cycles until the CAU is finished servicing the 
memory request. A 1:3 ratio would require 12 and 18 cycles for these operations. 

These cycle counts are not terribly accurate because they ignore all of the cycles 
lost due to bus synchronization and memory wait states. However, it is much 
more accurate to use these numbers than to blindly assume that all cache 
accesses require only one cycle. 

12.7 Pipeline Synchronization 

Because it is important that the instructions appear to complete in the order that 
they occur in the program (program order), some sort of mechanism is needed 
to insure that the different pipelines are synchronized. 

To keep the three pipelines in sync, the integer pipeline is considered the "refer­
ence pipeline" and the other two pipelines keep track of their instructions rela­
tive to the instructions in the integer pipeline. They do this using tags. 

Two (LR and CTR) of the three types of synchronization tags were discussed in 
the section describing the timing of branch instructions. The third tag type is the 
floating-point tag, which is used to synchronize the floating-point and integer 
pipelines. 

A fourth type of tag, the predicted branch tag, is not discussed here because it 
isn't a synchronization tag. 

LR and CTR Tags 

The LR and CTR tags are used to synchronize the BPU and the IV. These tags are 
discussed earlier in "Branch Tags & Bubbles." 
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Floating-Point Tags 

Floating-Point Tags 

Every floating-point instruction generates a floating-point tag to the previous 
integer instruction or to a bubble if no integer instruction is available to accept 
the tag. 

The exact operation of the floating-point tags depends on the current Floating­
Point Exception mode, which may be either enabled or disabled. 

Floating-Point Precise Exceptions Disabled 

When floating-point precise exceptions are disabled, the processor is allowed to 
complete instructions out of order. For example, multiple integer instructions 
could complete before a floating-point instruction even though the floating­
point instruction occurs first in program order. 

If the floating-point instruction causes an exception, these integer instructions 
will have already completed execution before the interrupt handler is invoked. 
This is what is meant by "precise exceptions" being "disabled." 

However, the ability to dispatch and complete instructions out of order can be a 
significant benefit to processor throughput. Consider this example: 

and rO,rO,rl 
nand r2,r2,r3 
fadd frO,frO,frl 
fsub fr2,fr2,fr3 
bl target 

The timing for this fragment is: 

Cycle #: 1 2 3 4 5 6 7 8 

and rO,rO,r1 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- - -

nand r2,r2,r3 
FA 

CACC IQ1 
IQO 

IE 
IC 

CARB ID IWA 
- -

fp tag = nand - - - IQO 
IE IC - -ID 

fadd frO,frO,frl 
FA 

CACC IQ2 FD FPM FPA FWA 
CARB 

-

fp tag = bubble1 - - - - IQO 
IE IC -

ID 

fsub fr2,fr2,fr3 
FA 

CACC IQ3 IQ1 FD FPM FPA FWA 
CARB 

LR tag = bubble1 - - - - IQO 
IE IC -

ID 

bl target 
FA 

CACC IQ4 
IQ2 

BW BW BW 
CARB BE 

-
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§ 12.7 Pipeline Syn.chronization 

When the f add instruction is dispatched to the FPU in cycle 3, the nand instruc­
tion is available to hold the floating-point tag. The second floating-point instruc­
tion, f sub, is dispatched on the next cycle. It would also like to place a tag on the 
nand instruction, but it must create a bubble because nand already has a float­
Ing-point tag. 

The branch instruction also needs to add a tag to a previous integer instruction. 
In this case, the bubble created by the fsub instruction is the closest integer 
"instruction," so it accepts the LR tag (remember, instructions can have multiple 
tags as long as they are of different types). 

When the floating-point tags reach the Ie stage, the IU records that the associ­
ated floating-point instruction is allowed to complete. The tag fot the fadd 
instruction completes in cycle 6, which allows the f add instruction to complete 
as soon as it is finished in cycle 7. The Integer Unit can keep track of up to three 
outstanding floating-point instructions that have not entered FP Writeback, even 
though their tags have completed IC If a fourth floating-point instruction has a 
tag that enters Ie, the tag stalls the integer pipeline until the floating-point pipe­
line catches up. 

Floating-Point Precise Exceptions Enabled 

When floating-point precise exceptions are enabled, the processor is not allowed 
to complete instructions out of order. This is because the processor needs to 
insure that if an exception occurs, it is generated before any instructions follow­
ing the exception-causing instruction are completed. It can only do this is by 
requiring that all integer and floating-point instructions are dispatched and 
completed strictly in order. Branch instructions, however, are still allowed to be 
executed out of order. 

To enforce this in-order execution, all floating-point instructions are tagged to 
bubbles in the IV pipeline (even if there is a valid integer instruction to accept 
the floating-point tag). In addition, this tag is not allowed to leave the Ie stage 
until the floating-point instruction has entered the FWA or FWL stage. 

Not surprisingly, all this extra synchronization can slow down the processor. 

The previous code sample would be timed as follows if it were executed with 
precise floating-point exceptions enabled. 

Cycle#: 1 2 3 4 5 6 7 8 

and rO,rO,rl 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- - -

nand r2,r2,r3 
FA 

CACC IQl 
lQO 

IE 
IC 

CARB ID IWA - -

fp tag = bubblel - . - IQl 
IQO 

IE IC -
ID 

fadd frO,frO,frl 
FA 

CACC IQ2 FD FPM FPA FWA 
CARB -
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Abnormal Integer Conditions 

fp tag = bubble2 - - - - IQl 
IQO 

IE IC 
ID 

fsub fr2,fr2,fr3 
FA 

CACC IQ3 IQl FD FPM FPA FWA 
CARB 

LR tag = bubble2 - - - - IQl 
IQO 

IE IC 
ID 

bl target 
FA 

CACC IQ4 
IQ2 

BW BW BW BW 
CARB BE 

In this example, the floating-point performance was not greatly affected. How­
ever, the two tags occupying stages in the integer pipeline are likely to delay the 
dispatch of subsequent instructions. 

12.8 Abnormal Integer Conditions 

All of the timings given in this chapter for integer load and store instructions 
assume that the data being loaded or stored is properly aligned. If this assump­
tion is not valid, then pipeline stalls may occur. 

Misaligned Data Accesses 

A misaligned data access occurs when the data being loaded or stored crosses a 
doubleword boundary. How this affects instruction timings depends on the 
instruction in question. 

Integer Load Instructions 

If the operand for an integer load instruction crosses a doubleword boundary, 
two cycles (instead of one) are needed in the IE/CARB stage. Thus, for the non­
update load forms, the timing chart becomes: 

# of Cycles 1 1 1 1 1 

IE 

Stages ID 
IE CARB 

CACC IWL 
CARB CACC 

IC 

The integer Load with Update form timing is the same, except for the addition of 
the IWA stage, which is executed in parallel with the IC stage. 

#of Cycles 1 1 1 1 1 

IE 

IE 
CARB 

Stages ID 
CARB 

CACC CACC IWL 
IC 

IWA 

Timings for the floating-point load instructions are also the same, except that the 
FWL stage (in the FPU) is used for writeback instead of the IWL stage. 
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§ 12.8 Abnormal Integer Conditions 

Load Multiple and Load String Instructions 

If the data for a Load Multiple or Load String instruction is not word-aligned, sig­
nificant delays occur because every other load operation is loading data that 
crosses a doubleword boundary and requires two cycles in IE instead of one. 

#ofCycles 1 1 1 (n-2)/2 1 1 
IE 

IE 
IE IE 

Stages ID 
IE CARB 

CARB 
CARB CARB CACC 

IWL 
CARB CACC CACC CACC IWL 

IC 
CACC 

IWL IWL 

Integer Store Instructions 

If the operand being stored crosses a doubleword boundary, two cycles are 
needed in IE / CARB stage. The timing table for the non-update store forms 
becomes: 

# of Cycles 1 1 1 1 
IE 

Stages ID 
IE CARB 

CACC 
CARB CACC 

IC 

The timing for the integer Store with Update form (when the data crosses a dou­
bleword boundary) is the same as above, except for addition of the IWA stage, 
which is executed in parallel with the IC stage. 

#of Cycles 1 1 1 1 

IE 

IE 
CARB 

Stages ID 
CARB 

CACC CACC 
IC 

IWA 

Store Multiple and Store String Instructions 

If the data for a Store Multiple or Store String instruction is not word-aligned, 
significant delays occur because every other store operation is storing data that 
crosses a doubleword boundary and requires two cycles in IE instead of one. 

#of Cycles 1 1 1 (n-2)/2 1 

IE 
IE IE IE 

IE CARB 
Stages ID 

CARB CACC 
CARB CARB CARB CACC 

IC 
CACC CACC CACC 
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Abnormal Floating-Point Conditions 

12.9 Abnormal Floating-Point Conditions 

All of the floating-point timings given so far in this chapter assume that the pro­
cessor is executing the floating-point instructions under "normal" conditions. 
Abnormal conditions like misaligned data accesses are likely to have an adverse 
effect on the instruction timings. 

For floating-point instructions, "normal" operating conditions also means that 
the source operands and the result are all normalized values. If they are not, or 
if the processor predicts that they will not be, then considerable pipeline stalls 
can occur. 

Misaligned Data Accesses 

A misaligned data access occurs when the data being loaded or stored crosses a 
doubleword boundary. How this affects instruction timings depends on the 
instruction in question. 

Floating-Point Load Instructions 

If the operand for a floating-point load instruction crosses a doubleword bound­
ary, two cycles (instead of one) are needed in IE / CARB stage. Thus, for the non­
update load forms, the timing chart becomes: 

#ofCycles 1 1 1 1 1 
IE 

Stages ID 
IE CARB 

CACC FWL 
CARB CACC 

IC 

The floating-point Load with Update form timing is the same, except for the addi­
tion of the IWA stage, which is executed in parallel with the IC stage. 

#ofCycles 1 1 1 1 1 
IE 

IE 
CARB 

Stages ID 
CARB 

CACC CACC FWL 
IC 

IWA 

Floating-Point Store Instructions 

If the data for a floating-point store instruction is being written to an address 
that causes the store to cross a doubleword boundary, the store must first be bro­
ken into two separate store requests. This means that the instruction stalls in IE 
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for at least four cycles because the FP store buffer (FPSB) can only handle one 
outstanding store request at a time. 

#ofCycles 1 1 1 1 1 1 1 1 

IE IE 
IE 

Stages 
ID IE FPSB 

IE 
FPSB 

FPSB 
FPSB 

FPSB 
(IU/CAU/DAQU) 

IC 
FPSB 

CARB 
CARB CACC 
CACC 

Stages - FD FPM FPA FWA - - -(FPU) 

The timing for the store with update form (when the data crosses a doubleword 
boundary) is the same except for the extra IWA stage, which is executed in par­
allel with the Ie stage. 

#ofCycles 1 1 1 1 1 1 1 1 
IE 

IE 
IE 

Stages 
ID IE 

FPSB IE 
FPSB 

FPSB 
FPSB 

FPSB 
(IU/CAU/DAQU) IC FPSB 

CARB 
CARB CACC 

IWA CACC 
Stages 

- FD FPM FPA FWA - - -(FPU) 

Prenormalization 

Prenormalization is required if any of the source operands are not normalized. 
Because all normalization is performed in the FWA stage, any non-normalized 
operands must flow through the pipeline to the FWA stage and be normalized 
before the instruction can begin execution. 

If only one of the operands requires normalization, then the timing for the 
instruction (shown here for fadd) is: 

Cycle#: 1 2 3 4 5 6 7 8 
aperand prenorm FD FPM FPA FWA - - - -
fadd - FD FD FD FD FPM FPA FWA 

In this situation, the operand requiring normalization passes through the pipe­
line before the f add instruction. Because the f add instructions needs this oper­
and before it can leave PD, it stalls in FD. After the operand completes FWA, the 
normalized operand is available for the fadd instruction to begin in FD, which 
it does in cycle 5. 

If two source operands require normalization, the timing is: 

Cycle#: 1 2 3 4 5 6 7 8 9 
aperandl prenorm FD FPM FPA FWA - - - - -
aperand2 prenorm - FD FPM FPA FWA - - - -
fadd - - FD FD FD FD FPM FPA FWA 
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Underflow 

Here, both operands need to pass through the pipeline before the f add instruc­
tion can begin execution. This costs only one additional cycle because of the 
pipelining. 

The timings are similar for the case where all three operands (for the multiply­
accumulate instructions) require normalization. 

Underflow 

If the floating-point unit predicts that the result of a floating-point operation will 
produce a denormalized result, it will keep the instruction in FD until it has 
completed the FW stage. This prevents any subsequent floating-point instruc­
tion from entering FD and effectively stalls the FPU. 

Stalling the instruction in FD is necessary because, if the result does cause an 
underflow, the result must be passed again through the floating-point pipeline 
(starting at FPM) so that the value can be properly denormalized. 

The timing of this condition is: 

Cycle #: 1 2 3 4 5 6 7 

fadd FD 
FD FD FD 

FPM FPA FW 
- - -

denormalize - - - - FPM FPA FW 

In this case, the final result of the f add instruction is available during cycle 7, 
after it has been denormalized. 

Note that the instruction may not, in fact, require any sort of denormalization. 
The processor stalls the instruction if it thinks that it might require denormaliza­
tion. This prediction could be incorrect. 

The timing for the case where no denormalization is required (even though the 
FPU thought that it might be) is: 

Cycle #: 1 2 3 4 5 6 7 

fadd FD 
FD FD FD 

FPM FPA FW - - -

denormalize - - - - - - -

Here, the results of the fadd instruction are available during cycle 4. The next 
floating-point instruction still cannot enter FD until cycle 5, but the results of the 
fadd are available three cycles earlier (which may benefit dependent instruc­
tions). 
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Normalization 

For most floating-point values, the result normalization that takes place in the 
FPA/FWA stage isn't likely to require more than one cycle in FWA. However, 
under some conditions the normalization will take longer. 

Remember that normalization is performed by shifting the bits of the result to 
the left until the most significant bit is a 1. The FPA can perform a one-time shift 
of up to 48 bits before passing the result to the FWA, and the FWA can shift up 
to 16 bits per cycle. 

Because the intermediate result in the FPU is 161 bits in width, a worst-case sce­
nario would be when this result needed to be shifted over 160 bits to normalize 
the result. This would require (160 - 48)/16 = 7 cycles in the FWA stage. 

The exact number of cycles required to normalize a value has to be calculated 
case-by-case by examining the intermediate result and determining how many 
bits need to be shifted for it to be normalized. 

12.10 Timing Pitfalls 

Generating timing diagrams for a sequence of instructions can be quite complex. 
Some of the complications are removed by the assumptions with cache hits and 
instruction fetches. However, it is important to be aware of these assumptions 
because they can, at times, significantly affect timings. 

Timing an Instruction Sample That Is Too Small 

One easy-to-make mistake is to time a code sequence without taking into 
account the instructions executing before the "interesting" code. These instruc­
tions set the stage for the instructions that follow them, and it is important to 
make sure that any timings account for the pipeline stages that they occupy. 

Incorporating the information about previous instructions doesn't always 
adversely affect the timing for the code that follows. In fact, because instructions 
are fetched earlier, it is likely to benefit the timings. 

Consider an example presented earlier and reproduced here for convenience 
where a branch is correctly predicted to be taken: 

Cycle #: 1 2 3 4 5 6 7 

emp erfO,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

pbrtag=cmp - -
IQO 

IE - - -
ID 

FA 
IQl 

beq erfO,target 
CARB 

CACC BE MR - - -
MR 
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Fetching too Many Instructions 

and rO,rO,rl 
FA 

CACC IQ2 
IQO 

CARB ID 
- - -

nand r2,r2,r3 
FA 

CACC IQ3 IQl 
CARB 

- - -

- - - - - - -'" 

or r4,r4,r5 
FA 

CACC 
IQO 

IE 
IC - -

CARB ID IWA 

nor r6,r6,r7 
FA 

CACC IQl 
IQO 

IE - -
CARB ID 

It might at first seem as if a cycle is wasted between the cmp and the or instruc­
tions, and it would be if execution began with the cmp instruction. However, 
when an instruction is added before the compare instruction, the situation 
doesn't seem so bad: 

Cycle#: 1 2 3 4 5 6 7 

xor r8,r8,r9 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 

emp crfO,r30,r31 
FA 

CACC IQl 
IQO 

IE 
IC 

CARB ID IWA 
-

phr tag = emp - - IQl 
IQO 

IE - -
ID 

FA 
IQ2 

beq crfO,target 
CARB 

CACC BE MR MR - -
MR 

and rO,rO,rl 
FA 

CACC IQ3 IQl 
CARB 

- - -

nand r2,r2,r3 
FA 

CACC IQ4 IQ2 
CARB 

- - -

- - - - - - -... 

or r4,r4,r5 
FA 

CACC 
IQO 

IE 
IC - -

CARB ID IWA 

nor r6,r6,r7 
FA 

CACC IQl 
IQO 

IE - -
CARB ID 

That extra instruction at the beginning causes the branch to be dispatched one 
cycle earlier so no cycles are wasted. 

Fetching too Many Instructions 

During the CACC stage, somewhere between one and eight instructions are 
returned to the Dispatch Unit. The exact number returned depends on many 
things, including the alignment of the address at which the instructions are 
being fetched. 

This may seem like a strange thing to affect timing, but the address affects where 
the data will be stored in the cache, and the cache timing is different when the 
request is from the upper or lower part of a cache line. If your timings always 
assume that you'll receive four or eight instructions at a time, you may be sur­
prised when the code is timed on a real system. 
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In general, it is difficult to account for this in timings, but it is important to be 
aware of it. For a critical loop, it might be worthwhile to place a few no­
operations before the loop so that it fits nicely into a cache line. However, these 
situations need to be timed and considered case-by-case. 

Not Considering Instruction Fetch Delays 

Instruction fetches are the lowest priority cache access requests. Because of this, 
the CARB stage for an instruction fetch will take more than one cycle if the 
Cache Access Unit is servicing another request or receives one simultaneously 
with the instruction fetch. 

A good test for code is to see how it is affected by instruction fetches that require 
more than one cycle in the CARB stage. This test is especially important for code 
that is moving a lot of data since the cache collisions can seriously degrade per­
formance. 

Ignoring Cache Misses 

Cache misses (both for instruction fetches and data accesses) can cause a well 
optimized code fragment to perform horribly when it encounters a worst-case 
memory situation. 

Cache misses can't be accounted for entirely (because they sometimes result 
from external events). It is a good idea (and unfortunately a lot of work) to map 
out critical sections of memory and assume that the first access into each block 
of memory will be a cache miss while subsequent accesses to the same block will 
be hits. 

Odd as it may seem, in some situations a cache miss will cause a sequence of 
code to perform better. If a branch is incorrectly predicted to be taken, a cache 
miss on the target instruction fetch will give the processor more time to resolve 
the branch before the sequential instructions (in this case, the correct instruc­
tions) are purged from the IQ buffer. Thus, the delay in fetching the (incorrect) 
target instructions gives the processor enough time to realize that the correct 
instructions are already in the Dispatch Unit. 

Of course, the proper way of addressing an incorrectly predicted branch is to 
correct the prediction. This example points out the potentially bizarre effects that 
memory can have on instruction timings. 
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Programming 
Model 

Although the PowerPC processor does not enforce any particular programming 
model, a variety of programming conventions that IBM devised for the POWER 
architecture have become the standard for the PowerPC. These conventions are 
part of the PowerOpen Application Binary Interface (ABI) and Application Pro­
gramming Interface (API) that formalize the standard to make compliant sys­
tems binary and source-code compatible. These same conventions are also used 
on Apple's PowerPC-based Macintosh computers. 

13.1 Register Usage Conventions 

All of the registers that the PowerPC provides are defined as being either volatile 
or non-volatile. A volatile register can be freely used by any routine-a volatile 
register does not need to be saved and restored. A non-volatile register needs to 
be saved and restored if it is used. 

Additionally, a few of the registers are defined as dedicated. A dedicated register 
is used for one very well-defined purpose and shouldn't be used for anything 
else. There are only two dedicated registers: the stack pointer (rl) and the TOC 
pointer (r2). Both of these registers are discussed in detail later in this chapter. 
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GPR Usage 

The PowerPC has 32 GPRs, which may be either 32 or 64 bits (depending on the 
implementation). Table 13-1 summarizes the standard register usage conven­
tions. 

Table 13-1 GPR Register Usage Conventions 

CPR Type Must be Usage Preserved? 
rO volatile no used in prolog / epilog code 
ri 

dedicated 
stack pointer 

r2 
yes 

table of contents (TOC) pointer 

r3 
1st fixed-point parameter 
1st word of return value 

volatile no 
2nd fixed-point parameter 

r4 
2nd word of return value 

rS 3rd fixed-point parameter 
... volatile no ... 

riO 8th fixed-point parameter 
rll 

volatile 
environment pointer (if needed) 

no 
used by global linkage routines r12 

r13 
general registers that must be preserved ... non-volatile yes across function calls 

r3i 

Two of the GPRs (rl and r2) are dedicated for use with OS-related tasks, three 
(rO, rll and r12) are used by compiler, linkage, or glue routines, and eight 
more (r3 through rIO) are allocated for passing parameters into a function (see 
§13.5, "Subroutine Calling Conventions," for more information). This leaves 19 
GPRs (r13 through r31) which are available for general use, but which must be 
saved and restored if used. 

By convention, a routine should use the volatile registers first because they do 
not need to be saved and restored. Thus, a routine should first use GPRO and any 
of the registers GPR3 through GPR12 that are not already being used by the rou­
tine for parameters. 

If a routine needs to use still more registers, the non-volatile GPRs should be 
used from highest numbered to lowest numbered. That is, GPR31 is used first, 
followed by GPR30, and so on. Using the non-volatile registers in this fashion 
allows the strnw and lrnw instructions to be used to save and restore the registers 
in the function prolog / epilog code. However, some important issues are 
involved with using the load and store multiple instructions. These issues are 
discussed later in §13.8, "Saving Registers on the Stack." 

252 Chapter 13 



FPR Usage 

FPR Usage 

The PowerPC defines thirty-two 64-bit floating point registers. Of these regis­
ters, one (frO) is set aside as a scratch register, 13 (frl through fr13) are used 
for passing parameters to subroutines, and the remaining 18 (fr14 through 
fr31) are available for general use. Table 13-2 summarizes the floating-point 
register usage conventions. 

Table 13-2 FPR Register Usage Conventions 

FPR Type 
Must be 

Usage 
preserved? 

frO volatile no scratch register 

frl 
1st floating-point parameter 
1st 8-bytes of return value 

... volatile no ... 
fr4 

4th floating-point parameter 
4th 8-bytes of return value 

frS 5th floating-point parameter 
... volatile no ... 

fr13 13th floating-point parameter 
fr14 

scratch registers that must be preserved ... non-volatile yes 
across function calls 

fr31 

As with the GPRs, a routine that needs to use floating-point registers should first 
use the volatile registers, frO and any of the registers frl through fr13 that are 
not being used to hold parameters. The remaining 18 FPRs can be used if there 
are not enough volatile registers to hold the required values. 

The non-volatile registers should be used from the highest to the lowest (that is, 
from fr31 down to fr14) so that the FPR and GPR register save methods fol­
low the same basic conventions. (See §13.8, "Saving Registers on the Stack," later 
in this chapter.) 

SPR Usage 

Table 13-3 summarizes the standard usage conventions for the common SPRs 
available on PowerPC implementations. In general, the system registers do not 
need to be preserved across function calls. The only exceptions are that some of 
the fields within the CR must always be preserved, and the FPSCR should be 
preserved under certain circumstances. 
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Table 13-3 SPR Register Usage Conventions 

SPR Type 
Must be 

Usage 
Preserved? 

0 
general use; implicitly used by integer 
instructions with the Record bit set - volatile no 
general use; implicitly used by floating-

1 
point instructions with the Record bit set 

CR 
2 

3""""" non-volatile yes general use; must be preserved 
~ 

5 
~ volatile no general use 
-=;-

LR 
branch target address 
subroutine return address 

CTR volatile no 
loop counter 
branch address (goto, case, system glue) 

XER fixed point exceptions 
FPSCR floating-point exceptions 

MQ volatile no obsolete; exists on the 601 only 

Note that even though the FPSCR is listed as a volatile register that doesn't need 
to be preserved, it is considered rude for a routine to change the floating-point 
exception enable bits in the FPSCR without restoring them to their original state. 
The only exceptions are routines defined to modify the floating-point execution 
state. 

It is unnecessary to restore the FPSCR if it was only used to record the exception 
information as set by the standard arithmetic floating-point instructions. 

13.2 Table of Contents (TOC) 

Each program module (collection of routines) has associated with it a Table of 
Contents (TOC) area that identifies imported symbols and also provides a refer­
ence point for accessing the module's static storage area. A register is (by con­
vention) reserved to always point to the current TOC area. This register is r2, 
but it is also referred to as rTOC. 

For the most part, TOC maintenance is not something you need to worry about 
because all of the functions in the same module will share the same TOe. How­
ever, when calling routines in other modules (for example, the standard library 
routines), care must be taken so that the TOC for the called routine is set up 
properly, and so that the TOC of the caller is restored before control returns to 
the caller. Examples of how this transition is accomplished are given later in 
§13.13, "Linking with Global Routines." 
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Initializing the TOe 

A routine accesses its global variables (including external routine descriptors) by 
recording the variable's offset from the routine's TOe. This allows the variable 
to be accessed by simply adding the offset to the current Toe value in rTOC: 

lwz r3,offset(rTOC) 

The data referenced from the Toe typically isn't the actual global data-it is 
usually just a pointer to the data. In the above example, the actual data would 
then be accessed via the pointer that has been loaded into r3. 

The reason pointers are stored in the TOe area instead of the actual data is that 
64K is the maximum size for the Toe area (because offset is a signed 16-bit 
quantity). If all of the program data needed to be directly accessible from the 
TOe, then the global static data would have an obviously unacceptable 64K 
limit. 

By storing only pointers in the Toe area, the 64K limit applies only to the num­
ber of pointers that can be stored. Because each pointer is four bytes in size, the 
maximum of 16,384 global data pointers isn't a practical limitation for most 
applications. 

Initializing the TOe 

There is no need for a routine or module to initialize its TOe pointer. In fact, it is 
allowed to assume that the Toe has already been set up before it is given con­
trol. However, the TOe must be initialized somewhere. Fortunately, that some­
where is in the system loader, so most programmers do not need to worry 
about it. 

The system loader handles the Toe initialization because it is in control of 
where the program's code and data are loaded. After the loader has decided 
where the program should be loaded, it knows the location of the Toe and can 
set up the TOe and update any portions of the code or data that need to be ini­
tialized with its value. 

13.3 The Stack Pointer 

By convention, GPR 1 contains a 16-byte aligned value that always points to the 
top of the stack, and the top of the stack always contains a valid stack frame for the 
current routine. The stack frame for a routine identifies the routine's execution 
context-it contains the register save area, local storage area, and a few other bits 
of information for the given routine. The information in the stack frame allows 
the entire calling chain to be examined at any time, because each stack frame also 
contains a pointer to the stack frame of the routine that called it. Figure 13-1 
shows a sample stack with the call-chain pointers to the previous stack frame 
made explicit. 
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Figure 13-1 Sample Stack Showing Multiple Stack Frames 

low addresses 

Stack pointer __ -l.~" _______ '" 
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Stack frame for 
current routine 

Stack frame 
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Pointer to stack 
frame of caller 

high addresses 

It's nice to be able to assume that the stack pointer always points to a valid stack 
frame, because interrupt-level code doesn't need to worry about the stack being 
in an inconsistent state. However, it does require a little bit of effort on the part 
of the program to insure that the stack pointer does, indeed, always identify a 
valid stack frame. 

Basically, this effort amounts to making sure that the stack pointer update oper­
ation is atomic (that is, it is accomplished in one instruction). This means that the 
stack frame cannot be built by using a series of small steps that each allocate a 
small area on the stack-the entire stack frame size must be allocated at once, 
and the offsets to each area within the frame must be calculated. These calcula­
tions can become quite cumbersome because of multiple variable-sized areas in 
a stack frame. Efforts to simplify these calculations have led to some rather 
bizarre stack frame building conventions, which are covered later in "Building 
Stack Frames." 

Updating the Stack Pointer 

Because the stack pointer must always point to a valid stack frame at the top of 
the stack, the only time the stack pointer should be updated is when the flow of 

control is entering or exiting a function.! 

1. Actually, the C library routine alloca ( ), which dynamically allocates storage on the stack, 
also updates the stack pointer. This special case is discussed later in §13.12, "Stack Frames 
and allocaO." 

256 Chapter 13 



Stack Pointer Maintenance on Function Entry 

When a function is entered, it needs to create a new stack frame above the cur­
rent one on the stack and update r 1 to point to the new frame, saving the 
address of the previous stack frame in the process. When a function exits, it sim­
ply needs to restore the previous stack frame. 

Figure 13-2 shows this for the simple case of the routine foo ( ) calling the rou­
tine bar ( ). At point (A), foo () has initialized itself but has not yet called 
another routine. During (B), foo ( ) has called bar ( ) , and bar ( ) has set itself 
up with its own stack frame. A pointer back to foo ( )' s stack frame is recorded 
as part of bar ( )' s initialization process. After the call to bar ( ) is complete (C), 
the stack pointer once again points to foo ( ) 's stack frame. 

Figure 13-2 Stack When foo ( ) Calls bar ( ) 

(rl) _r-------t 

stack frame 

(rl)-t-------I 

bar's ) 

I-----~I~J (rl)-t-------I 

foo's 
stack frame 

(A) 

foo's 
stack frame 

(B) 

foo's 
stack frame 

(C) 

The three states shown in Figure 13-2 are the only states that the stack pointer 
has during the subroutine call. There are no intermediate states where bar ( )' s 
stack frame is only partially built. 

Stack Pointer Maintenance on Function Entry 

When the size of the stack frame is less than 32K, the stack pointer update that is 
required when a function is entered can be accomplished with a single instruc­
tion: 

stwu rl, -frame_size ( rl) 

This instruction calculates the address of the new stack frame from (rl)­
frame_size and stores the old value of rl (which points to the current stack 
frame) at that address. The calculated address is then stored in r 1. The first part 
of this operation saves a pointer to the old stack frame in the first word of the 
new stack frame, and the second part updates the stack pointer to point to the 
new stack frame. 
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Stack Pointer Maintenance on Function Exit 

For functions with stack frames less than 32K in size, the code required to 
update the stack pointer on function exit is also quite simple: 

addi rl, rl ,frame_size 

All that is required is that the stack be adjusted down by the same amount that 
it was adjusted up during function entry. 

Alternatively, because a pointer to the previous stack frame was saved at offset 
o of the current stack frame, the stack pointer could be updated as: 

lwz rl,O(rl) 

However, this method is less efficient because it requires a load from memory 
that the addi method avoids. 

Handling Stack Frames ~ 32K in Size 

Handling stack frames that are 32K or larger in size is not difficult, but care must 
be taken so that the stack pointer is updated in one operation and not in a series 
of small adjustments. 

On function entry, this operation should be performed as: 

# load the 32-bit -frame_size value into r12 
lis r12, <upper 16 bits of -frame_size> 
ori r12, <lower 16 bits of -frame_size> 

# update the stack pointer 
stwux rl,rl,r12 

On function exit, the same technique is used as with small stack frames, but the 
addi instruction cannot be used (because it only handles 16-bit values). The 
frame_size value can be placed in a register and then added to the stack pointer, 
like this: 

# load the 32-bit frame_size value into r12 
lis r12 ,<upper 16 bits offrame_size> 
ori r12, <lower 16 bits of frame_size> 

# update the stack pointer 
add rl,rl,r12 

As in the small stack frame case, the previous stack frame can be restored using 
a load from offset 0 of the current stack frame, as: 

lwz rl,O(rl) 
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Building Stack Frames 

Which of the two methods is more efficient depends on the particular routine 
since the three-instruction sequence provides more opportunities for schedul­
ing the instructions. 

Building Stack Frames 

This section discusses the steps necessary to build a stack frame as they relate to 
the stack pointer. It does not provide all the details and the structure of stack 
frames (these will be given later in the sections detailing the subroutine calling 
conventions), but rather it discusses the order in which the components of the 
stack frame should be built. 

The values in the stack frame can be initialized during two periods: before the 
frame is built and after it has been created. Both of these periods are shown in 
Figure 13-3. 

After the stack frame is built the stack pointer (rl) points to the newly created 
stack frame. At this time, the area in the stack frame can be initialized by using a 
positive offset from the stack pointer (which is also a pointer to this stack frame). 
This period is typically when most stack frame initialization is performed. 

Figure 13-3 Periods When Stack Frame Values Can Be Initialized 
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stack 
frame 

foo's 
stack 
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Before the frame is built, rl points to the stack frame of the previous routine, 
which is conveniently located immediately below where the new stack frame is 
going to be built. The new stack frame areas can be initialized at this point by 
using a negative offset from r 1 to write values above the top of the stack. 
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Writing Above the Stack Pointer ... ick! 

The calling conventions for most well-designed systems involve initializing the 
stack frame values after the frame has been built and consider it a bad idea to 
write values above the current stack pointer. There's a very good reason for this: 
if an interrupt comes along, it may need to allocate some temporary storage on 
the stack for itself. Although it will free the space and return the stack pointer to 
its original value, any data that was above the stack pointer is likely to be 
trashed. 

The PowerPC calling conventions are no exception: it is still considered bad 
form to write data above the stack pointer-with this one exception of building 
stack frames. Two things make this exception acceptable. First, the only values 
written above the stack are the GPR and FPR save areas, guaranteed to be no 
larger than a certain maximum size (because only a certain number of registers 
will ever need to be saved). Second, interrupts and other system-level code are 
aware of this maximum size and skip over that many bytes before they allocate 
any space on the stack. 

Now, this may seem like too much effort just to write values safely above the 
stack, and, to a certain extent, it is. The GPR and FPR save areas could have been 
written using offsets from the new stack frame after it had been built. However, 
because many areas in the stack frame are of variable width and need to be prop­
erly aligned, the formula to determine the offset to these two areas from the 
frame pointer is relatively complicated. 

So, it's basically a choice between complicating the interrupt handlers (which 
very few people write) or complicating the formula for calculating the offsets to 
these areas (which would affect more people). It's important to note that neither 
option affects performance. The interrupt handlers simply add the maximum 
save area size to the amount of space that they're allocating on the stack, and the 
"more complex offset formula" is statically computed at assembly time doesn't 
generate any extra code. 

The end result is that it doesn't really matter. The standard calling convention 
involves writing above the stack, and the system-level code is designed to han­
dle this. If writing above the stack offends you as a programmer, you can simply 
not do it. It is perfectly acceptable to save the GPR and FPR values after the stack 
frame has been built because the only code that uses them is the function that 
owns the stack frame (no one else can use them since the number of registers 
saved isn't even recorded unless debugging information (a la traceback table) is 
present). 

It's interesting to note that because the size of the GPR and FPR save areas is 
dependent on the size and number of registers being saved, the maximum save 
area size will change for 64-bit PowerPC implementations. In order to make 
room for the nineteen 64-bit GPRs and eighteen 64-bit FPRs, 296 bytes (instead 
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of the 220 required for nineteen 32-bit GPRs and eighteen 64-bit FPRs) will need 
to be "reserved" above the stack. 

13.4 Brief Interlude: Naming Conventions 

In the remainder of this chapter, three routine names will be used in the exam­
ples: sna ( ), foo ( ), and bar ( ). Of these three routines, foo ( ) and bar ( ) will 
commonly be used in the examples. The relationship between these routines is 
that foo ( ) calls bar ( ). The sna ( ) routine is only used to refer to the routine 
that originally called foo ( ). This calling order will always hold true for all the 
examples given here: sna ( ) always calls foo ( ), which always calls bar ( ). 

The terms caller / callee or pitcher / catcher can also be used when describing how 
the functions are interacting with the surrounding routines. However, a routine 
is never referred to as simply a caller or a callee-these terms are always used 
with respect to some other function. For example, f 00 ( ) is the caller of bar ( ), 
but is a callee of sna ( ) -how it's referred to depends on the context. Most of the 
time, this caller / callee relationship will not be used because using these terms 
can lead to confusion when the context of the discussion changes. 

13.5 Subroutine Calling Conventions 

A subroutine call requires that the caller and the callee both agree on a protocol 
for passing data and control back and forth. As mentioned earlier, these conven­
tions are not enforced by the processor. These conventions are instead 
"enforced" by the operating system and the libraries, because a program must 
follow these conventions in order to access the system-provided routines. 

According to these calling conventions, the calling routine has the responsibility 
of setting up the parameters, passing the return address, and then handing off 
control to the subroutine. 

The called routine has the responsibility of saving the return address and any 
non-volatile register that it modifies, setting up any stack structures that it 
requires, and then cleaning everything up and restoring registers before return­
ing to the calling routine. These two tasks (set up and clean up) are performed 
by code fragments known as prologs and epilogs. 

Prologs and Epilogs 

Prologs and epilogs are little code snippets at the beginning (pro logs ) or ending 
(epilogs) of a function. The purpose of these 'logs is to set up the proper environ­
ment for the routine and then restore the original environment when the routine 
is finished. 
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Function Prologs 

When a function is called, it must set up the stack properly so that it creates room 
for all local and register-save storage, and so that it sets up a proper back chain. 
The portion of a function that does this is known as the function prolog. 

Function Epilogs 

The function epilog undoes the work of the prolog. It restores the registers that 
were saved and makes sure that the stack pointer once again points to the stack 
frame of the routine that originally called this routine. 

13.6 A Simple Subroutine Call 

The easiest way to describe a function call is to step through a very basic subrou­
tine call and explain what is happening along the way. For this example, the 
routine foo ( ) (which is assumed to have already been set up) is calling the rou­
tine bar ( ), using a standard Branch with Link instruction: 

bl bar 

The parameters being passed are not important for this general discussion, so 
they are not specified. 

Before Calling bar ( ) 

As mentioned earlier, foo ( ) is assumed to have been set up properly already. 
This means that the stack pointer currently points to foo( )'s stack frame. This 
is shown in Figure 13-4. 

There are five areas in this stack frame: the link area, the argument area, the local 
storage area, the CPR save area, and the FPR save area. The last two areas are some­
times collectively referred to as the register save area or simply the save area. These 
areas are briefly described in the next few paragraphs and more completely 
described in §13.9, "Stack Frames." 

The link area is used to save the back-chain (the pointer to the previous function's 
stack frame) and to provide space to store a few special registers: the Table Of 
Contents, the Condition Register, and the Link Register. 
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Figure 13-4 The Stack Frame of f 00 ( ) 
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The argument area is where the arguments are placed if there isn't enough 
room to store all of them in the registers. This area is always at least eight 
words in size and is left unused most of the time (because the arguments 
are stored in registers if possible). The arguments stored here are the 
arguments that foo() (in this example) is sending to another routine 
(bar ( ). These are not the arguments that were passed to foo ( ). 

The local storage area is where foo () stores whatever it likes. Its size is 
determined by foo ( ) when it creates the stack frame. 

The register save area is where foo () stores the original contents of any of 
the non-volatile GPRs or FPRs that it needs to use. This way it can restore 
them to their original values before returning. If no non-volatile registers 
are used by foo ( ), then this area will be zero bytes in size. 

Prolog for bar ( ) 

After control is passed to bar ( ), its prolog code is executed, which performs 
these tasks: 

• Saves any non-volatile registers that are used by bar ( ) • 
• Creates bar ( )' s stack frame (saving a pointer to the previous frame). 

After bar 0 has accomplished these tasks, the stack looks like Figure 13-5. 
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Figure 13-5 The Stack after bar ( ) Has Built Its Stack Frame. 
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The following registers are non-volatile and must be saved if bar ( ) uses them: 
GPRs 13 through 31, FPRs 14 through 31, and the Condition Register. In addi­
tion, the Link Register (technically a volatile register) should be saved and 
restored. . 

As mentioned earlier, the GP~s and FPRs are saved in bar ( )' s stack frame 
before the stack frame is built. First, the FPRs are stored immediately above 
foo ( )' s stack frame, and then the GPRs are written above the FPRs. A simpli­
fied diagram showing only the GPR and FPR save areas is given in Figure 13-6. 
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Saving the Non-volatile Registers 

Figure 13-6 Saving the GPRs and FPRs above the Stack Pointer 
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Because of the register usage convention of starting from register 31 and work­
ing down, each routine will have a contiguous range of registers (rN through 
r 31) that need to be saved. This simplifies the save / restore code and allows the 
Load and Store Multiple instructions to be used for this purpose. In reality, the 
process of saving and restoring registers ends up being a little more compli­
cated, but these complications don't affect the fact that the registers are stored in 
the register save area in ascending order. Register saving is treated in more detail 
later in §13.8, "Saving Registers on the Stack." 

For the CR and LR, storage space is set aside in foo( )'s stack frame to save 
these values. The CR is saved at offset 4 from the start of foo ( )' s stack frame, 
and the LR is stored at offset 8. Figure 13-7 shows this operation. In this figure, 
the highlighted area in f 00 ( )' s stack frame is the area in the Link Area where 
the register is being stored. 

The code to save the CR and LR is: 

# save 
mflr 
stw 

the Link Register 
rO 
rO,8(r1) 

# save the Condition Register 
mfcr rO 
stw rO,4(r1) 
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Figure 13-7 Saving Values into foo ( )'s Stack Frame 

bar's stack 
frame (under 
construction) 

foo's 
stack frame 

One additional register, the FPSCR, is a special case because it generally doesn't 
need to be saved and restored, but there are situations where it should be. If any 
of the enable (VE, OE, UE, ZE, or XE) or mode (NI or RN) bits of the FPSCR are 
changed, then the routine should save and restore the FPSCR, because it is impo­
lite for a routine to globally change the floating-point model. The other bits of 
the FPSCR, which may be set as a side effect of executing floating-point instruc­
tions, are volatile, and the FPSCR does not need to be saved if they are modified. 

No special storage location is set aside for the FPSCR. If a routine needs to save 
and restore it, the routine must allocate space in its local storage area. 

Creating the Stack Frame 

After all the registers have been saved, the stack frame for bar ( ) can be created. 
This is usually a single instruction: 

stwu rl,-jrame_size(rl) 

where the frame_size value is calculated from the sum of the sizes of the five areas 
comprising the stack frame, plus some padding bytes to insure that the stack 
frame always starts on a quad word boundary. Hence: 

frame_size = link_size + arg_size + locaCsize + gpr _size + fpr _size + padding 

where: 

link_size is always six words (24 bytes) in length. 

arg_size is large enough to hold all arguments needed for any function that 
bar ( ) calls. Note that this is not related to the arguments that are passed 
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into bar ( ). This area is for the arguments that bar ( ) will (possibly) pass to 
another routine. This is always at least eight words (64 bytes) in length. 

locaCsize is the size of the local storage area that bar () needs, or a if it 
doesn't need any local storage. 

gpr _size is large enough to hold all of the GPRs that bar ( ) is saving and 
restoring. This can range from a to 19 words (76 bytes). 

fpr _size is large enough to hold all of the FPRs that bar ( ) is saving and 
restoring. This can range from a to 18 doublewords (144 bytes). 

padding is the number of extra bytes needed to insure that the stack pointer 
is always quadword (16-byte) aligned. 

Because the link, argument, and local storage area are allocated from the top of the 
stack frame, and the FPR and CPR save areas are allocated from the bottom, the 
padding bytes fall between the local storage area and the CPR save area. 

It is important to note that this one Store with Update instruction performs two 
critical functions: it allocates the new stack frame on the stack, and it saves the 
back chain (pointer to the previous stack frame) at offset a into the newly created 
stack frame. 

Execution of bar ( ) 

Finally, bar () can execute its code and accomplish the tasks that it needs to, 
including calling other routines. 

Epilog of bar ( ) 

During the epilog, bar () must restore the registers, restore foo ( )'s stack 
frame, and then return control to foo ( ). 

Restoring the Non-volatile Registers 

The FPRs and GPRs can be restored by loading from the values stored in the 
register save area. For GPRs, the Load Multiple instruction can be used, but since 
there is no equivalent instruction for FPRs, some other method must be used. 
The problems associated with saving and restoring registers are covered later in 
§13.8, "Saving Registers on the Stack." 

Restoring the CR and LR is just as easy as saving them. The code to restore these 
registers is: 

# restore the Link Register 
lwz rO ,Jrame_size+8 (rl) 
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mtlr rO 

# restore the Condition Register 
lwz rO ,frame_size+4 (rl) 
mtcr rO 

Technically, only the CR fields that have changed need to be restored, but some 
PowerPC implementations may execute a complete CR restore instruction sig­
nificantly faster than they would execute a partial CR restore. 

Restoring the Stack Frame 

To restore faa ( )' s stack frame, we add the size of bar ( )' s stack frame to the 
stack pointer: 

addi rl, rl ,frame_size 

Returning Control to faa () 

Because the LR has been restored, it now holds the return address in faa ( ). 
This means that control can be returned to faa ( ) by simply executing a Branch 
to Link Register instruction: 

blr 

Return to f 00 ( ) 

At this point, control has been returned to faa ( ), and the stack and all of the 
non-volatile registers have been restored. Execution in foo ( ) continues. 

13.7 An Even Simpler Subroutine Call 

One thing was not made explicit in the simple subroutine call: it was assumed 
that the routine bar ( ) needed a stack frame. A routine needs a stack frame only: 

• If bar () calls another routine. A stack frame is needed because the 
arguments for the routine being called must be stored in the argu­
ment area for bar ( ). faa ( )' s argument area holds the arguments for 
bar ( ) and cannot be reused to also hold the arguments for another 
routine. 

• if bar () requires more than 220 bytes of storage area. The magical 
1/220 byte" value comes from the maximum size of the GPR and FPR 
save area that all interrupt level code will skip over before allocating 
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space on the stack. If bar ( ) can fit its register save area and its local 
storage area into 220 bytes, then it can get away without having a 
stack frame. 

If a routine doesn't require a stack frame, then there's no sense in creating one. 
This section will step through the subroutine call where is it assumed that 
bar ( ) does not need a stack frame. 

Before Calling bar ( ) 

The frameless routine is called like an ordinary routine, through a blr instruc­
tion. The stack for faa ( ) is set up just as it was in the previous section. Basically, 
faa ( ) doesn't know (or care) if any routine it calls has a stack frame or not. It 
just passes control to the routine and waits for control to return. 

Prolog of bar ( ) 

The only task that the prolog needs to perform is saving the non-volatile regis­
ters that bar () needs to use. This is done above the stack pointer (where 
bar ( )' s stack frame would be if it were to build one). §13.8, "Saving Registers 
on the Stack," discusses in detail how this is done. 

The CR and LR should also be saved. Because space has been allocated for them 
in faa ( )' s stack frame, they can be saved using the same code given in the pre­
vious section: 

# save the Link Register 
mflr rO 
stw rO,8(rl) 

# save the Condition Register 
mfcr rO 
stw rO,4(rl) 

In general, the LR should be saved even though it may seem unneeded (because 
bar () doesn't call any functions). There are two reasons for this. First, there 
may be some constructs (like case statements) that use the LR; and, second, some 
system-level routines are branched to (saving the LR), but are not considered 
real subroutines because they do not require a stack frame (see §13.8, "Saving 
Registers on the Stack"). 

Execution of bar ( ) 

As in the previous description, the execution of bar ( ) continues as it normally 
would. The only differences are that bar () is not allowed to call any other 
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routines, and any of bar ( )' s local variables must be accessed using a positive 
offset from the top of the stack. 

Epilog of bar ( ) 

Because there is no stack frame to restore, the epilog code just restores the non­
volatile registers that were used by bar ( ) and then returns control to foo ( ). 

For the GPRs and FPRs, the original values are pulled from above the stack and 
stuffed into the appropriate registers. See §13.8, "Saving Registers on the Stack," 
for a full discussion of how this should be done. 

For the CR and LR, the original values were stored at offsets 4 and 8 of f 00 ( )' s 
stack frame. This is the same code used in the previous section, with the simpli­
fication that thejrame_size is known to be o. 

# restore the Link Register 
lwz rO,8(rl) 
mtlr rO 

# restore the Condition Register 
lwz rO,4(rl) 
mtcr rO 

Not surprisingly, the instruction to return to foo ( ) is the standard: 

blr 

13.8 Saving Registers on the Stack 

The previous sections hinted that saving the GPRs and FPRs on the stack was 
not quite as straightforward as it might seem. This section finally explains the 
complications surrounding the seemingly simple task of saving and restoring 
registers. 

Using the Load and Store Multiple Instructions 

For two really good reasons, the Load and Store Multiple routines are not encour­
aged as part of the standard register saving mechanism. 

The first is the ominous hint in the PowerPC Architecture manual that the Load 
and Store Multiple instructions may (on some PowerPC implementations) exe­
cute significantly slower than an equivalent series of loads or stores. Basically, 
this means that the hardware designers aren't going to bother wasting transis­
tors on these instructions-if it's easy to add support for them, then it might be 
thrown in, but otherwise it'll be emulated in software. Note that this doesn't 
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mean that a series of loads or stores will always be faster than the analagous Load 
or Store Multiple instruction. On processors with unified caches (like the 601), the 
instruction fetches from the series of loads / stores can collide with the data cache 
accesses and thus be less efficient than the Load or Store Multiple. 

The second reason is that equivalent instructions do not exist for the FPRs, and 
there are no planned instructions to support 64-bit GPRs. This means that the 
only time these instructions can be used is with the GPRs on 32-bit PowerPC 
implementations, and they might be horribly inefficient. 

So, because a mechanism is needed for the FPRs anyway, it might as well be 
generalized to handle the GPRs. 

Saving GPRs Only 

The easiest case to describe is where a series of GPRs need to be saved, but no 
FPRs. In this case, the GPR save area is located immediately above the stack 
frame for the previous routine. Figure 13-8 shows the save area when only the 
GPRs need to be saved. 

Figure 13-8 Saving GPRs into bar ( ) 's Soon-to-be-constructed Stack Frame 

GPR Save Area 

rl • ~------------------~ 

bar's stack 
frame (under 
construction) 

foo's 
stack frame 

There are three common ways of accomplishing this. The first is to use the Store 
Multiple instruction, which has already been presented as a potentially bad idea. 
However, it doesn't hurt to show how it would be done. The second and third 
methods both involve using a series of Store instructions. The second method 
has these instructions inline, and the third branches to a system routine that per­
forms the appropriate register saves. 
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Using the Store Multiple Instruction 

The stmw instruction automatically stores all of the registers, from a specified 
starting register up to r31, at a specified effective address. By specifying the 
appropriate offset above the current stack pointer as the effective address, the 
GPRs can be saved above the stack using one instruction. 

There is really only one variable here, the number of registers that need to be 
saved. If this variable is called N, and it is allowed to range from one (only r 31 
is saved) to 19 (r13 through r31 are saved), then the instruction needed to save 
this number of registers above the stack pointer would be: 

stmw 32-N, -4*N( r1) 

So, for N = I, this would be: 

stmw r31,-4(r1) 

For N = 19, it would be: 

stmw r13,-76(r1) 

Using a Series of Store Instructions 

After the formula for the Store Multiple instruction is known, the Store instruc­
tions are easy to generate because the arguments are basically the same. To save 
five registers, this series of stores would be used: 

stw r27,-20(r1) 
stw r28,-16(r1) 
stw r29,-12(r1) 
stw r30,-8(rl) 
stw r31,-4(r1) 

To save all the GPRs, a series of 19 stw instructions would be used: 

stw r13,-76(r1) 
stw r14,-72(r1) 

# 15 more stw instructions 
stw r30,-8(r1) 
stw r31,-4(r1) 

Branching to System-Provided GPR Save Routine 

Because the stw instructions are always the same series of instructions, it makes 
sense to put the instructions in a system-level routine that any routine can 
branch to. If the system provides this, then the registers can be stored by branch­
ing to the appropriate entry point in this system routine. 
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As an example, consider the following (abbreviated) implementation of such a 
system routine with the listed entry points: 

_savegpr13 : stw r13,-76(r1) 
_savegpr14: stw r14,-72(r1) 
_savegpr1S: stw r1S,-68(r1) 

_savegpr30: stw r30,-8(r1) 
_savegpr31: stw r31,-4(r1) 

bIr 

In order to save nine registers (r23 through r31), a routine could branch to the 
"gpr23" entry point: 

mfIr 
bla 

rO 
_savegpr23 

Note that the LR must be saved (in this case, in rO) before the save routine is 
called. 

The bla (Branch with Link Absolute) instruction is used to call the save routine 
because it is assumed that the routine is at a fixed location determined by the as. 
H the routine is not at a fixed location, then the bI (Branch with Link) instruction 
would be used instead. 

Restoring GPRs Only 

Just as there are three ways to save the GPRs, there are three ways to restore the 
registers: using a Load Multiple instruction; using a series of loads; or using a 
system-provided routine to load the registers. 

It is important to note that these methods must be applied after the original rou­
tine's stack pointer has been restored in r 1. 

Using the Load Multiple Instruction 

A Load Multiple instruction with the same parameters as the Store Multiple 
instruction used to save the registers, restores all the GPRs in one instruction. 

To summarize, this instruction should be used: 

Imw 32-N,-4*N(r1) 

where N is the number of registers to be saved, ranging from 1 to 19. 
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Using a Series of Load Instructions 

Because this series of load instructions is exactly the same sequence provided in 
the system GPR load routine described in the next section, it isn't necessary to go 
into detail here-the same information would be duplicated. 

However, it is perfectly valid to take this system GPR load routine and copy it 
inline into a routine. 

Branching to System-Provided GPR Restore Routine 

The standard GPR restore routine is a series of load instructions that are analo­
gous to the store instructions in the GPR save routine: 

_restgpr13 : lwz r13,-76(rl) 
~restgpr14: lwz r14,-72(rl) 
_restgpr15: lwz r15,-68(rl) 

_restgpr30: lwz r30,-8(rl) 
_restgpr31: lwz r31,-4(rl) 

blr 

A routine can restore the registers by branching to the appropriate entry point. 
For example, to restore registers r23 to r31, this branch would be used: 

bla _restgpr23 

Saving FPRs Only 

Now that the save procedure for the GPRs has been discussed, it is much easier 
to describe the save procedure for the 18 FPRs. There are two options: the pro­
vided FPR save routine or an inline copy of this routine. Because these are both 
the same code, only the system FPR save routine will be discussed. 

A system FPR save routine might look like this: 

_savefpr14: stfd fr14,-144(rl) 
_savefpr15: stfd fr15,-136(rl) 
_savefpr16: stfd fr16,-128(rl) 

_savefpr30: stfd fr30,-16(rl) 
_savefpr31: stfd fr31,-8(rl) 

blr 
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In order to save nine floating-point registers (fr23 through fr31), a routine 
could branch to the /Jfpr23/J entry point: 

rnflr 
bla 

rO 
_savefpr23 

As with the GPR case, the LR must be saved before the save routine is called. 

Restoring FPRs Only 

Not surprisingly, the standard FPR restore routine is just a series of floating­
point load instructions that follow the same pattern as the store instructions in 
the FPR save routine: 

_restfpr14: lfd fr14,-144(r1) 
_restfpr1S: lfd fr1S,-136(r1) 
_restfpr16: lfd fr16,-128(r1) 

_restfpr30: lfd fr30,-16(r1) 
_restfpr31: lfd fr31,-8(r1) 

blr 

A routine to restore floating-point registers f r 23 to f r 31 would use this branch 
instruction: 

bla _restfpr23 

Saving Both GPRs and FPRs 

Restoring both GPRs and FPRs gets somewhat messy because the FPRs get 
stored first and the GPRs must be stored immediately above them. Where the 
GPRs get stored now depends on the number of FPRs saved, so a simple scheme 
of storing them at a constant offset from the current stack pointer (as was done 
above) won't work anymore. 

The way around this is to calculate and use a GPR base address instead of the 
stack pointer, as shown in Figure 13-9. This base address is easy to calculate from 
the current stack pointer and the number of FPRs being saved: 
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Figure 13-9 The GPRs Save Area Is Immediately above the FPR Save Area. 
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If the standard CPR save routines are rewritten to use r12 instead of r1, then 
this code can be used to save six ePRs and five FPRs: 

mflr 
subi 
bla 
bla 

rO 
r12,r1,8*5 
_savegpr26 
_savefpr27 

Restoring Both GPRs and FPRs 

Restoring ePRs and FPRs is done the same way as the ePR/FPR save-an extra 
register is used to calculate the CPR base address. As with the save routine, the 
CPR restore routine must be rewritten to use this new base register. 

To continue the example, this code could be used to restore the six ePRs and five 
FPRs saved: 

subi 
bla 
bla 

r12,r1,8*5 
_restgpr26 
_restfpr27 

System Save/Restore Routine in Practice 

In practice, the ePR/FPR save and restore routines can be slightly different than 
the examples. These differences arise because some systems provide two types 
of CPR save and restore routines (one based on r 1 and another based on r 12), 
and because the routines are sometimes expanded to perform duties in addition 
to saving and restoring ePRs or FPRs. 
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Multiple GPR Save/Restore Routines 

Because it is convenient to have CPR save and restore routines based on both r 1 
and r12, many systems provide both. These routines are identical except for the 
base register used. 

To differentiate between these two versions, the standard name of the routines 
are changed: _savegprO_xx and _restgprO_Xx reference the save/restore 
off of rl, and _savegprl_xx and _restgprl_xxreference the save/restore 
off of r12. 

Note that the 'a' variant is used when only the ePRs are being saved, and the 'I' 
variant is used when both ePRs and FPRs are being saved. 

Additional Functionality 

Because these routines are always part of a function's prolog or epilog, it makes 
sense to include some other prolog/ epilog tasks in their code. 

Additional Functionality for Save Routines 

For the save routines, it's easy to add the store of the original LR into the caller's 
stack frame because it is something that the function prolog needs to do anyway. 
If the LR is saved in rO before calling the save routine (as it should be), the LR 
can be saved in the proper place using: 

stw rO,8(rl) 

For the CPR save routine, this instruction only needs to be added to the 'a' vari­
ant because the 'I' variant is always used with the FPR save routine, which will 
presumably handle the LR save. 

The FPR save routine that includes an LR save is differentiated from the stan­
dard FPR save routine by adding an underscore between the 'fpr' and the reg­
ister number. Thus,_savefpr_29 would be used instead of _savefpr29. 

Additional Functionality for Restore Routines 

The restore routines can restore the saved LR value and return directly to the 
value stored there, eliminating the need to return back to the function perform­
ing the restore. This is done by adding code to the end of the restore routine: 

lwz 
mtlr 
blr 

rO,8(rl) 
rO 

When this version of a restore routine is used, it isn't necessary to use the Branch 
with Link form to call the restore routine (no damage will occur if it is used). Only 
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the non-Link branch form is needed because the restore routine will return 
directly to the caller. 

Rewriting the example that restores six CPRs and five FPRs, the restore routines 
would be called as: 

subi 
bla 
ba 

r12,rl,8*5 
_restgprl_26 
_restfpr_27 

As with the save routines, this extra functionality only needs to be added to the 
'0' variant of the CPR save routines. The FPR restore routine that restores the LR 
adds an underscore to the name just like the FPR save routine does. Thus, 
_restfpr_27 is used in the above example instead of _restfpr27. 

13.9 Stack Frames 

Stack frames have been discussed throughout this chapter, but not thoroughly, 
so that other, more interesting topics could be discussed sooner. This section pro­
vides a detailed analysis of the structures that comprise a routine's stack frame. 

A stack frame is composed of five basic areas as shown in Figure 13-10. To help 
speed up data accesses, stack frames are always quadword aligned and the areas 
within the frame are either doubleword or word aligned. The required align­
ment for the stack frame areas is also shown in Figure 13-10. Quadword bound­
aries are marked with a 'Q', doubleword boundaries with a 'D', and word 
boundaries with a 'W'. 

Because the Link, Argument, and Local Storage areas grow down from the top 
of the frame, and the FPR and CPR save areas grow up from the bottom of the 
frame, some unused "padding" bytes may be left between the Local Storage 
Area and CPR Save Area. 

As in the previous sections, the routines in this discussion will be referred to by 
name instead of usage (because usage may change with the context). Thus, the 
routine that owns the stack frame will be known as f 00 ( ), and bar ( ) will be 
used as an example routine that is called by foo ( ). The routine that originally 
called foo ( ) will be referred to as sna ( ). Hence, the complete calling chain is 
sna ( ) =} foo ( ) =} bar ( ). This terminology helps simplify the discussion by 
eliminating some unwieldy phrases needed to identify each routine properly. 
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Figure 13-10 Stack Frame Structure Showing the Required Alignment 
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The Link Area is a 24-byte area that is used by both foo () (the stack frame 
owner) and bar ( ) . Table 13-4 lists the area's fields. 

Table 13-4 Link Area fields 

Offset Size Description Set/Used by 
0 W back chain to sna ( )' s stack frame foo( ) 

4 W savedCR bar( ) 

8 W saved LR bar( ) 

12 W reserved (used by compilers) -
16 W reserved (used by binders) -
20 W saved TOC bar( ) 

The first word (at offset 0) contains a pointer to the stack frame of the routine 
that called foo(), in this case sna(). This field is initialized by foo() as part 
of its function prolog and is used by f 00 ( )' s epilog to restore the original stack 
frame when the routine is complete. 

The next two fields are used by routines that foo ( ) calls, in this case bar ( ), so 
that they have a place to store the LR and CR. These values are stored here 
because it is possible that bar ( ) will not need to create a stack frame and it is 
convenient to always save these register values in the same place. 
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The next two fields are reserved for use by compilers and binders, but they are 
generally left unused. 

The last field is a storage space set aside for bar ( ) to save its TOC pointer when 
it makes out-of-module function calls. Like the LR and CR storage areas, this 
area is part of foo( )'s stack frame so that all routines have a common place to 
store their TOC value, whether or not they create a stack frame. 

Because the Saved CR, LR, and TOC fields are presumed to be available to any 
routine that faa ( ) calls, faa ( ) must create a stack frame if it calls any other 
routine. 

Argument Area 

The Argument Area is a storage place that faa ( ) can use to hold arguments that 
are being passed to bar( ). Table 13-5 lists the area's fields. Note that this is not 
where the arguments to faa () are stored. The arguments being passed to 
faa ( ) are stored in the Argument area owned by sna ( ). 

Table 13-5 Argument Area Fields 

Offset Size Description GPR 

0 W 1st parameter word 3 
4 W 2nd parameter word 4 
... ... ... . .. 
24 W 7th parameter word 9 

28 W 8th parameter word 10 

32 - additional parameters -
(if necessary) 

Because the Argument Area is used to hold the arguments that faa ( ) is passing 
to bar ( ), it must be large enough to hold all the arguments that bar ( ) expects. 
If faa ( ) calls multiple routines, then this area must be large enough to hold all 
the arguments for the routine that requires the most argument space. 

One restriction on the size of the Argument Area is that it is always at least eight 
words in size. The first eight words of arguments would be placed in these eight 
words if they weren't placed in GPRs 3 through 10. These eight words are 
always allocated because it may be necessary for bar ( ) to take the address of 
one of the arguments. In this case, the value would be written from the GPR into 
the analogous slot in the Argument Area and the address into the Argument 
Area would be used. 
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Local Storage Area 

The Local Storage Area is a free-form data area that begins immediately below 
the Argument Area. Its size is determined by the amount of stack space that 
foo ( ) allocates for its stack frame. 

GPR Save Area 

The GPR Save Area is an area set aside for storing the original values of the non­
volatile GPRs so that they can be restored before foo () returns control to 
sna( ). 

The number of registers saved here depends on the number of non-volatile reg­
isters that foo ( ) uses. This can vary from zero to 19 registers, which results in 
this area's size varying from zero to 76 bytes. The position depends on the size 
of the FPR Save Area because the GPR Save Area is defined to be placed imme­
diately above the FPR Save Area. 

FPR Save Area 

The FPR Save Area is where the original values of the non-volatile FPRs are 
stored so that foo ( ) can restore them when it exits. The size of this area varies 
from 0 to 144 bytes, depending on the mttnber of FPRs (0 through 19) that need 
to be saved. 

13.10 Passing Arguments to Routines 

The subroutine calling convention used on most PowerPC systems is register­
based. This means the parameters are passed to the routine using agreed-upon 
registers. This scheme works very well in most cases. However, in some situa­
tions, this simple scheme breaks down, for example: 

• When there are >8 words of fixed-point arguments. 
• When there are> 13 doublewords of floating-point arguments. 
• When there are a large number of both fixed- and floating-point 

arguments. 
• When passing structures or other complex data types into a routine. 

The best way of describing the parameter passing scheme is to formalize the 
basic system and then to extend it to handle the situations listed. This section 
includes many examples that demonstrate how the function parameters are 
assigned to the registers. 
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Arguments for Simple Routines 

A simple routine (as far as this section is concerned) has a small number of 
parameters, all of which are basic types. For example, the following routine has 
four fixed-point parameters: 

void fl(int a,char b,short c,long d) 

These four parameters are assigned to the GPRs from left to right, starting with 
GPR 3 (the first GPR available for use as a parameter). Thus, the register assign­
ments listed in Table 13-6 are made. 

Table 13-6 Arguments for void f 1 (int a, char b, short c, long d) 

Arg 1 2 3 4 

Type int char short long 
Offset (0) (4) (8) (12) 

GPR 3 4 5 6 
FPR - - - -

char in low-order short in low-order 
byte of register halfword of register 

Because this table format will be used throughout this section to describe the 
argument-passing conventions, it is worthwhile to spend a few paragraphs to 
describe how the data is arranged in the table. 

First of all, each argument is described in a separate column. Since there are four 
arguments, there are four columns numbered 1 through 4. This numbering is 
useful because it is convenient to refer to arguments by number instead of name 
or type. 

For each argument, the argument type, an offset, and a GPR/FPR allocation will 
be given. In addition, sometimes notes on the bottom describe some special fea­
ture of the argument. 

The argument type is simply the type originally defined for the variable, to typ­
ically something like int, char, or long. 

The offset for each argument is the offset into the Argument Area that is being 
used to hold the arguments. In many cases, the arguments are passed in registers 
and the space left in the Argument Area is unused. In these cases, the offset will 
be displayed in parentheses. 

The last two rows are the GPR or FPR assignment for this argument. For GPRs, 
this ranges between 3 and 10, and for FPRs it ranges from 1 to 13. Not all argu­
ments have register assignments, and it is possible for an argument to be 
assigned to both a GPR and an FPR. 
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Routines with Integer Arguments 

Routines with only integer arguments are the most basic in terms of how the 
data is allocated. 

A couple of things are important to note about the example arguments described 
in Table 13-6. The first item of note is that each argument is assigned to a differ­
ent register in order starting with GPR 3. The arguments are not combined in 
any way to save registers (as could possibly have been done with arguments 2 
and 3). The second is that the data is always placed in the low-order (rightmost) 
bits of the register. This second rule is true even when the data is allocated in the 
Argument Area. 

Routines with Floating-Point Arguments 

Floating-point arguments are allocated to floating-point registers in the same 
manner that integer arguments are allocated to GPRs. 

In Table 13-7 the four floating-point values are assigned to the first four available 
FPRs. Each value is also mapped into an appropriate number of bytes in the 
Argument Area: eight bytes for double-precision values and four bytes for 
single-precision values. 

Table13-7 Arguments for void f2(double a,double b,float c,double d) 

Arg 1 2 3 4 
Type double double float double 

Offset (0) (8) (16) (20) 

GPR - - - -
FPR 1 2 3 4 

Routines with Both Integer and Floating-point Arguments 

When both integer and floating-point arguments are being passed to a routine, 
things become somewhat complicated. The problem stems from the fact that the 
eight words in the argument area are assigned to GPRs 3-10, and now some 
floating-point values may need to be mapped into that area. 

The conflict is resolved by not using the GPRs that would be assigned to the 
same area in the Argument Area as the FPRs that need to be mapped into that 
area. The tables show this by allocating the GPRs to the floating-paint values 
and listing the GPR numbers in parentheses. 

Table 13-8 shows how GPRs 4 and 5 are set aside to eliminate any conflict with 
the double-precision value stored in FPR I, and GPR 7 is set aside for FPR 2 
(which contains only a single-precision value). These three GPRs are not used 
for argument passing, but they can be used by the called routine for any other 
purpose. 
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Table13-8 Arguments for void f3(int a,double b,char c,float d,int e) 

Arg 1 2 3 4 5 

Type int double char float int 
Offset (0) (4) (12) (16) (20) 

GPR 3 (4,5) 6 (7) 8 

FPR - 1 - 2 -

Routines with More than 32 Bytes of Arguments 

If there are more than 32 bytes of arguments, then some arguments will not fit 
into the GPRs and must be stored directly in the Argument Area. Whenever 
there are more than 32 bytes of arguments, all of the argument bytes beyond the 
32nd must be stored in the Argument Area. 

In Table 13-9, the first six parameters fill up the entire 32 bytes of the Argument 
Area, so it must be expanded to 44 bytes to hold all of the arguments. 

Table 13-9 Arguments for void f4 (int a, double b, double c, 

single d,int e,int f,int g,double h) 

Arg 1 2 3 4 5 6 7 8 

Type int double double single int int int double 
Offset (0) (4) (12) (20) (24) (28) 32 36 

GPR 3 (4,5) (6,7) (8) 9 10 - -
FPR - 1 2 3 - - - 4 

Another interesting aspect of this example is that even though the GPRs have all 
been expended and the Argument Area has been partially used, the FPRs can 
continue to be allocated as long as they are available. In this case, the floating­
point values must still be passed in the Argument Area, but they may also be 
passed in the appropriate FPRs. 

Routines without Prototypes 

The only difference between routines with and without prototypes is how the 
floating-point parameters are handled. If a called routine does not have a proto­
type, then the floating-point values are passed in both the GPRs and the FPRs. 

The mapping follows the same technique used when there were mixed integer 
and floating-point arguments. The difference is that now the GPRs aren't just 
being allocated. They are actually being used to store the floating-point value (in 
addition to the FPR, which stores the same value). 

To show some of these register assignments, routines with floating-point argu­
ments are revisited in Tables 13-10 and 13-11 to show the GPR allocation. 
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Table 13-10 Arguments for void f2 (double a, double b, float c, double d) 

Arg 1 2 3 4 

Type double double float double 
Offset (0) (8) (16) (20) 

GPR 3,4 5,6 7 8,9 

FPR 1 2 3 4 

Table 13-11 Arguments for void f3(int a,double b,char c,float d,int e) 

Arg 1 2 3 4 5 

Type int double char float int 
Offset (0) (4) (12) (16) (20) 

GPR 3 4,5 6 7 8 
FPR - 1 - 2 -

Routines with an Ellipsis 

An ellipsis indicates that the routine can have a variable number of unspecified 
arguments, which is very similar to a routine that doesn't have a prototype. 

If a routine prototype has an ellipsis, then it is treated as if the prototype didn't 
exist, and the arguments are passed in both the GPRs and FPRs. 

Passing Complex Arguments 

Complex arguments like structures are passed using the registers just as if the 
elements of the structure were passed to the routine individually. The only 
exception to this rule is that arguments that do not require the entire register 
word (like chars and shorts) are left justified in the register instead of right justi­
fied. The reason for this difference is to match the way the structure is stored in 
memory. 

The example routine in Table 13-12 assumes the definition of the structure: 

typedef struct { 
int a; 
short b; 
double c; 

} data; 

Table 13-12 Arguments for void fS(data abc,double d,int e) 

Arg 
data 

4 5 
1 2 3 

Type int short double double int 
Offset (0) (4) (8) (16) (24) 
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GPR 3 4 (5,6) (7,8) 9 
FPR - - 1 2 -

short in high-order 
halfword of register 

13.11 Retrieving Results from Routines 

Like arguments that are passed to routines, the results returned to the calling 
routine are all register based. 

Integer Results 

Integer function results are returned in registers r3 and r4. The rules governing 
the use of these registers are: 

• int, long, and pointer values are returned in r3. 

• Unsigned char and short values are returned in r3, where the value is 
right justified in the register and zero-extended. 

• Signed char and short values are returned in r3, where the value is 
right justified in the register and sign-extended. 

• Bit fields of 32 bits or less are returned right justified in r3. 

• 64-bit fixed-point values are returned in r3:r4, where r3 contains the 
high-order portion of the value and r4 contains the low-order 
portion. 

Floating-Point Results 

Floating-point function results are returned in registers frl through fr4, 
according to these rules: 

• Single-precision (32-bit) values are returned in frl. 

• Double-precision (64-bit) values are returned in frl. 

• Long double-precision (128-bit) values are returned in frl:fr2, 
where frl contains the high-order 64 bits and fr2 contains the low­
order 64 bits. 

• Single- or double-precision complex values are returned in frl:fr2, 
where frl contains the real single- or double-precision portion, and 
fr2 contains the imaginary single- or double-precision portion. 

• Long double-precision complex values are returned in frl:fr4, 
where frl:fr2 contain the high- and low-order bits of the real 
portion, and fr3:fr4 contain the high- and low-order bits of the 
imaginary portion. 
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Complex Results 

When complex data types like structures or strings (of greater than four charac­
ters) need to be returned as a function result, the caller must first allocate a buffer 
large enough to hold the result. A pointer to this buffer is passed to the routine 
as its first argument and occupies GPR 3 (and the first four bytes of the Argu­
mentArea). 

The first user-visible argument to the routine is passed in GPR 4. 

13.12 Stack Frames and alloca ( ) 

The C library routine alloca ( ) causes a small problem with the requirement 
that the stack pointer always be a valid stack frame. Since alloca ( ) is defined 
to allocate storage space dynamically on the stack, it must update the stack 
pointer. The trick is to make sure that it allocates the needed storage while keep­
ing the current stack frame intact. 

This is done by maintaining two pointers into the stack: the stack pointer and a 
local storage area pointer for this routine. The stack pointer is always rl and the 
local storage area pointer can be any register chosen by the routine. By using these 
two pointers, the link area and the argument area can be copied to the top of the 
newly expanded stack frame and the new storage space is taken from the area 
between the argument area and the local storage area. As Figure 13-11 shows, this 
results in the new storage area partially overlapping the area on the stack that 
used to contain the link area and argument area. 

The local storage area pointer can be any available GPR and must be initialized 
and maintained by the routine. 

Routines that do not use alloca ( ) do not need to use a separate pointer for 
local storage because the top of the local storage area is trivially calculated from 
the stack pointer and guaranteed not to change. 

In their epilog code, routines that use alloca ( ) must restore the previous stack 
frame using the value stored at offset 0 from the current stack frame. This must 
be done because there is no easy way to calculate the current size of the stack 
frame because the values passed to alloca ( ) are presumably runtime depen­
dent. 
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Figure 13-11 Stack Frame before and after Call to alloca ( ) 
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Subroutine calls are complicated when the routine being called is not located in 
the same module as the routine making the subroutine call. Routines located in 
different modules are likely to have different TOC environments, and each rou­
tine needs to have the proper environment to function properly. 

Consider the arrangement of routines shown in Figure 13-12. 

Two modules are defined, each with a different TOC environment. As far as the 
routine foo ( ) is concerned, the routine bar ( ) is a local routine because it is 
located in foo( )'s local module. A call to bar() from foo() can be accom­
plished by simply using the Branch with Link instruction to the address of bar ( ). 
This is acceptable because both share the same TOC environment. 
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Figure 13-12 Two Sample Modules with Different TOe Environments 

Module 1 
TOC = 1000 

Module 2 
TOC = 2000 

The kyoko ( ) routine is located in a module that is foreign to foo ( )' s module, 
so kyoko ( ) has a different TOe environment. If foo ( ) were to simply Branch 
with Link to the address of kyoko ( ), kyoko ( ) would inherit the wrong Toe 
environment, which would probably cause bad things to happen. 

To prevent them from happening, there must be some mechanism for switching 
TOe environments whenever an "out-of-module" routine is called. 

Function Descriptors 

One way of handling the necessary Toe context switch is to use a structure 
called a function descriptor (sometimes called a transition vector) instead of just a 
simple pointer. A function descriptor is a pointer to the structure described in 
Table 13-13. 

Table 13-13 Structure of a Function Descriptor 

Offset Description 
0 routine address 
4 TOe 
8 environment pointer 

The first word of this structure contains the address of the routine, and the sec­
ond word contains the Toe pointer. Following words can contain data such as 
an environment pointer, but anything beyond the Toe pointer is optional and 
depends on the development environment originally used to create the routine. 
In many cases, these following words are zero or are not present. 
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Using this structure, an external routine can be called by passing the function 
descriptor to a special routine provided to take the information in the descriptor 
and properly pass control to the target routine. 

Pointer Global Linkage (.ptrgl) Routines 

A pointer global linkage (. ptrgl) routine is a small glue routine whose purpose 
is to pass control to a routine defined by a given function descriptor. Part of the 
routine's operation is to handle the Toe context switch properly. 

Using the .ptrgl Routine 

The method of using a • ptrgl routine is exactly the same as using a normal 
routine call, except that the Branch with Link to the target routine is replaced with 
these actions: 

• Load the function descriptor into r 1I. 
• Branch with Link to the • ptrgl routine. 
• Restore the current routine's Toe (if necessary). 

Some development environments use r12 instead of r11, but the general idea is 
still the same. 

Loading the address of the function descriptor and the branch are both straight­
forward, but the TOe restoration might seem a bit tricky because the current 
Toe doesn't seem to have been saved anywhere. The part that is not apparent 
from the bulleted list is that part of the . ptrg 1 routine's responsibility is to save 
the Toe in the Link Area of the stack frame before setting up the target routine's 
TOe environment. This allows the TOe to be restored using a simple load 
instruction: 

lwz rTOC,20(r1) 

The "20" value is the magic offset from the top of the stack frame to the TOe 
storage area in the Link Area. This is where the • ptrgl routine will save the 
current TOe. 

If it is known that the source and target routines both share the same Toe envi­
ronment, then the lwz instruction is not necessary. In this case, a standard no-op 
instruction will be added in place of the load. This no-op is commonly encoded 
as a ori rO, rO, 0, but some older development environments used cror 
31,31,310rcror 15,15,15. 

This no-op reflects the fact that the compiler is generally unable to tell if the tar­
get routine will be in the same module as the source (the calling) routine. The 
compiler cannot figure this out because module assignments are not made until 
the object code is linked by the linker. When the compiler encounters a subrou-
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tine call to a routine that is not defined in the same source file, it must assume 
that the linker could place the routine in another module. To support this poten­
tial out-of-module call, a no-op placeholder instruction is placed after the sub­
routine call. This gives the linker a place to write the required load instruction. If 
the two routines are in the same module, the linker doesn't add the load instruc­
tion and the no-op instruction remains. 

Of course, if the compiler has enough information available to determine if the 
called routine is in the same TOC environment, then the placeholder no-op 
instruction is unnecessary and is not generated. 

How the .ptrgl Routine Works 

The actions performed by the. ptrgl routine are best described by examining 
the code: 

lwz rO,O(r11) # rO <= routine address 
stw rTOe,20(r1) # save current Toe 
mtctr rO # ctr <= routine address 
lwz rToe , 4 ( r 11 ) # setup proper Toe 
lwz r11,8(r11) # setup proper env ptr 
bctr # call routine 

Because this is a short routine, each of its instructions will be examined in turn. 

The 1 wz r 0 , 0 ( r 11) instruction gets the address of the target routine from the 
function descriptor and stores it in r O. This value will later be stored in the CTR 
so that the bctr instruction can be used to jump to the routine. 

The s tw rTOe, 20 ( r 1) instruction saves the current TOC in the Link Area of 
the current routine's stack frame. The value stored here will be restored by the 
lwz instruction, which follows the branch to the. ptrgl routine. 

The mtctr rO instruction takes the target routine address and places it in the 
CTR register so that it can be jumped to easily. 

The 1 wz rTOe, 4 ( r 11) instruction gets the target routine's TOC pointer and 
stores it in the TOC register. 

The optional 1 wz r 11 , 8 ( r 11) instruction sets up the target routine's environ­
ment pointer. Because the environment pointer isn't used by all development 
systems, this instruction may not be necessary. 

The bctr instruction actually (finally) calls the target routine. 

Note that the code does not touch the LR. The calling routine calls the. ptrgl 
glue using a Branch with Link instruction that sets the LR to hold the address (in 
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the original routine) where control should return. Since the LRhasn't been mod­
ified, the target routine can return control using the standard blr instruction. 

Global Linkage (.glink) Routines 

Global Linkage (. gUnk) routines are similar to • ptrgl routines except in 
usage. A • glink routine is created for every external routine that a module 
imports, so there would be a separate • glink routine for every system or 
library routine that a program calls. 

The main difference between a • 9 I ink routine and the • ptrg I routine is where 
the function descriptor originates. The. ptrgl routine is a general routine that 
is passed a function descriptor; the • glink routines are specific to a particular 
target routine. 

This does not mean that the function descriptors for • glink routines are 
encoded in the • glink routine itself. A separate function descriptor is still 
stored in the Toe area for the module. Each. glink routine encodes only the 
offset from the Toe to the function descriptor. This method gives both the linker 
and the. glink routine easy access to the descriptor. 

Using the .glink Routines 

Other than this difference in the source of the function descriptor, • glink rou­
tines are used like. ptrgl routines, except the function descriptor (obviously) 
needn't be passed in r 11. All • 9 I ink routines are called using a Branch with 
Link instruction, and they are always followed by a lwz or no-op instruction. 

How the .glink Routines Work 

The code for the standard. glink routine is: 

lwz rI2,offset(rTOe) # r12 <= f() desc 
stw rTOe,20(rl) # save current Toe 
lwz rO,O(rI2) # rO <= routine address 
lwz rTOe,4(rI2) # set up routine's Toe 
rntctr rO # ctr <= routine address 
bctr # call routine 

As with the .ptrgl code, it is useful to describe the routine instruction by 
instruction. 

The first instruction, lwz r12, offset (rTOe), gets a pointer to the target rou­
tine's function descriptor and places it in r12. The offset to the function descrip­
tor from the module's TOe is hard-coded into this instruction. 
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The s tw rTOC, 20 ( r 1) instruction saves the current Toe in the Link Area of 
the current routine's stack frame. 

The next two instructions, 1 wz r 0 , 0 ( r 12) and 1 wz rTOC, 4 ( r 12 ), get the 
target routine's address and TOC pointer and load them into rO and rTOC, 
respectively. 

The last two instructions put the target routine's address into the CTR register 
and then call the routine. 

Function Pointers in High-Level Languages 

In high-level languages, function pointers are always implemented as function 
descriptors. However, these descriptors are never directly visible to the pro­
grammer-the compiler handles all necessary descriptor magic so the program­
mer only deals with (apparent) function pointers. 

Function descriptors are necessary because there is no way for the compiler to 
know what the program plans to do with the "function pointer." If it is going to 
be used as a callback function for a system routine, then the routine must be 
passed along with its TOC environment as a function descriptor. 

Because the compiler can't know if a descriptor is needed, it plays it safe and 
always creates one. 
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Until this point, the chapters in this book have been concerned with describing 
how the instructions work at a functional level so that conceptually correct frag­
ments of code can be written. Starting with this chapter, the book switches gears 
and concentrates on taking these working code fragments and modifying them 
so that they execute more efficiently. 

Note that these optimization techniques are very important for programs writ­
ten in assembly language. In general, RIse processors require that the program­
mer (or compiler) have a large store of knowledge about the processor. It 
requires a lot of effort to produce an assembly language routine that is more 
efficient than one produced by a properly written compiler. If you are not will­
ing to apply these techniques, then you are most likely better off using a high­
level language and letting the compiler handle all these issues. 

14.1 When to Optimize 

Optimizing is a trade-off between code that executes quickly and code that is 
easy to write and maintain. This is true from both the high-level language and 
the assembly language points of view, although the problem is more acute for 
the assembly language programmer. 

Because it's more time-consuming to write and maintain optimized code, it's 
important to invest the effort spent optimizing code wisely. Many times this 
comes down to simply applying common sense, for example, recognizing that 
certain routines are less likely to benefit from optimization. 
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Thus, the key to optimizing effectively has less to do with scheduling instruc­
tions and more to do with identifying what needs to be optimized and under­
standing how to rewrite the code. Any person (or compiler) can learn to 
schedule instructions optimally, but identifying the code that should be opti­
mized requires skill and intelligence. 

This, coupled with the fact that the human programmer actually understands 
the program that is being written at a conceptual level, is why properly opti­
mized hand-assembled code is almost guaranteed to be superior to properly 
optimized compiled code. 

Pre-Optimization Steps 

Four basic steps to writing optimized code should be taken before any low-level 
optimizations should even be considered: 

• Make sure that the program is written correctly. 
• Profile the code to identify which routines will benefit most from 

optimizing. 
• Optimize the high-level algorithm and data structures. 
• Apply standard high-level optimizations. 

Only after all of these steps have been taken (and perhaps applied iteratively) 
should assembly-level optimizations be considered. Many times, these steps are 
all that is necessary. 

Profiling Code 

One of the first steps involves using a profiler. Although profiler features vary 
widely, it is worthwhile to take time to discuss them briefly. 

A profiler is a utility program that "watches" the execution of another program 
(the target application) and produces a summary of how much time each of the 
target application's routines takes. Depending on the profiler, the target applica­
tion may need to be recompiled, or it may be able to get all the required informa­
tion from the debugging symbols. 

The information returned by the profiler can be quite useful because it gives a 
reasonably good summary of where a program is spending most of its time. For 
example, a profiler may return some summary information like this: 

%Time 
47.2% 
28.7% 
14.1% 
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8.1% in it 
1.9% main 

Examining Compiled Code 

This information indicates that almost half of the execution time was spent in the 
faa ( ) routine, which means that faa ( ) is a potential candidate for optimiza­
tion. 

Of course, this is just the first step. After the routines that require the most CPU 
time have been identified, they need to be evaluated to see if optimization is 
worthwhile. In some cases, the routine may not be easily optimizable. In other 
cases, the routine may not be the proper place to expend effort. 

As an example of the latter situation, consider the time percentage distribution 
where the sna ( ) routine is basically a loop that calls the faa ( ) routine repeat­
edly. This could quite easily lead to the situation where faa ( ) takes 47.2% of the 
CPU time and sna( ) takes only 14.1%. In this case, it is possible that a small 
change in sna ( ) could reduce the number of times that it calls faa ( ). This opti­
mization could possibly affect program execution speed more greatly than any 
optimizations applied to faa ( ). 

Most profilers provide more information than the example gives. Some profilers 
record the number of times that each routine was called, and others record the 
entire call-chain to determine how much time a particular routine spent in exe­
cution when called by each routine. Profiler feature sets vary widely, so it is best 
to familiarize yourself with whatever profiler you have and learn to use the 
information that it provides. 

14.2 Examining Compiled Code 

In a chapter devoted to writing optimized code, it may at first seem strange to 
have a section on reading compiled code. There are two really good reasons that 
directly relate to optimizing, and a third reason that doesn't directly apply to 
writing optimized code, but is a good reason nonetheless. 

First, only by reviewing the compiler output will a programmer get an idea of 
how intelligent the compiler is with respect to optimization. Only when you 
know the capabilities (and limitations) of the compiler can you take advantage 
of them (or work around them). 

The second reason for looking at compiler-generated output is to learn how the 
compiler optimizes so you can apply similar techniques when hand-coding in 
assembly. At first glance, this reason may seem a bit silly: if the compiler is better 
at optimizing than a particular programmer, it makes sense for that programmer 
to simply use the compiler and not bother with assembly language. This is 
somewhat true, but the programmer is bringing to this picture a high level 
knowledge of what is being accomplished (something the compiler isn't likely to 
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have). Many times, this gives the programmer a significant advantage over the 
compiler. 

The final reason for wanting to be able to read compiler-generated output is that 
it is sometimes necessary to debug at that level. Most debugging is, of course, 
done at the source-code level, but at times the source is not available or subtle 
interactions between the system and the program cause the source-level debug­
ger to be inadequate. 

Disassemblers 

One of the most important tools used when decompiling is the disassembler. 
When choosing a disassembler, it is important that you find one that disassem­
bles the instructions into their most readable forms. 

Surprisingly, a number of disassemblers disassemble instructions improperly. 
"Improperly," does not mean that instructions are disassembled incorrectly; 
they are just not disassembled as well as they could be. 

Consider these instruction disassemblies: 

bc 12,10,addr 
rlwinm 0,0,4,0,27 
mfspr 0,8 

While these disassemblies are technically correct, compare them to the following 
disassemblies of the same instructions: 

beq 
slwi 
mflr 

crf2,addr 
rO,rO,4 
rO 

Using a disassembler that disassembles properly makes the code easier to follow 
and understand. It also reduces the likelihood that the instruction will be misin­
terpreted because you won't have to remember details like "the 10 means bit 2 
(the EQ bit) of CR field 2," and "the 12 means the branch occurs if the bit is set." 
You see the instruction as beq crf2, and you know right away what operation 
it's performing. 

This is especially important for the complex Rotate and Insert with Mask instruc­
tions that the PowerPC provides. In the example, it's not readily apparent that 
the rlwinm 0, 0,4, 0,27 instruction is performing a left shift of four bits, 
whereas the slwi rO, rO, 4 instruction is less opaque. 
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Difficulties with Reading Compiled Code 

The biggest problem with reading compiled (or even hand-assembled) code is 
that it quickly becomes confusing. Sequences of instructions that are part of the 
same conceptual "operation" are spread out and intertwined as part of the 
instruction scheduling optimization. 

Take, for example, this simple sequence of instructions: 

# ptr(r2) contains a pointer to a word 
# load that word into r6 
lwz rS, ptr (r2 ) # get the ptr 
lwz r6,O(rS) # get the data 

# get the return 
lwz rO,8(rl) 

address and exit 
# get rtn addr 

mtlr rO 
blr 

This would typically be written as: 

lwz 
lwz 
mtlr 
lwz 
blr 

rO,8(rl) 
rS,ptr(r2) 
rO 
r6,O(rS) 

# move it into LR 
# exit 

Even with comments added, the rewritten code would be harder to follow. The 
real problem is that it's hard to add comments to the rewritten code because the 
instructions performing the two different operations are intertwined. Of course, 
the example is simplified. Most real-world examples are much worse. 

Good Things about Compiled Code 

On the other hand, compilers have a wonderful tendency to use standard tem­
plates for most operations. Functions are almost guaranteed to begin and end 
with the standard routine prolog and epilog code. A sequence of code like this: 

mflr 
stmw 
stw 
stwu 

rO 
r22,-40(rl) 
rO,Ox8(rl) 
rl,-120(rl) 

only occurs at the beginning of a routine, because it is saving registers and creat­
ing a new stack frame. 

Difficulties with Reading Compiled Code 299 



§ 14.3 Standard Optimizations 

A large number of these code templates are used by compilers. When you know 
and recognize these standard templates, reading compiled code becomes much 
easier. 

Conclusions 

Overall, compiler-generated code is sort of a mixed blessing. On one hand, the 
code can be somewhat confusing because compilers can be quite good at instruc­
tion scheduling, but there are also a lot of commonly used templates that can 
also be used as landmarks for identifying code. 

Half the battle of reading compiled code is knowing the basics-what the indi­
vidual instructions do and how the GPR and FPR usage conventions are 
applied. The previous chapters in this book have attempted to address this need. 

The rest of the skills required come from examining real-world code samples 
and knowing how the code is typically optimized, both at the high level and at 
the assembly level. The remainder of this book tries to form a good foundation 
upon which these skills can be built. 

14.3 Standard Optimizations 

Before covering the specific optimizations for the PowerPC processor, it is prob­
ably worthwhile to quickly review some standard optimization techniques com­
monly used to improve code performance. This section does not attempt to 
cover all compiler optimization techniques. Such a task is beyond its scope. 

Instruction Strength Reduction 

This technique involves replacing "strong" (more complex) instructions with 
"weak" (simpler) instructions. The criterion by which an instruction is judged 
either strong or weak can be a measure of its execution speed or its object code 
size. 

A commonly used strength reduction is substituting algebraic shift instructions 
for multiply and divide operations. This optimization can only be applied when 
the value is being multiplied (or divided) by a power of 2, but the savings in 
execution time can be substantial. 

Common Sub expression Elimination (CSE) 

A common subexpression is an expression or portion of an expression that 
occurs more than once in one or more statements. In the examples: 

c = (a+b) + (b/(a+b»; 

300 Chapter 14 



and 

q = (a+b) * (3*2); 
r = (c+3) + (a+b); 

Code Motion of Loop Invariants 

the sUbexpression (a+b) is common because it occurs more than once. 

A subexpression can be common across statements or across compiler blocks. 
When elimination is being performed across compiler blocks, the technique is 
termed "Global Common Subexpression Elimination." Note that this use of the 
term" global" refers to CSE across basic compiler blocks and not across function 
boundaries. 

Implementing global CSE can be tricky because sometimes the compiler must 
insert extra copy statements to apply the CSE. This is shown below, where the 
e=a+b statement cannot be simply replaced with either e=c or e=d. 

if(x) 
c 

else 
d 

a + b; 

a + b; 
e = a + b; 

The code must first be transformed so that the final assignment statement can be 
replaced with e=t: 

t = a + b; 
if(x) 

c t; 
else 

d = t; 
e = t; 

Code Motion of Loop Invariants 

Loop invariants are computations whose values do not change within the body 
of a loop. These computations can be moved outside (preferably before) the 
loop, thus reducing the time that must be spent within the loop. This optimiza­
tion (along with the elimination of a common subexpression) can be used to 
change: 

while ( i> (x-l ) ) 
a[i++] = y+(x-l); 
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to: 

tl = x-I; 
t2 = y+t1; 
while (i>tl) 

a[i++] = t2; 

These optimizations reduce the number of arithmetic operations (not including 
the expression to increment i) from 3x(x-l-il) down to only 2, where il is the 
value of i when the loop is entered. 

Function Inlining 

Small functions are many times ideal candidates to be compiled "inline." A func­
tion compiled inline is simply expanded and placed at the point of the function 
call. Inline functions take more space than the function calls because the code 
must be repeated at each point where the function is II called." However, because 
the function calling overhead is eliminated, the typical result is faster code. 

Loop Unrolling 

Loop umolling is the process of reducing the number of loop iterations by 
repeating the loop code multiple times. This speed optimization increases code 
size. By reducing the number of loop iterations, the code reduces the impact of 
the overhead associated with the branch back to the head of the loop. This opti­
mization is especially useful for pipelined processors, because each branch 
reduces the effectiveness of the pipeline. 

This loop: 

for(i=O;i<IOO;) 
a[i++] = 0; 

can be unrolled once to produce: 

for(i=0;i<50;) { 
a[i++] 0; 
a[i++] = 0; 

} 
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or twice to produce: 

for(i=0;i<25;) { 
a[i++] 0; 
a[i++] 0; 
a[ i++] 0; 
a[ i++] 0; 

} 

Loop Unrolling 

or it could even be completely unrolled. The speed of the loop tends (although 
it is not guaranteed) to increase as the loop is unrolled further. 

One potential problem with loop unrolling is that the overall performance can 
decrease if the loop is unrolled so far that cache misses on the instruction fetches 
offset performance gains. Take care when unrolling a loop more than once or 
twice. 
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Resource 
Scheduling 

Every CPU has a limited number of processor resources that programs can use. 
When optimizing code, it is important to maximize the use of all of resources 
while minimizing conflicts that may arise from multiple parts of the processor 
trying to use the same resource at the same time. 

To simplify matters, most modern processors seek to minimize the number of 
special resources in the cpu. This is why recent processors tend to have a large 
store of general purpose registers instead of special purpose registers, like loop­
ing and branching registers. 

In spite of this trend, the PowerPC has a variety of special purpose registers, 
namely, the LR, CTR, and CR. However, certain POWER SPRs (like the MQ reg­
ister) are not part of the PowerPC specification because they can become 
resource bottlenecks. 

The LR, CTR, and CR were included because they permit certain types of hard­
ware optimizations to be implemented. However, care must be taken when 
using these registers or they may lead to resource conflicts that can adversely 
affect performance. 

15.1 Types of Processor Resources 

Three types of processor resources can lead to conflicts: the pipeline stages, the 
processor registers, and the memory subsystem. Each of these resource types 
will be discussed. 
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Pipeline Stages 

The pipeline stages are the most obvious timing-related resources. For the most 
part, the processor has one copy of each pipeline stage and only one instruction 
can be in each stage at any time. 

There are some exceptions to this "rule." Certain simple pipeline stages (like the 
writeback stages) allow multiple instructions to be in the stage simultaneously. 
Also, some future implementations of the PowerPC are likely to implement 
duplicate pipelines so that there would be multiple copies of the "same" pipe­
line stage. 

Processor Registers 

There is only one copy of each of the registers in the processor. This means mul­
tiple instructions that need to access the same register must have some mecha­
nism for arbitrating and sharing the resource. 

For the GPRs and FPRs, the programmer has some control over which specific 
register to use. Arranging instructions so that they use different registers (if pos­
sible) can help avoid conflicts. 

With the SPRs, the programmer doesn't have much choice-there's only one of 
each. However, many techniques can be applied to avoid stalls due to these 
unique resources. 

Memory Subsystem and Cache 

The memory and cache conflicts are the most interesting to discuss because they 
require that the discussion be held at a level much higher than the assembly 
language level. 

These conflicts arise because the processor uses caches to increase performance, 
and these caches are limited in size. Since a cache miss can stall the processor for 
many cycles, it is important to arrange the memory accesses to minimize the 
likelihood of a cache miss. 

15.2 Pipeline Conflicts 

The pipeline conflicts were discussed earlier at a simple level in Chapter 12, 
which covered instruction timings. That chapter only covered the basics of pipe­
line timings and showed the stages each instruction required. 

This section will go into more detail, discussing each processor stage and outlin­
ing the specific conflicts that can arise in each stage. 
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Fetch Arbitration Unit (FAU) Stages 

The FAU consists of only one "stage," the Fetch Arbitrate (FA) stage. However, 
the FA stage of the FAU differs from other pipeline stages because instructions 
do not really pass through the FAU. The job of the FAU is to generate the address 
of the next instruction group to be loaded from the cache into the Dispatch Unit. 
Instruction execution technically doesn't begin until the instructions are loaded 
into the IQ buffer in the DD. 

Referring to an instruction as being in the "FA stage" is simply a convenient way 
of noting that the instruction in question is one that will be loaded into the Dis­
patch Unit after the cache is accessed. 

The end result is that the FA stage can never cause a pipeline stall because it is 
not really a pipeline stage. If a stall occurs during the instruction fetch process, it 
occurs during the CARB stage of the CAU. 

Cache Access Unit (CAU) Stages 

Because the CAU provides the only interface between the execution units of the 
processor and the cache, there are plenty of opportunities for pipeline stalls to 
occur. Two major types of stalls are caused by different units of the processor 
trying to access memory simultaneously and by the requested block of memory 
not being present in the cache. These cases are handled by the CARB and CACC 
stages, respectively. 

This section reviews the potential stalls that can occur in the CAD. A more thor­
ough treatment of this topic is given in §12.6, "Cache Access Timings." 

Cache Arbitration (CARB) 

The CARB stage decides which cache request gets passed along to the CACC 
stage. Because of this, lower priority cache access will stall in CARB if another 
cache access of higher priority is in CARB. Cache accesses are prioritized as: 

• Cache Maintenance Requests 
• Data Load Requests 
• Data Store Requests 
• Instruction Fetch Requests 

where Cache Maintenance Requests from the memory subsystem have the highest 
priority and the Instruction Fetch Requests have the lowest priority. 
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Cache Access (CACC) 

After a cache access has been initiated, the access requires one cycle in CACC if 
the data is present in the cache. If the data is not present, then at least six cycles 
will be spent waiting for the cache to get the data from the main memory store. 
After the data is forwarded to the proper place, the CACC stage will be occupied 
for at least another two cycles while it completes the cache update operation. 

To summarize, this means that at least six cycles are spent waiting for the data, 
and that the CACC stage cannot be used by another instruction until at least two 
more cycles have gone by. §12.6, "Cache Access Timings," provides more details 
about cache miss timings. 

Dispatch Unit (DU) Stages 

The Dispatch Vnit consists of only an eight-entry Instruction Queue. The only 
stalls that can arise in this unit are due to stalls in the IV, FPV, or BPV that pre­
vent an instruction from being dispatched. 

Integer Unit (lU) Stages 

Almost all integer instructions require one cycle in each of the primary IV stages, 
some of which can be overlapped. Exceptions to this are well defined and are 
presented below. 

The IWL stage is the only IV stage that is not considered a "primary stage." This 
stage is used only by the integer load instructions. 

Integer Decode (ID) 

Only two situations cause an instruction to stall in the ID stage. The first condi­
tion is when the instruction needs to read the CR or XER and that resource is 
currently being updated by an instruction currently in IE. This causes the 
instruction to stall in ID until the previous instruction moves into IWA and 
updates the appropriate register. 

The second situation is when a previous instruction occupies the IE stage of the 
IV pipeline for more than one cycle. In this case, the instruction must wait in ID 
until the IE stage is available. 

When an instruction stalls in ID, a new instruction can enter the IQO stage of the 
DU. However, when the ID stage is vacated, this instruction occupies the IQO 
and ID stages for one cycle instead of moving on to just the ID stage so that a new 
instruction can enter lQO. 
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Integer Execute (IE) 

The following timing table shows this, where the nand instruction stalls in IQO 
until the and instruction can vacate the ID stage. After the ID stage is free 
(cycle 7), the nand instruction occupies both the IQO and ID stages for a cycle 
before continuing to the IE stage. 

Cycle #: 1 2 3 4 5 6 7 8 9 

mulli r9,r9,5 
IQO 

IE IE IE IE IE 
IC 

ID IWA 
- -

and rO,rO,rl IQl 
IQO 

ID ID ID ID IE 
IC 

ID IWA 
-

nand r2,r2,r3 IQ2 IQl IQO IQO IQO IQO 
IQO 

IE 
IL 

ID IWA 

Integer Execute (IE) 

All instructions spend one cycle in IE except: 

• Multiply instructions. 
• Divide instructions. 
• Load and store multiple (including string) instructions. 
• Move to/from SPR instructions for certain SPRs. 
• System Call and Return from Interrupt instructions. 

The multiply instructions require five, nine, or ten cycles, depending on the data 
being multiplied. The divide operation always takes 36 cycles in IE. The load/ 
store multiple and string operations require one cycle in IE for each register of 
data being transferred. 

The SPR and System Call instructions listed above all require two cycles in IE. 
Note that not all Move to/from SPR instructions require two cycles-all the com­
monly used SPRs (CR, CTR, LR, and XER) require only one cycle in IE. 

Another situation that causes an instruction in IE to stall is when a stwcx. 
instruction is in IWA. See the timing for the Store Conditional Word instruction in 
§12.3, "Fixed-Point Instruction Timings," for an explanation of this stalling con­
dition. 

Integer Completion (IC) 

The IC stage is always executed in parallel with another stage, and it is used to 
notify the other stages that the instruction is committed, even though it may not 
yet be complete. Because this stage performs no calculations, it doesn't generate 
any stalls. 

However, the IC stage can inherit a stall from the IWA stage. Almost all instruc­
tions spend one cycle in IWA and, thus, require only one cycle in Ie. The Trap, 
System Call, and some Move to/from SPR instructions are exceptions because they 
require multiple cycles in IWA and Ie. 
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Integer Arithmetic Writeback (IWA) 

As in IC, most instructions require only one cycle in IWA. The exceptions to this 
are the same as noted for the IC stage: Trap, System Call, and some Move to/from 
SPR instructions. 

Integer Load Writeback (IWL) 

The IWL stage is the writeback stage for integer load instructions. All integer 
load instructions require one cycle in this stage. This stage is completely inde­
pendent of the IWA stage (the writeback stage for non-load integer instructions). 
Both the IWL and IWA can writeback to the GPRs during the same cycle, pro­
vided that they both don't need to update the same GPR. 

Floating-Point Unit (FPU) Stages 

Timing for the FPU is more complex than for the IU because the FPU can handle 
both single- and double-precision operations. 

The simple floating-point instructions require one cycle in each of the four pri­
mary FPU stages: FD, FPM, FPA, and FWA. Exceptions are noted in the next 
section. 

FP Instruction Queue (Fl) 

The Fl stage is simply an instruction queueing stage used when the FD stage is 
full. Because this stage is just a queue that doesn't perform calculations, it 
doesn't generate stalls. 

FP Decode (FD) 

Instructions typically require one cycle in this stage, although an instruction will 
stall in this stage for any of these reasons: 

• A multi-cycle floating-point operation is currently executing in the 
FPMstage. 

• One of the source operands is a target of an outstanding load, or an 
operand of an instruction in the FPM, FPA, or FWA stages. 

• One of the source operands requires prenormalization, or the FPU 
predicts that the result will be a denormalized number. 

The first case is a simple pipeline stall, where the instruction spends time in both 
the FD and FPM stages. Instructions that require multiple cycles in FD are the 
same instructions that require multiple cycles in FPM, namely, the double-
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FP Multiply (FPM) 

precision multiply (two cycles), single- and double-precision divide (17/31 
cycles), and the Move to FPSCR (four cycles) instructions. 

The second case, a register conflict, is discussed in the next section. 

Instruction timings for situations when the operandi result requires prenormal­
ization/ denormalization are covered in §12.9, 1/ Abnormal Floating-Point Condi­
tions." 

FP Multiply (FPM) 

In general, most floating-point instructions require only one cycle in FPM. The 
double-precision multiply, single- and double-precision divide, and the Move to 
FPSCR instructions are the only exceptions. 

The double-precision multiplies (and multiply-accumulates) require two cycles 
in FPM. The first FPM cycle is overlapped with the second FD cycle for these 
instructions. 

The divide instructions require either 16 cycles (single-precision) or 30 cycles 
(double-precision). These cycles are completely overlapped with the last 16/30 
cycles that the instructions spends in FD. 

The Move to FPSCR family of instructions all require three cycles in FPM. These 
three cycles are required because the Move to FPSCR instructions can potentially 
change the floating-point execution model, so no new floating-point instructions 
should be dispatched until the FPSCR has been updated. 

FP Add (FPA) 

In general, most floating-point instructions require only one cycle in FPA. The 
double-precision multiply, single- and double-precision divide, and the Move to 
FPSCR instructions are the only exceptions. 

The double-precision multiplies (and multiply-accumulates) require two cycles 
in FPA. The first FPA cycle is overlapped with the second FPM cycle for these 
instructions. 

The single-precision divide instructions require 15 cycles (overlapped with the 
last 15 cycles in FPM). The double-precision divide instructions require 29 cycles 
(also overlapped with the last 29 cycles of FPM). 

The Move to FPSCR family of instructions all require two cycles in FPM. These 
two cycles are required because the Move to FPSCR instructions can potentially 
change the floating-point execution model, so no new floating-point instructions 
should be dispatched until the FPSCR has been updated. 
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FP Arithmetic Writeback (FWA) 

Because the FWA stage performs normalization in addition to writeback, stalls 
can occur if the result requires excessive normalization. The exact details of this 
are given in §12.9, "Abnormal Floating-Point Conditions." 

FP Load Write back (FWL) 

The FWL stage is the writeback stage for floating-point load instructions. All of 
the floating-point load instructions require one cycle in this stage. This stage is 
completely independent of the FWA stage (the writeback stage for arithmetic 
floating-point instructions). Both the FWL and FWA can writeback to the FPRs 
during the same cycle, provided that they both don't need to update the same 
FPR. 

Branch Processing Unit (BPU) Stages 

Of the three BPU stages, only the MR stage requires that branches be scheduled 
around it. 

Branch Execute (BE) 

Only one branch instruction can be in BE at any time, but this is not a problem 
because the Dispatch Unit can only dispatch one branch per cycle and branches 
never need more than one cycle in BE. 

Mispredict Recovery (MR) 

The MR stage is where all conditional branches stay until they are resolved. 
There can only be one branch in MR at any time, so there can only be one out­
standing conditional branch at any time. 

The next code sample shows a basic MR stall. It is a simple two-instruction loop 
that should require two cycles per loop iteration. Note that the branch is a back­
ward branch (to the beginning of the loop); it is predicted to be taken. 

start: 
add 
cmp 
beq 
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Mispredict Recovery (MR) 

The timing for the first iteration of this loop is: 

Lyele#: 1 2 3 4 5 6 7 

add rO,rO,rl 
fA 

CACC 
I("lO 

IE 
Ic - -

CARB ID IWA 

emp cr£O,rO,r2 
FA 

CACC IQl 
IQO 

IE 
IC 

CARB ID IWA 
-

pbr tag- cmp - - - ID IE - -

FA 
I("l2 

beq crfO,start 
CARB 

CACC BE MR MR - -
MR 

and for the second iteration is: 

Cycle #: 1 2 3 4 5 6 7 

add rO,rO,rl 
FA 

CACC 
IQO 

IE 
IC - -

CARB ID IWA 

emp erfO,rO,r2 
FA 

CACC IQl 
I("lO 

IE - -
CARB ID 

por tag emp - - - - - - IE 

FA 
I("l1 

beq crfO,start - - CARB 
CACC IQ2 BE MR 

MR 

During cycle 3, the first branch needs to be predicted because it needs the result 
from the crnp instruction, which hasn't finished execution yet. In this case, the 
branch is predicted to be taken, and the first beq instruction enters the MR stage. 
This branch causes the instructions for the second iteration of the loop to be 
fetched. 

During cycle 5, the second iteration of the loop reaches the same point that the 
first iteration reached in cycle 3-the branch needs to be predicted because 
the results of the crnp aren't available yet. However, the first branch still occupies 
the MR stage of the pipeline, so this branch must stay in the DU. 

Also during cycle 5, the results of the first compare are forwarded to the first 
branch instruction. In this example, the prediction is confirmed, and the first 
branch leaves the MR stage. 

In cycle 6, because the MR stage is now free, the second branch can be executed 
and predicted. The instructions for the third iteration (not shown) are fetched at 
this time. 

The result is that every odd-numbered loop (including the first) requires two 
cycles, and every even-numbered loop requires three cycles. The "three-cycle" 
value comes from the two cycles spent executing the loop plus an extra cycle 
spent waiting for the next set of instructions. This wasted cycle is present 
because the branch was executed (and thus, the instructions were fetched) a 
cycle late. 
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Branch Writeback (BW) 

The BW stage doesn't typically lead to pipeline stalls because up to nine branch 
instructions can be in BW simultaneously. However, only two branch instruc­
tions are allowed to writeback during each cycle-one can update the LR, and 
another can update the CTR. 

Data Access Queueing Unit (DAQU) Stages 

The stages of the DAQU are queueing stages for store instructions rather than 
execution stages. As such, they do not cause stalls themselves, but they may 
cause a stall in IE if the CAU doesn't grant access to the cache or if the floating­
point unit doesn't provide the store data in a reasonable time. 

A common example is when floating-point data is being stored to a location that 
crosses a doubleword boundary. This effectively results in two back-to-back 
store operations that both need to use the FPSB. Because the FPSB is only one 
element deep, the second half of the store operation stalls the IV in IE until the 
first half can be written. This results in at least four additional cycles spent in IE 
for the store instruction because the data must come from the FWA stage of the 
FPU pipeline. 

15.3 Register Usage Dependencies 

Register usage dependencies can very easily turn into register usage conflicts 
because the pipelined architecture allows multiple instructions to be executing 
simultaneously. 

Types of Dependencies 

Four different situations can occur when two sequential instructions need to 
access the same register resource. 

Read after Read (RAR) 

A RAR dependency does not cause problems because neither of the two instruc­
tions needs to change the value of the register. Both reads will read the same 
(correct) value. 

Read after Write (RAW) 

With a RAW dependency, care must be taken so that the write operation com­
pletes (or appears to complete) before the read operation takes place. If the read 
operation occurs too early, it will read the register value before the write occurs, 
which is obviously incorrect. 
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Write after Read (WAR) 

This, the most common type of data dependency, is sometimes referred to as true 
data dependency. 

Write after Read (WAR) 

While rare, a WAR dependency can lead to a conflict when store operations are 
allowed to occur before all previous read operations are handled. In this case, 
the read may get the new value instead of the old value. The 601 doesn't have 
this type of conflict because all instructions write back in program order. 

WAR dependencies are sometimes referred to as anti-dependencies. 

Write after Write (WAW) 

Also rare, a WAW dependency can cause problems if the stores are allowed to 
complete out of order. The 601 doesn't have this type of conflict because all 
stores are performed in order (as far as the processor is concerned). 

WAW dependencies are sometimes referred to as output dependencies. 

Handling Conflicts Due to Dependencies 

The processor can choose to handle the conflicts that arise from data dependen­
cies in many ways. For each dependency, it is important to know what the pro­
cessor will do, because this will affect execution time. 

Ignore the Conflict 

The easiest thing for the processor to do is to ignore the conflict and expect the 
programmer to arrange the instructions so that conflicts do not occur. In many 
cases, explicit no-op instructions must be added to pad the pipeline. 

Stall the Pipeline 

Another easy way of handling data conflicts is to stall the pipeline whenever 
conflicts are detected. This has an advantage: code will work as expected even if 
no-ops are not inserted. 

Feed-forward the Required Data 

Feed-forwarding is useful for some RAW conflicts because the data being calcu­
lated can be passed back to other instructions in the pipeline before the results 
are officially available in the register. 
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Feed-forwarding is generally used only between instructions executing in the 
same processor unit, for example, between two integer instructions or between 
two floating-point instructions. 

Shadow the Register 

Register shadowing is a simple case of providing a small pool of registers that 
can be used whenever a register needs to be updated. If an instruction needs to 
update the register, and it's possibile that another instruction may need to read 
the register value, the instruction writes the value into a shadow register until it 
is safe to update the real register. 

Shadowing is typically limited to a few shadow registers all associated with one 
real register. 

Remap the Register 

A more general case of shadowing, register remapping has a large pool of regis­
ters (called physical registers) shared by a number of user-visible registers 
(called architected registers). Remapping is typically used on general purpose 
registers, like the GPRs and FPRs in the PowerPC. 

This can be quite useful for processors that have WAR and WAW conflicts. For 
WAR conflicts, the architected register in conflict can be mapped into two sepa­
rate physical registers: one before the write and one after. For WAW conflicts, the 
architected register can be mapped into three physical registers: one before 
the first write, one between the two writes, and one after the second write. 
When the architected register no longer needs to be mapped into multiple phys­
ical registers, the older physical registers are recycled to restore a 1:1 correspon­
dence between architected and physical registers. 

Link Register (LR) 

The LR, a special register, holds an address that can be used as a target branch 
address. Other than the Move to/from LR instructions, only the branch instruc­
tions affect the LR. 

Having the BPU entirely in control of the LR allows the BPU to implement some 
optimizations for the LR which prevents BPU stalls. This optimization is imple­
mented using two LR shadow registers that hold temporary LR values. Using 
these shadow registers is discussed in the next sections. 

LR-Branch / LR-Branch Dependencies 

If a branch instruction uses the LR following a branch that updates the LR, there 
is potential for a RAW conflict. The BPU avoids stalls by having the first branch 
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write the new LR value into one of the LR shadow registers until the value can 
be written to the real LR. The second branch can now read the new LR value 
from the shadow LR and continue execution without stalling. 

The timing diagram shows an example of this. Note that the order of execution 
is and, nand, bl, followed by nor, xor, blr, and then execution returns to the 
or instruction. 

CycJe#: 1 2 3 4 5 6 7 

and rO,rO,rl 
IQO 

IE 
IC 

ID IWA 
- - - -

nand r2,r2,r3 IQl 
IQO 

IE 
IC - - -

ID IWA 

LRtag -
IQO 

IE IC - - -
ID 

hI target 
IQ2 

BW BW BW - - -
BE 

or r4,r4,r5 IQ3 
FA 

CACC 
IQO 

IE 
IL -

CARB ID IWA 
- - - - - - -... 

nor r6,r6,r7 
l'A 

CACC 
IQO 

IE 
IL - -

CARB ID IWA 

xor r8,r8,r9 
FA 

CACC IQl 
IQO 

IE 
IC 

-
CARB ID IWA 

hlr 
FA 

CACC IQ2/BE - - - -
CARB 

The blr instruction reads the new value of LR from the appropriate shadow LR 
during cycle 3. The LR is updated during cycle 4. In this case, the processor com­
pletes and, nand, nor, xor, and then or in five subsequent cycles-both of the 
branches have been removed from the instruction stream without causing any 
stalls. 

Note that, in this example, two instructions were needed between the two 
branch instructions so that there would be no stalls while the new instructions 
(starting at or) were fetched from memory. This "two-instruction" value is not a 
magic number that is always needed between 2 LR-dependent branches-the 
number of instructions required depends on the surrounding instructions. How­
ever, it is a good rule of thumb to place at least two independent instructions 
between branches of this sort. 

mtlr / LR-Branch Dependencies 

When the write operation of a RAW dependency comes from the mtlr instruc­
tion, the processor must stall the branch in dispatch until the mtlr reaches the 
integer readback stage (IWA). This is necessary because the mtlr instruction is 
handled by the IU instead of the BPU, so the data can't simply be forwarded to 
the branch. 

Two situations need to be examined here: the case where the branch is taken, and 
the case where the branch is not-taken. Note th(lt branch prediction doesn't 
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come into play here because the branch stalls in the IQ because of the depen­
dency on the LR. 

The code sample that will be examined is: 

mtlr rO 
beqlr crfO 
and rO,rO,rl 

target: 
or r2,r2,r3 

where rO initially contains the address of target. The timing for this code snip­
pet when the branch is not-taken is: 

CyCle#: 1 2 3 4 5 6 7 8 

mtlr rO 
t'A 

CACC 
1(,.10 

IE 
IL - - -CARB ID IWA 

beqlr crfO 
FA 

CACC IQ1 IQO 
IQO 

CARB BE 
- - -

and rO,rO,r1 
FA 

CACC IQ2 IQ1 IQ1 
IQO 

IE 
IC 

CARB ID IWA 
- - - - - - - -... 

or r2,r2,r3 - - - - - - - -

The branch instruction stalls in IQ until the mtlr instruction reaches IWA in 
cycle S. During this same cycle, the branch is executed, freeing up the IQ and 
allowing the subsequent instructions to be executed. Two wasted cycles in ID 
between the mtlr and the branch instruction could have been filled with inde­
pendent integer instructions. 

If the branch is taken or if blr is used instead of a conditional branch, the timing 
is: 

Lyde#: 1 2 3 4 5 6 7 8 

mtlr rO 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- - -

beqlr crfO 
FA 

CACC IQ1 IQO 
1QO - - -

CARB BE 

and rO,rO,rl 
t'A 

CACC IQ2 IQ1 IQl - - -
CARB 

- - - -... - - - -
orr2,r2,r3 - - - - FA 

CACC 
I(,.1U 

IE 
CARB ID 

As with the branch not-taken example, the branch stalls until cycle S. At this 
time, the branch is executed and the target instructions are fetched. In this case, 
three wasted cycles in ID could have been used if there were independent inte­
ger instructions between the mtlr and branch instructions. 

It's important to be aware of this dependency because most function calls end 
with a mtlr-blr instruction pair. 
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Link Shadow Overflow 

The 601 only provides two Link shadow registers, used to hold the temporary 
LR values until they can be written back to the "real" LR. Because there are only 
two shadow registers, pipeline stalls can occur when all of the shadow registers 
are currently being used. 

One situation that can lead to stalls is when a series of conditional Branch with 
Link instructions are not-taken, like this example: 

and 
beql 
beql 
beql 

rO,rO,rl 
crfO,targetl 
crfl,target2 
crf2,target3 

The code timing diagram assumes that the CR is coherent so the branches do not 
need to be predicted: 

Cyde#: 1 2 3 4 5 6 7 8 

and rO,rO,rl 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- - -

LR tag- and - - - IE IC - - -

beql erfO,targetl 
FA 

CACC 
IQl 

BW BW 
CARB BE 

- - -

LR tag ~ bubblel - - - - IE IC - -

beql erfl,targetl 
FA 

CACC IQ2 
11..10 

BW BW - -
CARB BE 

LR tag ,bUlJlJleL - - - - - - IE IC 

beql erf2, targetl 
FA 

CACC IQ3 IQl IQO 
lQO 

BW BW 
CARB BE 

In this example, the first shadow LR is used when the first branch enters BE 
during cycle 3, and the second shadow LR is used when the second branch 
enters BW on the following cycle. When the third branch tries to enter BE during 
cycle 5, it cannot because a shadow LR isn't available for it to use. However, it 
can be dispatched during the next cycle because the first branch completes its 
writeback and frees up one of the shadow LRs. 

Another situation can lead to this-when a long-latency integer instruction (like 
multiply or divide) precedes a Branch with Link (bl) instruction. Because the 
branch stays in BW (occupying a shadow LR) until this instruction is complete, 
it only takes one more bl instruction to use all the shadow registers. A third bl 
instruction stalls in the Dispatch Unit until a shadow LR is freed by the first 
branch. 

The following (contrived) example demonstrates this: 

mulli 
bl 

targetl: 

r9,r9,S 
targetl 
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and rO,rO,rl 
bl target2 

target2: 
nand 
bl 

r2,r2,r3 
target3 

which has the timing: 

Cycle#: 1 2 3 

mulIi r9,r9,5 
t'A 

CACC 
IQO 

CARB ID 
LR tag - mulli - - -
hI targetl 

FA 
CACC 

IQ1 
CARB BE 

- - -... 
and rO,rO,r1 

FA - -
CARB 

LR tag-and - - -

hI target2 - - tiA 
CARB 

- - -... 
nand r2,r2,r3 - - -

LRtag - - -
hI target3 - - -

4 5 

IE IE 

IE IE 

BW BW 

- -

CACC 
11..10 
ID 

- -

CACC 
11..11 
BE 

- -
FA -

CARB 

- -
FA -

CARB 

6 7 8 9 10 

IE IE IE 
Ie -

IWA 
110 IE IE IC -

BW BW BW BW -
- - - - -

ID ID ID IE 
IC 

IWA 
ID IU IU 110 Ie 

BW BW BW BW BW 

- - - - -

CACC IQO IQO 
11..10 

IE 
ID 

- - - - -

CACC IQ1 IQ1 IQ1 
IQO 
BE 

Here, the first branch takes the first shadow LR during cycle 3 when it enters BE, 
but it can't writeback (and free the shadow LR) until the multiply instruction 
enters IC during cycle 9. The second branch instruction takes the second shadow 
LR, but it is forced to wait for the and instruction, which stalled because of the 
multiply instruction. This results in the second shadow LR being occupied until 
cycle 10. 

When the third branch comes along, it must wait in IQ until cycle 10 because a 
shadow LR isn't available for the branch to use. During cycle 10, the branch can 
use the shadow LR that was freed by the first branch during cycle 9. 

In general, this is not a common resource conflict, although care should be taken 
when a branch follows a multiply or divide instruction. 

Counter Register (CTR) 

The CTR was originally simply a register in the BPU used to hold the counter for 
loops. It became a branching register (similar to the LR) when some glue rou­
tines needed an extra branch register and the CTR was conveniently available in 
the BPU. This is another example of how the POWER software model affected 
the POWER hardware design which, in turn, affected the PowerPC design. 
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Like the LR, this SPR was deemed useful because it separated the registers being 
used by the BPU from those used by the Integer Unit. This allowed the processor 
to make certain optimizations to increase performance, resulting in features like 
zero-cycle branching for eTR loops. 

In real-world code, eTR conflicts are not a major concern because the BPU han­
dles the feed-forwarding of the appropriate eTR value. 

eTR-Branch / eTR-Branch Dependencies 

Branches that depend only on the eTR are a special case because the BPU can 
always resolve the branch (because the eTR is part of the BPU). For this reason, 
it is convenient to consider this type of conditional branch as an unconditional 
branch for timing purposes. Like all branches that require a writeback, the 
branch instruction stays in BW until the previous integer instructions have com­
pleted so that the eTR can be updated at the proper time. 

The next loop example demonstrates a common use for eTR branches, where 
the eTR controls the number of loop iterations: 

start: 
and 
nand 

or 
nor 
bdnz 

rO,rO,rl 
r2,r2,r3 

r4,r4,r5 
r6,r6,r7 
start 

The timing for the interesting part of this loop, where control passes from the 
bottom back to the top, is (note that execution starts at the or instruction): 

Cycle#: 1 2 3 4 5 6 7 8 

and rO,rO,rl - -
1':A 

CACC I~ IE 
IL -

CARB IWA 

nand r2,r2,r3 - - t'A 
CACC IQl 

I\,,!U 
IE 

IC 
CARB ID IWA 

- - - - - - - -.. , 

or r4,r4,r5 
FA 

CACC 
IQO 

IE 
IL 

CARB ID IWA 
- - -

nor r6,r6,r7 
FA 

CACC IQl 
IQO 

IE 
IC - -CARB ID IWA 

bdnz start 
FA 

CACC 
lQ2 

BW BW BW - -CARB BE 

Here the branch instruction stays in BW until the previous integer instruction 
(nor) completes (cycle 6); then it updates the eTR with the newly decremented 
value. 

However, if the loop is small enough, then the second eTR-branch may be exe­
cuted while the first eTR-branch is still waiting in BW to update the eTR. This 
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situation is handled (without stalling) by having the BPU automatically feed­
forward the proper CTR value from the first branch to the second branch. 

Consider this code snippet. It demonstrates a small loop that exhibits these 
properties: 

start: 
and 
nand 
bdnz 

rO,rO,rl 
r2,r2,r3 
start 

This loop simply repeats the two-instruction loop and decrements the CTR to O. 

After the instructions have entered dispatch, the timing is as diagrammed. Here 
the timing has been broken into separate tables for each iteration of the loop so 
that it is easier to see what is going on. The first iteration of this loop is timed: 

cycle#: 1 2 3 4 5 6 7 8 

and rO,rO,rl 
fA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- - -

nand r2,r2,r3 
fA 

CACC IQl 
IQO 

IE 
IC 

CARB ID IWA 
- -

bdnz start 
FA 

CACC 
Il.1L 

BW BW BW 
CARB BE - -

and the second iteration is: 

Cycle#: 1 2 3 4 5 6 7 IS 

and rO,rO,rl 
FA 

CACC 1~ IE 
Ic - - CARB IWA 

-

nand r2,r2,r3 - - FA 
CACC IQl 

1l.10 
IE 

Ic 
CARB ID IWA 

bdnz start 
FA 

CACC 
IQ2 

BW BW BW - -
CARB BE 

Two additional iterations (which begin FAI CARB during cycles 5 and 7) are not 
shown because they simply repeat the timings in the diagram shifted over a few 
cycles. 

In this example, the second-iteration bdnz has the correct CTR value fed to it 
from the first-iteration bdnz instruction during cycle 5. The first bdnz instruc­
tion doesn't actually update the CTR until cycle 6 when nand reaches Ie. 

Note that two branch instructions are waiting in WB at the same time during 
cycle 6 and again during cycle 8 (not shown). 

mtdr / CTR-Branch Dependencies 

This situation is identical to the timings given in the previous section, "mtlr I LR­
Branch Dependencies," except that the CTR is used instead of the LR. 
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Nested CTR Loops 

With only one CTR register, nested loops that want to use the CTR have to save 
and restore the appropriate CTR value manually. In general, this extra save / 
restore step is not worthwhile because it can cost more than a conditional branch 
that depends on a counter stored in a GPR. 

Condition Register (CR) Fields 

The Condition Register is divided into eight 4-bit fields used to store the result 
of arithmetic and compare operations. Because instructions operate on individ­
ual fields, it is useful to consider the CR as eight independent resources. 

The first rule of thumb is that a series of instructions that need to use the CR 
should use different CR fields whenever possible. By using different CR fields, 
the instructions can be scheduled more easily. Care must be taken to include 
instructions that have the Record bit set because they will implicitly update CR 
field 0 (integer instructions) or CR field 1 (floating-point instructions). 

Compare / Conditional Branch Dependencies 

The four tables in this section show the timings for a conditional branch that 
follows a compare instruction. The important feature of these timing tables is 
that the results of the compare operation are forwarded to the BPU during the 
compare's IE stage. This allows the branch to recover quickly from a mispredic­
tion. 

The timings for this section are basically the same as those presented in §12.5, 
"Branch Instruction Timings." 

Predicted Not-taken Correctly: 

Cycle#: 1 2 3 4 5 6 7 

cmp crfO,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA - -

pbrtag- cmp - - - IE - - -

FA 
IQl 

beq- crfO,target 
CARB 

CACC BE MR - - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO 

IE 
IC 

CARB ID IWA -
- - - - - - -... 

or r4,r4,r5 - - - - - - -
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Predicted Not-taken Incorrectly: 

Cycle #: 1 2 3 4 5 6 7 

cmp cr£O,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
" " 

pbrtag-cmp " " " IE " " " 

FA 
IQ1 

beq" cr£O,target 
CARB 

CACC BE MR " " " 

MR 

and rO,rO,r1 
FA 

CACC IQ2 
IQO 

CARB ID 
" " " 

" " " " " " " ... 
or r4,r4,r5 

FA 
CACC 

IQO 
IE " " " 

CARB ID 

Predicted Taken Correctly: 

Cycle #: 1 2 3 4 5 6 7 

cmp cr£0,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
" " 

pbrtag= cmp " " " IE " " " 

FA 
IQ1 

beq+ crfO,target 
CARB 

CACC BE MR " " " 

MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO 

CARB ID 
" " " 

" " " " " " " ... 

or r4,r4,r5 
FA 

CACC 
IQO 

IE 
IC 

" " 
CARB ID IWA 

Predicted Taken Incorrectly: 

Cycle#: 1 2 3 4 5 6 7 

cmp cr£0,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
" " 

pbrtag-cmp " " " IE " " " 

FA 
IQ1 

beq+ cr£O,target 
CARB 

CACC BE MR " " " 

MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO 

IE 
IC 

CARB ID IWA 
" 

" " " " " " " ... 

or r4,r4,r5 
FA 

CACC " " 

CARB 
" " " 

Integer-Record / Conditional Branch Dependencies 

The four tables in this section show the timings for the conditional branch that 
follows an integer instruction that has the Record bit set. The major difference 
between these tables and the tables in the previous section is that branch predic­
tion cannot be confirmed until the results of the integer instruction have been 
written back to the appropriate registers (during cycle 5). This causes a one-cycle 
stall because the predicted branch tag prevents instructions past the branch from 
entering IE. 
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Predicted Not-taken Correctly: 

Cycle#: 1 2 3 4 5 6 7 

add. r30,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA - -

pbr tag ~ add. - - - IE IE - -

FA 
IQl 

beq- crfO,target 
CARB 

CACC BE MR MR - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO IQO 

IE 
IC 

CARB ID ID IWA 

- - - - - - -... 
or r4,r4,r5 - - - - - - -

Predicted Not-taken Incorrectly: 

Cycle#: 1 2 3 4 5 6 7 

add. r30,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

pbr tag ~ add. - - - IE IE - -

FA 
IQl 

beq- crfO,target 
CARB 

CACC BE MR MR - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO IQO 

CARB ID ID - -

- - - - - - -... 

or r4,r4,r5 
FA 

CACC 
IQO - - - -

CARB ID 

Predicted Taken Correctly: 

Cycle#: 1 2 3 4 5 6 7 

add. r30,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

pbr tag ~ add. - - - IE IE - -

FA 
IQl 

beq+ crfO,target 
CARB 

CACC BE MR MR - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO 

CARB ID 
- - -

- - - - - - -... 

or r4,r4,r5 
FA 

CACC 
IQO 

IE 
IC - - CARB ID IWA 

Predicted Taken Incorrectly: 

Cycle #: 1 2 3 4 5 6 7 

add. r30,r30,r31 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

pbr tag - add. - - - IE IE - -

FA 
IQl 

beq+ crfO,target 
CARB 

CACC BE MR MR - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 
IQO FA 

CACC 
IQO 

CARB ID CARB ID 

- - - - - - -... 

or r4,r4,r5 
FA 

CACC 
IQO - -

CARB ID 
- -
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Floating-Point Record I Conditional Branch Dependencies 

The four tables in this section show the timings for the conditional branch that 
follows a floating-point instruction that has its Record bit set. The key difference 
between these tables and the tables for integer-record (other than the fact that 
the FPU is being used) is that the results of the floating-point instruction aren't 
available in the BPU until the cycle after the FPU's FWA stage. This prevents the 
branch from being resolved until cycle 8, effectively stalling the pipeline until 
that time. 

Predicted Not-taken Correctly: 

Cycle#: 1 2 3 4 5 6 7 8 9 10 11 

fp tag - bubblel - - - IE IC IC IC - - - -

fadds. fr1,fr1,fr2 
FA 

CACC 100 FO FPM FPA FWA 
CARB 

- - - -

pbr tag - bubblel - - - IE IE IE IE IE - - -

FA 
IQ1 

beq- crfO,target 
CARB 

CACC BE MR MR MR MR MR - - -
MR 

and rO,rO,rl 
FA 

CACC IQ2 100 ID ID ID ID IE 
IC 

CARB ID IWA 
-

- -... - - - - - - - - -
or r4,r4,r5 - - - - - - - - - - -

Predicted Not-taken Incorrectly: 

Cycle #: 1 2 3 4 5 6 7 8 9 10 11 
Jp tag = bubblel - - - IE IC IC IC - - - -
fadds. frl,fr1,fr2 

FA 
CACC IQO PO FPM FPA FWA 

CARB 
- - - -

pbr tag - bubblel - - - IE IE IE IE IE - - -

FA 
IQ1 

beq- crfO,target 
CARB 

CACC BE MR MR MR MR MR - - -
MR 

and rO,rO,r1 
FA 

CACC IQ2 100 ID ID ID ID 
CARB ID - - -

- - - - -... - - - - - -

or r4,r4,r5 
FA 

CACC 
IQO 

IE - - - - - - -
CARB ID 

Predicted Taken Correctly: 

Cycle#: 1 2 3 4 5 6 7 8 9 10 11 
fp tag - bubblel - - - IE IC IC IC - - - -
fadds. frl,frl,fr2 

FA 
CACC IQO FO PPM FPA FWA 

CARB 
- - - -

pbr tag - bubblel - - - IE IE IE IE IE - - -

FA 
IQ1 

beq+ crfO,target 
CARB 

CACC BE MR MR MR MR MR - - -
MR 

and rO,rO,rl 
FA 

CACC 
CARB 

- - - - - - - - -

- - - - -... - - - - - -

or r4,r4,r5 
FA 

CACC 
100 ID ID ID IE 

IC - -
CARB ID IWA -
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Predicted Taken Incorrectly: 

Cycle#: 1 2 3 4 5 6 7 8 9 10 11 

fp tag = bubble1 - - - IE IC IC IC - - - -

fadds. fr1,frUr2 
FA 

CACC IQO FD FPM FPA FWA 
CARB 

- - - -
pbr tag = bubblel - - - IE IE IE IE IE - - -

IQ1 
FA 

beq+ crfO,target 
CARB 

CACC BE MR MR MR MR MR - - -
MR 

and rO,rO,r1 
FA 

CACC 
FA 

CACC 
IQO 

IE 
CARB 

- - - - -
CARB ID 

- - - - - - - - - - -... 

or r4,r4,r5 
FA 

CACC 
IQO 

ID ID ID - -
CARB ID - - -

CR-write / CR-read Dependencies 

Two dependent arithmetic Condition Register instructions can generally follow 
one another without causing stalls in the IV pipeline. This is possible because all 
arithmetic CR instructions are handled by the IV, and the data can be forwarded 
directly to the dependent instruction in 10. 

In this example, the crand instruction immediately follows the add. instruc­
tion, implicitly updating CR field O. 

Cyc1e#: 1 2 3 4 5 6 

add. rO,r1,r2 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
-

crand crfl,crfO,crf2 
FA 

CACC IQ1 
IQO 

IE 
IC 

CARB ID IWA 

In this case, the proper CR value is passed along from the add. instruction's IE 
stage to the crand instruction's ID stage. 

The timing chart in this section is valid for any combination of CR Boolean, inte­
ger arithmetic with record, mtcrf, and mcrxr instructions. It is also valid for 
the mcrf instruction followed by any of these instructions. 

stwcx. / CR-read Dependencies 

The s twcx. instruction has special timing considerations because it updates the 
CR during its IWA, using some of the resources in the IE stage. This means that 
the instruction currently in IE must stall while the stwcx. instruction is in IWA. 
This stall cycle cannot be avoided. 

When the store is successfully performed (because the reservation for the 
address was set), the timing is in the next table. Here the integer instruction 
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following stwcx. stalls in IE because stwcx. is using the IE stage. These stalls 
occur in cycles 5 and 6, then the instruction is allowed to execute normally in IE. 

Cycle#: 1 2 3 4 5 6 7 8 

CACC 

stwcx. rO,r1,r2 
FA 

CACC 
IQO CARB (IE) (IE) 

CARB ID IE IC IWA 
- -

IWA 

and r4,r4,r5 
FA 

CACC IQ1 
IQO 

IE IE IE 
IC 

CARB ID IWA 

If the store is not performed (because the reservation was not set for this 
address), the timing changes because the IE is only occupied for one cycle 
instead of two. 

Cycle #: 1 2 3 4 5 6 7 

CACC 

stwcx. rO,r1,r2 
FA 

CACC 
IQO CARB (IE) 

CARB ID IE IC 
- -

IWA 

and r4,r4,r5 
FA 

CACC IQ1 
IQO 

IE IE 
IC 

CARB ID IWA 

CR-write I merf Dependencies 

When the mcrf instruction immediately follows a CR Boolean or integer arith­
metic with record instruction, the mcrf instruction stalls in ID for one cycle after 
the CR is updated. In most cases (as in the next example), this update occurs 
during the CR instruction's IE stage (cycle 5). 

Cycle#: 1 2 3 4 5 6 7 

add. rO,r1,r2 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

merf eri3,erf4 
FA 

CACC IQ1 
IQO 

ID IE 
IC 

CARB ID IWA 

Because the stwcx. instruction doesn't update the CR until its lWA stage, the 
timing for a stwcx. /mcrf pair is slightly different. The next timing example 
shows the case where the store is performed. The CR is updated in cycle 6, so the 
mcrf must stall in ID for one more cycle and then enter IE in cycle 8. 

Cycle #: 1 2 3 4 5 6 7 8 9 

CACC 

stwex. rO,r1,r2 
FA 

CACC 
IQO CARB (IE) (IE) 

CARB ID IE IC IWA 
- - -

IWA 

mcrf erf3,crf4 
FA 

CACC IQ1 
IQO 

ID ID ID IE 
IC 

CARB ID IWA 

If the stwcx. instruction does not perform a store (because the reservation 
wasn't set for this location), the timing changes because the CR is updated one 
cycle earlier (in cycle 5), allowing the mcrf to leave ID one cycle sooner. 
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Cyc1e#: 1 2 3 4 5 6 7 8 9 

CACC 

stwcx. rO,rl,r2 
FA 

CACC IOO CARB (IE) 
CARB ID IE IC 

- - - -

IWA 

mcrf crf3,crf4 
FA 

CACC IQl 
IQO 

ID ID IE 
IC 

CARB ID IWA 
-

Note that this stall occurs even though the mcrf instruction is not reading or 
writing the CR field that is being updated. 

Multiply-Quotient Register (MQ) 

No resource conflict stalls are associated with the MQ register. The IU makes 
sure that the proper MQ value is feed-forwarded whenever it is needed. 

Fixed-Point Exception Register (XER) 

The XER is mainly used to record the overflow and carry information for integer 
arithmetic and shift instructions. Some additional fields are also used by the 
load and store string instructions. 

The XER dependencies are checked based on any part of the register being read 
from or written to. Thus, an instruction that reads any part of the XER depends 
on a previous instruction that updates any part of the XER. 

XER-write / XER-read Dependencies 

RAW conflicts typically do not cause stalls in the integer pipeline, although 
some cases do. Whether or not a stall occurs depends on the instructions being 
used to read and write the XER. 

If the XER is written to by: 

• Arithmetic instructions with the OE bit set 
• Arithmetic instructions that set the CA 
• Shift instructions that set the CA 

• lscb~mcrx~ormtxer 

and it is read by: 

• Arithmetic instructions that use the CA 

• mfxer 
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then there will be no stall even if the read occurs immediately after the write 
operation. This is demonstrated in the timing table: 

Cycle#: 1 2 3 4 5 6 

addo rO,rO,ri 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
-

addmer2,r2 
FA 

CACC IQi 
IQO 

IE 
IC 

CARB ID IWA 

XER-write I String Dependencies 

The non-immediate forms of the Load and Store String instructions (lscbx, 
lswx, and stswx) need to read the XER during their ID stage in the IU. Because 
of this, if they follow an instruction that updates the XER, they stall until the 
previous instruction updates the XER during its IWA stage (for one cycle). 

In the next timing example, the lswx instruction must stall in ID for cycle 5 
while the XER is being updated. After this one-cycle stall, the instruction con­
tinues normally. In this example, only two registers are loaded by the lswx 
instruction. 

Cycle#: 1 2 3 4 5 6 7 8 9 

addo rO,rO,ri 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- - - -

CARB 

lswx r3,r4,r5 
FA 

CACC IQi 
IQO 

10 
CARB CACC CACC 

IWL 
CARB ID IE IE IWL 

IC 

This stall can be avoided by placing an independent instruction between the 
XER update and the string instruction. 

XER-write I mcrxr Dependencies 

Like the Load and Store String instructions above, the mcrxr needs to read the 
XER during its ID stage. It exhibits the same (avoidable) one-cycle stall that the 
string instructions do. 

Cycle#: 1 2 3 4 5 6 7 

addo rO,rO,ri 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA - -

mcrxr crf3 
FA 

CACC IQi 
IQO 

ID IE 
IC 

CARB ID IWA 

General Purpose Registers (GPRs) 

Although the large number of GPRs permits many register dependencies to be 
avoided, plenty of RAW conflicts still can arise. Fortunately, the feed-forward 
mechanism in the Integer Units handles most of these conflicts without stalls. 
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GPR-write / GPR-read Dependencies 

The 601's IV is capable of feed-forwarding data from the IE and IWA stages into 
the ID stage. This means that all RAW conflicts involving arithmetic instructions 
are handled without causing pipeline stalls. 

When there are no instructions between the write and read, the dependent read 
(sub r4, rO, r3) has the operand passed directly from the IE stage of the write 
(add rO, rl, r2) into its ID stage (cycle 4). 

Cyc1e#: 1 2 3 4 5 6 

add rO,rl,r2 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
-

sub r4,rO,r3 
FA 

CACC IQl 
IQO 

IE 
IC 

CARB ID IWA 

If one independent instruction is between the two instructions, the data is 
passed from the IWA stage of the write to the ID stage of the read (cycle 5). 

Cyc1e#: 1 2 3 4 5 6 7 

add rO,rl,r2 
FA 

CACC 
IQO 

IE 
IC 

CARB ID IWA 
- -

or r29,r30,r31 
FA 

CACC IQl 
IQO 

IE 
IC 

CARB ID IWA 
-

sub r4,rO,r3 
FA 

CACC IQ2 IQl 
IQO 

IE 
IC 

CARB ID IWA 

If more than one independent instruction is between the write and the read, then 
there is no data conflict because the data can simply be read from the register 
store. 

Note that this feed-forwarding also occurs if there is a dependency on the 
update register of the Load or Store with Update instructions, for example, with 
the code: 

lwzu 
addi 

r3,4(r9) 
rlO,r9,24 

The update register (r 9) is updated by the load instruction and read by the addi 
instruction. This instruction sequence causes no stalls due to GPR resource con­
flicts. Dependencies on the GPR that is loaded (r3, in this case) are much differ­
ent and are covered next. 

GPR-Ioad / GPR-read Dependencies 

If an instruction that uses a particular GPR immediately follows a load of that 
same register, the instruction must stall in IE until the load enters IWL. Ideally, 
this takes only one cycle, but if there is a cache miss, the delay could be quite 
lengthy. 
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In the next example, the add instruction stalls in IE during cycle 5 while it waits 
for the results of the load to be written back. 

Cyc1e#: 1 2 3 4 5 6 7 

lwzx r3,O,r2 
FA 

CACC 
IQO CARB CACC IWL 

CARB ID IE IC -

add r3,r3,r4 
FA 

CACC IQl 
IQO 

IE IE 
IC 

CARB ID IWA 

This pipeline stall can be eliminated by placing independent instructions 
between the load and the use of the GPR in question. 

GPR-load I GPR-Ioad Dependencies 

Two sequential load operations will cause a GPR resource stall only when the 
destination of the first load is used by the second load. If the two loads are inde­
pendent, then no GPR resource stalls occur. 

This is similar to the previous case, where the second instruction needs to wait 
for the results of the load to be written back during the IWL stage. Also, as with 
the previous case, the one-cycle stall shown here (in cycle 5) is a best case situa­
tion. If there is a cache miss, the stall in IE will be for more than one cycle. 

Cyc1e#: 1 2 3 4 5 6 7 8 

lwz r3,O(r2) 
FA 

CACC 
IQO CARB CACC 

IWL 
CARB ID IE IC 

- -

lwzx r4,O(r3) 
FA 

CACC IQl 
IQO CARB CARB CACC 

IWL 
CARB ID IE IE IC 

This stall can also be avoided by inserting independent instructions between the 
two load instructions. 

Load Multiple I GPR-read Dependencies 

Because the Load Multiple instruction remains in IE for one cycle per register 
being loaded, the only possible GPR resource conflict that can arise is with the 
last register being loaded, always r 31. If a Load Multiple instruction is followed 
by an instruction that uses r31, there is at least a one-cycle delay due to the 
GPR-load I GPR-read dependency described in an earlier section. 

Like all GPR load / use dependencies, the stalls can be avoided by inserting inde­
pendent instructions between the load and the instruction that needs to read the 
GPR. 

GPR-store Dependencies 

Store instructions do not need to update any registers, so they do not cause GPR 
resource conflicts as the GPR-load instructions do. 
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The one exception is the Store with Update forms. Timings for dependency con­
flicts caused by this type of instruction are covered earlier in the "GPR-writel 
GPR-read Dependencies" section. 

mtspr / GPR Dependencies 

Some mtspr instructions are special because they require access to the source 
GPR during the IWA stage in addition to the IE stage. SPRs that require this 
additional GPR access are SPRGn, DSISR, DAR, HIDO, HID1, HID2, RTCU, 
SRRO, and SRRl. 

If an instruction following a mtspr instruction uses the same GPR, then the fol­
lowing instruction will stall in IE until the mtspr instruction releases the GPR. 
The exact number of cycles that this instruction will stall depends on the number 
of cycles that the mtspr instruction needs to spend in IWA. A table in "Move tol 
from SPR Instructions" in Chapter 12 summarizes the number of cycles required 
in IWA for each SPR. 

mfspr / GPR Dependencies 

Like mtspr, some of the mfspr instructions require access to the target GPR 
during the IWA stages of the mfspr instruction. These SPRs are SPRGn, DSISR, 
HIDO, HID1, HID2, MSR, PVR, RTCU, SDR1, SR, SRRO, and SRRl. 

If an instruction following a mf spr instruction uses the same GPR, then the fol­
lowing instruction will stall in IE until the mfspr instruction releases the GPR. 
The exact number of cycles that this instruction will stall depends on the number 
of cycles that the mf s pr instruction needs to spend in IW A. See "Move to I from 
SPR Instructions" in Chapter 12 for a summary of the mfspr instruction tim­
ings. 

Floating-Point Registers (FPRs) 

The 601's FPU does not support feed-forwarding of data between dependent 
floating-point instructions. This causes a variety of dependency stalls that the IU 
is able to avoid. 

FPR-write / FPR-read Dependencies 

Because of the lack of feed-forwarding, a floating-point instruction that requires 
the result of a previous instruction must wait in FD until after the previous 
instruction has completed writeback in FWA. 

mtspr / GPR Dependencies 333 



§ 15.4 Memory Dependencies 

This situation is diagrammed next, where the stages before the FD stage have 
been omitted. The second fadds instruction must wait until cycle 5 before it can 
begin executing in FD because not all of the operands are ready. 

Cycle#: 1 2 3 4 5 6 7 8 
fadds frO,frO,frl FO FPM FPA FWA - - - -
fadds fr2,fr2,frO os PO FO FO FO FPM FPA FWA 

FPR-write / FPR-store Dependencies 

In many cases, an FPR-write / FPR-store dependency is like standard FPR-write / 
FPR-read dependencies, where the read (or in this case, the store) cannot execute 
in FD until the write operation has left the FWA stage. 

The one exception is when the store immediately follows the write. The FPU 
detects this case and allows the store to continue without stalling. When the 
write operation is in the FWA stage (cycle 4 in the diagram below), it knows 
about the store instruction following it in FPA and automatically forwards the 
data to the cache. 

Cycle#: 1 2 3 4 5 
fadds frO,frO,frl PO FPM FPA FWA -

IQO FO FPM FPA FWA 
stfs frO,0(r2) IQO 

IE 
IC CARB 

CACC 
ID FPSB FPSB 

15.4 Memory Dependencies 

Two types of memory dependencies can occur. The first type is the true memory 
dependency, where the same address is being accessed by different instructions. 
These types of dependencies are easy to detect and work around (as with the 
register dependencies). The other type of memory dependency is the cache 
dependency. It's far more difficult to detect, but can impact performance tremen­
dously. 

Load and Store Dependencies 

Load and Store dependencies are the basic types of memory dependencies, and 
they come in two exciting varieties: the load after store dependency and the 
store after load dependency. 

Load / Store Dependencies 

A load / store dependency occurs when a store instruction follows a load instruc­
tion that uses the same effective address. On the 601, this does not cause a 
dependency stall although there may be pipeline stalls due to a cache miss. 
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Cycle#: 1 2 3 4 5 6 

lwz rO,0(r2) 
FA 

CACC 
IQO CARB CACC 

IWL 
CARB ID IE IC 

8tw r3,0(r2) 
FA 

CACC IQl 
IQO CARB CACC 

CARB ID IE IC 

Store / Load Dependencies 

A store / load dependency occurs when a load instruction follows a store instruc­
tion to the same effective address. As with the load/ store dependency, this does 
not cause a stall in the pipeline. 

Cycle#: 1 2 3 4 5 6 7 

8tw r3,0(r2) 
FA 

CACC 
IQO CARB CACC 

CARB ID IE IC - -

lwz rO,0(r2) 
FA 

CACC IQl 
IQO CARB CACC 

IWL 
CARB ID IE IC 

Cache Dependencies 

A cache dependency occurs when multiple load or store instructions access the 
same cache line. There are three major differences between cache dependencies 
and the other dependencies described in this chapter. 

Cache Dependencies Are Good 

The first difference between cache dependencies and other dependencies is that 
cache dependencies are good because they tend to improve performance. 

As mentioned earlier when discussing caches, a cache miss can have a very large 
negative effect on code performance. When there is a cache dependency, the sec­
ond cache access is almost guaranteed a cache hit. Thus, cache dependencies 
improve performance by reducing the likelihood that the dependent accesses 
will have a cache miss. 

Note the use of the phrases "almost guaranteed" and "reducing the likelihood." 
The dependent access is not guaranteed a cache hit because other (unpredict­
able) external events may come into play and affect the data in the cache. How­
ever, this is unlikely, and, in most cases, it is safe to assume that the second and 
subsequent accesses will in fact be cache hits. 

Cache Dependencies Are Long Term 

All of the dependencies discussed previously are relcltively short-term in nature. 
This means that the dependency is important only if the instructions are close to 
each other (within a few instructions). Cache dependencies, in contrast, are long 
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term. Depending on memory usage, a cache dependency can cross hundreds of 
instructions. 

Cache Dependencies Are Difficult to Control 

Alas, the downside of cache dependencies is that they are difficult to control. 
Other than the ability to clear cache entries or flush the cache (which does not 
result in increased cache hits), the programmer has little direct control of the 
cache. The only way to 11 control" the cache is to control the memory access pat­
tern or use the cache "touch" instructions. 

Increasing Cache Dependencies 

Even though cache dependencies are difficult to control, some techniques can be 
used to increase the number of cache dependencies. These techniques are 
inspired by the principles that led to the development of caches in the first 
place--the principles of locality. 

To reiterate, these principles state that: 

• If an item is referenced, then it is likely to be referenced again in the 
near future (temporal locality). 

• If an item is referenced, then the items surrounding this item are 
likely to be referenced again in the near future (spacial locality). 

Most programs naturally exhibit these characteristics; that's why caches work at 
all. However, a program can use the cache more effectively if it is written so that 
it increases the temporal and spacial locality of its memory accesses. This works 
because caches are designed to take advantage of that sort of locality. 

So, the principles of locality can be transformed into these programming guide­
lines: 

• If an item is referenced, it is good to reference it again soon. 
• If an item is referenced, it is good to reference the items surrounding 

it soon. 

For most code, not much can be done to follow the first guideline. If the data 
needs to be used again, that's good, but if it isn't needed anymore, it doesn't 
make sense to access it again. The most useful conclusion is that after a memory 
location has been accessed, the programmer shouldn't be overly concerned 
about accessing that location again. 

The second guideline, however, can be applied in a wide variety of coding situ­
ations. Memory should be accessed as sequentially as possible (either forward or 
backward from the current position). Large jumps in memory accesses should be 
avoided whenever possible. 
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One-Dimensional Arrays 

Single-dimensional arrays are the most obvious cases where the sequential 
access guideline can be applied. If the elements of a single-dimensional array 
need to be processed, then they should be processed in order whenever possible. 
If this is done, then the cache will be used as efficiently as possible. 

The worst practice with single-dimensional arrays is bouncing around the array 
and accessing elements at different parts of the array. Unfortunately, this is the 
access pattern for many searching algorithms, such as binary searches.1 

N-Dimensional Arrays 

Multi-dimensional arrays are special cases of single-dimensional arrays. When 
multi-dimensional arrays are stored in memory, they are mapped into a large 
single-dimensional array. Consider this two-dimensional array: 

Columns 

0,0 0,1 0,2 0,3 

'" 1,0 1,1 1,2 1,3 

~ 2,0 2,1 2,2 2,3 

3,0 3,1 3,2 3,3 

When stored in row-major order, the elements of this array are stored in memory 
in this order: 

Thus, in order to access the elements of this array sequentially, each row should 
be processed in order before proceeding to the next row, as this code fragment 
does: 

for(row=O; row<MAX_ROWS; row++) 
for(col=O; col<MAX_COLUMNS; col++) 

data[row] [col]++; 

For each row, all the columns are processed in order before continuing to the 
next row. 

If the loops are changed, as in this example: 

for(col=O; col<MAX_COLUMNS; col++) 
for(row=O; row<MAX_ROWS; row++) 

data[row] [col]++; 

1. 1his statement should not be taken as a call to use sequential search algorithms instead of binary (or 
other) searches. 1hese algorithms have other benefits that outweigh the penalties associated with cache 
misses, and a certain amount of cache misses are to be expected during searches. 
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the array elements are processed in an order that skips around in memory. This 
uses the cache less efficiently and increases the likelihood of cache misses for 
tache lines that have already been accessed. 

Of course, if the language being used happens to store arrays using column-major 
ordering (the columns are stored as units instead of the rows), then the loops in 
the example would have to be reversed. However, most commonly used lan­
guages (except FORTRAN) use row-major ordering for arrays. 

Note that these concerns are valid only if the size of each element in the array is 
small (less than the cache sector size for the processor). If the element size 
is larger than this, then each element requires at least one cache sector, so there is 
no cache benefit to ordering the access pattern. 

Array Blocking 

One problem with the array example is that it assumes that the array loops could 
be ordered so that the inner-most loop was stepping through the array sequen­
tially. When this assumption is not valid, some memory accesses will not be 
sequential, leading to inefficient use of the cache. 

If the array is excessively large, then another problem arises: the inefficient use 
of the cache mentioned earlier leads to a large number of cache lines being 
loaded. Because the number of cache lines in the cache is limited, room for the 
new cache lines must be made by purging lines currently in the cache, often 
before the looping code finishes using the data in the cache line. This situation, 
in which the cache loads and purges the same cache lines repeatedly, is known 
as cache thrashing. 

Figure 15-1 shows one way of addressing this problem is to divide the array into a 
collection of smaller arrays, called blocks. Because only a small part of the original 
array is being processed at a time, the number of cache lines needed to store the 
required data is reduced, which also reduces the likelihood of cache thrashing. 

The loop from the previous example can be rewritten to implement blocking: 

for(row=O; r6w<MAX_ROWS; row+=ROW_BLOCK) 
for(col=O; col<MAX_COLUMNS; col+=COL_BLOCK) 

for(i=O; i<ROW~BLOCK; i++) 
for(j=O; j<COL_BLOCK; j++) 

data[row+i] [col+j]++; 

Here, the inner two loops implement the blocking. The original array has been 
divided into a set of blocks that are ROW_BLOCK rows high and COL_BLOCK col­
umnswide. 
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Figure 15-1 A Large Array before and after It Has Been Divided into 
Four Blocks 

Original array After division into blocks 

Data Structures 

Not surprisingly, the data structures used play an important role in how mem­
ory is accessed. Consider this structure: 

struct { 
int tag; 
int data[l6]; 

} array[MAX_ELEMENTS]; 

where the important field is tag, and the data field is just a generic data field. 

Now, if there is an array of these structures, imagine a loop that steps through 
each element of the array to perform an operation on each element that has a 
certain type of tag. Using the earlier suggestion of sequentially stepping through 
the array returns the code: 

for(i=O; i<MAX_ELEMENTS; i++) 
if(array[i).tag == MAGIC_TAG) 

rnangle(&array[i).data); 

There's a problem with this: while the code is sequentially stepping through the 
elements of the array, it isn't sequentially stepping through memory. This is 
because of the size of each element in the array. 

One way of working around this is to break up the array so that the tags (which 
are processed sequentially) are in a separate array. If this can be done so that 
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multiple array elements fit into a single cache line, then sequential access will be 
a performance gain; otherwise it will be just as inefficient as accessing the array 
at random. 

The previous structure could be divided: 

int tag[MAX_ELEMENTS]; 

struct { 
int data[16]; 

} array[MAX_ELEMENTS]; 

and the looping code would change to: 

for(i=O; i<MAX_ELEMENTS; i++) 
if(tag[i] == MAGIC_TAG) 

mangle(&array[i].data); 

There is one caveat with this example. The original structurelloop loaded the 
tag and part of the array data, while the modified structure / loop loads only the 
tags. If most elements in the array need to be processed, then the original loop 
may be more efficient because it will have already loaded part of the data that 
needs to be processed when it loaded the tag. This needs to be analyzed case-by­
case. 
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More 
Optimization 

Techniques 

Chapter 15 covered a variety of important optimizations but left out one very 
important aspect of optimization. It talked about the processor resources and 
discussed how to avoid resource conflicts. While this is important, it is the easy 
part of the optimization process because it involves taking a set of well-defined 
rules and applying them to the code in question. 

One important thing omitted from the previous chapter was a discussion of 
maximal resource utilization. This is partly because this topic is difficult to for­
malize-it depends so much on the nature of the program being optimized. 

In spite of the difficulties, this chapter attempts to describe some common tech­
niques used to make as much use of the processor resources as possible. This 
chapter is, of course, incomplete because it cannot present every possible tech­
nique. But one hopes it will provide enough information for you to evaluate 
your own code and devise your own techniques. 

16.1 Keeping the Processor Busy 

The 601 consists of three different processing units: the BPU, the IU, and the 
FPU. The processor works most efficiently when all three of these units are busy. 

Instruction Mixing 

To keep all three execution units busy, one branch, one integer instruction, and 
one floating-point instruction should be dispatched each cycle. Also, to prevent 
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data dependency stalls, these instructions should be independent of each other. 
Unfortunately, most real-world code has a dispatch pattern that is nothing like 
this. 

The majority of real-world code tends to be either integer-intensive or floating­
point intensive, with a small percentage of branches thrown in. These situations 
fully utilize one of the arithmetic execution units, leaving the other relatively 
unused. Floating-point code is more balanced in this respect because all floating­
point load and store instructions are handled (at least partially) by the IV. Inte­
ger code doesn't use the FPU at all. 

However, it's not good enough to evenly distribute the overall percentage of 
code among these three units. The code must be evenly distributed throughout 
the program. 

For example, the code in the next example has an even distribution of floating­
point to integer instructions. There are four floating-point instructions and four 
integer instructions for a nice 50-50 distribution. 

fadds frO,frO,frl 
fadds fr2,fr2,fr3 
fadds fr4,fr4,frS 
fadds fr6,fr6,fr7 
add rO,rO,rl 
add r2,r2,r3 
add r4,r4,rS 
add r6,r6,r7 

However, the dispatch unit can only dispatch one instruction of each type per 
cycle and integer instructions must be dispatched from the IQO position. It 
would take the dispatcher eight cycles to dispatch this code because it can only 
dispatch one instruction per cycle. 

If the sequence of instructions were rearranged: 

add rO,rO,rl 
fadds frO,frO,frl 
add r2,r2,r3 
fadds fr2,fr2,fr3 
add r4,r4,rS 
fadds fr4,fr4,frS 
add r6,r6,r7 
fadds fr6,fr6,fr7 

the dispatcher could dispatch two instructions (one integer and one floating­
point) during each cycle. Four cycles have been saved before the instructions 
even begin executing. 
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Note that because the PowerPC supports out-of-order dispatch, the code doesn't 
have to be perfectly distributed in order to get the best dispatch timing. This 
code: 

add rO,rO,rl 
add r2,r2,r3 
fadds frO,frO,frl 
add r4,r4,r5 
fadds fr2,fr2,fr3 
fadds fr4,fr4,fr5 
add r6,r6,r7 
fadds fr6,fr6,fr7 

also results in two instructions being dispatched per cycle. 

Unit Conversion 

If your code is biased towards one unit or the other, it might be worthwhile to 
analyze your code to determine if it is possible to distribute the integer and float­
ing-point computations more evenly by converting code from one execution 
unit to the other. If this is possible, then the original and the converted code can 
be compared to see if an advantage can be gained by splitting the code. 

Memory Copy 

One common example of this is the simple memory copy. A straightforward way 
of writing this code would be: 

int i; 
long *pSource, *pDest 

for(i=O; i<nBytes/4; i++) 
*pDest = *pSource; 

This code copies the block of memory four bytes at a time so that it uses the 
GPRs efficiently. In this situation, no computation is being performed, so the 
FPRs could just as easily have been used: 

int i; 
double *pSource, *pDest 

for(i=O; i<nBytes/8; i++) 
*pDest = *pSource; 
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This could be transformed into PowerPC assembly as follows: 

li 
mtctr 

loop: 
lfdu 
stfdu 
bdnz 

rO,nBytes/8 
rO 

frO,8(rSource) 
frO,8(rDest) 
loop 

Here, the IU still does most of the work because it handles all of the loads and 
stores, but now the FPU is helping out with the stores so that 8 bytes can be 
transferred at a time instead of only 4. 

This technique could also be used to clear a block of memory by initializing an 
FPR with 0 and clearing out 8 bytes at a time. 

Multiplication and Division 

Another situation where switching from one unit to the other can be advanta­
geous is with the multiplication and division operations. In the IU, these opera­
tions (especially division) are quite costly; in the FPU, they are somewhat less 
costly. 

Whether or not this is a useful transformation to apply depends on a wide vari­
ety of factdrs. The two most important are the number of multiplies / divides and 
the type of data conversion required. 

If only a small number of multiplies or divides are needed, then it isn't likely 
that the overhead of the transformation will be worthwhile. On the other hand, 
if there are a large number of these expensive operations, then the performance 
gains from the conversion can offset the required setup penalty. 

This setup penalty can be quite large if a lot of data conversion is necessary from 
the IU to the FPU. Although data conversion from the FPU to the IU can be han­
dled by the fctiw or fctiwz instructions, no instruction converts from integer 
to floating-point-the conversion must be performed manually and requires at 
least three instructions per word being converted, as described in Chapter 8, 
"Floating-Point Instructions." 

16.2 Increasing Scheduling Opportunities 

In order to prevent pipeline stalls, a lot of code rescheduling may be necessary. 
The problem with scheduling code is that often there aren't enough independent 
instructions to fill the delay slots. This section discusses a few techniques for 
increasing the number of independent instructions by changing the code struc­
ture. 
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Loop Unrolling 

The basics of loop unrolling were discussed in Chapter 14, where it was implied 
that loop unrolling was less useful on PowerPC processors because the branch 
penalty could be eliminated if the compare and branch were far enough apart. 

However, many small loops can benefit from loop unrolling for another reason. 
If each loop iteration is relatively independent of other iterations (as is the case 
for many loops), then loop unrolling increases the number of independent 
instructions available for scheduling. This increase in scheduling opportunities 
can significantly impact the performance of small loops. 

Copying and Pasting Code 

Instruction scheduling is typically done within a basic block. A basic block is sim­
ply a consecutive sequence of code that has only one entry point and one exit 
point. For example, in this code, there are four blocks: 

if ( condi ti on) 
then-clause 

else 
else-clause 

next-instruction 

The condition, then-clause, else-clause, and the next-instruction are all separate 
blocks. Figure 16-1 shows their relationship. 

Figure 16-1 Basic Block Diagram for the 1£-Then-Else Structure 

~_ ...... J then - clause I~_---. -I 1 

I condition :1------1 .1 next- I 
I-----.,~·I instruction 

J L '----...... -1 else - clause I~---' 

If the basic blocks are small, then there may not be many opportunities for 
scheduling. A technique to increase the size of critical basic blocks is known as 
code pasting. 

Code pasting involves removing code from one block and adding it to another. 
Typically code is removed from a large block and added to a small block that is 
having scheduling problems. 

For the above if-then-else example, code pasting can be applied by taking code 
from after the if-then-else and appending it to the bottom of the then- and else-
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clauses. The code must be added to both clauses; otherwise the overall program 
structure will be changed, generally a bad thing for an optimization to do. 

Of course, it's silly to paste the entire sequence of following ihstructions into 
each clause of the if-then-else statement. Only a portion of the next-instruction 
sequence is needed so that the clauses have enough instructions to perform 
whatever scheduling they need. 

So, by breaking up the instructions following the if-then-else into two smaller 
blocks (zzz' and zzz"), the first block can be appended to each of the clauses 
while the second block stays after the if-then-else. The transformation shows this: 

if (ccc) if (ccc) 
xxx xxx 

zzz' 
else else 

.wy .wy 
zzz' 

zzz' zzz' , 
zzz' , 

Of course, these transformations are useful for structures other than if-then-else 
statements. This technique can be applied whenever a basic block is too small to 
perform effective rescheduling and there are surrounding blocks with available 
instructions. 

Care must be taken when applying this technique so that the meaning of the 
program isn't inadvertently changed. The code removed must be pasted to every 
block that passes control to the modified block. 

16.3 Strength Reduction 

Strength reduction is the process of using simple instructions to replace more 
complex (or more powerful) instructions. This is a worthwhile technique only 
when there are instructions that require multiple cycles to execute. On the Pow­
erPC, the only fixed-point arithmetic instructions likely to require multiple 
cycles are the multiply and divide instructions. 

Using Left Shifts for Multiplication 

Multiplying by a power of 2 can be accomplished quickly using shift left instruc­
tions. For example, multiplying r3 by 4 (22) can be accomplished using: 

slwi r3 ,r3, 2 
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In general, to multiply the contents of a register rxby 2n, use: 

slwi rX, rX,n 

Multiplying by a number that is not a power of 2 is a little more complicated, but 
can be done by adding or subtracting powers of 2. In this case and in Table 16-1, 
one instruction is being replaced with multiple simpler instructions, but the end 
result is code that executes faster. 

Table 16-1 Left Shift Equivalents for Non-integral Powers of 2 

Multiply by Equivalent to Transformation 

(2 xn) +n 
slwi rT,rN,l 

3xn 
add rT,rT,rN 

(4xn)-n slwi rT,rN,2 
sub rT,rT,rN 

5xn (4xn)+n slwi rT,rN,2 
add rT,rT,rN 

slwi rN,rN,l 
(4 X n) +( 2 X n) slwi rT,rN,l 

6xn 
add rT,rT,rN 
slwi rN,rN,l 

(8 X n) - (2 X n) slwi rT,rN,2 
sub rT,rT,rN 

7xn (8 X n) - n slwi rT,rN,3 
sub rT,rT,rN 

9xn (8 X n) + n slwi rT,rN,3 
add rT,rT,rN 

slwi rN,rN,l 
lOxn (8 X n) + (2 X n) slwi rT,rN,2 

add rT,rT,rN 

It should be apparent that a large number of possible combinations are not pre­
sented in Table 16-1, some of which involve using many more than two or three 
instructions. 

On the PowerPC 601, the multiply instruction takes five cycles when multiply­
ing small values. It should be apparent that replacing the multiply instruction 
with five or fewer instructions would be a benefit (or at least it would break even 
assuming there aren't any instruction fetch or cache collision delays). However, 
this doesn't take into account the fact that the multiply instruction is guaranteed 
to stall in the execute stage of the pipeline for five cycles, whereas the five sepa­
rate instructions could be scheduled to use the pipeline efficiently. 

In some situations, it is advantageous to replace a multiply with more than five 
separate instructions because proper scheduling can result in some of the 
instructions being executed "for free." 
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Using Algebraic Right Shifts for Division 

Dividing a number (the dividend) by a power of 2 (the divisor) can be accom­
plished using variants of the Shift Right instructions. 

Unsigned values can be divided using one of the non-algebraic Shift Right 
instructions (srw or srd) or the Shift Right Immediate extended forms (srwi or 
srdi). 

When dealing with a signed value as the dividend, a Shift Right Algebraic instruc­
tion (sraw, srawi, srad, or sradi) should be used instead of a Shift Right 
instruction of the non-algebraic variety. These instructions properly handle the 
sign of the dividend when generating the result. To insure that the result is 
rounded properly when the dividend is negative, an addze instruction should 
follow the shift instruction: 

sraw rT,rA,rB 
addze rT,rT 

The addze instruction adds the Carry bit to the shifted result. Because the Carry 
bit is set to 1 only if the value in rA is negative and a '1' bit has been shifted out, 
this has the effect of adjusting negative values so that the result is rounded 
toward zero. For example, if rA=-9 and rB=2 (to divide -9 by 4), the result of the 
sraw instruction is -3. The addze instruction adds 1 to correct the result and 
produce -2. The addze instruction has no effect when dividing positive values 
because the Carry bit is always 0 for positive dividends. 

Using a shift instruction differs from using a divide instruction in these ways: 

• The divisor must be an integral power of 2. 
• The divisor cannot be a negative number. 
• The Overflow bits (XER[OV], XER[SO]) are not set. 
• The operation takes roughly 3 to 6 percent of the time required by the 

divide instruction (on the 601). 

For division by non-integral powers of 2, there is no easy method of combining 
shifts, adds, and subtracts to replace the division as there was with the multiply 
operation. However, considering how costly divide instructions are (36 cycles on 
the 601), it may be worthwhile to apply some other optimization technique to 
speed up the calculations (like setting up a lookup table). 

Using Multiplication for Division 

Division is a painfully slow operation. Single-precision floating-point division 
takes 18 cycles to execute and double-precision division takes 32 cycles. 
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If the division operation is being applied many times, it becomes beneficial to 
pre-calculate the reciprocal using a single divide instruction and then perform 
multiplication using the reciprocal. An example of this sort of situation is: 

float x[50] ,d; 
int i; 

for(i=0;i<50;i++) 
x[i] 1= d; 

In this example, an array of floating-point values are all being divided by the 
same divisor. The assembly code for the loop portion of this code (before any 
optimizations have been applied) is shown next. This code assumes that r 31 con­
tains a pointer to the floating-point array and that f r 30 contains the divisor d. 

loop: 
lfs fr31,4(r31) 

# x[i] 1= d 
fdivs fr31,fr31,fr30 

stfsu 
bdn 

fr31,4(r31) 
loop 

# load x[i] 

# save x[i] 

This loop can be rewritten to pre-calculate the reciprocal so that a multiply 
instruction can be used in the body of the loop instead of the divide instruction. 
The transformed code would be (where fr1 contains the constant 1.0): 

# fr29 = 1.0 I fr30 
fdivs fr29,fr1,fr30 

loop: 
lfs fr31,4(r31) # load x[i] 

# x[i] *= (lid) 
frnuls fr31,fr29,fr31 

stfsu fr31,4(r31) # save x[i] 
bdn @O 

The problem with this transformed loop is that it introduces some floating-point 
round-off errors. In many cases, these round-off errors are acceptable, but the 
PowerPC's floating-point multiply-accumulate pipeline can be exploited to 
eliminate the round-off errors at the cost of a few more cycles of execution. 
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The (re-)transformed code would be: 

# fr29 = 1.0 I fr30 
fdivs fr29,fr1,fr30 

loop: 
1£s fr31,4(r31) 

# temp = x[i] * (lid) 
fmuls fr28,fr31,fr29 

# load x[i] 

# remainder = temp*d - x[i] 
fmsubs fr27,fr30,fr28,fr31 
# x[i] = temp + (rem * lid)) 
fmadds fr31,fr29,fr27,fr28 

stfsu 
bdn 

fr31,4(r31) 
loop 

# save x[i] 

This code calculates the error introduced by the multiply and incorporates that 
value into the result. This adjustment works because the multiply-accumulate 
instructions (fms ubs and fmadds) perform the multiply and the add before any 
rounding takes place. 

16.4 Load/Store Ordering 

Loads and stores are special cases because they require access to the processor 
caches, which may cause delays if a cache miss occurs or if the data being stored 
is not available. 

For this reason, loads are typically moved earlier in the instruction stream and 
stores are commonly moved later in the instruction stream. This code: 

lwz r3,4(r2) 
addi r3,r3,12 
stw r3,4(r2) 
lwz r4,8(r2) 
addi r4,r4,16 
stw r4,8(r2) 

would typically be sequenced as: 

lwz r3,4(r2) 
lwz r4,8(r2) 
addi r3,r3,12 
addi r4,r4,16 
stw r3,4(r2) 
stw r4,8(r2) 
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16.5 Software Pipelining 

Software pipelining is a way of merging the ideas of load/ store ordering and 
pipelining together and applying them to program loops. 

If load/ store ordering is applied to the body of a loop, there will be three parts 
to the code: the load (L) portion, the execute (E) portion, and the store (S) por­
tion. Each part can be considered a stage in a pipeline, where the pipeline is pro­
cessing entire loop iterations instead of simple instructions. 

To compare, consider the diagrammed instruction pipeline, which uses an imag­
inary three-stage pipeline with stages labelled A, B, and C. Here six instructions 
are completed in eight cycles: 

Cycle#: 1 2 3 4 5 6 7 8 
instruction 1 A B C - - - -
instruction 2 - A B C - - - -
ihstruction 3 - - A B C - - -
instruction 4 - - - A B C - -
instruction 5 - - - - A B C -

instruction 6 - - - - - A B C 

A software pipeline can be viewed the same way, but instead of instructions ver­
sus cycles, the table shows original loop iterations versus transformed loop iter­
ations. Here the three stages are labelled L, E, and S: 

"Cycle" #: 1 2 3 4 5 6 7 8 
iteration 1 L E S - - - - -
iteration 2 - L E S - - - -
iteration 3 - - L E S - - -
iteration 4 - - - L E S - -
iteration 5 - - - - L E ~ -
iterallon 6 - - - - - L E S 

Because we're looking at original iterations versus transformed iterations, this 
can quickly become quite confusing. In this case, the original six loop iterations 
are accomplished in eight transformed iterations, or "cycles." Note that the term 
"cycle" is used simply for convenience-these cycles have nothing to do with 
the processor cycles in the instruction pipeline. 

During the first two cycles, the software pipeline is still being filled. It isn't until 
the third cycle that the pipeline is fully loaded. During this third cycle, the trans­
formed loop performs the S stage for the first iteration, the E stage for the second 
iteration, and the L stage for the third iteration. The pipeline stays full until cycle 
7, when it needs to ramp down and execute the cleanup code for the last two 
loop iterations. 

To put this into practice, a loop like this: 

for(i=O; i<N; i++) 
L(i) 
E(i) 
S(i) 
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can be transformed into this loop: 

L(l) 
E(l) 
L(2) 
for(i=li i<N-li i++) 

S(i) 
E(i+l) 
L(i+2) 

S(N-l) 
E(N) 
S(N) 

Or, as it is commonly structured in assembly: 

# initialize loop counter 
Ii rO ,N-l 
mtctr rO 

# handle cycle 1 
L(l) 
b start 

.# execute S,E,L N-2 times 
loop: 

S(i-l) 
start: 

E(i) 
L(i+l) 
bdnz loop 

# ramp down 
S(N-l) 
E(N) 
S(N) 

Note that in order for this to work, the results of each stage must be stored in 
different registers. Thus, a set of registers chosen as the output registers for the 
Load stage is also used as the input registers for the Execute stage. Likewise, 
there is another set of registers for communication between the Execute and 
Store stages. 
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Instruction 
Set Summary 

This appendix contains an alphabetically sorted list of all PowerPC instructions. 
This includes all 32-bit and 64-bit instructions plus all optional instructions. In 
addition, all of the POWER instructions that are provided on the 601 are 
included in this appendix. 

At the head of each main entry is the standard instruction mnemonic along with 
the instruction description. In general, the mnemonics are displayed in boldface, 
but obsolete POWER instructions (which are implemented only on the 601), are 
displayed using an outline font to serve as a reminder that these are not standard 
PowerPC instructions and that they will not be implemented on future PowerPC 
processors. 

Immediately beneath the instruction title is a summary of the processors on 
which the instruction is implemented. The value here can be any combination of 
the following: 

• POWER-The instruction is defined on POWER processors. 

• 601-The instruction is defined on the PowerPC 601. 

• 603-The instruction is defined on the PowerPC 603. 

• PowerPC32-The instruction is defined on 32-bit PowerPC implementations 
only. 

• PowerPC64-The instruction is defined on 64-bit PowerPC implementations 
only. 
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• PowerPC32/64-The instruction is defined for both 32-bit and 64-bit Power­
PC implementations. 

• Optiona132/ 64-The instruction is an optional instruction that may be 
defined on 32-bit and 64-bit implementations. 

The Operation provides a concise description of the instruction operation using 
the operators described in Chapter 3. 

The Syntax area shows all of the valid syntax forms for the instruction. 

The register area will show which of the Special Purpose Registers are modified 
by this instruction. For fixed-point instructions, this section is titled Condition 
RegisterlFixed-Point Exception Register and for floating-point instructions it is 
entitled Condition Register/Floating-Point Status and Control Register. 

The Description field provides a textual description of the instruction's opera­
tion and notes any idiosyncracies. 

For instructions with extended forms, the Extended Forms section provides a 
summary of all of the valid extended forms that are based on the instruction. 
Instructions without extended forms will not have this section. 

The final section is the Instruction Encoding area. This section shows how the 
instruction and its operands are encoded into a 32-bit word. 
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@lb§ Absolute Value @lb§ 
POWER· 601 

Operation: rT<= IrAI 

Syntax: abs rT,rA (Rc = 0, OE = 0) 
abs. rT,rA (Rc = 1, OE = 0) 
abso rT,rA (Rc = 0, OE = 1) 
abso. rT,rA (Rc = 1, OE = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The abs instruction calculates the absolute value of the contents of GPR rA, and 
stores the result in GPR rT. 

If GPR rA contains the largest negative number (Ox80000000), then the result in 
rT will be the largest negative number and, if the OE bit is set, the OV and SO 
bits of the XER will be set to 1. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
OE 
Rc 

5 6 

1 I 
10 11 15 16 20 21 22 30 31 

T I A I 0 0 0 0 0 lOB 11 0 1 1 0 1 0 0 0 IRe I 

Target GPR rT where result of operation is stored 
Source GPR rA 
Overflow Exception bit 
Record bit 
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add Add 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT <= (rA) + (rB) 

Syntax: add 
add. 
addo 
addo. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = I, OE = 0) 
(Rc=O,OE=I) 
(Rc = I, OE = 1) 

Condition Register /Fixed-Point Exception Register: 

add 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The add instruction adds the contents of GPR rA and GPR r B as signed 
quantities and places the result in GPR rT. 

The archaic POWER mnemonic for this instruction is cax[o][.] (Compute 
Address Indexed). 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
OE 
Rc 

5 6 

1 I 
10 11 15 16 20 21 22 30 31 

T I A I B 100Il 0 0 0 0 1 0 1 0 IRe I 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 
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addc Add Carrying addc 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT ¢= (rA) + (rB) 

Syntax: addc 
addc. 
addco 
addco. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc = 0, OE = 1) 
(Rc = 1, OE = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: always updated 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The ad de instruction adds the contents of GPR rA and GPR rB as signed 
quantities and places the result in GPR rT, updating the Carry bit of the XER. 

The archaic POWER mnemonic for this instruction is a[o][.]. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
OE 
Rc 

5 6 

1 I 
10 11 15 16 20 21 22 30 31 

T I A I B lOEloOOOOlOlOIRcl 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 
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adde Add Extended adde 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT ¢:: (rA) + (rB) + XER[CA] 

Syntax: adde 
adde. 
addeo 
addeo. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = I, OE = 0) 
(Rc = 0, OE = 1) 
(Rc = I, OE = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: always updated 
XER[OV,SO]: updated if OE=l, otherwise not affected 

Description: 
The adde instruction adds the contents of GPR rA and GPR rB as signed 
quantities with the Carry bit of the XER and places the result in GPR rT, 
updating the Carry bit. 

The archaic POWER mnemonic for this instruction is ae[o][.]. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
OE 
Rc 

5 6 

1 I 
10 11 15 16 20 21 22 30 31 

T I A I B 100IolOOOlOlOIRci 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 
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addi Add Immediate addi 
POWER· 601 .603 • PowerPC32j64 

Operation: rT ¢= (rA I 0) + '516 

Syntax: addi rT,rA,516 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
If A;t:O, the addi instruction adds the sign-extended quantity specified by s16 
with the contents of CPR rA and places the result in CPR rT. 

If A=O, the addi instruction simply places the sign-extended quantity s16 in CPR 
rT. 

The archaic POWER mnemonic for this instruction is cal (Compute Address 
Lower). Note that even though the instruction encoding is identical, the assem­
bler parses the parameters for the cal instruction as rT,d(rA) instead of rT,rA,s16. 

Extended Forms: 
la rT,d(rA) is equivalent to addi rT,rA,d 
Ii rT,s16 is equivalent to addi rT,0,s16 
subi rT,rA,s16 is equivalent to addi rT,rA,-s16 

Instruction Encoding: 
0 5 

10 0 1 1 1 01 

T 
A 
SI 

6 10 11 15 16 

T I A I SI 

Target CPR rT where result of operation is stored 
Source CPR rA or ° 
Signed 16-bit integer 

31 
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addic Add Immediate Carrying 
POWER. 601 • 603 • PowerPC32/64 

addic 

Operation: rT <= (rA) + 's16 

Syntax: addic 
addic. 

rT,rA,s16 
rT,rA,s16 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: 
XER[OV,SO]: 

Description: 

always updated 
not affected 

The addic instruction adds the contents of GPR rA to the 32-bit sign-extended 
quantity specified by 816 and places the result in GPR rT, updating the Carry 
bit. 

The archaic POWER mnemonic for this instruction is ai[.]. 

Instruction Encoding: 
o 4 5 6 !O 11 15 16 31 

10 0 1 1 01&1 T I A I SI 

Rc Record bit 
T Target GPR rT where result of operation is stored 
A Source GPR rA 
SI Signed 16-bit integer 
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addis Add Immediate Shifted addis 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT ~ (rA I 0) + '(s16 .1 OxOOOO) 

Syntax: addis rT,rA,s16 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
If A;tO, the addis instruction takes the value calculated by concatenating s16 
with OxOOOO, adds it to the contents of GPR rA, and then places the result in GPR 
rT. 

If A=O, the addis instruction simply places the concatenated value directly in 
GPRrT. 

On 64-bit PowerPC implementations, the 32-bit result of the concatenation is 
sign-extended to 64 bits before the result is placed in rT. 

The archaic POWER mnemonic for this instruction is cau (Compute Address 
Upper). Note that the cau instruction accepts an unsigned 16-bit quantity 
instead of a signed 16-bit quantity as the immediate value. While this difference 
will not affect the operation of this instruction in 32-bit mode, POWER code that 
is migrated to 64-bit PowerPC implementations will notice that the upper word 
of the target register will be filled with sign bits instead of O. 

Instruction Encoding: 
0 5 

10 0 1 1 1 1 1 

T 
A 
SI 

6 10 11 15 16 

T 1 A 1 SI 

Target GPR rT where result of operation is stored 
Source GPR rA or 0 
Signed 16-bit integer 

31 
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addme Add to Minus One Extended addme 
POWER • 601 • 603 • PowerPC32j 64 

Operation: rT ¢= (rA) + -1 + XER[CA] 

Syntax: addme 
addme. 
addmeo 
addmeo. 

rT,rA 
rT,rA 
rT,rA 
rT,rA 

(Rc = 0, OE = 0) 
(Rc = I, OE = 0) 
(Rc = 0, OE = 1) 
(Rc = I, OE = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: always updated 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The addme instruction adds the contents of GPR rA, -1 (OxFFFFFFFF), and the 
Carry bit, and places the result in GPR rT, updating the Carry bit in the XER. 

The archaic POWER mnemonic for this instruction is ame[o][.]. 

Instruction Encoding: 
0 

[0 1 1 1 1 

T 
A 
OE 
Rc 

5 6 

1 [ 
10 11 15 16 20 21 22 30 31 

T [ A [0 000 O[OE[O 1 1 101 0 1 O[Re[ 

Target GPR rT where result of operation is stored 
Source GPR rA 
Overflow Exception bit 
Record bit 
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addze Add to Zero Extended addze 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT <= (rA) + 0 + XER[CA] 

Syntax: addze 
addze. 
addzeo 
addzeo. 

rT,rA 
rT,rA 
rT,rA 
rT,rA 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc=O,OE=I) 
(Rc = 1, OE = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: always updated 
XER[OV,SO]: updated if OE=l, otherwise not affected 

Description: 
The addze instruction adds the contents of GPR rA, 0 and the Carry bit and 
places the result in GPR rT, updating the Carry bit in the XER. 

The archaic POWER mnemonic for this instruction is aze[o][.]. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
OE 
Rc 

5 6 

1 I 
10 11 15 16 20 21 22 30 31 

T I A 10 0 0 0 0 10E1 0 1 1 0 0 1 0 1 0 IRel 

Target GPR rT where result of operation is stored 
Source GPR rA 
Overflow Exception bit 
Record bit 
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and AND 
POWER • 601 • 603 • PowerPC32/64 

Operation: rA ¢::: (rS) & (rB) 

Syntax: and 
and. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

and 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The and instruction logically ANDs the contents of GPR rS and GPR rB and 
places the result in GPR rA. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

11 
10 11 15 16 20 21 30 31 

s I A I B 10 0 0 0 0 1 1 1 0 0 IRel 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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andc AND with Complement 
POWER. 601 • 603 • PowerPC32/64 

Operation: rA ¢::: (rS) & -(rB) 

Syntax: andc 
andc. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

andc 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The andc instruction logically ANDs the contents of GPR rS with the one's 
complement of the contents of GPR rB and places the result in GPR rA. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 10 0 0 0 1 1 1 1 0 01&1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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andi. AND Immediate andi. 
POWER • 601 • 603 • PowerPC32/64 

Operation: rA ¢= (rS) & °u16 

Syntax: andi. rA,rS,u16 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,CT,EQSO always updated 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The andi. instruction logically ANDs the contents of CPR rS and the value 
calculated by zero-extending u16 and places the result in CPR rA. 

The archaic POWER mnemonic for this instruction is andil. (AND Immediate 
Lower). 

Instruction Encoding: 
0 5 6 

[£1 1 1 o 01 

S 
A 
VI 
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10 11 15 16 

s 1 A 1 UI 

Source CPR rS 
Target CPR rA where result of operation is stored 
Unsigned 16-bit integer 

31 



andis. AND Immediate Shifted andis. 
POWER. 601 • 603 • PowerPC32/64 

Operation: rA ~ (rS) & O(u16 .1 OxOOOO) 

Syntax: andis. rA,rS,u16 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO always updated 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The andis. instruction logically ANDs the contents of GPR rS and the value 
calculated by concatenating u16 with OxOOOO, and places the result in GPR rA. 
On 64-bit PowerPC implementations, the calculated value is zero-extended to 
64 bits before performing the AND operation. 

The archaic POWER mnemonic for this instruction is andiu. (AND Immediate 
Upper). 

Instruction Encoding: 
0 5 

10 1 1 1 o 11 

S 
A 
UI 

6 10 11 15 16 

s I A I VI 

Source GPR rS 
Target GPR rA where result of operation is stored 
Unsigned 16-bit integer 

31 
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b Branch 
POWER. 601 • 603 • PowerPC32/64 

Operation: if (Lk = 1) 

Syntax: 

LR ¢:: IP + 4 
H(AA=I) 

IP ¢:: '(LI .1 baa) 
else 

b 
ba 
bI 
bla 

IP ¢:: IP + '(LI .1 baa) 

address 
address 
address 
address 

(AA = a, Lk = 0) 
(AA = 1, Lk = 0) 
(AA= a, Lk = 1) 
(AA= I, Lk = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

b 

The b instruction passes control to the instruction specified by the target address. 
The target address is calculated as follows: 

• If the Absolute Address (AA) bit is set, then the target address is simply the 
contents of the 24-bit LI field concatenated with baa and sign-extended to 32 
bits. 

• If the AA bit is clear, then the target address is the sum of the 24-bit LI field 
concatenated with baa and sign-extended to 32 bits and the address of the 
branch instruction. 

If the Lk bit is set, the address of the instruction following the branch instruction 
is saved in the Link Register (LR). 

Instruction Encoding: 
o 5 6 

10 1 0 0 1 01 LI 

LI 24-bit signed offset to (or absolute) target address 
AA Absolute Address bit 
Lk Link bit 
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be Branch Conditional 
POWER. 601 • 603 • PowerPC32j 64 

Operation: if(Lk = 1) 

Syntax: 

LR {:::: IP + 4 
if (condition is TRUE) 

if (AA= 1) 
IP {:::: '(BD .1 baa) 

else 

be 
bea 
bel 
bela 

IP {:::: IP + '(BD .1 baa) 

Ba,BI, address 
Ba,BI, address 
Ba,BI, address 
Ba,BI, address 

(AA = 0, Lk = 0) 
(AA = 1, Lk = 0) 
(AA = 0, Lk = 1) 
(AA = 1, Lk = 1) 

Condition Register / Fixed -Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

be 

The be instruction passes control to the instruction specified by the target address 
if the condition specified by BO and BI is true. The target address is calculated as 
follows: 

• If the Absolute Address (AA) bit is set, then the target address is simply the 
contents of the 14-bit BD field concatenated with baa and sign-extended to 32 
bits. 

• If the AA bit is clear, then the target address is the sum of the 14-bit BD field 
concatenated with baa and sign-extended to 32 bits and the address of the 
branch instruction. 

If the Link (Lk) bit is set, the address of the instruction following the branch 
instruction is saved in the Link Register (LR). This will occur even if the branch 
is not taken. 
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The Branch Option (BO) field of the instruction is used in conjunction with the 
specified Condition Register bit (BI) to determine if the branch should be taken. 
The BO field can be anyone of the values listed in the table. 

BO Action 

OOOOy decrement CTR; branch if CTR 7' a and CR[Bl] = a 
OOOly decrement CTR; branch if CTR = a and CR[Bl] = a 
OOlxy branch if CR[Bl] = a 
OlOOy decrement CTR; branch if CTR 7' a and CR[Bl] = 1 

OlOly decrement CTR; branch if CTR = a and CR[Bl] = 1 

Ollxy branch if CR[Bl] = 1 

lxOOy decrement CTR; branch if CTR 7' a 
lxOly decrement CTR; branch if CTR = a 
lxlxx branch always 

In the table, the x's denote bits that are ignored (but should remain 0 for future 
compatibility), and the y's denote bits that are used to encode branch prediction 
information. For the be instruction, this prediction information is: 

• If Y = 0, then forward branches are predicted not-taken and backward 
branches are predicted taken. 

• If Y = I, then forward branches are predicted taken and backward branches 
are predicted not-taken. 

Extended Forms: 
There are a large number of extended forms for the be instruction, all of which 
are summarized in the following list. In this list, BIF stands for the bit field of 
the CR that is used for the test. The BIF value must range between 0 and 7, 
inclusive. If the branch is dependent on CR field 0, then the BIF parameter may 
be omitted. 

bdnz[IHa] addr 
bdnz£[IHa] BI,addr 
bdnzt[IH a] BI,addr 
bdz[IHa] addr 
bdz£[IHa] BI,addr 
bdzt[IHa] BI,addr 
beq[IHa] [BIF,]addr 
b£[IHa] BI,addr 
bge[IHa] [BIF,]addr 
bgt[IHa] [BIF,]addr 
ble[IH a] [BIF, ]addr 
blt[IHa] [BIF,]addr 
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is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 

be[IHa] 
be[IHa] 
be[l][a] 
be[tHa] 
be[IHa] 
be[IHa] 
be[IHa] 
be[IHa] 
be[IHa] 
be[IHa] 
be[IHa] 
be[lHa] 

Oxl0,O,addr 
OxOO,BI,addr 
Ox08,BI,addr 
Ox12,O,addr 
Ox02,BI,addr 
OxOA,BI,addr 
OxOC,BIF*4+ 2,addr 
Ox04,BI,addr 
Ox04,BIF*4+0,addr 
OxOC,BIF*4+ l,addr 
Ox04,BIF*4+ l,addr 
OxOC,BIF*4+0,addr 



bne[l][a] [BIF,]addr is equivalent to be[l][a] Ox04,BIF*4+2,addr 
bng[l][a] [BIF,]addr is equivalent to be[l][a] Ox04,BIF*4+ l,addr 
bnl[l][a] [BIF,]addr is equivalent to be[l][a] Ox04,BIF*4+0,addr 
bns[l][a] [BIF,]addr is equivalent to be[l][a] Ox04,BIF*4+3,addr 
bnu[l][a] [BIF,]addr is equivalent to be[IHa] Ox04,BIF*4+3,addr 
bso[l] [a] [BIF,]addr is equivalent to be[IHa] OxOC,BIF*4+3,addr 
bt[IHa] BI,addr is equivalent to be[l][a] OxOC,BI,addr 
bun[l][a] [BIF,]addr is equivalent to be[IHa] OxOC,BIF*4+3,addr 

Instruction Encoding: 
0 5 6 !O 11 15 16 29 30 31 

10 1 000 01 BO 1 BI 1 BD ~AILkl 

BO Branch Option 
BI Bit number (0-31) of CR to check 
BD 14-bit signed offset to (or absolute) target address 
AA Absolute Address bit 
Lk Link bit 
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bcctr Branch Conditional to CTR 
POWER • 601 • 603 • PowerPC32/64 

Operation: if (Lk= 1) 

Syntax: 

LR¢= IP+4 
if (condition is TRUE) 

IP ¢= CTR[0:29] ..L bOO 

beetr 
beetrl 

BO,BI 
BO,BI 

(Lk = 0) 
(Lk = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

bcctr 

The beetr instruction passes control to the instruction at the address specified in 
the Count Register (CTR) if the condition specified by BO and BI is true. 

The target address is calculated by concatenating the upper 30 bits of the CTR 
with bOO. This insures that the IP contains a valid word-aligned address. 

If the Link (Lk) bit is set, the address of the instruction following the branch 
instruction is saved in the Link Register (LR). 

The archaic POWER mnemonic for this instruction is bee[l]. 

The Branch Option (BO) field of the instruction is used in conjunction with the 
specified Condition Register bit (BI) to determine if the branch should be taken. 
The BO field can be anyone of the following values (although the Branch 
Options involving decrementing the CTR do not produce sensible instructions): 

BO Action 

OOOOy decrement CTR; branch if CTR"# 0 and CR[BI] = 0 

OOOly decrement CTR; branch if CTR = 0 and CR[BI] = 0 

OOlxy branch if CR[BI] = 0 

OlOOy decrement CTR; branch if CTR"# 0 and CR[BI] = 1 

OlOly decrement CTR; branch if CTR = 0 and CR[BI] = 1 

Ollxy branch if CR[BI] = 1 

1xOOy decrement CTR; branch if CTR"# 0 

lx01y decrement CTR; branch if CTR = 0 

1xlxx branch always 
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In the table, the x's denote bits that are ignored (but should remain 0 for future 
compatibility), and the y's denote bits that are used to encode branch prediction 
information. For the beetr instruction, this prediction is: 

• If Y = 0, the branch is predicted not-taken. 

• If Y = 1, the branch is predicted taken. 

Extended Forms: 
There are a large number of extended forms for the beetr instruction, all of 
which are summarized in the following list. In this list, BIF stands for the bit 
field of the CR that is used for the test. The BIF value must range between 0 and 
7, inclusive. If the branch is dependent on CR field 0, then the BIF parameter 
may be omitted. 

betr[l] is equivalent to bectr[l] Ox14,0 
beqctr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+2 
bfetr[l] BI is equivalent to bectr[l] Ox04,BI 
bgectr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+0 
bgtetr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+ 1 
bleetr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+ 1 
bltetr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+0 
bnectr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+2 
bngctr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+ 1 
bnlctr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+0 
bnsetr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+3 
bnuctr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+3 
bsoetr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+3 
btctr[l] BI is equivalent to bectr[l] OxOC,BI 
bunctr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+3 

Instruction Encoding: 
0 5 6 10 11 15 16 20 21 30 31 

10 1 001 1 I BO I BI 10 0 0 o 011 o 0 0 0 1 000 o ILkl 

BO Branch Option 
BI Bit number (0-31) of CR to check 
Lk Link bit 
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belr Branch Conditional to LR 
POWER. 601 • 603 • PowerPC32/64 

Operation: oldLR := LR 
if (Lk=l) 

Syntax: 

LR¢= IP+4 
if (condition is TRUE) 

IP ¢= oldLR[0:29] .1 bOO 

belr 
belrl 

BO,BI 
BO,BI 

(Lk = 0) 
(Lk = 1) 

Condition Register/Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

belr 

The belr instruction passes control to the instruction at the address specified in 
the Link Register (LR) if the condition specified by BO and BI is true. 

The target address is calculated by concatenating the upper 30 bits of the LR 
with bOO. This insures that the IP contains a valid word-aligned address. 

If the Link (Lk) bit is set, the address of the instruction following the branch 
instruction is saved in the Link Register (LR). 

The archaic POWER mnemonic for this instruction is bcr[l]. 

The Branch Option (BO) field of the instruction is used in conjunction with the 
specified Condition Register bit (BI) to determine if the branch should be taken. 
The BO field can be anyone of the values listed in the next table. 

BO Action 

DOODy decrement cm; branch if CTR '" 0 and CR[Bl] = 0 

ODDly decrement CTR; branch if CTR = 0 and CR[Bl] = 0 

OOlxy branch if CR[Bl] = 0 

OlOOy decrement cm; branch if CTR", 0 and CR[Bl] = 1 

OlOly decrement CTR; branch if CTR = 0 and CR[Bl] = 1 

Ollxy branch if CR[Bl] = 1 

1xOOy decrement CTR; branch if cm", 0 

lx01y decrement CTR; branch if CTR = 0 

lx1xx branch always 
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In the table, the x's denote bits that are ignored (but should remain 0 for future 
compatibility), and the y's denote bits that are used to encode branch prediction 
information. For the belr instruction, this prediction is: 

• If Y = 0, the branch is predicted not-taken. 

• If Y = 1, the branch is predicted taken. 

Extended Forms: 
There are a large number of extended forms for the belr instruction, all of which 
are summarized in the following list. In this list, BlF stands for the bit field of 
the CR that is used for the test. The BlF value must range between 0 and 7, 
inclusive. If the branch is dependent on CR field 0, then the BlF parameter may 
be omitted. 

bIr[l] is equivalent to belr[l] Ox14,0 
bdnzflr[l] Bl is equivalent to belr[l] OxOO,Bl 
bdnzIr[l] is equivalent to belr[l] Oxl0,0 
bdnztIr[l] Bl is equivalent to belr[l] Ox08,BI 
bdzflr[l] Bl is equivalent to belr[l] Ox02,Bl 
bdzlr[l] is equivalent to belr[l] Ox12,0 
bdztlr[l] Bl is equivalent to belr[l] OxOA,Bl 
beqlr[l] [BlF] is equivalent to belr[l] OxOC,BlF*4+2 
bflr[l] Bl is equivalent to belr[l] Ox04,Bl 
bgelr[l] [BlF] is equivalent to belr[l] Ox04,BlF*4+0 
bgtlr[l] [BlF] is equivalent to belr[l] OxOC,BlF*4+ 1 
bleIr[l] [BlF] is equivalent to bcIr[l] Ox04,BlF*4+ 1 
bltIr[l] [BlF] is equivalent to belr[l] OxOC,BlF*4+0 
bneIr[l] [BlF] is equivalent to belr[l] Ox04,BIF*4+2 
bngIr[l] [BlF] is equivalent to belr[l] Ox04,BIF*4+ 1 
bnllr[l] [BlF] is equivalent to belr[l] Ox04,BlF*4+0 
bnslr[l] [BlF] is equivalent to belr[l] Ox04,BlF*4+3 
bnulr[l] [BlF] is equivalent to belr[l] Ox04,BlF*4+3 
bsoIr[l] [BIF] is equivalent to belr[l] OxOC,BlF*4+3 
btIr[l] Bl is equivalent to belr[l] OxOC,Bl 
bunlr[l] [BlF] is equivalent to belr[l] OxOC,BlF*4+3 

Instruction Encoding: 
0 5 6 10 11 15 16 20 21 30 31 

10 1 001 1 I BO I BI 10 0 0 o 010 000 0 1 000 o ILkl 

BO Branch Option 
BI Bit number (0-31) of CR to check 
Lk Link bit 
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Cache Line Compute Size 
POWER • 601 

Operation: rT ¢= cache line specified by rA 

Syntax: des rT,rA 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: undefined if Rc = 1 
tR Fields 1-7: not affected 

XER: not affected 

Description: 
The des instruction places the cache line size specified by GPR rA into GPR rT. 
Valid values for rA are listed in the table. 

(rA) Line Size 

ooxxx Undefined 

OlOxx Undefined 

01100 Instruction Cache Line Size 

01101 Data Cache Line Size 

01110 Minimum Line Size 

01111 Maximum Line Size 

lxxxx Undefined 

The value returned in rT must be between 64 and 4096 (inclusive). The 601 
returns 64 as the line size for all valid values of rA. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
Rc 
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10 11 15 16 20 21 30 31 

T I A 10 a a a 0110 a a a 1 a a 1 11&1 

Target GPR rT where result of operation is stored 
GPR rA which contains cache line code 
Record bit 



cmp Compare cmp 
POWER. 601 • 603 • PowerPC32 / 64 

Operation: CR{crT} <= Signed Compare(rA,rB) 

Syntax: cmp crT,L,rA,rB 

Condition Register/Fixed-Point Exception Register: 
CR Field T: LT,GT,EQSO always updated 
other fields: not affected 

XER: not affected 

Description: 
The cmp instruction compares the contents of the two source registers rA and rB 
and stores the result of the compare in field crT of the Condition Register. The 
contents of the source registers are interpreted as containing signed values for 
purposes of the compare. 

On 32-bit PowerPC implementations, the L operand must be 0 or else the 
instruction form is invalid. The 601 ignores the value of L and always operates 
as if it were O. 

On 64-bit PowerPC implementations, the L operand is used to select a 32-bit or 
a 64-bit compare. If L is 1, then all 64 bits of the source registers are used for the 
compare; if L is 0, then only the low-order 32-bits from each register (sign­
extended to 64 bits) are used. 

Extended Forms: 
cmpd crT,rA,rB is equivalent to cmp crT,l,rA,rB 
cmpw crT,rA,rB is equivalent to cmp crT,O,rA,rB 

Instruction Encoding: 
0 5 6 8 9 10 11 15 16 20 21 30 31 

10 1 1 1 1 1 I T 10 ILl A I B 10 a a a a a 0 a a 0101 

T Bit field of CR where result of compare is stored 
L Selector to determine 32/ 64-bit operands 
A Source GPR rA 
B Source GPR rB 
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• • Cmpl Compare Immediate 
POWER • 601 • 603 • PowerPC32/64 

Cmpl 

Operation: CR{crT} ¢= Signed Compare(rA,s16) 

Syntax: cmpi crT,L,rA,s16 

Condition Register I Fixed-Point Exception Register: 
CR Field T: LT,GT,EQSO always updated 
other fields: not affected 

XER: not affected 

Description: 
The cmpi instruction compares the contents of the source register rA and the 
sign-extended immediate value s16 and stores the result of the compare in field 
crT of the Condition Register. The contents of the source register are interpreted 
as containing a signed value for purposes of the compare. 

On 32-bit PowerPC implementations, the L operand must be 0 or else the 
instruction form is invalid. The 601 ignores the value of L and always operates 
as if it were O. 

On 64-bit PowerPC implementations, the L operand is used to select a 32-bit or 
a 64-bit c.ompare. If L is 1, then all 64 bits of the source register are compared 
with the immediate value sign-extended to 64 bits; if L is 0, then the low-order 
32-bits of the source register are compared with the immediate value sign­
extended to 32 bits: 

Extended Forms: 
cmpdi 
cmpwi 

crT,rA,s16 
crT,rA,s16 

Instruction Encoding: 

is equivalent to cmpi 
is equivalent to cmpi 

o 5 6 8 9 10 11 15 i6 

10010 11 T 10iLI A I 

crT,l,rA,s16 
crT,0,rA,s16 

SI 

T Bit field of CR where result of compare is stored 
L Selector to determine 32/ 64-bit operands 
A Source GPR rA 
SI Signed 16-bit integer 
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empl Compare Logical 
POWER. 601 • 603. PowerPC32/64 

empl 

Operation: CR{crT} <= Unsigned Compare(rA,rB) 

Syntax: cmpl crT,L,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Field T: LT,GT,EQ,SO always updated 
other fields: not affected 

XER: not affected 

Description: 
The empl instruction compares the contents of the two source registers rA and 
rB and stores the result of the compare in field crT of the Condition Register. The 
contents of the source registers are interpreted as containing unsigned values for 
purposes of the compare. 

On 32-bit PowerPC implementations, the L operand must be ° or else the 
instruction form is invalid. The 601 ignores the value of L and always operates 
as if it were 0. 

On 64-bit PowerPC implementations, the L operand is used to select a 32-bit or 
a 64-bit compare. If L is 1, then all 64 bits of the source registers are used for the 
compare; if L is 0, then only the low-order 32-bits from each register (sign­
extended to 64 bits) are used. 

Extended Forms: 
empld crT,rA,rB is equivalent to empl crT,l,rA,rB 
emplw crT,rA,rB is equivalent to empl crT,O,rA,rB 

Instruction Encoding: 
0 5 6 8 91011 15 16 20 21 30 31 

10 1 1 1 1 1 I T 10iLI A I B 10 000 1 0 0 o 0 0101 

T Bit field of CR where result of compare is stored 
L Selector to determine 32/ 64-bit operands 
A Source GPR rA 
B Source GPR rB 
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cmpli Compare Logical Immediate 
POWER. 601 • 603 • PowerPC32/64 

cmpli 

Operation: CR{crT} ¢= Unsigned Compare(rA,u16) 

Syntax: cmpli crT,L,rA,u16 

Condition Register / Fixed-Point Exception Register: 
CR Field T: LT,GT,EQ,SO always updated 
other fields: not affected 

XER: not affected 

Description: 
The cmpli instruction compares the contents of the source register rA and the 
zero-extended immediate value u16 and stores the result of the compare in field 
crT of the Condition Register. The contents of the source register are interpreted 
as containing an unsigned value for purposes of the compare. 

On 32-bit PowerPC implementations, the L operand must be ° or else the 
instruction form is invalid. The 601 ignores the value of L and always operates 
as if it were 0. 

On 64-bit PowerPC implementations, the L operand is used to select a 32-bit or 
a 64-bit compare. If L is 1, then all 64 bits of the source register are compared 
with the immediate value zero-extended to 64 bits; if L is 0, then the low-order 
32 bits of the source register are compared with the immediate value zero­
extended to 32 bits. 

Extended Forms: 
cmpldi 
cmplwi 

crT,rA,u16 
crT,rA,u16 

Instruction Encoding: 

is equivalent to 
is equivalent to 

o 5 6 8 9 10 11 15 16 

10 0 1 0 1 01 T 10iLI A I 

cmpli 
cmpli 

crT,l,rA,u16 
crT,0,rA,u16 

VI 

T Bit field of CR where result of compare is stored 
L Selector to determine 32/ 64-bit operands 
A Source GPR rA 
UI Unsigned 16-bit integer 
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31 



cntlzd Count Leading Zeros Doubleword cntlzd 
PowerPC64 

Operation: numZeros := 0 
while (numZeros < 64 && rS[numZeros] = 0) 

numZeros := numZeros + 1 

Syntax: 

rA ¢::: numZeros 

cntlzd 
cntlzd. 

rA,rS 
rA,rS 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The cntlzd instruction examines the contents of the source register rS and counts 
the number of zero bits contiguous with the left side of the register. This value is 
then stored in rA. 

All 64 bits of the source register are used for this computation. The returned 
value ranges from 0 to 64. A return value between 0 and 63 indicates the bit 
number of the left-most 'I' bit in the source register. A return value of 64 indi­
cates that all of the bits of the source register are O. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10111111 s I A 10000010000111010lRc i 

A Target GPR rA where result of operation is stored 
S Source GPR rS 
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cntlzw Count Leading Zeros Word 
POWER. 601 • 603 • PowerPC32/64 

Operation: numZeros := 0 

cntlzw 

while (numZeros < 32 && rS[numZeros] = 0) 
numZeros := numZeros + 1 

Syntax: 

rA <= numZeros 

cntlzw 
cntlzw. 

rA,rS 
rA,rS 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The cntlzw instruction examines the contents of the source register rS and 
counts the number of zero bits contiguous with the left side of the register. This 
value is then stored in rA. 

On 32-bit PowerPC implementations, all 32 bits of the source register are used 
for this computation. The returned value ranges from 0 to 32. A return value 
between 0 and 31 indicates the bit number of the left-most 1/11/ bit in the source 
register. A return value of 32 indicates that all of the bits of the source register 
areO. 

On 64-bit PowerPC implementations, only the low-order 32 bits of the source 
register are used for this computation. The returned value ranges from 0 to 32. A 
return value between 0 and 31 indicates the bit number of the left-most '1' bit in 
the low-order word of the source register. A return value of 32 indicates that the 
low-order 32 bits of the source are all O. 

The archaic POWER mnemonic for this instruction is cntlz[.]. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10111111 s I A 10 0 0 0 0 I 0 0 0 0 0 1 1 0 1 0 IRel 

A Target GPR rA where result of operation is stored 
S Source GPR rS 
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erand Condition Register AND 
POWER. 601 • 603 • PowerPC32j 64 

Operation: CR[bitT] ~ CR[bitA] & CR[bitB] 

Syntax: erand bitT,bitA,bitB 

Condition Register /Fixed-Point Exception Register: 
CR bit T: set equal to CR[bitA] & CR[bitB] 
other bits: not affected 

XER: not affected 

Description: 

erand 

The crand instruction ANDs bit bitA of the Condition Register with bit bitB of the 
Condition Register and stores the result of the operation in bit bitT of the Condi­
tion Register. 

Instruction Encoding: 
0 

10 1 o 0 1 

T 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T I A I B 10 1 0 0 0 0 0 0 0 1101 

Bit of CR where result of operation is stored 
Source bit A of CR 
Source bit B of CR 
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crandc Condition Register AND 
with Complement 

POWER. 601 • 603 • PowerPC32/64 

Operation: CR[bitT] {= CR[bitA] & ~CR[bitB] 

Syntax: crandc bitT,bitA,bitB 

Condition Register / Fixed-Point Exception Register: 
CR bit T: set equal to CR[bitA] & ~CR[bitB] 
other bits: not affected 

XER: not affected 

Description: 

crandc 

The crandc instruction ANDs bit bitA of the Condition Register with the comple­
ment of bit bitB of the Condition Register and stores the result of the operation 
in bit bitT of the Condition Register. 

Instruction Encoding: 
0 5 6 

10 1 o 0 1 1 I 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T I A I B 10 0 1 0 000 0 0 1101 

Bit of CR where result of operation is stored 
Source bit A of CR 
Source bit B of CR 



creqv Condition Register Equivalent 
POWER • 601 • 603 • PowerPC32/64 

Operation: CR[bitT] <= CR[bitA] == CR[bitB] 

Syntax: creqv bitT,bitA,bitB 

Condition Register /Fixed-Point Exception Register: 
CR bit T: set equal to CR[bitA] == CR[bitB] 
other bits: not affected 

XER: not affected 

Description: 

creqv 

The creqv instruction calculates the equivalence bit bitA of the Condition Regis­
ter and bit bitB of the Condition Register and stores the result of the operation in 
bit bitT of the Condition Register. The equivalence operation returns 1 if the two 
source bits are equal and 0 if they are not equal. 

Extended Forms: 
crset bit is equivalent to creqv bit/bit/bit 

Instruction Encoding: 
0 

10 1 o 0 1 

T 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T I A I B 10100100001101 

Bit of CR where result of operation is stored 
Source bit A of CR 
Source bit B of CR 
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crnand Condition Register NAND 
POWER. 601 • 603 • PowerPC32/64 

Operation: CR[bitT] ¢= ~(CR[bitA] & CR[bitB]) 

Syntax: crnand bitT,bitA,bitB 

Condition Register /Fixed-Point Exception Register: 
CR bit T: set equal to -(CR[bitA] & CR[bitB]) 
other bits: not affected 

XER: not affected 

Description: 

crnand 

The crnand instruction ANDs bit bitA of the Condition Register with bit bitB of 
the Condition Register and stores the complement of the result of the operation 
in bit bitT of the Condition Register. 

Instruction Encoding: 
0 5 6 

10 1 o 0 1 1 I 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T I A I B 1001 1 000 0 0 1101 

Bit of CR where result of operation is stored 
Source bit A of CR 
Source bit B of CR 



crnor Condition Register NOR 
POWER. 601 • 603 • PowerPC32/64 

Operation: CR[bitT] <= '-(CR[bitA] I CR[bitB]) 

Syntax: cmor bitT,bitA,bitB 

Condition Register /Fixed-Point Exception Register: 
CR bit T: set equal to -(CR[bitA] I CR[bitB]) 
other bits: not affected 

XER: not affected 

Description: 

crnor 

The crnor instruction ORs bit bitA of the Condition Register with bit bitB of the 
Condition Register and stores the complement of the result of the operation in 
bit bitT of the Condition Register. 

Extended Forms: 
crnot bitT,bitA is equivalent to crnor bitT,bitA,bitA 

Instruction Encoding: 
0 

10 1 o 0 1 

T 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T I A I B 10 0 0 0 100 0 0 1101 

Bit of CR where result of operation is stored 
Source bit A of CR 
Source bit B of CR 
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cror Condition Register OR 
POWER. 601 • 603 • PowerPC32j 64 

Operation: CR[bitT] ¢= CR[bitA] I CR[bitB] 

Syntax: cror bitT,bitA,bitB 

Condition Register /Fixed-Point Exception Register: 
CR bit T: set equal to CR[bitA] I CR[bitB] 
other bits: not affected 

XER: not affected 

Description: 

cror 

The cror instruction ORs bit bitA of the Condition Register with bit bitB of the 
Condition Register and stores the result of the operation in bit bitT of the Condi­
tion Register. 

Extended Forms: 
crmove bitT,bitA is equivalent to cror bitT,bitA,bitA 

Instruction Encoding: 
0 5 6 

10 1 o 0 1 1 I 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T I A I B 10111000001101 

Bit of CR where result of operation is stored 
Source bit A of CR 
Source bit B of CR 



crorc Condition Register OR 
with Complement 

POWER. 601 • 603 • PowerPC32/64 

Operation: CR[bitT] ¢= CR[bitA] I ~CR[bitB] 

Syntax: crorc bitT,bitA,bitB 

Condition Register /Fixed-Point Exception Register: 
CR bit T: set equal to CR[bitA] I ~CR[bitB] 
other bits: not affected 

XER: not affected 

Description: 

crorc 

The erore instruction ORs bit bitA of the Condition Register with the comple­
ment of bit bitB of the Condition Register and stores the result of the operation 
in bit bitT of the Condition Register. 

Instruction Encoding: 
0 

10 1 o 0 1 

T 
A 
B 

5 6 

11 
10 11 15 16 20 21 30 31 

T I A I B 10110100001101 

Bit of CR where result of operation is stored 
Source bit A of CR 
Source bit B of CR 
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crxor Condition Register XOR 
POWER. 601 • 603 • PowerPC32/64 

Operation: CR[bitT] {:::: CR[bitA] Ei3 CR[bitB] 

Syntax: crxor bitT,bitA,bitB 

Condition Register / Fixed-Point Exception Register: 
CR bit T: set equal to CR[bitA] EEl CR[bitB] 
other bits: not affected 

XER: not affected 

Description: 

crxor 

The erxor instruction XORs bit bitA of the Condition Register with bit bitB of the 
Condition Register and stores the result of the operation in bit bitT of the Condi­
tion Register. 

Extended Forms: 
erelr bit is equivalent to erxor bit,bit,bit 

Instruction Encoding: 
0 5 6 

10 1 o 0 1 1 1 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T 1 A 1 B 10011000001101 

Bit of CR where result of operation is stored 
Source bit A of CR 
Source bit B of CR 



dcbf Data Cache Block Flush dcbf 
601 • 603 • PowerPC32/64 

Operation: flush the specified block to storage 

Syntax: dcbf rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The dcbf instruction flushes the data cache block specified by the given effective 
address (calculated from (rA I 0) + (rB» out to main storage. The details of the 
operation depend on the storage mode associated with the effective address and 
on the state of the block. 

On PowerPC implementations with unified caches (like the 601), this instruction 
flushes the unified cache. 

When the storage mode requires coherency (WIM = xxI), the instruction is 
implemented as follows: 

• Unmodified block-All copies of this block are invalidated in the 
caches of all processors. 

• Modified block-The block is copied out to storage and all copies of this 
block in the caches of other processors are invalidated. 

• Absent block-Force all copies of this block to be invalidated in the 
caches of all other processors. If any of these are modified copies, then 
force them to be written to storage before invalidating them. 

When coherency is not required (WIM = xxO), dcbf acts as follows: 

• Unmodified block-The block is invalidated. 
• Modified block-The block is copied out to storage and invalidated. 

• Absent block-No action is required. 

This instruction is treated as a load from the effective address for purposes of 
address translation and protection. 

If the calculated effective address specifies an address belonging to a direct-store 
segment, then this instruction will operate as a no-op. 
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Instruction Encoding: 
5 6 10 11 15 16 20 21 30 31 

10 1 1 1 11000001 A 1 B 10001010110101 

A Source GPR rA 
B Source GPR rB 
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dcbi Data Cache Block Invalidate dcbi 
601 • 603 • PowerPC32/64 • Privileged 

Operation: invalidate the specified block 

Syntax: dcbi rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The dcbi instruction invalidates the data cache block specified by the given 
effective address (calculated from (rA I 0) + (rB)). The details of the operation 
depend on the storage mode associated with the effective address and on the 
state of the block. 

When the storage mode requires coherency (WIM = xxI), the instruction is 
implemented as follows: 

• Unmodified block-All copies of this block are invalidated in the 
caches of all processors. 

• Modified block-All copies of this block are invalidated in the caches of 
all processors. The modifications are discarded. 

• Absent block-All copies of this block are invalidated in the caches of 
all other processors. Any modifications are discarded. 

When coherency is not required (WIM = xxO), dcbi acts as follows: 

• Unmodified block-The block is invalidated. 
• Modified block-The block is invalidated. The modications are dis­

carded. 

• Absent block-No action is required. 

This instruction is treated as a store from the effective address for purposes of 
address translation and protection. 

If the calculated effective address specifies an address belonging to a direct-store 
segment, then this instruction will operate as a no-op. 
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Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 110 0 0 0 01 A I B 10 1 1 1010 1 10101 

A Source GPR rA 
B Source GPR rB 
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debst Data Cache Block Store debst 
601 • 603 • PowerPC32/64 

Operation: write the specified block to storage 

Syntax: debst rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The dcbst instruction writes the data cache block specified by the given effective 
address (calculated from (rA I 0) + (rB» out to main storage. The details of the 
operation depend on the storage mode associated with the effective address and 
on the state of the block. 

When the storage mode requires coherency (WIM = xxI), the instruction causes 
the block to be written if any processor has a modified copy of the block. 

When coherency is not required (WIM = xxO), dcbst causes the block to be writ­
ten if the local processor has a modified copy of the block. 

If the block has not been modified, then the block is not written. 

This instruction is treated as a load from the effective address for purposes of 
address translation and protection. 

If the calculated effective address specifies an address belonging to a direct-store 
segment, then this instruction will operate as a no-op. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 110 0 0 0 01 A I B 10 0 0 0 1 10 1 10101 

A Source GPR rA 
B Source GPR rB 
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debt Data Cache Block Touch debt 
601 • 603 • PowerPC32/64 

Operation: give hint that the address may soon be loaded from 

Syntax: debt rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The debt instruction tells the processor that the effective address (calculated 
from (rA I 0) + (rB» will be loaded from in the near future. The processor can use 
this hint and attempt to improve performance by preloading the block that con­
tains that address into the data cache. However, the processor is not required to 
load the addressed block. 

This instruction is treated as a load from the effective address for purposes of 
address translation and protection. The system error handler is never invoked 
by this instruction. 

If the calculated effective address specifies an address belonging to a direct-store 
segment, then this instruction will operate as a no-op. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 11000001 A I B 10100010110101 

A Source GPR rA 
B Source GPR rB 
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debtst Data Cache Block Touch for Store debtst 
601 • 603 • PowerPC32/64 

Operation: give hint that the address may soon be stored to 

Syntax: debtst rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The debtst instruction tells the processor that the effective address (calculated 
from (rA I 0) + (rB» will be stored to in the near future. The processor can use this 
hint and attempt to improve performance by preloading the block that contains 
that address into the data cache. However, the processor is not required to load 
the addressed block. 

This instruction is treated as a load from the effective address for purposes of 
address translation and protection. The system error handler is never invoked 
by this instruction. Note that this instruction cannot be treated as a store since it 
does not modify storage. 

If the calculated effective address specifies an address belonging to a direct-store 
segment, then this instruction will operate as a no-op. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 110 0 0001 A I B 1001 1 1 101 10101 

A Source GPR rA 
B Source GPR rB 
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dcbz Data Cache Block Zero dcbz 
POWER • 601 • 603 • PowerPC32 / 64 

Operation: set the cache block to contain all zeros 

Syntax: dcbz rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The dcbz instruction clears the contents of the data cache block specified by the 
given effective address (calculated from (rA I 0) + (rB». Any existing modifica­
tions to the block are discarded. 

If the block is not currently loaded in the cache (and the block is cacheable), then 
a block of all zeros is established in the cache for this block (the previous block 
data is not fetched from memory). 

If the block is not allowed to be cached (Caching Inhibited) or if stores to this 
block must be write-through (Write Through Required), then a block of zeros is 
written out to storage. This operation may be handled by the system alignment 
interrupt handler. 

If the block is in Coherency Required mode and the block exists in the caches of 
other processors, then the block is kept coherent in those caches. 

This instruction is treated as a store from the effective address for purposes of 
address translation and protection. 

If the calculated effective address specifies an address belonging to a direct-store 
segment, then this instruction will operate as a no-op. 

The archaic POWER mnemonic for this instruction is dclz. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 11000001 A I B 11111110110101 

A Source GPR rA 
B Source GPR rB 
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cdlnw Divide 
POWER· 601 

Operation: rT ¢= ( (rA) 1. (MQ) ) + (rB) 
MQ ¢= ( (rA) ..1 (MQ) ) % (rB) 

Syntax: (Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc = 0, OE = 1) 
(Rc = 1, OE = 1) 

Condition Register / Fixed -Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE= 1, otherwise not affected 

Description: 

cdlnw 

The div instruction concatenates the contents of GPR rA and the MQ register 
and divides that quantity by the contents of GPR rB. The quotient from this 
operation is placed in GPR rT, and the remainder is placed in the MQ register. 
All source registers are assumed to contain signed values. 

The instruction results will always satisfy the equality: 

dividend = (divisor· quotient) + remainder 

where the dividend is (rA)l..(MQ) and the divisor is (rB). The remainder is always 
less than the absolute value of the divisor and has the same sign as the dividend 
(except that a 0 quotient or remainder will always be positive). 

An overflow occurs when the quotient cannot be represented in 32 bits. If the 
quantity _2 31 is divided by -1, then the MQ register is cleared and GPR rT is set 
to _231. For overflows other than this case, MQ, rT, and CR{O} (if Rc=l) are unde­
fined. If the Record bit is set, then the LT, GT, and EQ bits of CR{O} are updated 
to reflect the remainder (stored in MQ). 

This instruction is not part of the PowerPC architecture. 
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Instruction Encoding: 
0 5 6 

[fI 1 1 1 1 I 

T 
A 
B 
OE 
Rc 
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10 11 15 16 20 21 22 30 31 

T I A I B IOE 11 0 1 0 0 1 0 1 1 IRe I 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 



divd Divide Doubleword divd 
PowerPC64 

Operation: rT ~ (rA) + (rB) 

Syntax: divd 
divd. 
divdo 
divdo. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc=O,OE=I) 
(Rc = 1, OE = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The divd instruction divides the contents of GPR rA by the contents of GPR rB 
and places the quotient from this operation in GPR rT. The source registers are 
assumed to contain signed values. 

The instruction results will always satisfy the equality: 

dividend = (divisor· quotient) + remainder 

where the dividend is (rA) and the divisor is (rB). The remainder is always less 
than the absolute value of the divisor and has the same sign as the dividend 
(except that a 0 quotient or remainder will always be positive). 

An overflow occurs when the signed quotient cannot be represented in 64 bits. 
If the quantity _263 is divided by -1 or if any quantity is divided by 0, then rT is 
undefined. If the Record bit is set, then the LT, GT, and EQ bits of CR{O} are unde­
fined also. 

This instruction exists on 64-bit PowerPC implementations only. 
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Instruction Encoding: 
0 5 6 

10 I I I I I I 

T 
A 
B 
OE 
Rc 
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10 11 15 16 20 21 22 30 31 

T I A I B IOEII I I I 0 I 0 0 IIRel 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 



divdu Divide Doubleword Unsigned divdu 
PowerPC64 

Operation: rT <= (rA) + (rB) 

Syntax: divdu rT,rA,rB (Rc = 0, OE = 0) 
divdu. rT,rA,rB (Rc = 1, OE = 0) 
divduo rT,rA,rB (Rc = 0, OE = 1) 
divduo. rT,rA,rB (Rc = 1, OE = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The divdu instruction divides the contents of GPR rA by the contents of GPR rB 
and places the quotient from this operation in GPR rT. The source registers are 
assumed to contain unsigned values. 

The instruction results will always satisfy the equality: 

dividend = (divisor· quotient) + remainder 

where the dividend is (rA) and the divisor is (rB). The remainder is always less 
than the absolute value of the divisor and is always a positive value. 

An overflow occurs when the unsigned quotient cannot be represented in 64 
bits. If any quantity is divided by 0, then rT is undefined. If the Record bit is set, 
then the LT, GT, and EQ bits of CR{O} are undefined also. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
OE 
Rc 

5 6 

11 
10 11 15 16 20 21 22 30 31 

T I A I B 100111IOOIOOl1Rc i 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 
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Divide Short 
POWER. 601 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=l, otherwise not affected 

Description: 
The divs instruction divides the contents of CPR rA by the contents of CPR rB. 
The quotient from this operation is placed in CPR rT, and the remainder is 
placed in the MQ register. All source registers are assumed to contain signed 
values. 

The instruction results will always satisfy the equality: 

dividend = (divisor· quotient) + remainder 

where the dividend is (rA) and the divisor is (rB). The remainder is always less 
than the absolute value of the divisor and has the same sign as the dividend 
(except that a 0 quotient or remainder will always be positive). 

An overflow occurs when the quotient cannot be represented in 32 bits. If the 
quantity _2 31 is divided by -1, then the MQ register is cleared and CPR rT is set 
to _231. For overflows other than this case, MQ rT, and CR{O} (if Rc=l) are unde­
fined. 

If the Record bit is set, then the LT, CT, and EQ bits of CR{O} are updated to 
reflect the remainder (stored in MQ). 

This instruction is not part of the PowerPC architecture. 
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Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
OE 
Rc 

5 6 

1 1 
10 11 15 16 20 21 22 30 31 

T 1 A 1 B 1001101101011IRci 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 
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divw Divide Word 
601 • 603. PowerPC32/64 

Operation: rT ¢:: orA [0:31] + orB [0:31] 
32:63 32:63 

Syntax: divw 
divw. 
divwo 
divwo. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

divw 

(Rc = 0, OE = 0) 
(Rc = I, OE = 0) 
(Rc=O,OE=I) 
(Rc = I, OE = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1r otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=1, otherwise not affected 

Description: 
The divw instruction divides the contents of GPR rA by the contents of GPR rB 
and places the quotient from this operation in GPR rT. The source registers are 
assumed to contain signed values. 

On 64-bit PowerPC implementations, only the low-order word from each of the 
source operands participates in the division operation. The result is returned in 
the low-order word of the target register, and the high-order word is undefined. 

The instruction results will always satisfy the equality: 

dividend = (divisor· quotient) + remainder 

where the dividend is (rA) and the divisor is (rB). The remainder is always less 
than the absolute value of the divisor and has the same sign as the dividend 
(except that a ° quotient or remainder will always be positive). 

If the quantity _2 31 is divided by -1 or if any quantity is divided by 0, then rT is 
undefined. If the Record bit is set, then the LT, GT, and EQ bits of CR{O} are unde­
fined also. 
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Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
OE 
Rc 

5 6 

11 
10 11 15 16 20 21 22 30 31 

T I A I B 10E11 1 1 1 0 1 0 1 11 Re l 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 
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divwu Divide Word Unsigned 
601 • 603 • PowerPC32/64 

Operation: rT <= orA [0:31] + orB [0:31] 
32:63 32:63 

divwu 

Syntax: divwu rT,rA,rB (Rc = 0, OE = 0) 
divwu. rT,rA,rB (Rc = 1, OE = 0) 
divwuo rT,rA,rB (Rc = 0, OE = 1) 
divwuo. rT,rA,rB (Rc = 1, OE = 1) 

Condition Register / Fixed -Point Exception Register: 
CR Field 0: LT,CT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The divwu instruction divides the contents of CPR rA by the contents of CPR rB 
and places the quotient from this operation in CPR rT. The source registers are 
assumed to contain unsigned values. 

On 64-bit PowerPC implementations, only the low-order word from each of the 
source operands participates in the division operation. The result is returned in 
the low-order word of the target register, and the high-order word is undefined. 

The instruction results will always satisfy the equality: 

dividend = (divisor· quotient) + remainder 

where the dividend is (rA) and the divisor is (rB). The remainder is always less 
than the absolute value of the divisor and is always a positive value. 

If any quantity is divided by a, then rT is undefined. If the Record bit is set, then 
the LT, CT, and EQ bits of CR{O} are undefined also. If OE= I, the overflow bits in 
the XER are set. 
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Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
OE 
Rc 

5 6 

11 
10 11 15 16 20 21 22 30 31 

T I A I B IOEll 1 1 0 0 1 0 1 1 IRe I 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 
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Difference or Zero 
POWER. 601 

Operation: if ( (rA) > (rB) ) 
rT¢=O 

else 
rT ¢= (rB) - (rA) 

Syntax: doz rT,rA,rB (Rc = 0, OE = 0) 
doz. rT,rA,rB (Rc = I, OE = 0) 
dozo rT,rA,rB (Rc=O,OE=I) 
dozo. rT,rA,rB (Rc = I, OE = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The doz instruction performs a signed compare of the contents of GPR rA and 
GPR rB. If (rA) > (rB), then 0 is placed in GPR rT, otherwise the result of subtract­
ing (rA) from (rB) is placed in GPR rT. This operation can be viewed as subtract­
ing (rA) from (rB), where the result is never allowed to become negative. 

An overflow will occur if (rA) < (rB) and the result of subtracting (rA) from (rB) 
cannot fit in 32 bits. That implies that only positive overflows can occur. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 
OE 
Rc 
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10 11 15 16 20 21 22 30 31 

T I A I B 1001100001000IRci 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 



Difference or Zero Immediate 
POWER· 601 

Operation: if ( (rA) > 's16 ) 
rT¢=O 

else 
rT ¢= 's16 - (rA) 

Syntax: dozi rT,rA,s16 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The doz instruction performs a signed compare of the contents of CPR rA and 
the sign-extended immediate value 816. If (rA) > '816, then 0 is placed in CPR rT, 
otherwise the result of subtracting (rA) from '816 is placed in CPR rT. This oper­
ation can be viewed as subtracting (rA) from '816, where the result is never 
allowed to become negative. 

An overflow will occur if (rA) < 's16 and the result of subtracting (rA) from 's16 
cannot fit in 32 bits. That implies that only positive overflows can occur. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 

10 0 1 0 o 11 

T 
A 
51 

6 10 11 15 16 

T I A I S1 

Target CPR rT where result of operation is stored 
Source CPR rA or 0 
Signed 16-bit integer 

31 
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• 
eCIWX 

Operation: 

Syntax: 

External Control 
Input Word Indexed 

601.603. Optiona132/64 

get word from external device 

eciwx rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

• 
eCIWX 

The eciwx instruction calculates the real address from the specified effective 
address ((rA I 0) + rB) and requests that an external device return (in target regis­
ter rT) the word of data at that address. The cache is bypassed by this operation. 
On 64-bit implementations, the returned word is loaded into the low-order word 
of the register and the upper word is cleared. 

The target device is specified by a Resource ID stored in EAR[RlD]. How these 
resource IDs map into external devices is system dependent. 

Before being translated to a real address, the effective address is validated as if a 
load were taking place to that address for purposes of protection, reference, and 
change recording. 

For most PowerPC processors, if the address references a direct-store storage seg­
ment, then a Data Storage interrupt occurs or the results are boundedly unde­
fined. If data address translations are disabled (MSR[DR] = 0), then the results 
are boundedly undefined. The 601 is unique in that it operates whether or not 
the data address translations are enabled, and it acts as a no-op if the EA speci­
fies an address in a direct-store segment. 

If external accesses are not enabled (that is, EAR[E] is 0), then this instruction 
will set DSISR[ll] and cause a Data Storage interrupt to be taken. 

This instruction is an optional part of the PowerPC architecture. 
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Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T I A I B 10 1 0 0 1 1 0 1 1 0101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
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ecowx External Control 
Output Word Indexed 

601 • 603 • Optional32/64 

Operation: send word to external device 

Syntax: ecowx rS,rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

ecowx 

The ecowx instruction calculates the real address from the specified effective 
address «rA I 0) + rB) and sends the real address and the contents of GPR rS to 
an external device. The cache is bypassed by this operation. On 64-bit implemen­
tations, only the low-order word of rS is sent to the device. 

The target device is specified by a Resource ID stored in EAR[RID]. How these 
resource IDs map into external devices is system dependent. 

Before being translated to a real address, the effective address is validated as if a 
store were taking place to that address for purposes of protection, reference, and 
change recording. 

For most PowerPC processors, if the address references a direct-store storage seg­
ment, then a Data Storage interrupt occurs or the results are boundedly unde­
fined. If data address translations are disabled (MSR[DR] = 0), then the results 
are boundedly undefined. The 601 is unique in that it operates whether or not 
the data address translations are enabled, and it acts as a no-op if the EA speci­
fies an address in a direct-store segment. 

If external accesses are not enabled (that is, EAR[E] is 0), then this instruction 
will set DSISR[ll] and cause a Data Storage interrupt to be taken. 

This instruction is an optional part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
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10 11 15 16 20 21 30 31 

s I A I B 10 1 1 0 1 1 0 1 1 0101 

Source GPR rS 
Source GPR rA 
Source GPR rB 



• • elelO Enforce In-Order Execution of I/O 
601.603 • PowerPC32/64 

Operation: force all loads and stores to complete 

Syntax: eieio 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

• • elelO 

The eieio instruction orders the effects of the load and store instructions exe­
cuted by the processor. All load and store instructions that were initiated by this 
processor before the eieio instruction are guaranteed to be completed before any 
of the loads and stores initiated by this processor after the eieio instruction. 

This instruction is intended for use with memory-mapped I/O. The eieio 
instruction insures that loads and stores on opposite sides of the instruction will 
not combine in main memory and produce load/ store combining errors. 

Load operations are ordered if they are to storage that is 

• Caching Inhibited and Guarded 

Store operations are ordered if they are to storage that is one of these: 

• Caching Inhibited and Guarded 
• Write Through Required 

This instruction does not order loads and stores with respect to other processors. 

On the 601, this instruction is functionally identical to the sync instruction. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 110 0 0 0 010 a 0 a 010 0 0 0 011 10 1 0 1 0 1 10101 
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eqv Equivalent 
POWER· 601 • 603 • PowerPC32/64 

Operation: rA ¢::: (rS) == (rB) 

Syntax: eqv 
eqv. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

eqv 

The eqv instruction calculates the equivalence of the contents of GPR rS and 
GPR rB and places the result in GPR rA. The equivalence operation sets the bits 
in the result where the corresponding bits in the two source registers are equal 
and clears all the bits where corresponding bits in the source registers are not 
equal. This operation is equivalent to taking the complement of the XOR of the 
two source registers. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 1 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s 1 A 1 B 10 1 0 0 0 1 1 1 0 01&1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 



extsb Extend Sign Byte extsb 
601 • 603 • PowerPC32/64 

Operation: rA [24:31] 
56:63 

<= rS e4:31 ] 
56:63 

rA [ 0:23] 
0:55 

<= rS [~] 
56 

Syntax: extsb rA,rS (Rc = 0) 
extsb. rA,rS (Rc = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The extsb instruction extends the sign of the low-order byte in GPR rS so that all 
the bits in the upper bytes of the destination GPR rA contain a copy of the low­
order byte's sign. 

On 32-bit PowerPC implementations, the sign bit for the low-order byte is bit 
number 24. This bit is copied into the high-order 24 bits of the destination regis­
ter to produce a 32-bit result. 

On 64-bit PowerPC implementations, the sign bit for the low-order byte is bit 
number 56. This bit is copied into the high-order 56 bits of the destination regis­
ter to produce a 64-bit result. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
Rc 

5 6 

1 1 
10 11 15 16 20 21 30 31 

s 1 A 10000011110111010lRci 

Source GPR rS 
Target GPR rA where result of operation is stored 
Record bit 
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extsh 

Operation: 

Syntax: 

Extend Sign Halfword 
POWER • 601 • 603 • PowerPC32j 64 

rA [16:31] <= rS e6:31 ] 
48:63 48:63 

extsh 
extsh. 

rA,rS 
rA,rS 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

extsh 

CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The extsh instruction extends the sign of the low-order halfword in GPR rS so 
that all the bits in the upper bytes of the destination GPR rA contain a copy of the 
low-order haifword's sign. 

On 32-bit PowerPC implementations, the sign bit for the low-order halfword is 
bit number 16. This bit is copied into the high-order 16 bits of the destination 
register to produce a 32-bit result. 

On 64-bit PowerPC implementations, the sign bit for the low-order halfword is 
bit number 48. This bit is copied into the high-order 48 bits of the destination 
register to produce a 64-bit result. 

The archaic POWER mnemonic for this instruction is exts[.]. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
Rc 

418 Appendix A 

10 11 15 16 20 21 30 31 

s I A 10 0 0 0 011 1 1 0 0 1 1 0 1 01&1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Record bit 



extsw Extend Sign Word 
PowerPC64 

Operation: rA[32:63] ~ rS[32:63] 
rA[0:31] ~ rS[32] 

Syntax: extsw 
extsw. 

rA,rS 
rA,rS 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

extsw 

CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The extsw instruction extends the sign of the low-order word in GPR rS so that 
all the bits in the upper bytes of the destination GPR rA contain a copy of the 
low-order word's sign. 

The sign bit for the low-order word is bit number 32. This bit is copied into the 
high-order 32 bits of the destination register to produce a 64-bit result. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

lfl:jllli s I A loooool1111011010l Rc i 

S Source GPR rS 
A Target GPR rA where result of operation is stored 
Rc Record bit 
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fabs FP Absolute Value 
POWER • 601 • 603 • PowerPC32/64 

Operation: frT ¢= I (frB) I 

Syntax: fabs 
fabs. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

fabs 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: not affected 

Description: 
The fabs instruction takes the contents of frB, sets the sign bit to 0, and stores the 
result in frT. 

This instruction will operate on NaNs without raising an exception. 

Instruction Encoding: 
0 5 6 

11 1 1 1 1 1 I 

T 
A 
Rc 
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10 11 15 16 20 21 30 31 

T 10 0 0 0 01 B 10 1 0 0 0 0 1 0 0 01~1 

Target FPR frT where result of operation is stored 
Source FPR frA 
Record bit 



fadd FPAdd fadd 
POWER • 601 • 603 • PowerPC32/64 

Operation: frT ¢::: (frA) + (frB) 

Syntax: fadd 
fadd. 

frT,frA,frB 
frT,frA,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXISI, FR, FI, FPRF 

Description: 
The £add instruction adds the contents of frA with the contents of frB. This result 
is then normalized (if necessary) and rounded to double-precision (according to 
the current rounding mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 - 00 (VXISI). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

The archaic POWER mnemonic for this instruction is £a[.]. 

Instruction Encoding: 
0 

11 1 1 1 1 

T 
A 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 25 26 30 31 

T I A I B 1000001101011Rc i 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Record bit 
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fadds FP Add Single 
601 • 603 • PowerPC32/64 

Operation: frT ¢= (frA) + (frB) 

Syntax: fadds 
fadds. 

frT,frA,frB 
frT,frA,frB 

(Rc = 0) 
(Rc = 1) 

fadds 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXISI, FR, PI, FPRF 

Description: 
The fadds instruction adds the contents of frA with the contents of frB. This 
result is then normalized (if necessary) and rounded to single-precision (accord­
ing to the current rounding mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 - 00 (VXISI). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 25 26 30 31 

[ 1 1 0 1 1 I T I A I B 10 0 0 0 011 0 0 1 IRe I 

T Target FPR frT where result of operation is stored 
A Source FPR frA 
B Source FPR frB 
Rc Record bit 
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fcfid FP Convert from Integer Doubleword fcfid 
PowerPC64 

Operation: frT <= (frA) + (frB) 

Syntax: fdid 
fdid. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, XX, FR, FI, FPRF 

Description: 
The fdid instruction takes the 64-bit signed integer value in frB, converts it to a 
floating-point number, rounds it to double-precision using the current rounding 
mode (if necessary), and stores the result in frT. 

FPSCR[FPRF] is updated to reflect the sign and class of the result. FPSCR[FR] is 
set if the result was incremented during the rounding process. FPSCR[FI] is set 
if the result is inexact. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

11 1 1 1 1 

T 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T 1000001 B 11101001110lRc i 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 
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fcmpo FP Compare Ordered 
POWER. 601 • 603 • PowerPC32/64 

Operation: CR{T} <= Ordered FP Compare(frA,frB) 

Syntax: fcmpo crT,frA,frB 

fcmpo 

Condition Register I Floating-Point Status and Control Register: 
CR Field T: FL,FG,FE,FU always updated 
other fields: not affected 

FPSCR: FX, FEX, VX, VXSNAN, VXVC, FPCC 

Description: 
The fempo instruction compares the contents of frA with the contents of frB, and 
the result of the compare is stored in field crT of the Condition Register. The 
compare result is also copied into FPSCR[FPCq. If either of the operands is a 
NaN, then the compare result is set to unordered. 

If either of the operands is a Signalling NaN, then FPSCR[VXSNAN] is set, and, 
if Invalid Operation Exceptions are disabled, then the Invalid Compare flag 
~FPSCR[VXVq) is set. 

If either of the operands is a Quiet NaN (and neither operand is a Signalling 
NaN), then FPSCR[VXVq is set. 

Instruction Encoding: 
o 5 6 8 9 10 11 15 16 20 21 30 31 

11111111 T 1001 A I B 10000100000101 

T Bit field of CR where result of compare is stored 
A Source FPR frA 
B Source FPR frB 
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fcmpu FP Compare Unordered 
POWER • 601 • 603 • PowerPC32j 64 

fcmpu 

Operation: CR{BF} <= Unordered FP Compare(frA,frB) 

Syntax: fcmpu crT,frA,fr B 

Condition Register /Floating-Point Status and Control Register: 
CR Field T: FL,FG,FE,FU always updated 
other fields: not affected 

FPSCR: FX, FEX, VX, VXSNAN, FPCC 

Description: 
The contents of frA are compared with the contents of frB, and the result of the 
compare is stored in field crT of the Condition Register. The compare result is 
also copied into FPSCR[FPCC]. If either of the operands is a NaN, then the com­
pare result is set to unordered. 

If either of the operands is a Signalling NaN, then FPSCR[VXSNAN] is set. 

Instruction Encoding: 
o 5 6 8 9 10 11 15 16 20 21 30 31 

11111111 T 1001 A I B 10000000000101 

T Bit field of CR where result of compare is stored 
A Source FPR frA 
B Source FPR frB 
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fetid FP Convert to Integer Doubleword 
PowerPC64 

Operation: frT ¢::: Double2Int64(frB) 

Syntax: fetid 
fetid. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

fetid 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, XX, VSNAN, VXCVI, FR, FI, FPRF 

Description: 
The fetid instruction takes the value in frB, converts it into a signed 64-bit fixed­
point integer using the current rounding mode, and stores the result in frT. 

If the contents of frB are greater than 2 63 - 1, then frT is set to the largest positive 
64-bit integer (Ox7FFF FFFF FFFF FFFF). If the contents of frB are less than -2 63, 

then frT is set to the most negative 64-bit number (Ox8000 0000 0000 0000). 

After this instruction completes execution, the contents of FPSCR[FPRF] are 
undefined, except in the caSe where an Invalid Operation Exception occurs and 
this type of exception is enabled (FPSCR[VE] = 1). 

FPSCR[FR] is set if the result was incremented during the rounding process. 
FPSCR[FI] is set if the result is inexact. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 5 6 

11 1 1 1 1 1 I 

T 
B 
Rc 

426 Appendix A 

10 11 15 16 20 21 30 31 

T 1000001 B 11100101110lRc i 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 



fclidz FP Convert to Integer fclidz 
Doubleword with Round to Zero 

PowerPC64 

Operation: frT ¢::: Double2Int64_RndO(frB) 

Syntax: fctidz 
fctidz. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, XX, VSNAN, VXCVI, FR, H FPRF 

Description: 
The fctidz instruction takes the value in frB, converts it into a signed 64-bit fixed­
point integer using the Round to Zero rounding mode, and stores the result in frT. 

If the contents of frB are greater than 2 63 - I, then frT is set to the largest positive 
64-bit integer (Ox7FFF FFFF FFFF FFFF). If the contents of frB are less than _2 63, 

then frT is set to the most negative 64-bit number (Ox8000 0000 0000 0000). 

After this instruction completes execution, the contents of FPSCR[FPRF] are 
undefined, except in the case where an Invalid Operation Exception occurs and 
this type of exception is enabled (FPSCR[VE] = 1). 

FPSCR[FR] is set if the result was incremented during the rounding process. 
FPSCR[FI] is set if the result is inexact. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

11 1 1 1 1 

T 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T 1000 0 01 B 11 100 101 1 1 11&1 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 
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fctiw FP Convert to Integer Word 
601 • 603 • PowerPC32/64 

Operation: frT[32:63] ¢= Double2Int32(frB) 

Syntax: fctiw 
fctiw. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

fctiw 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX, VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, XX, VSNAN, VXCVI, FR, FI, FPRF 

Description: 
The fctiw instruction takes the value in frB, converts it into a signed 32-bit fixed­
point integer using the current rounding mode, and stores the result in the low­
order word of frT. The high-order word of frT is undefined. 

If the contents of frB are greater than 2 31 - 1, then frT is set to the largest positive 
32-bit integer (Ox7FFF FFFF). If the contents of frB are less than -2 31, then frT is 
set to the most negative 32-bit number (Ox8000 0000). 

After this instruction completes execution, the contents FPSCR[FPRF] are unde­
fined, except in the case where an Invalid Operation Exception occurs and this 
type of exception is enabled (FPSCR[VE] = 1). 

FPSCR[FR] is set if the result was incremented during the rounding process. 
FPSCR[FI] is set if the result is inexact. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

11 1 1 1 1 11 T 1000 0 01 B 10 0 0 0 001 1 101&1 

T Target FPR frT where result of operation is stored 
B Source FPR frB 
Rc Record bit 

428 Appendix A 



fctiwz FP Convert to Integer 
Word with Round to Zero 

601 • 603· PowerPC32/64 

fctiwz 

Operation: frT[32:63] {= Double2Int32_RndO(frB) 

Syntax: fctiwz 
fctiwz. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, XX, VSNAN, VXCVI, FR, FI, FPRF 

Description: 
The fctiwz instruction takes the value in frB, converts it into a signed 32-bit 
fixed-point integer using the Round to Zero rounding mode, and stores the result 
in the low-order word of frT. The high-order word of frT is undefined. 

If the contents of frB are greater than 2 31 - I, then frT is set to the largest positive 
32-bit integer (Ox7FFF FFFF). If the contents of frB are less than -2 31, then frT is 
set to the most negative 32-bit number (Ox8000 0000). 

After this instruction completes execution, the contents FPSCR[FPRF] are unde­
fined, except in the case where an Invalid Operation Exception occurs and this 
type of exception is enabled (FPSCR[VE] = 1). 

FPSCR[FR] is set if the result was incremented during the rounding process. 
FPSCR[FI] is set if the result is inexact. 

Instruction Encoding: 
0 

11 1 1 1 1 

T 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T 10 0 0 0 0 I B 10 0 0 0 0 0 1 1 1 1 IRe I 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 
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fdiv FPDivide 
POWER· 601 • 603 • PowerPC32/64 

Operation: frT ¢= (frA) + (frB) 

Syntax: fdiv 
fdiv. 

frT,frA,frB 
frT,frA,frB 

(Rc = 0) 
(Rc = 1) 

fdiv 

Condition Register/Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, ZX, XX, VSNAN,VXIDI,VXZDZ, 
FR,FI,FPRF 

Description: 
The fdiv instruction divides the contents of frA by the contents of frB. This result 
is then normalized (if necessary) and rounded to double-precision (according to 
the current rounding mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 + 00 (VXIDI). 
The Zero Divided by Zero Exception will be invoked if the operation is equiva­
lent to 0 + 0 (VXZDZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation or Zero Divided by Zero Exception occurs and 
the appropriate type of exception is enabled. 

The archaic POWER mnemonic for this instruction is fd[.]. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 25 26 30 31 

11 1 1 1 1 I T I A I B 10 0 0 0 0 11 0 0 1 0 IRe I 

T Target FPR frT where result of operation is stored 
A Source FPR frA 
B Source FPR frB 
Rc Record bit 

430 Appendix A 



fdivs FP Divide Single fdivs 
601 • 603 • PowerPC32/64 

Operation: frT ¢= (frA) + (frB) 

Syntax: fdivs 
fdivs. 

frT,frA,frB 
frT,frA,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: 

Description: 

FX, FEX, VX, OX, UX, ZX, XX, VSNAN,VXIDI,VXZDZ, 
FR,FI,FPRF 

The fdivs instruction divides the contents of frA by the contents of frB. This 
result is then normalized (if necessary) and rounded to single-precision (accord­
ing to the current rounding mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 + 00 (VXIDI). 
The Zero Divide Exception will be invoked if the operation is equivalent to 0 + 0 
(VXZDZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation or Zero Divide Exception occurs and the appro­
priate type of exception is enabled. 

Instruction Encoding: 
0 

11 1 1 0 1 

T 
A 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 25 26 30 31 

T I A I B 10 0 0 0 0110 0 1 01~1 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Record bit 
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fmadd FP Multiply-Add fmadd 
POWER. 601 • 603 • PowerPC32/64 

Operation: frT ¢= (frA) x (frC) + (frB) 

Syntax: fmadd 
fmadd. 

frT,frA,frC,frB 
frT,frA,frC,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF 

Description: 
The fmadd instruction multiplies the contents of frA by the contents of frC and 
then adds frB to compute the final result. This result is then normalized (if nec­
essary) and rounded to double-precision (according to the current rounding 
mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x a 
(VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

The archaic POWER mnemonic for this instruction is fma[.]. 

Instruction Encoding: 
0 5 6 

11 1 1 1 1 1 I 

T 
A 
B 
C 
Rc 
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10 11 15 16 20 21 25 26 

T I A I B I c I 1 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Source FPR frC 
Record bit 



fmadds FP Multiply-Add Single fmadds 
601 • 603 • PowerPC32j 64 

Operation: frT <= (frA) x (frC) + (frB) 

Syntax: fmadds 
fmadds. 

frT,frA,frC,frB 
frT,frA,frC ,fr B 

(Rc = 0) 
(Rc = 1) 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF 

Description: 
The fmadds instruction multiplies the contents of frA by the contents of frC and 
then adds frB to compute the final result. This result is then normalized (if nec­
essary) and rounded to single-precision (according to the current rounding 
mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0 
(VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

The archaic POWER mnemonic for this instruction is fma[.]. 

Instruction Encoding: 
0 

11 1 1 0 1 

T 
A 
B 
C 
Rc 

5 6 

1 I 
10 11 15 16 20 21 25 26 30 31 

T I A I B I C 11 1 1 0 1 IRe I 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Source FPR frC 
Record bit 
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fmr FP Move Register 
POWER. 601 • 603 • PowerPC32/64 

Operation: frT ~ (frB) 

Syntax: fmr 
fmr. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

fmr 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX, VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: not affected 

Description: 
The fmr instruction takes the contents of frB and copies it into frT. 

This instruction will operate on NaNs without raising an exception. 

Instruction Encoding: 
0 5 6 

11 1 1 1 1 1 I 

T 
B 
Rc 
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10 . 11 15 16 20 21 30 31 

T 1000001 B 10001001000lRci 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 



fmsub FP Multiply-Subtract fmsub 
POWER. 601 • 603 • PowerPC32/64 

Operation: frT ¢:: (frA) x (frC) - (frB) 

Syntax: fmsub 
fmsub. 

frT,frA,frC,frB 
frT,frA,frC,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF 

Description: 
The fmsub instruction multiplies the contents of frA by the contents of frC and 
then subtracts frB to compute the final result. This result is then normalized (if 
necessary) and rounded to double-precision (according to the current rounding 
mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0 
(VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

The archaic POWER mnemonic for this instruction is fms[.]. 

Instruction Encoding: 
o 

1 1 1 

T 
A 
B 
C 
Rc 

5 6 

1 I T I A I B I c I 1 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Source FPR frC 
Record bit 

30 31 
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fmsubs FP Multiply-Subtract Single fmsubs 
601 • 603 • PowerPC32/64 

Operation: frT {:::: (frA) x (frC) - (frB) 

Syntax: fmsubs 
fmsubs. 

frT,frA,frC ,fr B 
frT,frA,frC,fr B 

(Rc = 0) 
(Rc = 1) 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF 

Description: 
The fmsubs instruction multiplies the contents of frA by the contents of frC and 
then subtracts frB to compute the final result. This result is then normalized (if 
necessary) and rounded to single-precision (according to the current rounding 
mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0 
(VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

Instruction Encoding: 
0 5 6 

11 1 1 0 1 1 I 

T 
A 
B 
C 
Rc 
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10 11 15 16 20 21 25 26 

T I A I B I c I 1 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Source FPR frC 
Record bit 

30 31 



fmul FP Multiply fmul 
POWER • 601 • 603 • PowerPC32 / 64 

Operation: frT ~ (frA) x (frC) 

Syntax: fmul 
fmul. 

frT,frA,frC 
frT,frA,frC 

(Rc = 0) 
(Rc = 1) 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXIMZ, FR, FI, FPRF 

Description: 
The fmul instruction multiplies the contents of frA by the contents of frC. This 
result is normalized (if necessary) and rounded to double-precision (according 
to the current rounding mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 x 0 (VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

The archaic POWER mnemonic for this instruction is fm[.]. 

Instruction Encoding: 
0 

11 1 1 1 1 

T 
A 
C 
Rc 

5 6 

1 I 
10 11 15 16 20 21 25 26 30 31 

T I A 10 000 01 C 11 0011&1 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frC 
Record bit 
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fmuls FP Multiply Single fmuls 
601 • 603 • PowerPC32/64 

Operation: frT <== (frA) x (frC) 

Syntax: fmuls 
fmuls. 

frT,frA,frC 
frT,frA,frC 

(Rc = 0) 
(Rc = 1) 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXIMZ, FR, PI, FPRF 

Description: 
The fmuls instruction multiplies the contents of frA by the contents of fre. This 
result is normalized (if necessary) and rounded to single-precision (according to 
the current rounding mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 x 0 (VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

Instruction Encoding: 
0 5 6 

11 1 101 1 I 

T 
A 
C 
Rc 
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10 11 15 16 20 21 25 26 30 31 

T I A 10 0 0 0 0 I C 11 1 0 0 1 IRe I 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frC 
Record bit 



fnabs FP Negative Absolute Value 
POWER. 601 • 603 • PowerPC32/64 

fnabs 

Operation: frT ~ - I (frB) I 

Syntax: fnabs 
fnabs. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: not affected 

Description: 
The fnabs instruction takes the contents of frB, sets the sign bit to 1, and stores 
the result in frY. 

This instruction will operate on NaNs without raising an exception. 

Instruction Encoding: 
0 

11 1 1 1 1 

T 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T 10 0 0 0 01 B 10 0 1 0 0 0 1 0 0 01&1 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 
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fneg FPNegate 
POWER. 601 • 603 • PowerPC32/64 

Operation: frT ¢= -(frB) 

Syntax: fneg 
fneg. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

fneg 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: not affected 

Description: 
The fneg instruction takes the contents of frB, inverts the sign bit, and stores the 
result in frT. 

This instruction will operate on NaNs without raising an exception. 

Instruction Encoding: 
0 5 6 

11 1 1 1 1 11 

T 
B 
Rc 
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10 11 15 16 20 21 30 31 

T 10 0 0 0 01 B 10 0 0 0 1 0 1 0 0 01&1 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 



fnmadd FP Negative Multiply-Add fnmadd 
POWER. 601 • 603 • PowerPC32/64 

Operation: frT ¢= -((frA) x (frC) + (frB)) 

Syntax: fnmadd 
fnmadd. 

frT,frA,frC,frB 
frT,frA,frC,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF 

Description: 
The fnmadd instruction multiplies the contents of frA by the contents of frC and 
then adds frB to compute the result. This intermediate result is negated to pro­
duce the final result. The final result is then normalized (if necessary), rounded 
to double-precision (according to the current rounding mode), and stored in frT. 

This operation is equivalent to a fmaddl fneg pair of instructions, except for 
how the sign of NaN s is handled: 

• QNaNs propagating through the instruction retain their original sign. 

• QNaNs that result from disabled Invalid Operation Exceptions have a sign 
ofO. 

• QNaNs that are converted from SNaNs because of disabled Invalid Operation 
Exceptions retain the sign of the original SNaN. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0 
(VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

The archaic POWER mnemonic for this instruction is fnma[.]. 
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Instruction Encoding: 
0 5 6 

11 1 1 1 1 1 I 

T 
A 
B 
C 
Rc 
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10 11 15 16 20 21 25 26 30 31 

T I A I B I C 11 1 1 llRe l 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Source FPR frC 
Record bit 



fnmadds FPNegative 
Multiply-Add Single 

fnmadds 
601 • 603 • PowerPC32/64 

Operation: frT ¢::: -«frA) x (frC) + (frB)) 

Syntax: fnmadds frT,frA,frC,frB 
fnmadds. frT,frA,frC,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX, VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF 

Description: 
The fnmadds instruction multiplies the contents of frA by the contents of fre 
and then adds frB to compute the result. This intermediate result is negated to 
produce the final result. The final result is then normalized (if necessary), 
rounded to single-precision (according to the current rounding mode), and 
stored in frT. 

This operation is equivalent to a fmadds / fneg pair of instructions, except for 
how the sign of NaN s is handled: 

• QNaNs propagating through the instruction retain their original sign. 

• QNaNs that result from disabled Invalid Operation Exceptions have a sign 
ofO. 

• QNaNs that are converted from SNaNs because of disabled Invalid Operation 
Exceptions retain the sign of the original SN aN. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0 
(VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 
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Instruction Encoding: 
0 5 6 

11 1 1 0 1 1 I 

T 
A 
B 
C 
Rc 

444 Appendix A 

10 11 15 16 20 21 25 26 30 31 

T I A I B I C 11 1 1 1 IRe I 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Source FPR frC 
Record bit 



fnmsub FPNegative 
Multiply-Subtract 

POWER· 601 • 603 • PowerPC32/64 

Operation: frT <= -((frA) x (frC) - (frB)) 

Syntax: fnmsub frT,frA,frC,frB 
fnmsub. frT,frA,frC,frB 

(Rc = 0) 
(Rc = 1) 

fnmsub 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF 

Description: 
The fnmsub instruction multiplies the contents of frA by the contents of fre and 
then subtracts frB to compute the result. This intermediate result is negated to 
produce the final result. The final result is then normalized (if necessary), 
rounded to double-precision (according to the current rounding mode), and 
stored in frT. 

This operation is equivalent to a fmsub / fneg pair of instructions, except for 
how the sign of NaNs is handled: 

• QNaNs propagating through the instruction retain their original sign. 

• QNaNs that result from disabled Invalid Operation Exceptions have a sign 
ofD. 

• QNaNs that are converted from SNaNs because of disabled Invalid Operation 
Exceptions retain the sign of the original SN aN. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x D 
(VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

The archaic POWER mnemonic for this instruction is fnms[.]. 
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Instruction Encoding: 
0 5 6 

11 1 1 1 1 1 I 

T 
A 
B 
C 
Rc 

446 Appendix A 

10 11 15 16 20 21 25 26 30 31 

T I A I B I C 11 1 1 0 IRe I 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Source FPR frC 
Record bit 



fnmsubs FPNegative fnmsubs 
Multiply-Subtract Single 

601 • 603 • PowerPC32/64 

Operation: frT <= -((frA) x (frC) - (frB» 

Syntax: fnmsubs 
fnmsubs. 

frT,frA,frC,fr B 
frT,frA,frC,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF 

Description: 
The fnmsubs instruction multiplies the contents of frA by the contents of frC 
and then subtracts frB to compute the result. This intermediate result is negated 
to produce the final result. The final result is then normalized (if necessary), 
rounded to single-precision (according to the current rounding mode), and 
stored in frT. 

This operation is equivalent to a fmsubs / £neg pair of instructions, except for 
how the sign of NaN s is handled: 

• QNaNs propagating through the instruction retain their original sign. 

• QNaNs that result from disabled Invalid Operation Exceptions have a sign 
ofO. 

• QNaNs that are converted from SNaNs because of disabled Invalid Operation 
Exceptions retain the sign of the original SNaN. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x a 
(VXIMZ). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 
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Instruction Encoding: 
0 5 6 

11 1 1 0 1 1 I 

T 
A 
B 
C 
Rc 

448 Appendix A 

10 11 15 16 20 21 25 26 30 31 

T I A I B I C 11 1 1 0 IRe I 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Source FPR frC 
Record bit 



fres 

Operation: 

Syntax: 

FP Reciprocal Estimate Single 
603 • Optiona132 / 64 

1 
frT <= z (frB) 

fres 
fres. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

fres 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, ZX, VSNAN, FR, FI, FPRF 

Description: 

The fres instruction calculates a single-precision estimate of the reciprocal of frB 
and stores the result in frT. The precision of the calculated result is correct to 
within 1 part in 256 of the actual reciprocal of frB, that is, the following equation 
is satisfied: 

l
estimated - actuall < _1_ 

actual - 256 

where estimated is the estimated value returned by the instruction and actual is 
the actual value of 1 + (£rB) . 
The table summarizes the results for special values of frB. 

Operand Result Exception Notes 
+= +0 none -
+0 += LX no result it l'PSLR[ZE] 1 
-0 -= ZX no result if FPSCR[ZE]-l 
-= -0 none -

t>NaN I,.lNaN VXt>NAN no resUlt it FPSLR[VE] 1 
QNaN QNaN none -

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation or Zero Divide Exception occurs and the appro­
priate type of exception is enabled. FPSCR[FR] and FPSCR[FI] are set to unde­
fined values. 

This instruction is an optional part of the PowerPC architecture. 
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Instruction Encoding: 
0 5 6 

11 1 1 0 1 1 I 

T 
B 
Rc 

450 Appendix A 

10 11 15 16 20 21 30 31 

T 10 0 0 0 01 B 10 000 0 1 1 0001&1 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 



frsp FP Round to Single-Precision 
POWER· 601 .603. PowerPC32/64 

frsp 

Operation: frT {::: Double2Single(frB) 

Syntax: frsp 
frsp. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, FR, FI, FPRF 

Description: 
The frsp instruction takes the value in frB, rounds it down to single-precision 
range using the current rounding mode, and stores the result in frT. If the value 
in frB is already within single-precision range, then the value is simply copied 
into frT. 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

Instruction Encoding: 
0 

11 1 1 1 1 

T 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T 10 0 0 0 01 B 10 0 0 0 0 0 1 1 0 01&1 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 
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frsqrte FP Reciprocal 
Square Root Estimate 

603 • Optional32 / 64 

frsqrte 

Operation: 1 frT¢=~ --
J(frB) 

Syntax: frsqrte 
frsqrte. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, ZX, VSNAN, VXSQRT, FR, FI, FPRF 

Description: 

The frsqrte instruction calculates a double-precision estimate of the reciprocal of 
the square root of frB and stores the result in frT. The precision of the calculated 
result is correct to within 1 part in 32 of the actual reciprocal of frB, that is, the 
following equation is satisfied: 

lestimated - actuall < ~ 
actual - 32 

where estimated is the estimated value returned by the instruction and actual is 

the actual value of 1 + J (frB) . 

The table summarizes the results for special values of frB. 

Operand Result Exception Notes 
+= +0 none -
+0 += ZX no result it FP~CK[ZE] 1 
-0 -= ZX no result it FPSCR[ZE]-l 
<0 l,JNaN VXSQRT no result it Ft'ScR[VE] 1 
-= QNaN VXSQKT no result it FPSCR[VE]-l 

SNaN 9I'JaN VXSNAN no result if FPSCR[VE]-l 
QNaN QNaN none -

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation or Zero Divide Exception occurs and the appro­
priate type of exception is enabled. FPSCR[FR] and FPSCR[FI] are set to unde­
fined values. 

This instruction is an optional part of the PowerPC architecture. 
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Instruction Encoding: 
0 

11 1 1 1 1 

T 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T 10 0 0 0 01 B 10 0 0 0 0 1 1 0 1 01~1 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 
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fsel FP Select 
603 • Optiona132/ 64 

Operation: if ( (frA) ~ 0.0 ) 
frT {::= (frC) 

else 

Syntax: 

frT {::= (frB) 

fsel 
fsel. 

frT,frA,frC,fr B 
frT,frA,frC,frB 

(Rc = 0) 
(Rc = 0) 

fsel 

Condition Register / Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: not affected 

Description: 
The fsel instruction compares the contents of frA with 0.0. If the value in frA is 
greater than or equal to 0.0, then the contents of frC are copied into the target 
register frT. If frA is less than 0.0 or if frA is NaN, then the contents of frB are 
copied into frT. 

The comparison operation does not generate any exceptions. If frA contains -0, 
it is treated the same as +0. 

This instruction is an optional part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

11 1 1 1 1 1 I 

T 
A 
B 
C 
Rc 
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10 11 15 16 20 21 25 26 30 31 

T I A I B I C 11 0 1 1 1 IRe I 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Source FPR frC 
Record bit 



fsqrt FP Square Root 
Optiona132/64 

fsqrt 

Operation: frT <= J(frB) 

Syntax: fsqrt 
fsqrt. 

frT,frB 
frT,frB 

(Rc = 0) 
(Re = 1) 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, XX, VSNAN, VXSQRT, FR, FI, FPRF 

Description: 
The fsqrt instruction calculates the double-precision square root of frB and 
stores the result in frT. The table summarizes the results for special values of frB. 

Operand Result Exception Notes 
+= += none -
+0 +0 none -
-0 -0 none -
<0 QNaN VXSQRT no result if FPSCR[VE]-l 
-= (,,!NaN V~(,,!RT no result it rrOlLK[ v "J"l 

SNaN (,,!NaN VX:;NAN no result it Fl-':;CR[ VhJ~l 
QNaN QNaN none -

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and FPSCR[VE]=l. 

This instruction is an optional part of the PowerPC architecture. 

Instruction Encoding: 
0 

11 1 1 1 1 

T 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T 10 0 0 0 01 B 10 0 0 0 0 1 0 1 1 01~1 

Target FPR frT where result of operation is stored 
Source FPR frB 
Record bit 
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fsqrts FP Square Root Single 
Optiona132/64 

fsqrts 

Operation: frT {:= J(frB) 

Syntax: fsqrts 
fsqrts. 

frT,frB 
frT,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, XX, VSNAN, VXSQRT, FR, FI, FPRF 

Description: 
The fsqrt instruction calculates the single-precision square root of frB and stores 
the result in frT. The table summarizes the results for special values of frB. 

Operand Result ExceptIon Notes 
+= += none -
+0 +0 none -
-0 -0 none -
<0 \,.!NaN V}l.SI,.!1<T no result if l'yt>u<[ v h] ·1 
-= \,.!NaN VX~\,.!jU no result it FP~CR[V h]-l 

SNaN QNaN VX~NAN no result it FPSU{[VE]-l 

l..!~aN .l,,1I\iaN none -

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and FPSCR[VE]=l. 

This instruction is an optional part of the PowerPC architecture. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

11 1 1 0 1 I T 10 0 0 0 01 B 10 0 0 0 0 1 0 1 1 01&1 

T Target FPR frT where result of operation is stored 
B Source FPR frB 
Rc Record bit 
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fsub FP Subtract fsub 
POWER· 601 .603 • PowerPC32/64 

Operation: frT ¢= (frA) - (frB) 

Syntax: fsub 
fsub. 

frT,frA,frB 
frT,frA,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX, VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXISI, FR, FI, FPRF 

Description: 
The fsub instruction subtracts the contents of frB from the contents of frA. This 
result is then normalized (if necessary) and rounded to double-precision 
(according to the current rounding mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 - 00 (VXISI). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

The archaic POWER mnemonic for this instruction is fs[.]. 

Instruction Encoding: 
0 

11 1 1 1 1 

T 
A 
B 
Rc 

5 6 

11 
10 11 15 16 20 21 25 26 30 31 

T I A I B 10 a a 0 all 0 1 0 01&1 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Record bit 
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fsubs FP Subtract Single fsubs 
601 • 603 • PowerPC32/64 

Operation: frT <= (frA) - (frB) 

Syntax: fsubs 
fsubs. 

frT,frA,frB 
frT,frA,frB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Floating-Point Status and Control Register: 
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXISI, FR, FI, FPRF 

Description: 
The fsubs instruction subtracts the contents of frB from the contents of frA. This 
result is then normalized (if necessary) and rounded to single-precision (accord­
ing to the current rounding mode) and then stored in frT. 

The Invalid Operation Exception will be invoked if either of the operands is a 
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 - 00 (VXISI). 

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the 
case where an Invalid Operation Exception occurs and this type of exception is 
enabled (FPSCR[VE] = 1). 

Instruction Encoding: 
0 5 6 

11 1 1 0 1 1 I 

T 
A 
B 
Rc 
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10 11 15 16 20 21 25 26 30 31 

T I A I B 100000110 oolRel 

Target FPR frT where result of operation is stored 
Source FPR frA 
Source FPR frB 
Record bit 



icbi Instruction Cache Block Invalidate icbi 
601 • 603 • PowerPC32/64 

Operation: invalidate the specified instruction cache block 

Syntax: icbi rA,rB 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The icbi instruction invalidates the instruction cache block specified by the 
given effective address (calculated from (rA I 0) + (rB)). The details of the opera­
tion depend on the storage mode associated with the effective address. 

When the storage mode requires coherency (WIM = xxI), this instruction causes 
all copies of this block in any processor to be made invalid, so that the next ref­
erence from any processor causes the block to be reloaded. 

When coherency is not required (WIM = xxO), this instruction invalidates the 
block in the instruction cache of the current processor only. 

If the calculated effective address specifies an address belonging to a direct-store 
segment, then this instruction will operate as a no-op. 

This instruction is treated as a load from the effective address for purposes of 
address translation and protection. 

On PowerPC processors with unified caches (such as the 601), this instruction is 
treated as a no-op. In this case, the effective address is not validated. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 110 0 0 0 01 A I B 11 1 1 1 010 1 10101 

A Source GPR rA 
B Source GPR rB 
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• • lsync Instruction Cache Synchronize 
POWER. 601 • 603 • PowerPC32/64 

lsync 

Operation: synchronize the instruction cache 

Syntax: isync 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The isync instruction causes the processor to wait until all previous instructions 
have completed execution before discarding any prefetched instructions and 
continuing execution. This forces all subsequent instructions to be (re-)fetched 
from storage so that they execute in the context extablished by the previously 
executed instructions. 

This instruction is context synchronizing and affects the current processor only. 

The archaic POWER mnemonic for this instruction is ics. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 0 0 1 110 0 0 0 010 0 0 0 010 000 010 0 1 001 0 1 10101 
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Ibz Load Byte and Zero 
POWER. 601 • 603. PowerPC32/64 

Operation: rT ~ °Byte «rA I 0) + 'd) 

Syntax: Ibz rT,d(rA) 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

Ibz 

The Ibz instruction loads the byte that is stored at the effective address calcu­
lated from (rA I 0) + 'd and places the byte into the low-order byte of the target 
register rT. The upper bytes of rT are cleared. 

Instruction Encoding: 
0 5 

11 0 o 0 1 11 

T 
A 
d 

6 10 11 15 16 

T I A I d 

Target GPR rT where result of operation is stored 
Source GPR rA 
Signed 16-bit displacement 

31 
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lbzu Load Byte and Zero with Update 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT ¢=: °Byte «rA) + 'd) 
rA ¢=: (rA) + 'd 

Syntax: lbzu rT,d(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lbzu 

The lbzu instruction loads the byte that is stored at the effective address calcu­
lated from (rA) + 'd and places the byte into the low-order byte of the target 
register rT. The upper bytes of rT are cleared. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the 
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then 
the effective address for the load is calculated from 'd and the rA is not updated 
with the effective address. If rA=rT, then rT is updated with the loaded data 
instead of the effective address. 

Instruction Encoding: 
0 5 6 

110 o 0 1 1 I 

T 
A 
d 
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10 11 15 16 

T I A I d 

Target GPR rT where result of operation is stored 
Source GPR rA 
Signed 16-bit displacement 

31 



lbzux Load Byte and Zero 
with Update Indexed 

POWER. 601 • 603 • PowerPC32/64 

Operation: rT ¢:= °Byte ((rA) + (rB)) 
rA ¢:= (rA) + (rB) 

Syntax: lbzux rT,rA,rB 

Condition Register / Fixed -Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lbzux 

The lbzux instruction loads the byte that is stored at the effective address calcu­
lated from (rA) + (rB) and places the byte into the low-order byte of the target 
register rT. The upper bytes of rT are cleared. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the 
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then 
the effective address for the load is calculated from (rB) and the rA is not 
updated with the effective address. If rA=rT, then rT is updated with the loaded 
data instead of the effective address. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

11 
10 11 15 16 20 21 30 31 

T I A I B 10001110111101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
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lbzx Load Byte and Zero Indexed 
POWER. 601 • 603 • PowerPC32 / 64 

Operation: rT <= °Byte ((rA I 0) + (rB» 

Syntax: lbzx rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lbzx 

The lbzx instruction loads the byte that is stored at the effective address calcu­
lated from (rA I 0) + (rB) and places the byte into the low-order byte of the target 
register rT. The upper bytes of rT are cleared. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T I A I B 1000 1 0 10 1 1 1101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 



ld Load Doubleword ld 
PowerPC64 

Operation: rT {= Doubleword ((rA I 0) + '(ds l.. baa)) 

Syntax: ld rT,ds(rA) 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The Id instruction loads the doubleword that is stored at the effective address 
calculated from (rA I 0) + '(ds .1 bOO) and places it into the target register rT. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

[1 1 1 0 1 

T 
A 
ds 

5 6 

o[ 
10 11 15 16 

T [ A [ ds 

Target GPR rT where result of operation is stored 
Source GPR rA 
Signed 14-bit word displacement 

29 30 31 

[0 o[ 
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ldarx Load Doubleword Indexed 
PowerPC64 

Operation: rT <== °Doubleword «rA I 0) + (rB) 
create a reservation on ((rA I 0) + (rB) 

Syntax: ldarx rT,rA,rB 

Condition Register/Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

ldarx 

The ldarx instruction loads the doubleword that is stored at the effective address 
calculated from (rA I 0) + (rB) and places the doubleword into the target register 
rT. A reservation is placed on this effective address, which can be used by the 
stdcx. instruction. Any existing reservation is replaced. 

The calculated effective address must specify an aligned doubleword (that is, it 
must be a multiple of 8). If the address does not specify an aligned doubleword, 
the alignment exception handler may be invoked (if the load crosses a page 
boundary) or the results may be boundedly undefined. 

If the address references a direct-store storage segment, then a Data Storage inter­
rupt occurs or the results are boundedly undefined. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
5 6 10 11 15 16 20 21 30 31 

10 1 1 11 T I A I B 10001010100101 

T Target GPR rT where result of operation is stored 
A Source GPR rA 
B Source GPR rB 
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ldu Load Doubleword with Update 
PowerPC64 

Operation: rT <= Doubleword «rA) + '(ds..L bOO)) 
rA <= (rA) + '(ds ..L bOO) 

Syntax: Idu rT,ds(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

ldu 

The ldu instruction loads the doubleword that is stored at the effective address 
calculated from (rA I 0) + '(ds 1. bOO) and places it into the target register rT. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA, or if rA and rT specify the 
same register. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 5 

11 1 1 0 1 01 

T 
A 
ds 

6 10 11 15 16 

T I A I ds 

Target GPR rT where result of operation is stored 
Source GPR rA 
Signed 14-bit word displacement 
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ldux Load Doubleword 
with Update Indexed 

PowerPC64 

Operation: rT <= Doubleword «rA) + (rB» 
rA <= (rA) + (rB) 

Syntax: Idux rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

ldux 

The ldux instruction loads the doubleword that is stored at the effective address 
calculated from (rA) + (rB) and places it into the target register rT. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the 
same register. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T I A I B 10000110101101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 



ldx Load Doubleword Indexed ldx 
PowerPC64 

Operation: rT ¢= Doubleword ((rA I 0) + (rB)) 

Syntax: ldx rT,rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The Idx instruction loads the doubleword that is stored at the effective address 
calculated from (rA I 0) + (rB) and places it into the target register rT. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

11 
10 11 15 16 20 21 30 31 

T I A I B 10000010101101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
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lfd Load Floating-Point Double-Precision 
POWER. 601 • 603 • PowerPC32/64 

Operation: frT <= FDouble «rA I 0) + 'd) 

Syntax: lfd frT,d(rA) 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lfd 

The lfd instruction loads the doubleword that is stored at the effective address 
calculated from (rA I 0) + 'd and places it into the target register frT. 

Instruction Encoding: 
0 5 6 

11 1 o 0 1 01 

T 
A 
d 
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10 11 15 16 

T I A I d 

Target FPR frT where result of operation is stored 
Source GPR rA 
Signed 16-bit displacement 

31 



lfdu Load Floating-Point 
Double-Precision with Update 

POWER· 601 • 603 • PowerPC32/64 

Operation: frT <= FDouble ((rA) + 'd) 
rA <= (rA) + 'd 

Syntax: lfdu frT,d(rA) 

Condition Register/Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lfdu 

The lfdu instruction loads the doubleword that is stored at the effective address 
calculated from (rA) + 'd and places it into the target register frT. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if CPR 0 is used for rA. However, the 601 permits 
this invalid form for backward compatability with the POWER architecture. On 
the 601, if A=O, then the effective address for the load is calculated from 'd and 
rA is not updated with the effective address. 

Instruction Encoding: 
0 

\1 1 o 0 1 

T 
A 
d 

5 6 

1 \ 
10 11 15 16 31 

Target FPR frT where result of operation is stored 
Source CPR rA 
Signed 16-bit displacement 
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lfdux Load Floating-Point Double­
Precision with Update Indexed 

POWER· 601 • 603 • PowerPC32/64 

Operation: frT ¢= FDouble «rA) + (rB)) 
rA ¢= (rA) + (rB) 

Syntax: lfdux frT,rArB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lfdux 

The lfdux instruction loads the doubleword that is stored at the effective address 
calculated from (rA) + (rB) and places it into the target register frT. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA. However, the 601 permits 
this invalid form for backward compatability with the POWER architecture. On 
the 601, if A=O, then the effective address for the load is calculated from (rB) and 
rA is not updated with the effective address. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 

472 Appendix A 

10 11 15 16 20 21 30 31 

T I A I B 11001110111101 

Target FPR frT where result of operation is stored 
Source GPR rA 
Source GPR rB 



lfdx Load Floating-Point 
Double-Precision Indexed 

POWER • 601 • 603 • PowerPC32/64 

Operation: frT ¢::: FDouble ((rA I 0) + (rB)) 

Syntax: lfdx frT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lfdx 

The lfdx instruction loads the doubleword that is stored at the effective address 
calculated from (rA I 0) + (rB) and places it into the target register frT. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T I A I B 1100 1 a 1 a 1 1 1101 

Target FPR frT where result of operation is stored 
Source CPR rA 
Source CPR rB 
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lfs Load Floating-Point Single-Precision 
POWER. 601 • 603 • PowerPC32/64 

Operation: frT <= FSingle «rA I 0) + 'd) 

Syntax: Us frT,d(rA) 

Condition Register/Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lfs 

The l£s instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + 'd, converts the value to double-precision (by interpreting 
the word as a single-precision value), and places the converted doubleword into 
the target register frT. 

Instruction Encoding: 
0 5 6 

11 1 o 0 0 01 

T 
A 
d 

474 Appendix A 

10 11 15 16 

T I A I d 

Target FPR frT where result of operation is stored 
Source GPR rA 
Signed 16-bit displacement 

31 



lfsu Load Floating-Point 
Single-Precision with Update 

POWER· 601.603. PowerPC32j64 

Operation: frT ¢:::: FSingle ((rA) + 'd) 
rA ¢:::: (rA) + 'd 

Syntax: lfsu frT,d(rA) 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lfsu 

The lfsu instruction loads the word that is stored at the effective address calcu­
lated from (rA) + 'd, converts the value to double-precision (by interpreting the 
word as a single-precision value), and places the converted doubleword into the 
target register frT. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA. However, the 601 permits 
this invalid form for backward compatability with the POWER architecture. On 
the 601, if A=O, then the effective address for the load is calculated from 'd and 
rA is not updated with the effective address. 

Instruction Encoding: 
0 5 

11 1 o 0 0 1 I 

T 
A 
d 

6 10 11 15 16 

T I A I d 

Target FPR frT where result of operation is stored 
Source GPR rA 
Signed 16-bit displacement 

31 

Instruction Set Summary 475 



lfsux Load Floating-Point Single­
Precision with Update Indexed 

POWER. 601 • 603 • PowerPC32/64 

Operation: frT ¢= FSingle «rA) + (rB» 
rA ¢= (rA) + (rB) 

Syntax: lfsux frT,rA,rB 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lfsux 

The lfsux instruction loads the word that is stored at the effective address calcu­
lated from (rA) + (rB), converts the value to double-precision (by interpreting the 
word as a single-precision value), and places the converted doubleword into the 
target register frT. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA. However, the 601 permits 
this invalid form for backward compatability with the POWER architecture. On 
the 601, if A=O, then the effective address for the load is calculated from (rB) and 
rA is not updated with the effective address. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T I A I B 110 0 0 1 101 1 1101 

Target FPR frT where result of operation is stored 
Source GPR rA 
Source GPR rB 



lfsx Load Floating-Point 
Single-Precision Indexed 
POWER. 601 .603. PowerPC32/64 

Operation: frT <== FSingle ((rA I 0) + (rB)) 

Syntax: lfsx frT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lfsx 

The lfsx instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + (rB), converts the value to double-precision (by interpreting 
the word as a single-precision value), and places the converted doubleword into 
the target register frT. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T I A I B 110 000 1 0 1 1 1101 

Target FPR frT where result of operation is stored 
Source CPR rA 
Source CPR rB 
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lha Load Halfword Algebraic 
POWER· 601 • 603 • PowerPC32/64 

Operation: rT {::: 'Halfword ((rA I 0) + 'd) 

Syntax: lha rT,d(rA) 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lha 

The lha instruction loads the halfword that is stored at the effective address cal­
culated from (rA I 0) + 'd and places the halfword into the low-order two bytes of 
the target register rT. The upper bytes of rT are copied from the sign bit of the 
loaded halfword. 

Instruction Encoding: 
0 5 6 

11 0 1 0 1 01 

T 
A 
d 
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10 11 15 16 

T I A I d 

Target GPR rT where result of operation is stored 
Source GPR rA 
Signed 16-bit displacement 

31 



lha U Load Halfword Algebraic with Update lha U 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT {= 'Halfword ((rA) + 'd) 
rA {= (rA) + 'd 

Syntax: Ihau rT,d(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The Ihau instruction loads the halfword that is stored at the effective address 
calculated from (rA) + 'd and places the halfword into the low-order two bytes 
of the target register rT. The upper bytes of rT are copied from the sign bit of the 
loaded halfword. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the 
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then 
the effective address for the load is calculated from 'd and the rA is not updated 
with the effective address. If rA=rT, then rT is updated with the loaded data 
instead of the effective address. 

Instruction Encoding: 
0 5 

11 0 1 0 1 1 I 

T 
A 
d 

6 10 11 15 16 

T I A I d 

Target GPR rT where result of operation is stored 
Source GPR rA 
Signed 16-bit displacement 

31 
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lhaux Load Halfword Algebraic 
with Update Indexed 

POWER. 601 • 603 • PowerPC32/64 

Operation: rT ¢= 'Halfword «rA) + (rB)) 
rA ¢= (rA) + (rB) 

Syntax: lhaux rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lhaux 

The lhaux instruction loads the halfword that is stored at the effective address 
calculated from (rA) + (rB) and places the halfword into the low-order two bytes 
of the target register rT. The upper bytes of rT are copied from the sign bit of the 
loaded halfword. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the 
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then 
the effective address for the load is calculated from (rB) and the rA is not 
updated with the effective address. If rA=rT, then rT is updated with the loaded 
data instead of the effective address. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 1 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T 1 A 1 B 10101110111101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 



lhax Load Halfword Algebraic Indexed 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT <= 'Halfword ((rA I 0) + (rB)) 

Syntax: lhax rT,rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lhax 

The Ihax instruction loads the halfword that is stored at the effective address 
calculated from (rA I 0) + (rB) and places the halfword into the low-order two 
bytes of the target register rT. The upper bytes of rT are copied from the sign bit 
of the loaded halfword. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T I A I B 1010 1010 1 1 1101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
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lhbrx Load Halfword 
Byte-Reversed Indexed 

POWER. 601 • 603 • PowerPC32/64 

Operation: h := Halfword ((rA I 0) + (rB» 
rT ¢= O(h[8:15] -L h[0:7]) 

Syntax: lhbrx rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lhbrx 

The lhbrx instruction loads the halfword that is stored at the effective address 
calculated from (rA I 0) + (rB), swaps the two bytes of the halfword, and then 
places this byte-reversed halfword into the low-order two bytes of the target reg­
ister rT. The upper bytes of rT are cleared. 

For some PowerPC implementations, this byte-reversed load instruction may 
have a greater latency than other load instructions. On the 601 and 603, the 
latency for this instruction is the same as for a normal load instruction. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 

482 Appendix A 

10 11 15 16 20 21 30 31 

T I A I B 11 1 a a a 1 a 1 1 0101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 



1hz Load Halfword and Zero 1hz 
POWER· 601 • 603 • PowerPC32/64 

Operation: rT <= °Halfword «rA I 0) + 'd) 

Syntax: 1hz rJ:d(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The 1hz instruction loads the halfword that is stored at the effective address cal­
culated from (rA I 0) + 'd and places the halfword into the low-order two bytes of 
the target register rT. The upper bytes of rT are cleared. 

Instruction Encoding: 
0 5 

11 0 1 0 o 01 

T 
A 
d 

6 10 11 15 16 

T I A I d 

Target CPR rT where result of operation is stored 
Source CPR rA 
Signed 16-bit displacement 

31 
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lhzu Load Halfword and Zero with Update lhzu 
POWER • 601 • 603 • PowerPC32/64 

Operation: rT ¢::: °Halfword «rA) + 'd) 
rA ¢::: (rA) + 'd 

Syntax: lhzu rT,d(rA) 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The lhzu instruction loads the halfword that is stored at the effective address 
calculated from (rA) + 'd and places the halfword into the low-order two bytes 
of the target register rT. The upper bytes of rT are cleared. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the 
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then 
the effective address for the load is calculated from 'd and the rA is not updated 
with the effective address. If rA=rT, then rT is updated with the loaded data 
instead of the effective address. 

Instruction Encoding: 
0 5 6 

11 0 1 0 o 11 

T 
A 
d 

484 Appendix A 

10 11 15 16 

T I A I d 

Target GPR rT where result of operation is stored 
Source GPR rA 
Signed 16-bit displacement 

31 



lhzux Load Halfword and Zero 
with Update Indexed 

POWER. 601 • 603 • PowerPC32/64 

Operation: rT {= °Halfword ((rA) + (rB)) 
rA {= (rA) + (rB) 

Syntax: lhzux rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lhzux 

The Ihzux instruction loads the halfword that is stored at the effective address 
calculated from (rA) + (rB) and places the halfword into the low-order two bytes 
of the target register rT. The upper bytes of rT are cleared. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the 
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then 
the effective address for the load is calculated from (rB) and the rA is not 
updated with the effective address. 1£ rA=rT, then rT is updated with the loaded 
data instead of the effective address. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

T I A I B 10 100 1 101 1 1101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
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lhzx Load Halfword and Zero Indexed lhzx 
POWER • 601 • 603 • PowerPC32/64 

Operation: rT ¢= °Halfword «rA I 0) + (rB)) 

Syntax: lhzx rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The lhzx instruction loads the halfword that is stored at the effective address 
calculated from (rA I 0) + (rB) and places the halfword into the low-order two 
bytes of the target register rT. The upper bytes of rT are cleared. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T I A I B 10 1 000 1 0 1 1 1101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 



lmw Load Multiple Word 
POWER. 601 • 603 • PowerPC32/64 

Operation: ea := (rA I 0) + 'd 
R:=T 

Syntax: 

while ( R :::; 31 ) 
rR ¢= °Word ( ea ) 
ea:= ea + 4 
R :=R+ 1 

lmw rT,d(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lmw 

The lmw instruction loads words from memory into a set of the GPRs. The first 
word to be loaded is specified by the effective address calculated from (rA I 0) + 
'd. Consecutive words are loaded from this address into registers starting with 
register rT and continuing up to register r31. 

On 64-bit PowerPC implementations, each word is loaded into the low-order 
word of the target register and the upper word is cleared. 

The calculated effective address must specify an aligned word (that is, it must be 
a multiple of 4). If the address does not specify an aligned word, the alignment 
exception handler may be invoked (if the load crosses a page boundary), or the 
results may be boundedly undefined. 

The preferred form for this instruction is when the effective address and rT are 
chosen so that the low-order byte that is loaded into r31 is the last byte of an 
aligned quadword in memory. It is possible that some PowerPC implementa­
tions will execute non-preferred forms more slowly than the preferred forms. On 
future implementations, this instruction may execute more slowly than a series 
of instructions that perform the same operation. 

If rA is in the range of registers to be loaded, then the instruction form is invalid. 
However, the 601 permits these invalid forms for backward compatability with 
the POWER architecture. On the 601, if rA is in the range to be loaded, then rA is 
skipped and the data that would have been written into rA is discarded. If rA = 
rT = a, then rA is not being used for addressing and will be loaded with data. 
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Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked. 

The archaic POWER mnemonic for this instruction is 1m. 

Instruction Encoding: 
0 5 6 

110 1 1 1 01 

T 
A 
d 

488 Appendix A 

10 11 IS 16 

T I A I d 

Target CPR rT where first word of result is stored 
Source CPR rA 
Signed 16-bit displacement 

31 



Load String and Compare 
Byte Indexed 

POWER. 601 

Operation: load bytes into registers from memory until match 

Syntax: lscbx 
lscbx. 

rT,rA,rB 
rT,rA,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: XER[25:31] updated with number of bytes copied 

Description: 
The lscbx instruction loads bytes from memory into a set of GPRs until a match­
ing byte is found or a maximum byte count is reached. The byte-to-match is 
stored in XER[16:23], and the maximum number of bytes to copy is specified in 
XER[25:31]. Upon completion, this instruction returns the number of bytes cop­
ied in XER[25:31]. 

The bytes are loaded starting from the effective address (calculated from (rA I 0» 
and stored into as many registers as are needed, starting with register rT. The 
register sequence wraps from r31 to rO if necessary. 

Bytes are loaded from left to right into the low-order word of the target registers. 
If a matching byte is found, that byte is copied into the appropriate register 
before the instruction terminates. 

If the last register to be loaded is only partially filled, then the value stored in the 
remaining bytes is undefined. If a matching byte was found, then the remaining 
bytes of all of the registers that would have been loaded are undefined. 

The operation of this instruction can be summarized as: 

ea := (rA I 0) + (rB) 
R:= T-l 
nBytes := XER[25:31] 
nBytesCopied := 0 
matchByte := XER[16:23] 
matchFound := 0 
i:= 0 
while ( nBytes > 0 ) 
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if(i=O) 
R := (R + 1) % 32 
rR ¢= undefined 

if (matchFound = 0 ) 
rR[i: (i+7)] ¢= Byte( ea ) 
nBytesCopied := nBytesCopied + 1 

if ( Byte( ea ) = matchByte ) 
matchFound := 1 

i:= i + 8 
if ( i = 32 ) 

i:= 0 
ea:= ea + 1 
nBytes := nBytes - 1 

XER[25:31] ¢= nBytesCopied 

If XER[25:31] is 0 (indicating that no bytes should be copied from memory), then 
the contents of rT are undefined. Note that this differs from the POWER archi­
tecture where rT is not altered if XER[25:31] = O. 

If rA or B are in the range of registers to be loaded, then the instruction form is 
invalid. However, the 601 permits these invalid forms for backward compatabil­
ity with the POWER architecture. On the 601, if rA or B are in the range to be 
loaded, then they will be skipped and the data that would have been written 
into the registers will be discarded. If A= 0, then rA is not being used for address­
ing and will be loaded with data if necessary. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 1 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T 1 A 1 B 10100010101101 

Target GPR rT where first 4 bytes of result are stored 
Source GPR rA 
Source GPR rB 



lswi Load String Word Immediate 
POWER • 601 • 603 • PowerPC32j 64 

Operation: load nBytes bytes into registers from memory 

Syntax: lswi rT,rA,nBytes 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lswi 

The lswi instruction loads bytes from memory into a set of GPRs. The number of 
bytes (specified by the immediate nBytes value) are loaded from the effective 
address (calculated from (rA I 0)) and stored into as many registers as are 
needed, starting with register rT. The register sequence wraps from r31 to rO if 
necessary. 

Bytes are loaded from left to right into the low-order word of the target registers. 
If the last register to be loaded is only partially filled, the remaining bytes will be 
set to o. On 64-bit PowerPC implementations, the upper word of each register is 
cleared. 

The operation of this instruction can be summarized as 

ea:= (rA I 0) 
R:= T-1 

i:= [~] 

if (nBytes = 0) 
nBytes:= 32 

while ( nBytes > 0 ) 

if ( i = [~]) 
R := (R + 1) % 32 
rR {= 0 

rR[i : (i+7)] {= Byte( ea ) 
i:= i + 8 

if ( i = [~] ) 

i:= [~] 

ea:= ea + 1 
nBytes := nBytes - 1 
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The preferred form for this instruction is when the starting register rT is rS. It is 
possible that some PowerPC implementations will execute non-preferred forms 
more slowly than the preferred forms. Because of the complexity of this instruc­
tion, it is also possible that, on some implementations, this instruction may exe­
cute slower than a series of instructions that perform the same operation. 

If rA is in the range of registers to be loaded, then the instruction form is invalid. 
However, the 601 permits these invalid forms for backward compatabiIity with 
the POWER architecture. On the 601, if rA is in the range to be loaded, then rA is 
skipped and the data that would have been written into rA is discarded. If A= 0, 
then rA is not being used for addressing and will be loaded with data if neces­
sary. 

Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked. 

The archaic POWER mnemonic for this instruction is lsi. 

Instruction Encoding: 
056 

10111111 

T 
A 
nBytes 

492 Appendix A 

10 11 15 16 20 21 30 31 

T I A I nBytes 11 0 0 1 0 1 0 1 0 1 I 0 I 

Target GPR rT where first 4 bytes of result are stored 
Source GPR rA 
Number of bytes to load 



lswx Load String Word Indexed 
POWER. 601 • 603 • PowerPC32/64 

lswx 

Operation: load XER[25:31] bytes into registers from memory 

Syntax: lswx rT,rA,rB 

Condition Register/Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The lswx instruction loads bytes from memory into a set of GPRs. The number 
of bytes (specified by bits 25 to 31 of the XER) are loaded from the effective 
address (calculated from (rA I 0) + (rB» and stored into as many registers as are 
needed, starting with register rT. The register sequence wraps from r31 to rO if 
necessary. 

Bytes are loaded from left to right into the low-order word of the target registers. 
If the last register to be loaded is only partially filled, the remaining byte will be 
set to O. On 64-bit PowerPC implementations, the upper word of each register is 
cleared. 

The operation of this instruction can be summarized as 

ea := (rA I 0) + (rB) 
R:= T-1 
nBytes := XER[25:31] 

i:= [~] 
while ( nBytes > 0 ) 

if ( i = [~] ) 

R := (R + 1) % 32 
rR<=O 

rR[i : (i+7)] <= Byte( ea ) 
i:= i + 8 

if ( i = [~] ) 

i:= [~] 

ea:= ea + 1 
nBytes := nBytes - 1 

If XER[25:31] is 0 (indicating that no bytes should be copied from memory), then 
the contents of rT are undefined. 
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The preferred form for this instruction is when the starting register rT is r5 and 
the total number of registers being loaded is less than or equal to 12. It is possible 
that some PowerPC implementations will execute non-preferred forms more 
slowly than the preferred forms. Because of the complexity of this instruction, it 
is also possible that, on some implementations, this instruction may execute 
slower than a series of instructions that perform the same operation. 

If rA or B are in the range of registers to be loaded, then the instruction form is 
invalid. However, the 601 permits these invalid forms for backward compatabil­
ity with the POWER architecture. On the 601, if rA or B are in the range to be 
loaded, then they will be skipped and the data that would have been written 
into the registers will be discarded. If A=O, then rA is not being used for address­
ing and will be loaded with data if necessary. 

Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked. 

The archaic POWER mnemonic for this instruction is lsx. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 1 

T 
A 
B 

494 Appendix A 

10 11 15 16 20 21 30 31 

T 1 A 1 B 11000010101101 

Target GPR rT where first 4 bytes of result are stored 
Source GPR rA 
Source GPR rB 



lwa Load Word Algebraic lwa 
PowerPC64 

Operation: rT {:::: 'Word ((rA I 0) + '(ds 1- bOO) 

Syntax: lwa r'Ld(rA) 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The lwa instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + '( ds 1- bOO) and places it into the low-order word of the target 
register rT. The upper word of rT is copied from the sign bit of the loaded word. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

11 1 1 0 

T 
A 
ds 

5 6 

01 
10 11 15 16 

T I A I ds 

Target GPR rT where result of operation is stored 
Source GPR rA 
Signed 14-bit word displacement 

29 30 31 

11 01 
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1 w arx Load Word and Reserve Indexed lwarx 
601 • 603 • PowerPC32/64 

Operation: rT ¢::: °Word «rA I 0) + (rB)) 
create a reservation on ((rA I 0) + (rB)) 

Syntax: lwarx rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The lwarx instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + (rB) and places the word into the target register rT. A reser­
vation is placed on this effective address, which can be used by the stwcx. 
instruction. Any existing reservation is replaced. 

The calculated effective address must specify an aligned word (that is, it must be 
a multiple of 4). If the address does not specify an aligned word, the alignment 
exception handler may be invoked (if the load crosses a page boundary) or the 
results may be boundedly undefined. 

If the address references a direct-store storage segment, then a Data Storage inter­
rupt occurs or the results are boundedly undefined. 

On 64-bit PowerPC implementations, the word is loaded into the low-order 
word of rT and the upper word of rT is cleared. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

[fIJIIII T I A I B 10 0 0 0 0 1 0 1 0 0101 

T Target GPR rT where result of operation is stored 
A Source GPR rA 
B Source GPR rB 
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lwaux Load Word Algebraic 
with Update Indexed 

PowerPC64 

Operation: rT ¢= 'Word ((rA) + (rB)) 
rA ¢= (rA) + (rB) 

Syntax: lwaux rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lwaux 

The lwaux instruction loads the word that is stored at the effective address cal­
culated from (rA) + (rB) and places it into the low-order word of the target regis­
ter rT. The upper word of rT is copied from the sign bit of the loaded word. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the 
same register. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

11 
10 11 15 16 20 21 30 31 

T 1 AlB 10 1 0 1 1 1 0 1 0=nQJ 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
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lwax Load Word Algebraic Indexed lwax 
PowerPC64 

Operation: rT ¢= 'Word ((rA I 0) + (rB» 

Syntax: lwax rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The lwax instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + (rB) and places it into the low-order word of the target reg­
ister rT. The upper word of rT is copied from the sign bit of the loaded word. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 
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10 11 15 16 20 21 30 31 

T I A I B 10 101 0 1 0 1 0 1101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 



lwbrx Load Word 
Byte-Reversed Indexed 

POWER • 601 • 603 • PowerPC32 / 64 

lwbrx 

Operation: w := Word «rA I 0) + (rB» 
rT ¢:::: O(w[24:31] 1. w[16:23] 1. w[8:15] 1. w[O:7]) 

Syntax: lwbrx rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The lwbrx instruction loads the word that is stored at the effective address cal­
culated from (rA I 0) + (rB), reverses the four bytes of the word, and then places 
this byte-reversed word into target register rT. 

On 64-bit PowerPC implementations, the word is loaded into the low-order 
word of rT and the upper word of rT is cleared. 

For some PowerPC implementations, this byte-reversed load instruction may 
have a greater latency than other load instructions. On the 601 and 603, the 
latency for this instruction is the same as for a normal load instruction. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

11 
10 11 15 16 20 21 30 31 

T I A I B 11000010110101 

Target CPR rT where result of operation is stored 
Source CPR rA 
Source CPR rB 
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lwz Load Word and Zero 
POWER • 601 • 603 • PowerPC32/64 

Operation: rT <= °Word «rA I 0) + 'd) 

Syntax: lwz rT,d(rA) 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lwz 

The lwz instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + 'd and places the word into the target register rT. 

On 64-bit PowerPC implementations, the word is loaded into the low-order 
word of rT and the upper word of rT is cleared. 

The archaic POWER mnemonic for this instruction is 1. 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

11000001 T 1 A 1 d 

T Target GPR rT where result of operation is stored 
A Source GPR rA 
d Signed 16-bit displacement 
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lwzu Load Word and Zero with Update 
POWER· 601 • 603 • PowerPC32/64 

Operation: rT ¢:= aWord «rA) + 'd) 
rA ¢:= (rA) + 'd 

Syntax: lwzu rT,d(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lwzu 

The lwzu instruction loads the word that is stored at the effective address calcu­
lated from (rA) + 'd and places the word into the target register rT. 

On 64-bit PowerPC implementations, the word is loaded into the low-order 
word of rT and the upper word of rT is cleared. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the 
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then 
the effective address for the load is calculated from 'd and the rA is not updated 
with the effective address. If rA=rT, then rT is updated with the loaded data 
instead of the effective address. 

The archaic POWER mnemonic for this instruction is lu. 

Instruction Encoding: 
056 10 11 15 16 31 

11000011 T I A I d 

T Target GPR rT where result of operation is stored 
A Source GPR rA 
d Signed 16-bit displacement 
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lwzux Load Word and Zero 
with Update Indexed 

POWER • 601 • 603 • PowerPC32/64 

Operation: rT <= °Word «rA) + (rB» 
rA <= (rA) + (rB) 

Syntax: lwzux rT,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

lwzux 

The lwzux instruction loads the word that is stored at the effective address cal­
culated from (rA) + (rB) and places the word into the target register rT. 

On 64-bit PowerPC implementations, the word is loaded into the low-order 
word of rT and the upper word of rT is cleared. 

After the load is performed, the effective address is stored in rA. 

The instruction form is invalid if CPR 0 is used for rA or if rA and rT specify the 
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then 
the effective address for the load is calculated from (rB) and the rA is not 
updated with the effective address. If rA=rT, then rT is updated with the loaded 
data instead of the effective address. 

The archaic POWER mnemonic for this instruction is lux. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 11 T I A I B 10 0 0 0 1 101 1 1101 

T Target CPR rT where result of operation is stored 
A Source CPR rA 
B Source CPR rB 

502 Appendix A 



lwzx Load Word and Zero Indexed lwzx 
POWER· 601 • 603 • PowerPC32j64 

Operation: rT ¢::: °Word «rA I 0) + (rB)) 

Syntax: lwzx rT,rA,rB 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The lwzx instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + (rB) and places the word into the target register rT. 

On 64-bit PowerPC implementations, the word is loaded into the low-order 
word of rT and the upper word of rT is cleared. 

The archaic POWER mnemonic for this instruction is Ix. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 

5 6 

1 1 
10 11 15 16 20 21 30 31 

T 1 A 1 B 10000010111101 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
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Mask Generate 
POWER. 601 

Operation: mStart := rS[27:31] 
mEnd := rB[27:31] 
if(mStart = mEnd+ 1) 

m := OxFFFF FFFF 
if(mStart < mEnd+ 1) 

m := Mask(mStart,mEnd) 
if(mStart > mEnd+1) 

m:= -Mask(mEnd+1,mStart-1) 
rA ¢::: m 

Syntax: maskg 
maskg. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The maskg instruction generates a mask from the starting bit to the ending bit 
and places the calculated mask into rA. The starting bit (mStart) for the mask is 
specified in rS[27:31] and the ending bit (mEnd) is in rB[27:31]. 

If mStart = mEnd + 1, then a mask of alII's is generated. 

If mStart < mEnd + 1, then a mask with l's starting at mStart and continuing up 
to (and including) mEnd will be generated. All remaining bits of the mask are O. 

If mStart > mEnd + 1, then a mask with l's from bit 0 to mEnd, and from mStart 
up to bit 31 will be generated. All remaining bits of the mask are O. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 1 I s I A I B 10 0 0 0 0 1 1 1 0 1 IRc I 

S Source CPR rS 
A Target CPR rA where result of operation is stored 
B Source CPR rB 
Rc Record bit 
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mID cill § Ik II IT Mask Insert from Register mID cill § Ik II IT 
POWER· 601 

Operation: rA ¢:=: ((rB) & (rS)) I (~(rB) & (rA)) 

Syntax: maskir rA,rS,rB (Rc = 0) 
maskir. rA,rS,rB (Rc = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The maskir instruction inserts the contents of rS into rA using rB as a control 
mask. Wherever a bit in rB is 1, the corresponding bit from rS will overwrite the 
bit in rA. Whereever a bit in rB is 0, the corresponding bit in rA will remain 
untouched. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 110 0 0 0 1 1 1 0 11~1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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mcrf Move CR Field mcrf 
POWER. 601 • 603 • PowerPC32/64 

Operation: CR{crfT} <= CR{crfS} 

Syntax: mcrf crjT,crfS 

Condition Register /Fixed-Point Exception Register: 
CR Field T: LT,GT,EQSO always updated 
other fields: not affected 

XER: not affected 

Description: 
The mcrf instruction copies the contents of CR field erfS into CR field erfT. 

The 601 allows the form where bit 31 (the Link bit) of the instruction's encoding 
is set to 1. If this instruction form is executed, the contents of the LR are unde­
fined. 

Instruction Encoding: 
o 5 6 8 9 10 11 13 14 15 16 20 21 30 31 

10 1 0 0 1 11 T 10 01 s 10 010 000 010 0 0 0 0 0 0 0 0 0101 

T Target CR Field T where result of operation is stored 
S Source CR Field S 
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mcrfs Move to CR from FPSCR 
POWER. 601 • 603 • PowerPC32j 64 

Operation: CR{crjT} <= FPSCR{crjS} 
FPSCR{crjS} <= a 

Syntax: mcrfs crjT,crjS 

mcrfs 

Condition Register / Floating-Point Status and Control Register: 
CR Field T: always updated with value from FPSCR{crjs} 
other fields: not affected 

FPSCR: field S is set to 0 (except FEX and VX) 

Description: 
The mcrfs instruction copies the contents of FPSCR field crjS into CR field crfT. 
All of the bits that are copied from the FPSCR field (except FEX and VX) are reset 
to O. 

Instruction Encoding: 
o 5 6 8 9 10 11 13 14 15 16 20 21 30 31 

11111111 T 1001 s 10010000010001000000101 

T Target CR Field T where result of operation is stored 
S Source FPSCR Field S 
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mcrxr Move to CR from XER 
POWER. 601 • 603 • PowerPC32/64 

Operation: CR{crfT} <= XER{O} 
XER{O} <= 0 

Syntax: mcrxr crfT 

Condition Register/Fixed-Point Exception Register: 
CR Field T: always updated with value from XER{O} 
other fields: not affected 

XER: bits 0:3 are cleared 

Description: 

mcrxr 

The merxr instruction copies XER[0:3] into CR field crfT. Bits 0-3 of the XER are 
cleared as a result of this instruction. 

Instruction Encoding: 
o 5 6 8 9 10 11 15 16 20 21 30 31 

[0 1 1 1 1 1[ T 10 0[0 0 0 0 010 0 0 0 0110 0 0 0 0 0 0 0 olo[ 

T Target CR Field T where result of operation is stored 
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mfcr Move from CR mfcr 
POWER· 601 • 603 • PowerPC32/64 

Operation: rT <= O(CR) 

Syntax: mfcr rT 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The mfer instruction copies the entire contents of the CR into rT. 

For 64-bit PowerPC implementations, the CR is loaded into the low-order word 
of the target register and the high-order word is cleared. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 111111 T 10 0 a a 010 a a a 010 a a a a 100 11101 

T Target GPR rT where result of operation is stored 
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mffs Move from FPSCR 
POWER • 601 • 603 • PowerPC32 / 64 

Operation: frT <= (FPSCR) 

Syntax: mffs 
mffs. 

frT 
frT 

(Rc = 0) 
(Rc = 1) 

mffs 

Condition Register /Floating-Point Status and Control Register: 
CR Fields 0-7: not affected 

FPSCR: not affected 

Description: 
The mffs instruction copies the contents of the FPSCR into the low-order word 
of frT. The high-order word of the target register is undefined. 

For compatibility with the POWER architecture, the 601 sets the high-order 
word of the target register to OxFFF8 0000. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

11 1 1 1 11 T 10 0 a 0 010 0 a a 0110 0 1 000 1 1 11&1 

T Target FPR frT where result of operation is stored 
Rc Record bit 
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mfmsr Move from MSR mfmsr 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT ¢= (MSR) 

Syntax: mfmsr rT 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The mfmsr instruction copies the entire contents of the MSR into rT. 

This is a supervisor-level instruction. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 111111 T 1000 0 010 0 0 0 010 0 0 1 0 1 0011101 

T Target GPR rT where result of operation is stored 
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mfspr Move from SPR mfspr 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT <== O(SPR) 

Syntax: mfspr rT,SPR 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

.il Description: 
The mfspr instruction copies the entire contents of the specified Special Purpose 
Register (SPR) into rT. 

When loading 32-bit registers on 64-bit PowerPC implementations, the 32-bit 
register is loaded into the low-order word of the target register and the high­
order word is cleared. 

The SPR returned depends on the value of SPR which is used in the instruction. 
Valid values are given in the following table: 

SPR Register Name Access Notes 

1 XER user 

8 LR user 

9 CTR user 

18 DSISR supervisor 

19 DAR supervisor 

22 DEC supervisor 

25 SDR1 supervisor 

26 SRRO supervisor 

27 SRR1 supervisor 

272-275 SPRGO-SPRG3 supervisor 

280 ASR supervisor 64-bit only 

282 EAR supervisor 

287 PVR supervisor 

528,530,532,534 IBATOU - IBAT3U supervisor 

529,531,533,535 IBATOL-IBAT3L supervisor 

536,538,540,542 DBATOU-DBAT3U supervisor 

537,539,541,543 DBATOL-DBAT3L supervisor 
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Attempting to read a register that requires supervisor-level access will result in 
a Privileged Instruction interrupt unless the processor is in supervisor mode. 

In addition to the above-mentioned SPR encodings, the 601 provides access to 
the following implementation-specific registers: 

SPR Register Name Access Notes 

0 MQ user 
These registers 

4 RTCU user are provided for 

5 RTCL user POWER 

6 DEC user 
compatibility. 

1008 HIDO (Checkstop) supervisor 

1009 HID1 (Debug Mode) supervisor 

1010 HID2 (IABR) supervisor 

1013 HID5 (DABR) supervisor 

1023 HID15 (PIR) supervisor 

Extended Forms: 
The following extended forms provide access to the user-level SPRs. 

mfdr 
mflr 
mfxer 

rT 
rT 
rT 

is equivalent to 
is equivalent to 
is equivalent to 

mfspr 
mfspr 
mfspr 

rT,9 
rT,8 
rT,1 

In addition, there are also a few obsolete forms which provide access to obsolete 
user-level registers. These forms are available only on the 601. 

mfdee rT is equivalent to mfspr rT,6 
mfmq rT is equivalent to mfspr rT,O 
mfrtel rT is equivalent to mfspr rT,5 
mfrteu rT is equivalent to mfspr rT,4 

There are also a variety of supervisor-level SPRs which have extended forms. 
Note that mfdee appears again in this list since it was originally a user-level 
register but has been changed to a supervisor-level SPR. 

mfasr rT is equivalent to mfspr rT,280 
mfdar rT is equivalent to mfspr rT,19 
mfdbatl rT,n is equivalent to mfspr rT,537+2*n 
mfdbatu rT,n is equivalent to mfspr rT,536+2*n 
mfdee rT is equivalent to mfspr rT,22 
mfdsisr rT is equivalent to mfspr rT,18 
mfear rT is equivalent to mfspr rT,282 
mfibatl rT,n is equivalent to mfspr rT,529+2*n 
mfibatu rT,n is equivalent to mfspr rT,528+2*n 
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mfpvr rT is equivalent to mfspr rT,287 
mfsdrl rT is equivalent to mfspr rT,25 
mfsprg rT,n is equivalent to mfspr rT,272+n 
mfsrrO rT is equivalent to mfspr rT,26 
tnfsrrl rT is equivalent to mfspr rT,27 

Instruction Encoding: 
0 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 1 I T I SPR-2 I SPR-l 10 101 o 1 001 1101 

Note that the lO-bit SPR parameter is divided into two 5-bit fields: SPR-l and 
SPR-2 which are stored in reverse order in the instruction encoding. This is 
necessary for compatibility with the POWER mfspr encodings. 

T 
SPR-2 
SPR-l 
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Target GPR rT where result of operation is stored 
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Upper half of SPR specification 



mfsr Move from SR mfsr 
POWER • 601 • 603 • PowerPC32 

Operation: rT ¢= SR[SR] 

Syntax: mfsr rT,SR 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The mfsr instruction copies the entire contents of the Segment Register specified 
by the immediate value SR into rT. 

This is a supervisor-level instruction. 

This instruction exists on 32-bit PowerPC implementations only. 

Instruction Encoding: 
056 10 11 12 15 16 20 21 30 31 

10 1 1 1 1 11 T I 0 I SR I 0 0 0 0 0 11 0 0 1 0 1 0 0 1 1 I 0 I 

T Target GPR rT where result of operation is stored 
SR Segment Register ID 
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mfsrin Move from SR Indirect mfsrin 
POWER. 601 • 603 • PowerPC32 

Operation: rT ¢= SR[rB[O:3]] 

Syntax: mfsrin rT,rB 

Condition Register / Fixed -Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The mfsrin instruction copies the entire contents of the Segment Register speci­
fied by rB[0:3] into rT. 

This is a supervisor-level instruction. 

This instruction exists on 32-bit PowerPC implementations only. 

The archaic POWER mnemonic for this instruction is mfsri. Note that the mfsri 
instruction calculates the effective address from (rA I 0) + (rB) so A must equal 0 
for mfsrin to be equivalent to mfsri. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10111111 T 1000001 B 11010010011101 

T Target GPR rT where result of operation is stored 
B Source GPR rB which contains SR specification 
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mftb Move from Time Base Register 
603 • PowerPC32j 64 

Operation: H(TBR = 268) 

Syntax: 

rT <= (TBRL) 
else H(TBR = 269) 

rT <= O(TBRU) 

mftb rT,TBR 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

mftb 

The mftb instruction copies the contents of either the upper or lower half of the 
Time Base Register (TBR) into rT. The half of the TBR is specified by the TBR 
parameter: a value of 268 specifies the lower half of the TBR and 269 specifies the 
upper half. 

On 64-bit PowerPC implementations, a TBR value of 268 will cause the entire 64-
bit TBR to be loaded into the target register (instead of just the lower word). A 
TBR value of 269 will load the upper word of the TBR into the low-order word 
of the target register and clear the high-order word. 

Even though this is a standard PowerPC instruction, this instruction is not 
implemented on the PowerPC 601. 

Extended Forms: 
mftb rT 
mftbu rT 

is equivalent to 
is equivalent to 

mftb 
mftb 

rT,268 
rT,269 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

I 0 1 1 1 1 1 I T I TBR - 2 I TBR - 1 I 0 1 0 1 1 1 0 0 1 1 I 0 I 

Note that the to-bit TBR parameter is divided into two 5-bit fields: TBR-l and 
TBR-2 which are stored in reverse order in the instruction encoding. This is 
necessary for consistency with the mfspr encodings. 

T 
TBR-2 
TBR-l 

Target GPR rT where result of operation is stored 
Lower half of TBR specification 
Upper half of TBR specification 
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mtcrf Move to CR Fields mtcrf 
POWER. 601 • 603 • PowerPC32j 64 

Operation: CR ~ (rS) & mask 

Syntax: mtcrf crfMask,rS 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: updated as specified by mask 

XER: not affected 

Description: 
The mtcrf instruction copies rS into the Condition Register (CR) under the con­
trol of the given mask. Each bit in the 8-bit crfMask value represents a 4-bit field 
in the CR. Thus, a mask value of bOOlO 1000 would update fields 2 and 4 of the 
CR. To update the entire CR, use an crfMask of bllllllll. 

On some PowerPC implementations, updating fewer than all 8 of the CR fields 
may result in poorer performance than updating all 8 fields. 

Extended Forms: 
The following extended form is provided for the mtcrf instruction: 

mtcr rS is equivalent to mtcrf OxFF,rS 

Instruction Encoding: 
o 5 6 10 11 12 19 20 21 30 31 

10111111 s 101 CRMask 1010010010000101 

S Source CPR rS 
CR Mask Bit mask identifying which CR fields to update 
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mtfsbO Move 0 to FPSCR 
POWER • 601 • 603 • PowerPC32/64 

Operation: FPSCR[bitT] <= 0 

Syntax: mtfsbO 
mtfsbO. 

bitT 
bitT 

(Rc = 0) 
(Rc = 1) 

mtfsbO 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: bit T is cleared to 0 

Description: 
The mtfsbO instruction clears bit bitT of the FPSCR. The FEX andVX bits are the 
only bits of the FPSCR that cannot be explicitly cleared. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

11 1 1 1 1 11 T 10 a a a 010 a a a 010 a a 1 a a a 1 101&1 

T Target bit of FPSCR which is cleared 
Rc Record bit 
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mtfsbl Move 1 to FPSCR 
POWER • 601 • 603 • PowerPC32/64 

Operation: FPSCR[bitT] <= 1 

Syntax: mtfsbl 
mtfsbl. 

bitT 
bitT 

(Rc = 0) 
(Rc = 1) 

mtfsbl 

Condition Register I Floating-Point Status and Control Register: 
CR Field 1: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: bit T is set to 1 

Description: 
The mtfsbl instruction sets bit bitT of the FPSCR. The FEX andVX bits are the 
only bits of the FPSCR that cannot be explicitly set. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

11 1 1 1 1 11 T 10 0 0 0 010 0 0 0 010 0 0 0 100 1 101&1 

T Target bit of FPSCR which is set 
Rc Record bit 
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mtfsf Move to FPSCR Fields 
POWER. 601 • 603 • PowerPC32/64 

Operation: FPSCR ¢:: frB[32:63] & mask 

Syntax: mtfsf 
mtfsf. 

fpser Mask,fr B 
fpserMask,frB 

(Rc = 0) 
(Rc = 1) 

mtfsf 

Condition Register/Floating-Point Status and Control Register: 
CR Field 1: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: updated as specified by mask 

Description: 
The mtfsf instruction copies the low-order 32-bits from frB into the FPSCR 
under the control of the given mask. Each bit in the 8-bit fpscrMask value repre­
sents a 4-bit field in the FPSCR. Thus, a mask value of bOOlO 1000 would update 
fields 2 and 4 of the FPSCR. To update the entire FPSCR, use an fpscrMask of 
bllllllll. 

The FEX and VX bits of the FPSCR will not be updated if they are in the range 
specified by the mask. 

On some PowerPC implementations, updating fewer than all 8 of the FPSCR 
fields may result in poorer performance than updating all 8 fields. 

Extended Forms: 
The following extended form is provided for the mtfsf instruction: 

mtfs[.] frB is equivalent to mtfsf[.] OxFF,frB 

Instruction Encoding: 
o 5 6 7 14 15 16 20 21 30 31 

11 1 1 1 1 1 I 0 I FPSCR Mask I 0 I B 11 0 1 1 0 0 0 1 1 1 I Rc I 

FPSCR Mask Bit mask identifying which FPSCR fields to update 
B Source FPR frB 
Rc Record bit 
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mtfsfi Move to FPSCR Field Immediate mtfsfi 
POWER. 601 • 603 • PowerPC32/64 

Operation: FPSCR{fPscrjT} <= IMM 

Syntax: mtfsfi 
mtfsfi. 

crjT,IMM 
crfT,IMM 

(Rc = 0) 
(Rc = 1) 

Condition Register / Floating-Point Status and Control Register: 
CR Field 1: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 0,2-7: not affected 

FPSCR: field T updated with immediate value 

Description: 
The mtfsfi instruction copies the immediate value IMM into field fpscrfT of the 
FPSCR. The FEX andVX bits are the only bits of the FPSCR that cannot be explic­
itly set. If FPSCR{O} is specified as the target field, then only the FX and OX bits 
will be updated. 

Instruction Encoding: 
o 5 6 8 9 10 11 15 16 19 20 21 30 31 

11 1 1 1 1 1 I T 10 0 10 0 0 0 0 I IMM 10 10 0 1 0 0 0 0 1 lOiRe I 

T Bit field of FPSCR to be updated 
IMM Immediate 4-bit value to load into FPSCR field 
Rc Record bit 
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mtmsr MovetoMSR mtmsr 
POWER. 601 • 603 • PowerPC32/64 

Operation: MSR <= (rS) 

Syntax: mtmsr rS 

Condition Register/Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The mfmsr instruction copies the entire contents of rS into the Machine State 
Register (MSR). 

This is a supervisor-level instruction. This instruction is execution synchro­
nizing. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 11 s 1000 0 010 000 010 0 100 1 0010101 

S Source CPR rS 
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mtspr Move to SPR mtspr 
POWER· 601 • 603 • PowerPC32/64 

Operation: SPR ¢= (rS) 

Syntax: mtspr SPR,rS 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The mtspr instruction copies the entire contents of rS into the specified Special 
Purpose Register (SPR). 

When updating 32-bit registers on 64-bit PowerPC implementations, the 32-bit 
register is updated from the low-order word of the source register. 

The source SPR depends on the value of SPR which is used in the instruction. 
Valid values are given in the following table: 

SPR Register Name Access Notes 

1 XER user 

8 LR user 

9 CTR user 

18 DSISR supervisor 

19 DAR supervisor 

22 DEC supervisor 

25 SDRI supervisor 

26 SRRO supervisor 

27 SRRI supervisor 

272-275 SPRGO-SPRG3 supervisor 

280 ASR supervisor 64-bit only 

282 EAR supervisor 

284 TBL supervisor not on 601 

285 TBU supervisor not on 601 

528,530,532,534 IBATOU - IBAT3U supervisor 

529,531,533,535 IBATOL-IBAT3L supervisor 

536,538,540,542 DBATOU-DBAT3U supervisor not on 601 

537,539,541,543 DBATOL-DBAT3L supervisor not on 601 
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Attempting to update a register that requires supervisor-level write access will 
result in a Privileged Instruction interrupt unless the processor is in supervisor 
mode. 

In addition to the above-mentioned SPR encodings, the 601 provides access to 
the following implementation-specific registers: 

SPR Register Name Access Notes 

0 MQ user These registers 

4 RTCU supervisor are provided for 
POWER 

S RTCL supervisor compatibility. 

1008 HIDO (Checkstop) supervisor 

1009 HID1 (Debug Mode) supervisor 

1010 HID2 (IABR) supervisor 

1013 HIDS (DABR) supervisor 

1023 HID1S (PIR) supervisor 

Extended Forms: 
The following extended forms provide access to the user-level SPRs. 

mtdr 
mtlr 
mtxer 

rT 
rT 
rT 

is equivalent to 
is equivalent to 
is equivalent to 

mtspr 
mtspr 
mtspr 

9,rT 
8,rT 
1,rT 

In addition, the obsolete MQ register also allows user-level write access. This 
form is available only on the 601. 

mtmq rT is equivalent to mtspr O,rT 

There are also a variety of supervisor-level SPRs which have extended forms. 

mtasr rT is equivalent to mtspr 280,rT 
mtdar rT is equivalent to mtspr 19,rT 
mtdbatl rT,n is equivalent to mtspr 537+2*n,rT 
mtdbatu rT,n is equivalent to mtspr 536+2*n,rT 
mtdec rT is equivalent to mtspr 22,rT 
mtdsisr rT is equivalent to mtspr 18,rT 
mtear rT is equivalent to mtspr 282,rT 
mtibatl rT,n is equivalent to mtspr 529+2*n,rT 
mtibatu rT,n is equivalent to mtspr 528+2*n,rT 
mtsdrl rT is equivalent to mtspr 25,rT 
mtsprg rT,n is equivalent to mtspr 272+n,rT 
mtsrrO rT is equivalent to mtspr 26,rT 
mtsrrl rT is equivalent to mtspr 27,rT 
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Instruction Encoding: 
056 10 11 15 16 20 21 30 31 

10111111 S I SPR - 2 I SPR - 1 I 0 1 1 1 0 1 0 0 1 1 I 0 I 

Note that the lO-bit SPR parameter is divided into two 5-bit fields: SPR-l and 
SPR-2 which are stored in reverse order in the instruction encoding. This is 
necessary for compatibility with the POWER mtspr encodings. 

S 
SPR-2 
SPR-l 
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Source GPR rS 
Lower half of SPR specification 
Upper half of SPR specification 



mtsr Move to SR mtsr 
POWER • 601 • 603 • PowerPC32 

Operation: SR[SR] <= (rS) 

Syntax: mtsr SR,rS 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The mtsr instruction copies the contents of rS into the Segment Register speci­
fied by the immediate value SR. 

This is a supervisor-level instruction. 

This instruction exists on 32-bit PowerPC implementations only. 

Instruction Encoding: 
o 5 6 10 11 12 15 16 20 21 30 31 

I 0 1 1 1 1 1 I S I 0 I SR I 0 0 0 0 0 I 0 0 1 1 0 1 0 0 1 0 I 0 I 

S Source GPR rS 
SR Segment Register ID 
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mtsrin Move to SR Indirect mtsrin 
POWER • 601 • 603 • PowerPC32 

Operation: SR[rB[O:3]] <= (rS) 

Syntax: mtsrin rS,rB 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The mtsrin instruction copies the contents of rS into the Segment Register spec­
ified by rB[0:3]. 

This is a supervisor-level instruction. 

This instruction exists on 32-bit PowerPC implementations only. 

The archaic POWE~ mnemonic for this instruction is mtsri. Note that the mtsri 
instruction calculate~ the effective address from (rA I 0) + (rB) so A must equal 0 
for mtsrin to be equivalent to mtsri. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10111111 S 1000001 B 10011110010101 

S Source GPR rS 
B Source GPR rB which contains the Segment Register ID 
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Multiply 
POWER. 601 

Operation: rT ¢= HiWord«rA) x (rB» 
MQ ¢= LoWord«rA) x (rB» 

Syntax: mul 
mul. 
mulo 
mulo. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc = 0, OE = 1) 
(Rc = 1, OE = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE= 1, otherwise not affected 

Description: 
The mul instruction multiplies the contents of GPR rA and GPR rB as signed 
quantities and places the high-order 32 bits of the result in GPR rT, and the low­
order 32 bits of the result in the MQ register. 

The multiply algorithm used on the 601 will execute more quickly if the smaller 
(in terms of absolute value) of the two operands is placed in rB. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
OE 
Rc 

5 6 

1 I 
10 11 15 16 20 21 22 30 31 

T I A I B 100Io 0 1 1 0 1 0 1 llRel 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 
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mulhd Multiply High Doubleword 
PowerPC64 

Operation: rT ¢::: HiDWord((rA) x (rB» 

Syntax: mulhd 
mulhd. 

rT,rA,rB 
rT,rA,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

mulhd 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The mulhd instruction multiplies the contents of GPR rA and GPR rB as signed 
quantities and places the high-order 64 bits of the 128-bit result in GPR rT. The 
low-order 64 bits of the result are not returned as a result of this instruction (the 
mulld instruction can be used to calculate the low-order bits). 

The multiply algorithm used for many of the PowerPC implementations will 
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 
Rc 
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10 11 15 16 20 21 22 30 31 

T I A I B 1010010 0 100 11&1 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Record bit 



mulhdu Multiply High 
Doubleword Unsigned 

mulhdu 
PowerPC64 

Operation: rT ¢= HiDWord«rA) x (rB» 

Syntax: mulhdu 
mulhdu. 

rT,rA,rB 
rT,rA,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The mulhdu instruction multiplies the contents of GPR rA and GPR rB as 
unsigned quantities and places the high-order 64 bits of the 128-bit result in GPR 
rT. The low-order 64 bits of the result are not returned as a result of this instruc­
tion (the mulld instruction can be used to calculate the low-order bits). 

The multiply algorithm used for many of the PowerPC implementations will 
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
Rc 

5 6 

1 1 
10 11 15 16 20 21 22 30 31 

T 1 A 1 B 1010 0 0 0 0 1 0 0 11~1 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Record bit 
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mulhw Multiply High Word 
601 • 603 • PowerPC32/64 

Operation: rT ¢::: HiWord«rA) x (rB)) 

Syntax: mulhw 
mulhw. 

rT,rA,rB 
rT,rA,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

mulhw 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The mulhw instruction multiplies the contents of GPR rA and GPR rB as signed 
quantities and places the high-order 32 bits of the 64-bit result in GPR rT. The 
low-order 32 bits of the result are not returned as a result of this instruction (the 
mullw instruction can be used to calculate the low-order bits). 

On 64-bit PowerPC implementations, the high-order word of the target register 
is undefined. 

The multiply algorithm used for many of the PowerPC implementations will 
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 1 

T 
A 
B 
Rc 
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10 11 15 16 20 21 22 30 31 

T 1 A 1 B 10100lOOlOOllRci 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Record bit 



mulhwu Multiply High Word 
Unsigned 

mulhwu 
601 • 603 • PowerPC32j 64 

Operation: rT <= HiWord«rA) x (rB» 

Syntax: mulhwu rT,rA,rB 
mulhwu. rT,rA,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The mulhwu instruction multiplies the contents of GPR rA and GPR rB as 
unsigned quantities and places the high-order 32 bits of the 64-bit result in GPR 
rT. The low-order 32 bits of the result are not returned as a result of this instruc­
tion (the mullw instruction can be used to calculate the low-order bits). 

On 64-bit PowerPC implementations, the high-order word of the target register 
is undefined. 

The multiply algorithm used for many of the PowerPC implementations will 
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
Rc 

5 6 

11 
10 11 15 16 20 21 22 30 31 

T I A I B 10 10 0 0 0 0 1 0 1 1 IRe I 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Record bit 

Instruction Set Summary 533 



mulld Multiply Low Doubleword mulld 
PowerPC64 

Operation: rT {= LoDWord«rA) x (rB» 

Syntax: mulld 
mulld. 
mull do 
mulldo. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = I, OE = 0) 
(Rc = 0, OE = 1) 
(Rc = I, OE = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,CT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The mulld instruction multiplies the contents of CPR rA and CPR rB and places 
the low-order 64 bits of the 128-bit result in CPR rT. The high-order 64 bits of the 
result are not returned as a result of this instruction (the mulhd or mulhdu 
instructions can be used to calculate the high-order bits). 

This instruction treats the operands as signed quantities but it can be used for 
both signed and unsigned 64-bit multiply operations since the low-order 64 bits 
are independent of whether the operands are considered to be signed or 
unsigned. 

The multiply algorithm used for many of the PowerPC implementations will 
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 1 

T 
A 
B 
OE 
Rc 
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10 11 15 16 20 21 22 30 31 

T 1 A 1 B 1001011101001IRci 

Target CPR rT where result of operation is stored 
Source CPR rA 
Source CPR rB 
Overflow Exception bit 
Record bit 



mulli Multiply Low Immediate 
POWER. 601 • 603 • PowerPC32/64 

mulli 

Operation: rT <= LoWord«rA) x's16) 

Syntax: mulli rT,rA,s16 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The mulli instruction multiplies the contents of GPR rA (interpreted as a signed 
quantity) and the sign-extended 16-bit immediate quantity and places the low­
order 32 bits of the 48-bit result in GPR rT. The high-order 16 bits of the result are 
not returned as a result of this instruction. 

On 64-bit PowerPC implementations, this instruction multiplies the 64-bit 
signed value in rA by the sign-extended 16-bit immediate value and returns the 
low-order 64 bits of the resulting 80-bit product. As with the 32-bit version of 
this instruction, the low-order 64 bits are independent of whether the operands 
are treated as signed or unsigned quantities. 

The archaic POWER mnemonic for this instruction is muli. 

Instruction Encoding: 
0 

10 0 0 1 1 

T 
A 
SI 

5 6 

11 
10 11 15 16 

T I A I SI 

Target GPR rT where result of operation is stored 
Source GPR rA or a 
Signed 16-bit integer 

31 
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mullw Multiply Low Word mullw 
POWER· 601 • 603 • PowerPC32/64 

Operation: rT ¢= LoWord((rA) x (rB» 

Syntax: mullw rT,rA,rB 
mullw. rT,rA,rB 
mullwo rT,rA,rB 
mullwo. rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc=O,OE=I) 
(Rc = 1, OE = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The mullw instruction multiplies the contents of GPR rA and GPR rB and places 
the low-order 32 bits of the 64-bit result in GPR rT. The high-order 32 bits of the 
result are not returned as a result of this instruction (the mulhw or mulhwu 
instructions can be used to calculate the high-order bits). 

This instruction treats the operands as signed quantities but it can be used for 
both signed and unsigned 32-bit multiply operations since the low-order 32-bits 
are independent of whether the operands are considered to be signed or 
unsigned. 

On 64-bit PowerPC implementations, the entire 64-bit result is stored in the tar­
get register. 

The archaic POWER mnemonic for this instruction is muls[O][.]. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 
OE 
Rc 
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10 11 15 16 20 21 22 30 31 

T I A I B 100Io 1 1 1 0 1 0 1 llRel 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 



Negative Absolute Value 
POWER. 601 

Operation: rT <= - I rA I 

Syntax: nabs 
nabs. 
nabso 
nabso. 

rT,rA 
rT,rA 
rT,rA 
rT,rA 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc=O,OE=I) 
(Rc=I,OE=I) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected (see below) 

Description: 
The nabs instruction calculates the absolute value of the contents of GPR rA, and 
stores the negation of this result in GPR rT. 

Since this instruction never causes an overflow, if the Overflow Exception (OE) 
bit is set, the Overflow (OV) bit of the XER is cleared and the Summary Overflow 
(SO) bit of the XER is not affected. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 

10 I I I I 

T 
A 
OE 
Rc 

5 6 

I I 
10 11 15 16 20 21 22 30 31 

T I A 10 0 0 0 0 10E11 I I I 0 I 0 0 0 IRel 

Target GPR rT where result of operation is stored 
Source GPR rA 
Overflow Exception bit 
Record bit 
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nand NAND 
POWER • 601 • 603 • PowerPC32/64 

Operation: rA {::: -«rS) & (rB)) 

Syntax: nand 
nand. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

nand 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The nand instruction logically ANDs the contents of GPR rS and GPR rB and 
places the one's complement of the result in GPR rA. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
Rc 

538 Appendix A 

10 11 15 16 20 21 30 31 

s I A I B 10 1 1 1 0 1 1 1 0 0 IRel 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 



neg Negate 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT {::: -rA 

Syntax: neg 
neg. 
nego 
nego. 

rT,rA 
rT,rA 
rT,rA 
rT,rA 

(Rc = 0, OE = 0) 
(Rc = I, OE = 0) 
(Rc=O,OE=I) 
(Rc = I, OE = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,CT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE= I, otherwise not affected 

Description: 

neg 

The neg instruction negates the contents of CPR rA, and stores the result in CPR 
rT. This operation is the same as taking the one's complement of rA and then 
adding 1 to the result. 

If CPR rA contains the largest negative number (Ox8000 0000 for 32-bit mode 
and Ox8000 0000 0000 0000 for 64-bit mode), then the result in rT will be the larg­
est negative number and, if the OE bit is set, the OV and SO bits of the XER will 
be set to 1. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
OE 
Rc 

5 6 

1 I 
10 11 15 16 20 21 22 30 31 

T I A 1000 0 olOElo 0 1 10 1 0 oolRel 

Target CPR rT where result of operation is stored 
Source CPR rA 
Overflow Exception bit 
Record bit 
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nor NOR 
POWER • 601 • 603 • PowerPC32j 64 

Operation: rA ¢::: -«rS) I (rB» 

Syntax: nor 
nor. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,CT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

nor 

The nor instruction logically ORs the contents of CPR rS and CPR rB and places 
the one's complement of the result in CPR rA. 

Extended Forms: 
not[.] rA,rS is equivalent to nor[.] rA,rS,rS 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s I A I B 10 0 0 1 1 1 1 1 0 01~1 

Source CPR rS 
Target CPR rA where result of operation is stored 
Source CPR rB 
Record bit 



or OR 
POWER· 601 • 603 • PowerPC32/64 

Operation: rA ¢=: (rS) I (rB) 

Syntax: Of 

Of. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

or 

The or instruction logically ORs the contents of GPR rS and GPR rB and places 
the result in GPR rA. 

Extended Forms: 
mr[.] rA,rS is equivalent to or[.] rA,rS,rS 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 10 1 1 0 1 1 1 1 oolkl 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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ore OR with Complement 
POWER. 601 • 603 • PowerPC32/64 

Operation: rA {= (rS) I -(rB) 

Syntax: orc 
orc. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register/Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

ore 

The orc instruction logically ORs the contents of GPR rS with the one's comple­
ment of the contents of GPR rB and places the result in GPR rA. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 1 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s 1 A 1 B 10 1 1 0 0 1 1 1 0 01&1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 



• • 
Ofl OR Immediate Ofl 

POWER. 601 • 603 • PowerPC32/64 

Operation: rA ~ (rS) I °u16 

Syntax: ori rA,rS,u16 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The ori. instruction logically ORs the contents of CPR rS and the zero-extended 
immediate value u16, and places the result in CPR rA. 

The archaic POWER mnemonic for this instruction is oriI. (OR Immediate 
Lower). 

Extended Forms: 
nop is equivalent to ori rO,rO,O 

Instruction Encoding: 
0 5 

10 1 1 0 o 01 

S 
A 
UI 

6 10 11 15 16 

s I A I UI 

Source CPR rS 
Target CPR rA where result of operation is stored 
Unsigned 16-bit integer 

31 
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• • orIs OR Immediate Shifted orIs 
POWER • 601 • 603 • PowerPC32 / 64 

Operation: rA {= (rS) I o(u16 1.. OxOOOO) 

Syntax: oris rA,rS,u16 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The oris. instruction logically ORs the contents of GPR rS and the value calcu­
lated by concatenating u16 with OxOOOO, and places the result in GPR rA. 

The archaic POWER mnemonic for this instruction is oriu. (OR Immediate 
Upper). 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

lQ:lj0011 s I A I UI 

S Source GPR rS 
A Target GPR rA where result of operation is stored 
UI Unsigned 16-bit integer 
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rfi 

Operation: 

Syntax: 

Return from Interrupt 
POWER. 601 • 603 • PowerPC32/64 

MSR <= SRRI [ 0,5:9,16:31 J 
0:32,37:41,48:63 

CIP <= SRRO [0:29J 1- baa 
0:61 

rfi 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

rfi 

The rfi instruction is used to return control to the original code after the inter­
rupt-servicing code has completed. The instruction restores the original value of 
the MSR and gets the address of the next instruction to execute from the SRRO 
register. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 0 0 1 110 0 0 0 010 0 0 0 010 000 010 000 1 100 1 0101 
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rIdeI Rotate Left Doubleword 
then Clear Left 

PowerPC64 

Operation: r := (rS) Q rB[58:63] 
m := Mask(mB,63) 
rA ¢=: (r & m) 

Syntax: rldcl 
rldcl. 

rA,rS,rB,mB 
rA,rS,rB,mB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

rIdeI 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rldcl instruction rotates the contents of rS to the left by the number of bits 
specified in rB[58:63], and then ANDs this result with a mask that is composed 
of l's from bit position mB up to 63 and O's everywhere else. The final result is 
then stored in rA. 

The end result of the mask operation is that the leftmost mB bits of the rotated 
result are cleared before they are stored into the destination register rA. Only the 
rightmost 63-mB bits are copied into rA. 

This instruction exists on 64-bit PowerPC implementations only. 

Extended Forms: 
rotld[.] rA,rS,rB is equivalent to rldcl[.] rA,rS,rB,O 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 26 27 30 31 

I 0 1 1 1 1 0 I s I A I B I mBegin 11 0 0 0 I Rc I 

S 
A 
B 
mBegin 
Rc 
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Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Bit position where mask is to start 
Record bit 



rIder Rotate Left Doubleword 
then Clear Right 

PowerPC64 

Operation: r := (rS) Q rB[58:63] 
m := Mask(O,mE) 
rA¢=(r&m) 

Syntax: rlder 
rlder. 

rA,rS,rB,mE 
rA,rS,rB,mE 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

rIder 

CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rIder instruction rotates the contents of rS to the left by the number of bits 
specified in rB[58:63], and then ANDs this result with a mask that is composed 
of l's from bit position 0 up to mE and 0' s everywhere else. The final result is 
then stored in rA. 

The end result of the mask operation is that the rightmost 63-mE bits of the 
rotated result are cleared before they are stored into the destination register rA. 
Only the leftmost mE bits are copied into rA. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
o 5 6 10 11 IS 16 20 21 26 27 30 31 

I 0 1 1 1 1 0 I s I A I B I mBegin 11 0 0 1 I Rc I 

S 
A 
B 
mEnd 
Rc 

Source CPR rS 
Target CPR rA where result of operation is stored 
Source CPR rB 
Bit position where mask is to end 
Record bit 
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rldic Rotate Left Doubleword 
Immediate then Clear 

PowerPC64 

Operation: r := (rS) Q n 

Syntax: 

m := Mask(mB,63-n) 
rA ¢::: (r & m) 

rldic 
rldic. 

rA,rS,n,mB 
rA,rS,n,mB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

rldic 

CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rldic instruction rotates the contents of rS to the left by the number of bits 
specified by the immediate value n, and then ANDs this result with a mask that 
is composed of l's from bit position mB up to 63-n and D's everywhere else. The 
final result is then stored in rA. 

This instruction exists on 64-bit PowerPC implementations only. 

Extended Forms: 
c1rlsldi[.] rA,rS,nb,sh is equivalent to rldic[.] rA,rS,sh,nb-sh 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 26 27 29 30 31 

I 0 1 1 1 1 0 I s I A I shift - 2 I mBegin I 0 0 I sh I Rc I 

Note that the shift value is split into 2 fields in the encoding: the high-order bit 
is stored in sh and the low-order bits are stored in shift-2. This is necessary 
because a 5-bit field isn't large enough to hold a 64-bit shift value. 

S 
A 
shift-2 
mBegin 
sh 
Rc 
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Source GPR rS 
Target GPR rA where result of operation is stored 
Low-order bits of shift value 
Bit position where mask is to start 
High-order bit of shift value 
Record bit 



rldicl Rotate Left Doubleword 
Immediate then Clear Left 

rldicl 
PowerPC64 

Operation: r := (rS) Q n 

Syntax: 

m := Mask(mB,63) 
rA~(r&m) 

rldic1 
rldic1. 

rA,rS,n,mB 
rA,rS,n,mB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rldid instruction rotates the contents of rS to the left by the number of bits 
specified by the immediate value n, and then ANDs this result with a mask that 
is composed of 1's from bit position mB up to 63 and O's everywhere else. The 
final result is then stored in rA. 

The end result of the mask operation is that the leftmost mB bits of the rotated 
result are cleared before they are stored into the destination register rAe Only the 
rightmost 63-mB bits are copied into rAe 

This instruction exists on 64-bit PowerPC implementations only. 

Extended Forms: 
drldi[.] rA,rS,nb 
extrdi[.] rA,rS,nb,st 
rotldi[.] rA,rS,nb 
rotrdi[.] rA,rS,nb 
srdi[.] rA,rS,nb 

is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 

rldicl[.] rA,rS,O,nb 
rldicl[.] rA,rS,st+nb,64-nb 
rldicl[.] rA,rS,nb,O 
rldicl[.] rA,rS,64-nb,O 
rldicl[.] rA,rS,64-nb,nb 
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Instruction Encoding: 
056 10 11 15 16 20 21 26 27 29 30 31 

10 1 1 1 1 01 s I A I shift - 2 I mBegin 10 0 0 Ish IRe I 

Note that the shift value is split into 2 fields in the encoding: the high-order bit 
is stored in sh and the low-order bits are stored in shift-2. This is necessary 
because a 5-bit field isn't large enough to hold a 64-bit shift value. 

S 
A 
shift-2 
mBegin 
sh 
Rc 
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Source GPR rS 
Target GPR rA where result of operation is stored 
Low-order bits of shift value 
Bit position where mask is to start 
High-order bit of shift value 
Record bit 



rldicr Rotate Left Doubleword 
Immediate then Clear Right 

rldicr 
PowerPC64 

Operation: r := (rS) 0 n 

Syntax: 

m := Mask(O,mE) 
rA<=(r&m) 

rldicr 
rldicr. 

rA,rS,n,mE 
rA,rS,n,mE 

(Rc = 0) 
(Rc = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rldicr instruction rotates the contents of rS to the left by the number of bits 
specified by the immediate value n, and then ANDs this result with a mask that 
is composed of l's from bit position 0 up to mE and 0' s everywhere else. The final 
result is then stored in rA. 

The end result of the mask operation is that the rightmost 63-mE bits of the 
rotated result are cleared before they are stored into the destination register rA. 
Only the leftmost mE bits are copied into rA. 

This instruction exists on 64-bit PowerPC implementations only. 

Extended Forms: 
clrrdi[.] rA,rS,nb 
extldi[.] rA,rS,nb,st 
sldi[.] rA,rS,nb 

is equivalent to 
is equivalent to 
is equivalent to 

rldicr[.] rA,rS,O,63-nb 
rldicr[.] rA,rS,st,nb-l 
rldicr[.] rA,rS,nb,63-nb 
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Instruction Encoding: 
056 10 11 15 16 20 21 26 27 29 30 31 

10 1 1 1 1 01 s I A I shift - 2 I mEnd I 0 0 1 I sh IRe I 

Note that the shift value is split into 2 fields in the encoding: the high-order bit 
is stored in sh and the low-order bits are stored in shift-2. This is necessary 
because a 5-bit field isn't large enough to hold a 64-bit shift value. 

S 
A 
shift-2 
mEnd 
sh 
Rc 
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Source GPR rS 
Target GPR rA where result of operation is stored 
Low-order bits of shift value 
Bit position where mask is to end 
High-order bit of shift value 
Record bit 



rldimi Rotate Left Doubleword 
Immediate then Mask Insert 

PowerPC64 

Operation: r := (rS) 0 n 

Syntax: 

m:= Mask(mB,63-n) 
rA ¢::: (r & m) I ((rA) & ~m) 

rldimi 
rldimi. 

rA,rS,n,mB 
rA,rS,n,mB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 

rldimi 

CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rldimi instruction rotates the contents of rS to the left by the number of bits 
specified by the immediate value n. This rotated result is then inserted into the 
destination register rA under the control of a mask that is composed of of l's 
from bit position mB up to 63-n and 0' s everywhere else. 

The final result is an ~Ring of the original value of rA (wherever the mask bits 
are 0) and the newly calculated rotated result (whereever the mask bits are 1). 

This instruction exists on 64-bit PowerPC implementations only. 

Extended Forms: 
insrdi[.] rA,rS,nb,st is equivalent to rldimi[.] rA,rS,64-(st+nb),st 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 26 27 29 30 31 

I 0 1 1 1 1 0 I s I A I shift - 2 I mBegin I 0 1 I sh I Rc I 

Note that the shift value is split into 2 fields in the encoding: the high-order bit 
is stored in sh and the low-order bits are stored in shift-2. This is necessary 
because a 5-bit field isn't large enough to hold a 64-bit shift value. 

S 
A 
shift-2 
mBegin 
sh 
Rc 

Source CPR rS 
Target CPR rA where result of operation is stored 
Low-order bits of shift value 
Bit position where mask is to start 
High-order bit of shift value 
Record bit 
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rrllmn Rotate Left then Mask Insert 
POWER. 601 

Operation: r := (rS) Q rB[27:31] 

Syntax: 

m := Mask(mB,mE) 
rA~(r&m) I «rA)&-m) 

rlmi 
rlmi. 

rA,rS,rB,mB,mE 
rA,rS,rB,mB,mE 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rlmi instruction rotates the contents of rS to the left by ttte number of bits 
specified by rB[27:31]. This rotated result is then inserted into the d~stination 
register rA under the control of a mask that is created from mB and mE as 
described under the maskg instruction. 

The final result is an ORing of the original value of rA (wherever the mask bits 
are 0) and the newly calculated rotated result (wherever the mask bits are 1). 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 25 26 30 31 

10 1 0 1 1 0 I s I A I B I mBegin I mEnd IReI 

S 
A 
B 
mBegin 
mEnd 
Rc 
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Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Bit position where mask is to start 
Bit position where mask is to end 
Record bit 



rlwimi Rotate Left Word 
Immediate then Mask Insert 

POWER • 601 • 603 • PowerPC32/64 

rlwimi 

Operation: r := (rS) Q n 

Syntax: 

m := Mask(mB,mE) 
rA ¢= (r & m) I ((rA) & ~m) 

rlwimi 
rlwimi. 

rA,rS,n,mB,mE 
rA,rS,n,mB,mE 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rlwimi instruction rotates the contents of rS to the left by the number of bits 
specified by the immediate value n. This rotated result is then inserted into the 
destination register rA under the control of a mask that is composed of of l's 
from bit position mB up to mE and O's everywhere else. 

The final result is an ORing of the original value of rA (wherever the mask bits 
are 0) and the newly calculated rotated result (wherever the mask bits are 1). 

The archaic POWER mnemonic for this instruction is rlimi[.]. 

Extended Forms: 
inslwi[.] 
insrwi[.] 

rA,rS,nb,st 
rA,rS,nb,st 

is equivalent to 
is equivalent to 

rlwimi[.] rA,rS,32-sf,st,(st+nb)-1 
rlwimi[.] rA,rS,32-(st+nb), 

st,(st+nb )-1 

Instruction Encoding: 
056 

10 1 0 1 0 01 

S 
A 
shift 
mBegin 
mEnd 
Rc 

10 11 15 16 20 21 25 26 30 31 

s I A I shift I mBegin I mEnd IRel 

Source GPR rS 
Target GPR rA where result of operation is stored 
Number of bits to rotate 
Bit position where mask is to start 
Bit position where mask is to end 
Record bit 
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rlwinm Rotate Left Word rlwinm 
Immediate then AND with Mask 

POWER· 601.603 • PowerPC32/64 

Operation: r := (rS) Q n 

Syntax: 

m := Mask(mB,mE) 
rA{:=: (r & m) 

rlwinm 
rlwinm. 

rA,rS,n,mB,mE 
rA,rS,n,mB,mE 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rlwinm instruction rotates the contents of rS to the left by the number of bits 
specified by the immediate value n, and then ANDs this result with a mask that 
is composed of l's from bit position mB up to mE and a's everywhere else. The 
final result is then stored in rA. 

The archaic POWER mnemonic for this instruction is rlinm[.]. 

Extended Forms: 
clrlslwi[. ] 
clrlwi[.] 
clrrwi[.] 
extlwi[.] 
extrwi[.] 
rotlwi[.] 
rotrwi[.] 
slwi[.] 
srwi[.] 

rA,rS,nb,sh 
rA,rS,nb 
rA,rS,nb 
rA,rS,nb,st 
rA,rS,nb,st 
rA,rS,nb 
rA,rS,nb 
rA,rS,nb 
rA,rS,nb 
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is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 

rlwinm[.] rA,rS,sh,nb-sh,31-sh 
rlwinm[.] rA,rS,0,nb,31 
rlwinm[.] rA,rS,0,0,31-nb 
rlwinm[.] rA,rS,st,0,nb-1 
rlwinm[.] rA,rS,st+nb,32-nb,31 
rlwinm[.] rA,rS,nb,0,31 
rlwinm[.] rA,rS,32-nb,0,31 
rlwinm[.] rA,rS,nb,0,31-nb 
rlwinm[.] rA,rS,32-nb,nb,31 



Instruction Encoding: 
o 5 6 

1010 1011 

S 
A 
shift 
mBegin 
mEnd 
Rc 

10 11 15 16 20 21 25 26 30 31 

s I A I shift I mBegin I mEnd I Rc I 

Source GPR rS 
Target GPR rA where result of operation is stored 
Number of bits to rotate 
Bit position where mask is to start 
Bit position where mask is to end 
Record bit 
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rlwnm Rotate Left Word 
then AND with Mask 

Operation: 

Syntax: 

POWER. 601 • 603 • PowerPC32/64 

r '= (rS) Q rB [27:31] 
• 59:63 

m:= Mask(mB,mE) 
rA<=:(r&m) 

rlwnm 
rlwnm. 

rA,rS,rB,mB,mE 
rA,rS,rB,mB,mE 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

rlwnm 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The tlwnm in1:ltruction rotates the contents of rS to the left by the number of bits 

specified by rB [;~:~~], and then ANDs this result with a mask that is composed 

of l's from bit position mB up to mE and O's everywhere else. The final result is 
then stored in rA. 

The archaic POWER mnemonic for this instruction is rlnm[.]. 

Extended Forms: 
rotlw[.] rA,rS,rB is equivalent to rlwnm[.] rA,rS,rB,0,31 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 25 26 30 31 

I 0 1 0 1 1 1 I s I A I B I mBegin I mEnd I Rc I 

S 
A 
B 
mBegin 
mEnd 
Rc 
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Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Bit position where mask is to start 
Bit position where mask is to end 
Record bit 



Rotate Right And Insert Bit 
POWER· 601 

Operation: rA[rB[27:31]] <= rS[O] 

Syntax: rrib 
rrib. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The rrib instruction rotates bit 0 of r 5 to the right by the number of bits specified 
in rB[27:31]. This bit is then inserted into that position in rA. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 110 0 0 0 1 100 11.1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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sc System Call 
POWER • 601 • 603 • PowerPC32 / 64 

Operation: SRRO ¢::: CIP + 4 
SRRl ¢::: MSR [ 0,5:9, 16:31 ] 

0:32, 37:41, 48:63 

if(MSR[IP]) 
CIP ¢::: 'OxFFFO OCOO 

else 
CIP ¢::: °Oxooaa acaa 

Syntax: sc 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

sc 

The sc in1:itruction is used to pass control to the operating system so that it can 
perform a service. The details of these services depend on the operating system. 

Before passing control to the servicing routine, the address of the next instruc­
tion to execute (calculated from the Current Instruction Pointer (CIP) + 4) and 
selected bits from the current MSR are saved in the SRRO and SRR1 registers, 
respectively. This allows the rfi instruction to restore these values to their origi­
nal state before returning control to the program. 

This instruction is context-synchronizing. 

The 601 differs from the PowerPC specification in how the low-order halfword 
of the SRR1 register is used. In the 601, bits 16 to 31 of the sc instruction are 
copied to SRR1[0:15]. 

The archaic POWER mnemonic for this instruction is svca. Note that there are 
many significant differences between the POWER svc[l][a] instructions and the 
PowerPC sc instruction. 

Instruction Encoding: 
o 5 6 10 11 15 16 29 30 31 

10 1 a a a 110 0 0 0 010 0 0 a 010 0 0 0 0 0 000 0 a 0 0 011101 
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slbia SLB Invalidate All slbia 
PowerPC64 

Operation: invalidate all SLB entries 

Syntax: slbia 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The slbia instruction invalidates all of the entries currently in the SLB, regardless 
of the current setting of the instruction and data translation bits in the MSR 
(MSR[IT] and MSR[DT]. 

This is a supervisor-level instruction. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 110 0 0 0 010 0 0 0 010 0 0 0 010 1 1 1 1 100 1 0101 
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slbie SLB Invalidate Entry slbie 
PowerPC64 

Operation: invalidate the specified SLB entry 

Syntax: slbie rB 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The slbie instruction invalidates the SLB entry which corresponds to the effec­
tive address stored in rB. The invalidation is performed regardless of the current 
setting of the instruction and data translation bits in the MSR (MSR[IT] and 
MSR[DT]. 

This is a supervisor-level instruction. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 11000001000001 B 10110110010101 

B Source GPR rB 
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sId Shift Left Doubleword 
PowerPC64 

Operation: rA ¢::: (rS) « rB[57:63] 

Syntax: sId 
sId. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

sId 

The sId instruction shifts the source register rS to the left by the number of bits 
specified in rB[57:631, and places the shifted result into rA. If the shift amount is 
greater than 63, then the shifted result will be o. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

11 
10 11 15 16 20 21 30 31 

s I A I B 10 0 0 0 0 1 1 0 1 11Rel 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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Shift Left Extended 
POWER. 601 

Operation: rA ¢::: (rS) «rB[27:31] 
MQ ¢::: (rS) Q rB[27:31] 

Syntax: sle 
sle. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The sle instruction shifts the contents of rS to the left by the number of bits spec­
ified by rB[27:31] and stores the result rA. 

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in 
the MQ register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s I A I B 10 0 1 0 0 1 1 0 0 1 IRe I 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 



Shift Left Extended with MQ 
POWER· 601 

Operation: r := (rS) Q rB[27:31] 

Syntax: 

m := Mask(0,31-rB[27:31]) 
rA¢=(r&m) I (MQ&~m) 
MQ¢=r 

sleq 
sleq. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The sleq instruction shifts the contents of rS to the left by the number of bits 
specified by rB[27:31] and then merges this result with the contents of the MQ 
register. The rightmost rB[27:31] bits of the result are copied from the corre­
sponding bits of the MQ register instead of from the shifted result. This merged 
result is stored in rA. 

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in 
the MQ register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10111111 s I A I B IOOl10110011 Rc i 

• S Source GPR rS 
A Target GPR rA where result of operation is stored 
B Source GPR rB 
Rc Record bit 
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Shift Left Immediate with MQ 
POWER. 601 

Operation: rA ¢= (rS) «n 
MQ ¢= (rS) Q n 

Syntax: sliq 
sliq. 

rA,rS,n 
rA,rS,n 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed -Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The sliq instruction shifts the contents of rS to the left by the number of bits 
specified by the immediate value n and stores the result rA. 

In addition, the result of rotating rS by n is also calculated and stored in the MQ 
register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 11 s I A I shift 10 0 1 0 1 1 1 0 0 0 IRe I 

S Source GPR rS 
A Target GPR rA where result of operation is stored 
shift Number of bits to shift 
Rc Record bit 
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§ n n II cg} Shift Left Long Immediate with MQ § n n II cg} 
POWER· 601 

Operation: r := (rS) 0 n 

Syntax: 

m := Mask(O,31-n) 
rA<= (r & m) I (MQ & ~m) 
MQ<=r 

slliq 
slliq. 

rA,rS,n 
rA,rS,n 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The slliq instruction shifts the contents of rS to the left by the number of bits 
specified by the immediate value n and then merges this result with the contents 
of the MQ register. The rightmost n bits of the result are copied from the corre­
sponding bits of the MQ register instead of from the shifted result. This merged 
result is stored in rA. 

In addition, the result of rotating rS by n is also calculated and stored in the MQ 
register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10111111 s I A I shift 10011111000lRc i 

S Source GPR rS 
A Target GPR rA where result of operation is stored 
shift Number of bits to shift 
Rc Record bit 
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Shift Left Long with MQ 
POWER. 601 

Operation: r := (rS) Q rB[27:31] 

Syntax: 

m := Mask(O,31-rB[27:31]) 
if(rB[26] = 0) 

rA¢= (r & m) I (MQ & -m) 
else 

rA¢= (MQ & m) 

sllq 
sllq. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The sllq instruction shifts the contents of rS to the left by the number of bits 
specified by rB[27:31] and then merges this result with the contents of the MQ 
register. The rightmost rB[27:31] bits of the result are copied from the corre­
sponding bits of the MQ register instead of from the shifted result. This merged 
result is stored in rA. 

If bit 26 of rB is 1, then the result of this instruction is simply the leftmost 32-
rB[27:31] bits of the MQ. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s I A I B 10 0 1 1 0 1 1 0 0 01&1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 



Shift Left with MQ 
POWER· 601 

Operation: if(rB[26] = 0) 

Syntax: 

rA <= (r5) « rB[27:31] 
else 

rA<=O 
MQ <= (r5) Q rB[27:31] 

slq 
slq. 

rA,r5,rB 
rA,r5,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The slq instruction shifts the contents of rS to the left by the number of bits spec­
ified by rB[27:31] and then stores this result in rA. 

If bit 26 of rB is 1, then it is assumed that the entire contents of rS have been 
shifted out to the left and a result of 0 is placed in rA. 

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in 
the MQ register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 

[0 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 [ 
10 11 15 16 20 21 30 31 

s [ A [ B [0 0 1 0 0 1 1 0 0 0 [Re[ 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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slw 

Operation: 

Syntax: 

Shift Left Word 
POWER. 601 • 603 • PowerPC32/64 

rA <= (rS) « rB [26:31J 
58:63 

slw 
slw. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

slw 

The slw instruction shifts the low-order word of the source register rS to the left 

by the number of bits specified in rB [~:::], and places the shifted result into rA. 

If the shift amount is greater than 31, then the shifted result will be a word of 0' s. 

On 64-bit PowerPC implementations, the high-order word of the result is simply 
copied from the high-order word of the source register rS. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 I 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s I A I B 10 0 0 0 0 1 1 0 0 ol~1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 



srad Shift Right Algebraic Doubleword 
PowerPC64 

Operation: rA ~ (rS) » rB[57:63] 

Syntax: srad 
srad. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register I Fixed-Point Exception Register: 

srad 

CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA): 
XER[OV,SO): 

Description: 

always updated 
not affected 

The srad instruction shifts the source register rS to the right by the number of 
bits specified in rB[57:63), replicating bit 0 of rS as the shift occurs. The result of 
this operation is stored in rA. Shift amounts greater than 63 result in rA being 
loaded with 64 sign bits from rS. 

The XER[CA) bit is normally set to 0, but is set to 1 if the result is negative and 
any 1 bits have been shifted out to the right. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 11 1 000 1 1 0 1 01&1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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sradi Shift Right Algebraic 
Doubleword Immediate 

PowerPC64 

Operation: rA ¢= (rS) :) n 

Syntax: sradi 
sradi. 

rA,rS,n 
rA,rS,n 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

sradi 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: 
XER[OV,SO]: 

Description: 

always updated 
not affected 

The sradi instruction shifts the source register rS to the right by the number of 
bits specified by the immediate value n, replicating bit 0 of rS as the shift occurs. 
The result of this operation is stored in rA. A shift amount of 0 causes rA to be set 
equal to rS. 

The XER[CA] bit is normally set to 0, but is set to 1 if the result is negative and 
any 1 bits have been shifted out to the right. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
o 5 6 10 II 15 16 20 21 29 30 31 

10 1 1 1 1 11 s I A I shift - 2 11 1 0 0 1 1 1 0 1 I sh IRe I 

Note that the shift value is split into 2 fields in the encoding: the high-order bit 
is stored in sh and the low-order bits are stored in shift-2. This is necessary 
because a 5-bit field isn't large enough to hold a 64-bit shift value. 

S 
A 
shift-2 
sh 
Rc 
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Source GPR rS 
Target GPR rA where result of operation is stored 
Low-order bits of shift value 
High-order bit of shift value 
Record bit 



Shift Right Algebraic 
Immediate with MQ 

POWER. 601 

Operation: rA ¢::: (rS) I> n 
MQ ¢::: (rS) Q n 

Syntax: sraiq 
sraiq. 

rA,rS,n 
rA,rS,n 

(Rc = 0) 
(Rc = 1) 

Condition Register I Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: 
XER[OV,SO]: 

Description: 

always updated 
not affected 

The sraiq instruction shifts the contents of rS to the right by the number of bits 
specified by the immediate value n, replicating bit 0 of rS as the shift occurs. The 
result of this operation is stored in rA. 

In addition, the result of rotating rS by n is also calculated and stored in the MQ 
register. 

Field 0 of the CR is updated to reflect the result of this operation if the instruc­
tion's Record (Rc) bit is set. The Carry (CA) bit of the XER is always affected by 
this instruction. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
056 10 11 15 16 20 21 30 31 

10111111 s I A I shift 11110111000lRc i 

S Source GPR rS 
A Target GPR rA where result of operation is stored 
shift Number of bits to shift 
Rc Record bit 
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Shift Right Algebraic with MQ 
POWER. 601 

Operation: if(rB[26] = 0) 

Syntax: 

rA <= (rS) ~ rB[27:31] 
else 

rA <= rS[O] 
MQ <= (rS) Q rB[27:31] 

sraq 
sraq. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,CT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: always updated 
XER[OV,SO]: not affected 

Description: 
The sraq instruction shifts the contents of rS to the right by the number of bits 
specified by rB[27:3I], replicating bit 0 of rS as the shift occurs. The result of this 
operation is stored in rA. 

If bit 26 of rB is I, then it is assumed that the entire contents of rS have been 
shifted out to the right and a word of sign bits from rS is placed in rA. 

In addition, the result of rotating rS by rB[27:3I] is also calculated and stored in 
the MQ register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s I A I B 11 1 1 0 0 1 1 0 0 0 IRe I 

Source CPR rS 
Target CPR rA where result of operation is stored 
Source CPR rB 
Record bit 



sraw 

Operation: 

Syntax: 

Shift Right Algebraic Word 
POWER· 601 • 603 • PowerPC32/64 

rA <= (rS) » rB [26:31J 
58:63 

sraw 
sraw. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 

sraw 

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: 
XER[OV,SO]: 

Description: 

always updated 
not affected 

The sraw instruction shifts the low-order word of source register rS to the right 

by the number of bits specified in rB [~~~~], replicating bit 0 of rS as the shift 

occurs. The result of this operation is stored in rA. Shift amounts greater than 63 
result in rA being loaded with 64 sign bits from rS. 

The XER[CA] bit is normally set to 0, but is set to 1 if the result is negative and 
any 1 bits have been shifted out to the right. 

On 64-bit PowerPC implementations, the result is copied into the low-order 
word of the destination register and then sign-extended to fill the entire register. 

The archaic POWER mnemonic for this instruction is sra[.]. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 I s I A I B 11 1 000 1 1 0001.1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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• • srawl Shift Right Algebraic 
Word Immediate 

POWER • 601 • 603 • PowerPC32/64 

sraWl 

Operation: rA ¢::: (rS) ~ n 

Syntax: srawi 
srawi. 

rA,rS,n 
rA,rS,n 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-PointException Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: 
XER[OV,SO]: 

Description: 

always updated 
not affected 

The srawi instruction shifts the low-order word of source register rS to the right 
by the number of bits specified by the immediate value n, replicating bit 0 of rS 
as the shift occurs. The result of this operation is stored in rA. A shift amount of 
o causes rA to be set equal to rS. 

The XER[CA] bit is normally set to 0, but is set to 1 if the result is negative and 
any 1 bits have been shifted out to the right. 

On 64-bit PowerPC implementations, the result is copied into the low-order 
word of the destination register and then sign-extended to fill the entire register. 

The archaic POWER mnemonic for this instruction is srai[.]. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 I s I A I shift 11 1 0 0 1 1 1 0 0 0 IRe I 

S Source GPR rS 
A Target GPR rA where result of operation is stored 
shift Number of bits to shift 
Rc Record bit 
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srd Shift Right Doubleword 
PowerPC64 

Operation: rA ~ (rS) )} rB[57:63] 

Syntax: srd 
srd. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

srd 

The srd instruction shifts the source register rS to the right by the number of bits 
specified in rB[57:63], and places the shifted result into rA. If the shift amount is 
greater than 63, then the shifted result will be O. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 11 0 0 0 0 1 1 0 1 11 Re l 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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Shift Right Extended 
POWER. 601 

Operation: rA ¢= (rS») rB[27:31] 
MQ ¢= (rS) Q rB[27:31] 

Syntax: sre 
sre. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register/Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The sre instruction shifts the source register rS to the right by the number of bits 
specified in rB[27:31], and places the shifted result into rA. 

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in 
the MQ register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s I A I B IIOIOOIIOOIIRcl 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 



Shift Right Extended Algebraic 
POWER. 601 

Operation: rA ¢= (rS) :, rB[27:31] 
MQ ¢= (rS) 0 rB[27:31] 

Syntax: srea 
srea. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: 
XER[OV,SO]: 

Description: 

always updated 
not affected 

The sre instruction shifts the source register rS to the right by the number of bits 
specified in rB[27:31], replicating bit 0 of rS as the shift occurs. The result of this 
operation is stored in rA. 

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in 
the MQ register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 1 
10 11 15 16 20 21 30 31 

s 1 A 1 B 111100110011Rc l 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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Shift Right Extended with MQ 
POWER. 601 

Operation: r := (rS) Q rB[27:31] 

Syntax: 

m := Mask(rB[27:31],31) 
rA¢:= (r & m) I (MQ & ~m) 
MQ ¢:= r 

sreq 
sreq. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The sreq instruction shifts the contents of rS to the right by the number of bits 
specified by rB[27:31], and then merges this result with the contents of the MQ 
register. The leftmost rB[27:31] bits of the result are copied from the correspond­
ing bits of the MQ register instead of from the shifted result. This merged result 
is stored in rA. 

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in 
the MQ register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s I A I B IIOIIOIIOOIIRcl 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 



o 

§ITIl~ Shift Right Immediate with MQ 
POWER· 601 

Operation: rA <= (rS) » n 
MQ <= (rS) Q n 

Syntax: sriq 
sriq. 

rA,rS,n 
rA,rS,n 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 

o 

§ITIl~ 

CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The sriq instruction shifts the source register rS to the right by the number of bits 
specified by the immediate value n, and places the shifted result into rA. 

In addition, the result of rotating rS by n is also calculated and stored in the MQ 
register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10111111 s I A I shift 11 0 1 0 1 1 1 0 0 0 IRel 

S Source GPR rS 
A Target GPR rA where result of operation is stored 
shift Number of bits to shift 
Rc Record bit 
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§ IT n II cg} Shift Right Long Immediate with MQ § IT n II cg} 
POWER. 601 

Operation: r := (rS) Q n 

Syntax: 

m := Mask(n,31) 
rA<= (r & m) I (MQ & .... m) 
MQ<=r 

srliq 
srliq. 

rA,rS,n 
rA,rS,n 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The srliq instruction shifts the contents of rS to the right by the number of bits 
specified by the immediate value n, and then merges this result with the con­
tents of the MQ register. The leftmost n bits of the result are copied from the 
corresponding bits of the MQ register instead of from the shifted result. This 
merged result is stored in rA. 

In addition, the result of rotating rS by n is also calculated and stored in the MQ 
register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 1 I s I A I shift 11 0 1 1 1 1 1 0 0 0 IRe I 

S Source GPR rS 
A Target GPR rA where result of operation is stored 
shift Number of bits to shift 
Rc Record bit 
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Shift Right Long with MQ 
POWER. 601 

Operation: r := (rS) Q rB[27:31] 

Syntax: 

m := Mask(rB[27:31],31) 
H(rB[26] = 0) 

rA <= (r & m) I (MQ & ,....m) 
else 

rA<= (MQ & m) 

srlq 
srlq. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The srlq instruction shifts the contents of rS to the right by the number of bits 
specified by rB[27:31] and then merges this result with the contents of the MQ 
register. The leftmost rB[27:31] bits of the result are copied from the correspond­
ing bits of the MQ register instead of from the shifted result. This merged result 
is stored in rA. 

If bit 26 of rB is 1, then the result of this instruction is simply the rightmost 32-
rB[27:31] bits of the MQ. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 1 
10 11 15 16 20 21 30 31 

s 1 A 1 B 11011011000lRc I 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 
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Shift Right with MQ 
POWER. 601 

Operation: if(rB[26] = 0) 

Syntax: 

rA ¢::: (rS) »rB[27:31] 
else 

rA ¢::: 0 
MQ ¢::: (rS) Q rB[27:31] 

srq 
srq. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 
The srq instruction shifts the contents of rS to the right by the number of bits 
specified by rB[27:31] and then stores this result in rA. 

If bit 26 of rB is I, then it is assumed that the entire contents of rS have been 
shifted out to the right and a result of 0 is placed in rA. 

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in 
the MQ register. 

This instruction is not part of the PowerPC architecture. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
Rc 
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10 11 15 16 20 21 30 31 

s I A I B 110 1 001 100 01&1 

Source GPR rS 
Target GPR rA where result of operation is stored 
Source GPR rB 
Record bit 



srw Shift Right Word 
POWER. 601 • 603 • PowerPC32/64 

Operation: rA <== (rS) » rB [~~:~~J 

Syntax: srw 
srw. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

srw 

The srw instruction shifts the source register rS to the right by the number of bits 

specified in rB [~;:~~l and places the shifted result into rA. If the shift amount is 

greater than 31, then the shifted result will be o. 
The archaic POWER mnemonic for this instruction is sr[.]. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 
Rc 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 11 0 0 0 0 1 1 0 0 0 IRe I 

Source CPR rS 
Target CPR rA where result of operation is stored 
Source CPR rB 
Record bit 
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stb Store Byte stb 
POWER. 601 .603 • PowerPC32/64 

Operation: Byte «rA I 0) + 'd) ¢:::: rS [;::~;J 

Syntax: 8th rS,d(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affe(:ted 

Description: 
The stb instruction stores the low-order byte of the source register rS into the 
byte located at the effective address calculated from (rA I 0) + 'd. 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

11001101 s 1 A 1 d 

S Source GPR rS 
A Source GPR rA 
d Signed 16-bit displacement 
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stbu Store Byte with Update 
POWER • 601 • 603 • PowerPC32/64 

Operation: Byte ((rA) + 'd) <= rS [~!:~;J 

rA <= (rA) + 'd 

Syntax: stbu rS,d(rA) 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stbu 

The stbu instruction stores the low-order byte of the source register rS into the 
byte located at the effective address calculated from (rA) + 'd. 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
'd, and rO is not updated with the effective address. 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

11001111 s I A I d 

S Source GPR rS 
A Source GPR rA 
d Signed 16-bit displacement 
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stbux Store Byte with Update Indexed 
POWER. 601 • 603 • PowerPC32/64 

Operation: Byte «rA) + (rB» ¢:::: rS [;~;~;J 

rA ¢:::: (rA) + (rB) 

Syntax: stbux rS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stbux 

The stbux instruction stores the low-order byte of the source register rS into the 
byte located at the effective address calculated from (rA) + (rB). 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
(rB), and rO is not updated with the effective address. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 

588 Appendix A 

10 11 15 16 20 21 30 31 

s I A I B 10011110111101 

Source GPR rS 
Source GPR rA 
Source GPR rB 



stbx Store Byte Indexed 
POWER. 601 • 603 • PowerPC32/64 

Operation: Byte ((rA I 0) + (rB)) ¢= rS [;!:~;J 

Syntax: stbx rS,rA,rB 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stbx 

The stbx instruction stores the low-order byte of the source register rS into the 
byte located at the effective address calculated from (rA I 0) + (rB). 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 10011010111101 

Source GPR rS 
Source GPR rA 
Source GPR rB 
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std Store Doubleword std 
PowerPC64 

Operation: Doubleword((rA I 0) + '(ds.l bOO)) <= rS 

Syntax: std rS,ds(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The std instruction stores all 64 bits of the source register rS into the doubleword 
located at the effective address calculated from (rA 10) + '(ds 1.. bOO). 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 5 6 10 11 15 16 29 30 31 

11 1 1 1 1 01 s I A I ds 10 01 

S Source GPR rS 
A Source GPR rA 
ds Signed 16-bit displacement 
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stdcx. Store Doubleword 
Conditional Indexed 

PowerPC64 

Operation: if reservation on ((rA I 0) + (rB)) 
Doubleword((rA I 0) + (rB» ¢::: rS 
CR{O} = bam J.. XER[SO] 

else 
CR{O} = bOOO J.. XER[SO] 

Syntax: stdcx. rS,rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO always updated 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

stdcx. 

If a reservation exists for the effective address calculated from (rA I 0) + (rB), the 
stdcx. instruction stores the doubleword in rS into memory starting at that effec­
tive address. After the store completes, the reservation is cleared. 

If a reservation does not exist for this address, the stdcx. instruction does not 
perform the store operation. A reservation can be placed using the ldarx instruc­
tion. 

The calculated effective address must specify an aligned doubleword (i.e.: it 
must be a multiple of 8). If the address does not specify an aligned doubleword, 
the alignment exception handler may be invoked (if the load crosses a page 
boundary), or the results may be boundedly undefined. 

The EQ bit of CR field 0 is updated to indicate whether or not the store operation 
was performed. This bit is set to 1 if the store was performed and 0 if it was not. 
The SO bit of CR{O} is copied from XER[SO] and the remaining bits of the field 
are cleared. 

If the address references a direct-store storage segment, then a Data Storage inter­
rupt occurs or the results are boundedly undefined. 

This instruction exists on 64-bit PowerPC implementations only. 
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Instruction Encoding: 
0 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 I s I A I B 10 0 1 1 o 1 0 1 1 o 111 

S Source GPR rS 
A Source GPR rA 
B Source GPR rB 
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stdu Store Doubleword with Update 
PowerPC64 

Operation: Doubleword «rA) + '(ds .1 bOO)) <= rS 
rA <= (rA) + '(ds .1 bOO) 

Syntax: stdu rS,ds(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stdu 

The stdu instruction stores all 64 bits of the source register rS into the double­
word located at the effective address calculated from (rA) + '(ds 1.. baa). 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
o 5 6 10 11 15 16 29 30 31 

11111101 s 1 A 1 ds 

S Source GPR rS 
A Source GPR rA 
ds Signed 16-bit displacement 
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stdux Store Doubleword 
with Update Indexed 

PowerPC64 

Operation: Doubleword «rA) + (rB» <= rS 
rA <= (rA) + (rB) 

Syntax: stdux rS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stdux 

The stdux instruction stores all 64 bits of the source register rS into the double­
word located at the effective address calculated from (rA) + (rB). 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 1 

S 
A 
B 
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10 11 15 16 20 21 30 31 

s 1 A 1 B 10 0 1 0 1 10 101101 

Source GPR rS 
Source GPR rA 
Source GPR rB 



stdx Store Doubleword Indexed stdx 
PowerPC64 

Operation: Doubleword «rA I 0) + (rB)) ¢::: rS 

Syntax: stdx rS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The stdx instruction stores all 64 bits of the source register rS into the double­
word located at the effective address calculated from (rA I 0) + (rB). 

This instruction exists on 64-bit PowerPC implementations only. 

Instruction Encoding: 
0 

\0 1 1 1 1 

S 
A 
B 

5 6 

1 \ 
10 11 15 16 20 21 30 31 

s \ A \ B \0010010101\0\ 

Source GPR rS 
Source GPR rA 
Source GPR rB 
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stfd Store Floating-Point Double-Precision 
POWER. 601.603 • PowerPC32/64 

Operation: FP-Double«rA I 0) + 'd) ¢= frS 

Syntax: stfd frS,d(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stfd 

The stfd instruction stores the 64-bit double-precision value from the source reg­
ister frS into the doubleword located at the effective address calculated from 
(rA I 0) + 'd. 

This instruction affects neither the CR nor the XER. 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

11 101 101 s I A I d 

S Source FPR frS 
A Source GPR rA 
d Signed 16-bit displacement 

596 Appendix A 



stfdu Store Floating-Point 
Double-Precision with Update 

POWER. 601 • 603 • PowerPC32/64 

Operation: FP-Double «rA) + 'd) <= frS 
rA <= (rA) + 'd 

Syntax: stfdu frS,d(rA) 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stfdu 

The stfdu instruction stores the 64-bit double-precision value from the source 
register frS into the doubleword located at the effective address calculated from 
(rA) + 'd. 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
'd, and rO is not updated with the effective address. 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

11101111 s I A I d 

S Source FPR frS 
A Source GPR rA 
d Signed 16-bit displacement 
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stfd ux Store Floating-Point Double- S tfd ux 
Precision with Update Indexed 

POWER. 601 • 603 • PowerPC32/64 

Operation: FP-Double «rA) + (rB» <= frS 
rA <= (rA) + (rB) 

Syntax: stfdux frS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The stfdux instruction stores the 64-bit double-precision value from the source 
register frS into the doubleword located at the effective address calculated from 
(rA) + (rB). 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
(rB), and rO is not updated with the effective address. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
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10 11 15 16 20 21 30 31 

s I A I B 11 011110111101 

Source FPR frS 
Source GPR rA 
Source GPR rB 



stfdx Store Floating-Point 
Double-Precision Indexed 

POWER. 601 • 603 • PowerPC32/64 

Operation: FP-Double ((rA I 0) + (rB» ¢::: frS 

Syntax: stfdx frS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stfdx 

The stfdx instruction stores the 64-bit double-precision value from the source 
register frS into the doubleword located at the effective address calculated from 
(rA I 0) + (rB). 

Instruction Encoding: 
0 

10 1 1 1 1 

s 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 11011010111101 

Source FPR frS 
Source GPR rA 
Source GPR rB 
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stfiwx Store Floating-Point 
as Integer Word 

603. PowerPC32/64 

Operation: Word ((rA I 0) + (rB)) ¢= frS[32:63] 

Syntax: stfiwx frS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stfiwx 

The stfiwx instruction stores the low-order 32 bits of the frS into the word 
addressed by ((rA I 0) + (rB». No conversion of any sort is performed on the data 
before it is stored. 

If the value in frS was derived (either directly or indirectly) from any of the Load 
Floating-Point Single-Precision instructions, any single-precision arithmetic 
instruction, or the Floating-Point Round to Single-Precision instruction, then the 
value stored in memory is undefined. This gives the designers of PowerPC pro­
cessors the option of changing the register storage format for single-precision 
values. 

This instruction is an optional part of the PowerPC architecture. It is part of the 
Graphical group of optional instructions. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
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10 11 15 16 20 21 30 31 

s I A I B 11111010111101 

Source FPR frS 
Source GPR rA 
Source GPR rB 



stfs Store Floating-Point Single-Precision 
POWER. 601 • 603 • PowerPC32/64 

Operation: FP-Single «rA I 0) + 'd) ¢= frS 

Syntax: stfs frS,d(rA) 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stfs 

The stfs instruction takes the 64-bit double-precision value from the source reg­
ister frS, converts it into a 32-bit single-precision value, and then stores it into the 
word located at the effective address calculated from (rA I 0) + 'd. 

If the converted value does not fit in single-precision format, then the stored 
value is undefined. 

Instruction Encoding: 
056 ill II ~ M 31 

[I 101 0 o[ S [ A [ d 

S Source FPR frS 
A Source CPR rA 
d Signed 16-bit displacement 
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stfsu Store Floating-Point 
Single-Precision with Update 

POWER. 601 • 603 • PowerPC32/64 

Operation: FP-Single «rA) + 'd) ¢::: frS 
rA ¢::: (rA) + 'd 

Syntax: stfsu frS,d(rA) 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stfsu 

The stfsu instruction takes the 64-bit double-precision value from the source reg­
ister frS, converts it into a 32-bit single-precision value, and then stores it into the 
word located at the effective address calculated from (rA) + 'd. 

After the store is performed, the effective address is stored in rA. 

If to is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
'd, and rO is not updated with the effective address. 

If the converted value does not fit in single-precision format, then the stored 
value is undefined. 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

11101011 s 1 A 1 d 

S Source FPR frS 
A Source CPR rA 
d Signed 16-bit displacement 
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slfsux Store Floating-Point Single­
Precision with Update Indexed 

POWER • 601 • 603 • PowerPC32/64 

Operation: FP-Single «rA) + (rB)) ¢= frS 
rA ¢= (rA) + (rB) 

Syntax: stfsux frS,rA,rB 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

slfsux 

The stfsux instruction takes the 64-bit double-precision value from the source 
register frS, converts it into a 32-bit single-precision value, and then stores it into 
the word located at the effective address calculated from (rA) + (rB). 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
(rB), and rO is not updated with the effective address. 

If the converted value does not fit in single-precision format, then the stored 
value is undefined. 

Instruction Encoding: 
0 

(0 1 1 1 1 

S 
A 
B 

5 6 

1 ( 
10 11 15 16 20 21 30 31 

s ( A ( B (1010110111(01 

Source FPR frS 
Source GPR rA 
Source GPR rB 
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stfsx Store Floating-Point 
Single-Precision Indexed 
POWER. 601 .603 • PowerPC32/64 

Operation: FP-Single ((rA I 0) + (rB» ¢= frS 

Syntax: stfsx frS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stfsx 

The slfsx instruction takes the 64-bit double-precision value from the source reg­
ister frS, converts it into a 32-bit single-precision value, and then stores it into the 
word located at the effective address calculated from (rA I 0) + (rB). 

If the converted value does not fit in single-precision format, then the stored 
value is undefined. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
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10 11 15 16 20 21 30 31 

s I A I B 110 1 0010 1 1 1101 

Source FPR frS 
Source GPR rA 
Source GPR rB 



sth Store Halfword sth 
POWER. 601 • 603 • PowerPC32/64 

Operation: Halfword((rA 10) + 'd) <= rS [!::~~J 

Syntax: sth rS,d(rA) 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The sth instruction stores the low-order 16 bits of the source register rS into the 
halfword located at the effective address calculated from (rA I 0) + 'd. 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

11011001 s 1 A 1 d 

S Source CPR rS 
A Source CPR rA 
d Signed 16-bit displacement 
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sthbrx Store Halfword 
Byte-Reversed Indexed 

POWER. 601 • 603 • PowerPC32/64 

sthbrx 

Operation: Halfword «rA I 0) + (rB» <= rT[24:31] 1.. rT[16:23] 

Syntax: sthbrx rS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The sthbrx instruction takes the low-order halfword of the source register rS, 
swaps the two bytes of this halfword, and then stores this byte-reversed halfword 
into the memory halfword addressed by (rA I 0) + (rB). 

For some PowerPC implementations, this byte-reversed store instruction may 
have a greater latency than other store instructions. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
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10 11 15 16 20 21 30 31 

s I A I B 11110010110101 

Source GPR rS 
Source GPR rA 
Source GPR rB 



sthu Store Halfword with Update 
POWER • 601 • 603 • PowerPC32/64 

Operation: Halfword ((rA) + 'd) <= rS m:~;J 

rA <= (rA) + 'd 

Syntax: sthu rS,d(rA) 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

sthu 

The sthu instruction stores the low-order 16 bits of the source register rS into the 
halfword located at the effective address calculated from (rA) + 'd. 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
'd, and rO is not updated with the effective address. 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

11011011 s I A I d 

S Source GPR rS 
A Source GPR rA 
d Signed 16-bit displacement 

Instruction Set Summary 607 



sthux Store Halfword 
with Update Indexed 

POWER· 601 • 603 • PowerPC32/64 

Operation: Halfword «rA) + (rB)) ¢= rS [!~:~J 

rA ¢= (rA) + (rB) 

Syntax: sthux rS,rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

sthux 

The sthux instruction stores the low-order 16 bits of the source register rS into 
the halfword located at the effective address calculated from (rA) + (rB). 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
(rB), and rO is not updated with the effective address. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 1 

S 
A 
B 
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10 11 15 16 20 21 30 31 

s 1 A 1 B 10110110111101 

Source GPR rS 
Source GPR rA 
Source GPR rB 



sthx Store Halfword Indexed sthx 
POWER· 601 • 603 • PowerPC32/64 

Operation: Halfword ((rA I 0) + (rB)) <= rS [!~~~;J 

Syntax: sthx rS,rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The sthx instruction stores the low-order 16 bits of the source register rS into the 
halfword located at the effective address calculated from (rA I 0) + (rB). 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 

5 6 

1 I 
10 11 15 16 20 21 30 31 

s I A I B 10 1 100 1 0 1 1 1101 

Source GPR rS 
Source GPR rA 
Source GPR rB 
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stmw Store Multiple Word 
POWER • 601 • 603 • PowerPC32/64 

Operation: ea := (rA I 0) + 'd 
R:=T 

Syntax: 

while ( R ~ 31 ) 

Word ( ea ) <= rR [~~~~] 

ea:= ea + 4 
R :=R+ 1 

stmw rS,d(rA) 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stmw 

The stmw instruction stores words from a set of GPRs into memory. The set of 
GPRs starts with register rS and continues up to register r31. The address of the 
first word to be stored is specified by the effective· address calculated from 
(rA I 0) + 'd. Consecutive registers are stored in consecutive words from this 
starting point. 

On 64-bit PowerPC implementations, only the low-order word of each register 
is stored into memory. 

The calculated effective address must specify an aligned word (Le., it must be a 
multiple of 4). If the address does not specify an aligned word, the alignment 
exception handler may be invoked (if the store crosses a page boundary), or the 
results may be boundedly undefined. 

The preferred form for this instruction is when the effective address and rT are 
chosen so that the low-order byte from r31 is stored into the last byte of an 
aligned quadword in memory. It is possible that some PowerPC implementa­
tions will execute non-preferred forms more slowly than the preferred forms. On 
future implementations, this instruction may execute more slowly than a series 
of instructions that perform the same operation. 

The archaic POWER mnemonic for this instruction is stm. 
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Instruction Encoding: 
056 10 11 ~ 16 31 

11011111 s I A I d 

S First source GPR rS to store in memory 
A Source GPR rA 
d Signed 16-bit displacement 
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stswi Store String Word Immediate 
POWER • 601 • 603 • PowerPC32/64 

Operation: store nBytes bytes from registers into memory 

Syntax: stswi rS,rA,nBytes 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stswi 

The stswi instruction stores bytes into memory from a set of GPRs. The number 
of bytes (specified by the immediate nBytes value) are stored into memory start­
ing with the address calculated from (rA I 0). The stored data comes from the 
GPRs starting with rS and continuing up toward r31 for as many registers as are 
needed to produce nBytes bytes. The register sequence wraps from r31 to rO if 
necessary. 

The bytes from each register are stored starting with the leftmost byte in the low­
order word and continuing to the rightmost byte of the register. On 64-bit Pow­
erPC implementations, only the low-order word of each register is stored into 
memory. 

If 0 is specified for nBytes, then the number of bytes stored is 32. 

The operation of this instruction can be summarized as follows: 

ea:= (rA I 0) 
R:= 5-1 

i:= [~] 

if( nBytes = a ) 
nBytes:= 32 

while(nBytes > 0) 

if(i = [~] ) 

R := (R + 1) % 32 
Byte(ea) <= rR[i : (i+7)] 
i:= i + 8 

if(i = [~] ) 

i:= [~] 

ea:= ea + 1 
nBytes := nBytes - 1 
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The preferred form for this instruction is when the starting register rS is r5. It is 
possible that some PowerPC implementations will execute non-preferred forms 
more slowly than the preferred forms. Because of the complexity of this instruc­
tion, it is also possible that, on some implementations, this instruction may exe­
cute slower than a series of instructions that perform the same operation. 

Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked. 

The archaic POWER mnemonic for this instruction is stsi. 

Instruction Encoding: 

10 
5 6 

1 1 1 1 I 

S 
A 
nBytes 

10 11 15 16 20 21 30 31 

s I A I nBytes 11 0 1 1 0 1 0 1 0 1 I 0 I 

First source GPR rS to store in memory 
Source GPR rA 
Number of bytes to store 
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stswx Store String Word Indexed 
POWER· 601 • 603 • PowerPC32/64 

stswx 

Operation: store XER[25:31] bytes from registers into memory 

Syntax: stswx rS,rA,rB 

Condition Register / Fixed -Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The stswx instruction stores bytes into memory from a set of GPRs. The number 
of bytes (specified by bits 25 to 31 of the XER) are stored into memory starting 
with the address calculated from (rA I 0). The stored data comes from the GPRs 
starting with rS and continuing up toward r31 for as many registers as are 
needed to produce the required number of bytes. The register sequence wraps 
from r31 to rO if necessary. 

The bytes from each register are stored starting with the leftmost byte in the low­
order word and continuing to the rightmost byte of the register. On 64-bit Pow­
erPC implementations, only the low-order word of each register is stored into 
memory. 

The operation of this instruction can be summarized as follows: 

ea := (rA I O)+(rB) 
R:= 5-1 
nBytes := XER[25:31] 

i:= [~] 

while(nBytes > 0) 

if(i = [£] ) 

R := (R + 1) % 32 
Byte(ea) ¢::: rR[i : (i+7)] 
i:= i + 8 

if(i = [~] ) 

i:= [£] 

ea:= ea + 1 
nBytes := nBytes - 1 

If XER[25:31] is 0, then no bytes are stored into memory. 

614 Appendix A 



The preferred form for this instruction is when the starting register rS is r5 and 
the total number of registers being loaded is less than or equal to 12. It is possible 
that some PowerPC implementations will execute non-preferred forms more 
slowly than the preferred forms. Because of the complexity of this instruction, it 
is also possible that, on some implementations, this instruction may execute 
slower than a series of instructions that perform the same operation. 

Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked. 

The archaic POWER mnemonic for this instruction is stsx. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 

5 6 

11 
10 11 15 16 20 21 30 31 

s I A I B 110 1 0010 101101 

Source GPR rS 
Source GPR rA 
Source GPR rB 
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stw Store Word stw 
POWER. 601 • 603 • PowerPC32j64 

Operation: Word«rA I 0) + 'd) ¢= rS [~~;6~J 

Syntax: stw rS,d(rA) 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The stw instruction stores the low-order 32 bits of the source register rS into the 
word located at the effective address calculated from (rA I 0) + 'd. 

Instruction Encoding: 
056 10 11 15 16 31 

11 0 0 1 0 01 s I A I d 

S Source CPR rS 
A Source CPR rA 
d Signed 16-bit displacement 
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stwbrx Store Word 
Byte-Reversed Indexed 

POWER • 601 • 603 • PowerPC32/64 

Operation: Word ((rA I 0) + (rB)) 

stwbrx 

<= rT[24:31] 1- rT[16:23] ..L rT[7:1S] 1- rT[0:7] 

Syntax: stwbrx rS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The stwbrx instruction takes the low-order word of the source register rS, 
reverses the four bytes of this word, and then stores this byte-reversed word into 
the memory word addressed by (rA I 0) + (rB). 

For some PowerPC implementations, this byte-reversed store instruction may 
have a greater latency than other store instructions. 

Instruction Encoding: 
0 

10 1 1 1 1 

S 
A 
B 

5 6 

11 
10 11 15 16 20 21 30 31 

s I A I B 110 100 1 0 1 10101 

Source GPR rS 
Source GPR rA 
Source GPR rB 
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stwcx. Store Word Conditional Indexed stWCX. 
POWER. 601 • 603 • PowerPC32/64 

Operation: if reservation on ((rA I 0) + (rB)) 
Word«rA I 0) + (rB» ¢= rS 
CR{O} = bOOl1. XER[SO] 

else 
CR{O} = bOOO 1. XER[SO] 

Syntax: stwcx. rS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
If a reservation exists for the effective address calculated from (rA I 0) + (rB), the 
stwcx. instruction stores the word in rS into memory starting at that effective 
address. After the store completes, the reservation is cleared. 

If a reservation does not exist for this address, the stwcx. instruction does not 
perform the store operation. A reservation can be placed using the lwarx instruc­
tion. 

The calculated effective address must specify an aligned word (i.e.: it must be a 
multiple of 4). If the address does not specify an aligned word, the alignment 
exception handler may be invoked (if the load crosses a page boundary), or the 
results may be boundedly undefined. 

The EQ bit of CR field 0 is updated to indicate whether or not the store operation 
was performed. This bit is set to 1 if the store was performed and 0 if it was not. 
The SO bit of CR{O} is copied from XER[SO] and the remaining bits of the field 
are cleared. 

If the address references a direct-store storage segment, then a Data Storage inter­
rupt occurs or the results are boundedly undefined. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

S 
A 
B 
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10 11 15 16 20 21 30 31 

s I A I B 10 0 1 0 0 1 0 1 10111 

Source CPR rS 
Source CPR rA 
Source CPR rB 



stwu Store Word with Update 
POWER • 601 • 603 • PowerPC32/64 

Operation: Word ((rA) + 'd) ¢= rS [~~~i3J 

rA ¢= (rA) + 'd 

Syntax: stwu rS,d(rA) 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

stwu 

The stwu instruction stores the low-order 32 bits of the source register rS into the 
word located at the effective address calculated from (rA) + 'd. 

After the store is performed, the effective address is stored in rA. 

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
'd, and rO is not updated with the effective address. 

Instruction Encoding: 
o 5 6 10 11 15 16 31 

11001011 s I A I d 

S Source GPR rS 
A Source GPR rA 
d Signed 16-bit displacement 
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stwux Store Word with Update Indexed stwux 
POWER· 601 • 603 • PowerPC32/64 

Operation: Word «rA I 0) + (rB)) ¢= rS [~~;i3J 

rA ¢= (rA) + (rB) 

Syntax: stwux rS,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The stwux instruction stores the low-order 32 bits of the source register rS into 
the word located at the effective address calculated from (rA I 0) + (rB). 

After the store is performed, the effective address is stored in rA. 

H rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from 
(rB), and rO is not updated with the effective address. 

Instruction Encoding: 
0 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 11 s I A I B 10 010 1 1 0 1 1 110 I 

S Source GPR rS 
A Source GPR rA 
B Source GPR rB 
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stwx Store Word Indexed stwx 
POWER • 601 • 603 • PowerPC32 / 64 

Operation: Word «rA I 0) + (rB» ¢= rS [~~;~J 

Syntax: stwx rS,rA,rB 

Condition Register/Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The stwx instruction stores the low-order 32 bits of the source register rS into the 
word located at the effective address calculated from (rA I O) + (rB). 

Instruction Encoding: 
0 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 11 s I A I B 10 0 100 1 0 1 1 110 I 

S Source GPR rS 
A Source GPR rA 
B Source GPR rB 
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subf Subtract From subf 
POWER. 601 • 603 • PowerPC32 / 64 

Operation: rT {= (rB) - (rA) 

Syntax: subf 
subf. 
subfo 
subfo. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc = 0, OE = 1) 
(Rc = 1, OE = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: not affected 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The subf instruction subtracts the contents of GPR rA from GPR rB and places 
the result in GPR rT. The operation treats the operand values as signed quanti­
ties. 

Extended Forms: 
There is one extended form for the subf instruction which rearranges the 
operands into a more natural order. 

sub[oH.] rT,rA,rB is equivalent to subf[o][.] rT,rB,rA 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 I 

T 
A 
B 
OE 
Rc 
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10 11 15 16 20 21 22 30 31 

T I A I B 1001000101000IRci 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 



subfc Subtract From Carrying 
POWER. 601 • 603 • PowerPC32/64 

subfc 

Operation: rT ¢::: (rB) - (rA) 

Syntax: subfc 
subfc. 
subfco 
subfco. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc = 0, OE = 1) 
(Rc = 1, OE = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: always updated 
XER[OV,SO]: updated if OE=l, otherwise not affected 

Description: 
The subfc instruction subtracts the contents of GPR rA from GPR rB and places 
the result in GPR rT, updating the Carry bit of the XER. The operation treats the 
operand values as signed quantities. 

The archaic POWER mnemonic for this instruction is sf[o][.]. 

Extended Forms: 
There is one extended form for the subfc instruction which rearranges the 
operands into a more natural order. 

subc[o][.] rT,rA,rB is equivalent to subfc[o][.]rT,rB,rA 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
B 
OE 
Rc 

5 6 

11 
10 11 15 16 20 21 22 30 31 

T I A I B 10E100000l00olRc i 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 
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subfe Subtract From Extended subfe 
POWER· 601 • 603 • PowerPC32/64 

Operation: rT ¢::: (rB) - (rA) + XER[CA] - 1 

Syntax: subfe 
subfe. 
subfeo 
subfeo. 

rT,rA,rB 
rT,rA,rB 
rT,rA,rB 
rT,rA,rB 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc = 0, OE = 1) 
(Rc = 1, OE = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: always updated 
XER[OV,SO]: updated if OE= 1, otherwise not affected 

Description: 
The subfe instruction subtracts the contents of GPR rA from GPR rB, adds the 
modified Carry bit (XER[CA ]-1) of the XER, and then places the result in GPR rT, 
updating the Carry bit. The operation treats the operand values as signed quan­
tities. 

The archaic POWER mnemonic for this instruction is sfe[o][.]. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
B 
OE 
Rc 
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!O 11 15 16 20 21 22 30 31 

T I A I B 100IolOOOlOooIRci 

Target GPR rT where result of operation is stored 
Source GPR rA 
Source GPR rB 
Overflow Exception bit 
Record bit 



su bfic Subtract From Immediate Carrying SU bfic 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT <== 's16 - (rA) 

Syntax: subfic rT,rA,s16 

Condition Register I Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER[CA]: 
XER[OV,SO]: 

Description: 

always updated 
not affected 

The 8ubfic instruction subtracts the contents of GPR rA from the 32-bit sign­
extended quantity specified by s16, and places the result in GPR rT, updating the 
Carry bit. 

The archaic POWER mnemonic for this instruction is 8fi[.]. 

Instruction Encoding: 
0 5 

10 0 1 0 o 01 

T 
A 
SI 

6 10 11 15 16 

T 1 A 1 SI 

Target GPR rT where result of operation is stored 
Source GPR rA or 0 
Signed 16-bit integer 

31 
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subfme Subtract From 
Minus One Extended 

POWER. 601 • 603 • PowerPC32/64 

subfme 

Operation: rT <= -1- (rA) + XER[CA]-1 

Syntax: subfme 
subfme. 
subfmeo 
subfmeo. 

rT,rA 
rT,rA 
rT,rA 
rT,rA 

(Rc = 0, OE = 0) 
(Rc = I, OE = 0) 
(Rc=O,OE=I) 
(Rc = I, OE = 1) 

Condition Register /Fixed-Point Exception Register: 
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: always updated 
XER[OV;SO]: updated if OE=I, otherwise not affected 

Description: 
The subfme instruction subtracts the contents of GPR rA from -1 (OxFFFFFFFF), 
adds the modified Carry bit (XER[CA]-I), and then places the result in GPR rT, 
updating the Carry bit in the XER. 

The archaic POWER mnemonic for this instruction is sfme[o][.]. 

Instruction Encoding: 
0 5 6 

10 1 1 1 1 1 I 

T 
A 
OE 
Rc 
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10 11 15 16 20 21 22 30 31 

T I A 10 0 0 0 0 10E1 0 1 1 1 0 1 0 0 0 IRe I 

Target GPR rT where result of operation is stored 
Source GPR rA 
Overflow Exception bit 
Record bit 



subfze Subtract From Zero Extended subfze 
POWER. 601 • 603 • PowerPC32/64 

Operation: rT ¢::: ° -(rA) + XER[CA] -1 

Syntax: subfze 
subfze. 
subfzeo 
subfzeo. 

rT,rA 
rT,rA 
rT,rA 
rT,rA 

(Rc = 0, OE = 0) 
(Rc = 1, OE = 0) 
(Rc=O,OE=I) 
(Rc = 1, OE = 1) 

Condition Register/Fixed-Point Exception Register: 
CR Field 0: LT,CT,EQSO updated if Rc = 1, otherwise not affected 
CR Fields 1-7: not affected 

XER[CA]: always updated 
XER[OV,SO]: updated if OE=I, otherwise not affected 

Description: 
The subfze instruction subtracts the contents of CPR rA from 0, adds the modi­
fied Carry bit (XER[CA]-I), and then places the result in CPR rT, updating the 
Carry bit in the XER. 

The archaic POWER mnemonic for this instruction is sfze[o][.]. 

Instruction Encoding: 
0 

10 1 1 1 1 

T 
A 
OE 
Rc 

5 6 

11 
10 11 15 16 20 21 22 30 31 

T I A 10 0 0 0 0 IOEI 0 1 1 0 0 1 0 0 0 IRel 

Target CPR rT where result of operation is stored 
Source CPR rA 
Overflow Exception bit 
Record bit 
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sync Synchronize 
POWER • 601 • 603 • PowerPC32/64 

Operation: wait for all previous instructions to complete 

Syntax: sync 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

sync 

The sync instruction forces the processor to wait until all of the previous instruc­
tions appear to have been completed before initiating the execution of any sub­
sequent instruction. 

It is only through the use of the sync instruction that a program can be ensured 
that the effects of all storage accesses have been completed with respect to all 
other processors and storage access mechanisms. 

This instruction is execution synchronizing. 

The archaic POWER mnemonic for this instruction is des. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 110 0 0 0 010 0 0 0 010 000 0110 0 1 0 1 0 1 10101 
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td Trap Doubleword 
PowerPC64 

Operation: if (condition is TRUE) 
invoke trap handler 

Syntax: td TO,rA,rB 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

td 

The td instruction compares the contents of the two source registers rA and rB 
and invokes the system trap handler if the condition specified by TO is true. 

The Trap On (TO) field of the instruction determines the conditions under which 
the trap is generated. The TO field may be anyone of the following values: 

TO 

signed unsigned Action 
= 

< > < > 

0 0 0 0 1 trap if logically greater than 

0 0 0 1 0 trap if lOgically less than 

0 0 1 0 0 trap if equal 

0 0 1 0 1 
trap if logically greater than or equal 
trap if logically not less than 

0 0 1 1 0 
trap if logically less than or equal 
trap if logically not greater than 

0 1 0 0 0 trap if greater than 

0 1 1 0 0 
trap if greater than or equal 
trap if not less than 

1 0 0 0 0 trap if less than 

1 0 1 0 0 
trap if less than or equal 
trap if not greater than 

1 1 0 0 0 trap if not equal 

This instruction exists on 64-bit PowerPC implementations only. 
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Extended Forms: 
The following extended forms are defined for the td instruction. 

tdeq 
tdge 
tdgt 
tdle 
tdlge 
tdlgt 
tdIle 
tdIlt 
tdlng 
tdlnl 
tdlt 
tdne 
tdng 
tdnl 

rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 

Instruction Encoding: 

is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 
is equivalent to td 

4,rA,rB 
12,rA,rB 
8,rA,rB 
20,rA,rB 
S,rA,rB 
l,rA,rB 
6,rA,rB 
2,rA,rB 
6,rA,rB 
S,rA,rB 
16,rA,rB 
24,rA,rB 
20,rA,rB 
12,rA,rB 

o 5 6 10 11 15 16 20 21 30 31 

10111111 TO I A I B 10001000100101 

TO Trap-On condition 
A Source GPR rA 
B Source GPR rB 
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tdi Trap Doubleword Immediate 
PowerPC64 

Operation: if (condition is TRUE) 
invoke trap handler 

Syntax: tdi TO,rA,s16 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

tdi 

The tdi instruction compares the contents of the source register rA and the sign­
extended immediate value s16 and invokes the system trap handler if the condi­
tion specified by TO is true. 

The Trap On (TO) field of the instruction determines the conditions under which 
the trap is generated. The TO field may be anyone of the following values: 

TO 

signed unsigned Action 
= 

< > < > 

a a a a 1 trap if logically greater than 

a a a 1 a trap if logically less than 

a a 1 a a trap if equal 

0 a 1 a 1 
trap if logically greater than or equal 
trap if logically not less than 

a a 1 1 a trap if logically less than or equal 
trap if logically not greater than 

a 1 a a a trap if greater than 

a 1 1 a a trap if greater than or equal 
trap if not less than 

1 a a 0 a trap if less than 

1 a 1 a a trap if less than or equal 
trap if not greater than 

1 1 a a a trap if not equal 

This instruction exists on 64-bit PowerPC implementations only. 
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Extended Forms: 
The following extended forms are defined for the tdi instruction. 

tdeqi rA,s16 is equivalent to tdi 4,rA,s16 
tdgei rA,s16 is equivalent to tdi 12,rA,s16 
tdgti rA,s16 is equivalent to tdi 8,rA,s16 
tdlei rA,s16 is equivalent to tdi 20,rA,s16 
tdlgei rA,s16 is equivalent to tdi 5,rA,s16 
tdIgti rA,s16 is equivalent to tdi 1,rA,s16 
tdllei rA,s16 is equivalent to tdi 6,rA,s16 
tdllti rA,s16 is equivalent to tdi 2,rA,s16 
tdlngi rA,s16 is equivalent to tdi 6,rA,s16 
tdInH rA,s16 is equivalent to tdi 5,rA,s16 
tdlti rA,s16 is equivalent to tdi 16,rA,s16 
tdnei rA,s16 is equivalent to tdi 24,rA,s16 
tdngi rA,s16 is equivalent to tdi 20,rA,s16 
tdnli rA,s16 is equivalent to tdi 12,rA,s16 

Instruction Encoding: 
0 5 6 10 11 15 16 31 

10 0 o 0 1 01 TO 1 A 1 SI 1 

TO Trap-On condition 
A Source GPR rA 
SI Signed 16-bit integer 
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tIbia TLB Invalidate All tIbia 
603 • PowerPC32/64 

Operation: invalidate all TLB entries 

Syntax: tIbia 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The tIbia instruction invalidates all of the entries currently in the TLB, regardless 
of the current setting of the instruction and data translation bits in the MSR 
(MSR[IT] and MSR[DT]. 

This is a supervisor-level instruction. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 110 0 0 0 010 0 0 0 010 000 010 1 0 1 110 0 1 0101 
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tlbie TLB Invalidate Entry 
POWER • 601 • 603 • PowerPC32/64 

Operation: invalidate the specified TLB entry 

Syntax: tlbie rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

tlbie 

The tlbie instruction invalidates the TLB entry which corresponds to the effec­
tive address stored in rB. The invalidation is performed regardless of the current 
setting of the instruction and data translation bits in the MSR (MSR[IT] and 
MSR[DT]. 

This is a supervisor-level instruction. 

The archaic POWER mnemonic for this instruction is tlbi. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 110 0 0 0 010 0 0 0 01 B 10 1 001 100 1 0101 

B Source GPR rB 
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tlbsync TLB Synchronize 
603 • PowerPC32/64 

tlbsync 

Operation: wait until all previous TLB instructions complete 

Syntax: tlbsync 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The tIbsync instruction waits until all of the previous TLB instructions (tIbia and 
tIbie) have completed execution on this and all other processors. 

This is a supervisor-level instruction. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

10 1 1 1 1 110 0 0 0 010 0 0 0 010 0 0 0 0110 0 0 1 10 1 10101 
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tw Trap Word 
POWER. 601 • 603. PowerPC32/64 

Operation: if (condition is TRUE) 
invoke trap handler 

Syntax: tw TO,rA,rB 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

tw 

The tw instruction compares the contents of the two source registers rA and rB 
and invokes the system trap handler if the condition specified by TO is true. 

The Trap On (TO) field of the instruction determines the conditions under which 
the trap is generated. The TO field may be anyone of the following values: 

TO 

signed unsigned Action 
= 

< > < > 

0 0 0 0 1 trap if logically greater than 

0 0 0 1 0 trap if logically less than 

0 0 1 0 0 trap if equal 

0 0 1 a 1 
trap if logically greater than or equal 
trap if logically not less than 

0 0 1 1 0 
trap if logically less than or equal 
trap if logically not greater than 

0 1 0 0 0 trap if greater than 

0 1 1 0 0 
trap if greater than or equal 
trap if not less than 

1 0 0 0 0 trap if less than 

1 0 1 0 0 
trap if less than or equal 
trap if not greater than 

1 1 0 0 0 trap if not equal 
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Extended Forms: 
The following extended forms are defined for the tw instruction. 

trap 
tweq 
twge 
twgt 
twie 
twige 
twIgt 
twIle 
twIlt 
twing 
twini 
twIt 
twne 
twng 
twni 

rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 
rA,rB 

Instruction Encoding: 

is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 
is equivalent to tw 

31,rO,rO 
4,rA,rB 
12,rA,rB 
8,rA,rB 
20,rA,rB 
5,rA,rB 
1,rA,rB 
6,rA,rB 
2,rA,rB 
6,rA,rB 
5,rA,rB 
16,rA,rB 
24,rA,rB 
20,rA,rB 
12,rA,rB 

o 5 6 10 11 15 16 20 21 30 31 

10111111 TO I A I B 10000000100101 

TO Trap-On condition 
A Source CPR rA 
B Source CPR rB 
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twi Trap Word Immediate 
POWER • 601 • 603 • PowerPC32/64 

Operation: if (condition is TRUE) 
invoke trap handler 

Syntax: twi TO,rA,s16 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 

twi 

The twi instruction compares the contents of the source register rA and the sign­
extended immediate value s16 and invokes the system trap handler if the condi­
tion specified by TO is true. 

The Trap On (TO) field of the instruction determines the conditions under which 
the trap is generated. The TO field may be anyone of the following values: 

TO 
signed unsigned Action 

= 
< > < > 

0 0 0 0 1 trap if logically greater than 

0 0 0 1 0 trap if logically less than 

0 0 1 0 0 trap if equal 

0 0 1 0 1 
trap if logically greater than or equal 
trap if logically not less than 

0 0 1 1 0 
trap if logically less than or equal 
trap if logically not greater than 

0 1 0 0 0 trap if greater than 

0 1 1 0 0 
trap if greater than or equal 
trap if not less than 

1 0 0 0 0 trap if less than 

1 0 1 0 0 
trap if less than or equal 
trap if not greater than 

1 1 0 0 0 trap if not equal 
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Extended Forms: 
The following extended forms are defined for the twi instruction. 

tweqi rA,s16 is equivalent to twi 4,rA,s16 
twgei rA,s16 is equivalent to twi 12,rA,s16 
twgti rA,s16 is equivalent to twi 8,rA,s16 
twiei rA,s16 is equivalent to twi 20,rA,s16 
twigei rA,s16 is equivalent to twi 5,rA,s16 
twigti rA,s16 is equivalent to twi 1,rA,s16 
twIlei rA,s16 is equivalent to twi 6,rA,s16 
twIlti rA,s16 is equivalent to !Wi 2,rA,s16 
twlngi rA,s16 is equivalent to twi 6,rA,s16 
twlnli rA,s16 is equivalent to twi 5,rA,s16 
twlti rA,s16 is equivalent to twi 16,rA,s16 
twnei rA,s16 is equivalent to twi 24,rA,s16 
twngi rA,s16 is equivalent to twi 20,rA,s16 
twnli rA,s16 is equivalent to twi 12,rA,s16 

Instruction Encoding: 
0 5 6 10 11 15 16 31 

10 0 001 11 TO I A I SI I 

TO Trap-On condition 
A Source GPR rA 
SI Signed 16-bit integer 
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xor XOR 
POWER. 601 • 603 • PowerPC32/64 

Operation: rA ¢::: (rS) EB (rB) 

Syntax: xor 
xor. 

rA,rS,rB 
rA,rS,rB 

(Rc = 0) 
(Rc = 1) 

Condition Register / Fixed -Point Exception Register: 
CR Field 0: LT,CT,EQ,SO updated if Rc = I, otherwise not affected 
CR Fields 1-7: not affected 

XER: not affected 

Description: 

xor 

The xor instruction logically XORs the contents of CPR rS and CPR rB and 
places the result in CPR rA. 

Instruction Encoding: 
o 5 6 10 11 15 16 20 21 30 31 

[([TJl111 s I A I B I0100111100lRc i 

S Source CPR rS 
A Target CPR rA where result of operation is stored 
B Source CPR rB 
Rc Record bit 
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• • 
XOrl XOR Immediate XOrl 

POWER. 601 • 603 • PowerPC32/64 

Operation: rA <== (rS) EB ou16 

Syntax: xori rA,rS,u16 

Condition Register / Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The xori instruction logically XORs the contents of GPR rS and the value calcu­
lated by zero-extending u16, and places the result in GPR rA. 

The archaic POWER mnemonic for this instruction is xoril. (XOR Immediate 
Lower). 

Instruction Encoding: 
0 5 

10 1 1 0 1 01 

S 
A 
UI 

6 10 11 15 16 

s 1 A 1 UI 

Source GPR rS 
Target GPR rA where result of operation is stored 
Unsigned 16-bit integer 

31 
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• • 
XOrlS XOR Immediate Shifted XOrlS 

POWER • 601 • 603 • PowerPC32 / 64 

Operation: rA <= (rS) Ei1 o(u16 -'- OxOOOO) 

Syntax: xoris rA,rS,u16 

Condition Register /Fixed-Point Exception Register: 
CR Fields 0-7: not affected 

XER: not affected 

Description: 
The xc;>ris. instruction logically XORs the contents of GPR rS and the value calcu­
lated by concatenating u16 with OxOOOO, and places the result in GPR rA. 

The archaic POWER mnemonic for this instruction is xoriu. (XOR Immediate 
Upper). 

Instruction Encoding: 
0 5 6 

10 1 1 0 1 1 1 

S 
A 
UI 
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10 11 15 16 

s 1 A 1 UI 

Source GPR rS 
Target GPR rA where result of operation is stored 
Unsigned 16-bit integer 

31 



Complete List of 
Mnemonics 

This appendix provides a complete list of the mnemonics for all of the instruc­
tions and extended instructions for the POWER and PowerPC processors. This 
list includes the archaic forms for the POWER mnemonics. 

This list is presented in alphabetic order according to the base mnemonic. This 
means that some mnemonics may appear to be out of order, for example, the 
instruction addo is not found between addme[ 0][.] and addze[ 0][.] entries 
because it is considered a standard extension to the base mnemonic add[ 0][ • ]. 
Standard mnemonic extensions are:' .', 'a', '0', and '1'. 

Lines that have a "." prefix are the standard or preferred instructions for the 
PowerPC. Lines without a "." prefix are either archaic mnemonics for valid 
instructions or obsolete instructions. The mnemonic description will note which 
case is applicable. The archaic and obsolete forms are included for completeness 
and historical reasons only; use of the archaic forms is strongly discouraged. 

Lines that have a "32 ." prefix are defined only for 32-bit implementations of the 
PowerPC. They will cause an illegal instruction exception on 64-bit implementa­
tions. 
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Lines that have a "64." prefix are defined only for 64-bit implementations of the 
PowerPC. They will cause an illegal instruction exception on 32-bit implementa­
tions. 

Lines that have a "?" prefix are defined as being optional PowerPC instructions. 
A PowerPC processor mayor may not have these instructions defined. Note that 
some optional instructions are defined for 64-bit implementations only. 
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a[o][.] 

abs[o][.] 

• add[o][.] 
• addc[o][.] 
• adde[o][.] 
• addi 
• addic[.] 
• addis 
• addme[o][.] 
• addze[o][.] 

ae[o][ .] 

air .] 

ame[o][.] 

• and[.] 
• andc[.] 
• andi. 

andil. 

• andis. 
andiu. 

aze[o][.] 

• b[l][a] 
bbf[l][a] 

bbfc[l] 

bbfr[l] 

bbt[l][a] 

bbtc[l] 

bbtr[l] 

• bc[l][a] 

rT,rA,rB Add 
archaic form for: addc[o][.] rT, rA, rB 

rT, rA Absolute Value 
This instruction exists on POWER and the 601 only. 

rT, rA, rB Add (without updating Carry) 
rT, rA, r B Add Carrying 
rT,rA,rB Add Extended 
rT, rA, s16 Add Immediate 
rT, rA, s16 Add Immediate Carrying 
rT, rA, s16 Add Immediate Shifted 
rT, rA Add to Minus One Extended 
rT, rA Add to Zero Extended 
rT,rA,rB Add Extended 
archaic form for: adde[o][.] rT, rA, rB 

rT, rA, s16 Add Immediate 
archaic form for: addic[.] rT ,rA,s16 

rT, r A Add to Minus One Extended 
archaic form for: addme[ 0][.] rT, rA 

rA,rS,rB AND 
rA, rS, rB AND with Complement 
rA,rS,u16 AND Immediate 
rA, r 5, u16 AND Immediate Lower 
archaicform for: andi. r A , r 5 , u16 

rA, rS, u16 AND Immediate Shifted 
rA, rS, u16 AND Immediate Upper 
archaic form for: andis. rA, rS, u16 

rT, rA Add to Zero Extended 
archaicform for: addze[o][.] rT, rA 

addr Branch 
crbT, addr Branch if CR Bit False 
archaic form for: b f [1][ a] crbT, addr 
equivalent to: bc[l][a] Ox04, crbT, addr 

crbT, addr Branch if CR Bit False to CTR 
archaic form for: bfctr[l][a] crbT 
equivalent to: bcctr[l] Ox04, crbT 

crbT, addr Branch if CR Bit False to LR 
archaic form for: bflr[l] crbT 
equivalent to: bclr[l] Ox04, crbT 

crbT, addr Branch if CR Bit True 
archaic form for: bt[l][a] crbT, addr 
equivalent to: bc[l][a] OxOC, crbT, addr 

crbT, addr Branch if CR Bit True to CTR 
archaic form for: btctr[l][a] crbT 
equivalent to: bcctr[l] OxOC, crbT 

crbT, addr Branch if CR Bit True to LR 
archaic form for: btlr[l] crbT 
equivalentto: bclr[l] OxOC, crbT 

branch On , crbT , addr Branch Conditional 
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bee[l] 

• beetr[l] 
• belr[l] 

ber[l] 

• betr[l] 

bdn[l][a] 

bdneq 

bdnge 

bdngt 

bdnle 

bdnlt 

bdnne 

bdnns 

bdnr[l] 

bdnso 

• bdnz[l][a] 

branchOn, crbT Branch Conditional to CTR 
archaic form for: beetr[l] BO, crbT 

branchOn, crbT Branch Conditional to CTR 
branchOn, crbT Branch Conditional to LR 
branchOn, crbT Branch Conditional to LR 
archaic form for: belr[l] BO, crbT 

Branch Unconditionally to CTR 
equivalent to: beetr[l] Oxl4, 0 

addr Branch if Decremented CTR is Non-zero 
archaic form for: bdnz[l][a] addr 
equivalentto: be[l][a] OxlO, O,addr 

crT, addr Branch if Decremented CTR is Non-Zero and 
Equal 

archaic form for: bdnzt (erT*4) +2, addr 
equivalent to: be Ox08, (erT*4) +2 ,addr 

crT, addr Branch if Decremented CTR is Non-Zero and 
Greater Than or Equal 

archaic form for: bdn z f (e rT* 4 ) + 0 , addr 
equivalent to: be OxOO, (erT*4 )+0 ,addr 

crT, addr Branch if Decremented CTR is Non-Zero and 
Greater Than 

archaic form for: bdnzt ( erT* 4 ) + 1 ,addr 
equivalentto:be Ox08, (erT*4)+l,addr 

crT, addr Branch if Decremented CTR is Non-Zero and 
Less Than or Equal 

archaic form for: bdnz f ( erT* 4 ) + 1 ,addr 
equivalentto: be OxOO, (erT*4 ) + 1 ,addr 

crT, addr Branch if Decremented CTR is Non-Zero and 
Less Than 

archaic form for: bdnzt (erT* 4) +0, addr 
equivalentto: be Ox08, (erT*4) +0 ,addr 

crT, addr Branch if Decremented CTR is Non-Zero and 
Not Equal 

archaic form for: bdnz f ( erT* 4 ) + 2 ,addr 
equivalentto: be OxOO, (erT*4 ) +2, addr 

crT, addr Branch if Decremented CTR is Non-Zero and 
Not Summary Overflow 

archaic form for: bdnz f ( erT* 4 ) + 3 ,addr 
equivalent to: be OxO 0, (erT* 4 ) + 3, addr 

Branch if Decremented CTR is Not Zero to LR 
archaic form for: bdnzlr[l] 
equivalent to: belr[l] OxlO, 0 

crT, addr Branch if Decremented CTR is Non-Zero and 
Summary Overflow 

archaic form for: bdnzt (erT*4) +3 ,addr 
equivalent to: be Ox08, (erT*4) +3 ,addr 

addr Branch if Decremented CTR is Not Zero 
equivalent to: be[l][a] OxlO, 0 ,addr 
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• bdnzf[l][a] crbT, addr Branch if Decremented CTR is Not Zero and 
Condition False 

equivalentto: bc[l][a] OxOO, crbT, addr 
• bdnzflr[l] crbT Branch if Decremented CTR is Not Zero and 

Condition False to LR 
equivalentto:bclr[l] OxOO,crbT 

• bdnzlr[l] Branch if Decremented CTR is Not Zero to LR 
equivalent to: bclr[l] Ox10, 0 

• bdnzt[l][a] crbT, addr Branch if Decremented CTR is Not Zero and 
Condition True 

equivalentto: bc[l][a] Ox08, crbT, addr 
• bdnztlr[l] crbT Branch if Decremented CTR is Not Zero and 

Condition True to LR 
equivalentto:bclr[l] Ox08,crbT 

• bdz[l][a] addr Branch if Decremented CTR is Zero 
equivalent to: bc[l][a] Ox12, O,addr 

bdzeq crT, addr Branch if Decremented CTR is Zero and Equal 
archaic form for: bdzt ( crT* 4 ) + 2, addr 
equivalentto:bc OxOA, (crT*4)+2,addr 

• bdzf[l][a] crbT, addr Branch if Decremented CTR is Zero and 
Condition False 

equivalent to: bc[l][a] Ox02, crbT, addr 
• bdzflr[l] crbT Branch if Decremented CTR is Zero and 

Condition False to LR 
equivalent to: bclr[l] Ox02, crbT 

bdzge crT, addr Branch if Decremented CTR is Zero and 
Greater Than or Equal 

archaic form for: bdzf (crT*4) +0 ,addr 
equivalent to: bc Ox02, (crT*4 ) +0 ,addr 

bdzgt crT, addr Branch if Decremented CTR is Zero and 
Greater Than 

archaic form for: bdzt ( crT* 4 ) + 1, addr 
equivalentto: bc OxOA, (crT*4) +1 ,addr 

bdz le crT, addr Branch if Decremented CTR is Zero and Less 
Than or Equal 

archaic form for: bdz f ( crT* 4 ) + 1 , addr 
equivalent to: bc OxO 2 , (crT* 4 ) + 1, addr 

• bdz lr[ l] Branch if Decremented CTR is Zero to LR 
equivalent to: bclr[l] Ox12, 0 

bdz 1 t crT, addr Branch if Decremented CTR is Zero and Less 
Than 

archaic form for: bdzt (crT* 4) +0, addr 
equivalent to: bc OxOA, (crT*4) +0, addr 

bdzne crT, addr Branch if Decremented CTR is Zero and Not 
Equal 

archaic form for: bdz f ( crT* 4 ) + 2 , addr 
equivalent to: bc Ox02, (crT*4 ) +2 ,addr 
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bdzns crT,addr Branch if Decremented CTR is Zero and Not 
Summary Overflow 

archaic form for: bdz f ( crT* 4 ) + 3, addr 
equivalentto:bc Ox02, (crT*4)+3,addr 

bdzr[l] Branch if Decremented CTR is Zero to LR 
archaic form for: bdzIr[l] 
equivalent to: bcIr[l] Ox12, 0 

bdzso crT, addr Branch if Decremented CTR is Zero and 
Summary Overflow 

archaic form for: bdzt (crT*4) +3 ,addr 
equivalent to: bc OxOA, (crT*4 )+3 ,addr 

• bdzt[l][a] crbT ,addr Branch if Decremented CTR is Zero and 
Condition True 

equivalent to: bc[l][a] OxOA,crbT ,addr 
• bdztIr[l] crbT Branch if Decremented CTR is Zero and 

Condition True to LR 
equivalent to: bcIr[l] OxOA, crbT 

• beq[l][a] [crT, ]addr Branch if Equal 
equivalent to: bc[l][a] OxOC, (crT*4) +2 ,addr 

beqc[l] [crT] Branch if Equalto CTR 
archaic form for: beqctr[l] [crT] 
equivalentto:bcctr[l] OxOC, (crT*4)+2 

• beqctr[l] [crT] Branch if Equal CTR 
equivalentto:bcctr[l] OxOC, (crT*4)+2 

• beqIr[l] [crT] Branch if Equal to LR 
equivalentto: bcIr[l] OxOC, (crT*4) +2 

beqr[l] [crT] Branch if Equal to LR 
archaic form for: beqIr[l] [crT] 
equivalent to: bcIr[l] OxOC, (crT*4 ) +2 

• bf[l][a] crbT,addr Branch if Condition False 
equivalent to: bc Ox04,crbT ,addr 

• bfctr[l] crbT Branch if Condition False to CTR 
equivalent to: bcctr[l] Ox04, crbT 

• bfIr[l] crbT Branch if Condition False to LR 
equivalent to: bcIr[l] Ox04, crbT 

• bge[l][a] [crT, ]addr Branch if Greater Than or Equal 
equivalentto: bc[l][a] Ox04, (crT*4) +0 ,addr 

bgec[l] [crT] Branch if Greater Than or Equal to CTR 
archaic form for: bgectr[l] [crT] 
equivalent to: bcctr[l] Ox04, (crT*4) +0 

• bgectr[l] [crT] Branch if Greater Than or Equal to CTR 
equivalent to: bcctr[l] Ox04, (crT*4) +0 

• bgeIr[l] [crT] Branch if Greater Than or Equal to LR 
equivalentto: bcIr[l] Ox04, (crT*4) +0 

bger[l] [crT] I3ranch if Greater Than or Equal to LR 
archaic form for: bgeIr[l] [crT] 
equivalentto: bcIr[l] Ox04, (crT*4) +0 

• bgt[l][a] [crT, ]addr Branch if Greater Than 
equivalentto: bc[l][a]OxOC, (crT*4) +1 ,addr 
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bgtc[l] [crT] Branch if Greater Than to CTR 
archaic form for: bgtctr[l] [crT] 
equivalent to: bcctr[l] OxOC, (crT*4) +1 

• bgtctr[l] [crT] Branch if Greater Than to CTR 
equivalentto:bcctr[l] OxOC, (crT*4)+1 

• bgtlr[l] [crT] Branch if Greater Than to LR 
equivalentto:bclr[l] OxOC, (crT*4)+1 

bgtr[l] [crT] Branch if Greater Than to LR 
archaic form for: bgtlr[l] [crT] 
equivalent to: bclr[l] OxOC, (crT*4 )+1 

• ble[l][a] [crT,]addr Branch if Less Than or Equal 
equivalentto: bc[l][a] Ox04, (crT*4 ) +1, addr 

blec[l] [crT] Branch if Less Than or Equalto CTR 
archaic form for: blectr[l] [crT] 
equivalent to: bcctr[l] Ox04, (crT*4) +1 

• blectr[l] [crT] Branch if Less Than or Equal to CTR 
equivalent to: bcctr[l] Ox04, (crT*4) +1 

• blelr[ 1] [crT] Branch if Less Than or Equal to LR 
equivalentto: bclr[l] Ox04, (crT*4) +1 

bler[l] [crT] Branch if Less Than or Equal to LR 
archaic form for: blelr[l] [crT] 
equivalent to: bclr[l] Ox04, (crT*4) +1 

• blr[l] Branch Unconditionally to LR 
equivalent to: bclr[l] Ox14, 0 

• blt[l][a] [crT,]addr Branch if Less Than 
equivalent to: bc[l][a] OxOC, (crT*4 )+0 ,addr 

bl tc[l] [crT] Branch if Less Than to CTR 
archaic form for: bl tctr[l] [crT] 
equivalentto:bcctr[l] OxOC, (crT*4)+0 

• bl tctr[l] [crT] Branch if Less Than to CTR 
equivalentto:bcctr[l] OxOC, (crT*4)+0 

• bl tlr[l] [crT] Branch if Less Than to LR 
equivalentto:bclr[l] OxOC, (crT*4)+0 

bltr[l] [crT] Branch if Less Than to LR 
archaic form for: bl tlr[l] [crT] 
equivalent to: bclr[l] OxOC, (crT*4) +0 

• bne[l][a] [crT, ]addr Branch if Not Equal 
equivalent to: bc[l][a] Ox04, (crT*4) +2 ,addr 

bnec[l] [crT] Branch if Not Equal to CTR 
archaic form for: bnectr[l] [crT] 
equivalentto:bcctr[l] Ox04, (crT*4)+2 

• bnectr[l] [crT] Branch if Not Equal to CTR 
equivalentto: bcctr[l] Ox04, (crT*4) +2 

• bnelr[l] [crT] Branch if Not Equalto LR 
equivalent to: bclr[l] Ox04, (crT*4) +2 

bner[l] [crT] Branch if Not Equalto LR 
archaic form for: bnelr[l] [crT] 
equivalentto: bclr[l] Ox04, (crT*4) +2 
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• bng[l][a] [crT,]addr Branch if Not Greater Than 
equivalent to: bc[l][a] Ox04, (crT*4 ) +1,addr 

bngc[l] [crT] Branch if Not Greater Than to CTR 
archaicform for: bngctr[l] [crT] 
equivalent to: bcctr[l] Ox04, (crT*4) +1 

• bngctr[l] [crT] Branch if Not Greater Than to CTR 
equivalent to: bcctr[l] Ox04, (crT*4) +1 

• bng1r[1] [crT] BranchifNotGreaterThantoLR 
equivalentto: bc1r[1] Ox04, (crT*4 )+1 

bngr[l] [crT] Branch if Not Greater Than to LR 
archaic form for: bng1r[1] [crT] 
equivalentto:bc1r[1] Ox04, (crT*4)+1 

• bn1[1][a] [crT ,]addr Branch if Not Less Than 
equivalent to: bc[l][a] Ox04, (crT*4) +0 ,addr 

bn1c[1] [crT] BranchifNotLessThantoCTR 
archaic form for: bn1ctr[1] [crT] 
equivalentto:bcctr[l] Ox04, (crT*4)+0 

• bn1ctr[1] [crT] Branch if Not Less Than to CTR 
equivalent to: bcctr[l] Ox04, (crT*4) +0 

• bn11r[1] [crT] Branch if Not Less Than to LR 
equivalent to: bc1r[1] Ox04, (crT*4) +0 

bn1r[1] [crT] Branch if Not Less Than to LR 
archaic form for: bn11r[1] [crT] 
equivalent to: bc1r[1] Ox04, (crT*4) +0 

• bns[l][a] [crT,]addr Branch if Not Summary Overflow 
equivalent to: bc[l][a] Ox04, (crT*4) +3,addr 

bnsc[l] [crT] Branch if Not Summary Overflow to CTR 
archaic form for: bnsctr[l] [crT] 
equivalent to: bcctr[l] Ox04, (crT*4) +3 

• bnsctr[ 1] [crT] Branch if Not Summary Overflow to CTR 
equivalent to: bcctr[l] Ox04, (crT*4) +3 

• bns1r[1] [crT] Branch if Not Summary Overflow to LR 
equivalent to: bc1r[1] Ox04, (crT*4) +3 

bnsr[l] [crT] Branch if Not Summary Overflow to LR 
archaic form for: bns1r[1] [crT] 
equivalentto:bc1r[1] Ox04, (crT*4)+3 

• bnu[l][a] [crT,]addr Branch if Not Unordered 
equivalentto:bc[l][a] Ox04, (crT*4)+3,addr 

• bnuctr[l] [crT] Branch if Not Unordered to CTR 
equivalent to: bcctr[l] Ox04, (crT*4) +3 

• bnu1r[1] [crT] Branch if Not Unordered to LR 
equivalent to: bc1r[1] Ox04, (crT*4 ) +3 

bnz[l][a] [crT ,]addr Branch if Not Zero 
archaic form for: bne[l][a] [crT ,]addr 
equivalent to: bc[l][a] Ox04, (crT*4) +2,addr 

bnzc[l] [crT] Branch if Not Zero to CTR 
archaic form for: bnectr[l] [crT] 
equivalentto: bcctr[l] Ox04, (crT*4) +2 
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bnzr[l] [crT] Branch if Not Zero to LR 
archaic form for: bnelr[l] [crT] 
equivalentto: bclr[l] Ox04, (crT*4) +2 

br[l] Branch Unconditionally to LR 
archaic form for: blr[l] 
equivalent to: bclr[l] Ox14, 0 

• bso[l][a] [crT, ]addr Branch if Summary Overflow 
equivalentto:bc[l][a] oxoe, (crT*4)+3,addr 

bsoc[l] [crT] Branch if Summary Overflow to CTR 
archaic form for: bsoctr[l] [crT] 
equivalentto: bcctr[l] oxoe, (crT*4) +3 

• bsoctr[l] [crT] Branch if Summary Overflow to CTR 
equivalent to: bcctr[l] oxoe, (crT* 4) + 3 

• bsolr[l] [crT] Branch if Summary Overflow to LR 
equivalent to: bclr[l] oxoe, {crT*4)+3 

bsor[l] [crT] Branch if Summary Overflow to LR 
archaic form for: bsolr[l] [crT] 
equivalentto:bclr[l] oxoe, {crT*4)+3 

• bt[l][a] crbT, addr Branch if Condition True 
equivalent to: bc oxOe,crbT, addr 

• btctr[l] crbT Branch if Condition True to CTR 
equivalent to: bcctr[l] oxoe, crbT 

• btlr[l] crbT Branch if Condition True to LR 
equivalent to: bclr[l] oxoe, crbT 

• bun[l][a] [crT, ]addr Branch if Unordered 
equivalentto:bc[l][a] oxoe, (crT*4)+3,addr 

• bunctr[l] [crT] Branch if Unordered to CTR 
equivalentto: bcctr[l] oxoe, (crT*4) +3 

• bunlr[l] [crT] Branch if Unordered to LR 
equivalentto:bclr[l] oxoe, {crT*4)+3 

bz[l][a] [crT,]addr Branch if Zero 
archaic form for: beq[l][a] [crT, ]addr 
equivalentto:bc[l][a] oxoe, {crT*4)+2,addr 

bzc[l] [crT] Branch if Zero to CTR 
archaic form for: beqctr[l] [crT] 
equivalentto:bcctr[l] oxoe, {crT*4)+2 

bzr[l] [crT] Branch if Zero to LR 
archaicform for: beqlr[l] [crT] 
equivalentto:bclr[l] oxoe, (crT*4)+2 

cal rT, d (rA) Compute Address Lower 
archaic form for: addi rT, d (rA) 

cau rT, rA, u16 Compute Address Upper 
archaic form for: addis rT, rA, u16 

c ax[ 0][ .] rT, r A, r B Compute Address 
archaic form for: add[ o][.J rT, r A, r B 

clcs rT, rA Cache Line Compute Size 
This instruction exists on POWER and the 601 only. 

clf rA,rB Cache Line Flush 
This instruction exists on POWER only. 
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cli rA, rB Cache Line Invalidate 
This instruction exists on POWER only. 

64' clrldi[.] rA,rS,nBits Clear Left Doubleword Immediate 
equivalentto: rldicl[.] rA, rS, 0, nBits 

64' clrlsldi[ .]rA, rS, nBits, shift Clear Left and Shift Left Doubleword 
Immediate 

equivalentto: r ldic[.] rA, rS, shift, nBits-shift 
• clrlslwi[ .]rA, rS, nBits ,shift Clear Left and Shift Left Word Immediate 

equivalentto: rlwinm[.] rA, rS, shift, nBits-shift, 31-shift 
• clrlwi[.] rA,rS,nBits Clear Left Word Immediate 

equivalent to: rlwinm[.] rA, rS, 0, nBits, 31 
64' clrrdi[.] rA,rS,nBits Clear Right Doubleword Immediate 

equivalent to: rldicr[.] rA,rS, 0, 63-nBits 
• clrrwi[.] rA,rS,nBits Clear Right Word Immediate 

cmp 

• cmp 
• cmpd 

• cmpdi 

cmpi 

• cmpi 
cmpl 

• cmpl 
• cmpld 

• cmpldi 

cmpli 

• cmpli 
• cmplw 

• cmplwi 

• cmpw 

• cmpwi 

cntlz[.] 

64' cntlzd[.] 
• cntlzw[.] 
• crand 
• crandc 

equivalent to: rlwinm[.] rA, rS, 0,0, 31-nBits 
crT,rA,rB Compare 
archaic form for: cmp crT, 0, rA, rB 

crT,L,rA,rB Compare 
crT, rA, rB Compare Doubleword 
equivalent to: cmp crT, 1 , r A, r B 

crT, rA, s16 Compare Doubleword Immediate 
equivalent to: cmpi crT, 1 , rA, s16 

crT,rA,s16 Compare Immediate 
archaic form for: cmp i crT, 0 , r A , s16 

crT,L,rA,s16 Compare Immediate 
crT, rA, rB Compare Logical 
archaic form for: cmpl crT, 0, rA, rB 

crT, L, rA, r B Compare Logical 
crT, rA, rB Compare Logical Doubleword 
equivalent to: cmpl crT, 1, rA, rB 

crT, rA, u16 Compare Logical Doubleword Immediate 
equivalent to: cmpli crT, 1, rA, u16 

crT,rA,u16 Compare Logical Immediate 
archaic form for: cmpi crT, 0, rA, u16 

crT, L, rA, u16 Compare Logical Immediate 
crT, rA,rB Compare Logical Word 
equivalent to: cmpl crT, 0, rA, rB 

crT, rA,u16 Compare Logical Word Immediate 
equivalent to: cmpli crT, 0, rA, u16 

crT, rA, rB Compare Word 
equivalent to: cmp crT, 0, rA, rB 

crT, rA,s16 Compare Word Immediate 
equivalent to: cmpi crT, 0 ,rA, s16 

r A, r 5 Count Leading Zeros 
archaic form for: cntlzw[.] rA, rS 

rA, rS Count Leading Zeros Doubleword 
r A, r 5 Count Leading Zeros Word 
crbT, crbA, crbB Condition Register AND 
crbT, crbA, crbB Condition Register AND with Complement 
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• ereIr 

• ereqv 
• ermove 

• ernand 
• ernor 
• ernot 

• eror 
• erore 
• erset 

• erxor 
• debf 
• debi 
• debst 
• debt 
• debtst 
• debz 

deIst 

deIz 

des 

div[o][ .J 

64· divd[o][.J 
64· divdu[o][.J 

divs[o][.J 

• di vw[ 0 ][ .J 
• divwu[o][.J 

doz[o][.J 

dozi 

? eeiwx 
? eeowx 

• eieio 
• eqv[.J 

64· extIdi[.J 

• extIwi[.J 

crbT Condition Register Clear 
equivalent to: erxor crbT, crbT, crbT 

crbT, crbA, crbB Condition Register Equivalent 
crbT, crbA Condition Register Move 
equivalent to: eror crbT, crbA, crbA 

crbT, crbA, crbB Condition Register Not AND 
crbT, crbA, crbB Condition Register Not OR 
crbT, crbA Condition Register Not 
equivalent to: ernor crbT, crbA, crbA 

crbT, crbA, crbB Condition Register OR 
crbT, crbA, crbB Condition Register OR with Complement 
crbT Condition Register Set 
equivalent to: ereqv crbT, crbT , crbT 

crbT, crbA, crbB Condition Register Exclusive OR 
rA,rB Data Cache Block Flush 
rA, rB Data Cache Block Invalidate 
rA, rB Data Cache Block Store 
rA, rB Data Cache Block Touch 
rA, rB Data Cache Block Touch for Store 
rA, rB Data Cache Block Zero 
rA, rB Data Cache Line Store 
This instruction exists on POWER only. 

rA, rB Data Cache Line Zero 
archaic form for: debz 

Data Cache Synchronize 
archaic form for: sync 

rT,rA,rB Divide 
This instruction exists on POWER and the 601 only. 

rT, r A, r B Divide Doubleword 
rT, rA, rB Divide Doubleword Unsigned 
rT, r A, r B Divide Short 
This instruction exists on POWER and the 601 only. 

rT, rA, rB Divide Word 
rT, r A, r B Divide Word Unsigned 
rT, r A , r B Difference Or Zero 
This instruction exists on POWER and the 601 only. 

rT, rA, s16 Difference Or Zero Immediate 
This instruction exists on POWER and the 601 only. 

rT, r A, r B External Control Input Word Indexed 
rS, rA, rB External Control Output Word Indexed 

rA,rS,rB 
rA, rS, nBits, start 

Enforce In-Order Execution of 1/0 
EqUivalent 
Extract and Left Justify Doubleword 
Immediate 

equivalent to: rIdier[.J rA, rS ,start, nBits-l 
rA, rS, nBits, start Extract and Left Justify Word Immediate 
equivalent to: rIwinm[.J rA, rS, start, 0 , nBits-l 
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64' extrdi[.] 

• extrwi[.] 

exts[.] 

• extsb[.] 
• extsh[.] 

64' extsw[.] 
fa[. ] 

• fabs[.] 
• fadd[.] 
• fadds[.] 

64' fcfid[.] 

• fcmpo 
• fcmpu 

64' fctid[.] 
64' fctidz[.] 

• fctiw[.] 
• fctiwz[.] 

fd[.] 

• fdiv[.] 
• fdivs[.] 

fm[.] 

fma[.] 

• fmadd[.] 
• fmadds[.] 
• fmr[.] 

fms[.] 

• fmsub[.] 
• fmsubs[.] 

• fmul[.] 
• fmuls[.] 
• fnabs[.] 
• fneg[.] 

fnma[. ] 

• fnmadd[.] 

rA, rS, nBits, start Extract and Right Justify Doubleword 
Immediate 

equivalentto: rldicl[.] rA, rS ,start+nBits, 64-nBits 
rA,:tS, nBits, start Extract and Right Justify Word Immediate 
equivalent to: rlwinm[.] rA, rS ,start+nBits, 32-nBits, 31 

rA, rS Extend Sign Halfword 
archaic form for: extsh[.] rA, rS 

r A, rS Extend Sign Byte 
r A, rS Extend Sign Halfword 
rA,rS Extend Sign Word 
frT, frA, frB Floating-Point Add 
archaic form for: fadd[.] frT, frA, frB 

frT, frB Floating-Point Absolute Value 
frT, frA, frB Floating-Point Add 
frT, frA, frB Floating-Point Add Single-Precision 
frT, frB Floating-Point Convert from Integer 

crT,frA,frB 
crT,frA,frB 
frT,frB 
frT,frB 

frT,frB 
frT,frB 

Doubleword 
Floating-Point Compare Ordered 
Floating-Point Compare Unordered 
Floating-Point Convert to Integer Doubleword 
Floating-Point Convert to Integer Doubleword 
with Round to Zero 

Floating-Point Convert to Integer Word 
Floating-Point Convert to Integer Word with 
Round toward Zero 

f rT , f r A, fr B Floating-Point Divide 
archaicformfor: fdiv[.] frT,frA,frB 

frT, frA, frB Floating-Point Divide 
frT, frA, frB Floating-Point Divide Single-Precision 
frT, frA, frC Floating-Point Multiply 
archaic form for: fmul[.] frT, frA, frC 

frT, frA, frC, frB Floating-Point Multiply-Add 
archaic form for: fmadd[.] frT, frA, frC, frB 

frT, frA, frC, frB Floating-Point Multiply-Add 
frT, frA, frC, frB Floating-Point Multiply-Add Single-Precision 
frT, frB Floating-Point Move Register 
frT, frA, frC, frB Floating-Point Multiply-Subtract 
archaic form for: fmsub[.] frT, frA, frC, frB 

frT, frA, frC, frB Floating-Point Multiply-Subtract 
frT, frA, frC, frB Floating-Point Multiply-Subtract Single-

Precision 
f rT , f r A, f rC Floating-Point Multiply 
frT, frA, frC Floating-Point Multiply Single-Precision 
frT, frB Floating-Point Negative Absolute Value 
frT, frB Floating-Point Negate 
frT, frA, frC, frB Floating-Point Negative Multiply-Add 
archaic form for: fnmadd[.] frT, frA, frC, frB 

frT, frA, frC, frB Floating-Point Negative Multiply-Add 
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- fnmadds[.] frT, frA, fre, frB Floating-Point Negative Multiply-Add Single­
Precision 

fnms[. ] frT, frA, fre, frB Floating-Point Negative Multiply-Subtract 
archaic form for: fnmsub[.] frT, frA, fre, frB 

- fnmsub[.] frT, frA, fre, frB Floating-Point Negative Multiply-Subtract 
- fnmsubs[.] frT, frA, fre, frB floating-Point Negative Multiply-Subtract 

?- fres[.] frT,frB 
Single-Precison 

Floating-Point Reciprocal Estimate Single­
Precision 

- frsp[.] frT, frB Floating-Point Round to Single-Precision 
Floating-Point Reciprocal Square Root 
Estimate 

? - frsqrte[.] frT, frB 

fs[. ] 

?- fse1[.] 
? - fsqrt[.] 
?- fsqrts[.] 

- fsub[.] 
- fsubs[.] 
- icbi 

ics 

- ins1wi[.] 

64 - insrdi[.] 

- insrwi[.] 

- isync 
1 

- 1a 

- 1a 

1brx 

- 1bz 
- 1bzu 
- 1bzux 
- 1bzx 

64- 1d 
64- 1darx 
64- 1du 
64- 1dux 
64- 1dx 

frT, frA, frB Floating-Point Subtract 
archaicformfor: fsub[.] frT,frA,frB 

frT, frA, fre, frB floating-Point Select 
frT, frB Floating-Point Square Root 
frT, frB Floating-Point Square Root Single-Precision 
frT, frA, frB Floating-Point Subtract 
frT, frA, frB floating-Point Subtract Single-Precision 
r A , r B Instruction Cache Block Invalidate 

Instruction Cache Synchronize 
archaic form for: isync 

r A, rS , nBits , start Insert from Left Word Immediate 
equivalent to: r1wimi[.] rA, rS, 32-start, start, (start+nBits)-1 

r A, rS , nBits , start Insert from Right Doubleword Immediate 
equivalent to: r1dimi[.] rA, rS, 6 4-(start + nBits), start 

r A, rS, nBits , start Insert from Right Word Immediate 
equivalentto: r1wimi[.] rA, rS, 32-end, start, end-1 
where end = (start + nBits) 

Instruction Cache Synchronize 
rT,d(rA) Load 
archaic form for: 1wz rT, d (rA) 

rT, d ( r A) Load Address 
equivalent to: addi rT, rA, d 

rT, symbol Load Address 
equivalent to: addi rT, rN, dSymbol 
where dSymbol is the offset from r N to symbol and r N has been 

specified using the. using assembler directive 
rT, rA, rB Load Byte-Reversed Indexed 
archaicform for: 1wbrx rT, rA, rB 

rT, d ( r A) Load Byte and Zero 
rT, d ( rA) Load Byte and Zero with Update 
rT, rA, rB Load Byte and Zero with Update Indexed 
rT, r A, r B Load Byte and Zero Indexed 
rT, ds ( rA) Load Doubleword 
rT, rA, rB Load Doubleword and Reserve Indexed 
rT, ds ( rA) Load Doubleword with Update 
rT, rA, rB Load Doubleword with Update Indexed 
rT, rA, rB Load Doubleword Indexed 
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• lfd 
• lfdu 

• lfdux 

• lfdx 
• lfs 
• lfsu 

• lfsux 

• lfsx 
• lha 
• lhau 
• lhaux 

• lhax 
• lhbrx 
• 1hz 
• lhzu 
• lhzux 
• lhzx 
• li 

lil 

• lis 

liu 

1m 

.lmw 
lscbx[. ] 

lsi 

• lswi 
• lswx 

lsx 

lu 

lux 

64. lwa 
• lwarx 

frT,d(rA) 
frT,d(rA) 

frT,rA,rB 

frT,rA,rB 
frT,d(rA) 
frT,d(rA) 

frT,rA,rB 

frT,rA,rB 
rT ,d(rA) 
rT ,de rA) 
rT,rA,rB 

Load Floating-Point Double-Precision 
Load Floating-Point Double-Precision with 
Update 

Load Floating-Point Double-Precision with 
Update Indexed 

Load Floating-Point Double-Precision Indexed 
Load Floating-Point Single-Precision 
Load Floating-Point Single-Precision with 
Update 

Load Floating-Point Single-Precision with 
Update Indexed 

Load Floating-Point Single-Precision Indexed 
Load Halfword Algebraic 
Load Halfword Algebraic with Update 
Load Halfword Algebraic with Update 
Indexed 

rT, rA, rB Load Halfword Algebraic Indexed 
rT, rA, rB Load Halfword Byte-Reversed Indexed 
rT, d ( r A) Load Halfword and Zero 
rT, d ( rA ) Load Halfword and Zero with Update 
rT, r A, r B Load Halfword and Zero with Update Indexed 
rT, rA, r B Load Halfword and Zero Indexed 
rT, s16 Load Immediate 
equivalent to: addi rT, 0, s16 

rT ,s16 Load Immediate Lower 
archaic form for: li rT, s16 
equivalent to: addi rT, 0 ,s16 

rT, s16 Load Immediate Shifted 
equivalent to: addi s rT, 0 ,s16 

rT, u16 Load Immediate Upper 
archaic form for: lis rT ,s16 
equivalent to: addis rT, 0 ,u16 

rT, d ( r A) Load Multiple 
archaic form for: lmw rT, d ( r A ) 

rT, d ( rA) Load Multiple Word 
rT, rA, rB Load String and Compare Byte Indexed 
This instruction exists on POWER and the 601 only. 

rT, rA, nBytes Load String Immediate 
archaic form for: 1 sw i rT, r A , nBytes 

rT, rA, nBytes Load String Word Immediate 
rT, rA{ rB Load String Word Indexed 
rT, r A , r B Load String Indexed 
archaicformfor:lswx rT,rA,rB 

rT, d (rA) Load with Update 
archaic form for: lwzu rT, d (rA) 

rT, rA, rB Load with Update Indexed 
archaic form for: lwzux rT,rA,rB 

rT, ds ( r A) Load Word Algebraic 
rT, rA, rB Load Word and Reserve Indexed 
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64' lwaux 
64' lwax 

• lwbrx 
• lwz 
• lwzu 
• lwzux 
• lwzx 

lx 

rnaskg[.j 

rnaskir[.j 

• rnerf 
• rnerfs 
• rnerxr 

64' rnfasr 

• rnfer 
• rnfetr 

• rnfdar 

• rnfdbatl 

• rnfdbatu 

• rnfdee 

• rnfdsisr 

• rnfear 

• rnffs[.j 
• rnfibatl 

• rnfibatu 

• rnflr 

rT, r A, r B Load Word Algebraic with Update Indexed 
rT, r A, r B Load Word Algebraic Indexed 
rT, rA, rB Load Word Byte-Reversed Indexed 
rT, d (rA) Load Word and Zero 
rT, d ( r A) Load Word and Zero with Update 
rT, rA, r B Load Word and Zero with Update Indexed 
rT, rA, r B Load Word and Zero Indexed 
rA, rS, rB Load Indexed 
archaic form for: lwzx rA,rS,rB 

rA,rS,rB Mask Generate 
This instruction exists on POWER and the 601 only. 

r A , r 5 , r B Mask Insert from Register 
This instruction exists on POWER and the 601 only. 

crT, erS Move Condition Register Fields 
crT, erS Move to Condition Register from FPSCR 
crT Move to Condition Register from XER 
rT Move from Address Space Register 
equivalent to: rnf s pr rT, 280 

rT Move from Condition Register 
rT Move from Count Register 
equivalent to: rnfspr rT, 9 

rT Move from Data Address Register 
equivalent to: rnf spr rT, 19 

rT, n Move from Data Block-Address Translation 
Register n Lower 

equivalent to: rnf s pr rT, 537 + 2 * n 
rT, n Move from Data Block-Address Translation 

Register n Upper 
equivalent to: rnf spr rT, 536+ 2 * n 

rT Move from Decrement Register 
equivalent to: rnf s pr rT, 22 
Note: on POWER, the SPR encoding for the DEC Register was 6 instead 

of 22; the MPC601 accepts either encoding. 
rT Move from Data Storage Interrupt Status 

Register 
equivalent to: rnfspr rT, 18 

rT Move from External Access Register 
equivalent to: rnf spr rT, 282 

frT Move from FPSCR 
rT,n Move from Instruction Block-Address 

Translation Register n Lower 
equivalentto:rnfspr rT,529+2*n 

rT, n Move from Instruction Block-Address 

equivalent to: rnfspr 
rT 
equivalent to: rnfspr 

Translation Register n Upper 
rT,528+2*n 
Move from Link Register 
rT,8 
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mfmq 

• mfmsr 
• mfpvr 

mfrtcl 

mfrtcu 

• mfsdr1 

• mfspr 
• mfsprg 

32. mfsr 
mfsri 

32· mfsrin 
• mfsrrO 

• mfsrr1 

• mftb 
• mftb 

• mftbu 

• mfxer 

• mr[.] 

64. mtasr 

mtcr 

• mtcrf 
• mtctr 

• mtdar 

• mtdbatl 

rT Move from MQ Register 
This extended form is defined on POWER and the 601 only. 
equivalent to: mf s pr rT, 0 

rT Move from Machine State Register 
rT Move from Processor Version Register 
equivalentto: mf s pr rT, 287 

rT Move from Real Time Counter Lower 
This extended form is defined on POWER and the 601 only. 
equivalent to: mfspr rT, 5 

rT Move from Real Time Counter Upper 
This extended form is defined on POWER and the 601 only. 
equivalent to: mfspr rT, 4 

rT Move from Storage Description Register 1 
equivalent to: mf spr rT, 25 

rT, SPR Move from Special Purpose Register 
rT, n Move from SPR GO-G3 
equivalent to: mfspr rT, 272+n 

rT, SR Move from Segment Regster 
rT, rA, rB Move from Segment Register Indirect 
archaic form for: mfsrin rT, rB 
Note that A must equal 0 formfsrin to replacemfsri and thatthe 

instruction encoding is different for these instructions. 
rT, r B Move from Segment Register Indirect 
rT Move from Save/Restore Register 0 
equivalent to: mf spr rT, 26 

rT Move from Save/Restore Register 1 
equivalent to: mf spr rT, 27 

rT, TBR Move from Time Base Register 
rT Move from Time Base Lower 
equivalent to: mf tb rT, 268 

rT Move from Time Base Upper 
equivalent to: mf tb rT, 269 

rT Move from Fixed-Point Exception Register 
equivalent to: mfspr rT, 1 

rA, rS Move Register 
equivalent to: or[.] rA, rS, rS 

rS Move to Address Space Register 
equivalentto: mtspr 280, rS 

rS Move to Condition Register 
equivalent to: mtcrf OxFF, rS 

crMask, rS Move to Condition Register Fields 
r S Move to Count Register 
equivalent to: mtspr 9, rS 

r S Move to Data Address Register 
equivalent to: mtspr 19, rS 

n, rS Move to Data Block-Address Translation 
Register n Lower 

equivalentto: mts pr 537 + 2 * n, rS 
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• mtdbatu 

• mtdec 

• mtdsisr 

• mtear 

mtfs [ • ] 

• mtfsbO[.] 
• mtfsb1[.] 
• mtfsf[.] 
• mtfsfi[.] 
• mtibatl 

• mtibatu 

• mtlr 

mtmq 

• mtmsr 
• mtsdr1 

• mtspr 
• mtsprg 

32. mtsr 
mtsri 

32· mtsrin 
• mtsrrO 

• mtsrr1 

mttb 

• mttbl 

• mttbu 

n,rS 

equivalent to: mtspr 
rS 
equivalent to: mtspr 

rS 
equivalent to: mtspr 

rS 
equivalent to: mtspr 

frB 

Move to Data Block-Address Translation 
Register n Upper 

536+2*n,rS 
Move to Decrement Register 
22,rS 
Move to Data Storage Interrupt Status Register 
18,rS 
Move to External Access Register 
282,rS 
Move to FPSCR 

equivalent to: mtfsf [ .] OxFF, frB 
crbT Move to FPSCR Bit 0 
crbT 
fpscrMask, frB 
fpscrJT , fieldVal 
n,rS 

Move to FPSCR Bit 1 
Move to FPSCR Fields 
Move to FPSCR Field Immediate 
Move to Instruction Block-Address Translation 
Register n Lower 

equivalentto:mtspr 529+2*n,rS 
n, r S Move to Instruction Block-Address Translation 

Register n Upper 
equivalentto:mtspr 528+2*n,rS 

r S Move to Link Register 
equivalent to: mtspr 8, rS 

rS Move to Multiply Quotient Register 
This extended form is defined on POWER and the 601 only. 
equivalent to: mtspr 0, rS 

r S Move to Machine State Register 
rS Move to Storage Description Register 1 
equivalent to: mtspr 25, rS 

SPR, rS Move to Special Purpose Register 
n, r S Move to SPR GO-G3 
equivalentto:mtspr 272+n,rS 

SR, rS Move to Segment Register 
rS, rA, rB Move to Segment Register Indirect 
archaic form for: mtsrin rS, rB 
Note that A must equal 0 formtsrin to replace mtsri. 

r S , r B Move to Segment Register Indirect 
r S Move to Save / Restore Register 0 
equivalent to: mtspr 26, rS 

rS Move to Save/Restore Register 1 
equivalentto:mtspr 27,rS 

TBR, rS Move to Time Base Register 
This instruction was originally intended to provide write access to the 

Time Base Register, but it has since been removed from the PowerPC 
Architecture specification. 

rS Move to Time Base Lower 
equivalentto:mtspr 284,rS 

rS Move to Time Base Upper 
equivalentto:mtspr 285,rS 
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• mtxer 

mul[o][.] 

64' mulhd[.] 
64' mulhdu[.] 

• mulhw[.] 
• mulhwu[.] 

muli 

64' mulld[o][.] 
• mulli 
• mullw[o][.] 

muls[o][.] 

nabs[o][.] 

• nand[.] 
• neg[o][.] 
• nop 

• nor[.] 
• not[.] 

• or[.] 
• orc[.] 
• ori 

oril 

• oris 
oriu 

rac[ .] 

• rfi 
rfsvc 

64' rldcl[.] 
64' rldcr[.] 
64' rldic[.] 
64' rldicl[.] 

64' rldicr[.] 

64. rldimi[.] 

rlimi[.] 

rS Move to Fixed-Point Exception Register 
equivalent to: mtspr 1, rS 

rT, rA, rB Multiply 
This instruction exists on POWER and the 601 only. 

rT, rA, rB Multiply High Doubleword 
rT, rA, rB Multiply High Doubleword Unsigned 
rT, rA, rB Multiply High Word 
rT, rA, rB Multiply High Word Unsigned 
rT, rA, s16 Multiply Immediate 
archaic form for: mulli rT, rA,s16 

rT, rA, rB Multiply Low Doubleword 
rT, rA,s16 Multiply Low Immediate 
rT, rA, rB Multiply Low Word 
rT, r A, rB Multiply Short 
archaicformfor:mullw rT,rA,rB 

rT, rA Negative Absolute Value 
This instruction exists on POWER and the 601 only. 

rA,rS,rB NAND 
rT, rA Negate 

No-op 
equivalent to: ori rO, rO, 0 

rA,rS,rB NOR 
rA,rS NOT 
equivalent to: nor[.] rA, rS, rS 

rA,rS,rB OR 
rA,rS,rB OR with Complement 
rA,rS,u16 OR Immediate 
rA,rS,u16 OR Immediate Lower 
archaic form for: ori rA, rS, u16 

rA, rS, u16 OR Immediate Shifted 
rA,rS,u16 OR Immediate Upper 
archaic form for: oris rA, rS, u16 

rT, rA, rB Real Address Compute 
This instruction exists on POWER only. 

Return from Interrupt 
Return from SVC 

This instruction exists on POWER only. 
r A, r 5, r B , mb64 Rotate Left Doubleword then Clear Left 
r A, r 5, r B , me64 Rotate Left Doubleword then Clear Right 
r A, r 5, shift64 , mb64 Rotate Left Doubleword Immediate then Clear 
r A, r 5, shift64 , mb64 Rotate Left Doubleword Immediate then Clear 

Left 
rA, rS, shift64 , me64 Rotate Left Doubleword Immediate then Clear 

Right 
rA, rS, shift64 , mb64 Rotate Left Doubleword Immediate then Mask 

Insert 
r A, r 5 , shift, mb , me Rotate Left Immediate then Mask Insert 
archaic form for: rlwimi[.] rA, rS ,shift ,mb ,me 
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rlinm[.] 

rlmi[.] 

rlnm[.] 

• rlwimi[.] 
• rlwinm[.] 

• rlwnm[.] 
64. rotld[.] 

64. rotldi[.] 

• rotlw[.] 

• rotlwi[.] 

64· rotrdi[.] 

• rotrwi[.] 

rrib[.] 

• sc 
sf[o][.] 

sfe[o][.] 

sfi 

sfme[o][ .] 

sfze[o][.] 

sir .] 

sl[ .] 

? • slbia 
? slbie 

slbiex 

64· sld[.] 
64· sldi[.] 

r A, r S , shift, mb , me Rotate Left Immediate then AND with Mask 
archaic form for: rlwinm[.] rA, rS, shift, mb, me 

rA, rS, rB, mb, me Rotate Left then Mask Insert 
This instruction exists on POWER and the 601 only. 

rA, rS, rB, mb, me Rotate Left then AND with Mask 
archaic form for: rlwnm[.] rA, rS, rB, mb, me 

r A , r S , shift, mb , me Rotate Left Word Immediate then Mask Insert 
r A , r S , shift, mb , me Rotate Left Word Immediate then AND with 

Mask 
r A, r S , r B , mb , me Rotate Left Word then AND with Mask 
rA, rS, rB Rotate Left Doubleword 
equivalentto:rldcl[.] rA,rS,rB,O 

r A, r S , nBits Rotate Left Doubleword Immediate 
equivalent to: rldicl[.] rA, rS, nBits, 0 

rA,rS,rB Rotate Left Word 
equivalent to: rlwnm[.] rA, rS, rB, 0 , 31 

rA, rS, nBits Rotate Left Word Immediate 
equivalent to: rlwinm[.] rA, rS, nBits, 0,31 

rA, rS, nBits Rotate Right Doubleword Immediate 
equivalent to: rldicl[.] rA,rS, 64-nBits, 0 

rA, rS, nBits Rotate Right Word Immediate 
equivalent to: rlwinm[.] rA, rS, 32-nBits, 0,31 

rA, rS, rB Rotate Right and Insert Bit 
This instruction exists on POWER and the 601 only. 

System Call 
rT, rA, rB Subtract From 
archaicform for: subf[o][.] rT, rA, rB 

rT, rA, rB Subtract From Extended 
archaicform for: subfe[o][.] rT, rA, rB 

rT, rA, s16 Subtract From Immediate 
archaic form for: subfic rT,rA,s16 

rT, rA Subtract From Minus One Extended 
archaicform for: subfme[o][.] rT, rA 

rT, rA Subtract From Zero Extended 
archaicform for: subfze[o][.] rT, rA 

rT, rA, s16 Subtract Immediate 
equivalent to: addic[.] rT, rA, -s16 

rA,rS,rB Shift Left 
archaic form for: slw[.] rA, rS, rB 

SLB Invalidate All 
rB SLB Invalidate Entry 
rB SLB Invalidate Entry by Index 
This instruction was originally intended as an optional instruction for 

64-bit PowerPC implementations, but it has since been removed 
from the PowerPC Architecture specification. 

rA, rS, rB Shift Left Doubleword 
r A, r S , nBits Shift Left Doubleword Immediate 
equivalentto: rldicr[.] rA, rS, nBits, 63-nBits 
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sle[ .] 

sleq[.] 

sliq[.] 

slliq[.] 

sllq[.] 

slq[.] 

• slw[.] 
• slwi[.] 

sr[ .] 

sra[ .] 

64· srad[.] 
64· sradi[.] 

srai[.] 

sraiq[.] 

sraq[.] 

• sraw[.] 
• srawi[.] 

64· srd[.] 
64· srdi[.] 

sre[ .] 

srea[.] 

sreq[ .] 

sriq[.] 

srliq[.] 

srlq[.] 

srq[.] 

• srw[.] 
• srwi[.] 

rA, rS, rB Shift Left Extended 
This instruction exists on POWER and the 601 only. 

rA, rS, rB Shift Left Extended with MQ 
This instruction exists on POWER and the 601 only. 

r A, r 5, shift Shift Left Immediate with MQ 
This instruction exists on POWER and the 601 only. 

rA, rS, shift Shift Left Long Immediate with MQ 
This instruction exists on POWER and the 601 only. 

rA,rS,rB Shift Left Long withMQ 
This instruction exists on POWER and the 601 only. 

rA, rS, rB Shift Left with MQ 
This instruction exists on POWER and the 601 only. 

rA,rS,rB Shift Left Word 
rA, rS, nBits Shift Left Word Immediate 
equivalent to: rlwinm[.] rA, rS, nBits, 0, 31-nBits 

rA, rS, rB Shift Right 
archaic form for: srw[.] rA, rS, rB 

rA, rS, rB Shift Right Algebraic 
archaic form for: sraw[.] rA,rS,rB 

rA, rS, rB Shift Right Algebraic Doubleword 
rA, rS, shift64 Shift Right Algebraic Doubleword Immediate 
r A , r 5 , shift Shift Right Algebraic Immediate 
archaicformfor: srawi[.] rA,rS,shift 

rA, rS, shift Shift Right Algebraic Immediate with MQ 
This instruction exists on POWER and the 601 only. 

r A, r 5, r B Shift Right Algebraic with MQ 
This instruction exists on POWER and the 601 only. 

r A , r 5 , r B Shift Right Algebraic Word 
r A, r 5, shift Shift Right Algebraic Word Immediate 
rA, rS, rB Shift Right Doubleword 
r A, r 5, nBits Shift Right Doubleword Immediate 
equivalent to: rldicl[.] rA, rS, 64-nBits, nBits 

r A , r 5 , r B Shift Right Extended 
This instruction exists on POWER and the 601 only. 

r A , r 5 , r B Shift Right Extended Algebraic 
This instruction exists on POWER and the 601 only. 

rA, r 5, r B Shift Right Extended with MQ 
This instruction exists on POWER and the 601 only. 

r A, r 5, shift Shift Right Immediate with MQ 
This instruction exists on POWER and the 601 only. 

rA, rS, shift Shift Right Long Immediate with MQ 
This instruction exists on POWER and the 601 only. 

rA, rS, rB Shift Right Long with MQ 
This instruction exists on POWER and the 601 only. 

rA,rS,rB Shift Right with MQ 
This instruction exists on POWER and the 601 only. 

rA,rS,rB Shift Right Word 
r A, r 5, nBits Shift Right Word Immediate 
equivalent to: rlwinm[.] rA, rS, 32-nBits, nBits, 31 
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st 

• stb 
stbrx 

• stbu 
• stbux 
• stbx 

64' std 
64' stdcx. 
64' stdu 
64' stdux 
64' stdx 

• stfd 
• stfdu 
• stfdux 

• stfdx 
? stfiwx 
• stfs 
• stfsu 
• stfsux 

• stfsx 
• sth 
• sthbrx 
• sthu 
• sthux 
• sthx 

stm 

• stmw 
stsi 

• stswi 
• stswx 

stsw 

stu 

stux 

• stw 
• stwbrx 
• stWCX. 
• stwu 
• stwux 
• stwx 

rS,d(rA) Store 
archaic form for: stw rT, d (rA) 

rS, d (rA) Store Byte 
rS, rA, rB Store Byte-Reversed Indexed 
archaic form for: s twbrx rT, r A, r B 

rS, d (rA) Store Byte with Update 
rS, rA, rB Store Byte with Update Indexed 
rS, rA, rB Store Byte Indexed 
rS, ds (rA) Store Doubleword 
rS, rA, rB Store Doubleword Conditional Indexed 
rS, ds (rA) Store Doubleword with Update 
rS, rA, rB Store Doubleword with Update Indexed 
rS, rA, rB Store Doubleword Indexed 
frS, d (rA) Store Floating-Point Double 
frS, d (rA) Store Floating-Point Double with Update 
frS, rA, rB Store Floating-Point Double with Update 

frS,rA,rB 
frS, rA, rB 
frS,d(rA) 
frS,d(rA) 
frS,rA,rB 

Indexed 
Store Floating-Point Double Indexed 
Store Floating-Point as Integer Word 
Store Floating-Point Single 
Store Floating-Point Single with Update 
Store Floating-Point Single with Update 

Indexed 
frS, rA, rB Store Floating-Point Single Indexed 
rS, d (rA) Store Halfword 
r S , r A , r B Store Halfword Byte-Reversed Indexed 
rS, d (rA) Store Halfword with Update 
rS, rA, rB Store Halfword with Update Indexed 
rS, r A, r B Store Halfword Indexed 
rS, d (rA) Store Multiple 
archaic form for: s tmw rT, d ( r A ) 

rS, d (rA) Store Multiple Word 
rS, rA, nBytes Store String Immediate 
archaic form for: stswi rT, rA, nBytes 

rS, rA, nBytes Store String Word Immediate 
r S , r A, r B Store String Word Indexed 
r S , r A , r B Store String Indexed 
archaic form for: stswx rT, rA, rB 

rS, d (rA) Store with Update 
archaicform for: stwu rT, d (rA) 

rS, rA, rB Store with Update Indexed 
archaic form for: stwux rT, rA, rB 

rS, d (rA) Store Word 
rS, rA, rB Store Word Byte-Reversed Indexed 
rS, rA, rB Store Word Conditional Indexed 
rS, d (rA) Store Word with Update 
rS, rA, rB Store Word with Update Indexed 
rS, rA, rB Store Word Indexed 
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stx rS,rA,rB Store Indexed 
archaic form for: stwx rT, rA, rB 

• sub[o][.] rT,rA,rB Subtract 
equivalent to: subf[o][.] rT, rB, rA 

• subc[o][.] rT,rA,rB Subtract Carrying 
equivalent to: subfc[o][.] rT, rB, rA 

• subf[o][.] rT,rA,rB Subtract From 
• subfc[o][.] rT,rA,rB Subtract From Carrying 
• subfe[o][.] rT, rA, rB Subtract From Extended 
• subfic rT, rA,816 Subtract From Immediate Carrying 
• subfme[o][. ]rT, rA Subtract From Minus One Extended 
• subfze[o][. ]rT, rA Subtract From Zero Extended 
• subi rT, rA,816 SubtractImmediate 

equivalent to: addi rT, rA, -816 
• subic[.] rT,rA,816 Subtract Immediate Carrying 

equivalent to: addic[.] rT, rA, -816 
• subis rT,rA,816 Subtract Immediate Shifted 

equivalent to: addis rT, rA, -816 
svc Supervisor Call 

This instruction exists on POWER only. 
svca SV Supervisor Call Absolute 

svcl 

svcla 

• sync 
t 

64 • td 
64 • tdeq 

64 • tdeqi 

64 • tdge 

64 • tdgei 

64' tdgt 

64 • tdgti 

64 • tdi 
64 • tdle 

archaic form for: sc 
Note that SV must equal a for sc to replace svca. 

Supervisor Call with Link 
This instruction exists on POWER only. 

SV Supervisor Call Absolute with Link 
This instruction exists on POWER only. 

Synchronize 
trapOn,rA,rB Trap 
archaic form for: tw trap On ,rA, rB 

trap On ,rA, rB Trap Doubleword 
rA, rB Trap Doubleword if Equal 
equivalent to: td 4, rA, rB 

rA,816 Trap Doubleword if Equal Immediate 
equivalent to: tdi 4, rA, 816 

rA, rB Trap Doubleword if Greater Than or Equal 
equivalentto: td 12, rA, rB 

r A, 816 Trap Doubleword if Greater Than or Equal 
Immediate 

equivalent to: tdi 12, rA,s16 
rA, r B Trap Doubleword if Greater Than 
equivalentto: td 8, r A , r B 

rA,816 Trap Doubleword if Greater Than Immediate 
equivalent to: tdi 8, rA, 816 

rapOn, rA, 816 Trap Doubleword Immediate 
rA, rB Trap Doubleword if Less Than or Equal 
equivalent to: td 20, rA, rB 
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64- tdlei 

64- tdlge 

64- tdlgei 

64- tdlgt 

64- tdlgti 

64- tdlle 

64- tdllei 

64- tdllt 

64- tdllti 

64- tdlng 

64- tdlngi 

64- tdlnl 

64- tdlnli 

64 - tdlt 

64 - tdlti 

64 - tdne 

64 - tdnei 

64 - tdng 

64 - tdngi 

rA,516 

equivalent to: tdi 
rA,rB 

equivalent to: td 
rA,s16 

equivalent to: tdi 
rA,rB 
equivalent to: td 

rA,s16 

equivalent to: tdi 
rA,rB 

equivalent to: td 
rA, s16 

equivalent to: tdi 
rA,rB 
equivalent to: td 

rA,s16 

equivalent to: tdi 
rA,rB 

Trap Doubleword if Less Than or Equal 
Immediate 

20,rA,s16 
Trap Doubleword if Logically Greater Than or 
Equal 

5,rA,rB 
Trap Doubleword if Logically Greater Than or 
Equal Immediate 

5, rA,s16 
trap Doubleword if Logically Greater Than 

1,rA,rB 
Trap Doubleword if Logically Greater Than 
Immediate 

1,rA,s16 
Trap Doubleword if Logically Less Than or 

Equal 
6,rA,rB 

Trap Doubleword if Logically Less Than or 
Equal Immediate 

6,rA,s16 
Trap Doubleword if Logically Less Than 

2,rA,rB 
Trap Doubleword if Logically Less Than 
Immediate 

2,rA,s16 
Trap Doubleword if Logically Not Greater 
Than 

equivalent to: td 6, rA, rB 
rA,516 Trap Doubleword if Logically Not Greater 

equivalent to: tdi 
rA,rB 
equivalent to: td 

rA,s16 

Than Immediate 
6,rA,s16 

Trap Doubleword if Logically Not Less Than 
5,rA,rB 

Trap Doubleword if Logically Not Less Than 
Immediate 

equivalent to: tdi 5, rA, s16 
rA, rB Trap Doubleword if Less Than 
equivalent to: td 16, rA, rB 

rA, s16 Trap Doubleword if Less Than Immediate 
equivalent to: tdi 16, rA,s16 

rA, rB Trap Doubleword if Not Equal 
equivalent to: td 24, rA, rB 

rA, s16 Trap Doubleword if Not Equal Immediate 
equivalent to: tdi 24, rA, s16 

rA, rB Trap Doubleword if Not Greater Than 
equivalent to: td 20, rA, rB 

rA,816 Trap Doubleword if Not Greater Than 
Immediate 

equivalent to: tdi 20, rA, s16 
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64· tdnl 

64· tdnli 

ti 

tIbi 

? • tIbia 
? • tIbie 

tIbiex 

? tIbsync 
• trap 

• tw 
• tweq 

• tweqi 

• twge 

• twgei 

• twgt 

• twgti 

• twi 
• twIe 

• twIei 

• twlge 

• twlgei 

• twlgt 

• twlgti 

• twIIe 

rA, r B Trap Doubleword if Not Less Than 
equivalent to: td 12, rA, rB 

rA,816 Trap Doubleword if Not Less Than Immediate 
equivalent to: tdi 12, rA,816 

trapOn, rA, 816 Trap Immediate 
archaic form for: twi trapOn, rA, 816 

rA, rB TLB Invalidate Entry 
archaic form for: tIbie rB 
Note that A must equal 0 for tIbie to replace tlbi. 

TLB Invalidate All 
rB TLB Invalidate Entry 
r B TLB Invalidate Entry by Index 
This instruction was originally intended as an optional instruction for 

PowerPC implementations, but it has since been removed from the 
PowerPC Architecture specification. 

TLB Synchronize 
Trap Unconditionally 

equivalent to: tw 31, rO, rO 
trapOn, rA, rB Trap Word 
rA, rB Trap Word if Equal 
equivalent to: tw 4, rA, rB 

rA,816 Trap Word if Equal Immediate 
equivalent to: twi 4, rA, 816 

rA, rB Trap Word if Greater Than or Equal 
equivalent to: tw 12, rA, rB 

rA,816 Trap Word if Greater Than or Equal Immediate 
equivalentto:twi 12,rA,816 

rA, rB Trap Word if Greater Than 
equivalentto: tw 8, rA, rB 

rA,816 Trap Word if Greater Than Immediate 
equivalent to: twi 8, rA, 816 

trapOn, rA, 816 Trap Word Immediate 
rA,rB Trap Word if Less Than or Equal 
equivalent to: tw 20, rA, r B 

rA,816 Trap Word if Less Than or Equal Immediate 
equivalent to: twi 20, rA, 816 

rA, rB Trap Word if Logically Greater Than or Equal 
equivalent to: tw 5, rA, rB 

rA,816 Trap Word if LOgically Greater Than or Equal 

equivalent to: twi 
rA,rB 
equivalent to: tw 

rA,816 

Immediate 
5,rA,816 

Trap Word if Logically Greater Than 
1,rA,rB 

Trap Word if Logically Greater Than 
Immediate 

equivalentto:twi 1,rA,816 
rA, r B Trap Word if LOgically Less Than or Equal 
equivalent to: tw 6, r A , r B 
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• twllei 

• twllt 

• twllti 

• twIng 

• twIngi 

• twInl 

• twInIi 

• twIt 

• twlti 

• twne 

• twnei 

• twng 

• twngi 

• twnI 

• twnli 

• xor[.] 
• xori 

xoril 

• xoris 
xoriu 

rA,816 Trap Word if Logically Less Than or Equal 
Immediate 

equivalent to: twi 6, rA, 816 
r A, r B Trap Word if Logically Less Than 
equivalent to: tw 2, rA, rB 

rA,816 Trap Word if Logically Less Than Immediate 
equivalent to: twi 2, rA, 816 

rA, rB Trap Word if Logically Not Greater Than 
equivalent to: tw 6, rA, rB 

rA,816 Trap Word if Logically Not Greater Than 
Immediate 

6,rA,816 equivalent to: twi 
rA,rB 
equivalent to: tw 

rA,816 

Trap Word if Logically Not Less Than 
5,rA,rB 

Trap Word if Logically Not Less Than 
Immediate 

equivalent to: twi 5, rA, 816 
rA, rB Trap Word if Less Than 
equivalent to: tw 16, r A, r B 

rA,816 Trap Word if Less Than Immediate 
equivalent to: twi 16, rA, s16 

rA,rB Trap Word if Not Equal 
equivalent to: tw 24, rA, rB 

rA,816 Trap Word if Not Equallmmediate 
equivalent to: twi 24, rA, 816 

rA, rB Trap Word if Not Greater Than 
equivalent to: tw 20, rA, rB 

rA,816 Trap Word if Not Greater Than Immediate 
equivalent to: twi 20, rA, 816 

rA, rB Trap Word if Not Less Than 
equivalent to: tw 12, rA, rB 

rA,816 Trap Word if Not Less Than Immediate 
equivalentto: twi 12, rA, 816 

rA,rS,rB Exclusive OR 
rA, rS , u16 Exclusive OR Immediate 
rA, rS , u16 Exclusive OR Immediate Lower 
archaic form for: xor i rA, rS ,u16 

rA, rS, u16 Exclusive OR Immediate Shifted 
rA, rS, u16 Exclusive OR Immediate Upper 
archaic form for: xoris rA, rS, u16 
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Register Bit 
Definitions 

C.l Condition Register (CR) 

The Condition Register is divided into eight 4-bit fields as described in Table C-l. 
The interpretation of the bits within these fields depends on how the bit field was 
originally updated. Table C-2 through Table C-5 describes the bit interpretations 
for the commonly performed CR field operations. 

Table C-l Condition Register 

Bit # Description 

0-3 
CRfield 0 
This field is implicitly updated by some fixed-point instructions. 

4-7 
CRfield 1 
This field is implicitly updated by some floating-point instructions. 

8-11 CRfield 2 

12-15 CRfield 3 

16-19 CRfield 4 

20-23 CRfield 5 

24-27 CRfield 6 

28-31 CRfield 7 

If CR field 0 is updated by a fixed-point instruction with the record bit set, then 
the CR bits will be updated as described in Table C-2. 
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Table C-2 CR Bit Field Settings from Fixed-Point Instructions 

Bit# Name Description 

0 LT 
Less Than, or Negative 
Set if the result is negative. 

1 GT 
Greater Than, or Positive 
Set if the result is positive. 

2 EQ 
Equal, or Zero 
Set if the result is zero. 

3 SO 
Summary Overflow 
Copied from XER[SO] after the instruction is complete. 

If CR field 1 is updated by a floating-point instruction with the record bit set, 
then the CR bits will be updated as described in Table C-3. 

Table C-3 CR Bit Field Settings from Floating-Point Instructions 

Bit # Name Description 

0 FX 
Floating-Point Exception Summary 
Copied from FPSCR[FX] after the instruction is complete. 

1 FEX 
Floating-Point Enabled Exception Summary 
Copied from FPSCR[FEX] after the instruction is complete. 

2 VX 
Floating-Point Invalid Operation Exception Summary 
Copied from FPSCR[VX] after the instruction is complete. 

3 OX 
Floating-Point Overflow Exception 
Copied from FPSCR[OX] after the instruction is complete. 

Fixed-point compare instructions update the target CR field as summarized in 
Table C-4. 

Table C-4 CR Bit Field Settings from Fixed-Point Compare Instructions 

Bit # Name Description 

0 LT 
Less Than 
Set if (rA) < s16 or if (rA) < (rB) . 

... 

1 GT 
Greater Than 
Set if (rA) > s16 or if (rA) > (rB). 

2 EQ 
Equal 
Set if (rA) = s16 or if (rA) = (rB). 

3 SO 
Summary Overflow 
Copied from XER[SO] after the instruction is complete. 

Floating-point compare instructions update the target CR field as summarized 
in Table C-S. 
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Table C-5 CR Bit Field Settings from Floating-Point Compare Instructions 

Bit# Name Description 

0 FL 
Floating-Point Less Than 
Set if (frA) < (frB). 

1 FG 
Floating-Point Greater Than 
Set if (frA) > (frB). 

2 FE 
Floating-Point Equal 
Set if (frA) = (frB). 

3 FU 
Floating-Point Unordered 
Set if one or both of (frA) and (frB) is NaN. 

C.2 Machine State Register (MSR) 

The MSR contains a large number of flags which describe the current processor 
state. The bits of the MSR are summarized in Table C-6. Note that not all of the 
bits are implemented on all processors. 

Table C-6 MSR Bit Settings 

Bit# Bit 

32-bit 64-bit Name 
Description 

64-bit mode 

- 0 SF 0 I The processor is running in 32-bit mode. 

1 I The processor is running in 64-bit mode. 

0 1-32 - Reserved: These bits are saved in SRR1 during interrupts. 

1-4 33-36 - Reserved 

5-9 37-41 - Reserved: These bits are saved in SRR1 during interrupts. 

10-12 42-44 - Reserved 

Power. Management Enable: Not all processors have power management facilities. On 
the 601, this bit is unused. 

13 45 POW 
0 I The power management facilities are disabled. 

1 I The power management facilities are enabled. 

14 46 
Implementation-Dependent Function: Interpretation of this bit depends on the -
implementation. On the 601, this bit is unused. 

Interrupt Little-Endian Mode: On the 601, this bit is unused. 

15 47 ILE 0 '-The processor should execute interrupts in big-endian mode. 

1 I The processor should execute interrupts in little-endian mode. 

External Interrupt Enable: 

16 48 EE 0 I The processor is disabled against accepting External or Decrementer interrupts. 

1 I The processor is enabled to accept External or Decrerilenter interrupts. 

Problem State: This bit is sometimes referred to as the "privilege level" bit. 

17 49 PR 0 I The processor is allowed to execute both user-level and privileged instructions. 

1 I The processor is allowed to execute user-level instructions only. 
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Floating-Point Available: 

18 50 FP 0 
The processor is not allowed to execute floating-point instructions (including 
loads, stores and moves). 

1 The processor is allowed to execute floating-point instructions. 

Machine Check Enable: 

19 51 ME 0 
Machine Check interrupts are disabled. On the 601, a Machine Check interrupt 
will be taken if mDO[CE] or HIDO[EM] is cleared. 

1 Machine Check interrupts are enabled. 

20 52 FEO 
Floating-Point ExcqJtion Mode 0: This bit, along with FEl, controls the current Floating-
Point Exception Mode. See Table C-7. 

Single-StqJ Trace Enable: This feature may not be present on all implementations. 

21 53 SE 
0 Instructions are executed normally. 

1 
The processor should generate a Single-Step type Trace interrupt after the 
successful execution of an instruction. 

Branch Trace Enable: This feature may not be present on all implementations. On the 
601, this bit is unused. 

22 54 BE 
0 Ihstructions are executed normally. 

The processor should generate a Branch type Trace interrupt after the 
1 successful execution of a branch instruction (whether or not the branch is 

taken) 

23 55 FEl 
Floating-Point ExcqJtion Mode 1: This bit, along with FEO, controls the current Floating-
Point Exception Mode. See Table C-7. 

Reserved: This bit is not used by PowerPC processors but is reserved for POWER 
compatibility. It corresponds to the Alignment Check (AL) bit and should be set if 
POWER compatibility is required. This bit is saved in SRRI during interrupts. 

24 56 (AL) 
0 Alignment checking is off and low-order bits of address are ignored. 

1 
Alignment checking is on and the processor should generate alignment 
interrupts if it is unable to handle a requested unaligned access. 

Interrupt Prefix: This bit is sometimes referred to as the Exception Prefix (EP) bit. 

0 
Interrupts are vectored through the real address calculated by prepending OxOs 

25 57 IP to the interrupt offset. 

1 
Interrupts are vectored through the real address calculated by prepending OxFs 
to the interrupt offset. 

Instruction Relocate: This bit is sometimes referred to as the Instruction Address 
Translation (IT) bit. 

26 58 IR 
0 Instruction address translation is disabled. 

1 Instruction address translation is enabled. 

Data Relocate: This bit is sometimes referred to as the Data Address Translation (DT) 
bit. 

27 59 DR 
0 Data address translation is disabled. 

1 Data address translation is enabled. 

28-29 60-61 - Reserved: These bits are saved in SRRI during interrupts. 

Recoverable Interrupt: On the 601, this bit is unused. 

30 62 RI 0 The interrupt is not recoverable. 

1 The interrupt is recoverable. 
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Little-Endian Mode: On the 601, this bit is unused. 

31 63 LE 0 I The processor is running in big-endian mode. 

1 I The processor is running in little-endian mode. 

The FEO and FEI bits of the MSR combine to determine the current floating­
point exception mode. These bits are interpreted as shown in Table C-7. 

Table C-7 Floating-Point Exception Modes 

FEO FE! Floating-Point Exception Mode 

0 0 Floating-point interrupts disabled 

0 1 Imprecise, non-recoverable interrupts enabled 

1 0 Imprecise, recoverable interrupts enabled 

1 1 Precise interrupts enabled 

C.3 Floating-Point Status and Control Register (FPSCR) 

The FPSCR contains a variety of flags that control the operation of floating-point 
instructions and addtional flags that indicate exceptional conditions that may 
have arisen during the execution of floating-point instructions. 

Table C-8 FPSCR Bit Settings 

Bit # 
Bit 

Description 
Name 

0 FX Floating-Point Exception Summary 

1 FEX Floating-Point Enabled Exception Summary 

2 VX Floating-Point Invalid Operation Exception Summary 

3 OX FloatingCPoint Overflow Exception 

4 UX Floating-Point Underflow Exception 

5 ZX Floating-Point Zero Divide Exception 

6 XX Floating-Point Inexact Exception 

7 VXSNAN Floating-Point Invalid Operation Exception (SNaN) 

8 VXISI Floating-Point Invalid Operation Exception (00 - 00) 

9 VXlDI Floating-Point Invalid Operation Exception (00 + 00) 

10 VXZDZ Floating-Point Invalid Operation Exception (0 + 0) 

11 VXlMZ Floating-Point Invalid Operation Exception (00 XO) 

12 VXVC Floating-Point Invalid Operation Exception (Invalid Compare) 

13 FR _ Floating-Point Fraction Rounded 

14 PI Floating-Point Fraction Inexact 
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Floating-Point Result Flags 

15 C Floating-Point Result Class Descriptor 

Floating-Point Condition Code 

~ 16 FL Floating-Point Less Than or Negative 
p;. U 

& 17 FG Floating-Point Greater Than or Positive 

18 FE Floating-Point Equal or Zero 

19 FU Floating-Point Unordered or NaN 

20 - Reserved 

21 VXSOFT Floating-Point Invalid Operation Exception (Software Request) 

22 VXSQRT Floating-Point Invalid Operation Exception (Invalid Square Root) 

23 VXCVI Floating-Point Invalid Operation Exception (Invalid Integer Convert) 

24 VE Floating-Point Invalid Operation Exception Enable 

25 OE Floating-Point Overflow Exception Enable 

26 UE Floating-Point Underflow Exception Enable 

27 ZE Floating-Point Zero Divide Exception Enable 

28 XE Floating-Point Inexact Exception Enable 

29 NI Floating-Point Non-IEEE Mode 

Floating-Point Rounding Control 

00 Round to Nearest 

30-31 RN 01 Round toward 0 

10 Round toward +00 

11 Round toward _00 

C.4 Fixed-Point Exception Register (XER) 

The XER contains bits that are updated by some fixed-point instructions to indi­
cate Carry and Overflow conditions. In addition, there are also extra fields that 
are used by some of the Load and Store String instructions. 

Table C-9 XER Bit Settings 

Bit # 
Bit 

Description 
Name 

Summary Overflow 
0 SO lhis bit is set whenever any instruction sets the OV bit. lhis bit 

is only cleared by the mtxer and mcrxr instructions. 

Overflow 

1 OV 
lhis bit is set when an instruction has an overflow condition. 
lhis bit is updated only if the Overflow Enable (OE) bit of the 
instruction is set. 

Carry 
lhis bit is set whenever there is a carry out of bit 0 during the 

2 CA instruction execution. Only the Add Carrying,. Subtract From 
Carrying, Add Extended, Subtract From Extended and Shift 
Right Algebraic instructions update the carry bit. 

3-15 - Reserved 
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This 8-bit field contains the compare byte that is used by the 

16-23 - lscbx instruction. Since the lscbx instruction is not part of the 
PowerPC architecture and exists only on the 601, this field is 
used only on the 601. 

24 - Reserved 

25-31 -
This 7 -bit field contains the number of bytes that should be 
transferred by the lswx, stswx or lscbx instructions. 
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PowerPC 601 
Optimization 

Summary 

The following list provides a basic "rule of thumb" summary of the techniques 
that should be used to minimize the number of pipeline stalls in PowerPC 
programs executing on the 601 processor. This is not intended to be a complete 
list of all optimization techniques, but is rather a overview of the most 
important techniques to be aware of. 

• Place at least three independent fixed-point instructions between a 
compare instruction and a branch dependent on that compare. As long 
as a previous instruction doesn't cause the compare to stall, this will 
guarantee that the branch is not dispatched until the compare results 
are available. 

• Place at least four independent fixed-point instructions between a 
fixed-point instruction with the Record bit set and a branch dependent 
on the results of that instruction. As long as a previous instruction 
doesn't cause the fixed-point instruction to stall, this will cause the 
branch to be executed at the same time as the fixed-point instruction 
is writing its results to the CR. Multi-cycle fixed-point instructions 
will require additional instructions to be inserted. 

• Place at least four independent fixed-point instructions between a 
mtlr or mtctr instruction and a branch dependent on the SPR. As 
long as a previous instruction doesn't cause the Move to SPR 
instruction to stall, this will cause the branch to be executed at the 
same time as the SPR is being updated. 
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• For each conditional branch, make sure that there is a fixed-point 
instruction within three instructions before the branch. This insures 
that the branch has an instruction to tag and prevents it from 
generating a bubble. This is expecially important for series of 
conditional branches which are not taken - each branch instructions 
needs its own fixed-point instruction to tag. Alternating branches and 
fixed-point instructions is a common way of addressing this problem. 

• Between two branch instructions that are taken, up to two fixed-point 
instructions can be inserted. If the first branch jumped directly to the 
second branch, there would be a stall in the integer pipe while the 
target of the second branch was being fetched. Inserting the two 
instructions allows the processor to perform useful work during this 
time. 

• For a floating-point instruction with the Record bit set and a branch 
dependent on the results of that instruction, place at least three 
independent fixed-point instructions before the floating-point 
instruction and at least and five independent fixed- or floating-point 
instructions between the floating-point and branch instructions. This 
will guarantee that the results of the floating-point instruction are 
available when the branch is executed. 

• Place at least one independent fixed-point instruction between a load 
of a CPR and an instruction which uses the loaded register value. This 
extra instruction will cover the delay assuming a cache hit. More 
independent instructions are necessary to cover the delay due to a 
cache miss. 

• Place at least three independent floating-point instructions between 
an instruction which updates the FPR and an instruction which uses 
the updated value. This will prevent the FPU from stalling until the 
data is available. Multi-cycle floating-point instructions will require 
additional instructions to be inserted. 
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Index 

+.0-9 

+ (branch instruction suffix), 50,235 
• (integer and floating-point instruction 

suffix),28, 148 
• glink,292-293 
• ptrg 1, 290-292 
32-bit 

mode, 23-24, C671 
registers, 24 
rotate and shift instructions, 96 
segmented address translation, 194 

64-bit 

A 

mode, 23-24, C671 
registers, 24 
rotate and shift instructions, 96 
segmented address translation, 194 

a (branch instruction suffix), 28 
abs[o][ .],90 
add[ 0][ .], 76 
adder 0][ .], 76 
adder 0][ .], 76 
addi,76 

extended forms, 77-78, 80 

addie[ .],76 
extended forms, 80 

addis, 76 
extended forms, 77, 80 

addition, 75-78 
timing, 219 

addme[o][.],76 
address 

effective (EA), 192, 195 
fault,188 
physical (P A), 192-194 
real (RA), 192-194 
virtual (VA), 192-195 

Address Space Register (ASR), 22 
addze[ 0][ .], 76 
AL (MSR), C672 
alignment, 10 
Alignment Check (MSR[AL]), C672 
alloea( ),287-288 
and[ .],86 
ande[.],86 
andi[.],87 
andis[ .], 87 
argument, 281-286 
argument area, 262-263,280 
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ASR,22 
64-bit mode, 25 
instructions, 167-168 

associativity (cache), 179 

B 

fully associative, 180 
n-way set associative, 181 

b[1][aj,36 
BAT area, 192 
bc[1][aj,36 

extended forms, 38-41 
bcctr[lj,36 

extended forms, 45-47 
bclr[lj,36 

extended forms, 41-45 
BE (BPU stage), 213 
BE (MSR), 18, C672 
biased exponent, 137 
big-endian, 11 
binary point, 136 
bit numbering, 11 
block (cache), 178 
block (for BAT), 192 
block address translation, 192,195-196 
boolean instructions, 86-88 

timing, 220 
BPU, 12, 13,205,207,212-213 

conflicts, 312-314 
pipeline stages 

BE,213 
BW,213 
MR,213 

branch 
condition encoding, 37 
instruction, 35-47 
instruction timing 

conditional, 233-238 
non-conditional,228-230 

prediction, 47-50, 234-238 
PowerPC 601, 49 
dynamic,48 
hints, 49 
static, 48 

tags, 230-233 
Branch Execute (BPU IBE), 213 
Branch Processor Unit (BPU), 12, 13, 205, 

207,212-213 
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Branch Trace Enable (MSR[BE]), 18, C672 
Branch Writeback (BPU I BW), 213 
bubble, 230-231 
BW (BPU stage), 213 
byte 

c 

data type, 10 
ordering, 11 

C (FPSCR), C674 
CA (XER), 16, C674 
CACC (CAU stage), 208, 216 
cache 

associativity,179 
block,178 
coherency, 183-185 
dependencies, 335-336 
description, 174 
direct-mapped,179 
disk cache, 175 
fully associative, 180 
hit, 176 

timing, 238-239 
line, 178 
memory cache, 174 
miss, 176 

timing, 239-240,250 
multiple level, 183 
sector, 178 
split, 182 
sub-block, 178 
tag, 178 
timings 

access, 238-240 
instruction, 224 

unified, 182 
Cache Access (CAU I CACC), 208, 216 
Cache Access Unit, 205-206, 208, 210-211 
Cache Arbitration (CAU I CARB), 208, 216 
Caching Inhibited (I), 197 
CARB (CAU stage), 208, 216 
Carry 

CA (XER), 16, C674 
CAU, 205-206, 208, 210-211 

conflicts, 307 



CAU (continued) 
pipeline stages 

CACC, 208, 216 
CARB, 208, 216 

timing, 216 
CISC 

definition, 4 
vs. RISC, 3 

clear (extended forms), 112-114 
clear left and shift left (extended forms), 

114-115 
clcs, 188 
cmp, 84 

extended forms, 85-86 
cmpi,84 

extended forms, 85-86 
cmpl,84 

extended forms, 85-86 
cmpli,84 

extended forms, 85-86 
cntl zd[ .J, 83 
cntlzw[ .J, 83 
code motion, 301-302 
code pasting, 345 
common subexpression elimination, 300-

301 
compare instructions, 84-86 

branch dependencies, 323 
doubleword, 86 
floating-point, 151-152 
timing (integer), 221 
word,85 

Condition Register, 13, 14, 28, C669-C671 
Count Register, 13, 17 
CR, 13,14, 28, C669-C671 

bits 
EQ, 15, C670 
FE, 15, 151, C671 
FEX, 16, 148, C670 
FG, 15, 151, C671 
FL, 15, 151, C671 
FU, 15, 151, C671 
FX, 16, 148, C670 
GT, 15, C670 
LT, 15, C670 
OX, 16, 148, C670 
SO, 15, C670 
VX, 16, 148, C670 

CR (continued) 
dependencies, 323-329 
field, C669 
field move instructions, 161-162 
logical instructions, 160-161 
restoring in epilog, 267-268 
saving in prolog, 265 
updates from FPU instructions, 148 
updates from rotate and shift, 96-97 
usage conventions, 254 

crand,160 
crandc, 160 
creqv, 160 

extended forms, 161 
crnand,160 
crnor, 160 

extended forms, 161 
cror, 160 

extended forms, 160 
crorc, 160 
crxor, 160 

extended forms, 160 
CSE, 300-301 
CTR,13,17 

D 

64-bit mode, 24 
branch tags, 231-232 
dependencies, 320-323 
instructions, 165 

DAE j Source Instruction Service Register, 
19 

DAQU, 205, 207, 213-214 
conflicts, 314 
pipeline stages 

FPSB,214 
ISB,214 

DAR,19 
instructions, 167-168 

Data Access Queueing Unit (DAQU), 205, 
207,213-214 

Data Address Register (DAR), 19 
Data Address Translation (MSR[DT]), C672 
Data Block Address Translation Register 

(DBAT),20 
Data Relocate (MSR[DR]), 18, C672 
Data Storage Interrupt Status Register 

(DSISR),19 
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DBAT,20 
block address translation, 196 
instructions, 167-168 

debf,186 
direct store segments, 195 

debi,186 
direct store segments, 195 

debst, 186 
direct store segments, 195 

debt, 186 
direct store segments, 195 

debtst, 186 
direct store segments, 195 

debz, 186 
direct store segments, 195 

DEC, 21 
instructions, 166-168 

Decrementer (DEC), 21 
dedicated (register), 251 
denormalization, 142-143 

timing, 247 
denormalized numbers, 138,140-141 
dependencies 

anti-dependencies, 315 
data dependencies, 315 
output dependencies, 315 

direct address translation, 192, 196 
direct-mapped cache, 179 
dispatch, 203 
Dispatch Stage (DU IDS), 216 
Dispatch Unit (DU), 205-206, 208-209 
division 

calculating the remainder, 82 
integer instructions, 81-83 
obsolete instructions, 89 
timing 

floating-point, 226 
integer, 220 

using algebraic right shifts, 348 
di v[ 0 ][ .j, 89 
divd[u][o][.j,82 
divs[o][.j,89 
divw[u][o][.j,82 
double page fault, 191 
double-precision, 10 
doubleword, 10 
doz[o][ .j, 90 

timing, 219 
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dozi,90 
timing, 219 

DR (MSR), 18, C672 
DS,216 
DSISR,19 

instructions, 167-168 
DT (MSR), C672 
DU, 205-206, 208-209 

conflicts, 308 
pipeline stages 

DS,216 
IQ7-IQO, 208-209 

timing, 216-218 
dual cache, 182 

E 

EA, 192, 195 
EAR,21 

instructions, 167, 169 
EE (MSR), 18, C671 
effective address (EA), 192, 195 
effective segment ID (ESID), 194 
eieio, 188 
endian, 11, 13 
EP (MSR), C672 
epilog, 261-262 
EQ (CR), 15, C670 
Equal (CR[EQ]), 15, C670 
eqv[.j,86 
ESID,194 
exceptions, 144-147 

inexact, 147 
invalid operation, 145 
overflow, 146 
underflow, 147 
zero divide, 145 

Exception Prefix (MSR[EP]), C672 
exponent, 135-136 
exponent bias, 137 
extend sign, 83 
External Access Register (EAR), 21 
External Interrupt Enable (MSR[EE]), 18, 

C671 
extract and justify (extended forms), 107-

109 
extsb[ .j, 83 
extsh[ .j, 83 
extsw[ .j, 83 



F 

F1 (FPU stage), 211-212 
FA (FAU stage), 208 
fabs[ .j, 149 
fadd[s][ .j, 150 
FAU, 205-206, 207-208 

conflicts, 307 
pipeline stages 

FA,208 
fcfid[.j,153 
fcmpo,151 
fcmpu, 151 
fctid[z][ .j, 153 
fctiw[z][.j,153 
FD (FPU stage), 211-212, 224 
fdiv[s][.j,150 
FE (CR), 15, 151, C671 
FE (FPSCR), C674 
FEO (MSR), 18, 144, C672-C673 
FE1 (MSR), 18, 144, C672-C673 
feed-forwarding, 204, 315 
Fetch Arbitrate (FA U / FA), 208 
Fetch Arbitration Unit (FAU), 205-206,207-

208 
FEX (CR), 16, 148, C670 
FEX (FPSCR), 17, 149, C673 
FG (CR), 15, 151, C671 
FG (FPSCR), C674 
FI (FPSCR), 17, 145, C673 
Fixed-Point Exception Register (XER), 12, 

16, C674 
Fixed-Point Unit (IV), 12, 205-207,209-211 
FL (CR), 15, 151, C671 
FL (FPSCR), C674 
floating-point 

arithmetic,149-151 
comparison, 151-152 
conversion instructions, 152-153 
conversion algorithms, 155-158 

doubleword to FP double, 157-158 
FP double to doubleword, 157 
FP double to FP single, 155 
FP double to integer, 155-156 
FP single to FP double, 155 
integer to FP double, 156-157 

data representation, 135-142 
double-precision, 10 
instruction timing, 225-228 

floating-point (continued) 
optional instructions, 153-154 
register (FPR), 14 
single-precision, 10 
tags, 240 
timings 

instruction, 225-228 
precise exceptions, 241-242 

Floating-Point Add (FPU /FPA), 211-212 
Floating-Point Arithmetic Writeback 

(FPU/FWA),211-212 
Floating-Point Available (MSR[FPj), 18, 

C672 
Floating-Point Condition Code 

(FPSCR[FPCC]), C674 
Floating-Point Decode (FPU /FD), 211-212, 

224 
Floating-Point Enabled Exception Summa­

ry (CR[FEXj), 16, 148, C670 
Floating-Point Enabled Exception Summa­

ry (FPSCR[FEXj), 17, 149, C673 
Floating-Point Equal (CR[FEj), 15, 151, 

C671 
Floating-Point Equal (FPSCR[FEj), C674 
Floating-Point Exception Mode 0 

(MSR[FEOj), 18, 144, C672-C673 
Floating-Point Exception Mode 1 

(MSR[FE1j), 18, 144, C672-C673 
Floating-Point Exception Summary 

(CR[FXj), 16, 148, C670 
Floating-Point Exception Summary 

(FPSCR[FXj), 17, 149, C673 
Floating-Point Fraction Inexact 

(FPSCR[FIj), 17, 145, C673 
Floating-Point Fraction Rounded 

(FPSCR[FRj), 17, 145, C673 
Floating-Point Greater Than (CR[FGj), 15, 

151, C671 
Floating-Point Greater Than (FPSCR[FGj), 

C674 
Floating-Point Inexact Exception 

(FPSCR[XXj), 17, 147, C673 
Floating-Point Inexact Exception Enable 

(FPSCR[XEj), 17, C674 
Floating-Point Instruction Queue (FPU / 

F1),211-212 
Floating-Point Invalid Operation Exception 

(00-00) (FPSCR[VXISIj), 17, C673 
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Floating-Point Invalid Operation Exception 
(00+00) (FPSCR[VXIDI]), 17, C673 

Floating-Point Invalid Operation Exception 
(0+0) (FPSCR[VXZDZ]), 17, C673 

Floating-Point Invalid Operation Exception 
(ooxO) (FPSCR[VXIMZ]), 17, C673 

Floating-Point Invalid Operation Exception 
(Invalid Compare) (FPSCR[VXVC]), 
17, 152, C673 

Floating-Point Invalid Operation Exception 
(Invalid Integer Convert) 
(FPSCR[VXCVI]), 17, C674 

Floating-Point Invalid Operation Exception 
(Invalid Square Root) 
(FPSCR[VXSQRT]), 17, C674 

Floating-Point Invalid Operation Exception 
(SNaN) (FPSCR[VXSNAN]), 17, 152, 
C673 

Floating-Point Invalid Operation Exception 
(Software Request) 
(FPSCR[VXSOFT]), 17, 145, C674 

Floating-Point Invalid Operation Exception 
Enable (FPSCR[VE]), 17, 152, C674 

Floating-Point Invalid Operation Exception 
Summary (CR[VX]), 16, 148, C670 

Floating-Point Invalid Operation Exception 
Summary (FPSCR[VX]), 17, 149, C673 

Floating-Point Less Than (CR[FL]), IS, lSI, 
C671 

Floating-Point Less Than (FPSCR[FL]), 
C674 

Floating-Point Load Writeback (FPU / 
FWL), 211-212 

Floating-Point Multiply (FPU /FPM), 211-
212 

Floating-Point Non-IEEE Mode 
(FPSCR[NI]), C674 

Floating-Point Overflow Exception 
(CR[OX]), 16, 148, C670 

Floating-Point Overflow Exception 
(FPSCR[OX]), 17, 146, 149, C673 

Floating-Point Overflow Exception Enable 
(FPSCR[OE]), 17, 146-147, C674 

Floating-Point Register (FPR), 14 
Floating-Point Result Class Descriptor 

(FPSCR[C]), C674 
Floating-Point Result Flags 

(FPSCR[FPRF]), 17, 146-147, C674 
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Floating-Point Rounded Control 
(FPSCR[RN]), 17, C674 

Floating-Point Status and Control Register 
(FPSCR), 12,16, C673-C674 

Floating-Point Store Buffer (DAQU /FPSB), 
214 

Floating-Point Unit (FPU), 12,205,207 
Floating-Point Unordered (CR[FU]), IS, 

lSI, C671 
Floating-Point Unordered (FPSCR[FU]), 

C674 
Floating-Point Underflow Exception 

(FPSCR[UX]), 17, 147, C673 
Floating-Point Underflow Exception En­

able (FPSCR[UE]), 17, 147, C674 
Floating-Point Zero Divide Exception 

(FPSCR[ZX]), 17, C673 
Floating-Point Zero Divide Exception En-

able (FPSCR[ZE]),17, 145-146, C674 
fmadd[ s][ • ], 150 
fmr[.],149 
fmsub[s][.],150 
fmul[s][.],150 
fnabs[.],149 
fneg[.],149 
fnmadd[s][.],150 
fnmsub[s][.],150 
FP (MSR), 18, C672 
FPA (FPU stage), 211-212, 224 
FPCC (FPSCR), C674 
FPM (FPU stage), 211-212, 224 
FPR,14 

dependencies, 333-334 
usage conventions, 253 

FPRF (FPSCR), 17, 146-147, C674 
FPSB (DAQU stage), 214 
FPSCR, 12,16, C673-C674 

bits 
C, C674 
FE, C674 
FEX, 17, 149, C673 
FC, C674 
FI, 17, 145, C673 
FL, C674 
FPCC,C674 
FPRF, 17, 146-147, C674 
FR, 17, 145, C673 
FU,C674 
FX, 17, 149, C673 



FPSCR (continued) 
bits (continued) 

NI, C674 
OE, 17, 146-147, C674 
OX, 17, 146, 149, C673 
RN, 17, C674 
VE, 17, 147, C674 
UX, 17, 147, C673 
VE, 17, 152, C674 
VX, 17, 149, C673 
VXCVI, 17, C674 
VXIDI, 17, C673 
VXIMZ, 17, C673 
VXISI, 17, C673 
VXSNAN, 17, 152, C673 
VXSOFT, 17, 145, C674 
VXSQRT, 17, C674 
VXVC, 17, 152, C673 
VXZDZ, 17, C673 
XE, 17, C674 
XX, 17, 147, C673 
ZE, 17, 145-146, C674 
ZX, 17, C673 

instruction, 161-163 
instruction timing, 228 

FPU, 12, 205, 207 
conflicts, 310-312 
pipeline stages, 211-212 

F1,211-212 
FD, 211-212, 224 
FPA, 211-212, 224 
FPM, 211-212, 224 
FW A, 211-212, 225 
FWL, 211-212, 225-227 

FR (FPSCR), 17, 145, C673 
fres[.],154 
frsp[.],153 
frsqrte[.],154 
fsel[.],154 
fsqrt[s][.],154 
fsub[s][.],150 
FU (CR), 15, 151, C671 
FU (FPSCR), C674 
fully associative cache, 180 
function descriptors, 289 
function inlining, 302 
FWA (FPU stage), 211-212, 225 
FWL (FPU stage), 210-212, 225-227 
FX (CR), 16, 148, C670 

FX (FPSCR), 17, 149, C673 
FXU, 12 

G 
General Purpose Register (GPR), 12,14 
General SPR (SPRG), 20 
global linkage 

• glink, 292-293 
• ptrgl, 290-292 

GPR, 12, 14 
dependencies, 330-333 
usage conventions, 252 

Greater Than (CR[GT]), 15, C670 
GT (CR), 15, C670 
Guarded Storage (G), 197 

H 

halfword, 10 
Harvard architecture cache, 182 
hash functions, 178-179 

IBAT,20 
block address translation, 196 
instructions, 167, 169 

IC (IV stage), 210 
icbi,187 

direct store segments, 195 
ID (IV stage), 210 
IE (IV stage), 210 
IEEE-754, 12, 135 
ILE (MSR), 18, C671 
infinities, 139,141-142 
insert (extended forms), 109-111 
Instruction Address Translate (MSR[IT]), 

C672 
Instruction Block Address Translation Reg-

ister (IBAT), 20 
Instruction Queue (DU /lQ7-IQO), 208-209 
Instruction Relocate (MSR[IR]), 18, C672 
instruction scheduling, 204, 344 
Integer Arithmetic Writeback (IV /lWA), 

210-211 
Integer Load Writeback (IV /IWL), 210-211 
Integer Completion (IV IIC), 210 
Integer Decode (IV lID), 210 
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Integer Execute (IU /IE), 210 
Integer Store Buffer (DAQU /ISB), 214 
Integer Unit (IU), 12, 205-207,209-211 
interrupt, 144 
Interrupt Little-Endian Mode (MSR[ILE]), 

18, C671 
Interrupt Prefix (MSR[IP]), 18, C672 
IP (MSR), 18, C672 
IQ7-IQO (DU stages), 208-209 

timing 216-218 
IR (MSR), 18, C672 
ISA (Instruction Set Architecture), 3 
ISB (DAQU stage), 214 
isync, 187 
IT (MSR), C672 
IU, 12, 205-207, 209-211 

conflicts, 308-310 
pipeline stages 

IC,21O 
ID,210 
IE,21O 
IW A, 210-211 
IWL,21O-211 

IWA (IU stage), 210-211 
IWL (IU stage), 210-211 

L 

1 (branch instruction suffix), 28 
latency, 202 
Ibz[u][xJ,59 
Id[u][xJ,63 
Idarx,71 

direct store segments, 195 
LE (MSR), 18, C673 
Less Than (CR[LT]), 15, C670 
lfd[u][xJ,65 
lfs[u][xJ,66 
Iha[u][xJ,60 
Ihbrx,64 
Ihz[u][xJ,60 
line (cache), 178 
link area, 262, 279-280 
Link Register, 13, 17 
little-endian, 11 
Little-Endian Mode (MSR[LE]), 18, C673 
Imw,67 
Load/Store Unit, 12,13 
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load 
byte,59 
conditional, 71-72 
doubleword, 63 
floating-point double, 65 
floating-point single, 66 
CPR dependencies, 331-332 
halfword algebraic, 60 
halfword, byte-reversed, 64 
halfword with zero, 60 
multiple, 66-68, 273 
obsolete, 72-73 
store dependencies, 334-335 
string, 68-71, 72-73 
synchronize, 71-72 
timing 

floating-point, 226-227 
integer, 221 
misaligned,243-245 

word algebraic, 62 
word, byte-reversed, 64 
word with zero, 61 

locality of reference, 177 
spacial, 177 
temporal,177 

local storage area, 262-263,281 
logical instructions, 86-88 
loop unrolling, 302-303, 345 
LR,13,17 

branch tags, 231-232 
dependencies, 316-320 
instructions, 165 
restoring in epilog, 267-268 
saving in prolog, 265 

LRU, 177, 181 
lsb (least significant bit), 11,13 
lscbx[. J, 73 
LSU, 12,13 
lswi,69 
lswx,69 
LT (CR), 15, C670 
lwa[xJ,62 
lwarx,71 

direct store segments, 195 
lwaux,62 
lwbrx,64 
lwz[u][xJ,61-62 



M 

Machine Check Enable (MSR[ME]), 18, 
C672 

Machine State Register (MSR), 18, C671-
C673 

mask instructions, 129-130 
timing, 220 

maskg[ .], 130 
maskir[ • ], 130 
merf,161 
merfs, 162 
merxr,162 
ME (MSR), 18, C672 
Memory Coherence (M), 197 
MESI,185 
mfer, 161 
mffs[.],162 
mfmsr, 164 
mfspr, 164 

extended forms, 164-170 
mfsr,l71 
mfsrin,l71 
mftb,170 

extended forms, 170 
Mispredict Recovery (BPU /MR), 213 
mixed cache, 182 
MQ22 

dependencies, 329 
instructions, 166 

MR (BPU stage), 213 
msb (most Significant bit), 11, 13 
MSR, 18, C671-C673 

64-bit mode, 24 
bits 

AL, C672 
BE, 18, C672 
DR, 18, C672 
DT, C672 
EE, 18, C671 
EP, C672 
FEO, 18, 144, C672-C673 
FE1, 18, 144, C672-C673 
FP, 18, C672 
ILE, 18, C671 
IP, 18, C672 
IR, 18, C672 
IT, C672 
LE, 18, C673 

MSR (continued) 
bits (continued) 

ME, 18, C672 
POW, 18, C671 
PR, 18, C671 
RI, 18, C672 
SE, 18, C672 
SF, 18, C671 

instructions, 163-164 
mterf,162 

extended forms, 162 
mtfsbO[.],163 
mtfsbl[.],163 
mtfsf[.],163 

extended forms, 163 
mtfsfi[ .],163 
mtmsr, 164 
mtspr,l64 

extended forms, 164-170 
mtsr,l72 
mtsrin,l72 
mul[o][.],89 
mulhd[u][.],81 
mulhw[u][ .1,80 

timing, 220 
mulld[oH·],80 
mulli,81 

timing, 219 
mullw[o][.],80 
multiplication 

integer instructions, 80-81 
obsolete instructions, 89 
timing 

floating-point, 226 
integer, 219-220 

using left shifts, 346-347 
Multiply-Quotient Register (MQ), 22 

N 

nabs[oH·],90 
NaN, 12, 139,142 
nand[.],86 
neg[oH·],83 

timing, 219 
negate, 83 
Negative (CR[LT]), 15, C670 
NI (FPSCR) , C674 
non-speculative instructions, 232 
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non-volatile (register), 251 
nor[ .J, 86 

extended forms, 88 
normalization, 136, 142-143 . 

normalization timing, 248 
prenormalization timing, 246-247 

notmalized numbers, 138,140 
Not a Number (NaN), 12, 139,142 

o 
o (integer instruction suffix), 28 
obsolete instructions, 29 
OE (FPSCR), 17, 146-147, C674 
optional instructions, 29-30 
or[.J,86 

extended forms, 88 
orc[ .J, 86 
ori[ .J, 87 

extended forms, 88 
oris[.J,87 
Overflow (XER[OV]), 16,28, C674 
OV (XER), 16,28, C674 
overlapped execution, 202 
OX (CR), 16, 148, C670 
OX (FPSCR), 17, 146, 149, C673 

p 

PA, 192-194 
page 

definition, 188 
for PowerPC processors, 192 

page fault, 188 
double, 191 

physical address (PA), 192-194 
pipeline, 201 

conflicts, 306 
stage, 201-202 

planck, 136 
Positive (CR[GT]), 15, C670 
POW (MSR), 18, C671 
Power Management Enable (MSR[POW]), 

18, C671 
PR (MSR), 18, C671 
predicted (branch), 233 
prenormalization timing, 246-247 
privilege level (MSR[PR]), C671 
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Problem State (MSR[PR]), 18, C671 
Processor Version Register (PVR), 19 
profiler, 296 
prolog, 261-252 
PVR,19 

instructions, 167 

Q 

QNaN, 139, 142 
quadword, 10 
Quiet NaN (QNaN), 139,142 

R 

RA,192-194 
radix point, 135 
teal address (RA), 192-194 
real page number (RPN), 194 
Real-Time Clock (RTC), 21, 23 
Recoverable Interrupt (MSR[RJ]), 18, C672 
register 

FPR,14 
GPR, 12,14 
remapping, 316 
saving on stack, 270-278 
shadowing, 316 
SPR,164-172 
usage dependencies, 314-316 

register save area, 262-263,281 
remapping (register), 316 
replacement algorithms 

LRU, 177, 181 
random, 182 

results (routine), 286-287 
retire, 203 
rfi,54 
RI (MSR), 18, C672 
RISC 

definition, 3 
vs. CISC,3 

rIdcl[.J,100 
extended forms, 102 

r Idcr[ .J, 100 
rIdic[.J,100 

extended forms, 115 
r Idic I[ .J, 100 

extended forms, 102, 105, 109, 113 



r ldicr[. ], 100 
extended forms, 104, 109, 113 

rldimi[.],100 
extended forms, 111 

rlmi[.],130 
rlwimi[.],98 

extended forms, 111 
rlwinm[.],98 

extended forms, 99, 104-105, 109, 113, 
115 

rlwnm[.],98 
extended forms, 99 

RN (FPSCR), 17, C674 
rotate instructions, 97-102 

doubleword, 100-102 
extended forms, 107-115 
obsolete, 130-131 
timing, 220 
word,97-100 

rounding, 143-144 
to single-precision, 153 

RPN,194 
rr ib[ • ], 130 
RTC, 21, 23 

instructions, 166, 169 

s 
s (floating-point instruction suffix), 28,148 
Save and Restore Register (SRRO, SRR1), 18 
se,54 
scheduling, 204, 344 
scientific notation, 135 
SDR1,22 

64-bit mode, 25 
instructions, 167, 169 

SE (MSR), 18, C672 
sector (cache), 178 
segment 

direct-store, 21, 192, 195 
on PowerPC processors, 192 
ordinary, 21,192 
VM, 188 

Segment Register (SR), 21 
Segment Table (ST), 193 
Segment Table Entry (STE), 194 
segmented address translation, 192-195 
SF (MSR), 18, C671 
shadowing (register), 316 

shift instructions, 102-107 
left, 103-104 
multiple-precision 

left, 116-124 
right, 124-126 
right algebraic, 127-129 

obsolete, 131-134 
right, 104-106 
right algebraic, 106-107 
timing, 220 

sign extension, 83 
Signalling NaN (SNaN), 139,142 
significand, 136 
single-precision, 10 
Single-Step Trace Enable (MSR[SE]), 18, 

C672 
SLB 

instructions, 198-199 
slbia, 199 
slbie, 199 
sld[.],104 
sle[.],131 
sleq[.],131 
sliq[.],131 
slliq[.],131 
s llq[ .], 132 
slq[.],132 
slw[.],104 
SNaN, 139,142 
snooping, 184 
SO (CR), 15, C670 
SO (XER), 16,28, C670, C674 
spacial locality, 177 
Special Purpose Registers (SPR) 164-172 
speculative instructions, 232 
split cache, 182 
SPR,164-172 

extended forms 
obsolete, 165-166, 169-170 
supervisor-level, 166-169, 171-172 
user-level, 164-165 

instructions, 164 
timing, 223-224 
usage conventions, 253-254 

SPRG,20 
instructions, 168-169 
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SR,21 
64-bit mode, 25 
direct store segments, 195 
instructions, 171-172 

srad[ .j, 106 
sradi[ .j, 106 
sraiq[ .j, 134 
sraq[ .j, 134 
sraw[ .j, 106 
srawi[ .j, 106 
srd[.j,105 
sre[.j,132 
srea[ .j, 134 
sreq[ .j, 132 
sriq[.j,132 
srliq[.j,133 
srlq[.j,133 
srq[ .j, 133 
SRRO/SRR1,18 

64-bit mode, 25 
instructions, 168-169 
MSR bits saved, C671-C672 

SRU, 12, 13 
srw[.j,105 
ST,193 
stack frame, 255 

alloca ( ),287-288 
argument area, 262-263, 280 
building frames, 259-261 
link area, 262, 279-280 
local storage area, 262-263, 281 
register save area, 262-263,281 

stack pointer, 251, 255-258 
maintenance, 257-258 

stage (pipeline), 201-202 
stale, 183 
stb[u][xj,60 
std[u][xj,63 
stdcx.,72 

direct store segments, 195 
STE,194 

direct store segments, 195 
stfd[u][xj,65 
stfs[u][xj,66 
sth[u][xj,61 
sthbrx,64 
sticky bits, 16 
stmw,67 
Storage Description Register 1 (SDR1), 22 
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store 
byte, 60 
conditional,71-72 
doubleword, 63 
floating-point double, 65 
floating-point single, 66 
halfword, 61 
halfword, byte-reversed, 64 
load dependencies, 334-335 
multiple, 66-68, 272 
string, 68-71 
synchronize, 71-72 
timing 

floating-point, 227 
integer, 222-223 
misaligned,244-246 

word,62 
word, byte-reversed, 64 

strength reduction, 300, 346 
stswi,70 
stswx,70 
stw[u][xj,62 
stwbrx,64 
stwcx.,72 

CR dependencies, 327 
direct store segments, 195 

sub-block (cache), 178 
subf[o][ .j, 78 

extended forms, 79 
subfc[o][.j,78 

extended forms, 79 
subfe[o][ .j, 78 
sUbfic,79 
subfme[o][ .j, 78 
subfze[o][ .j, 78 
subtraction, 78-80 

timing, 219 
Summary Overflow (XER[SO]), 16, 28, 

C670, C674 
Summary Overflow (CR[SO]), 15, C670 
sync, 187 
system linkage instructions, 54-55 
System Register Unit (SRU), 12, 13 



T 

tag (branch), 230-233 
CTR tags, 231-232 
LR tags, 231-232 
predicted branch tags, 232-233 

tag (cache line), 178 
tag (floating-point), 240 
TBR,20-21 

instructions, 170-171 
td,50 

extended forms, 52-54 
tdi,50 

extended forms, 52-54 
temporal locality, 177 
throughput, 203 
Time Base Register (TBR), 20-21 
TLB,191 

instructions, 198 
tlbia, 198 
tlbie, 198 
tlbsync, 198 
TOe, 254-255 

environments, 288-289 
TOC pointer, 251, 254, 255 
transition vector, 289 
Translation Lookaside Buffers (TLB), 191 
trap 

encoding, 51 
instructions, 50-54 
timings, 224 

tW,50 
extended forms, 52-54 

twi,50 
extended forms 52-54 

u 
UE (FPSCR), 17, 147, C674 
unified cache, 182 
unordered, 151 
unresolved (branch), 233 
UX (FPSCR), 17, 147, C673 

v 
VA,192-195 
VE (FPSCR), 17, 152, C674 
virtual address (VA), 192-195 

virtual memory, 176,188-191 
virtual page number (VPN), 194-195 
Virtual Segment ID (VSID), 193, 195 
volatile (register), 251 
VPN,194-195 
VSID, 193, 195 
VX (CR), 16, 148, C670 
VX (FPSCR), 17, 149, C673 
VXCVI (FPSCR), 17, C674 
VxrDI (FPSCR), 17, C673 
VXIMZ (FPSCR), 17, C673 
VXISI (FPSCR), 17, C673 
VXSNAN (FPSCR), 17, 152, C673 
VXSOFT (FPSCR), 17, 145, C674 
VXSQRT (FPSCR), 17, C674 
VXVC (FPSCR), 17, 152, C673 
VXZDZ (FPSCR), 17, C673 

w 
word,9 
write allocate (cache), 177 
write around (cache), 177 
write back (cache), 177, 183 
write broadcast, 184 
write invalidate, 184 
write-through 

cache, 177, 184 
memory access mode (W), 197 

x 
XE (FPSCR), 17, C674 
XER, 12, 16, C674 

bits 
CA, 16, C674 
OV, 16, 28, C674 
SO, 16, 28, C670, C674 

dependencies, 329-330 
instructions, 165 

xor[.],86 
xori[.],87 
xoris[.],87 
XX (FPSCR), 17, 147, C673 
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z 
ZE (FPSCR), 17, 145-146, C674 
Zero (CR[EQ]), IS, C670 
zeros, 139,141 
ZX (FPSCR), 17, C673 

694 Index 



CODE 
T o take full advantage of the speed and 

features of the PowerPC™ chip, pro­
grammers need to master assembly lan­

guage techniques. Written by an expert in the 
area, Optimizing PowerPC Code provides 
hard-core, cross-platform help at the assembly 
language level. Even if you have little need to 
write a significant amount of code in assembly 
language, the techniques presented here will be 
helpful in reading compiler-generated code and 
in the debugging process. Beyond simply pre­
senting the information required to write effi­
cient, robust code, this book: 

• covers new concepts, such as pipelining, 
which are key to effective RISC program­
mlllg 

• discusses the tricks that compilers use to 
produce fast code 

• expands on and corrects limited Motorola 
documentation for the PowerPC chip 

• provides a handy appendix with in-depth 
information on all extended code forms and 
related mapping information 

Addison-Wesley Publishing Company 

Optimizing PowerPC Code is an essential 
resource for all high-level programmers, no 
matter what platform they are using. The 
author's expertise in assembly language pro­
gramming for RISC-based machines makes his 
optimization techniques valuable to anyone 
wishing to write fast, efficient code. 

Gary Kacmarcik has been working with RISC­
based assembly language programming for 
many years on the precursor to the PowerPC, 
IBM's RS/6000, and has developed major 
applications with high-level languages in 
Macintosh, Windows, and XWindows environ­
ments. He won MacHack Conference's Best 
Paper award for an article on RS/6000 assem­
bly language optimization techniques. 

Cover design by Barbara T. Atkinson 
Cover art © Michael D. Coe 

53995 

I 
9 780201 408393 

ISBN 0-201-40839-2 

$39.95 US 
$51.95 CANADA 


