

Optimizing
PowerPCTM

Code

Programming the PowerPC Chip
in Assembly Language

Gary Kacmarcik

..
TT

Addison-Wesley Publishing Company
Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Wokingham, England • Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the
book, and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial capital letters or all capital letters.

The authors and publishers have taken care in preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil­
ity for errors or omissions. No liability is assumed for incidental or consequen­
tial damages in connection with or arising out of the use of the information or
programs contained herein.

Library of Congress Cataloging-in-Publication Data

Kacmarcik, Gary.
Optimizing PowerPC code / Gary Kacmarcik.

p.em.
Includes index.
ISBN 0-201-40839-2
1. PowerPC microprocessors. 1. Title.

QA76.8.P67K33 1995
005.265-dc20

Copyright © 1995 by Gary Kacmarcik

94-10489
CIP

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, eiectronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Sponsoring Editor: Martha Steffen
Project Manager: Eleanor McCarthy
Production Coordinator: Deborah McKenna
Cover design: Barbara T. Atkinson
Cover art © Michael D. Coe
Set in 10 point Palatino by Michael D. Wile

123456789-MA-9998979695
First printing, April 1995

Addison-Wesley books are available for bulk purchases by corporations, institu­
tions, and other organizations. For more information please contact the Corpo­
rate, Government, and Special Sales Department at (800) 238-9682.

Tous mes remerciements a rna femme Sylvie Giral, car sans son
assistance et sa presence, ce livre aurait ete bien difficile a accomplir.

Aussi, toute rna gratitude a mes parents pour leur soutien et
encouragements continuels: ''J'espere qu'ils conserveront ton

cerveau au vinaigre apres avoir autant investi dans ton education./I

Thanks are also in order to Tom Pittman of Itty-Bitty Computers for
suffering through an earlier draft of this manuscript and suggesting

numerous improvements and identifying areas that needed
additional clarification.

Special thanks to ili } II ~~' tJ:. and 1if~.-=f for providing much
needed distractions and helping me maintain my sanity during the

creation of this manuscript.

Contents

Chapter 1 Introduction 1

Purpose of Book 1
Intended Audience 1
Why Assembly Language on a RISe Processor? 2
PowerPC as a RISe ISA 5
Overview of this Book 7

Chapter 2 PowerPC Architecture Overview 9

Data Organization 9
Functional Units 12
Processor Registers 13
32- versus 64-bit Implementations 23

Chapter 3 Instruction Set Overview 27

Instruction Groups 27
Instruction Suffixes 28
Extended Instruction Forms 29
Obsolete Instructions 29
Optional Instructions 29
Notation 30

v

Chapter 4 Branch and Trap Instructions 35

Branch Instructions 35
Branch Prediction 47
Trap Instructions 50
System Linkage Instructions 54

Chapter 5 Load and Store Instructions 57

Loads and Stores 57
Load and Store Byte 59
Load and Store Halfword 60
Load and Store Word 61
Load and Store Doubleword 63
Load and Store Byte-Reversed Data 64
Load and Store Floating-Point Double-Precision 65
Load and Store Floating-Point Single-Precision 65
Load and Store Multiple 66
Load and Store String 68
Load and Store Synchronization 71
Obsolete Load String 72

Chapter 6 Integer Instructions 75

Addition 75
Subtraction 78
Multiplication 80
Division 81
Miscellaneous Arithmetic Instructions 83
Comparison Instructions 84
Logical (Boolean) Instructions 86
Obsolete Arithmetic Instructions 88

Chapter 7 Rotate and Shift Instructions 93

Rotation Masks 93
How Rotates and Shifts Update the CR 96
Rotate Instructions 97
Shift Instructions 102
Extended Rotate Instruction Forms 107
Multiple-Precision Shifts 115
Obsolete Rotate and Shift Instructions 129

Chapter 8 Floating-Point Instructions 135

Floating-Point Data Representation 135
Floating-Point Operation 142
Floating-Point Instructions 148
Floating-Point Conversions 155

vi Contents

Chapter 9 System Register Instructions 159

CR Instructions 159
FPSCR Instructions 162
MSR Instructions 163
SPR Instructions 164
User-Level SPR Extended Forms 164
Supervisor-Level SPR Extended Forms 166
Time Base Register Instructions 170
Segment Register Instructions 171

Chapter 10 Memory and Caches 173

Introduction 173
Memory and Cache Overview 174
Cache Architecture 176
PowerPC Cache Geometry 184
PowerPC Cache Coherency 185
PowerPC Storage Control Instructions 185
Virtual Memory 188
PowerPC Memory Management 192
PowerPC Memory Access Modes 196
PowerPC Lookaside Buffer Instructions 198

Chapter 11 Pipelining 201

What is a Pipeline? 201
Basic Pipeline Functions 202
PowerPC 601 Pipeline Description 205

Chapter 12 PowerPC 601 Instruction Timing 215

Reading the Timing Tables 215
Instruction Dispatch Timing 216
Fixed-Point Instruction Timings 219
Floating-Point Instruction Timings 225
Branch Instruction Timings 228
Cache Access Timings 238
Pipeline SynchrOnization 240
Abnormal Integer Conditions 243
Abnormal Floating-Point Conditions 245
Timing Pitfalls 248

Chapter 13 Programming Model 251

Register Usage Conventions 251
Table of Contents (TOC) 254
The Stack Pointer 255

Contents vii

Brief Interlude: Naming Conventions 261
Subroutine Calling Conventions 261
A Simple Subroutine Call 262
An Even Simpler Subroutine Call 268
Saving Registers on the Stack 270
Stack Frames 278
Passing Arguments to Routines 281
Retrieving Results from Routines 286
Stack Frames and allocaO 287
Linking with Global Routines 288

Chapter 14 Introduction to Optimizing 295

When to Optimize 295
Examining Compiled Code 297
Standard Optimizations 300

Chapter 15 Resource Scheduling 305

Types of Processor Resources 305
Pipeline Conflicts 306
Register Usage Dependencies 314
Memory Dependencies 334

Chapter 16 More Optimization Techrtiques 341
Keeping the Processor Busy 341
Increasing Scheduling Opportunities 344
Strength Reduction 346
Load/Store Ordering 350
Software Pipelining 351

Appendix A Instruction Set Summary 353

AppendixB Complete List of Mnemonics

AppendixC Register Bit Definitions 669

AppendixD Optimization Summary 677

AppendixE References & Further Readirtg

Index 681

viii Contents

643

679

Introduction

1.1 Purpose of Book

The purpose of this book is simple: to introduce programmers to the concepts of
assembly language programming for PowerPC processors. Beyond simply pre­
senting the information required to write functional code, this book presents the
information necessary to write efficient code, and it also discusses the tricks that
compilers use to produce fast code.

The vast majority of people reading this book may have little need to write a
significant amount of code in assembly language. But the techniques presented
here will be useful to the high-level programmer who needs to read compiler­
generated code as part of the debugging process.

1.2 Intended Audience

This book is intended for programmers who have had some sort of experience
with high-level languages such as C or Pascal, or with assembly language for
another processor.

This book will not spend time defining basic concepts such as hexadecimal nota­
tion nor expounding the virtues of null-terminated over length-encoded strings.
It will, however, present definitions for any term that is used. For example, con­
cepts like latency and throughput will be defined before being used.

Introduction 1

§ 1.3 Why Assembly Language on a RISC Processor?

1.3 Why Assembly Language on a RISe Processor?

The first question that many people ask is something like: "Why would any sane
person be interested in learning assembly language for a RISe processor?" The
reasoning behind this question is the belief that properly written RIse assembly
language routines are significantly more difficult to write than similar else
assembly routines, and that today's compilers produce far better code than code
generated by hand, so why bother?

The question is also valid because the computer industry has been moving away
from programming in low-level languages and emphasizing languages that
promise robustness, easy verification of correctness, and so on. Assembly lan­
guage can promise none of those things. So, again, why bother?

The truth of the matter is that there are two major reasons for wanting to be
familiar with assembly language for any processor (RISe or not). The first is that
you need complete control of all processor resources to make the code as fast or
small as possible. The second reason is that you need to debug your code (or
someone else's) and see what's really going on. A source-level debugger may
not be sufficient (or even available).

The first reason may sound like it's only for anal-retentive speed freaks, but
there are reasons for normal human beings to want to hand-code assembly. It is
a sad fact that many of the commercially available compilers do not generate
highly optimized code. The best-selling compilers are typically those with the
fastest edit-compile-run times, and a proper optimizer takes a bit of time to run.
Thus, while it's true that a properly written optimizing compiler can generate
code that is better than the code an average assembly language programmer
would produce, many compilers are not properly written and thus, do not pro­
duce properly optimized code.

In addition, a compiler is limited by the source language. As a programmer in
assembly language, you know exactly what you need and when you need it
(and when you no longer need it). The compiler must try to figure out as much
about the program as it can from the source, and when it's in doubt, it must play
it safe and produce less efficient code. In the e programming language, the pro­
grammer is given such flexibility with addresses and pointers that it becomes
extremely difficult for the compiler to determine if a range of memory can be
modified by a section of code. Because of the compiler's inability to guarantee
that the memory won't be modified, it may not be able to risk applying certain
optimizations.

Debugging is another situation thqt causes programmers to drop down into
assembly. Sometimes (one hopes rarely), compilers do not produce correct code.
More commonly, you may find that your program works fine in some circum­
stances, but dies a horrible death when it interacts with other programs. Lacking

2 Chapter 1

else versus RISe

the source code to the other program, assembly may be the only course of action
available.

Of course, there's a reason high-level languages exist. The vast majority of your
coding and debugging will be done in some sort of high-level language. You
should need to use assembly only when you have a routine that needs to be as
fast as possible.

To correctly respond to whether RISC assembly is more difficult than CISC
assembly, the terms RISC and CISC must first be discussed in more detail.

clse versus RISe

There is a lot of confusion surrounding the differences between a RISC and a
CISC architecture arising from misuse of the terms and from various marketing
departments propagating the "RISC is always faster/better than CISC" myth.
Unfortunately, part of the confusion also comes from the fact that there is no
clear line between the two design philosophies: some architectures are clearly
RISC, others are clearly CISC, while still others fall somewhere in between.

The most important thing to note is that RISC ("Reduced Instruction Set Com­
puter") and CISC ("Complex Instruction Set Computer") are terms that are
properly applied to an Instruction Set Architecture (ISA) and not to a particular
implementation of an ISA. Common usage allows a processor to be called a
"RISC processor," but what is really meant is that the processor is an implemen­
tation of a RISC architecture.

This difference between an ISA and a hardware implemention of that ISA is fun­
damental to understanding RISC and CISe.

WhatRISCls

The following is a list of features that are commonly associated with RISC ISA's:

• A large uniform register set
• A load/ store architecture
• A minimal number of addressing modes
• A simple fixed-length instruction encoding
• No / minimal support for misaligned accesses

This set of "rules" is designed to make fast processors easier to implement.
Notice that the list contains no requirements as to the number of instructions,
nor does it indicate how the processor should be implemented. These are
issues that are commonly mistaken as features required for a RISC processor.

Introduction 3

§ 1.3 Why Assembly Language on a RISC Processor?

A processor implementing a RISC ISA is not necessarily a fast processor-per­
formance is dependent on how the processor is implemented. However, because
the features listed were designed to make it easier to implement fast processors,
one can infer that a RISC processor is likely to be faster than a CISC processor of
equivalent technology.

As an example to drive this point home, one can imagine two implementations
of a particular RISC ISA: one that doesn't use pipelines or superscalar dispatch
(these concepts are discussed later in this book); and another one that does. The
first processor would perform very poorly when compared to the other proces­
sor, and it might even perform worse than many currently available CISC pro­
cessors. However, just because this processor performs poorly does not mean
that it is not a RISC processor.

If you think of RISC as standing for "Reduced Instruction Set Complexity," then
you may be less likely to be confused by the term.

What else Is

Given the definition of RISC, the original definition of CISC is trivially easy to
define: CISC is anything that is not RISe.

When the designers of the first RISC architectures devised the term "RISC," they
meant to differentiate their simpler, reduced processor from the current crop of
complex processors. Thus, "CISC" was used as a pejorative term that meant
non-RISC architectures.

This lack of a real definition has contributed to some of the confusion surround­
ing RISC and CISe. Today, a CISC architecture typically has:

• Many instruction types that access memory directly
• A large number of addressing modes
• Variable-length instruction encoding
• Support for misaligned accesses,

although architectures vary widely.

What RISe/elSe Are Not

Note that the above lists do not require:

• An instruction pipeline.
• A superscalar instruction dispatch.
• Hardwired or microcoded instructions.

4 Chapter 1

Is RIse Assembly More Difficult than else Assembly?

These are all implementation issues that any processor may make use of, regard­
less of its ISA. RISC processors have become associated with these features
because RISC ISAs are designed to facilitate the implementation of these fea­
tures. However, the presence of these features does not indicate that the proces­
sor in question is an implementation of a RISC ISA.

As an example, Intel's Pentium™ processor has an instruction pipeline with a
superscalar dispatch. These implementation issues do not change the fact that
the Pentium is just another (albeit fast) implementation of a CISC instruction set
architecture.

Is RISe Assembly More Difficult than else Assembly?

So this brings us back to the original question: Is a RISC processor more difficult
to program than a CISC processor? The answer to this question lies somewhere
between JlThere's no way to tell" and JlThat's a silly question."

It's difficult to answer the question because the programming challenges
depend more on the specific processor architecture (that is, 68K, i86, PowerPC)
than on the general category (that is, RISC or CISC) of the processor architecture.

An easy way to make this clear is to compare the 68K and the i86 processor fam­
ilies. They are both CISC architectures, but the 68K is widely regarded as being
much easier to program in assembly, mostly because of its large store of general
purpose registers and flexible addressing modes. The same comparison can be
made for RISC architectures: some RISC processor families will be easy to pro­
gram while others will be more difficult.

In fact, an argument can be made that RISC assembly language programming is
easier than CISC assembly. The large register store and the fact that most instruc­
tions have one cycle throughput reduces some of the complexity of assembly
language programming.

For today's processors, the most complicated aspect of programming in assem­
bly language is the instruction scheduling that is necessary on pipelined imple­
mentations. Because pipelines can exist on either RISC or CISC processors, this
scheduling problem exists on processors of both architecture types. Since RISC
simplifies the other aspects of programming, this becomes more manageable.

1.4 PowerPC as a RISC ISA

The preceding sections have spoken in general terms of RISC processors and
how they fit into the general scheme of things. This section talks about how the
PowerPC fits into the RISC category.

Introduction 5

§1.4 PowerPC as a RISC ISA

As mentioned earlier, five basic features are commonly found on RISC proces­
sors. We'll touch on each one and discuss how the PowerPC fits.

A Large, Uniform Register Set

The PowerPC architecture defines 32 general purpose registers and 32 floating­
point registers. All of these registers are general purpose in that any of the regis­
ters can be used as arguments to any of the instructions.

The only exception to this is GPR rOo Some instructions (like the non-Update
Load and Store instructions) use a register specification of 0 as a special case to
indicate that no register should be used in the calculation.

A Load/Store Architecture

The only instructions that access memory are the Load and Store instructions.
Thus, the PowerPC ISA qualifies as a Load/Store architecture.

A Minimal Number of Addressing Modes

Only two classes of instructions require addressing modes: the load/ store
instructions and the branch instructions. All other instructions operate on regis­
ters or immediate values.

The load/ store instructions allow three addressing modes (register indirect, reg­
ister indirect with register index, or register indirect with immediate index); and
the branch instructions allow three modes (absolute, PC relative, or SPR indi­
rect).

Contrast this with the 68000 (a CISC processor), which has a seemingly infinite
number of addressing modes, with more coming out with each generation of the
processor family.

A Simple Fixed-length Instruction Encoding

Every PowerPC instruction is encoded in 32 bits. There are no exceptions to this
rule. Instruction encodings that do not require the full 32 bits are padded with 0
bits so that they fill all 32 bits.

NolMinimal Support for Misaligned Accesses

This is where the PowerPC architecture deviates from the standard RISC design
principles. Following the RISC philosophy, misaligned accesses should never
occur, so support for them needlessly complicates the implementation.

6 Chapter 1

Overview of this Book

However, one of the design considerations of the original POWER architecture
(the PowerPC's parent) was that it be able to emulate other processors efficiently.
Because many of the processors that were likely to be emulated allowed mis­
aligned accesses, it made sense to include support for misaligned accesses in the
POWER/PowerPC architecture.

1.5 Overview of this Book

The book is divided conceptually into four parts: an architecture and instruction
set description (Chapters 2 through 12), a basic programming section (Chapter
13), an advanced programming section (Chapters 14 through 16), and an instruc­
tion set summary (Appendices A and B).

Chapter 2 begins with a basic overview of the PowerPC architecture: the stan­
dard data types and the functional units of the processor; and introduces the
differences between the 32-bit and 64-bit PowerPC implementations.

Chapter 3 contains a brief summary of the notation used in the remaining
instruction set chapters. The following chapters (4 through 9) focus on a specific
instruction type, such as floating-point or branch instructions. These are useful
chapters to read through at least once, because they give a feel for which opera­
tions the PowerPC instruction set provides.

Chapters 10 through 12 provide basic information about memory hierarchies
and pipelines.

Chapter 11 describes the standard function-calling mechanism that most
PowerPC based systems will use. Note that the information provided in this
chapter is not in any way enforced by the processor. It's just a set of conventions
that allow routines generated by different compilers to interface consistently.
This chapter will be of interest to programmers who need to debug high-level
code at the assembly level.

The remaining chapters define more advanced architectural concepts and
describe some implementation details for the PowerPC 601 processor. This
information is then used in discussions that describe techniques for optimizing
code sequences so that they use the processor resources efficiently.

The instruction set summaries in Appendices A and B provide easy-to-use
instruction references, alphabetically organized by mnemonic. Appendix A
devotes a page to each PowerPC instruction and includes the obsolete POWER
instructions found on the 601. Appendix B lists every POWER and PowerPC
instruction and all the extended mnemonics, and also gives the mapping of each
extended mnemonic into standard instructions. Appendix B is quite useful for
reading code that uses the extended mnemonics, because it isn't always appar­
ent from which base instruction the extended form was derived.

Introduction 7

PowerPC
Architecture

Overview

Before the instruction set can be discussed, the basic architecture of the processor
must first be defined. This chapter describes the data types and functional units
of the PowerPC architecture.

2.1 Data Organization

An understanding of how data is organized is the best place to begin, because
everything else in this book assumes you know this. If you are familiar with
assembly language for another processor, then nothing in this section should
surprise you, and you should be able to quickly skim the information presented
here. This section is included for the sake of completeness and to give people
completely new to assembly language a good starting point.

Basic Data Types

The PowerPC provides six basic data types: byte, halfword, word, doubleword,
and single- and double-precision floating-point. In addition, there is a quad­
word data type that is useful because quadword alignment is desirable in some
circumstances. Table 2-1 summarizes these data types.

PowerPC Architecture Overview 9

§2.1 Data Organization

Table 2-1 Standard PowerPC Data Types

Lower 8 Bits
Data Type Data Size of Addressa

(if aligned to this type)

Byte 8-bit ---- ----
Halfword 16-bit ---- ---0

Word 32-bit ---- --00

Doublewordb 64-bit ---- -000

Quadwordc 128-bit ---- 0000

Floating-point single 32-bit ---- --00

Floating-point double 64-bit ---- -000

a. A '-' in the address indicates that the bit may be either a a or a 1.

b. Fixed-point instructions that operate directly on doublewords are found on 64-bit PowerPC
implementations only.

c. Other than cache instructions, no instructions operate directly on quadwords.

Of these data types, the byte, halfword, word, and the two floating-point types
are the most commonly used. The doubleword data type is available only on 64-
bit PowerPC implementations. The quadword data type is included for com­
pleteness.

Data Alignment

Alignment refers to the placement of a data type in memory. Most processors are
designed to operate more efficiently when data is aligned properly, so it is
important to be aware of this concept. A data type is considered to be aligned if
its address is an integral multiple of the data type size.

Thus, the address of an aligned word value must be a multiple of four. Halfword
and doubleword values must have addresses that are multiples of two and
eight, respectively, for proper alignment. Because bytes are one byte wide, they
are always considered to be aligned.

When the addresses are viewed in binary, it is relatively easy to determine if the
quantity is aligned. A multiple of 2 (halfword) always has a low order bit of bO;
a multiple of four (word) has bO 0 for the low order bits; and a multiple of eight
(doubleword) has bOOO.

10 Chapter 2

Byte Ordering

Byte Ordering

When storing values that require more than one byte, some convention for the
order of the bytes must be agreed upon or else the data could potentially be
misinterpreted. Figures 2-1 and 2-2 show the two possible organizations for the
halfword (2-byte) value OxOAOB.

Figure 2-1 Big-endian Byte Ordering for OxOAOB

OA OB

Figure 2-2 Little-endian Byte Ordering for OxOAOB

OB OA

For the four-byte word OxOAOBOCOD, there are 24 (4! = 24) possible combina­
tions of bytes, but only the two shown in Figures 2-3 and 2-4 make sense.

Figure 2-3 Big-endian Byte Ordering for OxOAOBOCOD

OA OB OC OD

Figure 2-4 Little-endian Byte Ordering for OxOAOBOCOD

OD OC OB OA

In both of these figures, the first encoding method stores the most significant
byte, or big-end, first, and the second encoding stores the least significant byte,
or little-end, first. Hence, the first method is referred to as big-endian and the sec­
ond is referred to as little-endian.

By default, the PowerPC processors operate in big-endian mode, but there are
switches to allow user-level or interrupt operations to occur in little-endian
mode.

Bit Numbering

Just as the bytes within words are organized using a big-endian scheme, the bits
within each byte or word are numbered using a big-endian numbering scheme.
Thus, as Figure 2-5 shows, the most significant bit (msb) is bit #0 and the least
significant bit (lsb) is bit #31.

Figure 2-5 Little-endian Bit Numbering for a 32-bit Register

o 1 2 3 28 29 30 31

I I I I I I I I I I
msb lsb

PowerPC Architecture Overview 11

§2.2 Functional Units

When representing data in registers, the msb will always be on the left and the lsb
will always be on the right so that the displayed data is intelligible.

In general, it doesn't matter how the bits are ordered or numbered within a reg­
ister, because one typically uses the entire register at a time. However, with the
PowerPC, there are instructions that require a starting or ending bit, and for
these instructions it is important to be aware of the numbering scheme.

2.2 Functional Units

It is convenient to divide a PowerPC processor into five conceptional units: the
Fixed-Point or Integer Unit (IU), the Floating-Point Unit (FPU), the Branch Pro­
cessor Unit (BPU), the System Register Unit (SRU), and the Load/Store Unit
(LSU).

It is important to note that these are conceptual functional units. Although these
units will be present in some form on each PowerPC implementation, they will
not necessarily be these five particular units. Some units may be combined, or
there may be multiple units of the same type. For example, the 601 combines the
IU, LSU, and SRU into a unified Integer Unit. Future PowerPC processors will
offer multiple IUs to increase integer performance.

Integer Unit (IU)

The Integer Unit performs all of the integer instructions. These instructions
include the arithmetic, logical, and shift/ rotate instructions.

The IU has a store of General Purpose Registers (GPRs) that are used to perform
the calculations. In addition, there is a Fixed-Point Exception Register (XER) that
contains status information.

The IU is sometimes called the Fixed-Point Unit (FXU).

Floating-Point Unit (FPU)

The Floating-Point Unit performs all of the floating-point operations that the
PowerPC supports. These operations conform to the IEEE 754 floating-point
standard for floating-point arithmetic and include all of the required data types
(normalized, denormalized, NotANumbers, and others).

The FPU also includes a Floating-Point Status and Control Register (FPSCR) that
controls how floating-point operations are performed and provides status infor­
mation.

12 Chapter 2

Branch Processor Unit (BPU)

Branch Processor Unit (BPU)

The Branch Processor Unit handles all of the predictions and resolutions for the
branch instructions. When a branch cannot be completely resolved, the BPU pre­
dicts whether or not the branch will be taken and fetches the appropriate
instructions.

There are three SPRs associated with the BPU: the Link Register (LR), the Count
Register (CTR), and the Condition Register (CR). Both the LR and the CTR can
be used to hold target addresses for branching, although this is a secondary
function for the CTR. The CR and CTR are used by the conditional branch
instructions to hold the conditions that the branch depends on. The CR holds the
relational information (less than, greater than, or equal) that is calculated by one of
the compare instructions, and the CTR holds a count that can be automatically
decremented to facilitate the coding of loop structures.

Load/Store Unit (LSU)

The Load/Store Unit handles all of the load and store instructions executed by
the processor. Because these instructions are the only interface between the pro­
cessor registers and the memory subsystem, the LSU can be considered the data
interface for the processor.

System Register Unit (SRU)

The System Register Unit provides access to the various Special Purpose Regis­
ters (SPRs) that the PowerPC provides. This unit also implements the various
Condition Register logical operations.

2.3 Processor Registers

This section provides an overview of both the user- and supervisor-level regis­
ters that the PowerPC specifies. In general, only the user-level registers will be
useful to the programmer, but the supervisor-level registers are defined here to
give a complete summary.

Remember that bits within registers are numbered using the big-endian scheme.
That is, the left-most or most-significant bit is bit 0, and the right-most or least
significant bit is bit 31 (or 63). Because some registers can be different widths on
different implementations, this can cause some confusion about bit numbering.
See §2.4, 1/32- versus 64-bit Implementations," for more information.

PowerPC Architecture Overview 13

§2.3 Processor Registers

User-Level Registers

The user-level registers are the only registers that most programs are likely to
need.

General Purpose Registers (GPRs)

Figure 2-6 General Purpose Register

o W]
GPR

There are 32 general purpose registers. These registers are referred to as GPRO -
GPR31, or simply rO - r31. The size of these registers depends on the PowerPC
implementation: they are 32-bits wide on 32-bit implementations and 64-bits
wide on 64-bit implementations.

When instructions that operate on 32-bit data are executed on a 64-bit PowerPC
implementation, only the lower (right-most) 32 bits are used.

Floating-Point Registers (FPRs)

Figure 2-7 Floating-Point Register
o 63

FPR

There are 32 floating-point registers. These registers are referred to as FPRO -
FPR31, or simply frO - fr31. The floating-point registers are always 64 bits in
width and always contain double-precision floating-point values.

Condition Register (CR)

Figure 2-8 Condition Register
03478 U U ~ M W W ~ ~ ~ ~ n

I CRO I CRt I CR2 I CR3 I CR4 I CR5 I CR6 I CR7 I

The Condition Register is a 32-bit-wide register that contains eight 4-bit wide
condition fields. These eight fields can be specified as the destination for the
result of the comparison operations or as the source for the conditional branch
operations.

These eight fields are referred to as erfO - erf7, or CR{O} - CR{7}. As with the
bit numbering, the fields are numbered from left to right. Thus, erfO corre­
sponds to CR[O:3], erfl = CR[4:7], ... , and erf7 = CR[28:31].

14 Chapter 2

Condition Register (CR)

How the four bits in each field are interpreted depends on the instruction that
was used to set the field. Figure 2-9 shows how the bits of the field are set for
fixed-point compare operations. In the figure, 0, 1, 2, and 3 specify the corre­
sponding bit within the given CR field.

Figure 2-9 CR Field Bits Resulting from Fixed-Point Compare Operations

o LT
1 GT
2 EQ
3 SO

I LT I GT I EQ I so I

Less Than
Greater Than
Equal
Summary Overflow

Figure 2-10 shows how the bits are set for floating-point compare operations.

Figure 2-10 CR Field Bits Resulting from Floating-Point
Compare Operations

o FL
1 FG
2 FE
3 FU

FPLess Than
FP Greater Than
FPEqual
FP Unordered

CR field 0 is implicitly set by fixed-point instructions and CR field 1 is implicitly
set by floating-point instructions that have their Record bit set. Fixed-point
instructions with the Record bit set update the CR field 0 as Figure 2-11 shows.
In this figure, 0, 1, 2, and 3 are the bits within CR field 0, that is, CR[0:3].

Figure 2-11 CR Field Bits Resulting from Fixed-Point Operations with
Record Bit

o LT
1 GT
2 EQ
3 SO

I LT I GT I EQ I so I

Negative (Less Than Zero)
Positive (Greater Than Zero)
Zero (Equal to Zero)
Summary Overflow

PowerPC Architecture Overview 15

§2.3 Processor Registers

Figure 2-12 shows the interpretation of the bits of CR field 1 after a floating-point
instruction with the Record bit set has been executed. In this figure, 0, 1, 2, and 3
are the bits within CR field 1, that is, CR[4:7].

Figure 2-12 CR Field Bits Resulting from FP Operations with Record Bit

o FX
1 FEX
2 VX
3 OX

FP Exception Summary
FP Enabled Exception Summary
FP Invalid Operation Exception Summary
FP Overflow Exception

Fixed-Point Exception Register (XER)

Figure 2-13 Fixed-Point Exception Register
o 1 2 3 15 16 23 24 25 31

[SO]OV[CAI 0 0 0 0 0 0 0 0 0 0 0 0 0 I Byte compare value I 0 I Byte count I

The XER (see Figure 2-13) contains information about the operation of integer
instructions, such as the Carry bit, the Overflow bit, and a Summary Overflow
bit. The XER also contains special-purpose fields that are used by some instruc­
tions.

The Summary Overflow (SO) bit is the same as the Overflow (OV) bit except that
it is sticky. A bit that is sticky is one that will remain set once it has been set-it
must be explicitly cleared by using the mtxer or mcrxr instructions. This is con­
trasted with the OV bit, which will be updated (cleared or set) by the next
instruction that provides overflow information. The SO bit can be used to check
if any of a sequence of instructions has caused an overflow, thus eliminating the
need to explicitly check after each instruction that could cause an overflow.

The "Byte compare value" and "Byte count" fields of the XER are used by some
of the Load String and Store String instructions. The "Byte compare value" is used
only on the 601 to support the obsolete POWER instruction lscbx.

A full definition of the XER bits is given in Appendix C.

Floating-Point Status and Control Register (FPSCR)

The FPSCR is a 32-bit register that contains the control and status bits for the
FPU (see Figure 2-14). The control bits include enable bits for the various float­
ing-point exceptions and rounding bits for controlling how the FPU performs
rounding operations. The status bits record any floating-point exceptions that
may have occurred.

16 Chapter 2

Link Register (LR)

Figure 2-14 Floating-Point Status and Control Register

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

VXSNAN~~ 1 ~Lvxvc
VXISI~ ~VXIMZ
VXIDI VXZDZ

~LVXCVI
~VXSQRT

VXSOFT

A full definition of the FPSCR bits is given in Appendix C.

Link Register (LR)

The Link Register (see Figure 2-15) is used to hold the target address for a
branch. Certain forms of the branch instruction will automatically update the LR
with the address of the instruction immediately following the branch. This latter
use is well suited for performing subroutine calls: when the branch is taken (that
is, the subroutine is called), the LR contains the return address and the subrou­
tine can return to the caller with a simple Branch to LR instruction.

Figure 2-15 Link Register

o
LR

Counter Register (CTR)

The primary function of the Count Register (see Figure 2-16) is to provide a
counter that can be set to specify the number of iterations for a loop. Some forms
of the conditional branch instructions automatically decrement this counter and
use the new counter value as part of the expression to determine if the branch
should be taken or not.

Figure 2-16 Count Register

o [~§]
CTR

The CTR can also be used to hold branch addresses. By using the CTR, the target
address can be calculated and branched to without affecting the contents of the
Link Register. It is mostly operating system (OS) glue routines that take advan­
tage of this use of the CTR, although user programs can safely do the same thing.

Supervisor-Level Registers

The supervisor-level registers are registers that contain information that is criti­
cal to the proper operation of the system. To help prevent programs from inad-

PowerPC Architecture Overview 17

§2.3 Processor Registers

vertently accessing one of these registers and causing damage, access to all of
these registers is privileged. This means that the program must be running in
supervisor mode or a privilege exception will occur.

Fortunately, there is rarely any need to access these registers.

Machine State Register (MSR)

The MSR is a [~] bit register that contains the status bits that define the current

state of the processor (see Figure 2-17). This includes the bits to indicate if the
processor is in 32- or 64-bit mode, if certain interrupts are enabled, if the proces­
sor is in big- or little-endian mode, and other bits.

On 32-bit PowerPC implementations, the bits are arranged as shown in Figure
2-17.

Figure 2-17 Machine State Register for 32-bit PowerPC Implementations

o 1 4 5 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

101000010000010 0 olPOwlollLEIEElpRIFPIMEIFEOISEIBEIFEllolIPlmlDRlo OIRIILEI

Ort 64-bit PowerPC Implementations, there are an additional 32 bits that are part
of the MSR, as shown in Figure 2-18. The bits of the 32-bit MSR are mapped into
the low-order 32 bits (bits 32 to 63) of the 64-bit MSR. Currently, there is only one
bit defined in the upper 32-bits of the 64-bit MSR: the processor mode bit (SF).
This bit indicates whether the processor is in 32-bit or 64-bit mode.

Figure 2-18 Machine State Register for 64-bit PowerPC Implementations

,0 I 31

1-10 01

n~ %n ~G M~~~aGm~~~~~~~~~~M~M

101000 010 0 0 0 010 0 olPOwlolILEIEElpRIFplMEIFEOlsEIBEIFElIOIIPllRlDRIO OIRIILEI

A full definition of the MSR bits is given in Appendix C.

SavelRestore Registers (SRRO, SRRl)

The two Save and Restore Registers are used to save the machine status when an
interrupt occurs and then to restore the original state when the interrupt has
been serviced. Thses two registers are shown in Figure 2-19.

Figure 2-19 Save and Restore Registers

o
SRRO

o [m
SRRI

18 Chapter 2

Processor Version RegIster (PV K)

SRRO records the next instruction to be executed after the interrupt has been ser­
viced. SRR1 records the original state of the MSR. When an interrupt occurs, the

bits [O~2]' [3~':1]' and [!::~~] are copied from the MSR and placed in the corre­
sponding bit positions of SRRl.

Processor Version Register (PVR)

The PVR is a read-only 32-bit register that provides a processor ID and revision
level (see Figure 2-20). The upper 16 bits define the processor (for example,
OxOOO1 = 601; Ox0003 = 603), and the lower 16 bits define the engineering revision
level.

o

Figure 2-20 Processor Version Register

15 16

Version Revision

Data Address Register (DAR)

31

When a Data Storage Interrupt occurs, the DAR is loaded with the effective
address of the storage element that caused the access interrupt. Figure 2-21
shows the DAR.

Figure 2-21 Data Address Register

o
DAR

Data Storage Interrupt Status Register (DSISR)

The DSISR is a 32-bit register that defines the cause of Data Storage and Align­
ment interrupts (see Figure 2-22).

Figure 2-22 Data Storage Interrupt Status Register

o 31

DSISR

This register is sometimes referred to as the DAE/Source Instruction Service
Register.

PowerPC Architecture Overview 19

SL.j Processor Registers

1

1

0

0

Instruction and Data Block Address Translation Registers (IBAT, DBAT)

The Block Address Translation registers (BATs) are used by the BAT mechanism
to record information about the range of memory pages that are considered to be
grouped together as a block.

Figure 2-23 Block Address Translation Registers

Upper BAT Register

[WW] nmm mmmm
BEPI 10 0 0 01 BL Ivslvpl

Lower BAT Register

W]W] [~mfl [~3]mmmm
BRPN 10 0 0 0 0 000 o 01 WIMG 101 PP 1

There are four pairs of IBATs and four pairs of DBATs (see Figure 2-23). There are
two sets of BAT registers because instruction and data references are handled
separately. On PowerPC implementation with unified caches (like the 601), only
the IBATs will be implemented.

General SPRs (SPRGO-SPRG3)

The four General SPRs are provided to give the operating system extra registers
to store whatever information it needs without tying up GPRs. These registers
are 32 bits on 32-bit implementations, and 64 bits on 64-bit implementations.
Figure 2-24 shows the format of these four registers.

Figure 2-24 General SPRs

SPRGn

Time Base Register (TBU, TBL)

The Time Base Register is a 64-bit register that maintains a counter. The fre­
quency of the counter is system-dependent-to convert the TBR value to calen­
dar values requires the update frequency value that the as needs to maintain.
The two halves of the TBR are shown in Figure 2-25.

Figure 2-25 Time Base Register

o 31

TBU

32 63

TBL

20 Chapter 2

Decrementer (DEC)

The TBR can be accessed as if it were two 32-bit registers by specifying either the
upper or lower portion of the register. Read access to the TBR is user-level; write
access is supervisor-level.

This register is not defined on the 601.

Decrementer (DEC)

The DEC register is a 32-bit register (see Figure 2-26) that counts down (at the
same frequency as the Time Base Register) and generates a Decrementer inter­
rupt when the counter passes O.

Figure 2-26 Decrementer

o 31

DEC

Because the 601 doesn't have a Time Base Register, the frequency of the DEC on
the 601 is the same as for the Real-Time Clock (RTC) defined in the next section.

For compatibility with the POWER architecture, the 601 also provides user-level
read access to the DEC by using 6 instead of 22 as the SPR ID with the mfspr
instruction.

External Access Register (EAR)

The EAR is an optional 32-bit SPR that is used to specify the (system specific)
resource ID of the target external device that the eciwx and ecowx instructions
can communicate with. The fields of the EAR are given in Figure 2-27.

Figure 2-27 External Access Register

o 1 25 26 31

IElo 01 RID I

Segment Registers (SRs)

The sixteen 32-bit SRs are used to calculate the virtual address from the 32-bit
effective address. These registers are defined for 32-bit implementations only.

The format of the Segment Registers is different depending on if the SR specified
an ordinary or a direct-store segment (see Chapter 10, "Memory & Caches," for
more information about segments). For ordinary segments, the SR is arranged as
shown in Figure 2-28.

Figure 2-28 Segment Register for Ordinary Segments

o 1 2 3 7 8 31

VSID

PowerPC Architecture Overview 21

§2.3 Processor Registers

For direct-store segments, the SR is arranged differently, as shown in Figure 2-29.

Figure 2-29 Segment Register for Direct-store Segments

o 1 2 3 11 12 31

Burn controller specific

Address Space Register (ASR)

The ASR (Figure 2-30) is a 64-bit SPR that holds the address of the Segment
Table. It is defined only for 64-bit implementations.

Figure 2-30 Address Space Register

o 51 52 63

Real Address of Segment Table I unused I

Storage Description Register t (SORt)

The SDR1 contains the encoded size and the address of the Page Table. This reg­
ister is 32 bits wide on 32-bit implementations and 64 bits wide on 64-bit imple­
mentations, as shown in Figure 2-3l.

Figure 2-31 Storage Description Register

o 45 46 58 59 63

HTABORG I unused I HTABSlZE I

This register is also referred to as the Page Table Search Description Register or
simply the Table Search Description Register.

Processor Specific Registers

This section discusses the registers that are not part of the PowerPC specification
but are defined by some implementation. These registers are provided by the
601 for POWER compatibility.

Multiply-Quotient Register (MQ)

The MQ register (Figure 2-32) is used to emulate the MQ register defined on
POWER processors. Certain (non-PowerPC) instructions use this register.

Figure 2-32 Multiply-Quotient Register

o 31

MQ

This register is defined on the 601 only.

22 Chapter 2

Real-Time Clock Registers (RTCU, RTCL)

Real-Time Clock Registers (RTCU, RTCL)

The RTC registers provide access to the POWER architecture's Real-Time Clock.
The upper register (RTCU) keeps track of the number of seconds and the lower
register (RTCL) keeps track of the number of nanoseconds since the beginning of
the current second. Both halves of this register are shown in Figure 2-33.

Figure 2-33 Real-Time Clock Register

o 31

RTCU

012 24 25 31

10 01 RTCL 10 0 0 0 0 0 01

This register is defined on the 601 only.

2.4 32- versus 64-bit Implementations

This book describes both the 32-bit and 64-bit versions of the PowerPC architec­
ture. For the most part, the programming model is the same for both versions,
but there are some basic differences.

To avoid confusion, it is worth pointing out that the term "64-bit instruction" is
used in this section to refer to an instruction that is available on 64-bit implemen­
tations only. All of the PowerPC floating-point instructions operate on 64-bit
quantities, but are considered 32-bit instructions because they are available on
32-bit PowerPC implementations.

32/64-bit Operating Modes

There are some subtle differences between the 32-bit and 64-bit operating modes
for the PowerPC. In general, these differences affect only the instructions that
are available for use and the method by which effective addresses are calculated,
but in some instances instructions behave differently based on the operating
mode.

32-bit Mode on 32-bit Implementations

All 32-bit instructions are available. No 64-bit instructions are available.

64-bit Mode on 32-bit Iinplementations

Is not allowed. Any attempt to execute a 64-bit instruction on a 32-bit implemen­
tation will result in an Illegal Instruction exception.

PowerPC Architecture Overview 23

32-bit Mode on 64-bit Implementations

This compatibility mode for 32-bit implementations behaves just like the 32-bit
mode on 32-bit implementations with these exceptions:

• Instructions defined only for 32-bit implementations (for example, mfsr,
mtsr) are not available and will cause an Illegal Instruction exception.

• All effective address calculations are performed using all 64 bits of the source
registers. However, the upper 32 bits are set to 0 before accessing data or
fetching instructions.

• Instructions that always return a 64-bit result (for example, mUlhd) will work
properly (that is, they will return a 64-bit result as expected) in 32-bit mode.

64-bit Mode on 64-bit Implementations

All instructions operate on all 64 bits of the source registers and produce 64-bit
results.

32/64-bit Registers

The most significant difference between 32- and 64-bit implementations is the
width of many of the processor registers. These differences are summarized in
this section.

GPRs

All of the GPRs are 32 bits wide for 32-bit implementations and 64 bits wide for
64-bit implementations. For 64-bit implementations, all 64 bits of the register are
affected, except when executing in 32-bit mode.

Counter Register

The Counter Register (CTR) is 32 or 64 bits wide, depending on the PowerPC
implementation. To insure that 64-bit implementations executing in 32-bit mode
operate the same as 32-bit implementations, only the low-order 32 bits of the
CTR are used when the processor is in 32-bit mode.

Machine State Register

The MSR is 32 bits wide on 32-bit implementations and 64 bits wide on 64-bit
implementations. The 32 additional bits for the 64-bit version are used to store
the current mode (32- or 64-bit), and to extend the reserved field from the 32-bit
MSR.

24 Chapter 2

SavelRestore Registers

SaveIRestore Registers

These registers (SSRO and SSR1) are 32 bits on 32-bit implementations and 64 bits
on 64-bit implementations. If an interrupt occurs on a 64-bit implementation
executing in 32-bit mode, the upper 32 bits of SSRO (the register that stores the
next instruction address) are set to 0 because the lower 32 bits are enough to hold
the address.

Segment Registers

The sixteen 32-bit SRs are present only on 32-bit implementations. The instruc­
tions to access the Segment Registers (mfsr, mfsrin, mtsr, and mtsrin) do not
exist on 64-bit implementations (not even in 32-bit mode). Trying to execute
them will result in an Illegal Instruction exception.

Address Space Register

The ASR is defined only for 64-bit implementations, and thus, does not exist on
any 32-bit PowerPC implementation.

Storage Description Register 1

The SDRl is 32 bits wide on 32-bit implementations and 64 bits wide on 64-bit
implementations. Although the SDRl always contains Page Table information,
the format of the information is different for 32- and 64-bit implementations.

PowerPC Architecture Overview 25

Instruction Set
Overview

The next few chapters contain an overview of all the instructions and extended
instruction forms for the PowerPC ISA. The instructions are grouped according
to function under the following headings: Branch and Trap, Load and Store,
Integer, Rotate and Shift, Floating-Point, and System Register.

This chapter acts as an introduction to the following chapters. It describes the
basic instruction structures and provides a summary of the notation used to
describe the instructions and extended forms.

3.1 Instruction Groups

The instructions are grouped according to function within each of the major
headings. For example, in Chapter 6, "Integer Instructions," there are subhead­
ings for Addition, Subtraction, Multiplication, and Division. Within these sub­
sections, all relevant instructions are presented along with a short textual
description of the instruction operation.

Each section also includes many tables that summarize the operations and the
syntax for each instruction form. These tables are meant to make it easy to see
the (sometimes subtle) differences between the various instructions of the same
type.

Instruction Set Overview 27

§3.2 Instruction Suffixes

3.2 Instruction Suffixes

Many instructions allow standard suffixes to be specified to tell the processor
to perform operations in addition to the basic instruction. For each instruction
that allows suffixes, each valid suffix for the instruction is enclosed in square
brackets (T and ']') immediately following the base mnemonic. If there are
multiple suffixes for an instruction, they will each be enclosed in a separate set
of brackets.

Integer Suffixes: 10 ' and I.'

For integer instructions, valid suffixes are' 0' and' .'. Appending an '0' tells the
instruction to update the Fixed-Point Exception Register (XER) to reflect
the Overflow (XER[OV]) and Summary Overflow (XER[SO]) information from
the instruction's operation. Without this option, integer instructions do not sup­
ply the overflow information as part of the result.

When the ' .' suffix is appended to integer instructions, it indicates that the con­
dition information should be recorded in field 0 of the Condition Register
(CR{O}). This condition information records whether the result is less than zero,
greater than zero, or equal to zero, and it contains a shadow copy of the Sum­
mary Overflow bit in the XER (XER[SO]).

Floating-Point Suffixes: IS' and I.'

Most floating-point instructions allow two types of suffixes to be specified: 's'
and ' • '. The's' suffix indicates that the operation should be performed by inter­
preting the registers as if they contained single-precision data. If the operand
registers do not truly contain single-precision values, then the result of instruc­
tions executed with the's' option is undefined.

All arithmetic floating-point instructions allow the ' • ' suffix to be specified. This
suffix tells the instruction to record the condition information in field 1 of the
Condition Register (CR{l}). This keeps track of any floating-point exceptions
that may be caused by the instruction. Floating-point is discussed in detail in
Chapter 8.

Branch Suffixes: 11' and I a'

All branch instructions allow an 'I' suffix and some forms also allow an 'a' suf­
fix. The 'I' suffix indicates that the address of the following instruction should
be recorded in the Link Register as part of the instruction operation, and the 'a'
suffix indicates that the specified address is an absolute (instead of a program
counter relative) value. These suffixes are described in greater detail in §4.1,
"Branch Instructions."

28 Chapter 3

Extended Instruction Forms

3.3 Extended Instruction Forms

Extended instruction forms are extra mnemonics that the assembler accepts and
converts into valid instruction forms. These forms are not instructions them­
selves but are special cases of valid instruction forms. Extended forms are useful
when the base form of an instruction is very general, as is the case with the
branch and rotate instructions. The special cases provided by the extended
forms can render an instruction that is complex and unwieldy (for example,
Rotate Left Word Immediate then AND with Mask) into something more under­
standable (for example, Shift Left Immediate).

The following chapters present both the standard instruction forms and the
extended forms. When an extended form is presented, the base mnemonic from
which the form is derived is given, along with a description of how the extended
form maps into the base instruction.

3.4 Obsolete Instructions

Obsolete instructions are instructions that were part of the POWER architecture
specification but were not included in the PowerPC ISA in an effort to streamline
the architecture. All obsolete instructions are clearly marked as being obsolete to
eliminate any confusion that might arise from the inclusion of these instructions.

The obsolete instructions listed in the next few chapters are implemented only
on the 601, for the purposes of backward compatibility only. New programs
should not make use of these instructions. No future PowerPC implementation
will support these instructions (although a computer system built using a Pow­
erPC processor may trap and emulate them in software).

Wherever possible, a brief explanation is given of why the instruction was
removed for the PowerPC architecture. In most cases, the instructions were
removed to eliminate bottlenecks caused by seldom-used functionality or to
reduce the complexity of PowerPC implementations.

3.5 Optional Instructions

The PowerPC ISA specification defines some instructions to be optional. These
instructions mayor may not be present on a particular PowerPC implementa­
tion. In these chapters, all optional instructions are clearly noted as being
optional.

Before using these instructions, the programmer must first verify that the pro­
gram is running on an implementation that supports the given instruction. To
determine which PowerPC processors implement a particular instruction,

Instruction Set Overview 29

§3.6 Notation

instructions can be referenced in Appendix A, which contains an alphabetical list
of all instructions.

Most of the optional instructions are defined as belonging to one of a variety of
instruction groups, for example, the Graphical Group. A processor may imple­
ment any or all of the instructions in any of the groups, but if a processor claims
to support a given group, it must implement all of the instructions in the given
group.

At the moment, there are only two groups of optional instructions defined: the
General Purpose Group and the Graphical Group. The General Purpose Group
contains the fsqrt and fsqrts instructions, and the Graphical Group contains
stfiwx, fres, frsqrte, and fsel.

An optional instruction need not belong to any of the optional groups. For exam­
ple, eciwx and ecowx are both optional instructions, but they are not associated
with any group.

3.6 Notation

Because of the complexity of most of the instructions, a special notation is
needed to properly describe an instruction's operation.

The following notation is used throughout this chapter to describe the operation
of instructions.

rT Specifies any of the 32 General Purpose Registers (GPRs) that are part of
the Integer Unit. These registers may be 32 or 64 bits wide, depending on
the PowerPC implementation: 32 bits wide on 32-bit implementations and
64 bits wide on 64-bit implementations. For example, r 3 specifies GPR 3.

frT Specifies any of the 32 64-bit Floating-Point Registers (FPRs) that are part of
the Floating-Point Unit. For example, fr13 specifies FPR 13.

MQ Specifies the Multiply-Quotient Register. This register exists only on
POWER implementations and is used for multiply, divide and extended
shift and rotate operations.

CR Specifies the Condition Register. This register is commonly divided into
eight fields that are specified using CR{O} through CR{7}.

CIP Current Instruction Pointer. This is not a user-visible register on the
PowerPC, but the CIP notation is convenient when describing how an
instruction affects the flow of control. For example, CIP ¢::: LR indicates that
the next instruction to be executed is at the address contained in the Link
Register.

30 Chapter 3

Notation

(rT) Specifies the contents of the given register. The specified register may be
any GPR, FPR, or Special Purpose Register. For example, (r2) specifies the
contents of GPR 2; (fr4), which specifies the contents of FPR 4.

(x) Groups the expressions in x so that they are executed before expressions
outside of the parentheses.

[~] Specifies a number x. Two values of x are given: the top value (xl) is the
number for 32-bit PowerPC implementations, and the bottom value (x2) is
the number for 64-bit PowerPC implementations. This notation is used
when referring to bits in registers, since the bit numbering is slightly
different between the two implementation types.

rT[x] Specifies the bit x in the given register. The specified register may be any
GPR, FPR, or Special Purpose Register. Note that bits are numbered using
the big-endian notation, thus bit 0 is the high-order or most-significant bit,
and bit 31 (or 63 for 64-bit implementation) is the low-order or least­
significant bit. For example, r 2 [4] refers to bit 4 of GPR 2.

rT [~] Specifies the bit x in the given register. Two values for x are given: the top

value (xl) specifies the bit for 32-bit PowerPC implementations, and the
lower value (x2) specifies the bit for 64-bit PowerPC implementations. This
is typically used only for GPRs since most other registers are the same size

on both implementation types. For example, r3 [~] refers to the sign bit

of the (low-order) word in GPR 3.

rT[x:y] Specifies the range of bits from x to y in the given register. The specified
register may be any GPR, FPR, or Special Purpose Register. For example,
r 1 [0 : 7] refers to bits 0 through 7 in GPR 1.

rT [~] Specifies the range of bits from x to y in the given register. Two ranges ofx

and y are given: the upper range (xl:yl) for 32-bit PowerPC
implementations and the lower range (x2:y2) for 64-bit implementations.
This is typically used only for GPRs since most other registers are the same

size on both implementation types. For example, r3 [~::!~] refers to the

least significant byte of GPR 3.

rT{x} Specifies the range of bits corresponding to field x in the given register. The
bits for a field n range from bit nx4 to bit nx4+3, thus, this notation is
equivalent to rT[(x x 4):(x x 4) + 3]. The specified register may be any GPR,
FPR, or Special Purpose Register. For example, CR{O} refers to field 0 (bits
0:3) of the Condition Register.

X Where X is any number of digits 0-9, specifies a decimal constant, for
example, 24.

bx Where X is any number of digits 0-1, specifies a binary constant, for
example, bO 110.

Instruction Set Overview 31

§3.6 Notation

o xX Where X is any number of digits O~ 9 or letters A-F, specifies a hexadecimal
constant. Hexadecimal constants will always be specified using uppercase
alphabetic characters, for example, OxBABE.

x ~ y Loads x with the value y. This is used to identify the value that gets
assigned to the instruction's target register. For example, r T ~ 0 means
that register r T gets assigned a value of O.

x ;= y Loads the temporary variable x with the value y. Temporary variables are
used when the instruction operation is too complex to express in a single
expression. This separate assignment notation for temporary variables is
used to emphasize the fact that the variable x is not a processor resource
that is being updated. For example, m ;= (r2) means that the temporary
variable m is set equal to the contents of register r2.

x = y Returns true if x is equal to y, false otherwise.

x "* y Returns true if x is not equal to y, false otherwise.

x > y Returns true if x is greater than y, false otherwise.

x < y Returns true if x is less than y, false otherwise.

x ~ y Returns true if x is greater than or equal to y, false otherwise.

x ~ y Returns true if x is less than or equal to y, false otherwise.

=x Returns a value that is approximately equal to x, for example, rT ~ "" 12
assigns rT with a value that is close to, but not necessarily equal to, the
square root of x.

I x I Calculates the absolute value of x.

-x Calculates the one's complement of x. A one's complement operation
converts all binary 'l's in the source value to binary 'D's in the destination
value and vice versa. For example, -bO 11 0 1 0 1 0 becomes b 10010101.

-x Negatesx. This is the same as performing the two's complement of x. The
two's complement of a value is equal to the one's complement plus 1. For
example, -bOllO becomes b1010.

'x Sign-extends the value x as appropriate. Sign-extension means that the
most significant bit of x (also called the sign bit) is replicated to the left to fill
all available bit positions. For example, 'Ox0042 sign-extends to
OxOOOOOOOO 00000042 on 64-bit implementations; and 'OxFADE
Sign-extends to OxFFFFFADE on 32-bit implementations.

Ox Zero-extends the value x as appropriate. Zero-extension means that 0 bits
are used to the left of x to fill all available bit positions. For example,
°OxDEADFOOD zero-extends to OxDEADFOOD on 32-bit implementations
and to OxO 0 0 00 0 0 0 DEADFO OD on 64-bit implementations.

x + y Adds x to y.

32 Chapter 3

Notation

x - y Subtracts y from x.

x x y Multiplies x by y.

x + y Divides x by y.

x % Y Calculates the remainder of x divided by y.

x.l.y Concatenates x with y. For example, OxSCAB .1.. OxFACE becomes
OxSCABFACE.

x & Y Logically ANDs x and y. For example, bO 11 0 & b1 0 10 becomes bO 0 10.

x I y Logically ORs x and y. For example, bO 11 0 I b10 1 0 becomes b111 O.

x EEl y Logically XORs x and y. For example, bO 11 0 EEl b1 0 1 0 becomes b11 0 O.

x == y Calculates the equivalence of x and y. The result of the equivalence is 1
wherever the bits of x and yare the same and 0 wherever they differ. For
example, bO 11 0 == b1 0 10 becomes bO 0 1I.

x « y Shifts x left by y bits. For example, b 10101111 « 2 becomes
b10llll00.

x » y Shifts x right by Y bits. For example, b 1 0 1 0 1111 » 2 becomes
b0010101I.

x 5> Y Shifts x right algebraically by y bits. An algebraic shift duplicates the most
significant bit (bit a or the sign bit) as it shifts the data. For example,
b10101010 5> 4 becomes bllll1010; bOll10 101 5> 4 becomes
bOOOOOllI.

x Q y Rotates x left by y bits. For example, b 1111 0 0 0 0 Q 2 becomes
bll00001I.

x 0 y Rotates x right by Y bits. For example, bOOOOllll 0 2 becomes
bll00001I.

x ? Y : z Returns either y or z depending on the value of x, where x is a Boolean
expression. If x is true, then y is returned, otherwise z is returned. For
example, rT~ (rA[26]=0)? 0 : (rB) means that if bit rA[26] is 0, rT is set
equal to 0, otherwise it is set equal to the contents of r B.

Instruction Set Overview 33

Branch and Trap
Instructions

The Branch, Trap, and System Call instructions are the only instructions that
change the flow of control of the processor. Since this potential change of control
can disrupt the smooth operation of the pipeline, these instructions are handled
by a separate branch processor that does its best to remove these instructions
from the instruction stream before passing the instructions on to the other exe­
cution units.

4.1 Branch Instructions

There are four basic types of branch instructions: Branch, Branch Conditional, and
Branch Conditional to either the Link Register or the Counter Register (see Table 4.1).
The first two of these instructions expect the target address to be encoded in the
branch instruction, while the second two branch instructions get the target
address from one of the processor's Special Purpose Registers.

All four of the branch instructions allow an optional '1' suffix to indicate that the
address of the instruction following the branch should be stored in the Link Reg­
ister (LR) as part of the branch operation. This provides a simple way of imple­
menting subroutines, since the return address can be saved in the LR using the
'1' option, and the subroutine can return to the caller by using a Branch to Link
Register (blr) instruction.

The Branch (b) and Branch Conditional (be) instructions have an additional
option 'a' that allows the target address to be specified as an absolute value.
Usually, the target address is specified relative to the current location counter,

Branch and Trap Instructions 35

§4.1 Branch Instructions

Table 4-1 Basic Branch Instructions

b[l][a] addr if(l = 1)

Branch LR ¢::: eIP + 4
if(a = 1)

err ¢::: 'addr

else
CIr ¢::: CIr + 'addr

be[l][a] BO,BI,addr if(l = 1)

Branch Conditional LR ¢::: CIr + 4
if(condition)

if(a)

CIr ¢::: 'addr

else
elr ¢::: elr + 'addr

beetr[l] BO,BI if(l=I)

Branch Conditional to Count Register LR ¢::: CIr + 4
if(condition)

elr ¢::: eTR

belr[l] BO,BI oldLR :=LR

Branch Conditional to Link Register if(l = 1)

LR ¢::: eIP + 4
if(condition)

elr ¢::: oldLR

that is, as a positive or negative offset from the address of the branch instruction.
If the" Absolute Address" option is set by using the 'a' option, then the target
address is taken directly from the branch instruction, without adjusting for the
current location counter.

As mentioned earlier, the Branch Conditional to Link Register (belr) instruction is
useful for returning from a subroutine call when the return address is stored in
the LR. The Branch Conditional to Counter Register (bectr) instruction is also use­
ful for this purpose. Technically, the Counter Register (CTR) is intended to be
used only as a counter for loops, and it doesn't make sense to use it as a register
to branch through. However, the original system designers of the POWER archi­
tecture needed an extra register to branch through when they were implement­
ing the global linkage mechanism, so they added the bcctr instruction since the
CTR was conveniently available in the branch processor. The global linkage
mechanism, which describes this use of the bcctr instruction, is discussed in
§13.13, "Linking with Global Routines."

One important thing to note about the operation of the branch and link instruc­
tions (those with the '1' option specified) is that the Link Register is updated
with the value of the instruction following the branch even if the branch is not
taken. This shouldn't cause problems if the LR is saved and restored according to
standard function calling conventions (see §9.4 "Subroutine Calling Conven­
tions") but may cause problems for programmers who are trying to optimize
code by saving and restoring the LR only when necessary.

36 Chapter 4

Branch Instructions

The branch-on (EO) and bit (EI) parameters for the conditional branches provide
a mechanism for specifying a wide range of conditional branch instructions. The
branch-on parameter specifies which condition is used as a test for the branch
and the bit parameter specifies which bit of the Condition Register (0-31) is used
in the test.

Table 4-2 contains a list of the valid branch-on parameters. The parameters con­
trol how the CTR and the bit from the CR work together to determine if the
branch should be taken. For example, to encode an instruction that branches to
the contents of the LR if the equal (EQ) flag in CR{2} is set (ignoring the CTR
entirely), the beIr instruction should be used with BO equal to bOllOO and BI
set to 10. The BI parameter is set to 10 because CR field 2 ranges from bit 8 to bit
11, and the EQ flag is the third bit within a field.

Table 4-2 Branch-On (BO) Parameter for Branch Conditional Instructions

bOOOOy Decrement CTR
Branch if CTR '" 0 AND CR[BI] = 0

bOOOly Decrement CTR
Branch if CTR = 0 AND CR[BI] = 0

bOOlzy Branch if CR[BI] = 0

b0100y Decrement CTR
Branch if CTR '" 0 AND CR[BI] = 1

b010ly Decrement CTR
Branch if CTR = 0 AND CR[BI] = 1

bOllzy Branch if CR[BI] = 1

blzOOy Decrement CTR
Branch if CTR '" 0

blzOly Decrement CTR
Branch if CTR = 0

blzlzz Branch Always

z bits are ignored but must be 0 for the instruction to be valid.
y bits encode hints as to whether the conditional branch is likely to be taken.

As can be seen from the example given in the preceding paragraph, using the BO
and BI parameters directly can be somewhat confusing and error-prone. For this
reason, a large number of extended instruction forms are provided for the most
commonly used conditional branches.

The next few sections deal with these extended branch forms. The first section,
"Contitional Branch Extended Forms, " presents the extended forms for condi­
tional branch instructions when the target address is encoded in the instruction.
The next two sections, "Branch to LR Extended Forms" and "Branch to CTR
Extended Forms," present the extended forms for branch instructions to the
Link and Counter Registers.

Branch and Trap Instructions 37

§4.1 Branch Instructions

Conditional Branch Extended Forms

The Conditional Branch extended fonns are built on top of the Branch Conditional
(be) instruction. Because of the large number of extended forms, this section is
divided into three parts: the bit test forms, the CTR-dependent forms, and the
forms with encoded conditions.

Bit Test Extended Forms

The Bit Test extended forms test a designated bit in the Condition Register and
branch to the encoded address depending on if the specified bit is set ('I' or true)
or clear ('0' or false) (see Table 4-3).

Table 4-3 Conditional Branch Extended Instruction Forms with Bit Tests

bt[l][a] bit, addr u(CR[bit] = 1)
Branch if Condition True branch to addr
extended form for bc[llla] 12, bi t, addr

bf[l][a] bit, addr u(CR[bit] = 0)
Branch if Condition False branch to addr
extended form for bc[llla] 4, bi t, addr

The Branch if Condition True (bt) form tests bit bit in the Condition Register and
branches to the target address addr if the bit is '1'.

The Branch if Condition False (bf) form tests the bit bit in the Condition Register
and branches to the target address addr if the bit is '0'.

CTR-Dependent Extended Forms

The CTR-Dependent Conditional Branch forms use the predecremented value of
the Counter Register to determine if the branch should be taken.

Table 4-4 summarizes the two basic types of CTR Conditional Branches: those
that depend solely on the CTR and those that depend on the CTR and a condi­
tion in the CR.

The first two CTR extended forms are the Branch if Decremented CTR is Non-Zero
(bdnz) and the Branch if Decremented CTR is Zero (bdz). These instructions
depend only on the CTR. They decrement the CTR and then compare the new
CTR value with 0 to determine if the branch should be taken. The first form
branches if the new CTR is not equal to 0, while the second form branches if it is
equal to O.

The remaining four CTR-based Conditional Branches depend on both the CTR
and a specified bit in the Condition Register. The four forms cover all possibili­
ties of the CTR being zero or non-zero and the bit in the CR being '0' or '1'.

38 Chapter 4

Extended Forms with Encoded Conditions

Table 4-4 Conditional Branch Extended Forms with CTR Conditions

bdnz[lHa] addr CTR<= CTR-1
Branch if Decremented CTR is Non-Zero if(CTR;to 0)
extended form for bc[l][a] 16,0, addr branch to addr

bdz[lHa] addr CTR<= CTR-1
Branch if Decremented CTR is Zero if(CTR = 0)
extended form for bc[l][a] 18,0, addr branch to addr

bdnzt[lHa] bit, addr CTR<= CTR-1
Branch if Decremented CTR is Non-Zero and if((CTR;to 0) AND (CR[bit] = 1))

Condition True
extended form for bc[l][a] 8 ,bi t, addr

branch to addr

bdnzf[l][a] bit, addr CTR<= CTR-1
Branch if Decremented CTR is Non-Zero and if((CTR;to 0) AND (CR[bit] = 0))

Condition False
extended form for bc[l][a] 0, bi t, addr

branch to addr

bdzt[lHa] bit,addr CTR<= CTR-1
Branch if Decremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 1))

Condition True
extended form for bc[l][a] 10, bi t, addr

branch to addr

bdzf[lHa] bit, addr CTR<= CTR-1
Branch if Decremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 0))

Condition False
extended form for bc[l][a] 2, bi t, addr

branch to addr

The Branch if Decremented CTR is Non-Zero and Condition True (bdnzt) form dec­
rements the CTR and branches if the new value of the CTR is not equal to 0 and
the specified bit in the CR is 'I' (true). The bdnzf form is identical, except that it
requires that the bit in the CR be '0' (false) in order for the branch to be taken.

The last two forms, bdzt and bdz f, are similar to bdnzt and bdnz f, except that
they branch only if the decremented CTR is equal to 0 and the appropriate con­
dition holds.

Extended Forms with Encoded Conditions

Because the Condition Register is divided into eight fields, it is convenient to use
instructions which operate on fields in the CR instead of individual bits. The
Conditional Branches with Encoded Conditions are extended forms which pro­
vide this convenience by building on top of the standard Branch Conditional (be)
instruction.

The 12 conditional branch forms listed in Table 4-5 have the condition encoded
as part of the mnemonic. These forms operate on a field of the CR that is speci­
fied as one of the parameters. However, the CR field is an optional parameter. If
a CR field isn't specified explicitly, the instruction is assumed to refer to CR{O}.

Branch and Trap Instructions 39

§4.1 Branch Instructions

Table 4-5 Condition Branch Extended Forms with Encoded Conditions

beq[l][a] [erE,]addr if(CR[crf*4+2] = 1)
Branch if Equal branch to addr
extended form for bc[llla] 12, crf*4+2, addr

bne[l][a] [erE,]addr if(CR[crj*4+2] = 0)
Branch if Not Equal branch to addr
extended form for bc[llla] 4, crf*4+2, addr

blt[l][a] [erE,]addr if(CR[crj*4+0] = 1)
Branch if Less Than branch to addr
extended form for bc[llla] 12, crf*4+0, addr

ble[l][a] [erE,]addr if(CR[crf*4+1] = 0)
Branch if Less Than or Equal branch to addr
extended form for bc[llla] 4, crf*4+1, addr

bgt[l][a] [erE,]addr if(CR[crj*4+1] = 1)
Branch if Greater Than branch to addr
extended form for bc[llla] 12, crf*4+1, addr

bge[l][a] [erE,]addr if(CR[crj*4+0] = 0)
Branch if Greater Than or Equal branch to addr
extended form for bc[llla] 4, crf*4+0, addr

bnl[l][a] [erE,]addr if(CR[crj*4+0] = 0)
Branch if Not Less Than branch to addr
extended form for bc[llla] 4, crf*4+0, addr

bng[l][a] [erE,]addr if(CR[crf*4+1] = 0)
Branch if Not Greater Than branch to addr
extended form for bc[llla] 4, crf*4+1, addr

bso[l][a] [erE,]addr if(CR[crj*4+3] = 1)
Branch if Summary Overflow branch to addr
extended form for bc[llla] 12, crf*4+3, addr

bns[l][a] [erE,]addr if(CR[crf*4+3] = 0)
Branch if Not Summary Overflow branch to addr
extended form for bc[llla] 4, crf*4+3, addr

bun[l][a] [erE,]addr if(CR[crf*4+3] = 1)
Branch if Unordered branch to addr
extended form for bc[llla] 12, crf*4+3, addr

bnu[l][a] [erE,]addr if(CR[crf*4+3] = 0)
Branch if Not Unordered branch to addr
extended form for bc[llla] 4, crf*4+3, addr

The beq form branches if the EQ bit (bit 2) of the given CR field is 'I'. The bne
form is similar, but it branches if that bit is '0'.

The bl t and bgt forms check the less than (LT) and greater than (GT) bits (respec­
tively) of the specified CR field and branch if the bit is set.

40 Chapter 4

Branch to LR Extended Forms

The ble and bng forms are two mnemonics that map to the same instruction.
They both check the GT (greater than) bit of the specified CR field and branch if
that bit is '0'.

The bge and bnl forms also map to the same instruction. They check the LT (less
than) bit of CR{crf} and branch if the bit is clear.

The last four extended branch forms depend on the state of bit 3 of the desig­
nated CR field. This bit has different meanings depending on how the bit was
set, and there is a set of extended forms for the two most common of these bit
interpretations.

The first set of forms assumes that the CR field was set by an integer arithmetic
or compare instruction. For these instructions, bit 3 contains the summary over­
flow (SO) bit that is copied from the XER. The bso and bns instructions branch
if the SO bit is 'I' or 'a', respectively.

The second set of extended forms assumes that the CR field has been set by a
floating-point compare instruction. Floating-point compare instructions set the
unordered flag (bit 3) of the destination CR field if one or both of the numbers
being compared is Not a Number (NaN). The bun instruction branches if the com­
parison returned an unordered result, and the bnu instruction branches if an
unordered result was not returned.

Branch to LR Extended Forms

There are four major types of extended forms for the belr instruction: uncondi­
tional branch forms, bit test forms, CTR-dependent forms, and forms with
encoded conditions.

Most of these forms are identical to their Branch Conditional (be) counterparts,
except that the branch destination is taken from the Link Register (LR) instead of
encoded directly in the instruction.

Branch Unconditional

There is one extended form that unconditionally branches to the contents of the
Link Register (see Table 4-6).

Table 4-6 Unconditional Branch to LR Extended Instruction Form

blr[l]
Branch to LR branch via LR
extendedformforbclr[l] 20,0

The blr instruction branches directly to the address stored in LR. If the '1'
option is specified, the LR is updated with the address of the instruction imme-

Branch and Trap Instructions 41

§4.1 Branch Instructions

diately following the branch. The new LR value is stored after the old LR value
has been used for the branch operation.

Bit Test Extended Forms

As with the Branch Conditional forms described in the preceding section, the Bit
Test extended forms (see Table 4-7) test a given bit in the Condition Register and
branch depending on the current value of the specified CR bit. These forms dif­
fer in that they branch to the address stored in the LR instead of the address
encoded in the branch instruction.

Table 4-7 Branch to LR Extended Instruction Forms with Bit Tests

btlr[l] bit
if(CR[bit] = 1)

Branch to LR if Condition True
branch via LR

extendedformforbclr[l] 12,bit

bflr[l] bit if(CR[bit] = 0)
Branch to LR if Condition False

branch via LR
extended form for bclr[l] 4, bi t

The btlr form branches to the LR if the specified bit in the CR is 'I'. The bflr
form branches if CR[bit] is 'a'.

CTR-Dependent Extended Forms

The CTR-dependent Branch to Link Register forms (see Table 4-8) use the decre­
mented value of the Counter Register and an optional condition to determine if
the branch should be taken.

All six of these forms are identical to the Branch Conditional forms described in
the previous section, except for the fact that they branch via the LR instead of to
the address encoded in the instruction.

The first two CTR extended forms are the Branch to LR if Decremented CTR is Non­
Zero (bdnzlr) and the Branch to LR if Decremented CTR is Zero (bdzlr). These
instructions depend only on the CTR. The bdnzlr instruction decrements the
CTR and branches if the new value of the CTR is not equal to O. The bdzlr
instruction performs a similar operation but branches if the CTR is equal to O.

The remaining four CTR dependent Conditional Branches depend on both the
CTR and a specified bit in the Condition Register. These four forms cover all
possibilities of the CTR being zero or non-zero, and the bit in the CR being 'a'
or '1'.

42 Chapter 4

Extended Forms with Encoded Conditions

Table 4-8 Branch to LR Extended Instruction Forms with CTR Conditions

bdnzlr[l] CTR<:= CTR-1
Branch to LR if Decremented CTR is Non-Zero i£(CTRot 0)
extended form for bclr[l] 16,0 branch via LR

bdzlr[l] CTR<:= CTR-1
Branch to LR if Decremented CTR is Zero i£(CTR = 0)
extended form for bclr[l] 18,0 branch via LR

bdnztlr[l] bit CTR<:= CTR-1
Branch to LR if Decremented CTR is Non-Zero i£((CTR ot 0) AND (CR[bit] = 1))

and Condition True
extended form for bclr[l] 8, bi t branch via LR

bdnzflr[l] bit CTR<:= CTR-1
Branch to LR if Decremented CTR is Non-Zero if((CTR ot 0) AND (CR[bit] = 0))

and Condition False
extended form for bclr[l] 0, bi t branch via LR

bdztlr[l] bit CTR<:= CTR-1
Branch to LR if Decremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 1))

Condition True
extended form for bclr[l] 10, bi t branch via LR

bdzflr[l] bit CTR<:= CTR-1
Branch to LR if Decremented CTR is Zero and if((CTR = 0) AND (CR[bit] = 0))

Condition False
extended form for bclr[l] 2, bi t branch via LR

The Branch to LR if Decremented CTR is Non-Zero and Condition True (bdnztlr)
form decrements the CTR and branches if the new value of the CTR is not equal
to a and the specified bit in the CR is '1' (true). The bdnzflr form is identical,
except that it requires that the bit in the CR be '0' (false) in order for the branch
to be taken.

The last two forms, bdztlr and bdzflr, are similar to bdnztlr and bdnzflr,
except that they branch only if the decremented CTR is equal to O.

Extended Forms with Encoded Conditions

The 12 conditional Branch to LR forms listed in Table 4-9 have the condition
encoded as part of the mnemonic. These 12 forms are the same as the 12 Branch
Conditional forms described in the previous section and presented in Table 4-5.

All of these forms operate on a field of the CR that is specified as one of the
parameters. However, the CR field is an optional parameter. If it isn't specified
explicitlJr the instruction is assumed to refer to CR{O}.

Branch and Trap Instructions 43

§4.1 Branch Instructions

Table 4-9 Branch to LR Extended Forms with Encoded Conditions

beqlr[l] [erE] if(CR[crJ*4+2] = 1)
Branch to LR if Equal branch via LR
extended form for bclr[l] 12, crf*4+2

bnelr[l] [erE] if(CR[crJ*4+2] = 0)
Branch to LR if Not Equal branch via LR
extended form for bclr[l] 4, crf*4+2

bltlr[l] [erE] if(CR[crJ*4+0] = 1)
Branch to LR if Less Than branch via LR
extended form for bclr[l] 12, crf*4+0

blelr[l] [erE] if(CR[crJ*4+ 1] = 0)
Branch to LR if Less Than or Equal branch via LR
extended form for bclr[l] 4, crf*4+1

bgtlr[l] [erf] if(CR[crJ*4+1] = 1)
Branch to LR if Greater Than branch via LR
extended form for bclr[l] 12, crf*4+1

bgelr[l] [erE] if(CR[crJ*4+0] = 0)
Branch to LR if Greater Than or Equal branch via LR
extended form for bclr[l] 4, crf*4+0

bnllr[l] [erE] if(CR[crJ*4+0] = 0)
Branch to LR if Not Less Than branch via LR
extended form for bclr[l] 4, crf*4+0

bnglr[l] [erE] if(CR[crJ*4+ 1] = 0)
Branch to LR if Not Greater Than branch via LR
extendedformforbclr[l] 4, crf*4+1

bsolr[l] [erE] if(CR[crJ*4+3] = 1)
Branch to LR if Summary Overflow branch via LR
extended form for bclr[l] 12, crf*4+3

bnslr[l] [erE] if(CR[crJ*4+3] = 0)
Branch to LR if Not Summary Overflow branch via LR
extended form for bclr[l] 4, crf*4+3

bunlr[l] [erE] if(CR[crJ*4+3] = 1)
Branch to LR if Unordered branch via LR
extended form for bclr[l] 12, crf*4+3

bnulr[l] [erE] if(CR[crJ*4+3] = 0)
Branch to LR if Not Unordered branch via LR
extended form for bclr[l] 4, crf*4+3

The beqlr form branches if the EQ bit (bit 2) of the given CR field is 'I'. The
bnelr form branches if that bit is '0'.

The bl tIr and bgtIr forms check the LT and GT bits (respectively) of the spec­
ified CR field and branch if the bit is set.

44 Chapter 4

Branch to CTR Extended Forms

The blelr and bnglr forms are two mnemonics that map to the same instruc­
tion. They both check the GT bit of the specified CR field and branch if the bit is
'0'.

The bgelr and bnllr forms also map to the same instruction. They check the
LT bit of CR{crj} and branch if the bit is clear.

The last four extended branch forms depend on the state of bit 3 of the desig­
nated CR field. The bsolr and bnslr forms interpret this bit as indicating the
CR field's summary overflow status, and they indicate that the branch should be
taken if the bit is set (bsolr) or if it is not set (bnslr).

The bunlr and bnulr extended forms interpret bit 3 of a CR field as containing
the unordered result flag of a floating-point compare. The bunlr and bnulr
instructions branch if this bit is 'I' or 'a', respectively.

Branch to CTR Extended Forms

There are three major types of extended forms for the bcctr instruction: uncon­
ditional branch forms, bit test forms, and forms with encoded conditions. There
are no forms that use the CTR as part of the condition since these types of
instructions are not sensible.

Branch Unconditional

There is one extended form (see Table 4-10) that provides a simple way of encod­
ing an unconditional branch to the Counter Register.

Table 4-10 Unconditional Branch to CTR Extended Instruction Form

bctr[l]
Branch to CTR branch via CTR
extended form for bcctr[l] 20,0

The bctr instruction branches directly to the address stored in the CTR.

Bit Test Extended Forms

As with the Branch Conditional forms described earlier in "Conditional Branch
Extended Forms," the Bit Test extended forms (see Table 4-11) test a given bit in
the Condition Register and branch to the address contained in the CTR depend­
ing on the current value of the specified CR bit.

Branch and Trap Instructions 45

§4.1 Branch Instructions

Table 4-11 Branch to CTR Extended Instruction Forms with Bit Tests

btctr[l] bi t H(CR[bit] = 1)
Branch to CTR if Condition True branch via CTR
extendedformforbcctr[l] 12,bit

bfctr[l] bit if(CR[bit] = 0)
Branch to CTR if Condition False branch via CTR
extended form for bcctr[l] 4, bi t

The btctr form tests CR[bit] and branches to the address stored in the CTR if
the bit is '1.' The bfctr form tests the same bit but branches via the CTR if the
bit is '0.'

Extended Forms with Encoded Conditions

The 12 conditional Branch to CTR forms listed in Table 4-12 have the condition
encoded as part of the mnemonic. These 12 forms are the same as the 12 Branch
Conditional forms described in "Conditional Branch Extended Forms" and pre­
sented in Table 4-5.

All of these forms operate on a field of the CR that is specified as one of the
parameters. However, the CR field is an optional parameter. If it isn't specified
explicitly, the instruction is assumed to refer to CR{O}.

Table 4-12 Branch to CTR Extended Forms with Encoded Conditions

beq:ctr[l] [erf] if(CR[crj*4+2] = 1)
Branch to CTR if Equal branch via CTR
extended form for bcctr[l] 12, crf*4+2

bnectr[l] [erf] H(CR[crj*4+2] = 0)
Branch to CTR if Not Equal branch via CTR
extended form for bcctr[l] 4, crf*4+2

bl tctr[l] [erf] if(CR[crj*4+0] = 1)
Branch to CTR if Less Than branch via CTR
extended form for bcctr[l] 12, crf*4+0

blectr[l] [erf] if(CR[crj*4+ 1] = 0)
Branch to CTR if Less Than or Equal branch via CTR
extended form for bcctr[l] 4, crf*4+1

bgtctr[l] [erf] H(CR[crj*4+1] = 1)
Branch to CTR if Greater Than branch via CTR
extended form for bcctr[l] 12, crf*4+1

bgectr[l] [erf] if(CR[crj*4+0] = 0)
Branch to CTR if Greater Than or Equal branch via CTR
extended form for bcctr[l] 4, crf*4+0

bnlctr[l] [erf] if(CR[crj*4+0] = 0)
Branch to CTR if Not Less Than branch via CTR
extended form for bcctr[l] 4, crf*4+0

46 Chapter 4

Branch Prediction

bngetr[l] [erE) if(CR[crf*4+1] = 0)
Branch to CTR if Not Greater Than branch via CTR
extended form for bcctr[l] 4, crf*4+1

bsoetr[l] [erf] if(CR[crf*4+3] = 1)
Branch to CTR if Summary Overflow branch via CTR
extended form for bcctr[l] 12, crf*4+3

bnsetr[l] [erE) if(CR[crf*4+3] = 0)
Branch to CTR if Not Summary Overflow branch via CTR
extended form for bcctr[l] 4, crf*4+3

bunetr[l] [erE) if(CR[crf*4+3] = 1)
Branch to CTR if Unordered branch via CTR
extended form for bcctr[l] 12, crf*4+3

bnuetr[l] [erE) if(CR[crf*4+3] = 0)
Branch to CTR if Not Unordered branch via CTR
extended form for bcctr[l] 4, crf*4+3

The beqetr form branches if the EQ bit (bit 2) of the given CR field is '1'. The
bneetr form branches if that bit is '0'.

The bl tetr and bgtetr forms check the LT and GT bits (respectively) of the
specified CR field and branch if the bit is set.

The bleetr and bngetr forms are two mnemonics that map to the same
instruction. They both check the GT bit of the specified CR field and branch if the
bit is '0'.

The bgeetr and bnletr forms also map to the same instruction. They check
the LT bit of CR{crj} and branch if the bit is clear.

The last four extended branch forms depend on the state of bit 3 of the desig­
nated CR field. The bsoetr and bnsetr forms interpret this bit as indicating
the CR field's Summary Overflow status, and they indicate that the branch
should be taken if the bit is set (bsoetr) or if it is not set (bnsetr).

The bunetr and bnuetr extended forms interpret bit 3 of a CR field as contain­
ing the unordered result flag of a floating-point compare. The bunetr and
bnuetr instructions branch if this bit is '1' or '0', respectively.

4.2 Branch Prediction

Branches present some of the worst pipeline hazards since they disrupt the
steady flow of instructions to the rest of the processor. Using a scheme such as
Branch Prediction can help alleviate the penalties associated with branches.

Note that the PowerPC architecture does not require any sort of branch predic­
tion mechanism, but it does allow implementations of the architecture to pro­
vide whatever sort of branch prediction is deemed necessary.

Branch and Trap Instructions 47

§4.2 Branch Prediction

What is Branch Prediction?

Branch Prediction is a mechanism for the processor to guess whether or not a
particular branch will be taken. The ability to generate some sort of reasonable
prediction is quite useful since the processor is not always able to completely
resolve a branch before it needs to be executed.

On heavily pipelined processors, some sort of branch prediction is practically a
requirement, because the alternative is to stall the processor until the branch is
resolved.

A good prediction scheme is a great benefit to code throughput because of the
penalties associated with a mispredicted branch. In the worst case, a mispre­
dicted branch may require that the pipeline be flushed and then stalled while the
correct instructions are fetched from memory.

Branch Prediction Types

There are two common types of branch prediction: static branch prediction and
dynamic branch prediction.

Static Branch Prediction

Static Branch Prediction has a default prediction for each type of branch based
on branch direction and other branch parameters. For example, backward
branches are assumed to be taken, and forward branches are assumed to be not
taken. Many static prediction schemes also have a reverse prediction flag to indi­
cate that the default prediction should be reversed.

The advantages of a static prediction implementation are that it is simple to
implement and it is powerful enough to characterize branch behavior in most
situations.

The disadvantage is that this system requires the programmer (or compiler) to
analyze the branches and set the appropriate instruction bits so that the instruc­
tion is predicted as desired.

Dynamic Branch Prediction

Dynamic Branch Prediction uses additional hardware to record whether or not a
branch was taken the last few times it was encountered. By analyzing the past
operation of the instruction, the processor can formulate a prediction as to
whether the branch is likely to be taken.

The benefit of a dynamic prediction scheme is that the programmer or compiler
doesn't need to analyze branches and set instruction bits in order to have
branches predicted /I correctly."

48 Chapter 4

Branch Prediction on PowerPC Processors

The disadvantages are that this type of system is costly to implement and the
benefits are not significantly better than for a simple static prediction mecha­
nism.

Note that Dynamic Branch Prediction still requires some sort of default predic­
tion mechanism to apply when the processor encounters a branch for the first
time.

Branch Prediction on PowerPC Processors

The 601 implements a simple static branch prediction that follow these rules:

• If it is a forward branch, the branch is assumed to be not taken.
• If it is a backward branch, the branch is assumed to be taken.
• Conditional branches to the LR or CTR are assumed to be not taken.

The rational behind these rules is:

• A backward branch is assumed to be the closing instruction of a loop,
and since loops are generally executed more than once, the branch
should be taken back to the beginning of the loop most of the time.

• A forward branch is assumed to be not taken because forward
branches have roughly a 50% likelihood of being taken or not taken
and one of these operations had to be chosen as the default.

These assumptions obviously do not apply to every forward or backward
branch, so this simple static prediction will make mistakes. The branch predic­
tions were optimized for looping structures, which is presumably where many
programs spend a majority of their time.

Branch Prediction Hints

Since the static branch prediction is not always correct, a mechanism for overrid­
ing the default prediction is provided. This mechanism is in the form of a branch
prediction reverse bit, which is encoded in the BO parameter of a branch instruc­
tion (see §Table 4-2 "Branch-On (BO) Parameter for Branch Conditional Instruc­
tions").

The reverse bit in a conditional branch instruction tells the processor that the
standard predictions should be reversed for this instruction. Thus, a forward
branch is assumed to be taken, and a backward branch is assumed to be not
taken.

Note that the setting of this bit does not guarantee that the branch will be taken or
not taken. It merely provides a hint as to whether or not the branch is likely to be
taken. The processor can use this hint to pre-fetch instructions, or it can ignore it.

Branch and Trap Instructions 49

§4.3 Trap Instructions

Encoding Branch Predictions

By convention, PowerPC assemblers accept a '+' suffix for conditional branch
instructions to indicate that the reverse prediction bit should be set. If this suffix
is not provided, the reverse bit is set to '0'.

beq crO,*-lO # predicted taken
beq crO,*+lO # predicted not taken

beq+ crO,*-lO # predicted not taken
beq+ crO,*+lO # predicted taken

The reverse bit can also be set by directly setting the appropriate bit in the BO
field for the branch. The BO field is described in Table 4-2 "Branch-On (BO)
Parameter for Branch Conditional Instructions."

bc
bc

OxOC,2,adr
OxOD,2,adr

4.3 Trap Instructions

same as beq crO,adr
same as beq+ crO,adr

The trap instructions listed in Table 4-13 provide a mechanism for invoking the
system trap handler based on a comparison between the provided instruction
operands.

Table 4-13 Trap Instructions

tw TO,rA,rB if(condition)
Trap Word invoke system trap handler

twi TO,rA,s16 u(condition)
Trap Word Immediate invoke system trap handler

td TO,rA,rB H(condition)
Trap Doubleword invoke system trap handler
64-bit iinplementations only

tdi TO, rA, s16 H(condition)
Trap Doubleword Immediate invoke system trap handler
64-bit implementations only

For each of the word and doubleword varieties of the trap instruction, there are
two instruction forms: one compares two registers, and the other compares a
register with an immediate value.

The type of comparison performed depends on the value of the Trap-On (TO)
parameter (see Table 4-14). Setting any of the five bits means that the trap han­
dler should be invoked if the conditions associated with those bits is satisfied.

50 Chapter 4

Trap Instructions

Table 4-14 Trap-On (TO) Parameter for Trap Instructions

ObOOOOl Trap if Less Than

ObOOO1O Trap if Greater Than

ObOO1OO Trap if Equal

Ob01OOO Trap if Logically Less Than

OblOOOO Trap if Logically Greater Than

Coding the TO parameter, while not nearly as tedious as the BO and BI parame­
ters for the conditional branch instructions, is not quite as much fun one might
initially imagine it to be. To make coding the Trap instructions more enjoyable, a
set of extended mnemonics that encode the condition as part of the instruction
mnemonic is provided.

These 15 extended forms are summarized in Table 4-15 and described in detail
in Table 4-16.

Table 4-15 Summary of Extended TO Encodings

Oblllll Trap Unconditionally

ObOO1OO Trap if Equal

ObllOOO Trap if Not Equal

OblOOOO Trap if Less Than

OblO1OO
Trap if Less Than or Equal

Trap if Not Greater Than

Ob01OOO Trap if Greater Than

ObOllOO
Trap if Greater Than or Equal

Trap if Not Less Than

ObOOO1O Trap if Logically Less Than

ObOOllO
Trap if Logically Less Than or Equal

Trap if Logically Not Greater Than

ObOOOOl Trap if Logically Greater Than

ObOO1Ol
Trap if Logically Greater Than or Equal

Trap if Logically Not Less Than

Table 4-16 is an overview of the trap extended instruction forms. This table con­
tains summaries of all the trap forms, including the word, doubleword, register,
and immediate forms of the instructions.

Branch and Trap Instructions 51

§4.3 Trap Instructions

Table 4-16 Extended Trap Conditional Instructions

Trap Always
word register trap

extended form for tw 31,rO,rO

Trap if Equal
register tweq rA,rB

word
extended form for tw 4,rA,rB

immediate tweqi rA,s16
extendedformfortwi 4,rA,s16

register tdeq rA,rB
doubleword extendedformfortd 4,rA,rB

64-bit only
immediate tdeqi rA,s16

extended form for tdi 4, r A, s 16

Trap if Not
register twne rA,rB

Equal extendedformfortw 24,rA,rB
word

immediate twnei rA,s16
extended form for twi 24, rA, s16

register tdne rA,rB
doubleword extended form for td 24, rA, rB

64-bit only
immediate tdnei rA,s16

extended form for tdi 24, rA, s16

Trap if Less
register twlt rA,rB

Than extended form for tw 16, rA, rB
word

immediate twlti rA,s16
extendedformfortwi 16,rA,s16

register tdlt rA,rB
doubleword extended form for td 16, rA, rB

64-bit only
immediate tdlti rA,s16

extended form for tdi 16,rA,s16

Trap if Less twle rA,rB
Than or Equal register twng rA,rB

word
extended form for tw 20,rA,rB

or
twlei rA,s16

Trap if Not immediate twngi rA,s16
Greater Than extended form for twi 20,rA,s16

tdle rA,rB
register tdng rA,rB

doubleword extended form for td 20,rA,rB

64-bit only tdlei rA,s16
immediate tdngi rA,s16

extended form for tdi 20,rA,s16

52 Chapter 4

Trap Instructions

Trap if
register twgt rA,rB

Greater Than extended form for tw 8,rA,rB
word

immediate twgti rA, s16
extended form for twi 8, rA, s16

register tdgt rA,rB
doubleword extended form for td 8, r A, r B

64-bit only
immediate

tdgti rA,s16
extended form for tdi 8, rA, s16

Trap if twge rA,rB
Greater Than register twnl rA,rB
or Equal extended form for tw 12,rA,rB

word
or twgei rA,s16

immediate twnli rA,s16
Trap if Not extended form for twi 12,rA,s16
Less Than

tdge rA,rB
register tdnl rA,rB

doubleword extended form for td 12,rA,rB

64-bit only tdgei rA,s16
immediate tdnli rA,s16

extended form for tdi 12,rA,s16

Trap if
register twllt rA,rB

Logically extended form for tw 2, rA, rB
Less Than word

immediate
twllti rA,s16
extendedformfortwi 2,rA,s16

register tdllt rA,rB
doubleword extended form for td 2, r A, r B

64-bit only
immediate tdllti rA,s16

extended form for tdi 2,rA,s16

Trap if twlle rA,rB
Logically register twlng rA,rB
Less Than or extended form for tw 6,rA,rB
Equal word

twllei rA,s16
or immediate twlngi rA,s16

extended form for twi 6,rA,s16
Trap if

tdlle rA,rB Logically Not
Greater Than register tdlng rA,rB

doubleword extended form for td 6,rA,rB

64-bit only tdllei rA,s16
immediate tdlngi rA,s16

extended form for tdi 6, rA, s16

Branch and Trap Instructions 53

§4.4 System Linkage Instructions

Trap if
register

twlgt rA,rB
Logically extended form for tw 1,rA,rB
Greater Than word

immediate twlgti rA,s16
extendedformfortwi 1,rA,s16

register
tdlgt rA,rB

doubleword extended form for td 1, rA, rB

64-bit only
immediate tdlgti rA,s16

extended form for tdi 1,rA,s16

Trap if twlge rA,rB
Logically register twlnl rA,rB
Greater Than extended form for tw 5,rA,rB
or Equal word

twlgei rA,s16
or immediate twlnli rA,s16

extended form for twi 5,rA,s16
Trap if

tdlge rA,rB Logically Not
Less Than register tdlnl rA,rB

doubleword extended form for td 5,rA,rB

64-bit only tdlgei rA,s16
immediate tdlnli rA,s16

extendedformfortdi 5,rA,s16

4.4 System Linkage Instructions

The system linkage instructions listed in Table 4-17 provide a mechanism so that
programs can call on the operating system to perform a function or service.

Table 4-17 System Linkage Instructions

se SRRO{:::: CIP+4
System Call

SRRI {:::: MSR L3~~~:4~6::'63]
if(MSR[IP])

CIP {:::: 'OxFFFO OCOO
else

CIP {:::: °OxOOOO OCOO

rfi MSR {:::: SRRI [0,59. lWl]

Return From Interrupt 0:32, 37:41, 48:63

CIP {:::: SRRO [~~~] ..l..bOO

The System Call (se) instruction saves the current machine state in the SRRn reg­
isters and passes control to the system handler. This instruction can be used to

54 Chapter 4

System Linkage Instructions

request that an operation be performed by the operating system (OS). The call­
ing conventions and the services provided are entirely dependent on the struc­
ture of the as. The Be instruction merely provides a standard method of
accessing as functions.

The Return From Interrupt (rfi) instruction is used by the system handler to
return control to the user level program after the system call or interrupt has
been handled. This instruction restores the state of the system to what it was
when the system call or interrupt was invoked and then passes control back to
the original program.

Branch and Trap Instructions 55

Load and Store
Instructions

The transfer of data from the memory store and the processor is handled by the
Load and Store instructions. These instructions load data from memory into a
register or store the contents of a register out into main memory.

5.1 Loads and Stores

Most of the Load and Store instructions have the same basic forms. There is a base
Load and Store form for each of the data types supported by the PowerPC and
then there are the combinations of Indexed and Update forms. This section
describes the common forms to eliminate redundancy and so that the later sec­
tions can focus on deviations from this standard.

Loads

The four types of Load instructions are

• Load
• Load with Update
• Load Indexed
• Load Indexed with Update

The Load forms are the most basic forms, and they simply load the data from the
specified memory location into the designated target register (rT). The memory

Load and Store Instructions 57

§5.1 Loads and Stores

location is calculated by adding a 16-bit signed offset (d) to the contents of the
source register (rA).

The Load with Update forms load the data into the target register as the Load forms
do, but they also update the source register rA by adding the offset d to rA after
the memory has been accessed. This can be used to pre-increment (or pre­
decrement) the data pointer in rA if the increment size is stored in d.

The Load Indexed forms also load the target register with the data from the spec­
ified memory location. However, the Indexed forms calculate the address from
two registers, rA and rB, instead of from a register and an offset.

The Load Indexed with Update forms are a combination of the Indexed and the
Update load forms. These forms load the target register with the data specified by
the two source registers and update one of the source registers (rA) by adding
the contents of the other (rB) to it after the load has been performed.

For all of the Load instructions, if rO is specified for the source register rA, then
the contents of rA (rO) are not used in the address calculation. Instead, the con­
stant a is used in the address calculation. This allows for the address to be calcu­
lated from just an immediate constant or from just the contents of one register
(rB). For the Indexed forms, if the contents of rO need to be part of the address
calculation, rO can be specified as rB.

If rO is specified for rA for any of the Load with Update forms, then the instruction
is invalid. Instructions are also invalid if the register given for rA is the same as
that specified for r T.

For the Update forms, the POWER architecture allows rO to be specified for rA,
and it allows rA to be the same register as rT. If rO is used orif rA is the same as
rT, the register is simply not updated with the new address. The PowerPC archi­
tecture does not allow these situations to be coded because it is not useful to
have an update form that cannot update, and the extra check to see if the register
is valid needlessly complicates the hardware.

Stores

As with the standard Load instructions, there are also four basic types of Store
instructions:

• Store
• Store with Update
• State Indexed
• Store Indexed with Update

The Store forms take the contents (or part of the contents) of a source register
(r s) and write it out to memory. The memory address at which the data is stored

58 Chapter 5

Load and Store Byte

is calculated by adding a 16-bit signed offset (d) to the contents of the source
register (rA).

The Store with Update forms store the contents of the source register and update
the source register rA by adding the offset d to rA after the memory has been
written. This can be used to pre-increment the data pointer in rA if the increment
size is stored in d.

The Store Indexed forms store the target register contents to the specified memory
location. The Indexed forms calculate the address from two registers, rA and rB,
instead of from a register and an offset.

The Store Indexed with Update forms store the contents of the target register out to
memory and update one of the source registers (rA) by adding the contents of
the other register (rB) to it after the store operation has been performed.

For all of the Store with Update instructions, if rO is specified for the source regis­
ter rAt then the instruction is invalid.

The POWER architecture allowed the update forms of the Store instructions to
specify rO for rA. In this case, the updated address value would not be written
to rA. The PowerPC architecture does not recognize this as a valid form because
such an instruction would not be very useful and it would complicate imple­
mentations.

5.2 Load and Store Byte

The Load and Store Byte instructions listed in Tables 5-1 and 5-2 transfer eight bits
of information to or from a GPR. The 8-bits are transferred from the least signif­
icant byte of the GPR, thus, on 32-bit PowerPC implementations, data is moved
to and from bits 24:31. On 64-bit implementations, data is moved between mem­
ory and bits 56:63 of the GPR.

Table 5-1 Load Byte Instructions

1bz rT,d{rA)
rT {= °Byte«rA I 0)+ 'd)

Load Byte and Zero

1bzu rT,d{rA) rT {= °Byte«rA)+ 'd)
Load Byte and Zero with Update rA {= (rA)+ 'd

1bzx rT,rA,rB
rT {= °Byte«rA I O)+(rB»

Load Byte and Zero Indexed

1bzux rT,rA,rB rT {= °Byte«rA)+(rB»
Load Byte and Zero with Update Indexed rA {= (rA)+(rB)

Load and Store Instructions 59

§5.3 Load and Store Halfword

The four types of Load Byte and Zero instructions are standard Load instructions.
The value from the specified memory location is loaded into the low-order byte
of the target register rT. The upper bytes of the target register are cleared to O.

Table 5-2 Store Byte Instructions

stb rS, d(rA)
Byte«rA I 0)+ 'd) ¢::: rS [:::1

Store Byte

stbu rS,d(rA) Byte«rA)+ 'd) ¢::: rS [:::1
Store Byte with Update

rA ¢::: (rA)+ 'd

stbx rS,rA,rB
Byte«rA I O)+(rB» ¢::: rS [::1

Store Byte Indexed

stbux rS,rA,rB Byte«rA)+(rB» ¢::: rS [::1
Store Byte with Update Indexed

rA ¢::: (rA)+(rB)

The four Store Byte instructions are also modelled after the standard Store
instructions. These instructions take the low-order byte in the source register r S

and store it at the specified memory location.

5.3 Load and Store Halfword

The Load and Store Halfword instructions listed in Tables 5-3 and 5-4 transfer six­
teen bits of information to or from a GPR.

Table 5-3 Load Halfword Instructions

1hz rT,d(rA) rT ¢::: °Hal£«rA I 0)+ 'd)
Load Halfword and Zero

1hzu rT,d(rA) rT ¢::: °Half«rA)+ 'd)
Load Halfword and Zero with Update rA ¢::: (rA)+ 'd

1hzx rT,rA,rB rT ¢::: °Hal£«rA I O)+(rB»
Load Halfword and Zero Indexed

1hzux rT,rA,rB rT ¢::: °Hal£«rA)+(rB»
Load Halfword and Zero Indexed with Update rA ¢::: (rA)+(rB)

1ha rT,d(rA) rT ¢::: 'Half«rA I 0)+ 'd)
Load Halfword Algebraic

1hau rT,d(rA) rT ¢::: 'Half«rA)+ 'd)
Load Halfword Algebraic with Update rA ¢::: (rA)+ 'd

1hax rT,rA,rB
rT ¢::: 'Half«rA I O)+(rB»

Load Halfword Algebraic Indexed

1haux rT,rA,rB rT ¢::: 'Hal£«rA)+(rB»
Load Halfword Algebraic Indexed with Update rA ¢::: (rA)+(rB)

60 Chapter 5

Load and Store Word

There are two basic types of Load Halfword instructions: Load Halfword and Zero
and Load Halfword Algebraic. Both of these types come in the four standard vari­
eties, making a total of eight different Load Halfword instructions.

The Load Halfword and Zero instructions load the data into the lower two bytes of
the target register and zero out the upper bytes.

The Load Halfword Algebraic instructions load the halfword data into the lower
two bytes of the target register and copy the sign bit from the loaded data into
the upper bytes.

There is also a Load Halfword instruction that loads the data in byte-reversed
order. This is described in §5.6 "Load and Store Byte-Reversed Data."

Table 5-4 Store Halfword Instructions

sth rS,d(rA)
Half«rA I 0)+ 'd) ¢:: rS [~::]

Store Halfword

sthu rS,d(rA) Half«rA)+ 'd) ¢:: rS [~::]
Store Halfword with Update

rA ¢:: (rA)+ 'd

sthx rS,rA,rB
Half«rA I O)+(rB» ¢:: rS c:::] Store Halfword Indexed

sthux rS,rA,rB Half«rA)+(rB» ¢:: rS c:::]
Store Halfword with Update Indexed

rA ¢::(rA)+(rB)

The four Store Halfword instructions take the lower two bytes of the source regis­
ter and store it at the given memory location.

A Store Halfword instruction that handles byte-reversed data is also available. It
is discussed in §5.6 "Load and Store Byte-Reversed Data."

5.4 Load and Store Word

The Load and Store Word instructions listed in Tables 5-5 and 5-6 transfer 32 bits
of information to and from a CPR. The 64-bit implementations also define an
algebraic form which sign-extends the loaded word value.

Table 5-5 Load Word Instructions

lwz rT,d(rA)
rT ¢:: °Word«rA I 0)+ 'd)

Load Word and Zero

lwzu rT,d(rA) rT ¢:: °Word«rA)+ 'd)
Load Word and Zero with Update rA ¢:: (rA)+ 'd

lwzx rT,rA,rB
rT ¢:: °Word«rA I O)+(rB»

Load Word and Zero Indexed

Load and Store Instructions 61

§5.4 Load and Store Word

lwzux rT,rA,rB rT ~ °Word«rA)+(rB»
Load Word and Zero Indexed with Update rA ~ (rA)+(rB)

lwa rT,d(rA)
Load Word Algebraic rT ~ 'Word«rA I 0)+ 'd)
64-bit implementations only

lwax rT,rA,rB
Load Word Algebraic Indexed rT ~ 'Word«rA I O)+(rB»
64-bit implementations only

lwaux rT,rA,rB rT ~ 'Word«rA)+(rB»
Load Word Algebraic Indexed with Update rA ~ (rA)+(rB)
64-bit implementations only

As with the Load Halfword instructions, there are two types of Load Word instruc­
tions: Load Word and Zero and Load Word Algebraic. The algebraic forms are
defined only on 64-bit implementations since the two types perform the same
operation when the registers are 32 bits in size.

The Load Word and Zero instructions load the word at the specified address into
the target register. For 64-bit implementations, these instructions also clear out
the upper word of the loaded register.

The Load Word Algebraic instructions load the word into the low word of the reg­
ister and copy the sign bit from the loaded word into the upper bits of the target
register. Note that there is no non-Indexed Update form for the Load Word Alge­
braic instruction.

A special instruction is defined for loading words from memory with byte­
reversed data. This instruction is defined in §5.6 "Load and Store Byte-Reversed
Data."

Table 5-6 Store Word Instructions

stw rS,d(rA)
Word«rA I 0)+ 'd) ~ rS [;~~:3]

Store Word

stwu rS,d(rA) Word«rA)+ 'd) ~ rS [;~~:3]
Store Word with Update

rA~ (rA)+'d

stwx rS,rA,rB
Word«rA I O)+(rB» ~ rS [;~~:3] Store Word Indexed

stwux rS,rA,rB Word«rA)+(rB» ~ rS [;~~~]
Store Word with Update Indexed

rA ~ (rA)+(rB)

The four standard Store Word instructions copy a word of data from the given
source register into the specified memory address.

62 Chapter 5

Load and Store Doubleword

One additional Store Word instruction is defined to handle byte-reversed data.
This instruction is presented in §5.6 "Load and Store Byte-Reversed Data."

5.5 Load and Store Doubleword

The Load and Store Doubleword instructions listed in Tables 5-7 and 5-8 transfer 64
bits of infonnation to or from a GPR. These instructions are defined only on 64-
bit PowerPC implementations. If they are executed on a 32-bit implementation,
they will cause the illegal instruction handler to be invoked.

Table 5-7 Load Duubleword Instructions

Id r'l', d(rA}
Load Doubleword rT ¢::: Doubleword«rA I 0)+ 'd)
64-bit implementations only

Idu r'l',d(rA} rT ¢::: Doubleword«rA)+ 'd)
Load Doubleword with Update rA ¢::: (rA)+ 'd
64-bit implementations only

Idx r'l',rA,rB
Load Doubleword Indexed rT ¢::: Doubleword«rA I O)+(rB))
64-bit implementations only

Idux r'l',rA,rB rT ¢::: Doubleword«rA)+(rB))
Load Doubleword with Update Indexed rA ¢::: (rA)+(rB) 64-bit implementations only

The four Load Doubleword forms allow a doubleword (eight bytes) of data to be
loaded into a register from memory.

Table 5-8 Store Doubleword Instructions

std rS,d(rA}
Store Doubleword Doubleword«rA I 0)+ 'd) ¢::: rS
64-bit implementations only

stdu rS,d(rA} Doubleword«rA)+ 'd) ¢::: rS
Store Doubleword with Update rA ¢::: (rA)+ 'd 64-bit implementations only

stdx rS,rA,rB
Store Doubleword Indexed Doubleword«rA I O)+(rB)) ¢::: rS
64-bit implementations only

stdux rS,rA,rB Doubleword«rA)+(rB)) ¢::: rS
Store Doubleword with Update Indexed rA ¢::: (rA)+(rB)
64-bit implementations only

The Store Doubleword forms store a doubleword of data into the specified mem­
ory location.

Load and Store Instructions 63

§5.6 Load and Store Byte-Reversed Data

5.6 Load and Store Byte-Reversed Data

The Load and Store Byte-Reversed instructions listed in Table 5-9 provide an easy
method for accessing data that is stored in the opposite byte-order than the pro­
cessor expects.

There are two common byte-orderings for halfwords and words: big-endian and
little-endian. Big-endian byte-ordering has the most significant byte (MSB) in the
lowest address position and the least significant byte (LSB) in the highest address
position. Little-endian is the reverse of big-endian, with the LSB at the lower
address and the MSB at the higher address.

If the processor is operating in big-endian mode, then these instructions allow
the program to load and store little-endian encoded data. Conversely, if the pro­
cessor is in little-endian mode, these instructions provide an easy way to access
big-endian data.

Table 5-9 Load/Store Byte-Reversed Data Instructions

lhbrx rT,rA,rB h := Half«rA I O)+(rB»
Load Halfword Byte-Reversed Indexed rT <= O(h[8:15]..l h[O:7])

lwbrx rT,rA,rB w := Word«rA I O)+(rB))
Load Word Byte-Reversed Indexed rT <= O(w[24:31]..l w[16:23]

..1 w[8:15] ..1 w[O:7])

sthbrx rS,rA,rB h := rS [~::~~] ..1 rS C~::s]
Store Halfword Byte-Reversed Indexed

Half«rA I O)+(rB))<= h

stwbrx rS,rA,rB w:= rS [~:] ..1 rS [~~:~~]
Store Word Byte-Reversed Indexed

..1 rS [!::7] ..1 rS [3~:~9]

Word«rA I O)+(rB»<= w

The load word and halfword byte-reversed instructions (lhbrx and lwbrx)
load the data from the target address into the destination register. If the loaded
data doesn't fill the register completely, the data is zero-extended to fill the entire
register.

The store word and halfword byte-reversed instructions (sthbrx and stwbrx)
store the lower word or halfword from the source register into memory at the
calculated target address.

All of the byte-reversed storage instructions are indexed and expect the memory
address to be specified by the sum of the contents of the registers r A and r B.

The PowerPC architecture does not define instructions to load or store a double­
word of byte-reversed data.

64 Chapter 5

Load and Store Floating-Point Double-Precision

5.7 Load and Store Floating-Point Double-Precision

The Load and Store Floating-Point Double instructions listed in Tables 5-10 and
5-11 transfer 64 bits of data between the floating-point registers and memory.
Since the floating-point registers on the PowerPC always store double-precision
data, these instructions simply transfer the data back and forth.

Table 5-10 Load Floating-Point Double-Precision Instructions

lfd frT,d(rA)
frT?= FDouble«rA I 0)+ 'd)

Load FP Double

lfdu frT, d(rA) frT?= FDouble«rA)+ 'd)
Load FP Double with Update rA?= (rA)+ 'd

lfdx frT, rA, rB
frT ?= FDouble«rA I O)+(rB»

Load FP Double Indexed

lfdux frT,rA,rB frT?= FDouble«rA)+(rB»
Load FP Double with Update Indexed rA?= (rA)+(rB)

The Load Floating-Point Double instructions load the specified floating-point reg­
ister with the 64 bits of data starting at the given address.

Table 5-11 Store Floating-Point Double-Precision Instructions

stfd frS,d(rA)
FDouble«rA I 0)+ 'd) ?= frS

Store FP Double

stfdu frS,d(rA) FDouble«rA)+ 'd) ?= frS
Store FP Double with Update rA?= (rA)+ 'd

stfdx frS,rA,rB
FDouble«rA I O)+(rB»?= frS

Store FP Double Indexed

stfdux frS,rA,rB FDouble«rA)+(rB» ?= frS
Store FP Double with Update Indexed rA ?= (rA)+(rB)

The four Store Floating-Point Double forms provide standard instructions for stor­
ing floating-point values out to memory without any modification or transla­
tion.

5.S Load and Store Floating-Point Single-Precision

Since floating-point registers always contain double-precision data, the Load
and Store Floating-Point Single instructions listed in Tables 5-12 and 5-13 must
translate between the 64-bit data in the floating-point registers and the 32-bit
data stored in memory.

The method for converting between the 32-bit and 64-bit forms of single-preci­
sion data is discussed in Chapter 8 "Floating-Point Instructions."

Load and Store Instructions 65

§5.9 Load and Store Multiple

Table 5-12 Load Floating-Point Single-Precision Instructions

lfs frT,d(rA)
frT ¢::: FSingle«rA I 0)+ 'd)

Load FP Single

Hsu frT,d(rA) frT ¢::: FSingle«rA)+ 'd)
Load FP Single with Update rA ¢::: (rA)+ 'd

lfsx frT, rA, rB
frT ¢::: FSingle«rA I O)+(rB»

Load FP Single Indexed

lfsux frT,rA,rB frT ¢::: FSingle«rA)+(rB»
Load FP Single with Update Indexed rA ¢::: (rA)+(rB)

The Load Floating-Point Single instructions load a 32-bit value from memory,
translate it into a 64-bit double-precision floating-point value, and then store the
value into the target register.

Table 5-13 Store Floating-Point Single-Precision Instructions

stfs frS,d(rA)
FSingle«rA I 0)+ 'd) ¢::: frS

Store FP Single

stfsu frS,d(rA) FSingle«rA)+ 'd) ¢::: frS
Store FP Single with Update rA ¢::: (rA)+ 'd

stfsx frS,rA,rB
FSingle«rA I O)+(rB» ¢::: frS

Store FP Single Indexed

stfsux frS,rA,rB FSingle«rA)+(rB» ¢::: frS
Store FP Single with Update Indexed rA ¢::: (rA)+(rB)

The Store Floating-Point Single instructions convert the double-precision value
in the source floating-point register into a 32-bit single-precision value and then
store the value into memory at the given location.

If the value in the source floating-point register cannot be represented as a
single-precision value, then the value stored in memory is undefined.

5.9 Load and Store Multiple

The Load and Store Multiple instructions listed in Table 5-14 provide an easy
facility for loading and storing multiple words of data between memory and the
processor's general purpose registers. With one instruction, from one up to 32
registers can be loaded or stored.

It should be noted, however, that the multiple instructions are not favored in the
eyes of the PowerPC designers. These instructions are not very RISC-like in that
they perform multiple accesses to memory. This deviation from the standard
RISC design philosophy makes it a bit easier for the programmer to code register
saves and restores but it also complicates the processor implementation.

66 Chapter 5

Load and Store Multiple

The warnings that these instructions may take longer to execute than an equiva­
lent series of load or store instructions, and the absence of load and store multi­
ple instructions that support doubleword (or floating-point) transfers between
memory and the registers, should both serve as indications to just how little sup­
port these instructions are likely to receive in future PowerPC implementations.

It is likely that the only reason that the load and store multiple instructions were
carried over from the POWER to the PowerPC architecture is because of the
number of old applications that make use of them.

Table 5-14 Load/Store Multiple Instructions

lmw rT, d(rA) ea := (rA I 0) + 'd

Load Multiple Word R:=T
while(R" 31)

rR ¢= °Word(ea)

ea:= ea + 4
R:=R+1

stmw rS,d(rA) ea := (rA I 0) + 'd

Store Multiple Word R:=T
while(R" 31)

Word(ea) ¢= rR [:2-_3:J
ea:=ea+4
R:=R+1

The Load Multiple Word instruction loads all of the GPRs from r T up to r 31
(inclusive) with the data starting at the memory address calculated from adding
the offset d to the contents of rA. If rO is specified for rA, then the address is
simply d.

If rA is in the range of register being loaded, or if rT and rA are both rO, the
instruction is considered invalid. The POWER architecture handles the case
where rA is in the range to be loaded by skipping rA and discarding the data
that would have been loaded into it, but this behavior was not considered useful
enough to warrant including it in the PowerPC specification.

The Store Multiple Word instruction performs the inverse operation of the Load
Multiple Word. It takes the low-order word from each of the registers between r S

and r 31 and stores it into the memory block starting at the calculated address.

For both the Load and Store Multiple instructions, the address calculated form rA

and d should be a multiple of four (for the address to be properly word aligned).
If the computed address is not a multiple of four, then one of three things may
happen:

• The operation may proceed normally.
• The alignment error handler may be invoked.
• The results may be (boundedly) undefined.

Load and Store Instructions 67

§5.1O Load and Store String

Which of the three occurs depends on the particular PowerPC implementation
and whether a page boundary has been crossed. On the 601, misaligned Load
and Store Multiple operations proceed normally unless a page boundary is
crossed, in which case the alignment error handler is invoked. Other PowerPC
processors will either always invoke the alignment error handler or produce
results that are boundedly undefined.

The PowerPC architecture also defines preferred forms for the Load and Store
Multiple instructions. The preferred forms for these instructions are structured
so that the last byte to be loaded or stored matches the last byte of an aligned
quadword in memory. Thus r31 is loaded from or stored into the low-order
word of an aligned quadword. This is shown in Figure 5-1

Figure 5-1 Alignment for Preferred Form of Load and Store Multiple

low addresses

. dd word alignment
starting a ress 1-----------t~-xxxx xxxx xxxx xxOO

rS/rT

" .. J~

•
•

r31
I-----------I+__ quadword alignment

xxxx xxxx xxxx 0000

high addresses

Load and Store Multiple operations that do not conform to this preferred form
may execute more slowly than forms that do conform.

5.10 Load and Store String

The Load and Store String instructions listed in Tables 5-15 and 5-16 provide a
simple way of accessing unaligned data, like character strings.

These instructions are more properly referred to as Move Assist instructions,
since they are useful for more than just moving character strings around. These
instructions can also be used to copy structures and fields without being con­
cerned about proper data alignment.

68 Chapter 5

Load and Store String

Table 5-15 Load String Instructions

lswi rT, rA, nBytes ea:= (rA I 0)

Load String Word Immediate R:= T-l

i:= [f,]
if(nBytes = 0)

nBytes :=32
while(nBytes > 0)

if(i = [f,])
R:=(R+l)%32

rR ¢::: 0

rR[i:(i+7)] ¢::: Byte(ea)

i :=i + 8

if(i = [~])

i:= [~]
ea:= ea + 1
nBytes := nBytes - 1

lswx rT,rA,rB ea := (rA 10)+(rB)

Load String Word Indexed R:=T-l
nBytes := XER[25:31]

i:= [~]
while(nBytes > 0)

if(i = [~])

R := (R + 1) % 32

rR ¢::: 0

rR[i:(i+7)] ¢::: Byte(ea)

i:= i + 8

if(i = [~])

i := [~]
ea:=ea+l
nBytes := nBytes - 1

The two Load String Word instructions load a number of bytes from memory into
a series of GPRs. The two forms, Load String Word Immediate (lswi) and Load
String Word Indexed (lswx), differ in how the memory address is calculated and
where the number of bytes to copy comes from.

For the immediate (non-indexed) form, the number of bytes is specified as an
immediate value, nBytes, and the memory address where the data to be loaded
begins is stored in r A. The number of bytes specified in the immediate value can
be anywhere from 1 to 32.

The Indexed form calculates the memory address from the sum of two registers,
(rA I 0) and rE, and gets the number of bytes to copy from bits 25 to 31 of the
Fixed-Point Exception Register (XER). This value can be anywhere between 0
and 127, although if the number of bytes to be copied is 0, then the contents of
r T are undefined.

Load and Store Instructions 69

§5.1O Load and Store String

For both of these instructions, each byte is copied into the register starting with
the high-order byte (of the low-order word when in 64-bit mode) and working
down to the low-order byte. When each register is full, the next register sequen­
tially is loaded, wrapping around from r31 to rO if necessary.

The last register to be loaded may be only partially filled. In this situation, the
lower bytes of that register are cleared to O.

The Load String instructions do not load bytes into the upper word when execut­
ing in 64-bit mode. These upper bytes are always set to O.

If rA (or r B, for the Indexed form) is in the range of the register being loaded, or
if rT and rA are both rO, the instruction is considered invalid.

Table 5-16 Store String Instructions

stswi rS,rA,nBytes ea:= (rA I 0)

Store String Word Immediate R:=S-l

i:= [£]
if(nBytes = 0)

nBytes:= 32
while(nBytes > 0)

if(i= [£])
R:=(R+l)%32

Byte(ea) <= rR[i:(i+7)]
i:=i+8

if(i = [~])

i:= [£]
ea:=ea+l
nBytes := nBytes - 1

stswx rS,rA,rB ea := (rA I O)+(rB)

Store String Word Indexed R:=S-l
nBytes:= XER[25:31]

i:= [£]
while(nBytes > 0)

if(i = [£])
R:=(R+l)%32

Byte(ea) <= rR[i:(i+7)]
i:=i+8

if(i = [~])

i:= [£]
ea:=ea+l
nBytes := nBytes - 1

70 Chapter 5

Load and Store Synchronization

The two Store String instructions perform the opposite operation as the Load
String instructions: the bytes from the specified registers are written out to mem­
ory starting at the given memory address.

Both the Load and the Store String instructions have preferred forms that may
execute more quickly on certain PowerPC implementations. The requirements
of the preferred form are

• 32 bytes or less are being transferred.
• The first register (rS or rT) is r5.

These requirements imply that only registers r 5 through r 12 will be used by the
operation.

5.11 Load and Store Synchronization

The synchronization forms of the Load and Store instructions give the program­
mer control over the order in which storage operations are completed, as they
are seen by devices outside the processor. Tables 5-17 and 5-18 list these instruc­
tions.

Table 5-17 Load and Reserve Instructions

lwarx rT, rA, rB Reserve:= 1
Load Word and Reserve Indexed RAddr := (rA 10)+(rB)

rT <= °Word«rA I O)+(rB))

Idarx rT,rA,rB Reserve:= 1
Load Doubleword and Reserve Indexed RAddr := (rA I O)+(rB)
64-bit implementations only rT <= DoubleWord«rA I O)+(rB))

The Load and Reserve instructions load a word from memory and attach a reserva­
tion to the address from which the data was loaded. If there is a reservation from
a previous Load and Reserve instruction, the old reservation is replaced with the
new one.

Load and Store Instructions 71

§5.12 Obsolete Load String

Table 5-18 Store Conditional Instructions

stwcx. rS, rA, rB ea := (rA I O)+(rB)'

Store Word Conditional Indexed if«Reserve = 1) AND (RAddr = ea))

Word(ea)¢=rS [;2-_3~]

Reserve :=0

eRloI ¢= b001 ..1 XER[SO]
else

eRloI ¢= bOOO.l XER[SO]

stdcx. rS,rA,rB ea := (rA I O)+(rB)

Store Doubleword Conditional Indexed if«Reserve = l)ANO (RAddr = ea»

64-bit implementations only OoubleWord(ea)¢=rS
Reserve:= 0

eRloI ¢= b001 ..1 XER[SO]
else

eRloI ¢= bOOO.l XER[SO]

The Store Conditional instructions store the contents of a register to a specified
address only if a reservation has been created using a Load and Reserve instruc­
tion. If a reservation does not exist, then these instructions do nothing.

The EQ bit (bit 2) of Field a of the Condition Register can be checked to see if the
store operation was completed successfully. This bit will be 'I' if the store was
performed and 'a' if it was not.

5.12 Obsolete Load String

There is only one obsolete load instruction (see Table 5-19), and that is Load
String and Compare Byte Indexed. This instruction loads bytes from memory and
compares each byte with a specified target byte.

72 Chapter 5

Obsolete Load String

Table 5-19 Obsolete String Instructions

lscbx[.] rT, rA, rB
Load String and Compare Byte Indexed
obsolete POWER instruction

ea := (rA 10)+(rB)
R:= T-1
nBytes := XER[25:31]
nBytesCopied := 0
matchByte := XER[16:23]

matchFound := 0

i :=0
while(nBytes > 0)

if(i = 0)

R:= (R + 1) %32

rR <= undefined
if(matchFound = 0)

rR[i:(i+7)] <= Byte(ea)

nBytesCopied := nBytesCopied + 1
H(Byte(ea) = matchByte)

matchFound := 1
i:=i+8
H(i = 32)

i :=0
ea:= ea + 1
nBytes := nBytes - 1

XER[25:31] <= nBytesCopied

The Load String and Compare Byte Indexed instruction loads bytes into the regis­
ters from r T to r 31 until one of two conditions is met. These conditions are

• nBytes bytes have been loaded, or
• A byte is loaded that matches matchByte.

The values for nBytes and matchByte come from the Fixed-Point Exception Reg­
ister (XER). nBytes is copied from the value in XER[25:31] and the matchByte is
contained in XER[16:23].

The target registers are loaded starting with the high-order byte and working
down to the low-order byte. Registers are not guaranteed to be cleared to 0
before they are loaded. Thus, the lower bytes of the last (partially filled) register
are undefined.

This instruction is not part of the PowerPC specification because of its com­
plexity.

Load and Store Instructions 73

Integer
Instructions

The integer instructions defined by the PowerPC Architecture include instruc­
tions to perform logical (Boolean) operations and integer comparisons in addi­
tion to the standard arithmetic operations (add, subtract, multiply, and divide).

6.1 Addition

Addition is performed using variants of the Add instruction. The three basic
forms of this instruction listed in Table 6-1 allow two registers to be added and
provide control over how the Carry bit is affected by the instruction. There are
also two other addition instructions that allow the Carry bit to be combined with
a register and a constant. All of these instructions have options that allow the
overflow (' 0') and condition (' . ') information to be set based on the result of the
operation.

The most basic add instruction is, oddly enough, the Add (add) instruction. This
instruction adds the contents of registers rA and rB and stores the result in reg­
ister rT. The Carry bit in the XER is neither used nor affected by the execution of
this instruction.

The Add Carrying (addc) instruction performs the same operation as the add
instruction, but also updates the Carry bit in the XER. The Carry bit is set if there

is a carry out of bit [fz] and is cleared otherwise.

Integer Instructions 75

§6.1 Addition

Table 6-1 Add Instructions

add[o][.] rT,rA,rB rT ¢::: (rA) + (rB)
Add

addc[o][.] rT, rA, rB rT ¢::: (rA) + (rB)
Add Carrying update XER[CA]

adde[o][.] rT,rA,rB rT ¢::: (rA) + (rB) + XER[CA]
Add Extended update XER[CA]

addme[o][.] rT, rA rT ¢::: (rA) + -1 + XER[CA]
Add to Minus One Extended update XER[CA]

addze[o][.] rT, rA rT ¢::: (rA) + 0 + XER[CA]
Add to Zero Extended update XER[CA]

The Add Extended (adde) instruction performs basically the same operation as
the addc instruction, except that it also adds the Carry bit to the result before
storing the result in register rT and updates the Carry bit based on the result.

The final two register-based add instructions add the contents of rA with a con­
stant and the Carry bit and then store the result in rT, updating the Carry bit in
the process. The constant can be either 0 (for addze) or -1 (for addme).

There is no add instruction which uses the Carry bit but does not update the
Carry information.

In addition to the register-based add instructions given earlier, the variants
listed in Table 6-2 allow 16-bit immediate data (sign-extended to 32 bits) to be
specified as one of the operands.

Table 6-2 Add Immediate Instructions

addi rT,rA,s16 rT ¢::: (rA I 0) + 's16
Add Immediate

addis rT,rA,s16 rT ¢::: (rA I 0) + '(s16 .L OxOOOO)
Add Immediate Shifted

addic[.] rT,rA,s16 rT ¢::: (rA) + 's16
Add Immediate Carrying update XER[CA]

These instructions are Add Immediate (addi), Add Immediate Shifted (addis), and
Add Immediate Carrying (addic). Only the addic instruction updates the Carry,
and none of these instructions uses the Carry as part of its operation.

On 64-bit implementations, the immediate data is sign-extended to 64 bits before
performing the addition operation.

Note that the addi and addis instructions do not allow the contents of register
rO to be added with the immediate data. If rO is specified as rA, then 0 will be
added to the sign-extended immediate data and the result will be placed in rT.

76 Chapter 6

Addition

This provides a convenient method of loading a register with an immediate 16-
or 32-bit value, as shown in Table 6-3.

Two extended forms are defined so that it is more readily apparent that the add
immediate instructions are being used to load a value into a register. These are
the Load Immediate and the Load Immediate Shifted forms.

Table 6-3 Load Immediate Extended Forms

li rT,816
Load Immediate rT <= '816
extended form for addi rT,O,s16

lis rT,816
Load Immediate Shifted rT <= '(816.1 OxOOOO)
extended form for addis rT, 0, s16

In order to load a 32-bit immediate value into a register, the lis form can be
used with the OR Immediate instructions:

lis rT, <upper halfword>
or i r T, <lower haIfword>

The lis form loads the upper halfword and clears the lower halfword and the
or i instruction loads the proper value into the lower halfword.

Note that while it is possible to load a register with an immediate value using
extended forms of the Add Immediate instruction, the Add Immediate instructions
should not be used to add an immediate 32-bit value to a value already in a
register. This technique is not guaranteed to work since the most significant bit
of the lower halfword is (erroneously) interpreted as a sign bit and the value is
sign-extended to a word before the addition takes place. Thus, attempting to add
Ox0100 8000 with the following sequence:

addis
addi

rT,OxOlOO
rT,Ox8000

would result in adding OxOOFF 8000 because of the sign-extension of the lower
halfword. This method can work if the upper half of the value is adjusted (by
adding 1) to compensate for the sign-extension from the lower half. This adjust­
ment should only take place if the sign bit of the lower half is '1'. The following
code sequence:

addis
addi

rT,OxOlOl
rT,Ox8000

would produce the desired result of adding OxOlOO 8000 to the value already in
rT. In any case, care should be taken when adding immediate 32-bit values.

Integer Instructions 77

§6.2 Subtraction

When loading an address into a register, the Load Address (la) form of the Add
Immediate instruction listed in Table 6-4 can be used. This extended form makes
more explicit the fact that an address value is being loaded.

Table 6-4 Load Address Extended Forms

la rT,d(rA)
Load Address rT ¢::: (rA I 0) + '516
extended form for addi rT, rA, d

la rT,d
Load Address (with implicit base register) rT ¢::: (rBa5e I 0) + '516
extended form for addi r T, r Base, d

The two forms of the Load Address form allow for the base address to be specified
either explicitly by giving rA or by allowing the base register to be implicit. An
implicit base register is set up using an assembler directive such as the • using
directive in IBM's AIX assembler.

6.2 Subtraction

The primary instructions for performing subtraction are the variants of the subf
(Subtract From) instruction listed in Table 6-5. The subf instruction variants pro­
vide control over the use of the Carry bit and allow registers to be subtracted
from predefined constants. All of these instructions have options that allow the
overflow (' 0') and condition (' .') information to be set based on the result of the
operation.

Table 6-5 Subtract From Instructions

subf[o][.] rT,rA,rB
rT ¢::: (rB) - (rA)

Subtract From

subfc[o][.] rT,rA,rB rT ¢::: (rB) - (rA)
Subtract From Carrying update XER[CA]

subfe[o][.] rT,rA,rB rT ¢::: (rB) - (rA) + XER[CA] - 1
Subtract From Extended update XER[CA]

sub fme [0][.] rT, rA rT ¢::: -1- (rA) + XER[CA] -1
Subtract From Minus One Extended update XER[CA]

sUbfze[o][.] rT,rA rT ¢::: 0 - (rA) + XER[CA]-l
Subtract From Zero Extended update XER[CA]

The basic form of the Subtract From (subf) instruction subtracts rA from rB and
stores the result in rT. This form of the instruction neither uses nor affects the
Carry bit in the XER.

The Subtract From Carrying (subfc) instruction performs the same operation as
the subf instruction, except that it updates the Carry bit based on the result of

78 Chapter 6

Subtraction

the operation. The Carry bit is normally cleared by this instruction but is set if

there is a carry out of bit [fz].

The Subtract From Extended (subfe) instruction subtracts rA from rB and then
adds the Carry minus 1 to the result before storing it in register rT. The Carry bit
is updated based on the result.

The remaining two register based subf instructions subtract the contents of rA
from a constant and then add the Carry bit minus 1. The result is then stored in
the register rT. The constant can be either 0 (for subfze) or -1 (for subfme).

Because the operation of the subf instruction may be confusing given the regis­
ter order, the extended mnemonics listed in Table 6-6 are provided to allow the
programmer to specify the arguments in a more natural order.

Table 6-6 Subtract Extended Forms

sub[o][.] rT,rA,rB
Subtract rT <= (rA) - (rB)
extendedformfor subf[o][.] rT,rB,rA

subc[o][.] rT, rA,rB
rT <= (rA) - (rB)

Subtract Carrying
extended form for subfc[o][.] rT,rB,rA

update XER[CA]

The Subtract (sub) extended form subtracts rB from rA and places the result in
rT. This is the same operation as the subf instruction.

The Subtract Carrying (subc) extended form is identical to sub, except that the
Carry is updated to reflect the result of the operation. This is the same operation
as the subfc instruction.

Table 6-7 lists one instruction that allows the contents of a register to be sub~
tracted from a 16-bit sign-extended immediate constant. In addition, the three
extended forms listed in Table 6-8 allow a constant to be subtracted from the
contents of a register.

Table 6-7 Subtract From Immediate Instruction

subfic rT,rA,s16
Subtract From Immediate Carrying

rT <= 's16 - (rA)
update XER[CA]

The Subtract From Immediate Carrying (subfic) instruction subtracts the con­
tents of rA from the specified 16-bit value. The Carry bit in the XER is updated
to reflect the result of the operation.

Integer Instructions 79

§6.3 Multiplication

Table 6-8 Subtract Immediate Extended Forms

subi rT,rA,s16
Subtract Immediate rT ¢::: (rA I 0) - 's16
extended form for addi rT,rA, -816

subis rT,rA,s16
Subtract Immediate Shifted rT ¢::: (rA I 0) - '(s16 ..1 OxOOOO)
extendedformforaddis rT,rA,-816

subie[.] rT,rA, s16
rT ¢::: (rA) - 's16

Subtract Immediate Carrying
extended form for addic[.J rT, rA, -816

update XER[CA]

The three Subtract Immediate (subi) extended forms are based on the addi
instructions: Add Immediate (addi), Add Immediate Shifted (addis), and Add
Immediate Carrying (addic). They perform the same operation as the equivalent
addi instructions with the immediate data negated.

6.3 Multiplication

On 32-bit PowerPC implementations, multiplying two 32-bit quantities has the
problem that the result can potentially require 64 bits when only 32 bits are avail­
able. A similar situation exists on 64-bit implementations where the result may
require 128 bits, thus overflowing the 64-bit registers.

The PowerPC defines instructions to multiply two 32-bit operands and return
either the high or the low word of the result. This works similarly on 64-bit
implementations when multiplying two 64-bit operands: there are instructions
to return either the high or low doubleword of the result. Tables 6-9 and 6-10 list
these instructions.

Table 6-9 Multiply Instructions

mullw[o][.] rT,rA,rB 32-bit:

Multiply Low Word rT ¢::: LoWord«rA) X (rB))

64-bit:

rT ¢::: (rA[32:63]) X (rB[32:63])

mulld[o][.] rT,rA,rB
Multiply Low Doubleword rT ¢::: LoDWord«rA) X (rB))
64-bit implementations only

mulhw[.] rT, rA, rB
rT ¢::: HiWord«rA) X (rB))

MultiplyHigh Word (Signed)

mulhwu[.] rT,rA,rB
rT ¢::: HiWord«rA) X (rB))

Multiply High Word Unsigned

80 Chapter 6

Division

mulhd[.] rT,rA,rB
Multiply High Doubleword (Signed) rT ~ HiDWord«rA) X (rB»
64-bit implementations only

mulhdu[.] rT, rA, rB
Multiply High Doubleword Unsigned rT ~ HiDWord«rA) X (rB»
64-bit implementations only

For 32-bit operands, there are three instructions: Multiply Low Word (mullw),
Multiply High Word (mulhw) and Multiply High Word Unsigned (mulhwu). Only
one instruction is required to return the low word result since it is the same for
signed and unsigned multiplication operations.

64-bit implementations define three instructions that are analogous to the 32-bit
instructions but perform 64-bit multiplications. These instructions are Multiply
Low Doubleword (mulld), Multiply High Doubleword (mulhd), and Multiply High
Doubleword Unsigned (mulhdu).

When multiplying two 32-bit numbers on a 64-bit PowerPC implementation,
there is no need to calculate the upper and lower half separately since the entire
result is guaranteed to fit in 64 bits. For this reason, the mullw instruction is
defined to return the entire result in rT when executing on 64-bit implementa­
tions. The operands are considered to be signed for this calculation.

If the mulhw or mulhwu instructions are executed on 64-bit implementations,
they perform the same operation as on 32-bit implementations. The lower 32 bits
of rT contain the result and the upper 32 bits are undefined.

Table 6-10 Multiply Immediate Instructions

mulli rT,rA,s16
Multiply Low Immediate

rT ~ LoWord«rA) X 's16)

The Multiply Low Immediate (mulli) instruction is also provided to allow a reg­
ister to be multiplied by a sign-extended 16-bit value. The low word of the 48-bit
result is returned in rT. On 64-bit implementations, the operation is the same
except that the low doubleword of the 80-bit result is returned in rT.

There is no instruction to access the upper word (or doubleword) of the Multiply
Immediate result.

6.4 Division

The division instructions listed in Table 6-11 divide the contents of one register
by the contents of another and store the quotient in a third register. The remain­
der is not provided as part of the instruction result.

Integer Instructions 81

§6.4 Division

Table 6-11 Divide Instructions

divw[oH .J rT,rA,rB
rT ¢::: OrA [:~~6~] + OrB L~~:3] Divide Word (Signed)

divwu[oJ[. J rT,rA,rB
rT ¢::: orA [:~~6~] + OrB [:~~~] Divide Word Unsigned

divd[o][.J rT,rA,rB
Divide Doubleword (Signed) rT ¢::: (rA) + (rB)
64-bit implementations only

divdu[oH· J rT,rA,rB
Divide Doubleword Unsigned rT ¢::: (rA) + (rB)
64-bit implementations only

The Divide Word instructions divide the contents of source register rA by the con­
tents of rB and store the quotient in rT. Normally, the source registers are
treated as signed quantities, but the di vwu instruction interprets the values as
unsigned and produces an unsigned result.

On 64-bit implementations, the di vw and di vwu instructions use only the lower
32 bits of rA and rB. These 32-bits operands are then zero-extended to 64 bits
before the division takes place. The quotient is placed in the lower 32 bits of rT
and the upper 32 bits are undefined.

the di vd and di vdu instructions perform the same division operation as the
word versions, but they use all 64 bits of the source registers and produce a 64-
bit result.

Note that there are no instructions to calculate the remainder. The recommended
way to calculate the remainder is by dividing to calculate the quotient and then
multiplying this quotient by the original divisor. The difference between this
value and the original dividend is the remainder. This can be done as follows:

divw[uJ rT,rA,rB
mullw rT,rT,rB
subf rT,rT,rA

rT

rT
rT

(rA-R) IrB
rA-R
R

the expression rT = (rA-R) I r B comes from the fact that the remainder should
always be the same sign as rA and the magnitude of the remainder should be
less than the magnitude of the divisor (r B). This means that the quotient in r Tis
always rounded towards O. When calculating 64-bit remainders, divd[uJ and
mulld should be used instead of divw[uJ and mullw.

Even though this requires three instructions to calculate the final result, the pen­
alty for calculating the remainder this way is not unreasonable. First of all, the
divide operation is a costly one in terms of execution time (36 cycles in execution
ort the 601), so adding the extra instructions increases the required number of
cycles only by 16 to 30 percent.

82 Chapter 6

Miscellaneous Arithmetic Instructions

Secondly, because the remainder does not need to be supplied as part of the
result, the hardware designers can employ different divide algorithms that can
be faster than algorithms that provide the remainder. This savings in execution
time partially offsets the penalty of requiring two additional instructions and
benefits all integer divide operations, whether or not the remainder is needed.

6.5 Miscellaneous Arithmetic Instructions

The three extra arithmetic instructions listed in Table 6-12-Count Leading Zeros,
Extend Sign, and Negate-do not fit neatly into the other categories.

Table 6-12 Miscellaneous Arithmetic Instructions

cntlzw[.] rA,rS rA ¢::: LeadingZeros(rS)
Count Leading Zeros Word

cntlzd[.] rA,rS
Count Leading Zeros Doubleword rA ¢::: LeadingZeros(rS)
64-bit implementations only

extsb[.] rA,rS rA ¢::: 'rS [~!'~] Extend Sign Byte

extsh[.] rA,rS
rA ¢::: 'rS c:~] Extend Sign Halfword

extsw[.] rA,rS
Extend Sign Word rA ¢::: 'rS[32:63]
64-bit implementations only

neg[oH·] rT,rA rT ¢::: -(rA)
Negate

The Count Leading Zeros instructions count the number of 'a' bits that are occu­
pying the high-order bits of r S. This number, which can range from a to 32 for
cntlzw and a to 64 for cntlzd, is then stored in rA.

There are three Extend Sign instructions: one extends a byte to a word (extsb),
another extends a halfword to a word (extsh), and a third which extends a
word to a doubleword (extsw). These instructions take the high-order (or sign)
bit from the quantity being extended (byte, halfword, or word) and replicate it
throughout the upper bits of the destination quantity (word or doubleword) to
produce the result.

The Negate instruction simply takes the two's complement of the quantity in rA
and stores the result in r T.

Integer Instructions 83

§6.6 Comparison Instructions

6.6 Comparison Instructions

The two basic forms of the Compare instructions listed in Tables 6-13 through 6-16
are defined in the PowerPC architecture. One form performs a standard signed
comparison and the other performs an unsigned or logical comparison.

Table 6-13 Compare Instructions (Register Based)

cmp crfT,L,rA,rB CR{crjT} ¢:= SignedCompare(rA,rB)
Compare

cmpl crfT,L,rA,rB CR{crjT} ¢:= UnsignedCompare(rA,rB)
Compare Logical

The Compare instruction compares the contents of r A with the contents of r Band
sets the bits in the specified CR field appropriately. The bits in the CR field are
set as follows:

• LT is set if (rA) < (rB).
• GT is set if (rA) > (rB).
• EQ is set if (rA) = (rB).
• 50 is copied from XER[50].

The Compare Logical instruction performs the same operation but treats the con­
tents of rA and rB as unsigned quantities for purposes of the comparison.

The L field for each of the Compare instructions determines if a 32-bit or a 64-bit
comparison should be performed. The L field must be 0 for 32-bit implementa­
tions.

Table 6-14 Compare Instructions (Immediate Data)

cmpi crfT,L,rA,s16 CR{crjT} ¢:= SignedCompare(rA, '816)
Compare Immediate

cmpli crfT,L,rA,u16 CR{crjT} ¢:= UnsignedCompare(rA,Ou16)
Compare Logical Immediate

The Compare Immediate instruction compares the contents of rA with the sign­
extended immediate value and sets the bits in the specified CR field appropri­
ately. The bits in the CR field are set as follows:

• LT is set if (rA) < '816.
• GT is set if (rA) > '816.
• EQissetif(rA)='816.
• 50 is copied from XER[50].

84 Chapter 6

Comparison Instructions

The Compare Logical Immediate instruction compares the contents of rA with the
unsigned immediate value and updates the appropriate CR field. The CR field
bits are set as follows:

• LTissetif(rA)<ou16.

• GT is set if (rA) > °u16.

• EQ is set if (rA) = °u16.

• SO is copied from XER[SO].

As with the non-immediate Compare instructions, the L field is used to switch
between 32-bit and 64-bit compares.

Since it soon becomes annoying to have to specify the L field for each compari­
son performed, extended forms are defined to perform word and doubleword
compares.

Table 6-15 Compare Word Extended Forms

cmpw crfT,rA,rB
Compare Word CR{crjT} ¢::: SignedCompare(rA,rB)
extended form for cmp cr fT, 0 , rA, r B

cmplw crfT, rA, rB
Compare Logical Word CR{crjT} ¢::: UnsignedCompare(rA,rB)
extended form for cmpl cr fT, 0, r A, r B

cmpwi crfT,rA,SI
Compare Word Immediate CR{crjT} ¢::: SignedCompare(rA, 's16)
extendedformforcmpi crfT,O,rA,s16

cmplwi crfT,rA, UI
Compare Logical Word Immediate CR{crjT} ¢::: UnsignedCompare(rA,Ou16)
extended form for cmpli crfT, 0 ,rA, u16

The four Compare Word forms are the same as the four base Compare instructions,
except that they implicitly set the L field to a so that 32-bit compares are per­
formed.

The four Compare Doubleword forms are the same as the four base Compare
instructions, except that they implicitly set the L field to 1 so that 64-bit compares
are performed.

Integer Instructions 85

§6.7 Logical (Boolean) Instructions

Table 6-16 Compare Doubleword Extended Forms

cmpd crfT,rA,rB
Compare Doubleword CR{crjT} ~ SignedCompare(rArB)
extended form for crop crfT, 1, rA,rB
64-bit implementations only

cmpld crfT,rA,rB
Compare Logical Doubleword CR{crjT} ~ UnsignedCompare(rA,rB)
extended form for crop1 crfT, 1, rA, rB
64-bit implementations only

cmpdi crfT,rA,SI
Compare Doubleword Immediate CR{crjT} ~ SignedCompare(rA, 's16)
extended form for cropi crfT, 1,rA, 816
64-bit implementations only

cmpldi crfT,rA, UI
Compare Logical Doubleword Immediate CR{crjT} ~ UnsignedCompare(rA,Ou16)
extended form for cropli crfT, 1 ,rA, u16
64-bit implementations only

6.7 Logical (Boolean) Instructions

The logical instructions listed in Tables 6-17, 6-18, and 6-19 perform bitwise
Boolean operations on registers. There are three basic bitwise operations that can
be performed: AND, OR, and XOR. By negating or complementing one of the
source registers or the result, additional logical operations can be constructed.
The PowerPC defines five additional operations that are built in this manner:
Equivalent, AND with Complement, OR with Complement, NAND, and NOR.

Table 6-17 Logical Instructions

and[.] rA, rS, rB rA ~ (r5) & (rB)
AND

andc[.] rA,rS,rB rA ~ (r5) & -(rB)
AND with Complement

eqv[.] rA, rS, rB
rA ~ (r5) == (rB)

Equivalent

nand[.] rA, rS, rB
rA ~ -«r5) & (rB»

NAND

nor[.] rA, rS, rB
rA ~ -«r5) I (rB»

NOR

or[.] rA, rS, rB rA ~ (r5) I (rB)
OR

orc[.] rA, rS, rB rA ~ (r5) I -(rB)
OR with Complement

xor[.] rA, rS, rB rA ~ (r5) Et> (rB)
Exclusive OR

86 Chapter 6

Logical (Boolean) Instructions

The AND instruction calculates the bitwise AND of the source registers. Each bit
in the target register (rA) is set if and only if the corresponding bits in both
source registers (r sand r B) are set.

The AND with Complement instruction calculates the bitwise AND of the source
register r S and the one's complement of source register r B. Each bit in the target
register (rA) is set if and only if the corresponding bits in rS and ~rB are set.

The Equivalent instruction calculates the equivalence of the two source registers.
Each bit in the target register (rA) is set if and only if the corresponding bits in
the source registers (rs and rB) are equal to each other.

The NAND instruction calculates a bitwise AND like the AND instruction but
takes the ones's complement of the result before storing it in rA.

The NOR instruction calculates a bitwise OR like the OR instruction but takes
the one's complement of the result before storing it in rA.

The OR instruction calculates the bitwise OR of the source registers. Each bit in
the target register (rA) is set if either of the corresponding bits in the source reg­
isters (rS and rB) are set.

The OR with Complement instruction calculates the bitwise OR of the source reg­
ister r S and the one's complement of source register r B. Each bit in the target reg­
ister (rA) is set if either of the corresponding bits in r S and ~rB are set.

The Exclusive OR instruction calculates the bitwise XOR of the source registers.
Each bit in the target register (rA) is set if the corresponding bit in one of the
source registers (either r S or r B) is set. If both source registers have the bit set,
or if neither of them do, then the target register bit is cleared. Note that this oper­
ation is equivalent to negating the result of the Equivalent instruction.

Table 6-18 Logical Immediate Instructions

andi. rA,rS,u16 rA ~ (rS) & °u16
AND Immediate

andis. rA,rS,u16
rA ~ (rS) & O(u16.L OxOOOO)

AND Immediate Shifted

ori rA,rS,u16
rA ~ (rS) I °u16

OR Immediate

oris rA,rS,u16
rA ~ (rS) I O(u16.L OxOOOO)

OR Immediate Shifted

xori rA,rS,u16
rA ~ (rS) EI1 °u16

XOR Immediate

xoris rA,rS,u16
rA ~ (rS) EI1 O(u16.L OxOOOO)

XOR Immediate Shifted

Integer Instructions 87

§6.8 Obsolete Arithmetic Instructions

Logical Immediate forms are defined for the three basic Boolean operations: AND,
OR, and XOR. For each of these operations, there are two instructions: one
instruction zero extends the 16-bit immediate value before performing the logi­
cal operation, and the other shifts the immediate value 16 bits to the left (filling
with O's from the right) before performing the logical operation.

On 64-bit implementations, the immediate data is zero-extended to 64 bits
before the operation is performed.

The logical instructions allow many simpler instructions to be constructed from
them. These three extended forms listed in Table 6-19 are the preferred forms for
implementing these operations. Implementations of the PowerPC architecture
that provide some sort of run-time optimization for these operations will look
for the preferred form to trigger the optimization.

Table 6-19 Extended Forms for Logical Instructions

mr[.] rA,rB
Move Register rA ¢= (rB)
extended form for or rA, rB, rB

not[.] rA,rB
Not (One's Complement) rA ¢= ~(rB)

extended form for nor rA,rB,rB

nop
No-operation rO ¢= rO
extended form for or i rO,rO,rO

The Move Register form provides an easy way to transfer the contents of one reg­
ister to another.

The Not instruction calculates the one's complement of the source register and
stores it in the destination register.

The No-operation or No-op instruction does nothing. It can be useful as a place­
holder instruction that may be overwritten with a "real" instruction.

6.8 Obsolete Arithmetic Instructions

A variety of arithmetic instructions were defined for the POWER architecture
but were not included in the PowerPC specification. These instructions were
either unnecessarily complicated (as with the Absolute Value and Difference or
Zero instructions), or they made use of the MQ register (as with the Multiply and
Divide instructions).

88 Chapter 6

Obsolete Multiply

Obsolete Multiply

The obsolete POWER multiply instructions do not provide separate instructions
to return the upper and lower part of a 32-bit x 32-bit multiply result. Instead, a
single instruction listed in Table 6-20 is defined to return the 64-bit result split
across two registers: rT and MQ.

Table 6-20 Obsolete POWER Multiply Instructions

mul[oH.] rT, rA, rB
Multiply
obsolete POWER instruction

rT ¢::: HiWord«rA) x (rB))
MQ ¢::: LoWord((rA) X (rB))

Since the MQ register was removed for the PowerPC specification, this instruc­
tion has been removed also. Its complete functionality is provided via the mullw
and mulhw instructions.

Obsolete Divide

In contrast to the PowerPC divide instructions, the obsolete POWER divide
instructions listed in Table 6-21 provide both the quotient and the remainder as
part of the result. The quotient is returned in the specified register, and the
remainder is returned in the MQ register. Since the MQ register is not part of the
PowerPC specification, these divide instructions needed to be removed.

Table 6-21 Obsolete POWER Divide Instructions

div[oH.] rT,rA,rB rT ¢::: ((rA) .1 (MQ)) + (rB)
Divide MQ ¢::: ((rA) .1 (MQ)) % (rB)
obsolete POWER instruction

divs[oH.] rT, rA, rB rT ¢::: (rA) + (rB)
Divide Short MQ ¢::: (rA) % (rB)
obsolete POWER instruction

The two obsolete divide instructions are Divide (div) and Divide Short (divs).

The Divide instruction divides a 64-bit value by a 32-bit value and returns the
quotient and the remainder. The 64-bit dividend is composed of the contents of
register rA concatenated with the contents of the MQ register, and the 32-bit
divisor is the contents of register rB. The quotient is returned in rT and the
reinainder is returned in the MQ register.

The Divide Short instruction divides the 32-bit dividend in rA by the 32-bit divi­
sor in rB and returns the quotient in rT and the remainder in the MQ register.

For both the di v and di vs instructions, the remainder in MQ is guaranteed to
have the same sign as the dividend (rA).

Integer Instructions 89

§6.8 Obsolete Arithnietic Instructions

Other Obsolete Arithmetic Instructiol1.S

The POWER architecture also defines two additional operations listed in
Table 6-22 not found in the PowerPC architecture: integer Absolute Value and Dif­
ference or Zero. The instructions implementing these operations were removed
for the PowerPC specification in an effort to simplify the design.

These instructions were removed because the operation being performed is data
dependent. This means that the processor can't simply perform an operation on
the data but must first examine the data to determine which operation to per­
form. For Absolute Value, the two operations are either to do nothing (if the
source is positive) or negate (if negative); and for the Difference or Zero instruc­
tion, the two operations are to subtract (if (rA) is less than the other value) or
returnO.

This data dependency requires an extra multiplexer m the arithmetic unit to
decide which of the two function results to save to the destination register. This
multiplexer is likely to be located on the critical execution path of the processor,
thus, supporting these instructions is likely to have the effect of slowing doWn
every other instruction while benefitting only these four instructions. Since these
instructions are infrequently used, they are not included as part of the PowerPC
specification.

Table 6-22 Obsolete POWER Arithmetic Instructions

aba[o][.] rT,rA
Absolute Value rT~ 1 (tA)1
obsolete POWER instruction

nabs[o][.] rT, rA
Negative Absolute Value rT ~ -I (rA) 1
obsolete POWER instruction

dOz[o][.]rT, rA, rB rT ~ «rA) > (rB» ?O
Difference Or Zero : «rB) - (rA» obsolete POWER instruction

dozi rT,rA,s16 rT ~ «rA) > '816) ?O
Difference Or Zero Immediate : ('816 - (rA»
obsolete POWER instruction

The two absolute value instructions are Absolute Value (abs) and Negative Abso­
lute Value (nabs). These instructions calculate the absolute value (or its ~egative)
of rA and store the result in rT. Both of these instructions have options which
allow the overflow and condition information to be set based on the result of the
operation.

90 Chapter 6

The two 1/ difference or zero" instructions are Difference Or Zero (do z) and
Difference Or Zero Immediate (dozi). These instructions compare the two
operands and return 0 if rA is greater than the other operand or the differ­
ence of the two operands in all other cases. The end result is that the value
stored in rTis guaranteed to be non-negative. The doz instruction compares
rA with another register, and dozi compares rA with a sign-extended 16-bit
quantity.

Other Obsolete Arithmetic Instructions 91

Rotate and Shift
Instructions

The PowerPC architecture defines a complex set of rotate and shift operations
that can be used to perform a wide range of operations in one instruction. These
operations include

• Rotate the contents of a register to the left or right.
• Shift the register contents to the left or right.
• Extract and shift a range of bits from a register.
• Shift and insert a range of bits into a register.

• Clear a range of bits in a register.

In addition, the rotate instructions' built-in masking operation facilitates the
implementation of multiple-precision shifts and rotates.

7.1 Rotation Masks

The rotate instructions have a mask generation facility that allows a mask to be
specified. The rotated quantity is ANDed with this mask so that only a portion
of the rotated word is copied into the destination register. This allows complex
bit manipulation operations to be performed in one instruction by using an
appropriate mask.

This facility is limited by the restriction that only certain types of masks are
allowed. The valid types of masks vary depending on whether the mask is for a
32-bit or a 64-bit quantity.

Rotate and Shift Instructions 93

§7.1 Rotation Masks

Word Masks

When specifying a mask for a word (for example, a 32-bit quantity), a valid mask
must be composed of either:

• A contiguous range of 'l's surrounded by 'O's.
• A contiguous range of 'O's surrounded by 'l's.
• A contiguous range of 'l's followed by 'O's.
• A contiguous range of 'O's followed by 'l's.

• AlII's.

Note that there is no way to specify a mask consisting of all'O's. Such a mask
would not be very useful since it would entirely mask out the result of the rota­
tion operation.

Simplifying the acceptable masks in this fashion allows the mask to be encoded
by recording the starting bit (maskBegin) and the ending bit (maskEnd). These
mask bit values must be between 0 and 31. Figure 7-1 shows the five types of
acceptable word masks.

Figure 7-1 Valid Word Rotation Masks

mBegin :::; mEnd
mBegin mEnd mBegin > mEnd

mEnd mBegin

mBegin=O

mEnd =31
mBegin

mBegin = mEnd+ 1

A mask that consists of a contiguous range of 'l's surrounded by '0' s is encoded
by setting maskBegin to the bit number of the first 'I' bit and maskEnd to the bit
number of the last '1' bit. Thus, the mask OxOOFF FFOO would be encoded with
maskBegin = 8 and maskEnd = 23 (since the leftmost bit is bit 0). If maskBegin =
maskEnd, then a mask is generated with only one bit set.

A mask that consists of a contiguous range of 'O's surrounded by 'l's is encoded
by setting maskEnd to the bit number of the bit immediately before the first '0' bit
and maskBegin to the bit number of the bit immediately after the last '0' bit. This
type of mask is identified by recognizing that maskBegin is greater than maskEnd.

94 Chapter 7

Doubleword Masks

As an example, the mask OxFFOO OOFF would be encoded with maskBegin = 24
and maskEnd = 7.

A mask that consists of a contiguous range of 'l's followed by a range of 'O's is
encoded by setting maskBegin to bit 0 and maskEnd equal to the last bit of the
mask. Thus, the mask OxFFFO 0000 would be encoded as maskBegin = 0 and
maskEnd = 11.

A mask that consists of a contiguous range of 'O's followed by a range of 'l's
is encoded by setting maskBegin to the first bit of the mask and maskEnd to bit
31. Thus, the mask OxOOOO OFFF would be encoded as maskBegin = 20 and
maskEnd = 31.

A mask of all '1' s is encoded by setting maskBegin equal to maskEnd+ 1 (wrapping
around to 0 if maskEnd+ 1 = 32). While any values for maskBegin and maskEnd that
satisfy the maskBegin = (maskEnd+1) % 32 equation define valid mask specifica­
tions, by convention the values maskBegin=O and maskEnd=31 are used.

When specifying word masks on 64-bit implementations, the maskBegin and
maskEnd values are automatically offset by 32 so that they specify bits in the low­
order word of the 64-bit register. Thus, specifying a mask from bit 8 to bit 15 on
a 64-bit implementation actually results in a mask from bit 40 to bit 47.

Doubleword Masks

Doubleword masks are used by the doubleword rotate instructions that are
available on 64-bit PowerPC implementations. When specifying a mask for a
doubleword, the mask must be composed of either

• A series of 'l's followed by a series 'O's.
• A series of 'O's followed by a series 'l's.

• AlII's.
• A contiguous range of 'l's surrounded by 'O's (with restrictions).

Note that there is no way to specify a mask consisting of all'O's. As is the case
with word masks, such a mask would not be very useful since it would entirely
mask out the result of the rotation operation.

Figure 7-2 shows these four types of acceptable doubleword masks.

Rotate and Shift Instructions 95

§7.2 How Rotates and Shifts Update the CR

Figure 7-2 Valid Doubleword Rotation Masks

mEnd

mBEgin

_I
mBEgin f- <hift ~

Simplifying the acceptable masks in this fashion allows the mask to be encoded
by recording either just the starting bit (maskBegin) or just the ending bit (mask­
End). These mask bit values must be between a and 63. The maskBegin and mask­
End values cannot both be specified simultaneously because of instruction
encoding limitations. It is always clear from the context whether the bit value
being specified defines the beginning or the end of the mask.

Some instructions allow maskBegin to be specified and use an implicit maskEnd
that is generated from the instruction's shift value. These are the only instruc­
tions that allow a range of 'l's surrounded by 'a's to be used as a mask.

A mask of 'l's followed by 'O's is encoded by setting maskEnd to the bit number
of the last 'I' bit, using 0 as an implicit maskBegin. A mask of 'O's followed by 'l's
is encoded by setting maskBegin to the bit number of the first 'I' bit, using 63 as
an implicit maskEnd. A mask of all 'l's can be constructed by setting either mask­
Begin to a or maskEnd to 63, depending on which value is available.

Instructions that permit the last type of mask record the maskBegin value and use
63-shift as the implicit maskEnd value. The maskEnd value cannot be controlled
independently of the shift value.

7.2 How Rotates and Shifts Update the eR

All of the shift and rotate instructions allow the' .' suffix to be appended to the
instruction mnemonic to have field 0 of the Condition Register updated to reflect
the result of the operation.

For 32-bit PowerPC implementations, these instructions set CR{O} by algebra­
ically comparing the shift or rotate result with O.

For 64-bit implementations, the comparison is dependent on the mode that the
processor is currently in. When executing in 32-bit mode, the low-order word of

96 Chapter 7

Executing Word Instructions in 64-bit Mode

the result is algebraically compared with a 0 word. In 64-bit mode, the entire
doubleword of the result is algebraically compared with a 0 doubleword.

Executing Word Instructions in 64-bit Mode

When the rotate and shift word instructions are executed on a 64-bit PowerPC
processor, the upper 32 bits of the result are always O.

One side-effect of this is that the condition code values returned in CR{O} are
dependent on the mode in which the processor is currently executing. If the pro­
cessor is in 32-bit mode, only the lower 32-bit will be compared, and if the pro­
cessor is in 64-bit mode, the entire 64-bit result will be involved in the
comparison.

As a demonstration of this, consider shifting OxFFFF FFFF to the left by eight
with the Record Bit set. If the processor is in 32-bit mode, the result will be
OxFFFF FFOO and the condition codes will be set to indicate that the result is neg­
ative. In 64-bit mode, this same instruction will return OxOOOO 0000 FFFF FFOO
and the condition codes will indicate a positive result.

Thus, all shift and rotate operations which produce "negative" results in 32-bit
mode will produce positive results when executed in 64-bit mode.

7.3 Rotate Instructions

The rotate with mask instructions provide a powerful mechanism for extracting
and inserting a range of bits to or from a register. There are only two basic types
of rotate instructions: Rotate Left Word and Rotate Left Doubleword. There is no
explicit Rotate Right instruction because it is trivial to construct a right rotate
operation from a Rotate Left instruction (there are extended mnemonics that
implement Rotate Right functionality).

Even though there are obvious similarities between the word and doubleword
rotate instructions, there are significant differences between these two instruc­
tion forms. These differences arise from the difficulty of encoding all of the nec­
essary information for a 64-bit rotate instruction in the 32 bits allowed for each
instruction. It is these encoding limitations that led to the limited range of mask
types for doubleword rotate instructions.

Rotate Word Instructions

The two basic types of rotate word with mask instructions are listed in Table 7-1:
Rotate Left Word then AND with Mask and Rotate Left Word then Mask Insert.

Rotate and Shift Instructions 97

§ 7.3 Rotate Instructions

Table 7-1 Rotate Word Instructions

rlwnm[.] rA,rS,rB,mB,mE r:= (r5) Q rB [~~:~]
Rotate Left Word then AND with Mask

m := Mask(mB,mE)
rA~(r&m)

rlwinm[.] rA,rS,n,mB,mE r:= (r5) Q n
Rotate Left Word Immediate then AND with m := Mask(mB,mE)

Mask rA~ (r&m)

rlwimi[.] rA,rS,n,mB,mE r:= (r5) Q n
Rotate Left Word Immediate then Mask Insert m := Mask(mB,mE)

rA ~ (r & m) I «rA) & -m)

The Rotate Left Word then AND with Mask instructions take the source register r S
and rotate it by the specified amount. The rotated r S is then ANDed with the
generated mask to produce the result. This is shown in Figure 7-3 .

Figure 7-3 Rotate Left Word then AND with Mask Operation

- Source rS

//
rS Rotated n Bits to Left

Generated Mask
mBegin mEnd

Result

The rotate amount can either be specified as an immediate value (using
rlwinm), or it can be taken from a register (using rlwnm). When the rotate
amount is given via a register, only the low order 5 bits of the register are used
to insure that the rotate value lies between 0 and 3l.

The Rotate Left Word then Mask Insert instruction rotates r S and then inserts a
range of bits from the rotated word into the destination register, rA.

This is basically the same operation as the Rotate Left Word then AND with Mask
instruction with the exception of how the mask is used to generate the final
result. Instead of simply ANDing the rotated word and mask to overwrite the
entire destination register, the only bits in the destination register that are over~
written a'"e those where the mask is 'I'. This operation is presented in Figure 7.:.
4

98 Chapter 7

Rotate Word Instructions

Figure 7-4 Rotate Left Word then Mask Insert Operation

--- Source rS

//
rS Rotated n Bits to Left

Generated Mask
mBegin mEnd

Source rA

Result

Note that there is no Rotate Left Word then Mask Insert form that allows the rota­
tion amount to be specified in a register. This instruction was originally part of
the POWER architecture but not included in the PowerPC specification because
it would require that the processor be able to read from three source registers
(rA, rS, and rB) simultaneously, which would have made implementing the
architecture more costly.

Three rotate extended forms are provided to return the rotated contents of a reg­
ister without masking out any portion of the result. Table 7-2 lists these forms.

Table 7-2 Rotate Word Extended Instruction Forms

rotlw[.] rA,rS,rB
Rotate Left Word rA <= (rS) Q rB [~;~~]
extended form for rlwnm rA, rS, rE, 0,31

rotlwi[.] rA,rS,n
Rotate Left Word Immediate rA <= (rS) Q n
extendedformfor rlwinm rA,rS,n,O,31

rotrwi[.] rA,rS,n
Rotate Right Word Immediate rA <= (rS) Q n
extended form for rlwinm rA, rS,32-n, 0,31

The Rotate Left Word form (rotlw) rotates rS left rB [~;:!~] bits and stores the

result in rA. Rotate Left Word Immediate (rotlwi) performs the same operation
but obtains the rotate amount from an immediate value instead of from the
lower bits of rB.

To rotate a word right by an immediate amount n, the Rotate Right Word Immedi­
ate form can be used. This extended form rotates r S to the right n bits and stores

Rotate and Shift Instructions 99

§7.3 Rotate Instructions

the result in rA. Since there is no primitive right rotate instruction, this form is
implemented by rotating left by 32-n places, which produces exactly the same
result.

A Rotate Right Word extended form that accepts the rotate amount in a register is
not provided because there is no primitive rotate right instruction. To use the
r 1 wnrn instruction to implement this functionality, the rotate amount in r B must
be subtracted from 32 and then that value should be used as the rotate amount.

Optionally, the rotate amount can be calculated simply by negating r B. This
works because the PowerPC rotate word instructions use only the lower 5 bits of
rotate amount.

Rotate Doubleword

As mentioned earlier, the six Rotate Doubleword instructions listed in Table 7-3
differ from the Rotate Word instructions in the types of masks that are accepted.
The first four of these instructions are similar to the r 1 wnrn and r 1 winrn instruc­
tions for word quantities, except that two doubleword instructions are provided
for each of the word instructions: one to mask the right portion and another to
mask the left portion. The two remaining doubleword rotate instructions com­
pute the mask from a start bit and the rotate amount.

Table 7-3 Rotate Doubleword Instructions

rldcl[.] rA,rS,rB,mB r := (rS) Q rB[58:63]
Rotate Left Doubleword then Clear Left m := Mask(mB,63)
64-bit implementations only rA <== (r & m)

rldcr[.] rA,rS,rB,mE r := (rS) Q rB[58:63]
Rotate Left Doubleword then Clear Right m := Mask(O,mE)
64-bit implementations only rA <== (r& m)

rldicl[.] rA,rS,n,mB r:= (rS) Q n
Rotate Left Doubleword Immediate then Clear m := Mask(mB,63)

Left
64-bit implementations only rA <== (r & m)

rldicr[.] rA,rS,n,mE r:= (rS) Q n
Rotate Left Doubleword Immediate then Clear m := Mask(O,mE)

Right
rA <== (r & m) 64-bit implementations only

rldic[.] rA,rS,n,mB r:= (rS) Q n
Rotate Left Doubleword Immediate then Clear m:= Mask(mB,63-n)
64-bit implementations only rA <== (r& m)

rldirni[.] rA,rS,n,mB r:= (rS) Q n
Rotate Left Doubleword Immediate then Mask m := Mask(mB,63-n)

Insert
64-bit implementations only rA <== (r & m) I «rA) & ~m)

100 Chapter 7

Rotate Doubleword

The rldcl and rldcr instructions both rotate the source register rS by an
amount stored in the lower six bits of r B. The rotated value is then ANDed with
a different mask for each of these instructions: the r ldc 1 instruction masks out
the high order bits ("clear"ing the left part of the result) and rldcr masks out
the low order bits ("clear"ing right). The last parameter of these instructions is
either the first bit (when clearing to the left in rldcl) or the last bit (when clear­
ing to the right in rldcr) to be copied to the result.

The rldicl and rldicr instructions perform the same operation as the rldcl
and r ldcr instructions, except that they get the rotate amount n from the imme­
diate value encoded as part of the instruction.

The rldic instruction rotates r S and then masks out bits to the left and right of
a bit field in the center of the result. The bit field that is copied into rA starts at
bit position mB and extends out to the 63-nth bit, where n is the amount of the
rotation. This is basically the same operation as the rlwinrn instruction, except
that the mask end bit cannot be specified independently of the rotate amount.

Similar to rlwirni except for how the mask is calculated, the rldirni instruc­
tion merges the rotated contents of r S with the current contents in rA. This
instruction allows a right-justified bit field to be inserted into another register as
shown in Figure 7-5. The mask is calculated in the same manner as the rldic
instruction: the mask extends from bit mB to bit 63-n.

Figure 7-5 Rotate Left Doubleword then Insert Operation

- Source rS

//
rS Rotated n Bits to Left

Generated Mask
ruBegin 63-n

Source rA

Result

As with the rotate word instructions, there are three extended forms for rotating
a 64-bit quantity without masking out any of the bits. Table 7-4 lists these forms.

Rotate and Shift Instructions 101

§7.4 Shift Instructions

Table 7-4 Rotate Doubleword Extended Instruction Forms

rotld[.] rA,rS,rB
Rotate Left Doubleword rA <= (rS) Q rB[58:63]
extended form for rIdel rA, rS ,rE, 0
64-bit implementations only

rotldi[.] rA,rS,n
Rotate Left Doubleword Immediate rA <= (rS) Q n
extendedformforrldiel rA,rS,n,O
64-bit implementations only

rotrdi[.] rA,rS,n
Rotate Right Doubleword Immediate rA <= (rS) Q n
extended form for rIdiel rA, rS, 64-n, 0
64-bit implementations only

The Rotate Left Doubleword form (rotld) rotates rsleft rB[58:63] bits and stores
the result in rA. Rotate Left Doubleword Immediate (rotldi) performs the same
operation, but obtains the rotate amount from an immediate value instead of
from rB.

To rotate a doubleword to the right by an immediate amount n, the Rotate Right
Doubleword Immediate form is defined. This form rotates r S to the right n bits and
stores the result in rA. This form is implemented by using the rldicl instruc­
tion to rotate the doubleword to the left by 64 - n places, which performs the
same operation as rotating right by n bits.

As with the Rotate Right Word forms, a Rotate Right Doubleword extended form
that accepts the rotate amount in a register is not provided. To use the rldcl
instruction to implement this functionality, the rotate amount in r B must be sub­
tracted from 64 and then that value should be used as the rotate amount. The
rotate amount can also be calculated simply by negating r B since only the lower
6 bits of the rotate amount are used.

7.4 Shift Instructions

Considering how powerful the rotate and mask instructions are, it might at first
seem somewhat redundant to provide separate shift instructions since the shift
functionality can be constructed using the rotate instructions with an appropri­
ate mask.

However, the PowerPC shift instructions differ from the rotate instructions in
two significant ways. First, the shift instructions provide a shift operation where
the shift amount can be specified in a register, whereas the rotate instructions
can only be used to implement shift operations where the shift amount is sup­
plied as an immediate value. Even the r 1 wnm instruction (which allows the
rotate amount to be specified in r B) is not useful for this purpose because it

102 Chapter 7

Shift Left

requires that the mask be specified using immediate values, thus precluding its
use for shift operations.

Secondly, the shift instructions provide additional functionality in that they per­
form more than just a basic shift around a word (or doubleword) quantity. The

shift instructions allow the shift amount to range between [~;~7]' which allows

the bits to be completely "shifted out" to the right or left (if the shift amount is

greater than or equal to [~]). While this may not seem incredibly useful at first,

this feature allows multi-word (or multi-doubleword) shift operations to be con­
structed easily from a series of shift, add, and or instructions. This technique is
described in §7.6 "Multiple-Precision Shifts."

The Shift Right Algebraic instructions represent another set of forms that could
not be implemented using the rotate and mask instructions without adding a
few extra instructions. These shift instructions replicate the sign bit so that the
shifted result retains the same sign as the source operand. As with the other shift

instructions, the shift amount can be in the range [~;~7] to facilitate multi-word

algebraic shifts.

Shift Left

Figure 7-6 shows how the Shift Left instructions shift the contents of the source
register rsto the left by the amount specified in rB and save the result in rA. 'D's
are shifted in from the right to fill in the bits as the value is shifted to the left.

Figure 7-6 Shift Left Operation

o !hift - Source rS

/ /
~I Result

I-- shift --I

Table 7-5 lists the two types of shift left instructions: the first type operates on
words, and the other operates on doublewords.

Rotate and Shift Instructions 103

§ 7.4 Shift Instructions

Table 7-5 Shift Left Instructions

slw[.] rA,rS,rB
rA {=: (r5) «rB [~:::]

Shift Left Word

sld[.] rA,rS,rB
Shift Left Doubleword rA {=: (r5) « rB[57:63]
64-bit implementations only

The Shift Left Word instruction shifts the word in r S to the left by the amount
specified in rB[26:31]. The shift amount can range from a to 63; if the shift
amount is greater than 31, the quantity in rS is completely shifted out and the
value a is stored in rA as the result.

The Shift Left Doubleword instruction shifts the doubleword quantity in r S to the
left by the amount specified in rB[S7:63]. The shift amount can range from a to
127; if the shift amount is greater than 63, r S is completely shifted out and the
result of the instruction is O.

No Shift Left instructions accept the shift amount as an immediate value, but the
Shift Left Immediate forms listed in Table 7-6 can be constructed from the rotate
left with mask instructions. Two extended Shift Left Immediate forms are defined,
one each for words and doublewords. Since these instructions are built from the

rotate instructions, the shift amount must range between [~~~].

Table 7-6 Shift Left Immediate Extended Instruction Forms

slwi[.] rA,rS,n
Shift Left Word Immediate rA {=: (r5) « n
extended form for rlwinm rA,rS,n, 0, 31-n

sldi[.] rA,rS,n
Shift Left Doubleword Immediate rA {=: (r5) « n
extended form for rldicr rA, rS,n, 63-n
64-bit implementations only

The Shift Left Word Immediate (slwi) extended form shifts the source register rS

to the left by n bits and stores the result in rA.

The Shift Left Doubleword Immediate (sldi) form performs the same operation as
slwi but operates on a doubleword quantity instead of a word quantity.

Shift Right

Figure 7-7 shows how the Shift Right instructions shift the contents of the source
register r S to the right by the amount specified in r B and save the result in r A.

'a's are shifted in from the left to fill in the bits as the value is shifted to the right.

104 Chapter 7

Shift Right

Figure 7-7 Shift Right Operation

I--shift ---1
_ SourcerS

~ ~~
I ~ Result

The two forms of the Shift Right instruction listed in Table 7-7 operate on word
or doubleword quantities. The shift amount is always specified in the lower bits
of rB.

Table 7-7 Shift Right Instructions

srw[.] rA,rS, rB
rA <= (rS) »rB G:!~] Shift Right Word

srd[.] rA, rS, rB
Shift Right Doubleword rA <= (rS) » rB[57:63]
64-bit implementations only

The Shift Right Word instruction shifts the word in r S to the right by the amount
specified in rB[26:31]. The shift amount can range from 0 to 63; if the shift
amount is greater than 31, the quantity in r S is completely shifted out and the
value 0 is stored in rA as the result.

The Shift Right Doubleword instruction shifts the doubleword quantity in r S to
the right by the amount specified in rB[57:63]. The shift amount can range from
o to 127 if the shift amount is greater than 63, r S is completely shifted out and 0
is returned as the result.

Two extended forms of the rotate left with mask instructions listed in Table 7-8
are defined to make coding the Shift Right Immediate instructions a bit easier.
Since these instructions are built from the rotate instructions, the shift amount

must range between [~~~].

Table 7-8 Shift Right Immediate Extended Instruction Forms

srwi[.] rA,rS,n
Shift Right Word Immediate rA <= (rS)>> n
extended form for rlwinm rA, rS, 32-n,n, 31

srdi[.] rA,rS,n
Shift Right Doubleword Immediate rA <= (rS)>> n
extended form for r1dicl rA, rs, 64-n, n
64-bit implementations only

Rotate and Shift Instructions 105

§7.4 Shift Instructions

The Shift Right Word Immediate (srwi) extended form shifts the source register
r s to the left by n bits and stores the result in rA.

The Shift Right Doubleword Immediate (srdi) form performs the same operation
as srwi but operates on a doubleword quantity instead of a word.

Shift Right Algebraic

Figure 7-8 shows how an algebraic shift differs from a normal shift in that the
sign bit of the source register is replicated so that the result of the operation has
the same sign as the source value.

Figure 7-8 Shift Right Algebraic Operation

o 1 t-- shift ---i
Source rS

Result

Since the sign is always recorded in the most significant bit (MSB), or bit 0, of a
register, the sign can be maintained during the operation by shifting copies of
the sign bit in from the left. This way, the sign of the result is the same as the sign
of the source value.

The algebraic shift instructions listed in Table 7-9 are the only shift operations
that affect the Carry bit in the XER. The Carry bit is normally set to '0', but it is
set to 'I' if the source value is negative and any 'I' bits have been shifted out the
right side of the register. This carry value is useful when the Shift Right Algebraic
instructions are being applied to perform division operations as described in
§16.3 under "Using Algebraic Right Shifts for Division."

Table 7-9 Shift Right Algebraic Instructions

sraw[.] rA,rS,rB rA <= (rS) » rB [~:~]
Shift Right Algebraic Word

update XER[CA]

srawi[.] rA,rS,n rA <= (rS)>> n
Shift Right Algebraic Word Immediate update XER[CA]

srad[.] rA, rS, rB
rA <= (rS) » rB[57:63]

Shift Right Algebraic Doubleword
64-bit implementations only

update XER[CA]

sradi[.] rA,rS,n
rA <= (rS)>> n

Shift Right Algebraic Doubleword Immediate
64-bit implementations only

update XER[CA]

106 Chapter 7

Extended Rotate Instruction Forms

The Shift Right Algebraic instructions that operate on word quantities are the Shift
Right Algebraic Word (sraw) and Shift Right Algebraic Word Immediate (srawi)
instructions. These instructions accept a shift amount, either as an immediate
value or from a register, and algebraically shift register r S to the right that many
bits, storing the result in rA.

The Shift Right Algebraic Doubleword (srad) and Shift Right Algebraic Doubleword
Immediate (sradi) instructions perform the same operation as their word-sized
counterparts, but they operate on doubleword quantities instead of words.

7.5 Extended Rotate Instruction Forms

While the rotate with mask instructions provide a powerful mechanism for per­
forming bit manipulation operations, using the base instruction forms directly
can be somewhat confusing and error prone. For this reason, three general types
of extended forms are defined that allow extraction, insertion, clearing, and
"clear and shift"ing of a range of bits in the source register.

Extract and Justify Extended Instruction Forms

The Extract and Justify extended form provides an easy instruction form for
extracting a range of bits and then justifying the bits to either the right or the left
of the destination register. A justify operation involves shifting the bits all the
way to the right or left of the register. There are both word and doubleword ver­
sions of these forms.

These forms accept a starting bit, b, and a number of bits, n, as parameters. The
n-bit field in the source register (r s) that starts at bit b is shifted to the right or
left and then extracted. The result of this extraction is stored in the destination
register (rA).

Figure 7-9 shows the operation of this form when performing a left justify. For
this form, r S is rotated b bits to the left and then ANDed with a mask composed
of the high-order n bits (0 to n-l).

Rotate and Shift Instructions 107

§7.5 Extended Rotate Instruction Forms

Figure 7-9 Extract and Left-Justify Operation

b

I--n----1
_ SourcerS

//
_ rS Rotated bBits to Left

_ Generated Mask
n-l

Result

For the right-justify extended forms, rS needs to be rotated to the right [~] -

(b+n) bits (or equivalently, left rotated b+n bits) and then ANDed with a mask
composed of the low-order n bits. This is shown in Figure 7-10 .

Figure 7-10 Extract and Right-Justify Operation

b

I--n--l
_SourcerS

~~
_ rS Rotated b+n Bits to Left

I Generated Mask
~n----1

~ Result

Extract and Justify Word

The word versions of the Extract and Justify extended form are based on the
rlwinm instruction. Table 7-10 summarizes these two forms and shows how
they map into the rlwinm instruction.

108 Chapter 7

Extract and Justify Doubleword

Table 7-10 Extract and Justify Word Extended Instruction Forms

extlwi[.] rA,rS,n,b
m:= Mask([~], [~]+(n-l))

Extract and Left Justify Word Immediate
extended form for rlwinm rA, rS, b, 0, n-l rA ¢= ((rS) « b) & m

extrwi[.] rA,rS,n,b
Extract and Right Justify Word Immediate m := Mask([~]-n, [~])
extended form for rA ¢= ((rS) « (b+n)) & m

rlwinm rA,rS,b+n,32-n,31

The extlwi form extracts the n-bit field starting at bit bin r s and stores the left­
justified bit field in r A. The extrwi form performs the same operation, except
that the bit field is justified to the right before the value is stored in rA.

To prevent invalid rlwinminstructions from being generated by these extended
forms, n must be :?: 1 and (b+n) must be ::; 32.

Extract and Justify Doubleword

The Extract and Justify doubleword forms are based on the rldicr and rldicl
instructions. Table 7-11 summarizes the two separate instructions that are
needed because only the start or the end of the mask can be specified when using
64-bit rotate instructions.

Table 7-11 Extract and Justify Doubleword Extended Instruction Forms

extldi[.] rA,rS,n,b
Extract and Left Justify Doubleword m:= Mask(O,n-l)

Immediate
rA ¢= ((rS) « b) & m

extended form for rldicr rA,rS,b,n-l
64-bit implementations only

extrdi[.] rA,rS,n,b
Extract and Right Justify Doubleword m := Mask(64-n,63)

Immediate rA ¢= ((rS) « (b+n)) & m
extended form for rldicl rA, rs, b+n, 64-n
64-bit implementations only

The extldi and extrdi forms are identical to the word-based Extract and Jus­
tify forms, except that they operate on doubleword quantities. A bit field is
extracted from r s and stored in r A after it has been justified to the left or right.

To prevent invalid r Idicr or r Idic 1 instructions from being generated by this
extended form, n must be :?: 1 and (b+n) must be ::; 64.

Insert Extended Instruction Forms

The Insert extended forms can be viewed as the opposite of the Extract and Justify
forms. These forms take a bit field that is justified to either the left or right of a

Rotate and Shift Instructions 109

§7.5 Extended Rotate Instruction Forms

register and insert that field into another register at a specified bit offset. Figures
7-11 and 7-12 show this operation for the Insert from Left and Insert from Right
forms.

Figure 7-11 Insert from Left Operation

_ rS Rotated b Bits to Right
r-b--j

I Generated Mask

Source rA

Result

The Insert from Left form takes the high-order n bits and inserts them into rA

starting at bit position b. This operation is accomplished by rotating the source
register to the right b bit positions and then inserting via the appropriate mask.

Figure 7-12 Insert from Right Operation

I--n---l
_ SourcerS

~~
__ rS Rotated b+n Bits to Right

Generated Mask

Source rA

110 Chapter 7

Insert Word

The Insert from Right form also inserts a n-bit field into rA starting at bit position
b, but the bit field comes from the low-order n bits of r sinstead of the high-order
bits. This is done by rotating b+n bits to the right before inserting with the mask.

Insert Word

The two Insert Word forms listed in Table 7-12 are built from the rlwimi instruc­
tion.

Table 7-12 Insert Word Extended Instruction Forms

inslwi[.] rA,rS,n,b
m := Mask([fz]+b, [fz]+(b+n)-l) Insert from Left Word Immediate

extended form for rA ¢::: «rS) « ([H]-b)) & m
rlwimi rA,rS,32-b,b,(b+n)-1

insrwi[.] rA,rS,n,b
m := Mask([fz]+b, [fz]+(b+n)-l) Insert from Right Word Immediate

extended form for rA ¢::: «rS) « ([H]-(b+n))) & m
rlwimi rA,rS,32-(b+n),b,(b+n)-1

These two forms insert a bit field from either the left (inslwi) or right (insrwi)
of the source register r S and insert it into the destination register rA starting at
bit position b.

The parameter n should be ;e:: 1 and the inequality (b+n) :::; 32 should hold true in
order for these extended forms to map into valid rlwimi instructions.

Insert Doubleword

The only Insert Doubleword form is the Insert from Right Doubleword Immediate
(insrdi) form listed in Table 7-13. Limitations with how masks can be specified
for doubleword rotate operations preclude defining an extended form that
would implement the Insert from Left Doubleword Immediate functionality in one
instruction. However, such an operation can be constructed using a rldicl
r S, r S, n, 0 instruction to right justify the bit field followed by a insrdi
r A, r S , n , b instruction.

Table 7-13 Insert Doubleword Extended Instruction Form

insrdi[.] rA, rS, n, b
Insert from Right Doubleword Immediate
extended form for rldimi rA, rs, 64- (b+n) ,b
64-bit implementations only

m:= Mask(b,(b+n)-l)
rA ¢::: «rS) « (64-(b+n))) & m

The insrdi form takes an n-bit, right-justified bit field from the source register
r S and inserts it at bit position b into r A. For this form to make sense, (b+n) must
be :::; 64, and n must be ;e:: 1.

Rotate and Shift Instructions 111

§7.5 Extended Rotate Instruction Forms

Clear Extended Instruction Forms

The Clear extended forms provide a simple method of clearing all of the bits on
one side of a given bit in the source register. There are two types of Clear
extended forms: one clears all bits to the left, and the other clears all bits to the
right. Both of these forms come in word and doubleword flavors.

The Clear Word and Doubleword forms don't perform any sort of rotation on the
source register and are considered rotate forms only because they are con­
structed on top of the standard rotate instructions.

The most useful characteristic of these forms is that they allow a left- or right­
justified bit field to be extracted without requiring a complete mask to be speci­
fied as an argument. Since such a mask would need to be 32 or 64 bits in size, it
would obviously not fit into an instruction encoding (which is limited to 32 bits).
The mask would need to be stored elsewhere, and extra instructions would be
reqUired to get the mask from memory, resulting in additional memory accesses.

While the Clear extended forms do not allow every possible type of mask to be
encoded, they do optimize one of the more common types of register mask oper­
ation. When the Clear forms can be used, they allow the operation to be encoded
as one instruction with no unnecessary memory accesses.

The Clear Left operation clears out the high-order n bits from the source register
and stores the result in the destination register. Figure 7-13 shows this rela­
tively simple operation. Because of the fact that bits in registers are numbered
using a big-endian scheme (that is, the most significant bit is bit 0), this operation
can be viewed as clearing all the bits to the left of bit position n.

Figure 7-13 Clear Left Operation

I n I
_ SourcerS

Generated Mask
n 31

~ Result

The Clear Right operation clears out the low-order n bits from the source register
and then copies the result into the destination register. Figure 7-14 shows this
operation. It is important to be aware of the fact that n represents the number of
bits to be cleared, not an absolute bit position. With the Clear Left operation, the

112 Chapter 7

Clear Word

programmer can be confused about the true meaning of n and things will work
as expected, but this is not the case for the Clear Right operation.

Figure 7-14 Clear Right Operation

I n I
_ SourcerS

Generated Mask

Result

Clear Word

The two versions of the Clear Word form listed in Table 7-14 clear the n bits at the
extreme left or right of the specified 32-bit register. If these forms are executed on
64-bit PowerPC implementations, only the lower word is affected by this
instruction; the upper word of the result is always cleared to zeros.

Table 7-14 Clear Word Extended Instruction Forms

clrlwi[.] rA,rS,n
m := Mask([~]+n, [~])

Clear Left Word Immediate
extended form for rlwinm rA, rS, 0, n, 31 rA {:= (r5) & m

clrrwi[.] rA,rS,n m := Mask([~], [~] -n)
Clear Right Word Immediate
extended form for rlwinm rA, r S, 0,0, 31-n rA {:= (r5) & m

The Clear Left Word Immediate (clrlwi) form accepts the number of bits, n, and
generates the appropriate rlwinm instruction so that the left-most n bits of rS
are cleared and the result is copied into rA. The clrlri form performs a similar
operation, except that it clears out the right-most n bits before copying the result
into rA.

Clear Doubleword

The two doubleword versions of the Clear Left and Clear Right forms listed in
Table 7-15 are based on the rldicl and rldicr instructions, respectively.
These forms clear the n bits at the extreme left or right of the specified 64-bit
register.

Rotate and Shift Instructions 113

§7.5 Extended Rotate Instruction Forms

Table 7-15 Clear Doubleword Extended Instruction Forms

clrldi[.] rA,rS,n
Clear Left Doubleword Immediate m := Mask(n,63)
extended form for rldicl rA, rS, 0, n rA ¢::: (rS) & m
64-bit implementations only

clrrdi[.] rA,rS,n
Clear Right Doubleword Immediate m := Mask(O,63-n)
extended form for rldicr rA, rS, 0, 63-n rA ¢::: (rS) & m
64-bit implementations only

The clrldi and clrrdi forms are identical to the Clear Word forms, except that
they operate on an entire 64-bit register instead of just the low-order word.

Clear Left and Shift Left Extended Instruction Forms

The Clear Left and Shift Left forms listed in Table 7-16 provide a simpler interface
to the masked rotate instructions for performing an operation to extract a right­
justified field and left shift it to a desired bit position.

These forms take two parameters: the first bit of the right-justified field and the
number of bits to. shift to the right. The first bit of the field can alternatively be
viewed as the number of bits to the left that should be cleared before performing
the shift.

Figure 7-15 shows the Clear Left and Shift Left operation. This is the same oper­
ation as the rlwinm instruction. The only difference is how the parameters for
the shift and mask are specified.

Figure 7-15 Clear Left and Shift Left Operation

I n I
_SourcerS

//
_ rS Rotated fit Bits to Left

Generated Mask

Result

114 Chapter 7

Multiple-Precision Shifts

Table 7-16 Clear Left and Shift Left Extended Instruction Forms

clrlslwi[.] rA,rS,n,sh r:= (r5) Q sh
Clear Left and Shift Left Word Immediate

m := Mask([~]+n-sh, [~]-sh) extended form for
rlwinm rA,rS,sh,n-sh,31-sh rA ¢= r&m

clrlsldi[.] rA,rS,n,sh
Clear Left and Shift Left Doubleword r:= (r5) Q sh

Immediate m := Mask(n-sh,63-sh)
extended form for rldic rA, rS, sh, n-sh rA ¢=r&m
64-bit implementations only

The two Clear Left and Shift Left forms, clrlslwi and clrlsldi, take a right­
justified bit field starting at bit n from source register r S, shift it to the left sh
places, and then store the bit field into the destination register r A. The remaining
bits in the destination register are cleared to O. In order for these forms to gener­
ate coherent rotate instructions, n must be ~ sh.

There is no predefined form to perform a Clear Right and Shift Right Word Imme­
diate operation, but one could be constructed by defining clrrsrwi[.]
rA, rS,n, sh to map to rlwinm[.] rA,rS, 32-sh, sh, 31+sh-n.

As with the Insert forms, doubleword mask restrictions prevent a similar Clear
Right and Shift Right form from being defined for doubleword quantities.
Arldicl rS,rS,n,O instruction can be used in conjunction with
clrlsldi rA,rS,n, sh to perform this operation.

7.6 Multiple-Precision Shifts

A multiple-precision shift is a shift which operates on quantities larger than a
word (or doubleword, in the case of processors executing in 64-bit mode) in size.

The best method for performing a multiple-precision shift depends on these fac­
tors:

• Whether the shift is being performed on words or doublewords.
• Whether the shift amount is less than [~] or less than [i¥s].

• Whether the shift amount is an immediate value or from a register.
• Whether the direction of the shift is to the left or right.

Methods for performing shifts greater than [i¥s] are not presented in this sec­

tion, but they can be constructed from the algorithms presented here.

Rotate and Shift Instructions 115

§7.6 Multiple-Precision Shifts

Multiple-Precision Left Shifts

Figure 7-16 shows how a multiple-precision left shift is performed when the
shift amount is less than the shift register size (that is, the shift amount is less
than 32 for 32-bit implementations or 64-bit implementations in 32-bit mode and
less than 64 for 64-bit implementations in 64-bit mode). In this figure, the con­
tents of registers A, B, and C are concatenated together and shifted to the left to
produce the result A', B', and C'.

Figure 7-16 Multiple-Precision Left Shifts (shift < 32)

A B c

For each register in the shift except the last, the final result is the sum of two
quantities: the shifted low-order bits from the current register and the high­
order bits from the register immediately to the right. The last register is calcu­
lated simply by shifting its low-order bits by the shift amount.

Most of these shift operations are performed inline, that is, the register that con­
tains A on entry will contain A' on exit. In the code examples, r A will be used to
denote the register that holds A and A' and likewise with r Band r C.

Multiple-Precision Left Shift

Performing multiple left shifts is a straightforward operation: each half of each
register is calculated, and then the halves are merged together to produce the
result for each register. Since this operation is basically the same for word and
doubleword sized shifts, this section discusses only word shifts and then pro­
vides Table 7-17, a summary of both types of shifts.

Before we can begin shifting, we must first calculate and save the counter shift
amount. This is the amount that we need to shift right to move the high-order
bits down into their proper position, and it is equal to 32 - shift for word shifts.
If register r S contains the shift amount, we can compute the counter shift using

subfic rSl,rS,32

where rSl is the register in which we are storing the counter shift.

116 Chapter 7

Long Multiple-Precision Left Shift

A' can now be calculated by left shifting the low-order bits in A and right shift­
ing the high-order bits in B. When these two values are ORed together, the result
isA'.

slw rA,rA,rS

srw rT,rB,rSl

or rA,rA,rT

Note that A is shifted to the left by the shift amount and B is shifted to the right
by the counter shift amount. rT is just a temporary register used to hold the
result of the right shift. This sequence of instructions needs to be repeated for
each register being shifted except for the last one.

The last register (C in Figure 7-16) is calculated simply by shifting rC to the
left, which can be accomplished by using

slw rC, rC, rS

The code sequence for this operation is summarized in Table 7-17.

Table 7-17 Multiple-Precision Left Shift Code Summary (shift < [~])

Shift Stage Word Doubleword
Initialization subfic rSl,rS,32 subfic rSl,rS,64

For each register
slw rN,rN,rS sld rN,rN,rS

except the last
srw rT,r(N+l) ,rSl srd rT,r(N+l) ,rSl
or rN,rN,rT or rN,rN,rT

For the last
slw

register
rN,rN,rS sld rN,rN,rS

Only two changes are needed for handling doubleword shifts. The first is that
the counter shift must be based on a shift around 64 bits, and the other change is
that the doubleword shift instructions must be used instead of the word shift.

Long Multiple-Precision Left Shift

Long multiple-precision shifts are shifts that are larger than the width of one
register. Thus, word shifts that can range from 0 to 63 and doubleword shifts that
can range from 0 to 127 are considered to be long shifts. This can be seen in Fig­
ure 7-17, where the value being shifted out of C ends up in A' and B'. For the sake
of simplicity, shifts greater than two registers (that is, word shifts :?: 64 and
doubleword shifts:?: 128) are not considered.

To simplify the discussion, long word shifts will be described first, and then the
changes necessary for long doubleword shifts will be given.

Rotate and Shift Instructions 117

§7.6 Multiple-Precision Shifts

Figure 7-17 Multiple-Precision Left Shifts (32 ~ shifts < 64)

A
~A""""":'I' r0;0;/'~~M'i}k:: "'_

A'

B

B' C'

Long shifts need to be able to handle situations where the shift amount is
between 0 and 31 and where the shift amount is between 32 and 63. This could
be implemented by using a test and a conditional branch, but branches can stall
the instruction pipeline and so they should be avoided wherever possible. The
technique described in this section takes advantage of the properties of the Shift
instructions to eliminate the need for any branches.

The technique that we use to calculate long shifts is to first handle the case where
the shift amount is less than 32, making sure that the result is 0 if the shift is
greater than or equal to 32. Then we handle the opposite case, where the shift
amount is between 32 and 63, and make sure that the result is 0 if the shift
amount is less than 32. Once this is done, we can simply OR the two results
together and know that every possible shift value is handled correctly.

In order to do this, we need to pre-calculate three counter shift values: 32 - shift,
shift - 32, and 64 - shift. These counter shift values will be referred to as shiftl (for
32 - shift), shift2 (for shift - 32), and shift3 (for 64 - shift) to differentiate them from
the real shi ft value. These values can be calculated using

subfic rSl ,rS, 32
subic rS2,rS,32
subfic rS3,rS,64

For each register that needs to be shifted, we need to handle the two situations
where 0 ~ shift < 32 and 32 ~ shift < 64. We'll handle the case where shift < 32 by
using the same code that we used at the beginning of this section, for shift
amounts that are always less than 32.

slw rA,rA,rS
srw rT,rB,rSl
or rA,rA,rT

118 Chapter 7

Long Multiple-Precision Left Shift

Notice that when the shift amount in rS is greater than or equal to 32, two things
happen:

• The slw instruction returns a result of a because the shift amount is
greater than 31.

• The srw instruction returns a result of a because the shiftl amount is a
negative number. Since only the low-order six bits from rSl are used
for the shift amount, the srw instruction interprets this as a very large
number and shifts the value completely out.

Thus, we properly handle the case where shift < 32 and return a a if shift ~ 32. To
handle the case where shift is between 32 and 63, we need to get the proper val­
ues from the two registers to the right of the current one. That is, in order to
calculate the shifted value of A, we need to manipulate the values in Band C.

slw
or
srw

rT,rB,rS2
rA,rA,rT
rT,rC,rS3

or rA,rA,rT

get lower bits of B

get upper bits of C

This code correctly handles shift values between 32 and 63 and returns a if the
shift amount is less than 32. Whenever the shift amount is less than 32, shift2
becomes a negative number (effectively a large positive number), and shift3 is
greater than 32. For both of these shift values, the value in rB and rC is com­
pletely shifted out of the register and a is returned.

Note that we write the result to a temporary register and OR the value into rA

after each stage. We need to do this because we want this result to be merged
with the result we calculated earlier. We don't want to overwrite the previous
value of rA.

Computing the last two registers of a multiple word shift is the same as for the
other registers, except that some of the operations can be omitted because the
required registers are not present. To compute the next to last register, we do not
need to get the upper bits from the register two places over, thus we have

calculate if shift < 32
slw rB,rB,rS
srw rT,rC,rSl
or rB,rB,rT

calculate if 32 <= shift < 64
slw rT,rC,rS2 # get lower bits of C
or rB,rB,rT

Rotate and Shift Instructions 119

§7.6 Multiple-Precision Shifts

The very last register is even easier, since we only need to account for the situa­
tion when shift is less than 32. We simply have to shift the register value over by
the specified shift amount.

slw rC,rC,rS

As mentioned earlier in this section, a long doubleword shift is performed in the
same manner as the long word shift. Table 7-18 summarizes the code required
for long shift operations on word and doubleword quantities.

Table 7-18 Long Multiple-Precision Left Shift Code Summary (shift < [162~])

Shift Stage Word Doubleword
subfic rSl,rS,32 subfic rSl,rS,64

Initialization subic rS2,rS,32 subic rS2,rS,64
subfic rS3,rS,64 subfic rS3,rS,128

slw rN,rN,rS sld rN,rN,rS
srw rT,r(N+l) ,rSl srd rT,r(N+l) ,rSl

For each register
or rN,rN,rT or rN,rN,rT

except the last 2
slw rT,r(N+l) ,rS2 sld rT,r(N+l) ,rS2
or rN,rN,rT or rN,rN,rT

srw rT,r(N+2) ,rS3 srd rT,r(N+2) ,rS3
or rN,rN,rT or rN,rN,rT

slw rN,rN,rS sld rN,rN,rS

For the next to
srw rT,r(N+l) ,rSl srd rT,r(N+l) ,rSl

last register
or rN,rN,rT or rN,rN,rT
slw rT,r(N+l) ,rS2 sld rT,r(N+l) ,rS2
or rN,rN,rT or rN,rN,rT

For the last
slw sld

register
rN,rN,rS rN,rN,rS

Note that since the shift3 counter shift value is not used by the last two registers,
the initialization instruction that calculates this value can be omitted when only
two registers are being shifted.

Multiple-Precision Immediate Left Word Shift

When the shift amount is an immediate value, multiple-precision left shifts can
be rewritten to take advantage of the rlwimi instruction, which allows a rotate
and an insert operation to be performed in one instruction. One important limi­
tation of the technique presented here is that it can only be used when the shift
amount is less than 32. However, supporting shift amounts larger than 32 is triv­
ially handled by applying the shifts to the appropriately selected registers. This
is straightforward since the shift amount is an immediate constant.

For example, Po: can be calculated from A and B by using the code:

120 Chapter 7

Multiple-Precision Immediate Left Doubleword Shift

slwi rA, rA, shift
rlwimi rA,rB,shift,32-shift,31

where shift is the shift amount.

The first instruction (slwi, an extended form for rlwinm) takes the low-order
bits of A and shifts them over to the proper position for N. The second instruc­
tion (rlwimi) takes the high-order bits of B, shifts them down to the proper
position for N, and inserts the bits into N. The old value of Ais overwritten with
the new value N by this operation.

The last register (C in Figure 7-16) is calculated simply by shifting C to the left,
which can be accomplished by using

slwi rC,rC,shift

Table 7-19 summarizes the left word operation when the shift amount is specifed
as an immediate value.

Table 7-19 Multiple-Precision Immediate Left Word Shift Code Summary

Shift Stage Word
For each register slwi rN,rN,shift
except the last rlwimi rN,r(N+l),shift,32-shift,31

For the last
slwi rN, rN, shift

register

Multiple-Precision Immediate Left Doubleword Shift

Because of mask limitations in the doubleword rotate instructions, performing
shifts on multiple doubleword quantities is more complicated than it is for mul­
tiple word quantities.

The major limitation is that the r Idimi instruction cannot rotate a quantity and
have a mask that extends all the way to the least significant bit of the register.
This is because the maskEnd value is automatically calculated from the specified
rotate amount.

There are many ways to overcome this limitation, the easiest of which is to sim­
ply avoid it by manually building each half of each shifted register and then
ORing the results together. This is the same method used to calculate the
multiple-precision left shifts when the shift amount is from a register. This is
done using the code:

sldi
srdi
or

rA,rA,shift
rT, rB, 64-shift
rA,rA,rT

Rotate and Shift Instructions 121

§7.6 Multiple-Precision Shifts

This method is not as efficient as the word version because it requires more
instructions for each register being shifted. It's inefficient because it doesn't take
advantage of the rldimi instruction's ability to insert into another register. In
order to produce a code sequence as efficient as the word version, we need to
restructure our shifting algorithm. One way is to work from the low-order regis­
ter up to the high-order register instead of downwards from the high-order reg­
ister.

However, working from low-order to high-order means that we can't perform
the shift operation inline, that is, we need to store each register result in a differ­
ent register. This doesn't cause any real problems other than the fact that it
becomes slightly more difficult to describe.

Figure 7-18 shows the basic structure of the multiple-precision shift double­
word operation when only two registers are being shifted. The important thing
to note in this figure is that each "column" represents a separate register. This
means that the register that holds B on entry contains N of the result on exit. The
remaining two registers in this example contain only input values (A) or only
output values (B'). To help avoid confusion in this example, ra is used to refer to
the register that contains AI -, r{3 refers to BI N, and rrrefers to -/B'.

Figure 7-18 Multiple-Precision Immediate Left Doubleword Shifts

A' B'

The key to this technique is recognizing that we can take the low-order bits from
A (in ra), insert them into B (in rf3), and then rotate r{3to produce N. Figure 7-19
shows how this technique works. The insert operation doesn't require any shift­
ing of bits, and since we're inserting the low-order bits, we can use the rldimi
instruction.

122 Chapter 7

Multiple-Precision Immediate Left Doubleword Shift

Figure 7-19 Calculating Shifted A (A') from A and B

Source registers

Insert rA into rB

~::::;::.:::}:::::~ Rotate rB

A'

Of course, in order to do this properly, we need to copy the low-order bits of B
from r/3 into another register before we overwrite them with the bits from A.
This is why we use the extra register (ry) to hold the low-order register of the
result.

The low-order register can be calculated with

sldi ry, r/3, sh # calculate B' from B

The remaining register can now be calculated by inserting and rotating using the
code:

rldimi r/3, ra, 0, sh
rotldi r/3,r/3,sh

insert A into B
rotate to produce A'

The rldimi instruction copies the low-order bits in A (ra) from sh to 63 into B
(r /3). The rotldi operation (an extended form for r ldic 1) takes the value in r /3
and rotates it sh places, resulting in k.

If there are more than two registers being shifted, they can be calculated by
applying this technique to each register by working from right to left.

Table 7-20 summarizes the code necessary to implement a multiple-precision left
shift on doubleword quantities when the shift amount is an immediate value.
Note that the last register must be shifted first, and then the other registers can
be shifted from right to left.

Table 7-20 Multiple-Precision Immediate Left Doubleword Shift Summary

Shift Stage Doubleword
For the last

sldi r(N+l) ,rN, shift
register
For each register rldimi rN,r(N-l),O,shift

except the first rotldi rN,rN,shift

Rotate and Shift Instructions 123

§7.6 Multiple-Precision Shifts

Note that the register containing the first doubleword doesn't need to be shifted
explicitly. This is because the necessary bits from this register have already been
included in the results in the register immediately to its right. Also, as was
shown in Figure 7-18, the register that contains the first doubleword on entry
doesn't contain any portion of the result on exit.

Multiple-Precision Right Shift

With the exception of the direction of the shift, multiple-precision right shifts are
performed using the same algorithm as multiple-precision left shifts. The most
significant difference is that the registers involved in the shift are calculated from
right to left instead of from left to right.

Figure 7-20 shows the right shift operation. As with the left shifts, each desti­
nation word is composed of an upper and a lower half: one of the halves shifted
from the same register and the other half from an adjacent register.

Figure 7-20 Multiple-Precision Right Shifts (shift < 32)

A B
~;i;l::Ii::::::'ii'i::::il

~ ~~
~,!,'i

A' B' C'

Multiple-Precision Right Shift

When the shift amount is less than [~], a multiple-precision right shift is per­

formed using the same algorithm as for a multiple-precision left shift. The only
difference is that, for right shifts, the register immediately to the left is merged
with the current register instead of the register immediately to the right. This
slight modification changes only the arguments to the srw (srd) and sIw (sId)
instructions.

Table 7-21 contains the code necessary to perform both the word and the double­
word versions of the multiple-precision right shift operation. Note that these
operations must be performed from the low-order register up to the high-order
register.

124 Chapter 7

Long Multiple-Precision Right Shift

Table 7-21 Multiple-Precision Right Shift Code Summary

Shift Stage Word Doubleword
Initialization subfic rSl,rS,32 subfic rSl,rS,64

For each register srw rN,rN,rS srd rN,rN,rS

except the first slw rT,r(N-l) ,rSl sld rT,r(N-l) ,rSl
or rN,rN,rT or rN,rN,rT

For the first
register srw rN,rN,rS srd rN,rN,rS

Long Multiple-Precision Right Shift

As with the right shift code described in the previous section, the long versions
of the right shift are basically the same as the long versions of the left shift. The
only difference is the parameters passed to the Shift Left and Shift Right instruc­
tions to account for the changed shift direction.

Table 7-22 summarizes the required code for the long multiple-precision right
shift operation. This is the same as the code presented in Table 7-18 for long left
shifts except that the code inserts bits from the two registers immediately to the
left of the current register.

Table 7-22 Long Multiple-Precision Right Shift Code Summary

Shift Stage Word Doubleword
subfic rSl,rS,32 subfic rSl,rS,64

Initialization subic rS2,rS,32 subic rS2,rS,64
subfic rS3,rS,64 subfic rS3,rS,128

srw rN,rN,rS srd rN,rN,rS
slw rT,r(N-l) ,rSl sld rT,r(N-l) ,rSl

For each register or rN,rN,rT or rN,rN,rT
except the first srw rT,r(N-l) ,rS2 srd rT,r(N-l) ,rS2
two or rN,rN,rT or rN,rN,rT

slw rT,r(N-2) ,rS3 sld rT,r(N-2) ,rS3
or rN,rN,rT or rN,rN,rT

srw rN,rN,rS srd rN,rN,rS

For the second slw rT,r(N-l) ,rSl sld rT,r(N-l) ,rSl

register or rN,rN,rT or rN,rN,rT
srw rT,r(N-l) ,rS2 srd rT,r(N-l) ,rS2
or rN,rN,rT or rN,rN,rT

For the first
register srw rN,rN,rS srd rN,rN,rS

Multiple-Precision Immediate Right Word Shift

Just like left shifts, the multiple-precision immediate right shifts can be rewritten
to take advantage of the rlwimi instruction. The extended form Insert from

Rotate and Shift Instructions 125

§7.6 Multiple-Precision Shifts

Right Word Immediate (insrwi) can be used to take the lower bits of a register
and insert them into another register starting at bit position O. Table 7-23 sum­
marizes this shift operation for word quantities.

Table 7-23 Multiple-Precision Immediate Left Word Shift Code Summary

Shift Stage Word
For each register srwi rN,rN,shift
except the first insrwi rN,r(N-l),shift,O

For the first
srwi rN,rN,shift register

Multiple-Precision Immediate Right Doubleword Shift

The masking limitations that restricted the immediate multi-doubleword left
shift operations fortunately do not adversely affect the equivalent right shift
operations. The same algorithm can be used, but the shift can be done inline
(that is, using the same registers that contain the source values) instead of requir­
ing the result to roll into another register.

As with the left shift equivalent, the key to this technique is recognizing that we
can take the low-order bits from A, insert them into B, and then rotate B to pro­
duce B'. This is exactly the same operation that we used for the multi-double­
word left shift shown in Figure 7-19 . The only difference is that we're using
this operation to calculate B' instead of A:.

All of the registers except the first (that is, the most significant) one can be shifted
right using the code:

rldimi rB,rA,O,64-sh # insert A into B
rotrdi rB,rB,sh # rotate to produce B'

The r ldimi instruction inserts the bits from A into B, and then the rotrdi form
rotates the bits into the proper position to produce B'.

The high-order register can be calculated with

srdi rA,rA,sh # calculate A' from A

This multiple-doubleword shift operation is summarized in Table 7-24.

Table 7-24 Multiple-Precision Immediate Right Doubleword Shift Summary

Shift Stage Doubleword
For each register rldimi rN,r(N-l),O,shift
except the first rotrdi rN,rN,shift

For the first
srdi rN,rN,shift register

126 Chapter 7

Multiple-Precision Right Shift Algebraic

Multiple-Precision Right Shift Algebraic

Performing a multiple-precision algebraic right shift differs from a normal multi­
ple-precision right shift only in how the upper registers are shifted.

Multiple-Precision Right Shift Algebraic

When the shift amount is less than the size of one register, an algebraic right shift
is the same as a normal right shift with the exception of how the high-order reg­
ister needs to be shifted. For this register, we need to use an algebraic shift
instead of a standard shift.

Table 7-25 contains a summary of the code necessary to perform a multiple-preci­
sion algebraic right shift for both word and doubleword quantities. The only dif­
ference between this table and Table 7-21 is that Shift Right Algebraic instructions
(displayed in boldface in Table 7-25) are used for the first register instead of
Shift Right instructions.

Table 7-25 Multiple-Precision Right Shift Algebraic Code Summary

Shift Stage Word Doubleword
Initialization subfic rSl,rS,32 subfic rSl,rS,64

For each register srw rN,rN,rS srd rN,rN,rS

except the first slw rT,r(N-l) ,rSl sld rT,r(N-l) ,rSl
or rN,rN,rT or rN,rN,rT

For the first
rN,rN,rS srad rN,rN,rS register sraw

Long Multiple-Precision Right Shift Algebraic

A long multiple-precision algebraic right shift is similar to the long non­
algebraic right shift but has the added concern that the sign from the high-order
register may need to be merged with the two high-order registers of the result.
This causes problems because of the differences between the Shift Right Alge­
braic and Shift Right instructions.

The method that we used to support word shifts up to 63 and doubleword shifts
up to 127 involved implementing "short" (0-31 or 0-63) and "long" (32-63 or 64-
127) shifts separately and then ORing the results together. This works because
the code is set up to handle the appropriate case or return a 0 (so that the partial
results can be merged easily).

The key feature of the Shift Right instruction that is used to implement the long
shift right is the fact that the Shift Right instructions return 0 if the shift amount
is greater than the size of one register. This is not the case with the Shift Right
Algebraic instructions. The algebraic right shifts return a register full of sign bits,
which can be either 0 (all bits set to 0) or -1 (all bits set to 1).

Rotate and Shift Instructions 127

§7.6 Multiple-Precision Shifts

Because one-half of the calculated result can now return a non-zero value when
the partial result is not needed, we cannot blindly OR in the value but must
branch over the or instruction when it doesn't apply. This necessitates two
changes to our previous algorithm: we need to determine when we need to
branch, and we need to perform a conditional branch over the or.

These differences between a long algebraic right shift and a long right shift are
summarized as follows:

• The Shift Right Algebraic instructions are used instead of the Shift
Right instructions when calculating portions of the high-order
register of "short" shifts and the high-order two registers of "long"
shifts.

• subic. is used instead of subic when calculating shift2. This is used
to determine when the branch should be taken.

• A branch instruction (bIe) is added to branch over the sraw result
when it is not applicable. This is only needed when calculating the
result from the second register.

The fact that a branch instruction is needed is unfortunate, but the branch can be -
folded out if the subic. instruction is far enough ahead of the branch instruc­
tion. This is discussed more in Chapter 16 "Instruction Scheduling."

In Table 7-26, instructions that are different for Algebraic Right Shifts (when
compared to the non-algebraic variety of right shift) are displayed in boIdf ace.

Table 7-26 Long Multiple-Precision Right Shift Algebraic Code Summary

Shift Stage Word Doubleword
subfic rSl,rS,32 subfic rSl,rS,64

Initialization subic. rS2,rS,32 subic. rS2,rS,64
subfic rS3,rS,64 subfic rS3 ,rS, 128

srw rN,rN,rS srd rN,rN,rS

slw rT,r(N-l) ,rSl sId rT,r(N-l) ,rSl
For each register or rN,rN,rT or rN,rN,rT
except the first srw rT,r(N-l) ,rS2 srd rT,r(N-l) ,rS2
two or rN,rN,rT or rN,rN,rT

slw rT,r(N-2) ,rS3 sId rT,r(N-2) ,rS3

or rN,rN,rT or rN,rN,rT

srw rN,rN,rS srd rN,rN,rS
slw rT,r(N-l) ,rSl sId rT,r(N-l) ,rSl

For the second or rN,rN;rT or rN,rN,rT
register sraw rT,r(N-l) ,rS2 srad rT,r(N-l) ,rS2

ble @nextReg ble @nextReg
or rN,rN,rT or rN,rN,rT

For the first
rN,rN,rS srad rN,rN,rS

register
sraw

128 Chapter 7

Multiple-Precision Immediate Right Shift Algebraic

Multiple-Precision Immediate Right Shift Algebraic

Algebraic immediate right shifts are performed the same way as standard
immediate right shifts with the exception of the high-order register. Just like the
other algebraic right shift operations, the high-order register must be shifted
using one of Shift Right Algebraic instructions.

Table 7-27 shows the instruction sequence required to implement a multiple­
precision algebraic right shift withthe shift amount specified as an immediate
value. The only difference between this code sequence and the code required for
a non-algebraic right shift is the Shift Right Algebraic Immediate instruction used
to calculate the high-order register.

Table 7-27 Multiple-Precision Immediate Right Shift Algebraic Summary

Shift Stage Word Doubleword

For each register srwi rN,rN,sh
rldimi rN,r(N-l) ,0,64-

sh
except the first insrwi rN,r(N-l),sh,O

rotrdi rN,rN,sh

For the first
srawi rN,rN,sh sradi rN,rN,sh

register

7.7 Obsolete Rotate and Shift Instructions

The POWER architecture defines a large number of shift and rotate instructions
that are not included in the PowerPC architecture in an effort to reduce the com­
plexity and cost of PowerPC implementations.

The 601 supports all of these instructions in hardware, but no other PowerPC
implementation will do so. The instructions listed in this section should not be
used, and the descriptions are provided for reference purposes only.

Obsolete Mask Instructions

The POWER architecture defines two mask-related instructions that are not
included as part of the PowerPC specification. These instructions, listed in Table
7-28, are Mask Generate, which generates a mask from the maskBegin and maskEnd
parameters, and Mask Insert from Register, which inserts a register into another
based on a specified mask.

Rotate and Shift Instructions 129

§7.7 Obsolete Rotate and Shift Instructions

Table 7-28 Obsolete Mask Instructions

maskg[.] rA, rS, rB mStart:= rS[27:31]

Mask Generate mEnd:= rB[27:31]

obsolete POWER instruction if(mStart = mEnd+ 1)
m := OxFFFF FFFF

if(mStart < mEnd+1)
m := Mask(mStart,mEnd)

if(mStart> mEnd+l)
m:= -Mask(mEnd+l,mStart-l)

rA~m

maskir[.] rA,rS,rB
Mask Insert from Register rA ~ ((rB) & (rS» I (-(rB) & (rA))

obsolete POWER instruction

The Mask Generate (maskg) instruction generates a mask in the same manner as
the standard word mask facility described in §7.1 under "Word Masks;" The
mask begins at the specified start bit and continues to the end bit, wrapping
around the word if necessary.

The main difference between this instruction and the mask generation facility
found in the rotate instructions is that the Mask Generate instruction allows the
begin and end bits to be specified in a register. This allows the masks to be spec­
ified dynamically during runtime instead of being statically defined once the
instruction is assembled. For the PowerPC,the maskg instruction was removed
in an effort to simplify the mask generation hardware.

The Mask Insert from Register (maskir) instruction uses the contents of a register
(r B) as a mask to determine how the remaining two source registers (r Sand r A)
should be merged. This instruction is not part of the PowerPC specification
because it requires three source registers, which would make implementations
more costly.

Obsolete Rotate Instructions

The POWER architecture defines two rotate operations: Rotate Right and Insert
Bit (rrib) and Rotate Left then Mask Insert (rlmi). Listed in Table 7-29, these
instructions are not part of the PowerPC architecture because they both require
three source operands.

Table 7-29 Obsolete Rotate Instructions

rrib[.] rA,rS,rB
Rotate Right and Insert Bit rA[rB[27:31]] ~ rS[O]
obsolete POWER instruction

rlmi[.] rA,rS,rB,mB,mE r:= (rS) Q rB[27:31]
Rotate Left then Mask Insert m := Mask(mB,mE)
obsolete POWER instruction rA~(r&m) I «rA)&-m)

130 Chapter 7

Obsolete Shift Instructions

The Rotate Right and Insert Bit instruction rotates bit 0 (the most significant bit or
the sign bit) of rSto the right by the amount stored in rB[27:31]. This bit is then
inserted into r A.

The Rotate Left then Mask Insert instruction is identical to the Rotate Left Word
Immediate then Mask Insert (rlwirni) instruction, except that the shift amount is
specified in a register instead of as an immediate value. This rotates a source
register (rs) and inserts the rotated result into another register (rA) based on a
specified mask.

Obsolete Shift Instructions

There are fifteen shift instructions-six left shifts, six right shifts, and three alge­
braic right shifts-are part of the POWER architecture, but not part of the Pow­
erPC architecture. These instructions are listed in Tables 7-30, 7-31, and 7-32. All
of these shift instructions use the MQ register as either a source or destination
register (or both). Since the MQ register is not part of the PowerPC specification,
all of these instructions needed to be eliminated.

The worst "feature" of these instructions is that the mnemonics are inconsistent
and non-intuitive. Since these instructions have been removed, it is probably not
worth the effort of remembering (or even trying to figure out) what each of these
instructions does.

Table 7-30 Obsolete Shift Left Instructions

sle[.] rA,rS,rB
rA ¢= (rS) « rB[27:31]

Shift Left Extended
MQ ¢= (rS) Q rB[27:31] obsolete POWER instruction

sleq[.] rA,rS,rB r := (rS) Q rB[27:31]

Shift Left Extended with MQ m := Mask(O,31-rB[27:31])

obsolete POWER instruction rA¢=(r&m) I (MQ&-m)

MQ¢=r

sliq[.] rA,rS,n
rA ¢= (rS)« n

Shift Left Immediate with MQ
MQ¢=(rS)Qn

obsolete POWER instruction

slliq[.] rA,rS,n r:= (rS) Q n

Shift Left Long Immediate with MQ m:= Mask(O,31-n)

obsolete POWER instruction rA¢=(r&m) I (MQ&-m)

MQ¢=r

Rotate and Shift Instructions 131

§7.7 Obsolete Rotate and Shift Instructions

sllq[0] rA,rS,rB r := (rS) Q rB[27:31]

Shift Left Long with MQ m := Mask(0,31-rB[27:31])

obsolete POWER instruction if(rB[26] = 0)

rA{::::(r&m) I (MQ&-m)
else

rA{::::(MQ&m)

slq[0] rA,rS,rB if(rB[26] = 0)

Shift Left with MQ rA {:::: (rS) « rB[27:31]

obsolete POWER instruction else
rA{::::O

MQ {:::: (rS) Q rB[27:31]

The sle instruction left shifts rS by the amount specified by rB[27:31] and
places the result in rA. The MQ register gets the value of rS left rotated by
rB[27:31].

The sleq instruction is the same as the sle instruction, except that the value
stored in r A is a combination of the original MQ register and the shifted r s.

The sliq instruction is identical to the sle instruction, except that the shift
amount is specified as an immediate value.

The slliq instruction is identical to the sleq instruction, except that the shift
amount is specified as an immediate value.

The sllq instruction is the same as the sleq instruction, except that the shift
value is specified in rB[26:31]. This allows the shift value to range from a to 63.
If the shift value is greater than 31, the value returned in rA is copied from the
MQ register. Unlike the sleq instruction, this instruction does not update the
MQ register.

The slq instruction is identical to the sle instruction, except that the left shift
value is specified in rB[26:31], allowing the range of shift values to be between a
and 63. If the shift value is greater than 31, a is returned in rA.

Table 7-31 Obsolete Shift Right Instructions

sre[0] rA,rS,rB
rA {:::: (rS)>> rB[27:31]

Shift Right Extended
MQ {:::: (rS) Q rB[27:31] obsolete POWER instruction

sreq[0] rA,rS,rB r:= (rS) Q rB[27:31]

Shift Right Extended with MQ m := Mask(rB[27:31],31)

obsolete POWER instruction rA{::::(r&m) I (MQ&-m)

MQ{::::r

sriq[0] rA,rS,D
rA {:::: (rS)>> n

Shift Right Immediate with MQ
MQ{::::(rS)Qn

obsolete POWER instruction

132 Chapter 7

srliq[.] rA,rS,n r:= (rS) Q n

Shift Right Long Immediate with MQ m := Mask(n,31)

obsolete POWER instruction rA¢::::(r&m) I (MQ&-m)

MQ¢::::r

srlq[.] rA,rS,rB r:= (rS) Q rB[27:31]

Shift Right Long with MQ m:= Mask(rB[27:31],31)

obsolete POWER instruction if(rB[26] = 0)

rA¢::::(r&m) I (MQ&-m)

else

rA¢::::(MQ&m)

srq[.] rA,rS,rB if(rB[26] = 0)

Shift Right with MQ rA ¢:::: (rS)) rB[27:31]

obsolete POWER instruction else

rA¢::::O

MQ ¢:::: (rS) Q rB[27:31]

The six obsolete Shift Right instructions are analagous to the six obsolete Shift Left
instructions, and follow the same bizarre naming convention.

The sre instruction right shifts rS by the amount specified by rB[27:31] and
places the result in rA. The MQ register gets the value of r S right rotated by
rB[27:3l].

The sreq instruction is the same as the sre instruction, except that the value
stored in rA is a combination of the original MQ register and the shifted rS.

The sriq instruction is identical to the sre instruction, except that the shift
amount is specified as an immediate value.

The srIiq instruction is identical to the sreq instruction, except that the shift
amount is specified as an immediate value.

The srIq instruction is the same as the sreq instruction, except that the shift
value is specified in rB[26:31]. This allows the shift value to range from 0 to 63.
If the shift value is greater than 31, the value returned in rA is copied from the
MQ register. Unlike the sreq instruction, this instruction does not update the
MQ register.

The srq instruction is identical to the sre instruction, except that the right shift
value is specified in r B[26:31], allowing the range of shift values to be between 0
and 63. If the shift value is greater than 31,0 is returned in rA.

Obsolete Shift Instructions l33

§7.7 Obsolete Rotate and Shift Instructions

Table 7-32 Obsolete Shift Right Algebraic Instructions

sraiq[.] rA, rS, II rA <= (rS) ~ n

Shift Right Algebraic Immediate with MQ MQ<=(rS)Qn
obsolete POWER instruction update XER[CA]

sraq[.] rA,rS,rB if(rB[26] = 0)

Shift Right Algebraic with MQ rA <= (rS) ~ rB[27:31]

obsolete POWER instruction else
rA<=rS[O]

MQ <= (rS) Q rB[27:31]
update XER[CA]

srea[.] rA,rS,rB rA <= (rS) ~ rB[27:31]

Shift Right Extended Algebraic MQ <= (rS) Q rB[27:31]
obsolete POWER instruction update XER[CA]

The sraiq instruction is the same as the sriq instruction, except that it per­
forms an algebraic right shift.

The sraq instruction is the same as the srq instructions, except that an alge­
braic right shift is performed. If the shift amount is greater than 31, the value in
r A is a word of sign bits from r s. This can be either OxOOOO 0000 or OxFFFF FFFF.

The srea instruction performs an algebraic right shift operation on r S but is
otherwise identical to the sre instruction.

All three of the algebraic shift instructions update the Carry bit in the XER. The
Carry is set to '1' if the shifted value is negative and any 'I' bits have been shifted
out the right side of the register. This is useful when using the algebraic right
shift to perform quick divide operations.

134 Chapter 7

Floating-Point
Instructions

Floating-point arithmetic operations are significantly more complicated than
their fixed-point counterparts. The underlying principles of floating-point are
not conceptually difficult, but a lot of background needs to be presented before
the floating-point instructions can be understood.

After providing a general introduction to floating-point concepts and data for­
mats, this chapter discusses the instructions that implement the various floating­
point operations defined by the IEEE floating-point specification (IEEE-754) as
implemented in the PowerPC specification. These include instructions to per­
form arithmetic, comparison, and conversion operations.

This chapter does not include descriptions of the floating-point load and store
instructions. These instructions are discussed in Chapter 5 "Load and Store
Instructions."

S.l Floating-Point Data Representation

Floating-point arithmetic on a computer is performed using a binary floating­
point representation. This floating-point format is analogous to the decimal
floating-point system commonly known as scientific notation.

In scientific notation, a number is represented by allowing the decimal or radix
point to be variable or "float," and a new number, the exponent, is introduced to
keep track of where the current radix point is relative to the actual radix point.
Thus, a number like 5280 is represented by two numbers: a significand of 5.28

Floating-Point Instructions 135

§8.1 Floating-Point Data Representation

and an exponent of 3 (because the radix point was shifted three places to the
left). Since this is a decimal (base 10) number, each shift of the decimal point
increases (or decreases) the value of the number by a power of 10, thus, this
number is commonly written as 5.28 x 103•

One advantage of this system is that it allows very large and very small numbers
to be expressed easily, for example, 2.9979246 x 10 8 (the speed of light in a vac­
uum meters / sec) and 6.626176 x 10 -34 (Planck's constant Joulesxsec). Numbers like
these are unwieldy in a system where the radix point is not allowed to float.

Binary floating-point values are represented in a way that is very similar to sci­
entific notation. The only differences are that the values are binary (base 2) val­
ues and that it is a binary point that floats to the left or right. As an example, the
decimal value 868 is represented in binary as b1101100100. This would be stored
as a binary floating-point value as b1.1011001 x b10 blO0l or 1.6953125 x 29.

One additional convention that is used for floating-point numbers is the concept
of normalization. A normalized number is one where there is only one digitto the
left of the radix point, and that one digit is non-zero. For example, 2.998 and 6.63
are both normalized numbers. The advantage of using normalized numbers is
that it allows two floating-point numbers to be compared by simply comparing
the exponents and then, if the exponents are equal, comparing the significands.
Other arithmetic operations are also greatly simplified when operating on nor­
malized values.

Floating-Point Formats

A binary floating-point number is represented by recording three values: the
sign, the significand and the exponent, which are related in the following manner.

(-1) sign. significand . 2exponent

The sign is a one-bit value that is either 0 (for positive numbers) or 1 (for negative
numbers). The significand and exponent are binary values that are interpreted as
described in the previous section.

The PowerPC architecture supports the two basic IEEE-754 floating-point for­
mats: 32-bit single-precision and 64-bit double-precision. For the single-preci­
sion format, the sign is one bit, the exponent is represented in eight bits and the
significand is represented by a 23-bit value. For double-precision values, the sign
is one bit, the exponent is 11 bits and the significand is 52 bits. These formats are
shown in Figure 8-1 and Figure 8-2 .

136 Chapter 8

Exponent Bias

Figure 8-1 Format of Single-PrecisionValues
o 1 8 9 31

Is I exponent I significand

Figure 8-2 Format of Double-Precision Values
o 1 11 12 63

Is I exponent significand

The fact that there are two precision types may seem to cause a small problem on
the PowerPC since the floating-point registers are all 64 bits in width. This width
is ideal for double-precision values, but something must be done to handle the
single-precision values. The PowerPC architecture eliminates this problem by
storing all floating-point values in registers as double-precision.

Single-precision values (when stored in registers) are thus identical to double­
precision values with respect to how the bits are interpreted. The only differ­
ences between register-based single- and double-precision values are

• The range of the exponent (double-precision allows 11 bits for the
exponent; single-precision allows only eight bits).

• The accuracy of the fraction (only the leftmost 23 of the 52 fraction bits
are used for single-precision values; the remaining bits should be 0).

Exponent Bias

The exponent value is not stored directly in the exponent field. A bias term is
added to the exponent so that the stored exponent value is always a positive
number. This biased value is referred to as the biased exponent and is related to
the exponent by the equation:

biased exponent = exponent + bias

The bias value is 127 for single-precision values and 1023 for double-precision
values. This gives an potential exponent range of 2 -127 to 2 128 for single-precision
and 2 -1023 to 2 1024 for the double-precision format. However, the minimum and
maximum exponent values are used to represent special floating-point values
(discussed later). This reduces the effective exponent range down to 2 -126 to 2127
for single-precision and 2 -1022 to 2 1023 for double-precision. Table 8-1 shows the
relationship between the exponent and the biased exponent values for single- and
double-precision numbers.

Floating-Point Instructions 137

§8.1 Floating-Point Data Representation

Table 8-1 Exponent Encodings for Single- and Double-Precision Numbers

Single-Precision Double-Precision

exponent
biased exponent

biased exponent
single1 double2

1023 - - LU4b

lUZL - - 2U45
- -... ...

127 L!>4 lltlU lltlU

126 253 1149 1149
...
0 ILl lULJ lULJ
... '"

-125 2 1Sj/lS IS':IIS

-126 1 897 8':17
... - - ...

-lULl - - L

-lU22 - - 1

1 The single-precision biased exponent is used when a single-precision value is
stored using the single-precision format (as in when a single-precision value is
stored in memory).

2 The double-pi'ecision biased exponent is used when a single-precision value is
stored using the double-precision format (as in when a single-precision value is
storeq in a floating-point register).

In this chapter, the exponent value will be used almost exclusively. When a biased
exponent value is referred to, it will always be explicitly noted as a biased expo­
nent to eliminate any potential ambiguity.

Representing Floating-Point Values

There are five classes of floating-point values:

• Normalized Numbers
• Denormalized Numbers

• Zeros
• Infinities
• Not a Numbers (NaNs)

The first four of these classes represent real numbers, and the last class (NaN) is

used to represent invalid numbers (for example, H or 00 + oo).

Normalized numbers are the most prevalent of the number classes. The range of
the magnitude of normalized numbers extends to include values that are very
small and values that are very large. The range of normalized numbers was cho­
sen to coincide with the range of non-O values in common use.

Denormalized numbers are used to represent very small non-O values whose
magnitude is below the range of normalized numbers.

138 Chapter 8

Representing Floating-Point Values

Zeros are used to represent zero values. A zero value can be either positive or
negative, but most operations treat both forms identically.

Infinities are used to represent values whose magnitude is too large to fit within
the range of normalized numbers. Infinities may be positive or negative.

Table 8-2 summarizes these first four classes of floating-point numbers and gives
an indication of how they are ordered with respect to each other and what range
of values they can accept.

Table 8-2 Allowable Ranges for Floating-Point Numbers

Approximate Range of Values

Single Double

+ Infinity +00 +00

+ Normalized 10 -38 to 10 38 10-308 to 10 308

+ Denormalized 10 -45 to 10 -38 10 -324 to 10 -308

+ Zero +0 +0

- Zero -0 -0

- Denormalized -10-38 to -10-45 _10-308 to _10-324

- Normalized -10 38 to -10 -38 _10 308 to -10 -308

- Infinity _00 -00

The last class of floating-point numbers are the Not a Numbers. There are two
types of NaNs: Signalling and Quiet. Signalling NaNs cause an exception to
occur when they are used as operands to most floating-point operations while
Quiet NaN s do not.

Table 8-3 shows how these numbers are encoded.

Table 8-3 Exponent and Fraction Encodings for Floating-Point Numbers

Biased Exponent
Fraction

single double

Quiet NaN 255 2047
non-O

high-order bit set

Signalling NaN 255 2047
non-O

high-order bit clear

Infinity 255 2047 0

Normalized 1 to 254 1 to 2046 any

Denormalized 0 non-O

Zero 0 0

Floating-Point Instructions 139

§8.1 Floating-Point Data Representation

Normalized Numbers

Binary floating-point values are normalized using the definition of normalized
given earlier. All of the bits to the left of the binary point, except for the unit bit,
must be '0', and the unit bit must be non-D. The unit bit is the bit that is in the unit
position, that is, the position immediately to the left of the binary point. Thus,
b1.101 is a normalized binary floating-point value while bl01.001 and bO.OOll
are not.

Since the unit position is forced to be non-'O', the unit position must be a 'I' (the
only other possibility for a binary number). And since the unit position is always
a 'I', there is no reason for it to be stored explicitly. Hence, all normalized float­
ing-point numbers have an implicit unit bit of 'I'. This bit is not stored as part of
the significand, which gives the significand an extra bit of precision. The portion
of the significand without the implicit unit bit is known as the fraction.

The relationship given earlier for floating-point values can be modified slightly
to account for normalized numbers using the equation:

(-1) sign. l.fraction . 2exponent

As an example, the value 0.1875 (binary: 0.0011) is stored in single-precision by
converting the value to b1.1 x 2-3 and then storing -3 for the exponent (biased
exponent = 127 + -3 = 124), and recording bl00 0000 0000 0000 0000 0000 (1.1 with
the 'I' stored implicitly) as the significand.

The range of values representable as normalized numbers is summarized in
Table 8-4.

Table 8-4 Range of Values for Normalized Floating-Point Numbers

Floating-Point Format

Single-Precision Double-Precision

Biased exponent range Ito 254 1 to 2046

Exponent range -126 to 127 -1022 to 1023

1 x 2 -126 1 x 2 -1022

Minimum representable value
'" 1.18 x 10-38 '" 2.23 x 10 -308

",2x2 127 '" 2 X 2 1023

Maximum representable value
'" 3.40 x 10 38 '" 1.80 X 10 308

Denormalized Numbers

Denormalized numbers provide a mechanism for representing numbers that are
smaller in magnitude than the smallest representable normalized number.

140 Chapter 8

Zero values

Denormalized values have an exponent value that is always equal to the small­
est allowable exponent (I-bias) for normalized numbers (corresponding to a
biased exponent of 0), but they do not require the significand to be in normalized
form. Since the exponent is not allowed to vary, the range of values for denor­
malized numbers comes from the ability to vary the fraction.

A consequence of a non-normalized fraction is that there is no implict 'I' bit in
the unit position for denormalized numbers, and there may be any number of
'a's immediately to the right of the binary point. Both bO.lOO x 2 -126 and bO.OOll x
2 -126 are examples of single-precision values in denormalized form.

Denormalized numbers can be interpreted as

(-1) sign . o. fraction . 2 (l - bias)

The range of values representable as denormalized numbers is summarized in
Table 8-5.

Table 8-5 Range of Values for Denormalized Numbers

Floating-Point Format

Single-Precision Double-Precision

Exponent -126 -1022

1 X 2(-126-23) 1 x 2 (-1022 -52)
Minimum representable value

"" 1.40 x 10 -45 "" 4.94 X 10-324

"" 1 x 2 -126 "" 1 x 2 -1022
Maximum representable value

"" 1.18 x 10 -38 "" 2.23 X 10-308

Zero values

Zero values are represented by a biased exponent of a (just like denormalized
numbers) and a fraction of o. As with denormalized numbers, there is no
implicit ''1'' bit prefix for the significand.

Note that zero values can be either positive or negative. For most operations,
negative zeros are identical to positive zeros. There are, however, cases where a
negative zero will be returned as the result of an operation. For example, x - x
when in Round to -00 mode and the square root of -0 both return -0 as the result.

Infinities

Infinity values are used to represent values that are greater in magnitude than
the largest normalized floating-point value. Infinities can be either positive or
negative, with positive infinity defined as being greater than all other represent-

Floating-Point Instructions 141

§8.2 Floating-Point Operation

able numbers and negative infinity defined as being less than all other represent­
able numbers.

Infinity values can be generated when certain exceptions are disabled and an
overflow or a division by a occurs. In the case of divide by 0, the returned infin­
ity value will be of the proper sign.

Not a Numbers (NaNs)

The Not a Number (NaN) values are used to encode values that are not valid
floating-point numbers. These values can occur when variables are uninitialized
or when certain operations are performed (for example, the square root of a
value less than 0).

NaNs do not fit on the number line of valid numbers. If a NaN is compared with
a real number, an unordered result will be returned since NaNs are neither greater
than, less than, or equal to any real value.

There are two types of NaN values: Signalling and Quiet. A Signalling NaN
(SNaN) causes an exception if it is used as an operand for a floating-point oper­
ation. A Quiet NaN (QNaN) is the most common type and silently propagates
through most floating-point operations.

SNaNs are never created by floating-point operations but may be created manu­
ally (for example, to identify uninitialized memory).

8.2 Floating-Point Operation

This section discusses some of the general issues that apply to almost all of the
floating-point operations. These issues include a description of normalization
and rounding and also describe how floating-point exceptions and interrupts
are handled by the processor.

Normalization and Denormalization

Values calculated by the floating-point operations are typically not in a normal­
ized form. However, before the result can be stored in a floating-point register,
the value must be normalized. The normalization process is quite simple, but it
requires that the intermediate value is sufficiently precise so that the normalized
result has the required precision.

A number is normalized by shifting the fraction one bit to the left and decre­
menting the exponent until the unit bit of the significand is '1.' Since normaliza­
tion involves decrementing the exponent, it is possible that an exponent
underflow exception will occur.

142 ChapterS

Rounding

A number is denormalized when it is too small (in magnitude) to fit in the nor­
malized representation. Denormalization is performed by shifting the signifi­
cand to the right while incrementing the exponent. Note that this operation may
cause a loss of accuracy due to bits dropping off the right side of the fraction. If a
loss of accuracy occurs, then the Underflow Exception bit of the FPSCR
(FPSCR[UX]) will be set.

Rounding

Rounding is necessary because most of the floating-point operations can pro­
duce intermediate results that are more precise than can be represented in sin­
gle- or double-precision values. Rounding provides a way of generating the
"best" representable value and gives the programmer some control over how
the best value is determined.

There are four defined rounding modes:

• Round to Nearest
• Round toward Zero
• Round toward +Infinity
• Round toward -Infinity

Rounding is performed by choosing one of two rounding candidates. These candi­
dates are the representable numbers immediately above and below (in terms of
magnitude) the actual value. The lower value is calculated by truncating the
low-order bits of the actual value so that it will fit in the target representation.
The upper value is derived from the lower value by incrementing the least sig­
nificant bit of the fraction. One way of understanding these two values is by
noting that the lower candidate is always closer to zero than the actual value,
while the upper candidate is further from zero (closer to + /- 00).

Table 8-6 summarizes how the sign of the result and the rounding mode com­
bine to select one of the two rounding candidates. In this table, 'L' refers to th~
lower candidate and 'V' refers to the upper candidate.

Table 8-6 Choosing the Best Rounding Candidate

Rounding Mode
Sign of Actual Value

+ -
Round to Nearest choose best approximation

Round toward Zero L L

Round toward +Infinity U L

Round toward -Infinity L U

Floating-Point Instructions 143

§8.2 Floating-Point Operation

For Round to Nearest mode, the candidate closest to the actual value is chosen.
In the case of a tie, the even candidate (least significant bit of 0) is chosen.

Rounding is further complicated when one of the two rounding candidates does
not exist, for example, when there is no number larger than the actual value that
will fit in the target representation. In these cases, either an Overflow or an
Underflow exception will be signalled. If the upper candidate does not exist,
then an Overflow Exception will be signalled. If the lower candidate does not
exist, then an Underflow Exception will be signalled. These exceptions are dis­
cussed later in the "Exceptions" section.

Interrupts

An interrupt is a mechanism through which the processor can change state to
handle abnormal conditions, errors, or external signals. Interrupts are related to
exceptions in that an exception may cause an interrupt to be generated.

A floating-point exception does not always result in an interrupt. A floating­
point interrupt handler is invoked only when all of the following conditions are
met:

• An exception must have occured.
• That type of exception must be enabled. Each exception type has a

corresponding enable bit in the FPSCR that must be set to 1 for an
interrupt of that type to occur.

• Floating-point exceptions must be enabled by setting the Floating­
Point Exception Mode bits in the Machine State Register
(MSR[FEO,FE1]) to an appropriate value.

Note that the "Exception Enable" bits in the FPSCR and the "Exception Mode"
bits in the MSR do not control whether the corresponding exception will occur.
The exception will occur and the appropriate bit in the FPSCR will be set regard­
less of whether the exception is "enabled" or not. The "Exception Enable" bits
merely control whether or not an interrupt will be generated in response to the
exception. The only exception to this occurs with the Underflow Exception. In
this case, the setting of the Underflow Exception Enable bit in the FPSCR affects
the conditions under which an Underflow Exception will occur in addition to
controlling whether or not an interrupt should be generated.

Interrupts (floating-point and otherwise) are discussed in greater detail in
Chapter 12 "Exceptions & Interrupts."

Exceptions

Floating-point exceptions are caused by abnormal circumstances during the exe­
cution of a floating-point instruction or through a software request.

144 Chapter 8

Invalid Operation Exception

When an exception occurs, the processor responds by performing one of three
tasks:

• Set a flag in the FPSCR.
• Invoke an interrupt handler.
• Set a flag and invoke an interrupt handler.

Which action the processor performs depends on the type of exception and on
the settings of the "Exception Enable" bits in the FPSCR and the "Exception
Mode" bits in the MSR.

There are five types of floating-point exceptions that may be generated: Invalid
Operation, Zero Divide, Overflow, Underflow, and Inexact.

Invalid Operation Exception

The Invalid Operation Exception is signalled if either of the operands is invalid
for the operation being performed. The eight types of operations that cause the
Invalid Operation Exception are

• Any arithmetic operation involving a Signalling NaN (Load, Store,
Move, and Select operations do not cause this exception.)

• 00-00

• 0 x 00

• 0/0 or 00 / 00

• JX, where x < 0 (Only on processors that implement one of the
square root instructions.)

• Invalid floating-point to integer conversion (A float to int conversion
involving overflow, infinity, or NaN.)

• Invalid comparison (Using any sort of NaN as an operand to fempo.)
• Software request (By setting FPSCR[VXSOFT]).)

The details of how the target and result flags are updated differ for each type of
invalid operation. In general, if Invalid Operation Exceptions are enabled
(FPSCR[VE]=l), then the result will be unchanged. If Invalid Operation Excep­
tions are disabled, then the result will be a Quiet NaN.

Zero Divide Exception

The Zero Divide Exception is signalled when a finite, non-O number is divided
by O. This exception can be generated by the divide instructions or any of the
optional reciprocal estimate instructions (fres, frsqrte).

A Zero Divide Exception always causes the FPSCR to be updated by setting the
Zero Divide Exception (ZE) bit and clearing the Fraction Rounded (FR) and
Fraction Inexact (FI) bits.

Floating-Point Instructions 145

§8,2 Floating-Point Operation

1£ Zero Divide Exceptions are enabled (FPSCR[ZE]=l), the target register is left
Unchanged.

If Zero Divide Exceptions are disabled (FPSCR[ZE]=O), the target register is set
to a properly signed 00, and the FP Result Flags (FPRF) are set to indicate that the
result is + / - Infinity.

Overflow Exception

The Overflow Exception is signalled whenever the magnitude of the rounded
result (assuming the exponent range is unbounded) exceeds·the magnitude of
the destination format. The Overflow Exception bit (FPSCR[OX]) is always set in
response to an overflow exception. Additional actions depend on the current set­
ting of the Overflow Exception Enable bit (FPSCR[OE]).

If FPsCR[OE] = 1,then the overflow interrupt handler is invoked, which adjusts
the exponent of the result so that it fits in the range of normalized numbers and
then stores the new result in the target register. The exponent is adjusted by sub­
tracting 1536 for double-precision instructions and by subtracting 192 for single­
precision instructions and the frsp instruction. FPSCR[FPRF] is also set to indi­
cate the class and sign of the result (which will be + / - Normalized Number).

If FPSCR[OE] = 0, then the overflow interrupt handler is not invoked and the
result is adjusted based on the current rounding mode before being stored in the
target register. The result is adjusted according to Tabie 8-7.

Table 8-7 Rounded Overflow Result Based on Rounding Mode

Rounding Mode Sign 1 Result

Round to Nearest
+ + Infinity

- -Infinity

Round toward Zero
+ + Largest normalized number

- - Largest normalized number

+ + Infinity
Round toward +lnfiriity

- - Largest noimalized number

+ + Largest normalized number
Rourid toward -Infinity

- -Infinity

1 Sign is the sign of the intermediate result before rounding

In addition, the Inexact Exception (XX) and Fraction Inexact (PI) bits of the
FPSCR are set and the Fraction Rounded (FR) bit is set to an undefined value.
The FP Result Flags (FPsCR[FPRF]) are aiso set to indicate the class and sign of
the result (which will be either + / - Normalized Number or + / - Infinity).

i 46 Chapter 8

Underflow Exception

Underflow Exception

The conditions that cause an Underflow Exception are different depending on
whether Underflow Exceptions are currently enabled (FPSCR[UE]=I) or dis­
abled (FPSCR[UE]=O). The basic underflow conditions are

• If the intermediate result is tiny (a tiny result is a non-O value that is
smaller than the smallest normalized number).

• If there is any loss of accuracy (loss of accuracy occurs when fraction
bits are shifted out to the right during denormalization).

If FPSCR[UE] = I, any tiny result will cause underflow. If FPSCR[UE] = 0, then
the result must be tiny and there must be a loss of accuracy for underflow to
occur.

If underflow occurs, then the Underflow Exception bit in the FPSCR
(FPSCR[UXD is always set. Additional actions depend on whether or not Under­
flow Exceptions are currently enabled.

If Underflow Exceptions are enabled, then the underflow interrupt handler is
invoked, which adjusts the exponent of the result so that it fits in the range of
normalized numbers and then stores the new result in the target register. The
exponent is adjusted by adding 1536 for double-precision instructions and by
adding 192 for single-precision instructions and the frsp instruction.

If Underflow Exceptions are disabled, then the underflow interrupt handler is
not invoked and the result is rounded and placed in the target register.

Regardless of the current enabled/ disabled state of Underflow Exceptions,
FPSCR[FPRF] is always set to indicate the class and sign of the result. The
value of FPRF will be +/- Normalized Number if exceptions are enabled, and
either + / - Denormalized Number or + / - Zero if exceptions are currently dis­
abled.

Inexact Exception

An Inexact Exception occurs whenever the rounded result differs from the calcu­
lated intermediate result (assuming that the intermediate result was of unlim­
ited range and precision). An Inexact Exception also occurs when the rounding
operation results in an overflow and Overflow Exception.s are disabled
(FPSCR[OE] = 0).

An interrupt is not invoked in response to an Inexact Exception. When an Inex­
act Exception occurs, the result is placed in the target register, the Inexact Excep­
tion bit (FPSCR[XXD is set, and the FP Result Flags (FPSCR[FPRFl) are set to
reflect the class and sign of the stored result.

Floating-Point Inll'tructions 147

§8.3 Floating-Point Instructions

8.3 Floating-Point Instructions

All of the floating-point instructions (except the compare) allow a ' .' suffix and
many also allow an's' suffix to be appended to the base mnemonic.

The' .' suffix sets the record bit for the instruction. For floating-point instructions,
this means that exception information is copied from the FPSCR and placed in
field 1 of the Condition Register (CR{l}), after the completion of the operation.

The interpretation of the bits in CR{l} is summarized in Table 8-8.

Table 8-8 CR{l} After Executing an FP Instruction with the Record Bit Set

CR{1}
Name Description

bit

a FX
FP Exception Summary
Set whenever any exception bit is set. This bit is the logical OR of all
of the other exception bits.

1 FEX
FP Enabled Exception
Set whenever any enabled exception bit is set. This bit is the logical
OR of all of the exception bits that are currently enabled.

2 VX
FP Invalid Operation Exception Summary
Set whenever any sort of invalid operation occurs. This bit is the
logical OR of all of the invalid operation exception bits.

3 OX
FP Overflow Exception
Set whenever the exponent of the rounded result is larger than the
largest valid exponent.

The's' suffix indicates that the operation should be performed by interpreting
the values in the operand registers as if they contained single-precision data.
Since floating-point registers always contain double-precision data, the's' suffix
more accurately indicates that the double-precision data in the specified source
registers is representable in the single-precision format. If the input values to a
single-precision operation are not representable as single-precision values, then
the result is placed in the output register, and the status bits in the FPSCR and
CR (if the record bit is set) are undefined.

FP Move Instructions

The four floating-point instructions listed in Table 8-9 move the contents of one
floating-point register into another floating-point register. One of these instruc­
tions (fmr) moves the data unaltered, while the others modify the sign bit of the
value before storing it in the destination register.

These instructions do not interpret the data being moved in any way. Thus, it is
possible to perform non-sensible operations such as taking the absolute value of
a Signalling NaN and instruction will cause no exceptions will be raised.

148 Chapter 8

FP Arithmetic Instructions

In addition, none of these instructions affect the FPSCR.

Table 8-9 Floating-Point Move Instructions

fabs[.] frT, frB
frT <= I (frA) I

FP Absolute Value

fmr[.] frT, frB
frT <= (frB)

FP Move Register

fnabs[.] frT, frB frT <= - I (frB) I
FP Negative Absolute Value

fneg[.] frT, frB
frT <= -(frB)

FP Negate

The fabs instruction takes the absolute value of frB and places it in frT. The
absolute value is calculated by forcing the sign of the result to be O.

The fmr instruction simply copies the contents of frB into frT.

The fnabs instruction takes the negative of the absolute value of frB and places
it in frT. The negative absolute value is calculated by forcing the sign of the
result to be 1.

The fneg instruction negates the value of frB and places it in frT. The value is
negated by inverting the sign of frB.

FP Arithmetic Instructions

The four basic arithmetic operations listed in Table 8-10 are supported directly
by PowerPC instructions. These operations are add, subtract, multiply, and
divide.

All of these instructions allow the I .' suffix to be specified. This suffix causes the
four high-order status bits from the FPSCR to be copied into field 1 of the Con­
dition Register. The copied bits are: FX (FP Exception Summary), FEX (FP
Enabled Exception Summary), VX (FP Invalid Operation Summary), and OX (FP
Overflow Exception).

There are two variants for each of the instructions: a double-precision version
and a single-precision version. Each version operates on operands of the appro­
priate size and returns a result of the same size. If a single-precision instruction
contains data that is not representable as single-precision data, then the results
stored in the target register and status register (FPSCR and CR) are undefined.

Floating-Point Instructions 149

§8.3 Floating-Point Instructions

Table 8-10 Floating-Point Arithmetic Instructions

fadd[s][.] frT, frA, frB
frT <= (frA) + (frB)

FP Add [Single-Precision]

fdiv[s][.] frT,frA,frB
frT <= (frA) + (frB)

FP Divide [Single-Precision]

fmul[s][.] frT, frA, fre
frT <= (frA) X (frC)

FP Multiply [Single-Precision]

fsub[s][.] frT, frA, frB
frT <= (frA) - (frB)

FP Subtract [Single-Precision]

The Floating-Point Add instruction calculates the result of adding the two oper­
ands and places the result in the target register. The add operation is imple­
mented by comparing the exponents of the two operands and adding (or
subtracting, if the signs of the two operands are not the same) the fractions. If the
exponents do not match, the fraction of the operand with the smaller exponent
is shifted to the right until the exponents match, and then the fractions are added
together and rounded to produce the result in the appropriate format.

The divide operation is performed by subtracting the exponents and dividing
the fractions of the operands.

The multiply operation is implemented by adding the exponents of the two
operands and multiplying the two fractions to produce the result.

The Floating-Point Subtract instruction performs the same operation as the FP
Add instruction, except that the operands (fractions) are subtracted instead of
added.

In addition to the basic arithmetic operations described above, the PowerPC also
defines a variety of Multiply-Add instructions. Listed in Table 8-11, these instruc­
tions provide a multiply and an add as a single operation, without an intermedi­
ate rounding step (which would be necessary if the operation was implemented
as two separate instructions). This benefits both the speed and the accuracy of
the computed result.

Table 8-11 Floating-Point Multiply-Add Instructions

fmadd[s][.] frT, frA, fre, frB
frT <= (frA) x (frC) + (frB)

FP Multiply-Add [Single-Precision]

fmsub[s][.] frT, frA, fre, frB
frT <= (frA) X (frC) - (frB)

FP Multiply-Subtract [Single-Precision]

fnmadd[s][.] frT, frA, fre, frB
frT <= -«frA) X (frC) + (frB»

FP Negative Multiply-Add [Single-Precision]

fnmsub[s][.] frT, frA, fre, frB
FP Negative Multiply-Subtract [Single- frT <= -«frA) X (frC) - (frB»

Precision]

150 Chapter 8

FP Comparison Instructions

The fmadd instruction is the basic Multiply-Add instruction: it first multiplies frA
with frC, and then it adds frB to the result and stores the final value in frT.

The fmsub instruction is the same as the fmadd instruction except that the con­
tents of frB are subtracted from the multiplied result.

The remaining two Multiply-Add instructions are variants of the first two. These
instructions, fnmadd and fnmsub, negate the result before storing the value in
frT.

FP Comparison Instructions

The two instructions listed in Table 8-12 which compare the contents of two
floating-point registers and return the result in one of the Condition Register
fields. The only difference between these two compare instructions is how they
handle NaN operands.

Table 8-12 Floating-Point Compare Instructions

fempo erfT,frA,frB
CR{crfT} ¢= OFCmp(frA,frB)

FP Compare Ordered

fempu crfT,frA,frB
CR{crfT} ¢= UFCmp(frA,frB)

FP Compare Unordered

The FP Compare instructions compare the contents of the two floating-point reg­
isters and place the result of the compare in the specified field of the Condition
Register. Table 8-13 tells how the bits of the target CR field are interpreted.

Table 8-13 CR Field Bit Interpretations after Floating-Point Compare

CR{crfl}
Name Description

Bit

a FL FPLess Than
Set if (frA) < (frB)

1 FG FP Greater Than
Set if (frA) > (frB)

2 FE FPEqual
Set if (frA) = (frB)

3 FU FP Unordered
Set if either of the two values being compared is NaN

The two compare instructions differ in how they handle NaN operands: the
fcmpo instruction will flag an invalid operation if it encounters any sort of NaN,
while the fcmpu instruction will only flag Signalling NaNs.

Floating-Point Instructions 151

§8.3 Floating-Point Instructions

The fcmpo instruction reacts in the following manner when NaN operands are
encountered. First, if either of the operands is a Signalling NaN, then the VXS­
NAN (FP Invalid Operation Exception for Signalling NaN) bit of the FPSCR
is set.

Additionally, the VXVC (FP Invalid Operation Exception for Invalid Compare)
bit of the FPSCR will be set if either of these conditions are true:

• If either of the two operands is a Signalling NaN and the VE (FP
Invalid Operation Exception Enable) bit of the FPSCR is 0 (disabled).

• If at least one of the operands is a Quiet NaN and neither of the
operands is a Signalling NaN.

Note that if FPSCR[VE] is enabled and one of the operands is a Signalling NaN,
then the Invalid Operation Exception handler will always be invoked (because
FPSCR[VXSNAN] will be set). Thus, it is unnecessary to set FPSCR[VXVC] in
this case. If FPSCR[VE] is not enabled, then the handler will not be invoked and
FPSCR[VXVC] needs to be set to indicate that the compare operation is invalid.

The fcmpu instruction will set FPSCR[VXSNAN] if a Signalling NaN is specified
as one of the operands, but will never set FPSCR[VXVC].

Table 8-14 summarizes the situations under which the floating-point compare
instructions cause exceptions. An 'X' indicates that an Invalid Operation Excep­
tion will be invoked, and a '-' indicates that the instruction will complete with­
out causing any exceptions.

Table 8-14 Operands that Cause Exceptions for FP Compare

fcmpo fcmpu

operand2 operand2

SNaN QNaN normal SNaN QNaN normal

..... SNaN X X X X X X
"0
~ QNaN X X X X - -
'" OJ
0.. normal X X 0 - X - -

FP Conversion Instructions

The floating-point conversion instructions listed in Tables 8-15, 8-16, and 8-17
provide a simple method of converting between the various numeric formats
provided for by the PowerPC architecture.

§8.4 "Floating-Point Conversions" provides more information about converting
between various number formats.

152 Chapter 8

Optional Floating-Point Instructions

Table 8-15 Floating-Point Rounding Instruction

frsp[.] frT,frB
FP Round to Single-Precision

frT ¢::: Double2Single(frB)

The FP Round to Single-Precision instruction takes the double-precision value
stored in f r B, rounds it to single-precision, and then stores the rounded result in
frT. If the value in frB is already in single-precision range, its value is simply
copied into frT.

Table 8-16 Floating-Point Convert to Integer Instructions

fetiw[.] frT, frB
frT[32:63] ¢::: FPtoInt32(frB)

FP Convert to Integer Word

fetiwz[.] frT, frB
FP Convert to Integer Word with Round toward frT[32:63] ¢::: FPtoInt32RndO(frB)

Zero

fetid[.] frT, frB
FP Convert to Integer Doubleword frT ¢::: FPtoInt64(frB)
64-bit implementations only

fetidz[.] frT,frB
FP Convert to Integer Doubleword with Round frT ¢::: FPtoInt64RndO(frB)

toward Zero
64-bit implementations only

The fetiw instruction converts the double-precision value in frB to an integer
word using the current rounding mode (defined by FPSCR[RN]).

The fetiwz instruction converts the double-precision value in frB to an integer
word using the Round to Zero (truncate) rounding mode.

The fetid and fetidz instructions perform the same operation as fetiw and
fetiwz, but they convert the va:lue to a doubleword.

Table 8-17 Floating-Point Convert from Integer Instruction

fefid[.] frT, frB
FP Convert from Integer Doubleword
64-bit implementations only

frT ¢::: Int64toFP(frB)

The fefid instrUction takes the 64-bit integer stored in frB and converts it to a
double-precision floating-point value. The result is stored in frT.

Optional Floating-Point Instructions

Currently, the four floating:.point instructions listed in Table 8-18 are defined as
optional. Three of these instructions are part of the Graphical Group, and the
fourth instruction belongs to the General Group.

Floating-Point Instructions 153

§8.3 Floating-Pomt Instructions

Table 8-18 Optional Floating-Point Instructions

fres[.] frT,frB 1
FP Reciprocal Estimate Single-Precision frT ¢::: "" (frB)
part of the Graphical group of optional instructions

fr~qrte[.] frT, frB 1
FP Reciprocai Square Root Estimate frT ¢::: -

J(frB) part of the Graphical group of optional instructions

fSel[.] frT, frA, fre, frB frT ¢::: ((frA) ~ 0.0) ? (frC)
FP Select : (frB» part of the Graphical group of optional instructions

fsqrt[s][.] frT,frB
FP Square Root [Single-Precision] frT ¢::: J (frB)
part of the General group of optional instructions

The fres instructiort calculates a single-precision approximation of the recipro­
cal of the source operand and stores the result in the destination register. The
precision of the estimated result is correct to within one part in 256 of the actual
value.

The frsqrte instruction calculates a double-precision estimate of the reciprocal
of the square root of the source operand frB and stores the result in frT. The
precision of the estimated result is correct to within one part in 32 of the actual
reciprocal-square root value.

The fsel instruction provides an operation similar to the conditional operator
in the high-level language C. This instruction selects one of the operands based
on the value of a third operand. If frA is greater than or equal to 0.0, then fre is
returned as the result; otherwise frB is returned. This instruction does not cause
exceptions-if frA is NaN, then frB is returned as the result.

Table 8-19 summarizes which of the optional floating-point instructions are
implemented on which PowerPC processor.

Table 8-19 Optional Floating-Point Instructions vs. PowerPC Processor

Graphical General

fres frsqrt fsel fsqrt[s]

601 no no no no

603 yes yes yes no

Using one of these instructions on a processor that does not support it will cause
an Illegal Instruction Program Interrupt to occur.

154 Chapter 8

Floating-Point Conversions

8.4 Floating-Point Conversions

The PowerPC architecture defines various instructions for converting between
different numeric formats. This section summarizes these instructions by con­
version type and "fills in the blanks" by providing algorithms for performing
conversions that are not directly supported by the instruction set.

Converting Between Single- and Double-Precision

Double-Precision to Single-Precision

Double-precision floating-point values can be converted to single-precision by
using the FP Round to Single-Precision (frsp) or Store Floating-Point Single-Preci­
sion (stfs, stfsu, stfsx, or stfsux) instructions.

The frsp instruction converts the double-precision value to single-precision
and stores the converted value into a floating-point register.

The Store Floating-Point Single-Precision instructions convert the double-preci­
sion value to single-precision and store the converted value into memory.

One important difference between these two operations is that the frsp instruc­
tion will raise an exception if an invalid conversion operation is attempted. The
store instructions do not raise any type of floating-point exceptions.

Single-Precision to Double-Precision

There is no need for a register-based single- to double-precision conversion
operation since single-precision values are always stored in registers using the
double-precision floating-point format.

As a consequence of this, simply loading a single-precision value into a register
with one of the Load Floating-Point Single-Precision (1£s, 1£su, 1£sx, or 1£sux)
instructions will automatically convert a value to double-precision.

Conversion Between Integer Words and Double-Precision

Double-Precision to Integer Word

There are two instructions to convert from floating-point values to integer
words: fctiwand fctiwz. These instructions convert the value to a word by
using either the current rounding mode (fctiw) or the Round to Zero (truncate)
rounding mode (fctiwz).

One difficulty with these instructions is that they store the integer result in one
of the floating-point registers, and there is no simple instruction to move values

Floating-Point Instructions 155

§8.4 Floating-Point Conversions

from the floating-point to the general-purpose registers. The standard way of
transferring data between the register sets is to write the value to memory and
then read it back. This can be done as

temporary storage for intermediate value
temp: .word OxO,OxO

fO <= converted int from frl
fctiw frO, frl

move the converted result into r3
stfd frO,temp(rl)
lwz r3, temp+4 (rl)

Integer Word to Double-Precision

There is no instruction to easily convert integer words into floating-point values.
Assuming that the word to be converted is in register r 3, the following sequence
of instructions will place the floating-point equivalent value in frO:

zero value = 2 A 52 * OxlOOOOO 80000000
the lower 32-bits of the fraction are equivalent
to 0 (for signed integer words)
zero: .word Ox43300000,Ox80000000

a place to build the intermediate fp value
temp: • word Ox43300000,OxO

built the intermediate value by setting it equal
to: Ox43300000 <int32-with-inverted-sign>
which is: 2 A 52 * OxlOOOOO <int32>
xoris
stw

lfd
lfd
fsub

r3,r3,Ox8000 # invert sign of int
r3,temp+4(rl)

fO,temp(rl)
f1,zero(rl)
fO,fO,f1

This works by first inverting the sign of the word that is to be converted. This
sign-inversion offsets the value of the word so that the smallest negative number
(Ox8000 0000) is mapped to OxOOOO 0000 and the largest positive number
(Ox7FFF FFFF) is mapped to OxFFFF FFFF.

This sign-inverted word is then used as the lower 32 bits of the fraction for a
double-precision floating-point value. The magnitude of this number is set so

156 Chapter 8

Conversion Between Integer Doublewords and Double-Precision

that all 32 bits of the word are to the left of the actual binary point, that is, the
exponent is set to 52 (since there are 52 bits in the fraction).

As the final step, a zero constant is subtracted from the constructed floating-point
value. This constant is set up so that the lower 32 bits of the fraction are equal to
the zero-point of the sign-inverted word. By subtracting this constant from the
constructed floating-point value, the sign of the original word will be preserved.
The subtraction operation also serves to properly normalize the result.

To modify this algorithm so that it works for unsigned integer words,
Ox43300000 00000000 should be used as the zero constant and the xoris instruc­
tion should be removed.

Conversion Between Integer Doublewords and Double-Precision

Note: the conversion instructions discussed in this section exist only on 64-bit
PowerPC implementations.

Double-Precision to Integer Doubleword

There are two instructions to convert from floating-point values to integer dou­
blewords: fetid and fetidz. These instructions convert the value to a double­
word by using either the current rounding mode (fetid) or the Round to Zero
(truncate) rounding mode (fetidz).

One difficulty with these instructions is that they store the integer result in one
of the floating-point registers, and there is no simple instruction to move values
from the floating-point to the general-purpose registers. The standard way of
transferring data between the register sets is to write the value to memory and
then read it back. This can be done as

temporary storage for intermediate value
temp: .word OxO,OxO

fO <= converted int from frl
fetid frO, frl

move the converted result into r3
stfd frO,temp(rl)
ld r3,temp(rl)

Integer Doubleword to Double-Precision

The fefid instruction is defined for 64-bit PowerPC implementations to con­
vert a doubleword to a double-precision floating-point value.

Conversion Between Integer Doublewords and Double-Precision 157

§8.4 Floating-Point Conversions

As with the conversion from floating-point to fixed-point, this operation is com­
plicated by the lack of an instruction to move values directly between the float­
ing-point and general-purpose registers. This is overcome by writing the value
to memory and then reading it back into the proper register set. This can be done
as

temporary storage for intermediate value
temp: .word OxO,OxO

move the contents of r3 into frO
std r3,temp(rl)
lfd frO,temp(rl)

convert frO to double-precision
fcfid frO, frO

158 Chapter 8

System Register
Instructions

A large number of instructions and extended instruction forms can be used to
access the various system registers of the PowerPC processors. Other than the
Condition Register (CR) instructions, most of these will not be used by normal
programs.

9.1 CR Instructions

The Condition Register is the most common of the special-purpose registers and
thus, the largest number of instructions operate on it. CR fields a or 1 can be set
implicitly by instructions that set the record bit; and any CR field can be updated
when it is specified as the target of a compare instruction. Otherwise, the only
way that the CR field values can be updated is through the CR Logical instruc­
tions and the CR Move instructions.

The CR Logical instructions allow the values in the CR fields to be combined
using Boolean logic operations. These permit complex Boolean expressions to be
built from the simple operations provided by the compare instructions.

The CR Move instructions provide a mechanism for moving the values in a CR
field to other fields in the CR or to other registers. These instructions also allow
values to be written into the CR.

System Register Instructions 159

§9.1 CR Instructions

Condition Register Logical

The CR Logical instructions provide the basic Boolean operations-AND, OR,
and XOR-plus variations involving bit complements. The eight operations pro­
vided are AND, OR, and XOR; Not AND, Not OR, and Equivalent (which is the
same as Not XOR); and AND with Complement and OR with Complement. Table 9-1
lists these instructions.

Table 9-1 Condition Register Logical Instructions

crand bitT,bitA,bitB CR[T] ¢= CR[A] & CR[B]
CRAND

crandc bitT,bitA,bitB CR[T] ¢= CR[A] & -CR[B]
CR AND with Complement

creqv bitT,bitA,bitB CR[T] ¢= CR[A] == CR[B]
CR Equivalent

crnand bitT,bitA,bitB CR[T] ¢= -(CR[A] & CR[B])
CR Not AND

crnor bitT,bitA,bitB CR[T] ¢= -(CR[A] I CR[B])
CRNotOR

cror bitT,bitA,bitB CR[T] ¢= CR[A] I CR[B]
CROR

crorc bitT,bitA,bitB CR[T] ¢= CR[A] I -CR[B]
CR OR with Complement

crxor bitT,bitA,bitB CR[T] ¢= CR[A] Et> CR[B]
CRXOR

The mapping from the mnemonic to the operation is fairly straightforward. The
instructions corresponding to the eight CR Logical instructions operations are
crand, cror, crxor; crnand, crnor, creqv, crandc and crorc.

All of these instructions take three operands, the target bit where the result of the
operation should be stored, and the two source bits.

Four additional extended forms listed in Table 9-2 make simple CR bit opera­
tions easy to perform. These are crclr, crmove, crnot, and crset.

Table 9-2 Condition Register Logical Extended Forms

crclr bitT
CRClear CR[bitT] ¢= 0
extended form for crxor bi tT, bi tT, bi tT

crmove bitT,bitA
CRMove CR[bitT] ¢= CR[bitA]
extended form for cror bi tT, bi tA,bi tA

160 Chapter 9

Condition Register Move

ernot bitT,bitA
CRNot CR[bitn ¢::: -CR[bitA]
extended form for crnor bi tT, bi tA,bi tA

erset bitT
CRSet CR[bitn ¢::: 1
extended form for creqv bi tT, bi tT I bi tT

These forms can be used to set (erset) or clear (erelr) a bit in the CR; to copy
a CR bit to another bit position (ermove); or to negate a CR bit and place the
negated bit in another bit in the CR (ernot).

Condition Register Move

The CR Move instructions are used to perform three tasks: to move the fields of
the CR around within the CR; to copy fields from the CR into a register; or to
copy fields into the CR.

There is one instruction for copying CR fields within the CR: merf, an abbrevia­
tion for Move CR Field (see Table 9-3).

Table 9-3 Move within Condition Register Instruction

merf crfT,crfA
Move CR Field

CR{crjT} ¢::: CR{crfA}

The merf instruction requires a target CR field T and a source CR field A. CR
field T is overwritten with the data from the CR field A.

To copy data out of the Condition Register, the only instruction available is
mfer, which copies the data into a designated GPR (see Table 9-4).

Table 9-4 Move from Condition Register Instruction

I mfer rT
Move from CR to GPR

I rT ¢::: O(CR)

The entire destination register is overwritten with the contents of the CR. For 64-
bit implementations, the upper 32 bits of the register are cleared to O.

The PowerPC architecture specifies many instructions that move data into the
CR. These instructions can be used to conditionally branch based on the value of
a bit in the FPSCR, XER, or a GPR. The interesting bits can be first copied into the
CR, and then anyone of the standard conditional branch instructions can be
used.

The three Move to CR instructions listed in Table 9-5 are merfs, merxr, and
mterf.

System Register Instructions 161

§9.2 FPSCR Instructions

Table 9-5 Move to Condition Register Instruction

mcrfs crfT,crfA CR{crjT} <= FPSCR{crfA}
Move to CR from FPSCR FPSCR{crfA} <= 0

mcrxr erfT CR{crjT} <= XER{O}
Move to CR from XER XER{O} <= 0

mtcrf CRmask,rS
CR{T} <= (rS) & mask

Move to CR Fields from GPR

The mcrf s instruction is used to copy a field from the FPSCR to a field in the CR.
The mcrxr instruction is similar, except that it copies only from field 0 of the
XER into a field of the CR. After the execution of a mcrfs or mcrxr instruction,
the bits that were copied out of the FPSCR or XER are cleared to O. Thus, after
execution of a mcrxr instruction, XER{O} will always be bOOOO.

The mtcrf instruction can be used to copy CR fields from the given register into
the CR. Only the fields specified in the mask are updated by this instructions; the
other CR fields are unchanged.

An extended form (mtcr) is provided to facilitate restoring the entire CR from a
register where it was saved earlier. The rotcr form overwrites the entire CR with
the data in the given register (see Table 9-6).

Table 9-6 Move to Condition Register Extended Form

rotcr rS
Move to CR from GPR CR <= rS [~;~]
extended form formtcrf OxFF, r S

9.2 FPSCR Instructions

The Floating-Point Status and Control Register also has a set of special instruc­
tions devoted to it. These instructions allow the FPSCR to be copied to and from
a designated FPR, and they allow specific bits within the FPSCR to be modified.

To move a copy of the FPSCR into a floating-point register, the roff s instruction
should be used (see Table 9-7).

Table 9-7 Move from FPSCR Instruction

roffs[.] frT
Move from FPSCR

frT <= (FPSCR)

The rof f s instruction copies the FPSCR into the lower 32 bits of the specified
FPR. The upper 32 bits of the FPR are undefined.

162 Chapter 9

MSR Instructions

Table 9-8 lists other options available for writing data into the FPSCR. Instruc­
tions are provided to directly set a bit of the FPSCR and to set an FPSCR field
from an FPR or immediate value.

Table 9-8 Move to FSPCR Instructions

mtfsbO[.] bitT
FPSCR[bitT] ¢::: 0

Move to FPSCR Bit 0

mtfsbl[.] bi tT FPSCR[bitT] ¢::: 1
Move to FPSCR Bit 1

mtfsf[.] fpscrMask,frB
FPSCR ¢::: (frB) & mask

Move to FPSCR Fields

mtfsfi[.] fpscrfT, val
FPSCR{fPscrfT} ¢::: val

Move to FPSCR Fields Immediate

The mtfsbO and mfsbl instructions can be used to clear or set a bit in the
FPSCR. The only restriction is that bits 1 and 2 (FEX and VX) of the FPSCR can­
not be modified using these instructions.

The mtfsfi instruction can be used to copy an immediate value into a desig­
nated FPSCR field. As with the other instructions that write into the FPSCR, bits
1 and 2 are not copied from the immediate value when FPSCR{O} is specified as
the target field.

Similar to the mtcrf instruction, mtfsf can be used to copy fields from an FPR
back into the FPSCR. The same restriction with bits 1 and 2 applies to this
instruction also.

The mtfs form is just a shortcut for mtfsf when all of the fields are being cop­
ied from the FPR (see Table 9-9). The FPSCR (except for bits 1 and 2) is copied
from the lower 32 bits of the specified FPR.

Table 9-9 Move to FSPCR Extended Form

mtfs[.] frB
Move to FPSCR
extended form for mtfsf[.J OxFF, frE

9.3 MSR Instructions

FPSCR ¢::: (frB)

The two instructions listed in Table 9-10 provide supervisor-level access to the
Machine State Register (MSR). These instructions are quite simple: copy the
MSR to or from the given GPR.

System Register Instructions 163

§9.4 SPR Instructions

Because the MSR and the GPRs are always the same size (32 bits on 32-bit imple­
mentations and 64 bits on 64-bit implementations), the entire GPR is used for the
copy operation.

Table 9-10 Move from/to MSR Instructions

mfmsr rT
Move from Machine State Register rT¢= (MSR)
supervisor-level instruction

mtmsr rS
Move to Machine State Register MSR¢= (rS)
supervisor-level instruction

These instructions, mfmsr and mtmsr, copy the MSR from a GPR (mfmsr), or
copy the MSR into a GPR (mtmsr).

9.4 SPR Instructions

Most of the SPRs are accessed using the Move To and Move From SPR instructions
listed in Table 9-11. These instructions allow an SPR to be specified by its ID so
that contents can be read into or written from a GPR.

Table 9-11 Move from/to SPR Instructions

mfspr rT, SPR rT¢= (SPR)
Move from Special Purpose Register

mtspr SPR,rS SPR ¢= (rS)
Move to Special Purpose Register

In their standard form, these instructions are not very readable because the SPR
ID encodings are not tied to the SPR in any meaningful way. In general, one of
the many extended forms based on the mfspr and mtspr instructions is used
instead.

Because there are so many extended forms for the SPR instructions, they are dis­
cussed next in separate sections and grouped by the level of privilege required
to access the registers.

9.S User-Level SPR Extended Forms

The three SPRs listed in Table 9-12 have user-level access: the XER, the LR, and
the CTR. All three of these registers allow both read and write access at the user
level.

164 Chapter 9

Obsolete User-Level SPR Forms

Table 9-12 User-Level Move from SPR Extended Forms

mfctr rT
Move from Count Register rT ¢::: O(CTR)
extended form for mfspr rT, 9

mflr rT
Move from Link Register rT ¢::: (LR)
extended form for mfspr rT, S

mfxer rT
Move from Fixed-Point Exception Register rT ¢::: O(XER)
extended form for mfspr rT, 1

To copy values from these registers into a GPR, the mfXxxinstruction should be
used, where xxx is either ctr, lr, or xer. Because the CTR and XER are always
32 bits in width, 64-bit PowerPC implementations will have the upper 32 bits of
the destination register cleared to 0 as a result of the mfctr or mfxer instruc­
tions.

Like the three mfxxx instructions, the mtxXxinstructions listed in Table 9-13 are
used to copy values into these SPRs from GPRs. On 64-bit PowerPC implemen­
tations, only the low-order 32 bits of the register are copied into the CTR or XER.

Table 9-13 User-Level Move to SPR Extended Forms

mtctr rS
Move to Count Register CTR ¢::: rS [~~;~]
extended form for mtspr 9, r S

mtlr rS
Move to Link Register LR ¢::: (rS)
extended form for mtspr S,rS

mtxer rS
Move to Fixed-Point Exception Register XER ¢::: rS [~3~]
extended form for mts pr 1, r S

Obsolete User-Level SPR Forms

In addition to the SPRs described earlier, the four other obsolete SPRs listed in
Table 9-14 have some sort of user-level access: the MQ the DEC, and the two
RTC registers. None of these registers (except for the DEC) are part of the Pow­
erPC architecture, but they are included on the 601 for compatibility with the
POWER architecture. No other PowerPC implementation will implement these
registers.

The MQ and the RTC registers exist only on the 601. At the user level, the MQ
can be both read from and written to, but the RTC registers can only be read
from.

System Register Instructions 165

§9.6 Supervisor-Level SPR Extended Forms

The DEC register is a special case. On POWER machines (and thus, on the 601),
user-level read access is allowed. Therefore, for POWER compatibility, the 601
allows read access to the DEC by specifying SPR #6 to the rnfspr instruction. In
the PowerPC architecture, this register is properly accessed (supervisor level
only) by specifying SPR #22.

Table 9-14 Obsolete User-Level Move from SPR Extended Forms

rnfdec rT
Move from Decrement Register rT<= (DEC)
extended form for mfspr rT,6
user-level on POWER and 601 only

rnfrnq rT
Move from MQ Register

rT<= (MQ)
extended form for mfspr rT,O
defined on POWER and 601 only

rnfrtcl rT
Move from Real Time Counter Lower rT<= (RTCL)
extended form for mfspr rT,5
defined on POWER and 601 only

rnfrtcu rT
Move from Real Time Counter Upper

rT<= (RTCU)
extended form for mf s pr r T, 4
defined on POWER and 601 only

As mentioned earlier, the only obsolete SPR that allows user-level read access is
the MQ resister.

Table 9-15 Obsolete User-Level Move to SPR Extended Forms

rntrnq rS
Move to MQ Register
extended form for mtspr 0, r S
defined on POWER and 601 only

MQ <= (r5)

The rntrnq extended form is used to copy a new value into the MQ.

9.6 Supervisor-Level SPR Extended Forms

Table 9-16 lists the many supervisor-level SPRs that can be accessed via the
rnfspr and rntspr instructions. The majority of programmers will never need to
access these registers, so this section can be safely skipped.

166 Chapter 9

Supervisor-Level SPR Extended Forms

Table 9-16 Supervisor-Level Move from SPR Extended Forms

mfasr rT
Move from Address Space Register
extendedformformfspr rT,280 rT ¢::: (ASR)
supervisor-level instruction
64-bit implementations only

mfdar rT
Move from Data Address Register rT ¢::: (DAR)
extended form for mfspr rT, 19
supervisor-level instruction

mfdbatl rT,n
Move from Data BAT Register Lower rT ¢::: (DBATL[n])
extended form for mfspr rT,537+2*n
supervisor-level instruction

mfdbatu rT,n
Move from Data BAT Register Upper rT ¢::: (DBATU[n])
extended form for mfspr rT, 536+2 * n
supervisor-level instruction

mfdec rT
Move from Decrement Register rT ¢::: (DEC)
extendedformformfspr rT,22
supervisor-level instruction

mfdsisr rT
Move from DSISR rT ¢::: (DSISR)
extendedformformfspr rT,18
supervisor-level instruction

mfear rT
Move from External Access Register rT ¢::: (EAR)
extended form for mfspr rT,282
supervisor-level instruction

mfibatl rT,n
Move from Instruction BAT Register Lower rT ¢::: (IBATL[n])
extendedformformfspr rT,529+2*n
supervisor-level instruction

mfibatu rT,n
Move from Instruction BAT Register Upper rT ¢::: (IBATU[n])
extended form for mfspr rT, 528+2 * n
supervisor-level instruction

mfpvr rT
Move from Processor Version Register rT ¢::: (PVR)
extended form for mfspr rT,287
supervisor-level instruction

mfsdrl rT
Move from Storage Descriptor Register 1 rT ¢::: (SDR1)
extended form for mfspr rT,25
supervisor-level instruction

System Register Instructions 167

§9.6 Supervisor-Level SPR Extended Forms

mfsprg rT,n
Move from Special Purpose Register Gn rT <= (SPRG[n])
extended form for mfspr rT,272+n
supervisor-level instruction

mfsrrO rT
Move from SavelRestore Register 0 rT<= (SRRO)
extended form for mf s pr r T, 2 6
supervisor-level instruction

mfsrrl rT
Move from SavelRestore Register 1 rT <= (SRRl)
extended form for mfspr rT, 2 7
supervisor-level instruction

The Move To SPR forms listed in Table 9-17 are the same as the Move From forms
with one exception: there is no instruction provided to write to the PVR. The
PVR is a read-only register, so it makes no sense to write to it (processor
upgrades cannot be performed in software).

Table 9-17 Supervisor-Level Move to SPR Extended Forms

mtasr rS
Move to Address Space Register
extended form for mtspr 280, r S ASR<= (r5)
supervisor-level instruction
64-bit implementations only

mtdar rS
Move to Data Address Register DAR<= (r5)
extended form for mtspr 19, rS
supervisor-level instruction

mtdbatl n,rS
Move to Data BAT Register Lower DBATL[n] <= (r5)
extended formformtspr 537+2*n,rS
supervisor-level instruction

mtdbatu n,;r:S
Move to Data BAT Register Upper DBATU[n] <= (r5)
extendedformformtspr 536+2*n,rS
supervisor-level instruction'

mtdec rS
Move to Decrement Register DEC <= (r5)
extended form for mtspr 22, r S
supervisor-level instruction

mtdsisr rS
Move to DSISR DSISR <= (r5)
extended form for mtspr 18, rS
supervisor-level instruction

168 Chapter 9

Obsolete Supervisor-Level SPR Instructions

rntear rS
Move to External Access Register EAR<= (rS)
extended form for mtspr 282, rS
supervisor-level instruction

rntibatl n,rS
Move to Instruction BAT Register Lower IBATL[n] <= (rS)
extended form for mtspr 529+2*n,rS
supervisor-level instruction

rntibatu n,rS
Move to Instruction BAT Register Upper IBATU[n] <= (rS)
extendedformformtspr 528+2*n,rS
supervisor-level instruction

rntsdrl rS
Move to Storage Descriptor Register 1 SDRI <= (rS)
extended form for mts pr 25, r S
supervisor-level instruction

rntsprg n,rS
Move to Special Purpose Register Gn SPRG[n] <= (rS)
extendedformformtspr 272+n,rS
supervisor-level instruction

rntsrrO rS
Move to Save/Restore Register 0 SRRO <= (rS)
extended form for mtspr 26, rS
supervisor-level instruction

rntsrrl rS
Move to Save/Restore Register 1 SRRI <= (rS)
extended form for mtspr 27, r S
supervisor-level instruction

Obsolete Supervisor-Level SPR Instructions

The two obsolete SPRs listed in Table 9-18 have supervisor write access only­
the RTC registers.

Table 9-18 Obsolete Supervisor-Level Move from Extended Forms

rntrtcl rT
Move to Real Time Counter Lower
extended form for mtspr rT,20 RTCL<= (rT)
supervisor-level instruction
defined on POWER and 601 only

rntrtcu rT
Move to Real Time Counter Upper
extendedformformtspr rT,21 RTCU <= (rT)
supervisor-level instruction
defined on POWER and 601 only

System Register Instructions 169

§9.7 Time Base Register Instructions

Note that the SPR ill used for these registers with the mtspr instruction is dif­
ferent from that used with the mfspr instruction. The IDs 20 and 21 are used
with mtspr, and IDs 4 and 5 are used with mfspr.

9.7 Time Base Register Instructions

Access to the Time Base Register (TBR) is provided by the mftb (Table 9-19) and
mtspr (Table 9-20) instructions. The mftb instruction is a user-level instruction
that provides read access to the TBR, and mtspr can be used at the supervisor
level to update the TBR.

Table 9-19 Move from Time Base Instructions

mftb rT,TBR
Move from Time Base Register

H(TBR = 268)
rT{::::: (TBRL)

else H(TBR = 269)
rT {::::: (TBRU)

The mftb instruction requires that a code be provided to specify which half of
the TBR is required, the upper or the lower half.

To make the mftb instruction easier to use by eliminating the need to remember
the code for the upper and lower portion of the TBR, two extended forms are
defined.

Table 9-20 Move from Time Base Extended Forms

mftb rT
Move from Time Base Register (Lower) rT{::::: (TBRL)
extended form for mftb r T, 268

mftbu rT
Move from Time Base Register Upper rT{::::: (TBRU)
extended form for mftb rT,269

The mftb form uses the same mnemonic as the instruction from which it is
derived. Assemblers differentiate between the two by examining the arguments
provided.

The two extended forms (based on mtspr) for updating the TBR are privileged
(Table 9-21). Given a source GPR, these instructions will copy the contents of the
register into the upper or lower portion of the TBR.

170 Chapter 9

Segment Register Instructions

Table 9-21 Move to Time Base Extended Forms

mttbl rS
Move to Time Base Register Lower TBRL <== rS [~d3~]
extendedformformtspr 284,rS
supervisor-level instruction

mttbu rS
Move to Time Base Register Upper TBRU <== rS [~d;~]
extended form for mtspr 285, rS
supervisor-level instruction

Because each half of the TBR is 32 bits wide, 64-bit PowerPC implementations
will only use the low-order 32 bits of the source register.

9.8 Segment Register Instructions

All 32-bit PowerPC implementations use Segment Registers instead of a Seg­
ment Table. These registers can be accessed at the supervisor level using the
instructions given in this section.

The mfsr and mfsrin instructions listed in Table 9-22 copy the contents of the
specified Segment Register into the specified target GPR. For mfsr, the SR is
specified by an immediate value, and for mfsrin, the SR is specified by the
upper four bits (bits 0:3) of the source register rB.

Table 9-22 Move from Segment Register Instructions

mfsr rT,SR
Move from Segment Register rT <== SR[SR]
supervisor-level instruction
32-bit implementations only

mfsrin rT,rB
Move from Segment Register Indirect rT <== SR[rB[O:3]]
supervisor-level instruction
32-bit implementations only

The mtsr and mtsrin instructions listed in Table 9-23 copy the contents of the
source GPR into the target Segment Register. The SR is selected in the same fash­
ion as the mfsr /mfsrin instructions: formtsr, the SR is specified by an imme­
diate value, and for mtsrin, the SR is specified by the upper four bits (bits 0:3)
of the source register rB.

System Register Instructions 171

§9.8 Segment Register Instructions

Table 9-23 Move to Segment Register Instructions

mtsr SR,rS
Move to Segment Register SR[SR] ¢= (rS)
supervisor-level instruction
32-bit implementations only

mtsrin rS,rB
Move to Segment Register Indirect SR[rB[O-3]] ¢= (rS)
supervisor-level instruction
32-bit implementations only

172 Chapter 9

Memory and
Caches

All computer programs and data must be loaded into memory before they can
be used. It is important to be aware of the memory structures because they can
have a significant effect (both positive and negative) on the performance of a
program.

10.1 Introduction

Computer users want an unlimited amount of fast memory. No matter how fast
computers may become, users always want something just a bit faster. A mem­
ory subsystem that can't keep pace with the processor slows the entire system
down.

Unfortunately, even a moderate (much less an unlimited) amount of fast memory
tends to be quite expensive. These same computer users who want gobs of mem­
ory typically don't want to pay a lot of money for it.

This conflict (speed versus $$$) causes a lot of problems for the computer
designer. The only good side to all this is that many of these problems have been
addressed over the years with a reasonable amount of success. The remainder of
this chapter is devoted to describing how memory systems work in general and
gives specific information about the PowerPC memory system.

Memory and Caches 173

§10.2 Memory and Cache Overview

10.2 Memory and Cache Overview

In an ideal computer system, the CPU-memory interaction would be as simple
as Figure 10-1. There would be a CPU, and a large store of memory, and they
would talk to each other. Whenever the CPU needed to access a storage location,
it would send a request to the memory store, which would handle the request
directly.

Figure 10-1 Simple Memory Model Showing Basic CPUIMemory Interaction

1 CPU 1---1 Memory 1
Many real-world issues, however, make this ideal a naIve expectation. The most
important of these real-world issues is cost.

Using the fastest available memory can result in a system that is either very
expensive or very limited (due to lack of memory). Using less expensive mem­
ory can result in a system too slow to keep pace with the processor. It would be
nice if there were some way of using a large amount of slow (and inexpensive)
memory that performed as if fast memory were used.

This is where caches come in. A cache provides a mechanism for increasing the
apparent speed of slow memory by using a small amount of fast memory. A
cache can be used to design a system with a large amount of slow memory that
still performs as if it had a much faster memory store available.

The performance of a cache varies greatly. In the best case, a program can run
almost entirely from the cache and the memory system will appear to be just as
fast as the cache. In the worst case, performance could be slightly worse than if
the cache were not present. Fortunately, in most cases, caches perform quite
well, and they significantly speed up memory accesses.

Memory Caches

The type of cache that we have been talking about so far is a memory cache. This
type of cache uses a small store of high-speed memory to cache data from main
memory (which is typically much larger and slower).

When the CPU needs to access memory, it sends the request to the cache. If the
cache can handle the request by itself, it does so and fulfills the memory request
without accessing main memory. If it cannot handle the request, it sends the
request to the main memory store and then passes the returned data along to the
CPU. Figure 10-2 illustrates this process.

174 Chapter 10

Other Types of Caches

Figure 10-2 Memory Organization with a Cache

I CPU I-I Cache I-I Memory I

Other Types of Caches

Memory caches aren't the only type of caches commonly found in computer sys­
tems. Creating a cache is a general technique that can be used to speed up many
types of access.

Disk Cache

A disk cache uses the computer's main memory as a cache for a slow I/O device,
like a hard disk or a CD-ROM drive.

Instead of the computer accessing the hard disk directly, as shown in Figure 10-3,

Figure 10-3 System with Simple MemorylDisk Interface

-[Memory

CPU

--I Hard Disk

... all hard disk accesses are sent to the disk cache, which handles the request
from memory (if possible) and only goes to the hard disk if necessary. This is
shown in Figure 10-4.

Figure 10-4 System with a Disk Cache between the CPU and Hard Disk

-I Memory III
~

CPU

Disk cache architectures typically differ from other types of cache architectures
in that the access time between the hard disk and memory is quite large (mem­
ory accesses are typically 1000 times faster than hard drive accesses). In this
extra time disk caches can utilize more complex (and presumably more accurate)
algorithms for deciding what belongs in the cache and what should be removed.

Memory and Caches 175

§10.3 Cache Architecture

Virtual Memory

Virtual Memory (VM) is similar to a disk cache in that it uses main memory to
cache accesses to a hard disk. However, the actual setup and operation of VM
differs greatly from a simple disk cache.

The interesting thing about VM is that it applies the concept of a cache in
reverse. The goal of VM (at least as originally implemented) was not to make
memory accesses faster, but to make more memory available. Using VM is
slower than using memory directly, because all accesses must go through the
extra stages of address translation, and they may need to access the hard drive.

Figure 10-5 shows VM in its most primitive form. It works by pretending that all
(or most) of main memory is actually just a cache for a portion of memory from
a secondary storage device like a hard disk.

Figure 10-5 Simplified Virtual Memory Organization

I CPU I-I Memory 1- Virtual Memory

Backing Store

Current virtual memory implementations are actually far more complex than
this overview would suggest. More detail is provided later in §10.7, "Virtual
Memory."

10.3 Cache Architecture

In computer science, a cache is a small area of fast storage that is used to tempo­
rarily store data that would normally be directly accessed from a large area of
slow storage. The terms small/large and fast/ slow are relative terms-there is
no requirement that the cache be particularly fast, only that it be faster than the
storage area that is being cached. Caches are commonly used to speed up
accesses to memory or to secondary storage devices like hard drives. For discus­
sion purposes, this chapter will always refer to a memory cache, that is, a cache
that is caching accesses to main memory.

A cache operates by handling all memory-read requests and checking to see if
the request can be handled with data in the cache. If so, then the data is returned
directly from the cache, without accessing the main memory. This is known as a
cache hit.

If the memory read request is not located in the cache, then the cache must
request the data from main memory. This is known as a cache miss. A cache miss
is slightly slower than accessing main memory directly because of the overhead
of the cache.

176 Chapter 10

Why Caches Work

Write requests are handled in a slightly different fashion. If the storage location
being stored to is already loaded in the cache, the cache updates its local copy
and then optionally sends the new data to main memory. If the cache sends the
new data to main memory, then the cache is referred to as write-through. If the
cache does not immediately pass the new data to memory, it is known as a write
back cache. Write back caches wait and send the updated cache data to memory
only when necessary.

If the storage location being stored to is not currently loaded in the cache, the
cache again has two options. It can read the requested data from memory and
then treat the access as a write hit, or it can send the write request directly to
main memory and have it bypass the cache entirely. If the cache fetches the block
on a write miss, it is known as a write allocate cache. Caches that pass the write
directly to memory are known as write around caches.

Why Caches Work

There is one small problem with caches: they require that the data already be in
the cache for the cache to be of any benefit. The cache needs to have some
method for analyzing past memory accesses and predicting future memory
accesses. Fortunately the principle of locality of reference allows caches to predict
reasonably well which data should be kept and which data should be removed
from the cache.

The principle of locality of reference states simply that there are two types of
reference locality for standard computer programs: locality in time (temporal
locality) and locality in space (spacial locality).

• Temporal locality implies that if an item is referenced, then it is likely
to be referenced again in the near future.

• Spacial locality implies that if an item is referenced, then items close
to that item are likely to be referenced again in the near future.

A cache can take advantage of temporal locality by timestamping each memory
reference made through the cache and discarding the oldest entry when the
cache is full and a new item needs to be added. This is commonly known as the
LRU (Least Recently Used) algorithm.

A cache can take advantage of spacial locality by defining a block size that is the
smallest unit that the cache will read from main memory. This will force the
bytes surrounding each reference to be read into the cache, thus making them
available for future accesses to the cache.

Memory and Caches 177

§10.3 Cache Architecture

How Caches Work

Figure 10-6 shows how a cache is typically arranged as a set of N cache lines,
each of which contains M bytes, where M is an integral number of words and N
is an integral power of 2. The overall cache size is thus N x M (N lines of M
bytes). Additionally, a cache line can be divided into an integral number of cache
sectors, although in many cases the line size and the sector size are the same.
Cache operations always affect an entire cache sector at a time.

Note that common terminology also includes the terms cache block and cache sub­
block, which are equivalent to the terms cache line and cache sector defmed earlier.
To make matters worse, sometimes block is used to mean sector. To eliminate any
confusion about this ambiguous terminology, the terms from the preceding
paragraph (line and sector) will always be used in this book. However, it is
important to be aware of these alternate terms because they may be used in
other documentation.

Figure 10-6 General Cache Organization

Tag Sector 1 Sector 2

N

In addition to the data that is being cached, each cache line must also contain
some housekeeping information: a cache line tag and a valid bit for each sector
in the cache line. The tag identifies the memory location that corresponds to each
cache line. The valid bit indicates whether or not the cache sector contains valid
data.

Hash Functions

A hash function is a simple algorithm that is used to associate memory
addresses with cache lines. When the cache needs to check for the presence of a
particular address, it takes the address and applies the hash function to deter­
mine which cache lines need to be searched.

178 Chapter 10

Cache Associativity

Because the hash function must be applied for every memory access, it is essen­
tial that it be trivial to compute. The majority of hash functions are simple bit
manipulations such as taking the upper or middle n bits of the address.

Figure 10-7 Effective Address Fields, as Interpreted by the Hash Function

I tag I hash key byte offset

The hash function that will be used in most of the following examples divides
the effective address into three fields: a tag, a hash key, and a byte offset. The hash
key is used to determine which cache lines to search and the tag is used to deter­
mine if the cache line contains the correct data. The byte offset is used to identify
the correct byte within the cache line after the cache line has been found.

Cache Associativity

The number and size of the cache lines is not enough to fully describe the cache
geometry. The associativity of the cache is an important parameter that greatly
affects how well the cache performs.

The associativity of a cache defines how the lines of the cache are grouped for
searching and replacing purposes. This grouping, while not necessary, is useful
for implementing high-speed caches because it limits the number of cache line
entries that need to be searched.

There are three types of cache line groupings: direct mapped, fully associative,
and n-way set associative.

The simplest cache is the direct mapped cache shown in Figure 10-8. This type of
cache has one cache line in each group, thus, after the hash function is applied to
the address, only one cache line needs to be checked. If that cache line contains
the address, then the desired data has been found; otherwise, the data is not
contained in the cache.

Figure 10-8 Direct Mapped Cache with Simple Hash Function

address:
I Iii I

tag select byte Tag

L I>·,,>, ,'"~no

Memory and Caches 179

§10.3 Cache Architecture

In any case, it only takes a check of one cache line in the cache to deternrine if the
cache contains the address. This makes the direct mapped cache the easiest type
of cache to implement.

One potential problem with direct mapped caches is that the cache can be under­
utilized if the hash function does not mesh well with the access pattern for the
data being cached. If many addresses hash to the same cache line, there can be a
large number of cache misses even though there are unused cache lines in the
cache. This is a worst-case scenario, and, in general, this type of cache works
reasonably well for memory caches.

The opposite end of the spectrum from a simple direct mapped cache is the fully
associative cache illustrated in Figure 10-9. This organization allows the data for
an address to be stored anywhere in the cache. As a result, the cache is com­
pletely utilized before it needs to overwrite any of the cache lines.

Figure 10-9 Fully Associative Cache (No Hash Function Necessary)

address:

tag

This organization of the fully associative cache implies a few very crucial things.
First, because an address can be located anywhere in the cache, the entire cache
needs to be searched to deternrine if the address is in the cache or not. For a disk
cache (where there's plenty of time available to implement a complex algo­
rithm), this may be acceptable. For a memory cache, however, there isn't enough
time to search sequentially through the cache lines, and the additional hardware
necessary to perform a parallel search would quickly become unmanageable for
a reasonably-sized cache.

The second important implication for a fully associative cache is that it requires
some sort of line replacement algorithm to decide which cache line to discard when
the cache is full and a new line needs to be added. This algorithm can also cost
time because all of the cache lines may need to be analyzed to deternrine which
one is the least likely to be used soon. A direct mapped cache doesn't need a line
replacement algorithm because the data is allowed to reside in only one line and
that is the line that needs to be replaced.

Because of the additional complexity needed to find and replace the cache lines,
fully associative caches are not typically used for memory caches. Fully associa-

180 Chapter 10

Line Replacement Algorithms

tive caches are more common with disk caches or virtual memory systems
where the difference between the memory and the secondary storage access
times is large.

There is fortunately a happy medium between the mindless simplicity of the
direct mapped cache and the unmanageable complexity of the fully associative
cache. In between these two extremes is the n-way set associative cache illustrated
in Figure 10-10.

A set associative cache maps the cache into distinct sets, each of which contains
n cache lines. When data needs to be accessed from a cache, the address is
hashed, and then all n of the cache lines in the target set are searched in parallel
for the address.

Figure 10-10 N-way Set Associative Cache with Simple Hash Function

I :»:;;(;;;;1 I
tag select byte ,---_'U---'ag=----,-----______________ ----,

Typical values for n are 2 and 4. Studies have shown that increasing n above 4
results in small performance benefits and greatly complicates (and thus, tends to
slow down) the cache search circuitry.

By reducing the number of cache lines that need to be searched in parallel to 4 or
less, the set associative cache organization makes the search circuitry reasonable
to implement and allows the cache size to be reasonably large without affecting
the search time.

It should be noted that the definition for an n-way set associative cache is actu­
ally general enough to encompass the direct mapped and fully associative cache
organizations. A direct mapped cache is simply a set associative cache with
n = 1, and a fully associative cache is a set associative cache with n = N (where N
is the number of cache lines).

Line Replacement Algorithms

The n-way set and fully associative caches require some sort of replacement
algorithm to determine which cache line to replace when the cache (or set) is

Memory and Caches 181

§ 10.3 Cache Architecture

completely occupied. Of the various possible strategies, two are commonly
used:

• Least Recently Used (LRU)

• Random

The LRU algorithm checks the timestamps and chooses the cache line that was
accessed least recently. The idea for this algorithm is based on the principle of
temporal locality mentioned earlier. The more recently used cache lines are more
likely to be used again soon, so the cache hit rate should be least affected by
removing the least recent cache line.

The Random algorithm merely picks a random cache line to replace. Oddly
enough, cache simulations have demonstrated that large caches using the Ran­
dom algorithm have hit rates almost identical to rates of similar caches using the
LRU algorithm. Another benefit of the Random algorithm is that it is far simpler
to implement than the LRU algorithm.

Split Caches

When the processor accesses memory, it generally knows whether the memory
being accessed is program data or program instructions. It knows the difference
because it generates all of the instruction references (when it performs instruc­
tion fetches), and it assumes that all program references to memory are data ref­
erences.

This allows the processor to have two separate caches: one for data and another
for instructions. This type of cache organization is known by various names: split
cache, dual cache, or Harvard architecture cache. This cache organization is differ­
ent from the unified or mixed cache, where all of the memory (whether accessed
as instruction or data) is stored in a single cache. In this book, the terms split
cache and unified cache refer to these two cache architectures.

The advantage of a split cache is that the instruction cache can be architected to
better handle instruction accesses, and the data cache can be architected to better
handle data accesses. For example, instructions are read-only, so the instruction
cache doesn't need to worry about recording and flushing changes out to the
next level of memory, because modifications to instruction data aren't allowed.
A processor could also implement a separate data path to each of the caches, so
that an instruction and a data access could be handled in parallel.

The disadvantage of split caches is the amount of cache that is allocated for
instructions and data is fixed in hardware. A small loop of code that accesses a lot
of data will fully utilize the data cache but will underutilize the instruction cache.

Split caches are also bad for self-modifying code. When the program loads the
instructions so that it can modify them, the processor treats the memory access
as a data access, thus the instructions enter the data cache. This may produce

182 Chapter 10

Multiple Cache Levels

two copies of the instructions: one in the instruction cache (for execution) and
another in the data cache (for modification). When the program modifies the
instruction, only the data cache is updated. The next time the updated instruc­
tion needs to be executed, old data from the instruction cache may be used, pro­
ducing unexpected results.

Fortunately, this isn't a major concern for most people because self-modifying
code is considered a Bad Thing for many other reasons. Hardware checks could
be added, but because self-modifying code is frowned upon by the computer
science community, it is not worth the effort. A software solution is to flush the
instruction cache whenever instructions are modified, but flushing the cache
tends to negatively affect performance.

Multiple Cache Levels

Not surprisingly, there can be many levels of caches in a particular system. For
example, Figure 10-11 shows how a small amount of very fast memory on the
processor could cache data from another cache of fast external memory which,
in tum, is caching data from a large store of slow memory.

Figure 10-11 Memory Hierarchy with Multiple Caches

I CPU I-I L1 Cache I-I L2 Cache I-I Memory I
To differentiate between levels of caches, the terms "Ll cache," "L2 cache," and
so on, are used. The Ll cache is the cache closest to the processor, and as caches
become progressively further away from the processor, their level numbers
increase. For split caches, the numbering: "LlI," "LID," "L2I," "L2D," ... is com­
monly used to denote the instruction and data caches at each cache level.

Performance analysis of programs using multi-level caches quickly becomes
quite complex. In general, programmers tune their code by conceptualizing a
single-level cache, and the results carry over fairly well.

Cache Coherency

One problem with caches arises because multiple copies of the same data are
now in memory: the original in main memory and all the copies in the caches.

If the processor is the only device accessing memory, then there is no problem
because the processor always accesses memory through the cache. When
another device is added that accesses memory, there can be problems with old or
stale copies of the data sitting in memory or in one of the caches.

Consider an output device like a display which reads the screen image directly
from a screen buffer in memory. If the cache uses a write back write policy, then

Memory and Caches 183

§10.4 PowerPC Cache Geometry

new data written to the screen buffer will be stored in the cache and the output
device will be reading stale data from memory. Write through caches do not
exhibit this problem.

An input device causes another problem for caches. If a device is writing new
data to an already cached storage location, the cache will have no way of know­
ing that it contains stale data. A processor read from this location will get the old
value from the cache instead of the current value from memory. Solutions to this
problem include marking certain memory pages as uncacheable or requiring the
input device to flush the cache containing the address that was written to.

Multi-Processor Systems

The cache coherency problem becomes even more acute when multiple proces­
sors are accessing the same data. One processor can reach into main memory
and get an old data value because another processor has updated the value in its
caches, but hasn't yet sent the changes back to main memory.

Two standard mechanisms handle multi-processor coherency. The first, known
as directory based, involves using a directory that is shared by all of the processors
in the system.

The other mechanism for coherency is called snooping. This protocol requires
that each cache be connected to a common bus so that they can monitor or snoop
all memory accesses to determine if they have a copy of a shared memory block.
Most processors that snoop have an extra read port that is used exclusively for
snooping so that the snooping operation does not interfere with the normal
cache operation-the processor is interrupted only when a coherency problem
needs to be addressed.

The keys to maintaining coherency are that each cache must insure that it has the
most recent copy of the data when it needs to perform a read, and each cache
must have exclusive write access when it needs to perform a write. On a write,
the cache may either broadcast the new data to the other caches, or it may simply
inform them that they need to invalidate their local copy of the data. The former
technique is known as write broadcast, and the latter is called write invalidate.

10.4 PowerPC Cache Geometry

The PowerPC ISA does not specify such implementation details as the cache
organization, but it does outline a set of assumptions that the programmer may
safely make when dealing with the processor's caches. It also provides a set of
instructions that provide basic cache control.

According to the PowerPC ISA, the programmer should assume that the proces­
sor has a split (instruction/ data) cache, and that the processor will not automat-

184 Chapter 10

Caches in the PowerPC 601

ically keep the instruction cache consistent with data written via the store
instructions (that is, with the data cache).

Caches in the PowerPC 601

The 601 has a unified 32K, eight-way set associative cache. The cache geometry
is summarized as:

• 64 cache sets with 8 cache lines per set
• 64 x 8 = 512 cache lines with 64 bytes per line
• Two 32-byte sectors in each cache line

The main difference between the 601 cache and the "standard" PowerPC cache
structure is that the 601 has one unified cache instead of split instruction/ data
caches.

10.5 PowerPC Cache Coherency

The caches keep track of the data in the cache by recording the MESI state for
each sector. The term "MESI" comes from the four allowable states for each sec­
tor: Modified, Exclusive, Shared, or Invalid. These states are defined as:

• A Modified sector contains valid data that has been changed with
respect to main memory. The sector is valid only in this cache.

• An Exclusive sector is valid in this cache only, and that is consistent
with main memory.

• A Shared sector is valid in this cache and at least one other cache in
the system. Because the sector is shared it must be consistent with
main memory.

• An Invalid sector does not exist in the current cache.

The MESI information is automatically maintained by the hardware in the Pow­
erPC processors, so there is little need for user-level programs to be aware of it.
A supervisor-level program can control the allowable memory accesses by set­
ting the WIMG bits for memory blocks or pages. These bits are described later in
§10.9 "PowerPC Memory Access Modes."

10.6 PowerPC Storage Control Instructions

The instructions described in this section give the programmer control over the
processor caches and over how loads and stores are seen by external devices.
There is also one instruction (not part of the PowerPC specification) that is
defined on the 601 for POWER compatibility.

Memory and Caches 185

§10.6 PowerPC Storage Control Instructions

Data Cache

The instructions listed in Table 10-1 provide control over the processor's data
caches. If the processor has a unified cache architecture (like the 601), then these
instructions apply to the unified datal instruction cache.

The instruction descriptions in this section are simplified. The actual operation
of these instructions depends on whether the cache line is in the cache, the cur­
rent settings for the page containing the cached data, and the current system
coherency mode. Appendix A provides more detailed descriptions of these
instructions.

Table 10-1 Condition Register Logical Extended Forms

debf rA,rB flush the data cache line
Data Cache Block Flush

debi rA,rB
Data Cache Block Invalidate invalidate the data cache line
supervisor-level instruction

debst rA,rB store the data cache line to memory
Data Cache Block Store

debt rA,rB touch the data cache line
Data Cache Block Touch

debtst rA,rB touch (jar store) the data cache line
Data Cache Block Touch for Store

debz rA,rB clear the data cache line
Data Cache Block Zero

The Data Cache Block Flush (debf) instruction writes the cache line out to mem­
ory if it has been modified and then invalidates the cache line.

The Data Cache Block Invalidate (debi) instruction invalidates the cache line. If
the cache line was modified, the changes are discarded. The debi instruction
requires that the processor be in supervisor mode.

The Data Cache Block Store (debst) instruction writes the specified cache line out
to main memory.

The Data Cache Block Touch (debt) instruction gives a hint to the processor that
the specified cache line is likely to be loaded from in the near future. The proces­
sor may ignore this hint, or it may load the specified cache line.

The Data Cache Block Touch for Store (debtst) instruction is similar to the debt
in that it gives a hint to the processor, but it hints that the specified cache line is
likely to be stored to in the near future. As with debt, the processor may treat
this instruction as a no-op, or it may load the specified cache line. In no situation
does this instruction perform a store operation.

186 Chapter 10

Instruction Cache

The Data Cache Block Zero (dcbz) instruction sets all of the bytes in the specified
cache line to O.

Instruction Cache

If the processor provides a separate instruction cache, the instruction in Table 10-2
can be used to invalidate the cache. As with the data cache descriptions, the
description in this section is somewhat simplified. A more thorough description
is given in Appendix A.

Table 10-2 Condition Register Logical Extended Forms

icbi rT,rA
Instruction Cache Block Invalidate

invalidate the instruction cache line

The Instruction Cache Block Invalidate (icbi) instruction invalidates the cache line
in the instruction cache. On implementations with combined instruction-data
caches, this instruction acts as a no-op.

Cache Synchronization

The two instructions listed in Table 10-3 provide a way of insuring that all cache
related operations have completed execution before dispatching any subsequent
instructions.

Table 10-3 Condition Register Logical Extended Forms

sync synchronize the data cache
Data Cache Synchronize

isync synchronize the instruction cache
Instruction Cache Synchronize

The sync instruction makes sure that all instructions that were dispatched
before the sync instruction appear to complete before the sync instruction com­
pletes. It also insures that no subsequent instructions are dispatched until after it
completes.

The isync instruction waits for all previous instructions to complete operation,
and then it discards any prefetched instructions. This forces all subsequent
instructions to be reloaded from storage.

Enforce In-Order Execution of I/O

The eieio instruction (Table 10-4) is used to control the execution of I/O
instructions as they are seen by external devices.

Memory and Caches 187

§ 10.7 Virtual Memory

Table 10-4 Condition Register Logical Extended Forms

eieio
Enforce In-Order Execution of I/O

wait for all loads and stores to
complete execution

The eieio instruction makes sure that all of the load and store instructions that
were dispatched before the eieio instruction are completed (that is, written out
to main storage) before any load or store instruction after the eieio instruction
is dispatched.

It acts as barrier in the instruction stream, preventing the processor from com­
bining loads or stores that are on different sides of the barrier. This is useful to
insure that the processor and the I/O device are executing the storage instruc­
tion in the correct order.

Obsolete Cache Instructions

The lone instruction in Table 10-5 is provided for compatibility with the POWER
architecture. Only the 601 will implement this instruction.

Table 10-5 Condition Register Logical Extended Forms

eles rT,rA
Cache Line Compute Size
defined on POWER and 601 only

rT ~ size of requested cache line

The Cache Line Compute Size instruction returns the size of the cache line spec­
ified by rA into rT. The value of rA can specify the data cache line size, the
instruction cache line size, or the minimum or maximum cache line size. The 601
returns 64 for all of these cache line sizes.

10.7 Virtual Memory

Virtual memory (VM) has evolved from a simple method of fooling the operat­
ing system to increase the address space, into a complex unit that manages
memory protection for multiple processes.

If you're comfortable with the concept of caching, then most of the basic under­
lying principles of virtual memory will be familiar. One potential source of con­
fusion is the difference in terminology between caches and VM. These
differences are mostly due to the separate evolution of the two concepts.

In VM, a "cache line" is referred to as a page or a segment, which is typically not
divided into sectors. A "cache miss" is called a page fault or address fault.

188 Chapter 10

What does VM provide?

What does VM provide?

Virtual memory was originally developed to provide a larger "virtual" primary
memory by using the main memory as a cache for a pre-allocated chunk of stor­
age on a secondary storage device, such as a hard disk.

As computers and operating systems became more complex, the basic goal of
VM changed from simply providing additional addressable memory to provid­
ing a suite of memory management functions, like memory protection and pro­
gram relocation.

Current VM systems typically provide:

• A separate virtual address space for each process.
• Demand paged memory so that only memory that is currently being

used is loaded.
• Protection to prevent a process from overwriting the memory

allocated to another process.

Operating system complexity has grown to the point where most OSs require
that these VM services be available.

HowVMWorks

The basic service of VM is to take a virtual address from an executing process,
verify that the address is valid for that process, and then translate the virtual
address into a physical address. The physical address can then be used to satisfy
the memory request of the process.

A virtual address is an address in the local address space of the process. A phys­
ical address is an address in the "real" address space of main memory. Storage
can only be accessed by using a real address, so all virtual addresses must be
translated to a physical address.

It's important to be aware that the virtual address space for a process doesn't
necessarily exist as a contiguous chunk of memory anywhere in the computer.
As Figure 10-12 shows, the virtual addresses are used to map the memory
accesses to the appropriate place in physical memory.

In the figure, memory is divided into pages, simply contiguous chunks of mem­
ory that the VM system uses for convenience. The size of a page varies depend­
ing on the implementation, but typical values range from 512 bytes to 16 Kb.

Memory and Caches 189

§1O.7 Virtual Memory

Figure 10-12 A Sample Virtual to Physical Address Mapping

Virtual
Addresses

(VA)

Physical
Addresses

(PA)

One thing that may not be apparent from Figure 10-12 is how VM uses memory
efficiently. Only the pages that are actually being used by this process are loaded
into physical memory-when a new page is needed, an unused block is dis­
carded so that the new page can be loaded. Because the new page can be loaded
anywhere in physical memory, the VM system is free to choose the page that is
least likely to be used.

Note how this also allows the physical address space to be shared by multiple
processes. Pages that are not being used by this process can be allocated to other
processes so that all of physical memory is being used efficiently.

Missing from Figure 10-12 is the structure that maps the relationship between
the virtual and physical pages. This structure is known as a page table. A page
table takes a virtual address page and translates it into a physical address page.
Figure 10-13 shows how the page table is used to arrive at the physical address.

In its simplest form, a page table is simply a large array that is indexed by the
upper bits of the virtual address. For example, in Figure 10-13 with 1000-byte
pages, the physical address of virtual address 4100 can be found by looking at
the fourth (4100/ 1000 = 4) entry in the page table, which in this case contains
the value 6000. The offset into the page, 100 can be added to the base address of
the physical page to obtain the physical address, 6100.

190 Chapter 10

Translation Lookaside Buffers (TLBs)

Figure 10-13 Mapping from a Virtual to a Physical Address via the Page Table

14100 I
I

0000

1000

2000

3000

4000 •
5000

6000

70001-----1

8000~--....I

What the programmer sees

Translation Lookaside Buffers (TLBs)

Page Table

6000

0000

1000

2000

3000

4000

5000

6000'""""'==

7000~=="'I

80001....---....1

What really happens

One point was glossed over in the previous section: the page table must be
stored somewhere in memory. Because the virtual address space (and thus, the
page table) can be quite large, it typically isn't feasible to cache the entire table.
In most systems, the page table resides in main memory and is paged in and out
of the cache like other memory accesses.

This can cause a serious performance problem because now a memory access
can potentially require two memory accesses: one to load the relevant portion of
the page table, and another to get the requested data. This is known as a double
page fault, and the double memory access penalty associated with it is generally
unacceptable.

Fortunately, the page table accesses can take advantage of the principle of local­
ity of reference by caching recent page table translations in a separate cache,
known as a translation lookaside buffer or TLB for short.

A TLB is a simple cache that stores associations between the recently used vir­
tual addresses and the corresponding physical address. In addition to the phys­
ical address, most TLBs also store information (like protection level) about the
page.

Memory and Caches 191

§10.8 PowerPC Memory Management

10.8 PowerPC Memory Management

Memory is managed in a similar fashion for all PowerPC processors, but differ­
ences do exist between the 32-bit and 64-bit PowerPC implementations.

It is necessary to define a few terms before jumping into the address translation
mechanisms of the PowerPC. First of all, a page is defined as being 4Kb and a
segment is 256Mb for all processors, regardless of whether the processor is a 32-
or 64-bit implementation.

An effective address is an address as the program sees it. User-level programs
typically deal with effective addresses exclusively, and these programs never
need to worry about how the system translates this address.

A virtual address is a temporary address that the translation mechanism builds
as it is calculating the physical address. The virtual address never exists as an
entity because it is only needed for a short time.

A physical, or real, address is the address as it really exists in the computer's
memory. As mentioned above, a program rarely needs to be aware of the actual
storage location in memory, because all accesses are translated automatically.

Address Translation Overview

Two mechanisms present in PowerPC processors handle the translation from an
effective to a physical address. These mechanisms are known as Segmented
Address Translation and Block Address Translation (BAT). In addition, there is Direct
Address Translation, which is used only when the other translations are disabled.

Segmented Address Translation, the translation mechanism most commonly
used, supports two types of segments: direct-store and ordinary. For a direct-store
segment, the effective address is directly converted into an 1/ 0 address and
passed to the 1/ 0 subsystem. For an ordinary segment, the effective address is
translated into a virtual address, which is then translated into a physical address
before being used.

Block Address Translation is used when a range of pages need to be contiguous
in physical memory. This grouping of pages is technically known as a block, but
the term BAT area will be used instead to avoid confusion.

Direct Address Translation is used when the other translation mechanisms are
disabled. In these "translations," the effective address is the same as the physical
address, and no paging is performed.

When the memory management unit on a processor is given an effective
address, the address is passed simultaneously to both of the translation mecha­
nisms (if they are enabled), with the assumption that only one of them should

192 Chapter 10

Segmented Address Translation

successfully translate the address. If neither mechanism succeeds, then a storage
exception results. If both succeed, then the Block Address Translation is taken
over the Segmented Address Translation.

Segmented Address Translation

The Segmented Address Translation (sometimes referred to as Page Address
Translations) mechanism involves translating an effective address into a virtual
address, and then converting that virtual address into a physical or real address.
Figure 10-14 illustrates this process. To simplify the discussion, these addresses
will be abbreviated as EA (effective address), VA (virtual address), and RA (real
address).

I

Figure 10-14 Converting EAs into RAs Using Segmented Address
Translation

I segment I page I byte I EA

1
I segment I

table

L
VSID I page I byte I VA

I I
t

I
page I
table

l
I Real Page # I byte I RA

The EA is first divided into three fields: the segment portion, the page portion,
and the byte portion. The page and byte fields specify the page and the byte-offset
into the page of the address. These fields are always 16 bits and 12 bits, respec­
tively. The segment field occupies the remaining bits of the EA and specifies
which 256Mb segment to use. Thus, the segment specification is 4 bits wide on
32-bit implementations and 36 bits wide on 64-bit implementations.

The segment information from the EA is then used to determine the Virtual Seg­
ment ID (VSID) of the address. The exact mechanism used differs for 32-bit and
64-bit implementations, but the general idea is that the segment specified in the
EA is used to index into a Segment Table (or register store), which returns the
appropriate VSID. If the segment table identifies the segment as a direct-store
segment, then the address translation stops and the processor proceeds as
described later in IJDirect-store Segments."

Memory and Caches 193

§ 10.8 PowerPC Memory Management

Note that a complete VA is never really calculated because it is never needed. If
it were needed, a VA could be constructed by concatenating the VSID, the page,
and the byte-offset.

The VSID is then concatenated with the page from the EA to form the virtual page
number (VPN) to use as a look-up key into the Page Table. The page table returns
the real page number (RPN), which can then be concatenated with the EA's byte
field to construct the final RA.

32-bit Implementations

The Segmented Address Translation for 32-bit implementations deviates from
the general translation described earlier in two significant ways: the size of the
addresses and how the segment information is used to determine the VSID.

The EA is 32 bits wide, with a 4-bit Segment Register specification, a 16-bit page
specification, and a 12-bit byte offset. One important thing to note is that the
segment specification field contains the ID of a Segment Register (SR).

The 16 Segment Registers store information about the segment. For ordinary
segments, the SRs contain a 24-bit VSID, and two bits (Ks and Kp) that contain
the state storage key. The Tbit (bit 0) of the SR is always 0 for ordinary segments.
Figure 10-15 illustrates this structure.

Figure 10-15 Segment Register Structure

o 1 2 3 7 8 31

VSID

The 24-bit VSID from the Segment Register can then be concatenated with the
16-bit page specification and the 12-bit byte offset to produce the 52-bit virtual
address. As mentioned earlier, the VA is never actually built because only its
upper portion is needed. The upper portion of the VA is known as the virtual
page number (VPN) and consists of the VSID and the page.

64-bit Implementations

Not surprisingly, the Segmented Address Translation for 64-bit implementations
deviates from the general description similar to how the 32-bit implementations
do: by the size of the addresses, and how the segment information is used to
determine the VSID.

The EA is 64 bits wide, with a 36-bit effective segment ID (ESID) specification, a 16-
bit page specification, and a 12-bit byte offset. One important thing to note is that
the segment specification field contains the ESID that is used to index into the
Segment Table to find the segment table entry (STE) corresponding to this seg­
ment.

194 Chapter 10

Direct-store Segments

Each STE stores the same information about the segment that a Segment Regis­
ter would in 32-bit implementations. The only difference is that the stored VSID
is 52 bits wide instead of only 24.

The 52-bit VSID from the STE can then be concatenated with the 16-bit page
specification and the 12-bit byte offset to produce the 80-bit virtual address. As
mentioned earlier, the VA is never actually built because only its upper portion
is needed. The upper portion of the VA is known as the virtual page number
(VPN) and consists of the VSID and the page.

Direct-store Segments

A direct-store segment directly maps effective addresses into an external ad­
dress space, such as an I/O bus. Direct-store segments are provided mostly for
POWER compatibility, and their use is discouraged.

The value sent to the external storage controller depends on the PowerPC imple­
mentation. Thirty-two-bit PowerPC implementations send:

• A one-bit field that represents the storage access privilege.
• The low-order 29 bits from the appropriate Segment Register.
• The low-order 28 bits of the EA.

64-bit implementations send:

• A one-bit field that represents the storage access privilege.
• The 32-bit 10 field from the appropriate STE.
• The low-order 28 bits of the EA.

Many instructions-lwarx, Idarx, eeiwx, eeowx, stwex, and stdex-do not
make sense for direct-store segments, and will cause a Data Storage interrupt if
they are executed with an EA from a direct-store segment. Optionally, these
instruction may produce results that are merely boundedly undefined.

Other instructions-debt, debtst, debt, debi, debst, debz, and iebi-will
simply behave as no-ops if they are used with an EA from a direct-store seg­
ment.

Block Address Translation

Block Address Translation is used when a range of virtual addresses need to
map into real memory so that the physical addresses are contiguous. If a BAT
and a Segmented Address Translation both exist for a particular address, the
BAT takes precedence.

Memory and Caches 195

§10.9 PowerPC Memory Access Modes

o

o

Each range of addresses is known as a BAT area and is defined by the special
BAT registers. These registers contain the starting address (in both effective and
real address space) and the size of each BAT area.

The BAT registers are arranged as shown in Figure 10-16. There are two sets of
BAT registers, one set for translating instruction addresses (IBATs) and another
for data addresses (DBATs). For implementations with unified caches (like the
601), there is only one set of BAT registers that map to the IBAT registers. Each
set consists of four pairs of registers, numbered from 0 to 3. Each pair has an
upper and a lower register. The upper register, BATnU, contains the page index
of the EA, the length of the BAT area, and some state flags. The lower register,
BATnL, contains the real page number of the block, storage access controls, and
protection bits.

Figure 10-16 Block Address Translation Register (Upper/Lower) Structure

Upper BAT Register

[l~]m] nmm
BEPI [0 0 0 o[BL

Lower BAT Register

[~m~] nmm [~mm[~mm
BRPN [0 0 0 0 0 0 0 0 0 0 [WIMG [0 [PP [

Only certain sizes are allowed for BAT areas. The smallest valid size is 128Kb
and the largest is 256 Mb. BAT area sizes must be an integral power of 2.

Direct Address Translation

Direct Address Translation is the default translation used when all other address
translations are disabled. Direct Address Translation is basically the same as no
address translation.

When this address translation is used, no paging is performed and all stores to
the cache are write-through.

10.9 PowerPC Memory Access Modes

Both Segmented Address Translation and Block Address Translation provide
mode control bits that are used to specify the storage mode for all accesses to the
page (or block, for BAT).

196 Chapter 10

PowerPC 601 Access Modes

The PowerPC specification defines four mode control bits: W, I, M, and G. These
letters are abbreviations for Write Through, Caching Inhibited, Memory Coher­
ence, and Guarded Storage.

• If the Write Through (W) control bit is set, then all writes to the page
are written directly to main memory also. This forces the cache to be
consistent with main memory.

• Pages with the Caching Inhibited (I) bit set are not cached. All
memory accesses are passed through the cache directly to main
storage.

• The Memory Coherence (M) bit controls whether or not the
hardware should enforce the memory coherence protocols. It is
sometimes desirable to disable this bit when coherence can be
enfored more efficiently via software.

• Guarded Storage (G) is not well behaved with respect to prefetching.
For example, the storage could represent an I/O device that changes
regularly or has memory gaps that are invalid addresses.

Ignoring the G bit (which may be on or off), Table 10-6 lists the eight possible
combinations of the WIM bits. Of these eight modes, only six make sense
because the Wand I bits may not be set together.

Table 10-6 Interpretation of WIM access modes

W I M Description

0 0 a Data from this page may be cached.
Storage consistency is not enforced by hardware.

a a 1 Data from this page may be cached.
Storage consistency is enforced by hardware.

a 1 a Data from this page may not be cached.
Storage consistency is not enforced by hardware.

a 1 1 Data from this page may not be cached.
Storage consistency is enforced by hardware.
Data from this page may be cached.

1 a a Write operations must be passed to main memory.
Stora;;;e consistency is not enforced by hardware.
Data from this page may be cached.

1 a 1 Write operations must be passed to main memory.
Storage consistency is enforced by hardware.

1 1 a not allowed
1 1 1 not allowed

PowerPC 601 Access Modes

The 601 supports the W, I, and M control modes for pages but does not support
guarded storage (G).

Memory and Caches 197

§1O.1O PowerPC Lookaside Buffer Instructions

10.10 PowerPC Lookaside Buffer Instructions

Most PowerPC implementations will provide lookaside buffers for the common
address translation tables. The instructions described in this section provide the
programmer with some control over the contents of these buffers.

TLB Instructions

Because most PowerPC implementations will use a TLB to cache Page Table
entries, the standard TLB instructions listed in Table 10-7 are defined. Any Pow­
erPC processor that provides a TLB must provide mechanisms for invalidating
a TLB entry (tlbie) and invalidating the entire TLB (tlbia).

If an implementation does not implement a TLB, then these instructions will be
treated as no-ops.

Table 10-7 Condition Register Logical Extended Forms

tIbia
TLB Invalidate All Invalidate entire TLB.
supervisor-level instruction
this is an optional part of the PowerPC specification

tlbie rB
TLB Invalidate Entry Invalidate TLB entry containing (rB).
supervisor-level instruction
this is an optional part of the PowerPC specification

tIbsync
TLB Synchronize Wait for all pending TLB instructions
supervisor-level instruction to complete.
this is an optional part of the PowerPC specification

The tIbia instruction invalidates the entire contents of the TLB.

The tlbie instruction looks up the TLB entry associated with the effective
address contained in rB and invalidates that entry (if present).

The tlbsync instruction forces the processor to wait until all of the previously
executed tlbie and tIbia instructions from this processor have completed
execution on all other processors. Thus, this instruction stalls the current proces­
sor until the TLBs of all the processors are synchronized.

5LB Instructions

An SLB is defined on 64-bit PowerPC implementations that want to cache
entries of the Segment Table. Trying to execute the instructions listed in
Table 10-8 on a 32-bit implementation will result in an illegal instruction excep­
tion.

198 Chapter 10

SLB Instructions

If a 64-bit PowerPC implementation does not implement an SLB, then these
instructions will be treated as no-ops.

Table 10-8 Condition Register Logical Extended Forms

albia
5LB Invalidate All
supervisor-level instruction Invalidate entire SLB.
64-bit implementations only
this is an optional part of the PowerPC specification

albie rB
5LB Invalidate Entry
supervisor-level instruction Invalidate SLB entry containing (rB).
64-bit implementations only
this is an optional part of the PowerPC specification

The s lbia instruction invalidates the entire contents of the SLB.

The s lbie instruction looks up the SLB entry associated with the effective
address contained in rB and invalidates that entry (if present).

Memory and Caches 199

Pipelining

Although nothing in the PowerPC specification requires a pipeline, a pipeline is
an architectural feature commonly used to achieve high processor throughput. It
is important to understand the fundamentals of pipelining because many
advanced optimization techniques are based on taking advantage of pipeline
architecture to avoid pipeline conflicts.

11.1 What is a Pipeline?

A pipeline is an implementation technique that allows the execution of multiple
instructions to be overlapped in the processor. This means that at any time, the
processor may be in the middle of processing many instructions instead of just
one.

Pipelines take advantage of the fact that the execution of any instruction can be
broken into a set of stages that must be performed sequentially. For example,
instead of executing an instruction as one unit, a hypothetical processor could
divide instruction execution into five distinct stages, named simply stage 1
through stage 5 to avoid introducing unnecessary complexity and terminology at
this time. Figure 11-1 shows these stages.

Pipelining 201

§ 11.2 Basic Pipeline Functions

Figure 11-1 The Execution of an Instruction (at top) Can Be Conceptually
Broken Up into Distinct Stages (shown at bottom)

To execute an instruction, the instruction must pass through each of the stages in
order. Thus, the instruction passes from stagel ~ stage2 ~ ... ~ stageS, at which
point the instruction has completed execution and all the results have been writ­
ten to the proper places.

It's important to note in this execution scheme that after one stage of an instruc­
tion has completed execution, the instruction no longer needs the portion of the
processor dedicated to executing that stage. This means that stage is free for the
next instruction to use; the next instruction can begin execution before the first
instruction has completed. This overlapped execution is shown in Figure 11-2.

Figure 11-2 Overlapped Instruction Execution in a Pipeline

11121314151
11121314151

11121314151

11.2 Basic Pipeline Functions

This section describes a simple pipeline and its operation. It introduces various
terms and concepts that you need to understand before jumping in and tackling
a real-world pipeline implemented for various PowerPC processors.

The first step in implementing a pipeline is dividing the instruction execution
into discrete stages. This division doesn't come free; a certain amount of over­
head associated with the extra logic is required to control the flow of instructions
through the pipeline stages. The end result is that it actually takes longer for any
one particular instruction to execute from start to finish (commonly referred to
as the instruction latency) than it would on a properly implemented non-pipe­
lined implementation. However, this minor detriment is more than offset by the
overall increase in instruction throughput.

This comparison is shown in Figure 11-3.

202 Chapter 11

Basic Pipeline Functions

Figure 11-3 To Keep the Stages Synchronized, the Longest Stage (Stage 2 in
this Figure) Defines How Wide All the Stages Must Be

I 1 I 2

Note that the longest stage determines the length of time taken to execute each
stage. Stages that require less time finish early and waste time, so that all of the
stages remain synchronized.

Consider three instructions executing on a non-pipelined processor and a pipe­
lined procession. Instruction 1 is dispatched (that is, execution begins) at the same
time on both systems. Because of the reduced latency of the non-pipelined sys­
tem, the first instruction retires (completes) before the same instruction on the
pipelined system.

However, the second (and subsequent) instructions show the real advantage of
the pipelined architecture. In the non-pipelined system, the second instruction
must wait until the first one is completely done before it can begin execution, as
illustrated in Figure 11-4.

Figure 11-4 Three Sample Instructions in a Non-pipelined (above) and
Pipelined System (below)

The pipelined system doesn't need to wait before dispatching the second
instruction. It dispatches one instruction per cycle (ideally) and retires one
instruction per cycle after the pipeline has been filled, in a situation known as
"one instruction per cycle throughput." The term throughput refers to the num­
ber of instructions completed per cycle, ignoring the set-up time required to fill
the processor pipelines.

Pipelining 203

§ 11.2 Basic Pipeline Functions

Not surprisingly, the situation is actually more complicated than suggested so
far. Consider this code fragment:

add r3,r2,rl
add r3,r3,r4

In this case, we have a data dependency: the second instruction (r3 = r3 + r4)
depends on the result of the first instruction (r3 = r2 + rl). This is not a problem
in non-pipelined systems because we don't dispatch the second instruction until
the first instruction is completed. However, a pipelined implementation will
have to handle this condition gracefully or an incorrect value of r 3 will be added
to r4.

One simple way to handle this case is to stall the second instruction in the pipe
until the results of the first instruction are available, as shown in Figure 11-5.
This is less than ideal, but it's more important that the instructions execute prop­
erly than execute quickly (imagine a very fast divide operation that only some­
times gave the correct answer).

Figure 11-5 A Data Dependency Causing Two Stall Cycles

add r3,r2,rl

add r3,r3,r4

To minimize the impact of the stall, the pipeline can be set up so that it forwards
the results of the first instruction to the second instruction as soon as they are
available. The results of an instruction are typically calculated a few cycles
before the instruction is complete, so this can save a few cycles. The second
instruction doesn't have to wait for the results to be written to the register store
before continuing. This technique, known as data feed-forwarding, is illustrated in
Figure 11-6.

Figure 11-6 Data Feed-forwarding Can Eliminate Many Dependency Stalls

add r3,r2,rl

add r3,r3,r4

Of course, the best way to eliminate the stalls due to data dependencies is by
rescheduling the code so that there are independent instructions between the
load and use of the register. Known as instruction scheduling, this is covered later
in the chapters on instruction timing and resource scheduling.

204 Chapter 11

PowerPC 601 Pipeline Description

11.3 PowerPC 601 Pipeline Description

The 601's pipeline is, of course, much more complicated than a simple pipeline
with a few stages. The three basic pipelines in the 601 each handle a specific class
of instructions. In addition, a dispatcher takes the instructions to be executed
and passes them along to the appropriate pipeline for execution.

Coordinating and synchronizing these three pipelines complicates the simple
pipeline model considerably.

Functional Units of the 601

There are seven basic units in the 601's processor core:

• Fetch Arbitration Unit (FAU)
• Cache Access Unit (CAU)
• Dispatch Unit (DU)
• Integer Unit (IU)
• Floating-Point Unit (FPU)
• Branch Processing Unit (BPU)
• Data Access Queueing Unit (DAQU)

All instructions that are executed pass through the FA, CAU, and DU before they
are passed to the appropriate pipeline: BPU for branches, IU for integer and
load / store instructions, and FPU for floating-point instructions. The DAQU is a
special queueing unit that is used only by the store instructions.

The flow of instructions through the pipeline units is shown in Figure 11-7. Note
that the DAQU does not directly process instructions and is not in this figure.

Figure 11-7 Instruction Path through the 601's Pipeline

IU

__ F_'A_U_:--'.~I CAU

BPU

The flow of data through the pipeline units is shown in Figure 11-8. This figure
also includes the instruction flow from the previous figure. Here the DAQU has
been added to the data path between the IU and the CAU.

Pipelining 205

§ 11.3 PowerPC 601 Pipeline Description

Figure 11-8 Instruction (Thick Lines) and Data (Thin Lines) Paths in the 601

Fetch Arbitration Unit (FAU)

The FAU is responsible for determining which instructions need to be fetched
from memory. After the address of the next fetch group is generated, it is sent to
the CAU so that the instructions can be fetched from memory.

Cache Access Unit (CAU)

The CAU provides an interface between the processor core units and the mem­
ory system. The CAU responds to requests from both the FAU (for instruction
fetches) and the IU (for instructions that access memory).

Requests from the FAU are instruction groups that need to be loaded and dis­
patched. The results of these accesses are sent directly to the DU.

Requests from the IU are data load/ store requests. Store requests are sent to the
memory system, and load requests are sent to either the IU or FPU, as appropri­
ate.

Dispatch Unit (DU)

The DU is an eight-instruction queue from which instructions are dispatched to
the BPU, FPU, or IU. Up to three instructions (one to each unit) can be dis­
patched each cycle.

Integer Unit (IU)

The integer unit executes these instruction types:

• Integer arithmetic and logical instructions
• All load and store instructions (integer and floating-point)
• Condition Register instructions

206 Chapter 11

Floating-Point Unit (FPU)

• Special Purpose Register instructions
• Memory management instructions

The IU consists of a four-stage pipeline with an extra writeback stage for integer
load instructions.

Floating-Point Unit (FPU)

The FPU executes these instruction types:

• Floating-point arithmetic and compare instructions
• Floating-point store instructions

The FPU consists of a five-stage pipeline with an extra writeback stage for float­
ing-point load instructions.

Note that the FPU and the IU both handle floating-point store instructions. The
instructions must pass through both pipelines simultaneously.

Branch Processing Unit (BPU)

The BPU executes branch instructions by either resolving the branch and send­
ing the target address to the FAU, or by predicting the branch (using a static
prediction scheme), sending the address to the FAU, and then waiting until the
branch is resolved.

If the branch prediction is incorrect, the BPU is responsible for cancelling the
invalid instructions and initiating the fetch of the correct instructions.

Data Access Queueing Unit (DAQU)

The DAQU contains an Integer Buffer and a Floating-Point Store Buffer (ISB and
FPSB) that are used to buffer accesses to the memory unit when the cache is busy
or the data to be stored is not yet available. Each of these queues is one element
deep.

The 601 Fetch Arbitration Unit (FAU)

The FAU is responsible for determining the address of the next instruction group
to load from memory. This address is then sent to the CAU so that the instruc­
tions can be loaded and executed.

The address is calculated from either the:

• Mispredict Recovery address (from the MR stage of the BPU)
• Branch target address (from the branch in the BE stage of the BPU)
• Next sequential address

Pipelining 207

§11.3 PowerPC 601 Pipeline Description

These sources are listed in order of priority, so an MR address takes precedence
over a branch target address, and the next sequential address is only used as a
last resort.

There is only one stage in the FAU, the Fetch Arbitrate (FA) stage.

The 601 Cache Access Unit (CAU)

The CAU consists of the two stages, Cache Arbitration (CARB) and Cache
Access (CACC), shown in Figure 11-9. The CARB stage queues up all the cache
access requests and decides which one gets passed along to the CACC stage. The
CACC stage performs the cache access.

Figure 11-9 The Two Stages of the Cache Access Unit

~_C_A_R_B __ ~--~.~I CACC

Cache Arbitration (CARB)

During the CARB stage, all of the pending cache requests fight it out to deter­
mine which request gets sent to the CACC stage. The winner of this battle is
determined by choosing the request with the highest priority, because each type
of cache request has a different priority. These priorities are discussed in §12.6
"Cache Access Timings."

Cache Access (CACC)

The CACC stage is where the cache is accessed and the requested data is sent to
or retrieved from the cache.

After the data is loaded from the cache, it is forwarded to the appropriate part of
the processor. Instruction fetches are passed on to the Dispatch Unit, and load
operations are passed directly to the appropriate unit (either the IU or the FPU).

The 601 Dispatch Unit (DU)

The Dispatch Unit illustrated in Figure 11-10 is an Instruction Queue that can
hold up to eight instructions that are waiting to be dispatched. Each element in
this queue is considered a different stage of the DU, so there are effectively eight
stages, named IQ7 through IQO.

208 Chapter 11

The 601 Integer Unit (IV)

Figure 11-10 The Eight IQ Stages of the Dispatch Unit

from
cache

toIU
to BPU/FPU

The DU analyzes the instructions in the bottom half of the instruction queue
(IQ3 - IQO) and identifies the instruction type (branch, integer, or floating-point)
for each instruction. After the instruction types have been identified, the DU can
then dispatch one of each instruction type to the respective units.

The only restriction is that an integer instruction can only be dispatched from the
IQO position. This restriction simplifies the task of synchronizing the various
pipelines.

The 601 Integer Unit (IU)

The Integer Unit consists of five stages, only four of which are considered part of
the primary pipeline. The fifth stage is only used by integer load instructions.

Figure 11-11 shows the conceptual arrangement of the four primary stages and
the primary path most integer instructions use.

Pipelining 209

§1L3 PowerPC 601 Pipeline Description

Figure 11-11 The Primary Pipeline of the Integer Unit

the pipeline path for mteger loads is slightly different ahd is shown in
Figure 11-12. Floating-point loads are the same except that the FWL stage in
the FPU is used instead of the IU's IWL stage.

Figure 11-12 The Pipeline Usage for Integer Load Instructions

ID -I IE IWL

t
I
I

~ - --: ~--1 CAU

Integer Decode (ID)

The ID stage is where the integer instructions are decoded and the operands are
fetched from the GPRs. This stage is typically entered in the same cycle that the
instruction enters the IQO stage of the DU.

Integer Execute (IE)

The IE stage is where all of the arithmetic integer instructions are executed and
where the effective address for loads and stores is calculated.

The results of an instruction in IE can be forwarded to the instruction currently
in ID to prevent data dependency stalls in the IU.

Integer Completion (IC)

The IC stage indicates that the instruction has been committed, even though it is
not yet complete. This signals other execution units that the instruction is essen­
tially complete and needs only to write the results in the proper place.

The IC stage is always executed in parallel with another stage, usually the IWA
or CACC stages.

210 Chapter 11

Integer Arithmetic Writeback (IW A)

Integer Arithmetic Writeback (IWA)

The IWA stage is used by the arithmetic instructions to perform the writeback of
the calculated results into the GPRs.

Integer Load Writeback (IWL)

The IWL stage is used by the integer load instructions to write the loaded data
into the GPRs.

The 601 Floating-Point Unit (FPU)

There are six stages in the Floating-Point Unit, four of which are considered part
of the primary floating-point pipeline. One of the remaining two stages is an
additional instruction buffer, and the other is only used by floating-point load
instructions.

The four primary stages, and the buffer, are conceptually arranged as shown in
Figure 11-13. This figure shows the primary path that the majority of the float­
ing-point instructions use. Note that the buffer stage (F1) is only used if neces­
sary. If the FD stage is available, instructions skip F1 and go directly to FD.

FromIQ

"'= I Fl

Figure 11-13 The Primary Floating-Point Pipeline

~
~I FD H FPM H FPA H FWA

Figure 11-14 shows the pipeline path for floating-point loads. It's completely dif­
ferent from other floating-point operations because all load instructions (includ­
ing floating-point loads) are handled by the Integer Unit. The only FPU stage
used by floating-point loads is the FWL stage, which is used in much the same
way as the IWL stage is used for integer load operations.

Figure 11-14 Pipeline Flow for Floating-Point Load Instructions

ID ·1 IE FWL

+
I

I

~ - --: ~ --1 CAU

Pipelining 211

§ 11.3 PowerPC 601 Pipeline Description

Floating-Point Instruction Queue (Fl)

The FP1 stage is a one-instruction buffer used only if the FD stage is currently
occupied by a previous floating-point instruction. If the FD stage is available, the
instruction skips this stage and proceeds directly to PD.

Floating-Point Decode (FD)

The FD stage is where the floating-point instructions are decoded and any
required operands are fetched from the FP register store.

Floating-Point Multiply (FPM)

The FPM stage is where the Floating-Point Unit performs a 27 x 53 bit multiply
operation.

Double-precision floating-point instructions that involve multiplication (fmul,
fmadd, fmsub, fnmadd, fnmsub) require two cycles in this stage and may stall
subsequent floating-point instructions.

Floating-point divide operations require 16/30 cycles (for single- / double­
precision) in this stage.

Floating-Point Add (FPA)

The FPA stage is where the floating-point addition/ subtraction is performed.

Floating-Point Arithmetic Writeback (FWA)

The FWA stage is when most of the floating-point instructions write their results
back into the FPRs. The results are also made available to the instruction cur­
rently in FD, if necessary.

Floating-Point Load Writeback (FWL)

The FWL stage is used only by the floating-point load instructions to write the
data into the FPRs. If this data is required by the instruction currently in FD, then
the data is made available to that instruction simultaneously with the writeback.

The 601 Branch Processing Unit (BPU)

The BPU has a simple three-stage pipeline that is arranged as shown in
Figure 11-15.

212 Chapter 11

Branch Execute (BE)

Figure 11-15 Stages of the Branch Processing Unit

r---~I ____ B_E __ ~~----~·~I ____ B_W __ ~

MR

It's important to note that while all the branch instructions need to use the BE
stage, the MR and BW stages are only used if necessary. A non-conditional
branch that doesn't need to update the LR or CTR requires only one stage of
execution in BE.

Branch Execute (BE)

During the BE stage, the branch target address is calculated and conditional
branches are predicted (if necessary). If the branch is determined or predicted to
be taken, the branch also initiates a fetch for the instructions at the target
address. The FA stage for this fetch occurs in parallel with the BE stage.

Mispredict Recovery (MR)

The MR stage is when all conditional branches that needed to be predicted
remain until the branch is resolved. After the branch is resolved, the prediction
is determined to be either correct or incorrect.

Correct predictions require no action other than allowing the branch to leave the
MRstage.

An incorrect prediction requires that the MR stage purge all the incorrectly dis­
patched instructions and initiate a fetch of the correct instructions so that they
can be dispatched.

Branch Writeback (BW)

The BW stage is when the branch instructions stay until they are able to write
results back into the LR or CTR.

Not all branch instructions need to writeback results. Those that don't need to
update the LR or CTR skip the BW stage entirely.

The 601 Data Access Queueing Unit (DAQU)

The DAQU contains two buffers used to queue store instructions that have been
committed by the IU, but can't yet be written to memory because either the
cache is busy handling other requests, or the required data is not available from

Pipelining 213

§ 11.3 PowerPC 601 Pipeline Description

the FPU. These buffers are quite useful because they free the IE stage in the IU
and allow additional integer instructions to be processed.

There are only two stages in the DAQU; the Floating-Point Store Buffer (FPSB)
and the Integer Store buffer (ISB).

Floating-Point Store Buffer (FPSB)

The FPSB is used to queue one outstanding floating-point store instruction that
has completed in the IU but is either waiting for data from the FPU or waiting to
gain access to the processor cache.

Integer Store Buffer (ISB)

The ISB stage is used to queue one integer store instruction that has completed
in IU but is waiting to gain access to the processor cache so that it can write the
data to memory.

214 Chapter 11

PowerPC 601
Instruction Timing

This chapter gives an overview of the instruction timings for the PowerPC 601
processor. It's important to note that the timings given here do not take into
account the conflicts that might arise when multiple instructions need to use the
same processor resource. This resource conflict problem is covered in Chapter
15, "Resource Scheduling."

12.1 Reading the Timing Tables

Two types of timing tables will be used in this chapter. The first type shows the
timing for a single instruction and identifies the number of cycles that the
instruction will spend in each pipeline stage. Here's an example of a timing table
for a generic integer instruction.

I #ofCyc1es 1 1 1

I Stages ID IE
IC

IWA

This instruction spends one cycle in ID, followed by one cycle in IE, and then
another one cycle simultaneously in both the IC and IWA stages. The overall
latency (from start to finish) for this instruction is three cycles.

The second type of timing table shows the timing for a sequence of instructions
to demonstrate how the instructions interact with each other. Here's an example
of this type of timing table.

PowerPC 601 Instruction Timing 215

§12.2 Instruction Dispatch Timing

Cycle#: 1 2 3 4 5 6 7

cmp erfO,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

FA
IQ1

beq erfO,target
CARB

CACC BE MR - - -
MR

and rO,rO,r1
FA

CACC IQ2
IQO

IE
IC

CARB ID IWA
-

nand r2,r2,r3
FA

CACC IQ3 IQ1
IQO

IE
IC

CARB ID IWA

In this table, each row represents a different instruction and each column repre­
sents successive cycles. This makes it easy to identify which stage each instruc­
tion is in for each cycle of execution.

12.2 Instruction Dispatch Timing

All instructions that are executed must pass from the processor caches into the
dispatch buffers.

Retrieving Instructions from the Cache

The first stage of instruction execution is determining which instructions need to
be executed next. This task is accomplished by the Fetch Arbitration (FA) stage
of the Fetch Arbitration Unit (FAU).

After the address has been generated by FA, it is passed to the Cache Access Unit
(CAU), which arbitrates for the cache and then retrieves the data from the cache.
This is done in two stages, with Cache Arbitration (CARB) stage arbitrating, and
the Cache Access (CACC) stage retrieving data.

After the instruction reaches the Dispatch Unit, it is placed in one of the eight
Instruction Queue entries (IQ7 - IQO). The term Dispatch Stage, or DS, is some­
times used to refer to an instruction in the IQ buffer.

Thus, tne timing for an instruction passing through the initial pipeline stages
would be:

of Cycles: 1 1 1

Stages:
FA

CACC DS
CARB

As with most of the cache timings in this chapter, the CARB takes one cycle exe­
cuted in parallel with another pipeline stage (in this case, FA). The CACC stage
also takes only one cycle. Both of these are ideal timings that do not always hold
true. A complete discussion of Cache Access timings is in §12.6, "Cache Access
Timings."

216 Chapter 12

Instruction Dispatching

Instruction Dispatching

From the DS stage, the instruction is then dispatched to the appropriate execu­
tion unit: branches. to the BPU, integer instructions to the IU, and floating-point
instructions to the FPU. Because the 601 supports out-of-order dispatch, this dis­
patch process is more interesting than it may initially appear.

First of all, there are eight IQ buffer entries, but instructions can only be dis­
patched from the lower four IQ entries, IQ3 - IQO. After an instruction enters the
lower half of the IQ buffer, it is a candidate for dispatch. Dispatching follows
these rules:

• One integer instruction can be dispatched to the IU from IQO.
• One floating-point instruction can be dispatched to the FPU from

IQO-IQ3. If there are multiple floating-point instructions in the lower
half of the IQ buffer, the lowest one (closest to IQO) is dispatched.

• One branch instruction can be dispatched to the BPU from IQO-IQ3. If
there are multiple branch instructions in the lower half of the IQ
buffer, the one closest to IQO is dispatched.

A graphic representation of these rules is given in Figure 12-1.

Figure 12-1 Dispatching from the Lower Four of the Eight IQ Buffers

~
to BPU / FPU to IV

This gives a best case dispatch of three instructions per cycle. Note that these
dispatch rules are such that instructions are always executed in order with
respect to each execution unit. This means that all instructions from a particular
execution unit are executed in order with respect to other instructions from that
saine unit. However, instructions from other execution units may be executed
out of order with respect to these instructions.

A good way to demonstrate this is to analyze a sequence of instructions and
track which IQ stage they are in during each cycle. (The other pipeline stages are
omitted for clarity.) To help simplify this example, both of the branches in the
code sequence are assumed to be fully resolved and not-taken.

PowerPC 601 Instruction Timing 217

§12.2 Instruction Dispatch Timing

Cycle#: 1 2 3 4

fsubl (lQO) - - -
branchl (lQ1) - - -
addl IQ2 (lQO) - -
add2 IQ3 IQl (IQO) -
fsub2 IQ4 (IQ2) - -
fsub3 IQ5 IQ3 (IQll -
add3 IQ6 IQ4 IQ2 (IQO)

branch2 IQ7 IQ5 (IQ3) -

During the first cycle, the fsub! and the branch! instructions (shown in bold
with parentheses) are dispatched. The integer instruction add! cannot be dis­
patched because it is not in the IQO position.

In the second cycle, all the instructions shift down as far as they can. Now the
add! instruction is in IQO, so it can be dispatched. Two floating-point instruc­
tion candidates, fsub2 in IQ2 and fsub3 in IQ3, could be dispatched. The
fsub2 instruction is dispatched because it is in the lower IQ entry.

In the third cycle, all the instructions shift down again. The fsub3 instruction
shifts down two entries because fsub2 has been removed from the IQ. This
brings branch2 into the IQ3 position so that it can be dispatched. The add2 and
fsub3 instructions are also dispatched at this time.

In the fourth cycle, add3 enters IQO and is dispatched. Presumably, the instruc­
tions following branch2 would be in the lower half of the IQ buffer by now
and, thus, would also be candidates for dispatch.

Another way of viewing this same sequence of instructions is to watch the IQ
stages as the instructions pass through them.

Cycle#: 1 2 3 4

IQ7: branch2 - - -
IQ6: add3 - - -
IQ5: fsub3 branch2 - -
IQ4: fsub2 add3 - -
IQ3: add2 fsiIb3 (branch2) -
IQ2: addl (fsub2) add3 -
IQ1: (branch1) add2 (fsub3) -
IQO: (fsubl) (addl) (add2) (add3)

The instruction dispatching is identical to the earlier example, but here it is more
apparent that the instructions are being dispatched from the bottom half of the
IQ and that the integer instructions are dispatched only from the bottom (IQO)
position.

218 Chapter 12

Fixed-Point Instruction Timings

12.3 Fixed-Point Instruction Timings

The fixed-point, or integer, instructions are the easiest to time because the inte­
ger pipeline is simple and almost all of the instructions have the same timing.

Of the five stages in the IU pipeline, one (the IWL stage) is used only by integer
load instructions. This leaves four stages that are commonly used by integer
instructions: Integer Decode (lO), Integer Execute (IE), Integer Completion (IC),
and Integer Arithmetic Writeback (IWA).

Of these remaining four stages, the ID stage is almost always executed in paral­
lel with the IQO stage in the Dispatch Unit. The only time that integer instruc­
tions are not passed directly from IQO to ID is when the lO stage is currently
occupied by a previous instruction due to a pipeline stall.

The IC and IWA stages are also executed in parallel. As a result, the integer pipe­
line is effectively only three stages from decode to writeback. Almost all of the
integer instructions spend only one cycle in each stage, resulting in a three-cycle
latency for most instructions.

Integer Add and Subtract Instructions

All of the add and subtract instructions require one cycle in lO, IE, IC, and IWA.
The IC and IWA stages are executed in parallel so that the total latency is only
three cycles.

of Cycles

Stages ID

The Negate, Absolute Value, and Difference or Zero instructions are commonly
grouped with the add and subtract instructions because they all allow the Over­
flow Exception and Record bits to be set in the instruction encoding. These
instructions have the same timing as the add and subtract instructions.

Integer Multiply Instructions

The integer multiply instructions require one cycle in ID, either five, nine, or ten
cycles in IE, and a shared cycle in IC/lWA. The number of cycles spent in IE
depends on the instruction and the data that is being multiplied.

The Multiply Low Immediate (mulli) instruction always takes five cycles in IE.

of Cycles 1 5 1

Stages ID IE
IC

IWA

PowerPC 601 Instruction Timing 219

§ 12.3 Fixed-Point Instruction Timings

The length of time that the other multiply instructions spend in IE is dependent
on the data contained in rB. If the upper 16 bits of rB are all sign bits, then the
instruction spends five cycles in IE, otherwise it spends nine cycles. This means
that the lesser (in magnitude) of the two arguments should be placed in rB

because there is a potential savings offour cycles if _215 :s; (rB) < 215_1.

#ofCycles 1 5/9 1

Stages ID IE
IC

IWA

For the Multiply High Word Unsigned instruction, the timing is the same except
that ten cycles will be spent in IE if the high-order bit of rB is a '1'.

of Cycles 1 5/9/10 1

Stages ID IE
IC

IWA

Integer Divide Instructions

The integer divide instructions require one cycle in 10, 36 cycles in IE, and a
shared cycle in IC/IWA.

#of Cycles 1 36 1

Stages ID IE
IC

IWA

From this information, it should be apparent that the integer divide instructions
should be avoided whenever possible.

Integer Boolean Instructions

The Boolean logic instructions (and the extend sign and count leading zeros
instructions) need one cycle in each of the ID, IE, and IC/IWA stages.

#ofCycles 1 1 1

Stages ID IE
IC

IWA

Shift, Rotate, and Mask Instructions

All the shift, rotate and mask instructions require the standard one cycle in the
10, IE, and IC/IWA stages.

#ofCycles 1 1 1

Stages ID IE
IC

IWA

220 Chapter 12

Integer Compare Instructions

Integer Compare Instructions

All integer compare instructions spend one cycle in ID, one cycle in IE, and a
shared cycle in IC/IWA. The results of the compare are written into the CR and
forwarded to the BPU during the IE stage.

I #of Cycles 1 1 1

I Stages ID IE
IC

IWA

Integer Load Instructions

The Integer Unit handles all of the load instructions, including the floating-point
load instructions. For the simple case where the operand being loaded does not
cross a doubleword boundary, only one cycle in IE / CARB is required.

of Cycles 1 1 1 1 I
Stages ID

CARB CACC
IWL I IE IC

The Load with Update forms have similar timings, except that the instruction
must also spend a cycle in IWA, which is in parallel with the cycle spent in IC

#ofCycies 1 1 1 1

CARB
CACC

Stages ID
IE

IC IWL
IWA

Timings for misaligned data loads are given in §12.8, "Abnormal Integer Condi­
tions."

Timings for the floating-point load instructions are the same as given above,
except that the FWL stage (in the FPU) is used for writeback instead of the IWL
stage. Timings for misaligned floating-point loads are given in §12.9, "Abnormal
Floating-Point Conditions."

Load Multiple and Load String Instructions

The Load Multiple and Load String instructions require one cycle in IE for each
register of data that is being loaded. If n registers are being loaded and the data
is word-aligned, then the instruction timing is:

of Cycles 1 1 1 n-2 1 1

CARB CARB

Stages ID
CARB CACC CACC CACC

IWL
IE IE IE IWL

IC IWL

Timings for misaligned Load Multiple and Load String accesses are given in §12.8,
" Abnormal Integer Conditions."

PowerPC 601 Instruction Timing 221

§ 12.3 Fixed-Point Instruction Timings

Integer Store Instructions

The Integer Unit also handles all of the store instructions, including all of the
floating-point store instructions. For the simple case where the operand being
stored does not cross a doubleword boundary, only one cycle in IE / CARB is
required.

The primary difference between the store and the load instructions (which were
discussed earlier) is that the store instructions do not need to write the results
into registers during a IWL stage.

I #of Cycles I 1 1 1

I Stages I ID
CARB CACC

IE IC

The Store with Update forms have similar timings, except that the instruction
must also spend a cycle in IWA, which is in parallel with the cycle spent in IC

#of Cycles 1 1 1

CARB
CACC

Stages ID
IE

IC
IWA

Timings for misaligned data stores are given in §12.8, "Abnormal Integer Condi­
tions."

Timings for the floating-point store instructions are significantly different and
are given later in §12.4, "Floating-Point Instruction Timings."

Store Conditional Word Instruction

The Store Conditional Word (stwcx.) is a special case of the integer store
instructions because it needs to update the EQ bit of CR field 0 to indicate
whether or not the store was successfully performed.

If the store is performed, then the timing is:

#ofCycies 1 1 1 1

CACC

Stages ID
CARB (IE) (IE)

IE IC IWA
IWA

If the store is not performed, the timing is:

#of Cycles 1 1 1

CACC

Stages ID
CARB (IE)

IE IC
IWA

222 Chapter 12

Store Multiple and Store String Instructions

In these timing tables, note that the stwcx. instruction makes use of the
resources in the IE stage while it is in IWA-this is how the instruction updates
the CR. This is indicated in the timing tables by placing the IE stage in parenthe­
ses for these cycles. The store conditional instruction isn't technically occupying
the IE stage, but it is preventing another instruction from performing useful
work in IE.

While the stwcx. instruction is in IWA, another instruction may be in IE, but it
will be stalled there until stwcx. leaves IWA and frees the IE resources.

Store Multiple and Store String Instructions

The Store Multiple and Store String instructions require one cycle in IE for each
register of data that is being stored. If n registers are being stored and the data is
word-aligned, then the instruction timing is:

#ofCycles 1 1 1 n-2 1

CARB
CARB

Stages ID
CARB CACC

CACC CACC
IE IE

IC
IE

Timings for misaligned Store Multiple and Store String accesses are given in §12.8,
"Abnormal Integer Conditions."

Move to/from SPR Instructions

The timings for instructions that move data to and from SPRs depend on the SPR
being accessed or updated.

#ofCycles 1 n m

Stages ID IE
IC

IWA

The values for nand m are determined by using the SPR as an index into this
table:

of Cycles
Move Special Purpose Registers

n m

1 1 to/from
CR, LR, elK, MQ XbR, PIR, DABR, bAR,

RTCL, DEC, SDR1, SR

2 1 to SPRGn, DSISR, DAR, RTCU, SRRO, SRR1

2 2 from MSR

2 4 from
SPRGn, DSISR, DAR, HIDO, HIDl, HID2,

RTCU, SRRO, SRR1

2 7 from PVR

2 11 to HIDO

2 12 to HID1

2 17 to HID2, MSR (when FPSCR[FEX]-O)

2 20 to MSR (when FPSCR[FEX]-l)

PowerPC 601 Instruction Timing 223

§12.3 Fixed-Point Instruction Tiinings

Of these 5PR instructions, the mtmsr instruction is unique in that it stalls in ID
until all previous instructions (in program order) have completed execution.

Cache Instructions

The timings for the cache instructions depend on many factors, including the
current ME51 state for the block being operated on, the current state of the pro­
cessor bus, and the speed of the bus (relative to the processor speed).

When the debt, dcbst, or debz instructions are used on a block in the ME51
"Modified" (M) state (for all three instructions) or the ME51 "Exclusive" (E) state
(dcbz only), they do not require access to the processor bus. The timings for
these operations are thus very similar to that of the load instructions. The only
difference is the absence of the IWL stage.

I # of Cycles I
Stages ID

The cache instructions that require access to the processor bus must spend at
least six cycles in the CACC/IC stage. These instructions are tlbi, sync, debi,
and debt and debst (when operating on E, 5, and I blocks), and debz (when
operating on 5 and I blocks).

Trap Instructions

The trap instructions spend one cycle in ID and IE and then spend either one
cycle or 22 cycles in IC/IWA, depending on whether or not the trap is taken. If
the trap is not taken (the common case), then the instruction takes one cycle in
IC/IWA; otherwise it requires 22 cycles.

ID IE

1/22
IC

IWA

System CalVRetum from Interrupt Instructions

Both of these instructions take two cycles in IE and either 13 or 16 cycles in ICI
IWA. The se instruction requires 16 cycles in IC/IWA.

#ofCycles I 1

Stages ID

224 Chapter 12

2

IE

16
IC

IWA

Floating-Point Instruction Timings

The rfi instruction requires 13 cycles in IC/IWA.

of Cycles 1 2 13

Stages ID IE
IC

IWA

12.4 Floating-Point Instruction Timings

The floating-point pipeline is somewhat more complex than the integer pipeline
due to both the increased number of stages and the inherent complexity of float­
ing-point calculations.

In general, there are four basic stages in the floating-point pipeline: FP Decode
(FD), FP Multiply (FPM), FP Add (FPA), and FP Arithmetic Writeback (FWA).
One additional stage, FP Load Writeback (FWL), is only used by floating-point
load instructions.

Also, a special, one-entry, Floating-point Instruction Queue (Fl) stage is used
only when an instruction needs to be dispatched to the FPU and the FD stage is
already occupied (because a previous instruction is stalling the pipeline).

Unlike the integer instructions, floating-point instructions do not enter FD (or
Fl) simultaneously with the cycle spent in the IQ buffer. The FD stage is not
entered until the cycle after the instruction has been dispatched, as the timing for
the f add instruction shows.

Cycles: 1 2 3 4 5 6 7

fadd fr1,fr1,fr2
FA

CACC IQO FD FPM FPA FWA
CARB

Note that all of the timings given in this chapter assume that the instructions are
being used under "normal circumstances": the instruction operands and results
are valid floating-point values that do not require pre-normalization or denor­
malization. For floating-point timings under these conditions see §12.9, " Abnor­
mal Floating-Point Conditions."

Floating-Point Add and Subtract Instructions

All the floating-point add and subtract instructions require one cycle in each of
the FD, FPM, FPA, and FWA stages. This is true for both single- and double­
precision operations.

of Cycles I
Stages FD FPM FPA FWA

PowerPC 601 Instruction Timing 225

§ 12.4 Floating -Point Instruction Timings

Floating-Point Multiply/Multiply-Accumulate Instructions

The floating-point multiply and the multiply-accumulate (such as fmadd and
fmsub) operations have a latency of either four or five cycles, depending on
whether the calculation is single- or double-precision.

Single-precision multiplies / multiply-accumulates are similar to floating-point
adds in that they require one cycle in each of the four major FPU stages.

I # of Cycles I
Stages FD FPM FPA FWA

Double-precision multiplies / multiply-accumulates require two cycles in each of
the FD, FPM, and FPA stages. This means that the next floating-point instruction
cannot enter FD immediately after the multiply (it must stall for one cycle). The
instruction is IJself-pipelining," so that many of the stages overlap in execution
and the resulting latency is only five cycles.

of Cycles 1 1 1 1 1

Stages FD
FD FPM

FPA FWA
FPM FPA

Floating-Point Divide Instructions

The floating-point divide instructions have very large latencies and stall the FPU
until the operation reaches the last cycle of FWA stage.

Single-precision divides have a latency of 18 cycles; in 14 of these cycles the FD,
FPM, FPA, and FWA stages are all occupied. A floating-point instruction imme­
diately following a divide instruction must stall for 16 cycles.

#ofCycies 1 1 1 14 1

FD
FD

Stages FD
FD

FPM
FPM

FWA
FPM FPA

FPA
FWA

Double-precision divides are just like single-precision divides except that they
hog up all four pipeline stages twice as long.

#ofCycies 1 1 1 28 1

FD
FD

Stages FD
FD

FPM
FPM

FWA
FPM FPA

FPA
FWA

Floating-Point Load Instructions

Floating-point load instructions are primarily handled by the Integer Unit,
except the load writeback stage is handled by the FWL stage of the FPU instead
of the IWL stage in the IU.

226 Chapter 12

Floating-Point Store Instructions

When the loaded operand does not cross a doubleword boundary, only one
cycle in IE / CARB is required.

#ofCycles 1 1 1 1

Stages ID
CARB CACC

FWL
IE IC

The floating-point Load with Update forms have similar timings, except that the
instruction must also spend a cycle in IWA, which is in parallel with the cycle
spent in IC

of Cycles 1 1 1 1

CARB
CACC

Stages ID
IE

IC FWL
IWA

Timings for misaligned floating-point loads are given in §12.9, II Abnormal Float­
ing-Point Conditions."

Floating-Point Store Instructions

Even though the Integer Unit handles most of the work for the floating-point
store instructions, the FPU must provide the properly formatted data that is to
be stored. For this reason, all floating-point store instructions propagate through
both the IU and the FPU pipelines.

If the operand being stored does not cross a doubleword boundary, only one
cycle in IE is required.

of Cycles 1 1 1 1 1 1

Stages
ID IE

IC
FPSB

CARB
CACC

(IU/CAU/DAQU) FPSB FPSB
Stages - FD FPM FPA FWA -
(FPU)

Note that the store instruction finishes in the integer pipeline first and then waits
in the Floating-Point Store Buffer (FPSB) until the data to be stored is ready in
the FWA stage of the floating-point pipeline. When the data is ready, the instruc­
tion arbitrates for the cache (CARB) and then stores the data.

The Store with Update forms have similar timings, except that the instruction
must also spend a cycle in IWA, which is in parallel with the cycle spent in IC

of Cycles 1 1 1 1 1 1

Stages
IC

CARB
ID IE IWA FPSB CACC

(IU/CAU/DAQU)
FPSB

FPSB

Stages - FD FPM FPA FWA -(FPU)

Timings for misaligned floating-point stores are given in §12.9, II Abnormal
Floating-Point Conditions."

PowerPC 601 Instruction Timing 227

§12.S Branch Instruction Timings

Move to FPSCR Instructions

The Move to FPSCR instructions (mtfsfi, mtfsf, mtfsbO, and mrfsbl) cause
the FPU pipeline to stall in FD for three cycles.

of Cycles 1 1 1 1

FO FO

Stages FD
FO FPM FPM

FPM FPA FPA FWA

Note that the Move from FPSCR instructions (mff sand mcrf s) do not stall in FD
and progress through the pipeline as normal floating-point instructions should.

Other Floating-Point Instructions

All other floating-point instructions require one cycle in each of the FD, FPM,
FPA, and FWA stages.

I # of Cycles I
Stages FO FPM FPA FWA

12.5 Branch Instruction Timings

Timing branch instructions is more difficult because it is very dependent on the
instructions around the branch. Because of this, the timings presented in this
section will involve not only the branch in question, but also some surrounding
instructions to provide some context for the branch.

Simple Branches

Because describing the timing for branch instructions is complicated, it is best to
start with a simple (non-conditional) branch that is always taken. Later sections
will deal with the more complicated conditional branches.

Branch, Branch Absolute

For simple (non-conditional) branches, the timing chart is quite simple. After the
instruction enters one of the lower four stages of dispatch (IQ3 - IQO), it enters
BE and is complete.

of Cycles

Stages
os
BE

However, this simple timing chart only gives a (very small) part of the picture.
Because the branch is passing control from one part of the code to another, the
timing of the surrounding instructions is also significant.

228 Chapter 12

Branch, Branch Absolute

The timing chart is also misleading because it implies that the branch instruction
requires one cycle, which is not exactly the case. If the branch is executed early
enough, it is likely to take zero cycles because the branch can be completely
"folded" out of the instruction stream.

For example, consider this sequence of instructions:

and rO,rO,rl
nand r2,r2,r3
b target
or r4,r4,r5

target:
nor r6,r6,r7
xor r8,r8,r9

Some Boolean instructions have been added to this sequence to provide context
and to fill up the pipeline to demonstrate the zero cycle branching. The register
assignments for these instructions can be ignored-they were chosen simply to
avoid resource conflicts.

This instruction sequence would have the following timing:

Cycle#: 1 2 3 4 5 6 7 8

and rO,rO,r1
FA

CACC
IQO

IE
IC

CARB ID IWA
- - -

nand r2,r2,r3
FA

CACC IQ1
IQO

IE
IC

CARB ID IWA
- -

b target
FA

CACC
IQ2

CARB BE
- - - - -

or r4,r4,r5
FA

CACC IQ3
CARB

- - - - -

- - - - - - - -...

nor r6,r6,r7
FA

CACC
IQO

IE
IC - - CARB ID IWA -

xor r8,r8,r9
FA

CACC IQ1
IQO

IE
IC

- -
CARB ID IWA

In this example, the And and Branch instructions are executed simultaneously in
the third cycle. When the branch is executed (during cycle 3), the target instruc­
tions enter the FA stage so that they will be fetched into the dispatch queue.

The end result is that the processor completes one Boolean instruction per cycle
starting with cycle 5: and, nand, nor, and then xor. The branch instruction has
been effectively removed from the instruction stream.

PowerPC 601 Instruction Timing 229

§ 12.5 Branch Instruction Timings

Branch with Link, Branch with Link Absolute

When the Link bit of a simple branch is set, the LR needs to be updated in the
BW stage. This takes a variable number of cycles because the writeback cannot
occur until all fixed-point instructions before the branch have completed.

#ofCycies 1 n

Stages
DS

BW
BE

As is the case with non-Link branches, this table doesn't give the full picture.

Consider the same code sequence given above with a Branch with Link instruc­
tion used instead of a Branch instruction.

Cycle#: 1 2 3 4 5 6 7 8

and rO,rO,rl
FA

CACC
IQO

IE
IC

CARB ID IWA
- - -

nand r2,r2,r3
FA

CACC IQl
IQO

IE
IC

CARB ID IWA - -
LR tag = nand - - - ID IE IC - -
hi target

FA
CACC

IQ2
BW BW BW

CARB BE - -

orr4,r4,r5
FA

CACC IQ3
CARB - - - - -

- - - -... - - - -
nor r6,r6,r7

FA
CACC

IQO
IE

IC - - CARB ID IWA -

xor r8,r8,r9
FA

CACC IQl
IQO

IE
IC - -

CARB ID IWA

In this case the branch instruction needs to stay in BW until the LR can be
updated, which can't occur until after the nand instruction completes. After the
nand instruction reaches the IC stage (cycle 6), the proper value can be written
into the LR (during the same cycle).

The mechanism for properly updating the LR involves tagging the branch
instruction to the previous integer instruction (in this case, nand), and tempo­
rarily writing the LR value into one of the two shadow LRs created for just this
purpose.

The interesting thing to note about this timing is that the non-branch instruc­
tions are not affected by the extra stages branch instruction requires to perform
the writeback.

Branch Tags & Bubbles

Before continuing with the timings for conditional branches, it is worth stepping
aside and covering branch tags and bubbles because they playa very important
role in branch timings.

230 Chapter 12

Types of Branch Tags

Branch tags are carried through the integer pipeline by either an integer instruc­
tion or a pipeline bubble. These tags synchronize the different pipelines so that
the instructions appear to complete in sequential order even though they are
dispatched out of order for performance reasons. Not every type of branch
needs to use tags: only conditional branches and branches that need to update
the LR or CTR generate tags.

In general, the branch tag is placed on the last integer instruction before the
branch, but there are situations when this is not possible and an imaginary inte­
ger instruction (called a bubble) must be created to carry the tag through the inte­
ger pipeline.

In this code sample:

and
nand
fadd
bl

rO,rO,rl
r2,r2,r3
frO,frO,frl
target

the tag for the branch instruction is carried by the nand instruction because it is
the last integer instruction before the branch.

Types of Branch Tags

There are three different types of branch tags:

• LR tags for branch instructions that update the LR.
• CTR tags for branch instructions that update the CTR.
• Predicted branch tags for conditional branches that are unresolved.

An integer instruction can carry only one of each type of tag. If a branch instruc­
tion needs to tag an integer instruction that already has a tag of that type, a bub­
ble will be created to carry the tag. The bubble will be placed between the integer
instruction and the branch.

LRlCTR Tags

LR and CTR branch tags are synchronization tags that tell the branch instruction
when it's time to update the LR or CTR, respectively. The tag is placed on the last
instruction that needs to execute before the register should be "officially"
updated by the branch processor.

To understand how the LR and CTR tags are used, consider the following non­
sensical code fragment, which uses LR tags (CTR tags are identical):

and
nand

rO,rO,rl
r2,r2,r3

PowerPC 601 Instruction Timing 231

§ 12.5 Branch Instruction Timings

bl target!

target!:
bl target2

target2:
or r4,r4,r5

The timing for this code would be:

Cycle#: 1 2 3 4 5 6 7 8

and rO,rO,rl
FA

CACC
IQO

IE
IC

CARB ID IWA
- - -

nand r2,r2,r3
FA

CACC IQl
IQO

IE
IC

CARB ID IWA
- -

LR tag-nand - - - ID IE IC - -

bI targett
FA

CACC
IQ2

BW BW BW
CARB BE

- -

- - - - - - - -...
LR tag =bubble - - - - - IE IC -

bI target2
FA

CACC
IQO

BW BW - -
CARB BE

-

- - - - - - - -...
or r4,r4,r5

FA
CACC

IDO
IE - - - - CARB ID

The first branch instruction enters BE during cycle 3. At this time, it adds an LR
tag to the nand instruction currently in IQl so that it knows when it's safe to
update the LR.

In cycle 5, when the second bl instruction tries to enter IQO, the processor real­
izes that there is no integer instruction to accept this instruction's LR tag (since
the nand instruction already has· one). A bubble is created to float through the
integer pipeline (with the tag) while the branch enters BE. When the bubble
reaches IC, the second branch instruction updates the LR.

Predicted Branch Tags

Predicted branch tags are completely different from the LR/ CTR tags in that
they are not pipeline synchronization tags. Rather, they are tags used internally
by the branch processor so that it can keep track of instructions before and after
a conditional branch.

These tags are used as a barrier in the pipeline between the nonspeculative
instructions before the branch (the instructions that must be executed regardless
of whether or not the branch is taken) and the speculative instructions after the
branch (the instructions that may need to be purged if the branch prediction is
incorrect). After the branch is resolved, the tag is removed along with any incor­
rectly dispatched instructions.

232 Chapter 12

Conditional Branches

The predicted branch tags are special because they are not allowed to progress
beyond the IE stage of the Ill. This stalls all of the speculative integer instruc­
tions in the ID stage. The BPU and FPU are a little more flexible because they
allow speculative instructions to progress through the pipeline.

It should be noted that, although a predicted branch tag is not allowed to
progress beyond the IE stage, the instruction that is carrying the tag can. In this
case, the tag will separate from the instruction so that the tag remains in IE while
the instructions continues through the pipeline.

Another implication of the fact that the branch tags stalls in IE is that there can
only be one unresolved conditional branch at a time. A second conditional
branch will stall in the IQ buffer.

Also, after an instruction is given a predicted branch tag, it is not allowed to
accept any other tags. This makes sense because tags for speculative instructions
(after the branch) should not be placed on nonspeculative instructions (the
instruction or bubble holding the predicted branch tag).

The next section covers conditional branches and uses these branch tags exten­
sively.

Conditional Branches

Conditional branches complicate matters because the branch instructions are
executed out of program order, and many times the processor is unable to deter­
mine if the branch will be taken or if it will fall through.

If the processor cannot figure out if the branch is going to be taken or not, the
branch is considered to be unresolved and must be predicted. The prediction
involves deciding whether or not the branch is likely to be taken. Because this
prediction is Simply a guess, it may be correct or incorrect. Correct guesses are
useful because the processor doesn't have to wait for the branch to be resolved
before continuing. However, the processor must have some way of cancelling
incorrectly dispatched instructions due to misprediction.

Of course, if the processor has enough information to resolve the branch, then a
prediction is not necessary and the branch timing is the same as for non­
conditional branches.

The simple timing chart for conditional branch instructions is:

of Cycles 1 k

DS
Stages BE MR

MR

PowerPC 601 Instruction Timing 233

§ 12.5 Branch Instruction Timings

where k is the number of cycles necessary to resolve the branch. The additional
stage is the Mispredict Recovery (MR) stage that the branch must stay in until
the branch is resolved.

As mentioned earlier, if k=O (that is, if the branch can be resolved during BE),
then this table simplifies to that for a non-conditional branch.

For conditional branches that need to update the LR or eTR, the branch waits for
two external events: the branch to be resolved and the previous instruction to
complete (for writeback). If the number of cycles required for the branch to be
resolved is k and the number of cycles until writeback can be performed is n,
then if n > k the timing will be:

#ofCycles 1 k n-k

DS
MR

Stages BE BW BW
MR

and if k > n:

of Cycles 1 n k-n

DS
MR

Stages BE BW
MR

MR

In short, the branch will stay in whatever stages it needs for however long it
needs to.

Branch Prediction

By default, forward conditional branches are predicted to be not-taken and back­
ward conditional branches are predicted to be taken (because they are assumed
to be loop-closing branches). Also, an encoding bit in each branch instruction
reverses the default prediction.

As suggested earlier, this leads to four situations that can occur for conditional
branches:

• predicted not-taken correctly-the branch is predicted not-taken and
the branch is not-taken.

• predicted not-taken incorrectly-the branch is predicted not-taken
and the branch is taken.

• predicted taken correctly-the branch is predicted taken and the
branch is taken.

• predicted· taken incorrectly-the branch is predicted taken and the
branch is not-taken.

234 Chapter 12

Predicted Not-taken Correctly

In the next few sections, the following code sample will be examined under each
of the situations listed. Each situation must be treated separately because the
timing characteristics are significantly different.

cmp crfO,r30,r31
beq crfO,target
and rO,rO,rl
nand r2,r2,r3

target:
or r4,r4,r5
nor r6,r6,r7

The important aspect of this code sample is that the branch is dependent on the
results of the compare operation immediately preceding it. The surrounding
instructions are just for context.

The beq instruction will be given a '+' or' -' suffix as a reminder that the branch
is being predicted taken ('+') or not-taken ('-'). Since the target address of the
beq instruction is after the branch, the '+' suffix corresponds to setting the
reverse-prediction bit in the branch instruction. The '-' suffix is not used by
assemblers but is used here to make the branch prediction explicit.

Predicted Not-taken Correctly

The timing table for the predicted not-taken correctly case is quite simple:

Cycle#: 1 2 3 4 5 6 7

emp crfO,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

phr tag = emp - - - IE - - -

FA
IQl

beq- crfO,target
CARB

CACC BE MR - - -
MR

and rO,rO,rl
FA

CACC IQ2
IQO

IE
IC

CARB ID IWA
-

nand r2,r2,r3
FA

CACC IQ3 IQl
IQO

IE
IC

CARB ID IWA

- - - - - - -...
or r4,r4,r5 - - - - - - -
nor r6,r6,r7 - - - - - - -

During cycle 3, the branch instruction is executed. Because it can't be resolved, it
must be predicted. It is predicted as being not-taken because it is a forward
branch. In the next cycle, the information from the cmp instruction is made avail­
able to the MR stage of the BPU, which determines that the branch was pre­
dicted correctly. The predicted branch tag is purged, and the remaining
instructions proceed through execution as they would if the branch was not
present.

PowerPC 601 Instruction Timing 235

§ 12.5 Branch Instruction Timings

Predicted Not-taken Incorrectly

If the branch is predicted as not-taken, but later determined to be taken, then the
timing changes:

Cycle #: 1 2 3 4 5 6 7

cmp crfO,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

pbr tag = cmp - - - IE - - -

FA
IQl

beq- crfO,target
CARB

CACC BE MR - - -
MR

and rO,rO,rl
FA

CACC IQ2
IQO

CARB ID
- - -

nand r2,r2,r3
FA

CACC IQ3 IQl
CARB

- - -

- - - - - - -...

or r4,r4,r5
FA

CACC
IQO

IE - - -
CARB ID

nor r6,r6,r7
FA

CACC IQl
IQO

- - -
CARB ID

Here, the first three cycles are identical to the previous case. In the fourth cycle,
the BPU figures out that the prediction was wrong, and it begins fetching the
correct instructions. The incorrect instructions are discarded in the next cycle. In
this case, two cycles are "lost."

The statement that the two cycles are "lost" is somewhat misleading. In this
branching case, the two cycles can easily be "regained" if we can assume that
there are two independent instructions between the compare and the branch.
This is known as code scheduling to make maximal use of the pipeline resources
and is covered in Chapter 15, "Resource Scheduling."

Predicted Taken Correctly

If the above branch is encoded to reverse the default prediction, then the timing
will obviously be different. For the case where the branch is correctly predicted
to be taken, the timing chart is:

Cycle#: 1 2 3 4 5 6 7

cmp crfO,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

pbr tag = cmp - - - IE - - -

FA
IQl

beq+ crfO,target
CARB

CACC BE MR - - -
MR

and rO,rO,rl
FA

CACC IQ2
IQO

CARB ID
- - -

nand r2,r2,r3
FA

CACC IQ3 IQl
CARB

- - -

236 Chapter 12

Predicted Taken Incorrectly

- - - - - - -...

or r4,r4,r5
FA

CACC
IQO

IE
IC - -

CARB ID IWA

nor r6,r6,r7
FA

CACC IQl
IQO

IE - -
CARB ID

As usual, the branch is predicted during cycle 3. Because the branch is predicted
as being taken, the target instructions enter FA during this cycle. The sequential
instructions (and and nand) are left in the Instruction Queue until either the
branch has been resolved or the target instructions have been fetched. This gives
the processor the opportunity to correct a misprediction if it can catch it early
enough. In this case, however, the branch is resolved to be correct in cycle 4 and
the instructions and tags are removed or overwritten with the target instructions
in cycle 5.

Similar to the situation with the predicted not-taken incorrectly example, the lost
cycle can be "regained" if we simply include a few extra instructions before the
compare in our timing sample. This is not a scheduling optimization, but is actu­
ally a timing problem that is discussed in the subsection "Timing an Instruction
Sample That Is Too Small" in §12.10, "Timing Pitfalls."

Predicted Taken Incorrectly

If the branch is predicted to be taken, but later discovered to be not-taken, the
timing would be:

Cycle#: 1 2 3 4 5 6 7

emp crfO,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

pbr tag- emp - - - IE - - -

FA
IQl

beq+ crfO,target
CARB

CACC BE MR - - -
MR

and rO,rO,rl
FA

CACC IQ2
IQO

IE
IC

CARB ID IWA
-

nand r2,r2,r3
FA

CACC IQ3 IQl
IQO

IE
IC

CARB ID IWA

- - - - - - -...

or r4,r4,r5
FA

CACC - -
CARB

- - -

nor r6,r6,r7
FA

CACC - -
CARB

- - -

Here again the branch is predicted in cycle 3 and resolved in cycle 4, but in this
case the branch was predicted incorrectly so the target instructions (or and nor)
must be purged and replaced with the correct instructions.

Fortunately, the misprediction is caught early enough so that sequential instruc­
tions (and and nand) are still in the IQ buffer when the branch is resolved. The
target instructions are purged, and the sequential instructions are allowed to
continue.

PowerPC 601 Instruction Timing 237

§ 12.6 Cache Access Timings

If the misprediction couldn't be caught until the next cycle, then the target
instructions would have overwritten the sequential instructions before the
misprediction was recognized. The sequential instructions would have to be
refetched from the cache, causing a significant delay.

12.6 Cache Access Timings

To make the timings in this chapter manageable, the examples ignore the effects
of cache misses. However, it should come as no surprise that cache misses can
profoundly affect code performance. In addition to simple cache misses, some
other features of the Cache Access Unit (CAU) can also subtly affect instruction
timings.

Cache Priorities

If there are multiple cache access requests during Cache Arbitration (CARB), the
CAU decides which cache access request to grant. It uses a simple priority
scheme, listed from highest priority to lowest priority:

• Cache Maintenance Requests
• Data Load Requests
• Data Store Requests
• Instruction Fetch Requests

The Cache Maintenance Requests come from the memory subsystem and
include operations like cache line reloads due to a cache miss.

Note that the instruction fetch request is a relatively low priority operation. This
is why the IQ buffer can store up to eight instructions. When the instruction
fetch request gains access to the cache, it needs to utilize it fully because it may
have to wait a while before another request is granted.

Cache Timings

Timing cache hits and misses can be quite complicated. However, a few rules of
thumb that can be used to get a general idea of how these accesses will affect
instruction timing.

Cache Hits

Cache hits are simple to time because there are basically three cycles of operation
for a cache hit. The first two cycles are the CARB and CACC stages of the CAU
pipeline. What happens during the third cycle depends on the type of cache
access.

238 Chapter 12

Cache Misses

For instruction fetch accesses, the timing is:

Cycle#: 1 2 3

instruction fetch
FA CACC DS CARS

This should look familiar because it is the timing used for instruction fetches in
all of the timing examples in this chapter. Here, the cache arbitration (CARB)
occurs in cycle 1 and the cache is accessed (CACq in cycle 2. The data from the
cache hit is returned during cycle 2, and the instructions are available for dis­
patch in cycle 3.

For data load accesses, the timing is:

I Cycle #: I 1 2 3
data load CARS CACC IWL

As above, the CARB and CACC stages occur in cycles 1 and 2. If an instruction
in IE is waiting for the loaded data, it is forwarded to the IE during cycle 2. The
standard writeback (in IWL or FWL) occurs during the third cycle.

Cache Misses

Cache misses are horrible, difficult-to-time events. Part of the difficulty arises
because the number of cycles that the cache miss will take depends on both the
clock frequency of the system bus, which is obviously system dependent, and
the current state of the bus, which may be difficult to keep track of.

The best case situation occurs when the system bus clock frequency is the same
as the processor clock frequency. This is known as a 1:1 bus-to-processor clock
frequency ratio.

Cycle#: 1 2 3 4 5 6 7 8

fetch/load CARS CACC CACC CACC CACC CACC CACC DS
IWL

There are (at least) six cycles between entering CACC and the data being avail­
able in the IQ buffer or for writeback. As with the cache hit case, if the data is
needed it will be forwarded to IE in the cycle before the data is available for
writeback, cycle 7 for this example.

But the diagram doesn't tell the entire story. Even after the required data has
been delivered, the cache is still busy servicing the request for two additional
cycles. This means that a new cache request cannot be granted until cycle 10 at
the earliest.

To reiterate, the above cycle count represents a best case situation for a 1:1 bus­
to-processor clock ratio. Even on systems with a 1:1 ratio, the actual timings may
be worse than these timings would suggest. When the bus clock is slower than
the processor clock, the timings become progressively worse.

PowerPC 601 Instruction Timing 239

§ 12.7 Pipeline Synchronization

Some simple formulCE for calculating the best case timings for systems with dif­
ferent bus-to-processor clock ratios are:

. .. (processor clock)
of cycles untzl data IS avazlable = 3 + 3 x . b I k

memory us c oc

and:

of cycles until cache operation is complete = 3 + (5 x processor clock)
memory bus clock

So a 1:2 bus-to-processor clock ratio will require nine cycles until the data is
available for writeback and 13 cycles until the CAU is finished servicing the
memory request. A 1:3 ratio would require 12 and 18 cycles for these operations.

These cycle counts are not terribly accurate because they ignore all of the cycles
lost due to bus synchronization and memory wait states. However, it is much
more accurate to use these numbers than to blindly assume that all cache
accesses require only one cycle.

12.7 Pipeline Synchronization

Because it is important that the instructions appear to complete in the order that
they occur in the program (program order), some sort of mechanism is needed
to insure that the different pipelines are synchronized.

To keep the three pipelines in sync, the integer pipeline is considered the "refer­
ence pipeline" and the other two pipelines keep track of their instructions rela­
tive to the instructions in the integer pipeline. They do this using tags.

Two (LR and CTR) of the three types of synchronization tags were discussed in
the section describing the timing of branch instructions. The third tag type is the
floating-point tag, which is used to synchronize the floating-point and integer
pipelines.

A fourth type of tag, the predicted branch tag, is not discussed here because it
isn't a synchronization tag.

LR and CTR Tags

The LR and CTR tags are used to synchronize the BPU and the IV. These tags are
discussed earlier in "Branch Tags & Bubbles."

240 Chapter 12

Floating-Point Tags

Floating-Point Tags

Every floating-point instruction generates a floating-point tag to the previous
integer instruction or to a bubble if no integer instruction is available to accept
the tag.

The exact operation of the floating-point tags depends on the current Floating­
Point Exception mode, which may be either enabled or disabled.

Floating-Point Precise Exceptions Disabled

When floating-point precise exceptions are disabled, the processor is allowed to
complete instructions out of order. For example, multiple integer instructions
could complete before a floating-point instruction even though the floating­
point instruction occurs first in program order.

If the floating-point instruction causes an exception, these integer instructions
will have already completed execution before the interrupt handler is invoked.
This is what is meant by "precise exceptions" being "disabled."

However, the ability to dispatch and complete instructions out of order can be a
significant benefit to processor throughput. Consider this example:

and rO,rO,rl
nand r2,r2,r3
fadd frO,frO,frl
fsub fr2,fr2,fr3
bl target

The timing for this fragment is:

Cycle #: 1 2 3 4 5 6 7 8

and rO,rO,r1
FA

CACC
IQO

IE
IC

CARB ID IWA
- - -

nand r2,r2,r3
FA

CACC IQ1
IQO

IE
IC

CARB ID IWA
- -

fp tag = nand - - - IQO
IE IC - -ID

fadd frO,frO,frl
FA

CACC IQ2 FD FPM FPA FWA
CARB

-

fp tag = bubble1 - - - - IQO
IE IC -

ID

fsub fr2,fr2,fr3
FA

CACC IQ3 IQ1 FD FPM FPA FWA
CARB

LR tag = bubble1 - - - - IQO
IE IC -

ID

bl target
FA

CACC IQ4
IQ2

BW BW BW
CARB BE

-

PowerPC 601 Instruction Timing 241

§ 12.7 Pipeline Syn.chronization

When the f add instruction is dispatched to the FPU in cycle 3, the nand instruc­
tion is available to hold the floating-point tag. The second floating-point instruc­
tion, f sub, is dispatched on the next cycle. It would also like to place a tag on the
nand instruction, but it must create a bubble because nand already has a float­
Ing-point tag.

The branch instruction also needs to add a tag to a previous integer instruction.
In this case, the bubble created by the fsub instruction is the closest integer
"instruction," so it accepts the LR tag (remember, instructions can have multiple
tags as long as they are of different types).

When the floating-point tags reach the Ie stage, the IU records that the associ­
ated floating-point instruction is allowed to complete. The tag fot the fadd
instruction completes in cycle 6, which allows the f add instruction to complete
as soon as it is finished in cycle 7. The Integer Unit can keep track of up to three
outstanding floating-point instructions that have not entered FP Writeback, even
though their tags have completed IC If a fourth floating-point instruction has a
tag that enters Ie, the tag stalls the integer pipeline until the floating-point pipe­
line catches up.

Floating-Point Precise Exceptions Enabled

When floating-point precise exceptions are enabled, the processor is not allowed
to complete instructions out of order. This is because the processor needs to
insure that if an exception occurs, it is generated before any instructions follow­
ing the exception-causing instruction are completed. It can only do this is by
requiring that all integer and floating-point instructions are dispatched and
completed strictly in order. Branch instructions, however, are still allowed to be
executed out of order.

To enforce this in-order execution, all floating-point instructions are tagged to
bubbles in the IV pipeline (even if there is a valid integer instruction to accept
the floating-point tag). In addition, this tag is not allowed to leave the Ie stage
until the floating-point instruction has entered the FWA or FWL stage.

Not surprisingly, all this extra synchronization can slow down the processor.

The previous code sample would be timed as follows if it were executed with
precise floating-point exceptions enabled.

Cycle#: 1 2 3 4 5 6 7 8

and rO,rO,rl
FA

CACC
IQO

IE
IC

CARB ID IWA
- - -

nand r2,r2,r3
FA

CACC IQl
lQO

IE
IC

CARB ID IWA - -

fp tag = bubblel - . - IQl
IQO

IE IC -
ID

fadd frO,frO,frl
FA

CACC IQ2 FD FPM FPA FWA
CARB -

242 Chapter 12

Abnormal Integer Conditions

fp tag = bubble2 - - - - IQl
IQO

IE IC
ID

fsub fr2,fr2,fr3
FA

CACC IQ3 IQl FD FPM FPA FWA
CARB

LR tag = bubble2 - - - - IQl
IQO

IE IC
ID

bl target
FA

CACC IQ4
IQ2

BW BW BW BW
CARB BE

In this example, the floating-point performance was not greatly affected. How­
ever, the two tags occupying stages in the integer pipeline are likely to delay the
dispatch of subsequent instructions.

12.8 Abnormal Integer Conditions

All of the timings given in this chapter for integer load and store instructions
assume that the data being loaded or stored is properly aligned. If this assump­
tion is not valid, then pipeline stalls may occur.

Misaligned Data Accesses

A misaligned data access occurs when the data being loaded or stored crosses a
doubleword boundary. How this affects instruction timings depends on the
instruction in question.

Integer Load Instructions

If the operand for an integer load instruction crosses a doubleword boundary,
two cycles (instead of one) are needed in the IE/CARB stage. Thus, for the non­
update load forms, the timing chart becomes:

of Cycles 1 1 1 1 1

IE

Stages ID
IE CARB

CACC IWL
CARB CACC

IC

The integer Load with Update form timing is the same, except for the addition of
the IWA stage, which is executed in parallel with the IC stage.

#of Cycles 1 1 1 1 1

IE

IE
CARB

Stages ID
CARB

CACC CACC IWL
IC

IWA

Timings for the floating-point load instructions are also the same, except that the
FWL stage (in the FPU) is used for writeback instead of the IWL stage.

PowerPC 601 Instruction Timing 243

§ 12.8 Abnormal Integer Conditions

Load Multiple and Load String Instructions

If the data for a Load Multiple or Load String instruction is not word-aligned, sig­
nificant delays occur because every other load operation is loading data that
crosses a doubleword boundary and requires two cycles in IE instead of one.

#ofCycles 1 1 1 (n-2)/2 1 1
IE

IE
IE IE

Stages ID
IE CARB

CARB
CARB CARB CACC

IWL
CARB CACC CACC CACC IWL

IC
CACC

IWL IWL

Integer Store Instructions

If the operand being stored crosses a doubleword boundary, two cycles are
needed in IE / CARB stage. The timing table for the non-update store forms
becomes:

of Cycles 1 1 1 1
IE

Stages ID
IE CARB

CACC
CARB CACC

IC

The timing for the integer Store with Update form (when the data crosses a dou­
bleword boundary) is the same as above, except for addition of the IWA stage,
which is executed in parallel with the IC stage.

#of Cycles 1 1 1 1

IE

IE
CARB

Stages ID
CARB

CACC CACC
IC

IWA

Store Multiple and Store String Instructions

If the data for a Store Multiple or Store String instruction is not word-aligned,
significant delays occur because every other store operation is storing data that
crosses a doubleword boundary and requires two cycles in IE instead of one.

#of Cycles 1 1 1 (n-2)/2 1

IE
IE IE IE

IE CARB
Stages ID

CARB CACC
CARB CARB CARB CACC

IC
CACC CACC CACC

244 Chapter 12

Abnormal Floating-Point Conditions

12.9 Abnormal Floating-Point Conditions

All of the floating-point timings given so far in this chapter assume that the pro­
cessor is executing the floating-point instructions under "normal" conditions.
Abnormal conditions like misaligned data accesses are likely to have an adverse
effect on the instruction timings.

For floating-point instructions, "normal" operating conditions also means that
the source operands and the result are all normalized values. If they are not, or
if the processor predicts that they will not be, then considerable pipeline stalls
can occur.

Misaligned Data Accesses

A misaligned data access occurs when the data being loaded or stored crosses a
doubleword boundary. How this affects instruction timings depends on the
instruction in question.

Floating-Point Load Instructions

If the operand for a floating-point load instruction crosses a doubleword bound­
ary, two cycles (instead of one) are needed in IE / CARB stage. Thus, for the non­
update load forms, the timing chart becomes:

#ofCycles 1 1 1 1 1
IE

Stages ID
IE CARB

CACC FWL
CARB CACC

IC

The floating-point Load with Update form timing is the same, except for the addi­
tion of the IWA stage, which is executed in parallel with the IC stage.

#ofCycles 1 1 1 1 1
IE

IE
CARB

Stages ID
CARB

CACC CACC FWL
IC

IWA

Floating-Point Store Instructions

If the data for a floating-point store instruction is being written to an address
that causes the store to cross a doubleword boundary, the store must first be bro­
ken into two separate store requests. This means that the instruction stalls in IE

PowerPC 601 Instruction Timing 245

§12.9 Abnormal Floating-Point Conditions

for at least four cycles because the FP store buffer (FPSB) can only handle one
outstanding store request at a time.

#ofCycles 1 1 1 1 1 1 1 1

IE IE
IE

Stages
ID IE FPSB

IE
FPSB

FPSB
FPSB

FPSB
(IU/CAU/DAQU)

IC
FPSB

CARB
CARB CACC
CACC

Stages - FD FPM FPA FWA - - -(FPU)

The timing for the store with update form (when the data crosses a doubleword
boundary) is the same except for the extra IWA stage, which is executed in par­
allel with the Ie stage.

#ofCycles 1 1 1 1 1 1 1 1
IE

IE
IE

Stages
ID IE

FPSB IE
FPSB

FPSB
FPSB

FPSB
(IU/CAU/DAQU) IC FPSB

CARB
CARB CACC

IWA CACC
Stages

- FD FPM FPA FWA - - -(FPU)

Prenormalization

Prenormalization is required if any of the source operands are not normalized.
Because all normalization is performed in the FWA stage, any non-normalized
operands must flow through the pipeline to the FWA stage and be normalized
before the instruction can begin execution.

If only one of the operands requires normalization, then the timing for the
instruction (shown here for fadd) is:

Cycle#: 1 2 3 4 5 6 7 8
aperand prenorm FD FPM FPA FWA - - - -
fadd - FD FD FD FD FPM FPA FWA

In this situation, the operand requiring normalization passes through the pipe­
line before the f add instruction. Because the f add instructions needs this oper­
and before it can leave PD, it stalls in FD. After the operand completes FWA, the
normalized operand is available for the fadd instruction to begin in FD, which
it does in cycle 5.

If two source operands require normalization, the timing is:

Cycle#: 1 2 3 4 5 6 7 8 9
aperandl prenorm FD FPM FPA FWA - - - - -
aperand2 prenorm - FD FPM FPA FWA - - - -
fadd - - FD FD FD FD FPM FPA FWA

246 Chapter 12

Underflow

Here, both operands need to pass through the pipeline before the f add instruc­
tion can begin execution. This costs only one additional cycle because of the
pipelining.

The timings are similar for the case where all three operands (for the multiply­
accumulate instructions) require normalization.

Underflow

If the floating-point unit predicts that the result of a floating-point operation will
produce a denormalized result, it will keep the instruction in FD until it has
completed the FW stage. This prevents any subsequent floating-point instruc­
tion from entering FD and effectively stalls the FPU.

Stalling the instruction in FD is necessary because, if the result does cause an
underflow, the result must be passed again through the floating-point pipeline
(starting at FPM) so that the value can be properly denormalized.

The timing of this condition is:

Cycle #: 1 2 3 4 5 6 7

fadd FD
FD FD FD

FPM FPA FW
- - -

denormalize - - - - FPM FPA FW

In this case, the final result of the f add instruction is available during cycle 7,
after it has been denormalized.

Note that the instruction may not, in fact, require any sort of denormalization.
The processor stalls the instruction if it thinks that it might require denormaliza­
tion. This prediction could be incorrect.

The timing for the case where no denormalization is required (even though the
FPU thought that it might be) is:

Cycle #: 1 2 3 4 5 6 7

fadd FD
FD FD FD

FPM FPA FW - - -

denormalize - - - - - - -

Here, the results of the fadd instruction are available during cycle 4. The next
floating-point instruction still cannot enter FD until cycle 5, but the results of the
fadd are available three cycles earlier (which may benefit dependent instruc­
tions).

PowerPC 601 Instruction Timing 247

§12.1O Timing Pitfalls

Normalization

For most floating-point values, the result normalization that takes place in the
FPA/FWA stage isn't likely to require more than one cycle in FWA. However,
under some conditions the normalization will take longer.

Remember that normalization is performed by shifting the bits of the result to
the left until the most significant bit is a 1. The FPA can perform a one-time shift
of up to 48 bits before passing the result to the FWA, and the FWA can shift up
to 16 bits per cycle.

Because the intermediate result in the FPU is 161 bits in width, a worst-case sce­
nario would be when this result needed to be shifted over 160 bits to normalize
the result. This would require (160 - 48)/16 = 7 cycles in the FWA stage.

The exact number of cycles required to normalize a value has to be calculated
case-by-case by examining the intermediate result and determining how many
bits need to be shifted for it to be normalized.

12.10 Timing Pitfalls

Generating timing diagrams for a sequence of instructions can be quite complex.
Some of the complications are removed by the assumptions with cache hits and
instruction fetches. However, it is important to be aware of these assumptions
because they can, at times, significantly affect timings.

Timing an Instruction Sample That Is Too Small

One easy-to-make mistake is to time a code sequence without taking into
account the instructions executing before the "interesting" code. These instruc­
tions set the stage for the instructions that follow them, and it is important to
make sure that any timings account for the pipeline stages that they occupy.

Incorporating the information about previous instructions doesn't always
adversely affect the timing for the code that follows. In fact, because instructions
are fetched earlier, it is likely to benefit the timings.

Consider an example presented earlier and reproduced here for convenience
where a branch is correctly predicted to be taken:

Cycle #: 1 2 3 4 5 6 7

emp erfO,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

pbrtag=cmp - -
IQO

IE - - -
ID

FA
IQl

beq erfO,target
CARB

CACC BE MR - - -
MR

248 Chapter 12

Fetching too Many Instructions

and rO,rO,rl
FA

CACC IQ2
IQO

CARB ID
- - -

nand r2,r2,r3
FA

CACC IQ3 IQl
CARB

- - -

- - - - - - -'"

or r4,r4,r5
FA

CACC
IQO

IE
IC - -

CARB ID IWA

nor r6,r6,r7
FA

CACC IQl
IQO

IE - -
CARB ID

It might at first seem as if a cycle is wasted between the cmp and the or instruc­
tions, and it would be if execution began with the cmp instruction. However,
when an instruction is added before the compare instruction, the situation
doesn't seem so bad:

Cycle#: 1 2 3 4 5 6 7

xor r8,r8,r9
FA

CACC
IQO

IE
IC

CARB ID IWA

emp crfO,r30,r31
FA

CACC IQl
IQO

IE
IC

CARB ID IWA
-

phr tag = emp - - IQl
IQO

IE - -
ID

FA
IQ2

beq crfO,target
CARB

CACC BE MR MR - -
MR

and rO,rO,rl
FA

CACC IQ3 IQl
CARB

- - -

nand r2,r2,r3
FA

CACC IQ4 IQ2
CARB

- - -

- - - - - - -...

or r4,r4,r5
FA

CACC
IQO

IE
IC - -

CARB ID IWA

nor r6,r6,r7
FA

CACC IQl
IQO

IE - -
CARB ID

That extra instruction at the beginning causes the branch to be dispatched one
cycle earlier so no cycles are wasted.

Fetching too Many Instructions

During the CACC stage, somewhere between one and eight instructions are
returned to the Dispatch Unit. The exact number returned depends on many
things, including the alignment of the address at which the instructions are
being fetched.

This may seem like a strange thing to affect timing, but the address affects where
the data will be stored in the cache, and the cache timing is different when the
request is from the upper or lower part of a cache line. If your timings always
assume that you'll receive four or eight instructions at a time, you may be sur­
prised when the code is timed on a real system.

PowerPC 601 Instruction Timing 249

§12.1O Timing Pitfalls

In general, it is difficult to account for this in timings, but it is important to be
aware of it. For a critical loop, it might be worthwhile to place a few no­
operations before the loop so that it fits nicely into a cache line. However, these
situations need to be timed and considered case-by-case.

Not Considering Instruction Fetch Delays

Instruction fetches are the lowest priority cache access requests. Because of this,
the CARB stage for an instruction fetch will take more than one cycle if the
Cache Access Unit is servicing another request or receives one simultaneously
with the instruction fetch.

A good test for code is to see how it is affected by instruction fetches that require
more than one cycle in the CARB stage. This test is especially important for code
that is moving a lot of data since the cache collisions can seriously degrade per­
formance.

Ignoring Cache Misses

Cache misses (both for instruction fetches and data accesses) can cause a well
optimized code fragment to perform horribly when it encounters a worst-case
memory situation.

Cache misses can't be accounted for entirely (because they sometimes result
from external events). It is a good idea (and unfortunately a lot of work) to map
out critical sections of memory and assume that the first access into each block
of memory will be a cache miss while subsequent accesses to the same block will
be hits.

Odd as it may seem, in some situations a cache miss will cause a sequence of
code to perform better. If a branch is incorrectly predicted to be taken, a cache
miss on the target instruction fetch will give the processor more time to resolve
the branch before the sequential instructions (in this case, the correct instruc­
tions) are purged from the IQ buffer. Thus, the delay in fetching the (incorrect)
target instructions gives the processor enough time to realize that the correct
instructions are already in the Dispatch Unit.

Of course, the proper way of addressing an incorrectly predicted branch is to
correct the prediction. This example points out the potentially bizarre effects that
memory can have on instruction timings.

250 Chapter 12

Programming
Model

Although the PowerPC processor does not enforce any particular programming
model, a variety of programming conventions that IBM devised for the POWER
architecture have become the standard for the PowerPC. These conventions are
part of the PowerOpen Application Binary Interface (ABI) and Application Pro­
gramming Interface (API) that formalize the standard to make compliant sys­
tems binary and source-code compatible. These same conventions are also used
on Apple's PowerPC-based Macintosh computers.

13.1 Register Usage Conventions

All of the registers that the PowerPC provides are defined as being either volatile
or non-volatile. A volatile register can be freely used by any routine-a volatile
register does not need to be saved and restored. A non-volatile register needs to
be saved and restored if it is used.

Additionally, a few of the registers are defined as dedicated. A dedicated register
is used for one very well-defined purpose and shouldn't be used for anything
else. There are only two dedicated registers: the stack pointer (rl) and the TOC
pointer (r2). Both of these registers are discussed in detail later in this chapter.

Programming Model 251

§ 13.1 Register Usage Conventions

GPR Usage

The PowerPC has 32 GPRs, which may be either 32 or 64 bits (depending on the
implementation). Table 13-1 summarizes the standard register usage conven­
tions.

Table 13-1 GPR Register Usage Conventions

CPR Type Must be Usage Preserved?
rO volatile no used in prolog / epilog code
ri

dedicated
stack pointer

r2
yes

table of contents (TOC) pointer

r3
1st fixed-point parameter
1st word of return value

volatile no
2nd fixed-point parameter

r4
2nd word of return value

rS 3rd fixed-point parameter
... volatile no ...

riO 8th fixed-point parameter
rll

volatile
environment pointer (if needed)

no
used by global linkage routines r12

r13
general registers that must be preserved ... non-volatile yes across function calls

r3i

Two of the GPRs (rl and r2) are dedicated for use with OS-related tasks, three
(rO, rll and r12) are used by compiler, linkage, or glue routines, and eight
more (r3 through rIO) are allocated for passing parameters into a function (see
§13.5, "Subroutine Calling Conventions," for more information). This leaves 19
GPRs (r13 through r31) which are available for general use, but which must be
saved and restored if used.

By convention, a routine should use the volatile registers first because they do
not need to be saved and restored. Thus, a routine should first use GPRO and any
of the registers GPR3 through GPR12 that are not already being used by the rou­
tine for parameters.

If a routine needs to use still more registers, the non-volatile GPRs should be
used from highest numbered to lowest numbered. That is, GPR31 is used first,
followed by GPR30, and so on. Using the non-volatile registers in this fashion
allows the strnw and lrnw instructions to be used to save and restore the registers
in the function prolog / epilog code. However, some important issues are
involved with using the load and store multiple instructions. These issues are
discussed later in §13.8, "Saving Registers on the Stack."

252 Chapter 13

FPR Usage

FPR Usage

The PowerPC defines thirty-two 64-bit floating point registers. Of these regis­
ters, one (frO) is set aside as a scratch register, 13 (frl through fr13) are used
for passing parameters to subroutines, and the remaining 18 (fr14 through
fr31) are available for general use. Table 13-2 summarizes the floating-point
register usage conventions.

Table 13-2 FPR Register Usage Conventions

FPR Type
Must be

Usage
preserved?

frO volatile no scratch register

frl
1st floating-point parameter
1st 8-bytes of return value

... volatile no ...
fr4

4th floating-point parameter
4th 8-bytes of return value

frS 5th floating-point parameter
... volatile no ...

fr13 13th floating-point parameter
fr14

scratch registers that must be preserved ... non-volatile yes
across function calls

fr31

As with the GPRs, a routine that needs to use floating-point registers should first
use the volatile registers, frO and any of the registers frl through fr13 that are
not being used to hold parameters. The remaining 18 FPRs can be used if there
are not enough volatile registers to hold the required values.

The non-volatile registers should be used from the highest to the lowest (that is,
from fr31 down to fr14) so that the FPR and GPR register save methods fol­
low the same basic conventions. (See §13.8, "Saving Registers on the Stack," later
in this chapter.)

SPR Usage

Table 13-3 summarizes the standard usage conventions for the common SPRs
available on PowerPC implementations. In general, the system registers do not
need to be preserved across function calls. The only exceptions are that some of
the fields within the CR must always be preserved, and the FPSCR should be
preserved under certain circumstances.

Programming Model 253

§ 13.2 Table of Contents (TOC)

Table 13-3 SPR Register Usage Conventions

SPR Type
Must be

Usage
Preserved?

0
general use; implicitly used by integer
instructions with the Record bit set - volatile no
general use; implicitly used by floating-

1
point instructions with the Record bit set

CR
2

3""""" non-volatile yes general use; must be preserved
~

5
~ volatile no general use
-=;-

LR
branch target address
subroutine return address

CTR volatile no
loop counter
branch address (goto, case, system glue)

XER fixed point exceptions
FPSCR floating-point exceptions

MQ volatile no obsolete; exists on the 601 only

Note that even though the FPSCR is listed as a volatile register that doesn't need
to be preserved, it is considered rude for a routine to change the floating-point
exception enable bits in the FPSCR without restoring them to their original state.
The only exceptions are routines defined to modify the floating-point execution
state.

It is unnecessary to restore the FPSCR if it was only used to record the exception
information as set by the standard arithmetic floating-point instructions.

13.2 Table of Contents (TOC)

Each program module (collection of routines) has associated with it a Table of
Contents (TOC) area that identifies imported symbols and also provides a refer­
ence point for accessing the module's static storage area. A register is (by con­
vention) reserved to always point to the current TOC area. This register is r2,
but it is also referred to as rTOC.

For the most part, TOC maintenance is not something you need to worry about
because all of the functions in the same module will share the same TOe. How­
ever, when calling routines in other modules (for example, the standard library
routines), care must be taken so that the TOC for the called routine is set up
properly, and so that the TOC of the caller is restored before control returns to
the caller. Examples of how this transition is accomplished are given later in
§13.13, "Linking with Global Routines."

254 Chapter 13

Initializing the TOe

A routine accesses its global variables (including external routine descriptors) by
recording the variable's offset from the routine's TOe. This allows the variable
to be accessed by simply adding the offset to the current Toe value in rTOC:

lwz r3,offset(rTOC)

The data referenced from the Toe typically isn't the actual global data-it is
usually just a pointer to the data. In the above example, the actual data would
then be accessed via the pointer that has been loaded into r3.

The reason pointers are stored in the TOe area instead of the actual data is that
64K is the maximum size for the Toe area (because offset is a signed 16-bit
quantity). If all of the program data needed to be directly accessible from the
TOe, then the global static data would have an obviously unacceptable 64K
limit.

By storing only pointers in the Toe area, the 64K limit applies only to the num­
ber of pointers that can be stored. Because each pointer is four bytes in size, the
maximum of 16,384 global data pointers isn't a practical limitation for most
applications.

Initializing the TOe

There is no need for a routine or module to initialize its TOe pointer. In fact, it is
allowed to assume that the Toe has already been set up before it is given con­
trol. However, the TOe must be initialized somewhere. Fortunately, that some­
where is in the system loader, so most programmers do not need to worry
about it.

The system loader handles the Toe initialization because it is in control of
where the program's code and data are loaded. After the loader has decided
where the program should be loaded, it knows the location of the Toe and can
set up the TOe and update any portions of the code or data that need to be ini­
tialized with its value.

13.3 The Stack Pointer

By convention, GPR 1 contains a 16-byte aligned value that always points to the
top of the stack, and the top of the stack always contains a valid stack frame for the
current routine. The stack frame for a routine identifies the routine's execution
context-it contains the register save area, local storage area, and a few other bits
of information for the given routine. The information in the stack frame allows
the entire calling chain to be examined at any time, because each stack frame also
contains a pointer to the stack frame of the routine that called it. Figure 13-1
shows a sample stack with the call-chain pointers to the previous stack frame
made explicit.

Programming Model 255

§13.3 The Stack Pointer

Figure 13-1 Sample Stack Showing Multiple Stack Frames

low addresses

Stack pointer __ -l.~" _______ '"
(rl) \

Stack frame for
current routine

Stack frame

Stack frame

Pointer to stack
frame of caller

high addresses

It's nice to be able to assume that the stack pointer always points to a valid stack
frame, because interrupt-level code doesn't need to worry about the stack being
in an inconsistent state. However, it does require a little bit of effort on the part
of the program to insure that the stack pointer does, indeed, always identify a
valid stack frame.

Basically, this effort amounts to making sure that the stack pointer update oper­
ation is atomic (that is, it is accomplished in one instruction). This means that the
stack frame cannot be built by using a series of small steps that each allocate a
small area on the stack-the entire stack frame size must be allocated at once,
and the offsets to each area within the frame must be calculated. These calcula­
tions can become quite cumbersome because of multiple variable-sized areas in
a stack frame. Efforts to simplify these calculations have led to some rather
bizarre stack frame building conventions, which are covered later in "Building
Stack Frames."

Updating the Stack Pointer

Because the stack pointer must always point to a valid stack frame at the top of
the stack, the only time the stack pointer should be updated is when the flow of

control is entering or exiting a function.!

1. Actually, the C library routine alloca (), which dynamically allocates storage on the stack,
also updates the stack pointer. This special case is discussed later in §13.12, "Stack Frames
and allocaO."

256 Chapter 13

Stack Pointer Maintenance on Function Entry

When a function is entered, it needs to create a new stack frame above the cur­
rent one on the stack and update r 1 to point to the new frame, saving the
address of the previous stack frame in the process. When a function exits, it sim­
ply needs to restore the previous stack frame.

Figure 13-2 shows this for the simple case of the routine foo () calling the rou­
tine bar (). At point (A), foo () has initialized itself but has not yet called
another routine. During (B), foo () has called bar () , and bar () has set itself
up with its own stack frame. A pointer back to foo ()' s stack frame is recorded
as part of bar ()' s initialization process. After the call to bar () is complete (C),
the stack pointer once again points to foo () 's stack frame.

Figure 13-2 Stack When foo () Calls bar ()

(rl) _r-------t

stack frame

(rl)-t-------I

bar's)

I-----~I~J (rl)-t-------I

foo's
stack frame

(A)

foo's
stack frame

(B)

foo's
stack frame

(C)

The three states shown in Figure 13-2 are the only states that the stack pointer
has during the subroutine call. There are no intermediate states where bar ()' s
stack frame is only partially built.

Stack Pointer Maintenance on Function Entry

When the size of the stack frame is less than 32K, the stack pointer update that is
required when a function is entered can be accomplished with a single instruc­
tion:

stwu rl, -frame_size (rl)

This instruction calculates the address of the new stack frame from (rl)­
frame_size and stores the old value of rl (which points to the current stack
frame) at that address. The calculated address is then stored in r 1. The first part
of this operation saves a pointer to the old stack frame in the first word of the
new stack frame, and the second part updates the stack pointer to point to the
new stack frame.

Programming Model 257

§ 13.3 The Stack Pointer

Stack Pointer Maintenance on Function Exit

For functions with stack frames less than 32K in size, the code required to
update the stack pointer on function exit is also quite simple:

addi rl, rl ,frame_size

All that is required is that the stack be adjusted down by the same amount that
it was adjusted up during function entry.

Alternatively, because a pointer to the previous stack frame was saved at offset
o of the current stack frame, the stack pointer could be updated as:

lwz rl,O(rl)

However, this method is less efficient because it requires a load from memory
that the addi method avoids.

Handling Stack Frames ~ 32K in Size

Handling stack frames that are 32K or larger in size is not difficult, but care must
be taken so that the stack pointer is updated in one operation and not in a series
of small adjustments.

On function entry, this operation should be performed as:

load the 32-bit -frame_size value into r12
lis r12, <upper 16 bits of -frame_size>
ori r12, <lower 16 bits of -frame_size>

update the stack pointer
stwux rl,rl,r12

On function exit, the same technique is used as with small stack frames, but the
addi instruction cannot be used (because it only handles 16-bit values). The
frame_size value can be placed in a register and then added to the stack pointer,
like this:

load the 32-bit frame_size value into r12
lis r12 ,<upper 16 bits offrame_size>
ori r12, <lower 16 bits of frame_size>

update the stack pointer
add rl,rl,r12

As in the small stack frame case, the previous stack frame can be restored using
a load from offset 0 of the current stack frame, as:

lwz rl,O(rl)

258 Chapter 13

Building Stack Frames

Which of the two methods is more efficient depends on the particular routine
since the three-instruction sequence provides more opportunities for schedul­
ing the instructions.

Building Stack Frames

This section discusses the steps necessary to build a stack frame as they relate to
the stack pointer. It does not provide all the details and the structure of stack
frames (these will be given later in the sections detailing the subroutine calling
conventions), but rather it discusses the order in which the components of the
stack frame should be built.

The values in the stack frame can be initialized during two periods: before the
frame is built and after it has been created. Both of these periods are shown in
Figure 13-3.

After the stack frame is built the stack pointer (rl) points to the newly created
stack frame. At this time, the area in the stack frame can be initialized by using a
positive offset from the stack pointer (which is also a pointer to this stack frame).
This period is typically when most stack frame initialization is performed.

Figure 13-3 Periods When Stack Frame Values Can Be Initialized

Before building
bar's stack frame

bar's
stack
frame
(under
construction)

foo's
stack
frame

(rl) __ I--------l

-f"-f======1

After building
bar's stack frame

bar's
stack
frame

foo's
stack
frame

Before the frame is built, rl points to the stack frame of the previous routine,
which is conveniently located immediately below where the new stack frame is
going to be built. The new stack frame areas can be initialized at this point by
using a negative offset from r 1 to write values above the top of the stack.

Programming Model 259

§ 13.3 The Stack Pointer

Writing Above the Stack Pointer ... ick!

The calling conventions for most well-designed systems involve initializing the
stack frame values after the frame has been built and consider it a bad idea to
write values above the current stack pointer. There's a very good reason for this:
if an interrupt comes along, it may need to allocate some temporary storage on
the stack for itself. Although it will free the space and return the stack pointer to
its original value, any data that was above the stack pointer is likely to be
trashed.

The PowerPC calling conventions are no exception: it is still considered bad
form to write data above the stack pointer-with this one exception of building
stack frames. Two things make this exception acceptable. First, the only values
written above the stack are the GPR and FPR save areas, guaranteed to be no
larger than a certain maximum size (because only a certain number of registers
will ever need to be saved). Second, interrupts and other system-level code are
aware of this maximum size and skip over that many bytes before they allocate
any space on the stack.

Now, this may seem like too much effort just to write values safely above the
stack, and, to a certain extent, it is. The GPR and FPR save areas could have been
written using offsets from the new stack frame after it had been built. However,
because many areas in the stack frame are of variable width and need to be prop­
erly aligned, the formula to determine the offset to these two areas from the
frame pointer is relatively complicated.

So, it's basically a choice between complicating the interrupt handlers (which
very few people write) or complicating the formula for calculating the offsets to
these areas (which would affect more people). It's important to note that neither
option affects performance. The interrupt handlers simply add the maximum
save area size to the amount of space that they're allocating on the stack, and the
"more complex offset formula" is statically computed at assembly time doesn't
generate any extra code.

The end result is that it doesn't really matter. The standard calling convention
involves writing above the stack, and the system-level code is designed to han­
dle this. If writing above the stack offends you as a programmer, you can simply
not do it. It is perfectly acceptable to save the GPR and FPR values after the stack
frame has been built because the only code that uses them is the function that
owns the stack frame (no one else can use them since the number of registers
saved isn't even recorded unless debugging information (a la traceback table) is
present).

It's interesting to note that because the size of the GPR and FPR save areas is
dependent on the size and number of registers being saved, the maximum save
area size will change for 64-bit PowerPC implementations. In order to make
room for the nineteen 64-bit GPRs and eighteen 64-bit FPRs, 296 bytes (instead

260 Chapter 13

Brief Interlude: Naming Conventions

of the 220 required for nineteen 32-bit GPRs and eighteen 64-bit FPRs) will need
to be "reserved" above the stack.

13.4 Brief Interlude: Naming Conventions

In the remainder of this chapter, three routine names will be used in the exam­
ples: sna (), foo (), and bar (). Of these three routines, foo () and bar () will
commonly be used in the examples. The relationship between these routines is
that foo () calls bar (). The sna () routine is only used to refer to the routine
that originally called foo (). This calling order will always hold true for all the
examples given here: sna () always calls foo (), which always calls bar ().

The terms caller / callee or pitcher / catcher can also be used when describing how
the functions are interacting with the surrounding routines. However, a routine
is never referred to as simply a caller or a callee-these terms are always used
with respect to some other function. For example, f 00 () is the caller of bar (),
but is a callee of sna () -how it's referred to depends on the context. Most of the
time, this caller / callee relationship will not be used because using these terms
can lead to confusion when the context of the discussion changes.

13.5 Subroutine Calling Conventions

A subroutine call requires that the caller and the callee both agree on a protocol
for passing data and control back and forth. As mentioned earlier, these conven­
tions are not enforced by the processor. These conventions are instead
"enforced" by the operating system and the libraries, because a program must
follow these conventions in order to access the system-provided routines.

According to these calling conventions, the calling routine has the responsibility
of setting up the parameters, passing the return address, and then handing off
control to the subroutine.

The called routine has the responsibility of saving the return address and any
non-volatile register that it modifies, setting up any stack structures that it
requires, and then cleaning everything up and restoring registers before return­
ing to the calling routine. These two tasks (set up and clean up) are performed
by code fragments known as prologs and epilogs.

Prologs and Epilogs

Prologs and epilogs are little code snippets at the beginning (pro logs) or ending
(epilogs) of a function. The purpose of these 'logs is to set up the proper environ­
ment for the routine and then restore the original environment when the routine
is finished.

Programming Model 261

§ 13.6 A Simple Subroutine Call

Function Prologs

When a function is called, it must set up the stack properly so that it creates room
for all local and register-save storage, and so that it sets up a proper back chain.
The portion of a function that does this is known as the function prolog.

Function Epilogs

The function epilog undoes the work of the prolog. It restores the registers that
were saved and makes sure that the stack pointer once again points to the stack
frame of the routine that originally called this routine.

13.6 A Simple Subroutine Call

The easiest way to describe a function call is to step through a very basic subrou­
tine call and explain what is happening along the way. For this example, the
routine foo () (which is assumed to have already been set up) is calling the rou­
tine bar (), using a standard Branch with Link instruction:

bl bar

The parameters being passed are not important for this general discussion, so
they are not specified.

Before Calling bar ()

As mentioned earlier, foo () is assumed to have been set up properly already.
This means that the stack pointer currently points to foo()'s stack frame. This
is shown in Figure 13-4.

There are five areas in this stack frame: the link area, the argument area, the local
storage area, the CPR save area, and the FPR save area. The last two areas are some­
times collectively referred to as the register save area or simply the save area. These
areas are briefly described in the next few paragraphs and more completely
described in §13.9, "Stack Frames."

The link area is used to save the back-chain (the pointer to the previous function's
stack frame) and to provide space to store a few special registers: the Table Of
Contents, the Condition Register, and the Link Register.

262 Chapter 13

Figure 13-4 The Stack Frame of f 00 ()

(rl) •
Link Area

Argument Area

Local Storage
Area

GPRSave

FPRSave

faa's
stack
frame

Prolog for barO

The argument area is where the arguments are placed if there isn't enough
room to store all of them in the registers. This area is always at least eight
words in size and is left unused most of the time (because the arguments
are stored in registers if possible). The arguments stored here are the
arguments that foo() (in this example) is sending to another routine
(bar (). These are not the arguments that were passed to foo ().

The local storage area is where foo () stores whatever it likes. Its size is
determined by foo () when it creates the stack frame.

The register save area is where foo () stores the original contents of any of
the non-volatile GPRs or FPRs that it needs to use. This way it can restore
them to their original values before returning. If no non-volatile registers
are used by foo (), then this area will be zero bytes in size.

Prolog for bar ()

After control is passed to bar (), its prolog code is executed, which performs
these tasks:

• Saves any non-volatile registers that are used by bar () •
• Creates bar ()' s stack frame (saving a pointer to the previous frame).

After bar 0 has accomplished these tasks, the stack looks like Figure 13-5.

Programming Model 263

§ 13.6 A Simple Subroutine Call

Figure 13-5 The Stack after bar () Has Built Its Stack Frame.

(rI) ,.
Link Area

Argument Area

Local Storage
Area

GPRSave

FPRSave

Link Area
Argument Area

Local Storage
Area

GPRSave

FPRSave

Saving the Non-volatile Registers

\

I)

bar's
stack
frame

foo's
stack
frame

The following registers are non-volatile and must be saved if bar () uses them:
GPRs 13 through 31, FPRs 14 through 31, and the Condition Register. In addi­
tion, the Link Register (technically a volatile register) should be saved and
restored. .

As mentioned earlier, the GP~s and FPRs are saved in bar ()' s stack frame
before the stack frame is built. First, the FPRs are stored immediately above
foo ()' s stack frame, and then the GPRs are written above the FPRs. A simpli­
fied diagram showing only the GPR and FPR save areas is given in Figure 13-6.

264 Chapter 13

Saving the Non-volatile Registers

Figure 13-6 Saving the GPRs and FPRs above the Stack Pointer

GPRSave

FPRSave

bar's
stack
frame
(under
construction)

(r1) --------....
foo's
stack
frame

Because of the register usage convention of starting from register 31 and work­
ing down, each routine will have a contiguous range of registers (rN through
r 31) that need to be saved. This simplifies the save / restore code and allows the
Load and Store Multiple instructions to be used for this purpose. In reality, the
process of saving and restoring registers ends up being a little more compli­
cated, but these complications don't affect the fact that the registers are stored in
the register save area in ascending order. Register saving is treated in more detail
later in §13.8, "Saving Registers on the Stack."

For the CR and LR, storage space is set aside in foo()'s stack frame to save
these values. The CR is saved at offset 4 from the start of foo ()' s stack frame,
and the LR is stored at offset 8. Figure 13-7 shows this operation. In this figure,
the highlighted area in f 00 ()' s stack frame is the area in the Link Area where
the register is being stored.

The code to save the CR and LR is:

save
mflr
stw

the Link Register
rO
rO,8(r1)

save the Condition Register
mfcr rO
stw rO,4(r1)

Programming Model 265

§ 13.6 A Simple Subroutine Call

Figure 13-7 Saving Values into foo ()'s Stack Frame

bar's stack
frame (under
construction)

foo's
stack frame

One additional register, the FPSCR, is a special case because it generally doesn't
need to be saved and restored, but there are situations where it should be. If any
of the enable (VE, OE, UE, ZE, or XE) or mode (NI or RN) bits of the FPSCR are
changed, then the routine should save and restore the FPSCR, because it is impo­
lite for a routine to globally change the floating-point model. The other bits of
the FPSCR, which may be set as a side effect of executing floating-point instruc­
tions, are volatile, and the FPSCR does not need to be saved if they are modified.

No special storage location is set aside for the FPSCR. If a routine needs to save
and restore it, the routine must allocate space in its local storage area.

Creating the Stack Frame

After all the registers have been saved, the stack frame for bar () can be created.
This is usually a single instruction:

stwu rl,-jrame_size(rl)

where the frame_size value is calculated from the sum of the sizes of the five areas
comprising the stack frame, plus some padding bytes to insure that the stack
frame always starts on a quad word boundary. Hence:

frame_size = link_size + arg_size + locaCsize + gpr _size + fpr _size + padding

where:

link_size is always six words (24 bytes) in length.

arg_size is large enough to hold all arguments needed for any function that
bar () calls. Note that this is not related to the arguments that are passed

266 Chapter 13

Execution of barO

into bar (). This area is for the arguments that bar () will (possibly) pass to
another routine. This is always at least eight words (64 bytes) in length.

locaCsize is the size of the local storage area that bar () needs, or a if it
doesn't need any local storage.

gpr _size is large enough to hold all of the GPRs that bar () is saving and
restoring. This can range from a to 19 words (76 bytes).

fpr _size is large enough to hold all of the FPRs that bar () is saving and
restoring. This can range from a to 18 doublewords (144 bytes).

padding is the number of extra bytes needed to insure that the stack pointer
is always quadword (16-byte) aligned.

Because the link, argument, and local storage area are allocated from the top of the
stack frame, and the FPR and CPR save areas are allocated from the bottom, the
padding bytes fall between the local storage area and the CPR save area.

It is important to note that this one Store with Update instruction performs two
critical functions: it allocates the new stack frame on the stack, and it saves the
back chain (pointer to the previous stack frame) at offset a into the newly created
stack frame.

Execution of bar ()

Finally, bar () can execute its code and accomplish the tasks that it needs to,
including calling other routines.

Epilog of bar ()

During the epilog, bar () must restore the registers, restore foo ()'s stack
frame, and then return control to foo ().

Restoring the Non-volatile Registers

The FPRs and GPRs can be restored by loading from the values stored in the
register save area. For GPRs, the Load Multiple instruction can be used, but since
there is no equivalent instruction for FPRs, some other method must be used.
The problems associated with saving and restoring registers are covered later in
§13.8, "Saving Registers on the Stack."

Restoring the CR and LR is just as easy as saving them. The code to restore these
registers is:

restore the Link Register
lwz rO ,Jrame_size+8 (rl)

Programming Model 267

§13.7 An Even Simpler Subroutine Call

mtlr rO

restore the Condition Register
lwz rO ,frame_size+4 (rl)
mtcr rO

Technically, only the CR fields that have changed need to be restored, but some
PowerPC implementations may execute a complete CR restore instruction sig­
nificantly faster than they would execute a partial CR restore.

Restoring the Stack Frame

To restore faa ()' s stack frame, we add the size of bar ()' s stack frame to the
stack pointer:

addi rl, rl ,frame_size

Returning Control to faa ()

Because the LR has been restored, it now holds the return address in faa ().
This means that control can be returned to faa () by simply executing a Branch
to Link Register instruction:

blr

Return to f 00 ()

At this point, control has been returned to faa (), and the stack and all of the
non-volatile registers have been restored. Execution in foo () continues.

13.7 An Even Simpler Subroutine Call

One thing was not made explicit in the simple subroutine call: it was assumed
that the routine bar () needed a stack frame. A routine needs a stack frame only:

• If bar () calls another routine. A stack frame is needed because the
arguments for the routine being called must be stored in the argu­
ment area for bar (). faa ()' s argument area holds the arguments for
bar () and cannot be reused to also hold the arguments for another
routine.

• if bar () requires more than 220 bytes of storage area. The magical
1/220 byte" value comes from the maximum size of the GPR and FPR
save area that all interrupt level code will skip over before allocating

268 Chapter 13

Before Calling barO

space on the stack. If bar () can fit its register save area and its local
storage area into 220 bytes, then it can get away without having a
stack frame.

If a routine doesn't require a stack frame, then there's no sense in creating one.
This section will step through the subroutine call where is it assumed that
bar () does not need a stack frame.

Before Calling bar ()

The frameless routine is called like an ordinary routine, through a blr instruc­
tion. The stack for faa () is set up just as it was in the previous section. Basically,
faa () doesn't know (or care) if any routine it calls has a stack frame or not. It
just passes control to the routine and waits for control to return.

Prolog of bar ()

The only task that the prolog needs to perform is saving the non-volatile regis­
ters that bar () needs to use. This is done above the stack pointer (where
bar ()' s stack frame would be if it were to build one). §13.8, "Saving Registers
on the Stack," discusses in detail how this is done.

The CR and LR should also be saved. Because space has been allocated for them
in faa ()' s stack frame, they can be saved using the same code given in the pre­
vious section:

save the Link Register
mflr rO
stw rO,8(rl)

save the Condition Register
mfcr rO
stw rO,4(rl)

In general, the LR should be saved even though it may seem unneeded (because
bar () doesn't call any functions). There are two reasons for this. First, there
may be some constructs (like case statements) that use the LR; and, second, some
system-level routines are branched to (saving the LR), but are not considered
real subroutines because they do not require a stack frame (see §13.8, "Saving
Registers on the Stack").

Execution of bar ()

As in the previous description, the execution of bar () continues as it normally
would. The only differences are that bar () is not allowed to call any other

Programming Model 269

§13.8 Saving Registers on the Stack

routines, and any of bar ()' s local variables must be accessed using a positive
offset from the top of the stack.

Epilog of bar ()

Because there is no stack frame to restore, the epilog code just restores the non­
volatile registers that were used by bar () and then returns control to foo ().

For the GPRs and FPRs, the original values are pulled from above the stack and
stuffed into the appropriate registers. See §13.8, "Saving Registers on the Stack,"
for a full discussion of how this should be done.

For the CR and LR, the original values were stored at offsets 4 and 8 of f 00 ()' s
stack frame. This is the same code used in the previous section, with the simpli­
fication that thejrame_size is known to be o.

restore the Link Register
lwz rO,8(rl)
mtlr rO

restore the Condition Register
lwz rO,4(rl)
mtcr rO

Not surprisingly, the instruction to return to foo () is the standard:

blr

13.8 Saving Registers on the Stack

The previous sections hinted that saving the GPRs and FPRs on the stack was
not quite as straightforward as it might seem. This section finally explains the
complications surrounding the seemingly simple task of saving and restoring
registers.

Using the Load and Store Multiple Instructions

For two really good reasons, the Load and Store Multiple routines are not encour­
aged as part of the standard register saving mechanism.

The first is the ominous hint in the PowerPC Architecture manual that the Load
and Store Multiple instructions may (on some PowerPC implementations) exe­
cute significantly slower than an equivalent series of loads or stores. Basically,
this means that the hardware designers aren't going to bother wasting transis­
tors on these instructions-if it's easy to add support for them, then it might be
thrown in, but otherwise it'll be emulated in software. Note that this doesn't

270 Chapter 13

Saving GPRs Only

mean that a series of loads or stores will always be faster than the analagous Load
or Store Multiple instruction. On processors with unified caches (like the 601), the
instruction fetches from the series of loads / stores can collide with the data cache
accesses and thus be less efficient than the Load or Store Multiple.

The second reason is that equivalent instructions do not exist for the FPRs, and
there are no planned instructions to support 64-bit GPRs. This means that the
only time these instructions can be used is with the GPRs on 32-bit PowerPC
implementations, and they might be horribly inefficient.

So, because a mechanism is needed for the FPRs anyway, it might as well be
generalized to handle the GPRs.

Saving GPRs Only

The easiest case to describe is where a series of GPRs need to be saved, but no
FPRs. In this case, the GPR save area is located immediately above the stack
frame for the previous routine. Figure 13-8 shows the save area when only the
GPRs need to be saved.

Figure 13-8 Saving GPRs into bar () 's Soon-to-be-constructed Stack Frame

GPR Save Area

rl • ~------------------~

bar's stack
frame (under
construction)

foo's
stack frame

There are three common ways of accomplishing this. The first is to use the Store
Multiple instruction, which has already been presented as a potentially bad idea.
However, it doesn't hurt to show how it would be done. The second and third
methods both involve using a series of Store instructions. The second method
has these instructions inline, and the third branches to a system routine that per­
forms the appropriate register saves.

Programming Model 271

§ 13.8 Saving Registers on the Stack

Using the Store Multiple Instruction

The stmw instruction automatically stores all of the registers, from a specified
starting register up to r31, at a specified effective address. By specifying the
appropriate offset above the current stack pointer as the effective address, the
GPRs can be saved above the stack using one instruction.

There is really only one variable here, the number of registers that need to be
saved. If this variable is called N, and it is allowed to range from one (only r 31
is saved) to 19 (r13 through r31 are saved), then the instruction needed to save
this number of registers above the stack pointer would be:

stmw 32-N, -4*N(r1)

So, for N = I, this would be:

stmw r31,-4(r1)

For N = 19, it would be:

stmw r13,-76(r1)

Using a Series of Store Instructions

After the formula for the Store Multiple instruction is known, the Store instruc­
tions are easy to generate because the arguments are basically the same. To save
five registers, this series of stores would be used:

stw r27,-20(r1)
stw r28,-16(r1)
stw r29,-12(r1)
stw r30,-8(rl)
stw r31,-4(r1)

To save all the GPRs, a series of 19 stw instructions would be used:

stw r13,-76(r1)
stw r14,-72(r1)

15 more stw instructions
stw r30,-8(r1)
stw r31,-4(r1)

Branching to System-Provided GPR Save Routine

Because the stw instructions are always the same series of instructions, it makes
sense to put the instructions in a system-level routine that any routine can
branch to. If the system provides this, then the registers can be stored by branch­
ing to the appropriate entry point in this system routine.

272 Chapter 13

Restoring GPRs Only

As an example, consider the following (abbreviated) implementation of such a
system routine with the listed entry points:

_savegpr13 : stw r13,-76(r1)
_savegpr14: stw r14,-72(r1)
_savegpr1S: stw r1S,-68(r1)

_savegpr30: stw r30,-8(r1)
_savegpr31: stw r31,-4(r1)

bIr

In order to save nine registers (r23 through r31), a routine could branch to the
"gpr23" entry point:

mfIr
bla

rO
_savegpr23

Note that the LR must be saved (in this case, in rO) before the save routine is
called.

The bla (Branch with Link Absolute) instruction is used to call the save routine
because it is assumed that the routine is at a fixed location determined by the as.
H the routine is not at a fixed location, then the bI (Branch with Link) instruction
would be used instead.

Restoring GPRs Only

Just as there are three ways to save the GPRs, there are three ways to restore the
registers: using a Load Multiple instruction; using a series of loads; or using a
system-provided routine to load the registers.

It is important to note that these methods must be applied after the original rou­
tine's stack pointer has been restored in r 1.

Using the Load Multiple Instruction

A Load Multiple instruction with the same parameters as the Store Multiple
instruction used to save the registers, restores all the GPRs in one instruction.

To summarize, this instruction should be used:

Imw 32-N,-4*N(r1)

where N is the number of registers to be saved, ranging from 1 to 19.

Programming Model 273

§ 13.8 Saving Registers on the Stack

Using a Series of Load Instructions

Because this series of load instructions is exactly the same sequence provided in
the system GPR load routine described in the next section, it isn't necessary to go
into detail here-the same information would be duplicated.

However, it is perfectly valid to take this system GPR load routine and copy it
inline into a routine.

Branching to System-Provided GPR Restore Routine

The standard GPR restore routine is a series of load instructions that are analo­
gous to the store instructions in the GPR save routine:

_restgpr13 : lwz r13,-76(rl)
~restgpr14: lwz r14,-72(rl)
_restgpr15: lwz r15,-68(rl)

_restgpr30: lwz r30,-8(rl)
_restgpr31: lwz r31,-4(rl)

blr

A routine can restore the registers by branching to the appropriate entry point.
For example, to restore registers r23 to r31, this branch would be used:

bla _restgpr23

Saving FPRs Only

Now that the save procedure for the GPRs has been discussed, it is much easier
to describe the save procedure for the 18 FPRs. There are two options: the pro­
vided FPR save routine or an inline copy of this routine. Because these are both
the same code, only the system FPR save routine will be discussed.

A system FPR save routine might look like this:

_savefpr14: stfd fr14,-144(rl)
_savefpr15: stfd fr15,-136(rl)
_savefpr16: stfd fr16,-128(rl)

_savefpr30: stfd fr30,-16(rl)
_savefpr31: stfd fr31,-8(rl)

blr

274 Chapter 13

Restoring FPRs Only

In order to save nine floating-point registers (fr23 through fr31), a routine
could branch to the /Jfpr23/J entry point:

rnflr
bla

rO
_savefpr23

As with the GPR case, the LR must be saved before the save routine is called.

Restoring FPRs Only

Not surprisingly, the standard FPR restore routine is just a series of floating­
point load instructions that follow the same pattern as the store instructions in
the FPR save routine:

_restfpr14: lfd fr14,-144(r1)
_restfpr1S: lfd fr1S,-136(r1)
_restfpr16: lfd fr16,-128(r1)

_restfpr30: lfd fr30,-16(r1)
_restfpr31: lfd fr31,-8(r1)

blr

A routine to restore floating-point registers f r 23 to f r 31 would use this branch
instruction:

bla _restfpr23

Saving Both GPRs and FPRs

Restoring both GPRs and FPRs gets somewhat messy because the FPRs get
stored first and the GPRs must be stored immediately above them. Where the
GPRs get stored now depends on the number of FPRs saved, so a simple scheme
of storing them at a constant offset from the current stack pointer (as was done
above) won't work anymore.

The way around this is to calculate and use a GPR base address instead of the
stack pointer, as shown in Figure 13-9. This base address is easy to calculate from
the current stack pointer and the number of FPRs being saved:

Programming Model 275

§ 13.8 Saving Registers on the Stack

Figure 13-9 The GPRs Save Area Is Immediately above the FPR Save Area.

GPRSave

(r12)--..... ---------I
FPRSave

(rl) --~----------I

new frame
under
construction

old frame

If the standard CPR save routines are rewritten to use r12 instead of r1, then
this code can be used to save six ePRs and five FPRs:

mflr
subi
bla
bla

rO
r12,r1,8*5
_savegpr26
_savefpr27

Restoring Both GPRs and FPRs

Restoring ePRs and FPRs is done the same way as the ePR/FPR save-an extra
register is used to calculate the CPR base address. As with the save routine, the
CPR restore routine must be rewritten to use this new base register.

To continue the example, this code could be used to restore the six ePRs and five
FPRs saved:

subi
bla
bla

r12,r1,8*5
_restgpr26
_restfpr27

System Save/Restore Routine in Practice

In practice, the ePR/FPR save and restore routines can be slightly different than
the examples. These differences arise because some systems provide two types
of CPR save and restore routines (one based on r 1 and another based on r 12),
and because the routines are sometimes expanded to perform duties in addition
to saving and restoring ePRs or FPRs.

276 Chapter 13

Multiple GPR Save/Restore Routines

Multiple GPR Save/Restore Routines

Because it is convenient to have CPR save and restore routines based on both r 1
and r12, many systems provide both. These routines are identical except for the
base register used.

To differentiate between these two versions, the standard name of the routines
are changed: _savegprO_xx and _restgprO_Xx reference the save/restore
off of rl, and _savegprl_xx and _restgprl_xxreference the save/restore
off of r12.

Note that the 'a' variant is used when only the ePRs are being saved, and the 'I'
variant is used when both ePRs and FPRs are being saved.

Additional Functionality

Because these routines are always part of a function's prolog or epilog, it makes
sense to include some other prolog/ epilog tasks in their code.

Additional Functionality for Save Routines

For the save routines, it's easy to add the store of the original LR into the caller's
stack frame because it is something that the function prolog needs to do anyway.
If the LR is saved in rO before calling the save routine (as it should be), the LR
can be saved in the proper place using:

stw rO,8(rl)

For the CPR save routine, this instruction only needs to be added to the 'a' vari­
ant because the 'I' variant is always used with the FPR save routine, which will
presumably handle the LR save.

The FPR save routine that includes an LR save is differentiated from the stan­
dard FPR save routine by adding an underscore between the 'fpr' and the reg­
ister number. Thus,_savefpr_29 would be used instead of _savefpr29.

Additional Functionality for Restore Routines

The restore routines can restore the saved LR value and return directly to the
value stored there, eliminating the need to return back to the function perform­
ing the restore. This is done by adding code to the end of the restore routine:

lwz
mtlr
blr

rO,8(rl)
rO

When this version of a restore routine is used, it isn't necessary to use the Branch
with Link form to call the restore routine (no damage will occur if it is used). Only

Programming Model 277

§13.9 Stack Frames

the non-Link branch form is needed because the restore routine will return
directly to the caller.

Rewriting the example that restores six CPRs and five FPRs, the restore routines
would be called as:

subi
bla
ba

r12,rl,8*5
_restgprl_26
_restfpr_27

As with the save routines, this extra functionality only needs to be added to the
'0' variant of the CPR save routines. The FPR restore routine that restores the LR
adds an underscore to the name just like the FPR save routine does. Thus,
_restfpr_27 is used in the above example instead of _restfpr27.

13.9 Stack Frames

Stack frames have been discussed throughout this chapter, but not thoroughly,
so that other, more interesting topics could be discussed sooner. This section pro­
vides a detailed analysis of the structures that comprise a routine's stack frame.

A stack frame is composed of five basic areas as shown in Figure 13-10. To help
speed up data accesses, stack frames are always quadword aligned and the areas
within the frame are either doubleword or word aligned. The required align­
ment for the stack frame areas is also shown in Figure 13-10. Quadword bound­
aries are marked with a 'Q', doubleword boundaries with a 'D', and word
boundaries with a 'W'.

Because the Link, Argument, and Local Storage areas grow down from the top
of the frame, and the FPR and CPR save areas grow up from the bottom of the
frame, some unused "padding" bytes may be left between the Local Storage
Area and CPR Save Area.

As in the previous sections, the routines in this discussion will be referred to by
name instead of usage (because usage may change with the context). Thus, the
routine that owns the stack frame will be known as f 00 (), and bar () will be
used as an example routine that is called by foo (). The routine that originally
called foo () will be referred to as sna (). Hence, the complete calling chain is
sna () =} foo () =} bar (). This terminology helps simplify the discussion by
eliminating some unwieldy phrases needed to identify each routine properly.

278 Chapter 13

Link Area

Figure 13-10 Stack Frame Structure Showing the Required Alignment

low addresses

~ Q
Link Area

D
Argument Area

w

Local Storage
Area possible padding bytes

/
W

GPR Save Area

D

FPR Save Area

~ Q

high addresses

Link Area

The Link Area is a 24-byte area that is used by both foo () (the stack frame
owner) and bar () . Table 13-4 lists the area's fields.

Table 13-4 Link Area fields

Offset Size Description Set/Used by
0 W back chain to sna ()' s stack frame foo()

4 W savedCR bar()

8 W saved LR bar()

12 W reserved (used by compilers) -
16 W reserved (used by binders) -
20 W saved TOC bar()

The first word (at offset 0) contains a pointer to the stack frame of the routine
that called foo(), in this case sna(). This field is initialized by foo() as part
of its function prolog and is used by f 00 ()' s epilog to restore the original stack
frame when the routine is complete.

The next two fields are used by routines that foo () calls, in this case bar (), so
that they have a place to store the LR and CR. These values are stored here
because it is possible that bar () will not need to create a stack frame and it is
convenient to always save these register values in the same place.

Programming Model 279

§ 13.9 Stack Frames

The next two fields are reserved for use by compilers and binders, but they are
generally left unused.

The last field is a storage space set aside for bar () to save its TOC pointer when
it makes out-of-module function calls. Like the LR and CR storage areas, this
area is part of foo()'s stack frame so that all routines have a common place to
store their TOC value, whether or not they create a stack frame.

Because the Saved CR, LR, and TOC fields are presumed to be available to any
routine that faa () calls, faa () must create a stack frame if it calls any other
routine.

Argument Area

The Argument Area is a storage place that faa () can use to hold arguments that
are being passed to bar(). Table 13-5 lists the area's fields. Note that this is not
where the arguments to faa () are stored. The arguments being passed to
faa () are stored in the Argument area owned by sna ().

Table 13-5 Argument Area Fields

Offset Size Description GPR

0 W 1st parameter word 3
4 W 2nd parameter word 4
...
24 W 7th parameter word 9

28 W 8th parameter word 10

32 - additional parameters -
(if necessary)

Because the Argument Area is used to hold the arguments that faa () is passing
to bar (), it must be large enough to hold all the arguments that bar () expects.
If faa () calls multiple routines, then this area must be large enough to hold all
the arguments for the routine that requires the most argument space.

One restriction on the size of the Argument Area is that it is always at least eight
words in size. The first eight words of arguments would be placed in these eight
words if they weren't placed in GPRs 3 through 10. These eight words are
always allocated because it may be necessary for bar () to take the address of
one of the arguments. In this case, the value would be written from the GPR into
the analogous slot in the Argument Area and the address into the Argument
Area would be used.

280 Chapter 13

Local Storage Area

Local Storage Area

The Local Storage Area is a free-form data area that begins immediately below
the Argument Area. Its size is determined by the amount of stack space that
foo () allocates for its stack frame.

GPR Save Area

The GPR Save Area is an area set aside for storing the original values of the non­
volatile GPRs so that they can be restored before foo () returns control to
sna().

The number of registers saved here depends on the number of non-volatile reg­
isters that foo () uses. This can vary from zero to 19 registers, which results in
this area's size varying from zero to 76 bytes. The position depends on the size
of the FPR Save Area because the GPR Save Area is defined to be placed imme­
diately above the FPR Save Area.

FPR Save Area

The FPR Save Area is where the original values of the non-volatile FPRs are
stored so that foo () can restore them when it exits. The size of this area varies
from 0 to 144 bytes, depending on the mttnber of FPRs (0 through 19) that need
to be saved.

13.10 Passing Arguments to Routines

The subroutine calling convention used on most PowerPC systems is register­
based. This means the parameters are passed to the routine using agreed-upon
registers. This scheme works very well in most cases. However, in some situa­
tions, this simple scheme breaks down, for example:

• When there are >8 words of fixed-point arguments.
• When there are> 13 doublewords of floating-point arguments.
• When there are a large number of both fixed- and floating-point

arguments.
• When passing structures or other complex data types into a routine.

The best way of describing the parameter passing scheme is to formalize the
basic system and then to extend it to handle the situations listed. This section
includes many examples that demonstrate how the function parameters are
assigned to the registers.

Programming Model 281

§13.10 Passing Arguments to Routines

Arguments for Simple Routines

A simple routine (as far as this section is concerned) has a small number of
parameters, all of which are basic types. For example, the following routine has
four fixed-point parameters:

void fl(int a,char b,short c,long d)

These four parameters are assigned to the GPRs from left to right, starting with
GPR 3 (the first GPR available for use as a parameter). Thus, the register assign­
ments listed in Table 13-6 are made.

Table 13-6 Arguments for void f 1 (int a, char b, short c, long d)

Arg 1 2 3 4

Type int char short long
Offset (0) (4) (8) (12)

GPR 3 4 5 6
FPR - - - -

char in low-order short in low-order
byte of register halfword of register

Because this table format will be used throughout this section to describe the
argument-passing conventions, it is worthwhile to spend a few paragraphs to
describe how the data is arranged in the table.

First of all, each argument is described in a separate column. Since there are four
arguments, there are four columns numbered 1 through 4. This numbering is
useful because it is convenient to refer to arguments by number instead of name
or type.

For each argument, the argument type, an offset, and a GPR/FPR allocation will
be given. In addition, sometimes notes on the bottom describe some special fea­
ture of the argument.

The argument type is simply the type originally defined for the variable, to typ­
ically something like int, char, or long.

The offset for each argument is the offset into the Argument Area that is being
used to hold the arguments. In many cases, the arguments are passed in registers
and the space left in the Argument Area is unused. In these cases, the offset will
be displayed in parentheses.

The last two rows are the GPR or FPR assignment for this argument. For GPRs,
this ranges between 3 and 10, and for FPRs it ranges from 1 to 13. Not all argu­
ments have register assignments, and it is possible for an argument to be
assigned to both a GPR and an FPR.

282 Chapter 13

Routines with Integer Arguments

Routines with Integer Arguments

Routines with only integer arguments are the most basic in terms of how the
data is allocated.

A couple of things are important to note about the example arguments described
in Table 13-6. The first item of note is that each argument is assigned to a differ­
ent register in order starting with GPR 3. The arguments are not combined in
any way to save registers (as could possibly have been done with arguments 2
and 3). The second is that the data is always placed in the low-order (rightmost)
bits of the register. This second rule is true even when the data is allocated in the
Argument Area.

Routines with Floating-Point Arguments

Floating-point arguments are allocated to floating-point registers in the same
manner that integer arguments are allocated to GPRs.

In Table 13-7 the four floating-point values are assigned to the first four available
FPRs. Each value is also mapped into an appropriate number of bytes in the
Argument Area: eight bytes for double-precision values and four bytes for
single-precision values.

Table13-7 Arguments for void f2(double a,double b,float c,double d)

Arg 1 2 3 4
Type double double float double

Offset (0) (8) (16) (20)

GPR - - - -
FPR 1 2 3 4

Routines with Both Integer and Floating-point Arguments

When both integer and floating-point arguments are being passed to a routine,
things become somewhat complicated. The problem stems from the fact that the
eight words in the argument area are assigned to GPRs 3-10, and now some
floating-point values may need to be mapped into that area.

The conflict is resolved by not using the GPRs that would be assigned to the
same area in the Argument Area as the FPRs that need to be mapped into that
area. The tables show this by allocating the GPRs to the floating-paint values
and listing the GPR numbers in parentheses.

Table 13-8 shows how GPRs 4 and 5 are set aside to eliminate any conflict with
the double-precision value stored in FPR I, and GPR 7 is set aside for FPR 2
(which contains only a single-precision value). These three GPRs are not used
for argument passing, but they can be used by the called routine for any other
purpose.

Programming Model 283

§13.10 Passing Arguments to Routines

Table13-8 Arguments for void f3(int a,double b,char c,float d,int e)

Arg 1 2 3 4 5

Type int double char float int
Offset (0) (4) (12) (16) (20)

GPR 3 (4,5) 6 (7) 8

FPR - 1 - 2 -

Routines with More than 32 Bytes of Arguments

If there are more than 32 bytes of arguments, then some arguments will not fit
into the GPRs and must be stored directly in the Argument Area. Whenever
there are more than 32 bytes of arguments, all of the argument bytes beyond the
32nd must be stored in the Argument Area.

In Table 13-9, the first six parameters fill up the entire 32 bytes of the Argument
Area, so it must be expanded to 44 bytes to hold all of the arguments.

Table 13-9 Arguments for void f4 (int a, double b, double c,

single d,int e,int f,int g,double h)

Arg 1 2 3 4 5 6 7 8

Type int double double single int int int double
Offset (0) (4) (12) (20) (24) (28) 32 36

GPR 3 (4,5) (6,7) (8) 9 10 - -
FPR - 1 2 3 - - - 4

Another interesting aspect of this example is that even though the GPRs have all
been expended and the Argument Area has been partially used, the FPRs can
continue to be allocated as long as they are available. In this case, the floating­
point values must still be passed in the Argument Area, but they may also be
passed in the appropriate FPRs.

Routines without Prototypes

The only difference between routines with and without prototypes is how the
floating-point parameters are handled. If a called routine does not have a proto­
type, then the floating-point values are passed in both the GPRs and the FPRs.

The mapping follows the same technique used when there were mixed integer
and floating-point arguments. The difference is that now the GPRs aren't just
being allocated. They are actually being used to store the floating-point value (in
addition to the FPR, which stores the same value).

To show some of these register assignments, routines with floating-point argu­
ments are revisited in Tables 13-10 and 13-11 to show the GPR allocation.

284 Chapter 13

Routines with an Ellipsis

Table 13-10 Arguments for void f2 (double a, double b, float c, double d)

Arg 1 2 3 4

Type double double float double
Offset (0) (8) (16) (20)

GPR 3,4 5,6 7 8,9

FPR 1 2 3 4

Table 13-11 Arguments for void f3(int a,double b,char c,float d,int e)

Arg 1 2 3 4 5

Type int double char float int
Offset (0) (4) (12) (16) (20)

GPR 3 4,5 6 7 8
FPR - 1 - 2 -

Routines with an Ellipsis

An ellipsis indicates that the routine can have a variable number of unspecified
arguments, which is very similar to a routine that doesn't have a prototype.

If a routine prototype has an ellipsis, then it is treated as if the prototype didn't
exist, and the arguments are passed in both the GPRs and FPRs.

Passing Complex Arguments

Complex arguments like structures are passed using the registers just as if the
elements of the structure were passed to the routine individually. The only
exception to this rule is that arguments that do not require the entire register
word (like chars and shorts) are left justified in the register instead of right justi­
fied. The reason for this difference is to match the way the structure is stored in
memory.

The example routine in Table 13-12 assumes the definition of the structure:

typedef struct {
int a;
short b;
double c;

} data;

Table 13-12 Arguments for void fS(data abc,double d,int e)

Arg
data

4 5
1 2 3

Type int short double double int
Offset (0) (4) (8) (16) (24)

Programming Model 285

§ 13.11 Retrieving Results from Routines

GPR 3 4 (5,6) (7,8) 9
FPR - - 1 2 -

short in high-order
halfword of register

13.11 Retrieving Results from Routines

Like arguments that are passed to routines, the results returned to the calling
routine are all register based.

Integer Results

Integer function results are returned in registers r3 and r4. The rules governing
the use of these registers are:

• int, long, and pointer values are returned in r3.

• Unsigned char and short values are returned in r3, where the value is
right justified in the register and zero-extended.

• Signed char and short values are returned in r3, where the value is
right justified in the register and sign-extended.

• Bit fields of 32 bits or less are returned right justified in r3.

• 64-bit fixed-point values are returned in r3:r4, where r3 contains the
high-order portion of the value and r4 contains the low-order
portion.

Floating-Point Results

Floating-point function results are returned in registers frl through fr4,
according to these rules:

• Single-precision (32-bit) values are returned in frl.

• Double-precision (64-bit) values are returned in frl.

• Long double-precision (128-bit) values are returned in frl:fr2,
where frl contains the high-order 64 bits and fr2 contains the low­
order 64 bits.

• Single- or double-precision complex values are returned in frl:fr2,
where frl contains the real single- or double-precision portion, and
fr2 contains the imaginary single- or double-precision portion.

• Long double-precision complex values are returned in frl:fr4,
where frl:fr2 contain the high- and low-order bits of the real
portion, and fr3:fr4 contain the high- and low-order bits of the
imaginary portion.

286 Chapter 13

Complex Results

Complex Results

When complex data types like structures or strings (of greater than four charac­
ters) need to be returned as a function result, the caller must first allocate a buffer
large enough to hold the result. A pointer to this buffer is passed to the routine
as its first argument and occupies GPR 3 (and the first four bytes of the Argu­
mentArea).

The first user-visible argument to the routine is passed in GPR 4.

13.12 Stack Frames and alloca ()

The C library routine alloca () causes a small problem with the requirement
that the stack pointer always be a valid stack frame. Since alloca () is defined
to allocate storage space dynamically on the stack, it must update the stack
pointer. The trick is to make sure that it allocates the needed storage while keep­
ing the current stack frame intact.

This is done by maintaining two pointers into the stack: the stack pointer and a
local storage area pointer for this routine. The stack pointer is always rl and the
local storage area pointer can be any register chosen by the routine. By using these
two pointers, the link area and the argument area can be copied to the top of the
newly expanded stack frame and the new storage space is taken from the area
between the argument area and the local storage area. As Figure 13-11 shows, this
results in the new storage area partially overlapping the area on the stack that
used to contain the link area and argument area.

The local storage area pointer can be any available GPR and must be initialized
and maintained by the routine.

Routines that do not use alloca () do not need to use a separate pointer for
local storage because the top of the local storage area is trivially calculated from
the stack pointer and guaranteed not to change.

In their epilog code, routines that use alloca () must restore the previous stack
frame using the value stored at offset 0 from the current stack frame. This must
be done because there is no easy way to calculate the current size of the stack
frame because the values passed to alloca () are presumably runtime depen­
dent.

Programming Model 287

§13.13 Linking with Global Routines

Figure 13-11 Stack Frame before and after Call to alloca ()

(rl) _
Link Area

(rX)_
Argument Area

Local Storage
Area

GPRSave

FPRSave

\

j

bar's
stack
frame

faa's
stack
frame

(rl)

pNew -
(rX) -

13.13 Linking with Global Routines

Link Area

Argument Area

New Storage
Area

Local Storage
Area

GPRSave

FPRSave

~

I)

bar's
stack
frame

faa's
stack
frame

Subroutine calls are complicated when the routine being called is not located in
the same module as the routine making the subroutine call. Routines located in
different modules are likely to have different TOC environments, and each rou­
tine needs to have the proper environment to function properly.

Consider the arrangement of routines shown in Figure 13-12.

Two modules are defined, each with a different TOC environment. As far as the
routine foo () is concerned, the routine bar () is a local routine because it is
located in foo()'s local module. A call to bar() from foo() can be accom­
plished by simply using the Branch with Link instruction to the address of bar ().
This is acceptable because both share the same TOC environment.

288 Chapter 13

Function Descriptors

Figure 13-12 Two Sample Modules with Different TOe Environments

Module 1
TOC = 1000

Module 2
TOC = 2000

The kyoko () routine is located in a module that is foreign to foo ()' s module,
so kyoko () has a different TOe environment. If foo () were to simply Branch
with Link to the address of kyoko (), kyoko () would inherit the wrong Toe
environment, which would probably cause bad things to happen.

To prevent them from happening, there must be some mechanism for switching
TOe environments whenever an "out-of-module" routine is called.

Function Descriptors

One way of handling the necessary Toe context switch is to use a structure
called a function descriptor (sometimes called a transition vector) instead of just a
simple pointer. A function descriptor is a pointer to the structure described in
Table 13-13.

Table 13-13 Structure of a Function Descriptor

Offset Description
0 routine address
4 TOe
8 environment pointer

The first word of this structure contains the address of the routine, and the sec­
ond word contains the Toe pointer. Following words can contain data such as
an environment pointer, but anything beyond the Toe pointer is optional and
depends on the development environment originally used to create the routine.
In many cases, these following words are zero or are not present.

Programming Model 289

§13.13 Linking with Global Routines

Using this structure, an external routine can be called by passing the function
descriptor to a special routine provided to take the information in the descriptor
and properly pass control to the target routine.

Pointer Global Linkage (.ptrgl) Routines

A pointer global linkage (. ptrgl) routine is a small glue routine whose purpose
is to pass control to a routine defined by a given function descriptor. Part of the
routine's operation is to handle the Toe context switch properly.

Using the .ptrgl Routine

The method of using a • ptrgl routine is exactly the same as using a normal
routine call, except that the Branch with Link to the target routine is replaced with
these actions:

• Load the function descriptor into r 1I.
• Branch with Link to the • ptrgl routine.
• Restore the current routine's Toe (if necessary).

Some development environments use r12 instead of r11, but the general idea is
still the same.

Loading the address of the function descriptor and the branch are both straight­
forward, but the TOe restoration might seem a bit tricky because the current
Toe doesn't seem to have been saved anywhere. The part that is not apparent
from the bulleted list is that part of the . ptrg 1 routine's responsibility is to save
the Toe in the Link Area of the stack frame before setting up the target routine's
TOe environment. This allows the TOe to be restored using a simple load
instruction:

lwz rTOC,20(r1)

The "20" value is the magic offset from the top of the stack frame to the TOe
storage area in the Link Area. This is where the • ptrgl routine will save the
current TOe.

If it is known that the source and target routines both share the same Toe envi­
ronment, then the lwz instruction is not necessary. In this case, a standard no-op
instruction will be added in place of the load. This no-op is commonly encoded
as a ori rO, rO, 0, but some older development environments used cror
31,31,310rcror 15,15,15.

This no-op reflects the fact that the compiler is generally unable to tell if the tar­
get routine will be in the same module as the source (the calling) routine. The
compiler cannot figure this out because module assignments are not made until
the object code is linked by the linker. When the compiler encounters a subrou-

290 Chapter 13

How the .ptrgl Routine Works

tine call to a routine that is not defined in the same source file, it must assume
that the linker could place the routine in another module. To support this poten­
tial out-of-module call, a no-op placeholder instruction is placed after the sub­
routine call. This gives the linker a place to write the required load instruction. If
the two routines are in the same module, the linker doesn't add the load instruc­
tion and the no-op instruction remains.

Of course, if the compiler has enough information available to determine if the
called routine is in the same TOC environment, then the placeholder no-op
instruction is unnecessary and is not generated.

How the .ptrgl Routine Works

The actions performed by the. ptrgl routine are best described by examining
the code:

lwz rO,O(r11) # rO <= routine address
stw rTOe,20(r1) # save current Toe
mtctr rO # ctr <= routine address
lwz rToe , 4 (r 11) # setup proper Toe
lwz r11,8(r11) # setup proper env ptr
bctr # call routine

Because this is a short routine, each of its instructions will be examined in turn.

The 1 wz r 0 , 0 (r 11) instruction gets the address of the target routine from the
function descriptor and stores it in r O. This value will later be stored in the CTR
so that the bctr instruction can be used to jump to the routine.

The s tw rTOe, 20 (r 1) instruction saves the current TOC in the Link Area of
the current routine's stack frame. The value stored here will be restored by the
lwz instruction, which follows the branch to the. ptrgl routine.

The mtctr rO instruction takes the target routine address and places it in the
CTR register so that it can be jumped to easily.

The 1 wz rTOe, 4 (r 11) instruction gets the target routine's TOC pointer and
stores it in the TOC register.

The optional 1 wz r 11 , 8 (r 11) instruction sets up the target routine's environ­
ment pointer. Because the environment pointer isn't used by all development
systems, this instruction may not be necessary.

The bctr instruction actually (finally) calls the target routine.

Note that the code does not touch the LR. The calling routine calls the. ptrgl
glue using a Branch with Link instruction that sets the LR to hold the address (in

Programming Model 291

§13.13 Linking with Global Routines

the original routine) where control should return. Since the LRhasn't been mod­
ified, the target routine can return control using the standard blr instruction.

Global Linkage (.glink) Routines

Global Linkage (. gUnk) routines are similar to • ptrgl routines except in
usage. A • glink routine is created for every external routine that a module
imports, so there would be a separate • glink routine for every system or
library routine that a program calls.

The main difference between a • 9 I ink routine and the • ptrg I routine is where
the function descriptor originates. The. ptrgl routine is a general routine that
is passed a function descriptor; the • glink routines are specific to a particular
target routine.

This does not mean that the function descriptors for • glink routines are
encoded in the • glink routine itself. A separate function descriptor is still
stored in the Toe area for the module. Each. glink routine encodes only the
offset from the Toe to the function descriptor. This method gives both the linker
and the. glink routine easy access to the descriptor.

Using the .glink Routines

Other than this difference in the source of the function descriptor, • glink rou­
tines are used like. ptrgl routines, except the function descriptor (obviously)
needn't be passed in r 11. All • 9 I ink routines are called using a Branch with
Link instruction, and they are always followed by a lwz or no-op instruction.

How the .glink Routines Work

The code for the standard. glink routine is:

lwz rI2,offset(rTOe) # r12 <= f() desc
stw rTOe,20(rl) # save current Toe
lwz rO,O(rI2) # rO <= routine address
lwz rTOe,4(rI2) # set up routine's Toe
rntctr rO # ctr <= routine address
bctr # call routine

As with the .ptrgl code, it is useful to describe the routine instruction by
instruction.

The first instruction, lwz r12, offset (rTOe), gets a pointer to the target rou­
tine's function descriptor and places it in r12. The offset to the function descrip­
tor from the module's TOe is hard-coded into this instruction.

292 Chapter 13

Function Pointers in High-Level Languages

The s tw rTOC, 20 (r 1) instruction saves the current Toe in the Link Area of
the current routine's stack frame.

The next two instructions, 1 wz r 0 , 0 (r 12) and 1 wz rTOC, 4 (r 12), get the
target routine's address and TOC pointer and load them into rO and rTOC,
respectively.

The last two instructions put the target routine's address into the CTR register
and then call the routine.

Function Pointers in High-Level Languages

In high-level languages, function pointers are always implemented as function
descriptors. However, these descriptors are never directly visible to the pro­
grammer-the compiler handles all necessary descriptor magic so the program­
mer only deals with (apparent) function pointers.

Function descriptors are necessary because there is no way for the compiler to
know what the program plans to do with the "function pointer." If it is going to
be used as a callback function for a system routine, then the routine must be
passed along with its TOC environment as a function descriptor.

Because the compiler can't know if a descriptor is needed, it plays it safe and
always creates one.

Programming Model 293

Introduction to
Optimizing

Until this point, the chapters in this book have been concerned with describing
how the instructions work at a functional level so that conceptually correct frag­
ments of code can be written. Starting with this chapter, the book switches gears
and concentrates on taking these working code fragments and modifying them
so that they execute more efficiently.

Note that these optimization techniques are very important for programs writ­
ten in assembly language. In general, RIse processors require that the program­
mer (or compiler) have a large store of knowledge about the processor. It
requires a lot of effort to produce an assembly language routine that is more
efficient than one produced by a properly written compiler. If you are not will­
ing to apply these techniques, then you are most likely better off using a high­
level language and letting the compiler handle all these issues.

14.1 When to Optimize

Optimizing is a trade-off between code that executes quickly and code that is
easy to write and maintain. This is true from both the high-level language and
the assembly language points of view, although the problem is more acute for
the assembly language programmer.

Because it's more time-consuming to write and maintain optimized code, it's
important to invest the effort spent optimizing code wisely. Many times this
comes down to simply applying common sense, for example, recognizing that
certain routines are less likely to benefit from optimization.

Introduction to Optimizing 295

§14.1 When to Optimize

Thus, the key to optimizing effectively has less to do with scheduling instruc­
tions and more to do with identifying what needs to be optimized and under­
standing how to rewrite the code. Any person (or compiler) can learn to
schedule instructions optimally, but identifying the code that should be opti­
mized requires skill and intelligence.

This, coupled with the fact that the human programmer actually understands
the program that is being written at a conceptual level, is why properly opti­
mized hand-assembled code is almost guaranteed to be superior to properly
optimized compiled code.

Pre-Optimization Steps

Four basic steps to writing optimized code should be taken before any low-level
optimizations should even be considered:

• Make sure that the program is written correctly.
• Profile the code to identify which routines will benefit most from

optimizing.
• Optimize the high-level algorithm and data structures.
• Apply standard high-level optimizations.

Only after all of these steps have been taken (and perhaps applied iteratively)
should assembly-level optimizations be considered. Many times, these steps are
all that is necessary.

Profiling Code

One of the first steps involves using a profiler. Although profiler features vary
widely, it is worthwhile to take time to discuss them briefly.

A profiler is a utility program that "watches" the execution of another program
(the target application) and produces a summary of how much time each of the
target application's routines takes. Depending on the profiler, the target applica­
tion may need to be recompiled, or it may be able to get all the required informa­
tion from the debugging symbols.

The information returned by the profiler can be quite useful because it gives a
reasonably good summary of where a program is spending most of its time. For
example, a profiler may return some summary information like this:

%Time
47.2%
28.7%
14.1%

296 Chapter 14

Name
foo
bar
sna

8.1% in it
1.9% main

Examining Compiled Code

This information indicates that almost half of the execution time was spent in the
faa () routine, which means that faa () is a potential candidate for optimiza­
tion.

Of course, this is just the first step. After the routines that require the most CPU
time have been identified, they need to be evaluated to see if optimization is
worthwhile. In some cases, the routine may not be easily optimizable. In other
cases, the routine may not be the proper place to expend effort.

As an example of the latter situation, consider the time percentage distribution
where the sna () routine is basically a loop that calls the faa () routine repeat­
edly. This could quite easily lead to the situation where faa () takes 47.2% of the
CPU time and sna() takes only 14.1%. In this case, it is possible that a small
change in sna () could reduce the number of times that it calls faa (). This opti­
mization could possibly affect program execution speed more greatly than any
optimizations applied to faa ().

Most profilers provide more information than the example gives. Some profilers
record the number of times that each routine was called, and others record the
entire call-chain to determine how much time a particular routine spent in exe­
cution when called by each routine. Profiler feature sets vary widely, so it is best
to familiarize yourself with whatever profiler you have and learn to use the
information that it provides.

14.2 Examining Compiled Code

In a chapter devoted to writing optimized code, it may at first seem strange to
have a section on reading compiled code. There are two really good reasons that
directly relate to optimizing, and a third reason that doesn't directly apply to
writing optimized code, but is a good reason nonetheless.

First, only by reviewing the compiler output will a programmer get an idea of
how intelligent the compiler is with respect to optimization. Only when you
know the capabilities (and limitations) of the compiler can you take advantage
of them (or work around them).

The second reason for looking at compiler-generated output is to learn how the
compiler optimizes so you can apply similar techniques when hand-coding in
assembly. At first glance, this reason may seem a bit silly: if the compiler is better
at optimizing than a particular programmer, it makes sense for that programmer
to simply use the compiler and not bother with assembly language. This is
somewhat true, but the programmer is bringing to this picture a high level
knowledge of what is being accomplished (something the compiler isn't likely to

Introduction to Optimizing 297

§14.2 Examining Compiled Code

have). Many times, this gives the programmer a significant advantage over the
compiler.

The final reason for wanting to be able to read compiler-generated output is that
it is sometimes necessary to debug at that level. Most debugging is, of course,
done at the source-code level, but at times the source is not available or subtle
interactions between the system and the program cause the source-level debug­
ger to be inadequate.

Disassemblers

One of the most important tools used when decompiling is the disassembler.
When choosing a disassembler, it is important that you find one that disassem­
bles the instructions into their most readable forms.

Surprisingly, a number of disassemblers disassemble instructions improperly.
"Improperly," does not mean that instructions are disassembled incorrectly;
they are just not disassembled as well as they could be.

Consider these instruction disassemblies:

bc 12,10,addr
rlwinm 0,0,4,0,27
mfspr 0,8

While these disassemblies are technically correct, compare them to the following
disassemblies of the same instructions:

beq
slwi
mflr

crf2,addr
rO,rO,4
rO

Using a disassembler that disassembles properly makes the code easier to follow
and understand. It also reduces the likelihood that the instruction will be misin­
terpreted because you won't have to remember details like "the 10 means bit 2
(the EQ bit) of CR field 2," and "the 12 means the branch occurs if the bit is set."
You see the instruction as beq crf2, and you know right away what operation
it's performing.

This is especially important for the complex Rotate and Insert with Mask instruc­
tions that the PowerPC provides. In the example, it's not readily apparent that
the rlwinm 0, 0,4, 0,27 instruction is performing a left shift of four bits,
whereas the slwi rO, rO, 4 instruction is less opaque.

298 Chapter 14

Difficulties with Reading Compiled Code

Difficulties with Reading Compiled Code

The biggest problem with reading compiled (or even hand-assembled) code is
that it quickly becomes confusing. Sequences of instructions that are part of the
same conceptual "operation" are spread out and intertwined as part of the
instruction scheduling optimization.

Take, for example, this simple sequence of instructions:

ptr(r2) contains a pointer to a word
load that word into r6
lwz rS, ptr (r2) # get the ptr
lwz r6,O(rS) # get the data

get the return
lwz rO,8(rl)

address and exit
get rtn addr

mtlr rO
blr

This would typically be written as:

lwz
lwz
mtlr
lwz
blr

rO,8(rl)
rS,ptr(r2)
rO
r6,O(rS)

move it into LR
exit

Even with comments added, the rewritten code would be harder to follow. The
real problem is that it's hard to add comments to the rewritten code because the
instructions performing the two different operations are intertwined. Of course,
the example is simplified. Most real-world examples are much worse.

Good Things about Compiled Code

On the other hand, compilers have a wonderful tendency to use standard tem­
plates for most operations. Functions are almost guaranteed to begin and end
with the standard routine prolog and epilog code. A sequence of code like this:

mflr
stmw
stw
stwu

rO
r22,-40(rl)
rO,Ox8(rl)
rl,-120(rl)

only occurs at the beginning of a routine, because it is saving registers and creat­
ing a new stack frame.

Difficulties with Reading Compiled Code 299

§ 14.3 Standard Optimizations

A large number of these code templates are used by compilers. When you know
and recognize these standard templates, reading compiled code becomes much
easier.

Conclusions

Overall, compiler-generated code is sort of a mixed blessing. On one hand, the
code can be somewhat confusing because compilers can be quite good at instruc­
tion scheduling, but there are also a lot of commonly used templates that can
also be used as landmarks for identifying code.

Half the battle of reading compiled code is knowing the basics-what the indi­
vidual instructions do and how the GPR and FPR usage conventions are
applied. The previous chapters in this book have attempted to address this need.

The rest of the skills required come from examining real-world code samples
and knowing how the code is typically optimized, both at the high level and at
the assembly level. The remainder of this book tries to form a good foundation
upon which these skills can be built.

14.3 Standard Optimizations

Before covering the specific optimizations for the PowerPC processor, it is prob­
ably worthwhile to quickly review some standard optimization techniques com­
monly used to improve code performance. This section does not attempt to
cover all compiler optimization techniques. Such a task is beyond its scope.

Instruction Strength Reduction

This technique involves replacing "strong" (more complex) instructions with
"weak" (simpler) instructions. The criterion by which an instruction is judged
either strong or weak can be a measure of its execution speed or its object code
size.

A commonly used strength reduction is substituting algebraic shift instructions
for multiply and divide operations. This optimization can only be applied when
the value is being multiplied (or divided) by a power of 2, but the savings in
execution time can be substantial.

Common Sub expression Elimination (CSE)

A common subexpression is an expression or portion of an expression that
occurs more than once in one or more statements. In the examples:

c = (a+b) + (b/(a+b»;

300 Chapter 14

and

q = (a+b) * (3*2);
r = (c+3) + (a+b);

Code Motion of Loop Invariants

the sUbexpression (a+b) is common because it occurs more than once.

A subexpression can be common across statements or across compiler blocks.
When elimination is being performed across compiler blocks, the technique is
termed "Global Common Subexpression Elimination." Note that this use of the
term" global" refers to CSE across basic compiler blocks and not across function
boundaries.

Implementing global CSE can be tricky because sometimes the compiler must
insert extra copy statements to apply the CSE. This is shown below, where the
e=a+b statement cannot be simply replaced with either e=c or e=d.

if(x)
c

else
d

a + b;

a + b;
e = a + b;

The code must first be transformed so that the final assignment statement can be
replaced with e=t:

t = a + b;
if(x)

c t;
else

d = t;
e = t;

Code Motion of Loop Invariants

Loop invariants are computations whose values do not change within the body
of a loop. These computations can be moved outside (preferably before) the
loop, thus reducing the time that must be spent within the loop. This optimiza­
tion (along with the elimination of a common subexpression) can be used to
change:

while (i> (x-l))
a[i++] = y+(x-l);

Code Motion of Loop Invariants 301

§ 14.3 Standard Optimizations

to:

tl = x-I;
t2 = y+t1;
while (i>tl)

a[i++] = t2;

These optimizations reduce the number of arithmetic operations (not including
the expression to increment i) from 3x(x-l-il) down to only 2, where il is the
value of i when the loop is entered.

Function Inlining

Small functions are many times ideal candidates to be compiled "inline." A func­
tion compiled inline is simply expanded and placed at the point of the function
call. Inline functions take more space than the function calls because the code
must be repeated at each point where the function is II called." However, because
the function calling overhead is eliminated, the typical result is faster code.

Loop Unrolling

Loop umolling is the process of reducing the number of loop iterations by
repeating the loop code multiple times. This speed optimization increases code
size. By reducing the number of loop iterations, the code reduces the impact of
the overhead associated with the branch back to the head of the loop. This opti­
mization is especially useful for pipelined processors, because each branch
reduces the effectiveness of the pipeline.

This loop:

for(i=O;i<IOO;)
a[i++] = 0;

can be unrolled once to produce:

for(i=0;i<50;) {
a[i++] 0;
a[i++] = 0;

}

302 Chapter 14

or twice to produce:

for(i=0;i<25;) {
a[i++] 0;
a[i++] 0;
a[i++] 0;
a[i++] 0;

}

Loop Unrolling

or it could even be completely unrolled. The speed of the loop tends (although
it is not guaranteed) to increase as the loop is unrolled further.

One potential problem with loop unrolling is that the overall performance can
decrease if the loop is unrolled so far that cache misses on the instruction fetches
offset performance gains. Take care when unrolling a loop more than once or
twice.

Loop Unrolling 303

Resource
Scheduling

Every CPU has a limited number of processor resources that programs can use.
When optimizing code, it is important to maximize the use of all of resources
while minimizing conflicts that may arise from multiple parts of the processor
trying to use the same resource at the same time.

To simplify matters, most modern processors seek to minimize the number of
special resources in the cpu. This is why recent processors tend to have a large
store of general purpose registers instead of special purpose registers, like loop­
ing and branching registers.

In spite of this trend, the PowerPC has a variety of special purpose registers,
namely, the LR, CTR, and CR. However, certain POWER SPRs (like the MQ reg­
ister) are not part of the PowerPC specification because they can become
resource bottlenecks.

The LR, CTR, and CR were included because they permit certain types of hard­
ware optimizations to be implemented. However, care must be taken when
using these registers or they may lead to resource conflicts that can adversely
affect performance.

15.1 Types of Processor Resources

Three types of processor resources can lead to conflicts: the pipeline stages, the
processor registers, and the memory subsystem. Each of these resource types
will be discussed.

Resource Scheduling 305

§15.2 Pipeline Conflicts

Pipeline Stages

The pipeline stages are the most obvious timing-related resources. For the most
part, the processor has one copy of each pipeline stage and only one instruction
can be in each stage at any time.

There are some exceptions to this "rule." Certain simple pipeline stages (like the
writeback stages) allow multiple instructions to be in the stage simultaneously.
Also, some future implementations of the PowerPC are likely to implement
duplicate pipelines so that there would be multiple copies of the "same" pipe­
line stage.

Processor Registers

There is only one copy of each of the registers in the processor. This means mul­
tiple instructions that need to access the same register must have some mecha­
nism for arbitrating and sharing the resource.

For the GPRs and FPRs, the programmer has some control over which specific
register to use. Arranging instructions so that they use different registers (if pos­
sible) can help avoid conflicts.

With the SPRs, the programmer doesn't have much choice-there's only one of
each. However, many techniques can be applied to avoid stalls due to these
unique resources.

Memory Subsystem and Cache

The memory and cache conflicts are the most interesting to discuss because they
require that the discussion be held at a level much higher than the assembly
language level.

These conflicts arise because the processor uses caches to increase performance,
and these caches are limited in size. Since a cache miss can stall the processor for
many cycles, it is important to arrange the memory accesses to minimize the
likelihood of a cache miss.

15.2 Pipeline Conflicts

The pipeline conflicts were discussed earlier at a simple level in Chapter 12,
which covered instruction timings. That chapter only covered the basics of pipe­
line timings and showed the stages each instruction required.

This section will go into more detail, discussing each processor stage and outlin­
ing the specific conflicts that can arise in each stage.

306 Chapter 15

Fetch Arbitration Unit (FAU) Stages

Fetch Arbitration Unit (FAU) Stages

The FAU consists of only one "stage," the Fetch Arbitrate (FA) stage. However,
the FA stage of the FAU differs from other pipeline stages because instructions
do not really pass through the FAU. The job of the FAU is to generate the address
of the next instruction group to be loaded from the cache into the Dispatch Unit.
Instruction execution technically doesn't begin until the instructions are loaded
into the IQ buffer in the DD.

Referring to an instruction as being in the "FA stage" is simply a convenient way
of noting that the instruction in question is one that will be loaded into the Dis­
patch Unit after the cache is accessed.

The end result is that the FA stage can never cause a pipeline stall because it is
not really a pipeline stage. If a stall occurs during the instruction fetch process, it
occurs during the CARB stage of the CAU.

Cache Access Unit (CAU) Stages

Because the CAU provides the only interface between the execution units of the
processor and the cache, there are plenty of opportunities for pipeline stalls to
occur. Two major types of stalls are caused by different units of the processor
trying to access memory simultaneously and by the requested block of memory
not being present in the cache. These cases are handled by the CARB and CACC
stages, respectively.

This section reviews the potential stalls that can occur in the CAD. A more thor­
ough treatment of this topic is given in §12.6, "Cache Access Timings."

Cache Arbitration (CARB)

The CARB stage decides which cache request gets passed along to the CACC
stage. Because of this, lower priority cache access will stall in CARB if another
cache access of higher priority is in CARB. Cache accesses are prioritized as:

• Cache Maintenance Requests
• Data Load Requests
• Data Store Requests
• Instruction Fetch Requests

where Cache Maintenance Requests from the memory subsystem have the highest
priority and the Instruction Fetch Requests have the lowest priority.

Fetch Arbitration Unit (FAU) Stages 307

§ 15.2 Pipeline Conflicts

Cache Access (CACC)

After a cache access has been initiated, the access requires one cycle in CACC if
the data is present in the cache. If the data is not present, then at least six cycles
will be spent waiting for the cache to get the data from the main memory store.
After the data is forwarded to the proper place, the CACC stage will be occupied
for at least another two cycles while it completes the cache update operation.

To summarize, this means that at least six cycles are spent waiting for the data,
and that the CACC stage cannot be used by another instruction until at least two
more cycles have gone by. §12.6, "Cache Access Timings," provides more details
about cache miss timings.

Dispatch Unit (DU) Stages

The Dispatch Vnit consists of only an eight-entry Instruction Queue. The only
stalls that can arise in this unit are due to stalls in the IV, FPV, or BPV that pre­
vent an instruction from being dispatched.

Integer Unit (lU) Stages

Almost all integer instructions require one cycle in each of the primary IV stages,
some of which can be overlapped. Exceptions to this are well defined and are
presented below.

The IWL stage is the only IV stage that is not considered a "primary stage." This
stage is used only by the integer load instructions.

Integer Decode (ID)

Only two situations cause an instruction to stall in the ID stage. The first condi­
tion is when the instruction needs to read the CR or XER and that resource is
currently being updated by an instruction currently in IE. This causes the
instruction to stall in ID until the previous instruction moves into IWA and
updates the appropriate register.

The second situation is when a previous instruction occupies the IE stage of the
IV pipeline for more than one cycle. In this case, the instruction must wait in ID
until the IE stage is available.

When an instruction stalls in ID, a new instruction can enter the IQO stage of the
DU. However, when the ID stage is vacated, this instruction occupies the IQO
and ID stages for one cycle instead of moving on to just the ID stage so that a new
instruction can enter lQO.

308 Chapter 15

Integer Execute (IE)

The following timing table shows this, where the nand instruction stalls in IQO
until the and instruction can vacate the ID stage. After the ID stage is free
(cycle 7), the nand instruction occupies both the IQO and ID stages for a cycle
before continuing to the IE stage.

Cycle #: 1 2 3 4 5 6 7 8 9

mulli r9,r9,5
IQO

IE IE IE IE IE
IC

ID IWA
- -

and rO,rO,rl IQl
IQO

ID ID ID ID IE
IC

ID IWA
-

nand r2,r2,r3 IQ2 IQl IQO IQO IQO IQO
IQO

IE
IL

ID IWA

Integer Execute (IE)

All instructions spend one cycle in IE except:

• Multiply instructions.
• Divide instructions.
• Load and store multiple (including string) instructions.
• Move to/from SPR instructions for certain SPRs.
• System Call and Return from Interrupt instructions.

The multiply instructions require five, nine, or ten cycles, depending on the data
being multiplied. The divide operation always takes 36 cycles in IE. The load/
store multiple and string operations require one cycle in IE for each register of
data being transferred.

The SPR and System Call instructions listed above all require two cycles in IE.
Note that not all Move to/from SPR instructions require two cycles-all the com­
monly used SPRs (CR, CTR, LR, and XER) require only one cycle in IE.

Another situation that causes an instruction in IE to stall is when a stwcx.
instruction is in IWA. See the timing for the Store Conditional Word instruction in
§12.3, "Fixed-Point Instruction Timings," for an explanation of this stalling con­
dition.

Integer Completion (IC)

The IC stage is always executed in parallel with another stage, and it is used to
notify the other stages that the instruction is committed, even though it may not
yet be complete. Because this stage performs no calculations, it doesn't generate
any stalls.

However, the IC stage can inherit a stall from the IWA stage. Almost all instruc­
tions spend one cycle in IWA and, thus, require only one cycle in Ie. The Trap,
System Call, and some Move to/from SPR instructions are exceptions because they
require multiple cycles in IWA and Ie.

Integer Execute (IE) 309

§ 15.2 Pipeline Conflicts

Integer Arithmetic Writeback (IWA)

As in IC, most instructions require only one cycle in IWA. The exceptions to this
are the same as noted for the IC stage: Trap, System Call, and some Move to/from
SPR instructions.

Integer Load Writeback (IWL)

The IWL stage is the writeback stage for integer load instructions. All integer
load instructions require one cycle in this stage. This stage is completely inde­
pendent of the IWA stage (the writeback stage for non-load integer instructions).
Both the IWL and IWA can writeback to the GPRs during the same cycle, pro­
vided that they both don't need to update the same GPR.

Floating-Point Unit (FPU) Stages

Timing for the FPU is more complex than for the IU because the FPU can handle
both single- and double-precision operations.

The simple floating-point instructions require one cycle in each of the four pri­
mary FPU stages: FD, FPM, FPA, and FWA. Exceptions are noted in the next
section.

FP Instruction Queue (Fl)

The Fl stage is simply an instruction queueing stage used when the FD stage is
full. Because this stage is just a queue that doesn't perform calculations, it
doesn't generate stalls.

FP Decode (FD)

Instructions typically require one cycle in this stage, although an instruction will
stall in this stage for any of these reasons:

• A multi-cycle floating-point operation is currently executing in the
FPMstage.

• One of the source operands is a target of an outstanding load, or an
operand of an instruction in the FPM, FPA, or FWA stages.

• One of the source operands requires prenormalization, or the FPU
predicts that the result will be a denormalized number.

The first case is a simple pipeline stall, where the instruction spends time in both
the FD and FPM stages. Instructions that require multiple cycles in FD are the
same instructions that require multiple cycles in FPM, namely, the double-

310 Chapter 15

FP Multiply (FPM)

precision multiply (two cycles), single- and double-precision divide (17/31
cycles), and the Move to FPSCR (four cycles) instructions.

The second case, a register conflict, is discussed in the next section.

Instruction timings for situations when the operandi result requires prenormal­
ization/ denormalization are covered in §12.9, 1/ Abnormal Floating-Point Condi­
tions."

FP Multiply (FPM)

In general, most floating-point instructions require only one cycle in FPM. The
double-precision multiply, single- and double-precision divide, and the Move to
FPSCR instructions are the only exceptions.

The double-precision multiplies (and multiply-accumulates) require two cycles
in FPM. The first FPM cycle is overlapped with the second FD cycle for these
instructions.

The divide instructions require either 16 cycles (single-precision) or 30 cycles
(double-precision). These cycles are completely overlapped with the last 16/30
cycles that the instructions spends in FD.

The Move to FPSCR family of instructions all require three cycles in FPM. These
three cycles are required because the Move to FPSCR instructions can potentially
change the floating-point execution model, so no new floating-point instructions
should be dispatched until the FPSCR has been updated.

FP Add (FPA)

In general, most floating-point instructions require only one cycle in FPA. The
double-precision multiply, single- and double-precision divide, and the Move to
FPSCR instructions are the only exceptions.

The double-precision multiplies (and multiply-accumulates) require two cycles
in FPA. The first FPA cycle is overlapped with the second FPM cycle for these
instructions.

The single-precision divide instructions require 15 cycles (overlapped with the
last 15 cycles in FPM). The double-precision divide instructions require 29 cycles
(also overlapped with the last 29 cycles of FPM).

The Move to FPSCR family of instructions all require two cycles in FPM. These
two cycles are required because the Move to FPSCR instructions can potentially
change the floating-point execution model, so no new floating-point instructions
should be dispatched until the FPSCR has been updated.

FP Multiply (FPM) 311

§ 15.2 Pipeline Conflicts

FP Arithmetic Writeback (FWA)

Because the FWA stage performs normalization in addition to writeback, stalls
can occur if the result requires excessive normalization. The exact details of this
are given in §12.9, "Abnormal Floating-Point Conditions."

FP Load Write back (FWL)

The FWL stage is the writeback stage for floating-point load instructions. All of
the floating-point load instructions require one cycle in this stage. This stage is
completely independent of the FWA stage (the writeback stage for arithmetic
floating-point instructions). Both the FWL and FWA can writeback to the FPRs
during the same cycle, provided that they both don't need to update the same
FPR.

Branch Processing Unit (BPU) Stages

Of the three BPU stages, only the MR stage requires that branches be scheduled
around it.

Branch Execute (BE)

Only one branch instruction can be in BE at any time, but this is not a problem
because the Dispatch Unit can only dispatch one branch per cycle and branches
never need more than one cycle in BE.

Mispredict Recovery (MR)

The MR stage is where all conditional branches stay until they are resolved.
There can only be one branch in MR at any time, so there can only be one out­
standing conditional branch at any time.

The next code sample shows a basic MR stall. It is a simple two-instruction loop
that should require two cycles per loop iteration. Note that the branch is a back­
ward branch (to the beginning of the loop); it is predicted to be taken.

start:
add
cmp
beq

312 Chapter 15

rO,rO,rl
crfO,rO,r2
crfO,start

Mispredict Recovery (MR)

The timing for the first iteration of this loop is:

Lyele#: 1 2 3 4 5 6 7

add rO,rO,rl
fA

CACC
I("lO

IE
Ic - -

CARB ID IWA

emp cr£O,rO,r2
FA

CACC IQl
IQO

IE
IC

CARB ID IWA
-

pbr tag- cmp - - - ID IE - -

FA
I("l2

beq crfO,start
CARB

CACC BE MR MR - -
MR

and for the second iteration is:

Cycle #: 1 2 3 4 5 6 7

add rO,rO,rl
FA

CACC
IQO

IE
IC - -

CARB ID IWA

emp erfO,rO,r2
FA

CACC IQl
I("lO

IE - -
CARB ID

por tag emp - - - - - - IE

FA
I("l1

beq crfO,start - - CARB
CACC IQ2 BE MR

MR

During cycle 3, the first branch needs to be predicted because it needs the result
from the crnp instruction, which hasn't finished execution yet. In this case, the
branch is predicted to be taken, and the first beq instruction enters the MR stage.
This branch causes the instructions for the second iteration of the loop to be
fetched.

During cycle 5, the second iteration of the loop reaches the same point that the
first iteration reached in cycle 3-the branch needs to be predicted because
the results of the crnp aren't available yet. However, the first branch still occupies
the MR stage of the pipeline, so this branch must stay in the DU.

Also during cycle 5, the results of the first compare are forwarded to the first
branch instruction. In this example, the prediction is confirmed, and the first
branch leaves the MR stage.

In cycle 6, because the MR stage is now free, the second branch can be executed
and predicted. The instructions for the third iteration (not shown) are fetched at
this time.

The result is that every odd-numbered loop (including the first) requires two
cycles, and every even-numbered loop requires three cycles. The "three-cycle"
value comes from the two cycles spent executing the loop plus an extra cycle
spent waiting for the next set of instructions. This wasted cycle is present
because the branch was executed (and thus, the instructions were fetched) a
cycle late.

Mispredict Recovery (MR) 313

§ 15.3 Register Usage Dependencies

Branch Writeback (BW)

The BW stage doesn't typically lead to pipeline stalls because up to nine branch
instructions can be in BW simultaneously. However, only two branch instruc­
tions are allowed to writeback during each cycle-one can update the LR, and
another can update the CTR.

Data Access Queueing Unit (DAQU) Stages

The stages of the DAQU are queueing stages for store instructions rather than
execution stages. As such, they do not cause stalls themselves, but they may
cause a stall in IE if the CAU doesn't grant access to the cache or if the floating­
point unit doesn't provide the store data in a reasonable time.

A common example is when floating-point data is being stored to a location that
crosses a doubleword boundary. This effectively results in two back-to-back
store operations that both need to use the FPSB. Because the FPSB is only one
element deep, the second half of the store operation stalls the IV in IE until the
first half can be written. This results in at least four additional cycles spent in IE
for the store instruction because the data must come from the FWA stage of the
FPU pipeline.

15.3 Register Usage Dependencies

Register usage dependencies can very easily turn into register usage conflicts
because the pipelined architecture allows multiple instructions to be executing
simultaneously.

Types of Dependencies

Four different situations can occur when two sequential instructions need to
access the same register resource.

Read after Read (RAR)

A RAR dependency does not cause problems because neither of the two instruc­
tions needs to change the value of the register. Both reads will read the same
(correct) value.

Read after Write (RAW)

With a RAW dependency, care must be taken so that the write operation com­
pletes (or appears to complete) before the read operation takes place. If the read
operation occurs too early, it will read the register value before the write occurs,
which is obviously incorrect.

314 Chapter 15

Write after Read (WAR)

This, the most common type of data dependency, is sometimes referred to as true
data dependency.

Write after Read (WAR)

While rare, a WAR dependency can lead to a conflict when store operations are
allowed to occur before all previous read operations are handled. In this case,
the read may get the new value instead of the old value. The 601 doesn't have
this type of conflict because all instructions write back in program order.

WAR dependencies are sometimes referred to as anti-dependencies.

Write after Write (WAW)

Also rare, a WAW dependency can cause problems if the stores are allowed to
complete out of order. The 601 doesn't have this type of conflict because all
stores are performed in order (as far as the processor is concerned).

WAW dependencies are sometimes referred to as output dependencies.

Handling Conflicts Due to Dependencies

The processor can choose to handle the conflicts that arise from data dependen­
cies in many ways. For each dependency, it is important to know what the pro­
cessor will do, because this will affect execution time.

Ignore the Conflict

The easiest thing for the processor to do is to ignore the conflict and expect the
programmer to arrange the instructions so that conflicts do not occur. In many
cases, explicit no-op instructions must be added to pad the pipeline.

Stall the Pipeline

Another easy way of handling data conflicts is to stall the pipeline whenever
conflicts are detected. This has an advantage: code will work as expected even if
no-ops are not inserted.

Feed-forward the Required Data

Feed-forwarding is useful for some RAW conflicts because the data being calcu­
lated can be passed back to other instructions in the pipeline before the results
are officially available in the register.

Write after Read (WAR) 315

§ 15.3 Register Usage Dependencies

Feed-forwarding is generally used only between instructions executing in the
same processor unit, for example, between two integer instructions or between
two floating-point instructions.

Shadow the Register

Register shadowing is a simple case of providing a small pool of registers that
can be used whenever a register needs to be updated. If an instruction needs to
update the register, and it's possibile that another instruction may need to read
the register value, the instruction writes the value into a shadow register until it
is safe to update the real register.

Shadowing is typically limited to a few shadow registers all associated with one
real register.

Remap the Register

A more general case of shadowing, register remapping has a large pool of regis­
ters (called physical registers) shared by a number of user-visible registers
(called architected registers). Remapping is typically used on general purpose
registers, like the GPRs and FPRs in the PowerPC.

This can be quite useful for processors that have WAR and WAW conflicts. For
WAR conflicts, the architected register in conflict can be mapped into two sepa­
rate physical registers: one before the write and one after. For WAW conflicts, the
architected register can be mapped into three physical registers: one before
the first write, one between the two writes, and one after the second write.
When the architected register no longer needs to be mapped into multiple phys­
ical registers, the older physical registers are recycled to restore a 1:1 correspon­
dence between architected and physical registers.

Link Register (LR)

The LR, a special register, holds an address that can be used as a target branch
address. Other than the Move to/from LR instructions, only the branch instruc­
tions affect the LR.

Having the BPU entirely in control of the LR allows the BPU to implement some
optimizations for the LR which prevents BPU stalls. This optimization is imple­
mented using two LR shadow registers that hold temporary LR values. Using
these shadow registers is discussed in the next sections.

LR-Branch / LR-Branch Dependencies

If a branch instruction uses the LR following a branch that updates the LR, there
is potential for a RAW conflict. The BPU avoids stalls by having the first branch

316 Chapter 15

mtlr / LR-Branch Dependencies

write the new LR value into one of the LR shadow registers until the value can
be written to the real LR. The second branch can now read the new LR value
from the shadow LR and continue execution without stalling.

The timing diagram shows an example of this. Note that the order of execution
is and, nand, bl, followed by nor, xor, blr, and then execution returns to the
or instruction.

CycJe#: 1 2 3 4 5 6 7

and rO,rO,rl
IQO

IE
IC

ID IWA
- - - -

nand r2,r2,r3 IQl
IQO

IE
IC - - -

ID IWA

LRtag -
IQO

IE IC - - -
ID

hI target
IQ2

BW BW BW - - -
BE

or r4,r4,r5 IQ3
FA

CACC
IQO

IE
IL -

CARB ID IWA
- - - - - - -...

nor r6,r6,r7
l'A

CACC
IQO

IE
IL - -

CARB ID IWA

xor r8,r8,r9
FA

CACC IQl
IQO

IE
IC

-
CARB ID IWA

hlr
FA

CACC IQ2/BE - - - -
CARB

The blr instruction reads the new value of LR from the appropriate shadow LR
during cycle 3. The LR is updated during cycle 4. In this case, the processor com­
pletes and, nand, nor, xor, and then or in five subsequent cycles-both of the
branches have been removed from the instruction stream without causing any
stalls.

Note that, in this example, two instructions were needed between the two
branch instructions so that there would be no stalls while the new instructions
(starting at or) were fetched from memory. This "two-instruction" value is not a
magic number that is always needed between 2 LR-dependent branches-the
number of instructions required depends on the surrounding instructions. How­
ever, it is a good rule of thumb to place at least two independent instructions
between branches of this sort.

mtlr / LR-Branch Dependencies

When the write operation of a RAW dependency comes from the mtlr instruc­
tion, the processor must stall the branch in dispatch until the mtlr reaches the
integer readback stage (IWA). This is necessary because the mtlr instruction is
handled by the IU instead of the BPU, so the data can't simply be forwarded to
the branch.

Two situations need to be examined here: the case where the branch is taken, and
the case where the branch is not-taken. Note th(lt branch prediction doesn't

mtlr / LR-Branch Dependencies 317

§ 15.3 Register Usage Dependencies

come into play here because the branch stalls in the IQ because of the depen­
dency on the LR.

The code sample that will be examined is:

mtlr rO
beqlr crfO
and rO,rO,rl

target:
or r2,r2,r3

where rO initially contains the address of target. The timing for this code snip­
pet when the branch is not-taken is:

CyCle#: 1 2 3 4 5 6 7 8

mtlr rO
t'A

CACC
1(,.10

IE
IL - - -CARB ID IWA

beqlr crfO
FA

CACC IQ1 IQO
IQO

CARB BE
- - -

and rO,rO,r1
FA

CACC IQ2 IQ1 IQ1
IQO

IE
IC

CARB ID IWA
- - - - - - - -...

or r2,r2,r3 - - - - - - - -

The branch instruction stalls in IQ until the mtlr instruction reaches IWA in
cycle S. During this same cycle, the branch is executed, freeing up the IQ and
allowing the subsequent instructions to be executed. Two wasted cycles in ID
between the mtlr and the branch instruction could have been filled with inde­
pendent integer instructions.

If the branch is taken or if blr is used instead of a conditional branch, the timing
is:

Lyde#: 1 2 3 4 5 6 7 8

mtlr rO
FA

CACC
IQO

IE
IC

CARB ID IWA
- - -

beqlr crfO
FA

CACC IQ1 IQO
1QO - - -

CARB BE

and rO,rO,rl
t'A

CACC IQ2 IQ1 IQl - - -
CARB

- - - -... - - - -
orr2,r2,r3 - - - - FA

CACC
I(,.1U

IE
CARB ID

As with the branch not-taken example, the branch stalls until cycle S. At this
time, the branch is executed and the target instructions are fetched. In this case,
three wasted cycles in ID could have been used if there were independent inte­
ger instructions between the mtlr and branch instructions.

It's important to be aware of this dependency because most function calls end
with a mtlr-blr instruction pair.

318 Chapter 15

Link Shadow Overflow

Link Shadow Overflow

The 601 only provides two Link shadow registers, used to hold the temporary
LR values until they can be written back to the "real" LR. Because there are only
two shadow registers, pipeline stalls can occur when all of the shadow registers
are currently being used.

One situation that can lead to stalls is when a series of conditional Branch with
Link instructions are not-taken, like this example:

and
beql
beql
beql

rO,rO,rl
crfO,targetl
crfl,target2
crf2,target3

The code timing diagram assumes that the CR is coherent so the branches do not
need to be predicted:

Cyde#: 1 2 3 4 5 6 7 8

and rO,rO,rl
FA

CACC
IQO

IE
IC

CARB ID IWA
- - -

LR tag- and - - - IE IC - - -

beql erfO,targetl
FA

CACC
IQl

BW BW
CARB BE

- - -

LR tag ~ bubblel - - - - IE IC - -

beql erfl,targetl
FA

CACC IQ2
11..10

BW BW - -
CARB BE

LR tag ,bUlJlJleL - - - - - - IE IC

beql erf2, targetl
FA

CACC IQ3 IQl IQO
lQO

BW BW
CARB BE

In this example, the first shadow LR is used when the first branch enters BE
during cycle 3, and the second shadow LR is used when the second branch
enters BW on the following cycle. When the third branch tries to enter BE during
cycle 5, it cannot because a shadow LR isn't available for it to use. However, it
can be dispatched during the next cycle because the first branch completes its
writeback and frees up one of the shadow LRs.

Another situation can lead to this-when a long-latency integer instruction (like
multiply or divide) precedes a Branch with Link (bl) instruction. Because the
branch stays in BW (occupying a shadow LR) until this instruction is complete,
it only takes one more bl instruction to use all the shadow registers. A third bl
instruction stalls in the Dispatch Unit until a shadow LR is freed by the first
branch.

The following (contrived) example demonstrates this:

mulli
bl

targetl:

r9,r9,S
targetl

Link Shadow Overflow 319

§ 15.3 Register Usage Dependencies

and rO,rO,rl
bl target2

target2:
nand
bl

r2,r2,r3
target3

which has the timing:

Cycle#: 1 2 3

mulIi r9,r9,5
t'A

CACC
IQO

CARB ID
LR tag - mulli - - -
hI targetl

FA
CACC

IQ1
CARB BE

- - -...
and rO,rO,r1

FA - -
CARB

LR tag-and - - -

hI target2 - - tiA
CARB

- - -...
nand r2,r2,r3 - - -

LRtag - - -
hI target3 - - -

4 5

IE IE

IE IE

BW BW

- -

CACC
11..10
ID

- -

CACC
11..11
BE

- -
FA -

CARB

- -
FA -

CARB

6 7 8 9 10

IE IE IE
Ie -

IWA
110 IE IE IC -

BW BW BW BW -
- - - - -

ID ID ID IE
IC

IWA
ID IU IU 110 Ie

BW BW BW BW BW

- - - - -

CACC IQO IQO
11..10

IE
ID

- - - - -

CACC IQ1 IQ1 IQ1
IQO
BE

Here, the first branch takes the first shadow LR during cycle 3 when it enters BE,
but it can't writeback (and free the shadow LR) until the multiply instruction
enters IC during cycle 9. The second branch instruction takes the second shadow
LR, but it is forced to wait for the and instruction, which stalled because of the
multiply instruction. This results in the second shadow LR being occupied until
cycle 10.

When the third branch comes along, it must wait in IQ until cycle 10 because a
shadow LR isn't available for the branch to use. During cycle 10, the branch can
use the shadow LR that was freed by the first branch during cycle 9.

In general, this is not a common resource conflict, although care should be taken
when a branch follows a multiply or divide instruction.

Counter Register (CTR)

The CTR was originally simply a register in the BPU used to hold the counter for
loops. It became a branching register (similar to the LR) when some glue rou­
tines needed an extra branch register and the CTR was conveniently available in
the BPU. This is another example of how the POWER software model affected
the POWER hardware design which, in turn, affected the PowerPC design.

320 Chapter 15

CTR-Branch / CTR-Branch Dependencies

Like the LR, this SPR was deemed useful because it separated the registers being
used by the BPU from those used by the Integer Unit. This allowed the processor
to make certain optimizations to increase performance, resulting in features like
zero-cycle branching for eTR loops.

In real-world code, eTR conflicts are not a major concern because the BPU han­
dles the feed-forwarding of the appropriate eTR value.

eTR-Branch / eTR-Branch Dependencies

Branches that depend only on the eTR are a special case because the BPU can
always resolve the branch (because the eTR is part of the BPU). For this reason,
it is convenient to consider this type of conditional branch as an unconditional
branch for timing purposes. Like all branches that require a writeback, the
branch instruction stays in BW until the previous integer instructions have com­
pleted so that the eTR can be updated at the proper time.

The next loop example demonstrates a common use for eTR branches, where
the eTR controls the number of loop iterations:

start:
and
nand

or
nor
bdnz

rO,rO,rl
r2,r2,r3

r4,r4,r5
r6,r6,r7
start

The timing for the interesting part of this loop, where control passes from the
bottom back to the top, is (note that execution starts at the or instruction):

Cycle#: 1 2 3 4 5 6 7 8

and rO,rO,rl - -
1':A

CACC I~ IE
IL -

CARB IWA

nand r2,r2,r3 - - t'A
CACC IQl

I\,,!U
IE

IC
CARB ID IWA

- - - - - - - -.. ,

or r4,r4,r5
FA

CACC
IQO

IE
IL

CARB ID IWA
- - -

nor r6,r6,r7
FA

CACC IQl
IQO

IE
IC - -CARB ID IWA

bdnz start
FA

CACC
lQ2

BW BW BW - -CARB BE

Here the branch instruction stays in BW until the previous integer instruction
(nor) completes (cycle 6); then it updates the eTR with the newly decremented
value.

However, if the loop is small enough, then the second eTR-branch may be exe­
cuted while the first eTR-branch is still waiting in BW to update the eTR. This

CTR-Branch / CTR-Branch Dependencies 321

§ 15.3 Register Usage Dependencies

situation is handled (without stalling) by having the BPU automatically feed­
forward the proper CTR value from the first branch to the second branch.

Consider this code snippet. It demonstrates a small loop that exhibits these
properties:

start:
and
nand
bdnz

rO,rO,rl
r2,r2,r3
start

This loop simply repeats the two-instruction loop and decrements the CTR to O.

After the instructions have entered dispatch, the timing is as diagrammed. Here
the timing has been broken into separate tables for each iteration of the loop so
that it is easier to see what is going on. The first iteration of this loop is timed:

cycle#: 1 2 3 4 5 6 7 8

and rO,rO,rl
fA

CACC
IQO

IE
IC

CARB ID IWA
- - -

nand r2,r2,r3
fA

CACC IQl
IQO

IE
IC

CARB ID IWA
- -

bdnz start
FA

CACC
Il.1L

BW BW BW
CARB BE - -

and the second iteration is:

Cycle#: 1 2 3 4 5 6 7 IS

and rO,rO,rl
FA

CACC 1~ IE
Ic - - CARB IWA

-

nand r2,r2,r3 - - FA
CACC IQl

1l.10
IE

Ic
CARB ID IWA

bdnz start
FA

CACC
IQ2

BW BW BW - -
CARB BE

Two additional iterations (which begin FAI CARB during cycles 5 and 7) are not
shown because they simply repeat the timings in the diagram shifted over a few
cycles.

In this example, the second-iteration bdnz has the correct CTR value fed to it
from the first-iteration bdnz instruction during cycle 5. The first bdnz instruc­
tion doesn't actually update the CTR until cycle 6 when nand reaches Ie.

Note that two branch instructions are waiting in WB at the same time during
cycle 6 and again during cycle 8 (not shown).

mtdr / CTR-Branch Dependencies

This situation is identical to the timings given in the previous section, "mtlr I LR­
Branch Dependencies," except that the CTR is used instead of the LR.

322 Chapter 15

Nested CTR Loops

Nested CTR Loops

With only one CTR register, nested loops that want to use the CTR have to save
and restore the appropriate CTR value manually. In general, this extra save /
restore step is not worthwhile because it can cost more than a conditional branch
that depends on a counter stored in a GPR.

Condition Register (CR) Fields

The Condition Register is divided into eight 4-bit fields used to store the result
of arithmetic and compare operations. Because instructions operate on individ­
ual fields, it is useful to consider the CR as eight independent resources.

The first rule of thumb is that a series of instructions that need to use the CR
should use different CR fields whenever possible. By using different CR fields,
the instructions can be scheduled more easily. Care must be taken to include
instructions that have the Record bit set because they will implicitly update CR
field 0 (integer instructions) or CR field 1 (floating-point instructions).

Compare / Conditional Branch Dependencies

The four tables in this section show the timings for a conditional branch that
follows a compare instruction. The important feature of these timing tables is
that the results of the compare operation are forwarded to the BPU during the
compare's IE stage. This allows the branch to recover quickly from a mispredic­
tion.

The timings for this section are basically the same as those presented in §12.5,
"Branch Instruction Timings."

Predicted Not-taken Correctly:

Cycle#: 1 2 3 4 5 6 7

cmp crfO,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA - -

pbrtag- cmp - - - IE - - -

FA
IQl

beq- crfO,target
CARB

CACC BE MR - - -
MR

and rO,rO,rl
FA

CACC IQ2
IQO

IE
IC

CARB ID IWA -
- - - - - - -...

or r4,r4,r5 - - - - - - -

Nested CTR Loops 323

§ 15.3 Register Usage Dependencies

Predicted Not-taken Incorrectly:

Cycle #: 1 2 3 4 5 6 7

cmp cr£O,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
" "

pbrtag-cmp " " " IE " " "

FA
IQ1

beq" cr£O,target
CARB

CACC BE MR " " "

MR

and rO,rO,r1
FA

CACC IQ2
IQO

CARB ID
" " "

" " " " " " " ...
or r4,r4,r5

FA
CACC

IQO
IE " " "

CARB ID

Predicted Taken Correctly:

Cycle #: 1 2 3 4 5 6 7

cmp cr£0,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
" "

pbrtag= cmp " " " IE " " "

FA
IQ1

beq+ crfO,target
CARB

CACC BE MR " " "

MR

and rO,rO,rl
FA

CACC IQ2
IQO

CARB ID
" " "

" " " " " " " ...

or r4,r4,r5
FA

CACC
IQO

IE
IC

" "
CARB ID IWA

Predicted Taken Incorrectly:

Cycle#: 1 2 3 4 5 6 7

cmp cr£0,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
" "

pbrtag-cmp " " " IE " " "

FA
IQ1

beq+ cr£O,target
CARB

CACC BE MR " " "

MR

and rO,rO,rl
FA

CACC IQ2
IQO

IE
IC

CARB ID IWA
"

" " " " " " " ...

or r4,r4,r5
FA

CACC " "

CARB
" " "

Integer-Record / Conditional Branch Dependencies

The four tables in this section show the timings for the conditional branch that
follows an integer instruction that has the Record bit set. The major difference
between these tables and the tables in the previous section is that branch predic­
tion cannot be confirmed until the results of the integer instruction have been
written back to the appropriate registers (during cycle 5). This causes a one-cycle
stall because the predicted branch tag prevents instructions past the branch from
entering IE.

324 Chapter 15

Integer-Record / Conditional Branch Dependencies

Predicted Not-taken Correctly:

Cycle#: 1 2 3 4 5 6 7

add. r30,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA - -

pbr tag ~ add. - - - IE IE - -

FA
IQl

beq- crfO,target
CARB

CACC BE MR MR - -
MR

and rO,rO,rl
FA

CACC IQ2
IQO IQO

IE
IC

CARB ID ID IWA

- - - - - - -...
or r4,r4,r5 - - - - - - -

Predicted Not-taken Incorrectly:

Cycle#: 1 2 3 4 5 6 7

add. r30,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

pbr tag ~ add. - - - IE IE - -

FA
IQl

beq- crfO,target
CARB

CACC BE MR MR - -
MR

and rO,rO,rl
FA

CACC IQ2
IQO IQO

CARB ID ID - -

- - - - - - -...

or r4,r4,r5
FA

CACC
IQO - - - -

CARB ID

Predicted Taken Correctly:

Cycle#: 1 2 3 4 5 6 7

add. r30,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

pbr tag ~ add. - - - IE IE - -

FA
IQl

beq+ crfO,target
CARB

CACC BE MR MR - -
MR

and rO,rO,rl
FA

CACC IQ2
IQO

CARB ID
- - -

- - - - - - -...

or r4,r4,r5
FA

CACC
IQO

IE
IC - - CARB ID IWA

Predicted Taken Incorrectly:

Cycle #: 1 2 3 4 5 6 7

add. r30,r30,r31
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

pbr tag - add. - - - IE IE - -

FA
IQl

beq+ crfO,target
CARB

CACC BE MR MR - -
MR

and rO,rO,rl
FA

CACC IQ2
IQO FA

CACC
IQO

CARB ID CARB ID

- - - - - - -...

or r4,r4,r5
FA

CACC
IQO - -

CARB ID
- -

Integer-Record / Conditional Branch Dependencies 325

§15.3 Register Usage Dependencies

Floating-Point Record I Conditional Branch Dependencies

The four tables in this section show the timings for the conditional branch that
follows a floating-point instruction that has its Record bit set. The key difference
between these tables and the tables for integer-record (other than the fact that
the FPU is being used) is that the results of the floating-point instruction aren't
available in the BPU until the cycle after the FPU's FWA stage. This prevents the
branch from being resolved until cycle 8, effectively stalling the pipeline until
that time.

Predicted Not-taken Correctly:

Cycle#: 1 2 3 4 5 6 7 8 9 10 11

fp tag - bubblel - - - IE IC IC IC - - - -

fadds. fr1,fr1,fr2
FA

CACC 100 FO FPM FPA FWA
CARB

- - - -

pbr tag - bubblel - - - IE IE IE IE IE - - -

FA
IQ1

beq- crfO,target
CARB

CACC BE MR MR MR MR MR - - -
MR

and rO,rO,rl
FA

CACC IQ2 100 ID ID ID ID IE
IC

CARB ID IWA
-

- -... - - - - - - - - -
or r4,r4,r5 - - - - - - - - - - -

Predicted Not-taken Incorrectly:

Cycle #: 1 2 3 4 5 6 7 8 9 10 11
Jp tag = bubblel - - - IE IC IC IC - - - -
fadds. frl,fr1,fr2

FA
CACC IQO PO FPM FPA FWA

CARB
- - - -

pbr tag - bubblel - - - IE IE IE IE IE - - -

FA
IQ1

beq- crfO,target
CARB

CACC BE MR MR MR MR MR - - -
MR

and rO,rO,r1
FA

CACC IQ2 100 ID ID ID ID
CARB ID - - -

- - - - -... - - - - - -

or r4,r4,r5
FA

CACC
IQO

IE - - - - - - -
CARB ID

Predicted Taken Correctly:

Cycle#: 1 2 3 4 5 6 7 8 9 10 11
fp tag - bubblel - - - IE IC IC IC - - - -
fadds. frl,frl,fr2

FA
CACC IQO FO PPM FPA FWA

CARB
- - - -

pbr tag - bubblel - - - IE IE IE IE IE - - -

FA
IQ1

beq+ crfO,target
CARB

CACC BE MR MR MR MR MR - - -
MR

and rO,rO,rl
FA

CACC
CARB

- - - - - - - - -

- - - - -... - - - - - -

or r4,r4,r5
FA

CACC
100 ID ID ID IE

IC - -
CARB ID IWA -

326 Chapter 15

CR-write / CR-read Dependencies

Predicted Taken Incorrectly:

Cycle#: 1 2 3 4 5 6 7 8 9 10 11

fp tag = bubble1 - - - IE IC IC IC - - - -

fadds. fr1,frUr2
FA

CACC IQO FD FPM FPA FWA
CARB

- - - -
pbr tag = bubblel - - - IE IE IE IE IE - - -

IQ1
FA

beq+ crfO,target
CARB

CACC BE MR MR MR MR MR - - -
MR

and rO,rO,r1
FA

CACC
FA

CACC
IQO

IE
CARB

- - - - -
CARB ID

- - - - - - - - - - -...

or r4,r4,r5
FA

CACC
IQO

ID ID ID - -
CARB ID - - -

CR-write / CR-read Dependencies

Two dependent arithmetic Condition Register instructions can generally follow
one another without causing stalls in the IV pipeline. This is possible because all
arithmetic CR instructions are handled by the IV, and the data can be forwarded
directly to the dependent instruction in 10.

In this example, the crand instruction immediately follows the add. instruc­
tion, implicitly updating CR field O.

Cyc1e#: 1 2 3 4 5 6

add. rO,r1,r2
FA

CACC
IQO

IE
IC

CARB ID IWA
-

crand crfl,crfO,crf2
FA

CACC IQ1
IQO

IE
IC

CARB ID IWA

In this case, the proper CR value is passed along from the add. instruction's IE
stage to the crand instruction's ID stage.

The timing chart in this section is valid for any combination of CR Boolean, inte­
ger arithmetic with record, mtcrf, and mcrxr instructions. It is also valid for
the mcrf instruction followed by any of these instructions.

stwcx. / CR-read Dependencies

The s twcx. instruction has special timing considerations because it updates the
CR during its IWA, using some of the resources in the IE stage. This means that
the instruction currently in IE must stall while the stwcx. instruction is in IWA.
This stall cycle cannot be avoided.

When the store is successfully performed (because the reservation for the
address was set), the timing is in the next table. Here the integer instruction

CR-write / CR-read Dependencies 327

§ 15.3 Register Usage Dependencies

following stwcx. stalls in IE because stwcx. is using the IE stage. These stalls
occur in cycles 5 and 6, then the instruction is allowed to execute normally in IE.

Cycle#: 1 2 3 4 5 6 7 8

CACC

stwcx. rO,r1,r2
FA

CACC
IQO CARB (IE) (IE)

CARB ID IE IC IWA
- -

IWA

and r4,r4,r5
FA

CACC IQ1
IQO

IE IE IE
IC

CARB ID IWA

If the store is not performed (because the reservation was not set for this
address), the timing changes because the IE is only occupied for one cycle
instead of two.

Cycle #: 1 2 3 4 5 6 7

CACC

stwcx. rO,r1,r2
FA

CACC
IQO CARB (IE)

CARB ID IE IC
- -

IWA

and r4,r4,r5
FA

CACC IQ1
IQO

IE IE
IC

CARB ID IWA

CR-write I merf Dependencies

When the mcrf instruction immediately follows a CR Boolean or integer arith­
metic with record instruction, the mcrf instruction stalls in ID for one cycle after
the CR is updated. In most cases (as in the next example), this update occurs
during the CR instruction's IE stage (cycle 5).

Cycle#: 1 2 3 4 5 6 7

add. rO,r1,r2
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

merf eri3,erf4
FA

CACC IQ1
IQO

ID IE
IC

CARB ID IWA

Because the stwcx. instruction doesn't update the CR until its lWA stage, the
timing for a stwcx. /mcrf pair is slightly different. The next timing example
shows the case where the store is performed. The CR is updated in cycle 6, so the
mcrf must stall in ID for one more cycle and then enter IE in cycle 8.

Cycle #: 1 2 3 4 5 6 7 8 9

CACC

stwex. rO,r1,r2
FA

CACC
IQO CARB (IE) (IE)

CARB ID IE IC IWA
- - -

IWA

mcrf erf3,crf4
FA

CACC IQ1
IQO

ID ID ID IE
IC

CARB ID IWA

If the stwcx. instruction does not perform a store (because the reservation
wasn't set for this location), the timing changes because the CR is updated one
cycle earlier (in cycle 5), allowing the mcrf to leave ID one cycle sooner.

328 Chapter 15

Multiply-Quotient Register (MQ)

Cyc1e#: 1 2 3 4 5 6 7 8 9

CACC

stwcx. rO,rl,r2
FA

CACC IOO CARB (IE)
CARB ID IE IC

- - - -

IWA

mcrf crf3,crf4
FA

CACC IQl
IQO

ID ID IE
IC

CARB ID IWA
-

Note that this stall occurs even though the mcrf instruction is not reading or
writing the CR field that is being updated.

Multiply-Quotient Register (MQ)

No resource conflict stalls are associated with the MQ register. The IU makes
sure that the proper MQ value is feed-forwarded whenever it is needed.

Fixed-Point Exception Register (XER)

The XER is mainly used to record the overflow and carry information for integer
arithmetic and shift instructions. Some additional fields are also used by the
load and store string instructions.

The XER dependencies are checked based on any part of the register being read
from or written to. Thus, an instruction that reads any part of the XER depends
on a previous instruction that updates any part of the XER.

XER-write / XER-read Dependencies

RAW conflicts typically do not cause stalls in the integer pipeline, although
some cases do. Whether or not a stall occurs depends on the instructions being
used to read and write the XER.

If the XER is written to by:

• Arithmetic instructions with the OE bit set
• Arithmetic instructions that set the CA
• Shift instructions that set the CA

• lscb~mcrx~ormtxer

and it is read by:

• Arithmetic instructions that use the CA

• mfxer

Multiply-Quotient Register (MQ) 329

§15.3 Register Usage Dependencies

then there will be no stall even if the read occurs immediately after the write
operation. This is demonstrated in the timing table:

Cycle#: 1 2 3 4 5 6

addo rO,rO,ri
FA

CACC
IQO

IE
IC

CARB ID IWA
-

addmer2,r2
FA

CACC IQi
IQO

IE
IC

CARB ID IWA

XER-write I String Dependencies

The non-immediate forms of the Load and Store String instructions (lscbx,
lswx, and stswx) need to read the XER during their ID stage in the IU. Because
of this, if they follow an instruction that updates the XER, they stall until the
previous instruction updates the XER during its IWA stage (for one cycle).

In the next timing example, the lswx instruction must stall in ID for cycle 5
while the XER is being updated. After this one-cycle stall, the instruction con­
tinues normally. In this example, only two registers are loaded by the lswx
instruction.

Cycle#: 1 2 3 4 5 6 7 8 9

addo rO,rO,ri
FA

CACC
IQO

IE
IC

CARB ID IWA
- - - -

CARB

lswx r3,r4,r5
FA

CACC IQi
IQO

10
CARB CACC CACC

IWL
CARB ID IE IE IWL

IC

This stall can be avoided by placing an independent instruction between the
XER update and the string instruction.

XER-write I mcrxr Dependencies

Like the Load and Store String instructions above, the mcrxr needs to read the
XER during its ID stage. It exhibits the same (avoidable) one-cycle stall that the
string instructions do.

Cycle#: 1 2 3 4 5 6 7

addo rO,rO,ri
FA

CACC
IQO

IE
IC

CARB ID IWA - -

mcrxr crf3
FA

CACC IQi
IQO

ID IE
IC

CARB ID IWA

General Purpose Registers (GPRs)

Although the large number of GPRs permits many register dependencies to be
avoided, plenty of RAW conflicts still can arise. Fortunately, the feed-forward
mechanism in the Integer Units handles most of these conflicts without stalls.

330 Chapter 15

GPR-write / GPR-read Dependencies

GPR-write / GPR-read Dependencies

The 601's IV is capable of feed-forwarding data from the IE and IWA stages into
the ID stage. This means that all RAW conflicts involving arithmetic instructions
are handled without causing pipeline stalls.

When there are no instructions between the write and read, the dependent read
(sub r4, rO, r3) has the operand passed directly from the IE stage of the write
(add rO, rl, r2) into its ID stage (cycle 4).

Cyc1e#: 1 2 3 4 5 6

add rO,rl,r2
FA

CACC
IQO

IE
IC

CARB ID IWA
-

sub r4,rO,r3
FA

CACC IQl
IQO

IE
IC

CARB ID IWA

If one independent instruction is between the two instructions, the data is
passed from the IWA stage of the write to the ID stage of the read (cycle 5).

Cyc1e#: 1 2 3 4 5 6 7

add rO,rl,r2
FA

CACC
IQO

IE
IC

CARB ID IWA
- -

or r29,r30,r31
FA

CACC IQl
IQO

IE
IC

CARB ID IWA
-

sub r4,rO,r3
FA

CACC IQ2 IQl
IQO

IE
IC

CARB ID IWA

If more than one independent instruction is between the write and the read, then
there is no data conflict because the data can simply be read from the register
store.

Note that this feed-forwarding also occurs if there is a dependency on the
update register of the Load or Store with Update instructions, for example, with
the code:

lwzu
addi

r3,4(r9)
rlO,r9,24

The update register (r 9) is updated by the load instruction and read by the addi
instruction. This instruction sequence causes no stalls due to GPR resource con­
flicts. Dependencies on the GPR that is loaded (r3, in this case) are much differ­
ent and are covered next.

GPR-Ioad / GPR-read Dependencies

If an instruction that uses a particular GPR immediately follows a load of that
same register, the instruction must stall in IE until the load enters IWL. Ideally,
this takes only one cycle, but if there is a cache miss, the delay could be quite
lengthy.

GPR-write / GPR-read Dependencies 331

§ 15.3 Register Usage Dependencies

In the next example, the add instruction stalls in IE during cycle 5 while it waits
for the results of the load to be written back.

Cyc1e#: 1 2 3 4 5 6 7

lwzx r3,O,r2
FA

CACC
IQO CARB CACC IWL

CARB ID IE IC -

add r3,r3,r4
FA

CACC IQl
IQO

IE IE
IC

CARB ID IWA

This pipeline stall can be eliminated by placing independent instructions
between the load and the use of the GPR in question.

GPR-load I GPR-Ioad Dependencies

Two sequential load operations will cause a GPR resource stall only when the
destination of the first load is used by the second load. If the two loads are inde­
pendent, then no GPR resource stalls occur.

This is similar to the previous case, where the second instruction needs to wait
for the results of the load to be written back during the IWL stage. Also, as with
the previous case, the one-cycle stall shown here (in cycle 5) is a best case situa­
tion. If there is a cache miss, the stall in IE will be for more than one cycle.

Cyc1e#: 1 2 3 4 5 6 7 8

lwz r3,O(r2)
FA

CACC
IQO CARB CACC

IWL
CARB ID IE IC

- -

lwzx r4,O(r3)
FA

CACC IQl
IQO CARB CARB CACC

IWL
CARB ID IE IE IC

This stall can also be avoided by inserting independent instructions between the
two load instructions.

Load Multiple I GPR-read Dependencies

Because the Load Multiple instruction remains in IE for one cycle per register
being loaded, the only possible GPR resource conflict that can arise is with the
last register being loaded, always r 31. If a Load Multiple instruction is followed
by an instruction that uses r31, there is at least a one-cycle delay due to the
GPR-load I GPR-read dependency described in an earlier section.

Like all GPR load / use dependencies, the stalls can be avoided by inserting inde­
pendent instructions between the load and the instruction that needs to read the
GPR.

GPR-store Dependencies

Store instructions do not need to update any registers, so they do not cause GPR
resource conflicts as the GPR-load instructions do.

332 Chapter 15

mtspr / GPR Dependencies

The one exception is the Store with Update forms. Timings for dependency con­
flicts caused by this type of instruction are covered earlier in the "GPR-writel
GPR-read Dependencies" section.

mtspr / GPR Dependencies

Some mtspr instructions are special because they require access to the source
GPR during the IWA stage in addition to the IE stage. SPRs that require this
additional GPR access are SPRGn, DSISR, DAR, HIDO, HID1, HID2, RTCU,
SRRO, and SRRl.

If an instruction following a mtspr instruction uses the same GPR, then the fol­
lowing instruction will stall in IE until the mtspr instruction releases the GPR.
The exact number of cycles that this instruction will stall depends on the number
of cycles that the mtspr instruction needs to spend in IWA. A table in "Move tol
from SPR Instructions" in Chapter 12 summarizes the number of cycles required
in IWA for each SPR.

mfspr / GPR Dependencies

Like mtspr, some of the mfspr instructions require access to the target GPR
during the IWA stages of the mfspr instruction. These SPRs are SPRGn, DSISR,
HIDO, HID1, HID2, MSR, PVR, RTCU, SDR1, SR, SRRO, and SRRl.

If an instruction following a mf spr instruction uses the same GPR, then the fol­
lowing instruction will stall in IE until the mfspr instruction releases the GPR.
The exact number of cycles that this instruction will stall depends on the number
of cycles that the mf s pr instruction needs to spend in IW A. See "Move to I from
SPR Instructions" in Chapter 12 for a summary of the mfspr instruction tim­
ings.

Floating-Point Registers (FPRs)

The 601's FPU does not support feed-forwarding of data between dependent
floating-point instructions. This causes a variety of dependency stalls that the IU
is able to avoid.

FPR-write / FPR-read Dependencies

Because of the lack of feed-forwarding, a floating-point instruction that requires
the result of a previous instruction must wait in FD until after the previous
instruction has completed writeback in FWA.

mtspr / GPR Dependencies 333

§ 15.4 Memory Dependencies

This situation is diagrammed next, where the stages before the FD stage have
been omitted. The second fadds instruction must wait until cycle 5 before it can
begin executing in FD because not all of the operands are ready.

Cycle#: 1 2 3 4 5 6 7 8
fadds frO,frO,frl FO FPM FPA FWA - - - -
fadds fr2,fr2,frO os PO FO FO FO FPM FPA FWA

FPR-write / FPR-store Dependencies

In many cases, an FPR-write / FPR-store dependency is like standard FPR-write /
FPR-read dependencies, where the read (or in this case, the store) cannot execute
in FD until the write operation has left the FWA stage.

The one exception is when the store immediately follows the write. The FPU
detects this case and allows the store to continue without stalling. When the
write operation is in the FWA stage (cycle 4 in the diagram below), it knows
about the store instruction following it in FPA and automatically forwards the
data to the cache.

Cycle#: 1 2 3 4 5
fadds frO,frO,frl PO FPM FPA FWA -

IQO FO FPM FPA FWA
stfs frO,0(r2) IQO

IE
IC CARB

CACC
ID FPSB FPSB

15.4 Memory Dependencies

Two types of memory dependencies can occur. The first type is the true memory
dependency, where the same address is being accessed by different instructions.
These types of dependencies are easy to detect and work around (as with the
register dependencies). The other type of memory dependency is the cache
dependency. It's far more difficult to detect, but can impact performance tremen­
dously.

Load and Store Dependencies

Load and Store dependencies are the basic types of memory dependencies, and
they come in two exciting varieties: the load after store dependency and the
store after load dependency.

Load / Store Dependencies

A load / store dependency occurs when a store instruction follows a load instruc­
tion that uses the same effective address. On the 601, this does not cause a
dependency stall although there may be pipeline stalls due to a cache miss.

334 Chapter 15

Store / Load Dependencies

Cycle#: 1 2 3 4 5 6

lwz rO,0(r2)
FA

CACC
IQO CARB CACC

IWL
CARB ID IE IC

8tw r3,0(r2)
FA

CACC IQl
IQO CARB CACC

CARB ID IE IC

Store / Load Dependencies

A store / load dependency occurs when a load instruction follows a store instruc­
tion to the same effective address. As with the load/ store dependency, this does
not cause a stall in the pipeline.

Cycle#: 1 2 3 4 5 6 7

8tw r3,0(r2)
FA

CACC
IQO CARB CACC

CARB ID IE IC - -

lwz rO,0(r2)
FA

CACC IQl
IQO CARB CACC

IWL
CARB ID IE IC

Cache Dependencies

A cache dependency occurs when multiple load or store instructions access the
same cache line. There are three major differences between cache dependencies
and the other dependencies described in this chapter.

Cache Dependencies Are Good

The first difference between cache dependencies and other dependencies is that
cache dependencies are good because they tend to improve performance.

As mentioned earlier when discussing caches, a cache miss can have a very large
negative effect on code performance. When there is a cache dependency, the sec­
ond cache access is almost guaranteed a cache hit. Thus, cache dependencies
improve performance by reducing the likelihood that the dependent accesses
will have a cache miss.

Note the use of the phrases "almost guaranteed" and "reducing the likelihood."
The dependent access is not guaranteed a cache hit because other (unpredict­
able) external events may come into play and affect the data in the cache. How­
ever, this is unlikely, and, in most cases, it is safe to assume that the second and
subsequent accesses will in fact be cache hits.

Cache Dependencies Are Long Term

All of the dependencies discussed previously are relcltively short-term in nature.
This means that the dependency is important only if the instructions are close to
each other (within a few instructions). Cache dependencies, in contrast, are long

Store I Load Dependencies 335

§ 15.4 Memory Dependencies

term. Depending on memory usage, a cache dependency can cross hundreds of
instructions.

Cache Dependencies Are Difficult to Control

Alas, the downside of cache dependencies is that they are difficult to control.
Other than the ability to clear cache entries or flush the cache (which does not
result in increased cache hits), the programmer has little direct control of the
cache. The only way to 11 control" the cache is to control the memory access pat­
tern or use the cache "touch" instructions.

Increasing Cache Dependencies

Even though cache dependencies are difficult to control, some techniques can be
used to increase the number of cache dependencies. These techniques are
inspired by the principles that led to the development of caches in the first
place--the principles of locality.

To reiterate, these principles state that:

• If an item is referenced, then it is likely to be referenced again in the
near future (temporal locality).

• If an item is referenced, then the items surrounding this item are
likely to be referenced again in the near future (spacial locality).

Most programs naturally exhibit these characteristics; that's why caches work at
all. However, a program can use the cache more effectively if it is written so that
it increases the temporal and spacial locality of its memory accesses. This works
because caches are designed to take advantage of that sort of locality.

So, the principles of locality can be transformed into these programming guide­
lines:

• If an item is referenced, it is good to reference it again soon.
• If an item is referenced, it is good to reference the items surrounding

it soon.

For most code, not much can be done to follow the first guideline. If the data
needs to be used again, that's good, but if it isn't needed anymore, it doesn't
make sense to access it again. The most useful conclusion is that after a memory
location has been accessed, the programmer shouldn't be overly concerned
about accessing that location again.

The second guideline, however, can be applied in a wide variety of coding situ­
ations. Memory should be accessed as sequentially as possible (either forward or
backward from the current position). Large jumps in memory accesses should be
avoided whenever possible.

336 Chapter 15

One-Dimensional Arrays

One-Dimensional Arrays

Single-dimensional arrays are the most obvious cases where the sequential
access guideline can be applied. If the elements of a single-dimensional array
need to be processed, then they should be processed in order whenever possible.
If this is done, then the cache will be used as efficiently as possible.

The worst practice with single-dimensional arrays is bouncing around the array
and accessing elements at different parts of the array. Unfortunately, this is the
access pattern for many searching algorithms, such as binary searches.1

N-Dimensional Arrays

Multi-dimensional arrays are special cases of single-dimensional arrays. When
multi-dimensional arrays are stored in memory, they are mapped into a large
single-dimensional array. Consider this two-dimensional array:

Columns

0,0 0,1 0,2 0,3

'" 1,0 1,1 1,2 1,3

~ 2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

When stored in row-major order, the elements of this array are stored in memory
in this order:

Thus, in order to access the elements of this array sequentially, each row should
be processed in order before proceeding to the next row, as this code fragment
does:

for(row=O; row<MAX_ROWS; row++)
for(col=O; col<MAX_COLUMNS; col++)

data[row] [col]++;

For each row, all the columns are processed in order before continuing to the
next row.

If the loops are changed, as in this example:

for(col=O; col<MAX_COLUMNS; col++)
for(row=O; row<MAX_ROWS; row++)

data[row] [col]++;

1. 1his statement should not be taken as a call to use sequential search algorithms instead of binary (or
other) searches. 1hese algorithms have other benefits that outweigh the penalties associated with cache
misses, and a certain amount of cache misses are to be expected during searches.

One-Dimensional Arrays 337

§15.4 Memory Dependencies

the array elements are processed in an order that skips around in memory. This
uses the cache less efficiently and increases the likelihood of cache misses for
tache lines that have already been accessed.

Of course, if the language being used happens to store arrays using column-major
ordering (the columns are stored as units instead of the rows), then the loops in
the example would have to be reversed. However, most commonly used lan­
guages (except FORTRAN) use row-major ordering for arrays.

Note that these concerns are valid only if the size of each element in the array is
small (less than the cache sector size for the processor). If the element size
is larger than this, then each element requires at least one cache sector, so there is
no cache benefit to ordering the access pattern.

Array Blocking

One problem with the array example is that it assumes that the array loops could
be ordered so that the inner-most loop was stepping through the array sequen­
tially. When this assumption is not valid, some memory accesses will not be
sequential, leading to inefficient use of the cache.

If the array is excessively large, then another problem arises: the inefficient use
of the cache mentioned earlier leads to a large number of cache lines being
loaded. Because the number of cache lines in the cache is limited, room for the
new cache lines must be made by purging lines currently in the cache, often
before the looping code finishes using the data in the cache line. This situation,
in which the cache loads and purges the same cache lines repeatedly, is known
as cache thrashing.

Figure 15-1 shows one way of addressing this problem is to divide the array into a
collection of smaller arrays, called blocks. Because only a small part of the original
array is being processed at a time, the number of cache lines needed to store the
required data is reduced, which also reduces the likelihood of cache thrashing.

The loop from the previous example can be rewritten to implement blocking:

for(row=O; r6w<MAX_ROWS; row+=ROW_BLOCK)
for(col=O; col<MAX_COLUMNS; col+=COL_BLOCK)

for(i=O; i<ROW~BLOCK; i++)
for(j=O; j<COL_BLOCK; j++)

data[row+i] [col+j]++;

Here, the inner two loops implement the blocking. The original array has been
divided into a set of blocks that are ROW_BLOCK rows high and COL_BLOCK col­
umnswide.

338 Chapter 15

Data Structures

Figure 15-1 A Large Array before and after It Has Been Divided into
Four Blocks

Original array After division into blocks

Data Structures

Not surprisingly, the data structures used play an important role in how mem­
ory is accessed. Consider this structure:

struct {
int tag;
int data[l6];

} array[MAX_ELEMENTS];

where the important field is tag, and the data field is just a generic data field.

Now, if there is an array of these structures, imagine a loop that steps through
each element of the array to perform an operation on each element that has a
certain type of tag. Using the earlier suggestion of sequentially stepping through
the array returns the code:

for(i=O; i<MAX_ELEMENTS; i++)
if(array[i).tag == MAGIC_TAG)

rnangle(&array[i).data);

There's a problem with this: while the code is sequentially stepping through the
elements of the array, it isn't sequentially stepping through memory. This is
because of the size of each element in the array.

One way of working around this is to break up the array so that the tags (which
are processed sequentially) are in a separate array. If this can be done so that

Data Structures 339

§15.4 Memory Dependencies

multiple array elements fit into a single cache line, then sequential access will be
a performance gain; otherwise it will be just as inefficient as accessing the array
at random.

The previous structure could be divided:

int tag[MAX_ELEMENTS];

struct {
int data[16];

} array[MAX_ELEMENTS];

and the looping code would change to:

for(i=O; i<MAX_ELEMENTS; i++)
if(tag[i] == MAGIC_TAG)

mangle(&array[i].data);

There is one caveat with this example. The original structurelloop loaded the
tag and part of the array data, while the modified structure / loop loads only the
tags. If most elements in the array need to be processed, then the original loop
may be more efficient because it will have already loaded part of the data that
needs to be processed when it loaded the tag. This needs to be analyzed case-by­
case.

340 Chapter 15

More
Optimization

Techniques

Chapter 15 covered a variety of important optimizations but left out one very
important aspect of optimization. It talked about the processor resources and
discussed how to avoid resource conflicts. While this is important, it is the easy
part of the optimization process because it involves taking a set of well-defined
rules and applying them to the code in question.

One important thing omitted from the previous chapter was a discussion of
maximal resource utilization. This is partly because this topic is difficult to for­
malize-it depends so much on the nature of the program being optimized.

In spite of the difficulties, this chapter attempts to describe some common tech­
niques used to make as much use of the processor resources as possible. This
chapter is, of course, incomplete because it cannot present every possible tech­
nique. But one hopes it will provide enough information for you to evaluate
your own code and devise your own techniques.

16.1 Keeping the Processor Busy

The 601 consists of three different processing units: the BPU, the IU, and the
FPU. The processor works most efficiently when all three of these units are busy.

Instruction Mixing

To keep all three execution units busy, one branch, one integer instruction, and
one floating-point instruction should be dispatched each cycle. Also, to prevent

More Optimization Techniques 341

§ 16.1 Keeping the Processor Busy

data dependency stalls, these instructions should be independent of each other.
Unfortunately, most real-world code has a dispatch pattern that is nothing like
this.

The majority of real-world code tends to be either integer-intensive or floating­
point intensive, with a small percentage of branches thrown in. These situations
fully utilize one of the arithmetic execution units, leaving the other relatively
unused. Floating-point code is more balanced in this respect because all floating­
point load and store instructions are handled (at least partially) by the IV. Inte­
ger code doesn't use the FPU at all.

However, it's not good enough to evenly distribute the overall percentage of
code among these three units. The code must be evenly distributed throughout
the program.

For example, the code in the next example has an even distribution of floating­
point to integer instructions. There are four floating-point instructions and four
integer instructions for a nice 50-50 distribution.

fadds frO,frO,frl
fadds fr2,fr2,fr3
fadds fr4,fr4,frS
fadds fr6,fr6,fr7
add rO,rO,rl
add r2,r2,r3
add r4,r4,rS
add r6,r6,r7

However, the dispatch unit can only dispatch one instruction of each type per
cycle and integer instructions must be dispatched from the IQO position. It
would take the dispatcher eight cycles to dispatch this code because it can only
dispatch one instruction per cycle.

If the sequence of instructions were rearranged:

add rO,rO,rl
fadds frO,frO,frl
add r2,r2,r3
fadds fr2,fr2,fr3
add r4,r4,rS
fadds fr4,fr4,frS
add r6,r6,r7
fadds fr6,fr6,fr7

the dispatcher could dispatch two instructions (one integer and one floating­
point) during each cycle. Four cycles have been saved before the instructions
even begin executing.

342 Chapter 16

Unit Conversion

Note that because the PowerPC supports out-of-order dispatch, the code doesn't
have to be perfectly distributed in order to get the best dispatch timing. This
code:

add rO,rO,rl
add r2,r2,r3
fadds frO,frO,frl
add r4,r4,r5
fadds fr2,fr2,fr3
fadds fr4,fr4,fr5
add r6,r6,r7
fadds fr6,fr6,fr7

also results in two instructions being dispatched per cycle.

Unit Conversion

If your code is biased towards one unit or the other, it might be worthwhile to
analyze your code to determine if it is possible to distribute the integer and float­
ing-point computations more evenly by converting code from one execution
unit to the other. If this is possible, then the original and the converted code can
be compared to see if an advantage can be gained by splitting the code.

Memory Copy

One common example of this is the simple memory copy. A straightforward way
of writing this code would be:

int i;
long *pSource, *pDest

for(i=O; i<nBytes/4; i++)
*pDest = *pSource;

This code copies the block of memory four bytes at a time so that it uses the
GPRs efficiently. In this situation, no computation is being performed, so the
FPRs could just as easily have been used:

int i;
double *pSource, *pDest

for(i=O; i<nBytes/8; i++)
*pDest = *pSource;

More Optimization Techniques 343

§ 16.2 Increasing Scheduling Opportunities

This could be transformed into PowerPC assembly as follows:

li
mtctr

loop:
lfdu
stfdu
bdnz

rO,nBytes/8
rO

frO,8(rSource)
frO,8(rDest)
loop

Here, the IU still does most of the work because it handles all of the loads and
stores, but now the FPU is helping out with the stores so that 8 bytes can be
transferred at a time instead of only 4.

This technique could also be used to clear a block of memory by initializing an
FPR with 0 and clearing out 8 bytes at a time.

Multiplication and Division

Another situation where switching from one unit to the other can be advanta­
geous is with the multiplication and division operations. In the IU, these opera­
tions (especially division) are quite costly; in the FPU, they are somewhat less
costly.

Whether or not this is a useful transformation to apply depends on a wide vari­
ety of factdrs. The two most important are the number of multiplies / divides and
the type of data conversion required.

If only a small number of multiplies or divides are needed, then it isn't likely
that the overhead of the transformation will be worthwhile. On the other hand,
if there are a large number of these expensive operations, then the performance
gains from the conversion can offset the required setup penalty.

This setup penalty can be quite large if a lot of data conversion is necessary from
the IU to the FPU. Although data conversion from the FPU to the IU can be han­
dled by the fctiw or fctiwz instructions, no instruction converts from integer
to floating-point-the conversion must be performed manually and requires at
least three instructions per word being converted, as described in Chapter 8,
"Floating-Point Instructions."

16.2 Increasing Scheduling Opportunities

In order to prevent pipeline stalls, a lot of code rescheduling may be necessary.
The problem with scheduling code is that often there aren't enough independent
instructions to fill the delay slots. This section discusses a few techniques for
increasing the number of independent instructions by changing the code struc­
ture.

344 Chapter 16

Loop Unrolling

The basics of loop unrolling were discussed in Chapter 14, where it was implied
that loop unrolling was less useful on PowerPC processors because the branch
penalty could be eliminated if the compare and branch were far enough apart.

However, many small loops can benefit from loop unrolling for another reason.
If each loop iteration is relatively independent of other iterations (as is the case
for many loops), then loop unrolling increases the number of independent
instructions available for scheduling. This increase in scheduling opportunities
can significantly impact the performance of small loops.

Copying and Pasting Code

Instruction scheduling is typically done within a basic block. A basic block is sim­
ply a consecutive sequence of code that has only one entry point and one exit
point. For example, in this code, there are four blocks:

if (condi ti on)
then-clause

else
else-clause

next-instruction

The condition, then-clause, else-clause, and the next-instruction are all separate
blocks. Figure 16-1 shows their relationship.

Figure 16-1 Basic Block Diagram for the 1£-Then-Else Structure

~_ J then - clause I~_---. -I 1

I condition :1------1 .1 next- I
I-----.,~·I instruction

J L '----...... -1 else - clause I~---'

If the basic blocks are small, then there may not be many opportunities for
scheduling. A technique to increase the size of critical basic blocks is known as
code pasting.

Code pasting involves removing code from one block and adding it to another.
Typically code is removed from a large block and added to a small block that is
having scheduling problems.

For the above if-then-else example, code pasting can be applied by taking code
from after the if-then-else and appending it to the bottom of the then- and else-

Loop Unrolling 345

§16.3 Strength Reduction

clauses. The code must be added to both clauses; otherwise the overall program
structure will be changed, generally a bad thing for an optimization to do.

Of course, it's silly to paste the entire sequence of following ihstructions into
each clause of the if-then-else statement. Only a portion of the next-instruction
sequence is needed so that the clauses have enough instructions to perform
whatever scheduling they need.

So, by breaking up the instructions following the if-then-else into two smaller
blocks (zzz' and zzz"), the first block can be appended to each of the clauses
while the second block stays after the if-then-else. The transformation shows this:

if (ccc) if (ccc)
xxx xxx

zzz'
else else

.wy .wy
zzz'

zzz' zzz' ,
zzz' ,

Of course, these transformations are useful for structures other than if-then-else
statements. This technique can be applied whenever a basic block is too small to
perform effective rescheduling and there are surrounding blocks with available
instructions.

Care must be taken when applying this technique so that the meaning of the
program isn't inadvertently changed. The code removed must be pasted to every
block that passes control to the modified block.

16.3 Strength Reduction

Strength reduction is the process of using simple instructions to replace more
complex (or more powerful) instructions. This is a worthwhile technique only
when there are instructions that require multiple cycles to execute. On the Pow­
erPC, the only fixed-point arithmetic instructions likely to require multiple
cycles are the multiply and divide instructions.

Using Left Shifts for Multiplication

Multiplying by a power of 2 can be accomplished quickly using shift left instruc­
tions. For example, multiplying r3 by 4 (22) can be accomplished using:

slwi r3 ,r3, 2

346 Chapter 16

In general, to multiply the contents of a register rxby 2n, use:

slwi rX, rX,n

Multiplying by a number that is not a power of 2 is a little more complicated, but
can be done by adding or subtracting powers of 2. In this case and in Table 16-1,
one instruction is being replaced with multiple simpler instructions, but the end
result is code that executes faster.

Table 16-1 Left Shift Equivalents for Non-integral Powers of 2

Multiply by Equivalent to Transformation

(2 xn) +n
slwi rT,rN,l

3xn
add rT,rT,rN

(4xn)-n slwi rT,rN,2
sub rT,rT,rN

5xn (4xn)+n slwi rT,rN,2
add rT,rT,rN

slwi rN,rN,l
(4 X n) +(2 X n) slwi rT,rN,l

6xn
add rT,rT,rN
slwi rN,rN,l

(8 X n) - (2 X n) slwi rT,rN,2
sub rT,rT,rN

7xn (8 X n) - n slwi rT,rN,3
sub rT,rT,rN

9xn (8 X n) + n slwi rT,rN,3
add rT,rT,rN

slwi rN,rN,l
lOxn (8 X n) + (2 X n) slwi rT,rN,2

add rT,rT,rN

It should be apparent that a large number of possible combinations are not pre­
sented in Table 16-1, some of which involve using many more than two or three
instructions.

On the PowerPC 601, the multiply instruction takes five cycles when multiply­
ing small values. It should be apparent that replacing the multiply instruction
with five or fewer instructions would be a benefit (or at least it would break even
assuming there aren't any instruction fetch or cache collision delays). However,
this doesn't take into account the fact that the multiply instruction is guaranteed
to stall in the execute stage of the pipeline for five cycles, whereas the five sepa­
rate instructions could be scheduled to use the pipeline efficiently.

In some situations, it is advantageous to replace a multiply with more than five
separate instructions because proper scheduling can result in some of the
instructions being executed "for free."

Using Left Shifts for Multiplication 347

§ 16.3 Strength Reduction

Using Algebraic Right Shifts for Division

Dividing a number (the dividend) by a power of 2 (the divisor) can be accom­
plished using variants of the Shift Right instructions.

Unsigned values can be divided using one of the non-algebraic Shift Right
instructions (srw or srd) or the Shift Right Immediate extended forms (srwi or
srdi).

When dealing with a signed value as the dividend, a Shift Right Algebraic instruc­
tion (sraw, srawi, srad, or sradi) should be used instead of a Shift Right
instruction of the non-algebraic variety. These instructions properly handle the
sign of the dividend when generating the result. To insure that the result is
rounded properly when the dividend is negative, an addze instruction should
follow the shift instruction:

sraw rT,rA,rB
addze rT,rT

The addze instruction adds the Carry bit to the shifted result. Because the Carry
bit is set to 1 only if the value in rA is negative and a '1' bit has been shifted out,
this has the effect of adjusting negative values so that the result is rounded
toward zero. For example, if rA=-9 and rB=2 (to divide -9 by 4), the result of the
sraw instruction is -3. The addze instruction adds 1 to correct the result and
produce -2. The addze instruction has no effect when dividing positive values
because the Carry bit is always 0 for positive dividends.

Using a shift instruction differs from using a divide instruction in these ways:

• The divisor must be an integral power of 2.
• The divisor cannot be a negative number.
• The Overflow bits (XER[OV], XER[SO]) are not set.
• The operation takes roughly 3 to 6 percent of the time required by the

divide instruction (on the 601).

For division by non-integral powers of 2, there is no easy method of combining
shifts, adds, and subtracts to replace the division as there was with the multiply
operation. However, considering how costly divide instructions are (36 cycles on
the 601), it may be worthwhile to apply some other optimization technique to
speed up the calculations (like setting up a lookup table).

Using Multiplication for Division

Division is a painfully slow operation. Single-precision floating-point division
takes 18 cycles to execute and double-precision division takes 32 cycles.

348 Chapter 16

If the division operation is being applied many times, it becomes beneficial to
pre-calculate the reciprocal using a single divide instruction and then perform
multiplication using the reciprocal. An example of this sort of situation is:

float x[50] ,d;
int i;

for(i=0;i<50;i++)
x[i] 1= d;

In this example, an array of floating-point values are all being divided by the
same divisor. The assembly code for the loop portion of this code (before any
optimizations have been applied) is shown next. This code assumes that r 31 con­
tains a pointer to the floating-point array and that f r 30 contains the divisor d.

loop:
lfs fr31,4(r31)

x[i] 1= d
fdivs fr31,fr31,fr30

stfsu
bdn

fr31,4(r31)
loop

load x[i]

save x[i]

This loop can be rewritten to pre-calculate the reciprocal so that a multiply
instruction can be used in the body of the loop instead of the divide instruction.
The transformed code would be (where fr1 contains the constant 1.0):

fr29 = 1.0 I fr30
fdivs fr29,fr1,fr30

loop:
lfs fr31,4(r31) # load x[i]

x[i] *= (lid)
frnuls fr31,fr29,fr31

stfsu fr31,4(r31) # save x[i]
bdn @O

The problem with this transformed loop is that it introduces some floating-point
round-off errors. In many cases, these round-off errors are acceptable, but the
PowerPC's floating-point multiply-accumulate pipeline can be exploited to
eliminate the round-off errors at the cost of a few more cycles of execution.

Using Multiplication for Division 349

§ 16.4 Load/Store Ordering

The (re-)transformed code would be:

fr29 = 1.0 I fr30
fdivs fr29,fr1,fr30

loop:
1£s fr31,4(r31)

temp = x[i] * (lid)
fmuls fr28,fr31,fr29

load x[i]

remainder = temp*d - x[i]
fmsubs fr27,fr30,fr28,fr31
x[i] = temp + (rem * lid))
fmadds fr31,fr29,fr27,fr28

stfsu
bdn

fr31,4(r31)
loop

save x[i]

This code calculates the error introduced by the multiply and incorporates that
value into the result. This adjustment works because the multiply-accumulate
instructions (fms ubs and fmadds) perform the multiply and the add before any
rounding takes place.

16.4 Load/Store Ordering

Loads and stores are special cases because they require access to the processor
caches, which may cause delays if a cache miss occurs or if the data being stored
is not available.

For this reason, loads are typically moved earlier in the instruction stream and
stores are commonly moved later in the instruction stream. This code:

lwz r3,4(r2)
addi r3,r3,12
stw r3,4(r2)
lwz r4,8(r2)
addi r4,r4,16
stw r4,8(r2)

would typically be sequenced as:

lwz r3,4(r2)
lwz r4,8(r2)
addi r3,r3,12
addi r4,r4,16
stw r3,4(r2)
stw r4,8(r2)

350 Chapter 16

16.5 Software Pipelining

Software pipelining is a way of merging the ideas of load/ store ordering and
pipelining together and applying them to program loops.

If load/ store ordering is applied to the body of a loop, there will be three parts
to the code: the load (L) portion, the execute (E) portion, and the store (S) por­
tion. Each part can be considered a stage in a pipeline, where the pipeline is pro­
cessing entire loop iterations instead of simple instructions.

To compare, consider the diagrammed instruction pipeline, which uses an imag­
inary three-stage pipeline with stages labelled A, B, and C. Here six instructions
are completed in eight cycles:

Cycle#: 1 2 3 4 5 6 7 8
instruction 1 A B C - - - -
instruction 2 - A B C - - - -
ihstruction 3 - - A B C - - -
instruction 4 - - - A B C - -
instruction 5 - - - - A B C -

instruction 6 - - - - - A B C

A software pipeline can be viewed the same way, but instead of instructions ver­
sus cycles, the table shows original loop iterations versus transformed loop iter­
ations. Here the three stages are labelled L, E, and S:

"Cycle" #: 1 2 3 4 5 6 7 8
iteration 1 L E S - - - - -
iteration 2 - L E S - - - -
iteration 3 - - L E S - - -
iteration 4 - - - L E S - -
iteration 5 - - - - L E ~ -
iterallon 6 - - - - - L E S

Because we're looking at original iterations versus transformed iterations, this
can quickly become quite confusing. In this case, the original six loop iterations
are accomplished in eight transformed iterations, or "cycles." Note that the term
"cycle" is used simply for convenience-these cycles have nothing to do with
the processor cycles in the instruction pipeline.

During the first two cycles, the software pipeline is still being filled. It isn't until
the third cycle that the pipeline is fully loaded. During this third cycle, the trans­
formed loop performs the S stage for the first iteration, the E stage for the second
iteration, and the L stage for the third iteration. The pipeline stays full until cycle
7, when it needs to ramp down and execute the cleanup code for the last two
loop iterations.

To put this into practice, a loop like this:

for(i=O; i<N; i++)
L(i)
E(i)
S(i)

Software Pipelining 351

§16.5 Software Pipelining

can be transformed into this loop:

L(l)
E(l)
L(2)
for(i=li i<N-li i++)

S(i)
E(i+l)
L(i+2)

S(N-l)
E(N)
S(N)

Or, as it is commonly structured in assembly:

initialize loop counter
Ii rO ,N-l
mtctr rO

handle cycle 1
L(l)
b start

.# execute S,E,L N-2 times
loop:

S(i-l)
start:

E(i)
L(i+l)
bdnz loop

ramp down
S(N-l)
E(N)
S(N)

Note that in order for this to work, the results of each stage must be stored in
different registers. Thus, a set of registers chosen as the output registers for the
Load stage is also used as the input registers for the Execute stage. Likewise,
there is another set of registers for communication between the Execute and
Store stages.

352 Chapter 16

Instruction
Set Summary

This appendix contains an alphabetically sorted list of all PowerPC instructions.
This includes all 32-bit and 64-bit instructions plus all optional instructions. In
addition, all of the POWER instructions that are provided on the 601 are
included in this appendix.

At the head of each main entry is the standard instruction mnemonic along with
the instruction description. In general, the mnemonics are displayed in boldface,
but obsolete POWER instructions (which are implemented only on the 601), are
displayed using an outline font to serve as a reminder that these are not standard
PowerPC instructions and that they will not be implemented on future PowerPC
processors.

Immediately beneath the instruction title is a summary of the processors on
which the instruction is implemented. The value here can be any combination of
the following:

• POWER-The instruction is defined on POWER processors.

• 601-The instruction is defined on the PowerPC 601.

• 603-The instruction is defined on the PowerPC 603.

• PowerPC32-The instruction is defined on 32-bit PowerPC implementations
only.

• PowerPC64-The instruction is defined on 64-bit PowerPC implementations
only.

Instruction Set Summary 353

• PowerPC32/64-The instruction is defined for both 32-bit and 64-bit Power­
PC implementations.

• Optiona132/ 64-The instruction is an optional instruction that may be
defined on 32-bit and 64-bit implementations.

The Operation provides a concise description of the instruction operation using
the operators described in Chapter 3.

The Syntax area shows all of the valid syntax forms for the instruction.

The register area will show which of the Special Purpose Registers are modified
by this instruction. For fixed-point instructions, this section is titled Condition
RegisterlFixed-Point Exception Register and for floating-point instructions it is
entitled Condition Register/Floating-Point Status and Control Register.

The Description field provides a textual description of the instruction's opera­
tion and notes any idiosyncracies.

For instructions with extended forms, the Extended Forms section provides a
summary of all of the valid extended forms that are based on the instruction.
Instructions without extended forms will not have this section.

The final section is the Instruction Encoding area. This section shows how the
instruction and its operands are encoded into a 32-bit word.

354 Instruction Set Summary

@lb§ Absolute Value @lb§
POWER· 601

Operation: rT<= IrAI

Syntax: abs rT,rA (Rc = 0, OE = 0)
abs. rT,rA (Rc = 1, OE = 0)
abso rT,rA (Rc = 0, OE = 1)
abso. rT,rA (Rc = 1, OE = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The abs instruction calculates the absolute value of the contents of GPR rA, and
stores the result in GPR rT.

If GPR rA contains the largest negative number (Ox80000000), then the result in
rT will be the largest negative number and, if the OE bit is set, the OV and SO
bits of the XER will be set to 1.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0

10 1 1 1 1

T
A
OE
Rc

5 6

1 I
10 11 15 16 20 21 22 30 31

T I A I 0 0 0 0 0 lOB 11 0 1 1 0 1 0 0 0 IRe I

Target GPR rT where result of operation is stored
Source GPR rA
Overflow Exception bit
Record bit

Appendix A 355

add Add
POWER. 601 • 603 • PowerPC32/64

Operation: rT <= (rA) + (rB)

Syntax: add
add.
addo
addo.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

(Rc = 0, OE = 0)
(Rc = I, OE = 0)
(Rc=O,OE=I)
(Rc = I, OE = 1)

Condition Register /Fixed-Point Exception Register:

add

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The add instruction adds the contents of GPR rA and GPR r B as signed
quantities and places the result in GPR rT.

The archaic POWER mnemonic for this instruction is cax[o][.] (Compute
Address Indexed).

Instruction Encoding:
0

10 1 1 1 1

T
A
B
OE
Rc

5 6

1 I
10 11 15 16 20 21 22 30 31

T I A I B 100Il 0 0 0 0 1 0 1 0 IRe I

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

356 Instruction Set Summary

addc Add Carrying addc
POWER. 601 • 603 • PowerPC32/64

Operation: rT ¢= (rA) + (rB)

Syntax: addc
addc.
addco
addco.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc = 0, OE = 1)
(Rc = 1, OE = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: always updated
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The ad de instruction adds the contents of GPR rA and GPR rB as signed
quantities and places the result in GPR rT, updating the Carry bit of the XER.

The archaic POWER mnemonic for this instruction is a[o][.].

Instruction Encoding:
0

10 1 1 1 1

T
A
B
OE
Rc

5 6

1 I
10 11 15 16 20 21 22 30 31

T I A I B lOEloOOOOlOlOIRcl

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

Appendix A 357

adde Add Extended adde
POWER. 601 • 603 • PowerPC32/64

Operation: rT ¢:: (rA) + (rB) + XER[CA]

Syntax: adde
adde.
addeo
addeo.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

(Rc = 0, OE = 0)
(Rc = I, OE = 0)
(Rc = 0, OE = 1)
(Rc = I, OE = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: always updated
XER[OV,SO]: updated if OE=l, otherwise not affected

Description:
The adde instruction adds the contents of GPR rA and GPR rB as signed
quantities with the Carry bit of the XER and places the result in GPR rT,
updating the Carry bit.

The archaic POWER mnemonic for this instruction is ae[o][.].

Instruction Encoding:
0

10 1 1 1 1

T
A
B
OE
Rc

5 6

1 I
10 11 15 16 20 21 22 30 31

T I A I B 100IolOOOlOlOIRci

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

358 Instruction Set Summary

addi Add Immediate addi
POWER· 601 .603 • PowerPC32j64

Operation: rT ¢= (rA I 0) + '516

Syntax: addi rT,rA,516

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
If A;t:O, the addi instruction adds the sign-extended quantity specified by s16
with the contents of CPR rA and places the result in CPR rT.

If A=O, the addi instruction simply places the sign-extended quantity s16 in CPR
rT.

The archaic POWER mnemonic for this instruction is cal (Compute Address
Lower). Note that even though the instruction encoding is identical, the assem­
bler parses the parameters for the cal instruction as rT,d(rA) instead of rT,rA,s16.

Extended Forms:
la rT,d(rA) is equivalent to addi rT,rA,d
Ii rT,s16 is equivalent to addi rT,0,s16
subi rT,rA,s16 is equivalent to addi rT,rA,-s16

Instruction Encoding:
0 5

10 0 1 1 1 01

T
A
SI

6 10 11 15 16

T I A I SI

Target CPR rT where result of operation is stored
Source CPR rA or °
Signed 16-bit integer

31

Appendix A 359

addic Add Immediate Carrying
POWER. 601 • 603 • PowerPC32/64

addic

Operation: rT <= (rA) + 's16

Syntax: addic
addic.

rT,rA,s16
rT,rA,s16

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER[CA]:
XER[OV,SO]:

Description:

always updated
not affected

The addic instruction adds the contents of GPR rA to the 32-bit sign-extended
quantity specified by 816 and places the result in GPR rT, updating the Carry
bit.

The archaic POWER mnemonic for this instruction is ai[.].

Instruction Encoding:
o 4 5 6 !O 11 15 16 31

10 0 1 1 01&1 T I A I SI

Rc Record bit
T Target GPR rT where result of operation is stored
A Source GPR rA
SI Signed 16-bit integer

360 Instruction Set Summary

addis Add Immediate Shifted addis
POWER. 601 • 603 • PowerPC32/64

Operation: rT ~ (rA I 0) + '(s16 .1 OxOOOO)

Syntax: addis rT,rA,s16

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
If A;tO, the addis instruction takes the value calculated by concatenating s16
with OxOOOO, adds it to the contents of GPR rA, and then places the result in GPR
rT.

If A=O, the addis instruction simply places the concatenated value directly in
GPRrT.

On 64-bit PowerPC implementations, the 32-bit result of the concatenation is
sign-extended to 64 bits before the result is placed in rT.

The archaic POWER mnemonic for this instruction is cau (Compute Address
Upper). Note that the cau instruction accepts an unsigned 16-bit quantity
instead of a signed 16-bit quantity as the immediate value. While this difference
will not affect the operation of this instruction in 32-bit mode, POWER code that
is migrated to 64-bit PowerPC implementations will notice that the upper word
of the target register will be filled with sign bits instead of O.

Instruction Encoding:
0 5

10 0 1 1 1 1 1

T
A
SI

6 10 11 15 16

T 1 A 1 SI

Target GPR rT where result of operation is stored
Source GPR rA or 0
Signed 16-bit integer

31

Appendix A 361

addme Add to Minus One Extended addme
POWER • 601 • 603 • PowerPC32j 64

Operation: rT ¢= (rA) + -1 + XER[CA]

Syntax: addme
addme.
addmeo
addmeo.

rT,rA
rT,rA
rT,rA
rT,rA

(Rc = 0, OE = 0)
(Rc = I, OE = 0)
(Rc = 0, OE = 1)
(Rc = I, OE = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: always updated
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The addme instruction adds the contents of GPR rA, -1 (OxFFFFFFFF), and the
Carry bit, and places the result in GPR rT, updating the Carry bit in the XER.

The archaic POWER mnemonic for this instruction is ame[o][.].

Instruction Encoding:
0

[0 1 1 1 1

T
A
OE
Rc

5 6

1 [
10 11 15 16 20 21 22 30 31

T [A [0 000 O[OE[O 1 1 101 0 1 O[Re[

Target GPR rT where result of operation is stored
Source GPR rA
Overflow Exception bit
Record bit

362 Instruction Set Summary

addze Add to Zero Extended addze
POWER. 601 • 603 • PowerPC32/64

Operation: rT <= (rA) + 0 + XER[CA]

Syntax: addze
addze.
addzeo
addzeo.

rT,rA
rT,rA
rT,rA
rT,rA

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc=O,OE=I)
(Rc = 1, OE = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: always updated
XER[OV,SO]: updated if OE=l, otherwise not affected

Description:
The addze instruction adds the contents of GPR rA, 0 and the Carry bit and
places the result in GPR rT, updating the Carry bit in the XER.

The archaic POWER mnemonic for this instruction is aze[o][.].

Instruction Encoding:
0

10 1 1 1 1

T
A
OE
Rc

5 6

1 I
10 11 15 16 20 21 22 30 31

T I A 10 0 0 0 0 10E1 0 1 1 0 0 1 0 1 0 IRel

Target GPR rT where result of operation is stored
Source GPR rA
Overflow Exception bit
Record bit

Appendix A 363

and AND
POWER • 601 • 603 • PowerPC32/64

Operation: rA ¢::: (rS) & (rB)

Syntax: and
and.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

and

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The and instruction logically ANDs the contents of GPR rS and GPR rB and
places the result in GPR rA.

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

11
10 11 15 16 20 21 30 31

s I A I B 10 0 0 0 0 1 1 1 0 0 IRel

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

364 Instruction Set Summary

andc AND with Complement
POWER. 601 • 603 • PowerPC32/64

Operation: rA ¢::: (rS) & -(rB)

Syntax: andc
andc.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

andc

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The andc instruction logically ANDs the contents of GPR rS with the one's
complement of the contents of GPR rB and places the result in GPR rA.

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 10 0 0 0 1 1 1 1 0 01&1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Appendix A 365

andi. AND Immediate andi.
POWER • 601 • 603 • PowerPC32/64

Operation: rA ¢= (rS) & °u16

Syntax: andi. rA,rS,u16

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,CT,EQSO always updated
CR Fields 1-7: not affected

XER: not affected

Description:
The andi. instruction logically ANDs the contents of CPR rS and the value
calculated by zero-extending u16 and places the result in CPR rA.

The archaic POWER mnemonic for this instruction is andil. (AND Immediate
Lower).

Instruction Encoding:
0 5 6

[£1 1 1 o 01

S
A
VI

366 Appendix A

10 11 15 16

s 1 A 1 UI

Source CPR rS
Target CPR rA where result of operation is stored
Unsigned 16-bit integer

31

andis. AND Immediate Shifted andis.
POWER. 601 • 603 • PowerPC32/64

Operation: rA ~ (rS) & O(u16 .1 OxOOOO)

Syntax: andis. rA,rS,u16

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO always updated
CR Fields 1-7: not affected

XER: not affected

Description:
The andis. instruction logically ANDs the contents of GPR rS and the value
calculated by concatenating u16 with OxOOOO, and places the result in GPR rA.
On 64-bit PowerPC implementations, the calculated value is zero-extended to
64 bits before performing the AND operation.

The archaic POWER mnemonic for this instruction is andiu. (AND Immediate
Upper).

Instruction Encoding:
0 5

10 1 1 1 o 11

S
A
UI

6 10 11 15 16

s I A I VI

Source GPR rS
Target GPR rA where result of operation is stored
Unsigned 16-bit integer

31

Instruction Set Summary 367

b Branch
POWER. 601 • 603 • PowerPC32/64

Operation: if (Lk = 1)

Syntax:

LR ¢:: IP + 4
H(AA=I)

IP ¢:: '(LI .1 baa)
else

b
ba
bI
bla

IP ¢:: IP + '(LI .1 baa)

address
address
address
address

(AA = a, Lk = 0)
(AA = 1, Lk = 0)
(AA= a, Lk = 1)
(AA= I, Lk = 1)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

b

The b instruction passes control to the instruction specified by the target address.
The target address is calculated as follows:

• If the Absolute Address (AA) bit is set, then the target address is simply the
contents of the 24-bit LI field concatenated with baa and sign-extended to 32
bits.

• If the AA bit is clear, then the target address is the sum of the 24-bit LI field
concatenated with baa and sign-extended to 32 bits and the address of the
branch instruction.

If the Lk bit is set, the address of the instruction following the branch instruction
is saved in the Link Register (LR).

Instruction Encoding:
o 5 6

10 1 0 0 1 01 LI

LI 24-bit signed offset to (or absolute) target address
AA Absolute Address bit
Lk Link bit

368 Appendix A

be Branch Conditional
POWER. 601 • 603 • PowerPC32j 64

Operation: if(Lk = 1)

Syntax:

LR {:::: IP + 4
if (condition is TRUE)

if (AA= 1)
IP {:::: '(BD .1 baa)

else

be
bea
bel
bela

IP {:::: IP + '(BD .1 baa)

Ba,BI, address
Ba,BI, address
Ba,BI, address
Ba,BI, address

(AA = 0, Lk = 0)
(AA = 1, Lk = 0)
(AA = 0, Lk = 1)
(AA = 1, Lk = 1)

Condition Register / Fixed -Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

be

The be instruction passes control to the instruction specified by the target address
if the condition specified by BO and BI is true. The target address is calculated as
follows:

• If the Absolute Address (AA) bit is set, then the target address is simply the
contents of the 14-bit BD field concatenated with baa and sign-extended to 32
bits.

• If the AA bit is clear, then the target address is the sum of the 14-bit BD field
concatenated with baa and sign-extended to 32 bits and the address of the
branch instruction.

If the Link (Lk) bit is set, the address of the instruction following the branch
instruction is saved in the Link Register (LR). This will occur even if the branch
is not taken.

Instruction Set Summary 369

The Branch Option (BO) field of the instruction is used in conjunction with the
specified Condition Register bit (BI) to determine if the branch should be taken.
The BO field can be anyone of the values listed in the table.

BO Action

OOOOy decrement CTR; branch if CTR 7' a and CR[Bl] = a
OOOly decrement CTR; branch if CTR = a and CR[Bl] = a
OOlxy branch if CR[Bl] = a
OlOOy decrement CTR; branch if CTR 7' a and CR[Bl] = 1

OlOly decrement CTR; branch if CTR = a and CR[Bl] = 1

Ollxy branch if CR[Bl] = 1

lxOOy decrement CTR; branch if CTR 7' a
lxOly decrement CTR; branch if CTR = a
lxlxx branch always

In the table, the x's denote bits that are ignored (but should remain 0 for future
compatibility), and the y's denote bits that are used to encode branch prediction
information. For the be instruction, this prediction information is:

• If Y = 0, then forward branches are predicted not-taken and backward
branches are predicted taken.

• If Y = I, then forward branches are predicted taken and backward branches
are predicted not-taken.

Extended Forms:
There are a large number of extended forms for the be instruction, all of which
are summarized in the following list. In this list, BIF stands for the bit field of
the CR that is used for the test. The BIF value must range between 0 and 7,
inclusive. If the branch is dependent on CR field 0, then the BIF parameter may
be omitted.

bdnz[IHa] addr
bdnz£[IHa] BI,addr
bdnzt[IH a] BI,addr
bdz[IHa] addr
bdz£[IHa] BI,addr
bdzt[IHa] BI,addr
beq[IHa] [BIF,]addr
b£[IHa] BI,addr
bge[IHa] [BIF,]addr
bgt[IHa] [BIF,]addr
ble[IH a] [BIF,]addr
blt[IHa] [BIF,]addr

370 Appendix A

is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to

be[IHa]
be[IHa]
be[l][a]
be[tHa]
be[IHa]
be[IHa]
be[IHa]
be[IHa]
be[IHa]
be[IHa]
be[IHa]
be[lHa]

Oxl0,O,addr
OxOO,BI,addr
Ox08,BI,addr
Ox12,O,addr
Ox02,BI,addr
OxOA,BI,addr
OxOC,BIF*4+ 2,addr
Ox04,BI,addr
Ox04,BIF*4+0,addr
OxOC,BIF*4+ l,addr
Ox04,BIF*4+ l,addr
OxOC,BIF*4+0,addr

bne[l][a] [BIF,]addr is equivalent to be[l][a] Ox04,BIF*4+2,addr
bng[l][a] [BIF,]addr is equivalent to be[l][a] Ox04,BIF*4+ l,addr
bnl[l][a] [BIF,]addr is equivalent to be[l][a] Ox04,BIF*4+0,addr
bns[l][a] [BIF,]addr is equivalent to be[l][a] Ox04,BIF*4+3,addr
bnu[l][a] [BIF,]addr is equivalent to be[IHa] Ox04,BIF*4+3,addr
bso[l] [a] [BIF,]addr is equivalent to be[IHa] OxOC,BIF*4+3,addr
bt[IHa] BI,addr is equivalent to be[l][a] OxOC,BI,addr
bun[l][a] [BIF,]addr is equivalent to be[IHa] OxOC,BIF*4+3,addr

Instruction Encoding:
0 5 6 !O 11 15 16 29 30 31

10 1 000 01 BO 1 BI 1 BD ~AILkl

BO Branch Option
BI Bit number (0-31) of CR to check
BD 14-bit signed offset to (or absolute) target address
AA Absolute Address bit
Lk Link bit

Instruction Set Summary 371

bcctr Branch Conditional to CTR
POWER • 601 • 603 • PowerPC32/64

Operation: if (Lk= 1)

Syntax:

LR¢= IP+4
if (condition is TRUE)

IP ¢= CTR[0:29] ..L bOO

beetr
beetrl

BO,BI
BO,BI

(Lk = 0)
(Lk = 1)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

bcctr

The beetr instruction passes control to the instruction at the address specified in
the Count Register (CTR) if the condition specified by BO and BI is true.

The target address is calculated by concatenating the upper 30 bits of the CTR
with bOO. This insures that the IP contains a valid word-aligned address.

If the Link (Lk) bit is set, the address of the instruction following the branch
instruction is saved in the Link Register (LR).

The archaic POWER mnemonic for this instruction is bee[l].

The Branch Option (BO) field of the instruction is used in conjunction with the
specified Condition Register bit (BI) to determine if the branch should be taken.
The BO field can be anyone of the following values (although the Branch
Options involving decrementing the CTR do not produce sensible instructions):

BO Action

OOOOy decrement CTR; branch if CTR"# 0 and CR[BI] = 0

OOOly decrement CTR; branch if CTR = 0 and CR[BI] = 0

OOlxy branch if CR[BI] = 0

OlOOy decrement CTR; branch if CTR"# 0 and CR[BI] = 1

OlOly decrement CTR; branch if CTR = 0 and CR[BI] = 1

Ollxy branch if CR[BI] = 1

1xOOy decrement CTR; branch if CTR"# 0

lx01y decrement CTR; branch if CTR = 0

1xlxx branch always

372 Appendix A

In the table, the x's denote bits that are ignored (but should remain 0 for future
compatibility), and the y's denote bits that are used to encode branch prediction
information. For the beetr instruction, this prediction is:

• If Y = 0, the branch is predicted not-taken.

• If Y = 1, the branch is predicted taken.

Extended Forms:
There are a large number of extended forms for the beetr instruction, all of
which are summarized in the following list. In this list, BIF stands for the bit
field of the CR that is used for the test. The BIF value must range between 0 and
7, inclusive. If the branch is dependent on CR field 0, then the BIF parameter
may be omitted.

betr[l] is equivalent to bectr[l] Ox14,0
beqctr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+2
bfetr[l] BI is equivalent to bectr[l] Ox04,BI
bgectr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+0
bgtetr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+ 1
bleetr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+ 1
bltetr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+0
bnectr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+2
bngctr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+ 1
bnlctr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+0
bnsetr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+3
bnuctr[l] [BIF] is equivalent to bectr[l] Ox04,BIF*4+3
bsoetr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+3
btctr[l] BI is equivalent to bectr[l] OxOC,BI
bunctr[l] [BIF] is equivalent to bectr[l] OxOC,BIF*4+3

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

10 1 001 1 I BO I BI 10 0 0 o 011 o 0 0 0 1 000 o ILkl

BO Branch Option
BI Bit number (0-31) of CR to check
Lk Link bit

Instruction Set Summary 373

belr Branch Conditional to LR
POWER. 601 • 603 • PowerPC32/64

Operation: oldLR := LR
if (Lk=l)

Syntax:

LR¢= IP+4
if (condition is TRUE)

IP ¢= oldLR[0:29] .1 bOO

belr
belrl

BO,BI
BO,BI

(Lk = 0)
(Lk = 1)

Condition Register/Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

belr

The belr instruction passes control to the instruction at the address specified in
the Link Register (LR) if the condition specified by BO and BI is true.

The target address is calculated by concatenating the upper 30 bits of the LR
with bOO. This insures that the IP contains a valid word-aligned address.

If the Link (Lk) bit is set, the address of the instruction following the branch
instruction is saved in the Link Register (LR).

The archaic POWER mnemonic for this instruction is bcr[l].

The Branch Option (BO) field of the instruction is used in conjunction with the
specified Condition Register bit (BI) to determine if the branch should be taken.
The BO field can be anyone of the values listed in the next table.

BO Action

DOODy decrement cm; branch if CTR '" 0 and CR[Bl] = 0

ODDly decrement CTR; branch if CTR = 0 and CR[Bl] = 0

OOlxy branch if CR[Bl] = 0

OlOOy decrement cm; branch if CTR", 0 and CR[Bl] = 1

OlOly decrement CTR; branch if CTR = 0 and CR[Bl] = 1

Ollxy branch if CR[Bl] = 1

1xOOy decrement CTR; branch if cm", 0

lx01y decrement CTR; branch if CTR = 0

lx1xx branch always

374 Appendix A

In the table, the x's denote bits that are ignored (but should remain 0 for future
compatibility), and the y's denote bits that are used to encode branch prediction
information. For the belr instruction, this prediction is:

• If Y = 0, the branch is predicted not-taken.

• If Y = 1, the branch is predicted taken.

Extended Forms:
There are a large number of extended forms for the belr instruction, all of which
are summarized in the following list. In this list, BlF stands for the bit field of
the CR that is used for the test. The BlF value must range between 0 and 7,
inclusive. If the branch is dependent on CR field 0, then the BlF parameter may
be omitted.

bIr[l] is equivalent to belr[l] Ox14,0
bdnzflr[l] Bl is equivalent to belr[l] OxOO,Bl
bdnzIr[l] is equivalent to belr[l] Oxl0,0
bdnztIr[l] Bl is equivalent to belr[l] Ox08,BI
bdzflr[l] Bl is equivalent to belr[l] Ox02,Bl
bdzlr[l] is equivalent to belr[l] Ox12,0
bdztlr[l] Bl is equivalent to belr[l] OxOA,Bl
beqlr[l] [BlF] is equivalent to belr[l] OxOC,BlF*4+2
bflr[l] Bl is equivalent to belr[l] Ox04,Bl
bgelr[l] [BlF] is equivalent to belr[l] Ox04,BlF*4+0
bgtlr[l] [BlF] is equivalent to belr[l] OxOC,BlF*4+ 1
bleIr[l] [BlF] is equivalent to bcIr[l] Ox04,BlF*4+ 1
bltIr[l] [BlF] is equivalent to belr[l] OxOC,BlF*4+0
bneIr[l] [BlF] is equivalent to belr[l] Ox04,BIF*4+2
bngIr[l] [BlF] is equivalent to belr[l] Ox04,BIF*4+ 1
bnllr[l] [BlF] is equivalent to belr[l] Ox04,BlF*4+0
bnslr[l] [BlF] is equivalent to belr[l] Ox04,BlF*4+3
bnulr[l] [BlF] is equivalent to belr[l] Ox04,BlF*4+3
bsoIr[l] [BIF] is equivalent to belr[l] OxOC,BlF*4+3
btIr[l] Bl is equivalent to belr[l] OxOC,Bl
bunlr[l] [BlF] is equivalent to belr[l] OxOC,BlF*4+3

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

10 1 001 1 I BO I BI 10 0 0 o 010 000 0 1 000 o ILkl

BO Branch Option
BI Bit number (0-31) of CR to check
Lk Link bit

Instruction Set Summary 375

Cache Line Compute Size
POWER • 601

Operation: rT ¢= cache line specified by rA

Syntax: des rT,rA

Condition Register /Fixed-Point Exception Register:
CR Field 0: undefined if Rc = 1
tR Fields 1-7: not affected

XER: not affected

Description:
The des instruction places the cache line size specified by GPR rA into GPR rT.
Valid values for rA are listed in the table.

(rA) Line Size

ooxxx Undefined

OlOxx Undefined

01100 Instruction Cache Line Size

01101 Data Cache Line Size

01110 Minimum Line Size

01111 Maximum Line Size

lxxxx Undefined

The value returned in rT must be between 64 and 4096 (inclusive). The 601
returns 64 as the line size for all valid values of rA.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
Rc

376 Appendix A

10 11 15 16 20 21 30 31

T I A 10 a a a 0110 a a a 1 a a 1 11&1

Target GPR rT where result of operation is stored
GPR rA which contains cache line code
Record bit

cmp Compare cmp
POWER. 601 • 603 • PowerPC32 / 64

Operation: CR{crT} <= Signed Compare(rA,rB)

Syntax: cmp crT,L,rA,rB

Condition Register/Fixed-Point Exception Register:
CR Field T: LT,GT,EQSO always updated
other fields: not affected

XER: not affected

Description:
The cmp instruction compares the contents of the two source registers rA and rB
and stores the result of the compare in field crT of the Condition Register. The
contents of the source registers are interpreted as containing signed values for
purposes of the compare.

On 32-bit PowerPC implementations, the L operand must be 0 or else the
instruction form is invalid. The 601 ignores the value of L and always operates
as if it were O.

On 64-bit PowerPC implementations, the L operand is used to select a 32-bit or
a 64-bit compare. If L is 1, then all 64 bits of the source registers are used for the
compare; if L is 0, then only the low-order 32-bits from each register (sign­
extended to 64 bits) are used.

Extended Forms:
cmpd crT,rA,rB is equivalent to cmp crT,l,rA,rB
cmpw crT,rA,rB is equivalent to cmp crT,O,rA,rB

Instruction Encoding:
0 5 6 8 9 10 11 15 16 20 21 30 31

10 1 1 1 1 1 I T 10 ILl A I B 10 a a a a a 0 a a 0101

T Bit field of CR where result of compare is stored
L Selector to determine 32/ 64-bit operands
A Source GPR rA
B Source GPR rB

Instruction Set Summary 377

• • Cmpl Compare Immediate
POWER • 601 • 603 • PowerPC32/64

Cmpl

Operation: CR{crT} ¢= Signed Compare(rA,s16)

Syntax: cmpi crT,L,rA,s16

Condition Register I Fixed-Point Exception Register:
CR Field T: LT,GT,EQSO always updated
other fields: not affected

XER: not affected

Description:
The cmpi instruction compares the contents of the source register rA and the
sign-extended immediate value s16 and stores the result of the compare in field
crT of the Condition Register. The contents of the source register are interpreted
as containing a signed value for purposes of the compare.

On 32-bit PowerPC implementations, the L operand must be 0 or else the
instruction form is invalid. The 601 ignores the value of L and always operates
as if it were O.

On 64-bit PowerPC implementations, the L operand is used to select a 32-bit or
a 64-bit c.ompare. If L is 1, then all 64 bits of the source register are compared
with the immediate value sign-extended to 64 bits; if L is 0, then the low-order
32-bits of the source register are compared with the immediate value sign­
extended to 32 bits:

Extended Forms:
cmpdi
cmpwi

crT,rA,s16
crT,rA,s16

Instruction Encoding:

is equivalent to cmpi
is equivalent to cmpi

o 5 6 8 9 10 11 15 i6

10010 11 T 10iLI A I

crT,l,rA,s16
crT,0,rA,s16

SI

T Bit field of CR where result of compare is stored
L Selector to determine 32/ 64-bit operands
A Source GPR rA
SI Signed 16-bit integer

378 Appendix A

31

empl Compare Logical
POWER. 601 • 603. PowerPC32/64

empl

Operation: CR{crT} <= Unsigned Compare(rA,rB)

Syntax: cmpl crT,L,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Field T: LT,GT,EQ,SO always updated
other fields: not affected

XER: not affected

Description:
The empl instruction compares the contents of the two source registers rA and
rB and stores the result of the compare in field crT of the Condition Register. The
contents of the source registers are interpreted as containing unsigned values for
purposes of the compare.

On 32-bit PowerPC implementations, the L operand must be ° or else the
instruction form is invalid. The 601 ignores the value of L and always operates
as if it were 0.

On 64-bit PowerPC implementations, the L operand is used to select a 32-bit or
a 64-bit compare. If L is 1, then all 64 bits of the source registers are used for the
compare; if L is 0, then only the low-order 32-bits from each register (sign­
extended to 64 bits) are used.

Extended Forms:
empld crT,rA,rB is equivalent to empl crT,l,rA,rB
emplw crT,rA,rB is equivalent to empl crT,O,rA,rB

Instruction Encoding:
0 5 6 8 91011 15 16 20 21 30 31

10 1 1 1 1 1 I T 10iLI A I B 10 000 1 0 0 o 0 0101

T Bit field of CR where result of compare is stored
L Selector to determine 32/ 64-bit operands
A Source GPR rA
B Source GPR rB

Instruction Set Summary 379

cmpli Compare Logical Immediate
POWER. 601 • 603 • PowerPC32/64

cmpli

Operation: CR{crT} ¢= Unsigned Compare(rA,u16)

Syntax: cmpli crT,L,rA,u16

Condition Register / Fixed-Point Exception Register:
CR Field T: LT,GT,EQ,SO always updated
other fields: not affected

XER: not affected

Description:
The cmpli instruction compares the contents of the source register rA and the
zero-extended immediate value u16 and stores the result of the compare in field
crT of the Condition Register. The contents of the source register are interpreted
as containing an unsigned value for purposes of the compare.

On 32-bit PowerPC implementations, the L operand must be ° or else the
instruction form is invalid. The 601 ignores the value of L and always operates
as if it were 0.

On 64-bit PowerPC implementations, the L operand is used to select a 32-bit or
a 64-bit compare. If L is 1, then all 64 bits of the source register are compared
with the immediate value zero-extended to 64 bits; if L is 0, then the low-order
32 bits of the source register are compared with the immediate value zero­
extended to 32 bits.

Extended Forms:
cmpldi
cmplwi

crT,rA,u16
crT,rA,u16

Instruction Encoding:

is equivalent to
is equivalent to

o 5 6 8 9 10 11 15 16

10 0 1 0 1 01 T 10iLI A I

cmpli
cmpli

crT,l,rA,u16
crT,0,rA,u16

VI

T Bit field of CR where result of compare is stored
L Selector to determine 32/ 64-bit operands
A Source GPR rA
UI Unsigned 16-bit integer

380 Appendix A

31

cntlzd Count Leading Zeros Doubleword cntlzd
PowerPC64

Operation: numZeros := 0
while (numZeros < 64 && rS[numZeros] = 0)

numZeros := numZeros + 1

Syntax:

rA ¢::: numZeros

cntlzd
cntlzd.

rA,rS
rA,rS

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The cntlzd instruction examines the contents of the source register rS and counts
the number of zero bits contiguous with the left side of the register. This value is
then stored in rA.

All 64 bits of the source register are used for this computation. The returned
value ranges from 0 to 64. A return value between 0 and 63 indicates the bit
number of the left-most 'I' bit in the source register. A return value of 64 indi­
cates that all of the bits of the source register are O.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10111111 s I A 10000010000111010lRc i

A Target GPR rA where result of operation is stored
S Source GPR rS

Instruction Set Summary 381

cntlzw Count Leading Zeros Word
POWER. 601 • 603 • PowerPC32/64

Operation: numZeros := 0

cntlzw

while (numZeros < 32 && rS[numZeros] = 0)
numZeros := numZeros + 1

Syntax:

rA <= numZeros

cntlzw
cntlzw.

rA,rS
rA,rS

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The cntlzw instruction examines the contents of the source register rS and
counts the number of zero bits contiguous with the left side of the register. This
value is then stored in rA.

On 32-bit PowerPC implementations, all 32 bits of the source register are used
for this computation. The returned value ranges from 0 to 32. A return value
between 0 and 31 indicates the bit number of the left-most 1/11/ bit in the source
register. A return value of 32 indicates that all of the bits of the source register
areO.

On 64-bit PowerPC implementations, only the low-order 32 bits of the source
register are used for this computation. The returned value ranges from 0 to 32. A
return value between 0 and 31 indicates the bit number of the left-most '1' bit in
the low-order word of the source register. A return value of 32 indicates that the
low-order 32 bits of the source are all O.

The archaic POWER mnemonic for this instruction is cntlz[.].

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10111111 s I A 10 0 0 0 0 I 0 0 0 0 0 1 1 0 1 0 IRel

A Target GPR rA where result of operation is stored
S Source GPR rS

382 Appendix A

erand Condition Register AND
POWER. 601 • 603 • PowerPC32j 64

Operation: CR[bitT] ~ CR[bitA] & CR[bitB]

Syntax: erand bitT,bitA,bitB

Condition Register /Fixed-Point Exception Register:
CR bit T: set equal to CR[bitA] & CR[bitB]
other bits: not affected

XER: not affected

Description:

erand

The crand instruction ANDs bit bitA of the Condition Register with bit bitB of the
Condition Register and stores the result of the operation in bit bitT of the Condi­
tion Register.

Instruction Encoding:
0

10 1 o 0 1

T
A
B

5 6

1 I
10 11 15 16 20 21 30 31

T I A I B 10 1 0 0 0 0 0 0 0 1101

Bit of CR where result of operation is stored
Source bit A of CR
Source bit B of CR

Instruction Set Summary 383

crandc Condition Register AND
with Complement

POWER. 601 • 603 • PowerPC32/64

Operation: CR[bitT] {= CR[bitA] & ~CR[bitB]

Syntax: crandc bitT,bitA,bitB

Condition Register / Fixed-Point Exception Register:
CR bit T: set equal to CR[bitA] & ~CR[bitB]
other bits: not affected

XER: not affected

Description:

crandc

The crandc instruction ANDs bit bitA of the Condition Register with the comple­
ment of bit bitB of the Condition Register and stores the result of the operation
in bit bitT of the Condition Register.

Instruction Encoding:
0 5 6

10 1 o 0 1 1 I

T
A
B

384 Appendix A

10 11 15 16 20 21 30 31

T I A I B 10 0 1 0 000 0 0 1101

Bit of CR where result of operation is stored
Source bit A of CR
Source bit B of CR

creqv Condition Register Equivalent
POWER • 601 • 603 • PowerPC32/64

Operation: CR[bitT] <= CR[bitA] == CR[bitB]

Syntax: creqv bitT,bitA,bitB

Condition Register /Fixed-Point Exception Register:
CR bit T: set equal to CR[bitA] == CR[bitB]
other bits: not affected

XER: not affected

Description:

creqv

The creqv instruction calculates the equivalence bit bitA of the Condition Regis­
ter and bit bitB of the Condition Register and stores the result of the operation in
bit bitT of the Condition Register. The equivalence operation returns 1 if the two
source bits are equal and 0 if they are not equal.

Extended Forms:
crset bit is equivalent to creqv bit/bit/bit

Instruction Encoding:
0

10 1 o 0 1

T
A
B

5 6

1 I
10 11 15 16 20 21 30 31

T I A I B 10100100001101

Bit of CR where result of operation is stored
Source bit A of CR
Source bit B of CR

Instruction Set Summary 385

crnand Condition Register NAND
POWER. 601 • 603 • PowerPC32/64

Operation: CR[bitT] ¢= ~(CR[bitA] & CR[bitB])

Syntax: crnand bitT,bitA,bitB

Condition Register /Fixed-Point Exception Register:
CR bit T: set equal to -(CR[bitA] & CR[bitB])
other bits: not affected

XER: not affected

Description:

crnand

The crnand instruction ANDs bit bitA of the Condition Register with bit bitB of
the Condition Register and stores the complement of the result of the operation
in bit bitT of the Condition Register.

Instruction Encoding:
0 5 6

10 1 o 0 1 1 I

T
A
B

386 Appendix A

10 11 15 16 20 21 30 31

T I A I B 1001 1 000 0 0 1101

Bit of CR where result of operation is stored
Source bit A of CR
Source bit B of CR

crnor Condition Register NOR
POWER. 601 • 603 • PowerPC32/64

Operation: CR[bitT] <= '-(CR[bitA] I CR[bitB])

Syntax: cmor bitT,bitA,bitB

Condition Register /Fixed-Point Exception Register:
CR bit T: set equal to -(CR[bitA] I CR[bitB])
other bits: not affected

XER: not affected

Description:

crnor

The crnor instruction ORs bit bitA of the Condition Register with bit bitB of the
Condition Register and stores the complement of the result of the operation in
bit bitT of the Condition Register.

Extended Forms:
crnot bitT,bitA is equivalent to crnor bitT,bitA,bitA

Instruction Encoding:
0

10 1 o 0 1

T
A
B

5 6

1 I
10 11 15 16 20 21 30 31

T I A I B 10 0 0 0 100 0 0 1101

Bit of CR where result of operation is stored
Source bit A of CR
Source bit B of CR

Instruction Set Summary 387

cror Condition Register OR
POWER. 601 • 603 • PowerPC32j 64

Operation: CR[bitT] ¢= CR[bitA] I CR[bitB]

Syntax: cror bitT,bitA,bitB

Condition Register /Fixed-Point Exception Register:
CR bit T: set equal to CR[bitA] I CR[bitB]
other bits: not affected

XER: not affected

Description:

cror

The cror instruction ORs bit bitA of the Condition Register with bit bitB of the
Condition Register and stores the result of the operation in bit bitT of the Condi­
tion Register.

Extended Forms:
crmove bitT,bitA is equivalent to cror bitT,bitA,bitA

Instruction Encoding:
0 5 6

10 1 o 0 1 1 I

T
A
B

388 Appendix A

10 11 15 16 20 21 30 31

T I A I B 10111000001101

Bit of CR where result of operation is stored
Source bit A of CR
Source bit B of CR

crorc Condition Register OR
with Complement

POWER. 601 • 603 • PowerPC32/64

Operation: CR[bitT] ¢= CR[bitA] I ~CR[bitB]

Syntax: crorc bitT,bitA,bitB

Condition Register /Fixed-Point Exception Register:
CR bit T: set equal to CR[bitA] I ~CR[bitB]
other bits: not affected

XER: not affected

Description:

crorc

The erore instruction ORs bit bitA of the Condition Register with the comple­
ment of bit bitB of the Condition Register and stores the result of the operation
in bit bitT of the Condition Register.

Instruction Encoding:
0

10 1 o 0 1

T
A
B

5 6

11
10 11 15 16 20 21 30 31

T I A I B 10110100001101

Bit of CR where result of operation is stored
Source bit A of CR
Source bit B of CR

Instruction Set Summary 389

crxor Condition Register XOR
POWER. 601 • 603 • PowerPC32/64

Operation: CR[bitT] {:::: CR[bitA] Ei3 CR[bitB]

Syntax: crxor bitT,bitA,bitB

Condition Register / Fixed-Point Exception Register:
CR bit T: set equal to CR[bitA] EEl CR[bitB]
other bits: not affected

XER: not affected

Description:

crxor

The erxor instruction XORs bit bitA of the Condition Register with bit bitB of the
Condition Register and stores the result of the operation in bit bitT of the Condi­
tion Register.

Extended Forms:
erelr bit is equivalent to erxor bit,bit,bit

Instruction Encoding:
0 5 6

10 1 o 0 1 1 1

T
A
B

390 Appendix A

10 11 15 16 20 21 30 31

T 1 A 1 B 10011000001101

Bit of CR where result of operation is stored
Source bit A of CR
Source bit B of CR

dcbf Data Cache Block Flush dcbf
601 • 603 • PowerPC32/64

Operation: flush the specified block to storage

Syntax: dcbf rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The dcbf instruction flushes the data cache block specified by the given effective
address (calculated from (rA I 0) + (rB» out to main storage. The details of the
operation depend on the storage mode associated with the effective address and
on the state of the block.

On PowerPC implementations with unified caches (like the 601), this instruction
flushes the unified cache.

When the storage mode requires coherency (WIM = xxI), the instruction is
implemented as follows:

• Unmodified block-All copies of this block are invalidated in the
caches of all processors.

• Modified block-The block is copied out to storage and all copies of this
block in the caches of other processors are invalidated.

• Absent block-Force all copies of this block to be invalidated in the
caches of all other processors. If any of these are modified copies, then
force them to be written to storage before invalidating them.

When coherency is not required (WIM = xxO), dcbf acts as follows:

• Unmodified block-The block is invalidated.
• Modified block-The block is copied out to storage and invalidated.

• Absent block-No action is required.

This instruction is treated as a load from the effective address for purposes of
address translation and protection.

If the calculated effective address specifies an address belonging to a direct-store
segment, then this instruction will operate as a no-op.

Instruction Set Summary 391

Instruction Encoding:
5 6 10 11 15 16 20 21 30 31

10 1 1 1 11000001 A 1 B 10001010110101

A Source GPR rA
B Source GPR rB

392 Appendix A

dcbi Data Cache Block Invalidate dcbi
601 • 603 • PowerPC32/64 • Privileged

Operation: invalidate the specified block

Syntax: dcbi rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The dcbi instruction invalidates the data cache block specified by the given
effective address (calculated from (rA I 0) + (rB)). The details of the operation
depend on the storage mode associated with the effective address and on the
state of the block.

When the storage mode requires coherency (WIM = xxI), the instruction is
implemented as follows:

• Unmodified block-All copies of this block are invalidated in the
caches of all processors.

• Modified block-All copies of this block are invalidated in the caches of
all processors. The modifications are discarded.

• Absent block-All copies of this block are invalidated in the caches of
all other processors. Any modifications are discarded.

When coherency is not required (WIM = xxO), dcbi acts as follows:

• Unmodified block-The block is invalidated.
• Modified block-The block is invalidated. The modications are dis­

carded.

• Absent block-No action is required.

This instruction is treated as a store from the effective address for purposes of
address translation and protection.

If the calculated effective address specifies an address belonging to a direct-store
segment, then this instruction will operate as a no-op.

Instruction Set Summary 393

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 110 0 0 0 01 A I B 10 1 1 1010 1 10101

A Source GPR rA
B Source GPR rB

394 Appendix A

debst Data Cache Block Store debst
601 • 603 • PowerPC32/64

Operation: write the specified block to storage

Syntax: debst rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The dcbst instruction writes the data cache block specified by the given effective
address (calculated from (rA I 0) + (rB» out to main storage. The details of the
operation depend on the storage mode associated with the effective address and
on the state of the block.

When the storage mode requires coherency (WIM = xxI), the instruction causes
the block to be written if any processor has a modified copy of the block.

When coherency is not required (WIM = xxO), dcbst causes the block to be writ­
ten if the local processor has a modified copy of the block.

If the block has not been modified, then the block is not written.

This instruction is treated as a load from the effective address for purposes of
address translation and protection.

If the calculated effective address specifies an address belonging to a direct-store
segment, then this instruction will operate as a no-op.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 110 0 0 0 01 A I B 10 0 0 0 1 10 1 10101

A Source GPR rA
B Source GPR rB

Instruction Set Summary 395

debt Data Cache Block Touch debt
601 • 603 • PowerPC32/64

Operation: give hint that the address may soon be loaded from

Syntax: debt rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The debt instruction tells the processor that the effective address (calculated
from (rA I 0) + (rB» will be loaded from in the near future. The processor can use
this hint and attempt to improve performance by preloading the block that con­
tains that address into the data cache. However, the processor is not required to
load the addressed block.

This instruction is treated as a load from the effective address for purposes of
address translation and protection. The system error handler is never invoked
by this instruction.

If the calculated effective address specifies an address belonging to a direct-store
segment, then this instruction will operate as a no-op.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 11000001 A I B 10100010110101

A Source GPR rA
B Source GPR rB

396 Appendix A

debtst Data Cache Block Touch for Store debtst
601 • 603 • PowerPC32/64

Operation: give hint that the address may soon be stored to

Syntax: debtst rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The debtst instruction tells the processor that the effective address (calculated
from (rA I 0) + (rB» will be stored to in the near future. The processor can use this
hint and attempt to improve performance by preloading the block that contains
that address into the data cache. However, the processor is not required to load
the addressed block.

This instruction is treated as a load from the effective address for purposes of
address translation and protection. The system error handler is never invoked
by this instruction. Note that this instruction cannot be treated as a store since it
does not modify storage.

If the calculated effective address specifies an address belonging to a direct-store
segment, then this instruction will operate as a no-op.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 110 0 0001 A I B 1001 1 1 101 10101

A Source GPR rA
B Source GPR rB

Instruction Set Summary 397

dcbz Data Cache Block Zero dcbz
POWER • 601 • 603 • PowerPC32 / 64

Operation: set the cache block to contain all zeros

Syntax: dcbz rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The dcbz instruction clears the contents of the data cache block specified by the
given effective address (calculated from (rA I 0) + (rB». Any existing modifica­
tions to the block are discarded.

If the block is not currently loaded in the cache (and the block is cacheable), then
a block of all zeros is established in the cache for this block (the previous block
data is not fetched from memory).

If the block is not allowed to be cached (Caching Inhibited) or if stores to this
block must be write-through (Write Through Required), then a block of zeros is
written out to storage. This operation may be handled by the system alignment
interrupt handler.

If the block is in Coherency Required mode and the block exists in the caches of
other processors, then the block is kept coherent in those caches.

This instruction is treated as a store from the effective address for purposes of
address translation and protection.

If the calculated effective address specifies an address belonging to a direct-store
segment, then this instruction will operate as a no-op.

The archaic POWER mnemonic for this instruction is dclz.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 11000001 A I B 11111110110101

A Source GPR rA
B Source GPR rB

398 Appendix A

cdlnw Divide
POWER· 601

Operation: rT ¢= ((rA) 1. (MQ)) + (rB)
MQ ¢= ((rA) ..1 (MQ)) % (rB)

Syntax: (Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc = 0, OE = 1)
(Rc = 1, OE = 1)

Condition Register / Fixed -Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE= 1, otherwise not affected

Description:

cdlnw

The div instruction concatenates the contents of GPR rA and the MQ register
and divides that quantity by the contents of GPR rB. The quotient from this
operation is placed in GPR rT, and the remainder is placed in the MQ register.
All source registers are assumed to contain signed values.

The instruction results will always satisfy the equality:

dividend = (divisor· quotient) + remainder

where the dividend is (rA)l..(MQ) and the divisor is (rB). The remainder is always
less than the absolute value of the divisor and has the same sign as the dividend
(except that a 0 quotient or remainder will always be positive).

An overflow occurs when the quotient cannot be represented in 32 bits. If the
quantity _2 31 is divided by -1, then the MQ register is cleared and GPR rT is set
to _231. For overflows other than this case, MQ, rT, and CR{O} (if Rc=l) are unde­
fined. If the Record bit is set, then the LT, GT, and EQ bits of CR{O} are updated
to reflect the remainder (stored in MQ).

This instruction is not part of the PowerPC architecture.

Instruction Set Summary 399

Instruction Encoding:
0 5 6

[fI 1 1 1 1 I

T
A
B
OE
Rc

400 Appendix A

10 11 15 16 20 21 22 30 31

T I A I B IOE 11 0 1 0 0 1 0 1 1 IRe I

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

divd Divide Doubleword divd
PowerPC64

Operation: rT ~ (rA) + (rB)

Syntax: divd
divd.
divdo
divdo.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc=O,OE=I)
(Rc = 1, OE = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The divd instruction divides the contents of GPR rA by the contents of GPR rB
and places the quotient from this operation in GPR rT. The source registers are
assumed to contain signed values.

The instruction results will always satisfy the equality:

dividend = (divisor· quotient) + remainder

where the dividend is (rA) and the divisor is (rB). The remainder is always less
than the absolute value of the divisor and has the same sign as the dividend
(except that a 0 quotient or remainder will always be positive).

An overflow occurs when the signed quotient cannot be represented in 64 bits.
If the quantity _263 is divided by -1 or if any quantity is divided by 0, then rT is
undefined. If the Record bit is set, then the LT, GT, and EQ bits of CR{O} are unde­
fined also.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Set Summary 401

Instruction Encoding:
0 5 6

10 I I I I I I

T
A
B
OE
Rc

402 Appendix A

10 11 15 16 20 21 22 30 31

T I A I B IOEII I I I 0 I 0 0 IIRel

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

divdu Divide Doubleword Unsigned divdu
PowerPC64

Operation: rT <= (rA) + (rB)

Syntax: divdu rT,rA,rB (Rc = 0, OE = 0)
divdu. rT,rA,rB (Rc = 1, OE = 0)
divduo rT,rA,rB (Rc = 0, OE = 1)
divduo. rT,rA,rB (Rc = 1, OE = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The divdu instruction divides the contents of GPR rA by the contents of GPR rB
and places the quotient from this operation in GPR rT. The source registers are
assumed to contain unsigned values.

The instruction results will always satisfy the equality:

dividend = (divisor· quotient) + remainder

where the dividend is (rA) and the divisor is (rB). The remainder is always less
than the absolute value of the divisor and is always a positive value.

An overflow occurs when the unsigned quotient cannot be represented in 64
bits. If any quantity is divided by 0, then rT is undefined. If the Record bit is set,
then the LT, GT, and EQ bits of CR{O} are undefined also.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

10 1 1 1 1

T
A
B
OE
Rc

5 6

11
10 11 15 16 20 21 22 30 31

T I A I B 100111IOOIOOl1Rc i

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

Instruction Set Summary 403

Divide Short
POWER. 601

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=l, otherwise not affected

Description:
The divs instruction divides the contents of CPR rA by the contents of CPR rB.
The quotient from this operation is placed in CPR rT, and the remainder is
placed in the MQ register. All source registers are assumed to contain signed
values.

The instruction results will always satisfy the equality:

dividend = (divisor· quotient) + remainder

where the dividend is (rA) and the divisor is (rB). The remainder is always less
than the absolute value of the divisor and has the same sign as the dividend
(except that a 0 quotient or remainder will always be positive).

An overflow occurs when the quotient cannot be represented in 32 bits. If the
quantity _2 31 is divided by -1, then the MQ register is cleared and CPR rT is set
to _231. For overflows other than this case, MQ rT, and CR{O} (if Rc=l) are unde­
fined.

If the Record bit is set, then the LT, CT, and EQ bits of CR{O} are updated to
reflect the remainder (stored in MQ).

This instruction is not part of the PowerPC architecture.

404 Appendix A

Instruction Encoding:
0

10 1 1 1 1

T
A
B
OE
Rc

5 6

1 1
10 11 15 16 20 21 22 30 31

T 1 A 1 B 1001101101011IRci

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

Instruction Set Summary 405

divw Divide Word
601 • 603. PowerPC32/64

Operation: rT ¢:: orA [0:31] + orB [0:31]
32:63 32:63

Syntax: divw
divw.
divwo
divwo.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

divw

(Rc = 0, OE = 0)
(Rc = I, OE = 0)
(Rc=O,OE=I)
(Rc = I, OE = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1r otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=1, otherwise not affected

Description:
The divw instruction divides the contents of GPR rA by the contents of GPR rB
and places the quotient from this operation in GPR rT. The source registers are
assumed to contain signed values.

On 64-bit PowerPC implementations, only the low-order word from each of the
source operands participates in the division operation. The result is returned in
the low-order word of the target register, and the high-order word is undefined.

The instruction results will always satisfy the equality:

dividend = (divisor· quotient) + remainder

where the dividend is (rA) and the divisor is (rB). The remainder is always less
than the absolute value of the divisor and has the same sign as the dividend
(except that a ° quotient or remainder will always be positive).

If the quantity _2 31 is divided by -1 or if any quantity is divided by 0, then rT is
undefined. If the Record bit is set, then the LT, GT, and EQ bits of CR{O} are unde­
fined also.

406 Appendix A

Instruction Encoding:
0

10 1 1 1 1

T
A
B
OE
Rc

5 6

11
10 11 15 16 20 21 22 30 31

T I A I B 10E11 1 1 1 0 1 0 1 11 Re l

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

Instruction Set Summary 407

divwu Divide Word Unsigned
601 • 603 • PowerPC32/64

Operation: rT <= orA [0:31] + orB [0:31]
32:63 32:63

divwu

Syntax: divwu rT,rA,rB (Rc = 0, OE = 0)
divwu. rT,rA,rB (Rc = 1, OE = 0)
divwuo rT,rA,rB (Rc = 0, OE = 1)
divwuo. rT,rA,rB (Rc = 1, OE = 1)

Condition Register / Fixed -Point Exception Register:
CR Field 0: LT,CT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The divwu instruction divides the contents of CPR rA by the contents of CPR rB
and places the quotient from this operation in CPR rT. The source registers are
assumed to contain unsigned values.

On 64-bit PowerPC implementations, only the low-order word from each of the
source operands participates in the division operation. The result is returned in
the low-order word of the target register, and the high-order word is undefined.

The instruction results will always satisfy the equality:

dividend = (divisor· quotient) + remainder

where the dividend is (rA) and the divisor is (rB). The remainder is always less
than the absolute value of the divisor and is always a positive value.

If any quantity is divided by a, then rT is undefined. If the Record bit is set, then
the LT, CT, and EQ bits of CR{O} are undefined also. If OE= I, the overflow bits in
the XER are set.

408 Appendix A

Instruction Encoding:
0

10 1 1 1 1

T
A
B
OE
Rc

5 6

11
10 11 15 16 20 21 22 30 31

T I A I B IOEll 1 1 0 0 1 0 1 1 IRe I

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

Instruction Set Summary 409

Difference or Zero
POWER. 601

Operation: if ((rA) > (rB))
rT¢=O

else
rT ¢= (rB) - (rA)

Syntax: doz rT,rA,rB (Rc = 0, OE = 0)
doz. rT,rA,rB (Rc = I, OE = 0)
dozo rT,rA,rB (Rc=O,OE=I)
dozo. rT,rA,rB (Rc = I, OE = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The doz instruction performs a signed compare of the contents of GPR rA and
GPR rB. If (rA) > (rB), then 0 is placed in GPR rT, otherwise the result of subtract­
ing (rA) from (rB) is placed in GPR rT. This operation can be viewed as subtract­
ing (rA) from (rB), where the result is never allowed to become negative.

An overflow will occur if (rA) < (rB) and the result of subtracting (rA) from (rB)
cannot fit in 32 bits. That implies that only positive overflows can occur.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B
OE
Rc

410 Appendix A

10 11 15 16 20 21 22 30 31

T I A I B 1001100001000IRci

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

Difference or Zero Immediate
POWER· 601

Operation: if ((rA) > 's16)
rT¢=O

else
rT ¢= 's16 - (rA)

Syntax: dozi rT,rA,s16

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The doz instruction performs a signed compare of the contents of CPR rA and
the sign-extended immediate value 816. If (rA) > '816, then 0 is placed in CPR rT,
otherwise the result of subtracting (rA) from '816 is placed in CPR rT. This oper­
ation can be viewed as subtracting (rA) from '816, where the result is never
allowed to become negative.

An overflow will occur if (rA) < 's16 and the result of subtracting (rA) from 's16
cannot fit in 32 bits. That implies that only positive overflows can occur.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5

10 0 1 0 o 11

T
A
51

6 10 11 15 16

T I A I S1

Target CPR rT where result of operation is stored
Source CPR rA or 0
Signed 16-bit integer

31

Instruction Set Summary 411

•
eCIWX

Operation:

Syntax:

External Control
Input Word Indexed

601.603. Optiona132/64

get word from external device

eciwx rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

•
eCIWX

The eciwx instruction calculates the real address from the specified effective
address ((rA I 0) + rB) and requests that an external device return (in target regis­
ter rT) the word of data at that address. The cache is bypassed by this operation.
On 64-bit implementations, the returned word is loaded into the low-order word
of the register and the upper word is cleared.

The target device is specified by a Resource ID stored in EAR[RlD]. How these
resource IDs map into external devices is system dependent.

Before being translated to a real address, the effective address is validated as if a
load were taking place to that address for purposes of protection, reference, and
change recording.

For most PowerPC processors, if the address references a direct-store storage seg­
ment, then a Data Storage interrupt occurs or the results are boundedly unde­
fined. If data address translations are disabled (MSR[DR] = 0), then the results
are boundedly undefined. The 601 is unique in that it operates whether or not
the data address translations are enabled, and it acts as a no-op if the EA speci­
fies an address in a direct-store segment.

If external accesses are not enabled (that is, EAR[E] is 0), then this instruction
will set DSISR[ll] and cause a Data Storage interrupt to be taken.

This instruction is an optional part of the PowerPC architecture.

412 Appendix A

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

1 I
10 11 15 16 20 21 30 31

T I A I B 10 1 0 0 1 1 0 1 1 0101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

Instruction Set Summary 413

ecowx External Control
Output Word Indexed

601 • 603 • Optional32/64

Operation: send word to external device

Syntax: ecowx rS,rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

ecowx

The ecowx instruction calculates the real address from the specified effective
address «rA I 0) + rB) and sends the real address and the contents of GPR rS to
an external device. The cache is bypassed by this operation. On 64-bit implemen­
tations, only the low-order word of rS is sent to the device.

The target device is specified by a Resource ID stored in EAR[RID]. How these
resource IDs map into external devices is system dependent.

Before being translated to a real address, the effective address is validated as if a
store were taking place to that address for purposes of protection, reference, and
change recording.

For most PowerPC processors, if the address references a direct-store storage seg­
ment, then a Data Storage interrupt occurs or the results are boundedly unde­
fined. If data address translations are disabled (MSR[DR] = 0), then the results
are boundedly undefined. The 601 is unique in that it operates whether or not
the data address translations are enabled, and it acts as a no-op if the EA speci­
fies an address in a direct-store segment.

If external accesses are not enabled (that is, EAR[E] is 0), then this instruction
will set DSISR[ll] and cause a Data Storage interrupt to be taken.

This instruction is an optional part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B

414 Appendix A

10 11 15 16 20 21 30 31

s I A I B 10 1 1 0 1 1 0 1 1 0101

Source GPR rS
Source GPR rA
Source GPR rB

• • elelO Enforce In-Order Execution of I/O
601.603 • PowerPC32/64

Operation: force all loads and stores to complete

Syntax: eieio

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

• • elelO

The eieio instruction orders the effects of the load and store instructions exe­
cuted by the processor. All load and store instructions that were initiated by this
processor before the eieio instruction are guaranteed to be completed before any
of the loads and stores initiated by this processor after the eieio instruction.

This instruction is intended for use with memory-mapped I/O. The eieio
instruction insures that loads and stores on opposite sides of the instruction will
not combine in main memory and produce load/ store combining errors.

Load operations are ordered if they are to storage that is

• Caching Inhibited and Guarded

Store operations are ordered if they are to storage that is one of these:

• Caching Inhibited and Guarded
• Write Through Required

This instruction does not order loads and stores with respect to other processors.

On the 601, this instruction is functionally identical to the sync instruction.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 110 0 0 0 010 a 0 a 010 0 0 0 011 10 1 0 1 0 1 10101

Instruction Set Summary 415

eqv Equivalent
POWER· 601 • 603 • PowerPC32/64

Operation: rA ¢::: (rS) == (rB)

Syntax: eqv
eqv.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:

eqv

The eqv instruction calculates the equivalence of the contents of GPR rS and
GPR rB and places the result in GPR rA. The equivalence operation sets the bits
in the result where the corresponding bits in the two source registers are equal
and clears all the bits where corresponding bits in the source registers are not
equal. This operation is equivalent to taking the complement of the XOR of the
two source registers.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 1

S
A
B
Rc

416 Appendix A

10 11 15 16 20 21 30 31

s 1 A 1 B 10 1 0 0 0 1 1 1 0 01&1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

extsb Extend Sign Byte extsb
601 • 603 • PowerPC32/64

Operation: rA [24:31]
56:63

<= rS e4:31]
56:63

rA [0:23]
0:55

<= rS [~]
56

Syntax: extsb rA,rS (Rc = 0)
extsb. rA,rS (Rc = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The extsb instruction extends the sign of the low-order byte in GPR rS so that all
the bits in the upper bytes of the destination GPR rA contain a copy of the low­
order byte's sign.

On 32-bit PowerPC implementations, the sign bit for the low-order byte is bit
number 24. This bit is copied into the high-order 24 bits of the destination regis­
ter to produce a 32-bit result.

On 64-bit PowerPC implementations, the sign bit for the low-order byte is bit
number 56. This bit is copied into the high-order 56 bits of the destination regis­
ter to produce a 64-bit result.

Instruction Encoding:
0

10 1 1 1 1

S
A
Rc

5 6

1 1
10 11 15 16 20 21 30 31

s 1 A 10000011110111010lRci

Source GPR rS
Target GPR rA where result of operation is stored
Record bit

Instruction Set Summary 417

extsh

Operation:

Syntax:

Extend Sign Halfword
POWER • 601 • 603 • PowerPC32j 64

rA [16:31] <= rS e6:31]
48:63 48:63

extsh
extsh.

rA,rS
rA,rS

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

extsh

CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The extsh instruction extends the sign of the low-order halfword in GPR rS so
that all the bits in the upper bytes of the destination GPR rA contain a copy of the
low-order haifword's sign.

On 32-bit PowerPC implementations, the sign bit for the low-order halfword is
bit number 16. This bit is copied into the high-order 16 bits of the destination
register to produce a 32-bit result.

On 64-bit PowerPC implementations, the sign bit for the low-order halfword is
bit number 48. This bit is copied into the high-order 48 bits of the destination
register to produce a 64-bit result.

The archaic POWER mnemonic for this instruction is exts[.].

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
Rc

418 Appendix A

10 11 15 16 20 21 30 31

s I A 10 0 0 0 011 1 1 0 0 1 1 0 1 01&1

Source GPR rS
Target GPR rA where result of operation is stored
Record bit

extsw Extend Sign Word
PowerPC64

Operation: rA[32:63] ~ rS[32:63]
rA[0:31] ~ rS[32]

Syntax: extsw
extsw.

rA,rS
rA,rS

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

extsw

CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The extsw instruction extends the sign of the low-order word in GPR rS so that
all the bits in the upper bytes of the destination GPR rA contain a copy of the
low-order word's sign.

The sign bit for the low-order word is bit number 32. This bit is copied into the
high-order 32 bits of the destination register to produce a 64-bit result.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

lfl:jllli s I A loooool1111011010l Rc i

S Source GPR rS
A Target GPR rA where result of operation is stored
Rc Record bit

Instruction Set Summary 419

fabs FP Absolute Value
POWER • 601 • 603 • PowerPC32/64

Operation: frT ¢= I (frB) I

Syntax: fabs
fabs.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

fabs

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: not affected

Description:
The fabs instruction takes the contents of frB, sets the sign bit to 0, and stores the
result in frT.

This instruction will operate on NaNs without raising an exception.

Instruction Encoding:
0 5 6

11 1 1 1 1 1 I

T
A
Rc

420 Appendix A

10 11 15 16 20 21 30 31

T 10 0 0 0 01 B 10 1 0 0 0 0 1 0 0 01~1

Target FPR frT where result of operation is stored
Source FPR frA
Record bit

fadd FPAdd fadd
POWER • 601 • 603 • PowerPC32/64

Operation: frT ¢::: (frA) + (frB)

Syntax: fadd
fadd.

frT,frA,frB
frT,frA,frB

(Rc = 0)
(Rc = 1)

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXISI, FR, FI, FPRF

Description:
The £add instruction adds the contents of frA with the contents of frB. This result
is then normalized (if necessary) and rounded to double-precision (according to
the current rounding mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 - 00 (VXISI).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

The archaic POWER mnemonic for this instruction is £a[.].

Instruction Encoding:
0

11 1 1 1 1

T
A
B
Rc

5 6

1 I
10 11 15 16 20 21 25 26 30 31

T I A I B 1000001101011Rc i

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Record bit

Instruction Set Summary 421

fadds FP Add Single
601 • 603 • PowerPC32/64

Operation: frT ¢= (frA) + (frB)

Syntax: fadds
fadds.

frT,frA,frB
frT,frA,frB

(Rc = 0)
(Rc = 1)

fadds

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXISI, FR, PI, FPRF

Description:
The fadds instruction adds the contents of frA with the contents of frB. This
result is then normalized (if necessary) and rounded to single-precision (accord­
ing to the current rounding mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 - 00 (VXISI).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

Instruction Encoding:
o 5 6 10 11 15 16 20 21 25 26 30 31

[1 1 0 1 1 I T I A I B 10 0 0 0 011 0 0 1 IRe I

T Target FPR frT where result of operation is stored
A Source FPR frA
B Source FPR frB
Rc Record bit

422 Appendix A

fcfid FP Convert from Integer Doubleword fcfid
PowerPC64

Operation: frT <= (frA) + (frB)

Syntax: fdid
fdid.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, XX, FR, FI, FPRF

Description:
The fdid instruction takes the 64-bit signed integer value in frB, converts it to a
floating-point number, rounds it to double-precision using the current rounding
mode (if necessary), and stores the result in frT.

FPSCR[FPRF] is updated to reflect the sign and class of the result. FPSCR[FR] is
set if the result was incremented during the rounding process. FPSCR[FI] is set
if the result is inexact.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

11 1 1 1 1

T
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

T 1000001 B 11101001110lRc i

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

Instruction Set Summary 423

fcmpo FP Compare Ordered
POWER. 601 • 603 • PowerPC32/64

Operation: CR{T} <= Ordered FP Compare(frA,frB)

Syntax: fcmpo crT,frA,frB

fcmpo

Condition Register I Floating-Point Status and Control Register:
CR Field T: FL,FG,FE,FU always updated
other fields: not affected

FPSCR: FX, FEX, VX, VXSNAN, VXVC, FPCC

Description:
The fempo instruction compares the contents of frA with the contents of frB, and
the result of the compare is stored in field crT of the Condition Register. The
compare result is also copied into FPSCR[FPCq. If either of the operands is a
NaN, then the compare result is set to unordered.

If either of the operands is a Signalling NaN, then FPSCR[VXSNAN] is set, and,
if Invalid Operation Exceptions are disabled, then the Invalid Compare flag
~FPSCR[VXVq) is set.

If either of the operands is a Quiet NaN (and neither operand is a Signalling
NaN), then FPSCR[VXVq is set.

Instruction Encoding:
o 5 6 8 9 10 11 15 16 20 21 30 31

11111111 T 1001 A I B 10000100000101

T Bit field of CR where result of compare is stored
A Source FPR frA
B Source FPR frB

424 Appendix A

fcmpu FP Compare Unordered
POWER • 601 • 603 • PowerPC32j 64

fcmpu

Operation: CR{BF} <= Unordered FP Compare(frA,frB)

Syntax: fcmpu crT,frA,fr B

Condition Register /Floating-Point Status and Control Register:
CR Field T: FL,FG,FE,FU always updated
other fields: not affected

FPSCR: FX, FEX, VX, VXSNAN, FPCC

Description:
The contents of frA are compared with the contents of frB, and the result of the
compare is stored in field crT of the Condition Register. The compare result is
also copied into FPSCR[FPCC]. If either of the operands is a NaN, then the com­
pare result is set to unordered.

If either of the operands is a Signalling NaN, then FPSCR[VXSNAN] is set.

Instruction Encoding:
o 5 6 8 9 10 11 15 16 20 21 30 31

11111111 T 1001 A I B 10000000000101

T Bit field of CR where result of compare is stored
A Source FPR frA
B Source FPR frB

Instruction Set Summary 425

fetid FP Convert to Integer Doubleword
PowerPC64

Operation: frT ¢::: Double2Int64(frB)

Syntax: fetid
fetid.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

fetid

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, XX, VSNAN, VXCVI, FR, FI, FPRF

Description:
The fetid instruction takes the value in frB, converts it into a signed 64-bit fixed­
point integer using the current rounding mode, and stores the result in frT.

If the contents of frB are greater than 2 63 - 1, then frT is set to the largest positive
64-bit integer (Ox7FFF FFFF FFFF FFFF). If the contents of frB are less than -2 63,

then frT is set to the most negative 64-bit number (Ox8000 0000 0000 0000).

After this instruction completes execution, the contents of FPSCR[FPRF] are
undefined, except in the caSe where an Invalid Operation Exception occurs and
this type of exception is enabled (FPSCR[VE] = 1).

FPSCR[FR] is set if the result was incremented during the rounding process.
FPSCR[FI] is set if the result is inexact.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0 5 6

11 1 1 1 1 1 I

T
B
Rc

426 Appendix A

10 11 15 16 20 21 30 31

T 1000001 B 11100101110lRc i

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

fclidz FP Convert to Integer fclidz
Doubleword with Round to Zero

PowerPC64

Operation: frT ¢::: Double2Int64_RndO(frB)

Syntax: fctidz
fctidz.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

Condition Register / Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, XX, VSNAN, VXCVI, FR, H FPRF

Description:
The fctidz instruction takes the value in frB, converts it into a signed 64-bit fixed­
point integer using the Round to Zero rounding mode, and stores the result in frT.

If the contents of frB are greater than 2 63 - I, then frT is set to the largest positive
64-bit integer (Ox7FFF FFFF FFFF FFFF). If the contents of frB are less than _2 63,

then frT is set to the most negative 64-bit number (Ox8000 0000 0000 0000).

After this instruction completes execution, the contents of FPSCR[FPRF] are
undefined, except in the case where an Invalid Operation Exception occurs and
this type of exception is enabled (FPSCR[VE] = 1).

FPSCR[FR] is set if the result was incremented during the rounding process.
FPSCR[FI] is set if the result is inexact.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

11 1 1 1 1

T
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

T 1000 0 01 B 11 100 101 1 1 11&1

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

Instruction Set Summary 427

fctiw FP Convert to Integer Word
601 • 603 • PowerPC32/64

Operation: frT[32:63] ¢= Double2Int32(frB)

Syntax: fctiw
fctiw.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

fctiw

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX, VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, XX, VSNAN, VXCVI, FR, FI, FPRF

Description:
The fctiw instruction takes the value in frB, converts it into a signed 32-bit fixed­
point integer using the current rounding mode, and stores the result in the low­
order word of frT. The high-order word of frT is undefined.

If the contents of frB are greater than 2 31 - 1, then frT is set to the largest positive
32-bit integer (Ox7FFF FFFF). If the contents of frB are less than -2 31, then frT is
set to the most negative 32-bit number (Ox8000 0000).

After this instruction completes execution, the contents FPSCR[FPRF] are unde­
fined, except in the case where an Invalid Operation Exception occurs and this
type of exception is enabled (FPSCR[VE] = 1).

FPSCR[FR] is set if the result was incremented during the rounding process.
FPSCR[FI] is set if the result is inexact.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

11 1 1 1 1 11 T 1000 0 01 B 10 0 0 0 001 1 101&1

T Target FPR frT where result of operation is stored
B Source FPR frB
Rc Record bit

428 Appendix A

fctiwz FP Convert to Integer
Word with Round to Zero

601 • 603· PowerPC32/64

fctiwz

Operation: frT[32:63] {= Double2Int32_RndO(frB)

Syntax: fctiwz
fctiwz.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, XX, VSNAN, VXCVI, FR, FI, FPRF

Description:
The fctiwz instruction takes the value in frB, converts it into a signed 32-bit
fixed-point integer using the Round to Zero rounding mode, and stores the result
in the low-order word of frT. The high-order word of frT is undefined.

If the contents of frB are greater than 2 31 - I, then frT is set to the largest positive
32-bit integer (Ox7FFF FFFF). If the contents of frB are less than -2 31, then frT is
set to the most negative 32-bit number (Ox8000 0000).

After this instruction completes execution, the contents FPSCR[FPRF] are unde­
fined, except in the case where an Invalid Operation Exception occurs and this
type of exception is enabled (FPSCR[VE] = 1).

FPSCR[FR] is set if the result was incremented during the rounding process.
FPSCR[FI] is set if the result is inexact.

Instruction Encoding:
0

11 1 1 1 1

T
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

T 10 0 0 0 0 I B 10 0 0 0 0 0 1 1 1 1 IRe I

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

Instruction Set Summary 429

fdiv FPDivide
POWER· 601 • 603 • PowerPC32/64

Operation: frT ¢= (frA) + (frB)

Syntax: fdiv
fdiv.

frT,frA,frB
frT,frA,frB

(Rc = 0)
(Rc = 1)

fdiv

Condition Register/Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, ZX, XX, VSNAN,VXIDI,VXZDZ,
FR,FI,FPRF

Description:
The fdiv instruction divides the contents of frA by the contents of frB. This result
is then normalized (if necessary) and rounded to double-precision (according to
the current rounding mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 + 00 (VXIDI).
The Zero Divided by Zero Exception will be invoked if the operation is equiva­
lent to 0 + 0 (VXZDZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation or Zero Divided by Zero Exception occurs and
the appropriate type of exception is enabled.

The archaic POWER mnemonic for this instruction is fd[.].

Instruction Encoding:
o 5 6 10 11 15 16 20 21 25 26 30 31

11 1 1 1 1 I T I A I B 10 0 0 0 0 11 0 0 1 0 IRe I

T Target FPR frT where result of operation is stored
A Source FPR frA
B Source FPR frB
Rc Record bit

430 Appendix A

fdivs FP Divide Single fdivs
601 • 603 • PowerPC32/64

Operation: frT ¢= (frA) + (frB)

Syntax: fdivs
fdivs.

frT,frA,frB
frT,frA,frB

(Rc = 0)
(Rc = 1)

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR:

Description:

FX, FEX, VX, OX, UX, ZX, XX, VSNAN,VXIDI,VXZDZ,
FR,FI,FPRF

The fdivs instruction divides the contents of frA by the contents of frB. This
result is then normalized (if necessary) and rounded to single-precision (accord­
ing to the current rounding mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 + 00 (VXIDI).
The Zero Divide Exception will be invoked if the operation is equivalent to 0 + 0
(VXZDZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation or Zero Divide Exception occurs and the appro­
priate type of exception is enabled.

Instruction Encoding:
0

11 1 1 0 1

T
A
B
Rc

5 6

1 I
10 11 15 16 20 21 25 26 30 31

T I A I B 10 0 0 0 0110 0 1 01~1

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Record bit

Instruction Set Summary 431

fmadd FP Multiply-Add fmadd
POWER. 601 • 603 • PowerPC32/64

Operation: frT ¢= (frA) x (frC) + (frB)

Syntax: fmadd
fmadd.

frT,frA,frC,frB
frT,frA,frC,frB

(Rc = 0)
(Rc = 1)

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF

Description:
The fmadd instruction multiplies the contents of frA by the contents of frC and
then adds frB to compute the final result. This result is then normalized (if nec­
essary) and rounded to double-precision (according to the current rounding
mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x a
(VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

The archaic POWER mnemonic for this instruction is fma[.].

Instruction Encoding:
0 5 6

11 1 1 1 1 1 I

T
A
B
C
Rc

432 Appendix A

10 11 15 16 20 21 25 26

T I A I B I c I 1

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Source FPR frC
Record bit

fmadds FP Multiply-Add Single fmadds
601 • 603 • PowerPC32j 64

Operation: frT <= (frA) x (frC) + (frB)

Syntax: fmadds
fmadds.

frT,frA,frC,frB
frT,frA,frC ,fr B

(Rc = 0)
(Rc = 1)

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF

Description:
The fmadds instruction multiplies the contents of frA by the contents of frC and
then adds frB to compute the final result. This result is then normalized (if nec­
essary) and rounded to single-precision (according to the current rounding
mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0
(VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

The archaic POWER mnemonic for this instruction is fma[.].

Instruction Encoding:
0

11 1 1 0 1

T
A
B
C
Rc

5 6

1 I
10 11 15 16 20 21 25 26 30 31

T I A I B I C 11 1 1 0 1 IRe I

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Source FPR frC
Record bit

Instruction Set Summary 433

fmr FP Move Register
POWER. 601 • 603 • PowerPC32/64

Operation: frT ~ (frB)

Syntax: fmr
fmr.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

fmr

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX, VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: not affected

Description:
The fmr instruction takes the contents of frB and copies it into frT.

This instruction will operate on NaNs without raising an exception.

Instruction Encoding:
0 5 6

11 1 1 1 1 1 I

T
B
Rc

434 Appendix A

10 . 11 15 16 20 21 30 31

T 1000001 B 10001001000lRci

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

fmsub FP Multiply-Subtract fmsub
POWER. 601 • 603 • PowerPC32/64

Operation: frT ¢:: (frA) x (frC) - (frB)

Syntax: fmsub
fmsub.

frT,frA,frC,frB
frT,frA,frC,frB

(Rc = 0)
(Rc = 1)

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF

Description:
The fmsub instruction multiplies the contents of frA by the contents of frC and
then subtracts frB to compute the final result. This result is then normalized (if
necessary) and rounded to double-precision (according to the current rounding
mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0
(VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

The archaic POWER mnemonic for this instruction is fms[.].

Instruction Encoding:
o

1 1 1

T
A
B
C
Rc

5 6

1 I T I A I B I c I 1

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Source FPR frC
Record bit

30 31

Instruction Set Summary 435

fmsubs FP Multiply-Subtract Single fmsubs
601 • 603 • PowerPC32/64

Operation: frT {:::: (frA) x (frC) - (frB)

Syntax: fmsubs
fmsubs.

frT,frA,frC ,fr B
frT,frA,frC,fr B

(Rc = 0)
(Rc = 1)

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF

Description:
The fmsubs instruction multiplies the contents of frA by the contents of frC and
then subtracts frB to compute the final result. This result is then normalized (if
necessary) and rounded to single-precision (according to the current rounding
mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0
(VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

Instruction Encoding:
0 5 6

11 1 1 0 1 1 I

T
A
B
C
Rc

436 Appendix A

10 11 15 16 20 21 25 26

T I A I B I c I 1

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Source FPR frC
Record bit

30 31

fmul FP Multiply fmul
POWER • 601 • 603 • PowerPC32 / 64

Operation: frT ~ (frA) x (frC)

Syntax: fmul
fmul.

frT,frA,frC
frT,frA,frC

(Rc = 0)
(Rc = 1)

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXIMZ, FR, FI, FPRF

Description:
The fmul instruction multiplies the contents of frA by the contents of frC. This
result is normalized (if necessary) and rounded to double-precision (according
to the current rounding mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 x 0 (VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

The archaic POWER mnemonic for this instruction is fm[.].

Instruction Encoding:
0

11 1 1 1 1

T
A
C
Rc

5 6

1 I
10 11 15 16 20 21 25 26 30 31

T I A 10 000 01 C 11 0011&1

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frC
Record bit

Instruction Set Summary 437

fmuls FP Multiply Single fmuls
601 • 603 • PowerPC32/64

Operation: frT <== (frA) x (frC)

Syntax: fmuls
fmuls.

frT,frA,frC
frT,frA,frC

(Rc = 0)
(Rc = 1)

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXIMZ, FR, PI, FPRF

Description:
The fmuls instruction multiplies the contents of frA by the contents of fre. This
result is normalized (if necessary) and rounded to single-precision (according to
the current rounding mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 x 0 (VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

Instruction Encoding:
0 5 6

11 1 101 1 I

T
A
C
Rc

438 Appendix A

10 11 15 16 20 21 25 26 30 31

T I A 10 0 0 0 0 I C 11 1 0 0 1 IRe I

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frC
Record bit

fnabs FP Negative Absolute Value
POWER. 601 • 603 • PowerPC32/64

fnabs

Operation: frT ~ - I (frB) I

Syntax: fnabs
fnabs.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: not affected

Description:
The fnabs instruction takes the contents of frB, sets the sign bit to 1, and stores
the result in frY.

This instruction will operate on NaNs without raising an exception.

Instruction Encoding:
0

11 1 1 1 1

T
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

T 10 0 0 0 01 B 10 0 1 0 0 0 1 0 0 01&1

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

Instruction Set Summary 439

fneg FPNegate
POWER. 601 • 603 • PowerPC32/64

Operation: frT ¢= -(frB)

Syntax: fneg
fneg.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

fneg

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: not affected

Description:
The fneg instruction takes the contents of frB, inverts the sign bit, and stores the
result in frT.

This instruction will operate on NaNs without raising an exception.

Instruction Encoding:
0 5 6

11 1 1 1 1 11

T
B
Rc

440 Appendix A

10 11 15 16 20 21 30 31

T 10 0 0 0 01 B 10 0 0 0 1 0 1 0 0 01&1

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

fnmadd FP Negative Multiply-Add fnmadd
POWER. 601 • 603 • PowerPC32/64

Operation: frT ¢= -((frA) x (frC) + (frB))

Syntax: fnmadd
fnmadd.

frT,frA,frC,frB
frT,frA,frC,frB

(Rc = 0)
(Rc = 1)

Condition Register / Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF

Description:
The fnmadd instruction multiplies the contents of frA by the contents of frC and
then adds frB to compute the result. This intermediate result is negated to pro­
duce the final result. The final result is then normalized (if necessary), rounded
to double-precision (according to the current rounding mode), and stored in frT.

This operation is equivalent to a fmaddl fneg pair of instructions, except for
how the sign of NaN s is handled:

• QNaNs propagating through the instruction retain their original sign.

• QNaNs that result from disabled Invalid Operation Exceptions have a sign
ofO.

• QNaNs that are converted from SNaNs because of disabled Invalid Operation
Exceptions retain the sign of the original SNaN.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0
(VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

The archaic POWER mnemonic for this instruction is fnma[.].

Instruction Set Summary 441

Instruction Encoding:
0 5 6

11 1 1 1 1 1 I

T
A
B
C
Rc

442 Appendix A

10 11 15 16 20 21 25 26 30 31

T I A I B I C 11 1 1 llRe l

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Source FPR frC
Record bit

fnmadds FPNegative
Multiply-Add Single

fnmadds
601 • 603 • PowerPC32/64

Operation: frT ¢::: -«frA) x (frC) + (frB))

Syntax: fnmadds frT,frA,frC,frB
fnmadds. frT,frA,frC,frB

(Rc = 0)
(Rc = 1)

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX, VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF

Description:
The fnmadds instruction multiplies the contents of frA by the contents of fre
and then adds frB to compute the result. This intermediate result is negated to
produce the final result. The final result is then normalized (if necessary),
rounded to single-precision (according to the current rounding mode), and
stored in frT.

This operation is equivalent to a fmadds / fneg pair of instructions, except for
how the sign of NaN s is handled:

• QNaNs propagating through the instruction retain their original sign.

• QNaNs that result from disabled Invalid Operation Exceptions have a sign
ofO.

• QNaNs that are converted from SNaNs because of disabled Invalid Operation
Exceptions retain the sign of the original SN aN.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x 0
(VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

Instruction Set Summary 443

Instruction Encoding:
0 5 6

11 1 1 0 1 1 I

T
A
B
C
Rc

444 Appendix A

10 11 15 16 20 21 25 26 30 31

T I A I B I C 11 1 1 1 IRe I

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Source FPR frC
Record bit

fnmsub FPNegative
Multiply-Subtract

POWER· 601 • 603 • PowerPC32/64

Operation: frT <= -((frA) x (frC) - (frB))

Syntax: fnmsub frT,frA,frC,frB
fnmsub. frT,frA,frC,frB

(Rc = 0)
(Rc = 1)

fnmsub

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF

Description:
The fnmsub instruction multiplies the contents of frA by the contents of fre and
then subtracts frB to compute the result. This intermediate result is negated to
produce the final result. The final result is then normalized (if necessary),
rounded to double-precision (according to the current rounding mode), and
stored in frT.

This operation is equivalent to a fmsub / fneg pair of instructions, except for
how the sign of NaNs is handled:

• QNaNs propagating through the instruction retain their original sign.

• QNaNs that result from disabled Invalid Operation Exceptions have a sign
ofD.

• QNaNs that are converted from SNaNs because of disabled Invalid Operation
Exceptions retain the sign of the original SN aN.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x D
(VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

The archaic POWER mnemonic for this instruction is fnms[.].

Instruction Set Summary 445

Instruction Encoding:
0 5 6

11 1 1 1 1 1 I

T
A
B
C
Rc

446 Appendix A

10 11 15 16 20 21 25 26 30 31

T I A I B I C 11 1 1 0 IRe I

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Source FPR frC
Record bit

fnmsubs FPNegative fnmsubs
Multiply-Subtract Single

601 • 603 • PowerPC32/64

Operation: frT <= -((frA) x (frC) - (frB»

Syntax: fnmsubs
fnmsubs.

frT,frA,frC,fr B
frT,frA,frC,frB

(Rc = 0)
(Rc = 1)

Condition Register / Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN,VXISI,VXIMZ, FR,FI,FPRF

Description:
The fnmsubs instruction multiplies the contents of frA by the contents of frC
and then subtracts frB to compute the result. This intermediate result is negated
to produce the final result. The final result is then normalized (if necessary),
rounded to single-precision (according to the current rounding mode), and
stored in frT.

This operation is equivalent to a fmsubs / £neg pair of instructions, except for
how the sign of NaN s is handled:

• QNaNs propagating through the instruction retain their original sign.

• QNaNs that result from disabled Invalid Operation Exceptions have a sign
ofO.

• QNaNs that are converted from SNaNs because of disabled Invalid Operation
Exceptions retain the sign of the original SNaN.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation involves 00 - 00 (VXISI) or 00 x a
(VXIMZ).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

Instruction Set Summary 447

Instruction Encoding:
0 5 6

11 1 1 0 1 1 I

T
A
B
C
Rc

448 Appendix A

10 11 15 16 20 21 25 26 30 31

T I A I B I C 11 1 1 0 IRe I

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Source FPR frC
Record bit

fres

Operation:

Syntax:

FP Reciprocal Estimate Single
603 • Optiona132 / 64

1
frT <= z (frB)

fres
fres.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

fres

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, ZX, VSNAN, FR, FI, FPRF

Description:

The fres instruction calculates a single-precision estimate of the reciprocal of frB
and stores the result in frT. The precision of the calculated result is correct to
within 1 part in 256 of the actual reciprocal of frB, that is, the following equation
is satisfied:

l
estimated - actuall < _1_

actual - 256

where estimated is the estimated value returned by the instruction and actual is
the actual value of 1 + (£rB) .
The table summarizes the results for special values of frB.

Operand Result Exception Notes
+= +0 none -
+0 += LX no result it l'PSLR[ZE] 1
-0 -= ZX no result if FPSCR[ZE]-l
-= -0 none -

t>NaN I,.lNaN VXt>NAN no resUlt it FPSLR[VE] 1
QNaN QNaN none -

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation or Zero Divide Exception occurs and the appro­
priate type of exception is enabled. FPSCR[FR] and FPSCR[FI] are set to unde­
fined values.

This instruction is an optional part of the PowerPC architecture.

Instruction Set Summary 449

Instruction Encoding:
0 5 6

11 1 1 0 1 1 I

T
B
Rc

450 Appendix A

10 11 15 16 20 21 30 31

T 10 0 0 0 01 B 10 000 0 1 1 0001&1

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

frsp FP Round to Single-Precision
POWER· 601 .603. PowerPC32/64

frsp

Operation: frT {::: Double2Single(frB)

Syntax: frsp
frsp.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

Condition Register / Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, FR, FI, FPRF

Description:
The frsp instruction takes the value in frB, rounds it down to single-precision
range using the current rounding mode, and stores the result in frT. If the value
in frB is already within single-precision range, then the value is simply copied
into frT.

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

Instruction Encoding:
0

11 1 1 1 1

T
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

T 10 0 0 0 01 B 10 0 0 0 0 0 1 1 0 01&1

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

Instruction Set Summary 451

frsqrte FP Reciprocal
Square Root Estimate

603 • Optional32 / 64

frsqrte

Operation: 1 frT¢=~ --
J(frB)

Syntax: frsqrte
frsqrte.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, ZX, VSNAN, VXSQRT, FR, FI, FPRF

Description:

The frsqrte instruction calculates a double-precision estimate of the reciprocal of
the square root of frB and stores the result in frT. The precision of the calculated
result is correct to within 1 part in 32 of the actual reciprocal of frB, that is, the
following equation is satisfied:

lestimated - actuall < ~
actual - 32

where estimated is the estimated value returned by the instruction and actual is

the actual value of 1 + J (frB) .

The table summarizes the results for special values of frB.

Operand Result Exception Notes
+= +0 none -
+0 += ZX no result it FP~CK[ZE] 1
-0 -= ZX no result it FPSCR[ZE]-l
<0 l,JNaN VXSQRT no result it Ft'ScR[VE] 1
-= QNaN VXSQKT no result it FPSCR[VE]-l

SNaN 9I'JaN VXSNAN no result if FPSCR[VE]-l
QNaN QNaN none -

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation or Zero Divide Exception occurs and the appro­
priate type of exception is enabled. FPSCR[FR] and FPSCR[FI] are set to unde­
fined values.

This instruction is an optional part of the PowerPC architecture.

452 Appendix A

Instruction Encoding:
0

11 1 1 1 1

T
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

T 10 0 0 0 01 B 10 0 0 0 0 1 1 0 1 01~1

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

Instruction Set Summary 453

fsel FP Select
603 • Optiona132/ 64

Operation: if ((frA) ~ 0.0)
frT {::= (frC)

else

Syntax:

frT {::= (frB)

fsel
fsel.

frT,frA,frC,fr B
frT,frA,frC,frB

(Rc = 0)
(Rc = 0)

fsel

Condition Register / Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: not affected

Description:
The fsel instruction compares the contents of frA with 0.0. If the value in frA is
greater than or equal to 0.0, then the contents of frC are copied into the target
register frT. If frA is less than 0.0 or if frA is NaN, then the contents of frB are
copied into frT.

The comparison operation does not generate any exceptions. If frA contains -0,
it is treated the same as +0.

This instruction is an optional part of the PowerPC architecture.

Instruction Encoding:
0 5 6

11 1 1 1 1 1 I

T
A
B
C
Rc

454 Appendix A

10 11 15 16 20 21 25 26 30 31

T I A I B I C 11 0 1 1 1 IRe I

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Source FPR frC
Record bit

fsqrt FP Square Root
Optiona132/64

fsqrt

Operation: frT <= J(frB)

Syntax: fsqrt
fsqrt.

frT,frB
frT,frB

(Rc = 0)
(Re = 1)

Condition Register I Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, XX, VSNAN, VXSQRT, FR, FI, FPRF

Description:
The fsqrt instruction calculates the double-precision square root of frB and
stores the result in frT. The table summarizes the results for special values of frB.

Operand Result Exception Notes
+= += none -
+0 +0 none -
-0 -0 none -
<0 QNaN VXSQRT no result if FPSCR[VE]-l
-= (,,!NaN V~(,,!RT no result it rrOlLK[v "J"l

SNaN (,,!NaN VX:;NAN no result it Fl-':;CR[VhJ~l
QNaN QNaN none -

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and FPSCR[VE]=l.

This instruction is an optional part of the PowerPC architecture.

Instruction Encoding:
0

11 1 1 1 1

T
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

T 10 0 0 0 01 B 10 0 0 0 0 1 0 1 1 01~1

Target FPR frT where result of operation is stored
Source FPR frB
Record bit

Instruction Set Summary 455

fsqrts FP Square Root Single
Optiona132/64

fsqrts

Operation: frT {:= J(frB)

Syntax: fsqrts
fsqrts.

frT,frB
frT,frB

(Rc = 0)
(Rc = 1)

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, XX, VSNAN, VXSQRT, FR, FI, FPRF

Description:
The fsqrt instruction calculates the single-precision square root of frB and stores
the result in frT. The table summarizes the results for special values of frB.

Operand Result ExceptIon Notes
+= += none -
+0 +0 none -
-0 -0 none -
<0 \,.!NaN V}l.SI,.!1<T no result if l'yt>u<[v h] ·1
-= \,.!NaN VX~\,.!jU no result it FP~CR[V h]-l

SNaN QNaN VX~NAN no result it FPSU{[VE]-l

l..!~aN .l,,1I\iaN none -

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and FPSCR[VE]=l.

This instruction is an optional part of the PowerPC architecture.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

11 1 1 0 1 I T 10 0 0 0 01 B 10 0 0 0 0 1 0 1 1 01&1

T Target FPR frT where result of operation is stored
B Source FPR frB
Rc Record bit

456 Appendix A

fsub FP Subtract fsub
POWER· 601 .603 • PowerPC32/64

Operation: frT ¢= (frA) - (frB)

Syntax: fsub
fsub.

frT,frA,frB
frT,frA,frB

(Rc = 0)
(Rc = 1)

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX, VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXISI, FR, FI, FPRF

Description:
The fsub instruction subtracts the contents of frB from the contents of frA. This
result is then normalized (if necessary) and rounded to double-precision
(according to the current rounding mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 - 00 (VXISI).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

The archaic POWER mnemonic for this instruction is fs[.].

Instruction Encoding:
0

11 1 1 1 1

T
A
B
Rc

5 6

11
10 11 15 16 20 21 25 26 30 31

T I A I B 10 a a 0 all 0 1 0 01&1

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Record bit

Instruction Set Summary 457

fsubs FP Subtract Single fsubs
601 • 603 • PowerPC32/64

Operation: frT <= (frA) - (frB)

Syntax: fsubs
fsubs.

frT,frA,frB
frT,frA,frB

(Rc = 0)
(Rc = 1)

Condition Register /Floating-Point Status and Control Register:
CR Field 1: FX,FEX,VX,OX updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: FX, FEX, VX, OX, UX, XX, VSNAN, VXISI, FR, FI, FPRF

Description:
The fsubs instruction subtracts the contents of frB from the contents of frA. This
result is then normalized (if necessary) and rounded to single-precision (accord­
ing to the current rounding mode) and then stored in frT.

The Invalid Operation Exception will be invoked if either of the operands is a
Signalling NaN (VXSNAN) or if the operation is equivalent to 00 - 00 (VXISI).

FPSCR[FPRF] is updated to reflect the sign and class of the result, except in the
case where an Invalid Operation Exception occurs and this type of exception is
enabled (FPSCR[VE] = 1).

Instruction Encoding:
0 5 6

11 1 1 0 1 1 I

T
A
B
Rc

458 Appendix A

10 11 15 16 20 21 25 26 30 31

T I A I B 100000110 oolRel

Target FPR frT where result of operation is stored
Source FPR frA
Source FPR frB
Record bit

icbi Instruction Cache Block Invalidate icbi
601 • 603 • PowerPC32/64

Operation: invalidate the specified instruction cache block

Syntax: icbi rA,rB

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The icbi instruction invalidates the instruction cache block specified by the
given effective address (calculated from (rA I 0) + (rB)). The details of the opera­
tion depend on the storage mode associated with the effective address.

When the storage mode requires coherency (WIM = xxI), this instruction causes
all copies of this block in any processor to be made invalid, so that the next ref­
erence from any processor causes the block to be reloaded.

When coherency is not required (WIM = xxO), this instruction invalidates the
block in the instruction cache of the current processor only.

If the calculated effective address specifies an address belonging to a direct-store
segment, then this instruction will operate as a no-op.

This instruction is treated as a load from the effective address for purposes of
address translation and protection.

On PowerPC processors with unified caches (such as the 601), this instruction is
treated as a no-op. In this case, the effective address is not validated.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 110 0 0 0 01 A I B 11 1 1 1 010 1 10101

A Source GPR rA
B Source GPR rB

Instruction Set Summary 459

• • lsync Instruction Cache Synchronize
POWER. 601 • 603 • PowerPC32/64

lsync

Operation: synchronize the instruction cache

Syntax: isync

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The isync instruction causes the processor to wait until all previous instructions
have completed execution before discarding any prefetched instructions and
continuing execution. This forces all subsequent instructions to be (re-)fetched
from storage so that they execute in the context extablished by the previously
executed instructions.

This instruction is context synchronizing and affects the current processor only.

The archaic POWER mnemonic for this instruction is ics.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 0 0 1 110 0 0 0 010 0 0 0 010 000 010 0 1 001 0 1 10101

460 Appendix A

Ibz Load Byte and Zero
POWER. 601 • 603. PowerPC32/64

Operation: rT ~ °Byte «rA I 0) + 'd)

Syntax: Ibz rT,d(rA)

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

Ibz

The Ibz instruction loads the byte that is stored at the effective address calcu­
lated from (rA I 0) + 'd and places the byte into the low-order byte of the target
register rT. The upper bytes of rT are cleared.

Instruction Encoding:
0 5

11 0 o 0 1 11

T
A
d

6 10 11 15 16

T I A I d

Target GPR rT where result of operation is stored
Source GPR rA
Signed 16-bit displacement

31

Instruction Set Summary 461

lbzu Load Byte and Zero with Update
POWER. 601 • 603 • PowerPC32/64

Operation: rT ¢=: °Byte «rA) + 'd)
rA ¢=: (rA) + 'd

Syntax: lbzu rT,d(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lbzu

The lbzu instruction loads the byte that is stored at the effective address calcu­
lated from (rA) + 'd and places the byte into the low-order byte of the target
register rT. The upper bytes of rT are cleared.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then
the effective address for the load is calculated from 'd and the rA is not updated
with the effective address. If rA=rT, then rT is updated with the loaded data
instead of the effective address.

Instruction Encoding:
0 5 6

110 o 0 1 1 I

T
A
d

462 Appendix A

10 11 15 16

T I A I d

Target GPR rT where result of operation is stored
Source GPR rA
Signed 16-bit displacement

31

lbzux Load Byte and Zero
with Update Indexed

POWER. 601 • 603 • PowerPC32/64

Operation: rT ¢:= °Byte ((rA) + (rB))
rA ¢:= (rA) + (rB)

Syntax: lbzux rT,rA,rB

Condition Register / Fixed -Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lbzux

The lbzux instruction loads the byte that is stored at the effective address calcu­
lated from (rA) + (rB) and places the byte into the low-order byte of the target
register rT. The upper bytes of rT are cleared.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then
the effective address for the load is calculated from (rB) and the rA is not
updated with the effective address. If rA=rT, then rT is updated with the loaded
data instead of the effective address.

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

11
10 11 15 16 20 21 30 31

T I A I B 10001110111101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

Instruction Set Summary 463

lbzx Load Byte and Zero Indexed
POWER. 601 • 603 • PowerPC32 / 64

Operation: rT <= °Byte ((rA I 0) + (rB»

Syntax: lbzx rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lbzx

The lbzx instruction loads the byte that is stored at the effective address calcu­
lated from (rA I 0) + (rB) and places the byte into the low-order byte of the target
register rT. The upper bytes of rT are cleared.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B

464 Appendix A

10 11 15 16 20 21 30 31

T I A I B 1000 1 0 10 1 1 1101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

ld Load Doubleword ld
PowerPC64

Operation: rT {= Doubleword ((rA I 0) + '(ds l.. baa))

Syntax: ld rT,ds(rA)

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The Id instruction loads the doubleword that is stored at the effective address
calculated from (rA I 0) + '(ds .1 bOO) and places it into the target register rT.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

[1 1 1 0 1

T
A
ds

5 6

o[
10 11 15 16

T [A [ds

Target GPR rT where result of operation is stored
Source GPR rA
Signed 14-bit word displacement

29 30 31

[0 o[

Instruction Set Summary 465

ldarx Load Doubleword Indexed
PowerPC64

Operation: rT <== °Doubleword «rA I 0) + (rB)
create a reservation on ((rA I 0) + (rB)

Syntax: ldarx rT,rA,rB

Condition Register/Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

ldarx

The ldarx instruction loads the doubleword that is stored at the effective address
calculated from (rA I 0) + (rB) and places the doubleword into the target register
rT. A reservation is placed on this effective address, which can be used by the
stdcx. instruction. Any existing reservation is replaced.

The calculated effective address must specify an aligned doubleword (that is, it
must be a multiple of 8). If the address does not specify an aligned doubleword,
the alignment exception handler may be invoked (if the load crosses a page
boundary) or the results may be boundedly undefined.

If the address references a direct-store storage segment, then a Data Storage inter­
rupt occurs or the results are boundedly undefined.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
5 6 10 11 15 16 20 21 30 31

10 1 1 11 T I A I B 10001010100101

T Target GPR rT where result of operation is stored
A Source GPR rA
B Source GPR rB

466 Appendix A

ldu Load Doubleword with Update
PowerPC64

Operation: rT <= Doubleword «rA) + '(ds..L bOO))
rA <= (rA) + '(ds ..L bOO)

Syntax: Idu rT,ds(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

ldu

The ldu instruction loads the doubleword that is stored at the effective address
calculated from (rA I 0) + '(ds 1. bOO) and places it into the target register rT.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA, or if rA and rT specify the
same register.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0 5

11 1 1 0 1 01

T
A
ds

6 10 11 15 16

T I A I ds

Target GPR rT where result of operation is stored
Source GPR rA
Signed 14-bit word displacement

Instruction Set Summary 467

ldux Load Doubleword
with Update Indexed

PowerPC64

Operation: rT <= Doubleword «rA) + (rB»
rA <= (rA) + (rB)

Syntax: Idux rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

ldux

The ldux instruction loads the doubleword that is stored at the effective address
calculated from (rA) + (rB) and places it into the target register rT.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the
same register.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B

468 Appendix A

10 11 15 16 20 21 30 31

T I A I B 10000110101101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

ldx Load Doubleword Indexed ldx
PowerPC64

Operation: rT ¢= Doubleword ((rA I 0) + (rB))

Syntax: ldx rT,rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The Idx instruction loads the doubleword that is stored at the effective address
calculated from (rA I 0) + (rB) and places it into the target register rT.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

11
10 11 15 16 20 21 30 31

T I A I B 10000010101101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

Instruction Set Summary 469

lfd Load Floating-Point Double-Precision
POWER. 601 • 603 • PowerPC32/64

Operation: frT <= FDouble «rA I 0) + 'd)

Syntax: lfd frT,d(rA)

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lfd

The lfd instruction loads the doubleword that is stored at the effective address
calculated from (rA I 0) + 'd and places it into the target register frT.

Instruction Encoding:
0 5 6

11 1 o 0 1 01

T
A
d

470 Appendix A

10 11 15 16

T I A I d

Target FPR frT where result of operation is stored
Source GPR rA
Signed 16-bit displacement

31

lfdu Load Floating-Point
Double-Precision with Update

POWER· 601 • 603 • PowerPC32/64

Operation: frT <= FDouble ((rA) + 'd)
rA <= (rA) + 'd

Syntax: lfdu frT,d(rA)

Condition Register/Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lfdu

The lfdu instruction loads the doubleword that is stored at the effective address
calculated from (rA) + 'd and places it into the target register frT.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if CPR 0 is used for rA. However, the 601 permits
this invalid form for backward compatability with the POWER architecture. On
the 601, if A=O, then the effective address for the load is calculated from 'd and
rA is not updated with the effective address.

Instruction Encoding:
0

\1 1 o 0 1

T
A
d

5 6

1 \
10 11 15 16 31

Target FPR frT where result of operation is stored
Source CPR rA
Signed 16-bit displacement

Instruction Set Summary 471

lfdux Load Floating-Point Double­
Precision with Update Indexed

POWER· 601 • 603 • PowerPC32/64

Operation: frT ¢= FDouble «rA) + (rB))
rA ¢= (rA) + (rB)

Syntax: lfdux frT,rArB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lfdux

The lfdux instruction loads the doubleword that is stored at the effective address
calculated from (rA) + (rB) and places it into the target register frT.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA. However, the 601 permits
this invalid form for backward compatability with the POWER architecture. On
the 601, if A=O, then the effective address for the load is calculated from (rB) and
rA is not updated with the effective address.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B

472 Appendix A

10 11 15 16 20 21 30 31

T I A I B 11001110111101

Target FPR frT where result of operation is stored
Source GPR rA
Source GPR rB

lfdx Load Floating-Point
Double-Precision Indexed

POWER • 601 • 603 • PowerPC32/64

Operation: frT ¢::: FDouble ((rA I 0) + (rB))

Syntax: lfdx frT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lfdx

The lfdx instruction loads the doubleword that is stored at the effective address
calculated from (rA I 0) + (rB) and places it into the target register frT.

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

1 I
10 11 15 16 20 21 30 31

T I A I B 1100 1 a 1 a 1 1 1101

Target FPR frT where result of operation is stored
Source CPR rA
Source CPR rB

Instruction Set Summary 473

lfs Load Floating-Point Single-Precision
POWER. 601 • 603 • PowerPC32/64

Operation: frT <= FSingle «rA I 0) + 'd)

Syntax: Us frT,d(rA)

Condition Register/Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lfs

The l£s instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + 'd, converts the value to double-precision (by interpreting
the word as a single-precision value), and places the converted doubleword into
the target register frT.

Instruction Encoding:
0 5 6

11 1 o 0 0 01

T
A
d

474 Appendix A

10 11 15 16

T I A I d

Target FPR frT where result of operation is stored
Source GPR rA
Signed 16-bit displacement

31

lfsu Load Floating-Point
Single-Precision with Update

POWER· 601.603. PowerPC32j64

Operation: frT ¢:::: FSingle ((rA) + 'd)
rA ¢:::: (rA) + 'd

Syntax: lfsu frT,d(rA)

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lfsu

The lfsu instruction loads the word that is stored at the effective address calcu­
lated from (rA) + 'd, converts the value to double-precision (by interpreting the
word as a single-precision value), and places the converted doubleword into the
target register frT.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA. However, the 601 permits
this invalid form for backward compatability with the POWER architecture. On
the 601, if A=O, then the effective address for the load is calculated from 'd and
rA is not updated with the effective address.

Instruction Encoding:
0 5

11 1 o 0 0 1 I

T
A
d

6 10 11 15 16

T I A I d

Target FPR frT where result of operation is stored
Source GPR rA
Signed 16-bit displacement

31

Instruction Set Summary 475

lfsux Load Floating-Point Single­
Precision with Update Indexed

POWER. 601 • 603 • PowerPC32/64

Operation: frT ¢= FSingle «rA) + (rB»
rA ¢= (rA) + (rB)

Syntax: lfsux frT,rA,rB

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lfsux

The lfsux instruction loads the word that is stored at the effective address calcu­
lated from (rA) + (rB), converts the value to double-precision (by interpreting the
word as a single-precision value), and places the converted doubleword into the
target register frT.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA. However, the 601 permits
this invalid form for backward compatability with the POWER architecture. On
the 601, if A=O, then the effective address for the load is calculated from (rB) and
rA is not updated with the effective address.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B

476 Appendix A

10 11 15 16 20 21 30 31

T I A I B 110 0 0 1 101 1 1101

Target FPR frT where result of operation is stored
Source GPR rA
Source GPR rB

lfsx Load Floating-Point
Single-Precision Indexed
POWER. 601 .603. PowerPC32/64

Operation: frT <== FSingle ((rA I 0) + (rB))

Syntax: lfsx frT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lfsx

The lfsx instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + (rB), converts the value to double-precision (by interpreting
the word as a single-precision value), and places the converted doubleword into
the target register frT.

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

1 I
10 11 15 16 20 21 30 31

T I A I B 110 000 1 0 1 1 1101

Target FPR frT where result of operation is stored
Source CPR rA
Source CPR rB

Instruction Set Summary 477

lha Load Halfword Algebraic
POWER· 601 • 603 • PowerPC32/64

Operation: rT {::: 'Halfword ((rA I 0) + 'd)

Syntax: lha rT,d(rA)

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lha

The lha instruction loads the halfword that is stored at the effective address cal­
culated from (rA I 0) + 'd and places the halfword into the low-order two bytes of
the target register rT. The upper bytes of rT are copied from the sign bit of the
loaded halfword.

Instruction Encoding:
0 5 6

11 0 1 0 1 01

T
A
d

478 Appendix A

10 11 15 16

T I A I d

Target GPR rT where result of operation is stored
Source GPR rA
Signed 16-bit displacement

31

lha U Load Halfword Algebraic with Update lha U
POWER. 601 • 603 • PowerPC32/64

Operation: rT {= 'Halfword ((rA) + 'd)
rA {= (rA) + 'd

Syntax: Ihau rT,d(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The Ihau instruction loads the halfword that is stored at the effective address
calculated from (rA) + 'd and places the halfword into the low-order two bytes
of the target register rT. The upper bytes of rT are copied from the sign bit of the
loaded halfword.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then
the effective address for the load is calculated from 'd and the rA is not updated
with the effective address. If rA=rT, then rT is updated with the loaded data
instead of the effective address.

Instruction Encoding:
0 5

11 0 1 0 1 1 I

T
A
d

6 10 11 15 16

T I A I d

Target GPR rT where result of operation is stored
Source GPR rA
Signed 16-bit displacement

31

Instruction Set Summary 479

lhaux Load Halfword Algebraic
with Update Indexed

POWER. 601 • 603 • PowerPC32/64

Operation: rT ¢= 'Halfword «rA) + (rB))
rA ¢= (rA) + (rB)

Syntax: lhaux rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lhaux

The lhaux instruction loads the halfword that is stored at the effective address
calculated from (rA) + (rB) and places the halfword into the low-order two bytes
of the target register rT. The upper bytes of rT are copied from the sign bit of the
loaded halfword.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then
the effective address for the load is calculated from (rB) and the rA is not
updated with the effective address. If rA=rT, then rT is updated with the loaded
data instead of the effective address.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 1

T
A
B

480 Appendix A

10 11 15 16 20 21 30 31

T 1 A 1 B 10101110111101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

lhax Load Halfword Algebraic Indexed
POWER. 601 • 603 • PowerPC32/64

Operation: rT <= 'Halfword ((rA I 0) + (rB))

Syntax: lhax rT,rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lhax

The Ihax instruction loads the halfword that is stored at the effective address
calculated from (rA I 0) + (rB) and places the halfword into the low-order two
bytes of the target register rT. The upper bytes of rT are copied from the sign bit
of the loaded halfword.

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

1 I
10 11 15 16 20 21 30 31

T I A I B 1010 1010 1 1 1101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

Instruction Set Summary 481

lhbrx Load Halfword
Byte-Reversed Indexed

POWER. 601 • 603 • PowerPC32/64

Operation: h := Halfword ((rA I 0) + (rB»
rT ¢= O(h[8:15] -L h[0:7])

Syntax: lhbrx rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lhbrx

The lhbrx instruction loads the halfword that is stored at the effective address
calculated from (rA I 0) + (rB), swaps the two bytes of the halfword, and then
places this byte-reversed halfword into the low-order two bytes of the target reg­
ister rT. The upper bytes of rT are cleared.

For some PowerPC implementations, this byte-reversed load instruction may
have a greater latency than other load instructions. On the 601 and 603, the
latency for this instruction is the same as for a normal load instruction.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B

482 Appendix A

10 11 15 16 20 21 30 31

T I A I B 11 1 a a a 1 a 1 1 0101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

1hz Load Halfword and Zero 1hz
POWER· 601 • 603 • PowerPC32/64

Operation: rT <= °Halfword «rA I 0) + 'd)

Syntax: 1hz rJ:d(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The 1hz instruction loads the halfword that is stored at the effective address cal­
culated from (rA I 0) + 'd and places the halfword into the low-order two bytes of
the target register rT. The upper bytes of rT are cleared.

Instruction Encoding:
0 5

11 0 1 0 o 01

T
A
d

6 10 11 15 16

T I A I d

Target CPR rT where result of operation is stored
Source CPR rA
Signed 16-bit displacement

31

Instruction Set Summary 483

lhzu Load Halfword and Zero with Update lhzu
POWER • 601 • 603 • PowerPC32/64

Operation: rT ¢::: °Halfword «rA) + 'd)
rA ¢::: (rA) + 'd

Syntax: lhzu rT,d(rA)

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The lhzu instruction loads the halfword that is stored at the effective address
calculated from (rA) + 'd and places the halfword into the low-order two bytes
of the target register rT. The upper bytes of rT are cleared.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then
the effective address for the load is calculated from 'd and the rA is not updated
with the effective address. If rA=rT, then rT is updated with the loaded data
instead of the effective address.

Instruction Encoding:
0 5 6

11 0 1 0 o 11

T
A
d

484 Appendix A

10 11 15 16

T I A I d

Target GPR rT where result of operation is stored
Source GPR rA
Signed 16-bit displacement

31

lhzux Load Halfword and Zero
with Update Indexed

POWER. 601 • 603 • PowerPC32/64

Operation: rT {= °Halfword ((rA) + (rB))
rA {= (rA) + (rB)

Syntax: lhzux rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lhzux

The Ihzux instruction loads the halfword that is stored at the effective address
calculated from (rA) + (rB) and places the halfword into the low-order two bytes
of the target register rT. The upper bytes of rT are cleared.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then
the effective address for the load is calculated from (rB) and the rA is not
updated with the effective address. 1£ rA=rT, then rT is updated with the loaded
data instead of the effective address.

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

1 I
10 11 15 16 20 21 30 31

T I A I B 10 100 1 101 1 1101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

Instruction Set Summary 485

lhzx Load Halfword and Zero Indexed lhzx
POWER • 601 • 603 • PowerPC32/64

Operation: rT ¢= °Halfword «rA I 0) + (rB))

Syntax: lhzx rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The lhzx instruction loads the halfword that is stored at the effective address
calculated from (rA I 0) + (rB) and places the halfword into the low-order two
bytes of the target register rT. The upper bytes of rT are cleared.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B

486 Appendix A

10 11 15 16 20 21 30 31

T I A I B 10 1 000 1 0 1 1 1101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

lmw Load Multiple Word
POWER. 601 • 603 • PowerPC32/64

Operation: ea := (rA I 0) + 'd
R:=T

Syntax:

while (R :::; 31)
rR ¢= °Word (ea)
ea:= ea + 4
R :=R+ 1

lmw rT,d(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lmw

The lmw instruction loads words from memory into a set of the GPRs. The first
word to be loaded is specified by the effective address calculated from (rA I 0) +
'd. Consecutive words are loaded from this address into registers starting with
register rT and continuing up to register r31.

On 64-bit PowerPC implementations, each word is loaded into the low-order
word of the target register and the upper word is cleared.

The calculated effective address must specify an aligned word (that is, it must be
a multiple of 4). If the address does not specify an aligned word, the alignment
exception handler may be invoked (if the load crosses a page boundary), or the
results may be boundedly undefined.

The preferred form for this instruction is when the effective address and rT are
chosen so that the low-order byte that is loaded into r31 is the last byte of an
aligned quadword in memory. It is possible that some PowerPC implementa­
tions will execute non-preferred forms more slowly than the preferred forms. On
future implementations, this instruction may execute more slowly than a series
of instructions that perform the same operation.

If rA is in the range of registers to be loaded, then the instruction form is invalid.
However, the 601 permits these invalid forms for backward compatability with
the POWER architecture. On the 601, if rA is in the range to be loaded, then rA is
skipped and the data that would have been written into rA is discarded. If rA =
rT = a, then rA is not being used for addressing and will be loaded with data.

Instruction Set Summary 487

Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked.

The archaic POWER mnemonic for this instruction is 1m.

Instruction Encoding:
0 5 6

110 1 1 1 01

T
A
d

488 Appendix A

10 11 IS 16

T I A I d

Target CPR rT where first word of result is stored
Source CPR rA
Signed 16-bit displacement

31

Load String and Compare
Byte Indexed

POWER. 601

Operation: load bytes into registers from memory until match

Syntax: lscbx
lscbx.

rT,rA,rB
rT,rA,rB

(Rc = 0)
(Rc = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: XER[25:31] updated with number of bytes copied

Description:
The lscbx instruction loads bytes from memory into a set of GPRs until a match­
ing byte is found or a maximum byte count is reached. The byte-to-match is
stored in XER[16:23], and the maximum number of bytes to copy is specified in
XER[25:31]. Upon completion, this instruction returns the number of bytes cop­
ied in XER[25:31].

The bytes are loaded starting from the effective address (calculated from (rA I 0»
and stored into as many registers as are needed, starting with register rT. The
register sequence wraps from r31 to rO if necessary.

Bytes are loaded from left to right into the low-order word of the target registers.
If a matching byte is found, that byte is copied into the appropriate register
before the instruction terminates.

If the last register to be loaded is only partially filled, then the value stored in the
remaining bytes is undefined. If a matching byte was found, then the remaining
bytes of all of the registers that would have been loaded are undefined.

The operation of this instruction can be summarized as:

ea := (rA I 0) + (rB)
R:= T-l
nBytes := XER[25:31]
nBytesCopied := 0
matchByte := XER[16:23]
matchFound := 0
i:= 0
while (nBytes > 0)

Instruction Set Summary 489

if(i=O)
R := (R + 1) % 32
rR ¢= undefined

if (matchFound = 0)
rR[i: (i+7)] ¢= Byte(ea)
nBytesCopied := nBytesCopied + 1

if (Byte(ea) = matchByte)
matchFound := 1

i:= i + 8
if (i = 32)

i:= 0
ea:= ea + 1
nBytes := nBytes - 1

XER[25:31] ¢= nBytesCopied

If XER[25:31] is 0 (indicating that no bytes should be copied from memory), then
the contents of rT are undefined. Note that this differs from the POWER archi­
tecture where rT is not altered if XER[25:31] = O.

If rA or B are in the range of registers to be loaded, then the instruction form is
invalid. However, the 601 permits these invalid forms for backward compatabil­
ity with the POWER architecture. On the 601, if rA or B are in the range to be
loaded, then they will be skipped and the data that would have been written
into the registers will be discarded. If A= 0, then rA is not being used for address­
ing and will be loaded with data if necessary.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 1

T
A
B

490 Appendix A

10 11 15 16 20 21 30 31

T 1 A 1 B 10100010101101

Target GPR rT where first 4 bytes of result are stored
Source GPR rA
Source GPR rB

lswi Load String Word Immediate
POWER • 601 • 603 • PowerPC32j 64

Operation: load nBytes bytes into registers from memory

Syntax: lswi rT,rA,nBytes

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lswi

The lswi instruction loads bytes from memory into a set of GPRs. The number of
bytes (specified by the immediate nBytes value) are loaded from the effective
address (calculated from (rA I 0)) and stored into as many registers as are
needed, starting with register rT. The register sequence wraps from r31 to rO if
necessary.

Bytes are loaded from left to right into the low-order word of the target registers.
If the last register to be loaded is only partially filled, the remaining bytes will be
set to o. On 64-bit PowerPC implementations, the upper word of each register is
cleared.

The operation of this instruction can be summarized as

ea:= (rA I 0)
R:= T-1

i:= [~]

if (nBytes = 0)
nBytes:= 32

while (nBytes > 0)

if (i = [~])
R := (R + 1) % 32
rR {= 0

rR[i : (i+7)] {= Byte(ea)
i:= i + 8

if (i = [~])

i:= [~]

ea:= ea + 1
nBytes := nBytes - 1

Instruction Set Summary 491

The preferred form for this instruction is when the starting register rT is rS. It is
possible that some PowerPC implementations will execute non-preferred forms
more slowly than the preferred forms. Because of the complexity of this instruc­
tion, it is also possible that, on some implementations, this instruction may exe­
cute slower than a series of instructions that perform the same operation.

If rA is in the range of registers to be loaded, then the instruction form is invalid.
However, the 601 permits these invalid forms for backward compatabiIity with
the POWER architecture. On the 601, if rA is in the range to be loaded, then rA is
skipped and the data that would have been written into rA is discarded. If A= 0,
then rA is not being used for addressing and will be loaded with data if neces­
sary.

Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked.

The archaic POWER mnemonic for this instruction is lsi.

Instruction Encoding:
056

10111111

T
A
nBytes

492 Appendix A

10 11 15 16 20 21 30 31

T I A I nBytes 11 0 0 1 0 1 0 1 0 1 I 0 I

Target GPR rT where first 4 bytes of result are stored
Source GPR rA
Number of bytes to load

lswx Load String Word Indexed
POWER. 601 • 603 • PowerPC32/64

lswx

Operation: load XER[25:31] bytes into registers from memory

Syntax: lswx rT,rA,rB

Condition Register/Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The lswx instruction loads bytes from memory into a set of GPRs. The number
of bytes (specified by bits 25 to 31 of the XER) are loaded from the effective
address (calculated from (rA I 0) + (rB» and stored into as many registers as are
needed, starting with register rT. The register sequence wraps from r31 to rO if
necessary.

Bytes are loaded from left to right into the low-order word of the target registers.
If the last register to be loaded is only partially filled, the remaining byte will be
set to O. On 64-bit PowerPC implementations, the upper word of each register is
cleared.

The operation of this instruction can be summarized as

ea := (rA I 0) + (rB)
R:= T-1
nBytes := XER[25:31]

i:= [~]
while (nBytes > 0)

if (i = [~])

R := (R + 1) % 32
rR<=O

rR[i : (i+7)] <= Byte(ea)
i:= i + 8

if (i = [~])

i:= [~]

ea:= ea + 1
nBytes := nBytes - 1

If XER[25:31] is 0 (indicating that no bytes should be copied from memory), then
the contents of rT are undefined.

Instruction Set Summary 493

The preferred form for this instruction is when the starting register rT is r5 and
the total number of registers being loaded is less than or equal to 12. It is possible
that some PowerPC implementations will execute non-preferred forms more
slowly than the preferred forms. Because of the complexity of this instruction, it
is also possible that, on some implementations, this instruction may execute
slower than a series of instructions that perform the same operation.

If rA or B are in the range of registers to be loaded, then the instruction form is
invalid. However, the 601 permits these invalid forms for backward compatabil­
ity with the POWER architecture. On the 601, if rA or B are in the range to be
loaded, then they will be skipped and the data that would have been written
into the registers will be discarded. If A=O, then rA is not being used for address­
ing and will be loaded with data if necessary.

Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked.

The archaic POWER mnemonic for this instruction is lsx.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 1

T
A
B

494 Appendix A

10 11 15 16 20 21 30 31

T 1 A 1 B 11000010101101

Target GPR rT where first 4 bytes of result are stored
Source GPR rA
Source GPR rB

lwa Load Word Algebraic lwa
PowerPC64

Operation: rT {:::: 'Word ((rA I 0) + '(ds 1- bOO)

Syntax: lwa r'Ld(rA)

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The lwa instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + '(ds 1- bOO) and places it into the low-order word of the target
register rT. The upper word of rT is copied from the sign bit of the loaded word.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

11 1 1 0

T
A
ds

5 6

01
10 11 15 16

T I A I ds

Target GPR rT where result of operation is stored
Source GPR rA
Signed 14-bit word displacement

29 30 31

11 01

Instruction Set Summary 495

1 w arx Load Word and Reserve Indexed lwarx
601 • 603 • PowerPC32/64

Operation: rT ¢::: °Word «rA I 0) + (rB))
create a reservation on ((rA I 0) + (rB))

Syntax: lwarx rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The lwarx instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + (rB) and places the word into the target register rT. A reser­
vation is placed on this effective address, which can be used by the stwcx.
instruction. Any existing reservation is replaced.

The calculated effective address must specify an aligned word (that is, it must be
a multiple of 4). If the address does not specify an aligned word, the alignment
exception handler may be invoked (if the load crosses a page boundary) or the
results may be boundedly undefined.

If the address references a direct-store storage segment, then a Data Storage inter­
rupt occurs or the results are boundedly undefined.

On 64-bit PowerPC implementations, the word is loaded into the low-order
word of rT and the upper word of rT is cleared.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

[fIJIIII T I A I B 10 0 0 0 0 1 0 1 0 0101

T Target GPR rT where result of operation is stored
A Source GPR rA
B Source GPR rB

496 Appendix A

lwaux Load Word Algebraic
with Update Indexed

PowerPC64

Operation: rT ¢= 'Word ((rA) + (rB))
rA ¢= (rA) + (rB)

Syntax: lwaux rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lwaux

The lwaux instruction loads the word that is stored at the effective address cal­
culated from (rA) + (rB) and places it into the low-order word of the target regis­
ter rT. The upper word of rT is copied from the sign bit of the loaded word.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the
same register.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

11
10 11 15 16 20 21 30 31

T 1 AlB 10 1 0 1 1 1 0 1 0=nQJ

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

Instruction Set Summary 497

lwax Load Word Algebraic Indexed lwax
PowerPC64

Operation: rT ¢= 'Word ((rA I 0) + (rB»

Syntax: lwax rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The lwax instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + (rB) and places it into the low-order word of the target reg­
ister rT. The upper word of rT is copied from the sign bit of the loaded word.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B

498 Appendix A

10 11 15 16 20 21 30 31

T I A I B 10 101 0 1 0 1 0 1101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

lwbrx Load Word
Byte-Reversed Indexed

POWER • 601 • 603 • PowerPC32 / 64

lwbrx

Operation: w := Word «rA I 0) + (rB»
rT ¢:::: O(w[24:31] 1. w[16:23] 1. w[8:15] 1. w[O:7])

Syntax: lwbrx rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The lwbrx instruction loads the word that is stored at the effective address cal­
culated from (rA I 0) + (rB), reverses the four bytes of the word, and then places
this byte-reversed word into target register rT.

On 64-bit PowerPC implementations, the word is loaded into the low-order
word of rT and the upper word of rT is cleared.

For some PowerPC implementations, this byte-reversed load instruction may
have a greater latency than other load instructions. On the 601 and 603, the
latency for this instruction is the same as for a normal load instruction.

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

11
10 11 15 16 20 21 30 31

T I A I B 11000010110101

Target CPR rT where result of operation is stored
Source CPR rA
Source CPR rB

Instruction Set Summary 499

lwz Load Word and Zero
POWER • 601 • 603 • PowerPC32/64

Operation: rT <= °Word «rA I 0) + 'd)

Syntax: lwz rT,d(rA)

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lwz

The lwz instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + 'd and places the word into the target register rT.

On 64-bit PowerPC implementations, the word is loaded into the low-order
word of rT and the upper word of rT is cleared.

The archaic POWER mnemonic for this instruction is 1.

Instruction Encoding:
o 5 6 10 11 15 16 31

11000001 T 1 A 1 d

T Target GPR rT where result of operation is stored
A Source GPR rA
d Signed 16-bit displacement

500 Appendix A

lwzu Load Word and Zero with Update
POWER· 601 • 603 • PowerPC32/64

Operation: rT ¢:= aWord «rA) + 'd)
rA ¢:= (rA) + 'd

Syntax: lwzu rT,d(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lwzu

The lwzu instruction loads the word that is stored at the effective address calcu­
lated from (rA) + 'd and places the word into the target register rT.

On 64-bit PowerPC implementations, the word is loaded into the low-order
word of rT and the upper word of rT is cleared.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if GPR 0 is used for rA or if rA and rT specify the
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then
the effective address for the load is calculated from 'd and the rA is not updated
with the effective address. If rA=rT, then rT is updated with the loaded data
instead of the effective address.

The archaic POWER mnemonic for this instruction is lu.

Instruction Encoding:
056 10 11 15 16 31

11000011 T I A I d

T Target GPR rT where result of operation is stored
A Source GPR rA
d Signed 16-bit displacement

Instruction Set Summary 501

lwzux Load Word and Zero
with Update Indexed

POWER • 601 • 603 • PowerPC32/64

Operation: rT <= °Word «rA) + (rB»
rA <= (rA) + (rB)

Syntax: lwzux rT,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

lwzux

The lwzux instruction loads the word that is stored at the effective address cal­
culated from (rA) + (rB) and places the word into the target register rT.

On 64-bit PowerPC implementations, the word is loaded into the low-order
word of rT and the upper word of rT is cleared.

After the load is performed, the effective address is stored in rA.

The instruction form is invalid if CPR 0 is used for rA or if rA and rT specify the
same register. However, the 601 permits these invalid forms for backward com­
patibility with the POWER architecture. On the 601, if rO is specified for rA, then
the effective address for the load is calculated from (rB) and the rA is not
updated with the effective address. If rA=rT, then rT is updated with the loaded
data instead of the effective address.

The archaic POWER mnemonic for this instruction is lux.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 11 T I A I B 10 0 0 0 1 101 1 1101

T Target CPR rT where result of operation is stored
A Source CPR rA
B Source CPR rB

502 Appendix A

lwzx Load Word and Zero Indexed lwzx
POWER· 601 • 603 • PowerPC32j64

Operation: rT ¢::: °Word «rA I 0) + (rB))

Syntax: lwzx rT,rA,rB

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The lwzx instruction loads the word that is stored at the effective address calcu­
lated from (rA I 0) + (rB) and places the word into the target register rT.

On 64-bit PowerPC implementations, the word is loaded into the low-order
word of rT and the upper word of rT is cleared.

The archaic POWER mnemonic for this instruction is Ix.

Instruction Encoding:
0

10 1 1 1 1

T
A
B

5 6

1 1
10 11 15 16 20 21 30 31

T 1 A 1 B 10000010111101

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB

Instruction Set Summary 503

Mask Generate
POWER. 601

Operation: mStart := rS[27:31]
mEnd := rB[27:31]
if(mStart = mEnd+ 1)

m := OxFFFF FFFF
if(mStart < mEnd+ 1)

m := Mask(mStart,mEnd)
if(mStart > mEnd+1)

m:= -Mask(mEnd+1,mStart-1)
rA ¢::: m

Syntax: maskg
maskg.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The maskg instruction generates a mask from the starting bit to the ending bit
and places the calculated mask into rA. The starting bit (mStart) for the mask is
specified in rS[27:31] and the ending bit (mEnd) is in rB[27:31].

If mStart = mEnd + 1, then a mask of alII's is generated.

If mStart < mEnd + 1, then a mask with l's starting at mStart and continuing up
to (and including) mEnd will be generated. All remaining bits of the mask are O.

If mStart > mEnd + 1, then a mask with l's from bit 0 to mEnd, and from mStart
up to bit 31 will be generated. All remaining bits of the mask are O.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 1 I s I A I B 10 0 0 0 0 1 1 1 0 1 IRc I

S Source CPR rS
A Target CPR rA where result of operation is stored
B Source CPR rB
Rc Record bit

504 Appendix A

mID cill § Ik II IT Mask Insert from Register mID cill § Ik II IT
POWER· 601

Operation: rA ¢:=: ((rB) & (rS)) I (~(rB) & (rA))

Syntax: maskir rA,rS,rB (Rc = 0)
maskir. rA,rS,rB (Rc = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The maskir instruction inserts the contents of rS into rA using rB as a control
mask. Wherever a bit in rB is 1, the corresponding bit from rS will overwrite the
bit in rA. Whereever a bit in rB is 0, the corresponding bit in rA will remain
untouched.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 110 0 0 0 1 1 1 0 11~1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 505

mcrf Move CR Field mcrf
POWER. 601 • 603 • PowerPC32/64

Operation: CR{crfT} <= CR{crfS}

Syntax: mcrf crjT,crfS

Condition Register /Fixed-Point Exception Register:
CR Field T: LT,GT,EQSO always updated
other fields: not affected

XER: not affected

Description:
The mcrf instruction copies the contents of CR field erfS into CR field erfT.

The 601 allows the form where bit 31 (the Link bit) of the instruction's encoding
is set to 1. If this instruction form is executed, the contents of the LR are unde­
fined.

Instruction Encoding:
o 5 6 8 9 10 11 13 14 15 16 20 21 30 31

10 1 0 0 1 11 T 10 01 s 10 010 000 010 0 0 0 0 0 0 0 0 0101

T Target CR Field T where result of operation is stored
S Source CR Field S

506 Appendix A

mcrfs Move to CR from FPSCR
POWER. 601 • 603 • PowerPC32j 64

Operation: CR{crjT} <= FPSCR{crjS}
FPSCR{crjS} <= a

Syntax: mcrfs crjT,crjS

mcrfs

Condition Register / Floating-Point Status and Control Register:
CR Field T: always updated with value from FPSCR{crjs}
other fields: not affected

FPSCR: field S is set to 0 (except FEX and VX)

Description:
The mcrfs instruction copies the contents of FPSCR field crjS into CR field crfT.
All of the bits that are copied from the FPSCR field (except FEX and VX) are reset
to O.

Instruction Encoding:
o 5 6 8 9 10 11 13 14 15 16 20 21 30 31

11111111 T 1001 s 10010000010001000000101

T Target CR Field T where result of operation is stored
S Source FPSCR Field S

Instruction Set Summary 507

mcrxr Move to CR from XER
POWER. 601 • 603 • PowerPC32/64

Operation: CR{crfT} <= XER{O}
XER{O} <= 0

Syntax: mcrxr crfT

Condition Register/Fixed-Point Exception Register:
CR Field T: always updated with value from XER{O}
other fields: not affected

XER: bits 0:3 are cleared

Description:

mcrxr

The merxr instruction copies XER[0:3] into CR field crfT. Bits 0-3 of the XER are
cleared as a result of this instruction.

Instruction Encoding:
o 5 6 8 9 10 11 15 16 20 21 30 31

[0 1 1 1 1 1[T 10 0[0 0 0 0 010 0 0 0 0110 0 0 0 0 0 0 0 olo[

T Target CR Field T where result of operation is stored

508 Appendix A

mfcr Move from CR mfcr
POWER· 601 • 603 • PowerPC32/64

Operation: rT <= O(CR)

Syntax: mfcr rT

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The mfer instruction copies the entire contents of the CR into rT.

For 64-bit PowerPC implementations, the CR is loaded into the low-order word
of the target register and the high-order word is cleared.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 111111 T 10 0 a a 010 a a a 010 a a a a 100 11101

T Target GPR rT where result of operation is stored

Instruction Set Summary 509

mffs Move from FPSCR
POWER • 601 • 603 • PowerPC32 / 64

Operation: frT <= (FPSCR)

Syntax: mffs
mffs.

frT
frT

(Rc = 0)
(Rc = 1)

mffs

Condition Register /Floating-Point Status and Control Register:
CR Fields 0-7: not affected

FPSCR: not affected

Description:
The mffs instruction copies the contents of the FPSCR into the low-order word
of frT. The high-order word of the target register is undefined.

For compatibility with the POWER architecture, the 601 sets the high-order
word of the target register to OxFFF8 0000.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

11 1 1 1 11 T 10 0 a 0 010 0 a a 0110 0 1 000 1 1 11&1

T Target FPR frT where result of operation is stored
Rc Record bit

510 Appendix A

mfmsr Move from MSR mfmsr
POWER. 601 • 603 • PowerPC32/64

Operation: rT ¢= (MSR)

Syntax: mfmsr rT

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The mfmsr instruction copies the entire contents of the MSR into rT.

This is a supervisor-level instruction.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 111111 T 1000 0 010 0 0 0 010 0 0 1 0 1 0011101

T Target GPR rT where result of operation is stored

Instruction Set Summary 511

mfspr Move from SPR mfspr
POWER. 601 • 603 • PowerPC32/64

Operation: rT <== O(SPR)

Syntax: mfspr rT,SPR

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

.il Description:
The mfspr instruction copies the entire contents of the specified Special Purpose
Register (SPR) into rT.

When loading 32-bit registers on 64-bit PowerPC implementations, the 32-bit
register is loaded into the low-order word of the target register and the high­
order word is cleared.

The SPR returned depends on the value of SPR which is used in the instruction.
Valid values are given in the following table:

SPR Register Name Access Notes

1 XER user

8 LR user

9 CTR user

18 DSISR supervisor

19 DAR supervisor

22 DEC supervisor

25 SDR1 supervisor

26 SRRO supervisor

27 SRR1 supervisor

272-275 SPRGO-SPRG3 supervisor

280 ASR supervisor 64-bit only

282 EAR supervisor

287 PVR supervisor

528,530,532,534 IBATOU - IBAT3U supervisor

529,531,533,535 IBATOL-IBAT3L supervisor

536,538,540,542 DBATOU-DBAT3U supervisor

537,539,541,543 DBATOL-DBAT3L supervisor

512 Appendix A

Attempting to read a register that requires supervisor-level access will result in
a Privileged Instruction interrupt unless the processor is in supervisor mode.

In addition to the above-mentioned SPR encodings, the 601 provides access to
the following implementation-specific registers:

SPR Register Name Access Notes

0 MQ user
These registers

4 RTCU user are provided for

5 RTCL user POWER

6 DEC user
compatibility.

1008 HIDO (Checkstop) supervisor

1009 HID1 (Debug Mode) supervisor

1010 HID2 (IABR) supervisor

1013 HID5 (DABR) supervisor

1023 HID15 (PIR) supervisor

Extended Forms:
The following extended forms provide access to the user-level SPRs.

mfdr
mflr
mfxer

rT
rT
rT

is equivalent to
is equivalent to
is equivalent to

mfspr
mfspr
mfspr

rT,9
rT,8
rT,1

In addition, there are also a few obsolete forms which provide access to obsolete
user-level registers. These forms are available only on the 601.

mfdee rT is equivalent to mfspr rT,6
mfmq rT is equivalent to mfspr rT,O
mfrtel rT is equivalent to mfspr rT,5
mfrteu rT is equivalent to mfspr rT,4

There are also a variety of supervisor-level SPRs which have extended forms.
Note that mfdee appears again in this list since it was originally a user-level
register but has been changed to a supervisor-level SPR.

mfasr rT is equivalent to mfspr rT,280
mfdar rT is equivalent to mfspr rT,19
mfdbatl rT,n is equivalent to mfspr rT,537+2*n
mfdbatu rT,n is equivalent to mfspr rT,536+2*n
mfdee rT is equivalent to mfspr rT,22
mfdsisr rT is equivalent to mfspr rT,18
mfear rT is equivalent to mfspr rT,282
mfibatl rT,n is equivalent to mfspr rT,529+2*n
mfibatu rT,n is equivalent to mfspr rT,528+2*n

Instruction Set Summary 513

mfpvr rT is equivalent to mfspr rT,287
mfsdrl rT is equivalent to mfspr rT,25
mfsprg rT,n is equivalent to mfspr rT,272+n
mfsrrO rT is equivalent to mfspr rT,26
tnfsrrl rT is equivalent to mfspr rT,27

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 1 I T I SPR-2 I SPR-l 10 101 o 1 001 1101

Note that the lO-bit SPR parameter is divided into two 5-bit fields: SPR-l and
SPR-2 which are stored in reverse order in the instruction encoding. This is
necessary for compatibility with the POWER mfspr encodings.

T
SPR-2
SPR-l

514 Appendix A

Target GPR rT where result of operation is stored
Lower half of SPR specification
Upper half of SPR specification

mfsr Move from SR mfsr
POWER • 601 • 603 • PowerPC32

Operation: rT ¢= SR[SR]

Syntax: mfsr rT,SR

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The mfsr instruction copies the entire contents of the Segment Register specified
by the immediate value SR into rT.

This is a supervisor-level instruction.

This instruction exists on 32-bit PowerPC implementations only.

Instruction Encoding:
056 10 11 12 15 16 20 21 30 31

10 1 1 1 1 11 T I 0 I SR I 0 0 0 0 0 11 0 0 1 0 1 0 0 1 1 I 0 I

T Target GPR rT where result of operation is stored
SR Segment Register ID

Instruction Set Summary 515

mfsrin Move from SR Indirect mfsrin
POWER. 601 • 603 • PowerPC32

Operation: rT ¢= SR[rB[O:3]]

Syntax: mfsrin rT,rB

Condition Register / Fixed -Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The mfsrin instruction copies the entire contents of the Segment Register speci­
fied by rB[0:3] into rT.

This is a supervisor-level instruction.

This instruction exists on 32-bit PowerPC implementations only.

The archaic POWER mnemonic for this instruction is mfsri. Note that the mfsri
instruction calculates the effective address from (rA I 0) + (rB) so A must equal 0
for mfsrin to be equivalent to mfsri.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10111111 T 1000001 B 11010010011101

T Target GPR rT where result of operation is stored
B Source GPR rB which contains SR specification

516 Appendix A

mftb Move from Time Base Register
603 • PowerPC32j 64

Operation: H(TBR = 268)

Syntax:

rT <= (TBRL)
else H(TBR = 269)

rT <= O(TBRU)

mftb rT,TBR

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

mftb

The mftb instruction copies the contents of either the upper or lower half of the
Time Base Register (TBR) into rT. The half of the TBR is specified by the TBR
parameter: a value of 268 specifies the lower half of the TBR and 269 specifies the
upper half.

On 64-bit PowerPC implementations, a TBR value of 268 will cause the entire 64-
bit TBR to be loaded into the target register (instead of just the lower word). A
TBR value of 269 will load the upper word of the TBR into the low-order word
of the target register and clear the high-order word.

Even though this is a standard PowerPC instruction, this instruction is not
implemented on the PowerPC 601.

Extended Forms:
mftb rT
mftbu rT

is equivalent to
is equivalent to

mftb
mftb

rT,268
rT,269

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

I 0 1 1 1 1 1 I T I TBR - 2 I TBR - 1 I 0 1 0 1 1 1 0 0 1 1 I 0 I

Note that the to-bit TBR parameter is divided into two 5-bit fields: TBR-l and
TBR-2 which are stored in reverse order in the instruction encoding. This is
necessary for consistency with the mfspr encodings.

T
TBR-2
TBR-l

Target GPR rT where result of operation is stored
Lower half of TBR specification
Upper half of TBR specification

Instruction Set Summary 517

mtcrf Move to CR Fields mtcrf
POWER. 601 • 603 • PowerPC32j 64

Operation: CR ~ (rS) & mask

Syntax: mtcrf crfMask,rS

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: updated as specified by mask

XER: not affected

Description:
The mtcrf instruction copies rS into the Condition Register (CR) under the con­
trol of the given mask. Each bit in the 8-bit crfMask value represents a 4-bit field
in the CR. Thus, a mask value of bOOlO 1000 would update fields 2 and 4 of the
CR. To update the entire CR, use an crfMask of bllllllll.

On some PowerPC implementations, updating fewer than all 8 of the CR fields
may result in poorer performance than updating all 8 fields.

Extended Forms:
The following extended form is provided for the mtcrf instruction:

mtcr rS is equivalent to mtcrf OxFF,rS

Instruction Encoding:
o 5 6 10 11 12 19 20 21 30 31

10111111 s 101 CRMask 1010010010000101

S Source CPR rS
CR Mask Bit mask identifying which CR fields to update

518 Appendix A

mtfsbO Move 0 to FPSCR
POWER • 601 • 603 • PowerPC32/64

Operation: FPSCR[bitT] <= 0

Syntax: mtfsbO
mtfsbO.

bitT
bitT

(Rc = 0)
(Rc = 1)

mtfsbO

Condition Register I Floating-Point Status and Control Register:
CR Field 1: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: bit T is cleared to 0

Description:
The mtfsbO instruction clears bit bitT of the FPSCR. The FEX andVX bits are the
only bits of the FPSCR that cannot be explicitly cleared.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

11 1 1 1 1 11 T 10 a a a 010 a a a 010 a a 1 a a a 1 101&1

T Target bit of FPSCR which is cleared
Rc Record bit

Instruction Set Summary 519

mtfsbl Move 1 to FPSCR
POWER • 601 • 603 • PowerPC32/64

Operation: FPSCR[bitT] <= 1

Syntax: mtfsbl
mtfsbl.

bitT
bitT

(Rc = 0)
(Rc = 1)

mtfsbl

Condition Register I Floating-Point Status and Control Register:
CR Field 1: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: bit T is set to 1

Description:
The mtfsbl instruction sets bit bitT of the FPSCR. The FEX andVX bits are the
only bits of the FPSCR that cannot be explicitly set.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

11 1 1 1 1 11 T 10 0 0 0 010 0 0 0 010 0 0 0 100 1 101&1

T Target bit of FPSCR which is set
Rc Record bit

520 Appendix A

mtfsf Move to FPSCR Fields
POWER. 601 • 603 • PowerPC32/64

Operation: FPSCR ¢:: frB[32:63] & mask

Syntax: mtfsf
mtfsf.

fpser Mask,fr B
fpserMask,frB

(Rc = 0)
(Rc = 1)

mtfsf

Condition Register/Floating-Point Status and Control Register:
CR Field 1: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: updated as specified by mask

Description:
The mtfsf instruction copies the low-order 32-bits from frB into the FPSCR
under the control of the given mask. Each bit in the 8-bit fpscrMask value repre­
sents a 4-bit field in the FPSCR. Thus, a mask value of bOOlO 1000 would update
fields 2 and 4 of the FPSCR. To update the entire FPSCR, use an fpscrMask of
bllllllll.

The FEX and VX bits of the FPSCR will not be updated if they are in the range
specified by the mask.

On some PowerPC implementations, updating fewer than all 8 of the FPSCR
fields may result in poorer performance than updating all 8 fields.

Extended Forms:
The following extended form is provided for the mtfsf instruction:

mtfs[.] frB is equivalent to mtfsf[.] OxFF,frB

Instruction Encoding:
o 5 6 7 14 15 16 20 21 30 31

11 1 1 1 1 1 I 0 I FPSCR Mask I 0 I B 11 0 1 1 0 0 0 1 1 1 I Rc I

FPSCR Mask Bit mask identifying which FPSCR fields to update
B Source FPR frB
Rc Record bit

Instruction Set Summary 521

mtfsfi Move to FPSCR Field Immediate mtfsfi
POWER. 601 • 603 • PowerPC32/64

Operation: FPSCR{fPscrjT} <= IMM

Syntax: mtfsfi
mtfsfi.

crjT,IMM
crfT,IMM

(Rc = 0)
(Rc = 1)

Condition Register / Floating-Point Status and Control Register:
CR Field 1: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 0,2-7: not affected

FPSCR: field T updated with immediate value

Description:
The mtfsfi instruction copies the immediate value IMM into field fpscrfT of the
FPSCR. The FEX andVX bits are the only bits of the FPSCR that cannot be explic­
itly set. If FPSCR{O} is specified as the target field, then only the FX and OX bits
will be updated.

Instruction Encoding:
o 5 6 8 9 10 11 15 16 19 20 21 30 31

11 1 1 1 1 1 I T 10 0 10 0 0 0 0 I IMM 10 10 0 1 0 0 0 0 1 lOiRe I

T Bit field of FPSCR to be updated
IMM Immediate 4-bit value to load into FPSCR field
Rc Record bit

522 Appendix A

mtmsr MovetoMSR mtmsr
POWER. 601 • 603 • PowerPC32/64

Operation: MSR <= (rS)

Syntax: mtmsr rS

Condition Register/Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The mfmsr instruction copies the entire contents of rS into the Machine State
Register (MSR).

This is a supervisor-level instruction. This instruction is execution synchro­
nizing.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 11 s 1000 0 010 000 010 0 100 1 0010101

S Source CPR rS

Instruction Set Summary 523

mtspr Move to SPR mtspr
POWER· 601 • 603 • PowerPC32/64

Operation: SPR ¢= (rS)

Syntax: mtspr SPR,rS

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The mtspr instruction copies the entire contents of rS into the specified Special
Purpose Register (SPR).

When updating 32-bit registers on 64-bit PowerPC implementations, the 32-bit
register is updated from the low-order word of the source register.

The source SPR depends on the value of SPR which is used in the instruction.
Valid values are given in the following table:

SPR Register Name Access Notes

1 XER user

8 LR user

9 CTR user

18 DSISR supervisor

19 DAR supervisor

22 DEC supervisor

25 SDRI supervisor

26 SRRO supervisor

27 SRRI supervisor

272-275 SPRGO-SPRG3 supervisor

280 ASR supervisor 64-bit only

282 EAR supervisor

284 TBL supervisor not on 601

285 TBU supervisor not on 601

528,530,532,534 IBATOU - IBAT3U supervisor

529,531,533,535 IBATOL-IBAT3L supervisor

536,538,540,542 DBATOU-DBAT3U supervisor not on 601

537,539,541,543 DBATOL-DBAT3L supervisor not on 601

524 Appendix A

Attempting to update a register that requires supervisor-level write access will
result in a Privileged Instruction interrupt unless the processor is in supervisor
mode.

In addition to the above-mentioned SPR encodings, the 601 provides access to
the following implementation-specific registers:

SPR Register Name Access Notes

0 MQ user These registers

4 RTCU supervisor are provided for
POWER

S RTCL supervisor compatibility.

1008 HIDO (Checkstop) supervisor

1009 HID1 (Debug Mode) supervisor

1010 HID2 (IABR) supervisor

1013 HIDS (DABR) supervisor

1023 HID1S (PIR) supervisor

Extended Forms:
The following extended forms provide access to the user-level SPRs.

mtdr
mtlr
mtxer

rT
rT
rT

is equivalent to
is equivalent to
is equivalent to

mtspr
mtspr
mtspr

9,rT
8,rT
1,rT

In addition, the obsolete MQ register also allows user-level write access. This
form is available only on the 601.

mtmq rT is equivalent to mtspr O,rT

There are also a variety of supervisor-level SPRs which have extended forms.

mtasr rT is equivalent to mtspr 280,rT
mtdar rT is equivalent to mtspr 19,rT
mtdbatl rT,n is equivalent to mtspr 537+2*n,rT
mtdbatu rT,n is equivalent to mtspr 536+2*n,rT
mtdec rT is equivalent to mtspr 22,rT
mtdsisr rT is equivalent to mtspr 18,rT
mtear rT is equivalent to mtspr 282,rT
mtibatl rT,n is equivalent to mtspr 529+2*n,rT
mtibatu rT,n is equivalent to mtspr 528+2*n,rT
mtsdrl rT is equivalent to mtspr 25,rT
mtsprg rT,n is equivalent to mtspr 272+n,rT
mtsrrO rT is equivalent to mtspr 26,rT
mtsrrl rT is equivalent to mtspr 27,rT

Instruction Set Summary 525

Instruction Encoding:
056 10 11 15 16 20 21 30 31

10111111 S I SPR - 2 I SPR - 1 I 0 1 1 1 0 1 0 0 1 1 I 0 I

Note that the lO-bit SPR parameter is divided into two 5-bit fields: SPR-l and
SPR-2 which are stored in reverse order in the instruction encoding. This is
necessary for compatibility with the POWER mtspr encodings.

S
SPR-2
SPR-l

526 Appendix A

Source GPR rS
Lower half of SPR specification
Upper half of SPR specification

mtsr Move to SR mtsr
POWER • 601 • 603 • PowerPC32

Operation: SR[SR] <= (rS)

Syntax: mtsr SR,rS

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The mtsr instruction copies the contents of rS into the Segment Register speci­
fied by the immediate value SR.

This is a supervisor-level instruction.

This instruction exists on 32-bit PowerPC implementations only.

Instruction Encoding:
o 5 6 10 11 12 15 16 20 21 30 31

I 0 1 1 1 1 1 I S I 0 I SR I 0 0 0 0 0 I 0 0 1 1 0 1 0 0 1 0 I 0 I

S Source GPR rS
SR Segment Register ID

Instruction Set Summary 527

mtsrin Move to SR Indirect mtsrin
POWER • 601 • 603 • PowerPC32

Operation: SR[rB[O:3]] <= (rS)

Syntax: mtsrin rS,rB

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The mtsrin instruction copies the contents of rS into the Segment Register spec­
ified by rB[0:3].

This is a supervisor-level instruction.

This instruction exists on 32-bit PowerPC implementations only.

The archaic POWE~ mnemonic for this instruction is mtsri. Note that the mtsri
instruction calculate~ the effective address from (rA I 0) + (rB) so A must equal 0
for mtsrin to be equivalent to mtsri.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10111111 S 1000001 B 10011110010101

S Source GPR rS
B Source GPR rB which contains the Segment Register ID

528 Appendix A

Multiply
POWER. 601

Operation: rT ¢= HiWord«rA) x (rB»
MQ ¢= LoWord«rA) x (rB»

Syntax: mul
mul.
mulo
mulo.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc = 0, OE = 1)
(Rc = 1, OE = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE= 1, otherwise not affected

Description:
The mul instruction multiplies the contents of GPR rA and GPR rB as signed
quantities and places the high-order 32 bits of the result in GPR rT, and the low­
order 32 bits of the result in the MQ register.

The multiply algorithm used on the 601 will execute more quickly if the smaller
(in terms of absolute value) of the two operands is placed in rB.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0

10 1 1 1 1

T
A
B
OE
Rc

5 6

1 I
10 11 15 16 20 21 22 30 31

T I A I B 100Io 0 1 1 0 1 0 1 llRel

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

Instruction Set Summary 529

mulhd Multiply High Doubleword
PowerPC64

Operation: rT ¢::: HiDWord((rA) x (rB»

Syntax: mulhd
mulhd.

rT,rA,rB
rT,rA,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

mulhd

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The mulhd instruction multiplies the contents of GPR rA and GPR rB as signed
quantities and places the high-order 64 bits of the 128-bit result in GPR rT. The
low-order 64 bits of the result are not returned as a result of this instruction (the
mulld instruction can be used to calculate the low-order bits).

The multiply algorithm used for many of the PowerPC implementations will
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B
Rc

530 Appendix A

10 11 15 16 20 21 22 30 31

T I A I B 1010010 0 100 11&1

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Record bit

mulhdu Multiply High
Doubleword Unsigned

mulhdu
PowerPC64

Operation: rT ¢= HiDWord«rA) x (rB»

Syntax: mulhdu
mulhdu.

rT,rA,rB
rT,rA,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The mulhdu instruction multiplies the contents of GPR rA and GPR rB as
unsigned quantities and places the high-order 64 bits of the 128-bit result in GPR
rT. The low-order 64 bits of the result are not returned as a result of this instruc­
tion (the mulld instruction can be used to calculate the low-order bits).

The multiply algorithm used for many of the PowerPC implementations will
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

10 1 1 1 1

T
A
B
Rc

5 6

1 1
10 11 15 16 20 21 22 30 31

T 1 A 1 B 1010 0 0 0 0 1 0 0 11~1

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Record bit

Instruction Set Summary 531

mulhw Multiply High Word
601 • 603 • PowerPC32/64

Operation: rT ¢::: HiWord«rA) x (rB))

Syntax: mulhw
mulhw.

rT,rA,rB
rT,rA,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

mulhw

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The mulhw instruction multiplies the contents of GPR rA and GPR rB as signed
quantities and places the high-order 32 bits of the 64-bit result in GPR rT. The
low-order 32 bits of the result are not returned as a result of this instruction (the
mullw instruction can be used to calculate the low-order bits).

On 64-bit PowerPC implementations, the high-order word of the target register
is undefined.

The multiply algorithm used for many of the PowerPC implementations will
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 1

T
A
B
Rc

532 Appendix A

10 11 15 16 20 21 22 30 31

T 1 A 1 B 10100lOOlOOllRci

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Record bit

mulhwu Multiply High Word
Unsigned

mulhwu
601 • 603 • PowerPC32j 64

Operation: rT <= HiWord«rA) x (rB»

Syntax: mulhwu rT,rA,rB
mulhwu. rT,rA,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The mulhwu instruction multiplies the contents of GPR rA and GPR rB as
unsigned quantities and places the high-order 32 bits of the 64-bit result in GPR
rT. The low-order 32 bits of the result are not returned as a result of this instruc­
tion (the mullw instruction can be used to calculate the low-order bits).

On 64-bit PowerPC implementations, the high-order word of the target register
is undefined.

The multiply algorithm used for many of the PowerPC implementations will
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB.

Instruction Encoding:
0

10 1 1 1 1

T
A
B
Rc

5 6

11
10 11 15 16 20 21 22 30 31

T I A I B 10 10 0 0 0 0 1 0 1 1 IRe I

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Record bit

Instruction Set Summary 533

mulld Multiply Low Doubleword mulld
PowerPC64

Operation: rT {= LoDWord«rA) x (rB»

Syntax: mulld
mulld.
mull do
mulldo.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

(Rc = 0, OE = 0)
(Rc = I, OE = 0)
(Rc = 0, OE = 1)
(Rc = I, OE = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,CT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The mulld instruction multiplies the contents of CPR rA and CPR rB and places
the low-order 64 bits of the 128-bit result in CPR rT. The high-order 64 bits of the
result are not returned as a result of this instruction (the mulhd or mulhdu
instructions can be used to calculate the high-order bits).

This instruction treats the operands as signed quantities but it can be used for
both signed and unsigned 64-bit multiply operations since the low-order 64 bits
are independent of whether the operands are considered to be signed or
unsigned.

The multiply algorithm used for many of the PowerPC implementations will
execute more quickly if the smaller (in terms of absolute value) of the two oper­
ands is placed in rB.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 1

T
A
B
OE
Rc

534 Appendix A

10 11 15 16 20 21 22 30 31

T 1 A 1 B 1001011101001IRci

Target CPR rT where result of operation is stored
Source CPR rA
Source CPR rB
Overflow Exception bit
Record bit

mulli Multiply Low Immediate
POWER. 601 • 603 • PowerPC32/64

mulli

Operation: rT <= LoWord«rA) x's16)

Syntax: mulli rT,rA,s16

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The mulli instruction multiplies the contents of GPR rA (interpreted as a signed
quantity) and the sign-extended 16-bit immediate quantity and places the low­
order 32 bits of the 48-bit result in GPR rT. The high-order 16 bits of the result are
not returned as a result of this instruction.

On 64-bit PowerPC implementations, this instruction multiplies the 64-bit
signed value in rA by the sign-extended 16-bit immediate value and returns the
low-order 64 bits of the resulting 80-bit product. As with the 32-bit version of
this instruction, the low-order 64 bits are independent of whether the operands
are treated as signed or unsigned quantities.

The archaic POWER mnemonic for this instruction is muli.

Instruction Encoding:
0

10 0 0 1 1

T
A
SI

5 6

11
10 11 15 16

T I A I SI

Target GPR rT where result of operation is stored
Source GPR rA or a
Signed 16-bit integer

31

Instruction Set Summary 535

mullw Multiply Low Word mullw
POWER· 601 • 603 • PowerPC32/64

Operation: rT ¢= LoWord((rA) x (rB»

Syntax: mullw rT,rA,rB
mullw. rT,rA,rB
mullwo rT,rA,rB
mullwo. rT,rA,rB

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc=O,OE=I)
(Rc = 1, OE = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The mullw instruction multiplies the contents of GPR rA and GPR rB and places
the low-order 32 bits of the 64-bit result in GPR rT. The high-order 32 bits of the
result are not returned as a result of this instruction (the mulhw or mulhwu
instructions can be used to calculate the high-order bits).

This instruction treats the operands as signed quantities but it can be used for
both signed and unsigned 32-bit multiply operations since the low-order 32-bits
are independent of whether the operands are considered to be signed or
unsigned.

On 64-bit PowerPC implementations, the entire 64-bit result is stored in the tar­
get register.

The archaic POWER mnemonic for this instruction is muls[O][.].

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B
OE
Rc

536 Appendix A

10 11 15 16 20 21 22 30 31

T I A I B 100Io 1 1 1 0 1 0 1 llRel

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

Negative Absolute Value
POWER. 601

Operation: rT <= - I rA I

Syntax: nabs
nabs.
nabso
nabso.

rT,rA
rT,rA
rT,rA
rT,rA

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc=O,OE=I)
(Rc=I,OE=I)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected (see below)

Description:
The nabs instruction calculates the absolute value of the contents of GPR rA, and
stores the negation of this result in GPR rT.

Since this instruction never causes an overflow, if the Overflow Exception (OE)
bit is set, the Overflow (OV) bit of the XER is cleared and the Summary Overflow
(SO) bit of the XER is not affected.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0

10 I I I I

T
A
OE
Rc

5 6

I I
10 11 15 16 20 21 22 30 31

T I A 10 0 0 0 0 10E11 I I I 0 I 0 0 0 IRel

Target GPR rT where result of operation is stored
Source GPR rA
Overflow Exception bit
Record bit

Instruction Set Summary 537

nand NAND
POWER • 601 • 603 • PowerPC32/64

Operation: rA {::: -«rS) & (rB))

Syntax: nand
nand.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

nand

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The nand instruction logically ANDs the contents of GPR rS and GPR rB and
places the one's complement of the result in GPR rA.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B
Rc

538 Appendix A

10 11 15 16 20 21 30 31

s I A I B 10 1 1 1 0 1 1 1 0 0 IRel

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

neg Negate
POWER. 601 • 603 • PowerPC32/64

Operation: rT {::: -rA

Syntax: neg
neg.
nego
nego.

rT,rA
rT,rA
rT,rA
rT,rA

(Rc = 0, OE = 0)
(Rc = I, OE = 0)
(Rc=O,OE=I)
(Rc = I, OE = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,CT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE= I, otherwise not affected

Description:

neg

The neg instruction negates the contents of CPR rA, and stores the result in CPR
rT. This operation is the same as taking the one's complement of rA and then
adding 1 to the result.

If CPR rA contains the largest negative number (Ox8000 0000 for 32-bit mode
and Ox8000 0000 0000 0000 for 64-bit mode), then the result in rT will be the larg­
est negative number and, if the OE bit is set, the OV and SO bits of the XER will
be set to 1.

Instruction Encoding:
0

10 1 1 1 1

T
A
OE
Rc

5 6

1 I
10 11 15 16 20 21 22 30 31

T I A 1000 0 olOElo 0 1 10 1 0 oolRel

Target CPR rT where result of operation is stored
Source CPR rA
Overflow Exception bit
Record bit

Instruction Set Summary 539

nor NOR
POWER • 601 • 603 • PowerPC32j 64

Operation: rA ¢::: -«rS) I (rB»

Syntax: nor
nor.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,CT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:

nor

The nor instruction logically ORs the contents of CPR rS and CPR rB and places
the one's complement of the result in CPR rA.

Extended Forms:
not[.] rA,rS is equivalent to nor[.] rA,rS,rS

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B
Rc

540 Appendix A

10 11 15 16 20 21 30 31

s I A I B 10 0 0 1 1 1 1 1 0 01~1

Source CPR rS
Target CPR rA where result of operation is stored
Source CPR rB
Record bit

or OR
POWER· 601 • 603 • PowerPC32/64

Operation: rA ¢=: (rS) I (rB)

Syntax: Of

Of.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:

or

The or instruction logically ORs the contents of GPR rS and GPR rB and places
the result in GPR rA.

Extended Forms:
mr[.] rA,rS is equivalent to or[.] rA,rS,rS

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 10 1 1 0 1 1 1 1 oolkl

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 541

ore OR with Complement
POWER. 601 • 603 • PowerPC32/64

Operation: rA {= (rS) I -(rB)

Syntax: orc
orc.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register/Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:

ore

The orc instruction logically ORs the contents of GPR rS with the one's comple­
ment of the contents of GPR rB and places the result in GPR rA.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 1

S
A
B
Rc

542 Appendix A

10 11 15 16 20 21 30 31

s 1 A 1 B 10 1 1 0 0 1 1 1 0 01&1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

• •
Ofl OR Immediate Ofl

POWER. 601 • 603 • PowerPC32/64

Operation: rA ~ (rS) I °u16

Syntax: ori rA,rS,u16

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The ori. instruction logically ORs the contents of CPR rS and the zero-extended
immediate value u16, and places the result in CPR rA.

The archaic POWER mnemonic for this instruction is oriI. (OR Immediate
Lower).

Extended Forms:
nop is equivalent to ori rO,rO,O

Instruction Encoding:
0 5

10 1 1 0 o 01

S
A
UI

6 10 11 15 16

s I A I UI

Source CPR rS
Target CPR rA where result of operation is stored
Unsigned 16-bit integer

31

Instruction Set Summary 543

• • orIs OR Immediate Shifted orIs
POWER • 601 • 603 • PowerPC32 / 64

Operation: rA {= (rS) I o(u16 1.. OxOOOO)

Syntax: oris rA,rS,u16

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The oris. instruction logically ORs the contents of GPR rS and the value calcu­
lated by concatenating u16 with OxOOOO, and places the result in GPR rA.

The archaic POWER mnemonic for this instruction is oriu. (OR Immediate
Upper).

Instruction Encoding:
o 5 6 10 11 15 16 31

lQ:lj0011 s I A I UI

S Source GPR rS
A Target GPR rA where result of operation is stored
UI Unsigned 16-bit integer

544 Appendix A

rfi

Operation:

Syntax:

Return from Interrupt
POWER. 601 • 603 • PowerPC32/64

MSR <= SRRI [0,5:9,16:31 J
0:32,37:41,48:63

CIP <= SRRO [0:29J 1- baa
0:61

rfi

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

rfi

The rfi instruction is used to return control to the original code after the inter­
rupt-servicing code has completed. The instruction restores the original value of
the MSR and gets the address of the next instruction to execute from the SRRO
register.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 0 0 1 110 0 0 0 010 0 0 0 010 000 010 000 1 100 1 0101

Instruction Set Summary 545

rIdeI Rotate Left Doubleword
then Clear Left

PowerPC64

Operation: r := (rS) Q rB[58:63]
m := Mask(mB,63)
rA ¢=: (r & m)

Syntax: rldcl
rldcl.

rA,rS,rB,mB
rA,rS,rB,mB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

rIdeI

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rldcl instruction rotates the contents of rS to the left by the number of bits
specified in rB[58:63], and then ANDs this result with a mask that is composed
of l's from bit position mB up to 63 and O's everywhere else. The final result is
then stored in rA.

The end result of the mask operation is that the leftmost mB bits of the rotated
result are cleared before they are stored into the destination register rA. Only the
rightmost 63-mB bits are copied into rA.

This instruction exists on 64-bit PowerPC implementations only.

Extended Forms:
rotld[.] rA,rS,rB is equivalent to rldcl[.] rA,rS,rB,O

Instruction Encoding:
o 5 6 10 11 15 16 20 21 26 27 30 31

I 0 1 1 1 1 0 I s I A I B I mBegin 11 0 0 0 I Rc I

S
A
B
mBegin
Rc

546 Appendix A

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Bit position where mask is to start
Record bit

rIder Rotate Left Doubleword
then Clear Right

PowerPC64

Operation: r := (rS) Q rB[58:63]
m := Mask(O,mE)
rA¢=(r&m)

Syntax: rlder
rlder.

rA,rS,rB,mE
rA,rS,rB,mE

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

rIder

CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rIder instruction rotates the contents of rS to the left by the number of bits
specified in rB[58:63], and then ANDs this result with a mask that is composed
of l's from bit position 0 up to mE and 0' s everywhere else. The final result is
then stored in rA.

The end result of the mask operation is that the rightmost 63-mE bits of the
rotated result are cleared before they are stored into the destination register rA.
Only the leftmost mE bits are copied into rA.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
o 5 6 10 11 IS 16 20 21 26 27 30 31

I 0 1 1 1 1 0 I s I A I B I mBegin 11 0 0 1 I Rc I

S
A
B
mEnd
Rc

Source CPR rS
Target CPR rA where result of operation is stored
Source CPR rB
Bit position where mask is to end
Record bit

Instruction Set Summary 547

rldic Rotate Left Doubleword
Immediate then Clear

PowerPC64

Operation: r := (rS) Q n

Syntax:

m := Mask(mB,63-n)
rA ¢::: (r & m)

rldic
rldic.

rA,rS,n,mB
rA,rS,n,mB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

rldic

CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rldic instruction rotates the contents of rS to the left by the number of bits
specified by the immediate value n, and then ANDs this result with a mask that
is composed of l's from bit position mB up to 63-n and D's everywhere else. The
final result is then stored in rA.

This instruction exists on 64-bit PowerPC implementations only.

Extended Forms:
c1rlsldi[.] rA,rS,nb,sh is equivalent to rldic[.] rA,rS,sh,nb-sh

Instruction Encoding:
o 5 6 10 11 15 16 20 21 26 27 29 30 31

I 0 1 1 1 1 0 I s I A I shift - 2 I mBegin I 0 0 I sh I Rc I

Note that the shift value is split into 2 fields in the encoding: the high-order bit
is stored in sh and the low-order bits are stored in shift-2. This is necessary
because a 5-bit field isn't large enough to hold a 64-bit shift value.

S
A
shift-2
mBegin
sh
Rc

548 Appendix A

Source GPR rS
Target GPR rA where result of operation is stored
Low-order bits of shift value
Bit position where mask is to start
High-order bit of shift value
Record bit

rldicl Rotate Left Doubleword
Immediate then Clear Left

rldicl
PowerPC64

Operation: r := (rS) Q n

Syntax:

m := Mask(mB,63)
rA~(r&m)

rldic1
rldic1.

rA,rS,n,mB
rA,rS,n,mB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rldid instruction rotates the contents of rS to the left by the number of bits
specified by the immediate value n, and then ANDs this result with a mask that
is composed of 1's from bit position mB up to 63 and O's everywhere else. The
final result is then stored in rA.

The end result of the mask operation is that the leftmost mB bits of the rotated
result are cleared before they are stored into the destination register rAe Only the
rightmost 63-mB bits are copied into rAe

This instruction exists on 64-bit PowerPC implementations only.

Extended Forms:
drldi[.] rA,rS,nb
extrdi[.] rA,rS,nb,st
rotldi[.] rA,rS,nb
rotrdi[.] rA,rS,nb
srdi[.] rA,rS,nb

is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to

rldicl[.] rA,rS,O,nb
rldicl[.] rA,rS,st+nb,64-nb
rldicl[.] rA,rS,nb,O
rldicl[.] rA,rS,64-nb,O
rldicl[.] rA,rS,64-nb,nb

Instruction Set Summary 549

Instruction Encoding:
056 10 11 15 16 20 21 26 27 29 30 31

10 1 1 1 1 01 s I A I shift - 2 I mBegin 10 0 0 Ish IRe I

Note that the shift value is split into 2 fields in the encoding: the high-order bit
is stored in sh and the low-order bits are stored in shift-2. This is necessary
because a 5-bit field isn't large enough to hold a 64-bit shift value.

S
A
shift-2
mBegin
sh
Rc

550 Appendix A

Source GPR rS
Target GPR rA where result of operation is stored
Low-order bits of shift value
Bit position where mask is to start
High-order bit of shift value
Record bit

rldicr Rotate Left Doubleword
Immediate then Clear Right

rldicr
PowerPC64

Operation: r := (rS) 0 n

Syntax:

m := Mask(O,mE)
rA<=(r&m)

rldicr
rldicr.

rA,rS,n,mE
rA,rS,n,mE

(Rc = 0)
(Rc = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rldicr instruction rotates the contents of rS to the left by the number of bits
specified by the immediate value n, and then ANDs this result with a mask that
is composed of l's from bit position 0 up to mE and 0' s everywhere else. The final
result is then stored in rA.

The end result of the mask operation is that the rightmost 63-mE bits of the
rotated result are cleared before they are stored into the destination register rA.
Only the leftmost mE bits are copied into rA.

This instruction exists on 64-bit PowerPC implementations only.

Extended Forms:
clrrdi[.] rA,rS,nb
extldi[.] rA,rS,nb,st
sldi[.] rA,rS,nb

is equivalent to
is equivalent to
is equivalent to

rldicr[.] rA,rS,O,63-nb
rldicr[.] rA,rS,st,nb-l
rldicr[.] rA,rS,nb,63-nb

Instruction Set Summary 551

Instruction Encoding:
056 10 11 15 16 20 21 26 27 29 30 31

10 1 1 1 1 01 s I A I shift - 2 I mEnd I 0 0 1 I sh IRe I

Note that the shift value is split into 2 fields in the encoding: the high-order bit
is stored in sh and the low-order bits are stored in shift-2. This is necessary
because a 5-bit field isn't large enough to hold a 64-bit shift value.

S
A
shift-2
mEnd
sh
Rc

552 Appendix A

Source GPR rS
Target GPR rA where result of operation is stored
Low-order bits of shift value
Bit position where mask is to end
High-order bit of shift value
Record bit

rldimi Rotate Left Doubleword
Immediate then Mask Insert

PowerPC64

Operation: r := (rS) 0 n

Syntax:

m:= Mask(mB,63-n)
rA ¢::: (r & m) I ((rA) & ~m)

rldimi
rldimi.

rA,rS,n,mB
rA,rS,n,mB

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:

rldimi

CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rldimi instruction rotates the contents of rS to the left by the number of bits
specified by the immediate value n. This rotated result is then inserted into the
destination register rA under the control of a mask that is composed of of l's
from bit position mB up to 63-n and 0' s everywhere else.

The final result is an ~Ring of the original value of rA (wherever the mask bits
are 0) and the newly calculated rotated result (whereever the mask bits are 1).

This instruction exists on 64-bit PowerPC implementations only.

Extended Forms:
insrdi[.] rA,rS,nb,st is equivalent to rldimi[.] rA,rS,64-(st+nb),st

Instruction Encoding:
o 5 6 10 11 15 16 20 21 26 27 29 30 31

I 0 1 1 1 1 0 I s I A I shift - 2 I mBegin I 0 1 I sh I Rc I

Note that the shift value is split into 2 fields in the encoding: the high-order bit
is stored in sh and the low-order bits are stored in shift-2. This is necessary
because a 5-bit field isn't large enough to hold a 64-bit shift value.

S
A
shift-2
mBegin
sh
Rc

Source CPR rS
Target CPR rA where result of operation is stored
Low-order bits of shift value
Bit position where mask is to start
High-order bit of shift value
Record bit

Instruction Set Summary 553

rrllmn Rotate Left then Mask Insert
POWER. 601

Operation: r := (rS) Q rB[27:31]

Syntax:

m := Mask(mB,mE)
rA~(r&m) I «rA)&-m)

rlmi
rlmi.

rA,rS,rB,mB,mE
rA,rS,rB,mB,mE

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rlmi instruction rotates the contents of rS to the left by ttte number of bits
specified by rB[27:31]. This rotated result is then inserted into the d~stination
register rA under the control of a mask that is created from mB and mE as
described under the maskg instruction.

The final result is an ORing of the original value of rA (wherever the mask bits
are 0) and the newly calculated rotated result (wherever the mask bits are 1).

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 25 26 30 31

10 1 0 1 1 0 I s I A I B I mBegin I mEnd IReI

S
A
B
mBegin
mEnd
Rc

554 Appendix A

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Bit position where mask is to start
Bit position where mask is to end
Record bit

rlwimi Rotate Left Word
Immediate then Mask Insert

POWER • 601 • 603 • PowerPC32/64

rlwimi

Operation: r := (rS) Q n

Syntax:

m := Mask(mB,mE)
rA ¢= (r & m) I ((rA) & ~m)

rlwimi
rlwimi.

rA,rS,n,mB,mE
rA,rS,n,mB,mE

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rlwimi instruction rotates the contents of rS to the left by the number of bits
specified by the immediate value n. This rotated result is then inserted into the
destination register rA under the control of a mask that is composed of of l's
from bit position mB up to mE and O's everywhere else.

The final result is an ORing of the original value of rA (wherever the mask bits
are 0) and the newly calculated rotated result (wherever the mask bits are 1).

The archaic POWER mnemonic for this instruction is rlimi[.].

Extended Forms:
inslwi[.]
insrwi[.]

rA,rS,nb,st
rA,rS,nb,st

is equivalent to
is equivalent to

rlwimi[.] rA,rS,32-sf,st,(st+nb)-1
rlwimi[.] rA,rS,32-(st+nb),

st,(st+nb)-1

Instruction Encoding:
056

10 1 0 1 0 01

S
A
shift
mBegin
mEnd
Rc

10 11 15 16 20 21 25 26 30 31

s I A I shift I mBegin I mEnd IRel

Source GPR rS
Target GPR rA where result of operation is stored
Number of bits to rotate
Bit position where mask is to start
Bit position where mask is to end
Record bit

Instruction Set Summary 555

rlwinm Rotate Left Word rlwinm
Immediate then AND with Mask

POWER· 601.603 • PowerPC32/64

Operation: r := (rS) Q n

Syntax:

m := Mask(mB,mE)
rA{:=: (r & m)

rlwinm
rlwinm.

rA,rS,n,mB,mE
rA,rS,n,mB,mE

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rlwinm instruction rotates the contents of rS to the left by the number of bits
specified by the immediate value n, and then ANDs this result with a mask that
is composed of l's from bit position mB up to mE and a's everywhere else. The
final result is then stored in rA.

The archaic POWER mnemonic for this instruction is rlinm[.].

Extended Forms:
clrlslwi[.]
clrlwi[.]
clrrwi[.]
extlwi[.]
extrwi[.]
rotlwi[.]
rotrwi[.]
slwi[.]
srwi[.]

rA,rS,nb,sh
rA,rS,nb
rA,rS,nb
rA,rS,nb,st
rA,rS,nb,st
rA,rS,nb
rA,rS,nb
rA,rS,nb
rA,rS,nb

556 Appendix A

is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to

rlwinm[.] rA,rS,sh,nb-sh,31-sh
rlwinm[.] rA,rS,0,nb,31
rlwinm[.] rA,rS,0,0,31-nb
rlwinm[.] rA,rS,st,0,nb-1
rlwinm[.] rA,rS,st+nb,32-nb,31
rlwinm[.] rA,rS,nb,0,31
rlwinm[.] rA,rS,32-nb,0,31
rlwinm[.] rA,rS,nb,0,31-nb
rlwinm[.] rA,rS,32-nb,nb,31

Instruction Encoding:
o 5 6

1010 1011

S
A
shift
mBegin
mEnd
Rc

10 11 15 16 20 21 25 26 30 31

s I A I shift I mBegin I mEnd I Rc I

Source GPR rS
Target GPR rA where result of operation is stored
Number of bits to rotate
Bit position where mask is to start
Bit position where mask is to end
Record bit

Instruction Set Summary 557

rlwnm Rotate Left Word
then AND with Mask

Operation:

Syntax:

POWER. 601 • 603 • PowerPC32/64

r '= (rS) Q rB [27:31]
• 59:63

m:= Mask(mB,mE)
rA<=:(r&m)

rlwnm
rlwnm.

rA,rS,rB,mB,mE
rA,rS,rB,mB,mE

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

rlwnm

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The tlwnm in1:ltruction rotates the contents of rS to the left by the number of bits

specified by rB [;~:~~], and then ANDs this result with a mask that is composed

of l's from bit position mB up to mE and O's everywhere else. The final result is
then stored in rA.

The archaic POWER mnemonic for this instruction is rlnm[.].

Extended Forms:
rotlw[.] rA,rS,rB is equivalent to rlwnm[.] rA,rS,rB,0,31

Instruction Encoding:
o 5 6 10 11 15 16 20 21 25 26 30 31

I 0 1 0 1 1 1 I s I A I B I mBegin I mEnd I Rc I

S
A
B
mBegin
mEnd
Rc

558 Appendix A

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Bit position where mask is to start
Bit position where mask is to end
Record bit

Rotate Right And Insert Bit
POWER· 601

Operation: rA[rB[27:31]] <= rS[O]

Syntax: rrib
rrib.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The rrib instruction rotates bit 0 of r 5 to the right by the number of bits specified
in rB[27:31]. This bit is then inserted into that position in rA.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 110 0 0 0 1 100 11.1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 559

sc System Call
POWER • 601 • 603 • PowerPC32 / 64

Operation: SRRO ¢::: CIP + 4
SRRl ¢::: MSR [0,5:9, 16:31]

0:32, 37:41, 48:63

if(MSR[IP])
CIP ¢::: 'OxFFFO OCOO

else
CIP ¢::: °Oxooaa acaa

Syntax: sc

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

sc

The sc in1:itruction is used to pass control to the operating system so that it can
perform a service. The details of these services depend on the operating system.

Before passing control to the servicing routine, the address of the next instruc­
tion to execute (calculated from the Current Instruction Pointer (CIP) + 4) and
selected bits from the current MSR are saved in the SRRO and SRR1 registers,
respectively. This allows the rfi instruction to restore these values to their origi­
nal state before returning control to the program.

This instruction is context-synchronizing.

The 601 differs from the PowerPC specification in how the low-order halfword
of the SRR1 register is used. In the 601, bits 16 to 31 of the sc instruction are
copied to SRR1[0:15].

The archaic POWER mnemonic for this instruction is svca. Note that there are
many significant differences between the POWER svc[l][a] instructions and the
PowerPC sc instruction.

Instruction Encoding:
o 5 6 10 11 15 16 29 30 31

10 1 a a a 110 0 0 0 010 0 0 a 010 0 0 0 0 0 000 0 a 0 0 011101

560 Appendix A

slbia SLB Invalidate All slbia
PowerPC64

Operation: invalidate all SLB entries

Syntax: slbia

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The slbia instruction invalidates all of the entries currently in the SLB, regardless
of the current setting of the instruction and data translation bits in the MSR
(MSR[IT] and MSR[DT].

This is a supervisor-level instruction.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 110 0 0 0 010 0 0 0 010 0 0 0 010 1 1 1 1 100 1 0101

Instruction Set Summary 561

slbie SLB Invalidate Entry slbie
PowerPC64

Operation: invalidate the specified SLB entry

Syntax: slbie rB

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The slbie instruction invalidates the SLB entry which corresponds to the effec­
tive address stored in rB. The invalidation is performed regardless of the current
setting of the instruction and data translation bits in the MSR (MSR[IT] and
MSR[DT].

This is a supervisor-level instruction.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 11000001000001 B 10110110010101

B Source GPR rB

562 Appendix A

sId Shift Left Doubleword
PowerPC64

Operation: rA ¢::: (rS) « rB[57:63]

Syntax: sId
sId.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:

sId

The sId instruction shifts the source register rS to the left by the number of bits
specified in rB[57:631, and places the shifted result into rA. If the shift amount is
greater than 63, then the shifted result will be o.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

11
10 11 15 16 20 21 30 31

s I A I B 10 0 0 0 0 1 1 0 1 11Rel

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 563

Shift Left Extended
POWER. 601

Operation: rA ¢::: (rS) «rB[27:31]
MQ ¢::: (rS) Q rB[27:31]

Syntax: sle
sle.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The sle instruction shifts the contents of rS to the left by the number of bits spec­
ified by rB[27:31] and stores the result rA.

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in
the MQ register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B
Rc

564 Appendix A

10 11 15 16 20 21 30 31

s I A I B 10 0 1 0 0 1 1 0 0 1 IRe I

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Shift Left Extended with MQ
POWER· 601

Operation: r := (rS) Q rB[27:31]

Syntax:

m := Mask(0,31-rB[27:31])
rA¢=(r&m) I (MQ&~m)
MQ¢=r

sleq
sleq.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The sleq instruction shifts the contents of rS to the left by the number of bits
specified by rB[27:31] and then merges this result with the contents of the MQ
register. The rightmost rB[27:31] bits of the result are copied from the corre­
sponding bits of the MQ register instead of from the shifted result. This merged
result is stored in rA.

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in
the MQ register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10111111 s I A I B IOOl10110011 Rc i

• S Source GPR rS
A Target GPR rA where result of operation is stored
B Source GPR rB
Rc Record bit

Instruction Set Summary 565

Shift Left Immediate with MQ
POWER. 601

Operation: rA ¢= (rS) «n
MQ ¢= (rS) Q n

Syntax: sliq
sliq.

rA,rS,n
rA,rS,n

(Rc = 0)
(Rc = 1)

Condition Register / Fixed -Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The sliq instruction shifts the contents of rS to the left by the number of bits
specified by the immediate value n and stores the result rA.

In addition, the result of rotating rS by n is also calculated and stored in the MQ
register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 11 s I A I shift 10 0 1 0 1 1 1 0 0 0 IRe I

S Source GPR rS
A Target GPR rA where result of operation is stored
shift Number of bits to shift
Rc Record bit

566 Appendix A

§ n n II cg} Shift Left Long Immediate with MQ § n n II cg}
POWER· 601

Operation: r := (rS) 0 n

Syntax:

m := Mask(O,31-n)
rA<= (r & m) I (MQ & ~m)
MQ<=r

slliq
slliq.

rA,rS,n
rA,rS,n

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The slliq instruction shifts the contents of rS to the left by the number of bits
specified by the immediate value n and then merges this result with the contents
of the MQ register. The rightmost n bits of the result are copied from the corre­
sponding bits of the MQ register instead of from the shifted result. This merged
result is stored in rA.

In addition, the result of rotating rS by n is also calculated and stored in the MQ
register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10111111 s I A I shift 10011111000lRc i

S Source GPR rS
A Target GPR rA where result of operation is stored
shift Number of bits to shift
Rc Record bit

Instruction Set Summary 567

Shift Left Long with MQ
POWER. 601

Operation: r := (rS) Q rB[27:31]

Syntax:

m := Mask(O,31-rB[27:31])
if(rB[26] = 0)

rA¢= (r & m) I (MQ & -m)
else

rA¢= (MQ & m)

sllq
sllq.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The sllq instruction shifts the contents of rS to the left by the number of bits
specified by rB[27:31] and then merges this result with the contents of the MQ
register. The rightmost rB[27:31] bits of the result are copied from the corre­
sponding bits of the MQ register instead of from the shifted result. This merged
result is stored in rA.

If bit 26 of rB is 1, then the result of this instruction is simply the leftmost 32-
rB[27:31] bits of the MQ.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B
Rc

568 Appendix A

10 11 15 16 20 21 30 31

s I A I B 10 0 1 1 0 1 1 0 0 01&1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Shift Left with MQ
POWER· 601

Operation: if(rB[26] = 0)

Syntax:

rA <= (r5) « rB[27:31]
else

rA<=O
MQ <= (r5) Q rB[27:31]

slq
slq.

rA,r5,rB
rA,r5,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The slq instruction shifts the contents of rS to the left by the number of bits spec­
ified by rB[27:31] and then stores this result in rA.

If bit 26 of rB is 1, then it is assumed that the entire contents of rS have been
shifted out to the left and a result of 0 is placed in rA.

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in
the MQ register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0

[0 1 1 1 1

S
A
B
Rc

5 6

1 [
10 11 15 16 20 21 30 31

s [A [B [0 0 1 0 0 1 1 0 0 0 [Re[

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 569

slw

Operation:

Syntax:

Shift Left Word
POWER. 601 • 603 • PowerPC32/64

rA <= (rS) « rB [26:31J
58:63

slw
slw.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:

slw

The slw instruction shifts the low-order word of the source register rS to the left

by the number of bits specified in rB [~:::], and places the shifted result into rA.

If the shift amount is greater than 31, then the shifted result will be a word of 0' s.

On 64-bit PowerPC implementations, the high-order word of the result is simply
copied from the high-order word of the source register rS.

Instruction Encoding:
0 5 6

10 1 1 1 1 I

S
A
B
Rc

570 Appendix A

10 11 15 16 20 21 30 31

s I A I B 10 0 0 0 0 1 1 0 0 ol~1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

srad Shift Right Algebraic Doubleword
PowerPC64

Operation: rA ~ (rS) » rB[57:63]

Syntax: srad
srad.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register I Fixed-Point Exception Register:

srad

CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER[CA):
XER[OV,SO):

Description:

always updated
not affected

The srad instruction shifts the source register rS to the right by the number of
bits specified in rB[57:63), replicating bit 0 of rS as the shift occurs. The result of
this operation is stored in rA. Shift amounts greater than 63 result in rA being
loaded with 64 sign bits from rS.

The XER[CA) bit is normally set to 0, but is set to 1 if the result is negative and
any 1 bits have been shifted out to the right.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 11 1 000 1 1 0 1 01&1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 571

sradi Shift Right Algebraic
Doubleword Immediate

PowerPC64

Operation: rA ¢= (rS) :) n

Syntax: sradi
sradi.

rA,rS,n
rA,rS,n

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

sradi

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]:
XER[OV,SO]:

Description:

always updated
not affected

The sradi instruction shifts the source register rS to the right by the number of
bits specified by the immediate value n, replicating bit 0 of rS as the shift occurs.
The result of this operation is stored in rA. A shift amount of 0 causes rA to be set
equal to rS.

The XER[CA] bit is normally set to 0, but is set to 1 if the result is negative and
any 1 bits have been shifted out to the right.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
o 5 6 10 II 15 16 20 21 29 30 31

10 1 1 1 1 11 s I A I shift - 2 11 1 0 0 1 1 1 0 1 I sh IRe I

Note that the shift value is split into 2 fields in the encoding: the high-order bit
is stored in sh and the low-order bits are stored in shift-2. This is necessary
because a 5-bit field isn't large enough to hold a 64-bit shift value.

S
A
shift-2
sh
Rc

572 Appendix A

Source GPR rS
Target GPR rA where result of operation is stored
Low-order bits of shift value
High-order bit of shift value
Record bit

Shift Right Algebraic
Immediate with MQ

POWER. 601

Operation: rA ¢::: (rS) I> n
MQ ¢::: (rS) Q n

Syntax: sraiq
sraiq.

rA,rS,n
rA,rS,n

(Rc = 0)
(Rc = 1)

Condition Register I Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]:
XER[OV,SO]:

Description:

always updated
not affected

The sraiq instruction shifts the contents of rS to the right by the number of bits
specified by the immediate value n, replicating bit 0 of rS as the shift occurs. The
result of this operation is stored in rA.

In addition, the result of rotating rS by n is also calculated and stored in the MQ
register.

Field 0 of the CR is updated to reflect the result of this operation if the instruc­
tion's Record (Rc) bit is set. The Carry (CA) bit of the XER is always affected by
this instruction.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
056 10 11 15 16 20 21 30 31

10111111 s I A I shift 11110111000lRc i

S Source GPR rS
A Target GPR rA where result of operation is stored
shift Number of bits to shift
Rc Record bit

Instruction Set Summary 573

Shift Right Algebraic with MQ
POWER. 601

Operation: if(rB[26] = 0)

Syntax:

rA <= (rS) ~ rB[27:31]
else

rA <= rS[O]
MQ <= (rS) Q rB[27:31]

sraq
sraq.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,CT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: always updated
XER[OV,SO]: not affected

Description:
The sraq instruction shifts the contents of rS to the right by the number of bits
specified by rB[27:3I], replicating bit 0 of rS as the shift occurs. The result of this
operation is stored in rA.

If bit 26 of rB is I, then it is assumed that the entire contents of rS have been
shifted out to the right and a word of sign bits from rS is placed in rA.

In addition, the result of rotating rS by rB[27:3I] is also calculated and stored in
the MQ register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B
Rc

574 Appendix A

10 11 15 16 20 21 30 31

s I A I B 11 1 1 0 0 1 1 0 0 0 IRe I

Source CPR rS
Target CPR rA where result of operation is stored
Source CPR rB
Record bit

sraw

Operation:

Syntax:

Shift Right Algebraic Word
POWER· 601 • 603 • PowerPC32/64

rA <= (rS) » rB [26:31J
58:63

sraw
sraw.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:

sraw

CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]:
XER[OV,SO]:

Description:

always updated
not affected

The sraw instruction shifts the low-order word of source register rS to the right

by the number of bits specified in rB [~~~~], replicating bit 0 of rS as the shift

occurs. The result of this operation is stored in rA. Shift amounts greater than 63
result in rA being loaded with 64 sign bits from rS.

The XER[CA] bit is normally set to 0, but is set to 1 if the result is negative and
any 1 bits have been shifted out to the right.

On 64-bit PowerPC implementations, the result is copied into the low-order
word of the destination register and then sign-extended to fill the entire register.

The archaic POWER mnemonic for this instruction is sra[.].

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 I s I A I B 11 1 000 1 1 0001.1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 575

• • srawl Shift Right Algebraic
Word Immediate

POWER • 601 • 603 • PowerPC32/64

sraWl

Operation: rA ¢::: (rS) ~ n

Syntax: srawi
srawi.

rA,rS,n
rA,rS,n

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-PointException Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]:
XER[OV,SO]:

Description:

always updated
not affected

The srawi instruction shifts the low-order word of source register rS to the right
by the number of bits specified by the immediate value n, replicating bit 0 of rS
as the shift occurs. The result of this operation is stored in rA. A shift amount of
o causes rA to be set equal to rS.

The XER[CA] bit is normally set to 0, but is set to 1 if the result is negative and
any 1 bits have been shifted out to the right.

On 64-bit PowerPC implementations, the result is copied into the low-order
word of the destination register and then sign-extended to fill the entire register.

The archaic POWER mnemonic for this instruction is srai[.].

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 I s I A I shift 11 1 0 0 1 1 1 0 0 0 IRe I

S Source GPR rS
A Target GPR rA where result of operation is stored
shift Number of bits to shift
Rc Record bit

576 Appendix A

srd Shift Right Doubleword
PowerPC64

Operation: rA ~ (rS))} rB[57:63]

Syntax: srd
srd.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:

srd

The srd instruction shifts the source register rS to the right by the number of bits
specified in rB[57:63], and places the shifted result into rA. If the shift amount is
greater than 63, then the shifted result will be O.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 11 0 0 0 0 1 1 0 1 11 Re l

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 577

Shift Right Extended
POWER. 601

Operation: rA ¢= (rS») rB[27:31]
MQ ¢= (rS) Q rB[27:31]

Syntax: sre
sre.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register/Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The sre instruction shifts the source register rS to the right by the number of bits
specified in rB[27:31], and places the shifted result into rA.

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in
the MQ register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B
Rc

578 Appendix A

10 11 15 16 20 21 30 31

s I A I B IIOIOOIIOOIIRcl

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Shift Right Extended Algebraic
POWER. 601

Operation: rA ¢= (rS) :, rB[27:31]
MQ ¢= (rS) 0 rB[27:31]

Syntax: srea
srea.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]:
XER[OV,SO]:

Description:

always updated
not affected

The sre instruction shifts the source register rS to the right by the number of bits
specified in rB[27:31], replicating bit 0 of rS as the shift occurs. The result of this
operation is stored in rA.

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in
the MQ register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 1
10 11 15 16 20 21 30 31

s 1 A 1 B 111100110011Rc l

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 579

Shift Right Extended with MQ
POWER. 601

Operation: r := (rS) Q rB[27:31]

Syntax:

m := Mask(rB[27:31],31)
rA¢:= (r & m) I (MQ & ~m)
MQ ¢:= r

sreq
sreq.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The sreq instruction shifts the contents of rS to the right by the number of bits
specified by rB[27:31], and then merges this result with the contents of the MQ
register. The leftmost rB[27:31] bits of the result are copied from the correspond­
ing bits of the MQ register instead of from the shifted result. This merged result
is stored in rA.

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in
the MQ register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B
Rc

580 Appendix A

10 11 15 16 20 21 30 31

s I A I B IIOIIOIIOOIIRcl

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

o

§ITIl~ Shift Right Immediate with MQ
POWER· 601

Operation: rA <= (rS) » n
MQ <= (rS) Q n

Syntax: sriq
sriq.

rA,rS,n
rA,rS,n

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:

o

§ITIl~

CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The sriq instruction shifts the source register rS to the right by the number of bits
specified by the immediate value n, and places the shifted result into rA.

In addition, the result of rotating rS by n is also calculated and stored in the MQ
register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10111111 s I A I shift 11 0 1 0 1 1 1 0 0 0 IRel

S Source GPR rS
A Target GPR rA where result of operation is stored
shift Number of bits to shift
Rc Record bit

Instruction Set Summary 581

§ IT n II cg} Shift Right Long Immediate with MQ § IT n II cg}
POWER. 601

Operation: r := (rS) Q n

Syntax:

m := Mask(n,31)
rA<= (r & m) I (MQ & m)
MQ<=r

srliq
srliq.

rA,rS,n
rA,rS,n

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The srliq instruction shifts the contents of rS to the right by the number of bits
specified by the immediate value n, and then merges this result with the con­
tents of the MQ register. The leftmost n bits of the result are copied from the
corresponding bits of the MQ register instead of from the shifted result. This
merged result is stored in rA.

In addition, the result of rotating rS by n is also calculated and stored in the MQ
register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 1 I s I A I shift 11 0 1 1 1 1 1 0 0 0 IRe I

S Source GPR rS
A Target GPR rA where result of operation is stored
shift Number of bits to shift
Rc Record bit

582 Appendix A

Shift Right Long with MQ
POWER. 601

Operation: r := (rS) Q rB[27:31]

Syntax:

m := Mask(rB[27:31],31)
H(rB[26] = 0)

rA <= (r & m) I (MQ & ,....m)
else

rA<= (MQ & m)

srlq
srlq.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The srlq instruction shifts the contents of rS to the right by the number of bits
specified by rB[27:31] and then merges this result with the contents of the MQ
register. The leftmost rB[27:31] bits of the result are copied from the correspond­
ing bits of the MQ register instead of from the shifted result. This merged result
is stored in rA.

If bit 26 of rB is 1, then the result of this instruction is simply the rightmost 32-
rB[27:31] bits of the MQ.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 1
10 11 15 16 20 21 30 31

s 1 A 1 B 11011011000lRc I

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

Instruction Set Summary 583

Shift Right with MQ
POWER. 601

Operation: if(rB[26] = 0)

Syntax:

rA ¢::: (rS) »rB[27:31]
else

rA ¢::: 0
MQ ¢::: (rS) Q rB[27:31]

srq
srq.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:
The srq instruction shifts the contents of rS to the right by the number of bits
specified by rB[27:31] and then stores this result in rA.

If bit 26 of rB is I, then it is assumed that the entire contents of rS have been
shifted out to the right and a result of 0 is placed in rA.

In addition, the result of rotating rS by rB[27:31] is also calculated and stored in
the MQ register.

This instruction is not part of the PowerPC architecture.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B
Rc

584 Appendix A

10 11 15 16 20 21 30 31

s I A I B 110 1 001 100 01&1

Source GPR rS
Target GPR rA where result of operation is stored
Source GPR rB
Record bit

srw Shift Right Word
POWER. 601 • 603 • PowerPC32/64

Operation: rA <== (rS) » rB [~~:~~J

Syntax: srw
srw.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,CT,EQ,SO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:

srw

The srw instruction shifts the source register rS to the right by the number of bits

specified in rB [~;:~~l and places the shifted result into rA. If the shift amount is

greater than 31, then the shifted result will be o.
The archaic POWER mnemonic for this instruction is sr[.].

Instruction Encoding:
0

10 1 1 1 1

S
A
B
Rc

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 11 0 0 0 0 1 1 0 0 0 IRe I

Source CPR rS
Target CPR rA where result of operation is stored
Source CPR rB
Record bit

Instruction Set Summary 585

stb Store Byte stb
POWER. 601 .603 • PowerPC32/64

Operation: Byte «rA I 0) + 'd) ¢:::: rS [;::~;J

Syntax: 8th rS,d(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affe(:ted

Description:
The stb instruction stores the low-order byte of the source register rS into the
byte located at the effective address calculated from (rA I 0) + 'd.

Instruction Encoding:
o 5 6 10 11 15 16 31

11001101 s 1 A 1 d

S Source GPR rS
A Source GPR rA
d Signed 16-bit displacement

586 Appendix A

stbu Store Byte with Update
POWER • 601 • 603 • PowerPC32/64

Operation: Byte ((rA) + 'd) <= rS [~!:~;J

rA <= (rA) + 'd

Syntax: stbu rS,d(rA)

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stbu

The stbu instruction stores the low-order byte of the source register rS into the
byte located at the effective address calculated from (rA) + 'd.

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
'd, and rO is not updated with the effective address.

Instruction Encoding:
o 5 6 10 11 15 16 31

11001111 s I A I d

S Source GPR rS
A Source GPR rA
d Signed 16-bit displacement

Instruction Set Summary 587

stbux Store Byte with Update Indexed
POWER. 601 • 603 • PowerPC32/64

Operation: Byte «rA) + (rB» ¢:::: rS [;~;~;J

rA ¢:::: (rA) + (rB)

Syntax: stbux rS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stbux

The stbux instruction stores the low-order byte of the source register rS into the
byte located at the effective address calculated from (rA) + (rB).

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
(rB), and rO is not updated with the effective address.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B

588 Appendix A

10 11 15 16 20 21 30 31

s I A I B 10011110111101

Source GPR rS
Source GPR rA
Source GPR rB

stbx Store Byte Indexed
POWER. 601 • 603 • PowerPC32/64

Operation: Byte ((rA I 0) + (rB)) ¢= rS [;!:~;J

Syntax: stbx rS,rA,rB

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stbx

The stbx instruction stores the low-order byte of the source register rS into the
byte located at the effective address calculated from (rA I 0) + (rB).

Instruction Encoding:
0

10 1 1 1 1

S
A
B

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 10011010111101

Source GPR rS
Source GPR rA
Source GPR rB

Instruction Set Summary 589

std Store Doubleword std
PowerPC64

Operation: Doubleword((rA I 0) + '(ds.l bOO)) <= rS

Syntax: std rS,ds(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The std instruction stores all 64 bits of the source register rS into the doubleword
located at the effective address calculated from (rA 10) + '(ds 1.. bOO).

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0 5 6 10 11 15 16 29 30 31

11 1 1 1 1 01 s I A I ds 10 01

S Source GPR rS
A Source GPR rA
ds Signed 16-bit displacement

590 Appendix A

stdcx. Store Doubleword
Conditional Indexed

PowerPC64

Operation: if reservation on ((rA I 0) + (rB))
Doubleword((rA I 0) + (rB» ¢::: rS
CR{O} = bam J.. XER[SO]

else
CR{O} = bOOO J.. XER[SO]

Syntax: stdcx. rS,rA,rB

Condition Register / Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO always updated
CR Fields 1-7: not affected

XER: not affected

Description:

stdcx.

If a reservation exists for the effective address calculated from (rA I 0) + (rB), the
stdcx. instruction stores the doubleword in rS into memory starting at that effec­
tive address. After the store completes, the reservation is cleared.

If a reservation does not exist for this address, the stdcx. instruction does not
perform the store operation. A reservation can be placed using the ldarx instruc­
tion.

The calculated effective address must specify an aligned doubleword (i.e.: it
must be a multiple of 8). If the address does not specify an aligned doubleword,
the alignment exception handler may be invoked (if the load crosses a page
boundary), or the results may be boundedly undefined.

The EQ bit of CR field 0 is updated to indicate whether or not the store operation
was performed. This bit is set to 1 if the store was performed and 0 if it was not.
The SO bit of CR{O} is copied from XER[SO] and the remaining bits of the field
are cleared.

If the address references a direct-store storage segment, then a Data Storage inter­
rupt occurs or the results are boundedly undefined.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Set Summary 591

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 I s I A I B 10 0 1 1 o 1 0 1 1 o 111

S Source GPR rS
A Source GPR rA
B Source GPR rB

592 Appendix A

stdu Store Doubleword with Update
PowerPC64

Operation: Doubleword «rA) + '(ds .1 bOO)) <= rS
rA <= (rA) + '(ds .1 bOO)

Syntax: stdu rS,ds(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stdu

The stdu instruction stores all 64 bits of the source register rS into the double­
word located at the effective address calculated from (rA) + '(ds 1.. baa).

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
o 5 6 10 11 15 16 29 30 31

11111101 s 1 A 1 ds

S Source GPR rS
A Source GPR rA
ds Signed 16-bit displacement

Instruction Set Summary 593

stdux Store Doubleword
with Update Indexed

PowerPC64

Operation: Doubleword «rA) + (rB» <= rS
rA <= (rA) + (rB)

Syntax: stdux rS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stdux

The stdux instruction stores all 64 bits of the source register rS into the double­
word located at the effective address calculated from (rA) + (rB).

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid.

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 1

S
A
B

594 Appendix A

10 11 15 16 20 21 30 31

s 1 A 1 B 10 0 1 0 1 10 101101

Source GPR rS
Source GPR rA
Source GPR rB

stdx Store Doubleword Indexed stdx
PowerPC64

Operation: Doubleword «rA I 0) + (rB)) ¢::: rS

Syntax: stdx rS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The stdx instruction stores all 64 bits of the source register rS into the double­
word located at the effective address calculated from (rA I 0) + (rB).

This instruction exists on 64-bit PowerPC implementations only.

Instruction Encoding:
0

\0 1 1 1 1

S
A
B

5 6

1 \
10 11 15 16 20 21 30 31

s \ A \ B \0010010101\0\

Source GPR rS
Source GPR rA
Source GPR rB

Instruction Set Summary 595

stfd Store Floating-Point Double-Precision
POWER. 601.603 • PowerPC32/64

Operation: FP-Double«rA I 0) + 'd) ¢= frS

Syntax: stfd frS,d(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stfd

The stfd instruction stores the 64-bit double-precision value from the source reg­
ister frS into the doubleword located at the effective address calculated from
(rA I 0) + 'd.

This instruction affects neither the CR nor the XER.

Instruction Encoding:
o 5 6 10 11 15 16 31

11 101 101 s I A I d

S Source FPR frS
A Source GPR rA
d Signed 16-bit displacement

596 Appendix A

stfdu Store Floating-Point
Double-Precision with Update

POWER. 601 • 603 • PowerPC32/64

Operation: FP-Double «rA) + 'd) <= frS
rA <= (rA) + 'd

Syntax: stfdu frS,d(rA)

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stfdu

The stfdu instruction stores the 64-bit double-precision value from the source
register frS into the doubleword located at the effective address calculated from
(rA) + 'd.

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
'd, and rO is not updated with the effective address.

Instruction Encoding:
o 5 6 10 11 15 16 31

11101111 s I A I d

S Source FPR frS
A Source GPR rA
d Signed 16-bit displacement

Instruction Set Summary 597

stfd ux Store Floating-Point Double- S tfd ux
Precision with Update Indexed

POWER. 601 • 603 • PowerPC32/64

Operation: FP-Double «rA) + (rB» <= frS
rA <= (rA) + (rB)

Syntax: stfdux frS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The stfdux instruction stores the 64-bit double-precision value from the source
register frS into the doubleword located at the effective address calculated from
(rA) + (rB).

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
(rB), and rO is not updated with the effective address.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B

598 Appendix A

10 11 15 16 20 21 30 31

s I A I B 11 011110111101

Source FPR frS
Source GPR rA
Source GPR rB

stfdx Store Floating-Point
Double-Precision Indexed

POWER. 601 • 603 • PowerPC32/64

Operation: FP-Double ((rA I 0) + (rB» ¢::: frS

Syntax: stfdx frS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stfdx

The stfdx instruction stores the 64-bit double-precision value from the source
register frS into the doubleword located at the effective address calculated from
(rA I 0) + (rB).

Instruction Encoding:
0

10 1 1 1 1

s
A
B

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 11011010111101

Source FPR frS
Source GPR rA
Source GPR rB

Instruction Set Summary 599

stfiwx Store Floating-Point
as Integer Word

603. PowerPC32/64

Operation: Word ((rA I 0) + (rB)) ¢= frS[32:63]

Syntax: stfiwx frS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stfiwx

The stfiwx instruction stores the low-order 32 bits of the frS into the word
addressed by ((rA I 0) + (rB». No conversion of any sort is performed on the data
before it is stored.

If the value in frS was derived (either directly or indirectly) from any of the Load
Floating-Point Single-Precision instructions, any single-precision arithmetic
instruction, or the Floating-Point Round to Single-Precision instruction, then the
value stored in memory is undefined. This gives the designers of PowerPC pro­
cessors the option of changing the register storage format for single-precision
values.

This instruction is an optional part of the PowerPC architecture. It is part of the
Graphical group of optional instructions.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B

600 Appendix A

10 11 15 16 20 21 30 31

s I A I B 11111010111101

Source FPR frS
Source GPR rA
Source GPR rB

stfs Store Floating-Point Single-Precision
POWER. 601 • 603 • PowerPC32/64

Operation: FP-Single «rA I 0) + 'd) ¢= frS

Syntax: stfs frS,d(rA)

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stfs

The stfs instruction takes the 64-bit double-precision value from the source reg­
ister frS, converts it into a 32-bit single-precision value, and then stores it into the
word located at the effective address calculated from (rA I 0) + 'd.

If the converted value does not fit in single-precision format, then the stored
value is undefined.

Instruction Encoding:
056 ill II ~ M 31

[I 101 0 o[S [A [d

S Source FPR frS
A Source CPR rA
d Signed 16-bit displacement

Instruction Set Summary 601

stfsu Store Floating-Point
Single-Precision with Update

POWER. 601 • 603 • PowerPC32/64

Operation: FP-Single «rA) + 'd) ¢::: frS
rA ¢::: (rA) + 'd

Syntax: stfsu frS,d(rA)

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stfsu

The stfsu instruction takes the 64-bit double-precision value from the source reg­
ister frS, converts it into a 32-bit single-precision value, and then stores it into the
word located at the effective address calculated from (rA) + 'd.

After the store is performed, the effective address is stored in rA.

If to is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
'd, and rO is not updated with the effective address.

If the converted value does not fit in single-precision format, then the stored
value is undefined.

Instruction Encoding:
o 5 6 10 11 15 16 31

11101011 s 1 A 1 d

S Source FPR frS
A Source CPR rA
d Signed 16-bit displacement

602 Appendix A

slfsux Store Floating-Point Single­
Precision with Update Indexed

POWER • 601 • 603 • PowerPC32/64

Operation: FP-Single «rA) + (rB)) ¢= frS
rA ¢= (rA) + (rB)

Syntax: stfsux frS,rA,rB

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

slfsux

The stfsux instruction takes the 64-bit double-precision value from the source
register frS, converts it into a 32-bit single-precision value, and then stores it into
the word located at the effective address calculated from (rA) + (rB).

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
(rB), and rO is not updated with the effective address.

If the converted value does not fit in single-precision format, then the stored
value is undefined.

Instruction Encoding:
0

(0 1 1 1 1

S
A
B

5 6

1 (
10 11 15 16 20 21 30 31

s (A (B (1010110111(01

Source FPR frS
Source GPR rA
Source GPR rB

Instruction Set Summary 603

stfsx Store Floating-Point
Single-Precision Indexed
POWER. 601 .603 • PowerPC32/64

Operation: FP-Single ((rA I 0) + (rB» ¢= frS

Syntax: stfsx frS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stfsx

The slfsx instruction takes the 64-bit double-precision value from the source reg­
ister frS, converts it into a 32-bit single-precision value, and then stores it into the
word located at the effective address calculated from (rA I 0) + (rB).

If the converted value does not fit in single-precision format, then the stored
value is undefined.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B

604 Appendix A

10 11 15 16 20 21 30 31

s I A I B 110 1 0010 1 1 1101

Source FPR frS
Source GPR rA
Source GPR rB

sth Store Halfword sth
POWER. 601 • 603 • PowerPC32/64

Operation: Halfword((rA 10) + 'd) <= rS [!::~~J

Syntax: sth rS,d(rA)

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The sth instruction stores the low-order 16 bits of the source register rS into the
halfword located at the effective address calculated from (rA I 0) + 'd.

Instruction Encoding:
o 5 6 10 11 15 16 31

11011001 s 1 A 1 d

S Source CPR rS
A Source CPR rA
d Signed 16-bit displacement

Instruction Set Summary 605

sthbrx Store Halfword
Byte-Reversed Indexed

POWER. 601 • 603 • PowerPC32/64

sthbrx

Operation: Halfword «rA I 0) + (rB» <= rT[24:31] 1.. rT[16:23]

Syntax: sthbrx rS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The sthbrx instruction takes the low-order halfword of the source register rS,
swaps the two bytes of this halfword, and then stores this byte-reversed halfword
into the memory halfword addressed by (rA I 0) + (rB).

For some PowerPC implementations, this byte-reversed store instruction may
have a greater latency than other store instructions.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B

606 Appendix A

10 11 15 16 20 21 30 31

s I A I B 11110010110101

Source GPR rS
Source GPR rA
Source GPR rB

sthu Store Halfword with Update
POWER • 601 • 603 • PowerPC32/64

Operation: Halfword ((rA) + 'd) <= rS m:~;J

rA <= (rA) + 'd

Syntax: sthu rS,d(rA)

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

sthu

The sthu instruction stores the low-order 16 bits of the source register rS into the
halfword located at the effective address calculated from (rA) + 'd.

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
'd, and rO is not updated with the effective address.

Instruction Encoding:
o 5 6 10 11 15 16 31

11011011 s I A I d

S Source GPR rS
A Source GPR rA
d Signed 16-bit displacement

Instruction Set Summary 607

sthux Store Halfword
with Update Indexed

POWER· 601 • 603 • PowerPC32/64

Operation: Halfword «rA) + (rB)) ¢= rS [!~:~J

rA ¢= (rA) + (rB)

Syntax: sthux rS,rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

sthux

The sthux instruction stores the low-order 16 bits of the source register rS into
the halfword located at the effective address calculated from (rA) + (rB).

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
(rB), and rO is not updated with the effective address.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 1

S
A
B

608 Appendix A

10 11 15 16 20 21 30 31

s 1 A 1 B 10110110111101

Source GPR rS
Source GPR rA
Source GPR rB

sthx Store Halfword Indexed sthx
POWER· 601 • 603 • PowerPC32/64

Operation: Halfword ((rA I 0) + (rB)) <= rS [!~~~;J

Syntax: sthx rS,rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The sthx instruction stores the low-order 16 bits of the source register rS into the
halfword located at the effective address calculated from (rA I 0) + (rB).

Instruction Encoding:
0

10 1 1 1 1

S
A
B

5 6

1 I
10 11 15 16 20 21 30 31

s I A I B 10 1 100 1 0 1 1 1101

Source GPR rS
Source GPR rA
Source GPR rB

Instruction Set Summary 609

stmw Store Multiple Word
POWER • 601 • 603 • PowerPC32/64

Operation: ea := (rA I 0) + 'd
R:=T

Syntax:

while (R ~ 31)

Word (ea) <= rR [~~~~]

ea:= ea + 4
R :=R+ 1

stmw rS,d(rA)

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stmw

The stmw instruction stores words from a set of GPRs into memory. The set of
GPRs starts with register rS and continues up to register r31. The address of the
first word to be stored is specified by the effective· address calculated from
(rA I 0) + 'd. Consecutive registers are stored in consecutive words from this
starting point.

On 64-bit PowerPC implementations, only the low-order word of each register
is stored into memory.

The calculated effective address must specify an aligned word (Le., it must be a
multiple of 4). If the address does not specify an aligned word, the alignment
exception handler may be invoked (if the store crosses a page boundary), or the
results may be boundedly undefined.

The preferred form for this instruction is when the effective address and rT are
chosen so that the low-order byte from r31 is stored into the last byte of an
aligned quadword in memory. It is possible that some PowerPC implementa­
tions will execute non-preferred forms more slowly than the preferred forms. On
future implementations, this instruction may execute more slowly than a series
of instructions that perform the same operation.

The archaic POWER mnemonic for this instruction is stm.

610 Appendix A

Instruction Encoding:
056 10 11 ~ 16 31

11011111 s I A I d

S First source GPR rS to store in memory
A Source GPR rA
d Signed 16-bit displacement

Instruction Set Summary 611

stswi Store String Word Immediate
POWER • 601 • 603 • PowerPC32/64

Operation: store nBytes bytes from registers into memory

Syntax: stswi rS,rA,nBytes

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stswi

The stswi instruction stores bytes into memory from a set of GPRs. The number
of bytes (specified by the immediate nBytes value) are stored into memory start­
ing with the address calculated from (rA I 0). The stored data comes from the
GPRs starting with rS and continuing up toward r31 for as many registers as are
needed to produce nBytes bytes. The register sequence wraps from r31 to rO if
necessary.

The bytes from each register are stored starting with the leftmost byte in the low­
order word and continuing to the rightmost byte of the register. On 64-bit Pow­
erPC implementations, only the low-order word of each register is stored into
memory.

If 0 is specified for nBytes, then the number of bytes stored is 32.

The operation of this instruction can be summarized as follows:

ea:= (rA I 0)
R:= 5-1

i:= [~]

if(nBytes = a)
nBytes:= 32

while(nBytes > 0)

if(i = [~])

R := (R + 1) % 32
Byte(ea) <= rR[i : (i+7)]
i:= i + 8

if(i = [~])

i:= [~]

ea:= ea + 1
nBytes := nBytes - 1

612 Appendix A

The preferred form for this instruction is when the starting register rS is r5. It is
possible that some PowerPC implementations will execute non-preferred forms
more slowly than the preferred forms. Because of the complexity of this instruc­
tion, it is also possible that, on some implementations, this instruction may exe­
cute slower than a series of instructions that perform the same operation.

Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked.

The archaic POWER mnemonic for this instruction is stsi.

Instruction Encoding:

10
5 6

1 1 1 1 I

S
A
nBytes

10 11 15 16 20 21 30 31

s I A I nBytes 11 0 1 1 0 1 0 1 0 1 I 0 I

First source GPR rS to store in memory
Source GPR rA
Number of bytes to store

Instruction Set Summary 613

stswx Store String Word Indexed
POWER· 601 • 603 • PowerPC32/64

stswx

Operation: store XER[25:31] bytes from registers into memory

Syntax: stswx rS,rA,rB

Condition Register / Fixed -Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The stswx instruction stores bytes into memory from a set of GPRs. The number
of bytes (specified by bits 25 to 31 of the XER) are stored into memory starting
with the address calculated from (rA I 0). The stored data comes from the GPRs
starting with rS and continuing up toward r31 for as many registers as are
needed to produce the required number of bytes. The register sequence wraps
from r31 to rO if necessary.

The bytes from each register are stored starting with the leftmost byte in the low­
order word and continuing to the rightmost byte of the register. On 64-bit Pow­
erPC implementations, only the low-order word of each register is stored into
memory.

The operation of this instruction can be summarized as follows:

ea := (rA I O)+(rB)
R:= 5-1
nBytes := XER[25:31]

i:= [~]

while(nBytes > 0)

if(i = [£])

R := (R + 1) % 32
Byte(ea) ¢::: rR[i : (i+7)]
i:= i + 8

if(i = [~])

i:= [£]

ea:= ea + 1
nBytes := nBytes - 1

If XER[25:31] is 0, then no bytes are stored into memory.

614 Appendix A

The preferred form for this instruction is when the starting register rS is r5 and
the total number of registers being loaded is less than or equal to 12. It is possible
that some PowerPC implementations will execute non-preferred forms more
slowly than the preferred forms. Because of the complexity of this instruction, it
is also possible that, on some implementations, this instruction may execute
slower than a series of instructions that perform the same operation.

Executing this instruction when the processor is operating in little-endian byte­
order mode will cause the system alignment error handler to be invoked.

The archaic POWER mnemonic for this instruction is stsx.

Instruction Encoding:
0

10 1 1 1 1

S
A
B

5 6

11
10 11 15 16 20 21 30 31

s I A I B 110 1 0010 101101

Source GPR rS
Source GPR rA
Source GPR rB

Instruction Set Summary 615

stw Store Word stw
POWER. 601 • 603 • PowerPC32j64

Operation: Word«rA I 0) + 'd) ¢= rS [~~;6~J

Syntax: stw rS,d(rA)

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The stw instruction stores the low-order 32 bits of the source register rS into the
word located at the effective address calculated from (rA I 0) + 'd.

Instruction Encoding:
056 10 11 15 16 31

11 0 0 1 0 01 s I A I d

S Source CPR rS
A Source CPR rA
d Signed 16-bit displacement

616 Appendix A

stwbrx Store Word
Byte-Reversed Indexed

POWER • 601 • 603 • PowerPC32/64

Operation: Word ((rA I 0) + (rB))

stwbrx

<= rT[24:31] 1- rT[16:23] ..L rT[7:1S] 1- rT[0:7]

Syntax: stwbrx rS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The stwbrx instruction takes the low-order word of the source register rS,
reverses the four bytes of this word, and then stores this byte-reversed word into
the memory word addressed by (rA I 0) + (rB).

For some PowerPC implementations, this byte-reversed store instruction may
have a greater latency than other store instructions.

Instruction Encoding:
0

10 1 1 1 1

S
A
B

5 6

11
10 11 15 16 20 21 30 31

s I A I B 110 100 1 0 1 10101

Source GPR rS
Source GPR rA
Source GPR rB

Instruction Set Summary 617

stwcx. Store Word Conditional Indexed stWCX.
POWER. 601 • 603 • PowerPC32/64

Operation: if reservation on ((rA I 0) + (rB))
Word«rA I 0) + (rB» ¢= rS
CR{O} = bOOl1. XER[SO]

else
CR{O} = bOOO 1. XER[SO]

Syntax: stwcx. rS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
If a reservation exists for the effective address calculated from (rA I 0) + (rB), the
stwcx. instruction stores the word in rS into memory starting at that effective
address. After the store completes, the reservation is cleared.

If a reservation does not exist for this address, the stwcx. instruction does not
perform the store operation. A reservation can be placed using the lwarx instruc­
tion.

The calculated effective address must specify an aligned word (i.e.: it must be a
multiple of 4). If the address does not specify an aligned word, the alignment
exception handler may be invoked (if the load crosses a page boundary), or the
results may be boundedly undefined.

The EQ bit of CR field 0 is updated to indicate whether or not the store operation
was performed. This bit is set to 1 if the store was performed and 0 if it was not.
The SO bit of CR{O} is copied from XER[SO] and the remaining bits of the field
are cleared.

If the address references a direct-store storage segment, then a Data Storage inter­
rupt occurs or the results are boundedly undefined.

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

S
A
B

618 Appendix A

10 11 15 16 20 21 30 31

s I A I B 10 0 1 0 0 1 0 1 10111

Source CPR rS
Source CPR rA
Source CPR rB

stwu Store Word with Update
POWER • 601 • 603 • PowerPC32/64

Operation: Word ((rA) + 'd) ¢= rS [~~~i3J

rA ¢= (rA) + 'd

Syntax: stwu rS,d(rA)

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

stwu

The stwu instruction stores the low-order 32 bits of the source register rS into the
word located at the effective address calculated from (rA) + 'd.

After the store is performed, the effective address is stored in rA.

If rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
'd, and rO is not updated with the effective address.

Instruction Encoding:
o 5 6 10 11 15 16 31

11001011 s I A I d

S Source GPR rS
A Source GPR rA
d Signed 16-bit displacement

Instruction Set Summary 619

stwux Store Word with Update Indexed stwux
POWER· 601 • 603 • PowerPC32/64

Operation: Word «rA I 0) + (rB)) ¢= rS [~~;i3J

rA ¢= (rA) + (rB)

Syntax: stwux rS,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The stwux instruction stores the low-order 32 bits of the source register rS into
the word located at the effective address calculated from (rA I 0) + (rB).

After the store is performed, the effective address is stored in rA.

H rO is specified as rA, then the instruction form is invalid. For POWER compat­
ibility, the 601 allows rA to specify rO, but the effective address is calculated from
(rB), and rO is not updated with the effective address.

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

10 1 1 1 11 s I A I B 10 010 1 1 0 1 1 110 I

S Source GPR rS
A Source GPR rA
B Source GPR rB

620 Appendix A

stwx Store Word Indexed stwx
POWER • 601 • 603 • PowerPC32 / 64

Operation: Word «rA I 0) + (rB» ¢= rS [~~;~J

Syntax: stwx rS,rA,rB

Condition Register/Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The stwx instruction stores the low-order 32 bits of the source register rS into the
word located at the effective address calculated from (rA I O) + (rB).

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 11 s I A I B 10 0 100 1 0 1 1 110 I

S Source GPR rS
A Source GPR rA
B Source GPR rB

Instruction Set Summary 621

subf Subtract From subf
POWER. 601 • 603 • PowerPC32 / 64

Operation: rT {= (rB) - (rA)

Syntax: subf
subf.
subfo
subfo.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc = 0, OE = 1)
(Rc = 1, OE = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: not affected
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The subf instruction subtracts the contents of GPR rA from GPR rB and places
the result in GPR rT. The operation treats the operand values as signed quanti­
ties.

Extended Forms:
There is one extended form for the subf instruction which rearranges the
operands into a more natural order.

sub[oH.] rT,rA,rB is equivalent to subf[o][.] rT,rB,rA

Instruction Encoding:
0 5 6

10 1 1 1 1 I

T
A
B
OE
Rc

622 Appendix A

10 11 15 16 20 21 22 30 31

T I A I B 1001000101000IRci

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

subfc Subtract From Carrying
POWER. 601 • 603 • PowerPC32/64

subfc

Operation: rT ¢::: (rB) - (rA)

Syntax: subfc
subfc.
subfco
subfco.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc = 0, OE = 1)
(Rc = 1, OE = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: always updated
XER[OV,SO]: updated if OE=l, otherwise not affected

Description:
The subfc instruction subtracts the contents of GPR rA from GPR rB and places
the result in GPR rT, updating the Carry bit of the XER. The operation treats the
operand values as signed quantities.

The archaic POWER mnemonic for this instruction is sf[o][.].

Extended Forms:
There is one extended form for the subfc instruction which rearranges the
operands into a more natural order.

subc[o][.] rT,rA,rB is equivalent to subfc[o][.]rT,rB,rA

Instruction Encoding:
0

10 1 1 1 1

T
A
B
OE
Rc

5 6

11
10 11 15 16 20 21 22 30 31

T I A I B 10E100000l00olRc i

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

Instruction Set Summary 623

subfe Subtract From Extended subfe
POWER· 601 • 603 • PowerPC32/64

Operation: rT ¢::: (rB) - (rA) + XER[CA] - 1

Syntax: subfe
subfe.
subfeo
subfeo.

rT,rA,rB
rT,rA,rB
rT,rA,rB
rT,rA,rB

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc = 0, OE = 1)
(Rc = 1, OE = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: always updated
XER[OV,SO]: updated if OE= 1, otherwise not affected

Description:
The subfe instruction subtracts the contents of GPR rA from GPR rB, adds the
modified Carry bit (XER[CA]-1) of the XER, and then places the result in GPR rT,
updating the Carry bit. The operation treats the operand values as signed quan­
tities.

The archaic POWER mnemonic for this instruction is sfe[o][.].

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
B
OE
Rc

624 Appendix A

!O 11 15 16 20 21 22 30 31

T I A I B 100IolOOOlOooIRci

Target GPR rT where result of operation is stored
Source GPR rA
Source GPR rB
Overflow Exception bit
Record bit

su bfic Subtract From Immediate Carrying SU bfic
POWER. 601 • 603 • PowerPC32/64

Operation: rT <== 's16 - (rA)

Syntax: subfic rT,rA,s16

Condition Register I Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER[CA]:
XER[OV,SO]:

Description:

always updated
not affected

The 8ubfic instruction subtracts the contents of GPR rA from the 32-bit sign­
extended quantity specified by s16, and places the result in GPR rT, updating the
Carry bit.

The archaic POWER mnemonic for this instruction is 8fi[.].

Instruction Encoding:
0 5

10 0 1 0 o 01

T
A
SI

6 10 11 15 16

T 1 A 1 SI

Target GPR rT where result of operation is stored
Source GPR rA or 0
Signed 16-bit integer

31

Instruction Set Summary 625

subfme Subtract From
Minus One Extended

POWER. 601 • 603 • PowerPC32/64

subfme

Operation: rT <= -1- (rA) + XER[CA]-1

Syntax: subfme
subfme.
subfmeo
subfmeo.

rT,rA
rT,rA
rT,rA
rT,rA

(Rc = 0, OE = 0)
(Rc = I, OE = 0)
(Rc=O,OE=I)
(Rc = I, OE = 1)

Condition Register /Fixed-Point Exception Register:
CR Field 0: LT,GT,EQSO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: always updated
XER[OV;SO]: updated if OE=I, otherwise not affected

Description:
The subfme instruction subtracts the contents of GPR rA from -1 (OxFFFFFFFF),
adds the modified Carry bit (XER[CA]-I), and then places the result in GPR rT,
updating the Carry bit in the XER.

The archaic POWER mnemonic for this instruction is sfme[o][.].

Instruction Encoding:
0 5 6

10 1 1 1 1 1 I

T
A
OE
Rc

626 Appendix A

10 11 15 16 20 21 22 30 31

T I A 10 0 0 0 0 10E1 0 1 1 1 0 1 0 0 0 IRe I

Target GPR rT where result of operation is stored
Source GPR rA
Overflow Exception bit
Record bit

subfze Subtract From Zero Extended subfze
POWER. 601 • 603 • PowerPC32/64

Operation: rT ¢::: ° -(rA) + XER[CA] -1

Syntax: subfze
subfze.
subfzeo
subfzeo.

rT,rA
rT,rA
rT,rA
rT,rA

(Rc = 0, OE = 0)
(Rc = 1, OE = 0)
(Rc=O,OE=I)
(Rc = 1, OE = 1)

Condition Register/Fixed-Point Exception Register:
CR Field 0: LT,CT,EQSO updated if Rc = 1, otherwise not affected
CR Fields 1-7: not affected

XER[CA]: always updated
XER[OV,SO]: updated if OE=I, otherwise not affected

Description:
The subfze instruction subtracts the contents of CPR rA from 0, adds the modi­
fied Carry bit (XER[CA]-I), and then places the result in CPR rT, updating the
Carry bit in the XER.

The archaic POWER mnemonic for this instruction is sfze[o][.].

Instruction Encoding:
0

10 1 1 1 1

T
A
OE
Rc

5 6

11
10 11 15 16 20 21 22 30 31

T I A 10 0 0 0 0 IOEI 0 1 1 0 0 1 0 0 0 IRel

Target CPR rT where result of operation is stored
Source CPR rA
Overflow Exception bit
Record bit

Instruction Set Summary 627

sync Synchronize
POWER • 601 • 603 • PowerPC32/64

Operation: wait for all previous instructions to complete

Syntax: sync

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

sync

The sync instruction forces the processor to wait until all of the previous instruc­
tions appear to have been completed before initiating the execution of any sub­
sequent instruction.

It is only through the use of the sync instruction that a program can be ensured
that the effects of all storage accesses have been completed with respect to all
other processors and storage access mechanisms.

This instruction is execution synchronizing.

The archaic POWER mnemonic for this instruction is des.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 110 0 0 0 010 0 0 0 010 000 0110 0 1 0 1 0 1 10101

628 Appendix A

td Trap Doubleword
PowerPC64

Operation: if (condition is TRUE)
invoke trap handler

Syntax: td TO,rA,rB

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

td

The td instruction compares the contents of the two source registers rA and rB
and invokes the system trap handler if the condition specified by TO is true.

The Trap On (TO) field of the instruction determines the conditions under which
the trap is generated. The TO field may be anyone of the following values:

TO

signed unsigned Action
=

< > < >

0 0 0 0 1 trap if logically greater than

0 0 0 1 0 trap if lOgically less than

0 0 1 0 0 trap if equal

0 0 1 0 1
trap if logically greater than or equal
trap if logically not less than

0 0 1 1 0
trap if logically less than or equal
trap if logically not greater than

0 1 0 0 0 trap if greater than

0 1 1 0 0
trap if greater than or equal
trap if not less than

1 0 0 0 0 trap if less than

1 0 1 0 0
trap if less than or equal
trap if not greater than

1 1 0 0 0 trap if not equal

This instruction exists on 64-bit PowerPC implementations only.

Instruction Set Summary 629

Extended Forms:
The following extended forms are defined for the td instruction.

tdeq
tdge
tdgt
tdle
tdlge
tdlgt
tdIle
tdIlt
tdlng
tdlnl
tdlt
tdne
tdng
tdnl

rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB

Instruction Encoding:

is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td
is equivalent to td

4,rA,rB
12,rA,rB
8,rA,rB
20,rA,rB
S,rA,rB
l,rA,rB
6,rA,rB
2,rA,rB
6,rA,rB
S,rA,rB
16,rA,rB
24,rA,rB
20,rA,rB
12,rA,rB

o 5 6 10 11 15 16 20 21 30 31

10111111 TO I A I B 10001000100101

TO Trap-On condition
A Source GPR rA
B Source GPR rB

630 Appendix A

tdi Trap Doubleword Immediate
PowerPC64

Operation: if (condition is TRUE)
invoke trap handler

Syntax: tdi TO,rA,s16

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

tdi

The tdi instruction compares the contents of the source register rA and the sign­
extended immediate value s16 and invokes the system trap handler if the condi­
tion specified by TO is true.

The Trap On (TO) field of the instruction determines the conditions under which
the trap is generated. The TO field may be anyone of the following values:

TO

signed unsigned Action
=

< > < >

a a a a 1 trap if logically greater than

a a a 1 a trap if logically less than

a a 1 a a trap if equal

0 a 1 a 1
trap if logically greater than or equal
trap if logically not less than

a a 1 1 a trap if logically less than or equal
trap if logically not greater than

a 1 a a a trap if greater than

a 1 1 a a trap if greater than or equal
trap if not less than

1 a a 0 a trap if less than

1 a 1 a a trap if less than or equal
trap if not greater than

1 1 a a a trap if not equal

This instruction exists on 64-bit PowerPC implementations only.

Instruction Set Summary 631

Extended Forms:
The following extended forms are defined for the tdi instruction.

tdeqi rA,s16 is equivalent to tdi 4,rA,s16
tdgei rA,s16 is equivalent to tdi 12,rA,s16
tdgti rA,s16 is equivalent to tdi 8,rA,s16
tdlei rA,s16 is equivalent to tdi 20,rA,s16
tdlgei rA,s16 is equivalent to tdi 5,rA,s16
tdIgti rA,s16 is equivalent to tdi 1,rA,s16
tdllei rA,s16 is equivalent to tdi 6,rA,s16
tdllti rA,s16 is equivalent to tdi 2,rA,s16
tdlngi rA,s16 is equivalent to tdi 6,rA,s16
tdInH rA,s16 is equivalent to tdi 5,rA,s16
tdlti rA,s16 is equivalent to tdi 16,rA,s16
tdnei rA,s16 is equivalent to tdi 24,rA,s16
tdngi rA,s16 is equivalent to tdi 20,rA,s16
tdnli rA,s16 is equivalent to tdi 12,rA,s16

Instruction Encoding:
0 5 6 10 11 15 16 31

10 0 o 0 1 01 TO 1 A 1 SI 1

TO Trap-On condition
A Source GPR rA
SI Signed 16-bit integer

632 Appendix A

tIbia TLB Invalidate All tIbia
603 • PowerPC32/64

Operation: invalidate all TLB entries

Syntax: tIbia

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The tIbia instruction invalidates all of the entries currently in the TLB, regardless
of the current setting of the instruction and data translation bits in the MSR
(MSR[IT] and MSR[DT].

This is a supervisor-level instruction.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 110 0 0 0 010 0 0 0 010 000 010 1 0 1 110 0 1 0101

Instruction Set Summary 633

tlbie TLB Invalidate Entry
POWER • 601 • 603 • PowerPC32/64

Operation: invalidate the specified TLB entry

Syntax: tlbie rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

tlbie

The tlbie instruction invalidates the TLB entry which corresponds to the effec­
tive address stored in rB. The invalidation is performed regardless of the current
setting of the instruction and data translation bits in the MSR (MSR[IT] and
MSR[DT].

This is a supervisor-level instruction.

The archaic POWER mnemonic for this instruction is tlbi.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 110 0 0 0 010 0 0 0 01 B 10 1 001 100 1 0101

B Source GPR rB

634 Appendix A

tlbsync TLB Synchronize
603 • PowerPC32/64

tlbsync

Operation: wait until all previous TLB instructions complete

Syntax: tlbsync

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The tIbsync instruction waits until all of the previous TLB instructions (tIbia and
tIbie) have completed execution on this and all other processors.

This is a supervisor-level instruction.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

10 1 1 1 1 110 0 0 0 010 0 0 0 010 0 0 0 0110 0 0 1 10 1 10101

Instruction Set Summary 635

tw Trap Word
POWER. 601 • 603. PowerPC32/64

Operation: if (condition is TRUE)
invoke trap handler

Syntax: tw TO,rA,rB

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

tw

The tw instruction compares the contents of the two source registers rA and rB
and invokes the system trap handler if the condition specified by TO is true.

The Trap On (TO) field of the instruction determines the conditions under which
the trap is generated. The TO field may be anyone of the following values:

TO

signed unsigned Action
=

< > < >

0 0 0 0 1 trap if logically greater than

0 0 0 1 0 trap if logically less than

0 0 1 0 0 trap if equal

0 0 1 a 1
trap if logically greater than or equal
trap if logically not less than

0 0 1 1 0
trap if logically less than or equal
trap if logically not greater than

0 1 0 0 0 trap if greater than

0 1 1 0 0
trap if greater than or equal
trap if not less than

1 0 0 0 0 trap if less than

1 0 1 0 0
trap if less than or equal
trap if not greater than

1 1 0 0 0 trap if not equal

636 Appendix A

Extended Forms:
The following extended forms are defined for the tw instruction.

trap
tweq
twge
twgt
twie
twige
twIgt
twIle
twIlt
twing
twini
twIt
twne
twng
twni

rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB
rA,rB

Instruction Encoding:

is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw
is equivalent to tw

31,rO,rO
4,rA,rB
12,rA,rB
8,rA,rB
20,rA,rB
5,rA,rB
1,rA,rB
6,rA,rB
2,rA,rB
6,rA,rB
5,rA,rB
16,rA,rB
24,rA,rB
20,rA,rB
12,rA,rB

o 5 6 10 11 15 16 20 21 30 31

10111111 TO I A I B 10000000100101

TO Trap-On condition
A Source CPR rA
B Source CPR rB

Instruction Set Summary 637

twi Trap Word Immediate
POWER • 601 • 603 • PowerPC32/64

Operation: if (condition is TRUE)
invoke trap handler

Syntax: twi TO,rA,s16

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:

twi

The twi instruction compares the contents of the source register rA and the sign­
extended immediate value s16 and invokes the system trap handler if the condi­
tion specified by TO is true.

The Trap On (TO) field of the instruction determines the conditions under which
the trap is generated. The TO field may be anyone of the following values:

TO
signed unsigned Action

=
< > < >

0 0 0 0 1 trap if logically greater than

0 0 0 1 0 trap if logically less than

0 0 1 0 0 trap if equal

0 0 1 0 1
trap if logically greater than or equal
trap if logically not less than

0 0 1 1 0
trap if logically less than or equal
trap if logically not greater than

0 1 0 0 0 trap if greater than

0 1 1 0 0
trap if greater than or equal
trap if not less than

1 0 0 0 0 trap if less than

1 0 1 0 0
trap if less than or equal
trap if not greater than

1 1 0 0 0 trap if not equal

638 Appendix A

Extended Forms:
The following extended forms are defined for the twi instruction.

tweqi rA,s16 is equivalent to twi 4,rA,s16
twgei rA,s16 is equivalent to twi 12,rA,s16
twgti rA,s16 is equivalent to twi 8,rA,s16
twiei rA,s16 is equivalent to twi 20,rA,s16
twigei rA,s16 is equivalent to twi 5,rA,s16
twigti rA,s16 is equivalent to twi 1,rA,s16
twIlei rA,s16 is equivalent to twi 6,rA,s16
twIlti rA,s16 is equivalent to !Wi 2,rA,s16
twlngi rA,s16 is equivalent to twi 6,rA,s16
twlnli rA,s16 is equivalent to twi 5,rA,s16
twlti rA,s16 is equivalent to twi 16,rA,s16
twnei rA,s16 is equivalent to twi 24,rA,s16
twngi rA,s16 is equivalent to twi 20,rA,s16
twnli rA,s16 is equivalent to twi 12,rA,s16

Instruction Encoding:
0 5 6 10 11 15 16 31

10 0 001 11 TO I A I SI I

TO Trap-On condition
A Source GPR rA
SI Signed 16-bit integer

Instruction Set Summary 639

xor XOR
POWER. 601 • 603 • PowerPC32/64

Operation: rA ¢::: (rS) EB (rB)

Syntax: xor
xor.

rA,rS,rB
rA,rS,rB

(Rc = 0)
(Rc = 1)

Condition Register / Fixed -Point Exception Register:
CR Field 0: LT,CT,EQ,SO updated if Rc = I, otherwise not affected
CR Fields 1-7: not affected

XER: not affected

Description:

xor

The xor instruction logically XORs the contents of CPR rS and CPR rB and
places the result in CPR rA.

Instruction Encoding:
o 5 6 10 11 15 16 20 21 30 31

[([TJl111 s I A I B I0100111100lRc i

S Source CPR rS
A Target CPR rA where result of operation is stored
B Source CPR rB
Rc Record bit

640 Appendix A

• •
XOrl XOR Immediate XOrl

POWER. 601 • 603 • PowerPC32/64

Operation: rA <== (rS) EB ou16

Syntax: xori rA,rS,u16

Condition Register / Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The xori instruction logically XORs the contents of GPR rS and the value calcu­
lated by zero-extending u16, and places the result in GPR rA.

The archaic POWER mnemonic for this instruction is xoril. (XOR Immediate
Lower).

Instruction Encoding:
0 5

10 1 1 0 1 01

S
A
UI

6 10 11 15 16

s 1 A 1 UI

Source GPR rS
Target GPR rA where result of operation is stored
Unsigned 16-bit integer

31

Instruction Set Summary 641

• •
XOrlS XOR Immediate Shifted XOrlS

POWER • 601 • 603 • PowerPC32 / 64

Operation: rA <= (rS) Ei1 o(u16 -'- OxOOOO)

Syntax: xoris rA,rS,u16

Condition Register /Fixed-Point Exception Register:
CR Fields 0-7: not affected

XER: not affected

Description:
The xc;>ris. instruction logically XORs the contents of GPR rS and the value calcu­
lated by concatenating u16 with OxOOOO, and places the result in GPR rA.

The archaic POWER mnemonic for this instruction is xoriu. (XOR Immediate
Upper).

Instruction Encoding:
0 5 6

10 1 1 0 1 1 1

S
A
UI

642 Appendix A

10 11 15 16

s 1 A 1 UI

Source GPR rS
Target GPR rA where result of operation is stored
Unsigned 16-bit integer

31

Complete List of
Mnemonics

This appendix provides a complete list of the mnemonics for all of the instruc­
tions and extended instructions for the POWER and PowerPC processors. This
list includes the archaic forms for the POWER mnemonics.

This list is presented in alphabetic order according to the base mnemonic. This
means that some mnemonics may appear to be out of order, for example, the
instruction addo is not found between addme[0][.] and addze[0][.] entries
because it is considered a standard extension to the base mnemonic add[0][•].
Standard mnemonic extensions are:' .', 'a', '0', and '1'.

Lines that have a "." prefix are the standard or preferred instructions for the
PowerPC. Lines without a "." prefix are either archaic mnemonics for valid
instructions or obsolete instructions. The mnemonic description will note which
case is applicable. The archaic and obsolete forms are included for completeness
and historical reasons only; use of the archaic forms is strongly discouraged.

Lines that have a "32 ." prefix are defined only for 32-bit implementations of the
PowerPC. They will cause an illegal instruction exception on 64-bit implementa­
tions.

Complete List of Mnemonics 643

Lines that have a "64." prefix are defined only for 64-bit implementations of the
PowerPC. They will cause an illegal instruction exception on 32-bit implementa­
tions.

Lines that have a "?" prefix are defined as being optional PowerPC instructions.
A PowerPC processor mayor may not have these instructions defined. Note that
some optional instructions are defined for 64-bit implementations only.

644 Appendix B

a[o][.]

abs[o][.]

• add[o][.]
• addc[o][.]
• adde[o][.]
• addi
• addic[.]
• addis
• addme[o][.]
• addze[o][.]

ae[o][.]

air .]

ame[o][.]

• and[.]
• andc[.]
• andi.

andil.

• andis.
andiu.

aze[o][.]

• b[l][a]
bbf[l][a]

bbfc[l]

bbfr[l]

bbt[l][a]

bbtc[l]

bbtr[l]

• bc[l][a]

rT,rA,rB Add
archaic form for: addc[o][.] rT, rA, rB

rT, rA Absolute Value
This instruction exists on POWER and the 601 only.

rT, rA, rB Add (without updating Carry)
rT, rA, r B Add Carrying
rT,rA,rB Add Extended
rT, rA, s16 Add Immediate
rT, rA, s16 Add Immediate Carrying
rT, rA, s16 Add Immediate Shifted
rT, rA Add to Minus One Extended
rT, rA Add to Zero Extended
rT,rA,rB Add Extended
archaic form for: adde[o][.] rT, rA, rB

rT, rA, s16 Add Immediate
archaic form for: addic[.] rT ,rA,s16

rT, r A Add to Minus One Extended
archaic form for: addme[0][.] rT, rA

rA,rS,rB AND
rA, rS, rB AND with Complement
rA,rS,u16 AND Immediate
rA, r 5, u16 AND Immediate Lower
archaicform for: andi. r A , r 5 , u16

rA, rS, u16 AND Immediate Shifted
rA, rS, u16 AND Immediate Upper
archaic form for: andis. rA, rS, u16

rT, rA Add to Zero Extended
archaicform for: addze[o][.] rT, rA

addr Branch
crbT, addr Branch if CR Bit False
archaic form for: b f [1][a] crbT, addr
equivalent to: bc[l][a] Ox04, crbT, addr

crbT, addr Branch if CR Bit False to CTR
archaic form for: bfctr[l][a] crbT
equivalent to: bcctr[l] Ox04, crbT

crbT, addr Branch if CR Bit False to LR
archaic form for: bflr[l] crbT
equivalent to: bclr[l] Ox04, crbT

crbT, addr Branch if CR Bit True
archaic form for: bt[l][a] crbT, addr
equivalent to: bc[l][a] OxOC, crbT, addr

crbT, addr Branch if CR Bit True to CTR
archaic form for: btctr[l][a] crbT
equivalent to: bcctr[l] OxOC, crbT

crbT, addr Branch if CR Bit True to LR
archaic form for: btlr[l] crbT
equivalentto: bclr[l] OxOC, crbT

branch On , crbT , addr Branch Conditional

Complete List of Mnemonics 645

bee[l]

• beetr[l]
• belr[l]

ber[l]

• betr[l]

bdn[l][a]

bdneq

bdnge

bdngt

bdnle

bdnlt

bdnne

bdnns

bdnr[l]

bdnso

• bdnz[l][a]

branchOn, crbT Branch Conditional to CTR
archaic form for: beetr[l] BO, crbT

branchOn, crbT Branch Conditional to CTR
branchOn, crbT Branch Conditional to LR
branchOn, crbT Branch Conditional to LR
archaic form for: belr[l] BO, crbT

Branch Unconditionally to CTR
equivalent to: beetr[l] Oxl4, 0

addr Branch if Decremented CTR is Non-zero
archaic form for: bdnz[l][a] addr
equivalentto: be[l][a] OxlO, O,addr

crT, addr Branch if Decremented CTR is Non-Zero and
Equal

archaic form for: bdnzt (erT*4) +2, addr
equivalent to: be Ox08, (erT*4) +2 ,addr

crT, addr Branch if Decremented CTR is Non-Zero and
Greater Than or Equal

archaic form for: bdn z f (e rT* 4) + 0 , addr
equivalent to: be OxOO, (erT*4)+0 ,addr

crT, addr Branch if Decremented CTR is Non-Zero and
Greater Than

archaic form for: bdnzt (erT* 4) + 1 ,addr
equivalentto:be Ox08, (erT*4)+l,addr

crT, addr Branch if Decremented CTR is Non-Zero and
Less Than or Equal

archaic form for: bdnz f (erT* 4) + 1 ,addr
equivalentto: be OxOO, (erT*4) + 1 ,addr

crT, addr Branch if Decremented CTR is Non-Zero and
Less Than

archaic form for: bdnzt (erT* 4) +0, addr
equivalentto: be Ox08, (erT*4) +0 ,addr

crT, addr Branch if Decremented CTR is Non-Zero and
Not Equal

archaic form for: bdnz f (erT* 4) + 2 ,addr
equivalentto: be OxOO, (erT*4) +2, addr

crT, addr Branch if Decremented CTR is Non-Zero and
Not Summary Overflow

archaic form for: bdnz f (erT* 4) + 3 ,addr
equivalent to: be OxO 0, (erT* 4) + 3, addr

Branch if Decremented CTR is Not Zero to LR
archaic form for: bdnzlr[l]
equivalent to: belr[l] OxlO, 0

crT, addr Branch if Decremented CTR is Non-Zero and
Summary Overflow

archaic form for: bdnzt (erT*4) +3 ,addr
equivalent to: be Ox08, (erT*4) +3 ,addr

addr Branch if Decremented CTR is Not Zero
equivalent to: be[l][a] OxlO, 0 ,addr

646 Appendix B

• bdnzf[l][a] crbT, addr Branch if Decremented CTR is Not Zero and
Condition False

equivalentto: bc[l][a] OxOO, crbT, addr
• bdnzflr[l] crbT Branch if Decremented CTR is Not Zero and

Condition False to LR
equivalentto:bclr[l] OxOO,crbT

• bdnzlr[l] Branch if Decremented CTR is Not Zero to LR
equivalent to: bclr[l] Ox10, 0

• bdnzt[l][a] crbT, addr Branch if Decremented CTR is Not Zero and
Condition True

equivalentto: bc[l][a] Ox08, crbT, addr
• bdnztlr[l] crbT Branch if Decremented CTR is Not Zero and

Condition True to LR
equivalentto:bclr[l] Ox08,crbT

• bdz[l][a] addr Branch if Decremented CTR is Zero
equivalent to: bc[l][a] Ox12, O,addr

bdzeq crT, addr Branch if Decremented CTR is Zero and Equal
archaic form for: bdzt (crT* 4) + 2, addr
equivalentto:bc OxOA, (crT*4)+2,addr

• bdzf[l][a] crbT, addr Branch if Decremented CTR is Zero and
Condition False

equivalent to: bc[l][a] Ox02, crbT, addr
• bdzflr[l] crbT Branch if Decremented CTR is Zero and

Condition False to LR
equivalent to: bclr[l] Ox02, crbT

bdzge crT, addr Branch if Decremented CTR is Zero and
Greater Than or Equal

archaic form for: bdzf (crT*4) +0 ,addr
equivalent to: bc Ox02, (crT*4) +0 ,addr

bdzgt crT, addr Branch if Decremented CTR is Zero and
Greater Than

archaic form for: bdzt (crT* 4) + 1, addr
equivalentto: bc OxOA, (crT*4) +1 ,addr

bdz le crT, addr Branch if Decremented CTR is Zero and Less
Than or Equal

archaic form for: bdz f (crT* 4) + 1 , addr
equivalent to: bc OxO 2 , (crT* 4) + 1, addr

• bdz lr[l] Branch if Decremented CTR is Zero to LR
equivalent to: bclr[l] Ox12, 0

bdz 1 t crT, addr Branch if Decremented CTR is Zero and Less
Than

archaic form for: bdzt (crT* 4) +0, addr
equivalent to: bc OxOA, (crT*4) +0, addr

bdzne crT, addr Branch if Decremented CTR is Zero and Not
Equal

archaic form for: bdz f (crT* 4) + 2 , addr
equivalent to: bc Ox02, (crT*4) +2 ,addr

Complete List of Mnemonics 647

bdzns crT,addr Branch if Decremented CTR is Zero and Not
Summary Overflow

archaic form for: bdz f (crT* 4) + 3, addr
equivalentto:bc Ox02, (crT*4)+3,addr

bdzr[l] Branch if Decremented CTR is Zero to LR
archaic form for: bdzIr[l]
equivalent to: bcIr[l] Ox12, 0

bdzso crT, addr Branch if Decremented CTR is Zero and
Summary Overflow

archaic form for: bdzt (crT*4) +3 ,addr
equivalent to: bc OxOA, (crT*4)+3 ,addr

• bdzt[l][a] crbT ,addr Branch if Decremented CTR is Zero and
Condition True

equivalent to: bc[l][a] OxOA,crbT ,addr
• bdztIr[l] crbT Branch if Decremented CTR is Zero and

Condition True to LR
equivalent to: bcIr[l] OxOA, crbT

• beq[l][a] [crT,]addr Branch if Equal
equivalent to: bc[l][a] OxOC, (crT*4) +2 ,addr

beqc[l] [crT] Branch if Equalto CTR
archaic form for: beqctr[l] [crT]
equivalentto:bcctr[l] OxOC, (crT*4)+2

• beqctr[l] [crT] Branch if Equal CTR
equivalentto:bcctr[l] OxOC, (crT*4)+2

• beqIr[l] [crT] Branch if Equal to LR
equivalentto: bcIr[l] OxOC, (crT*4) +2

beqr[l] [crT] Branch if Equal to LR
archaic form for: beqIr[l] [crT]
equivalent to: bcIr[l] OxOC, (crT*4) +2

• bf[l][a] crbT,addr Branch if Condition False
equivalent to: bc Ox04,crbT ,addr

• bfctr[l] crbT Branch if Condition False to CTR
equivalent to: bcctr[l] Ox04, crbT

• bfIr[l] crbT Branch if Condition False to LR
equivalent to: bcIr[l] Ox04, crbT

• bge[l][a] [crT,]addr Branch if Greater Than or Equal
equivalentto: bc[l][a] Ox04, (crT*4) +0 ,addr

bgec[l] [crT] Branch if Greater Than or Equal to CTR
archaic form for: bgectr[l] [crT]
equivalent to: bcctr[l] Ox04, (crT*4) +0

• bgectr[l] [crT] Branch if Greater Than or Equal to CTR
equivalent to: bcctr[l] Ox04, (crT*4) +0

• bgeIr[l] [crT] Branch if Greater Than or Equal to LR
equivalentto: bcIr[l] Ox04, (crT*4) +0

bger[l] [crT] I3ranch if Greater Than or Equal to LR
archaic form for: bgeIr[l] [crT]
equivalentto: bcIr[l] Ox04, (crT*4) +0

• bgt[l][a] [crT,]addr Branch if Greater Than
equivalentto: bc[l][a]OxOC, (crT*4) +1 ,addr

648 Appendix B

bgtc[l] [crT] Branch if Greater Than to CTR
archaic form for: bgtctr[l] [crT]
equivalent to: bcctr[l] OxOC, (crT*4) +1

• bgtctr[l] [crT] Branch if Greater Than to CTR
equivalentto:bcctr[l] OxOC, (crT*4)+1

• bgtlr[l] [crT] Branch if Greater Than to LR
equivalentto:bclr[l] OxOC, (crT*4)+1

bgtr[l] [crT] Branch if Greater Than to LR
archaic form for: bgtlr[l] [crT]
equivalent to: bclr[l] OxOC, (crT*4)+1

• ble[l][a] [crT,]addr Branch if Less Than or Equal
equivalentto: bc[l][a] Ox04, (crT*4) +1, addr

blec[l] [crT] Branch if Less Than or Equalto CTR
archaic form for: blectr[l] [crT]
equivalent to: bcctr[l] Ox04, (crT*4) +1

• blectr[l] [crT] Branch if Less Than or Equal to CTR
equivalent to: bcctr[l] Ox04, (crT*4) +1

• blelr[1] [crT] Branch if Less Than or Equal to LR
equivalentto: bclr[l] Ox04, (crT*4) +1

bler[l] [crT] Branch if Less Than or Equal to LR
archaic form for: blelr[l] [crT]
equivalent to: bclr[l] Ox04, (crT*4) +1

• blr[l] Branch Unconditionally to LR
equivalent to: bclr[l] Ox14, 0

• blt[l][a] [crT,]addr Branch if Less Than
equivalent to: bc[l][a] OxOC, (crT*4)+0 ,addr

bl tc[l] [crT] Branch if Less Than to CTR
archaic form for: bl tctr[l] [crT]
equivalentto:bcctr[l] OxOC, (crT*4)+0

• bl tctr[l] [crT] Branch if Less Than to CTR
equivalentto:bcctr[l] OxOC, (crT*4)+0

• bl tlr[l] [crT] Branch if Less Than to LR
equivalentto:bclr[l] OxOC, (crT*4)+0

bltr[l] [crT] Branch if Less Than to LR
archaic form for: bl tlr[l] [crT]
equivalent to: bclr[l] OxOC, (crT*4) +0

• bne[l][a] [crT,]addr Branch if Not Equal
equivalent to: bc[l][a] Ox04, (crT*4) +2 ,addr

bnec[l] [crT] Branch if Not Equal to CTR
archaic form for: bnectr[l] [crT]
equivalentto:bcctr[l] Ox04, (crT*4)+2

• bnectr[l] [crT] Branch if Not Equal to CTR
equivalentto: bcctr[l] Ox04, (crT*4) +2

• bnelr[l] [crT] Branch if Not Equalto LR
equivalent to: bclr[l] Ox04, (crT*4) +2

bner[l] [crT] Branch if Not Equalto LR
archaic form for: bnelr[l] [crT]
equivalentto: bclr[l] Ox04, (crT*4) +2

Complete List of Mnemonics 649

• bng[l][a] [crT,]addr Branch if Not Greater Than
equivalent to: bc[l][a] Ox04, (crT*4) +1,addr

bngc[l] [crT] Branch if Not Greater Than to CTR
archaicform for: bngctr[l] [crT]
equivalent to: bcctr[l] Ox04, (crT*4) +1

• bngctr[l] [crT] Branch if Not Greater Than to CTR
equivalent to: bcctr[l] Ox04, (crT*4) +1

• bng1r[1] [crT] BranchifNotGreaterThantoLR
equivalentto: bc1r[1] Ox04, (crT*4)+1

bngr[l] [crT] Branch if Not Greater Than to LR
archaic form for: bng1r[1] [crT]
equivalentto:bc1r[1] Ox04, (crT*4)+1

• bn1[1][a] [crT ,]addr Branch if Not Less Than
equivalent to: bc[l][a] Ox04, (crT*4) +0 ,addr

bn1c[1] [crT] BranchifNotLessThantoCTR
archaic form for: bn1ctr[1] [crT]
equivalentto:bcctr[l] Ox04, (crT*4)+0

• bn1ctr[1] [crT] Branch if Not Less Than to CTR
equivalent to: bcctr[l] Ox04, (crT*4) +0

• bn11r[1] [crT] Branch if Not Less Than to LR
equivalent to: bc1r[1] Ox04, (crT*4) +0

bn1r[1] [crT] Branch if Not Less Than to LR
archaic form for: bn11r[1] [crT]
equivalent to: bc1r[1] Ox04, (crT*4) +0

• bns[l][a] [crT,]addr Branch if Not Summary Overflow
equivalent to: bc[l][a] Ox04, (crT*4) +3,addr

bnsc[l] [crT] Branch if Not Summary Overflow to CTR
archaic form for: bnsctr[l] [crT]
equivalent to: bcctr[l] Ox04, (crT*4) +3

• bnsctr[1] [crT] Branch if Not Summary Overflow to CTR
equivalent to: bcctr[l] Ox04, (crT*4) +3

• bns1r[1] [crT] Branch if Not Summary Overflow to LR
equivalent to: bc1r[1] Ox04, (crT*4) +3

bnsr[l] [crT] Branch if Not Summary Overflow to LR
archaic form for: bns1r[1] [crT]
equivalentto:bc1r[1] Ox04, (crT*4)+3

• bnu[l][a] [crT,]addr Branch if Not Unordered
equivalentto:bc[l][a] Ox04, (crT*4)+3,addr

• bnuctr[l] [crT] Branch if Not Unordered to CTR
equivalent to: bcctr[l] Ox04, (crT*4) +3

• bnu1r[1] [crT] Branch if Not Unordered to LR
equivalent to: bc1r[1] Ox04, (crT*4) +3

bnz[l][a] [crT ,]addr Branch if Not Zero
archaic form for: bne[l][a] [crT ,]addr
equivalent to: bc[l][a] Ox04, (crT*4) +2,addr

bnzc[l] [crT] Branch if Not Zero to CTR
archaic form for: bnectr[l] [crT]
equivalentto: bcctr[l] Ox04, (crT*4) +2

650 Appendix B

bnzr[l] [crT] Branch if Not Zero to LR
archaic form for: bnelr[l] [crT]
equivalentto: bclr[l] Ox04, (crT*4) +2

br[l] Branch Unconditionally to LR
archaic form for: blr[l]
equivalent to: bclr[l] Ox14, 0

• bso[l][a] [crT,]addr Branch if Summary Overflow
equivalentto:bc[l][a] oxoe, (crT*4)+3,addr

bsoc[l] [crT] Branch if Summary Overflow to CTR
archaic form for: bsoctr[l] [crT]
equivalentto: bcctr[l] oxoe, (crT*4) +3

• bsoctr[l] [crT] Branch if Summary Overflow to CTR
equivalent to: bcctr[l] oxoe, (crT* 4) + 3

• bsolr[l] [crT] Branch if Summary Overflow to LR
equivalent to: bclr[l] oxoe, {crT*4)+3

bsor[l] [crT] Branch if Summary Overflow to LR
archaic form for: bsolr[l] [crT]
equivalentto:bclr[l] oxoe, {crT*4)+3

• bt[l][a] crbT, addr Branch if Condition True
equivalent to: bc oxOe,crbT, addr

• btctr[l] crbT Branch if Condition True to CTR
equivalent to: bcctr[l] oxoe, crbT

• btlr[l] crbT Branch if Condition True to LR
equivalent to: bclr[l] oxoe, crbT

• bun[l][a] [crT,]addr Branch if Unordered
equivalentto:bc[l][a] oxoe, (crT*4)+3,addr

• bunctr[l] [crT] Branch if Unordered to CTR
equivalentto: bcctr[l] oxoe, (crT*4) +3

• bunlr[l] [crT] Branch if Unordered to LR
equivalentto:bclr[l] oxoe, {crT*4)+3

bz[l][a] [crT,]addr Branch if Zero
archaic form for: beq[l][a] [crT,]addr
equivalentto:bc[l][a] oxoe, {crT*4)+2,addr

bzc[l] [crT] Branch if Zero to CTR
archaic form for: beqctr[l] [crT]
equivalentto:bcctr[l] oxoe, {crT*4)+2

bzr[l] [crT] Branch if Zero to LR
archaicform for: beqlr[l] [crT]
equivalentto:bclr[l] oxoe, (crT*4)+2

cal rT, d (rA) Compute Address Lower
archaic form for: addi rT, d (rA)

cau rT, rA, u16 Compute Address Upper
archaic form for: addis rT, rA, u16

c ax[0][.] rT, r A, r B Compute Address
archaic form for: add[o][.J rT, r A, r B

clcs rT, rA Cache Line Compute Size
This instruction exists on POWER and the 601 only.

clf rA,rB Cache Line Flush
This instruction exists on POWER only.

Complete List of Mnemonics 651

cli rA, rB Cache Line Invalidate
This instruction exists on POWER only.

64' clrldi[.] rA,rS,nBits Clear Left Doubleword Immediate
equivalentto: rldicl[.] rA, rS, 0, nBits

64' clrlsldi[.]rA, rS, nBits, shift Clear Left and Shift Left Doubleword
Immediate

equivalentto: r ldic[.] rA, rS, shift, nBits-shift
• clrlslwi[.]rA, rS, nBits ,shift Clear Left and Shift Left Word Immediate

equivalentto: rlwinm[.] rA, rS, shift, nBits-shift, 31-shift
• clrlwi[.] rA,rS,nBits Clear Left Word Immediate

equivalent to: rlwinm[.] rA, rS, 0, nBits, 31
64' clrrdi[.] rA,rS,nBits Clear Right Doubleword Immediate

equivalent to: rldicr[.] rA,rS, 0, 63-nBits
• clrrwi[.] rA,rS,nBits Clear Right Word Immediate

cmp

• cmp
• cmpd

• cmpdi

cmpi

• cmpi
cmpl

• cmpl
• cmpld

• cmpldi

cmpli

• cmpli
• cmplw

• cmplwi

• cmpw

• cmpwi

cntlz[.]

64' cntlzd[.]
• cntlzw[.]
• crand
• crandc

equivalent to: rlwinm[.] rA, rS, 0,0, 31-nBits
crT,rA,rB Compare
archaic form for: cmp crT, 0, rA, rB

crT,L,rA,rB Compare
crT, rA, rB Compare Doubleword
equivalent to: cmp crT, 1 , r A, r B

crT, rA, s16 Compare Doubleword Immediate
equivalent to: cmpi crT, 1 , rA, s16

crT,rA,s16 Compare Immediate
archaic form for: cmp i crT, 0 , r A , s16

crT,L,rA,s16 Compare Immediate
crT, rA, rB Compare Logical
archaic form for: cmpl crT, 0, rA, rB

crT, L, rA, r B Compare Logical
crT, rA, rB Compare Logical Doubleword
equivalent to: cmpl crT, 1, rA, rB

crT, rA, u16 Compare Logical Doubleword Immediate
equivalent to: cmpli crT, 1, rA, u16

crT,rA,u16 Compare Logical Immediate
archaic form for: cmpi crT, 0, rA, u16

crT, L, rA, u16 Compare Logical Immediate
crT, rA,rB Compare Logical Word
equivalent to: cmpl crT, 0, rA, rB

crT, rA,u16 Compare Logical Word Immediate
equivalent to: cmpli crT, 0, rA, u16

crT, rA, rB Compare Word
equivalent to: cmp crT, 0, rA, rB

crT, rA,s16 Compare Word Immediate
equivalent to: cmpi crT, 0 ,rA, s16

r A, r 5 Count Leading Zeros
archaic form for: cntlzw[.] rA, rS

rA, rS Count Leading Zeros Doubleword
r A, r 5 Count Leading Zeros Word
crbT, crbA, crbB Condition Register AND
crbT, crbA, crbB Condition Register AND with Complement

652 Appendix B

• ereIr

• ereqv
• ermove

• ernand
• ernor
• ernot

• eror
• erore
• erset

• erxor
• debf
• debi
• debst
• debt
• debtst
• debz

deIst

deIz

des

div[o][.J

64· divd[o][.J
64· divdu[o][.J

divs[o][.J

• di vw[0][.J
• divwu[o][.J

doz[o][.J

dozi

? eeiwx
? eeowx

• eieio
• eqv[.J

64· extIdi[.J

• extIwi[.J

crbT Condition Register Clear
equivalent to: erxor crbT, crbT, crbT

crbT, crbA, crbB Condition Register Equivalent
crbT, crbA Condition Register Move
equivalent to: eror crbT, crbA, crbA

crbT, crbA, crbB Condition Register Not AND
crbT, crbA, crbB Condition Register Not OR
crbT, crbA Condition Register Not
equivalent to: ernor crbT, crbA, crbA

crbT, crbA, crbB Condition Register OR
crbT, crbA, crbB Condition Register OR with Complement
crbT Condition Register Set
equivalent to: ereqv crbT, crbT , crbT

crbT, crbA, crbB Condition Register Exclusive OR
rA,rB Data Cache Block Flush
rA, rB Data Cache Block Invalidate
rA, rB Data Cache Block Store
rA, rB Data Cache Block Touch
rA, rB Data Cache Block Touch for Store
rA, rB Data Cache Block Zero
rA, rB Data Cache Line Store
This instruction exists on POWER only.

rA, rB Data Cache Line Zero
archaic form for: debz

Data Cache Synchronize
archaic form for: sync

rT,rA,rB Divide
This instruction exists on POWER and the 601 only.

rT, r A, r B Divide Doubleword
rT, rA, rB Divide Doubleword Unsigned
rT, r A, r B Divide Short
This instruction exists on POWER and the 601 only.

rT, rA, rB Divide Word
rT, r A, r B Divide Word Unsigned
rT, r A , r B Difference Or Zero
This instruction exists on POWER and the 601 only.

rT, rA, s16 Difference Or Zero Immediate
This instruction exists on POWER and the 601 only.

rT, r A, r B External Control Input Word Indexed
rS, rA, rB External Control Output Word Indexed

rA,rS,rB
rA, rS, nBits, start

Enforce In-Order Execution of 1/0
EqUivalent
Extract and Left Justify Doubleword
Immediate

equivalent to: rIdier[.J rA, rS ,start, nBits-l
rA, rS, nBits, start Extract and Left Justify Word Immediate
equivalent to: rIwinm[.J rA, rS, start, 0 , nBits-l

Complete List of Mnemonics 653

64' extrdi[.]

• extrwi[.]

exts[.]

• extsb[.]
• extsh[.]

64' extsw[.]
fa[.]

• fabs[.]
• fadd[.]
• fadds[.]

64' fcfid[.]

• fcmpo
• fcmpu

64' fctid[.]
64' fctidz[.]

• fctiw[.]
• fctiwz[.]

fd[.]

• fdiv[.]
• fdivs[.]

fm[.]

fma[.]

• fmadd[.]
• fmadds[.]
• fmr[.]

fms[.]

• fmsub[.]
• fmsubs[.]

• fmul[.]
• fmuls[.]
• fnabs[.]
• fneg[.]

fnma[.]

• fnmadd[.]

rA, rS, nBits, start Extract and Right Justify Doubleword
Immediate

equivalentto: rldicl[.] rA, rS ,start+nBits, 64-nBits
rA,:tS, nBits, start Extract and Right Justify Word Immediate
equivalent to: rlwinm[.] rA, rS ,start+nBits, 32-nBits, 31

rA, rS Extend Sign Halfword
archaic form for: extsh[.] rA, rS

r A, rS Extend Sign Byte
r A, rS Extend Sign Halfword
rA,rS Extend Sign Word
frT, frA, frB Floating-Point Add
archaic form for: fadd[.] frT, frA, frB

frT, frB Floating-Point Absolute Value
frT, frA, frB Floating-Point Add
frT, frA, frB Floating-Point Add Single-Precision
frT, frB Floating-Point Convert from Integer

crT,frA,frB
crT,frA,frB
frT,frB
frT,frB

frT,frB
frT,frB

Doubleword
Floating-Point Compare Ordered
Floating-Point Compare Unordered
Floating-Point Convert to Integer Doubleword
Floating-Point Convert to Integer Doubleword
with Round to Zero

Floating-Point Convert to Integer Word
Floating-Point Convert to Integer Word with
Round toward Zero

f rT , f r A, fr B Floating-Point Divide
archaicformfor: fdiv[.] frT,frA,frB

frT, frA, frB Floating-Point Divide
frT, frA, frB Floating-Point Divide Single-Precision
frT, frA, frC Floating-Point Multiply
archaic form for: fmul[.] frT, frA, frC

frT, frA, frC, frB Floating-Point Multiply-Add
archaic form for: fmadd[.] frT, frA, frC, frB

frT, frA, frC, frB Floating-Point Multiply-Add
frT, frA, frC, frB Floating-Point Multiply-Add Single-Precision
frT, frB Floating-Point Move Register
frT, frA, frC, frB Floating-Point Multiply-Subtract
archaic form for: fmsub[.] frT, frA, frC, frB

frT, frA, frC, frB Floating-Point Multiply-Subtract
frT, frA, frC, frB Floating-Point Multiply-Subtract Single-

Precision
f rT , f r A, f rC Floating-Point Multiply
frT, frA, frC Floating-Point Multiply Single-Precision
frT, frB Floating-Point Negative Absolute Value
frT, frB Floating-Point Negate
frT, frA, frC, frB Floating-Point Negative Multiply-Add
archaic form for: fnmadd[.] frT, frA, frC, frB

frT, frA, frC, frB Floating-Point Negative Multiply-Add

654 Appendix B

- fnmadds[.] frT, frA, fre, frB Floating-Point Negative Multiply-Add Single­
Precision

fnms[.] frT, frA, fre, frB Floating-Point Negative Multiply-Subtract
archaic form for: fnmsub[.] frT, frA, fre, frB

- fnmsub[.] frT, frA, fre, frB Floating-Point Negative Multiply-Subtract
- fnmsubs[.] frT, frA, fre, frB floating-Point Negative Multiply-Subtract

?- fres[.] frT,frB
Single-Precison

Floating-Point Reciprocal Estimate Single­
Precision

- frsp[.] frT, frB Floating-Point Round to Single-Precision
Floating-Point Reciprocal Square Root
Estimate

? - frsqrte[.] frT, frB

fs[.]

?- fse1[.]
? - fsqrt[.]
?- fsqrts[.]

- fsub[.]
- fsubs[.]
- icbi

ics

- ins1wi[.]

64 - insrdi[.]

- insrwi[.]

- isync
1

- 1a

- 1a

1brx

- 1bz
- 1bzu
- 1bzux
- 1bzx

64- 1d
64- 1darx
64- 1du
64- 1dux
64- 1dx

frT, frA, frB Floating-Point Subtract
archaicformfor: fsub[.] frT,frA,frB

frT, frA, fre, frB floating-Point Select
frT, frB Floating-Point Square Root
frT, frB Floating-Point Square Root Single-Precision
frT, frA, frB Floating-Point Subtract
frT, frA, frB floating-Point Subtract Single-Precision
r A , r B Instruction Cache Block Invalidate

Instruction Cache Synchronize
archaic form for: isync

r A, rS , nBits , start Insert from Left Word Immediate
equivalent to: r1wimi[.] rA, rS, 32-start, start, (start+nBits)-1

r A, rS , nBits , start Insert from Right Doubleword Immediate
equivalent to: r1dimi[.] rA, rS, 6 4-(start + nBits), start

r A, rS, nBits , start Insert from Right Word Immediate
equivalentto: r1wimi[.] rA, rS, 32-end, start, end-1
where end = (start + nBits)

Instruction Cache Synchronize
rT,d(rA) Load
archaic form for: 1wz rT, d (rA)

rT, d (r A) Load Address
equivalent to: addi rT, rA, d

rT, symbol Load Address
equivalent to: addi rT, rN, dSymbol
where dSymbol is the offset from r N to symbol and r N has been

specified using the. using assembler directive
rT, rA, rB Load Byte-Reversed Indexed
archaicform for: 1wbrx rT, rA, rB

rT, d (r A) Load Byte and Zero
rT, d (rA) Load Byte and Zero with Update
rT, rA, rB Load Byte and Zero with Update Indexed
rT, r A, r B Load Byte and Zero Indexed
rT, ds (rA) Load Doubleword
rT, rA, rB Load Doubleword and Reserve Indexed
rT, ds (rA) Load Doubleword with Update
rT, rA, rB Load Doubleword with Update Indexed
rT, rA, rB Load Doubleword Indexed

Complete List of Mnemonics 655

• lfd
• lfdu

• lfdux

• lfdx
• lfs
• lfsu

• lfsux

• lfsx
• lha
• lhau
• lhaux

• lhax
• lhbrx
• 1hz
• lhzu
• lhzux
• lhzx
• li

lil

• lis

liu

1m

.lmw
lscbx[.]

lsi

• lswi
• lswx

lsx

lu

lux

64. lwa
• lwarx

frT,d(rA)
frT,d(rA)

frT,rA,rB

frT,rA,rB
frT,d(rA)
frT,d(rA)

frT,rA,rB

frT,rA,rB
rT ,d(rA)
rT ,de rA)
rT,rA,rB

Load Floating-Point Double-Precision
Load Floating-Point Double-Precision with
Update

Load Floating-Point Double-Precision with
Update Indexed

Load Floating-Point Double-Precision Indexed
Load Floating-Point Single-Precision
Load Floating-Point Single-Precision with
Update

Load Floating-Point Single-Precision with
Update Indexed

Load Floating-Point Single-Precision Indexed
Load Halfword Algebraic
Load Halfword Algebraic with Update
Load Halfword Algebraic with Update
Indexed

rT, rA, rB Load Halfword Algebraic Indexed
rT, rA, rB Load Halfword Byte-Reversed Indexed
rT, d (r A) Load Halfword and Zero
rT, d (rA) Load Halfword and Zero with Update
rT, r A, r B Load Halfword and Zero with Update Indexed
rT, rA, r B Load Halfword and Zero Indexed
rT, s16 Load Immediate
equivalent to: addi rT, 0, s16

rT ,s16 Load Immediate Lower
archaic form for: li rT, s16
equivalent to: addi rT, 0 ,s16

rT, s16 Load Immediate Shifted
equivalent to: addi s rT, 0 ,s16

rT, u16 Load Immediate Upper
archaic form for: lis rT ,s16
equivalent to: addis rT, 0 ,u16

rT, d (r A) Load Multiple
archaic form for: lmw rT, d (r A)

rT, d (rA) Load Multiple Word
rT, rA, rB Load String and Compare Byte Indexed
This instruction exists on POWER and the 601 only.

rT, rA, nBytes Load String Immediate
archaic form for: 1 sw i rT, r A , nBytes

rT, rA, nBytes Load String Word Immediate
rT, rA{ rB Load String Word Indexed
rT, r A , r B Load String Indexed
archaicformfor:lswx rT,rA,rB

rT, d (rA) Load with Update
archaic form for: lwzu rT, d (rA)

rT, rA, rB Load with Update Indexed
archaic form for: lwzux rT,rA,rB

rT, ds (r A) Load Word Algebraic
rT, rA, rB Load Word and Reserve Indexed

656 Appendix B

64' lwaux
64' lwax

• lwbrx
• lwz
• lwzu
• lwzux
• lwzx

lx

rnaskg[.j

rnaskir[.j

• rnerf
• rnerfs
• rnerxr

64' rnfasr

• rnfer
• rnfetr

• rnfdar

• rnfdbatl

• rnfdbatu

• rnfdee

• rnfdsisr

• rnfear

• rnffs[.j
• rnfibatl

• rnfibatu

• rnflr

rT, r A, r B Load Word Algebraic with Update Indexed
rT, r A, r B Load Word Algebraic Indexed
rT, rA, rB Load Word Byte-Reversed Indexed
rT, d (rA) Load Word and Zero
rT, d (r A) Load Word and Zero with Update
rT, rA, r B Load Word and Zero with Update Indexed
rT, rA, r B Load Word and Zero Indexed
rA, rS, rB Load Indexed
archaic form for: lwzx rA,rS,rB

rA,rS,rB Mask Generate
This instruction exists on POWER and the 601 only.

r A , r 5 , r B Mask Insert from Register
This instruction exists on POWER and the 601 only.

crT, erS Move Condition Register Fields
crT, erS Move to Condition Register from FPSCR
crT Move to Condition Register from XER
rT Move from Address Space Register
equivalent to: rnf s pr rT, 280

rT Move from Condition Register
rT Move from Count Register
equivalent to: rnfspr rT, 9

rT Move from Data Address Register
equivalent to: rnf spr rT, 19

rT, n Move from Data Block-Address Translation
Register n Lower

equivalent to: rnf s pr rT, 537 + 2 * n
rT, n Move from Data Block-Address Translation

Register n Upper
equivalent to: rnf spr rT, 536+ 2 * n

rT Move from Decrement Register
equivalent to: rnf s pr rT, 22
Note: on POWER, the SPR encoding for the DEC Register was 6 instead

of 22; the MPC601 accepts either encoding.
rT Move from Data Storage Interrupt Status

Register
equivalent to: rnfspr rT, 18

rT Move from External Access Register
equivalent to: rnf spr rT, 282

frT Move from FPSCR
rT,n Move from Instruction Block-Address

Translation Register n Lower
equivalentto:rnfspr rT,529+2*n

rT, n Move from Instruction Block-Address

equivalent to: rnfspr
rT
equivalent to: rnfspr

Translation Register n Upper
rT,528+2*n
Move from Link Register
rT,8

Complete List of Mnemonics 657

mfmq

• mfmsr
• mfpvr

mfrtcl

mfrtcu

• mfsdr1

• mfspr
• mfsprg

32. mfsr
mfsri

32· mfsrin
• mfsrrO

• mfsrr1

• mftb
• mftb

• mftbu

• mfxer

• mr[.]

64. mtasr

mtcr

• mtcrf
• mtctr

• mtdar

• mtdbatl

rT Move from MQ Register
This extended form is defined on POWER and the 601 only.
equivalent to: mf s pr rT, 0

rT Move from Machine State Register
rT Move from Processor Version Register
equivalentto: mf s pr rT, 287

rT Move from Real Time Counter Lower
This extended form is defined on POWER and the 601 only.
equivalent to: mfspr rT, 5

rT Move from Real Time Counter Upper
This extended form is defined on POWER and the 601 only.
equivalent to: mfspr rT, 4

rT Move from Storage Description Register 1
equivalent to: mf spr rT, 25

rT, SPR Move from Special Purpose Register
rT, n Move from SPR GO-G3
equivalent to: mfspr rT, 272+n

rT, SR Move from Segment Regster
rT, rA, rB Move from Segment Register Indirect
archaic form for: mfsrin rT, rB
Note that A must equal 0 formfsrin to replacemfsri and thatthe

instruction encoding is different for these instructions.
rT, r B Move from Segment Register Indirect
rT Move from Save/Restore Register 0
equivalent to: mf spr rT, 26

rT Move from Save/Restore Register 1
equivalent to: mf spr rT, 27

rT, TBR Move from Time Base Register
rT Move from Time Base Lower
equivalent to: mf tb rT, 268

rT Move from Time Base Upper
equivalent to: mf tb rT, 269

rT Move from Fixed-Point Exception Register
equivalent to: mfspr rT, 1

rA, rS Move Register
equivalent to: or[.] rA, rS, rS

rS Move to Address Space Register
equivalentto: mtspr 280, rS

rS Move to Condition Register
equivalent to: mtcrf OxFF, rS

crMask, rS Move to Condition Register Fields
r S Move to Count Register
equivalent to: mtspr 9, rS

r S Move to Data Address Register
equivalent to: mtspr 19, rS

n, rS Move to Data Block-Address Translation
Register n Lower

equivalentto: mts pr 537 + 2 * n, rS

658 Appendix B

• mtdbatu

• mtdec

• mtdsisr

• mtear

mtfs [•]

• mtfsbO[.]
• mtfsb1[.]
• mtfsf[.]
• mtfsfi[.]
• mtibatl

• mtibatu

• mtlr

mtmq

• mtmsr
• mtsdr1

• mtspr
• mtsprg

32. mtsr
mtsri

32· mtsrin
• mtsrrO

• mtsrr1

mttb

• mttbl

• mttbu

n,rS

equivalent to: mtspr
rS
equivalent to: mtspr

rS
equivalent to: mtspr

rS
equivalent to: mtspr

frB

Move to Data Block-Address Translation
Register n Upper

536+2*n,rS
Move to Decrement Register
22,rS
Move to Data Storage Interrupt Status Register
18,rS
Move to External Access Register
282,rS
Move to FPSCR

equivalent to: mtfsf [.] OxFF, frB
crbT Move to FPSCR Bit 0
crbT
fpscrMask, frB
fpscrJT , fieldVal
n,rS

Move to FPSCR Bit 1
Move to FPSCR Fields
Move to FPSCR Field Immediate
Move to Instruction Block-Address Translation
Register n Lower

equivalentto:mtspr 529+2*n,rS
n, r S Move to Instruction Block-Address Translation

Register n Upper
equivalentto:mtspr 528+2*n,rS

r S Move to Link Register
equivalent to: mtspr 8, rS

rS Move to Multiply Quotient Register
This extended form is defined on POWER and the 601 only.
equivalent to: mtspr 0, rS

r S Move to Machine State Register
rS Move to Storage Description Register 1
equivalent to: mtspr 25, rS

SPR, rS Move to Special Purpose Register
n, r S Move to SPR GO-G3
equivalentto:mtspr 272+n,rS

SR, rS Move to Segment Register
rS, rA, rB Move to Segment Register Indirect
archaic form for: mtsrin rS, rB
Note that A must equal 0 formtsrin to replace mtsri.

r S , r B Move to Segment Register Indirect
r S Move to Save / Restore Register 0
equivalent to: mtspr 26, rS

rS Move to Save/Restore Register 1
equivalentto:mtspr 27,rS

TBR, rS Move to Time Base Register
This instruction was originally intended to provide write access to the

Time Base Register, but it has since been removed from the PowerPC
Architecture specification.

rS Move to Time Base Lower
equivalentto:mtspr 284,rS

rS Move to Time Base Upper
equivalentto:mtspr 285,rS

Complete List of Mnemonics 659

• mtxer

mul[o][.]

64' mulhd[.]
64' mulhdu[.]

• mulhw[.]
• mulhwu[.]

muli

64' mulld[o][.]
• mulli
• mullw[o][.]

muls[o][.]

nabs[o][.]

• nand[.]
• neg[o][.]
• nop

• nor[.]
• not[.]

• or[.]
• orc[.]
• ori

oril

• oris
oriu

rac[.]

• rfi
rfsvc

64' rldcl[.]
64' rldcr[.]
64' rldic[.]
64' rldicl[.]

64' rldicr[.]

64. rldimi[.]

rlimi[.]

rS Move to Fixed-Point Exception Register
equivalent to: mtspr 1, rS

rT, rA, rB Multiply
This instruction exists on POWER and the 601 only.

rT, rA, rB Multiply High Doubleword
rT, rA, rB Multiply High Doubleword Unsigned
rT, rA, rB Multiply High Word
rT, rA, rB Multiply High Word Unsigned
rT, rA, s16 Multiply Immediate
archaic form for: mulli rT, rA,s16

rT, rA, rB Multiply Low Doubleword
rT, rA,s16 Multiply Low Immediate
rT, rA, rB Multiply Low Word
rT, r A, rB Multiply Short
archaicformfor:mullw rT,rA,rB

rT, rA Negative Absolute Value
This instruction exists on POWER and the 601 only.

rA,rS,rB NAND
rT, rA Negate

No-op
equivalent to: ori rO, rO, 0

rA,rS,rB NOR
rA,rS NOT
equivalent to: nor[.] rA, rS, rS

rA,rS,rB OR
rA,rS,rB OR with Complement
rA,rS,u16 OR Immediate
rA,rS,u16 OR Immediate Lower
archaic form for: ori rA, rS, u16

rA, rS, u16 OR Immediate Shifted
rA,rS,u16 OR Immediate Upper
archaic form for: oris rA, rS, u16

rT, rA, rB Real Address Compute
This instruction exists on POWER only.

Return from Interrupt
Return from SVC

This instruction exists on POWER only.
r A, r 5, r B , mb64 Rotate Left Doubleword then Clear Left
r A, r 5, r B , me64 Rotate Left Doubleword then Clear Right
r A, r 5, shift64 , mb64 Rotate Left Doubleword Immediate then Clear
r A, r 5, shift64 , mb64 Rotate Left Doubleword Immediate then Clear

Left
rA, rS, shift64 , me64 Rotate Left Doubleword Immediate then Clear

Right
rA, rS, shift64 , mb64 Rotate Left Doubleword Immediate then Mask

Insert
r A, r 5 , shift, mb , me Rotate Left Immediate then Mask Insert
archaic form for: rlwimi[.] rA, rS ,shift ,mb ,me

660 Appendix B

rlinm[.]

rlmi[.]

rlnm[.]

• rlwimi[.]
• rlwinm[.]

• rlwnm[.]
64. rotld[.]

64. rotldi[.]

• rotlw[.]

• rotlwi[.]

64· rotrdi[.]

• rotrwi[.]

rrib[.]

• sc
sf[o][.]

sfe[o][.]

sfi

sfme[o][.]

sfze[o][.]

sir .]

sl[.]

? • slbia
? slbie

slbiex

64· sld[.]
64· sldi[.]

r A, r S , shift, mb , me Rotate Left Immediate then AND with Mask
archaic form for: rlwinm[.] rA, rS, shift, mb, me

rA, rS, rB, mb, me Rotate Left then Mask Insert
This instruction exists on POWER and the 601 only.

rA, rS, rB, mb, me Rotate Left then AND with Mask
archaic form for: rlwnm[.] rA, rS, rB, mb, me

r A , r S , shift, mb , me Rotate Left Word Immediate then Mask Insert
r A , r S , shift, mb , me Rotate Left Word Immediate then AND with

Mask
r A, r S , r B , mb , me Rotate Left Word then AND with Mask
rA, rS, rB Rotate Left Doubleword
equivalentto:rldcl[.] rA,rS,rB,O

r A, r S , nBits Rotate Left Doubleword Immediate
equivalent to: rldicl[.] rA, rS, nBits, 0

rA,rS,rB Rotate Left Word
equivalent to: rlwnm[.] rA, rS, rB, 0 , 31

rA, rS, nBits Rotate Left Word Immediate
equivalent to: rlwinm[.] rA, rS, nBits, 0,31

rA, rS, nBits Rotate Right Doubleword Immediate
equivalent to: rldicl[.] rA,rS, 64-nBits, 0

rA, rS, nBits Rotate Right Word Immediate
equivalent to: rlwinm[.] rA, rS, 32-nBits, 0,31

rA, rS, rB Rotate Right and Insert Bit
This instruction exists on POWER and the 601 only.

System Call
rT, rA, rB Subtract From
archaicform for: subf[o][.] rT, rA, rB

rT, rA, rB Subtract From Extended
archaicform for: subfe[o][.] rT, rA, rB

rT, rA, s16 Subtract From Immediate
archaic form for: subfic rT,rA,s16

rT, rA Subtract From Minus One Extended
archaicform for: subfme[o][.] rT, rA

rT, rA Subtract From Zero Extended
archaicform for: subfze[o][.] rT, rA

rT, rA, s16 Subtract Immediate
equivalent to: addic[.] rT, rA, -s16

rA,rS,rB Shift Left
archaic form for: slw[.] rA, rS, rB

SLB Invalidate All
rB SLB Invalidate Entry
rB SLB Invalidate Entry by Index
This instruction was originally intended as an optional instruction for

64-bit PowerPC implementations, but it has since been removed
from the PowerPC Architecture specification.

rA, rS, rB Shift Left Doubleword
r A, r S , nBits Shift Left Doubleword Immediate
equivalentto: rldicr[.] rA, rS, nBits, 63-nBits

Complete List of Mnemonics 661

sle[.]

sleq[.]

sliq[.]

slliq[.]

sllq[.]

slq[.]

• slw[.]
• slwi[.]

sr[.]

sra[.]

64· srad[.]
64· sradi[.]

srai[.]

sraiq[.]

sraq[.]

• sraw[.]
• srawi[.]

64· srd[.]
64· srdi[.]

sre[.]

srea[.]

sreq[.]

sriq[.]

srliq[.]

srlq[.]

srq[.]

• srw[.]
• srwi[.]

rA, rS, rB Shift Left Extended
This instruction exists on POWER and the 601 only.

rA, rS, rB Shift Left Extended with MQ
This instruction exists on POWER and the 601 only.

r A, r 5, shift Shift Left Immediate with MQ
This instruction exists on POWER and the 601 only.

rA, rS, shift Shift Left Long Immediate with MQ
This instruction exists on POWER and the 601 only.

rA,rS,rB Shift Left Long withMQ
This instruction exists on POWER and the 601 only.

rA, rS, rB Shift Left with MQ
This instruction exists on POWER and the 601 only.

rA,rS,rB Shift Left Word
rA, rS, nBits Shift Left Word Immediate
equivalent to: rlwinm[.] rA, rS, nBits, 0, 31-nBits

rA, rS, rB Shift Right
archaic form for: srw[.] rA, rS, rB

rA, rS, rB Shift Right Algebraic
archaic form for: sraw[.] rA,rS,rB

rA, rS, rB Shift Right Algebraic Doubleword
rA, rS, shift64 Shift Right Algebraic Doubleword Immediate
r A , r 5 , shift Shift Right Algebraic Immediate
archaicformfor: srawi[.] rA,rS,shift

rA, rS, shift Shift Right Algebraic Immediate with MQ
This instruction exists on POWER and the 601 only.

r A, r 5, r B Shift Right Algebraic with MQ
This instruction exists on POWER and the 601 only.

r A , r 5 , r B Shift Right Algebraic Word
r A, r 5, shift Shift Right Algebraic Word Immediate
rA, rS, rB Shift Right Doubleword
r A, r 5, nBits Shift Right Doubleword Immediate
equivalent to: rldicl[.] rA, rS, 64-nBits, nBits

r A , r 5 , r B Shift Right Extended
This instruction exists on POWER and the 601 only.

r A , r 5 , r B Shift Right Extended Algebraic
This instruction exists on POWER and the 601 only.

rA, r 5, r B Shift Right Extended with MQ
This instruction exists on POWER and the 601 only.

r A, r 5, shift Shift Right Immediate with MQ
This instruction exists on POWER and the 601 only.

rA, rS, shift Shift Right Long Immediate with MQ
This instruction exists on POWER and the 601 only.

rA, rS, rB Shift Right Long with MQ
This instruction exists on POWER and the 601 only.

rA,rS,rB Shift Right with MQ
This instruction exists on POWER and the 601 only.

rA,rS,rB Shift Right Word
r A, r 5, nBits Shift Right Word Immediate
equivalent to: rlwinm[.] rA, rS, 32-nBits, nBits, 31

662 Appendix B

st

• stb
stbrx

• stbu
• stbux
• stbx

64' std
64' stdcx.
64' stdu
64' stdux
64' stdx

• stfd
• stfdu
• stfdux

• stfdx
? stfiwx
• stfs
• stfsu
• stfsux

• stfsx
• sth
• sthbrx
• sthu
• sthux
• sthx

stm

• stmw
stsi

• stswi
• stswx

stsw

stu

stux

• stw
• stwbrx
• stWCX.
• stwu
• stwux
• stwx

rS,d(rA) Store
archaic form for: stw rT, d (rA)

rS, d (rA) Store Byte
rS, rA, rB Store Byte-Reversed Indexed
archaic form for: s twbrx rT, r A, r B

rS, d (rA) Store Byte with Update
rS, rA, rB Store Byte with Update Indexed
rS, rA, rB Store Byte Indexed
rS, ds (rA) Store Doubleword
rS, rA, rB Store Doubleword Conditional Indexed
rS, ds (rA) Store Doubleword with Update
rS, rA, rB Store Doubleword with Update Indexed
rS, rA, rB Store Doubleword Indexed
frS, d (rA) Store Floating-Point Double
frS, d (rA) Store Floating-Point Double with Update
frS, rA, rB Store Floating-Point Double with Update

frS,rA,rB
frS, rA, rB
frS,d(rA)
frS,d(rA)
frS,rA,rB

Indexed
Store Floating-Point Double Indexed
Store Floating-Point as Integer Word
Store Floating-Point Single
Store Floating-Point Single with Update
Store Floating-Point Single with Update

Indexed
frS, rA, rB Store Floating-Point Single Indexed
rS, d (rA) Store Halfword
r S , r A , r B Store Halfword Byte-Reversed Indexed
rS, d (rA) Store Halfword with Update
rS, rA, rB Store Halfword with Update Indexed
rS, r A, r B Store Halfword Indexed
rS, d (rA) Store Multiple
archaic form for: s tmw rT, d (r A)

rS, d (rA) Store Multiple Word
rS, rA, nBytes Store String Immediate
archaic form for: stswi rT, rA, nBytes

rS, rA, nBytes Store String Word Immediate
r S , r A, r B Store String Word Indexed
r S , r A , r B Store String Indexed
archaic form for: stswx rT, rA, rB

rS, d (rA) Store with Update
archaicform for: stwu rT, d (rA)

rS, rA, rB Store with Update Indexed
archaic form for: stwux rT, rA, rB

rS, d (rA) Store Word
rS, rA, rB Store Word Byte-Reversed Indexed
rS, rA, rB Store Word Conditional Indexed
rS, d (rA) Store Word with Update
rS, rA, rB Store Word with Update Indexed
rS, rA, rB Store Word Indexed

Complete List of Mnemonics 663

stx rS,rA,rB Store Indexed
archaic form for: stwx rT, rA, rB

• sub[o][.] rT,rA,rB Subtract
equivalent to: subf[o][.] rT, rB, rA

• subc[o][.] rT,rA,rB Subtract Carrying
equivalent to: subfc[o][.] rT, rB, rA

• subf[o][.] rT,rA,rB Subtract From
• subfc[o][.] rT,rA,rB Subtract From Carrying
• subfe[o][.] rT, rA, rB Subtract From Extended
• subfic rT, rA,816 Subtract From Immediate Carrying
• subfme[o][.]rT, rA Subtract From Minus One Extended
• subfze[o][.]rT, rA Subtract From Zero Extended
• subi rT, rA,816 SubtractImmediate

equivalent to: addi rT, rA, -816
• subic[.] rT,rA,816 Subtract Immediate Carrying

equivalent to: addic[.] rT, rA, -816
• subis rT,rA,816 Subtract Immediate Shifted

equivalent to: addis rT, rA, -816
svc Supervisor Call

This instruction exists on POWER only.
svca SV Supervisor Call Absolute

svcl

svcla

• sync
t

64 • td
64 • tdeq

64 • tdeqi

64 • tdge

64 • tdgei

64' tdgt

64 • tdgti

64 • tdi
64 • tdle

archaic form for: sc
Note that SV must equal a for sc to replace svca.

Supervisor Call with Link
This instruction exists on POWER only.

SV Supervisor Call Absolute with Link
This instruction exists on POWER only.

Synchronize
trapOn,rA,rB Trap
archaic form for: tw trap On ,rA, rB

trap On ,rA, rB Trap Doubleword
rA, rB Trap Doubleword if Equal
equivalent to: td 4, rA, rB

rA,816 Trap Doubleword if Equal Immediate
equivalent to: tdi 4, rA, 816

rA, rB Trap Doubleword if Greater Than or Equal
equivalentto: td 12, rA, rB

r A, 816 Trap Doubleword if Greater Than or Equal
Immediate

equivalent to: tdi 12, rA,s16
rA, r B Trap Doubleword if Greater Than
equivalentto: td 8, r A , r B

rA,816 Trap Doubleword if Greater Than Immediate
equivalent to: tdi 8, rA, 816

rapOn, rA, 816 Trap Doubleword Immediate
rA, rB Trap Doubleword if Less Than or Equal
equivalent to: td 20, rA, rB

664 Appendix B

64- tdlei

64- tdlge

64- tdlgei

64- tdlgt

64- tdlgti

64- tdlle

64- tdllei

64- tdllt

64- tdllti

64- tdlng

64- tdlngi

64- tdlnl

64- tdlnli

64 - tdlt

64 - tdlti

64 - tdne

64 - tdnei

64 - tdng

64 - tdngi

rA,516

equivalent to: tdi
rA,rB

equivalent to: td
rA,s16

equivalent to: tdi
rA,rB
equivalent to: td

rA,s16

equivalent to: tdi
rA,rB

equivalent to: td
rA, s16

equivalent to: tdi
rA,rB
equivalent to: td

rA,s16

equivalent to: tdi
rA,rB

Trap Doubleword if Less Than or Equal
Immediate

20,rA,s16
Trap Doubleword if Logically Greater Than or
Equal

5,rA,rB
Trap Doubleword if Logically Greater Than or
Equal Immediate

5, rA,s16
trap Doubleword if Logically Greater Than

1,rA,rB
Trap Doubleword if Logically Greater Than
Immediate

1,rA,s16
Trap Doubleword if Logically Less Than or

Equal
6,rA,rB

Trap Doubleword if Logically Less Than or
Equal Immediate

6,rA,s16
Trap Doubleword if Logically Less Than

2,rA,rB
Trap Doubleword if Logically Less Than
Immediate

2,rA,s16
Trap Doubleword if Logically Not Greater
Than

equivalent to: td 6, rA, rB
rA,516 Trap Doubleword if Logically Not Greater

equivalent to: tdi
rA,rB
equivalent to: td

rA,s16

Than Immediate
6,rA,s16

Trap Doubleword if Logically Not Less Than
5,rA,rB

Trap Doubleword if Logically Not Less Than
Immediate

equivalent to: tdi 5, rA, s16
rA, rB Trap Doubleword if Less Than
equivalent to: td 16, rA, rB

rA, s16 Trap Doubleword if Less Than Immediate
equivalent to: tdi 16, rA,s16

rA, rB Trap Doubleword if Not Equal
equivalent to: td 24, rA, rB

rA, s16 Trap Doubleword if Not Equal Immediate
equivalent to: tdi 24, rA, s16

rA, rB Trap Doubleword if Not Greater Than
equivalent to: td 20, rA, rB

rA,816 Trap Doubleword if Not Greater Than
Immediate

equivalent to: tdi 20, rA, s16

Complete List of Mnemonics 665

64· tdnl

64· tdnli

ti

tIbi

? • tIbia
? • tIbie

tIbiex

? tIbsync
• trap

• tw
• tweq

• tweqi

• twge

• twgei

• twgt

• twgti

• twi
• twIe

• twIei

• twlge

• twlgei

• twlgt

• twlgti

• twIIe

rA, r B Trap Doubleword if Not Less Than
equivalent to: td 12, rA, rB

rA,816 Trap Doubleword if Not Less Than Immediate
equivalent to: tdi 12, rA,816

trapOn, rA, 816 Trap Immediate
archaic form for: twi trapOn, rA, 816

rA, rB TLB Invalidate Entry
archaic form for: tIbie rB
Note that A must equal 0 for tIbie to replace tlbi.

TLB Invalidate All
rB TLB Invalidate Entry
r B TLB Invalidate Entry by Index
This instruction was originally intended as an optional instruction for

PowerPC implementations, but it has since been removed from the
PowerPC Architecture specification.

TLB Synchronize
Trap Unconditionally

equivalent to: tw 31, rO, rO
trapOn, rA, rB Trap Word
rA, rB Trap Word if Equal
equivalent to: tw 4, rA, rB

rA,816 Trap Word if Equal Immediate
equivalent to: twi 4, rA, 816

rA, rB Trap Word if Greater Than or Equal
equivalent to: tw 12, rA, rB

rA,816 Trap Word if Greater Than or Equal Immediate
equivalentto:twi 12,rA,816

rA, rB Trap Word if Greater Than
equivalentto: tw 8, rA, rB

rA,816 Trap Word if Greater Than Immediate
equivalent to: twi 8, rA, 816

trapOn, rA, 816 Trap Word Immediate
rA,rB Trap Word if Less Than or Equal
equivalent to: tw 20, rA, r B

rA,816 Trap Word if Less Than or Equal Immediate
equivalent to: twi 20, rA, 816

rA, rB Trap Word if Logically Greater Than or Equal
equivalent to: tw 5, rA, rB

rA,816 Trap Word if LOgically Greater Than or Equal

equivalent to: twi
rA,rB
equivalent to: tw

rA,816

Immediate
5,rA,816

Trap Word if Logically Greater Than
1,rA,rB

Trap Word if Logically Greater Than
Immediate

equivalentto:twi 1,rA,816
rA, r B Trap Word if LOgically Less Than or Equal
equivalent to: tw 6, r A , r B

666 Appendix B

• twllei

• twllt

• twllti

• twIng

• twIngi

• twInl

• twInIi

• twIt

• twlti

• twne

• twnei

• twng

• twngi

• twnI

• twnli

• xor[.]
• xori

xoril

• xoris
xoriu

rA,816 Trap Word if Logically Less Than or Equal
Immediate

equivalent to: twi 6, rA, 816
r A, r B Trap Word if Logically Less Than
equivalent to: tw 2, rA, rB

rA,816 Trap Word if Logically Less Than Immediate
equivalent to: twi 2, rA, 816

rA, rB Trap Word if Logically Not Greater Than
equivalent to: tw 6, rA, rB

rA,816 Trap Word if Logically Not Greater Than
Immediate

6,rA,816 equivalent to: twi
rA,rB
equivalent to: tw

rA,816

Trap Word if Logically Not Less Than
5,rA,rB

Trap Word if Logically Not Less Than
Immediate

equivalent to: twi 5, rA, 816
rA, rB Trap Word if Less Than
equivalent to: tw 16, r A, r B

rA,816 Trap Word if Less Than Immediate
equivalent to: twi 16, rA, s16

rA,rB Trap Word if Not Equal
equivalent to: tw 24, rA, rB

rA,816 Trap Word if Not Equallmmediate
equivalent to: twi 24, rA, 816

rA, rB Trap Word if Not Greater Than
equivalent to: tw 20, rA, rB

rA,816 Trap Word if Not Greater Than Immediate
equivalent to: twi 20, rA, 816

rA, rB Trap Word if Not Less Than
equivalent to: tw 12, rA, rB

rA,816 Trap Word if Not Less Than Immediate
equivalentto: twi 12, rA, 816

rA,rS,rB Exclusive OR
rA, rS , u16 Exclusive OR Immediate
rA, rS , u16 Exclusive OR Immediate Lower
archaic form for: xor i rA, rS ,u16

rA, rS, u16 Exclusive OR Immediate Shifted
rA, rS, u16 Exclusive OR Immediate Upper
archaic form for: xoris rA, rS, u16

Complete List of Mnemonics 667

Register Bit
Definitions

C.l Condition Register (CR)

The Condition Register is divided into eight 4-bit fields as described in Table C-l.
The interpretation of the bits within these fields depends on how the bit field was
originally updated. Table C-2 through Table C-5 describes the bit interpretations
for the commonly performed CR field operations.

Table C-l Condition Register

Bit # Description

0-3
CRfield 0
This field is implicitly updated by some fixed-point instructions.

4-7
CRfield 1
This field is implicitly updated by some floating-point instructions.

8-11 CRfield 2

12-15 CRfield 3

16-19 CRfield 4

20-23 CRfield 5

24-27 CRfield 6

28-31 CRfield 7

If CR field 0 is updated by a fixed-point instruction with the record bit set, then
the CR bits will be updated as described in Table C-2.

Register Bit Definitions 669

Table C-2 CR Bit Field Settings from Fixed-Point Instructions

Bit# Name Description

0 LT
Less Than, or Negative
Set if the result is negative.

1 GT
Greater Than, or Positive
Set if the result is positive.

2 EQ
Equal, or Zero
Set if the result is zero.

3 SO
Summary Overflow
Copied from XER[SO] after the instruction is complete.

If CR field 1 is updated by a floating-point instruction with the record bit set,
then the CR bits will be updated as described in Table C-3.

Table C-3 CR Bit Field Settings from Floating-Point Instructions

Bit # Name Description

0 FX
Floating-Point Exception Summary
Copied from FPSCR[FX] after the instruction is complete.

1 FEX
Floating-Point Enabled Exception Summary
Copied from FPSCR[FEX] after the instruction is complete.

2 VX
Floating-Point Invalid Operation Exception Summary
Copied from FPSCR[VX] after the instruction is complete.

3 OX
Floating-Point Overflow Exception
Copied from FPSCR[OX] after the instruction is complete.

Fixed-point compare instructions update the target CR field as summarized in
Table C-4.

Table C-4 CR Bit Field Settings from Fixed-Point Compare Instructions

Bit # Name Description

0 LT
Less Than
Set if (rA) < s16 or if (rA) < (rB) .

...

1 GT
Greater Than
Set if (rA) > s16 or if (rA) > (rB).

2 EQ
Equal
Set if (rA) = s16 or if (rA) = (rB).

3 SO
Summary Overflow
Copied from XER[SO] after the instruction is complete.

Floating-point compare instructions update the target CR field as summarized
in Table C-S.

670 Appendix C

Table C-5 CR Bit Field Settings from Floating-Point Compare Instructions

Bit# Name Description

0 FL
Floating-Point Less Than
Set if (frA) < (frB).

1 FG
Floating-Point Greater Than
Set if (frA) > (frB).

2 FE
Floating-Point Equal
Set if (frA) = (frB).

3 FU
Floating-Point Unordered
Set if one or both of (frA) and (frB) is NaN.

C.2 Machine State Register (MSR)

The MSR contains a large number of flags which describe the current processor
state. The bits of the MSR are summarized in Table C-6. Note that not all of the
bits are implemented on all processors.

Table C-6 MSR Bit Settings

Bit# Bit

32-bit 64-bit Name
Description

64-bit mode

- 0 SF 0 I The processor is running in 32-bit mode.

1 I The processor is running in 64-bit mode.

0 1-32 - Reserved: These bits are saved in SRR1 during interrupts.

1-4 33-36 - Reserved

5-9 37-41 - Reserved: These bits are saved in SRR1 during interrupts.

10-12 42-44 - Reserved

Power. Management Enable: Not all processors have power management facilities. On
the 601, this bit is unused.

13 45 POW
0 I The power management facilities are disabled.

1 I The power management facilities are enabled.

14 46
Implementation-Dependent Function: Interpretation of this bit depends on the -
implementation. On the 601, this bit is unused.

Interrupt Little-Endian Mode: On the 601, this bit is unused.

15 47 ILE 0 '-The processor should execute interrupts in big-endian mode.

1 I The processor should execute interrupts in little-endian mode.

External Interrupt Enable:

16 48 EE 0 I The processor is disabled against accepting External or Decrementer interrupts.

1 I The processor is enabled to accept External or Decrerilenter interrupts.

Problem State: This bit is sometimes referred to as the "privilege level" bit.

17 49 PR 0 I The processor is allowed to execute both user-level and privileged instructions.

1 I The processor is allowed to execute user-level instructions only.

Register Bit Definitions 671

Floating-Point Available:

18 50 FP 0
The processor is not allowed to execute floating-point instructions (including
loads, stores and moves).

1 The processor is allowed to execute floating-point instructions.

Machine Check Enable:

19 51 ME 0
Machine Check interrupts are disabled. On the 601, a Machine Check interrupt
will be taken if mDO[CE] or HIDO[EM] is cleared.

1 Machine Check interrupts are enabled.

20 52 FEO
Floating-Point ExcqJtion Mode 0: This bit, along with FEl, controls the current Floating-
Point Exception Mode. See Table C-7.

Single-StqJ Trace Enable: This feature may not be present on all implementations.

21 53 SE
0 Instructions are executed normally.

1
The processor should generate a Single-Step type Trace interrupt after the
successful execution of an instruction.

Branch Trace Enable: This feature may not be present on all implementations. On the
601, this bit is unused.

22 54 BE
0 Ihstructions are executed normally.

The processor should generate a Branch type Trace interrupt after the
1 successful execution of a branch instruction (whether or not the branch is

taken)

23 55 FEl
Floating-Point ExcqJtion Mode 1: This bit, along with FEO, controls the current Floating-
Point Exception Mode. See Table C-7.

Reserved: This bit is not used by PowerPC processors but is reserved for POWER
compatibility. It corresponds to the Alignment Check (AL) bit and should be set if
POWER compatibility is required. This bit is saved in SRRI during interrupts.

24 56 (AL)
0 Alignment checking is off and low-order bits of address are ignored.

1
Alignment checking is on and the processor should generate alignment
interrupts if it is unable to handle a requested unaligned access.

Interrupt Prefix: This bit is sometimes referred to as the Exception Prefix (EP) bit.

0
Interrupts are vectored through the real address calculated by prepending OxOs

25 57 IP to the interrupt offset.

1
Interrupts are vectored through the real address calculated by prepending OxFs
to the interrupt offset.

Instruction Relocate: This bit is sometimes referred to as the Instruction Address
Translation (IT) bit.

26 58 IR
0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

Data Relocate: This bit is sometimes referred to as the Data Address Translation (DT)
bit.

27 59 DR
0 Data address translation is disabled.

1 Data address translation is enabled.

28-29 60-61 - Reserved: These bits are saved in SRRI during interrupts.

Recoverable Interrupt: On the 601, this bit is unused.

30 62 RI 0 The interrupt is not recoverable.

1 The interrupt is recoverable.

672 Appendix C

Little-Endian Mode: On the 601, this bit is unused.

31 63 LE 0 I The processor is running in big-endian mode.

1 I The processor is running in little-endian mode.

The FEO and FEI bits of the MSR combine to determine the current floating­
point exception mode. These bits are interpreted as shown in Table C-7.

Table C-7 Floating-Point Exception Modes

FEO FE! Floating-Point Exception Mode

0 0 Floating-point interrupts disabled

0 1 Imprecise, non-recoverable interrupts enabled

1 0 Imprecise, recoverable interrupts enabled

1 1 Precise interrupts enabled

C.3 Floating-Point Status and Control Register (FPSCR)

The FPSCR contains a variety of flags that control the operation of floating-point
instructions and addtional flags that indicate exceptional conditions that may
have arisen during the execution of floating-point instructions.

Table C-8 FPSCR Bit Settings

Bit #
Bit

Description
Name

0 FX Floating-Point Exception Summary

1 FEX Floating-Point Enabled Exception Summary

2 VX Floating-Point Invalid Operation Exception Summary

3 OX FloatingCPoint Overflow Exception

4 UX Floating-Point Underflow Exception

5 ZX Floating-Point Zero Divide Exception

6 XX Floating-Point Inexact Exception

7 VXSNAN Floating-Point Invalid Operation Exception (SNaN)

8 VXISI Floating-Point Invalid Operation Exception (00 - 00)

9 VXlDI Floating-Point Invalid Operation Exception (00 + 00)

10 VXZDZ Floating-Point Invalid Operation Exception (0 + 0)

11 VXlMZ Floating-Point Invalid Operation Exception (00 XO)

12 VXVC Floating-Point Invalid Operation Exception (Invalid Compare)

13 FR _ Floating-Point Fraction Rounded

14 PI Floating-Point Fraction Inexact

Register Bit Definitions 673

Floating-Point Result Flags

15 C Floating-Point Result Class Descriptor

Floating-Point Condition Code

~ 16 FL Floating-Point Less Than or Negative
p;. U

& 17 FG Floating-Point Greater Than or Positive

18 FE Floating-Point Equal or Zero

19 FU Floating-Point Unordered or NaN

20 - Reserved

21 VXSOFT Floating-Point Invalid Operation Exception (Software Request)

22 VXSQRT Floating-Point Invalid Operation Exception (Invalid Square Root)

23 VXCVI Floating-Point Invalid Operation Exception (Invalid Integer Convert)

24 VE Floating-Point Invalid Operation Exception Enable

25 OE Floating-Point Overflow Exception Enable

26 UE Floating-Point Underflow Exception Enable

27 ZE Floating-Point Zero Divide Exception Enable

28 XE Floating-Point Inexact Exception Enable

29 NI Floating-Point Non-IEEE Mode

Floating-Point Rounding Control

00 Round to Nearest

30-31 RN 01 Round toward 0

10 Round toward +00

11 Round toward _00

C.4 Fixed-Point Exception Register (XER)

The XER contains bits that are updated by some fixed-point instructions to indi­
cate Carry and Overflow conditions. In addition, there are also extra fields that
are used by some of the Load and Store String instructions.

Table C-9 XER Bit Settings

Bit #
Bit

Description
Name

Summary Overflow
0 SO lhis bit is set whenever any instruction sets the OV bit. lhis bit

is only cleared by the mtxer and mcrxr instructions.

Overflow

1 OV
lhis bit is set when an instruction has an overflow condition.
lhis bit is updated only if the Overflow Enable (OE) bit of the
instruction is set.

Carry
lhis bit is set whenever there is a carry out of bit 0 during the

2 CA instruction execution. Only the Add Carrying,. Subtract From
Carrying, Add Extended, Subtract From Extended and Shift
Right Algebraic instructions update the carry bit.

3-15 - Reserved

674 Appendix C

This 8-bit field contains the compare byte that is used by the

16-23 - lscbx instruction. Since the lscbx instruction is not part of the
PowerPC architecture and exists only on the 601, this field is
used only on the 601.

24 - Reserved

25-31 -
This 7 -bit field contains the number of bytes that should be
transferred by the lswx, stswx or lscbx instructions.

Register Bit Definitions 675

PowerPC 601
Optimization

Summary

The following list provides a basic "rule of thumb" summary of the techniques
that should be used to minimize the number of pipeline stalls in PowerPC
programs executing on the 601 processor. This is not intended to be a complete
list of all optimization techniques, but is rather a overview of the most
important techniques to be aware of.

• Place at least three independent fixed-point instructions between a
compare instruction and a branch dependent on that compare. As long
as a previous instruction doesn't cause the compare to stall, this will
guarantee that the branch is not dispatched until the compare results
are available.

• Place at least four independent fixed-point instructions between a
fixed-point instruction with the Record bit set and a branch dependent
on the results of that instruction. As long as a previous instruction
doesn't cause the fixed-point instruction to stall, this will cause the
branch to be executed at the same time as the fixed-point instruction
is writing its results to the CR. Multi-cycle fixed-point instructions
will require additional instructions to be inserted.

• Place at least four independent fixed-point instructions between a
mtlr or mtctr instruction and a branch dependent on the SPR. As
long as a previous instruction doesn't cause the Move to SPR
instruction to stall, this will cause the branch to be executed at the
same time as the SPR is being updated.

PowerPC 601 Optimization Summary 677

• For each conditional branch, make sure that there is a fixed-point
instruction within three instructions before the branch. This insures
that the branch has an instruction to tag and prevents it from
generating a bubble. This is expecially important for series of
conditional branches which are not taken - each branch instructions
needs its own fixed-point instruction to tag. Alternating branches and
fixed-point instructions is a common way of addressing this problem.

• Between two branch instructions that are taken, up to two fixed-point
instructions can be inserted. If the first branch jumped directly to the
second branch, there would be a stall in the integer pipe while the
target of the second branch was being fetched. Inserting the two
instructions allows the processor to perform useful work during this
time.

• For a floating-point instruction with the Record bit set and a branch
dependent on the results of that instruction, place at least three
independent fixed-point instructions before the floating-point
instruction and at least and five independent fixed- or floating-point
instructions between the floating-point and branch instructions. This
will guarantee that the results of the floating-point instruction are
available when the branch is executed.

• Place at least one independent fixed-point instruction between a load
of a CPR and an instruction which uses the loaded register value. This
extra instruction will cover the delay assuming a cache hit. More
independent instructions are necessary to cover the delay due to a
cache miss.

• Place at least three independent floating-point instructions between
an instruction which updates the FPR and an instruction which uses
the updated value. This will prevent the FPU from stalling until the
data is available. Multi-cycle floating-point instructions will require
additional instructions to be inserted.

678 Appendix D

References &
Further Reading

[Apple94]

[Dowd93]

[Gircys88]

Inside Macintosh: PowerPC System Software, Addison-Wesley,
Reading, Massachusetts, ISBN 0-201-49727-2, QA76.8.M31528,
1994.

Dowd, K., High Performance Computing, O'Reilly & Associates,
Inc., Sebastopol, California, ISBN 1-56592-032-5, 1993.

Gircys, G.R., "Understanding and Using COFF," O'Reilly &
Associates, Inc., Sebastopol, California, ISBN 0-937175-31-5, 1988.

[Grohoski90a] Grohoski, G.E, "Machine Organization of the IBM RISC System/
6000 Processor," IBM J. Res. & Develop., Vol. 34 #1, pp. 37-58, IBM
Corporation, G322-0169-00, January 90.

[Grohoski90b] Grohoski, G.E, Kahle, J.A., Thatcher, L.E., Moore, c.R., "Branch
and Fixed-Point Instruction Execution Units," IBM RISC System/
6000Technology, pp. 24-32, IBM Corporation, SA23-2619, 1990.

[IBM91]

[IBM93a]

[IBM93b]

Course Outline Notes from "RISC System/6000 Hardware
Architecture," IBM Corporation, IBM966-8211, 9 January 1991.

AIX Version 3.2 Assembler Language Reference, Third Edition, IBM
Corporation, SC23-2197-02, October 1993.

PowerPC Architecture, First Edition, IBM Corporation, 52G7487,
May 1993.

References & Further Reading 679

[Kim92] Kim, J-H., Huang, W., "The AIX Binder System," AIXpert, pp. 29-
36, IBM Corporation, August 1992.

[Motorola93a] PowerPCM 601 RISC Microprocessor User's Manual, Motorola,
MPC601UM/ AD Rev 1,1993.
(also listed under IBM document #52G7484 or MPR601 UMU-02)

[Motorola93b] Technical Summary: PowerPC 603™ RISK Microprocessor, Motorola,
MPC603/D Rev 1,1993.

[Motorola94] PowerPCM 603 RISK Microprocessor User's Manual, Motorola,
MPC603UM/ AD, 1994. .
(also listed under IBM document #MPR603UMU-Ol)

[Oehler92] Oehler, R.R., Outline Notes from PowerPC Architecture, IBM
Corporation, IBM966K-3635, 27 February 1992.

[Patterson90] Patterson, D.A., Hennessy, J.L., Computer Architecture: A
Quantitive Approach, Morgan Kaufmann Publishers, San Mateo,
California, ISBN 1-55880-069-8, QA76.9.A73P377, 1990.

[Patterson94] Patterson, D.A., Hennessy, J.L., Computer Organization and Design:
The Hardware/Software Interface, Morgan Kaufmann Publishers,
San Mateo, California, ISBN 1-55860-281-X, QA76.9.C643P37,
1994.

[Przybylski90] Przybylski, S.A., Cache and Memory Hierarchy Design: A
Performance-Directed Approach, Morgan Kaufmann Publishers,
San Mateo, California, ISBN 1-55860-136-8, TK7895.M4P79, 1990.

[Warren91] Warren, H.S., Jr., Predicting Execution Time on the IBM RISC
System/6000, IBM Corporation, GG24-3711-00, July 1991.

680 Appendix E

Index

+.0-9

+ (branch instruction suffix), 50,235
• (integer and floating-point instruction

suffix),28, 148
• glink,292-293
• ptrg 1, 290-292
32-bit

mode, 23-24, C671
registers, 24
rotate and shift instructions, 96
segmented address translation, 194

64-bit

A

mode, 23-24, C671
registers, 24
rotate and shift instructions, 96
segmented address translation, 194

a (branch instruction suffix), 28
abs[o][.],90
add[0][.], 76
adder 0][.], 76
adder 0][.], 76
addi,76

extended forms, 77-78, 80

addie[.],76
extended forms, 80

addis, 76
extended forms, 77, 80

addition, 75-78
timing, 219

addme[o][.],76
address

effective (EA), 192, 195
fault,188
physical (P A), 192-194
real (RA), 192-194
virtual (VA), 192-195

Address Space Register (ASR), 22
addze[0][.], 76
AL (MSR), C672
alignment, 10
Alignment Check (MSR[AL]), C672
alloea(),287-288
and[.],86
ande[.],86
andi[.],87
andis[.], 87
argument, 281-286
argument area, 262-263,280

Index 681

ASR,22
64-bit mode, 25
instructions, 167-168

associativity (cache), 179

B

fully associative, 180
n-way set associative, 181

b[1][aj,36
BAT area, 192
bc[1][aj,36

extended forms, 38-41
bcctr[lj,36

extended forms, 45-47
bclr[lj,36

extended forms, 41-45
BE (BPU stage), 213
BE (MSR), 18, C672
biased exponent, 137
big-endian, 11
binary point, 136
bit numbering, 11
block (cache), 178
block (for BAT), 192
block address translation, 192,195-196
boolean instructions, 86-88

timing, 220
BPU, 12, 13,205,207,212-213

conflicts, 312-314
pipeline stages

BE,213
BW,213
MR,213

branch
condition encoding, 37
instruction, 35-47
instruction timing

conditional, 233-238
non-conditional,228-230

prediction, 47-50, 234-238
PowerPC 601, 49
dynamic,48
hints, 49
static, 48

tags, 230-233
Branch Execute (BPU IBE), 213
Branch Processor Unit (BPU), 12, 13, 205,

207,212-213

682 Index

Branch Trace Enable (MSR[BE]), 18, C672
Branch Writeback (BPU I BW), 213
bubble, 230-231
BW (BPU stage), 213
byte

c

data type, 10
ordering, 11

C (FPSCR), C674
CA (XER), 16, C674
CACC (CAU stage), 208, 216
cache

associativity,179
block,178
coherency, 183-185
dependencies, 335-336
description, 174
direct-mapped,179
disk cache, 175
fully associative, 180
hit, 176

timing, 238-239
line, 178
memory cache, 174
miss, 176

timing, 239-240,250
multiple level, 183
sector, 178
split, 182
sub-block, 178
tag, 178
timings

access, 238-240
instruction, 224

unified, 182
Cache Access (CAU I CACC), 208, 216
Cache Access Unit, 205-206, 208, 210-211
Cache Arbitration (CAU I CARB), 208, 216
Caching Inhibited (I), 197
CARB (CAU stage), 208, 216
Carry

CA (XER), 16, C674
CAU, 205-206, 208, 210-211

conflicts, 307

CAU (continued)
pipeline stages

CACC, 208, 216
CARB, 208, 216

timing, 216
CISC

definition, 4
vs. RISC, 3

clear (extended forms), 112-114
clear left and shift left (extended forms),

114-115
clcs, 188
cmp, 84

extended forms, 85-86
cmpi,84

extended forms, 85-86
cmpl,84

extended forms, 85-86
cmpli,84

extended forms, 85-86
cntl zd[.J, 83
cntlzw[.J, 83
code motion, 301-302
code pasting, 345
common subexpression elimination, 300-

301
compare instructions, 84-86

branch dependencies, 323
doubleword, 86
floating-point, 151-152
timing (integer), 221
word,85

Condition Register, 13, 14, 28, C669-C671
Count Register, 13, 17
CR, 13,14, 28, C669-C671

bits
EQ, 15, C670
FE, 15, 151, C671
FEX, 16, 148, C670
FG, 15, 151, C671
FL, 15, 151, C671
FU, 15, 151, C671
FX, 16, 148, C670
GT, 15, C670
LT, 15, C670
OX, 16, 148, C670
SO, 15, C670
VX, 16, 148, C670

CR (continued)
dependencies, 323-329
field, C669
field move instructions, 161-162
logical instructions, 160-161
restoring in epilog, 267-268
saving in prolog, 265
updates from FPU instructions, 148
updates from rotate and shift, 96-97
usage conventions, 254

crand,160
crandc, 160
creqv, 160

extended forms, 161
crnand,160
crnor, 160

extended forms, 161
cror, 160

extended forms, 160
crorc, 160
crxor, 160

extended forms, 160
CSE, 300-301
CTR,13,17

D

64-bit mode, 24
branch tags, 231-232
dependencies, 320-323
instructions, 165

DAE j Source Instruction Service Register,
19

DAQU, 205, 207, 213-214
conflicts, 314
pipeline stages

FPSB,214
ISB,214

DAR,19
instructions, 167-168

Data Access Queueing Unit (DAQU), 205,
207,213-214

Data Address Register (DAR), 19
Data Address Translation (MSR[DT]), C672
Data Block Address Translation Register

(DBAT),20
Data Relocate (MSR[DR]), 18, C672
Data Storage Interrupt Status Register

(DSISR),19

Index 683

DBAT,20
block address translation, 196
instructions, 167-168

debf,186
direct store segments, 195

debi,186
direct store segments, 195

debst, 186
direct store segments, 195

debt, 186
direct store segments, 195

debtst, 186
direct store segments, 195

debz, 186
direct store segments, 195

DEC, 21
instructions, 166-168

Decrementer (DEC), 21
dedicated (register), 251
denormalization, 142-143

timing, 247
denormalized numbers, 138,140-141
dependencies

anti-dependencies, 315
data dependencies, 315
output dependencies, 315

direct address translation, 192, 196
direct-mapped cache, 179
dispatch, 203
Dispatch Stage (DU IDS), 216
Dispatch Unit (DU), 205-206, 208-209
division

calculating the remainder, 82
integer instructions, 81-83
obsolete instructions, 89
timing

floating-point, 226
integer, 220

using algebraic right shifts, 348
di v[0][.j, 89
divd[u][o][.j,82
divs[o][.j,89
divw[u][o][.j,82
double page fault, 191
double-precision, 10
doubleword, 10
doz[o][.j, 90

timing, 219

684 Index

dozi,90
timing, 219

DR (MSR), 18, C672
DS,216
DSISR,19

instructions, 167-168
DT (MSR), C672
DU, 205-206, 208-209

conflicts, 308
pipeline stages

DS,216
IQ7-IQO, 208-209

timing, 216-218
dual cache, 182

E

EA, 192, 195
EAR,21

instructions, 167, 169
EE (MSR), 18, C671
effective address (EA), 192, 195
effective segment ID (ESID), 194
eieio, 188
endian, 11, 13
EP (MSR), C672
epilog, 261-262
EQ (CR), 15, C670
Equal (CR[EQ]), 15, C670
eqv[.j,86
ESID,194
exceptions, 144-147

inexact, 147
invalid operation, 145
overflow, 146
underflow, 147
zero divide, 145

Exception Prefix (MSR[EP]), C672
exponent, 135-136
exponent bias, 137
extend sign, 83
External Access Register (EAR), 21
External Interrupt Enable (MSR[EE]), 18,

C671
extract and justify (extended forms), 107-

109
extsb[.j, 83
extsh[.j, 83
extsw[.j, 83

F

F1 (FPU stage), 211-212
FA (FAU stage), 208
fabs[.j, 149
fadd[s][.j, 150
FAU, 205-206, 207-208

conflicts, 307
pipeline stages

FA,208
fcfid[.j,153
fcmpo,151
fcmpu, 151
fctid[z][.j, 153
fctiw[z][.j,153
FD (FPU stage), 211-212, 224
fdiv[s][.j,150
FE (CR), 15, 151, C671
FE (FPSCR), C674
FEO (MSR), 18, 144, C672-C673
FE1 (MSR), 18, 144, C672-C673
feed-forwarding, 204, 315
Fetch Arbitrate (FA U / FA), 208
Fetch Arbitration Unit (FAU), 205-206,207-

208
FEX (CR), 16, 148, C670
FEX (FPSCR), 17, 149, C673
FG (CR), 15, 151, C671
FG (FPSCR), C674
FI (FPSCR), 17, 145, C673
Fixed-Point Exception Register (XER), 12,

16, C674
Fixed-Point Unit (IV), 12, 205-207,209-211
FL (CR), 15, 151, C671
FL (FPSCR), C674
floating-point

arithmetic,149-151
comparison, 151-152
conversion instructions, 152-153
conversion algorithms, 155-158

doubleword to FP double, 157-158
FP double to doubleword, 157
FP double to FP single, 155
FP double to integer, 155-156
FP single to FP double, 155
integer to FP double, 156-157

data representation, 135-142
double-precision, 10
instruction timing, 225-228

floating-point (continued)
optional instructions, 153-154
register (FPR), 14
single-precision, 10
tags, 240
timings

instruction, 225-228
precise exceptions, 241-242

Floating-Point Add (FPU /FPA), 211-212
Floating-Point Arithmetic Writeback

(FPU/FWA),211-212
Floating-Point Available (MSR[FPj), 18,

C672
Floating-Point Condition Code

(FPSCR[FPCC]), C674
Floating-Point Decode (FPU /FD), 211-212,

224
Floating-Point Enabled Exception Summa­

ry (CR[FEXj), 16, 148, C670
Floating-Point Enabled Exception Summa­

ry (FPSCR[FEXj), 17, 149, C673
Floating-Point Equal (CR[FEj), 15, 151,

C671
Floating-Point Equal (FPSCR[FEj), C674
Floating-Point Exception Mode 0

(MSR[FEOj), 18, 144, C672-C673
Floating-Point Exception Mode 1

(MSR[FE1j), 18, 144, C672-C673
Floating-Point Exception Summary

(CR[FXj), 16, 148, C670
Floating-Point Exception Summary

(FPSCR[FXj), 17, 149, C673
Floating-Point Fraction Inexact

(FPSCR[FIj), 17, 145, C673
Floating-Point Fraction Rounded

(FPSCR[FRj), 17, 145, C673
Floating-Point Greater Than (CR[FGj), 15,

151, C671
Floating-Point Greater Than (FPSCR[FGj),

C674
Floating-Point Inexact Exception

(FPSCR[XXj), 17, 147, C673
Floating-Point Inexact Exception Enable

(FPSCR[XEj), 17, C674
Floating-Point Instruction Queue (FPU /

F1),211-212
Floating-Point Invalid Operation Exception

(00-00) (FPSCR[VXISIj), 17, C673

Index 685

Floating-Point Invalid Operation Exception
(00+00) (FPSCR[VXIDI]), 17, C673

Floating-Point Invalid Operation Exception
(0+0) (FPSCR[VXZDZ]), 17, C673

Floating-Point Invalid Operation Exception
(ooxO) (FPSCR[VXIMZ]), 17, C673

Floating-Point Invalid Operation Exception
(Invalid Compare) (FPSCR[VXVC]),
17, 152, C673

Floating-Point Invalid Operation Exception
(Invalid Integer Convert)
(FPSCR[VXCVI]), 17, C674

Floating-Point Invalid Operation Exception
(Invalid Square Root)
(FPSCR[VXSQRT]), 17, C674

Floating-Point Invalid Operation Exception
(SNaN) (FPSCR[VXSNAN]), 17, 152,
C673

Floating-Point Invalid Operation Exception
(Software Request)
(FPSCR[VXSOFT]), 17, 145, C674

Floating-Point Invalid Operation Exception
Enable (FPSCR[VE]), 17, 152, C674

Floating-Point Invalid Operation Exception
Summary (CR[VX]), 16, 148, C670

Floating-Point Invalid Operation Exception
Summary (FPSCR[VX]), 17, 149, C673

Floating-Point Less Than (CR[FL]), IS, lSI,
C671

Floating-Point Less Than (FPSCR[FL]),
C674

Floating-Point Load Writeback (FPU /
FWL), 211-212

Floating-Point Multiply (FPU /FPM), 211-
212

Floating-Point Non-IEEE Mode
(FPSCR[NI]), C674

Floating-Point Overflow Exception
(CR[OX]), 16, 148, C670

Floating-Point Overflow Exception
(FPSCR[OX]), 17, 146, 149, C673

Floating-Point Overflow Exception Enable
(FPSCR[OE]), 17, 146-147, C674

Floating-Point Register (FPR), 14
Floating-Point Result Class Descriptor

(FPSCR[C]), C674
Floating-Point Result Flags

(FPSCR[FPRF]), 17, 146-147, C674

686 Index

Floating-Point Rounded Control
(FPSCR[RN]), 17, C674

Floating-Point Status and Control Register
(FPSCR), 12,16, C673-C674

Floating-Point Store Buffer (DAQU /FPSB),
214

Floating-Point Unit (FPU), 12,205,207
Floating-Point Unordered (CR[FU]), IS,

lSI, C671
Floating-Point Unordered (FPSCR[FU]),

C674
Floating-Point Underflow Exception

(FPSCR[UX]), 17, 147, C673
Floating-Point Underflow Exception En­

able (FPSCR[UE]), 17, 147, C674
Floating-Point Zero Divide Exception

(FPSCR[ZX]), 17, C673
Floating-Point Zero Divide Exception En-

able (FPSCR[ZE]),17, 145-146, C674
fmadd[s][•], 150
fmr[.],149
fmsub[s][.],150
fmul[s][.],150
fnabs[.],149
fneg[.],149
fnmadd[s][.],150
fnmsub[s][.],150
FP (MSR), 18, C672
FPA (FPU stage), 211-212, 224
FPCC (FPSCR), C674
FPM (FPU stage), 211-212, 224
FPR,14

dependencies, 333-334
usage conventions, 253

FPRF (FPSCR), 17, 146-147, C674
FPSB (DAQU stage), 214
FPSCR, 12,16, C673-C674

bits
C, C674
FE, C674
FEX, 17, 149, C673
FC, C674
FI, 17, 145, C673
FL, C674
FPCC,C674
FPRF, 17, 146-147, C674
FR, 17, 145, C673
FU,C674
FX, 17, 149, C673

FPSCR (continued)
bits (continued)

NI, C674
OE, 17, 146-147, C674
OX, 17, 146, 149, C673
RN, 17, C674
VE, 17, 147, C674
UX, 17, 147, C673
VE, 17, 152, C674
VX, 17, 149, C673
VXCVI, 17, C674
VXIDI, 17, C673
VXIMZ, 17, C673
VXISI, 17, C673
VXSNAN, 17, 152, C673
VXSOFT, 17, 145, C674
VXSQRT, 17, C674
VXVC, 17, 152, C673
VXZDZ, 17, C673
XE, 17, C674
XX, 17, 147, C673
ZE, 17, 145-146, C674
ZX, 17, C673

instruction, 161-163
instruction timing, 228

FPU, 12, 205, 207
conflicts, 310-312
pipeline stages, 211-212

F1,211-212
FD, 211-212, 224
FPA, 211-212, 224
FPM, 211-212, 224
FW A, 211-212, 225
FWL, 211-212, 225-227

FR (FPSCR), 17, 145, C673
fres[.],154
frsp[.],153
frsqrte[.],154
fsel[.],154
fsqrt[s][.],154
fsub[s][.],150
FU (CR), 15, 151, C671
FU (FPSCR), C674
fully associative cache, 180
function descriptors, 289
function inlining, 302
FWA (FPU stage), 211-212, 225
FWL (FPU stage), 210-212, 225-227
FX (CR), 16, 148, C670

FX (FPSCR), 17, 149, C673
FXU, 12

G
General Purpose Register (GPR), 12,14
General SPR (SPRG), 20
global linkage

• glink, 292-293
• ptrgl, 290-292

GPR, 12, 14
dependencies, 330-333
usage conventions, 252

Greater Than (CR[GT]), 15, C670
GT (CR), 15, C670
Guarded Storage (G), 197

H

halfword, 10
Harvard architecture cache, 182
hash functions, 178-179

IBAT,20
block address translation, 196
instructions, 167, 169

IC (IV stage), 210
icbi,187

direct store segments, 195
ID (IV stage), 210
IE (IV stage), 210
IEEE-754, 12, 135
ILE (MSR), 18, C671
infinities, 139,141-142
insert (extended forms), 109-111
Instruction Address Translate (MSR[IT]),

C672
Instruction Block Address Translation Reg-

ister (IBAT), 20
Instruction Queue (DU /lQ7-IQO), 208-209
Instruction Relocate (MSR[IR]), 18, C672
instruction scheduling, 204, 344
Integer Arithmetic Writeback (IV /lWA),

210-211
Integer Load Writeback (IV /IWL), 210-211
Integer Completion (IV IIC), 210
Integer Decode (IV lID), 210

Index 687

Integer Execute (IU /IE), 210
Integer Store Buffer (DAQU /ISB), 214
Integer Unit (IU), 12, 205-207,209-211
interrupt, 144
Interrupt Little-Endian Mode (MSR[ILE]),

18, C671
Interrupt Prefix (MSR[IP]), 18, C672
IP (MSR), 18, C672
IQ7-IQO (DU stages), 208-209

timing 216-218
IR (MSR), 18, C672
ISA (Instruction Set Architecture), 3
ISB (DAQU stage), 214
isync, 187
IT (MSR), C672
IU, 12, 205-207, 209-211

conflicts, 308-310
pipeline stages

IC,21O
ID,210
IE,21O
IW A, 210-211
IWL,21O-211

IWA (IU stage), 210-211
IWL (IU stage), 210-211

L

1 (branch instruction suffix), 28
latency, 202
Ibz[u][xJ,59
Id[u][xJ,63
Idarx,71

direct store segments, 195
LE (MSR), 18, C673
Less Than (CR[LT]), 15, C670
lfd[u][xJ,65
lfs[u][xJ,66
Iha[u][xJ,60
Ihbrx,64
Ihz[u][xJ,60
line (cache), 178
link area, 262, 279-280
Link Register, 13, 17
little-endian, 11
Little-Endian Mode (MSR[LE]), 18, C673
Imw,67
Load/Store Unit, 12,13

688 Index

load
byte,59
conditional, 71-72
doubleword, 63
floating-point double, 65
floating-point single, 66
CPR dependencies, 331-332
halfword algebraic, 60
halfword, byte-reversed, 64
halfword with zero, 60
multiple, 66-68, 273
obsolete, 72-73
store dependencies, 334-335
string, 68-71, 72-73
synchronize, 71-72
timing

floating-point, 226-227
integer, 221
misaligned,243-245

word algebraic, 62
word, byte-reversed, 64
word with zero, 61

locality of reference, 177
spacial, 177
temporal,177

local storage area, 262-263,281
logical instructions, 86-88
loop unrolling, 302-303, 345
LR,13,17

branch tags, 231-232
dependencies, 316-320
instructions, 165
restoring in epilog, 267-268
saving in prolog, 265

LRU, 177, 181
lsb (least significant bit), 11,13
lscbx[. J, 73
LSU, 12,13
lswi,69
lswx,69
LT (CR), 15, C670
lwa[xJ,62
lwarx,71

direct store segments, 195
lwaux,62
lwbrx,64
lwz[u][xJ,61-62

M

Machine Check Enable (MSR[ME]), 18,
C672

Machine State Register (MSR), 18, C671-
C673

mask instructions, 129-130
timing, 220

maskg[.], 130
maskir[•], 130
merf,161
merfs, 162
merxr,162
ME (MSR), 18, C672
Memory Coherence (M), 197
MESI,185
mfer, 161
mffs[.],162
mfmsr, 164
mfspr, 164

extended forms, 164-170
mfsr,l71
mfsrin,l71
mftb,170

extended forms, 170
Mispredict Recovery (BPU /MR), 213
mixed cache, 182
MQ22

dependencies, 329
instructions, 166

MR (BPU stage), 213
msb (most Significant bit), 11, 13
MSR, 18, C671-C673

64-bit mode, 24
bits

AL, C672
BE, 18, C672
DR, 18, C672
DT, C672
EE, 18, C671
EP, C672
FEO, 18, 144, C672-C673
FE1, 18, 144, C672-C673
FP, 18, C672
ILE, 18, C671
IP, 18, C672
IR, 18, C672
IT, C672
LE, 18, C673

MSR (continued)
bits (continued)

ME, 18, C672
POW, 18, C671
PR, 18, C671
RI, 18, C672
SE, 18, C672
SF, 18, C671

instructions, 163-164
mterf,162

extended forms, 162
mtfsbO[.],163
mtfsbl[.],163
mtfsf[.],163

extended forms, 163
mtfsfi[.],163
mtmsr, 164
mtspr,l64

extended forms, 164-170
mtsr,l72
mtsrin,l72
mul[o][.],89
mulhd[u][.],81
mulhw[u][.1,80

timing, 220
mulld[oH·],80
mulli,81

timing, 219
mullw[o][.],80
multiplication

integer instructions, 80-81
obsolete instructions, 89
timing

floating-point, 226
integer, 219-220

using left shifts, 346-347
Multiply-Quotient Register (MQ), 22

N

nabs[oH·],90
NaN, 12, 139,142
nand[.],86
neg[oH·],83

timing, 219
negate, 83
Negative (CR[LT]), 15, C670
NI (FPSCR) , C674
non-speculative instructions, 232

Index 689

non-volatile (register), 251
nor[.J, 86

extended forms, 88
normalization, 136, 142-143 .

normalization timing, 248
prenormalization timing, 246-247

notmalized numbers, 138,140
Not a Number (NaN), 12, 139,142

o
o (integer instruction suffix), 28
obsolete instructions, 29
OE (FPSCR), 17, 146-147, C674
optional instructions, 29-30
or[.J,86

extended forms, 88
orc[.J, 86
ori[.J, 87

extended forms, 88
oris[.J,87
Overflow (XER[OV]), 16,28, C674
OV (XER), 16,28, C674
overlapped execution, 202
OX (CR), 16, 148, C670
OX (FPSCR), 17, 146, 149, C673

p

PA, 192-194
page

definition, 188
for PowerPC processors, 192

page fault, 188
double, 191

physical address (PA), 192-194
pipeline, 201

conflicts, 306
stage, 201-202

planck, 136
Positive (CR[GT]), 15, C670
POW (MSR), 18, C671
Power Management Enable (MSR[POW]),

18, C671
PR (MSR), 18, C671
predicted (branch), 233
prenormalization timing, 246-247
privilege level (MSR[PR]), C671

690 Index

Problem State (MSR[PR]), 18, C671
Processor Version Register (PVR), 19
profiler, 296
prolog, 261-252
PVR,19

instructions, 167

Q

QNaN, 139, 142
quadword, 10
Quiet NaN (QNaN), 139,142

R

RA,192-194
radix point, 135
teal address (RA), 192-194
real page number (RPN), 194
Real-Time Clock (RTC), 21, 23
Recoverable Interrupt (MSR[RJ]), 18, C672
register

FPR,14
GPR, 12,14
remapping, 316
saving on stack, 270-278
shadowing, 316
SPR,164-172
usage dependencies, 314-316

register save area, 262-263,281
remapping (register), 316
replacement algorithms

LRU, 177, 181
random, 182

results (routine), 286-287
retire, 203
rfi,54
RI (MSR), 18, C672
RISC

definition, 3
vs. CISC,3

rIdcl[.J,100
extended forms, 102

r Idcr[.J, 100
rIdic[.J,100

extended forms, 115
r Idic I[.J, 100

extended forms, 102, 105, 109, 113

r ldicr[.], 100
extended forms, 104, 109, 113

rldimi[.],100
extended forms, 111

rlmi[.],130
rlwimi[.],98

extended forms, 111
rlwinm[.],98

extended forms, 99, 104-105, 109, 113,
115

rlwnm[.],98
extended forms, 99

RN (FPSCR), 17, C674
rotate instructions, 97-102

doubleword, 100-102
extended forms, 107-115
obsolete, 130-131
timing, 220
word,97-100

rounding, 143-144
to single-precision, 153

RPN,194
rr ib[•], 130
RTC, 21, 23

instructions, 166, 169

s
s (floating-point instruction suffix), 28,148
Save and Restore Register (SRRO, SRR1), 18
se,54
scheduling, 204, 344
scientific notation, 135
SDR1,22

64-bit mode, 25
instructions, 167, 169

SE (MSR), 18, C672
sector (cache), 178
segment

direct-store, 21, 192, 195
on PowerPC processors, 192
ordinary, 21,192
VM, 188

Segment Register (SR), 21
Segment Table (ST), 193
Segment Table Entry (STE), 194
segmented address translation, 192-195
SF (MSR), 18, C671
shadowing (register), 316

shift instructions, 102-107
left, 103-104
multiple-precision

left, 116-124
right, 124-126
right algebraic, 127-129

obsolete, 131-134
right, 104-106
right algebraic, 106-107
timing, 220

sign extension, 83
Signalling NaN (SNaN), 139,142
significand, 136
single-precision, 10
Single-Step Trace Enable (MSR[SE]), 18,

C672
SLB

instructions, 198-199
slbia, 199
slbie, 199
sld[.],104
sle[.],131
sleq[.],131
sliq[.],131
slliq[.],131
s llq[.], 132
slq[.],132
slw[.],104
SNaN, 139,142
snooping, 184
SO (CR), 15, C670
SO (XER), 16,28, C670, C674
spacial locality, 177
Special Purpose Registers (SPR) 164-172
speculative instructions, 232
split cache, 182
SPR,164-172

extended forms
obsolete, 165-166, 169-170
supervisor-level, 166-169, 171-172
user-level, 164-165

instructions, 164
timing, 223-224
usage conventions, 253-254

SPRG,20
instructions, 168-169

Index 691

SR,21
64-bit mode, 25
direct store segments, 195
instructions, 171-172

srad[.j, 106
sradi[.j, 106
sraiq[.j, 134
sraq[.j, 134
sraw[.j, 106
srawi[.j, 106
srd[.j,105
sre[.j,132
srea[.j, 134
sreq[.j, 132
sriq[.j,132
srliq[.j,133
srlq[.j,133
srq[.j, 133
SRRO/SRR1,18

64-bit mode, 25
instructions, 168-169
MSR bits saved, C671-C672

SRU, 12, 13
srw[.j,105
ST,193
stack frame, 255

alloca (),287-288
argument area, 262-263, 280
building frames, 259-261
link area, 262, 279-280
local storage area, 262-263, 281
register save area, 262-263,281

stack pointer, 251, 255-258
maintenance, 257-258

stage (pipeline), 201-202
stale, 183
stb[u][xj,60
std[u][xj,63
stdcx.,72

direct store segments, 195
STE,194

direct store segments, 195
stfd[u][xj,65
stfs[u][xj,66
sth[u][xj,61
sthbrx,64
sticky bits, 16
stmw,67
Storage Description Register 1 (SDR1), 22

692 Index

store
byte, 60
conditional,71-72
doubleword, 63
floating-point double, 65
floating-point single, 66
halfword, 61
halfword, byte-reversed, 64
load dependencies, 334-335
multiple, 66-68, 272
string, 68-71
synchronize, 71-72
timing

floating-point, 227
integer, 222-223
misaligned,244-246

word,62
word, byte-reversed, 64

strength reduction, 300, 346
stswi,70
stswx,70
stw[u][xj,62
stwbrx,64
stwcx.,72

CR dependencies, 327
direct store segments, 195

sub-block (cache), 178
subf[o][.j, 78

extended forms, 79
subfc[o][.j,78

extended forms, 79
subfe[o][.j, 78
sUbfic,79
subfme[o][.j, 78
subfze[o][.j, 78
subtraction, 78-80

timing, 219
Summary Overflow (XER[SO]), 16, 28,

C670, C674
Summary Overflow (CR[SO]), 15, C670
sync, 187
system linkage instructions, 54-55
System Register Unit (SRU), 12, 13

T

tag (branch), 230-233
CTR tags, 231-232
LR tags, 231-232
predicted branch tags, 232-233

tag (cache line), 178
tag (floating-point), 240
TBR,20-21

instructions, 170-171
td,50

extended forms, 52-54
tdi,50

extended forms, 52-54
temporal locality, 177
throughput, 203
Time Base Register (TBR), 20-21
TLB,191

instructions, 198
tlbia, 198
tlbie, 198
tlbsync, 198
TOe, 254-255

environments, 288-289
TOC pointer, 251, 254, 255
transition vector, 289
Translation Lookaside Buffers (TLB), 191
trap

encoding, 51
instructions, 50-54
timings, 224

tW,50
extended forms, 52-54

twi,50
extended forms 52-54

u
UE (FPSCR), 17, 147, C674
unified cache, 182
unordered, 151
unresolved (branch), 233
UX (FPSCR), 17, 147, C673

v
VA,192-195
VE (FPSCR), 17, 152, C674
virtual address (VA), 192-195

virtual memory, 176,188-191
virtual page number (VPN), 194-195
Virtual Segment ID (VSID), 193, 195
volatile (register), 251
VPN,194-195
VSID, 193, 195
VX (CR), 16, 148, C670
VX (FPSCR), 17, 149, C673
VXCVI (FPSCR), 17, C674
VxrDI (FPSCR), 17, C673
VXIMZ (FPSCR), 17, C673
VXISI (FPSCR), 17, C673
VXSNAN (FPSCR), 17, 152, C673
VXSOFT (FPSCR), 17, 145, C674
VXSQRT (FPSCR), 17, C674
VXVC (FPSCR), 17, 152, C673
VXZDZ (FPSCR), 17, C673

w
word,9
write allocate (cache), 177
write around (cache), 177
write back (cache), 177, 183
write broadcast, 184
write invalidate, 184
write-through

cache, 177, 184
memory access mode (W), 197

x
XE (FPSCR), 17, C674
XER, 12, 16, C674

bits
CA, 16, C674
OV, 16, 28, C674
SO, 16, 28, C670, C674

dependencies, 329-330
instructions, 165

xor[.],86
xori[.],87
xoris[.],87
XX (FPSCR), 17, 147, C673

Index 693

z
ZE (FPSCR), 17, 145-146, C674
Zero (CR[EQ]), IS, C670
zeros, 139,141
ZX (FPSCR), 17, C673

694 Index

CODE
T o take full advantage of the speed and

features of the PowerPC™ chip, pro­
grammers need to master assembly lan­

guage techniques. Written by an expert in the
area, Optimizing PowerPC Code provides
hard-core, cross-platform help at the assembly
language level. Even if you have little need to
write a significant amount of code in assembly
language, the techniques presented here will be
helpful in reading compiler-generated code and
in the debugging process. Beyond simply pre­
senting the information required to write effi­
cient, robust code, this book:

• covers new concepts, such as pipelining,
which are key to effective RISC program­
mlllg

• discusses the tricks that compilers use to
produce fast code

• expands on and corrects limited Motorola
documentation for the PowerPC chip

• provides a handy appendix with in-depth
information on all extended code forms and
related mapping information

Addison-Wesley Publishing Company

Optimizing PowerPC Code is an essential
resource for all high-level programmers, no
matter what platform they are using. The
author's expertise in assembly language pro­
gramming for RISC-based machines makes his
optimization techniques valuable to anyone
wishing to write fast, efficient code.

Gary Kacmarcik has been working with RISC­
based assembly language programming for
many years on the precursor to the PowerPC,
IBM's RS/6000, and has developed major
applications with high-level languages in
Macintosh, Windows, and XWindows environ­
ments. He won MacHack Conference's Best
Paper award for an article on RS/6000 assem­
bly language optimization techniques.

Cover design by Barbara T. Atkinson
Cover art © Michael D. Coe

53995

I
9 780201 408393

ISBN 0-201-40839-2

$39.95 US
$51.95 CANADA

