

Order Number: MPC755UM/D
Rev. 0.1, 10/2000

Semiconductor Products Sector

Addendum to
MPC750 RISC Microprocessor User’s Manual:
MPC755 Embedded G3 Microprocessor
Supplement
The MPC755 is a derivative of the MPC750 microprocessor design and is intended
primarily for use in embedded systems. All of the information in the MPC750 RISC
Microprocessor User’s Manual applies to the MPC755 microprocessor with the exceptions
and additions noted in this document. In the event the two documents conflict with each
other, this document supersedes the information in the MPC750 RISC Microprocessor
User’s Manual.

The MPC745 is a lower-pin-count device that operates identically to the MPC755, except
that it doesn’t implement the L2 cache interface. In the same way that the MPC750 User’s
Manual also describes the functionality of the MPC740, this document describes the
functionality of the MPC745. All information herein applies to the MPC745, except where
otherwise noted (in particular, the L2 cache information does not apply to the MPC745).

This document describes specific details about the implementation of the MPC755 as a
low-power, 32-bit member of the PowerPC™ processor family, and how it differs from the
MPC750. Note that the individual section headings indicate the chapters in the MPC750
User’s Manual to which they correspond. The sections are as follows:

• Part I, “MPC755 Overview,” describes general features of the MPC755 with respect
to the PowerPC architecture.

• Part II, “The MPC755 Programming Model (Chapter 2),” describes the differences
between the programming model of the MPC750 and MPC755.
This document contains information on a new product under development by Motorola.
Motorola reserves the right to change or discontinue this product without notice.

© Motorola, Inc., 2000. All rights reserved.

MPC755 Overview

• Part III, “MPC755 L1 Instruction and Data Cache Operation (Chapter 3),” describes
the aspects of the L1 instruction and data cache operation that are specific to the
MPC755.

• Part IV, “MPC755 Exceptions (Chapter 4),” describes how the MPC755 embedded
processor implements the exception model defined by the operating environment
architecture (OEA) for PowerPC processors.

• Part V, “MPC755 Memory Management (Chapter 5),” describes the MPC755
embedded processor’s implementation of the memory management unit (MMU)
specifications provided by the operating environment architecture (OEA) for
PowerPC processors.

• Part VI, “MPC755 Instruction Timing (Chapter 6),” describes how the MPC755
embedded processor fetches, dispatches, and executes instructions and how it
reports the results of instruction execution.

• Part VII, “MPC755 Signal Descriptions (Chapter 7),” describes the MPC755
embedded processor’s external signals.

• Part VIII, “MPC755 System Interface Operation (Chapter 8),” describes the
MPC755 embedded processor bus interface and its operation.

• Part IX, “MPC755 L2 Cache Interface Operation (Chapter 9),” describes the L2
cache interface and the private memory features of the MPC755.

• Part X, “Power and Thermal Management (Chapter 10),” describes the hardware
support provided by the MPC755 for power and thermal management.

• Part XI, “Performance Monitor (Chapter 11),” describes the performance monitor of
the MPC755.

Part I MPC755 Overview
This section is an overview of the MPC755. The following list of functional additions to the
MPC755 from the MPC750 summarizes the changes visible either to a programmer or a
system designer.

• Instruction and data cache locking mechanism added
• Four IBAT and four DBAT entries added
• Software table search mode added
• Four special-purpose (SPRG) registers added
• Parity generation and detection on L2 address bus added
• Instruction-only mode to L2 cache added
• Private SRAM capability to L2 cache interface added
• PB3-type SRAM support to L2 cache interface added
• 32-bit data bus mode added
• Bus voltage select (BVSEL) and L2 cache interface voltage select (L2VSEL) added
2 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Overview

1.1 MPC755 Functional Description
This section summarizes some of the functional differences between the MPC750 and the
MPC755. For information about the MPC755 L1 cache, see Part III, “MPC755 L1
Instruction and Data Cache Operation (Chapter 3).”

The MPC755 has independent on-chip, 32-Kbyte, eight-way set-associative, physically
addressed caches for instructions and data and independent instruction and data memory
management units (MMUs). Each MMU has a 128-entry, two-way set-associative
translation lookaside buffer (DTLB and ITLB) that saves recently used page address
translations. Block address translation on the MPC755 is performed by either two
four-entry or two eight-entry BAT arrays—one for instruction and one for data block
address translation (IBAT and DBAT arrays). Note that the IBAT and DBAT arrays defined
by the PowerPC architecture only contain four entries each. During block translation,
effective addresses are compared simultaneously with all enabled BAT entries. The
MPC755 also optionally supports software table search operations.

The L2 cache is implemented with an on-chip, two-way set-associative tag memory, and
with external, synchronous SRAMs for data storage. The external SRAMs are accessed
through a dedicated L2 cache port that supports a single bank of up to 1 Mbyte of
synchronous SRAMs. For information about the L2 cache implementation, see Part IX,
“MPC755 L2 Cache Interface Operation (Chapter 9).”

The MPC755 has a 32-bit address bus and a 32/64-bit data bus. Multiple devices compete
for system resources through a central external arbiter. The MPC755’s three-state
cache-coherency protocol (MEI) supports the exclusive, modified, and invalid states, a
compatible subset of the modified/exclusive/shared/invalid (MESI) four-state protocol, and
it operates coherently in systems with four-state caches. The MPC755 supports single-beat
and burst data transfers for memory accesses and memory-mapped I/O operations. The
system interface is described in Part VII, “MPC755 Signal Descriptions (Chapter 7),” and
Part VIII, “MPC755 System Interface Operation (Chapter 8).”

The MPC755 has four software-controllable power-saving modes. Three static modes
(doze, nap, and sleep) progressively reduce power dissipation. When functional units are
idle, a dynamic power management mode causes those units to enter a low-power mode
automatically without affecting operational performance, software execution, or external
hardware. The MPC755 also provides a thermal assist unit (TAU) and a way to reduce the
instruction fetch rate for limiting power dissipation. Power management is described in Part
X, “Power and Thermal Management (Chapter 10).”

Figure 1 shows the block diagram of the MPC755 and the parallel organization of the
execution units (shaded in the diagram). The instruction unit fetches, dispatches, and
predicts branch instructions. Note that this is a conceptual model that shows basic features
rather than attempting to show how features are implemented physically.
MPC755 Embedded G3 Microprocessor Supplement 3

4

M
P

C
755 E

m
b

ed
d

ed
 G

3 M
icro

p
ro

cesso
r S

u
p

p
lem

en
t

M
P

C
755 O

verview

FPSCRFPSCR

L2CR

Instruction MMU

Not in the MPC745

+ x ÷

SRs

ITLB

hadow) IBAT
Array

32-Kbyte
I CacheTags

128-Bit
(4 Instructions)

Reservation Station

Floating-Point
Unit

me Buffers
(6)

PR File

64-Bit

L2 Controller

L2 Tags

L2 Bus Interface
Unit

L2 Castout Queue

s Bus
ta Bus
F
ig

u
re 1. M

P
C

755 B
lo

ck D
iag

ram

Additional Features
• Time Base
Counter/Decrementer
• Clock Multiplier
• JTAG/COP Interface
• Thermal/Power Management
• Performance Monitor

+

+

Fetcher Branch Processing

BTIC
64 Entry

+ x ÷
CR

CTR
LR

BHT

Data MMU

EAPA

Instruction Unit

Unit

Instruction Queue
(6 Word)

2 Instructions

Reservation Station Reservation Station Reservation Station

Integer Unit 1
System Register

Unit

Dispatch Unit 64-Bit
(2 Instructions)

(S

32-Bit

Rena

F

32-Bit 64-Bit

Reservation Station
(2 Entry)

Load/Store Unit

(EA Calculation)

Store Queue

GPR File

Rename Buffers
(6)

32-Bit

SRs
(Original)

DTLB

DBAT
Array

64-Bit
Completion Unit

Reorder Buffer
(6 Entry)

Tags 32-Kbyte
D Cache

60x Bus Interface Unit
Instruction Fetch Queue

L1 Castout Queue

Data Load Queue

32-Bit Address Bus
32/64-Bit Data Bus

17-Bit L2 Addres
64-Bit L2 Da

Integer Unit 2

MPC755 Overview

1.2 MPC755 Features
This section lists the features of the MPC755. The interrelationship of these features is
shown in Figure 1. The major features of the MPC755 are as follows:

• High-performance, superscalar microprocessor
— As many as four instructions can be fetched from the instruction cache per clock

cycle
— As many as two instructions can be dispatched per clock
— As many as six instructions can execute per clock (including two integer

instructions)
— Single-clock-cycle execution for most instructions

• Six independent execution units and two register files
— BPU featuring both static and dynamic branch prediction

– 64-entry (16-set, four-way set-associative) branch target instruction cache
(BTIC), a cache of branch instructions that have been encountered in
branch/loop code sequences. If a target instruction is in the BTIC, it is fetched
into the instruction queue a cycle sooner than it can be made available from
the instruction cache. Typically, if a fetch access hits the BTIC, it provides the
first two instructions in the target stream.

– 512-entry branch history table (BHT) with two bits per entry for four levels of
prediction—not-taken, strongly not-taken, taken, strongly taken

– Branch instructions that do not update the count register (CTR) or link register
(LR) are removed from the instruction stream

— Two integer units (IUs) that share thirty-two 32-bit GPRs for integer operands
– IU1 can execute any integer instruction
– IU2 can execute all integer instructions except multiply and divide

instructions (shift, rotate, arithmetic, and logical instructions). Most
instructions that execute in the IU2 take one cycle to execute. The IU2 has a
single-entry reservation station.

— Three-stage floating-point unit (FPU)
– Fully IEEE 754-1985-compliant FPU for both single- and double-precision

operations
– Supports non-IEEE mode for time-critical operations
– Hardware support for denormalized numbers
– Single-entry reservation station
– Thirty-two 64-bit FPRs for single- or double-precision operands
MPC755 Embedded G3 Microprocessor Supplement 5

MPC755 Overview

— Two-stage load/store unit (LSU)
– Two-entry reservation station
– Single-cycle, pipelined cache access
– Dedicated adder performs EA calculations
– Performs alignment and precision conversion for floating-point data
– Performs alignment and sign extension for integer data
– Three-entry store queue
– Supports both big- and little-endian modes

— System register unit (SRU) handles miscellaneous instructions
– Executes CR logical and Move to/Move from SPR instructions (mtspr and

mfspr)
– Single-entry reservation station

• Rename buffers
— Six GPR rename buffers
— Six FPR rename buffers
— Condition register buffering supports two CR writes per clock

• Completion unit
— The completion unit retires an instruction from the six-entry reorder buffer

(completion queue) when all instructions ahead of it have been completed, the
instruction has finished execution, and no exceptions are pending.

— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order
— Tracks unresolved branches and flushes instructions from the mispredicted

branch
— Retires as many as two instructions per clock

• Separate on-chip instruction and data caches (Harvard architecture)
— 32-Kbyte, eight-way set-associative instruction and data caches
— Pseudo least-recently-used (PLRU) replacement algorithm
— 32-byte (eight-word) cache block
— Physically indexed/physical tags.
— Cache write-back or write-through operation programmable on a per-page or

per-block basis
— Instruction cache can provide four instructions per clock; data cache can provide

two words per clock
— Caches can be disabled in software
— Caches can be locked 6 of 8 ways or the entire cache can be locked in software
— Data cache coherency (MEI) maintained in hardware
6 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Overview

— The critical double word is made available to the requesting unit when it is burst
into the line-fill buffer. The cache is nonblocking, so it can be accessed during
this operation.

• Level 2 (L2) cache interface (The L2 cache interface is not supported in the
MPC745.)
— On-chip two-way set-associative L2 cache controller and tags
— External data SRAMs
— Support for 256-Kbyte, 512-Kbyte, and 1-Mbyte L2 caches
— 64-byte (256-Kbyte/512-Kbyte) and 128-byte (1 Mbyte) sectored line size
— Supports flow-through (register-buffer), both PB2 and PB3 pipelined

(register-register), and pipelined late-write (register-register) synchronous burst
SRAMs

• Separate memory management units (MMUs) for instructions and data
— 52-bit virtual address; 32-bit physical address
— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte

segments
— Memory programmable as write-back/write-through, cacheable/noncacheable,

and coherency enforced/coherency not enforced on a page or block basis
— Separate IBATs and DBATs (selectable four or eight each) also defined as SPRs
— Separate instruction and data translation lookaside buffers (TLBs)

– Both TLBs are 128-entry, two-way set-associative, and use PLRU
replacement algorithm

— TLBs are reloaded by the hardware or optionally, by software
• Separate bus interface units for system memory and for the L2 cache

— Bus interface features include the following:
– Selectable bus-to-core clock frequency ratios as described in the MPC755

Hardware Specification

– 32/64-bit, split-transaction external data bus with burst transfers with 32-bit
mode selectable at reset

– Support for address pipelining and limited out-of-order bus transactions
– Single-entry load queue
– Single-entry instruction fetch queue
– Two-entry L1 cache castout queue
– No-DRTRY mode eliminates the DRTRY signal from the qualified bus grant.

This allows the forwarding of data during load operations to the internal core
one bus cycle sooner than if the use of DRTRY is enabled.
MPC755 Embedded G3 Microprocessor Supplement 7

MPC755 Overview

— L2 cache interface features (which are not implemented on the MPC745) include
the following:
– Core-to-L2 frequency divisors as described in the MPC755 Hardware

Specification

– Four-entry L2 cache castout queue in L2 cache BIU
– 17-bit address bus
– 64-bit data bus
– 8-bit parity for address and data
– Private memory mode, allowing software to access L2 SRAM as private

memory space
• Multiprocessing support features include the following:

— Hardware-enforced, three-state cache coherency protocol (MEI) for data cache
— Load/store with reservation instruction pair for atomic memory references,

semaphores, and other multiprocessor operations
• Power and thermal management

— Three static modes (doze, nap, and sleep) progressively reduce power
dissipation:
– Doze—All the functional units are disabled except for the time

base/decrementer registers and the bus snooping logic.
– Nap—The nap mode further reduces power consumption by disabling all

functional units, disabling snooping, and leaving only the time base register
and the PLL in a powered state. If snooping is required, the QACK input
signal can be negated to wake up the processor and snooping logic.

– Sleep—All internal functional units are disabled, after which external system
logic may disable the PLL and SYSCLK.

— Thermal management facility provides software-controllable thermal
management. Thermal management is performed through the use of three
supervisor-level registers and an MPC755-specific thermal management
exception.

— Instruction cache throttling provides control of instruction fetching to limit
power consumption.

• Performance monitor can be used to help debug system designs and improve
software efficiency.

• In-system testability and debugging features through JTAG boundary-scan
capability
8 MPC755 Embedded G3 Microprocessor Supplement

The MPC755 Programming Model (Chapter 2)

Part II The MPC755 Programming Model
(Chapter 2)
This section describes the differences between the programming model of the MPC750 and
MPC755. For detailed information about architecture-defined features, see PowerPC RISC
Microprocessor Family: The Programming Environments Manual. This section is
organized as follows:

• Section 2.1, “MPC755-Specific Registers,”
• Section 2.2, “MPC750 and MPC755 Instruction Use,” and
• Section 2.3, “tlbld and tlbli Instructions.”

Figure 2 shows the registers implemented in the MPC755, indicating those that are defined
by the PowerPC architecture and those that are MPC755-specific.
MPC755 Embedded G3 Microprocessor Supplement 9

The MPC755 Programming Model (Chapter 2)

Figure 2. Programming Model—MPC755 Microprocessor Registers

SPR 1010

SPRG0

SPRG1

SPRG7

SPR 536

SPR 537

SPR 542

SPR 543

SPR 568

SPR 569

SPR 574

SPR 575

SPR 528

SPR 529

SPR 534

SPR 535

SPR 560

SPR 561

SPR 566

SPR 567

ICTC SPR 1019
SPR 1020

SPR 1021

SPR 1022

THRM1

THRM2

THRM3

SPR 937

SPR 938

SPR 941

SPR 942

Performance
Counters1

Sampled
Instruction
Address1

DSISR

Data Address
Register

SPRGs2
Exception Handling Registers

Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State
Register

MSR

Processor
Version
Register

SPR 287PVR

Configuration Registers
Hardware
Implementation
Registers1

SPR 1

USER MODEL—UISA

Floating-Point
Status and

Control Register

FPSCR

Condition
Register

General-Purpose
Registers

XER

XER

SPR 8

Link Register

LR

SUPERVISOR MODEL—OEA

DecrementerExternal Access
Register

EAR

SDR1

SPR 9

Count
Register

Miscellaneous Registers

Segment
Registers

CR

Floating-Point
RegistersPerformance

Monitor Registers
(For Reading)

Performance Counters1

Monitor Control1

SPR 939USIA

Sampled Instruction
Address1

Performance Monitor Registers

Monitor Control1

Time Base
(For Writing)

Power/Thermal Management Registers
Thermal Assist
Unit Registers1

Instruction Cache
Throttling Control
Register1

USER MODEL—VEA

TBL TBR 268

Time Base Facility (For Reading)

CTR GPR0

GPR1

GPR31

TBU TBR 269

SDR1 SPR 25

HID0

HID1

HID2

SPR 1008

SPR 1009

SPR 1011

FPR0

FPR1

FPR31

UPMC1

UPMC2

UPMC3

UPMC4

UMMCR0

UMMCR1

SPR 936

SPR 940

SPR 953

SPR 954

SPR 957

SPR 958

PMC1

PMC2

PMC3

PMC4

SIA SPR 955

MMCR0

MMCR1

SPR 952

SPR 956

SPR 272

SPR 273

SPR 279

DAR

DSISR

SPR 19

SPR 18

SRR0 SPR 26

SRR1 SPR 27

SPR 282 TBL SPR 284

TBU SPR 285

DEC SPR 22

Data Address
Breakpoint Register

DABR SPR 1013

L2 Control
Register1,3

L2CR SPR 1017

Instruction Address
Breakpoint Register1

IABR

DBAT0U

DBAT0L

DBAT3U

DBAT3L

DBAT4U1

DBAT4L1

DBAT7U1

DBAT7L1

IBAT0U

IBAT0L

IBAT3U

IBAT3L

IBAT4U1

IBAT4L1

IBAT7U1

IBAT7L1

Software Table Search
Registers1

DMISS

DCMP

HASH1

HASH2

IMISS

ICMP

RPA

SPR 976

SPR 977

SPR 978

SPR 979

SPR 980

SPR 981

SPR 982

SR0

SR1

SR15

L2 Private Memory
Control Register2,3

SPR 1016L2PM

 2. SPGR[4–7] and L2PM are MPC755-specific registers. They may not be supported by other PowerPC processors.
 1. These registers are MPC750/755-specific registers. They may not be supported by other PowerPC processors.

3. Not supported on the MPC745.
10 MPC755 Embedded G3 Microprocessor Supplement

The MPC755 Programming Model (Chapter 2)

2.1 MPC755-Specific Registers
The MPC755 processor programming model is functionally identical to that of the
MPC750 except for some differences in the PVR (described in Section 2.1.2, “Processor
Version Register (PVR)”) and the L2CR (described in Section 9.4.1, “L2 Cache Control
Register (L2CR)”). Additionally, the following special-purpose registers are added in the
MPC755 that are not defined by the PowerPC architecture:

• Special-purpose registers used for general purpose (SPRG[4–7])—Four additional
SPRG registers have been implemented to assist in searching the page tables in
software. This is a replacement for having the MSR[TGPR] bit of the MPC603e and
four temporary general purpose registers. Note that the MSR[TGPR] bit is not
implemented in the MPC755. If software table searching is not enabled, then these
registers may be used for any supervisor purpose. The format of these registers is the
same as that of SPRG[0–3] defined in the MPC750 User’s Manual.

• Hardware implementation-dependent register 2 (HID2)—This register, which is not
implemented in the MPC750, is used to enable L2 address parity, software table
search operations, IBAT[4–7] and DBAT[4–7], and instruction and data cache way
locking. This register is described in Section 2.1.3, “Hardware
Implementation-Dependent Register 2 (HID2).”

• Instruction and data block address translation entries (IBAT[4–7] and DBAT[4–7])
which are optionally enabled in HID2—BATs are software-controlled arrays that
store the available block address translations on-chip. BAT array entries are
implemented as pairs of BAT registers that are accessible as supervisor
special-purpose registers (SPRs). Four additional IBATs and four additional DBATs
array entries provide a mechanism for translating additional blocks as large as
256 Mbytes from the 32-bit effective address space into the physical memory space.
This can be used for translating large address ranges whose mappings do not change
frequently. The format of these registers is the same as that of IBAT[0–3] and
DBAT[0–3] defined in the MPC750 User’s Manual. The SPR numbers for accessing
these registers are outlined in Table 1.

• The software table search registers are as follows (see Part V, “MPC755 Memory
Management (Chapter 5),” for more detailed information):
— Data and instruction TLB miss registers (DMISS and IMISS)—The DMISS and

IMISS registers contain the effective page address of the access that caused the
TLB miss exception. The contents are used by the MPC755 when calculating the
values of HASH1 and HASH2, and by the tlbld and tlbli instructions when
loading a new TLB entry.

— Data and instruction TLB compare registers (DCMP and ICMP)—These
registers contain the first word in the required page table entry (PTE). The
contents are constructed automatically from the contents of the segment registers
and the effective address (DMISS or IMISS) when a TLB miss exception occurs.
Each PTE read from the tables during the table search process should be
compared with this value to determine whether or not the PTE is a match. Upon
execution of a tlbld or tlbli instruction the upper 25 bits of the DCMP or ICMP
register and 11 bits of the effective address operand are loaded into the first word
of the selected TLB entry.
MPC755 Embedded G3 Microprocessor Supplement 11

The MPC755 Programming Model (Chapter 2)

— Primary and secondary hash address registers (HASH1 and HASH2)—These
registers contain the physical addresses of the primary and secondary page table
entry groups (PTEGs) for the access that caused the TLB miss exception. For
convenience, the MPC755 automatically constructs the full physical address by
routing bits 0–6 of SDR1 into HASH1 and HASH2 and clearing the lower 6 bits.
These registers are read-only and are constructed from the contents of the
DMISS or IMISS register (the register choice is determined by which miss was
last acknowledged).

— Required physical address register (RPA)—During a page table search
operation, the software must load the RPA with the second word of the correct
PTE. When the tlbld or tlbli instruction is executed, the contents of the RPA
register and the DMISS or IMISS register are merged and loaded into the
selected TLB entry. The referenced (R) bit is ignored when the write occurs (no
location exists in the TLB entry for this bit). The RPA register is read and write
to the software.

• L2 private memory control register (L2PM)—The L2 cache private memory control
register allows a portion of the physical address space to be directly mapped into a
portion of the L2 SRAM. It is a supervisor-only, read/write, implementation-specific
special purpose register (SPR) which is accessed as SPR 1016 (decimal). The L2PM
is initialized to all 0s during power-on reset and is described more completely in
Section 9.4.2, “L2 Private Memory Control Register (L2PM).”

2.1.1 The MPC755 Additional SPR Encodings
Table 1 describes the encodings of the MPC755’s register set additions described in this
section.

Table 1. Additional SPR Encodings

SPR
Register Access

Decimal SPR[5–9] SPR[0–4]

276 01000 10100 SPRG4 Supervisor

277 01000 10101 SPRG5 Supervisor

278 01000 10110 SPRG6 Supervisor

279 01000 10111 SPRG7 Supervisor

560 10001 10000 IBAT4U Supervisor

561 10001 10001 IBAT4L Supervisor

562 10001 10010 IBAT5U Supervisor

563 10001 10011 IBAT5L Supervisor

564 10001 10100 IBAT6U Supervisor

565 10001 10101 IBAT6L Supervisor

566 10001 10110 IBAT7U Supervisor

567 10001 10111 IBAT7L Supervisor
12 MPC755 Embedded G3 Microprocessor Supplement

The MPC755 Programming Model (Chapter 2)

2.1.2 Processor Version Register (PVR)
The processor version register (PVR) is a 32-bit, read-only register present in the MPC750
but initialized to a different value. It contains a value identifying the specific version
(model) and revision level of the PowerPC processor (see Table 3). The contents of the PVR
can be copied to a GPR by the mfspr instruction. Read access to the PVR is
supervisor-level only; write access is not provided.

Figure 3. Processor Version Register (PVR)

The PVR consists of two 16-bit fields:

• Version (bits 0–15)—A 16-bit number that uniquely identifies a particular processor
version. This number can be used to determine the version of a processor; it may not
distinguish between different end product models if more than one model uses the
same processor.

568 10001 11000 DBAT4U Supervisor

569 10001 11001 DBAT4L Supervisor

570 10001 11010 DBAT5U Supervisor

571 10001 11011 DBAT5L Supervisor

572 10001 11100 DBAT6U Supervisor

573 10001 11101 DBAT6L Supervisor

574 10001 11110 DBAT7U Supervisor

575 10001 11111 DBAT7L Supervisor

976 11110 10000 DMISS Supervisor

977 11110 10001 DCMP Supervisor

978 11110 10010 HASH1 Supervisor

979 11110 10011 HASH2 Supervisor

980 11110 10100 IMISS Supervisor

981 11110 10101 ICMP Supervisor

982 11110 10110 RPA Supervisor

1011 11111 10011 HID2 Supervisor

1016 11111 11000 L2PM Supervisor

Table 1. Additional SPR Encodings (Continued)

SPR
Register Access

Decimal SPR[5–9] SPR[0–4]

0 15 16 31

Version Revision
MPC755 Embedded G3 Microprocessor Supplement 13

The MPC755 Programming Model (Chapter 2)

• Revision (bits 16–31)—A 16-bit number that distinguishes between various releases
of a particular version (that is, an engineering change level). The value of the
revision portion of the PVR is implementation-specific. The processor revision level
is changed for each revision of the device.

Software can distinguish between the MPC750 and the MPC755 by reading the PVR. The
MPC755 PVR reads as 0x0008_3100. The version is 0x0008 and the revision level starts at
0x3100.

2.1.3 Hardware Implementation-Dependent Register 2
(HID2)

The MPC755 implements an additional hardware implementation-dependent register not
described in the MPC750 User’s Manual, shown in Figure 4. It is a supervisor-only,
read/write, implementation-specific special purpose register (SPR) which is accessed as
SPR 1011 (decimal).

Figure 4. Hardware Implementation-Dependent Register 2 (HID2)

Table 2 describes the HID2 fields.

Table 2. Hardware Implementation Dependent Register 2 (HID2) Field Descriptions

Bit Name Description

0–10 — Reserved

11 L2AP_EN L2 address parity enable. When this bit is set, some of the L2 address signals are
used in the parity generated on L2DP[0:7]. See Section 9.5, “L2 Address and Data
Parity Signals,” for the combinations supported.

12 SWT_EN Software table search enable. Setting this bit causes one of three new exceptions
when a TLB miss occurs. See Part IV, “MPC755 Exceptions (Chapter 4),” and Part V,
“MPC755 Memory Management (Chapter 5),” for more information on the use of
software table search operations.

13 HIGH_BAT_EN IBAT[4–7] and DBAT[4–7] enable. When this bit is set, four more IBAT and DBAT
entries are available for translating blocks of memory. See Part II, “The MPC755
Programming Model (Chapter 2),” for more information on the SPR numbers used for
accessing the new BATs.

14–15 — Reserved

0 0

31272624231918161514131211100

IWLCK[0–2]

0 0

Reserved

0 0 0 0 00 0 0

L2AP_EN
SWT_EN

HIGH_BAT_EN
DWLCK[0–2]

0 0 0 0 0 0 0 0 0 0 0
14 MPC755 Embedded G3 Microprocessor Supplement

The MPC755 Programming Model (Chapter 2)

2.2 MPC750 and MPC755 Instruction Use
This section describes some restrictions of the stdf, mtsr, and mtsrin instructions on both
the MPC750 and MPC755. In addition, the dcbz instruction has cache coherency
implications described in Section 3.1.2, “dcbz and L1 Cache Coherency.”

2.2.1 stfd Instruction Use
The MPC750 and MPC755 require that the FPRs be initialized with floating-point values
before the stfd instruction is used. Otherwise, a random power-on value for an FPR may
cause unpredictable device behavior when the stfd instruction is executed. Note that any
floating-point value loaded into the FPRs is acceptable.

2.2.2 isync Instruction Use with mtsr and mtsrin
The MPC750 and MPC755 have a restriction on the use of the mtsr and mtsrin instructions
not described in The Programming Environments Manual or in the MPC750 User’s
Manual. The MPC750 and MPC755 require that an isync instruction be executed after
either an mtsr or mtsrin instruction. This isync instruction must occur after the execution
of the mtsr or mtsrin and before the data address translation mechanism uses any of the
on-chip segment registers.

16–18 IWLCK[0–2] Instruction cache way lock. Useful for locking blocks of instructions into the instruction
cache for time-critical applications that require deterministic behavior. See
Section 3.2.3, “Performing Cache Locking.”

 000 = no ways locked

 001 = way0 locked

 010 = way0 thru way1 locked

 011 = way0 thru way2 locked

 100 = way0 thru way3 locked

 101 = way0 thru way4 locked

 110 = way0 thru way5 locked

 111 = Reserved

19–23 — Reserved

24–26 DWLCK[0–2] Data cache way lock. Useful for locking blocks of data into the data cache for
time-critical applications where deterministic behavior is required. See Section 3.2.3,
“Performing Cache Locking.”

 000 = no ways locked

 001 = way0 locked

 010 = way0 thru way1 locked

 011 = way0 thru way2 locked

 100 = way0 thru way3 locked

 101 = way0 thru way4 locked

 110 = way0 thru way5 locked

 111 = Reserved

27–31 — Reserved

Table 2. Hardware Implementation Dependent Register 2 (HID2) Field Descriptions

Bit Name Description
MPC755 Embedded G3 Microprocessor Supplement 15

The MPC755 Programming Model (Chapter 2)
2.3 tlbld and tlbli Instructions
This section provides a detailed description of the two implementation-specific instructions
used for software table search operations—tlbld and tlbli (same as the MPC603e).

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the effective-to-physical address
mapping for a particular access. The PTEs reside in page tables in memory. As defined for
32-bit implementations by the PowerPC architecture, segment descriptors reside in 16
on-chip segment registers.

Similar to the MPC603e, the MPC755 provides two implementation-specific instructions
(tlbld and tlbli) that are used by software table search operations following TLB misses to
load TLB entries on-chip (not provided by the MPC750 because the MPC750 does not
support software table search operations).

Refer to Part V, “MPC755 Memory Management (Chapter 5),” for more information about
the TLB registers and software table search operations with the MPC755. Table 3 lists the
TLB instructions implemented in the MPC755.

Because the presence and exact semantics of the translation lookaside buffer management
instructions are implementation-dependent, system software should incorporate uses of the
instructions into subroutines to maximize compatibility with programs written for other
processors.

For more information on the PowerPC instruction set, refer to Chapter 4, “Addressing
Modes and Instruction Set Summary,” and Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

Table 3. Translation Lookaside Buffer Management Instructions

Name Mnemonic Operand Syntax

TLB Invalidate Entry tlbie rB

TLB Synchronize tlbsync —

Load Data TLB Entry tlbld rB

Load Instruction TLB Entry tlbli rB
16 MPC755 Embedded G3 Microprocessor Supplement

The MPC755 Programming Model (Chapter 2)
tlbld tlbld
Load Data TLB Entry Integer Unit

tlbld rB

EA ← (rB)
TLB entry created from DCMP and RPA
DTLB entry selected by EA[15-19] and SRR1[WAY] ← created TLB entry

The EA is the contents of rB. The tlbld instruction loads the contents of the data PTE
compare (DCMP) and required physical address (RPA) registers into the first word of the
selected data TLB entry. The specific DTLB entry to be loaded is selected by the EA and
the SRR1[WAY] bit.

The tlbld instruction should only be executed when address translation is disabled
(MSR[IR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbld instruction when address translation is enabled;
however, extreme caution should be used in doing so. If data address translation is enabled
(MSR[DR] = 1) tlbld must be preceded by a sync instruction and succeeded by a context
synchronizing instruction.

Note also that care should be taken to avoid modification of the instruction TLB entries that
translate current instruction prefetch addresses.

This is a supervisor-level instruction; it is also a MPC755-specific instruction, and not part
of the PowerPC instruction set.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 978 0
MPC755 Embedded G3 Microprocessor Supplement 17

The MPC755 Programming Model (Chapter 2)
tlbli tlbli
Load Instruction TLB Entry Integer Unit

tlbli rB

EA ← (rB)
TLB entry created from ICMP and RPA
ITLB entry selected by EA[15-19] and SRR1[WAY] ← created TLB entry

The EA is the contents of rB. The tlbli instruction loads the contents of the instruction PTE
compare (ICMP) and required physical address (RPA) registers into the first word of the
selected instruction TLB entry. The specific ITLB entry to be loaded is selected by the EA
and the SRR1[WAY] bit.

The tlbli instruction should only be executed when address translation is disabled
(MSR[IR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbli instruction when address translation is enabled;
however, extreme caution should be used in doing so. If instruction address translation is
enabled (MSR[IR] = 1), tlbli must be followed by a context synchronizing instruction such
as isync or rfi.

Note also that care should be taken to avoid modification of the instruction TLB entries that
translate current instruction prefetch addresses.

This is a supervisor-level instruction; it is also a MPC755-specific instruction, and not part
of the PowerPC instruction set.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 1010 0
18 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
Part III MPC755 L1 Instruction and Data Cache
Operation (Chapter 3)

This section describes L1 cache coherency issues and also describes the new instruction and
data cache way locking features of the MPC755 embedded processor. Otherwise, the L1
instruction and data cache operation is the same as the MPC750.

The MPC755 includes a mechanism for allocating cache entries for a particular group of
ways for both the instruction and data caches. If a way is locked, the data loaded in that
cache way will not be replaced by an access to another address; that is, none of the entries
in a locked cache way are re-allocated. One to six of the eight ways in a cache can be locked
with the IWLCK and DWLCK bits of the HID2 register. All eight ways of a cache can be
locked using the ILOCK or DLOCK bits of the HID0 register.

Note that integrated devices based on the MPC603e G2 processor core may also implement
entire and cache way locking. However, the G2-based processor caches are only four-way
set-associative, so only up to three ways can be locked. Additionally, the bit encodings in
HID2 for enabling way-locking differ from the encodings used in the MPC755 and they do
not correspond. Even though the G2 core processors also define similar IWLCK[0–2] and
DWLCK[0–2] fields in HID2, the encodings are distinctly different.

3.1 L1 Cache Coherency
This section describes some L1 coherency precautions for the MPC755 in addition to that
described in the MPC750 User’s Manual.

3.1.1 Coherency Precautions in Single Processor Systems
Note that as described in the MPC750 User’s Manual, great care must be taken when the
WIMG bits are changed in the MMU. The following coherency paradoxes can be
encountered within a single-processor system:

• Load or store to a caching-inhibited page (WIMG = x1xx) and a cache hit occurs.
The MPC755 ignores any hits to an L1 cache block in a memory space marked
caching-inhibited (WIMG = x1xx). The L1 cache is bypassed and the access is
performed externally as if there were no hit. The data in the cache is not pushed, and
the cache block is not invalidated.
This operation is similar to that of the MPC750 except that in the case of the
MPC750, the access is performed to the 60x bus. In the case of the MPC755, the
access is performed to the private memory space if private memory is enabled, and
if the upper order address bits match the value in L2PM[PMBA]. Alternatively, the
access may hit in the L2 cache if it was previously designated as cacheable but the
WIMG bits were changed so that the access is cache-inhibited. Although the access
may hit in the L2 (if the data was previously loaded when the WIMG bits were set
to caching-allowed), the L2 cache does not allocate any new entries for
caching-inhibited data. This L2 cache behavior is different than that of the MPC750
for this case.
MPC755 Embedded G3 Microprocessor Supplement 19

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
• Store to a page marked write-through (WIMG = 1xxx) and a cache hit occurs to a
modified cache block.
The MPC750 and MPC755 work identically in this case and ignore the modified bit
in the cache tag. The cache block is updated during the write-through operation but
the block remains in the modified state (M).

Note that when WIM bits are changed in the page tables or BAT registers, it is critical that
the cache contents reflect the new WIM bit settings. For example, if a block or page that
had allowed caching becomes caching-inhibited, software should ensure that the
appropriate cache blocks are flushed to memory and invalidated.

3.1.2 dcbz and L1 Cache Coherency
Both the MPC750 and MPC755 processors require protection in the use of the dcbz
instruction in order to guarantee cache coherency in a multiprocessor system. Specifically,
the dcbz instruction must be:

• Either enveloped by high-level software synchronization protocols (such as
semaphores), or

• Preceded by execution of a dcbf instruction to the same address.
One of these precautions must be taken in order to guarantee that there are no simultaneous
cache hits from a dcbz instruction and a snoop to that address. If these two events occur
simultaneously, stale data may occur, causing system failures.

3.2 Cache Locking
This section describes the cache locking and cache-way locking features of the MPC755.

3.2.1 Cache Locking Terminology
Cache locking is the ability to prevent some or all of a microprocessor’s instruction or data
cache from being overwritten. Cache locking can be set for either an entire cache or for
individual ways within the cache as follows:

• Entire Cache Locking—When an entire cache is locked, data for read hits within the
cache are supplied to the requesting unit in the same manner as hits from an
unlocked cache. Similarly, writes that hit in the data cache are written to the cache
in the same way as write hits to an unlocked cache. However, any access that misses
in the cache is treated as a cache-inhibited access. Cache entries that are invalid at
the time of locking remain invalid and inaccessible until the cache is unlocked.
When the cache has been unlocked, all entries (including invalid entries) are
available. Entire cache locking is inefficient if the number of instructions or the size
of data to be locked is small compared to the cache size.

• Way Locking—Locking only a portion of the cache is accomplished by locking
ways within the cache. Locking always begins with the first way (way0) and is
sequential, that is, locking ways 0, 1, and 2 is possible, but it is not possible to lock
20 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
only way0 and way2. When using way locking, at least two ways must be left
unlocked. The maximum number of lockable ways is six on the MPC755 embedded
processor (way0–way5).
Unlike entire cache locking, invalid entries in a locked way are accessible and
available for data replacement. As hits to the cache fill invalid entries within a locked
way, the entries become valid and locked. This behavior differs from entire cache
locking in which invalid entries cannot be allocated. Unlocked ways of the cache
behave normally.

Table 4 summaries the MPC755 cache organization.

3.2.2 Cache Locking Register Summary
Table 5 through Table 7 outline the registers and bits used to perform cache locking on the
MPC755 embedded processor. Refer to the MPC750 RISC Microprocessor User’s Manual
for a complete description of the HID0 and MSR registers. Refer to Part II, “The MPC755
Programming Model (Chapter 2),” for a complete description of the HID2 register.

Table 4. Cache Organization

Instruction Cache Size Data Cache Size Associativity Block Size Way Size

32 Kbyte 32 Kbyte 8-way 8 words 4 Kbyte

Table 5. HID0 Bits Used to Perform Cache Locking

Bit Name Description

16 ICE Instruction cache enable. This bit must be set for instruction cache locking. See
Section 3.2.3.1.1, “Enabling the Data Cache.”

17 DCE Data cache enable. This bit must be set for data cache locking. See Section 3.2.3.1.1,
“Enabling the Data Cache.”

18 ILOCK Instruction cache lock. Set to lock the entire instruction cache. See Section 3.2.3.2.6, “Entire
Instruction Cache Locking.”

19 DLOCK Data cache lock. Set to lock the entire data cache. See Section 3.2.3.1.6, “Entire Data Cache
Locking.”

20 ICFI Instruction cache flash invalidate. Setting and then clearing this bit invalidates the entire
instruction cache. See Section 3.2.3.2.8, “Invalidating the Instruction Cache (Even if Locked).”

21 DCFI Data cache flash invalidate. Setting and then clearing this bit invalidates the entire data
cache. See Section 3.2.3.1.4, “Invalidating the Data Cache.”

22 SPD Speculative cache access disable. This bit must be cleared for instruction cache locking. See
Section 3.2.3.2.5, “MPC755 Prefetching Considerations.”

25 DCFA Data cache flush assist. This bit must be set for data cache flushing. See Section 3.2.3.1.4,
“Invalidating the Data Cache.”

29 BHT Branch history table enable. This bit must be cleared for instruction cache locking. See
Section 3.2.3.2.5, “MPC755 Prefetching Considerations.”
MPC755 Embedded G3 Microprocessor Supplement 21

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
3.2.3 Performing Cache Locking
This section outlines the basic procedures for locking the data and instruction caches and
provides some example code for locking the caches. The procedures for the data cache are
described first, followed by the corresponding sections for locking the instruction cache.
The basic procedures for cache locking are:

• Enabling the cache
• Enabling address translation for example code
• Disabling exceptions
• Loading the cache
• Locking the cache (entire cache locking or cache way locking)

In addition, this section describes how to invalidate the data and instruction caches, even
when they are locked.

3.2.3.1 Data Cache Locking
This section describes the procedures for performing data cache locking on the MPC755.

3.2.3.1.1 Enabling the Data Cache
To lock the data cache, the data cache enable bit HID0[DCE], bit 17, must be set. The
assembly code below enables the data cache:

Enable the data cache. This corresponds
to setting DCE bit in HID0 (bit 17)

mfspr r1, HID0
ori r1, r1, 0x4000
sync
mtspr HID0, r1

Table 6. HID2 Bits Used to Perform Cache Locking

Bits Name Description

16–18 IWLCK Instruction cache way lock. These bits are used to lock individual ways in the instruction
cache. See Section 3.2.3.2.7, “Instruction Cache Way Locking.”

24–26 DWLCK Data cache way lock. These bits are used to lock individual ways in the data cache. See
Section 3.2.3.1.7, “Data Cache Way Locking.”

Table 7. MSR Bits Used to Perform Cache Locking

Bit Name Description

16 EE External interrupt enable. This bit must be cleared during instruction and data cache loading.
See Section 3.2.3.1.3, “Disabling Exceptions for Data Cache Locking.”

19 ME Machine check enable. This bit must be cleared during instruction and data cache loading.
See Section 3.2.3.1.3, “Disabling Exceptions for Data Cache Locking.”

26 IR Instruction address translation. This bit must be set to enable instruction address translation
by the MMU. See Section 3.2.3.1.2, “Address Translation for Data Cache Locking.”

27 DR Data address translation. This bit must be set to enable data address translation by the
MMU. See Section 3.2.3.1.2, “Address Translation for Data Cache Locking.”
22 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
3.2.3.1.2 Address Translation for Data Cache Locking
Two distinct memory areas must be set up to enable cache locking:

• The first area is where the code that performs the locking resides and is executed
from.

• The second area is where the data to be locked resides.
Both areas of memory must be in locations that are translated by the memory management
unit (MMU). This translation can be performed either with the page table or the block
address translation (BAT) registers.

For the purposes of the cache locking example in this document, the two areas of memory
are defined using the BAT registers. The first area is a 1–Mbyte area in the upper region of
memory that contains the code performing the cache locking. The second area is a
256-Mbyte block of memory (not all of the 256-Mbytes of memory is locked in the cache;
this area is set up as an example) that contains the data to lock. Both memory areas use
identity translation (the logical memory address equals the physical memory address).

Table 8 summarizes the BAT settings used in this example.

The block address translation upper (BATU) and block address translation lower (BATL)
settings in Table 8 can be used for both instruction block address translation (IBAT) and
data block address translation (DBAT) registers. After the BAT registers have been set up,
the MMU must be enabled. The assembly code below enables both instruction and data
memory address translation:

Enable instruction and data memory address translation. This
corresponds to setting IR and DR in the MSR (bits 26 & 27)

mfmsr r1
ori r1, r1, 0x0030
mtmsr r1
sync

3.2.3.1.3 Disabling Exceptions for Data Cache Locking
To ensure that exception handler routines do not execute while the cache is being loaded
(which could possibly pollute the cache with undesired contents) all exceptions must be
disabled. This is accomplished by clearing the appropriate bits in the machine state register
(MSR). See Table 9 for the bits within the MSR that must be cleared to ensure that
exceptions are disabled.

Table 8. Example BAT Settings for Cache Locking

 Area Base Address Memory Size WIMG Bits BATU Setting BATL Setting

First 0xFFF0_0000 1 Mbyte 0b01001 0xFFF0_001F 0xFFF0_00021

1 Cache-inhibited memory is not a requirement for data cache locking. A setting of 0xFFF0_0002 with a
corresponding WIMG of 0b0000 marks the memory area as cacheable.

Second 0x0000_0000 256 Mbyte 0b0000 0x0000_1FFF 0x0000_0002
MPC755 Embedded G3 Microprocessor Supplement 23

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
The following assembly code disables all asynchronous exceptions:

Clear the following bits from the MSR:
EE (16) ME (19)
FE0 (20) FE1 (23)

mfmsr r1
lis r2, 0xFFFF
ori r2, r2, 0x66FF
and r1, r1, r2
mtmsr r1
sync

3.2.3.1.4 Invalidating the Data Cache
If a non-empty data cache has modified data, and the data cannot be discarded, the data
cache must be flushed before it can be invalidated. Data cache flushing is accomplished by
filling the data cache with known data and performing a flash invalidate or a series of dcbf
instructions that force a flush and invalidation of the data cache block.
The following code sequence shows how to flush the data cache:

r6 contains a block-aligned address in memory with which to fill
the data cache. For this example, address 0x0 is used

li r6, 0x0

CTR = number of data blocks to load
Number of blocks = (16K) / (32 Bytes/block)
= 2^14 / 2^5 = 2^9 = 0x200

li r1, 0x200
mtctr r1

Save the total number of blocks in cache to r8
mr r8, r1

Load the entire cache with known data
loop: lwz r2, 0(r6)

addi r6, r6, 32 # Find the next block
bdnz loop # Decrement the counter, and
branch if CTR != 0

Now, flush the cache with dcbf instructions
li r6, 0x0 # Address of first block
mtctr r8 # Number of blocks
loop2:
dcbf r0, r6
addi r6, r6, 32 # Find the next block
bdnz loop2 # Decrement the counter, and

branch if CTR != 0

Table 9. MSR Bits for Disabling Exceptions

Bit Name Description

16 EE External interrupt enable

19 ME Machine check enable

20 FE01

1 The floating-point exception may not need to be disabled because the example code shown
in this document that performs cache locking does not execute any floating-point
operations.

Floating-point exception mode 0

23 FE11 Floating-point exception mode 1
24 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
If the content of the data cache does not need to be flushed to memory, the cache can be
directly invalidated. The entire data cache is invalidated through the data cache flash
invalidate bit HID0[DCFI], bit 21. Setting HID0[DCFI] and then immediately clearing it
causes the entire data cache to be invalidated. The following assembly code invalidates the
entire data cache (does not flush modified entries):

Set and then clear the HID0[DCFI] bit, bit 21
mfspr r1, HID0
mr r2, r1
ori r1, r1, 0x0400
mtspr HID0, r1
mtspr HID0, r2
sync

3.2.3.1.5 Loading the Data Cache
This section explains loading data into the data cache. The data cache can be loaded in
several ways. The example in this document loads the data from memory. The following
assembly code loads the data cache:

Assuming interrupts are turned off, cache has been flushed,
MMU on, and loading from contiguous cacheable memory.
r6 = Starting address of code to lock
r20 = Temporary register for loading into
CTR = Number of cache blocks to lock

loop: lwz r20, 0(r6) # Load data into d-cache
addi r6, r6, 32 # Find next block to load
bdnz loop # CTR = CTR-1, branch if CTR != 0

3.2.3.1.6 Entire Data Cache Locking
Locking of the entire data cache is controlled by the data cache lock bit (HID0[DLOCK],
bit 19). Setting HID0[DLOCK] to 1 locks the entire data cache. To unlock the data, the
HID0[DLOCK] must be cleared to 0. Setting the DLOCK bit must be preceded by a sync
instruction to prevent the data cache from being locked during a data access. The following
assembly code locks the entire data cache:

Set the DLOCK bit in HID0 (bit 19)

mfspr r1, HID0
ori r1, r1, 0x1000
sync
mtspr HID0, r1

3.2.3.1.7 Data Cache Way Locking
Data cache way locking is controlled by HID2[DWLCK], bits 24–26. Table 10 shows the
HID2[DWLCK 0–2] settings for the MPC755 embedded processor.

Table 10. MPC755 DWLCK[0–2] Encodings

DWLCK[0–2] Ways Locked

0b000 No ways locked

0b001 Way 0 locked

0b010 Ways 0 and 1 locked

0b011 Ways 0, 1, and 2 locked
MPC755 Embedded G3 Microprocessor Supplement 25

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
The assembly code below locks way0 of the MPC755 data cache:

Lock way0 of the data cache
This corresponds to setting dwlck(0:2) 0b001 (bits 24-26)

mfspr r1, HID2
lis r2, 0xFFFF
ori r2, r2, 0xFF1F
and r1, r1, r2
ori r1, r1, 0x0020
sync
mtspr HID2, r1

3.2.3.1.8 Invalidating the Data Cache (Even if Locked)
There are two methods to invalidate the instruction or data cache:

• Invalidate the entire cache by setting and then immediately clearing the data cache
flash invalidate bit HIDO[DCFI], bit 21. Even when a cache is locked, toggling
DCFI bit invalidates all of the data cache.

• The data cache block invalidate (dcbi) instruction can be used to invalidate
individual cache blocks. The dcbi instruction invalidates blocks locked (either entire
or way-locked) within the data cache.

3.2.3.2 Instruction Cache Locking
This section describes the procedures for performing instruction cache locking on the
MPC755.

3.2.3.2.1 Enabling the Instruction Cache
To lock the instruction cache, the instruction cache enable bit HID0[ICE], bit 16 must be
set.

Enable the data cache. This corresponds
to setting DCE bit in HID0 (bit 17)

mfspr r1, HID0
ori r1, r1, 0x8000
sync
mtspr HID0, r1

3.2.3.2.2 Address Translation for Instruction Cache Locking
Two distinct memory areas must be set up to enable cache locking:

• The first area is where the code that performs the locking resides and is executed
from.

• The second area is where the instructions to be locked reside.

0b100 Ways 0, 1, 2, and 3 locked

0b101 Ways 0, 1, 2, 3, and 4 locked

0b110 Ways 0, 1, 2, 3, 4, and 5 locked

0b111 Reserved

Table 10. MPC755 DWLCK[0–2] Encodings (Continued)

DWLCK[0–2] Ways Locked
26 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
Both areas of memory must be in locations that are translated by the memory management
unit (MMU). This translation can be performed either with the page table or the block
address translation (BAT) registers.

For the purposes of the cache locking example in this document, two areas of memory are
defined using the BAT registers. The first area is a 1–Mbyte area in the upper region of
memory that contains the code performing the cache locking. This area of memory must be
cache-inhibited for instruction cache locking. The second area is a 256-Mbyte block of
memory (not all of the 256-Mbytes of memory is locked in the cache; this area is set up as
an example) that contains the instructions to lock. Both memory areas use identity
translation (the logical memory address equals the physical memory address). Table 11
summarizes the BAT settings used in this example.

The block address translation upper (BATU) and block address translation lower (BATL)
settings in Table 11 can be used for both instruction block address translation (IBAT) and
data block address translation (DBAT) registers. After the BAT registers have been set up,
the MMU must be enabled.

The assembly code below enables both instruction and data memory address translation:

Enable instruction and data memory address translation. This
corresponds to setting IR and DR in the MSR (bits 26 & 27)

mfmsr r1
ori r1, r1, 0x0030
mtmsr r1
sync

3.2.3.2.3 Disabling Exceptions for Instruction Cache Locking
To ensure that exception handler routines do not execute while the cache is being loaded
(which could possibly pollute the cache with undesired contents) all exceptions must be
disabled. This is accomplished by clearing the appropriate bits in the machine state register
(MSR). See Table 12 for the bits within the MSR that must be cleared to ensure that
exceptions are disabled.

Table 11. Example BAT Settings for Cache Locking

 Area Base Address Memory Size WIMG Bits BATU Setting BATL Setting

First 0xFFF0_0000 1 Mbyte 0b01001 0xFFF0_001F 0xFFF0_00221

1 0xFFF0_0022 defines a cache-inhibited memory area used for instruction cache locking, and
corresponds to a WIMG of 0b0100. Cache-inhibited memory is not a requirement for data cache
locking. A setting of 0xFFF0_0002 with a corresponding WIMG of 0b0000 marks the memory area as
cacheable.

Second 0x0000_0000 256 Mbyte 0b0000 0x0000_1FFF 0x0000_0002
MPC755 Embedded G3 Microprocessor Supplement 27

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
The following assembly code disables all asynchronous exceptions:

Clear the following bits from the MSR:
EE (16) ME (19)
FE0 (20) FE1 (23)

mfmsr r1
lis r2, 0xFFFF
ori r2, r2, 0x66FF
and r1, r1, r2
mtmsr r1
sync

3.2.3.2.4 Preloading Instructions into the Instruction Cache
To optimize performance, PowerPC processors automatically prefetch instructions into the
instruction cache. This feature can be used to preload explicit instructions into the cache
even when it is known that their execution will be canceled. Although the execution of the
instructions is canceled, the instructions remain valid in the instruction cache.

Because instructions are intentionally executed speculatively, care must be taken to ensure
that all I/O memory is marked guarded. Otherwise, speculative loads and stores to I/O space
could potentially cause data loss. See PowerPC Microprocessor Family: The Programming
Environments for 32-Bit Microprocessors for a full discussion of guarded memory.

The code that prefetches must be in cache-inhibited memory as in the following example:

Assuming exceptions are disabled, cache has been flushed,
the MMU is on, and we are executing in a cache-inhibited
location in memory
LR and r6 = Starting address of code to lock
CTR = Number of cache blocks to lock
r2 = non-zero numerator and denominator
‘loop’ must begin on an 8-byte boundary to ensure that
the divw and beqlr+ are fetched on the same cycle.

.orig 0xFFF04000

loop: divw. r2, r2, r2 # LONG divide w/ non-zero result
beqlr+ # Cause the prefetch to happen

addi r6, r6, 32 # Find next block to prefetch
mtlr r6 # set the next block
bdnz- loop # Decrement the counter and

branch if CTR != 0

Table 12. MSR Bits for Disabling Exceptions

Bit Name Description

16 EE External interrupt enable

19 ME Machine check enable

20 FE01

1 The floating-point exception may not need to be disabled because the example code shown
in this document that performs cache locking does not execute any floating-point
operations.

Floating-point exception mode 0

23 FE11 Floating-point exception mode 1
28 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
In the above example, both the divw and beqlr+ instructions are fetched at the same time
(this assumes a 64-bit 60x data bus; the preloading code does not work for a 32-bit data bus)
due to their placement on a double-word boundary. The divide instruction was chosen
because it takes many cycles to execute. During execution of the divide, the processor starts
fetching instructions speculatively at the target destination of the branch instruction. The
speculation occurs because the branch is statically predicted as taken. This speculative
fetching causes the cache block that is pointed to by the link register (LR) to be loaded into
the cache. Because the divw. instruction always produces a non-zero result, the beqlr+ is
not taken and execution of all speculatively fetched instructions is canceled. However, the
instructions remain valid in the cache.

If the destination instruction stream contains an unconditional branch to another memory
location, it is possible to also prefetch the destination of the unconditional branch
instruction. This does not cause a problem if the destination of the unconditional branch is
also inside the area of memory that needs to be preloaded. But if the destination of the
unconditional branch is not in the area of memory to be loaded, then care must be taken to
ensure that the branch destination is to an area of memory that is cache inhibited.
Otherwise, unintentional instructions may be locked in the cache and the desired
instructions may not be in their expected way within the cache.

3.2.3.2.5 MPC755 Prefetching Considerations
Because the instruction cache preloading code relies on static branch prediction to ensure
that the beqlr+ instruction is predicted as taken, speculative cache access must be enabled.
Speculative cache access is controlled by the speculative cache access disable bit
HID0[SPD], bit 22. This bit must be cleared to ensure that instructions can be speculatively
loaded from the instruction cache.

Also, the instruction cache preloading code will not work when dynamic branch prediction
is enabled. To ensure that MPC755 dynamic branch prediction is disabled, the branch
history table bit HID0[BHT], bit 29, must be cleared. By default, the BHT is cleared out of
reset.

3.2.3.2.6 Entire Instruction Cache Locking
Locking the entire instruction cache is controlled by the instruction cache lock bit
(HID0[ILOCK], bit 18). Setting HID0[ILOCK] locks the entire instruction cache, and
clearing HID0[ILOCK] allows the instruction cache to operate normally. The setting of the
HID0[ILOCK] should be preceded by an isync instruction to prevent the instruction cache
from being locked during an instruction access. The following assembly code locks the
contents of the entire instruction cache.

Set the ILOCK bit in HID0 (bit 18)

mfspr r1, HID0
ori r1, r1, 0x2000
isync
mtspr HID0, r1
MPC755 Embedded G3 Microprocessor Supplement 29

MPC755 L1 Instruction and Data Cache Operation (Chapter 3)
3.2.3.2.7 Instruction Cache Way Locking
Instruction cache way locking is controlled by the HID2[IWLCK], bits 16–18. Table 13
shows the HID2[IWLCK 0–2] settings for the MPC755 embedded processor.

The assembly code below locks way0 of the MPC755 instruction cache:

Lock way0 of the instruction cache
This corresponds to setting iwlck(0:2) to 0b001 (bits 16–18)

mfspr r1, HID2
lis r2, 0xFFFF
ori r2, r2, 0x1FFF
and r1, r1, r2
ori r1, r1, 0x2000
isync
mtspr HID2, r1

3.2.3.2.8 Invalidating the Instruction Cache (Even if Locked)
There are two methods to invalidate the instruction cache. In the first way, invalidate the
entire cache by setting and then immediately clearing the instruction cache flash invalidate
bit (HID0[ICFI], bit 20). Even when a cache is locked, toggling the ICFI bit invalidates all
of the instruction cache. The following assembly code invalidates the entire instruction
cache:

Set and then clear the HIDO[ICFI] bit, bit 20

mfspr r1, HID0
mr r2, r1
ori r1, r1, 0x0800

mtspr HID0, r1
mtspr HID0, r2
sync

In the second method, the instruction cache block invalidate (icbi) instruction can be used
to invalidate individual cache blocks. The icbi instruction invalidates blocks in an entirely
locked instruction cache for the MPC750 and the MPC755 microprocessors. On the
MPC755 embedded processor, the icbi instruction invalidates way-locked blocks within the
instruction cache.

Table 13. MPC755 IWLCK[0–2] Encodings

IWLCK [0–2] Ways Locked

0b000 No ways locked

0b001 Way 0 locked

0b010 Ways 0 and 1 locked

0b011 Ways 0, 1, and 2 locked

0b100 Ways 0, 1, 2, and 3 locked

0b101 Ways 0, 1, 2, 3, and 4 locked

0b110 Ways 0, 1, 2, 3, 4, and 5 locked

0b111 Reserved
30 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Exceptions (Chapter 4)
Part IV MPC755 Exceptions (Chapter 4)
The exception model for the MPC755 is the same as that described in the MPC750 User’s
Manual except as described in this section. For both the MPC750 and MPC755, no
combination of the thermal assist unit, the decrementer register, and the performance
monitor can be used at any one time. If exceptions for any two of these functional blocks
are enabled together, multiple exceptions caused by any of these three blocks cause
unpredictable results.

The MPC755 has three new exceptions used to support software table search operations
(the same as the MPC603e). Software table searching is enabled with the setting of
HID2[SWT_EN], bit 12. When this bit is cleared, the MPC755 uses the hardware table
searching mechanism of the MPC750 when a miss occurs in an on-chip TLB. When
HID2[SWT_EN] = 1, software table searching is enabled and a TLB miss causes one of the
exceptions described in this section.

See Section 2.3, “tlbld and tlbli Instructions,” for a detailed explanation of the tlbli and
tlbld instructions used to load the TLBs. See Part V, “MPC755 Memory Management
(Chapter 5),” for a more detailed explanation of the other resources used to perform table
search operations in software and example exception handlers.

The three MMU exceptions used for software table search operations are described in
Table 14.

The SRR0, SRR1, and MSR registers are used by the MPC755 when an exception occurs.
Register settings for the instruction and data TLB miss exceptions are described in
Table 15.

Table 14. Software Table Search Exceptions and Conditions

Exception
Type

Vector Offset
(hex)

Causing Conditions

Instruction
TLB miss

01000 An instruction TLB miss exception is caused when an effective address for an
instruction fetch cannot be translated by the ITLB.

Data TLB miss
for load

01100 A data TLB miss for load exception is caused when an effective address for a
data load operation cannot be translated by the DTLB.

Data TLB miss
for store

01200 A data TLB miss for store exception is caused when an effective address for a
data store operation cannot be translated by the DTLB, or where a DTLB hit
occurs, and the change bit in the PTE must be set due to a data store operation.
MPC755 Embedded G3 Microprocessor Supplement 31

MPC755 Exceptions (Chapter 4)
The MPC755 automatically saves the values of CR[CR0] of the executing context to
SRR1[0–3]. Thus, the exception handler can set CR[CR0] bits and branch accordingly in
the exception handler routine, without having to save the existing CR[CR0] bits. However,
the exception handler must restore these bits to CR[CR0] before executing the rfi
instruction.

Also saved in SRR1 are two bits identifying the type of miss (SRR1[D/I] identifies
instruction or data, and SRR1[S/L] identifies a store or load). Additionally, SRR1[WAY]
identifies the associativity class of the TLB entry selected for replacement by the LRU
algorithm. The software can change this value, effectively overriding the replacement
algorithm. Finally, the SRR1[KEY] bit is used by the table search software to determine if
there is a protection violation associated with the access (useful on data write misses for
determining if the C bit should be updated in the table).

The key bit, saved in SRR1 for a TLB miss exception, is derived as shown in Figure 5.

Figure 5. Derivation of Key Bit for SRR1

Table 15. Instruction and Data TLB Miss Exceptions—Register Settings

Register Setting Description

SRR0 Set to the address of the next instruction to be executed in the program for which the TLB miss
exception was generated.

SRR1 0–3 Loaded from condition register CR0 field
4–11 Cleared
12 KEY. Key for TLB miss (either Ks or Kp from segment register, depending on whether the

access is a user or supervisor access). See Figure 5.
13 D/I. Data or instruction access

0 = data TLB miss
1 = instruction TLB miss

14 WAY. Next TLB set to be replaced (set per LRU)
0 = replace TLB associativity set 0
1 = replace TLB associativity set 1

15 S/L. Store or load data access
0 = data TLB miss on load
1 = data TLB miss on store (or C = 0)

16–31 Loaded from bits 16–31 of the MSR

MSR1

1 MSR[14] (the TGPR bit) of the MPC603e processor provided control for a separate set of four temporary
GPRs that could be used as general-purpose registers in the TLB miss exception handler routines.
MSR[14] is reserved on the MPC755, and the new SPRG[4–7] can be used for the TLB miss handler
code.

POW 0
ILE —
IP —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE

Select KEY from segment register:
If MSR[PR] = 0, KEY = Ks
If MSR[PR] = 1, KEY = Kp
32 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Memory Management (Chapter 5)
4.1 Instruction TLB Miss Exception (0x01000)
When the effective address for an instruction fetch operation cannot be translated by the
ITLBs or IBATs, an instruction TLB miss exception is generated. Register settings for the
instruction and data TLB miss exceptions are described in Table 15. If the instruction TLB
miss exception handler fails to find the desired PTE, then a page fault must be synthesized.
The handler must restore the machine state before invoking the ISI exception (0x00400).

When an instruction TLB miss exception is taken, instruction execution for the handler
begins at offset 0x01000 from the physical base address indicated by MSR[IP].

4.2 Data TLB Miss for Load Exception (0x01100)
When the effective address for a data load or cache operation cannot be translated by the
DTLBs or DBATs, a data TLB miss for load exception is generated. Register settings for
the instruction and data TLB miss exceptions are described in Table 15. If the data TLB
miss exception handler fails to find the desired PTE, then a page fault must be synthesized.
The handler must restore the machine state before invoking the DSI exception (0x00300).

When a data TLB miss for load exception is taken, instruction execution for the handler
begins at offset 0x01100 from the physical base address indicated by MSR[IP].

4.3 Data TLB Miss for Store Exception (0x01200)
When the effective address for a data store or cache operation cannot be translated by the
DTLBs or DBATs, a data TLB miss for store exception is generated. The data TLB miss
for store exception is also taken when the changed bit (C = 0) for a DTLB entry needs to
be updated for a store operation. Register settings for the instruction and data TLB miss
exceptions are described in Table 15.

If the data TLB miss exception handler fails to find the desired PTE, then a page fault must
be synthesized. The handler must restore the machine state before invoking the DSI
exception (0x00300).

When a data TLB miss for store exception is taken, instruction execution for the handler
begins at offset 0x01200 from the physical base address indicated by MSR[IP].

Part V MPC755 Memory Management (Chapter 5)
The MPC755 implements a virtual memory management scheme that is compliant with the
PowerPC architecture for 32-bit microprocessors and that implements the software table
searching features of the MPC603e. The organization of the memory management unit
(MMU) hardware is as follows:

• Same as MPC750
— 128-entry, two-way set associative data TLB
— 128-entry, two-way set associative instruction TLB
— Sixteen segment registers
— Automatic hardware table search operations
MPC755 Embedded G3 Microprocessor Supplement 33

MPC755 Memory Management (Chapter 5)
• New features in the MPC755
— 4- or 8-entry (HID2-selectable), fully associative instruction BAT array
— 4- or 8-entry (HID2-selectable), fully associative data BAT array
— Selectable software table search functionality by setting HID2[SWT_EN], bit

12.
The MPC755 has a set of implementation-specific registers, exceptions, and instructions
that facilitate very efficient software searching of the page tables in memory. This section
describes those resources and provides three example code sequences that can be used in
an MPC755 system for an efficient search of the translation tables in software. These three
code sequences can be used as handlers for the three exceptions requiring access to the
PTEs in the page tables in memory—instruction TLB miss, data TLB miss on load, and data
TLB miss on store exceptions.

Note that the remainder of the MMU definition and rules about updating the page tables in
memory for the MPC755 are the same as that for the MPC750.

5.1 Software Table Search Resources
In addition to setting up the translation page tables in memory, the system software must
assist the processor in loading PTEs into the on-chip TLBs. When a required TLB entry is
not found in the appropriate TLB, the processor vectors to one of the three TLB miss
exception handlers so that the software can perform a table search operation and load the
TLB. When this occurs, the processor automatically saves information about the access and
the executing context. Table 16 provides a summary of the implementation-specific
exceptions, registers, and instructions that can be used by the TLB miss exception handler
software in MPC755 systems. See Section 2.3, “tlbld and tlbli Instructions,” for detailed
information about the operation of the tlbli and tlbld instructions and Part IV, “MPC755
Exceptions (Chapter 4),” for more information about exception processing on the MPC755.

Table 16. Implementation-Specific Resources for Software Table Search
Operations—Summary

Resource Name Description

Exceptions Instruction TLB miss exception

(vector offset 0x1000)

No matching entry found in ITLB

Data TLB miss for load exception

(vector offset 0x1100)

No matching entry found in DTLB for a load
data access

Data TLB miss for store
exception—also caused when
changed bit must be updated

(vector offset 0x1200)

No matching entry found in DTLB for a store
data access or matching DLTB entry has C = 0
and access is a store
34 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Memory Management (Chapter 5)
In addition, the MPC755 contains four additional SPRG registers SPRG[4–7] that have
been implemented to save and restore general-purpose registers used by the exception
handler. This is a replacement for having the MSR[TGPR] bit of the MPC603e and four
temporary general-purpose registers. Note that the MSR[TGPR] bit is not implemented in
the MPC755. If software table searching is not enabled, then these registers may be used
for any supervisor purpose.

5.2 Software Table Search Registers
This section describes the format of the implementation-specific SPRs that are not defined
by the PowerPC architecture, but are used by the TLB miss exception handlers. These
registers can be accessed by supervisor-level instructions only. Any attempt to access these
SPRs with user-level instructions results in a privileged instruction program exception.
Because DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA are used to access the

Registers IMISS and DMISS When a TLB miss exception occurs, the IMISS
or DMISS register contains the 32-bit effective
address of the instruction or data access that
caused the miss exception.

ICMP and DCMP The ICMP and DCMP registers contain the
word to be compared with the first word of a
PTE in the table search software routine to
determine if a PTE contains the address
translation for the instruction or data access.
The contents of ICMP and DCMP are
automatically derived by the MPC755 when a
TLB miss exception occurs.

HASH1 and HASH2 The HASH1 and HASH2 registers contain the
primary and secondary PTEG addresses that
correspond to the address causing a TLB miss.
These PTEG addresses are automatically
derived by the MPC755 by performing the
primary and secondary hashing function on the
contents of IMISS or DMISS, for an ITLB or
DTLB miss exception, respectively.

RPA The system software loads a TLB entry by
loading the second word of the matching PTE
entry into the RPA register and then executing
the tlbli or tlbld instruction (for loading the ITLB
or DTLB, respectively).

Instructions tlbli rB Loads the contents of the ICMP and RPA
registers into the ITLB entry selected by <ea>
and SRR1[WAY]

 tlbld rB Loads the contents of the DCMP and RPA
registers into the DTLB entry selected by <ea>
and SRR1[WAY]

Table 16. Implementation-Specific Resources for Software Table Search
Operations—Summary

Resource Name Description
MPC755 Embedded G3 Microprocessor Supplement 35

MPC755 Memory Management (Chapter 5)
translation tables for software table search operations, they should only be accessed when
address translation is disabled (that is, MSR[IR] = 0 and MSR[DR] = 0). Note that
MSR[IR] and MSR[DR] are cleared by the processor whenever an exception occurs.

5.2.1 Data and Instruction TLB Miss Address Registers
(DMISS and IMISS)

The DMISS and IMISS registers have the same format as shown in Figure 6. They are
loaded automatically upon a data or instruction TLB miss. The DMISS and IMISS contain
the effective page address of the access that caused the TLB miss exception. The contents
are used by the processor when calculating the values of HASH1 and HASH2, and by the
tlbld and tlbli instructions when loading a new TLB entry. Note that the MPC755 always
loads a big-endian address into the DMISS register. These registers are read-only to the
software.

Figure 6. DMISS and IMISS Registers

5.2.2 Data and Instruction TLB Compare Registers (DCMP
and ICMP)

The DCMP and ICMP registers are shown in Figure 7. These registers contain the first word
in the required PTE. The contents are constructed automatically from the contents of the
segment registers and the effective address (DMISS or IMISS) when a TLB miss exception
occurs. Each PTE read from the tables in memory during the table search process should
be compared with this value to determine whether or not the PTE is a match. Upon
execution of a tlbld or tlbli instruction, the contents of the DCMP or ICMP register are
loaded into the first word of the selected TLB entry.

Figure 7. DCMP and ICMP Registers

Table 17 describes the bit settings for the DCMP and ICMP registers.

Table 17. DCMP and ICMP Bit Settings

Bit Name Description

0 V Valid bit. Set by the processor on a TLB miss exception.

1–24 VSID Virtual segment ID. Copied from VSID field of corresponding segment register.

25 H Hash function identifier. Cleared by the processor on a TLB miss exception.

26–31 API Abbreviated page index. Copied from API of effective address.

0 31

Effective Page Address

0 1 24 25 26 31

V HVSID API
36 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Memory Management (Chapter 5)
5.2.3 Primary and Secondary Hash Address Registers
(HASH1 and HASH2)

HASH1 and HASH2 contain the physical addresses of the primary and secondary PTEGs
for the access that caused the TLB miss exception. Only bits 7–25 differ between them. For
convenience, the processor automatically constructs the full physical address by routing
bits 0–6 of SDR1 into HASH1 and HASH2 and clearing the lower six bits. These registers
are read-only and are constructed from the contents of the DMISS or IMISS register. The
format for the HASH1 and HASH2 registers is shown in Figure 8.

Figure 8. HASH1 and HASH2 Registers

Table 18 describes the bit settings of the HASH1 and HASH2 registers.

5.2.4 Required Physical Address Register (RPA)
The RPA is shown in Figure 9. During a page table search operation, the software must load
the RPA with the second word of the correct PTE. When the tlbld or tlbli instruction is
executed, data from the IMISS and ICMP (or DMISS and DCMP) and the RPA registers is
merged and loaded into the selected TLB entry. The TLB entry is selected by the effective
address of the access (loaded by the table search software from the DMISS or IMISS
register) and the SRR1[WAY] bit.

Figure 9. Required Physical Address (RPA) Register

Table 18. HASH1 and HASH2 Bit Settings

Bit Name Description

0–6 HTABORG[0–6] Copy of the upper 7 bits of the HTABORG field from SDR1

7–25 Hashed page address Address bits 7–25 of the PTEG to be searched.

26–31 — Reserved

0 6 7 25 26 31

Reserved

HTABORG Hashed Page Address 0 0 0 0 0 0

0 19 20 22 23 24 25 28 29 30 31

Reserved

RPN R C WIMG PP0 0 0 0
MPC755 Embedded G3 Microprocessor Supplement 37

MPC755 Memory Management (Chapter 5)
Table 19 describes the bit settings of the RPA register.

5.3 Software Table Search Operation
When a TLB miss occurs and software table searching is enabled, the instruction or data
MMU loads the IMISS or DMISS register, respectively, with the effective address of the
access. The processor completes all instructions dispatched prior to the exception, status
information is saved in SRR1, and one of the three TLB miss exceptions is taken. In
addition, the processor loads the ICMP or DCMP register with the value to be compared
with the first word of PTEs in the tables in memory.

The software should then access the first PTE at the address pointed to by HASH1. The first
word of the PTE should be loaded and compared to the contents of DCMP or ICMP. If there
is a match, then the required PTE has been found and the second word of the PTE is loaded
from memory into the RPA register. Then the tlbli or tlbld instruction is executed, which
loads the contents of the ICMP (or DCMP) and RPA registers into the selected TLB entry.
The TLB entry is selected by the effective address of the access and the SRR1[WAY] bit.

If the compare did not result in a match, however, the PTEG address is incremented to point
to the next PTE in the table and the above sequence is repeated. If none of the eight PTEs
in the primary PTEG matches, the sequence is then repeated using the secondary PTEG (at
the address contained in HASH2).

If the PTE is also not found in the eight entries of the secondary page table, a page fault
condition exists, and a page fault exception must be synthesized. Thus the appropriate bits
must be set in SRR1 (or DSISR) and the TLB miss handler must branch to either the ISI or
DSI exception handler, which handles the page fault condition.

Table 19. RPA Bit Settings

Bit Name Description

0–19 RPN Physical page number from PTE

20–22 — Reserved

23 R Referenced bit from PTE

24 C Changed bit from PTE

25–28 WIMG Memory/cache access attribute bits

29 — Reserved

30–31 PP Page protection bits from PTE
38 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Memory Management (Chapter 5)
5.3.1 Flow for Example Exception Handlers
This section provides a flow diagram outlining some example software that can be used to
handle the three TLB miss exceptions.

Figure 10 shows the flow for the example TLB miss exception handlers. The flow shown is
common for the three exception handlers, except that the IMISS and ICMP registers are
used for the instruction TLB miss exception while the DMISS and DCMP registers are used
for the two data TLB miss exceptions. Also, for the cases of store instructions that cause
either a TLB miss or require a table search operation to update the C bit, the flow shows
that the C bit is set in both the TLB entry and the PTE in memory. Finally, in the case of a
page fault (no PTE found in the table search operation), the setup for the ISI or DSI
exception is slightly different for these two cases.

Figure 11 shows the flow for checking the R and C bits and setting them appropriately.
Figure 12 shows the flow for synthesizing a page fault exception when no PTE is found.
Figure 13 shows the flow for managing the cases of a TLB miss on an instruction access to
guarded memory, and a TLB miss when C = 0 and a protection violation exists. The set up
for these protection violation exceptions is very similar to that of page fault conditions (as
shown in Figure 12) except that different bits in SRR1 (and DSISR) are set.
MPC755 Embedded G3 Microprocessor Supplement 39

MPC755 Memory Management (Chapter 5)
Figure 10. Flow for Example Software Table Search Operation

(See Figure 11)

Set counter:
cnt ← 8

Load primary PTEG pointer:
ptr ← HASH1 – 8

compare_value ← ICMP/DCMP

Read lower word of next
PTE from memory:

ptr ← ptr + 8
temp ← (ptr)

Read upper word of PTE:
temp ← (ptr - 4)

otherwise

RPA ← temp

<ea> ← IMISS/DMISS

Load TLB entry
tlbli <ea> (or tlbld<ea>)

otherwise

cnt ≠ 0

Save old counter,
CR0 bits and 4 gprs

Restore old counter
and CR0 bits

otherwise

Load secondary
PTEG pointer:

ptr ← HASH2 – 8

compare_value [H]← 1

Set counter:
cnt ← 8

cnt ←cnt–1

Set up for page
fault exception

Secondary hash
complete

Return to executing program:
rfi

compare_value [H] = 1

(See Figure 12)

TLB Miss Exception

instruction access and
temp[G] = 1

otherwise

Set up for protection
violation exception

Check R, C bits
and set as needed

(See Figure 13)

temp = compare_value
40 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Memory Management (Chapter 5)
Figure 11. Check and Set R and C Bit Flow

Store byte 7 of PTE to memory:
(ptr - 2) ← temp [byte7]

Set R bit:
temp ← temp OR 0x100

handler for data store op

Check R, C bits
and set as needed

otherwise

pp = 00
01

Set up for
protection violation

Check
protection pp = 10

11

Set up for
protection violation

pp = 11

pp = 10

Return to TLB Miss
Exception flow

(See Figure 10)

(See Figure 13)

(See Figure 13)

temp[C] = 0

otherwise

SRR1[KEY] = 1

Store bytes 6, 7 of PTE to memory:
(ptr - 2) ← temp [bytes 6, 7]

Return to TLB Miss
Exception flow

(See Figure 10)

Set R, C bits:
temp ← temp OR 0x180

otherwise
MPC755 Embedded G3 Microprocessor Supplement 41

MPC755 Memory Management (Chapter 5)
Figure 12. Page Fault Setup Flow

Set up for page
fault exception

Data TLB miss handlers Instruction TLB
miss handlers

DSISR[6] ← SRR1[15]

DSISR[1] ← 1

DAR ← dtemp

Branch to DSI
exception Handler

Branch to ISI exception
Handler

Clear upper bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

SRR1[1] ← 1

Clear upper bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

SRR1[31] = 1
(little-endian mode)

dtemp ← DMISS

dtemp← dtemp XOR 0x07

otherwise

Restore CR0 bits
and gprs

Restore CR0 bits
and gprs
42 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Memory Management (Chapter 5)
Figure 13. Setup for Protection Violation Exceptions

5.3.2 Code for Example Exception Handlers
This section provides some assembly language examples that implement the flow diagrams
described above. Note that although these routines fit into a few cache lines, they are
supplied only as a functional example; they could be further optimized for faster
performance.

TLB software load for MPC755
#
New Instructions:
tlbld - write the dtlb with the pte in rpa reg
tlbli - write the itlb with the pte in rpa reg
New SPRs
dmiss - address of dstream miss
imiss - address of istream miss
hash1 - address primary hash PTEG address
hash2 - returns secondary hash PTEG address
iCmp - returns the primary istream compare value

DSISR[6] ← SRR1[15]

DSISR[4] ← 1

Branch to DSI exception
Handler

Branch to ISI exception
Handler

Clear upper bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

SRR1[4] ← 1

Clear upper bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

Data TLB miss handlers (Instruction access to
guarded memory)(Data access

to protected
memory; C=0)

Set up for protection
violation exceptions

DAR ← dtemp

SRR1[31] = 1
(little-endian mode)

dtemp ← DMISS

dtemp← dtemp XOR 0x07

otherwise

Instruction TLB
miss handler

Restore CR0 bits
and gprs

Restore CR0 bits
and gprs
MPC755 Embedded G3 Microprocessor Supplement 43

MPC755 Memory Management (Chapter 5)
dCmp - returns the primary dstream compare value
rpa - the second word of pte used by tlblx
#
#
there are three flows.
tlbDataMiss - tlb miss on data load
tlbCeq0 - tlb miss on data store or store with tlb change bit == 0
tlbInstrMiss - tlb miss on instruction fetch
#+
place labels for rel branches
#-
#.machine PPC_755
gpr r0..r3 are saved into SPRG4-7
.set r0, 0
.set r1, 1
.set r2, 2
.set r3, 3
.set dMiss, 1010
.set dCmp, 1011
.set hash1, 1012
.set hash2, 1013
.set iMiss, 1014
.set iCmp, 1015
.set rpa, 1010
.set c0, 0
.set dar, 19
.set dsisr, 18
.set srr0, 26
.set srr1, 27
.set sprg4, 276
.set sprg5, 277
.set sprg6, 278
.set sprg7, 279
.
.csect tlbmiss[PR]
vec0:
.globl vec0

.org vec0+0x300
vec300:
.org vec0+0x400
vec400:
#+
Instruction TB miss flow
Entry:
Vec = 1000
srr0 -> address of instruction that missed
srr1 -> 0:3=cr0 4=lru way bit 16:31 = saved MSR
iMiss -> ea that missed
iCmp -> the compare value for the va that missed
hash1 -> pointer to first hash pteg
hash2 -> pointer to second hash pteg
#
Register usage:
Existing values of r0-r3 saved into sprg4-sprg7
r0-r3 used in the exception handler as follows
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value

.org vec0+0x1000

tlbInstrMiss:
44 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Memory Management (Chapter 5)
mtspr sprg4, r0 # save r0 into sprg4
mtspr sprg5, r1 # save r1 into sprg5
mtspr sprg6, r2 # save r2 into sprg6
mtspr sprg7, r3 # save r3 into sprg7
mfspr r2, hash1 # get first pointer

 addi r1, 0, 8 # load 8 for counter
mfctr r0 # save counter
mfspr r3, iCmp # get first compare value

 addi r2, r2, -8 # pre dec the pointer
im0: mtctr r1 # load counter
im1: lwzu r1, 8(r2) # get next pte

 cmp c0, r1, r3 # see if found pte
bdneq im1 # dec count br if cmp ne and if count not zero
bne instrSecHash # if not found set up second hash or exit
l r1, +4(r2) # load tlb entry lower-word
andi. r3, r1, 8 # check G-bit
bne doISIp # if guarded, take an ISI
mtctr r0 # restore counter
mfspr r0, iMiss # get the miss address for the tlbli
mfspr r3, srr1 # get the saved cr0 bits
mtcrf 0x80, r3 # restore CR0
mtspr rpa, r1 # set the pte
ori r1, r1, 0x100 # set reference bit
srw r1, r1, 8 # get byte 7 of pte
tlbli r0 # load the itlb
stb r1, +6(r2) # update page table
mfspr r0, sprg4 # restore old value of r0
mfspr r1, sprg5 # restore old value of r1
mfspr r2, sprg6 # restore old value of r2
mfspr r3, sprg7 # restore old value of r3
rfi # return to executing program

#+
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value
#-
instrSecHash:

andi. r1, r3, 0x0040 # see if we have done second hash
bne doISI # if so, go to ISI exception
mfspr r2, hash2 # get the second pointer
ori r3, r3, 0x0040 # change the compare value
addi r1, 0, 8 # load 8 for counter
addi r2, r2, -8 # pre dec for update on load
b im0 # try second hash

#+
entry Not Found: synthesize an ISI exception
guarded memory protection violation: synthesize an ISI exception
Entry:
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value
#
doISIp:

mfspr r3, srr1 # get srr1
andi. r2,r3,0xFFFF # clean upper srr1
addis r2, r2, 0x0800 # or in srr<4> = 1 to flag prot violation
b isi1:

doISI:
mfspr r3, srr1 # get srr1
andi. r2, r3, 0xFFFF # clean srr1
MPC755 Embedded G3 Microprocessor Supplement 45

MPC755 Memory Management (Chapter 5)
addis r2, r2, 0x4000 # or in srr1<1> = 1 to flag pte not found
isi1 mtctr r0 # restore counter

mtspr srr1, r2 # set srr1
mtcrf 0x80, r3 # restore CR0
mfspr r0, sprg4 # restore old value of r0
mfspr r1, sprg5 # restore old value of r1
mfspr r2, sprg6 # restore old value of r2
mfspr r3, sprg7 # restore old value of r3
b vec400 # go to instr. access exception

#
#+
Data TLB miss flow
Entry:
Vec = 1100
srr0 -> address of instruction that caused data tlb miss
srr1 -> 0:3=cr0 4=lru way bit 5=1 if store 16:31 = saved MSR
dMiss -> ea that missed
dCmp -> the compare value for the va that missed
hash1 -> pointer to first hash pteg
hash2 -> pointer to second hash pteg
#
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value
#-
.csect tlbmiss[PR]
.org vec0+0x1100

tlbDataMiss:
mtspr sprg4, r0 # save r0 into sprg4
mtspr sprg5, r1 # save r1 into sprg5
mtspr sprg6, r2 # save r2 into sprg6
mtspr sprg7, r3 # save r3 into sprg7
mfspr r2, hash1 # get first pointer

 addi r1, 0, 8 # load 8 for counter
mfctr r0 # save counter
mfspr r3, dCmp # get first compare value

 addi r2, r2, -8 # pre dec the pointer
dm0: mtctr r1 # load counter
dm1: lwzu r1, 8(r2) # get next pte

cmp c0, r1, r3 # see if found pte
bdnzf 0, dm1 # dec count br if cmp ne and if count not zero
bne dataSecHash # if not found set up second hash or exit
l r1, +4(r2) # load tlb entry lower-word

 mtctr r0 # restore counter
mfspr r0, dMiss # get the miss address for the tlbld
mfspr r3, srr1 # get the saved cr0 bits
mtcrf 0x80, r3 # restore CR0
mtspr rpa, r1 # set the pte

 ori r1, r1, 0x100 # set reference bit
srw r1, r1, 8 # get byte 7 of pte
tlbld r0 # load the dtlb
stb r1, +6(r2) # update page table
mfspr r0, sprg4 # restore old value of r0
mfspr r1, sprg5 # restore old value of r1
mfspr r2, sprg6 # restore old value of r2
mfspr r3, sprg7 # restore old value of r3
rfi # return to executing program

#+
Register usage:
r0 is saved counter
r1 is junk
46 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Memory Management (Chapter 5)
r2 is pointer to pteg
r3 is current compare value
#-
dataSecHash:

andi. r1, r3, 0x0040 # see if we have done second hash
bne doDSI # if so, go to DSI exception
mfspr r2, hash2 # get the second pointer
ori r3, r3, 0x0040 # change the compare value
addi r1, 0, 8 # load 8 for counter
addi r2, r2, -8 # pre dec for update on load
b dm0 # try second hash

#

#+
C=0 in dtlb and dtlb miss on store flow
Entry:
Vec = 1200
srr0 -> address of store that caused the exception
srr1 -> 0:3=cr0 4=lru way bit 5=1 16:31 = saved MSR
dMiss -> ea that missed
dCmp -> the compare value for the va that missed
hash1 -> pointer to first hash pteg
hash2 -> pointer to second hash pteg
#
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value
#-

.csect tlbmiss[PR]

.org vec0+0x1200

tlbCeq0:
mtspr sprg4, r0 # save r0 into sprg4
mtspr sprg5, r1 # save r1 into sprg5
mtspr sprg6, r2 # save r2 into sprg6
mtspr sprg7, r3 # save r3 into sprg7
mfspr r2, hash1 # get first pointer

 addi r1, 0, 8 # load 8 for counter
mfctr r0 # save counter
mfspr r3, dCmp # get first compare value

 addi r2, r2, -8 # pre dec the pointer
ceq0: mtctr r1 # load counter
ceq1: lwzu r1, 8(r2) # get next pte

cmp c0, r1, r3 # see if found pte
bdneq ceq1 # dec count br if cmp ne and if count not zero
bne cEq0SecHash # if not found set up second hash or exit
l r1, +4(r2) # load tlb entry lower-word
andi. r3,r1,0x80 # check the C-bit
beq cEq0ChkProt # if (C==0) go check protection modes

ceq2: mtctr r0 # restore counter
mfspr r0, dMiss # get the miss address for the tlbld
mfspr r3, srr1 # get the saved cr0 bits
mtcrf 0x80, r3 # restore CR0
mtspr rpa, r1 # set the pte
tlbld r0 # load the dtlb
mfspr r0, sprg4 # restore old value of r0
mfspr r1, sprg5 # restore old value of r1
mfspr r2, sprg6 # restore old value of r2
mfspr r3, sprg7 # restore old value of r3
rfi # return to executing program

#+
MPC755 Embedded G3 Microprocessor Supplement 47

MPC755 Memory Management (Chapter 5)
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value
#-
cEq0SecHash:

andi. r1, r3, 0x0040 # see if we have done second hash
bne doDSI # if so, go to DSI exception
mfspr r2, hash2 # get the second pointer
ori r3, r3, 0x0040 # change the compare value
addi r1, 0, 8 # load 8 for counter
addi r2, r2, -8 # pre dec for update on load
b ceq0 # try second hash

#+
entry found and PTE(c-bit==0):
(check protection before setting PTE(c-bit)
Register usage:
r0 is saved counter
r1 is PTE entry
r2 is pointer to pteg
r3 is trashed
#-
cEq0ChkProt:

rlwinm. r3,r1,30,0,1 # test PP
bge- chk0 # if (PP==00 or PP==01) goto chk0:
andi. r3,r1,1 # test PP[0]
beq+ chk2 # return if PP[0]==0
b doDSIp # else DSIp

chk0: mfspr r3,srr1 # get old msr
andis. r3,r3,0x0008 # test the KEY bit (SRR0-bit 12)
beq chk2 # if (KEY==0) goto chk2:
b doDSIp # else DSIp

chk2: ori r1, r1, 0x180 # set reference and change bit
sth r1, 6(r2) # update page table
b ceq2 # and back we go

#
#+
entry Not Found: synthesize a DSI exception
Entry:
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value
#

doDSI:
mfspr r3, srr1 # get srr1
rlwinm r1,r3,9,6,6 # get srr1<flag> to bit 6 for load/store, zero rest
addis r1, r1, 0x4000 # or in dsisr<1> = 1 to flag pte not found
b dsi1:

doDSIp:
mfspr r3, srr1 # get srr1
rlwinm r1, r3,9,6,6 # get srr1<flag> to bit 6 for load/store, zero rest
addis r1, r1, 0x0800 # or in dsisr<4> = 1 to flag prot violation

dsi1: mtctr r0 # restore counter
andi. r2, r3, 0xFFFF # clear upper bits of srr1
mtspr srr1, r2 # set srr1
mtspr dsisr, r1 # load the dsisr
mfspr r1, dMiss # get miss address
rlwinm. r2,r2,0,31,31 # test LE bit
beq dsi2: # if little endian then:
xor r1,r1,0x07 # de-mung the data address
48 MPC755 Embedded G3 Microprocessor Supplement

MPC755 Instruction Timing (Chapter 6)
dsi2: mtspr dar, r1 # put in dar
mtcrf 0x80, r3 # restore CR0
mfspr r0, sprg4 # restore old value of r0
mfspr r1, sprg5 # restore old value of r1
mfspr r2, sprg6 # restore old value of r2
mfspr r3, sprg7 # restore old value of r3
b vec300 # branch to DSI exception

Part VI MPC755 Instruction Timing (Chapter 6)
The instruction timing of the MPC755 is identical to that of the MPC750 except for
addition of the new tlbli and tlbld instructions.

Table 20 provides latencies for the new tlbli and tlbld instructions.

Part VII MPC755 Signal Descriptions (Chapter 7)
This section describes two new signals that select the I/O voltages for the system bus
(BVSEL) and the L2 interface (L2VSEL) as described in Table 21. Refer to the MPC755
Hardware Specification for more detailed information about these signals. All other
MPC755 signals operate the same as the MPC750 signals.

Part VIII MPC755 System Interface Operation
(Chapter 8)

This section describes the MPC755 embedded processor bus interface and how its
operation differs from the MPC750. It shows how the signals, defined in Chapter 7, “Signal
Descriptions,” interact to perform address and data transfers and describes how the 32-bit
bus mode is implemented on the MPC755.

Table 20. TLB Load and Store Instruction Latencies

Primary Opcode Extended Opcode Mnemonic Execution Unit Clock Cycles

31 978 tlbld LSU 2&

31 1010 tlbli LSU 3&

Note: Cycle times marked with “&” require a variable number of cycles due to serialization.

Table 21. Voltage-Select Signal Descriptions

Signal Comments

BVSEL BVSEL and L2VSEL are assigned to two unused BGA positions on
the MPC755’s 360-pin and MPC745’s 255-pin BGA footprint.
Internal pullups are provided to default to MPC750-compatible I/O
voltages if unconnected.

L2VSEL
MPC755 Embedded G3 Microprocessor Supplement 49

MPC755 System Interface Operation (Chapter 8)
8.1 MPC755 System Interface Overview
The system interface prioritizes requests for bus operations from the instruction and data
caches, and performs bus operations in accordance with the protocol described in the
PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors. It
includes address register queues, prioritization logic, and a bus control unit. The system
interface latches snoop addresses for snooping in the data cache and in the address register
queues, and for reservations controlled by the Load Word and Reserve Indexed (lwarx) and
Store Word Conditional Indexed (stwcx.) instructions, and maintains the touch load address
for the cache. The interface allows one level of pipelining; that is, with certain restrictions
described later, there can be two outstanding transactions at any given time. Accesses are
prioritized with load operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit
where they are dispatched to the execution units at a peak rate of two instructions per clock.
Conversely, load and store instructions explicitly specify the movement of operands to and
from the integer and floating-point register files and the memory system.

When the MPC755 encounters an instruction or data access, it calculates the logical address
and uses the low-order address bits to check for a hit in the on-chip, 32-Kbyte instruction
and data caches. During cache lookup, the instruction and data memory management units
(MMUs) use the higher-order address bits to calculate the virtual address, from which they
calculate the physical address. The physical address bits are then compared with the
corresponding cache tag bits to determine if a cache hit occurred in the L1 instruction or
data cache. If the access misses in the corresponding cache, the physical address is used to
access the L2 cache tags (if the L2 cache is enabled). If no match is found in the L2 cache
tags, the physical address is used to access system memory.

In addition to the loads, stores, and instruction fetches, the MPC755 performs hardware
table search operations following TLB misses; L2 cache cast-out operations when
least-recently used cache lines are written to memory after a cache miss; and cache-line
snoop push-out operations when a modified cache line experiences a snoop hit from another
bus master.

Figure 1 shows the address path from the execution units and instruction fetcher through
the translation logic to the caches and system interface logic.

The MPC755 uses separate address and data buses and a variety of control and status
signals for performing reads and writes. The address bus is 32 bits and the data bus is 32 or
64 bits. The interface is synchronous—all MPC755 inputs are sampled, and all outputs are
driven from the rising edge of the bus clock. The processor runs at a multiple of the system
bus-clock speed. The MPC755 core operates at 1.9–2.1 volts, and the I/O signals operate at
1.8 or 3.3 volts.

8.2 Address Bus Pipelining
The MPC750 and MPC755 function identically in that the address bus pipelines an
instruction transaction before previous data tenures complete for a data transaction.
Conversely, the processor performs address bus pipelining for a data transaction following
an instruction transaction. However, address bus pipelining does not occur for two
consecutive instruction or two consecutive data transactions. Note that this behavior is not
documented in the MPC750 User’s Manual.
50 MPC755 Embedded G3 Microprocessor Supplement

MPC755 System Interface Operation (Chapter 8)
8.3 Bus Clocking
Like the MPC750, the MPC755 requires a single system clock input (SYSCLK) used by
the (PLL) circuit to generate a master clock for all of the CPU circuitry (including the bus
interface circuitry) which is frequency- and phase-locked to the SYSCLK input. The master
clock may be set to integer or half-clock multiples of the SYSCLK frequency. Refer to the
MPC755 Hardware Specification for the ratios supported.

8.4 32-Bit Data Bus Mode
The MPC755 supports an optional 32-bit data bus mode in which the data bus high and
corresponding parity signals (DH[0:31] and DP[0:3]) are used, and the data bus low and
corresponding parity signals (DL[0:31]) and (DP[4:7]) are ignored. The following list
summarizes the functionality of the 32-bit data bus mode on the MPC755:

• Data tenures of 1, 2, and 8 beats supported (1 to 4 bytes per beat).
• The address and transfer attribute information is unchanged from 64-bit mode.
• The TBST and TSIZ[0:2] signals must be reinterpreted for burst size.
• Data termination is the same for each data beat using TA, DRTRY, and TEA.
• 32-bit mode configured at power-on (hard reset) through the TLBISYNC signal.

The 32-bit data bus mode operates the same as the 64-bit data bus mode with the exception
of the byte lanes involved in the transfer and the number of data beats that are performed.
Only byte lanes 0 through 3 are used, corresponding to the data bus signals DH[0:31] and
DP[0:3]. Byte lanes 4 through 7 (corresponding to DL[0:31] and DP[4:7]) are never used
in this mode. The unused data bus signals are not sampled by the processor during read
operations, and they are driven low during write operations.

The number of data beats required for a data tenure in 32-bit data bus mode are one, two,
or eight depending on the size of the transaction and the cache mode for the address. Data
transactions of one or two data beats are performed for cache-inhibited load/store or
write-through store operations. These transactions do not assert the TBST signal even
though a two-beat burst may be performed (that is, the same TBST and TSIZ[0:2] encoding
as in 64-bit data bus mode). Single-beat data transactions are performed for operations of
size 4 bytes or less, and double-beat data transactions are performed for 8-byte operations
only. (The processor only generates an 8-byte operation for a double-word aligned load or
store-double operation to or from the floating-point registers.)

Data transactions of eight data beats are performed for burst operations that load into or cast
out from the MPC755’s internal caches. These transactions transfer 32 bytes similarly to
64-bit mode, and they assert the TBST signal and indicate a transfer size of two (TSIZ[0:2]
= 010) similar to 64-bit data bus mode.

Otherwise, the same bus protocols apply for arbitration, transfer, and termination of the
address and data tenures in 32-bit data bus mode as apply in 64-bit data bus mode. Late
ARTRY cancellation of the data tenure applies on the bus clock cycle after the first data beat
is acknowledged (after the first TA) for word or smaller transactions, or on the bus clock
cycle after the second data beat is acknowledged (after the second TA) for double-word or
burst operations (or coincident with the respective TA if no-DRTRY mode is selected).
MPC755 Embedded G3 Microprocessor Supplement 51

MPC755 System Interface Operation (Chapter 8)
8.4.1 Burst Ordering
For burst operations in 32-bit mode, a data block of 32-bytes (one cache line) is transferred
in the same order as in 64-bit data bus mode with the exception that eight data beats are
required to perform the transfer instead of four. For each double word of the block that is
transferred, the upper word of the double word is transferred first on the data bus (on
DH[0:31]), and then the lower word of the double word is transferred. Table 22 shows the
burst order for each starting address.

8.4.2 Aligned Transfers
The aligned data transfer cases for 32-bit data bus mode are shown in Table 23. All of the
transfers require a single data beat (if cache-inhibited or write-through) except for
double-word cases that require two data beats. The double-word case is only generated by
the processor for load or store-double operations to/from the floating-point registers. All
cache-inhibited instruction fetches are performed as word operations.

Table 22. Burst Ordering

Data Transfer
For Double Word Starting Address:

A[27:28] = 00 A[27:28] = 01 A[27:28] = 10 A[27:28] = 11

1st Data Beat DW0 - u DW1 - u DW2 - u DW3 - u

2nd Data Beat DW0 - l DW1 - l DW2 - l DW3 - l

3rd Data Beat DW1 - u DW2 - u DW3 - u DW0 - u

4th Data Beat DW1 - l DW2 - l DW3 - l DW0 - l

5th Data Beat DW2 - u DW3 - u DW0 - u DW1 - u

6th Data Beat DW2 - l DW3 - l DW0 - l DW1 - l

7th Data Beat DW3 - u DW0 - u DW1 - u DW2 - u

8th Data Beat DW3 - l DW0 - l DW1 - l DW2 - l

Notes:
A[27:28] specifies the first double word of the 32-byte block being transferred; the
remaining double words to transfer must wrap around the block.
A[29:31] are always 0b000 for burst transfers initiated by the MPC755.
“DWx” represents the double word that would be addressed by A[27:28] = “x” if a
non-burst transfer were performed. “u” and “l” represent the upper word and lower
word of the double word respectively.
Each data beat is terminated with one valid assertion of TA (without DRTRY
cancellation).

Table 23. Aligned Data Transfers—32-Bit Data Bus Mode

Program
Transfer Size

Bus
TSIZ[0:2]

Bus
A[29:31]

Data Bus Byte Lanes

DH0... ...DH31 DL0... ...DL31

B0 B1 B2 B3 B4 B5 B6 B7

Byte - 1 beat 0 0 1 0 0 0 A — — — x x x x

Byte - 1 beat 0 0 1 0 0 1 — A — — x x x x

Byte - 1 beat 0 0 1 0 1 0 — — A — x x x x

Byte - 1 beat 0 0 1 0 1 1 — — — A x x x x
52 MPC755 Embedded G3 Microprocessor Supplement

MPC755 System Interface Operation (Chapter 8)
8.4.3 Misaligned Data Transfers
Misaligned data transfer cases operate similarly in 32-bit data bus mode as in 64-bit data
bus mode with the usual exception that only the DH[0:31] data bus is used. An example of
a four-byte misaligned transfer starting at each possible byte address within a double word
is shown in Table 24.

Byte - 1 beat 0 0 1 1 0 0 A — — — x x x x

Byte - 1 beat 0 0 1 1 0 1 — A — — x x x x

Byte - 1 beat 0 0 1 1 1 0 — — A — x x x x

Byte - 1 beat 0 0 1 1 1 1 — — — A x x x x

Half-Word - 1 beat 0 1 0 0 0 0 A A — — x x x x

Half-Word - 1 beat 0 1 0 0 1 0 — — A A x x x x

Half-Word - 1 beat 0 1 0 1 0 0 A A — — x x x x

Half-Word - 1 beat 0 1 0 1 1 0 — — A A x x x x

Word - 1 beat 1 0 0 0 0 0 A A A A x x x x

Word - 1 beat 1 0 0 1 0 0 A A A A x x x x

Double Word - 1st beat 0 0 0 0 0 0 A A A A x x x x

Double Word - 2nd beat A A A A x x x x

Notes:
“A” - byte lanes that are read or written during that bus transaction.
“—” - These lanes are ignored during read transactions and driven with undefined data during write
transactions.
“x” byte lanes are not used in 32-bit data bus mode. They are not sampled by the MPC755 during reads and
are driven low during writes.

Table 24. Misaligned Data Transfers Example—32-Bit Data Bus Mode

Program Size of
Word (4 bytes)

Bus
TSIZ[0:2]

Bus
A[29:31]

Data Bus Byte Lanes

DH0... ...DH31 DL0... ...DL31

B0 B1 B2 B3 B4 B5 B6 B7

Aligned 1 0 0 0 0 0 A A A A x x x x

Misaligned - 1st access 0 1 1 0 0 1 — A A A x x x x

2nd Access 0 0 1 1 0 0 A — — — x x x x

Misaligned - 1st access 0 1 0 0 1 0 — — A A x x x x

2nd Access 0 1 0 1 0 0 A A — — x x x x

Misaligned - 1st access 0 0 1 0 1 1 — — — A x x x x

2nd Access 0 1 1 1 0 0 A A A — x x x x

Table 23. Aligned Data Transfers—32-Bit Data Bus Mode (Continued)

Program
Transfer Size

Bus
TSIZ[0:2]

Bus
A[29:31]

Data Bus Byte Lanes

DH0... ...DH31 DL0... ...DL31

B0 B1 B2 B3 B4 B5 B6 B7
MPC755 Embedded G3 Microprocessor Supplement 53

MPC755 System Interface Operation (Chapter 8)
8.4.4 Selecting D32 Mode
The processor selects 64-bit or 32-bit data bus mode at power-up by sampling the state of
the TLBISYNC signal at the negation of HRESET (coming out of hard reset). If the
TLBISYNC signal is high (negated) at the negation of HRESET, 64-bit data mode is
selected. If TLBISYNC is low (asserted), 32-bit data mode is used.

For 32-bit systems not using the TLBISYNC signal, TLBISYNC can be connected to
HRESET directly. Otherwise, it can be connected to a pull-up resistor to select 64-bit mode.
For systems using the TLBISYNC input function, the state of HRESET must be logically
combined in the TLBISYNC generation path to select the desired mode.

8.4.5 Signal Relationships
The signal relationships for 32-bit mode are the same as 64-bit mode. Figure 14 and
Figure 15 show an example of an 8-beat burst transaction and a 2-beat burst transaction
with DRTRY, respectively.

Aligned 1 0 0 1 0 0 A A A A x x x x

Misaligned - 1st access 0 1 1 1 0 1 — A A A x x x x

2nd Access 0 0 1 0 0 0 A — — — x x x x

Misaligned - 1st access 0 1 0 1 1 0 — — A A x x x x

2nd Access 0 1 0 0 0 0 A A — — x x x x

Misaligned - 1st access 0 0 1 1 1 1 — — — A x x x x

2nd Access 0 1 1 0 0 0 A A A — x x x x

Notes:
“A” - byte lane read in
“x” - ignored byte lane (does not need to be valid)

Table 24. Misaligned Data Transfers Example—32-Bit Data Bus Mode (Continued)

Program Size of
Word (4 bytes)

Bus
TSIZ[0:2]

Bus
A[29:31]

Data Bus Byte Lanes

DH0... ...DH31 DL0... ...DL31

B0 B1 B2 B3 B4 B5 B6 B7
54 MPC755 Embedded G3 Microprocessor Supplement

MPC755 System Interface Operation (Chapter 8)
Figure 14. 32-Bit Data Bus Mode—8-Beat Burst (No Retry Conditions)

Figure 15. 32-Bit Data Bus Mode—2-Beat Burst (with DRTRY)

0 1 2 3 4 5 6 7

TS

ABB

ADDR

TBST

AACK

ARTRY

DBB

DH[0:31]

TA

DRTRY

TEA

SYSCLK

1 2 3 4 5 6 7 8 9 10 11 12

0 1

TS

ABB

ADDR

TBST

AACK

ARTRY

DBB

DH[0:31]

TA

DRTRY

TEA

SYSCLK

1 2 3 4 5 6 7 8 9 10 11 12
MPC755 Embedded G3 Microprocessor Supplement 55

MPC755 L2 Cache Interface Operation (Chapter 9)
Part IX MPC755 L2 Cache Interface Operation
(Chapter 9)

This section describes the L2 cache interface operation of the MPC755, and how it differs
from the MPC750.

9.1 MPC755 L2 Cache Interface Overview
The MPC755’s L2 cache is implemented with an on-chip, two-way set-associative tag
memory, and with external synchronous SRAMs for data storage, similar to the MPC750.
The external SRAMs are accessed through a dedicated L2 cache port which supports a
single bank of up to 1 Mbyte of synchronous SRAMs. The L2 cache normally operates in
copyback mode and supports system cache coherency through snooping. The differences
from the MPC750 L2 cache interface are summarized as follows:

• Support for 4-1-1-1 PB3 synchronous burst-only SRAMS
• Additional control of the L2 interface during low-power operation
• Additional information about (and control of) the L2 DLL circuitry
• A new instruction-only mode
• Private memory capability for half or all of the L2 SRAM
• More flexible control of the L2 parity signals by allowing data or data and address

parity
In addition to including the MPC755-specific information, this section supersedes Chapter
9, “L2 Cache Interface,” in the MPC750 User’s Manual.

Figure 16 shows a typical connection from the MPC755 processor L2 interface to a bank
of PB3 SRAMS. See the MC750 User’s Manual for typical connections to other SRAM
technologies. Note that the signals for the L2 interface on the MPC755 are the same as
those used for the MPC750.
56 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L2 Cache Interface Operation (Chapter 9)
Figure 16. Typical Synchronous 1–Mbyte L2 Cache System Using PB3 SRAM

9.1.1 L2 Cache Organization
The MPC750’s L2 cache interface is implemented with an on-chip, two-way set-associative
tag memory with 4096 tags per way, and a dedicated interface with support for up to
1 Mbyte of external synchronous SRAM for data storage. The tags are sectored to support
either two cache blocks per tag entry (two sectors, 64 bytes), or four cache blocks per tag
entry (four sectors, 128 bytes) depending on the L2 cache size. If the L2 cache is configured
for 256 Kbytes or 512 Kbytes of external SRAM, the tags are configured for two sectors
per L2 cache block. The L2 tags are configured for four sectors per L2 cache block when
1 Mbyte of external SRAM is used. Each sector (32-byte L1 cache block) in the L2 cache
has its own valid and modified bits and other status bits that implement the MEI cache
coherency protocol.

Table 25 lists the data RAM organizations for the various L2 cache sizes. Table 25 also
indicates typical SRAM sizes that might be used to construct such a cache.

Notes:
1. For a 1 Mbyte L2, use address bits 0–16 (bit 0 is LSB).
2. For a 512 Kbyte L2, use address bits 0–15 (bit 0 is LSB).
3. For a 256 Kbyte L2, use address bits 0–14 (bit 0 is LSB).
4. External clock routing should ensure that the rising edge of the L2 clock is coincident at the K input of

all SRAMs and at the L2SYNC_IN input of the MPC755. The clock ‘A’ network only could be used, or
the clock ‘B’ network could also be used depending on loading, frequency, and number of SRAMS.

5. No pull-up resistors are normally required for the L2 interface.
6. The MPC755 supports only one bank of SRAMS.
7. For high-speed operation, no more than two loads should be presented on each L2 interface signal.

(optional)

L2CE
L2WE
L2ZZ

1

1

(optional)

L2CE

L2ADDR[16:0]

L2WE
L2ZZ

L2SYNC_IN

L2DATA[0:63]

L2DP[0:7]

L2CLK_OUTB

L2SYNC_OUT

L2CLK_OUTA

MPC755

W

K

Addr[0:16]

E

ADS
ADSP

E

K

Addr[16:0]

Data[0:31]

Parity[0:3]

W
ADS
ADSP PB3

SRAM

Data[0:31]

Parity[0:3]

128k x 36

PB3
SRAM

128k x 36
MPC755 Embedded G3 Microprocessor Supplement 57

MPC755 L2 Cache Interface Operation (Chapter 9)
9.1.2 L2 Cache Control
The L2 cache control register (L2CR) allows control of L2 cache configuration and timing,
byte-level data parity generation and checking, global invalidation of L2 contents,
write-through operation, and L2 test support. The L2 cache interface provides two clock
outputs that allow the clock inputs of the SRAMs to be driven at select frequency divisions
of the processor core frequency. See the MPC755 Hardware Specifications for details about
the specific frequency ratios supported. For more details about the L2CR, see Section 9.4.1,
“L2 Cache Control Register (L2CR).”

9.1.3 L2 Private Memory
A portion, or all, of the L2 cache can alternately be used as a private SRAM. In this way, a
portion of the physical address space can be mapped into a portion of the L2 SRAM. This
functionality is described in Section 9.2.2, “L2 Private Memory Operation.” When private
SRAM is used and the upper bits of the physical address match the L2PM[PMBA] field,
the data is written or read from the private space of the L2 SRAM instead of external
memory. Note that all of the SRAM can be designated as private, or for 512 Kbytes or 1
Mbyte SRAM, half can be designated as private and half as L2 cache. See Table 28 for all
the supported combinations. Also, see Section 9.6.5, “Cache Control Instructions and
Effect on Private Memory Operation,” for information on the operation of cache control
instructions with respect to private memory space.

9.2 L2 Interface Operation
This section describes the general operation of both the L2 cache and the private memory
capabilities of the L2 interface.

9.2.1 L2 Cache Operation
The MPC755’s L2 cache is a combined instruction and data cache that receives memory
requests from both L1 instruction and data caches independently. The L1 requests are
generally the result of instruction fetch misses, data load or store misses, write-through
operations, or cache management instructions. Each L1 request generates an address
lookup in the L2 tags. If a hit occurs, the instructions or data are forwarded to the L1 cache.
A miss in the L2 tags causes the L1 request to be forwarded to the 60x bus interface. The
cache block received from the bus is forwarded to the L1 cache immediately, and is also

Table 25. L2 Cache Sizes and Data RAM Organizations

L2 Cache Size
L2 Data Bus

Size
L2 Data RAM
Organization

Example SRAM Sizes

256 Kbytes 64/72 bit 32 Kbytes x 64/72 (2) 32 Kbytes x 32/36

512 Kbytes 64/72 bit 64 Kbytes x 64/72 (2) 64 Kbytes x 32/36

1 Mbyte 64/72 bit 128 Kbytes x 64/72 (2) 128 Kbytes x 32/36

Note:
The MPC755 supports only one bank of SRAMs.
For very high speed operation, no more than two SRAM devices should be used.
58 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L2 Cache Interface Operation (Chapter 9)
loaded into the L2 cache with the tag marked valid and unmodified. If the cache block
loaded into the L2 causes a new tag entry to be allocated and the current tag entry is marked
valid modified, the modified sectors of the tag to be replaced are cast out from the L2 cache
to the 60x bus.

See Section 9.6.4, “Other Cache Control Instructions and Effect on L2 Cache,” for more
information on the operation of cache control operations on the L2 cache.

9.2.1.1 L2 Cache Access Priorities
At any given time the L1 instruction cache may have one instruction fetch request, and the
L1 data cache may have one load and two stores requesting L2 cache access. The L2 cache
also services snoop requests from the 60x bus. When there are multiple pending requests to
the L2 cache, snoop requests have highest priority, followed by data load and store requests
(serviced on a first-in, first-out basis). Instruction fetch requests have the lowest priority in
accessing the L2 cache when there are multiple accesses pending.

If read requests from both the L1 instruction and data caches are pending, the L2 cache can
perform a hit-under-miss operations and supplies the available instruction or data while a
bus transaction for the previous L2 cache miss is performed. The L2 cache does not support
miss-under-miss, and the second instruction fetch or data load stalls until the bus operation
resulting from the first L2 miss completes.

9.2.1.2 L2 Cache Services
All requests to the L2 cache that are marked cacheable (even if the respective L1 cache is
disabled or locked) cause a tag lookup and will be serviced if the instructions or data are in
the L2 cache. Burst requests from the L1 caches and single-beat read requests that hit in the
L2 cache are forwarded the instructions or data, and the L2 LRU bit for that tag is updated.
Burst writes from the L1 data cache due to a castout or replacement copyback are written
only to the L2 cache, and the L2 cache sector is marked modified. Designers should note
that during burst transfers into and out of the L2 cache SRAM array, an address is generated
by the MPC755 for each data beat.

If the L2 cache is configured as write-through, the L2 sector is marked unmodified, and the
write is forwarded to the 60x bus. If the L1 castout requires a new L2 tag entry to be
allocated and the current tag is marked modified, any modified sectors of the tag to be
replaced are cast out of the L2 cache to the 60x bus.

Single-beat reads that miss in the L2 cache do not cause any state changes in the L2 cache
and are forwarded on the 60x bus interface. Cacheable single-beat store requests marked
copyback that hit in the L2 are allowed to update the L2 cache sector, but do not cause L2
cache sector allocation or deallocation. Cacheable, single-beat store requests that miss in
the L2 are forwarded to the 60x bus. Single-beat store requests marked write-through
(through address translation or through the configuration of L2CR[L2WT]) are written to
the L2 cache if they hit and are written to the 60x bus independent of the L2 hit/miss status.
If the store hits in the L2 cache, the modified/unmodified status of the tag remains
unchanged.
MPC755 Embedded G3 Microprocessor Supplement 59

MPC755 L2 Cache Interface Operation (Chapter 9)
9.2.1.3 L2 Cache Coherency and WIMG Bits
Different from the MPC750, a request to the L2 cache on the MPC755 that is marked
cache-inhibited by address translation (through either the MMU or by default WIMG
configuration) will hit in the L2 cache if it has been previously loaded (and is still valid),
causing a paradox condition. However, misses for cache-inhibited accesses do not cause a
new entry to be allocated and do not cause any L2 cache tag state change.

9.2.1.4 Single-Beat Accesses to L2 Interface
The processor performs single-beat read and write accesses when the L1 instruction and/or
data caches are disabled, and when the WIMG bit settings indicate that an area of memory
is cache-inhibited (this case not forwarded to the L2 interface). Additionally, single-beat
writes occur to the L2 interface when that area of memory is designated as write-through.
PB2 SRAMs naturally support single-beat read and write accesses. However, the L2
interface requires 64-bit accesses to the SRAM. Therefore, for single-beat writes, the
MPC750 and MPC755 automatically perform a read-modify-write operation in order to
write the complete 64-bits to the L2.

PB3 SRAMs support bursting accesses only. Thus, for PB3 SRAMs, the L2 interface
always automatically performs a burst read for a complete cache line from the SRAM. If a
single-beat read was requested, then the appropriate double word is forwarded to the L1.
Write accesses to PB3 SRAMs also require burst accesses. Thus for a single-beat write, the
L2 interface automatically performs a burst read-modify-write in order to perform the
complete write burst.

9.2.2 L2 Private Memory Operation
The L2 interface of the MPC755 can also be used as a low-latency, high-bandwidth private
memory space. The private memory space is not snooped and is therefore not coherent with
other processors in a system. The private space can contain instructions and data and its
contents can be cached in the L1 instruction and data caches provided the accesses are
marked cacheable.

The private memory receives requests from both the L1 instruction cache and the L1 data
cache independently. The L1 requests are generally the result of instruction misses, data
load or store misses, L1 data cache castouts, write-through operations, or cache
management instructions. For all cacheable accesses, the L1 requests are looked-up in the
L2 tags and compared with the corresponding PMBA bits of the L2PM. If a match occurs
with L2PM[PMBA], the result of the L2 tag lookup is ignored and the request is forwarded
to the external L2 SRAM interface as a private memory access. All transactions that read
or write data, except those caused by the eciwx and ecowx instructions, are allowed to hit
in the private memory space, regardless of the WIMG memory/cache attribute bits.

Transactions caused by the icbi, sync, tlbie, tlbsync, eieio, eciwx, and ecowx instructions
never hit in the private memory space and are forwarded to the system interface. Accesses
caused by the dcbi instruction that hit in the private memory space are discarded (after
invalidating the L1 data cache). The private memory space does not have coherency state
information. When the L1 data cache is reloaded for a cacheable load or store, the state will
be exclusive or modified, respectively.
60 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L2 Cache Interface Operation (Chapter 9)
Generally, the private memory operates according to the following:

• Arbitration is shared with the L2 cache and thus uses the same priorities.
• All requests to the L2 interface that are marked cache-inhibited by address

translation (WIMG bits) are allowed to hit in the private space. Cache-inhibited
stores write the appropriate data to the L2 interface.

• Requests to the L2 interface that are marked cacheable by address translation (even
if the respective L1 cache is locked) are serviced by the L2 interface if they map to
the private memory space.

• Burst read and single-beat read requests from the L1 instruction or data caches that
map to the private memory space are forwarded data from the L2 SRAMs designated
as private memory.

• Burst read requests from the L1 instruction or data caches that do not map to private
memory space (and miss in the L2 cache, if enabled) initiate a burst read operation
from the system interface for the cache line that missed. The cache line received
from the bus is forwarded to the appropriate L1 cache (and the L2 cache, if enabled).

• Normal burst writes from the L1 data cache due to castouts (also referred to as
replacement copybacks) that map to the private memory space are written to the
external SRAMs designated as private memory regardless of the L2CR[L2IO]
setting. Burst writes that don’t map to the private memory space are allocated in the
L2 cache (if enabled).

Note that software-generated single-beat reads and writes directed to the private memory
SRAMs are handled in the same way as described for the SRAMs as L2 cache, and
read-modify-write transactions are performed automatically by the L2 controller as needed
as described in Section 9.2.1.4, “Single-Beat Accesses to L2 Interface.”

See Section 9.6.4, “Other Cache Control Instructions and Effect on L2 Cache,” for more
information on the operation of cache control operations on the L2 cache. However, the
following apply to the private memory space:

• Cacheable stwcx. operations are handled by the L1 data cache similarly to normal
cacheable stores. The L2 interface does not treat stwcx. differently than a normal
cacheable store. Cache-inhibited stwcx. accesses that hit in the private memory
space write the appropriate data to the L2 interface and are not forwarded to the
system interface.

• dcbz operations that hit in the private memory space do not affect the data in the
external SRAMs. They are handled entirely by the L1.

• dcbf operations are issued to the L2 interface after being processed by the L1 data
cache. If a dcbf that hits in L1 data cache and requires a line push hits in the private
memory space, the cache line is written to the L2 interface. dcbf operations that hit
in the private memory space are never forwarded to the system interface.

• dcbst instructions are issued to the L2 cache after being processed by the L1 data
cache. If a dcbst that hits in the L1 data cache and requires a line push hits in the
private memory space, the cache line is written to the external SRAMs. dcbst
operations that hit in the private memory space are never forwarded to the system
interface.
MPC755 Embedded G3 Microprocessor Supplement 61

MPC755 L2 Cache Interface Operation (Chapter 9)
• dcbi instructions that hit in the private memory space are discarded and are never
forwarded to the system interface.

• icbi instructions never affect the L2 interface and are just passed to the system
interface for further processing.

• sync, eieio, eciwx, ecowx, tlbie, and tlbsync instructions pass though the L2
interface and are forwarded to the system interface for further processing.

Note that L2 cache-related performance monitor events may not produce expected results
when L2 private memory is enabled. Specifically, hits to the private memory are treated as
L2 cache misses by the performance monitor. No new performance monitor events have
been added to specifically support the L2 private memory.

9.3 L2 Clocking
The MPC755 generates the clock for the external L2 synchronous data RAMs in the same
way as the MPC750. The clock frequency for the RAMs is divided down from the core
clock frequency of the MPC755. The divided-down clock is then phase-adjusted by an
on-chip delay-lock loop (DLL) circuit, sent out from the MPC755 to the external RAMs,
and then returned as an input to the DLL so that the rising-edge of the clock as seen at the
external RAMs can be aligned to the clocking of the internal latches in the MPC755’s L2
bus interface.

The core-to-L2 frequency divisor for the L2 PLL is selected through the L2CLK bits of the
L2CR register. Generally, the divisor must be chosen according to the frequency supported
by the external RAMs, the internal core operating frequency, and the phase adjustment
range that the L2 DLL supports. The L2 RAM frequency can be divided down from the core
operating frequency as described in the MPC755 Hardware Specification. Additional
supported frequency ratios for the MPC755 are also highlighted in the hardware
specification.

9.4 L2 Registers
This section describes the cache configuration bits in the L2 cache control register (L2CR)
and the L2 cache private memory control register (L2PM).

9.4.1 L2 Cache Control Register (L2CR)
The L2 cache control register of the MPC755 is a read/write, supervisor-level,
implementation-specific SPR used to configure and operate the L2 cache, and it is slightly
different from the L2CR of the MPC750. The differences are summarized as follows:

• New encoding for L2RAM field defined for PB3 SRAM support
• More output hold options defined for L2OH field
• New L2CR bit for instruction-only mode—L2IO
• New L2CR fields defined for low-power operation and DLL control—L2CS,

L2DRO, and L2CTR
62 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L2 Cache Interface Operation (Chapter 9)
The L2CR register can be accessed with the mtspr and mfspr instructions using SPR 1017
(decimal). Note that all bits of L2CR are cleared by a hard reset and on power-on reset.
Figure 17 shows the bits of the L2CR.

Figure 17. L2 Cache Control Register (L2CR)

The L2CR bits for the MPC755 are described in Table 26.

Table 26. L2 Cache Control Register

Bit Name Description

0 L2E L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction the
L2 cache unit receives. Before enabling the L2 cache, the L2 clock must be configured through
L2CR[2CLK], and the L2 DLL must stabilize (see the MPC755 Hardware Specifications) and all
other L2CR bits must be set appropriately. The L2 cache may need to be globally invalidated.

1 L2PE L2 data parity generation and checking enable. Enables parity generation and checking for the L2
data RAM interface. When disabled, generated parity is always zeros. Note that the L2 interface
always generates and drives parity on the L2DP[0:7] signals for writes to the SRAM array.

2–3 L2SIZ L2 size. Should be set according to the size of the L2 data RAMs used. A 256-Kbyte L2 cache
requires a data RAM configuration of 32 Kbytes x 64 bits; a 512-Kbyte L2 cache requires a
configuration of 64 Kbyte x 64 bits; a 1-Mbyte L2 cache requires a configuration of 128 Kbytes x
64 bits.

00 Reserved
01 256 Kbyte
10 512 Kbyte
11 1 Mbyte

4–6 L2CLK L2 clock ratio (core-to-L2 frequency divider). Specifies the clock divider ratio between the core
clock frequency and the L2 data RAM interface. When these bits are cleared, the L2 clock is
stopped and the on-chip DLL for the L2 interface is disabled. For non-zero values, the processor
generates the L2 clock and the on-chip DLL is enabled. After the L2 clock ratio is chosen, the DLL
must stabilize before the L2 interface can be enabled (see the MPC755 Hardware
Specifications). The resulting L2 clock frequency cannot be slower than the clock frequency of the
60x bus interface.

000 L2 clock and DLL disabled
001 ÷1
010 ÷1.5
011 Reserved
100 ÷2
101 ÷2.5
110 ÷3
111 Reserved

0L2SIZ L2CLK L2RAM L2OH

3130242322212019181716151413121110987643210

L2CTR

L2IP
L2E
L2PE L2DO

L2I
L2CTL
L2WT
L2TS

L2SL
L2DF
L2BYP

L2DRO
L2CS
L2IO

Reserved

0

MPC755 Embedded G3 Microprocessor Supplement 63

MPC755 L2 Cache Interface Operation (Chapter 9)
7–8 L2RAM L2 RAM type—Configures the L2 interface for the type of synchronous SRAMs used:

• Flow-through (register-buffer) synchronous burst SRAMs that clock addresses in and flow
data out

• Pipelined (register-register) PB2 synchronous burst SRAMs that clock addresses in and clock
data out (with 3-1-1-1 access times)

• Pipelined (register-register) PB3 synchronous burst SRAMs (with 4-1-1-1 access times)
• Late-write synchronous SRAMs, for which the MPC755 requires a pipelined (register-register)

configuration. Late-write RAMs require write data to be valid on the cycle after WE is
asserted rather than on the same cycle as the write enable (as required with traditional burst
RAMs).

For the PB2 burst RAM selection, the MPC755 does not burst data into the L2 cache; it generates
an address for each access. However, for the PB3 burst RAM selection, the MPC755 does burst
data into the L2 cache. If the SRAMs or part of the SRAM is configured as an L2 cache, the L1
caches should be enabled for data to be efficiently loaded into the L2 cache for all types of
SRAMs; otherwise, significant latencies are incurred. If all the L2 SRAM cache is configured as
private memory, disabled L1 instruction and data caches do not affect the L2 latencies.

Pipelined SRAMs may be used for all L2 clock modes. Note that flow-through SRAMs can be
used only for L2 clock modes that are divide-by-2 or slower (divide-by-1 and divide-by-1.5 not
allowed).

00 Flow-through (register-buffer) synchronous burst SRAM
01 Pipelined (register-register) PB3 synchronous burst SRAM
10 Pipelined (register-register) PB2 synchronous burst SRAM
11 Pipelined (register-register) synchronous late-write SRAM

9 L2DO L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation,
instruction transactions from the L1 instruction cache already cached in the L2 cache can hit in
the L2, but new instruction transactions from the L1 instruction cache are treated as
cache-inhibited (bypass L2 cache, no L2 checking done). When both L2DO and L2IO are set, the
L2 cache is effectively locked (cache misses do not cause new entries to be allocated but write
hits use the L2).

10 L2I L2 global invalidate. Setting L2I invalidates the L2 cache globally by clearing the L2 bits including
status bits. This bit must not be set while the L2 cache is enabled.

11 L2CTL L2 RAM control (ZZ enable). Setting L2CTL enables the automatic operation of the L2ZZ
(low-power mode) signal for cache RAMs that support the ZZ function (PB2 RAMs). If L2CTL is
set, L2ZZ asserts automatically when the MPC755 enters nap or sleep mode and negates
automatically when the MPC755 exits nap or sleep mode.

The use of this bit is not recommended for future compatibility. This bit should not be set when the
MPC755 is in nap mode and snooping is to be performed through the negation of QACK.
Additionally, it should not be set when using PB3 SRAMs.

12 L2WT L2 write-through. Setting L2WT selects write-through mode (rather than the default write-back
mode) so all writes to the L2 cache also write through to the 60x bus. For these writes, the L2
cache entry is always marked as exclusive rather than modified. This bit must never be set after
the L2 cache has been enabled because previously-modified lines could get re-marked as
exclusive during normal operation.

13 L2TS L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that result from
dcbf and dcbst instructions to be written only into the L2 cache and marked valid, rather than
being written only to the 60x bus and marked invalid in the L2 cache in case of a hit. This bit
allows a dcbz/dcbf instruction sequence to be used with the L1 cache enabled to easily initialize
the L2 cache with any address and data information. This bit also keeps dcbz instructions from
being broadcast on the 60x bus and single-beat cacheable store misses in the L2 from being
written to the 60x bus.

Table 26. L2 Cache Control Register (Continued)

Bit Name Description
64 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L2 Cache Interface Operation (Chapter 9)
14–15 L2OH L2 output hold. These bits configure output hold time for address, data, and control signals driven
by the MPC755 to the L2 data RAMs. They should generally be set according to the SRAM’s
input hold time requirements, for which late-write SRAMs usually differ from flow-through or burst
SRAMs. See the MPC755 Hardware Specification for the actual recommended values.

00 Least hold time
01 More hold time
10 Even more hold time
11 Most output hold time

16 L2SL L2 DLL slow. Setting L2SL increases the delay of each tap of the DLL delay line. It is intended to
increase the delay through the DLL to accommodate slower L2 RAM bus frequencies. Generally,
L2SL should be set if the L2 RAM interface is operated below 100 MHz.

17 L2DF L2 differential clock. Setting L2DF configures the two clock-out signals (L2CLK_OUTA and
L2CLK_OUTB) of the L2 interface to operate as one differential clock. In this mode, the B clock is
driven as the logical complement of the A clock. This mode supports the differential clock
requirements of late-write SRAMs. Generally, this bit should be set when late-write SRAMs are
used.

18 L2BYP L2 DLL bypass. The DLL unit receives three input clocks:

• A square-wave clock from the PLL unit to phase adjust and export
• A non-square-wave clock for the internal phase reference
• A feedback clock (L2SYNC_IN) for the external phase reference.

Setting L2BYP causes the non-square wave clock (#2) to be used for both phase adjust and
phase reference (#1 and #2), thus bypassing the square wave clock from the PLL. (Note that
clock #2 is the actual clock used by the registers of the L2 interface circuitry.) L2BYP is intended
for use when the PLL is being bypassed. If the PLL is being bypassed, the DLL must be operated
in 1:1 mode and SYSCLK must be fast enough for the DLL to support.

19–20 — Reserved. These bits are implemented but not used; keep at 0 for future compatibility.

21 L2IO L2 instruction-only. Setting this bit enables instruction-only operation in the L2 cache. For this
operation, data transactions from the L1 data cache already cached in the L2 cache can hit in the
L2 (including writes), but new data transactions (transactions that miss in the L2) from the L1 data
cache are treated as cache-inhibited (bypass L2 cache, no L2 checking done). When both L2DO
and L2IO are set, the L2 cache is effectively locked (cache misses do not cause new entries to be
allocated but write hits use the L2). Note that this bit can be programmed dynamically.

22 L2CS L2 clock stop. Setting this bit causes the L2 clocks to the SRAMs to automatically stop whenever
the MPC755 enters nap or sleep modes, and automatically restart when exiting those modes
(including for snooping during nap mode). It operates by asynchronously gating off the
L2CLK_OUT[A:B] signals while in nap or sleep mode. The L2 SYNC_OUT/SYNC_IN path
remains in operation, keeping the DLL synchronized. This bit is provided as a power-saving
alternative to the L2CTL bit and its corresponding ZZ pin, which may not be useful for dynamic
stopping/restarting of the L2 interface from nap and sleep modes due to the relatively long
recovery time from ZZ negation that many SRAM vendors require.

23 L2DRO L2 DLL rollover. Setting this bit enables a potential rollover (or actual rollover) condition of the
DLL to cause a checkstop for the processor. A potential rollover condition occurs when the DLL is
selecting the last tap of the delay line, and thus may risk rolling over to the first tap with one
adjustment while in the process of keeping synchronized. Such a condition is improper operation
for the DLL, and, while this condition is not expected, it allows detection for added security. This
bit should be set when the DLL is first enabled (set with the L2CLK bits) to detect rollover during
initial synchronization. It could also be set when the L2 cache is enabled (with L2E bit) after the
DLL has achieved its initial lock.

Table 26. L2 Cache Control Register (Continued)

Bit Name Description
MPC755 Embedded G3 Microprocessor Supplement 65

MPC755 L2 Cache Interface Operation (Chapter 9)
9.4.2 L2 Private Memory Control Register (L2PM)
The L2 private memory control register is a new register in the MPC755 that allows a
portion of the physical address space to be mapped into a portion of the L2 SRAM. It is a
read/write, supervisor-level, implementation-specific register (SPR) which is accessed with
the mtspr and mfspr instructions using SPR 1016 (decimal). Note that all bits of L2PM are
cleared by a hard reset or power-on reset. Figure 18 shows the bits of the L2PM.

Figure 18. L2 Private Memory Control Register (L2PM)

The L2PM bits are described in Table 27.

Table 28 describes the combinations possible (and the required bit settings) for using some
or all of the L2 SRAM as private memory.

24–30 L2CTR L2 DLL counter (read-only). These bits indicate the current value of the DLL counter (0 to 127).
They are asynchronously read when the L2CR is read, and as such, should be read at least twice
with the same value in case the value is asynchronously caught in transition. These bits are
intended to provide observability of where in the 128-bit delay chain the DLL is at any given time.
Generally, the DLL operation should be considered at risk if it is found to be within a couple of
taps of its beginning or end point (tap 0 or tap 128).

31 L2IP L2 global invalidate in progress (read only). This read-only bit indicates whether an L2 global
invalidate is occurring. It should be monitored after an L2 global invalidate has been initiated by
the L2I bit to determine when it has completed.

Table 27. L2PM Bit Settings

Bit Name Description

0–13 PMBA Private memory base address. If the upper bits of the physical address match the PMBA, the data
is written or read from the private memory space of the L2 SRAM instead of external memory.

 0–11 for 1 Mbyte

 0–12 for 512 Kbytes

 0–13 for 256 Kbytes

14–29 — Reserved

30–31 PMSIZ Private memory size. These bits along with the L2SIZ bits of the L2CR determine the amount of
the L2 cache that is used as private memory space. See Table 28 for the L2 SRAM configurations.

 00 = Private memory disabled

 01 = 256 Kbytes

 10 = 512 Kbytes

 11 = 1 Mbyte

Table 26. L2 Cache Control Register (Continued)

Bit Name Description

PMBA

31302914130

0 PMSIZ0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
66 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L2 Cache Interface Operation (Chapter 9)
9.5 L2 Address and Data Parity Signals
The L2 parity signals (L2DP[0:7]) can be generated and checked by setting the L2PE bit in
the L2CR. The parity bits are generated and checked using the corresponding L2DATA
signals, and represent odd parity. If the L2AP_EN bit in HID2 is also set, the L2ADDR
signals are also included in the parity generation and checking (again, representing odd
parity) on the MPC755. Table 29 lists the association between L2DP[0:7] signals and the
L2DATA and L2ADDR signals.

Table 28. L2 SRAM Configuration

Total L2
SRAM

Configured only as L2
Cache

Configured as 1/2 L2 Cache
and 1/2 Private Memory

Configured only as
Private Memory

256KB L2E = 1

L2SIZ = 01 (256 Kbytes)

PMSIZ = 00 (disabled)

not available

L2E = 0

L2SIZ = don’t care

PMSIZ = 01 (256 Kbytes)

512KB L2E = 1

L2SIZ = 10 (512 Kbytes)

PMSIZ = 00 (disabled)

L2E =1

L2SIZ = 01 (256 Kbytes)

PMSIZ = 01 (256 Kbytes)

L2E = 0

L2SIZ = don’t care

PMSIZ = 10 (512 Kbytes)

1M L2E = 1

L2SIZ = 11 (1 Mbyte)

PMSIZ = 00 (disabled)

L2E =1

L2SIZ = 10 (512 Kbytes)

PMSIZ = 10 (512 Kbytes)

L2E = 0

L2SIZ = don’t care

PMSIZ = 11 (1 Mbyte)

Table 29. L2 Data Parity Signal Associations

Signal
L2AP_EN = 0

L2PE = 1
L2AP_EN = 1

L2PE = 1

L2DP0 L2DATA[0:7] L2DATA[0:7],
L2ADDR[0:2]

L2DP1 L2DATA[8:15] L2DATA[8:15],
L2ADDR[3:4]

L2DP2 L2DATA[16:23] L2DATA[16:23],
L2ADDR[5:6]

L2DP3 L2DATA[24:31] L2DATA[24:31],
L2ADDR[7:8]

L2DP4 L2DATA[32:39] L2DATA[32:39],
L2ADDR[9:10]

L2DP5 L2DATA[40:47] L2DATA[40:47],
L2ADDR[11:12]

L2DP6 L2DATA[48:55] L2DATA[48:55],
L2ADDR[13:14]

L2DP7 L2DATA[56:63] L2DATA[56:63],
L2ADDR[15:16]
MPC755 Embedded G3 Microprocessor Supplement 67

MPC755 L2 Cache Interface Operation (Chapter 9)
9.6 L2 Cache Programming Considerations
This section describes some of the programming considerations for controlling the L2
cache and the effect of other cache control instructions on the L2 cache.

9.6.1 Enabling and Disabling the L2 Cache
Following a power-on or hard reset, the L2 cache and the L2 DLL are disabled initially.
Before enabling the L2 cache, the L2 DLL must first be configured through the L2CR
register, and the DLL must be allowed sufficient time (see the MPC755 Hardware
Specifications) to achieve phase lock. Before enabling the L2 cache, other configuration
parameters must be set in the L2CR, and the L2 tags must be globally invalidated. The L2
cache should be initialized during system start-up.

The sequence for initializing the L2 cache is as follows:

• Power-on reset (automatically performed by the assertion of HRESET signal).
• Disable L2 cache by clearing L2CR[L2E].
• Set the L2CR[L2CLK] bits to the desired clock divider setting. Setting a non-zero

value automatically enables the DLL. All other L2 cache configuration bits should
be set to properly configure the L2 cache interface for the SRAM type, size, and
interface timing required.

• Wait for the L2 DLL to achieve phase lock. This can be timed by setting the
decrementer for a time period equal to 640 L2 clocks, or by performing an L2 global
invalidate.

• Perform an L2 global invalidate. The global invalidate could be performed before
enabling the DLL, or in parallel with waiting for the DLL to stabilize. Refer to
Section 9.6.2, “L2 Cache Global Invalidation,” for more information about L2 cache
global invalidation. Note that a global invalidate always takes much longer than it
takes for the DLL to stabilize.

• After the DLL stabilizes, an L2 global invalidate has been performed, and the other
L2 configuration bits have been set, enable the L2 cache for normal operation by
setting the L2CR[L2E] bit to 1.

Note that if the L1 data cache is disabled and the L2 cache is enabled, hits in the L2 work
correctly and update the L2. However, no new entries are allocated into the L2 because
when the L1 data cache is disabled, the processor only performs single-beat accesses. Thus,
these accesses all propagate to the 60x bus interface (the L2 only stores and allocates entries
for burst accesses).

Before the L2 cache is disabled it must be flushed to prevent coherency problems. Note that
the cache management instructions dcbf, dcbst, and dcbi do not affect the L1 data cache
or L2 cache when they are disabled.

9.6.2 L2 Cache Global Invalidation
The L2 cache supports a global invalidation function in which all bits of the L2 tags (tag
data bits, tag status bits, and LRU bit) are cleared. It is performed by an on-chip hardware
state machine that sequentially cycles through the L2 tags. The global invalidation function
68 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L2 Cache Interface Operation (Chapter 9)
is controlled through L2CR[L2I], and it must be performed only while the L2 cache is
disabled. The MPC755 can continue operation during a global invalidation provided the L2
cache has been properly disabled before the global invalidation operation starts. Note that
the MPC755 must be operating at full power (low power modes disabled) in order to
perform L2 cache invalidation.

The sequence for performing a global invalidation of the L2 cache is as follows:

• Clear HID0[DPM] bit to zero. Dynamic power management must be disabled.
• Execute a sync instruction to finish any pending store operations in the load/store

unit, disable the L2 cache by clearing L2CR[L2E], and execute an additional sync
instruction after disabling the L2 cache to ensure that any pending operations in the
L2 cache unit have completed.

• Initiate the global invalidation operation by setting the L2CR[L2I] bit to 1.
• Monitor the L2CR[L2IP] bit to determine when the global invalidation operation is

completed (indicated by the clearing of L2CR[L2IP]). The global invalidation
requires approximately 32K core clock cycles to complete.

• After detecting the clearing of L2CR[L2IP], clear L2CR[L2I] and re-enable the L2
cache for normal operation by setting L2CR[L2E]. Also, dynamic power
management can be enabled at this time.

9.6.3 L2 Cache Flushing
L1 cache-block-push operations generated by the execution of dcbf and dcbst instructions
write through to the 60x bus interface and invalidate the L2 cache sector if they hit. The
execution of dcbf and dcbst instructions that do not cause a cache-block-push from the L1
cache are forwarded to the L2 cache to perform a sector invalidation and/or push from the
L2 cache to the 60x bus as required. If the dcbf and dcbst instructions do not cause a sector
push from the L2 cache, they are forwarded to the 60x bus interface for address-only
broadcast if HID0[ABE] is set to 1.

9.6.4 Other Cache Control Instructions and Effect on L2
Cache

The execution of the stwcx. instruction results in single-beat writes from the L1 data cache.
These single-beat writes are processed by the L2 cache according to hit/miss status, L1 and
L2 write-through configuration, and reservation-active status. If the address associated with
the stwcx. instruction misses in the L2 cache or if the reservation is no longer active, the
stwcx. instruction bypasses the L2 cache and is forwarded to the 60x bus interface. If the
stwcx. hits in the L2 cache and the reservation is still active, one of the following actions
occurs:

• If the stwcx. hits a modified sector in the L2 cache (independent of write-through
status), or if the stwcx. hits both the L1 and L2 caches in copy-back mode, the stwcx.
is written to the L2 and the reservation completes.

• If the stwcx. hits an unmodified sector in the L2 cache, and either the L1 or L2 is in
write-through mode, the stwcx. is forwarded to the 60x bus interface and the sector
hit in the L2 cache is invalidated.
MPC755 Embedded G3 Microprocessor Supplement 69

MPC755 L2 Cache Interface Operation (Chapter 9)
The dcbi instruction is always forwarded to the L2 cache and causes a segment invalidation
if a hit occurs. The dcbi instruction is also forwarded to the 60x bus interface for broadcast
if HID0[ABE] is set to 1. The icbi instruction invalidates only L1 cache blocks and is never
forwarded to the L2 cache. Any dcbz instructions marked global do not affect the L2 cache
state. If a dcbz instruction hits in the L1 and L2 caches, the L1 data cache block is cleared
and the dcbz instruction completes. If a dcbz instruction misses in the L2 cache, it is
forwarded to the 60x bus interface for broadcast. Any dcbz instructions that are marked
nonglobal act only on the L1 data cache. Note that the dcbz instruction on the MPC755
must be preceded by a dcbf instruction to that address.

The sync and eieio instructions bypass the L2 cache and are forwarded to the 60x bus.

9.6.5 Cache Control Instructions and Effect on Private
Memory Operation

When private memory is used as all or part of the L2 interface, cache control instructions
function as follows:

• Cacheable stwcx. operations are handled by the L1 data cache similarly to normal
cacheable stores. The L2 interface does not treat stwcx. differently than a normal
cacheable store. Cache-inhibited stwcx. accesses that hit in the private memory
space write the appropriate data to the L2 interface and are not forwarded to the
system interface.

• dcbz operations that hit in the private memory space do not affect the data in the
external SRAMs. They are handled entirely by the L1.

• dcbf operations are issued to the L2 interface after being processed by the L1 data
cache. If a dcbf that hits in L1 data cache and requires a line push hits in the private
memory space, the cache line is written to the L2 interface. dcbf operations that hit
in the private memory space are never forwarded to the system interface.

• dcbst instructions are issued to the L2 cache after being processed by the L1 data
cache. If a dcbst that hits in the L1 data cache and requires a line push hits in the
private memory space, the cache line is written to the external SRAMs. dcbst
operations that hit in the private memory space are never forwarded to the system
interface.

• dcbi instructions that hit in the private memory space are discarded and are never
forwarded to the system interface.

• icbi instructions never affect the L2 interface and are just passed to the system
interface for further processing.

• sync, eieio, eciwx, ecowx, tlbie, and tlbsync instructions pass though the L2
interface and are forwarded to the system interface for further processing.

9.6.6 L2 Cache Testing
Several features are provided to facilitate testing of the L2 cache. The MPC750 User’s
Manual supplied some incorrect recommended procedures for testing the L2 cache. This
section contains a corrected L2 cache test description that applies for both the MPC750 and
the MPC755.
70 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L2 Cache Interface Operation (Chapter 9)
A typical test for verifying the proper operation of the MPC755's L2 cache memory
(external SRAM and tag) performs the following steps:

1. Initialize the test sequence by disabling address translation to invoke the default
WIMG setting of 0b0011.

2. Set the L2CR[L2DO] and L2CR[L2TS] bits and perform a global invalidation of the
L1 data cache and the L2 cache. The L1 instruction cache can remain enabled to
improve execution efficiency.

After initialization of the test sequence is complete, the L2 cache external SRAM may be
tested using the following procedure:

1. Enable the L2 cache and the L1 data cache. Caches should have been invalidated
during the initialization step.

2. Execute a series of dcbz, stw, and dcbf instructions to initialize the cache with a
sequential range of addresses and with cache data consisting of zeroes.

3. Disable the L1 data cache.
4. Initialize the performance monitor counters to zero, and enable counting of L2 hits

in the appropriate MMCR register. Refer to Chapter 11, “Performance Monitor,” of
the MPC750 User’s Manual for complete details on using the performance
monitors.

5. Perform a series of single-beat load and store operations using a variety of non-zero
bit patterns to test for stuck bits and pattern sensitivities in the L2 cache SRAM.
These loads and stores should be in the range of addresses used to initialize the
caches in step 2 so that each access will hit in the L2 cache.

6. Disable the performance monitor counters, and read the value for the L2 cache hits.
Verify that this result matches the accesses performed by the test routine.

A complete L2 cache test should test the tag memory as well as the SRAMs. Each bit of tag
memory should be tested by loading the cache tags with data consisting of all 0's in one way
of the cache and all 1's in the other way. Then, a series of accesses should be performed,
walking a one or zero through the upper address bits to test for stuck bits and pattern
sensitivities in the tag.

The number of tag bits used by the cache depends on the size of the cache. On the MPC750
and the MPC755, a 256-Kbyte cache uses 15 tag bits, a 512-Kbyte cache uses 14 tag bits,
and a 1-Mbyte cache uses 13 tag bits.

For example, to test all the tag bits of a 512-Kbyte cache, a test program needs to do the
following:

• Initialize the test sequence by disabling address translation to invoke the default
WIMG bit settings of 0b0011.

• Set the L2CR[L2DO] and L2CR[L2TS] bits and perform an invalidation of the L1
data cache and the L2 cache. The L1 instruction cache may remain enabled for
efficiency.

• Enable the L2 cache and the L1 data cache.
MPC755 Embedded G3 Microprocessor Supplement 71

MPC755 L2 Cache Interface Operation (Chapter 9)
• Perform a series of dcbz, stw, and dcbf operations to fill the cache with unique data.
Fill way 0 of the tag with data consisting of all zeroes, and fill way 1 of the tag with
data consisting of all ones. The following pseudocode illustrates this procedure:

cache_size = (512 * 1024) // 512 Kbyte
cache_line_size = 32 // 32 byte cache line size for 750
tag_bits = 14 // for 512 Kbyte cache
r10 = 0x00000000 // all zeroes in upper tag_bits bits
r11 = 0xFFFc0000 // all ones in upper tag_bits bits
r12 = 0 // index

for(i = 0; i < (1/2 cache_size / cache_line_size); i++)
{

dcbz r10,r12 // zero out line in L1 dcache
add r13,r10,r12 // create unique data
stwx r13,r10,r12 // store unique data in newly

// allocated L1 cache entry
dcbf r10,r12 // push data to L2 cache WAY 0
dcbz r11,r12 // zero out line in L1 dcache
add r13,r11,r12 // create unique data
stwx r13,r11,r12 // store unique data in newly

// allocated L1 cache entry
dcbf r11,r12 // push data to L2 cache WAY 1
r12 += cache_line_size // go to next cache line and repeat

}

• Disable the L1 data cache.
• Read back the data just written and verify its correctness. Use the performance

monitors to count load hits in the L2 to verify that the data came from the L2. The
number of hits should equal the number of loads.

• Attempt a series of loads from the cache with addresses that should not be in the tag
by walking a one through the upper tag bits:

r15 = 0x80000000 // address with a 1 in the top bit
for(i = 0; i < tag_bits; i++)

{
initialize/enable the performance monitor counters to count load hits

r12 = 0x00000000 // index
for(j = 0; j < (1/2 cache_size / cache_line_size); j++)

{
lwzx r13,r15,r12 // attempt to load data
r12 += cache_line_size // go to the next cache line

}
disable the performance monitors, check to ensure that there were no hits

r15 = r15 >> 1 // shift the one bit
// to the right for the next iteration

}

• Then perform a similar series of loads, this time by walking a zero through a series
of addresses with ones in the upper tag bits. The first iteration of the inner loop above
uses the start address 0x7FFC_0000, the second iteration uses the start address
0xBFFC_0000, the third 0xDFF_C000, and so on for each tag bit for the case of a
512-Kbyte cache. If there are any load hits at any point in the loop, there is a faulty
tag in the cache.

• Repeat the entire process, this time with all ones in the way 0 tag entries, and all
zeroes in the way 1 tag entries. (r10 = 0xFFFC_0000 and r11 = 0x0000_0000 in the
pseudocode for the fourth step above for a 512-Kbyte cache.)
72 MPC755 Embedded G3 Microprocessor Supplement

MPC755 L2 Cache Interface Operation (Chapter 9)
Caution: For these L2 cache tests, instruction translation is disabled and the L1 instruction
cache is enabled. This means that WIMG defaults to 0b0011. Even though the L2 cache is
in data-only mode, if an address in the L2 matches an instruction access, the L2 will hit and
provide data for that access.

Therefore, cache test programs should avoid loading the L2 with address ranges that match
the memory location of the test code. Otherwise, instruction accesses will hit on test data
and cause random program behavior. For the test procedure described here, the test program
should be located outside the address ranges 0x0000_0000 + cache_size and
0xFFFF_FFFF - cache_size.

The entire L2 cache may be tested by clearing L2CR[L2DO] and L2CR[L2TS], restoring
the L1 and L2 caches to their normal operational state, and executing a comprehensive test
program designed to exercise all the caches. The test program should include operations
that cause L2 hit, reload, and castout activity that can be subsequently verified through the
performance monitor.

Most of the tests described in this section only use the performance monitors to verify the
number of cache hits that occurred during the test. While the performance monitors also
provide facilities for counting L2 cache misses, this facility is only useful for counting L2
cache misses that cause burst reads to memory to occur. With the L1 data cache disabled
and the L2CR[L2TS] bit set, all accesses are single-beat and therefore are not counted by
the MPC750's performance monitor as L2 cache misses. The performance monitors can
only be used to count misses when the L1 cache is enabled.

9.7 L2 Cache SRAM Timing Examples
The MPC750 User’s Manual describes the signal timing for the three types of SRAM
(flow-through burst SRAM, pipelined burst SRAM, and late-write SRAM) supported by
the MPC750’s L2 cache interface. This section provides example timing diagrams for the
new PB3 synchronous burst SRAMS supported by the MPC755. The timing diagrams
illustrate the best case logical (ideal, not AC-timing accurate) interface operations. For
proper interface operation, the designer must select SRAMs that support the signal
sequencing illustrated in the timing diagrams. Note that the PB3 SRAMs operate
differently from the PB2 SRAMS, and require a different configuration setting in L2CR.

PB3 SRAMs provide the efficiencies of the late-write SRAMs, but operate more like
traditional PB2 SRAMs (that is, there is no internal write queue). They may be available at
speeds comparable to late-write SRAMs, but closer to PB2 prices. They achieve their
speed/price benefits by staging the initial internal array access over two clock cycles,
thereby requiring an additional wait state for the first read data beat.

9.7.1 Pipelined PB3 Burst SRAM
Pipelined burst SRAMs operate at higher frequencies than flow-through burst SRAMs by
clocking the read data from the memory array into a buffer before driving the data onto the
data bus. This causes initial read accesses by the pipelined burst SRAMs to occur one cycle
later than flow-through burst SRAMs, but the L2 bus frequencies supported can be higher.
Note that the MPC750’s L2 cache interface requires the use of single-cycle deselect
MPC755 Embedded G3 Microprocessor Supplement 73

MPC755 L2 Cache Interface Operation (Chapter 9)
pipelined burst SRAMs for proper operation. Some PB3 SRAM devices have strobes with
data latches that allow for very late clocking. The MPC755 doesn’t support this feature. The
MPC755 supports strobeless use of the PB3 devices and all timing (including setup times)
must meet the specifications described in the MPC755 Hardware Specifications.

Figure 19 shows a burst read-read-read memory access sequence when the L2 cache
interface is configured with PB3 burst SRAMs.

Figure 19. Burst Read-Read-Read L2 Cache Access (Pipelined)

Figure 20 shows a burst write-write-write memory access sequence when the L2 cache
interface is configured with PB3 burst SRAMs.

Figure 20. Burst Write-Write-Write L2 Cache Access (Pipelined)

Figure 21 shows a burst read-write-read memory access sequence when the L2 cache
interface is configured with PB3 burst SRAMs.

burst rd burst rd

SRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory sel0 r0a r0b r0c r0d sel1 r1a r1b r1c r1d

r0a r0b r0c r0d r1a r1b r1c

sel2 r2a r2b r2c r2d

r1d r2a r2b r2c r2dhi-z hi-z

r0 r1 r2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Notes:
For PB3, L2ZZ is reused as L2ADS and asserts during the 1st clock only of each L2CE assertion.
For PB3, the internal array access requires 1 cycle to row select, 1 cycle for each column select of
burst (a–d), and 1 cycle to deselect if write.

burst rd

burst wr burst wr burst wr

SRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory w0a w0b w0c w0d sel1w1a w1b w1c w1d

w0a w0b w0c w0d w1a w1b w1c

sel2w2a w2b

w1d w2a w2b w2c w2d

w0 w1 w2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sel0 dselw2dw2cdseldsel

Notes:
For PB3, L2ZZ is reused as L2ADS and asserts during the 1st clock only of each L2CE assertion.
For PB3, the internal array access requires 1 cycle to row select, 1 cycle for each column select of
burst (a–d), and 1 cycle to deselect if write.
74 MPC755 Embedded G3 Microprocessor Supplement

Power and Thermal Management (Chapter 10)
Figure 21. Burst Read-Write-Read L2 Cache Access (Pipelined)

9.8 Private Memory SRAM Timing
The timing for private memory SRAM is the same as the L2 cache timing described in
Section 9.7, “L2 Cache SRAM Timing Examples.”

Part X Power and Thermal Management
(Chapter 10)

The power and thermal management of the MPC755 functions the same as that of the
MPC750, and is completely described in the MPC750 User’s Manual except for the
restriction on global L2 cache invalidation described in Section 9.6.2, “L2 Cache Global
Invalidation.” Additionally, for both the MPC750 and MPC755, no combination of the
thermal assist unit, the decrementer register, and the performance monitor can be used at
any one time. If exceptions for any two of these functional blocks are enabled together,
multiple exceptions caused by any of these three blocks cause unpredictable results.

Part XI Performance Monitor (Chapter 11)
The performance monitor of the MPC755 functions the same as that of the MPC750, and
is completely described in the MPC750 User’s Manual, except that for both the MPC750
and MPC755, no combination of the thermal assist unit, the decrementer register, and the
performance monitor can be used at any one time. If exceptions for any two of these
functional blocks are enabled together, multiple exceptions caused by any of these three
blocks cause unpredictable results.

burst rd burst wr burst rd

SRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory r0a r0b r0c r0d sel1w1a w1b w1c w1d

r0a r0b r0c r0d w1b w1c

sel2 r2a r2b

w1d r2a r2b r2c r2d

r0 w1 r2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sel0 r2dr2cdsel

hi-z w1a hi-z

Notes:
For PB3, L2ZZ is reused as L2ADS and asserts during the 1st clock only of each L2CE assertion.
For PB3, the internal array access requires 1 cycle to row select, 1 cycle for each column select of
burst (a–d), and 1 cycle to deselect if write.
MPC755 Embedded G3 Microprocessor Supplement 75

Performance Monitor (Chapter 11)
76 MPC755 Embedded G3 Microprocessor Supplement

INDEX
Numerics
60x bus

eieio instruction, 70
L2 cache flushing, 69
sync instruction, 70

A
Address bus pipelining, 50
Aligned data transfers, 52

B
Block address translation, 3
Block diagram, 4
Branch processing unit (BPU) features list, 5
Bus interface unit (BIU)

32-bit data bus mode, 51
address bus pipelining, 50
aligned data transfer, 52
burst ordering, 52
bus clocking, 51
BVSEL signal, 49
D32 mode, selecting, 54
features list, 7
misaligned data transfers, 53
operation, 49
signal relationships, 54
voltages, 50

BVSEL signal, 49

C
Cache

cache block push operations, 70
cache control instructions, effect on L2 cache, 69
cache locking

address translation
data cache locking, 23
instruction cache locking, 27

BAT examples, 23
data cache locking

address translation, 23
disabling exceptions, 23, 24
enabling, 22
entire cache locking, 25
invalidation, 24
invalidation (if locked), 26
loading, 25

locking, 22
MSR bits, 24
way locking, 25

disabling exceptions
data cache locking, 23
instruction cache locking, 27

enabling
data cache, 22
instruction cache, 26

entire cache locking definition, 20
instruction cache locking

address translation, 27
disabling, 28
enabling, 26
entire cache locking, 29
invalidating instruction cache (if locked), 30
MSR bits, 28
prefetching considerations, 29
preloading instructions, 28
way locking, 30

invalidation
data cache, 24
data cache (if locked), 26
instruction cache (if locked), 30

loading
data cache, 25
instruction cache preloading, 28

MSR bits
disabling exceptions, data cache locking, 24
disabling instruction cache locking, 28

organization, 21
procedures, 22
register summary, 21
terminology, 20
way locking definition, 20

data cache operation, 19
dcbi/dcbz execution, 70
differences from MPC750, 68
features list, 6
instruction cache operation, 19
L1 interface

cache coherency, 19
cache-block-push operations, 69
coherency paradoxes, 19
coherency precautions, 19
dcbz instruction, 15, 20
icbi instruction, 70
operation, 19
Index Index-1

INDEX
L2
dcbi instruction, 70
stwcx. instruction, 69, 69

L2 interface
access priorities, 59
cache control, 58
cache control instructions, 70
cache control instructions, effect, 69
clocking, 62
coherency, 60
dcbf instruction

when private memory is used, 70
dcbi instruction

when private memory is used, 70
dcbst instruction

when private memory is used, 70
dcbz instruction

when private memory is used, 70
disabling the cache, 68
eciwx instruction

when private memory is used, 70
ecowx instruction

when private memory is used, 70
effect of cache control instructions, 69
eieio, 70
eieio instruction

when private memory is used, 70
enabling the cache, 68
features list, 7
flushing the cache, 69
global invalidation restriction, 68
icbi instruction

when private memory is used, 70
L2ADDR signal, 67
L2CR register, 62
L2DP signal, 67
L2PM register, 12, 66
L2VSEL signal, 49
operation, 58
organization, 57
overview, 56
PB2 SRAM, 60
PB3 SRAMs, 60
pipelined burst SRAMs, 73
private memory operation

effect of cache control instructions, 70
overview, 58, 60
SRAM timing, 75

programming considerations, 68
registers, 62
services, 59
single-beat accesses, 60
SRAM timing examples, 73
stwcx. execution, 69

stwcx. instruction
when private memory is used, 70

sync, 70
sync instruction

when private memory is used, 70
testing, 70
tlbie instruction

when private memory is used, 70
tlbsync instruction

when private memory is used, 70
WIMG bits, 60

MEI cache coherency protocol, 3
overview, 19
software table search operations (optional), 3
stwcx. execution, 69

Changes from the MPC750, 2
Clocks

bus clocking, 51
L2 clocking, 62

Completion unit, 6

D
Data block address translation (DBAT) registers, 11
Data TLB compare (DCMP) register, 11, 36
Data TLB miss (DMISS) register, 11
Data TLB miss address (DMISS) register, 36
Data TLB miss for load exception, 31, 33
Data TLB miss for store exception, 31, 33

E
Exceptions

differences from MPC750, 31
exception handler code, 43
exception handler flow, 39
instruction TLB miss, 33
MPC755-specific

data TLB miss for load exception, 31, 33
data TLB miss for store exception, 31, 33
instruction TLB miss exception, 31, 33
register settings, 32

Execution units, 5

F
Features, list, 5
Floating-point unit (FPU), 5
Functional additions, MPC755 vs. MPC750, 2
Functional description, MPC755, 3

H
Hardware implementation-dependent register 2

(HID2), 11, 14
he, 3
Index-2 MPC755 Embedded G3 Microprocessor Supplement

INDEX
I
Instruction block address translation (IBAT)

registers, 11
Instruction timing, 49
Instruction TLB compare (ICMP) register, 11, 36
Instruction TLB miss (IMISS) register, 11
Instruction TLB miss address (IMISS) register, 36
Instruction TLB miss exception, 31, 33
Instructions

instruction use, MPC750, 15
instruction use, MPC755, 15
isync instruction restriction, 15
L2 cache

dcbf instruction
when private memory is used, 70

dcbi instruction, 70
when private memory is used, 70

dcbst instruction
when private memory is used, 70

dcbz instruction
when private memory is used, 70

eciwx instruction
when private memory is used, 70

ecowx instruction
when private memory is used, 70

eieio instruction
when private memory is used, 70

icbi instruction
when private memory is used, 70

stwcx. instruction
hits a modified sector, 69
hits an unmodified sector, 69
when private memory is used, 70

sync instruction
when private memory is used, 70

tlbie instruction
when private memory is used, 70

tlbsync instruction
when private memory is used, 70

MPC750 and MPC755
dcbz instruction, 15, 20

MPC750 instruction use, 15
MPC755 instruction use, 15
mtsr/mtsrin instruction restriction, 15
restrictions, 15
stfd instruction, 15
TLB instructions implemented, 16
tlbld, 16, 17
tlbli, 16, 18

Integer unit (IU), 5
isync instruction restriction, 15

L
L2 cache interface operation, see Cache
L2 private memory control (L2PM) register, 12
L2ADDR (L2 address) signal, 67
L2DP (L2 data parity) signal, 67
L2PM (L2 private memory) control register, 66
L2VSEL signal, 49
Load/store unit (LSU), 6, 49

M
Memory accesses

data transfers, 52
Memory management unit (MMU)

DCMP register, 36
DMISS register, 36
exception handler code, 43
exception handler flow, 39
features list, 7
HASH1/HASH2 registers, 37
ICMP register, 36
IMISS register, 36
MPC755 features, 33
RPA register, 38
software table search operation

exceptions and conditions, 31
overview, 38
registers, 11, 35
resources, 34
support, 3
tlbld/tlbli instructions, 16

Misaligned data transfers, 53
Modes

32-bit data bus mode, 51
D32 mode, 54

MPC745
features not supported, 7
overview, 1

MPC750
address bus pipelining, 50
changes in MPC755, 2
differences from MPC755

exceptions, 31
programming model, 9
thermal management, 75

instruction use, 15
isync instruction restriction, 15
mtsr/mtsrin instruction restriction, 15
pipelined burst SRAMs, 73
stfd instruction, 15

MPC755
32-bit data bus mode, 51
address bus pipelining, 50
block address translation, 3
Index Index-3

INDEX
block diagram, 4
cache locking, 20
core voltage, 50
data TLB miss for load exception, 31, 33
data TLB miss for store exception, 31, 33
exception register settings, 32
exceptions, 31
features list, 5
functional description, 3
I/O signal voltage, 50
implementation-specific registers, 11
instruction cache prefetching considerations, 29
instruction TLB miss exception, 31, 33
instruction use, 15
isync instruction restriction, 15
L1 cache operation, 19
memory management unit (MMU), 33
mtsr/mtsrin instruction restriction, 15
pipelined burst SRAMs, 73
programming model, 9
PTEG registers, HASH1/HASH2, 12
software table search operation (optional), 3
SPR encodings, 12
stfd instruction, 15
TLB instructions implemented, 16

mtsr/mtsrin instructions restriction, 15
Multiprocessing support, 8

O
Overview

MPC745, 1
MPC755, 2

P
Page table entry (PTE)

DCMP register, 11
ICMP register, 11

Page table entry groups (PTEGs)
HASH1/HASH2 registers, 12

Page tables
resources for table search operations, 34
RPA register, 12
software table search operation, 38
software table search registers, 35
SPRG(4-7) registers, 11

Performance monitor, 75
Pipelined burst SRAMs, 73
Power management

features list, 8
overview, 75

Power-on reset (POR)
L2PM initialization, 12

Power-saving modes, 3

Primary hash address (HASH1) register, 12, 37
Private memory SRAM, 75
Programming model, 9
PVR (processor version register), 13

R
Registers

cache locking register summary, 21
cache locking registers

HID0, 21
HID2, 22
MSR, 22

implementation-specific
DBAT(4-7), 11
DCMP, 11
DMISS, 11
HASH(1-2), 12
HID2, 11, 14
IBAT(4-7), 11
ICMP, 11
IMISS, 11
L2CR, 62
L2PM, 12, 66
RPA, 12
SPRG(4-7), 11

not implemented
MSR, TGPR bit, 11

SPR encodings, 12
supervisor-level

DCMP, 36
DMISS, 36
HASH1/HASH2, 37
HID2, 11, 14
ICMP, 36
IMISS, 36
L2CR, 62
L2PM, 12, 66
PVR, 13
RPA, 38

Rename buffers, 6
Required physical address (RPA) register, 12, 38
Restrictions

MPC750
isync instruction, 15

MPC755
isync instruction, 15

S
Secondary hash address (HASH2) register, 12, 37
Signals

32-bit data bus signal relationships, 54
BVSEL, 49
L2ADDR, 67
Index-4 MPC755 Embedded G3 Microprocessor Supplement

INDEX
L2DP, 67
L2VSEL, 49
MPC755-specific signals, 49

single, 3
Software table search

optional, 3
registers, 11
SPRG(4-7), 11
tlbld/tlbli instructions, 16

Special-purpose registers (SPRGn), 11
SRR0/SRR1 (status save/restore registers)

Key bit derivation (SRR1), 32
System interface, see Bus interface unit (BIU)
System register unit (SRU), 6

T
Thermal management

differences from MPC750, 75
features list, 8

Timing diagrams, interface
L2 cache SRAM timing, 73

TLB management instructions, 16
tlbld instruction, 17
tlbli instruction, 18
Transfers

alinged transfers, 52
misaligned transfers, 52
Index Index-5

Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express
or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in
this document.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application
in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or
1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
852–26668334

Technical Information Center: 1–800–521–6274

HOME PAGE: http://www.motorola.com/semiconductors

Document Comments: FAX (512) 895-2638, Attn: RISC Applications Engineering
World Wide Web Addresses: http://www.motorola.com/PowerPC

http://www.motorola.com/NetComm
http://www.motorola.com/ColdFire

MPC755UM/D

DigitalDNA and Mfax are trademarks of Motorola, Inc.
The PowerPC name and the PowerPC logotype are trademarks of International Business Machines Corporation used by Motorola under license from
International Business Machines Corporation.

	Addendum to
	MPC750 RISC Microprocessor User’s Manual:

	MPC755 Embedded G3 Microprocessor Supplement
	Part I MPC755 Overview
	1.1 MPC755 Functional Description
	1.2 MPC755 Features

	Part II The MPC755 Programming Model (Chapter�2)
	2.1 MPC755-Specific Registers
	2.1.1 The MPC755 Additional SPR Encodings
	2.1.2 Processor Version Register (PVR)
	2.1.3 Hardware Implementation-Dependent Register 2 (HID2)

	2.2 MPC750 and MPC755 Instruction Use
	2.2.1 stfd Instruction Use
	2.2.2 isync Instruction Use with mtsr and mtsrin

	2.3 tlbld and tlbli Instructions

	Part III MPC755 L1 Instruction and Data Cache Operation (Chapter�3)
	3.1 L1 Cache Coherency
	3.1.1 Coherency Precautions in Single Processor Systems
	3.1.2 dcbz and L1 Cache Coherency

	3.2 Cache Locking
	3.2.1 Cache Locking Terminology
	3.2.2 Cache Locking Register Summary
	3.2.3 Performing Cache Locking
	3.2.3.1 Data Cache Locking
	3.2.3.1.1 Enabling the Data Cache
	3.2.3.1.2 Address Translation for Data Cache Locking
	3.2.3.1.3 Disabling Exceptions for Data Cache Locking
	3.2.3.1.4 Invalidating the Data Cache
	3.2.3.1.5 Loading the Data Cache
	3.2.3.1.6 Entire Data Cache Locking
	3.2.3.1.7 Data Cache Way Locking
	3.2.3.1.8 Invalidating the Data Cache (Even if Locked)

	3.2.3.2 Instruction Cache Locking
	3.2.3.2.1 Enabling the Instruction Cache
	3.2.3.2.2 Address Translation for Instruction Cache Locking
	3.2.3.2.3 Disabling Exceptions for Instruction Cache Locking
	3.2.3.2.4 Preloading Instructions into the Instruction Cache
	3.2.3.2.5 MPC755 Prefetching Considerations
	3.2.3.2.6 Entire Instruction Cache Locking
	3.2.3.2.7 Instruction Cache Way Locking
	3.2.3.2.8 Invalidating the Instruction Cache (Even if Locked)

	Part IV MPC755 Exceptions (Chapter�4)
	4.1 Instruction TLB Miss Exception (0x01000)
	4.2 Data TLB Miss for Load Exception (0x01100)
	4.3 Data TLB Miss for Store Exception (0x01200)

	Part V MPC755 Memory Management (Chapter�5)
	5.1 Software Table Search Resources
	5.2 Software Table Search Registers
	5.2.1 Data and Instruction TLB Miss Address Registers (DMISS and IMISS)
	5.2.2 Data and Instruction TLB Compare Registers (DCMP and ICMP)
	5.2.3 Primary and Secondary Hash Address Registers (HASH1 and HASH2)
	5.2.4 Required Physical Address Register (RPA)

	5.3 Software Table Search Operation
	5.3.1 Flow for Example Exception Handlers
	5.3.2 Code for Example Exception Handlers

	Part VI MPC755 Instruction Timing (Chapter�6)
	Part VII MPC755 Signal Descriptions (Chapter�7)
	Part VIII MPC755 System Interface Operation (Chapter�8)
	8.1 MPC755 System Interface Overview
	8.2 Address Bus Pipelining
	8.3 Bus Clocking
	8.4 32-Bit Data Bus Mode
	8.4.1 Burst Ordering
	8.4.2 Aligned Transfers
	8.4.3 Misaligned Data Transfers
	8.4.4 Selecting D32 Mode
	8.4.5 Signal Relationships

	Part IX MPC755 L2 Cache Interface Operation (Chapter�9)
	9.1 MPC755 L2 Cache Interface Overview
	9.1.1 L2 Cache Organization
	9.1.2 L2 Cache Control
	9.1.3 L2 Private Memory

	9.2 L2 Interface Operation
	9.2.1 L2 Cache Operation
	9.2.1.1 L2 Cache Access Priorities
	9.2.1.2 L2 Cache Services
	9.2.1.3 L2 Cache Coherency and WIMG Bits
	9.2.1.4 Single-Beat Accesses to L2 Interface

	9.2.2 L2 Private Memory Operation

	9.3 L2 Clocking
	9.4 L2 Registers
	9.4.1 L2 Cache Control Register (L2CR)
	9.4.2 L2 Private Memory Control Register (L2PM)

	9.5 L2 Address and Data Parity Signals
	9.6 L2 Cache Programming Considerations
	9.6.1 Enabling and Disabling the L2 Cache
	9.6.2 L2 Cache Global Invalidation
	9.6.3 L2 Cache Flushing
	9.6.4 Other Cache Control Instructions and Effect on L2 Cache
	9.6.5 Cache Control Instructions and Effect on Private Memory Operation
	9.6.6 L2 Cache Testing

	9.7 L2 Cache SRAM Timing Examples
	9.7.1 Pipelined PB3 Burst SRAM

	9.8 Private Memory SRAM Timing

	Part X Power and Thermal Management (Chapter�10)
	Part XI Performance Monitor (Chapter�11)

