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About This Book
The primary objective of this user’s manual is to define the functionality of the Powe
604e™ microprocessor for use by software and hardware developers. It is important t
that this book is intended as a companion to thePowerPC™Microprocessor Family: The
Programming Environments, referred to asThe Programming Environments Manua;
contact your local sales representative to obtain a copy. Because the PowerPC archi
is designed to be flexible to support a broad range of processors,The Programming
Environments Manualprovides a general description of features that are common
PowerPC processors and indicates those features that are optional or that m
implemented differently in the design of each processor.

In this document, the term ‘604e’ is used as an abbreviation for ‘PowerPC 6
microprocessor’. The PowerPC 604e microprocessors are available from IBM as PPC
and Motorola as MPC604e.

This document summarizes features of the 604e that are not defined by the archite
This document andThe Programming Environments Manualdistinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as foll

• PowerPC user instruction set architecture (UISA)—The UISA defines the leve
the architecture to which user-level software should conform. The UISA defines
base user-level instruction set, user-level registers, data types, memory conven
and the memory and programming models seen by application programmers.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the small
component of the PowerPC architecture, defines additional user-level function
that falls outside typical user-level software requirements. The VEA describes
memory model for an environment in which multiple processors or other devic
can access external memory, defines aspects of the cache model and cache 
instructions from a user-level perspective. The resources defined by the VEA 
particularly useful for optimizing memory accesses and for managing resourc
an environment in which other processors and other devices can access exte
memory.
About This Book xxiii
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• PowerPC operating environment architecture (OEA)—The OEA defines superv
level resources typically required by an operating system. The OEA defines th
PowerPC memory management model, supervisor-level registers, and the exce
model.

Implementations that conform to the PowerPC OEA also conform to the Powe
UISA and VEA.

It is important to note that some resources are defined more generally at one level
architecture and more specifically at another. For example, conditions that cause a flo
point exception are defined by the UISA, while the exception mechanism itself is de
by the OEA.

Because it is important to distinguish between the levels of the architecture in ord
ensure compatibility across multiple platforms, those distinctions are shown cle
throughout this book.

For ease in reference, this book has arranged topics described by the architecture into
that build upon one another, beginning with a description and complete summary of 6
specific registers and progressing to more specialized topics such as 604e-specific
regarding the cache, exception, and memory management models. As such, chapte
include information from multiple levels of the architecture. (For example, the discus
of the cache model uses information from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Processorsdefines
the architecture from the perspective of the three programming environments and re
the defining document for the PowerPC architecture.

The information in this book is subject to change without notice, as described in
disclaimers on the title page of this book. As with any technical documentation, it is
readers’ responsibility to be sure they are using the most recent version o
documentation. For more information, contact your sales representative.

Audience
This manual is intended for system software and hardware developers and applic
programmers who want to develop products using the 604e microprocessors. It is as
that the reader understands operating systems, microprocessor system design, th
principles of RISC processing, and details of the PowerPC architecture.
xxiv PowerPC 604e RISC Microprocessor User's Manual
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Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for readers who want a general understandin
the features and functions of the PowerPC architecture and the 604e. This ch
describes the flexible nature of the PowerPC architecture definition, and provide
overview of how the PowerPC architecture defines the register set, operand
conventions, addressing modes, instruction set, cache model, exception mode
memory management model.

• Chapter 2, “Programming Model,” provides a brief synopsis of the registers
implemented in the 604e, operand conventions, an overview of the PowerPC
addressing modes, and a list of the instructions implemented by the 604e.
Instructions are organized by function.

• Chapter 3, “Cache and Bus Interface Unit Operation,” provides a discussion o
cache and memory model as implemented on the 604e.

• Chapter 4, “Exceptions,” describes the exception model defined in the PowerP
OEA and the specific exception model implemented on the 604e.

• Chapter 5, “Memory Management,” describes the 604e’s implementation of th
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors.

• Chapter 6, “Instruction Timing,” provides information about latencies, interlock
special situations, and various conditions to help make programming more effic
This chapter is of special interest to software engineers and system designers

• Chapter 7, “Signal Descriptions,” provides descriptions of individual signals of
604e.

• Chapter 8, “System Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the 604e.

• Chapter 9, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the 604e.

• Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructio
while indicating those instructions that are not implemented by the 604e; it als
includes the instructions that are specific to the 604e. Instructions are groupe
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture lev
privilege level, and form, and indicates if the instruction is 64-bit and optional.

• Appendix B, “Invalid Instruction Forms,” describes how invalid instructions are
treated by the 604e.

• Appendix C, “PowerPC 604 Processor System Design and Programming
Considerations,” provides a brief discussion of the differences between the 604
604e.

• This manual also includes a glossary and an index.
About This Book xxv
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Suggested Reading
This section lists additional reading that provides background for the information in
manual as well as general information about the PowerPC architecture.

General Information
The following documentation provides useful information about the PowerPC archite
and computer architecture in general:

• The following books are available from the Morgan-Kaufmann Publishers, 34
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S
(415) 392-2665 (International); internet address: mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A Syst
Architecture, by Apple Computer, Inc., International Business Machines, In
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

• Inside Macintosh: PowerPC System Software,Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A
(800) 637-0029 (Canada), (716) 871-6555 (International).

• PowerPC Programming for Intel Programmers,by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 944
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation
The PowerPC documentation is available from the sources listed on the back cover
manual; the document order numbers are included in parentheses for ease in orde

• User’s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction withThe Programming
Environments Manual. These include the following:

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorola order #) and MPR604UMU-01 (IBM order #)

— MPC750 RISC Microprocessor User’s Manual:
MPC750UM/AD (Motorola order #)

— PowerPC 620™ RISC Microprocessor User’s Manual:
MPC620UM/AD (Motorola order #)
xxvi PowerPC 604e RISC Microprocessor User's Manual
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• Programming environments manuals—These books provide information abou
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 3
model.

— PowerPC Microprocessor Family: The Programming Environments, Rev 1:
MPCFPE/AD (Motorola order #) and G522-0290-00 (IBM order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-B
Microprocessors, Rev. 1: MPCFPE32B/AD (Motorola order #)

• Implementation Variances Relative to Rev. 1 of The Programming Environmen
Manual is available via the world-wide web at
http://www.motorola.com/PowerPC/or at http://www.chips.ibm.com/products/p

• Addenda/errata to user’s manuals—Because some processors have follow-on
an addendum is provided that describes the additional features and changes 
functionality of the follow-on part. These addenda are intended for use with th
corresponding user’s manuals.

• Hardware specifications—Hardware specifications provide specific data regar
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well 
other design considerations for each PowerPC implementation. These include
following:

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603EC/D (Motorola order #) and G522-0289-00 (IBM order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications:
MPC603EEC/D (Motorola order #) and G522-0268-00 (IBM order #)

— PowerPC 603e RISC Microprocessor Family: PID7v-603e Hardware
Specifications:
MPC603E7VEC/D (Motorola order #) and G522-0267-00 (IBM order #)

— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Specifications:
MPC603E7TEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604EC/D (Motorola order #) and MPR604HSU-02 (IBM order #)

— PowerPC 604e RISC Microprocessor Family: PID9v-604e Hardware
Specifications:
MPC604E9VEC/D (Motorola order #) and G522-0296-01 (IBM order #)

— PowerPC 604e RISC Microprocessor Family: PID9q-604e Hardware
Specifications:
MPC604E9QEC/D (Motorola order #) and G5522-0319-00 (IBM order #)

— MPC750 RISC Microprocessor Hardware Specifications
MPC750EC/D (Motorola order #)
About This Book xxvii
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• Technical Summaries—Each PowerPC implementation has a technical summ
that provides an overview of its features. This document is roughly the equivale
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 603, 603e, 604, 604e, and 620 microproce
which can be ordered as follows:

— PowerPC 604e RISC Microprocessor Technical Summary:
MPC604E/D (Motorola order #) and SA14-2053-00 (IBM order #)

• PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessor:
MPCBUSIF/AD (Motorola order #) and G522-0291-00 (IBM order #) provides
detailed functional description of the 60x bus interface, as implemented on the
603, and 604 family of PowerPC microprocessors. This document is intended
help system and chipset developers by providing a centralized reference sour
identify the bus interface presented by the 60x family of PowerPC microproces

• PowerPC Microprocessor Family: The Programmer’s Reference Guide:
MPCPRG/D (Motorola order #) and MPRPPCPRG-01 (IBM order #) is a conc
reference that includes the register summary, memory control model, exceptio
vectors, and the PowerPC instruction set.

• PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide:
MPCPRGREF/D (Motorola order #) and SA14-2093-00 (IBM order #)
This foldout card provides an overview of the PowerPC registers, instructions
exceptions for 32-bit implementations.

• Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with Pow
processors.

• Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’s Manual:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new proce
become available. For a current list of PowerPC documentation, refer to the world-
web at http://www.mot.com/SPS/PowerPC/ or at http://www.chips.ibm.com/products

Conventions
This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example,bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number
xxviii PowerPC 604e RISC Microprocessor User's Manual
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rA, rB Instruction syntax used to identify a source GPR

rA|0 The contents of a specified GPR or the value 0.

rD Instruction syntax used to identify a destination GPR

fr A, fr B, fr C Instruction syntax used to identify a source FPR

fr D Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase t
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the mach
state register.

x In certain contexts, such as a signal encoding, this indicates a d
care.

n Used to express an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit fields in a register. Although these b
may be written to as either ones or zeros, they are always read 
zeros.

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ATE Automatic test equipment

ASR Address space register

BAT Block address translation

BIST Built-in self test

BIU Bus interface unit

BPU Branch processing unit

BUC Bus unit controller

BUID Bus unit ID

CAR Cache address register

CIA Current instruction address

CMOS Complementary metal-oxide semiconductor

0 0 0 0
About This Book xxix



COP Common on-chip processor

CR Condition register

CRTRY Cache retry queue

CTR Count register

DAR Data address register

DBAT Data BAT

DCMP Data TLB compare

DEC Decrementer register

DMISS Data TLB miss address

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FIFO First-in-first-out

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

HASH1 Primary hash address

HASH2 Secondary hash address

IABR Instruction address breakpoint register

IBAT Instruction BAT

ICMP Instruction TLB compare

IEEE Institute for Electrical and Electronics Engineers

IMISS Instruction TLB miss address

IQ Instruction queue

ITLB Instruction translation lookaside buffer

IU Integer unit

L2 Secondary cache

LIFO Last-in-first-out

LR Link register

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
xxx PowerPC 604e RISC Microprocessor User's Manual



LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

MEI Modified/exclusive/invalid

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMU Memory management unit

MQ MQ register

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

No-op No operation

OEA Operating environment architecture

PID Processor identification tag

PIR Processor identification register

PLL Phase-locked loop

POWER Performance Optimized with Enhanced RISC architecture

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RAW Read-after-write

RISC Reduced instruction set computing

RPA Required physical address

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SLB Segment lookaside buffer

SPR Special-purpose register

SR Segment register

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
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Terminology Conventions
Table ii describes terminology conventions used in this manual.

SRU System register unit

TAP Test access port

TB Time base facility

TBL Time base lower register

TBU Time base upper register

TLB Translation lookaside buffer

TTL Transistor-to-transistor logic

UIMM Unsigned immediate value

UISA User instruction set architecture

UTLB Unified translation lookaside buffer

UUT Unit under test

VEA Virtual environment architecture

WAR Write-after-read

WAW Write-after-write

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits

XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
xxxii PowerPC 604e RISC Microprocessor User's Manual



Table iii describes instruction field notation used in this manual.

Storage (the act of) Access

Store in Write back

Store through Write through

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)

BF, BFA crf D, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Table ii. Terminology Conventions (Continued)

The Architecture Specification This Manual
About This Book xxxiii
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Chapter 1
Overview
10
10

This chapter provides an overview of the PowerPC 604e™ microprocessor. It include
following:

• A summary of 604e features

• Details about the 604e as an implementation of the PowerPC™ architecure. T
includes descriptions of the 604e’s execution model (that is, the programming
model).

• A description of the 604e execution model. This section includes information ab
the programming model, instruction set, exception model, and instruction timi

1.1  Overview
The 604e is an implementation of the PowerPC family of reduced instruction set com
(RISC) microprocessors. The 604e implements the PowerPC architecture as it is sp
for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer data
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single-
double-precision, respectively). For 64-bit PowerPC implementations, the Pow
architecture provides additional 64-bit integer data types, 64-bit addressing, and r
features.

The 604e is a superscalar processor capable of issuing four instructions simultaneou
many as seven instructions can finish execution in parallel. The 604e has seven exe
units that can operate in parallel:

• Floating-point unit (FPU)

• Branch processing unit (BPU)

• Condition register unit (CRU)

• Load/store unit (LSU)

• Three integer units (IUs):

— Two single-cycle integer units (SCIUs)

— One multiple-cycle integer unit (MCIU)

This parallel design, combined with the PowerPC architecture’s specification of uni
instructions that allows for rapid execution times, yields high efficiency and through
Chapter 1.  Overview 1-1
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The 604e’s rename buffers, reservation stations, dynamic branch prediction,
completion unit increase instruction throughput, guarantee in-order completion, and e
a precise exception model. (Note that the PowerPC architecture specification refers
exceptions as interrupts.)

The 604e has separate memory management units (MMUs) and separate 32-Kbyte o
caches for instructions and data. The 604e implements two 128-entry, two-wa
associative translation lookaside buffers (TLBs), one for instructions and one for data
provides support for demand-paged virtual memory address translation and variable
block translation. The TLBs and the cache use least-recently used (LRU) replace
algorithms.

The 604e has a 64-bit external data bus and a 32-bit address bus. The 604e in
protocol allows multiple masters to compete for system resources through a central ex
arbiter. Additionally, on-chip snooping logic maintains data cache coherency
multiprocessor applications. The 604e supports single-beat and burst data transfe
memory accesses and memory-mapped I/O accesses.

The 604e uses an advanced, 2.5-V CMOS process technology and is fully compatibl
TTL devices.

1.2  PowerPC 604e Microprocessor Features
This section describes features of the 604e, provides a block diagram showing the
functional units, and describes briefly how those units interact.

Figure 1-1 provides a block diagram showing features of the 604e. Note that this
conceptual diagram that shows basic features and does not attempt to show how
features are physically implemented on the chip.
1-2 PowerPC 604e RISC Microprocessor User's Manual
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Major features of the 604e are as follows:

• High-performance, superscalar microprocessor

— As many as four instructions can be issued per clock
— As many as seven instructions can be executing per clock (including three int

instructions)
— Single-clock-cycle execution for most instructions

• Seven independent execution units and two register files

— BPU featuring dynamic branch prediction

– Two-entry reservation station
– Out-of-order execution through two branches
– Shares dispatch bus with CRU
– 64-entry fully-associative branch target address cache (BTAC). In the 60

the BTAC can be disabled and invalidated.
– 512-entry branch history table (BHT) with two bits per entry for four levels

prediction—not-taken, strongly not-taken, taken, strongly taken

— Condition register unit (CRU)

– Two-entry reservation station
– Shares dispatch bus with BPU

— Two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU)

– Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

– Each SCIU has a two-entry reservation station to minimize stalls

– The MCIU has a single-entry reservation station and provides early exit (th
cycles) for 16- x 32-bit and overflow operations.

– Thirty-two GPRs for integer operands

— Three-stage floating-point unit (FPU)

– Fully IEEE 754-1985-compliant FPU for both single- and double-precisi
operations

– Supports non-IEEE mode for time-critical operations
– Fully pipelined, single-pass double-precision design
– Hardware support for denormalized numbers
– Two-entry reservation station to minimize stalls
– Thirty-two 64-bit FPRs for single- or double-precision operands

— Load/store unit (LSU)

– Two-entry reservation station to minimize stalls
– Single-cycle, pipelined cache access
– Dedicated adder performs EA calculations
1-4 PowerPC 604e RISC Microprocessor User's Manual
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– Performs alignment and precision conversion for floating-point data
– Performs alignment and sign extension for integer data
– Four-entry finish load queue (FLQ) provides load miss buffering
– Six-entry store queue
– Supports both big- and little-endian modes

• Rename buffers

— Twelve GPR rename buffers
— Eight FPR rename buffers
— Eight condition register (CR) rename buffers

• Completion unit

— Retires an instruction from the 16-entry reorder buffer when all instructions
ahead of it have been completed and the instruction has finished execution

— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order
— Tracks unresolved branches and flushes executed, dispatched, and fetche

instructions if branch is mispredicted
— Retires as many as four instructions per clock

• Separate on-chip instruction and data caches (Harvard architecture)

— 32-Kbyte, four-way set-associative instruction and data caches
— LRU replacement algorithm
— 32-byte (eight-word) cache block size
— Physically indexed/physical tags. (Note that the PowerPC architecture refe

physical address space as real address space.)
— Cache write-back or write-through operation programmable on a per page o

block basis
— Instruction cache can provide four instructions per clock; data cache can pro

two words per clock.
— Caches can be disabled in software.
— Caches can be locked.
— Parity checking performed on both caches
— Data cache coherency (MESI) maintained in hardware
— Secondary data cache support provided
— Instruction cache coherency optionally maintained in hardware
— Data cache line-fill buffer forwarding. In the 604, only the critical double wo

of the cache block was made available to the requesting unit at the time it 
burst into the line-fill buffer; subsequent data was unavailable until the cac
block was filled. In the 604e, subsequent data is also made available as it ar
in the line-fill buffer.
Chapter 1.  Overview 1-5
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• Separate memory management units (MMUs) for instructions and data

— Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— Both TLBs are 128-entry and two-way set associative
— The page table search is performed in hardware
— Separate IBATs and DBATs (four each) also defined as SPRs
— Separate instruction and data translation lookaside buffers (TLBs)
— LRU replacement algorithm
— 52-bit virtual address; 32-bit physical address

• Bus interface features include the following:

— Selectable processor-to-bus clock frequency ratios (1:1, 3:2, 2:1, 5:2, 3:1, 
and 4:1)

— A 64-bit split-transaction external data bus with burst transfers
— Support for address pipelining and limited out-of-order bus transactions
— Four burst write queues—three for cache copy-back operations and one fo

snoop push operations
— Two single-beat write queues
— Additional signals and signal redefinition for direct-store operations
— Provides a data streaming mode that allows consecutive burst read data tra

to occur without intervening dead cycles. This mode also disables data ret
operations.

— No-DRTRY mode eliminates theDRTRY signal from the qualified data bus
grant condition. This improves performance on read operations for systems
do not use theDRTRY signal. No-DRTRY mode makes read data available to
the processor one bus clock cycle sooner than if normal mode is used.

• Multiprocessing support features include the following:

— Hardware enforced, four-state cache coherency protocol (MESI) for data ca
Bits are provided in the instruction cache to indicate only whether a cache b
is valid or invalid.

— Separate port into data cache tags for bus snooping

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

• Power management

— Nap mode supports full shut down and snooping
— Operating voltage of 2.5  0.2 V for processor core, 3.3 V for external signals

• Performance monitor can be used to help in debugging system designs and
improving software efficiency, especially in multiprocessor systems.

• In-system testability and debugging features through JTAG boundary-scan
capability
1-6 PowerPC 604e RISC Microprocessor User's Manual
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Features of the 604e that are not implemented in the 604 are as follows:

• Additional special-purpose registers

— Hardware implementation-dependent register 1 (HID1) provides four read-o
PLL_CFG bits for indicating the processor/bus clock ratio.

— Three additional registers to support the performance monitor—MMCR1 is
second control register that includes bits to support the use of two addition
counter registers, PMC3 and PMC4.

• Instruction execution

— Separate execution units for branch and condition register (CR) instructions.
604e implements a condition register unit (CRU) that executes condition reg
logical instructions that were executed in the 604’s BPU. The CRU makes 
possible for branch instructions to execute and resolve before preceding C
logical instructions. The 604e can dispatch one CR logical or branch instruc
per cycle, but it can execute both branch and CR logical instructions at the s
time.

— Branch correction in decode stage. Branch correction in the decode stage
now predict branches whose target is taken from the count or link registers i
updates of the count and link register are pending. This saves at least one
on branch correction when the Move to Special-Purpose Register (mtspr)
instruction can be sufficiently separated from the branch that uses the SPR
target address.

— Ability to disable the branch target address cache (BTAC)—HID0[30] has be
defined to allow the BTAC to be disabled. When HID0[30] is set, the BTAC
contents are invalidated and the BTAC behaves as if it were empty. New en
cannot be added until the BTAC is enabled.

• Enhancements to cache implementation

— 32-Kbyte, physically addressed, split data and instruction caches. Like the
both caches are four-way set associative; however, each cache has twice as
sets, logically separated into 128 sets of odd lines and 128 sets of even lin

— Data cache line-fill buffer forwarding. In the 604, only the critical double wo
of a burst operation was made available to the requesting unit at the time it
burst into the line-fill buffer. Subsequent data was unavailable until the cac
block was filled. In the 604e, subsequent data is also made available as it ar
in the line-fill buffer.

— Additional cache copy-back buffers. The 604e implements three copy-back w
buffers (increased from one in the 604). Having multiple copy-back buffers
provides the ability for certain instructions to take fuller advantage of the
pipelined system bus to provide more efficient handling of cache copy-bac
block invalidate operations caused by the Data Cache Block Flush (dcbf)
instruction, and cache block clean operations resulting from the Data Cach
Block Store (dcbst) instruction.
Chapter 1.  Overview 1-7
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— Coherency support for instruction fetching. Instruction fetching coherency 
controlled by HID0[23]. In the default mode, HID0[23] is 0,GBL is not asserted
for instruction accesses, as is the case with the 604. If the bit is set, and
instruction translation is enabled (MSR[IR] = 1), theGBL signal is set to reflect
the M bit for this page or block. If instruction translation is disabled
(MSR[IR] = 0), theGBL signal is asserted for instruction fetches.

• System interface operation

— The 604e has the same signal configuration as the 604; however, on the 604
and AVdd must be connected to 2.5 Vdc and OVdd must be connected to
3.3 Vdc. The 604e uses split voltage planes, and for replacement compatib
604/604e designs should provide both 2.5-V and 3.3-V planes and the abili
connect those two planes together and disable the 2.5-V plane for operation
a 604.

— Support for additional processor/bus clock ratios (7:2, 5:2, and 4:1).
Configuration of the processor/bus clock ratios is displayed through a new
604e-specific register, HID1. Note that although this register is not defined by
PowerPC architecture, it is consistent with implementation-specific registe
implemented on some other processors.

— To support the changes in the clocking configuration, different precharge tim
for theABB, DBB, ARTRY, andSHD signals are implemented internally by th
processor. Selectable precharge timings forARTRY andSHD can be disabled by
setting HID0[7]. Precharge timings are provided in the 604e hardware
specifications.

— No-DRTRY mode. In addition to the normal and data streaming modes
implemented on the 604, a no-DRTRY mode is implemented on the 604e tha
improves performance on read operations for systems that do not use the
DRTRY signal. No-DRTRY mode makes read data available to the process
one bus clock cycle sooner than in normal mode. In no-DRTRY mode, the
DRTRY signal is no longer sampled as part of a qualified bus grant.

— The VOLTDETGND output signal is implemented only on BGA packages as
indicator of the core voltage.

• Full hardware support for little-endian accesses. Little-endian accesses take
alignment exceptions for only the same set of causes as big-endian accesses
Accesses that cross a word boundary require two accesses with the lower-addr
word accessed first.

• Additional events that can be tracked by the performance monitor.

1.3  PowerPC Architecture Implementation
The PowerPC architecture shares the benefits of the POWER architecture optimiz
single-chip implementations. The PowerPC architecture design facilitates pa
instruction execution and is scalable to take advantage of future technological gains
1-8 PowerPC 604e RISC Microprocessor User's Manual
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This section describes the PowerPC architecture in general, and specific details ab
implementation of the 604e as a low-power, 32-bit member of the PowerPC proc
family. Note that the individual section headings indicate the chapters in the user’s m
to which they correspond.

• Section 1.3.1, “Features,” describes general features of the 604e with respect
PowerPC architecture.

• Section 1.3.2, “PowerPC 604e Processor Programming Model,” describes the
aspects of the register and instruction implementation that are specific to the 

• Section 1.3.3, “Cache and Bus Interface Unit Operation,” describes the
604e-specific cache features.

• Section 1.3.4, “Exceptions,” indicates that the 604e exception model is identica
that of the 604.

• Section 1.3.5, “Memory Management,” indicates that the 604e MMU
implementation is identical to that of the 604.

• Section 1.3.6, “Instruction Timing,” describes specific characteristics of the 60
instruction timing model.

• Section 1.3.7, “Signal Descriptions,” describes differences in the operation of 
signals implemented on the 604e.

• Section 1.3.8, “System Interface Operation,” describes differences in the 604e
protocol.

• Section 1.3.9, “Performance Monitor,” defines additional features and change
the 604e implementation of the performance monitor.

1.3.1  Features
The 604e is a high-performance, superscalar implementation of the PowerPC archite
Like other PowerPC processors, it adheres to the PowerPC architecture specificatio
also has additional features not defined by the architecture. These features do not
software compatibility. The PowerPC architecture allows optimizing compilers to sche
instructions to maximize performance through efficient use of the PowerPC instructio
and register model. The multiple, independent execution units in the 604e allow com
to maximize parallelism and instruction throughput. Compilers that take advantage o
flexibility of the PowerPC architecture can additionally optimize instruction processin
the PowerPC processors.

The following sections summarize the features of the 604e, including both those tha
defined by the architecture and those that are unique to the 604e implementation.

The PowerPC architecture consists of the following layers, and adherence to the Pow
architecture can be measured in terms of which of the following levels of the archite
is implemented:
Chapter 1.  Overview 1-9
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• PowerPC user instruction set architecture (UISA)—Defines the base user-lev
instruction set, user-level registers, data types, floating-point exception model
memory models for a uniprocessor environment, and programming model for
uniprocessor environment.

• PowerPC virtual environment architecture (VEA)—Describes the memory mo
for a multiprocessor environment, defines cache control instructions, and desc
other aspects of virtual environments. Implementations that conform to the VE
also adhere to the UISA, but may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements
the exception model. Implementations that conform to the OEA also adhere to
UISA and the VEA.

For more information, refer toThe Programming Environments Manual.

The 604e complies to all three levels of the PowerPC architecture. Note that the Pow
architecture defines additional instructions for 64-bit data types. These instructions
an illegal instruction exception on the 604e. PowerPC processors are allowed to
implementation-specific features that fall outside, but do not conflict with, the Powe
architecture specification. Examples of features that are specific to the 604e includ
performance monitor and nap mode.

1.3.2  PowerPC 604e Processor Programming Model
This section provides a brief overview of the PowerPC programming model with respe
the 604e. It describes the following:

• Implementation-specific registers
• 604e support of misaligned little-endian accesses
• The 604e instruction set

1.3.2.1  Implementation-Specific Registers
The 604e and 604 implement the register set required by the 32-bit portion of the Pow
architecture. In addition, the 604e supports all 604-specific registers as well as s
604e-specific registers, as described in this section.

Figure 1-2 shows the registers implemented in the 604e, indicating those that are d
by the PowerPC architecture and those that are 604e-specific. All registers except the
are 32 bits wide.
1-10 PowerPC 604e RISC Microprocessor User's Manual



Figure 1-2. Programming Model—PowerPC 604e Microprocessor Registers
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The 604e includes the following registers not defined by the PowerPC architecture th
either not provided in the 604 or incorporate changes from the 604 implementation:

• Hardware implementation-dependent register 1 (HID1)—This register, which is
implemented in the 604, is used to display the PLL configuration. This registe
described in Section 2.1.2.4, “Hardware Implementation-Dependent Register 
(HID1).”

• Performance monitor counter registers (PMC3–PMC4). The counters are use
record the number of times a certain event has occurred. PMC3 and PMC4 a
implemented in the 604. PMC1 and PMC2 are implemented in the 604 and ar
described in the user’s manual. See Section 2.1.2.5.3, “Performance Monitor
Counter Registers (PMC1–PMC4),” for more information.

• Performance monitor mode control register 0 (MMCR0)—MMCR0 has additio
bits not described in the user’s manual. The additional bits are described in Sectio
2.1.2.5.1, “Monitor Mode Control Register 0 (MMCR0).”

• Performance monitor mode control register 1 (MMCR1)—The performance
monitor control registers are used for enabling various performance monitorin
interrupt conditions and establishes the function of the counters. MMCR1 is n
implemented in the 604. See Section 2.1.2.5.2, “Monitor Mode Control Regist
1—MMCR1,” for more information.

• Hardware implementation-dependent register 0 (HID0)—This register is used
control various functions within the 604 and 604e, such as enabling checksto
conditions, and locking, enabling, and invalidating the instruction and data cac
Additional bits defined in the HID0 register disable the BTAC, control whether
coherency is maintained for instruction fetches, and disable the default prech
values for the shared (SHD) and address retry (ARTRY) signals. The 604e defines
additional bits not included in the 604 implementations of the HID0 register. Th
bits are described in Section Table 2-3, “. Hardware Implementation-Depende
Register 0 Bit Settings.”

Refer to Chapter 2, “Programming Model,” for more information.

1.3.2.2  Support for Misaligned Little-Endian Accesses
The 604e provides hardware support for misaligned little-endian accesses. Little-e
accesses in the 604e take an alignment exception for the same cases that big-
accesses take alignment exceptions. Any data access that crosses a word boundary
two accesses regardless of whether the data is in big- or little-endian format. Whe
accesses are required, the lower addressed word (in the current addressing m
accessed first. Consider the memory mapping in Figure 1-3.
1-12 PowerPC 604e RISC Microprocessor User's Manual
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Figure 1-3. Big-Endian and Little-Endian Memory Mapping

If two bytes are requested starting at little-endian address 0x3, one byte at big-e
address 0x4 containing dataE is accessed first followed by one byte at big-endian addr
0x3 containing dataD. For a load halfword, the data written back to the GPR would
D, E. If four bytes are requested starting at little-endian address 0x6, two byte
big-endian address 0x0 containing dataA, B are accessed first followed by two bytes
big-endian address 0xE containing dataO, P. For a load word, the data written back to th
GPR would beO, P, A, B.

Misaligned little-endian accesses to direct-storage segments are boundedly-undefin

1.3.2.3  Instruction Set
The 604e implements the same set of instructions that are implemented in the 604; t
the entire PowerPC instruction set (for 32-bit implementations) and most opti
PowerPC instructions. For information, see Section 2.3.3, “Instruction Set Overview
the user’s manual. The following changes affect information provided in the user’s manu.

• The undefined result of an integer divide overflow differs from that of the 604.

• Changes to the behavior of thedcbst anddcbtst instructions are described in
Table 2-43.

Big-Endian Mode

Contents A B C D E F G H

Address 00 01 02 03 04 05 06 07

Contents I J K L M N O P

Address 08 09 0A 0B 0C 0D 0E 0F

Little-Endian Mode

Contents A B C D E F G H

Address 07 06 05 04 03 02 01 00

Contents I J K L M N O P

Address 0F 0E 0D 0C 0B 0A 09 08
Chapter 1.  Overview 1-13
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1.3.3  Cache and Bus Interface Unit Operation
The 604e has separate 32-Kbyte data and instruction caches. This is double the size
604 caches. The 604e caches are logically organized as a four-way set with 25
compared to the 604’s 128 sets. The physical address bits that determine the set
through 26 with 19 being the most-significant bit of the index. If bit 19 is zero, the bloc
data is an even 4-Kbyte page that resides in sets 0–127; otherwise, bit 19 is one a
block of data is an odd 4-Kbyte page that resides in sets 128–255. Because the cac
four-way set-associative, the cache set element (CSE0–CSE1) signals remain unch
from the 604. Figure 1-4 shows the organization of the caches.

Figure 1-4. Cache Unit Organization

1.3.3.1  Instruction Cache
The 604e’s 32-Kbyte, four-way set-associative instruction cache is physically inde
Within a single cycle, the instruction cache provides up to four instructions.

The 604e provides coherency checking for instruction fetches. Instruction fetc
coherency is controlled by HID0[23]. In the default mode, HID0[23] is 0 and theGBL
signal is not asserted for instruction accesses on the bus, as is the case with the 604
bit is set and instruction translation is enabled (MSR[IR] = 1), theGBL signal is set to
reflect the M bit for this page or block. If HID0[23] is set and instruction translation
disabled (MSR[IR] = 0), theGBL signal is asserted and coherency is maintained in
instruction cache.

The PowerPC architecture defines a special set of instructions for managing the instr
cache. The instruction cache can be invalidated entirely or on a cache-block bas
addition, the instruction cache can be disabled and invalidated by setting the HID0[16
HID0[20] bits, respectively. The instruction cache can be locked by setting HID0[18]

Address Tag 1

Address Tag 2

Address Tag 3

Block 1

Block 2

Block 3

Address Tag 0Block 0

8 Words/Block

State

State

State

State

Words 0–7

Words 0–7

Words 0–7

Words 0–7

Sets 0–127
(even pages)

Sets128–255
(odd pages)
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1.3.3.2  Data Cache
The 604e’s data cache is a 32-Kbyte, four-way set-associative cache. It
physically-indexed, nonblocking, write-back cache with hardware support for reloadin
cache misses. Within one cycle, the data cache provides double-word access to the

The 604e provides additional support for data cache line-fill buffer forwarding. In the
only the critical double word of a burst operation was made available to the requesting
at the time it was burst into the line-fill buffer. Subsequent data was unavailable unt
cache block was filled. On the 604e, subsequent data is also made available as it arr
the line-fill buffer.

The 604e implements three copy-back write buffers (the 604 has one). The addi
copy-back buffers allow certain instructions to take further advantage of the pipe
system bus to provide highly efficient handling of cache copy-back operations, b
invalidate operations caused by the Data Cache Block Flush (dcbf) instruction, and cache
block clean operations resulting from the Data Cache Block Store (dcbst) instruction.

Like the 604, the data cache tags are dual-ported, so snooping does not affect the i
operation of other transactions on the system interface. If a snoop hit occurs in a mo
block, the LSU is blocked internally for one cycle to allow the eight-word block of data
be copied to the write-back buffer, if necessary.

Like the instruction cache, the data cache can be invalidated all at once or on a per
block basis. The data cache can be disabled and invalidated by setting the HID0[17
HID0[21] bits, respectively. The data cache can be locked by setting HID0[19].

The 604e introduces some changes todcbt/dcbtst instruction behavior. Both the 604 an
the 604e treat thedcbt anddcbtst instructions as no-ops if any of the following condition
is met:

• The address misses in the TLB and in the BAT.
• The address is directed to a direct-store segment.
• The address is directed to a cache-inhibited page.
• The 604e also treats the instructions as no-ops if the data cache lock bit HID0[1

set.

1.3.3.3  Additional Changes to the Cache
Note that the 604e makes the following additional changes to the cache:

• Snooping protocol change for Read-with-Intent-to-Modify bus operations—It i
now illegal for any snooping device to generate aSHD snoop response without an
ARTRY response to a RWITM address tenure. This change is required for the
and 604e. This change is also effective for later revisions of the 604.
Chapter 1.  Overview 1-15
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• Two additional cache copy-back write buffers—The 604e bus interface unit has
write buffers, four for burst write operations and two for single-beat operations

— The four burst write buffers can hold a full 32-byte cache block of data for bu
write data bus tenures. Of the four burst write buffers, one is a snoop push b
and the other three are cache copy-back buffers.

– The snoop push buffer is dedicated for snoop push write operations.

– The three copy-back buffers are used for cache copy-back operations, b
invalidates due to the Data Cache Block Flush (dcbf) instruction or block
cleans due to the Data Cache Block Store (dcbst) instruction.

— Each of the two single-beat write buffers can hold up to 8 bytes of data.

The 604 implements only one copy-back buffer, but is otherwise the same as the
implementation. Refer to Chapter 3, “Cache and Bus Interface Unit Operation,” for m
information.

1.3.4  Exceptions
The following subsections describe the PowerPC exception model and the
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor sta
result of external signals, errors, or unusual conditions arising in the executio
instructions. When exceptions occur, information about the state of the processor is
to various registers and the processor begins execution at an address (exception
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a m
specific condition may be determined by examining a register associated with
exception—for example, the DSISR and the FPSCR. Additionally, specific excep
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; the
although a particular PowerPC processor may recognize exception conditions out of
exceptions are handled strictly in order. When an instruction-caused exceptio
recognized, any unexecuted instructions that appear earlier in the instruction st
including any that have not yet entered the execute state, are required to complete
the exception is taken. Any exceptions caused by those instructions must be handle
Likewise, exceptions that are asynchronous and precise are recognized when they
(unless they are masked) and the reorder buffer is drained. The address of next instr
to be executed is saved in SRR0 so execution can resume at the proper place wh
exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machine check exception, o
exception is handled at a time. If, for example, a single instruction encounters mu
exception conditions, those conditions are encountered sequentially. After the exce
handler handles an exception, the instruction execution continues until the next exce
1-16 PowerPC 604e RISC Microprocessor User's Manual
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condition is encountered. This method of recognizing and handling exception cond
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRR0 and SRR1 early to p
the program state from being lost due to a system reset or machine check exceptio
an instruction-caused exception in the exception handler.

The PowerPC architecture supports the following types of exceptions:

• Synchronous, precise—These are caused by instructions. All instruction-caus
exceptions are handled precisely; that is, the machine state at the time the exce
occurs is known and can be completely restored.

• Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 604e
implements only the imprecise nonrecoverable mode. The imprecise, recover
mode is treated as the precise mode in the 604e.

• Asynchronous—The OEA portion of the PowerPC architecture defines two type
asynchronous exceptions:

— Asynchronous, maskable—The PowerPC architecture defines the externa
interrupt and decrementer interrupt, which are maskable and asynchronou
exceptions. In the 604e, and in many PowerPC processors, the hardware
interrupt is generated by the assertion of the Interrupt (INT) signal, which is not
defined by the architecture. In addition, the 604e implements the system
management interrupt, which performs similarly to the external interrupt, an
generated by the assertion of the System Management Interrupt (SMI) signal,
and the performance monitor interrupt.

When these exceptions occur, their handling is postponed until all instructi
and any exceptions associated with those instructions, complete execution
These exceptions are maskable by setting MSR[EE].

— Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions that are imprecise: system reset and machine check exceptions
that the OEA portion of the PowerPC architecture, which defines how thes
exceptions work, does not define the causes or the signals used to cause 
exceptions. These exceptions may not be recoverable, or may provide a lim
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the machine state register (MSR)—FE
FE1—that determine how floating-point exceptions are handled. There are
combinations of bit settings, of which the 604e implements three. These are as follo

• Ignore exceptions mode (FE0 = FE1 = 0). In this mode, the instruction dispatch l
feeds the FPU as fast as possible and the FPU uses an internal pipeline to al
overlapped execution of instructions. In this mode, floating-point exception
conditions return a predefined value instead of causing an exception.
Chapter 1.  Overview 1-17
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• Precise interrupt mode (FE0 = 1; FE1 = x). This mode includes both the preci
mode and imprecise recoverable mode defined in the PowerPC architecture. I
mode, a floating-point instruction that causes a floating-point exception brings
machine to a precise state. In doing so, the 604e takes floating-point exceptio
defined by the PowerPC architecture.

• Imprecise nonrecoverable mode (FE0 = 0; FE1 = 1). In this mode, when a
floating-point instruction causes a floating point exception, the save restore
register 0 (SRR0) may point to an instruction following the instruction that cau
the exception.

The 604e exception classes are shown in Table 1-1.

The 604e’s exceptions, and a general description of conditions that cause them, are
in Table 1-2.

Table 1-1. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine check
System reset

Asynchronous/maskable External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise Floating-point exceptions (imprecise nonrecoverable mode)

Table 1-2. Overview of Exceptions and Conditions

Exception
Type

Vector Offset
(hex)

Causing Conditions

Reserved 00000 —

System reset 00100 A system reset is caused by the assertion of either the soft reset or hard reset
signal.

Machine check 00200 A machine check exception is signaled by the assertion of a qualified TEA
indication on the 604e bus, or the machine check interrupt (MCP) signal. If
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by load and store operations
initiated by the processor; however, it is expected that the TEA signal would be
used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.
1-18 PowerPC 604e RISC Microprocessor User's Manual



DSI 00300 The cause of a DSI exception can be determined by the bit settings in the
DSISR, listed as follows:
0 Set if a load or store instruction results in a direct-store program exception;

otherwise cleared.
1 Set if the translation of an attempted access is not found in the primary table

entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] = 1, set by an eciwx , ecowx , lwarx , or stwcx. instruction; otherwise
cleared. Set by an eciwx or ecowx instruction if the access is to an address
that is marked as write-through.

6 Set for a store operation and cleared for a load operation.
9 Set if an EA matches the address in the DABR while in one of the three

compare modes.
10Set if the segment table search fails to find a translation for the effective

address; otherwise cleared.
11Set if eciwx  or ecowx  is used and EAR[E] is cleared.

ISI 00400 An ISI exception is caused when an instruction fetch cannot be performed for
any of the following reasons:
• The effective address cannot be translated. That is, there is a page fault for

this portion of the translation, so an ISI exception must be taken to retrieve
the translation from a storage device such as a hard disk drive.

• The fetch access is to a direct-store segment.
• The fetch access violates memory protection. If the key bits (Ks and Kp) in

the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

External
interrupt

00500 An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604e stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Alignment 00600 An alignment exception is caused when the processor cannot perform a
memory access for the following reasons:
A floating-point load, store , lmw , stmw , lwarx , stwcx. , eciwx , or ecowx
instruction is not word-aligned.
A dcbz  instruction refers to a page that is marked either cache-inhibited or
write-through.
A dcbz  instruction has executed when the 604e data cache is locked or

disabled.
An access is not naturally aligned in little-endian mode.
An lmw , stmw , lswi , lswx , stswi , or stswx  instruction is issued in little-endian
mode.

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions
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Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:
• Floating-point exceptions—A floating-point enabled exception condition

causes an exception when FPSCR[FEX] is set and depends on the values in
MSR[FE0] and MSR[FE1].
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a “move to FPSCR”
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

• Illegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).

• Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr  or mfspr  with an invalid SPR field if SPR[0] = 1 and
MSR[PR] = 1.

• Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800 A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved 00A00–00BFF —

System call 00C00 A system call exception occurs when a System Call (sc ) instruction is executed.

Trace 00D00 Either MSR[SE] = 1 and any instruction (except rfi ) successfully completed or
MSR[BE] = 1 and a branch instruction is completed.

Floating-point
assist

00E00 Defined by the PowerPC architecture, but not required in the 604e.

Reserved 00E10–00EFF —

Performance
monitoring
interrupt

00F00 The performance monitoring interrupt is a 604e-specific exception and is used
with the 604e performance monitor, described in Chapter 9, “Performance
Monitor.”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled in the monitor mode control register 0 (MMCR0).
Although the exception condition may occur when the MSR EE bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000–012FF —

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions
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1.3.5  Memory Management
The 604e MMU implementation is the same as is used in the 604.

1.3.6  Instruction Timing
As shown in Figure 1-5, the common pipeline of the 604e has six stages through whi
instructions must pass. Some instructions occupy multiple stages simultaneously and
individual execution units have additional stages. For example, the floating-point pip
consists of three stages through which all floating-point instructions must pass.

Figure 1-5. Pipeline Diagram

Instruction
address
breakpoint

01300 An instruction address breakpoint exception occurs when the address (bits 0 to
29) in the IABR matches the next instruction to complete in the completion unit,
and the IABR enable bit IABR[30] is set.

System
management
interrupt

01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI
input signal is asserted. This exception is provided for use with the nap mode,
which is described in Section 7.2.13, “Power Management.”

Reserved 01500–02FFF Reserved, implementation-specific exceptions. These are not implemented in
the 604e.

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Complete (C)

Write-Back (W)

(Four-instruction dispatch per clock
cycle in any combination)

SCIU1 SCIU2 MCIU FPU LSUBPU

Execute Stage

Fetch (IF)

Decode (ID)

CRU

Dispatch (DS)
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The common pipeline stages are as follows:

• Instruction fetch (IF)—During the IF stage, the fetch unit loads the decode qu
(DEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

• Instruction decode (ID)—During the ID stage, all time-critical decoding is
performed on instructions in the dispatch queue (DISQ). The remaining decod
operations are performed during the instruction dispatch stage.

• Instruction dispatch (DS)—During the dispatch stage, the decoding that is not
time-critical is performed on the instructions provided by the previous ID stage
Logic associated with this stage determines when an instruction can be dispa
to the appropriate execution unit. At the end of the DS stage, instructions and
operands are latched into the execution input latches or into the unit’s reserva
station. Logic in this stage allocates resources such as the rename registers a
reorder buffer entries.

• Execute (E)—While the execution stage is viewed as a common stage in the 
instruction pipeline, the instruction flow is split among the six execution units, so
of which consist of multiple pipelines. An instruction may enter the execute st
from either the dispatch stage or the execution unit’s dedicated reservation st

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifies the completion stage that the instru
has finished execution.

The execution unit reports any internal exceptions to the completion stage an
continues execution, regardless of the exception. Under some circumstances, r
can be written directly to the target registers, bypassing the rename buffers.

• Complete (C)—The completion stage ensures that the correct machine state 
maintained by monitoring instructions in the completion buffer and the status 
instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer (ROB).
Results may be written back from the rename buffers to the register as early a
complete stage. If the completion logic detects an instruction containing exce
status or if a branch has been mispredicted, all subsequent instructions are canc
any results in rename buffers are discarded, and instructions are fetched from
correct instruction stream.

The CR, CTR, and LR are also updated during the complete stage.

• Writeback (W)—The writeback stage is used to write back any information from
rename buffers that was not written back during the complete stage.

All instructions are fully pipelined except for divide operations and some integer mult
operations. The integer multiplier is a three-stage pipeline. Integer divide instruc
iterate in stage two of the multiplier. SPR operations can execute in the MCIU in par
with multiply and divide operations.
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The floating-point pipeline has three stages. Floating-point divide operations iterate
first stage.

The 604e instruction timing model has a few changes from the 604, although it is bas
the same design. A conceptual model of the 604e hardware design showin
relationships between the various units that affect the instruction timing is show
Figure 1-6.

Figure 1-6. Block Diagram—Internal Data Paths
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The instruction timing in the 604e incorporates the following changes:

• Addition of a condition register unit (CRU)—The CRU executes all condition
register logical and flow control instructions. Because the CRU shares the disp
bus with the BPU, only one condition register or branch instruction can be issued
clock cycle. In the 604, the CR logical unit operations are handled by the BPU.
addition of the CRU allows branch instructions to potentially execute/resolve be
a preceding CR logical instruction. Although one CR logical or branch instruct
can be dispatched per clock cycle, both branch and CR logical instructions ca
execute simultaneously. Branches are still executed in order with respect to o
branch instructions. If either the CR logical reservation station or the branch
reservation station is full then no instructions can be dispatched to either unit.

• Branch correction in decode stage—Branch correction in the decode stage has
modified to predict branches whose target is taken from the CTR or LR. This
correction occurs if no CTR or LR updates are pending. This correction like all o
decode stage corrections is done only on the first two instructions of the deco
stage. This correction saves at least one cycle on branch correction when themtspr
instruction can be separated from the branch that uses the SPR as a target a

• Instruction fetch when translation is disabled—If translation is disabled
(MSR[IR] = 0), the 604e fetches instructions when they hit in the cache or if th
previous completed instruction fetch was to the same page as this instruction f
Where an instruction access hits in the cache, the 604e continues to fetch an
consecutive accesses to that same page.

1.3.7  Signal Descriptions
The 604e provides a versatile bus interface that allows a wide variety of system d
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of pari
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control sign
allow for a variety of system-level optimizations. The system interface is specific for e
PowerPC processor implementation. The 604e system interface is shown in Figure

NOTE
A bar over a signal name indicates that the signal is active
low—for example,ARTRY (address retry) andTS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as AP[0–3] (address bus parity signals)
and TT[0–4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.
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Figure 1-7. PowerPC 604e Microprocessor Signal Groups

The 604e system interface differs from that of the 604 in the following respects:

• The 604e has the same signal configuration as the 604; however, on the 604e
and AVdd must be connected to 2.5 Vdc and OVdd must be connected to 3.3
The 604e uses split voltage planes, and for replacement compatibility, 604/60
designs should provide both 2.5-V and 3.3-V planes and the ability to connect t
two planes together and disable the 2.5-V plane for operation with a 604.

• Addition of no-DRTRY mode. In addition to the normal and data-streaming mod
implemented on the 604, a no-DRTRY mode is implemented on the 604e that
improves performance on read operations for systems that do not use theDRTRY
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signal. No-DRTRY mode makes read data available to the processor one bus c
cycle sooner than in normal mode. In no-DRTRY mode, theDRTRY signal is no
longer sampled as part of a qualified bus grant.

This functionality is described more fully in Chapter 8, “System Interface
Operation.”

• Power management signals—The 604e implements signals that allow the proc
to operate in three different modes—normal, nap, and doze.

— HALTED signal—The HALTED signal is asserted when the processor is hal
internally and no snoop copy-back operations are in progress.

– In nap mode, the HALTED signal is always asserted.

– In doze mode, the HALTED signal is asserted unless a snoop-triggered
copy-back is pending.

– In normal mode, the HALTED signal is not asserted.

— RUN signal—The 604e supports nap mode with a RUN signal similar to the 6
Asserting the RUN signal is equivalent to the doze mode in the 603.

The operation of power management on the 604e is described in Section 7.2.
“Power Management.”

• Internal clocking changes—The 604e internal clocking scheme is more simila
the 603e than to the 604. The 604e requires a single system clock (SYSCLK) i
that sets the frequency of operation for the bus interface. Internally, the 604e u
phase-locked loop (PLL) circuit to generate a master clock for all of the CPU
circuitry (including the bus interface circuitry) which is phase-locked to the
SYSCLK input.

• Bus clock ratios—The 604e supports processor-to-bus frequency ratios of 1:1
2:1, 5:2, 3:1, 4:1, and 7:2. Each ratio is limited to the frequency ranges specifie
the PLL_CFG encodings shown in Table 7-6. Support for processor/bus clock ra
5:2, 7:2, and 4:1 is not supported in the 604.

• To support the changes in the clocking configuration, different precharge timin
for theABB, DBB, ARTRY, andSHD signals are implemented internally by the
processor. Selectable precharge timings forARTRY andSHD can be disabled by
setting HID0[7]. Precharge timings are provided in the 604e hardware
specifications.

• The 604e’s PLL_CFG settings are compatible with the 603e and the 604, alth
the supported frequency ranges may differ. Changing the PLL_CFG setting du
nap mode is not permitted. For specific information, see the hardware specifica

• The addition of the VOLTDETGND output signal (BGA package only). The
VOLTDETGND signal is an indicator of the core voltage for use with power
supplies capable of providing 2.5-V and 3.3-V outputs.

Refer to Chapter 7, “Signal Descriptions,” for further information.
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1.3.8  System Interface Operation
The system interface is specific for each PowerPC processor implementation. Howev
604e system interface differs only slightly from the 604. Some of the differences inc
wider data and address buses, support for additional processor-to-bus frequencie
support for the optional no-DRTRY bus mode. For further information, refer to Chapter
“System Interface Operation.”

The 604e provides a versatile bus interface that allows a wide variety of system d
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of pari
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control sign
allow for a variety of system-level optimizations. The system interface is specific for e
PowerPC processor implementation. The interface is synchronous—all 604e inpu
sampled at and all outputs are driven from the rising edge of the bus clock. The
supports processor-to-bus frequency ratios of 1:1, 3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Su
for processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.

The 604e system interface is shown in Figure 1-8.

Figure 1-8. System Interface

Four-beat burst-read memory operations that load an eight-word cache block into one
on-chip caches are the most common bus transactions in typical systems, follow
burst-write memory operations, direct-store operations, and single-beat (noncachea
write-through) memory read and write operations. Additionally, there can be address
operations, variants of the burst and single-beat operations (global memory operation
are snooped and atomic memory operations, for example), and address retry activi
example, when a snooped read access hits a modified line in the data cache).

The BIU implements the critical double-word first access where the double-word requ
by the fetcher or the load/store unit is fetched first and the remaining words in the lin
fetched later. The critical double-word as well as other words in the cache block
forwarded to the fetcher or to the LSU before they are written to the cache.
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Memory accesses can occur in single-beat or four-beat burst data transfers. The addr
data buses are independent for memory accesses to support pipelining and
transactions. The 604e supports bus pipelining and out-of-order split-bus transactio
general, the bus-pipelining mechanism allows as many as three address tenures
outstanding before a data tenure is initiated. Address tenures for address-only transa
can exceed this limit.

Typically, memory accesses are weakly-ordered. Sequences of operations, inc
load/store string/multiple instructions, do not necessarily complete in the same ord
which they began—maximizing the efficiency of the bus without sacrificing coherenc
the data. The 604e allows load operations to precede store operations (except w
dependency exists, of course). In addition, the 604e provides a separate queue for
push operations so these operations can access the bus ahead of previously
operations. The 604e dynamically optimizes run-time ordering of load/store traffi
improve overall performance.

The 604e implements a data bus write only signal (DBWO) that can be used for reorderin
write operations. AssertingDBWO causes the first write operation to occur before any re
operations on a given processor. Although this may be used with any write operatio
can also be used to reorder a snoop push operation.

Access to the system interface is granted through an external arbitration mechanis
allows devices to compete for bus mastership. This arbitration mechanism is flex
allowing the 604e to be integrated into systems that use various fairness and bus-p
procedures to avoid arbitration overhead. Additional multiprocessor support is prov
through coherency mechanisms that provide snooping, external control of the on
caches and TLBs, and support for a secondary cache. The PowerPC architecture p
the load/store with reservation instruction pair (lwarx /stwcx.) for atomic memory
references and other operations useful in multiprocessor implementations. Re
Chapter 8, “System Interface Operation,” for more information.

1.3.9  Performance Monitor
The 604e incorporates a performance monitor facility that system designers can use
bring up, debug, and optimize software performance, especially in multiproces
systems. The performance monitor is a software-accessible mechanism that pr
detailed information concerning the dispatch, execution, completion, and memory a
of PowerPC instructions.

A performance monitor control register (MMCR0 or MMCR1) can be used to specify
conditions for which a performance monitoring interrupt is taken. For example, one
condition is associated with one of the counter registers (PMC1–PMC4) incrementing
the most-significant bit indicates a negative value. Additionally, the sampled instruc
address and sampled data address registers (SIA and SDA) are used to hold addre
instruction and data related to the performance monitoring interrupt.

In addition to the performance monitor registers implemented on the 604, the 604e ha
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additional counter registers and one additional control register. The control regis
MMCR1 (SPR 956). The counters, PMC3 and PMC4, are SPR 957 and SPR
respectively. MMCR0 has also been changed slightly from the original 604 defini
These registers are described in Section 2.1.2.5, “Performance Monitor Registers.”

When the 604e vectors to the performance monitor interrupt exception handle
automatically clears any pending performance monitor interrupts. Note that unlike the
the 604e does not require MMCR0[ENINT] to be cleared (and possibly reset) be
external interrupts can be re-enabled.
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Chapter 2
Programming Model
20
20

This chapter describes the PowerPC programming model with respect to the Pow
604e. It consists of three major sections, which describe the following:

• Registers implemented in the 604e
• Operand conventions
• The 604e instruction set

2.1  Register Set
This section describes the registers in the 604e and includes an overview of the reg
defined by the PowerPC architecture and a more detailed description of 604e-sp
registers and differences in how the registers defined by the PowerPC architectu
implemented in the 604e. Full descriptions of the basic register set defined by the Pow
architecture are provided in Chapter 2, “PowerPC Register Set,” inThe Programming
Environments Manual.

Note that registers are defined at all three levels of the PowerPC architecture—
instruction set architecture (UISA), virtual environment architecture (VEA), and opera
environment architecture (OEA). The PowerPC architecture defines register-to-re
operations for all computational instructions. Source data for these instructions
accessed from the on-chip registers or are provided as immediate values embedded
opcode. The three-register instruction format allows specification of a target reg
distinct from the two source registers, thus preserving the original data for use by
instructions and reducing the number of instructions required for certain operations.
is transferred between memory and registers with explicit load and store instructions
Chapter 2.  Programming Model 2-1
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2.1.1  Register Set
The PowerPC UISA registers, shown in Figure 2-1, are user-level. The general-pu
registers (GPRs) and floating-point registers (FPRs) are accessed through instr
operands. Access to registers can be explicit (that is, through the use of specific instru
for that purpose such as Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of a
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the numb
is used in the syntax of the instruction operands to access the register (for examp
number used to access the XER is SPR 1). These registers can be accessed using thmtspr
andmfspr instructions.

Implementation Note—The 604e fully decodes the SPR field of the instruction. If the S
specified is undefined, the illegal instruction program exception occurs.
2-2 PowerPC 604e RISC Microprocessor User's Manual



Figure 2-1. Programming Model—PowerPC 604e Microprocessor Registers
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The PowerPC’s user-level registers are described as follows:

• User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs). The PowerPC general-purpose registe
consists of thirty-two GPRs designated as GPR0–GPR31. The GPRs serv
data source or destination registers for all integer instructions and provide 
for generating addresses. See “General Purpose Registers (GPRs),” in Chap
“PowerPC Register Set,” ofThe Programming Environments Manualfor more
information.

— Floating-point registers (FPRs). The floating-point register file consists of
thirty-two FPRs designated as FPR0–FPR31, which serves as the data sou
destination for all floating-point instructions. These registers can contain d
objects of either single- or double-precision floating-point format. For more
information, see “Floating-Point Registers (FPRs),” in Chapter 2, “PowerPC
Register Set,” ofThe Programming Environments Manual.

— Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CR0–CR7, that reflects the results of certain arithmetic operations a
provides a mechanism for testing and branching. For more information, se
“Condition Register (CR),” in Chapter 2, “PowerPC Register Set,” ofThe
Programming Environments Manual.

Implementation Note—The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fields (mtcrf ) instruction may
perform more slowly when only a portion of the fields are updated as oppose
all of the fields. The condition register access latency for the 604e is the sam
both cases. In the 604e, anmtcrf instruction that sets only a single field perform
significantly faster than one that sets either no fields or multiple fields. For m
information regarding the most efficient use of themtcrf  instruction, see
Section 6.6, “Instruction Scheduling Guidelines.”

— Floating-point status and control register (FPSCR). The FPSCR contains a
floating-point exception signal bits, exception summary bits, exception ena
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see “Floating-Point Status and Control Reg
(FPSCR),” in Chapter 2, “PowerPC Register Set,” ofThe Programming
Environments Manual.

Implementation Note—The PowerPC architecture states that in some
implementations, the Move to FPSCR Fields (mtfsf) instruction may perform
more slowly when only a portion of the fields are updated as opposed to all o
fields. In the 604e implementation, there is no degradation of performance

The remaining user-level registers are SPRs. Note that the PowerPC architec
provides a separate mechanism for accessing SPRs (themtspr andmfspr
instructions). These instructions are commonly used to explicitly access certa
2-4 PowerPC 604e RISC Microprocessor User's Manual
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registers, while other SPRs may be more typically accessed as the side effec
executing other instructions.

— XER register. The XER indicates overflow and carries for integer operations
is set implicitly by many instructions. See “XER Register (XER),” in Chapter
“PowerPC Register Set,” ofThe Programming Environments Manualfor more
information.

— Link register (LR). The LR provides the branch target address for the Bran
Conditional to Link Register (bclrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, s
“Link Register (LR),” in Chapter 2, “PowerPC Register Set,” ofThe
Programming Environments Manual.

— Count register (CTR). The CTR holds a loop count that can be decremente
during execution of appropriately coded branch instructions. The CTR can
provide the branch target address for the Branch Conditional to Count Reg
(bcctrx) instruction. For more information, see “Count Register (CTR),” in
Chapter 2, “PowerPC Register Set,” ofThe Programming Environments Manua.

• User-level registers(VEA)—The PowerPC VEA introduces the time base facilit
(TB), a 64-bit structure that maintains and operates an interval timer. The TB
consists of two 32-bit registers—time base upper (TBU) and time base lower (TB
Note that the time base registers can be accessed by both user- and superviso
instructions. In the context of the VEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level access to the T
writing values to the TB. For more information, see “PowerPC VEA Register
Set—Time Base,” in Chapter 2, “PowerPC Register Set,” ofThe Programming
Environments Manual.

• Supervisor-level registers(OEA)—The OEA defines the registers that are used
typically by an operating system for such operations as memory managemen
configuration, and exception handling. The supervisor-level registers defined b
PowerPC architecture for 32-bit implementations are described as follows:

— Configuration registers

– Machine state register (MSR). The MSR defines the state of the proces
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi ) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. See “Machine
State Register (MSR),” in Chapter 2, “PowerPC Register Set,” ofThe
Programming Environments Manualfor more information.

Implementation Note—Note that the 604e defines MSR[29] as the performance mon
marked mode bit (PM). This additional bit is described in Table 2-1.
Chapter 2.  Programming Model 2-5
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– Processor version register (PVR). This register is a read-only register th
identifies the version (model) and revision level of the PowerPC process
For more information, see “Processor Version Register (PVR),” in Chapte
“PowerPC Register Set,” ofThe Programming Environments Manual.

Implementation Note—The processor version number is 9 for the 604e. T
processor revision level starts at 0x0100 and changes for each chip revi
The revision level is updated on all silicon revisions.

— Memory management registers

– Block-address translation (BAT) registers. The PowerPC OEA includes e
block-address translation registers (BATs), consisting of four pairs of
instruction BATs (IBAT0U–IBAT3U and IBAT0L–IBAT3L) and four pairs of
data BATs (DBAT0U–DBAT3U and DBAT0L–DBAT3L). See Figure 2-1 fo
a list of the SPR numbers for the BAT registers. For more information, s
“BAT Registers,” in Chapter 2, “PowerPC Register Set,” ofThe Programming
Environments Manual. Because BAT upper and lower words are loaded
separately, software must ensure that BAT translations are correct during
time that both BAT entries are being loaded.

The 604e implements the G bit in the IBAT registers; however, attempting
execute code from an IBAT area with G = 1 causes an ISI exception. Th
complies with the revision of the architecture described inPowerPC
Microprocessor Family: The Programming Environments.

– SDR1. The SDR1 register specifies the page table base address used i
virtual-to-physical address translation. For more information, see “SDR1,
Chapter 2, “PowerPC Register Set,” ofThe Programming Environments
Manualfor more information.”

– Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segm
registers (SR0–SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “Segment Registers,” in
Chapter 2, “PowerPC Register Set,” ofThe Programming Environments
Manual for more information.

Table 2-1. MSR[PM] Bit

Bit Name Description

29 PM Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
This bit is specific to the 604e, and is defined as reserved by the PowerPC architecture. For more
information about the performance monitor, see Chapter 9, “Performance Monitor.”
2-6 PowerPC 604e RISC Microprocessor User's Manual
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— Exception handling registers

– Data address register (DAR). After a DSI or an alignment exception, DAR
set to the effective address generated by the faulting instruction. See “D
Address Register (DAR),” in Chapter 2, “PowerPC Register Set,” ofThe
Programming Environments Manualfor more information.

– SPRG0–SPRG3. The SPRG0–SPRG3 registers are provided for opera
system use. See “SPRG0–SPRG3,” in Chapter 2, “PowerPC Register Se
The Programming Environments Manualfor more information.

– DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Set,” ofThe
Programming Environments Manualfor more information.

– Machine status save/restore register 0 (SRR0). The SRR0 register is us
save machine status on exceptions and to restore machine status whenrfi
instruction is executed. See “Machine Status Save/Restore Register 0
(SRR0),” in Chapter 2, “PowerPC Register Set,” ofThe Programming
Environments Manual for more information.

– Machine status save/restore register 1 (SRR1). The SRR1 register is us
save machine status on exceptions and to restore machine status whenrfi
instruction is executed. See “Machine Status Save/Restore Register 1
(SRR1),” in Chapter 2, “PowerPC Register Set,” ofThe Programming
Environments Manual for more information.

— Miscellaneous registers

– Time Base (TB). The TB is a 64-bit structure that maintains the time of d
and operates interval timers. The TB consists of two 32-bit registers—tim
base upper (TBU) and time base lower (TBL). Note that the time base
registers can be accessed by both user- and supervisor-level instructions
“Time Base Facility (TB)—OEA,” in Chapter 2, “PowerPC Register Set,” o
The Programming Environments Manualfor more information.

– Decrementer register (DEC). This register is a 32-bit decrementing coun
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clo
See “Decrementer Register (DEC),” in Chapter 2, “PowerPC Register Set
The Programming Environments Manualfor more information.

Implementation Note—In the 604e, the decrementer register is decremen
at a speed that is one-fourth the speed of the bus clock.

– Data address breakpoint register (DABR)—This optional register can be u
to cause a breakpoint exception to occur if a specified data address is
encountered. See “Data Address Breakpoint Register (DABR),” in Chapte
“PowerPC Register Set,” ofThe Programming Environments Manual for
more information.
Chapter 2.  Programming Model 2-7
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– External access register (EAR). This optional register is used in conjunc
with theeciwx andecowx instructions. Note that the EAR register and the
eciwx andecowx instructions are optional in the PowerPC architecture an
may not be supported in all PowerPC processors that implement the OEA
“External Access Register (EAR),” in Chapter 2, “PowerPC Register Set,”
The Programming Environments Manual for more information.

• Hardware implementation registers—The PowerPC architecture allows
implementations to include SPRs not defined by the PowerPC architecture. T
incorporated in the 604e are described as follows. Note that in the 604e, thes
registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used 
cause a breakpoint exception to occur if a specified instruction address is
encountered.

— Hardware implementation-dependent registers (HID0 and HID1)—These
registers are used to control various functions within the 604e, such as ena
checkstop conditions, and locking, enabling, and invalidating the instruction
data caches.

— Processor identification register (PIR)—The PIR is a supervisor-level regis
that has a right-justified, four-bit field that holds a processor identification t
used to identify a particular 604e. This tag is used to identify the processo
multiple-master implementations. Note that although the SPR number is defi
by the OEA, the register definition is implementation-specific.

— Performance monitor counter registers (PMC1–PMC4). The counters are us
record the number of times a certain event has occurred.

— Monitor mode control registers (MMCR0 and MMCR1)—This is used for
enabling various performance monitoring interrupt conditions and establish
the function of the counters.

— Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used b
performance monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registers is consi
among PowerPC processors, other processors may be implemented with simi
identical HID registers.

2.1.2  PowerPC 604e-Specific Registers
This section describes registers that are defined for the 604e but are not included
PowerPC architecture. This section also includes a description of the PIR, whi
assigned an SPR number by the architecture but is not defined by it. Note that these
supervisor-level registers.
2-8 PowerPC 604e RISC Microprocessor User's Manual
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2.1.2.1  Instruction Address Breakpoint Register (IABR)
The 604e also implements an Instruction Address Breakpoint Register (IABR). W
enabled, instruction fetch addresses will be compared with an effective address t
stored in the IABR. The granularity of these compares will be a word. If the word spec
by the IABR is fetched, the instruction breakpoint handler will be invoked. The instruc
which triggers the breakpoint will not be executed before the handler is invoked.

The IABR is shown in Figure 2-2.

Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instru
address breakpoint exception, which occurs when an attempt is made to execu
instruction at an address specified in the IABR. The bits in the IABR are defined as s
in Table 2-2.

The instruction that triggers the instruction address breakpoint exception is not exe
before the exception handler is invoked. For more information about the IABR excep
see Section 4.5.14, “Instruction Address Breakpoint Exception (0x01300).”

The IABR can be accessed with themtspr andmfspr instructions using the SPR numbe
1010.

2.1.2.2  Processor Identification Register (PIR)
The processor identification register (PIR) is a 32-bit register that holds a proce
identification tag in the four least significant bits (PIR[28–31]). This tag is useful
processor differentiation in multiprocessor system designs. In addition, this tag is use
several direct-store bus operations in the form of a “bus transaction from” tag.

Figure 2-3. Processor Identification Register

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description

0–29 Word address to be compared

30 Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 Translation enabled. This bit is compared with the MSR[IR] bit. An IABR match is
signaled only if these bits also match.

0 29 30 31

ADDRESS BE TE

PIR

0 27 28 31

Reserved

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PID
Chapter 2.  Programming Model 2-9
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The PIR can be accessed with themtspr andmfspr instructions using the SPR numbe
1023. Note that although this number is defined by the OEA, the register structure is de
by each implementation that implements this optional register.

2.1.2.3  Hardware Implementation-Dependent Register 0
The hardware implementation dependent register 0 (HID0) is an SPR that controls the
of several functions within the 604e.

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings

Bit Description

0 Enable machine check input pin
0 The assertion of the MCP does not cause a machine check exception.
1 Enables the entry into a machine check exception based on assertion of the MCP input, detection of a

Cache Parity Error, detection of an address parity error, or detection of a data parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

1 Enable cache parity checking
0 The detection of a cache parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

2 Enable machine check on address bus parity error
0 The detection of a address bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

3 Enable machine check on data bus parity error
0 The detection of a data bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

7 Disable snoop response high state restore
HID bit 7, if active, alters bus protocol slightly by preventing the processor from driving the SHD and ARTRY
signals to the high (negated) state. If this is done, then the system must restore the signals to the high state.

12 Reserved. This bit should always be set to zero.

15 Not hard reset
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

16 Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked

cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The instruction cache is enabled

17 Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked

cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The data cache is enabled.
2-10 PowerPC 604e RISC Microprocessor User's Manual



18 Instruction cache lock
0 Normal operation
1 All misses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to

work as normal. This is the only method for “deallocating” an entry.

19 Data cache lock
0 Normal operation
1 All misses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to

work as normal. This is the only method for “deallocating” an entry. The dcbz  instruction takes an
alignment exception if the data cache is locked when it is executed, provided the target address had
been translated correctly.

20 Instruction cache invalidate all
0 The instruction cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each block in the instruction cache as

invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write
operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 Data cache invalidate all
0 The data cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the data cache as

invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write
operation to the register). Note that the data cache must be enabled for the invalidation to occur.

23 Coherent instruction fetch enable—controls whether instruction fetch bus operations are snooped.
0 In this default state, all instruction fetch address tenures are nonglobal, regardless of the state of the

MSR[IR] or the WIMG bits. Therefore, coherency checking on instruction fetches is disabled, as it is on
the 604.

1 The 604e presents a value on the GBL signal for instruction fetch address tenures that reflects the state
of the M bit if MSR[IR] = 1. If IR = 0 and HID0[23] is set, the GBL signal is asserted for all instruction
fetch address tenures.

When modifying the instruction cache enable or instruction cache lock bits, software should place an isync
instruction after the mtspr [HID0] instruction to ensure that the subsequent instructions are fetched with the
proper cache mode.
Note that, like the 604, the 604e never snoops its data cache during its own instruction fetch address tenure,
regardless of the state of GBL. Therefore, assertion of the GBL signal does not guarantee coherency
between the 604e’s own instruction cache and data cache. As in the 604, coherency between the instruction
and data caches must be maintained by software.
Additional information is provided in Section 3.2, “Instruction Cache Organization.”

24 Serial instruction execution disable
0 The 604e executes one instruction at a time. The 604e does not post a trace exception after each

instruction completes, as it would if MSR[SE] or MSR[BE] were set.
1 Instruction execution is not serialized.

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description
Chapter 2.  Programming Model 2-11
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When modifying the data cache enable or data cache lock bits, software should placesync
instruction both before and after the move to the HID0 register to ensure that the data
is properly updated by instructions both before and after the move to HID0 instructio

2.1.2.4  Hardware Implementation-Dependent Register 1 (HID1)
HID1 (SPR 1009), shown in Figure 2-4, is a supervisor-level register that allows soft
to read the current PLL_CFG value. The PLL_CFG signal values are read from
HID1[0–3]. The remaining bits are reserved and are read as zeros. HID1 is a read
register.

Figure 2-4. HID1 Clock Configuration Register

The bit settings in HID1 are described in Table 2-4.

2.1.2.5  Performance Monitor Registers
The remaining eight registers defined for use with the 604e are used by the perform
monitor. For more information about the performance monitor, see Chapt
“Performance Monitor.”

29 Branch history table enable
0 The 604e uses static branch prediction as defined by the PowerPC architecture (UISA) for those branch

instructions that the BHT would have otherwise been used to predict (that is, those that use the CR as
the only mechanism to determine direction. For more information on static branch prediction, see
section “Conditional Branch Control,” in Chapter 4 of The Programming Environments Manual.

1 Allows the use of the 512-entry branch history table (BHT).
The BHT is disabled at power-on reset. The BHT is updated while it is disabled, so it can be initialized before
it is enabled.

30 BTAC disable—used to disable use of the 64-entry branch target address cache.
0 The BTAC is enabled and new entries can be added.
1 The BTAC contents are invalidated and the BTAC behaves as if it were empty. New entries cannot be

added until the BTAC is enabled.
Note that the BTAC can be flushed by disabling and re-enabling the BTAC using two successive mtspr
instructions.

Table 2-4. HID1 Bit Settings

Bits Description

0–3 PLL configuration bits (0–3)

4–31 Reserved (Read as zero)

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

0 3 4 31

Reserved

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0
2-12 PowerPC 604e RISC Microprocessor User's Manual
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2.1.2.5.1  Monitor Mode Control Register 0 (MMCR0)
The monitor mode control register 0 (MMCR0) is a 32-bit SPR (SPR 952) whose bits
partitioned into bit fields that determine the events to be counted and recorded
selection of allowable combinations of events causes the counters to operate concu

The MMCR0 can be written to or read only in supervisor mode. The MMCR0 inclu
controls, such as counter enable control, counter overflow interrupt control, counter
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not chan
contents. The fields of the register are defined in Table 2-5.

Table 2-5. MMCR0 Bit Settings

Bit Name Description

0 DIS Disable counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters

are not changed by hardware.

2 DU Disable counting while in user mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not

changed by hardware.

3 DMS Disable counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitoring interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.

6 DISCOUNT Disable counting of PMC1–PMC4 when a performance monitor interrupt is
signalled or the occurrence of an enabled time base transition with
((INTONBITTRANS =1) & (ENINT = 1)).
0 Signalling a performance monitoring interrupt does not affect the counting

status of PMC1–PMC4.
1 The signalling of a performance monitoring interrupt prevents the changing

of the PMC1 counter. The PMC2–PMC4 counters does not change if
PMCTRIGGER = 0.

Because, a time base signal could have occurred along with an enabled counter
negative condition, software should always reset INTONBITTRANS to zero, if the
value in INTONBITTRANS was a one.
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2.1.2.5.2  Monitor Mode Control Register 1—MMCR1
The 604e defines an additional monitor mode control register (MMCR1), which funct
as an event selector for the two 604e-specific performance monitor counter reg
(PMC3 and PMC4). MMCR1 is SPR 956. The MMCR1 register is shown in Figure 2

Figure 2-5. Monitor Mode Control Register 1 (MMCR1)

7–8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 INTONBITTRANS Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.

10–15 THRESHOLD Threshold value. All 6 bits are supported by the 604e. The threshold value is
multiplied by 4, allowing threshold values from 0 to 252 in increments of 4. The
intent of the THRESHOLD support is to be able to characterize L1 data cache
misses.

16 PMC1INTCONTROL Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMC1 interrupt signaling due to PMC1 counter negative
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative

17 PMCINTCONTROL Enable interrupt signalling due to any PMCn (n>1) counter negative.
0 Disable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter

negative.
1 Enable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter negative.

18 PMCTRIGGER PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has
become negative or after a performance monitoring interrupt is signalled.
0 Enable PMCn (n>1) counting
1 Disable PMCn (n>1) counting until PMC1 bit 0 is “on” or until a performance

monitor interrupt is signalled.
PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has
become negative. This provides a triggering mechanism to allow counting after a
certain condition occurs or after enough time has occurred. It can be used to
support getting the count associated with a specific event.

19-25 PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 2-7.

26–31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 2-8.

Table 2-5. MMCR0 Bit Settings (Continued)

Bit Name Description

0 4 5 9 10 31

Reserved

PMC3SELECT PMC4SELECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2-14 PowerPC 604e RISC Microprocessor User's Manual
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Bit settings for MMCR1 are shown in Table 2-6. The corresponding events are desc
in the Section 2.1.2.5.3, “Performance Monitor Counter Registers (PMC1–PMC4).”

2.1.2.5.3  Performance Monitor Counter Registers (PMC1–PMC4)
PMC1–PMC4 are 32-bit counters that can be programmed to generate interrupt s
when they are negative. Counters are considered to be negative when the high-order
sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000). How
an interrupt is not signaled unless both MMCR0[PMCINTCONTROL] a
MMCR0[ENINT] are also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal cond
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is
Setting MMCR0[DISCOUNT] forces the counters stop counting when a counter inter
occurs.

PMC1 (SPR 953), PMC2 (SPR 954), PMC3 (SPR 957), and PMC4 (SPR 958) can be
and written to by using themfspr andmtspr instructions. Software is expected to use t
mtspr instruction to explicitly set the PMC register to non-negative values. If software
a negative value, an erroneous interrupt may occur. For example, if
MMCR0[PMCINTCONTROL] and MMCR0[ENINT] are set and themtspr instruction is
used to set a negative value, an interrupt signal condition may be generated prior
completion of themtspr and the values of the SIA and SDA may not have any relations
to the type of instruction being counted.

The event that is to be monitored can be chosen by setting the appropriate bits
MMCR0[19–31]. The number of occurrences of these selected events is counted fro
time the MMCR0 was set either until a new value is introduced into the MMCR0 regi
or until a performance monitor interrupt is generated. Table 2-7 lists the selectable e
with their appropriate MMCR0 encodings.

Table 2-6. MMCR1 Bit Settings

Bits Name Description

0–4 PMC3SELECT PMC3 event selector

5–9 PMC4SELECT PMC4 event selector

10–31 — Reserved

Table 2-7. Selectable Events—PMC1

MMCR0[0–4] Description

000 0000 Nothing. Register counter holds current value.

000 0001 Processor cycles 0b1. Count every cycle.

000 0010 Number of instructions completed every cycle

000 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).
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000 0100 Number of instructions dispatched

000 0101 Instruction cache misses

000 0110 Data TLB misses (in order)

000 0111 Branch misprediction correction from execute stage

000 1000 Number of reservations requested. The lwarx instruction is ready for execution in the LSU.

000 1001 Number of data cache load misses exceeding the threshold value with lateral L2 cache intervention

000 1010 Number of data cache store misses exceeding the threshold value with lateral L2 cache
intervention

000 1011 Number of mtspr instructions dispatched

000 1100 Number of sync instructions completed

000 1101 Number of eieio instructions completed

000 1110 Number of integer instructions completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions completed every cycle (no loads or stores)

001 0000 LSU produced result.

001 0001 SCIU1 produced result for an add, subtract, compare, rotate, shift, or logical instruction.

001 0010 FPU produced result.

001 0011 Number of instructions dispatched to the LSU

001 0100 Number of instructions dispatched to the SCIU1

001 0101 Number of instructions dispatched to the FPU

001 0110 Valid snoop requests received from outside the 604e. Does not distinguish hits or misses.

001 0111 Number of data cache load misses exceeding the threshold value without lateral L2 intervention

001 1000 Number of data cache store misses exceeding the threshold value without lateral L2 intervention

001 1001 Number of cycles the branch unit is idle

001 1010 Number of cycles MCIU0 is idle

001 1011 Number of cycles the LSU is idle. No new instructions are executing; however, active loads or
stores may be in the queues.

001 1100 Number of times the L2_INT is asserted (regardless of TA state)

001 1101 Number of unaligned loads

001 1110 Number of entries in the load queue each cycle (maximum of five). Although the load queue has
four entries, a load miss latch may hold a load waiting for data from memory.

001 1111 Number of instruction breakpoint hits

Table 2-7. Selectable Events—PMC1 (Continued)

MMCR0[0–4] Description
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Bits MMCR0[26–31] are used for selecting events associated with PMC2. These se
are shown in Table 2-8.

Table 2-8. Selectable Events—PMC2

MMCR0[26–31] Description

00 0000 Register counter holds current value.

00 0001 Processor cycles 0b1. Count every cycle.

00 0010 Number of instructions completed. Legal values are 000, 001, 010, 011, 100.

00 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

00 0100 Number of instructions dispatched (0 to 4 instructions per cycle)

00 0101 Number of cycles a load miss takes

00 0110 Data cache misses (in order)

00 0111 Number of instruction TLB misses

00 1000 Number of branches completed. Indicates the number of branch instructions being completed
every cycle (00 = none, 10 = one, 11 = two, 01 is an illegal value).

00 1001 Number of reservations successfully obtained (stwcx. operation completed successfully)

00 1010 Number of mfspr instructions dispatched (in order)

00 1011 Number of icbi instructions. It may not hit in the cache.

00 1100 Number of pipeline “flushing” instructions (sc, isync, mtspr (XER), mcrxr, floating-point operation
with divide by 0 or invalid operand and MSR[FE0, FE1] = 00, branch with MSR[BE] = 1, load
string indexed with XER = 0, and SO bit getting set)

00 1101 BPU produced result.

00 1110 SCIU0 produced result (of an add, subtract, compare, rotate, shift, or logical instruction).

00 1111 MCIU produced result (of a multiply/divide or SPR instruction).

01 0000 Number of instructions dispatched to the branch unit.

01 0001 Number of instructions dispatched to the SCIU0.

01 0010 Number of loads completed. These include all cache operations and tlbie, tlbsync, sync, eieio,
and icbi instructions.

01 0011 Number of instructions dispatched to the MCIU

01 0100 Number of snoop hits occurred

01 0101 Number of cycles during which the MSR[EE] bit is cleared

01 0110 Number of cycles the MCIU is idle

01 0111 Number of cycles SCIU1 is idle

01 1000 Number of cycles the FPU is idle

01 1001 Number of cycles the L2_INT signal is active (regardless of TA state)

01 1010 Number of times four instructions were dispatched

01 1011 Number of times three instructions were dispatched
Chapter 2.  Programming Model 2-17



s are
Bits MMCR1[0–4] are used for selecting events associated with PMC3. These setting
shown in Table 2-9.

01 1100 Number of times two instructions were dispatched

01 1101 Number of times one instruction was dispatched

01 1110 Number of unaligned stores

01 1111 Number of entries in the store queue each cycle (maximum of six)

Table 2-9. Selectable Events—PMC3

MMCR1[0–4] Comments

0 0000 Register counter holds current value.

0 0001 Count every cycle.

0 0010 Indicates the number of instructions being completed every cycle

0 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

0 0100 Number of instructions dispatched

0 0101 Number of cycles the LSU stalls due to BIU or cache busy. Counts cycles between when a load or
store request is made and a response was expected. For example, when a store is retried, there
are four cycles before the same instruction is presented to the cache again. Cycles in between are
not counted.

0 0110 Number of cycles the LSU stalls due to a full store queue

0 0111 Number of cycles the LSU stalls due to operands not available in the reservation station

0 1000 Number of instructions written into the load queue. Misaligned loads are split into two transactions
with the first part always written into the load queue. If both parts are cache hits, data is returned to
the rename registers and the first part is flushed from the load queue. To count the instructions that
enter the load queue to stay, the misaligned load hits must be subtracted. See event 8 in
Table 2-10.

0 1001 Number of cycles that completion stalls for a store instruction

0 1010 Number of cycles that completion stalls for an unfinished instruction. This event is a superset of
PMC3 event 9 and PMC4 event 10.

0 1011 Number of system calls

0 1100 Number of cycles the BPU stalled as branch waits for its operand

0 1101 Number of fetch corrections made at the dispatch stage. Prioritized behind the execute stage.

0 1110 Number of cycles the dispatch stalls waiting for instructions

0 1111 Number of cycles the dispatch stalls due to unavailability of reorder buffer (ROB) entry. No ROB
entry was available for the first nondispatched instruction.

1 0000 Number of cycles the dispatch unit stalls due to no FPR rename buffer available. First
nondispatched instruction required a floating-point reorder buffer and none was available.

1 0001 Number of instruction table search operations

Table 2-8. Selectable Events—PMC2 (Continued)

MMCR0[26–31] Description
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Bits MMCR1[5–9] are used for selecting events associated with PMC4. These setting
shown in Table 2-9.

1 0010 Number of data table search operations. Completion could result from a page fault or a PTE match.

1 0011 Number of cycles the FPU stalled

1 0100 Number of cycles the SCIU1 stalled

1 0101 Number of times the BIU forwards noncritical data from the line-fill buffer

1 0110 Number of data bus transactions completed with pipelining one deep with no additional bus
transactions queued behind it

1 0111 Number of data bus transactions completed with two data bus transactions queued behind

1 1000 Counts pairs of back-to-back burst reads streamed without a dead cycle between them in data
streaming mode

1 1001 Counts non-ARTRYd processor kill transactions caused by a write-hit-on-shared condition

1 1010 This event counts non-ARTRYd write-with-kill address operations that originate from the three
castout buffers. These include high-priority write-with-kill transactions caused by a snoop hit on
modified data in one of the BIU’s three copy-back buffers. When the cache block on a data cache
miss is modified, it is queued in one of three copy-back buffers. The miss is serviced before the
copy-back buffer is written back to memory as a write-with-kill transaction.

1 1011 Number of cycles when exactly two castout buffers are occupied

1 1100 Number of data cache accesses retried due to occupied castout buffers

1 1101 Number of read transactions from load misses brought into the cache in a shared state

1 1110 CRU Indicates that a CR logical instruction is being finished.

Table 2-10. Selectable Events—PMC4

MMCR1[5–9] Description

0 0000 Register counter holds current value

0 0001 Count every cycle

0 0010 Number of instructions being completed

0 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

0 0100 Number of instructions dispatched

0 0101 Number of cycles the LSU stalls due to busy MMU

0 0110 Number of cycles the LSU stalls due to the load queue full

0 0111 Number of cycles the LSU stalls due to address collision

0 1000 Number of misaligned loads that are cache hits for both the first and second accesses. Related to
event 8 in PMC3.

0 1001 Number of instructions written into the store queue

Table 2-9. Selectable Events—PMC3 (Continued)

MMCR1[0–4] Comments
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2.1.2.5.4  Sampled Instruction Address Register (SIA)
The two address registers contain the addresses of the data or the instruction that ca
threshold-related performance monitor interrupt. For more information
threshold-related interrupts, see Section 9.1.2.2, “Threshold Events.”

0 1010 Number of cycles that completion stalls for a load instruction

0 1011 Number of hits in the BTAC. Warning —if decode buffers cannot accept new instructions, the
processor refetches the same address multiple times.

0 1100 Number of times the four basic blocks in the completion buffer from which instructions can be
retired were used

0 1101 Number of fetch corrections made at decode stage

0 1110 Number of cycles the dispatch unit stalls due to no unit available. First nondispatched instruction
requires an execution unit that is either full or a previous instruction is being dispatched to that unit.

0 1111 Number of cycles the dispatch unit stalls due to unavailability of GPR rename buffer. First
nondispatched instruction requires a GPR reorder buffer and none are available.

1 0000 Number of cycles the dispatch unit stalls due to no CR rename buffer available. First
nondispatched instruction requires a CR rename buffer and none is available.

1 0001 Number of cycles the dispatch unit stalls due to CTR/LR interlock. First nondispatched instruction
could not dispatch due to CTR/LR/mtcrf  interlock.

1 0010 Number of cycles spent doing instruction table search operations

1 0011 Number of cycles spent doing data table search operations

1 0100 Number of cycles SCIU0 was stalled

1 0101 Number of cycles MCIU was stalled

1 0110 Number of bus cycles after an internal bus request without a qualified bus grant

1 0111 Number of data bus transactions completed with one data bus transaction queued behind

1 1000 Number of write data transactions that have been reordered before a previous read data
transaction using the DBWO feature

1 1001 Number of ARTRYd processor address bus transactions

1 1010 Number of high-priority snoop pushes. Snoop transactions, except for write-with-kill, that hit
modified data in the data cache cause a high-priority write (snoop push) of that modified cache
block to memory.This operation has a transaction type of write-with-kill. This event counts the
number of non-ARTRYd processor write-with-kill transactions that were caused by a snoop hit on
modified data in the data cache. It does not count high-priority write-with-kill transactions caused
by snoop hits on modified data in one of the BIU’s three copy-back buffers.

1 1011 Number of cycles for which exactly one castout buffer is occupied

1 1100 Number of cycles for which exactly three castout buffers are occupied

1 1101 Number of read transactions from load misses brought into the cache in an exclusive (E) state

1 1110 Number of undispatched instructions beyond branch

Table 2-10. Selectable Events—PMC4 (Continued)

MMCR1[5–9] Description
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The SIA contains the effective address of an instruction executing at or around the tim
the processor signals the performance monitor interrupt condition. If the perform
monitor interrupt was triggered by a threshold event, the SIA contains the exact instru
that caused the counter to become negative. The instruction whose effective addres
in the SIA is called the sampled instruction.

If the performance monitor interrupt was caused by something besides a threshold
the SIA contains the address of the last instruction completed during that cycle. The
contains an effective address that is not guaranteed to match the instruction in the SIA
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using themfspr instruction and written to by using themtspr
instruction (SPR 955).

2.1.2.5.5  Sampled Data Address Register (SDA)
The SDA contains the effective address of an operand of an instruction executing
around the time that the processor signals the performance monitor interrupt conditi
this case the SDA is not meant to have any connection with the value in the SIA. I
performance monitor interrupt was triggered by a threshold event, the SDA contain
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than a threshold
the SIA contains the address of the last instruction completed during that cycle. The
contains an effective address that is not guaranteed to match the instruction in the SIA
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using themfspr instruction and written to by using themtspr
instruction (SPR 959).

2.1.3  Reset Settings
Table 2-11 shows the state of the registers after a hard reset and before the first inst
is fetched from address 0xFFF0_0100 (the system reset exception vector).

Table 2-11. Settings after Hard Reset (Used at Power-On)

Register Setting Register Setting

BATs Undefined LR Undefined

Caches* Undefined and disabled MSR 0x00000040 (only IP set)

CR Undefined PIR Undefined

CTR Undefined PVR ROM value

DABR Breakpoint is disabled.
Address is undefined.

Reservation
address

Undefined

DAR Undefined Reservation flag Cleared

DEC Undefined SDR1 Undefined
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2.2  Operand Conventions
This section describes the operand conventions as they are represented in two level
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conven
used for storing values in registers and memory, accessing PowerPC registers
representation of data in these registers.

2.2.1  Floating-Point Execution Models—UISA
The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The sta
requires that single-precision arithmetic be provided for single-precision operands
standard permits double-precision arithmetic instructions to have either (or b
single-precision or double-precision operands, but states that single-precision arith
instructions should not accept double-precision operands.

• Double-precision arithmetic instructions may have single-precision operands 
always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-preci
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be d
explicitly by software, while conversion from single- to double-precision is done implic
by the processor.

All PowerPC implementations provide the equivalent of the following execution mode
ensure that identical results are obtained. The definition of the arithmetic instruction
infinities, denormalized numbers, and NaNs follow conventions described in the follow
sections.

DSISR Undefined SPRG0–SPGR3 Undefined

EAR E is cleared;
RID is undefined.

SR Undefined

FPR Undefined SRR0 Undefined

FPSCR Set to 0 SRR1 Undefined

GPR Undefined Time base Undefined

HID0 0x00000000 TLB Undefined

IABR Breakpoint is disabled.
Address is undefined.

XER Undefined

* The processor automatically begins operations by issuing an instruction fetch. Because caching is
inhibited at start-up, this generates a single-beat load operation on the bus.

Table 2-11. Settings after Hard Reset (Used at Power-On) (Continued)

Register Setting Register Setting
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Although the double-precision format specifies an 11-bit exponent, exponent arithm
uses two additional bit positions to avoid potential transient overflow conditions. An e
bit is required when denormalized double-precision numbers are prenormalized. A s
bit is required to permit computation of the adjusted exponent value in the follow
examples when the corresponding exception enable bit is one:

• Underflow during multiplication using a denormalized operand
• Overflow during division using a denormalized divisor

2.2.2  Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the ad
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load
multiple and load/store string instructions, a sequence of bytes or words. The addres
memory operand is the address of its first byte (that is, of its lowest-numbered b
Operand length is implicit for each instruction.

2.2.3  Alignment and Misaligned Accesses
The operand of a single-register memory access instruction has a natural align
boundary equal to the operand length. In other words, the “natural” address of an op
is an integral multiple of the operand length. A memory operand is said to be aligned
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics sh
Table 2-12. (Although not permitted as memory operands, quad words are shown be
quad-word alignment is desirable for certain memory operands).

The concept of alignment is also applied more generally to data in memory. For exa
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In add
alignment may affect performance. For single-register memory access instructions, th
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

2.2.4  Support for Misaligned Little-Endian Accesses
The 604e provides hardware support for misaligned little-endian accesses. Little-e
accesses in the 604e take an alignment exception for the same cases that big-
accesses take alignment exceptions. Any data access that crosses a word boundary
two accesses regardless of whether the data is in big- or little-endian format. Whe
accesses are required, the lower addressed word (in the current addressing m
accessed first. Consider the memory mapping in Figure 2-6.
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Figure 2-6. Big-Endian and Little-Endian Memory Mapping

If two bytes are requested starting at little-endian address 0x3, one byte at big-e
address 0x4 containing dataE is accessed first followed by one byte at big-endian addr
0x3 containing dataD. For a load halfword, the data written back to the GPR would
D, E. If four bytes are requested starting at little-endian address 0x6, two byte
big-endian address 0x0 containing dataA, B are accessed first followed by two bytes
big-endian address 0xE containing dataO, P. For a load word, the data written back to th
GPR would beO, P, A, B.

Misaligned little-endian accesses to direct-storage segments are boundedly-undefin

2.2.5  Floating-Point Operand
The 604e provides hardware support for all single- and double-precision floating-
operations for most value representations and all rounding modes. This archite
provides for hardware to implement a floating-point system as defined in ANSI/IE
standard 754-1985,IEEE Standard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, “Ope
Conventions,” inThe Programming Environments Manual.

The 604e supports non-IEEE mode whenever FPSCR[29] is set. In this m
denormalized numbers, NaNs, and some IEEE invalid operations are treated in a non
conforming manner. This is accomplished by delivering results that approximate the v
required by the IEEE standard. Table 2-12 summarizes the conditions and mode be
for operands.

Big-Endian Mode

Contents A B C D E F G H

Address 00 01 02 03 04 05 06 07

Contents I J K L M N O P

Address 08 09 0A 0B 0C 0D 0E 0F

Little-Endian Mode

Contents A B C D E F G H

Address 07 06 05 04 03 02 01 00

Contents I J K L M N O P

Address 0F 0E 0D 0C 0B 0A 09 08
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Table 2-12. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI = 0)

Non-IEEE Mode
(NI = 1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three Zero all three

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero Normalize A and B Zero A and B

Normalized or zero Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize B and C Zero B and C

Single denormalized
Double denormalized

Normalized or zero Single denormalized
Double denormalized

Normalize A and C Zero A and C

Single denormalized
Double denormalized

Normalized or zero Normalized or zero Normalize A Zero A

Normalized or zero Single denormalized
Double denormalized

Normalized or zero Normalize B Zero B

Normalized or zero Normalized or zero Single denormalized
Double denormalized

Normalize C Zero C

Single QNaN
Single SNaN
Double QNaN
Double SNaN

Don’t care Don’t care QNaN[1] QNaN[1]

Don’t care Single QNaN
Single SNaN
Double QNaN
Double SNaN

Don’t care QNaN[1] QNaN[1]

Don’t care Don’t care Single QNaN
Single SNaN
Double QNaN
Double SNaN

QNaN[1] QNaN[1]

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Do the operation Do the operation

1 Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.
Chapter 2.  Programming Model 2-25



ds in
nce is

e best
s, the
erand

These

re

, as
CR).
Table 2-13 summarizes the mode behavior for results.

2.2.6  Effect of Operand Placement on Performance
The PowerPC VEA states that the placement (location and alignment) of operan
memory may affect the relative performance of memory accesses. The best performa
guaranteed if memory operands are aligned on natural boundaries. To obtain th
performance across the widest range of PowerPC processor implementation
programmer should assume the performance model described in Chapter 3, “Op
Conventions,” inThe Programming Environments Manual.

2.3  Instruction Set Summary
This section describes instructions and addressing modes defined for the 604e.
instructions are divided into the following functional categories:

• Integer instructions—These include arithmetic and logical instructions. For mo
information, see Section 2.3.4.1, “Integer Instructions.”

• Floating-point instructions—These include floating-point arithmetic instructions
well as instructions that affect the floating-point status and control register (FPS
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

Table 2-13. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1)

Single Denormalized Return single-precision
denormalized number with trailing
zeros.

Return zero.

Single Normalized
Infinity
Zero

Return the result. Return the result.

Single QNaN
SNaN

Return QNaN. Return QNaN.

Single INT Place integer into low word of FPR. If (Invalid Operation)
then

Place (0x8000) into FPR[32–63]
else

Place integer into FPR[32–63].

Double Denormalized Return double precision
denormalized number.

Return zero.

Double Normalized
Infinity
Zero

Return the result. Return the result.

Double QNaN
SNaN

Return QNaN. Return QNaN.

Double INT Not supported by 604e Not supported by 604e
2-26 PowerPC 604e RISC Microprocessor User's Manual



store

ster

ore

ry

Bs,
ntrol
.”

rnal

it that
seful
ided

te on
cture
ord,

urpose
tores

ts of
ation,
target

ands.
bols

fied
• Load and store instructions—These include integer and floating-point load and
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

• Flow control instructions—These include branching instructions, condition regi
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

• Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For m
information, see Section 2.3.4.6, “Processor Control Instructions—UISA,”
Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA.”

• Memory synchronization instructions—These instructions are used for memo
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

• Memory control instructions—These instructions provide control of caches, TL
and segment registers. For more information, see Section 2.3.5.3, “Memory Co
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA

• External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional Exte
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution un
processes a particular instruction or group of instructions. This information, which is u
in taking full advantage of the 604e’s superscalar parallel instruction execution, is prov
in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions opera
single-precision and double-precision floating-point operands. The PowerPC archite
uses instructions that are four bytes long and word-aligned. It provides for byte, half-w
and word operand loads and stores between memory and a set of 32 general-p
registers (GPRs). It also provides for word and double-word operand loads and s
between memory and a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not read or modify memory. To use the conten
a memory location in a computation and then modify the same or another memory loc
the memory contents must be loaded into a register, modified, and then written to the
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of oper
To simplify assembly language programming, a set of simplified mnemonics and sym
is provided for some of the frequently-used instructions; see Appendix F, “Simpli
Mnemonics,” inThe Programming Environments Manualfor a complete list of simplified
Chapter 2.  Programming Model 2-27
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mnemonics. Note that the architecture specification refers to simplified mnemoni
extended mnemonics. Programs written to be portable across the various assemblers
PowerPC architecture should not assume the existence of mnemonics not described
document.

2.3.1  Classes of Instructions
The 604e instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

Note that while the definitions of these terms are consistent among the Pow
processors, the assignment of these classifications is not. For example, a Po
instruction defined for 64-bit implementations are treated as illegal by 32
implementations such as the 604e.

The class is determined by examining the primary opcode and the extended opcode,
If the opcode, or combination of opcode and extended opcode, is not that of a de
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions i
architecture or may be reserved by being assigned to processor-specific instruction

2.3.1.1  Definition of Boundedly Undefined
If instructions are encoded with incorrectly set bits in reserved fields, the result
execution can be said to be boundedly undefined. If a user-level program execut
incorrectly coded instruction, the resulting undefined results are bounded in that a sp
change from user to supervisor state is not allowed, and the level of privilege exercis
the program in relation to memory access and other system resources cannot be exc
Boundedly undefined results for a given instruction may vary between implementat
and between execution attempts in the same implementation.

2.3.1.2  Defined Instruction Class
Defined instructions are guaranteed to be supported in all PowerPC implementa
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” inThe
Programming Environments Manual. The 604e provides hardware support for a
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the prog
exception) when the unimplemented PowerPC instructions are encountered so they m
emulated in software, as required. Note that the architecture specification refe
exceptions as interrupts.

The 604e provides hardware support for all instructions defined for 32-bit implementat
The 604e does not support the optionalfsqrt , fsqrts, andtlbia  instructions.
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A defined instruction can have invalid forms. The 604e provides limited support
instructions that are represented in an invalid form. Appendix B, “Invalid Instruct
Forms,” lists all invalid instruction forms and specifies the operation of the 604e u
detecting each.

2.3.1.3  Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1, 4, 5, 6, 9, 22, 56, 57, 60, 61

Future versions of the PowerPC architecture may define any of these instructio
perform new functions.

• Instructions defined in the PowerPC architecture but not implemented in a spe
PowerPC implementation. For example, instructions that can be executed on 6
PowerPC processors are considered illegal by 32-bit processors such as the 

The following primary opcodes are defined for 64-bit implementations only and
illegal on the 604e:

2, 30, 58, 62

• All unused extended opcodes are illegal. The unused extended opcodes can 
determined from information in Section A.2, “Instructions Sorted by Opcode,” a
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes f
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended op

• An instruction consisting of only zeros is guaranteed to be an illegal instruction. T
increases the probability that an attempt to execute data or uninitialized mem
invokes the system illegal instruction error handler (a program exception). Note
if only the primary opcode consists of all zeros. The instruction is considered 
reserved instruction, as described in Section 2.3.1.4, “Reserved Instruction C

The 604e invokes the system illegal instruction error handler (a program exception)
it detects any instruction from this class or any instructions defined only for 64
implementations.

See Section 4.5.7, “Program Exception (0x00700),” for additional information about ill
and invalid instruction exceptions. With the exception of the instruction consisting ent
of binary zeros, the illegal instructions are available for further additions to the Powe
architecture.
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2.3.1.4  Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purpos
defined by the PowerPC architecture. An attempt to execute an unimplemented res
instruction invokes the illegal instruction error handler (a program exception).
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” inThe Programming
Environments Manualfor additional information about illegal and invalid instructio
exceptions.

The PowerPC architecture defines four types of reserved instructions:

• Instructions in the POWER architecture not part of the PowerPC UISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, “POWER Architecture Cross Reference,”
The Programming Environments Manual.

• Implementation-specific instructions required to conform to the PowerPC
architecture

• Architecturally-allowed extended opcodes

• Implementation-specific instructions

2.3.2  Addressing Modes
This section provides an overview of conventions for addressing memory and
calculating effective addresses as defined by the PowerPC architecture for 3
implementations. For more detailed information, see “Conventions,” in Chapt
“Addressing Modes and Instruction Set Summary,” ofThe Programming Environments
Manual.

2.3.2.1  Memory Addressing
A program references memory using the effective (logical) address computed b
processor when it executes a memory access or branch instruction or when it fetch
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number i
address of the corresponding byte.

2.3.2.2  Memory Operands
Memory operands may be bytes, half words, words, or double words, or, for the load
multiple and load/store string instructions, a sequence of bytes or words. The addres
memory operand is the address of its first byte (that is, of its lowest-numbered b
Operand length is implicit for each instruction. The PowerPC architecture supports
big-endian and little-endian byte ordering. The default byte and bit ordering is big-en
See “Byte Ordering,” in Chapter 3, “Operand Conventions,” ofThe Programming
Environments Manual for more information about big- and little-endian byte ordering.
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The operand of a single-register memory access instruction has a natural align
boundary equal to the operand length. In other words, the “natural” address of an op
is an integral multiple of the operand length. A memory operand is said to be aligned
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion
memory operands, see Chapter 3, “Operand Conventions,” ofThe Programming
Environments Manual.

2.3.2.3  Effective Address Calculation
An effective address (EA) is the 32-bit sum computed by the processor when execu
memory access or branch instruction or when fetching the next sequential instructio
a memory access instruction, if the sum of the effective address and the operand
exceeds the maximum effective address, the memory operand is considered to wrap
from the maximum effective address through effective address 0, as described
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit un
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode
• Register indirect with index mode
• Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a de
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate
• Link register indirect
• Count register indirect

2.3.2.4  Synchronization
The synchronization described in this section refers to the state of the processor
performing the synchronization.

2.3.2.4.1  Context Synchronization
The System Call (sc) and Return from Interrupt (rfi ) instructions perform context
synchronization by allowing previously issued instructions to complete before perform
a change in context. Execution of one of these instructions ensures the following:

• No higher priority exception exists (sc).

• All previous instructions have completed to a point where they can no longer ca
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instructio
executed.
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• Previous instructions complete execution in the context (privilege, protection, 
address translation) under which they were issued.

• The instructions following thescor rfi instruction execute in the context establishe
by these instructions.

2.3.2.4.2  Execution Synchronization
An instruction is execution synchronizing if all previously initiated instructions appea
have completed before the instruction is initiated or, in the case ofsyncandisync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions
completed execution and will not cause an exception before the instruction execute
does not ensure subsequent instructions execute in the newly established environme
example, if themtmsr sets the MSR[PR] bit, unless anisync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access cou
performed without causing an exception even though the MSR[PR] bit indicates user m

2.3.2.4.3  Instruction-Related Exceptions
There are two kinds of exceptions in the 604e—those caused directly by the execut
an instruction and those caused by an asynchronous event (or interrupts). Either may
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (prog
exception) handler to be invoked. An attempt by a user-level program to execut
supervisor-level instructions listed below causes the privileged instruction (prog
exception) handler to be invoked. The 604e provides the following supervisor-l
instructions:dcbi, mfmsr, mfspr, mfsr, mfsrin , mtmsr, mtspr, mtsr, mtsrin , rfi ,
tlbie, andtlbsync. Note that the privilege level of themfspr andmtspr instructions
depends on the SPR encoding.

• An attempt to access memory that is not available (page fault) causes the ISI
exception handler to be invoked.

• An attempt to access memory with an effective address alignment that is invalid
the instruction causes the alignment exception handler to be invoked.

• The execution of ansc instruction invokes the system call exception handler tha
permits a program to request the system to perform a service.

• The execution of a trap instruction invokes the program exception trap handle

• The execution of a floating-point instruction when floating-point instructions ar
disabled invokes the floating-point unavailable handler.

• The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exception
2-32 PowerPC 604e RISC Microprocessor User's Manual
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2.3.3  Instruction Set Overview
This section provides a brief overview of the PowerPC instructions implemented in
604e and highlights any special information with respect to how the 604e impleme
particular instruction. Note that the categories used in this section correspond to thos
in Chapter 4, “Addressing Modes and Instruction Set Summary,” inThe Programming
Environments Manual. These categorizations are somewhat arbitrary and are provide
the convenience of the programmer and do not necessarily reflect the PowerPC archi
specification.

Note that some instructions have the following optional features:

• CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
• Overflow option—Theosuffix indicates that the overflow bit in the XER is enable

Note that on the 604e, the undefined result of an integer divide overflow differs f
that of the 604.

2.3.4  PowerPC UISA Instructions
The PowerPC UISA includes the base user-level instruction set (excluding a few user
cache control, synchronization, and time base instructions), user-level regi
programming model, data types, and addressing modes. This section discuss
instructions defined in the UISA.

2.3.4.1  Integer Instructions
This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
• Integer logical instructions
• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place resu
GPRs, into the XER register, and into condition register (CR) fields.

2.3.4.1.1  Integer Arithmetic Instructions
Table 2-14 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-14. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add Immediate addi r D,rA,SIMM

Add Immediate Shifted addis r D,rA,SIMM

Add add (add. addo addo. ) rD,rA,rB

Subtract From subf (subf. subfo subfo. ) rD,rA,rB

Add Immediate Carrying addic r D,rA,SIMM
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Although there is no Subtract Immediate instruction, its effect can be achieved by usi
addi instruction with the immediate operand negated. Simplified mnemonics are prov
that include this negation. Thesubf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” inThe
Programming Environments Manual for examples.

The UISA states that for some implementations that execute instructions that se
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly o
may prevent the execution of the subsequent instruction until the operation is complet
604e arithmetic instructions may suffer this penalty. The summary overflow bit (SO)
overflow bit (OV) in the XER are set to reflect an overflow condition of a 32-bit result. T
may only occur when the overflow enable bit is set (OE = 1).

Add Immediate Carrying and Record addic. r D,rA,SIMM

Subtract from Immediate Carrying subfic r D,rA,SIMM

Add Carrying addc (addc. addco addco. ) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco. ) rD,rA,rB

Add Extended adde (adde. addeo addeo. ) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo. ) rD,rA,rB

Add to Minus One Extended addme (addme. addmeo addmeo. ) rD,rA

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo. ) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo. ) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo. ) rD,rA

Negate neg (neg. nego nego. ) rD,rA

Multiply Low Immediate mulli r D,rA,SIMM

Multiply Low mullw (mullw. mullwo mullwo. ) rD,rA,rB

Multiply High Word mulhw (mulhw. ) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu. ) rD,rA,rB

Divide Word divw (divw. divwo divwo. ) rD,rA,rB

Divide Word Unsigned divwu divwu. divwuo divwuo. r D,rA,rB

Table 2-14. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax
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2.3.4.1.2  Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of re
rA with either the zero-extended value of the UIMM operand, the sign-extended valu
the SIMM operand, or the contents of registerrB. The comparison is signed for thecmpi
and cmp instructions, and unsigned for thecmpli and cmpl instructions. Table 2-15
summarizes the integer compare instructions.

The crfD operand can be omitted if the result of the comparison is to be placed in C
Otherwise the target CR field must be specified in the instructioncrfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions
Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manual.

2.3.4.1.3  Integer Logical Instructions
The logical instructions shown in Table 2-16 perform bit-parallel operations on
specified operands. Logical instructions with the CR updating enabled (uses dot suffix
instructionsandi. and andis. set CR field CR0 to characterize the result of the logic
operation. Logical instructions do not affect the XER[SO], XER[OV], and XER[CA] b

See Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manualfor
simplified mnemonic examples for integer logical operations.

Table 2-15. Integer Compare Instructions

Name Mnemonic Operand Syntax

Compare Immediate cmpi crf D,L,rA,SIMM

Compare cmp crf D,L,rA,rB

Compare Logical Immediate cmpli crf D,L,rA,UIMM

Compare Logical cmpl crf D,L,rA,rB

Table 2-16. Integer Logical Instructions

Name Mnemonic
Operand
Syntax

AND Immediate andi. r A,rS,UIMM

AND Immediate Shifted andis. r A,rS,UIMM

OR Immediate ori r A,rS,UIMM

OR Immediate Shifted oris r A,rS,UIMM

XOR Immediate xori r A,rS,UIMM

XOR Immediate Shifted xoris r A,rS,UIMM

AND and (and. ) rA,rS,rB

OR or (or. ) rA,rS,rB
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2.3.4.1.4  Integer Rotate and Shift Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” inThe
Programming Environments Manualfor a complete list of simplified mnemonics tha
allows simpler coding of often-used functions such as clearing the leftmost or right
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates a
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is
inserted into the target register under control of a mask (if a mask bit is 1 the associat
of the rotated data is placed into the target register, and if the mask bit is 0 the asso
bit in the target register is unchanged), or ANDed with a mask before being placed int
target register.

The integer rotate instructions are summarized in Table 2-17.

The integer shift instructions perform left and right shifts. Immediate-form logi
(unsigned) shift operations are obtained by specifying masks and shift values for c
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplifi
Mnemonics,” inThe Programming Environments Manual) are provided to make coding o
such shifts simpler and easier to understand.

XOR xor (xor. ) rA,rS,rB

NAND nand (nand. ) rA,rS,rB

NOR nor (nor. ) rA,rS,rB

Equivalent eqv (eqv. ) rA,rS,rB

AND with Complement andc (andc. ) rA,rS,rB

OR with Complement orc (orc. ) rA,rS,rB

Extend Sign Byte extsb (extsb. ) rA,rS

Extend Sign Half Word extsh (extsh. ) rA,rS

Count Leading Zeros Word cntlzw (cntlzw. ) rA,rS

Table 2-17. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AND with Mask rlwinm  (rlwinm. ) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm. ) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi. ) rA,rS,SH,MB,ME

Table 2-16. Integer Logical Instructions (Continued)

Name Mnemonic
Operand
Syntax
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Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Preci
Shifts,” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-18.

2.3.4.2  Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions
• Floating-point rounding and conversion instructions
• Floating-point compare instructions
• Floating-point status and control register instructions
• Floating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-p
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE
standard, but requires software support to conform with that standard. All floating-p
operations conform to the IEEE 754 standard, except if software sets the non-IEEE
bit (NI) in the FPSCR.

2.3.4.2.1  Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-19.

Table 2-18. Integer Shift Instructions

Name Mnemonic Operand Syntax

Shift Left Word slw (slw. ) rA,rS,rB

Shift Right Word srw (srw. ) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi. ) rA,rS,SH

Shift Right Algebraic Word sraw (sraw. ) rA,rS,rB

Table 2-19. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd. ) frD,frA,frB

Floating Add Single fadds (fadds. ) frD,frA,frB

Floating Subtract (Double-Precision) fsub (fsub. ) frD,frA,frB

Floating Subtract Single fsubs (fsubs. ) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul. ) frD,frA,frC

Floating Multiply Single fmuls (fmuls. ) frD,frA,frC

Floating Divide (Double-Precision) fdiv (fdiv. ) frD,frA,frB
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All single-precision arithmetic instructions are performed using a double-precision for
The floating-point architecture is a single-pass implementation for double-prec
products. In most cases, a single-precision instruction using only single-prec
operands, in double-precision format, has the same latency as its double-pre
equivalent.

2.3.4.2.2  Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate roun
operation. The floating-point multiply-add instructions are summarized in Table 2-20

2.3.4.2.3  Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-b
double-precision number to a 32-bit single-precision floating-point number.
floating-point convert instructions convert a 64-bit double-precision floating-point num
to a 32-bit signed integer number.

Floating Divide Single fdivs (fdivs. ) frD,frA,frB

Floating Square Root (Double-Precision) fsqrt (fsqrt. ) frD,frB

Floating Square Root Single fsqrts (fsqrts. ) frD,frB

Floating Reciprocal Estimate Single fres (fres. ) frD,frB

Floating Reciprocal Square Root Estimate frsqrte (frsqrte. ) frD,frB

Floating Select fsel fr D,frA,frC,frB

Table 2-20. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd. ) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds. ) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub. ) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs. ) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd. ) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds. ) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub. ) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs. ) frD,frA,frC,frB

Table 2-19. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax
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Examples of uses of these instructions to perform various conversions can be fou
Appendix D, “Floating-Point Models,” inThe Programming Environments Manual.

2.3.4.2.4  Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point regis
The comparison ignores the sign of zero (that is +0 = –0). The floating-point com
instructions are summarized in Table 2-22.

Within the PowerPC architecture, anfcmpu or fcmpo instruction with the Rc bit set can
cause an illegal instruction program exception or produce a boundedly undefined res
the 604e,crfD should be treated as undefined.

2.3.4.2.5  Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-p
instructions executed by a given processor. Executing an FPSCR instruction ensures
floating-point instructions previously initiated by the given processor appear to
completed before the FPSCR instruction is initiated and that no subsequent floating
instructions appear to be initiated by the given processor until the FPSCR instructio
completed. The FPSCR instructions are summarized in Table 2-23.

Table 2-21. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax

Floating Round to Single frsp (frsp. ) frD,frB

Floating Convert to Integer Word fctiw (fctiw. ) frD,frB

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz. ) frD,frB

Table 2-22. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax

Floating Compare Unordered fcmpu crf D,frA,frB

Floating Compare Ordered fcmpo crf D,frA,frB

Table 2-23. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax

Move from FPSCR mffs (mffs. ) frD

Move to Condition Register from FPSCR mcrfs crf D,crf S

Move to FPSCR Field Immediate mtfsfi (mtfsfi. ) crf D,IMM

Move to FPSCR Fields mtfsf (mtfsf. ) FM,frB

Move to FPSCR Bit 0 mtfsb0 (mtfsb0. ) crb D

Move to FPSCR Bit 1 mtfsb1 (mtfsb1. ) crb D
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2.3.4.2.6  Floating-Point Move Instructions
Floating-point move instructions copy data from one FPR to another. The floating-p
move instructions do not modify the FPSCR. The CR update option in these instruc
controls the placing of result status into CR1. Table 2-24 summarizes the floating-
move instructions.

2.3.4.3  Load and Store Instructions
Load and store instructions are issued and translated in program order; howeve
accesses can occur out of order. Synchronizing instructions are provided to enforce
ordering. This section describes the load and store instructions, which consist o
following:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte reverse instructions
• Integer load and store multiple instructions
• Floating-point load instructions
• Floating-point store instructions
• Memory synchronization instructions

Implementation Notes—The following describes how the 604e handles misalignmen

• If an unaligned memory access crosses a 4-Kbyte page boundary, within a no
segment, an exception may occur when the boundary is crossed (that is, a prote
violation occurs on the new page). In these cases, the 604e triggers a DSI exce
and the instruction may have partially completed.

• Some misaligned memory accesses suffer performance degradation as compa
an aligned access of the same type. Memory accesses that cross a word bound
broken into multiple discrete accesses by the load/store unit, except floating-p
doubles aligned on a double-word boundary. Any noncacheable access that cr
a double-word boundary is broken into multiple external bus tenures.

Table 2-24. Floating-Point Move Instructions

Name Mnemonic Operand Syntax

Floating Move Register fmr (fmr. ) frD,frB

Floating Negate fneg (fneg. ) frD,frB

Floating Absolute Value fabs (fabs. ) frD,frB

Floating Negative Absolute Value fnabs (fnabs. ) frD,frB
2-40 PowerPC 604e RISC Microprocessor User's Manual
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• Any operation that crosses a word boundary (double word for floating-point dou
aligned on a double-word boundary) is broken into two accesses. Each of the
accesses is translated. If either translation results in a data memory violation, a
exception is signaled. If two translations cross from T = 1 into T = 0 space (a
programming error), the 604e completes all of the accesses for the operation
segment information from the T = 1 space is presented on the bus for every a
of the operation, and he 604e requires a direct-store protocol “Reply” from the
device. If two translations cross from T = 0 into T = 1 space, a DSI exception 
signaled.

• In the PowerPC architecture, the Rc bit must be zero for almost all load and s
instructions. If the Rc bit is one, the instruction form is invalid. These include t
integer load indexed instructions (lbzx, lbzux, lhzx, lhzux, lhax, lhaux, lwzx,
lwzux), the integer store indexed instructions (stbx, stbux, sthx, sthux, stwx,
stwux), the load and store with byte-reversal instructions (lhbrx , lwbrx , sthbrx,
stwbrx), the string instructions (lswi, lswx, stswi, stswx), and the synchronization
instructions (sync, lwarx). In the 604e, executing one of these invalid instruction
forms causes CR0 to be set to an undefined value. The floating-point load and
indexed instructions (lfsx, lfsux, lfdx, lfdux, stfsx, stfsux, stfdx, stfdux) are also
invalid when the Rc bit is one. In the 604e, executing one of these invalid instruc
forms causes CR0 to be set to an undefined value.

2.3.4.3.1  Self-Modifying Code
When a processor modifies a memory location that may be contained in the instru
cache, software must ensure that memory updates are visible to the instruction fe
mechanism. This can be achieved by the following instruction sequence:

dcbst |update memory
sync |wait for update
icbi |remove (invalidate) copy in instruction cache
sync |wait for icbi to be globally performed
isync |remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache
instruction fetching bypasses the data cache, changes to items in the data cache ma
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement
secondary caches, and designers should carefully follow the guidelines for mainta
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache
and Memory Coherency,” inThe Programming Environments Manual. Because the 604e
does not broadcast the M bit for instruction fetches, external caches are subje
coherency paradoxes.

2.3.4.3.2  Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indire
immediate index mode, register indirect with index mode, or register indirect mode.
Section 2.3.2.3, “Effective Address Calculation,” for information about calculat
effective addresses. Note that in some implementations, operations that are not na
Chapter 2.  Programming Model 2-41
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aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exce
(0x00600),” for additional information about load and store address alignment excep

2.3.4.3.3  Register Indirect Integer Load Instructions
For integer load instructions, the byte, half word, word, or double word addressed b
EA (effective address) is loaded intorD. Many integer load instructions have an upda
form, in whichrA is updated with the generated effective address. For these forms, ifrA 0
andrA rD (otherwise invalid), the EA is placed intorA and the memory element (byte
half word, word, or double word) addressed by the EA is loaded intorD. Note that the
PowerPC architecture defines load with update instructions with operandrA = 0 or
rA = rD as invalid forms.

Implementation Notes—The following notes describe the 604e implementation of inte
load instructions:

• In the PowerPC architecture, the Rc bit must be zero for almost all load and s
instructions. If the Rc bit is one, the instruction form is invalid. These include t
integer load indexed instructions (lbzx, lbzux, lhzx, lhzux, lhax, lhaux, lwzx, and
lwzux). In the 604e, executing one of these invalid instruction forms causes CR
be set to an undefined value.

• For load with update instructions(lbzu, lbzux, lhzu, lhzux, lhau, lhaux, lwzu,
lwzux, lfsu, lfsux, lfdu, lfdux), whenrA = 0 orrA = rD the instruction form is
considered invalid. IfrA = 0, the 604e sets GPR0 to an undefined value. IfrA = rD,
the 604e setsrD to an undefined value.

• The PowerPC architecture cautions programmers that some implementations
architecture may execute the Load Half Algebraic (lha, lhax) instructions with
greater latency than other types of load instructions. This is not the case for the

Table 2-25 summarizes the integer load instructions.

Table 2-25. Integer Load Instructions

Name Mnemonic Operand Syntax

Load Byte and Zero lbz r D,d(rA)

Load Byte and Zero Indexed lbzx r D,rA,rB

Load Byte and Zero with Update lbzu r D,d(rA)

Load Byte and Zero with Update Indexed lbzux r D,rA,rB

Load Half Word and Zero lhz r D,d(rA)

Load Half Word and Zero Indexed lhzx r D,rA,rB

Load Half Word and Zero with Update lhzu r D,d(rA)

Load Half Word and Zero with Update Indexed lhzux r D,rA,rB

Load Half Word Algebraic lha r D,d(rA)

Load Half Word Algebraic Indexed lhax r D,rA,rB
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2.3.4.3.4  Integer Store Instructions
For integer store instructions, the contents ofrS are stored into the byte, half word, word o
double word in memory addressed by the EA (effective address). Many store instruc
have an update form, in whichrA is updated with the EA. For these forms, the followin
rules apply:

• If  rA  0, the effective address is placed intorA.

• If rS =rA, the contents of registerrS are copied to the target memory element, th
the generated EA is placed intorA (rS).

The PowerPC architecture defines store with update instructions withrA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option ena
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2
summarizes the integer store instructions.

Load Half Word Algebraic with Update lhau r D,d(rA)

Load Half Word Algebraic with Update Indexed lhaux r D,rA,rB

Load Word and Zero lwz r D,d(rA)

Load Word and Zero Indexed lwzx r D,rA,rB

Load Word and Zero with Update lwzu r D,d(rA)

Load Word and Zero with Update Indexed lwzux r D,rA,rB

Table 2-26. Integer Store Instructions

Name Mnemonic Operand Syntax

Store Byte stb r S,d(rA)

Store Byte Indexed stbx r S,rA,rB

Store Byte with Update stbu r S,d(rA)

Store Byte with Update Indexed stbux r S,rA,rB

Store Half Word sth r S,d(rA)

Store Half Word Indexed sthx r S,rA,rB

Store Half Word with Update sthu r S,d(rA)

Store Half Word with Update Indexed sthux r S,rA,rB

Store Word stw r S,d(rA)

Store Word Indexed stwx r S,rA,rB

Store Word with Update stwu r S,d(rA)

Store Word with Update Indexed stwux r S,rA,rB

Table 2-25. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax
Chapter 2.  Programming Model 2-43
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Implementation Notes—The following notes describe the 604e implementation of inte
store instructions:

• In the PowerPC architecture, the Rc bit must be zero for almost all load and s
instructions. If the Rc bit is one, the instruction form is invalid. These include t
integer store indexed instructions (stbx, stbux, sthx, sthux, stwx, stwux). In the
604e, executing one of these invalid instruction forms causes CR0 to be set t
undefined value.

• For the store with update instructions(stbu, stbux, sthu, sthux, stwu, stwux, stfsu,
stfsux, stfdu, stfdux), whenrA = 0, the instruction form is considered invalid. In
this case, the 604e sets GPR0 to an undefined value.

2.3.4.3.5  Integer Load and Store with Byte Reverse Instructions
Table 2-27 describes integer load and store with byte reverse instructions. When use
PowerPC system operating with the default big-endian byte order, these instructions
the effect of loading and storing data in little-endian order. Likewise, when used
PowerPC system operating with little-endian byte order, these instructions have the
of loading and storing data in big-endian order. For more information about big-endian
little-endian byte ordering, see Section 3.2.2, “Byte Ordering,” inThe Programming
Environments Manual.

Implementation Note—In the PowerPC architecture, the Rc bit must be zero for alm
all load and store instructions. If the Rc bit is one, the instruction form is invalid. Th
include the load and store with byte-reversal instructions (lhbrx , lwbrx , sthbrx, stwbrx).
In the 604e, executing one of these invalid instruction forms causes CR0 to be set
undefined value.

2.3.4.3.6  Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the G
The load multiple and store multiple instructions may have operands that require me
accesses crossing a 4-Kbyte page boundary. As a result, these instructions m
interrupted by a DSI exception associated with the address translation of the second

Table 2-27. Integer Load and Store with Byte Reverse Instructions

Name Mnemonic Operand Syntax

Load Half Word Byte-Reverse Indexed lhbrx r D,rA,rB

Load Word Byte-Reverse Indexed lwbrx r D,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx r S,rA,rB

Store Word Byte-Reverse Indexed stwbrx r S,rA,rB
2-44 PowerPC 604e RISC Microprocessor User's Manual
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Implementation Notes—The following describes the 604e implementation of t
load/store multiple instruction:

• The PowerPC architecture requires that memory operands for Load Multiple a
Store Multiple instructions (lmw andstmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 6
provides hardware support forlmw, stmw, lswi, lswx, stswi, andstswxinstructions
to cross a page boundary. However, a DSI exception may occur when the boun
is crossed (for example, if a protection violation occurs on the new page).

• Executing anlmw instruction in whichrA is in the range of registers to be loade
or in which RA = RT = 0 is invalid in the architecture. In the 604e, all registers
loaded are set to undefined values. Any exceptions resulting from a memory ac
cause the system error handler normally associated with the exception to be inv

• The 604e’s implementation of thelmw instruction allows one word of data to be
transferred to the GPRs per internal clock cycle (that is, one register is filled p
clock) whenever the data is found in the cache. For thestmw instruction, data is
transferred from the GPRs to the cache at a rate of one word (GPR) per clock c

• When anlmw or stmw access is to noncacheable memory, data is transferred on
external bus at a rate of one word per external bus tenure. Bus tenures are pipe
allowing a maximum tenure rate of one address tenure every three bus-clock c

• The load multiple and load string instructions can be interrupted after the instruc
has partially completed. IfrA has been modified and the instruction is restarted, t
instruction begins loading from the addresses specified by the new value ofrA,
which might be anywhere in memory; therefore, the system error handler may
invoked.

The PowerPC architecture defines the load multiple word (lmw) instruction withrA in the
range of registers to be loaded as an invalid form.

2.3.4.3.7  Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memo
registers or from registers to memory without concern for alignment. These instruction
be used for a short move between arbitrary memory locations or to initiate a long m
between misaligned memory fields. However, in some implementations, these instru
are likely to have greater latency and take longer to execute, perhaps much longer,
sequence of individual load or store instructions that produce the same results. Tabl
summarizes the integer load and store string instructions.

Table 2-28. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax

Load Multiple Word lmw r D,d(rA)

Store Multiple Word stmw r S,d(rA)
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In other PowerPC implementations operating with little-endian byte order, execution
load or string instruction causes the system alignment error handler to be invoked
Section 3.2.2, “Byte Ordering,” inThe Programming Environments Manualfor more
information.

Load string and store string instructions may involve operands that are not word-alig

As described in Section 4.5.6, “Alignment Exception (0x00600),” a misaligned st
operation suffers a performance penalty compared to an aligned operation of the sam
A non–word-aligned string operation that crosses a 4-Kbyte boundary, or a word-ali
string operation that crosses a 256-Mbyte boundary always causes an alignment exc
A non–word-aligned string operation that crosses a double-word boundary is also s
than a word-aligned string operation.

Implementation Note—The following describes the 604e implementation of t
load/store string instruction:

• The 604e provides hardware support forlmw, stmw, lswi, lswx, stswi, andstswx
instructions to cross a page boundary. However, a DSI exception may occur w
the boundary is crossed (for example, if a protection violation occurs on the n
page).

• An lswi or lswx instruction in whichrA or rB is in the range of registers potentially
to be loaded or in whichrA = rD = 0 is an invalid instruction form. In the 604e, al
registers loaded are set to undefined values. Any exceptions resulting from a
memory access cause the system error handler normally associated with the
exception to be invoked.

• The load multiple and load string instructions can be interrupted after the instruc
has partially completed. IfrA has been modified and the instruction is restarted, t
instruction begins loading from the addresses specified by the new value ofrA,
which might be anywhere in memory; therefore, the system error handler may
invoked.

• The 604e executes load string operations to cacheable memory at two cycles
word if they are word-aligned. Two additional cycles per instruction are require
they are not word-aligned. Cache-inhibited load string instructions require one
tenure per word if they are aligned. An additional tenure per instruction is requ
if a cache-inhibited load string operation is not word aligned.

Table 2-29. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax

Load String Word Immediate lswi r D,rA,NB

Load String Word Indexed lswx r D,rA,rB

Store String Word Immediate stswi r S,rA,NB

Store String Word Indexed stswx r S,rA,rB
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• The 604e executes store string operations to cacheable memory at a rate of one
per word if they are word-aligned. Cacheable store string operations that are 
word-aligned require five cycles per word. Cache-inhibited store string instructi
require one bus tenure per word if they are word-aligned. Two bus tenures per w
are required if a store string operation is not word aligned.

• The load multiple and load string instructions can be interrupted after the instruc
has partially completed. IfrA has been modified and the instruction is restarted, t
instruction begins loading from the addresses specified by the new value ofrA,
which might be anywhere in memory; therefore, the system error handler may
invoked.

2.3.4.3.8  Floating-Point Load and Store Address Generation
Floating-point load and store operations generate effective addresses using the r
indirect with immediate index addressing mode and register indirect with index addre
mode. Floating-point loads and stores are not supported for direct-store accesses. T
of floating-point loads and stores for direct-store access results in an alignment exce

There are two forms of the floating-point load instruction—single-precision
double-precision operand formats. Because the FPRs support only the floating
double-precision format, single-precision floating-point load instructions con
single-precision data to double-precision format before loading the operands into the
FPR.

Implementation Notes—The following notes characterize how the 604e treats exceptio

• On the 604e, if a floating-point number is not aligned on a word boundary, an
alignment exception occurs.

• The floating-point load and store indexed instructions (lfsx, lfsux, lfdx , lfdux , stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the 604e, executing o
of these invalid instruction forms causes CR0 to be set to an undefined value.

Note that the PowerPC architecture defines load with update instructions withrA = 0 as an
invalid form.

Table 2-30. Floating-Point Load Instructions

Name Mnemonic Operand Syntax

Load Floating-Point Single lfs fr D,d(rA)

Load Floating-Point Single Indexed lfsx fr D,rA,rB

Load Floating-Point Single with Update lfsu fr D,d(rA)

Load Floating-Point Single with Update Indexed lfsux fr D,rA,rB

Load Floating-Point Double lfd fr D,d(rA)

Load Floating-Point Double Indexed lfdx fr D,rA,rB

Load Floating-Point Double with Update lfdu fr D,d(rA)

Load Floating-Point Double with Update Indexed lfdux fr D,rA,rB
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2.3.4.3.9  Floating-Point Store Instructions
This section describes floating-point store instructions. There are three basic forms
store instruction—single-precision, double-precision, and integer. The integer for
supported by the optionalstfiwx instruction. Because the FPRs support only floating-po
double-precision format for floating-point data, single-precision floating-point s
instructions convert double-precision data to single-precision format before storing
operands. Table 2-31 summarizes the floating-point store instructions.

Some floating-point store instructions require conversions in the LSU. Table 2-32 s
the conversions made by the LSU when performing a Store Floating-Point S
instruction.

Table 2-31. Floating-Point Store Instructions

Name Mnemonic Operand Syntax

Store Floating-Point Single stfs fr S,d(rA)

Store Floating-Point Single Indexed stfsx fr S,r B

Store Floating-Point Single with Update stfsu fr S,d(rA)

Store Floating-Point Single with Update Indexed stfsux fr S,r B

Store Floating-Point Double stfd fr S,d(rA)

Store Floating-Point Double Indexed stfdx fr S,rB

Store Floating-Point Double with Update stfdu fr S,d(rA)

Store Floating-Point Double with Update Indexed stfdux fr S,r B

Store Floating-Point as Integer Word Indexed stfiwx fr S,rB

Table 2-32. Store Floating-Point Single Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Store

Single Zero
Infinity
QNaN

Store

Single SNaN Store

Double Normalized If(exp  896)
then Denormalize and Store
else

Store

Double Denormalized Store Zero

Double Zero
Infinity
QNaN

Store

Double SNaN Store
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Table 2-33 shows the conversions made when performing a Store Floating-Point D
instruction. Most entries in the table indicate that the floating-point value is simply sto
Only in a few cases are any other actions taken.

Architecturally, all floating-point numbers are represented in double-precision fo
within the 604e. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the expone
not greater than 896, this conversion requires denormalization. The 604e suppor
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 c
cycles are required to complete the denormalization, depending upon the value to be

Because of how floating-point numbers are implemented in the 604e, there is also
when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a
floating-point double instruction is a denormalized single-precision value. The value c
be the result of a load floating-point single instruction, a single-precision arithm
instruction, or a floating round to single-precision instruction. In these cases, shiftin
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored.
cycles are incurred during the store.

Table 2-33. Store Floating-Point Double Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Normalize and Store

Single Zero
Infinity
QNaN

Store

Single SNaN Store

Double Normalized Store

Double Denormalized Store

Double Zero
Infinity
QNaN

Store

Double SNaN Store
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2.3.4.4  Branch and Flow Control Instructions
Some branch instructions can redirect instruction execution conditionally based o
value of bits in the CR. When the processor encounters one of these instructions, it
the execution pipelines to determine whether an instruction in progress may affec
particular CR bit. If no interlock is found, the branch can be resolved immediately
checking the bit in the CR and taking the action defined for the branch instruction.

2.3.4.4.1  Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction add
are always assumed to be word aligned; the PowerPC processors ignore the two low
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction ad
using the following addressing modes:

• Branch relative

• Branch conditional to relative address

• Branch to absolute address

• Branch conditional to absolute address

• Branch conditional to link register

• Branch conditional to count register

Note that in the 604e, all branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, bclr, bclrl ,
bcctr, bcctrl ) and condition register logical instructions (crand, cror, crxor, crnand,
crnor, crandc, creqv, crorc, and mcrf ) are executed by the BPU. Some of the
instructions can redirect instruction execution conditionally based on the value of bits i
CR. Whenever the CR bits resolve, the branch direction is either marked as corre
mispredicted. Correcting a mispredicted branch requires that the 604e flush specula
executed instructions and restore the machine state to immediately after the branch
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2  Branch Instructions
Table 2-34 lists the branch instructions provided by the PowerPC processors. To sim
assembly language programming, a set of simplified mnemonics and symbols is pro
for the most frequently used forms of branch conditional, compare, trap, rotate and
and certain other instructions. See Appendix F, “Simplified Mnemonics,” inThe
Programming Environments Manualfor a list of simplified mnemonic examples.
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2.3.4.4.3  Condition Register Logical Instructions
Condition register logical instructions, shown in Table 2-35, and the Move Condi
Register Field (mcrf ) instruction are also defined as flow control instructions.

Note that if the LR update option is enabled for any of these instructions, the Pow
architecture defines these forms of the instructions as invalid.

2.3.4.4.4  Trap Instructions
The trap instructions shown in Table 2-36 are provided to test for a specified s
conditions. If any of the conditions tested by a trap instruction are met, the system
handler is invoked. If the tested conditions are not met, instruction execution conti
normally.

See Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manualfor
a complete set of simplified mnemonics.

Table 2-34. Branch Instructions

Name Mnemonic Operand Syntax

Branch b (ba bl bla) target_addr

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr

Branch Conditional to Link Register bclr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

Table 2-35. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crb D,crb A,crb B

Condition Register OR cror crb D,crb A,crb B

Condition Register XOR crxor crb D,crb A,crb B

Condition Register NAND crnand crb D,crb A,crb B

Condition Register NOR crnor crb D,crb A,crb B

Condition Register Equivalent creqv crb D,crb A, crb B

Condition Register AND with Complement crandc crb D,crb A, crb B

Condition Register OR with Complement crorc crb D,crb A, crb B

Move Condition Register Field mcrf crf D,crf S

Table 2-36. Trap Instructions

Name Mnemonic Operand Syntax

Trap Word Immediate twi TO,rA,SIMM

Trap Word tw TO,rA,rB
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2.3.4.5  System Linkage Instruction—UISA
This section describes the System Call (sc) instruction that permits a program to call o
system to perform a service. See also Section 2.3.6.1, “System Lin
Instructions—OEA,” for additional information.

2.3.4.6  Processor Control Instructions—UISA
Processor control instructions are used to read from and write to the condition re
(CR), machine state register (MSR), and special-purpose registers (SPRs)
Section 2.3.5.1, “Processor Control Instructions—VEA,” for themftb instruction and
Section 2.3.6.2, “Processor Control Instructions—OEA,” for information about
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1  Move to/from Condition Register Instructions
Table 2-38 summarizes the instructions for reading from or writing to the condition reg

Note that the performance of themtcrf instruction depends greatly on whether only on
field is being accessed or either no fields or multiple fields are accessed as follows:

• Thosemtcrf  instructions that update only one field are executed in either of th
SCIUs and the CR field is renamed as with any other SCIU instruction.

• Thosemtcrf instructions that update either multiple fields or no fields are dispatc
to the MCIU and a count/link scoreboard bit is set. When that bit is set, no mo
mtcrf instructions of the same type,mtspr instructions that update the count or link
registers, branch instructions that depend on the condition register and CR lo
instructions can be dispatched to the MCIU. The bit is cleared when themtctr ,
mtcrf , ormtlr  instruction that the bit is executed.

Table 2-37. System Linkage Instruction—UISA

Name Mnemonic Operand Syntax

System Call sc —

Table 2-38. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crf D

Move from Condition Register mfcr r D
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Becausemtcrf instructions that update a single field do not require such synchroniza
that othermtcrf instructions do, and because two such single-field instructions can exe
in parallel, it is typically more efficient to use multiplemtcrf  instructions that update only
one field apiece than to use onemtcrf instruction that updates multiple fields. A rule o
thumb follows:

• It is always more efficient to use twomtcrf  instructions that update only one field
apiece than to use onemtcrf  instruction that updates two fields.

— It is almost always more efficient to use three or fourmtcrf  instructions that
update only one field apiece than to use onemtcrf instruction that updates three
fields.

— It is oftenmore efficient to use more than fourmtcrf instructions that update only
one field than to use onemtcrf  instruction that updates four fields.

2.3.4.6.2  Move to/from Special-Purpose Register Instructions (UISA)
Table 2-39 lists themtspr andmfspr instructions.

2.3.4.7  Memory Synchronization Instructions—UISA
Memory synchronization instructions control the order in which memory operations
completed with respect to asynchronous events, and the order in which memory oper
are seen by other processors or memory access mechanisms. See Chapter 3, “Ca
Bus Interface Unit Operation,” for additional information about these instructions
about related aspects of memory synchronization.

Table 2-39. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax

Move to Special Purpose Register mtspr SPR,rS

Move from Special Purpose Register mfspr r D,SPR

Table 2-40. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax

Load Word and Reserve Indexed lwarx r D,rA,rB

Store Word Conditional Indexed stwcx. r S,rA,rB

Synchronize sync —

Note:  An attempt to perform an atomic memory access (lwarx  or stwcx. ) to a location in
write-through-required mode causes a DSI exception and DSISR[5] is set.
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The proper paired use of thelwarx with stwcx.instructions allows programmers to emula
common semaphore operations such as “test and set,” “compare and swap,” “exc
memory,” and “fetch and add.” Thelwarx instruction must be paired with anstwcx.
instruction with the same effective address used for both instructions of the pair. Note
the reservation granularity is implementation-dependent. See 2.3.5.2, “Mem
Synchronization Instructions—VEA,” for details about additional memory synchroniza
(eieio andisync) instructions.

Implementation Notes—The following notes describe the 604e implementation
memory synchronization instructions:

• The PowerPC architecture requires that memory operands for Load and Rese
(lwarx ) and Store Conditional (stwcx.) instructions must be word-aligned. If the
operands to these instructions are not word-aligned on the 604e, an alignmen
exception occurs.

• The PowerPC architecture indicates that the granularity with which reservation
lwarx  and stwcx. instructions are managed is implementation-dependent. In th
604e reservations, this granularity is a 32-byte cache block.

• Thesync instruction causes the 604e to serialize. The sync instruction can be
dispatched with other instructions that are before it, in program order. However
more instructions can be dispatched until thesync instruction completes.
Instructions already in the instruction buffer, due to prefetching, are not refetc
after thesynccompletes. If reflecting is required,isync should be executed to flush
the instruction buffer after thesync. Thesync is dispatched to the LSU and is
broadcast onto the external bus.

In the PowerPC architecture, the Rc bit must be zero for almost all load and
instructions. If the Rc bit is one, the instruction form is invalid. These include thesyncand
lwarx instructions. In the 604e, executing one of these invalid instruction forms ca
CR0 to be set to an undefined value. Thestwcx.instruction is the only load/store instructio
that has a valid form if Rc is set. If the Rc bit is zero, the result of executing this instruc
in the 604e causes CR0 to be set to an undefined value.

2.3.5  PowerPC VEA Instructions
The PowerPC virtual environment architecture (VEA) describes the semantics o
memory model that can be assumed by software processes, and includes description
cache model, cache control instructions, address aliasing, and other related i
Implementations that conform to the VEA also adhere to the UISA, but may not neces
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.
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2.3.5.1  Processor Control Instructions—VEA
In addition to the move to condition register instructions (specified by the UISA), the V
defines themftb instruction (user-level instruction) for reading the contents of the time b
register; see Chapter 3, “Cache and Bus Interface Unit Operation,” for more informa
Table 3-34 shows themftb  instruction.

Simplified mnemonics are provided for themftb instruction so it can be coded with th
TBR name as part of the mnemonic rather than requiring it to be coded as an operan
Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manualfor
simplified mnemonic examples and for simplified mnemonics for Move from Time B
(mftb ) and Move from Time Base Upper (mftbu ), which are variants of themftb
instruction rather than ofmfspr. Themftb instruction serves as both a basic and simplifi
mnemonic. Assemblers recognize anmftb mnemonic with two operands as the basic form
and anmftb  mnemonic with one operand as the simplified form.

Implementation Notes—The following information is useful with respect to using th
time base implementation in the 604e:

• The 604e allows user-mode read access to the time base counter through the
the Move from Time Base (mftb ) and the Move from Time Base Upper (mftbu )
instructions. As a 32-bit PowerPC implementation, the 604e supports separat
access to the TBU and TBL, whereas 64-bit implementations can access the 
TB register at once.

• The time base counter is clocked at a frequency that is one-fourth that of the 
clock. Counting is enabled by assertion of the timebase enable (TBE) input signal.

2.3.5.2  Memory Synchronization Instructions—VEA
Memory synchronization instructions control the order in which memory operations
completed with respect to asynchronous events, and the order in which memory oper
are seen by other processors or memory access mechanisms. See Chapter 3, “Ca
Bus Interface Unit Operation,” for additional information about these instructions
about related aspects of memory synchronization.

Table 2-41. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb r D, TBR
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Table 2-42 describes the memory synchronization instruction s defined by the VEA.

System designs that use a second-level cache should take special care to recogn
hardware signaling caused by a SYNC bus operation and perform the appropriate a
to guarantee that memory references that may be queued internally to the secon
cache have been performed globally.

In addition to thesync instruction (specified by UISA), the VEA defines the Enforc
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete aneieio instruction depends on system paramete
and on the processor's state when the instruction is issued. As a result, frequent use
instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instruction
complete, discard all prefetched instructions, and then branch to the next sequ
instruction (which has the effect of clearing the pipeline behind theisync instruction).

2.3.5.3  Memory Control Instructions—VEA
Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the
See 2.3.6.3, “Memory Control Instructions—OEA,” for information about supervisor-le
cache, segment register manipulation, and translation lookaside buffer manag
instructions.

Table 2-42. Memory Synchronization Instructions—VEA

Name Mnemonic
Operand
Syntax

Implementation Notes

Enforce In-Order
Execution of I/O

eieio — The eieio  instruction is dispatched by the 604e to the LSU.
The eieio instruction executes after all preceding
cache-inhibited or write-through memory instructions execute;
all following cache-inhibited or write-through instructions
execute after the eieio  instruction executes. When the eieio
instruction executes, an EIEIO address-only operation is
broadcast on the external bus to allow ordering to be enforced
in the external memory system.

Instruction
Synchronize

isync — The isync instruction causes the 604e to purge its instruction
buffers and fetch the double word containing the next
sequential instruction.
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2.3.5.3.1  User-Level Cache Instructions—VEA
The instructions summarized in this section provide user-level programs the abili
manage on-chip caches if they are implemented. See Chapter 3, “Cache and Bus In
Unit Operation,” for more information about cache topics.

The user-level cache instructions provide software a way to help manage processor c
The following sections describe how these operations are treated with respect to the
cache.

As with other memory-related instructions, the effect of the cache management instru
on memory are weakly-ordered. If the programmer needs to ensure that cache or
instructions have been performed with respect to all other processors and s
mechanisms, asyncinstruction must be placed in the program following those instructio

Note that this discussion does not apply to direct-store segment accesses because t
defined to be cache-inhibited and instruction fetch from them is not allowed. C
operations that access direct-store segment are treated as no-ops. Table 2-43 sum
the cache instructions defined by the VEA. Note that these instructions are access
user-level programs.

Table 2-43. User-Level Cache Instructions

Name Mnemonic
Operand
Syntax

Implementation Notes

Data Cache
Block Touch

dcbt r A,rB The VEA defines this instruction to allow for potential system
performance enhancements through the use of software-initiated
prefetch hints. Implementations are not required to take any action based
off the execution of this instruction, but they may choose to prefetch the
cache block corresponding to the effective address into their cache.
The 604e treats the dcbt  instruction as a no-op if any of the following
conditions is met:
• The address misses in the TLB and in the BAT.
• The address is directed to a direct-store segment.
• The address is directed to a cache-inhibited page.
• The data cache lock bit HID0[19] is set.

The data brought into the cache as a result of this instruction is validated
in the same way a load instruction would be (that is, if no other bus
participant has a copy, it is marked as Exclusive, otherwise it is marked
as Shared). The memory reference of a dcbt causes the reference bit to
be set.
A successful dcbt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

Data Cache
Block Touch
for Store

dcbtst r A,rB This instructions behaves like the dcbt  instruction.
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Data Cache
Block Set to
Zero

dcbz r A,rB The effective address is computed, translated, and checked for protection
violations as defined in the VEA. If the 604e does not have exclusive
access to the block, it presents an operation onto the 604e bus interface
that instructs all other processors to invalidate copies of the block that
may reside in their cache (this is the kill operation on the bus). After it has
exclusive access, the 604e writes all zeros into the cache block. If the
604e already has exclusive access, it immediately writes all zeros into
the cache block. If the addressed block is within a noncacheable or a
write-through page, or if the cache is locked or disabled, the an alignment
exception occurs.
If the operation is successful, the cache block is marked modified.

Data Cache
Block Store

dcbst r A,rB The effective address is computed, translated, and checked for protection
violations as defined in the VEA. If the 604e does not have exclusive
access to the block, it broadcasts the essence of the instruction onto the
604e bus (using the clean operation, described in Table 3-4). If the 604e
has modified data associated with the block, the processor pushes the
modified data out of the cache and into the memory queue for future
arbitration onto the 604e bus. In this situation, the cache block is marked
exclusive. Otherwise this instruction is treated as a no-op.
A dcbst instruction followed by a store operation may appear out of order
on the bus so that systems that have L2 caches that check for cache
paradox conditions may detect a cache paradox.
When a 604e executes a dcbst  instruction to a cache block in shared
state followed by a store instruction to the same cache block, the dcbst
instruction causes a clean transaction on the bus if the 604e’s L1 cache
block is not in modified data state. The store operation should cause a kill
operation on the bus because it should hit on shared data in the L1
cache. However, the 604e may send out the kill operation before the
clean operation. An L2 controller that performs paradox checking could
be confused by this kill/clean sequence to the same cache block. The kill
operation (with TC0–TC2 = 000) implies that the 604e is obtaining
exclusive rights and will modify the line. The following clean operation
implies that the 604e does not have the block modified. This may confuse
the L2 controller.
To avoid this, put a sync  instruction after the dcbst  instruction or don’t
check for this paradox.

Data Cache
Block Flush

dcbf r A,rB The effective address is computed, translated, and checked for protection
violations as defined by the VEA. If the 604e does not have exclusive
access to the block, it broadcasts the essence of the instruction onto the
604e bus (using the flush operation described in Table 3-4). In addition, if
the addressed block is present in the cache, the 604e marks this data as
invalid. On the other hand, if the 604e has modified data associated with
the block, the processor pushes the modified data out of the cache and
into the memory queue for future arbitration onto the 604e bus. In this
situation, the cache block is marked invalid.

Instruction
Cache
Block
Invalidate

icbi r A,rB The effective address is computed, translated, and checked for protection
violations as defined in the PowerPC architecture. If the addressed block
is in the instruction cache, the 604e marks it invalid. This instruction
changes neither the content nor status of the data cache. In addition, the
ICBI operation is broadcast on the 604e bus unconditionally to support
this function throughout multilayer memory hierarchy.

Table 2-43. User-Level Cache Instructions  (Continued)

Name Mnemonic
Operand
Syntax

Implementation Notes
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2.3.5.4  Optional External Control Instructions
The external control instructions allow a user-level program to communicate wi
special-purpose device. Two instructions are provided and are summarized in Table

The eciwx and ecowx instructions cause an alignment exception if they are
word-aligned.

2.3.6  PowerPC OEA Instructions
The PowerPC operating environment architecture (OEA) includes the structure o
memory management model, supervisor-level registers, and the exception m
Implementations that conform to the OEA also adhere to the UISA and the VEA.
section describes the instructions provided by the OEA

2.3.6.1  System Linkage Instructions—OEA
This section describes the system linkage instructions (see Table 2-45). Thesc instruction
is a user-level instruction that permits a user program to call on the system to perfo
service and causes the processor to take an exception. Therfi instruction is a
supervisor-level instruction that is useful for returning from an exception handler.

2.3.6.2  Processor Control Instructions—OEA
This section describes the processor control instructions that are used to read fro
write to the MSR and the SPRs.

Table 2-46 summarizes the instructions used for reading from and writing to the MS

Table 2-44. External Control Instructions

Name Mnemonic Operand Syntax

External Control In Word Indexed eciwx r D,rA,rB

External Control Out Word Indexed ecowx r S,rA,rB

Table 2-45. System Linkage Instructions—OEA

Name Mnemonic Operand Syntax

System Call sc —

Return from Interrupt rfi —

Table 2-46. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax

Move to Machine State Register mtmsr r S

Move from Machine State Register mfmsr r D
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The OEA defines encodings of themtspr and mfspr instructions to provide access t
supervisor-level registers. The instructions are listed in Table 2-47.

Encodings for the 604e-specific SPRs are listed in Table 2-48.

Simplified mnemonics are provided for themtspr andmfspr instructions in Appendix F,
“Simplified Mnemonics,” inThe Programming Environments Manual. For a discussion of
context synchronization requirements when altering certain SPRs, refer to Append
“Synchronization Programming Examples,” inThe Programming Environments Manual.

For information on SPR encodings (both user- and supervisor-level) see Chap
“Instruction Set,” in The Programming Environments Manual. Note that there are
additional SPRs specific to each implementation; for implementation-specific SPRs
the user’s manual for that particular processor.

Table 2-47. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax

Move to Special Purpose Register mtspr SPR,rS

Move from Special Purpose Register mfspr r D,SPR

Table 2-48 SPR Encodings for PowerPC 604e-Defined Registers (mfspr)

SPR
1

Register Name
Decimal spr[5–9] spr[0–4]

952 11101 11000 MMCR0

956 11101 11100 MMCR1

953 11101 11001 PMC1

954 11101 11010 PMC2

957 11101 11101 PMC3

958 11101 11110 PMC4

955 11101 11011 SIA

959 11101 11111 SDA

1010 11111 10010 IABR

1023 11111 11111 PIR

1Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in
the instruction, with the high-order 5 bits appearing in bits 16–20 of the instruction and the low-order 5 bits in
bits 11–15.
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2.3.6.3  Memory Control Instructions—OEA
Memory control instructions include the following types of instructions:

• Cache management instructions (supervisor-level and user-level)
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section
“Memory Control Instructions—VEA,” for more information about user-level cac
management instructions.

2.3.6.3.1  Supervisor-Level Cache Management Instruction—(OEA)
Table 2-49 lists the only supervisor-level cache management instruction.

See Section 2.7.3.1, “User-Level Cache Instructions—VEA,” for cache instructions
provide user-level programs the ability to manage the on-chip caches. If the effe
address references a direct-store segment, the instruction is treated as a no-op. Note
cache control instruction that generates an effective address that corresponds
direct-store segment (segment descriptor[T] = 1) is treated as a no-op.

2.3.6.3.2  Segment Register Manipulation Instructions (OEA)
The instructions listed in Table 2-50 provide access to the segment registers for 3
implementations. These instructions operate completely independently of the MSR[IR
MSR[DR] bit settings. Refer to “Synchronization Requirements for Special Registers
for Lookaside Buffers,” in Chapter 2, “PowerPC Register Set,” ofThe Programming
Environments Manualfor serialization requirements and other recommended precaut
to observe when manipulating the segment registers.

Table 2-49. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax Implementation Notes

Data
Cache
Block
Invalidate

dcbi r A,rB The EA is computed, translated, and checked for protection
violations as defined in the OEA.
The 604e broadcasts the essence of the instruction onto the
604e bus (using the kill operation). In addition, if the addressed
block is present in the cache, the 604e marks this data as
invalid regardless of whether the data is clean or modified. Note
that this can have the effect of destroying modified data which is
why the instruction is privileged and has store semantics with
respect to protection.

Table 2-50. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax

Move to Segment Register mtsr SR,rS

Move to Segment Register Indirect mtsrin r S,rB

Move from Segment Register mfsr r D,SR

Move from Segment Register Indirect mfsrin r D,rB
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2.3.6.3.3  Translation Lookaside Buffer Management Instructions—(OEA)
The address translation mechanism is defined in terms of segment descriptors an
table entries (PTEs) used by PowerPC processors to locate the logical to physical a
mapping for a particular access. These segment descriptors and PTEs reside in s
tables and page tables in memory, respectively.

Refer to Chapter 7, “Memory Management,” ofThe Programming Environments Manua
for more information about TLB operation. Table 2-51 summarizes the operation o
TLB instructions in the 604e.

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. As described above, thtlbie
instruction can be used to invalidate a particular index of the TLB based on EA[14–

Table 2-51. Translation Lookaside Buffer Management Instruction

Name Mnemonic
Operand
Syntax

Implementation Notes

TLB
Invalidate
Entry

tlbie r B Execution of this instruction causes all entries in the congruence class
corresponding to the specified EA to be invalidated in the processor
executing the instruction and in the other processors attached to the
same bus by causing a TLB invalidate operation on the bus as
described in Section 7.2.4, “Address Transfer Attribute Signals.”
The OEA requires that a synchronization instruction be issued to
guarantee completion of a tlbie across all processors of a system.
The 604e implements the tlbsync instruction which causes a
TLBSYNC operation to appear on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie  instructions. Multiple tlbie
instructions can be executed correctly with only one tlbsync
instruction, following the last tlbie , to guarantee all previous tlbie
instructions have been performed globally.
Software must ensure that instruction fetches or memory references
to the virtual pages specified by the tlbie  have been completed prior
to executing the tlbie  instruction.
When a snooping 604e detects a TLB invalidate entry operation on
the bus, it accepts the operation only if no TLB invalidate entry
operation is being executed by this processor and all processors on
the bus accept the operation (ARTRY is not asserted). Once
accepted, the TLB invalidation is performed unless the processor is
executing a multiple/string instruction, in which case the TLB
invalidation is delayed until it has completed.
Other than the possible TLB miss on the next instruction prefetch, the
tlbie  does not affect the instruction fetch operation—that is, the
prefetch buffer is not purged and does not cause these instructions to
be refetched.

TLB
Synchronize

tlbsync — The TLBSYNC operation appears on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie  instructions.
See the tlbie  description above for information regrading using the
tlbsync instruction with the tlbie  instruction. For more information
about how other processors react to TLB operations broadcast on the
system bus of a multiprocessing system, see Section 3.9.6, “Cache
Reaction to Specific Bus Operations.”
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With that concept in mind, a sequence of 64tlbie instructions followed by a singletlbsync
instruction would cause all the 604e TLB structures to be invalidated (for EA[14–19]
1, 2,..., 63). Therefore thetlbia instruction is not implemented on the 604e. Execution o
tlbia  instruction causes an illegal instruction program exception.

Because the presence and exact semantics of the TLB management instructi
implementation-dependent, system software should incorporate uses of these instru
into subroutines to minimize compatibility problems.

2.3.7  Recommended Simplified Mnemonics
To simplify assembly language coding, a set of alternative mnemonics is provided for
frequently used operations (such as no-op, load immediate, load address, move regis
complement register). Programs written to be portable across the various assemblers
PowerPC architecture should not assume the existence of mnemonics not described
document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics
The Programming Environments Manual.
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Chapter 3
Cache and Bus Interface Unit Operation
30
30

This chapter describes the organization of the PowerPC 604e’s on-chip cache syste
MESI cache coherency protocol, special concerns for cache coherency in single
multiple-processor systems, cache control instructions, various cache operations, a
interaction between the cache and the memory unit.

The 604e has separate 32-Kbyte data and instruction caches. This is double the size
604 caches. The 604e caches are logically organized as a four-way set with 25
compared to the 604’s 128 sets. The physical address bits that determine the set
through 26 with 19 being the most-significant bit of the index. If bit 19 is zero, the bloc
data is an even 4-Kbyte page that resides in sets 0–127; otherwise, bit 19 is one a
block of data is an odd 4-Kbyte page that resides in sets 128–255. Because the cac
four-way set-associative, the cache set element (CSE[0–1]) signals remain unchange
the 604. Figure 3-1 shows the organization of the caches. The cache is designed to
to a write-back policy, but the 604e allows control of cacheability, write policy, and mem
coherency at the page and block level, as defined by the PowerPC architecture. The
use a least recently used (LRU) replacement policy.

The 604e cache implementation has the following characteristics:

• The 604e has separate 32-Kbyte data and instruction caches. This is double th
of the 604 caches.

• Instruction and data caches are four-way set associative. The 604e has 256 s
twice as much as the 604’s 128 sets.

• Caches implement an LRU replacement algorithm within each set.

• The cache directories are physically addressed. The physical (real) address t
stored in the cache directory.

• Both the instruction and data caches have 32-byte cache blocks. A cache block
block of memory that a coherency state describes, also referred to as a cache
Chapter 3.  Cache and Bus Interface Unit Operation 3-1
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• The coherency state bits for each block of the data cache allow encoding for all
possible MESI states:

— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Shared (S)
— Invalid (I)

• The coherency state bit for each cache block of the instruction cache allows
encoding for two possible states:

— Invalid (INV)
— Valid (VAL)

• Each cache can be invalidated or locked by setting the appropriate bits in the
hardware implementation dependent register 0 (HID0), a special-purpose reg
(SPR) specific to the 604e.

The 604e uses eight-word burst transactions to transfer cache blocks to and from me
When requesting burst reads, the 604e presents a double-word–aligned address. M
controllers are expected to transfer this double word of data first, followed by double w
from increasing addresses, wrapping back to the beginning of the eight-word blo
required.

Burst misses can be buffered into two 8-word line-fill buffers before being loaded into
cache. Writes of cache blocks by the 604e (for a copy-back operation) always prese
first address of the block, and transfer data beginning at the start of the block. Howeve
does not preclude other masters from transferring critical double words first on the bu
writes.

Note that in this chapter the terms multiprocessor and multiple-processor are used
context of maintaining cache coherency. These devices could be processors or other d
that can access system memory, maintain their own caches, and function as bus m
requiring cache coherency.

The organization of the 604e instruction and data caches is shown in Figure 3-1.
3-2 PowerPC 604e RISC Microprocessor User's Manual
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Figure 3-1. Cache Unit Organization

As shown in Figure 3-2, the instruction cache is connected to the bus interface unit (
with a 64-bit bus; likewise, the data cache is connected both to the BIU and the load
unit (LSU) with a 64-bit bus. The 64-bit bus allows two instructions to be loaded into
instruction cache or a double word (for example, a double-precision floating-point ope
to be loaded into the data cache in a single clock. The instruction cache provides a 1
interface to the instruction fetcher, so four instructions can be made available to
instruction unit in a single clock cycle.

Address Tag 1

Address Tag 2

Address Tag 3

Block 1

Block 2

Block 3

Address Tag 0Block 0

8 Words/Block

State

State

State

State

Words 0–7

Words 0–7

Words 0–7

Words 0–7

Sets 0–127
(even pages)
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Figure 3-2. Cache Integration

3.1  Data Cache Organization
As shown in Figure 3-2, the physically-addressed data cache lies between the load
instruction unit (LSU) and the bus interface unit (BIU), and provides the ability to read
write data in memory by reducing the number of system bus transactions require
execution of load/store instructions.

The LSU transfers data between the data cache and the result bus, which routes dat
other execution units. The LSU supports the address generation and all the data alig
to and from the data cache. The LSU also handles other types of instructions that a
memory, such as cache control instructions, and supports out-of-order loads and
while ensuring the integrity of data.

The 604e’s data cache is a 32-Kbyte, four-way set-associative cache. It is a phys
indexed, nonblocking, write-back cache with hardware support for reloading on c
misses. The set associativity of the data cache is shown in Figure 3-1.

Each cache block contains eight contiguous words from memory that are loaded fro
eight-word boundary (that is, bits A27–A31 of the EA are zero); as a result, cache b
are aligned with page boundaries. Within a single cycle, the data cache provides a d
word access to the LSU.

Data Cache

16-Kbyte
Four-Way Set Associative

Cache
Tags

Cache
Logic

Instruction Unit Load/Store Unit (LSU)

MMU/Bus Interface Unit (BIU)

Instructions (0–63)

Instructions (0–127) EA (20–31)

PA (0–19)

PA (0–31) Data (0–63)

Data (0–63)

PA: Physical Address
EA: Effective Address

Instruction Cache

16-Kbyte
Four-Way Set Associative

Cache
Tags

Cache
Logic
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The 604e implements three copy-back write buffers (the 604 has one). The additional
back buffers allow certain instructions to take further advantage of the pipelined system
to provide highly efficient handling of cache copy-back operations, block invalid
operations caused by the Data Cache Block Flush (dcbf) instruction, and cache block clea
operations resulting from the Data Cache Block Store (dcbst) instruction.

The data cache supports a coherent memory system using the four-state MESI coh
(modified/exclusive/shared/invalid) protocol. Like the 604, the data cache tags are
ported, so snooping does not affect the internal operation of other transactions o
system interface. If a snoop hit occurs in a modified block, the LSU is blocked intern
for one cycle to allow the eight-word block of data to be copied to the write-back buffe
necessary. The data cache can be invalidated on a block or invalidate-all granularity
data cache can be invalidated all at once or on a per cache block basis. The data ca
be disabled and invalidated by setting the HID0[17] and HID0[21] bits, respectively. It
be locked by setting HID0[19].

The 604e provides additional support for data cache line-fill buffer forwarding. In the
only the critical double word of a burst operation was made available to the requesting
at the time it was burst into the line-fill buffer. Subsequent data was unavailable unt
cache block was filled. On the 604e, subsequent data is also made available as it arr
the line-fill buffer.

3.2  Instruction Cache Organization
The 604e’s 32-Kbyte, four-way set-associative instruction cache is physically indexed
organization of the instruction cache, shown in Figure 3-1, is identical to that of the
cache. Each cache block contains eight contiguous words from memory that are l
from an eight-word boundary (that is, bits A27–A31 of the effective addresses are zer
a result, cache blocks are aligned with page boundaries.

Within a single cycle, the instruction cache provides as many as four instructions t
instruction fetch unit. The 604e provides coherency checking for instruction fetc
Instruction fetching coherency is controlled by HID0[23]. In the default mode, HID0[
is 0 and theGBL signal is not asserted for instruction accesses on the bus, as is the
with the 604. If the bit is set and instruction translation is enabled (MSR[IR] = 1), theGBL
signal is set to reflect the M bit for this page or block. If HID0[23] is set and instruct
translation is disabled (MSR[IR] = 0), theGBL signal is asserted and coherency
maintained in the instruction cache.

The PowerPC architecture defines a special set of instructions for managing the instr
cache. The instruction cache can be invalidated entirely or on a cache-block bas
addition, the instruction cache can be disabled and invalidated by setting the HID0[16
HID0[20] bits, respectively. The instruction cache can be locked by setting HID0[18]

The instruction cache differs from the data cache in that it does not implement MESI c
coherency protocol, and a single state bit is implemented that indicates only whet
cache block is valid or invalid. If a processor modifies a memory location that ma
Chapter 3.  Cache and Bus Interface Unit Operation 3-5



ible to
tion

Because
he may

and
odes

mitted,
tenures
y byte

ested
ched
ed to

mable
he bus

hrough

y the
mory

r data
4 x 2)
esses.
walk)
er 5,
contained in the instruction cache, software must ensure that memory updates are vis
the instruction fetching mechanism. This can be achieved by the following instruc
sequence:

dcbst # update memory
sync # wait for update
icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

These operations are necessary because the data cache is a write-back cache.
instruction fetching bypasses the data cache, changes made to items in the data cac
not be reflected in memory until after a fetch operation completes.

3.3  MMUs/Bus Interface Unit
The bus interface unit (BIU) is compatible with those of the PowerPC 601™
PowerPC 603™ microprocessors. It implements both tenured and split-transaction m
and can handle as many as three outstanding transactions in pipelined mode. If per
the BIU can complete one or more write transactions between the address and data
of a read transaction. The BIU has 32-bit address and 64-bit data buses protected b
parity.

The BIU implements the critical-double-word-first access where the double word requ
by the fetcher or the LSU is fetched first and the remaining words in the line are fet
later. The critical double word as well as other words in the cache block are forward
the fetcher or to the LSU before they are written to the cache.

The bus can be run at 1x, 2/3x, 1/2x or 1/3x the speed of the processor. The program
on-chip phase-locked loop (PLL) generates the necessary processor clocks from t
clock.

When a memory access fails to hit in the cache, the 604e accesses system memory t
the bus interface unit. These operations must arbitrate for bus access.

The memory management units (MMUs) provide address translation as specified b
PowerPC OEA, including block address translation and page translation of me
segments. The MMUs and the bus interface unit are shown in Figure 3-3.

The 604e implements separate MMUs, one for instruction accesses and one fo
accesses. Virtual address translation uses two 128-entry, two-way set-associative (6
translation lookaside buffers (TLBs), one for instruction accesses and one for data acc
The 604e provides hardware that performs the TLB reload (also known as page table
when a translation is not in a TLB. Memory management is described in Chapt
“Memory Management.”
3-6 PowerPC 604e RISC Microprocessor User's Manual
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The BIU handles block fill and write-back requests from either cache, as well a
noncacheable reads and writes.

Figure 3-3. Bus Interface Unit and MMU

As shown in Figure 3-4, the 604e implements four types of memory queues to suppo
four types of operations—line-fill, write, copy-back, and invalidation operations. For a l
fill operation, the line-fill address from either the instruction or data cache is kept in
memory address queue until the address can be sent out in an address tenure. A
address tenure, the address is transferred to the line-fill address queue, which relea
address bus for other transactions in split-transaction mode. As each double word f
line-fill operation is returned, it is transferred to the line-fill buffer, where it is forwarded
the LSU.

If a subsequent in-order load to the same cache block hits on valid data in the data li
buffer, it is forwarded to the load/store unit from the line-fill buffer. In the 604e
subsequent in-order load to the same cache block is required to wait until the line-fill b
is completely written into the cache before data is accessed from the cache.
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Figure 3-4. Memory Queue Organization

For write operations, the address is kept in the memory address queue and the data
in the write buffer until both can be sent out in a write transaction. Similarly, for copy-b
operations the address is kept in the copy-back address queue and the data is kep
copy-back buffer until both can be sent out in a burst write transaction. For a cache co
instruction or a store to a shared cache block, the address is kept in the cache control a
queue until an address-only transaction is sent out to broadcast the cache control com
Because all address queues in the 604e are treated as part of the coherent memory
they are checked against the data cache and snoop addresses to ensure data consis
to maintain MESI coherency protocol.
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To support the increased bandwidth of the nonblocking caches, the BIU can handle as
as three pipelined transactions before data has to be provided by the memory syste
three outstanding transactions can be any combination of the following—two noncach
or write-through write operations, two data cache reloads, one instruction cache reloa
three cache block copybacks. In addition, address-only transactions are not counted
three outstanding transactions.

Typically, the three copy-back buffers are written to memory in the same order in w
they are filled, having the lowest priority access among all the bus interface unit’s me
queues. Write operations from the copy-back buffers can occur out-of-order under th
following conditions:

• A snoop hit on one or more copy-back buffers causes the copy-back buffers to
the second highest priority among the BIU’s memory queues, after only the sn
push buffer. In this case, the next write from these three copy-back buffers wil
from the buffer that contains the newest data corresponding to the snoop hit. 
snoop address hit on multiple copy-back buffers (possibly due to thedcbst
instruction), the accesses for all matching buffers except the one with the new
data are cancelled.

• Similarly, if execution of thedcbst instruction causes multiple copy-back buffers t
contain the same address, each buffer that contains this address is cancelled
it contains the newest data or unless the buffer is the next address transaction
to the bus.

Note that the three copy-back buffers in the 604e improve the performance of multipledcbf
anddcbstinstructions because the address and data tenures of burst writes can be pipe

For details concerning the signals, see Chapter 7, “Signal Descriptions,” and
information regarding bus protocol, see Chapter 8, “System Interface Operation.”

3.4  Memory Coherency Actions
The following sections describe memory coherency actions in response to va
operations and instructions.

3.4.1  PowerPC 604e-Initiated Load and Store Operations
The following tables provide an overview of the behavior of the 604e with respect to
and store operations. Table 3-1 does not include noncacheable cases. The first thre
(load when the cache block is marked I) also involve selecting a replacement clas
copying back any modified data that may have resided in that replacement class.
Chapter 3.  Cache and Bus Interface Unit Operation 3-9
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Table 3-2 does not address the noncacheable or write-through cases and do
completely describe the exact mechanisms for the operations described. The first two
also involve selecting a replacement class and copying back any modified data tha
have resided in that replacement class. The state of theSHD signal is unimportant in this
table.

3.4.2  General Comments on Snooping
When a 604e is not the bus master, it monitors all bus traffic and performs cache
memory queue snooping as appropriate. The snooping is triggered by the receip
qualified snoop request, as indicated by the simultaneous assertion of the transfer staTS)
and the global (GBL) bus signals. The only exception to this qualified snoop request is
four address-only transactions; the 604e also snoops its own TLB invalidate, TLBSY
SYNC, and ICBI transactions regardless of the global (GBL) bit setting.

Table 3-1. Memory Coherency Actions on Load Operations

Cache State Bus Operation Snoop Response Action

I Read –ARTRY
–SHD

Load data and mark E

I Read –ARTRY
SHD

Load data and mark S

I Read ARTRY Retry read operation

S None Don’t care Read from cache

E None Don’t care Read from cache

M None Don’t care Read from cache

Table 3-2. Memory Coherency Actions on Store Operations

Cache State Bus Operation Snoop Response Action

I RWITM –ARTRY Load data, modify it, mark M

I RWITM ARTRY Retry the RWITM

S Kill –ARTRY Modify cache, mark M*

S Kill ARTRY Retry the kill

E None Don’t care Modify cache, mark M

M None Don’t care Modify cache

*When the 604e issues a kill operation (that does not receive an ARTRY snoop response)
the associated 604e’s cache block state changes from shared to modified. But if an lwarx
instruction is followed by an stwcx.  instruction to a different address, the 604e may
broadcast a kill operation without marking the cache block in the on-chip cache modified.

In designing an L2 cache controller for the 604e, it should not be assumed that a kill
operation issued by the 604e results in the 604e gaining modified ownership.

The 604e does not broadcast the kill operation without marking the cache block as
modified.
3-10 PowerPC 604e RISC Microprocessor User's Manual
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The 604e drives two snoop status signals,ARTRY andSHD, in response to qualified snoo
requests. These signals provide information about the state of the addressed bloc
respect to 604e for the current bus operation. These signals are described in more d
this document. The following additional comments apply:

• Any bus transaction that does not have theGBL signal asserted can be ignored by
all bus snoopers. All such transactions, except the self-snooping transactions
ignored by the 604e.

• Several bus transactions (write with flush, read, and read with intent to modify)
defined twice, once with the TT0 reset and once with it set (for atomic operatio
These operations behave in exactly the same manner with respect to bus sno

• The receiving processor may assertARTRY in response to any bus transaction as
result of internal conflicts that prevent the appropriate snooping.

• The receiving processor may clear its reservation due to snoop address hit w
several bus transactions (write-with-flush, read- with-intent-to-modify, write-wi
kill, and kill). The reservation is clear even if the 604eARTRYs the particular bus
transaction.

3.5  Sequential Consistency
The following sections describe issues related to sequential consistency with resp
single processor and multiprocessor systems.

3.5.1  Sequential Consistency Within a Single Processor
The PowerPC architecture requires that all memory operations executed by a
processor be sequentially consistent with respect to that processor. This means t
memory accesses appear to be executed in the order specified by the program with
to exceptions and data dependencies. Note that all potential precise exceptions are re
before memory accesses that miss in the cache are forwarded onto the memory qu
arbitration onto the bus. In addition, although subsequent memory accesses can add
cache, full coherency checking between the cache and the memory queue is provi
avoid dependency conflicts.

3.5.2  Weak Consistency between Multiple Processors
The PowerPC architecture requires only weak consistency among processors—t
memory accesses between processors need not be sequentially consistent and m
accesses among processors can occur in any order. The ability to order memory ac
weakly provides opportunities for more efficient use of the system bus. Unle
dependency exists, the 604e allows read operations to precede store operations.

Note that strong ordering of memory accesses with respect to the bus (and therefo
observed by other processors and other bus participants) can be accomplished by fol
instructions that access memory with the SYNC instruction.
Chapter 3.  Cache and Bus Interface Unit Operation 3-11
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3.5.3  Sequential Consistency Within Multiprocessor Systems
The PowerPC architecture defines a load operation to have been performed with res
all other processors (and mechanisms) when the value to be returned by the load
longer be changed by a subsequent store by any processor (or other mechanis
addition, it defines a store operation to be performed with respect to all other proce
(and mechanisms) when any load operation from the same location returns the value
(or a subsequently stored value).

In the 604e, cacheable load operations and cacheable, non–write-through store ope
are performed with respect to all other processors (and mechanisms) when they
arbitrated to address the cache. If a cache miss occurs, these operations may drop a m
request into the processor’s memory queue, which is considered an extension to the s
the cache with respect to snooping bus operations.

However, cache-inhibited load operations and cache-inhibited or write-through
operations are performed with respect to other processors (and mechanisms) whe
have been successfully presented onto the 604e bus interface. As a result, if m
processors are performing these types of memory operations to the same addresses
properly synchronizing one another (through the use of thelwarx /stwcx. instructions), the
results of these instructions are sensitive to the race conditions associated with the o
which the processors are granted bus access.

If the 604e uses an L2 cache, the system designer must ensure the memory system re
to the SYNC and EIEIO bus operations in such a way that the required ordering of me
operations is preserved.

3.6  Memory and Cache Coherency
The 604e can support a fully coherent 4-Gbyte (232) memory address space. Bus snoopi
is used to drive a four-state (MESI) cache coherency protocol which ensures the cohe
of all processor and direct-memory access (DMA) transactions to and from global me
with respect to each processor’s cache. It is important that all bus participants em
similar snooping and coherency control mechanisms. The coherency of memo
maintained at a granularity of 32-byte cache blocks (this size is also called the cohe
or cache-block size).

All instruction and data accesses are performed under the control of the four memory/
access attributes:

• Write-through (W attribute)
• Caching-inhibited (I attribute)
• Memory coherency (M attribute)
• Guarded (G attribute)
3-12 PowerPC 604e RISC Microprocessor User's Manual
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These attributes are programmed by the operating system for each page and block.
and I attributes control how the processor performing an access uses its own cach
M attribute ensures that coherency is maintained for all copies of the addressed me
location. The G attribute prevents speculative loading and prefetching from the addr
memory location.

3.6.1  Data Cache Coherency Protocol
Each 32-byte cache block in the 604e data cache is in one of four states. Addr
presented to the cache are indexed into the cache directory and are compared aga
cache directory tags. If no tags match, the result is a cache miss. If a tag match occ
cache hit has occurred and the directory indicates the state of the block through thre
bits kept with the tag.

The four possible states for a block in the cache are the invalid state (I), the shared sta
the exclusive state (E), and the modified state (M). The four MESI states are defin
Table 3-3 and illustrated in Figure 3-5.

The primary objective of a coherent memory system is to provide the same imag
memory to all processors in the system. This is an important feature of multiproce
systems since it allows for synchronization, task migration, and the cooperative u
shared resources. An incoherent memory system could easily produce unreliable
depending on when and which processor executed a task. For example, when a pro
performs a store operation, it is important that the processor have exclusive access
addressed block before the update is made. If not, another processor could have a c
the old (or stale) data. Two processors reading from the same memory location wou
different answers.

To maintain a coherent memory system, each processor must follow simple rule
managing the state of the cache. These include externally broadcasting the intention
a cache block not in the cache and externally broadcasting the intention to write into a
that is not owned exclusively. Other processors respond to these broadcasts by sn
their caches and reporting status back to the originating processor. The status re
includes a shared indicator (that is, another processor has a copy of the addressed

Table 3-3. MESI State Definitions

MESI State Definition

Modified (M) The addressed block is valid in the cache and in only this cache. The block is modified with respect
to system memory—that is, the modified data in the block has not been written back to memory.

Exclusive (E) The addressed block is in this cache only. The data in this block is consistent with system memory.

Shared (S) The addressed block is valid in the cache and in at least one other cache. This block is always
consistent with system memory. That is, the shared state is shared-unmodified; there is no shared-
modified state.

Invalid (I) This state indicates that the addressed block is not resident in the cache and/or any data contained
is considered not useful.
Chapter 3.  Cache and Bus Interface Unit Operation 3-13
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and a retry indicator (that is, another processor either has a modified copy of the add
block that it needs to push out of the chip, or another processor had a queuing proble
prevented appropriate snooping from occurring).

To maximize performance, the 604 provides a second path into the data cache direct
snooping. This allows the mainstream instruction processing to operate concurrently
the snooping operation. The instruction processing is affected only when the snoop c
logic detects a situation where a snoop push of modified data is required to ma
memory coherency.

Figure 3-5. MESI States

Modified in Cache A

Cache A Cache B

System Memory

Cache A Cache B

System Memory

Cache A Cache B Cache A Cache B

System Memory

Valid DataM Data invalid\
not congruent

Shared in Cache A

Valid Data Valid DataS S

Valid Data

Exclusive in Cache A

E Valid Data

Valid Data

Don’t CareX

Invalid in Cache A

System Memory

Don’t Care

Data invalid\
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not congruent Invalid DateI
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3.6.2  Coherency and Secondary Caches
The 604e supports the use of a larger secondary cache that can be implemented in d
configurations. The use of an L2 cache can serve to further improve performance by f
reducing the number of bus accesses. The L2 cache must operate with respect
memory system in a manner that is consistent with the intent of the PowerPC archite

L2 caches must forward all relevant system bus traffic onto the 604e so it can tak
appropriate actions to maintain memory coherency as defined by the PowerPC archite

3.6.3  Page Table Control Bits
The PowerPC architecture allows certain memory characteristics to be set on a page
a block basis. These characteristics include the following:

• Write-back/write-through (using the W bit)
• Cacheable/noncacheable (using the I bit)
• Memory coherency enforced/not enforced (using the M bit)

An additional page control bit, G, handles guarded storage and is not considered here
ability allows both single- and multiple-processor system designs to exploit nume
system-level performance optimizations.

The PowerPC architecture defines two of the possible eight decodings of these bits
unsupported (WIM = 110 or 111).

Note that software must exercise care with respect to the use of these bits if coh
memory support is desired. Careless specification of these bits may create situation
present coherency paradoxes to the processor. In particular, this can happen when th
of these bits is changed without appropriate precautions (such as flushing the pag
correspond to the changed bits from the caches of all processors in the system) or wh
address translations of aliased real addresses specify different values for any of the
bits. These coherency paradoxes can occur within a single processor or across
processors.

It is important to note that in the presence of a paradox, the operating system softw
responsible for correctness. The next section provides a few simple examples to conv
meaning of a paradox.

3.6.4  MESI State Diagram
The 604e provides dedicated hardware to provide data cache coherency by snoopi
transactions. The address retry capability of the 604e enforces the MESI protocol, as
in Figure 3-6. Figure 3-6 assumes that the WIM bits are set to 001; that is, write-b
caching-not-inhibited, and memory coherency enforced.
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Figure 3-6. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 3-6 gives a detailed list of MESI transitions for various operations and WIM
settings.

3.6.5  Coherency Paradoxes in Single-Processor Systems
The following coherency paradoxes can be encountered within a single processor:

• Load or store operations to a page with WIM = 0b011 and a cache hit occurs.
Caching was supposed to be inhibited for this page. Any load operation to a c
inhibited page that hits in the cache presents a paradox to the processor. The
ignores the data in the cache and the state of the cache block is unchanged.

• Store operation to a page with WIM = 0b10X and a cache hit on a modified ca
block occurs. This page was marked as write-through yet the processor was g
access to the cache (write-through page are always main memory). Any store
operation to a write-through page that hits a modified cache block in the cach
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3-16 PowerPC 604e RISC Microprocessor User's Manual



to the
main
nged.

xes are
ified

emory
sors
n, this
ches.

tions

n and

ed on
re

E]
s

or
em
,” for

cessed
ses

essed
ere
us,

ich
mal.
presents a coherency paradox to the processor. The 604e writes the data both
cache and to main memory (note that only the data for this store is written to 
memory and not the entire cache block). The state of the cache block is uncha

3.6.6  Coherency Paradoxes in Multiple-Processor Systems
It is possible to create a coherency paradox across multiple processors. Such parado
particularly difficult to handle since some scenarios could result in the purging of mod
data, and others may lead to unforeseen bus deadlocks.

Most of these paradoxes center around the interprocessor coherency of the m
coherency bit (or the M bit). Improper use of this bit can lead to multiple proces
accepting a cache block into their caches and marking the data as exclusive. In tur
can lead to a state where the same cache block is modified in multiple processor ca

Additional information on what bus operations are generated for the various instruc
and state conditions can be found in Chapter 8, “System Interface Operation.”

3.7  Cache Configuration
There are several bits in the HID0 register that can be used to configure the instructio
data cache. These are described as follows:

• Bit 1—Enable cache parity checking. Enables a machine check exception bas
the detection of a cache parity error. If this bit is cleared, cache parity errors a
ignored. Note that the machine check exception is further affected by the MSR[M
bit, which specifies whether the processor enters checkstop state or continue
processing.

• Bit 7—Disable snoop response high state restore. If this bit is set, the process
cannot drive theSHD andARTRY signals to the high (negated) state, and the syst
must restore the signals to the high state. See Chapter 7, “Signal Descriptions
more information.

• Bit 16—Instruction cache enable. If this bit is cleared, the instruction cache is
neither accessed nor updated. Disabling the caches forces all pages to be ac
as if they were marked cache-inhibited (WIM = X1X). All potential cache acces
from the bus are ignored.

• Bit 17—Data cache enable. If this bit is cleared, the data cache is neither acc
nor updated. Disabling the cache forces all pages to be accessed as if they w
marked cache-inhibited (WIM = X1X). All potential cache accesses from the b
such as snoop and cache operations are ignored.

• Bit 18—Instruction cache lock. Setting this bit locks the instruction cache, in wh
case all cache misses are treated as cache-inhibited. Cache hits occur as nor
Cache operations and theicbi instruction continue to work as normal.
Chapter 3.  Cache and Bus Interface Unit Operation 3-17
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• Bit 19—Data cache lock. Setting this bit locks the data cache, in which case a
cache misses are treated as cache-inhibited. Cache hits occur as normal, and
snoops and other operations continue to work as normal. This is the only way
deallocate an entry. If the data cache is locked when thedcbz instruction is executed,
it takes an alignment exception, provided the target address had been transla
correctly.

• Bit 20—Instruction cache invalidate all. When this bit is set, the instruction cac
begins an invalidate operation marking the state of each cache block in the
instruction cache as invalid without copying back any data to memory. It is assu
that no data in the instruction cache is modified. Access to the cache is block
during this time. Bit 20 is reset when the invalidation operation begins (usually
cycle immediately following the write to the register beginning an invalidate
operation).

• Bit 21—Data cache invalidate all. When this bit is set, the data cache begins a
invalidate operation marking the state of each cache block in the data cache a
invalid without copying back any modified lines to memory. Access to the cach
blocked during this time. Bit 21 is reset when the invalidation operation begins
(usually the cycle immediately following the write to the register). Any accesse
the cache from the bus are signaled as a miss during the time that the invalida
operation is in progress.

• Bit 30—BTAC disable. Used to disable use of the 64-entry branch target addr
cache. When this bit is cleared, the BTAC is enabled and new entries can be a
When this bit is set, the BTAC contents are invalidated and the BTAC behaves
it were empty. New entries cannot be added until the BTAC is enabled. The B
can be flushed by disabling and re-enabling the BTAC using two successivemtspr
instructions.

The HID0 register can be accessed with themtspr andmfspr instructions.

3.8  Cache Control Instructions
The VEA and OEA portions of the PowerPC architecture define instructions that ca
used for controlling caches in both single- and multiprocessor systems. The exact be
of these instruction in the 604e is described in the following sections.

Several of these instructions are required to broadcast their essence (such as a kill, c
flush operation) onto the 604e bus interface so that all processors in a multiproc
system can take the appropriate actions. The 604e contains snooping logic to moni
bus for these commands and control logic to keep the cache and the memory
coherent. Additional details on the specific bus operations can be found in Chap
“Signal Descriptions.”

3.8.1  Instruction Cache Block Invalidate (icbi)
The effective address is computed, translated, and checked for protection violatio
3-18 PowerPC 604e RISC Microprocessor User's Manual
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defined in the PowerPC architecture. If the addressed block is in the instruction cach
604e marks this instruction cache block as invalid. This instruction changes neithe
content nor status of the data cache. The ICBI operation is broadcast on the 604
unconditionally to support this function throughout a system’s memory hierarchy.

3.8.2  Instruction Synchronize (isync)
The isync instruction causes the 604e to purge its instruction buffers and fetch the
sequential instruction.

3.8.3  Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
instructions provide potential system performance enhancements through the u
software-initiated prefetch hints. The 604e treats these instructions identic
Implementations are not required to take any action based off the execution o
instruction, but they may choose to prefetch the cache block corresponding to the eff
address into their cache.

The 604e treats these instructions as a no-ops if any of the following conditions is m

• The address misses in the TLB and in the BAT.

• The address is directed to a direct-store segment.

• The address is directed to a cache-inhibited page.

• The data cache lock bit HID0[19] is set.

Regarding MESI cache coherency, the data brought into the cache as a result o
instruction is validated in the same way a load instruction would be (that is, if no othe
participant has a copy, it is marked as Exclusive, otherwise it is marked as Shared
memory reference of adcbt causes the reference bit to be set.

Note also that the successfuldcbt instruction affects the state of the TLB and cache LR
bits as defined by the LRU algorithm.

3.8.4  Data Cache Block Set to Zero (dcbz)
As defined in the VEA, when thedcbz instruction is executed the effective address
computed, translated, and checked for protection violations. If the 604e does not al
have exclusive access to this cache block, it presents a kill operation onto the 604e b
kill operation instructs all other processors to invalidate copies of the cache block tha
reside in their caches. After it has exclusive access to the cache block, the 604e wri
zeros into the cache block. In the event that the 604e already has exclusive acc
immediately writes all zeros into the cache block. If the addressed block is with
noncacheable or a write-through page, or if the cache is locked or disabled, an align
exception occurs.
Chapter 3.  Cache and Bus Interface Unit Operation 3-19
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3.8.5  Data Cache Block Store (dcbst)
As defined in the VEA, when a Data Cache Block Store (dcbst) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the
does not have modified data in this block, the 604e broadcasts a clean operation on
bus. If modified (dirty) data is associated with the cache block, the processor push
modified data out of the cache and into the memory queue for future arbitration ont
604e bus. In this situation, the cache block is marked as exclusive. Otherwise
instruction is treated as a no-op.

3.8.6  Data Cache Block Flush (dcbf)
As defined in the VEA, when a Data Cache Block Flush (dcbf) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the
does not have modified data in this cache block, it broadcasts a flush operation on
604e bus. If the addressed cache block is in the cache, the 604e marks this data as
However, if the cache block is present and modified, the processor pushes the modifie
into the memory queue for arbitration onto the 604e bus and the cache block is mark
invalid.

3.8.7  Data Cache Block Invalidate (dcbi)
As defined in the OEA, when a Data Cache Block Invalidate (dcbi) instruction is executed,
the effective address is computed, translated, and checked for protection violations.

The 604e broadcasts a kill operation onto the 604e bus. If the addressed cache bloc
the cache, the 604e marks this data as invalid regardless of whether the data is mo
Because this instruction may effectively destroy modified data, it is privileged and has
semantics with respect to protection; that is, write permission is required for the DCBI
operation.

3.9  Basic Cache Operations
This section describes operations that can occur to the cache, and how these operat
implemented in the 604e.

3.9.1  Cache Reloads
A cache block is reloaded after a read miss occurs in the cache. The cache bloc
contains the address is updated by a burst transfer of the data from system memory
that if a read miss occurs in a multiprocessor system, and the data is modified in an
cache, the modified data is first written to external memory before the cache reload o
3-20 PowerPC 604e RISC Microprocessor User's Manual
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3.9.2  Cache Cast-Out Operation
The 604e uses an LRU replacement algorithm to determine which of the four pos
cache locations should be used for a cache update. Updating a cache block caus
modified data associated with the least-recently used element to be written back, or ca
to system memory.

3.9.3  Cache Block Push Operation
When a cache block in the 604e is snooped and hit by another processor and the
modified, the cache block must be written to memory and made available to the sno
device. The cache block that is hit is said to be pushed out onto the bus. The 604e su
two kinds of push operations—normal push operations and enveloped high-priority
operations, which are described in Section 3.9.7, “Enveloped High-Priority Cache B
Push Operation.”

3.9.4  Atomic Memory References
The lwarx /stwcx. instruction combination can be used to emulate atomic mem
references. These instructions are described in Chapter 2, “Programming Model.”

In a multiprocessor system, a processor can execute anlwarx instruction and another
processor can broadcast a flush bus operation to the target address of thelwarx , invalidating
the cache block without canceling the reservation. Therefore, the first processor
broadcast a reservation set (TT = 0x01, address only) tenure without having a valid co
the reservation address in its data cache.

After a data cache hit for anlwarx instruction, the only condition that can cancel th
correspondinglwarx reservation set transaction is another snoop, which clears
reservation before the transaction wins arbitration to the address bus.

If the processor detects that a snoop flush operation to the reservation addres
invalidated the cache for the reservation address between the time at which thelwarx hit
the cache and the time thelwarx reservation set broadcast won arbitration to the addr
bus, the processor always retries thelwarx at the cache even though it still performs th
reservation set address tenure. In this case, the retriedlwarx instruction misses in the cach
and causes a read-atomic transaction on the bus. Externally this would be seen
following:

snoop: flush (address A)

processor:lwarx  reservation set operation (address A)

processor: read atomic (address A)

To avoid this paradox, paradox checking mechanisms should allow anlwarx reservation
set operation to be broadcast when the processor can have a valid reservation but d
have a valid copy of thelwarx  target in its data cache.
Chapter 3.  Cache and Bus Interface Unit Operation 3-21
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3.9.5  Snoop Response to Bus Operations
When the 604e is not the bus master, it monitors bus traffic and performs cache
memory-queue snooping as appropriate. The snooping operation is triggered by the r
of a qualified snoop request. A qualified snoop request is generated by the simulta
assertion of theTS andGBL bus signals.

Instruction processing is interrupted for one clock cycle only when a snoop hit occurs
the snoop state machine determines a push-out operation is required.

The 604e maintains a write queue of bus operations in progress and/or pending arbit
This write queue is also snooped in response to qualified snoop requests. Note that
length (four beat) write operations are always snooped in the write queue; however, s
beat writes are not snooped. Coherency for single-beat writes is maintained through t
of cache operations that are broadcast with the write on the system interface o
lwarx /stwcx. instructions.

The 604e drives two snoop status signals (ARTRY and SHD) in response to a qualified
snoop request that hits. These signals provide information about the state of the add
block for the current bus operation. For more information about these signals
Chapter 7, “Signal Descriptions.”

3.9.6  Cache Reaction to Specific Bus Operations
There are several bus transaction types defined for the 604e bus. The 604e must snoo
transactions and perform the appropriate action to maintain memory coherency
Table 3-4. For example, because single-beat write operations are not snooped when t
queued in the memory unit, additional operations such as flush or kill operations, mu
broadcast when the write is passed to the system interface to ensure coherency.

A processor may assertARTRY for any bus transaction due to internal conflicts that preve
the appropriate snooping. In general, ifARTRY is not asserted, each snooping process
must take full ownership for the effects of the bus transaction with respect to the state
processor.

The transactions in Table 3-4 correspond to the transfer type signals TT0–TT4, whic
described in Section 7.2.4.1, “Transfer Type (TT[0–4]).”

Table 3-4. Response to Bus Transactions

Transaction Response

Clean block The clean operation is an address-only bus transaction, initiated by executing a dcbst
instruction. This operation affects only blocks marked as modified (M). Assuming the
GBL signal is asserted, modified blocks are pushed out to memory, changing the state
to E.
3-22 PowerPC 604e RISC Microprocessor User's Manual



Flush block The flush operation is an address-only bus transaction initiated by executing a dcbf
instruction. Assuming the GBL signal is asserted, the flush block operation results in the
following:

• If the addressed block is in the S or E state, the state of the addressed block is
changed to I.

• If the addressed block is in the M state, the snooping device asserts ARTRY and SHD,
the modified block is pushed out of the cache, and its state is changed to I.

Write-with-flush
Write-with-flush-atomic

Write-with-flush and write-with-flush-atomic operations are issued by a processor after
executing stores or stwcx. , respectively to memory in a variety of different states,
particularly noncacheable and write-through. 60x processors do not use this transaction
code for burst transfers, but system use for bursts is not precluded. If they appear on the
bus and the GBL bit is asserted, the 60x processors have the same snoop response as
for flush block, except that a hit on the reservation address causes loss of the
reservation.

Kill block Kill block is an address-only transaction issued by a processor after executing a dcbi
instruction, a dcbz instruction to a location marked I or S, or a write operation to a block
marked S. If a kill-block transaction appears on the bus, and the GBL bit is asserted, the
addressed block is forced to the I state if it is in the cache.
A kill block hit on a cache block marked modified causes a cache block push operation,
and then the block is invalidated.
Note that if a kill operation hits on a write queue entry, it does not cause that entry to be
purged. Instead the kill operation is ARTRYd and the entry is pushed to memory.

Write-with-kill In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
block is forced to the I state, killing modified data that may have been in the block. In
addition to snooping the cache, the three-entry write queue is also snooped. A kill
operation that hits an entry in the write queue purges that entry from the queue.
A global write-with-kill operation on the bus can cause a loss of memory coherency and
make it appear that a program has not executed serially. Note that the 604e never
issues a global write-with-kill operation.
If data is stored at a memory location and a subsequent store to that address writes
different data into the L1 cache, it is possible for the 604e to ARTRY a snooped write-
with-kill operation to an address in the same cache block and simultaneously invalidate
the L1 cache line for address A. If the 604e attempts to load data from address A, it will
miss in the L1 cache and the 604e will arbitrate for the bus. If the 604e wins arbitration
over the ARTRYd write-with-kill operation, the load operation retrieves the original data
before the data for the write-with-kill is written to memory. Since the older data is
returned instead of the newer data, it appears that the program is not executed
sequentially.

A similar scenario occurs when data is in the 604e’s copy-back buffer, and other data is
in the L1 cache. In this scenario, the write-with-kill is ARTRYd, the data in the copy-back
buffer is pushed to memory and the data in the cache is killed. The subsequent load
retrieves from memory the data that had been in the copy-back buffer. The probability of
encountering either of these scenarios is increased by performing a dcbst  to the
address before storing the newer data.

To avoid this scenario, do not write software that attempts to read from a location that
may still be in the L1 cache, and is the target address for a write-with-kill access (for
example a DMA operation). This may be done by flushing the block from the cache
before the DMA operation is initiated, or by using a software lock to indicate when the
DMA operation is complete and the location is safe for reading.

Alternatively, use write-with-flush instead of write-with-kill.

Table 3-4. Response to Bus Transactions (Continued)

Transaction Response
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Read
Read-atomic

Read is used by most single-beat or burst reads on the bus. A read on the bus with the
GBL bit asserted causes the following snoop responses:

• If the addressed block is in the cache in the I state, the processor takes no action.
• If the addressed block is in the cache in the S state, the processor asserts the SHD

snoop status signal.
• If the addressed block is in the cache in the E state, the processor asserts the SHD

snoop status signal and changes the state of that cache block to S.
• If the addressed block is in the cache in the M state, the processor asserts both the

ARTRY and SHD snoop status signals and changes the state of that block in the
cache from M to S and pushes out the modified data.

Read-atomic operations appear on the bus in response to lwarx instruction and receive
the same snooping treatment as a read operation.

Read-with-intent-to-
modify (RWITM)
RWITM atomic

The RWITM transaction is issued to acquire exclusive use of a memory location for the
purpose of modifying it. One example is a processor that writes to a block that is not
currently in its cache. When GBL is asserted, RWITM transactions on the bus cause the
processors to take the following snoop actions:

• If the addressed block is not in the cache, it takes no action.
• If the addressed block is in the cache in the S or E state, the processor changes the

state of that block in the cache to I.
• If the addressed block is present in the cache in the M state, then the 60x asserts both

the ARTRY and the SHARED snoop status signals, pushes the dirty block out of the
cache and changes the state of that block in the cache from M to I.

RWITM atomic appears on the bus in response to the stwcx.  instruction and receives
the same snooping treatment as RWITM.
It is now illegal for any snooping device to generate a SHD snoop response without an
ARTRY response to an RWITM address tenure.

If the processor sees this illegal snoop response to its RWITM address tenure, it will not
respond correctly to snoops to that address until that data is fully loaded into the data
cache from the line-fill buffer.

For a snoop-read/RWNITC to that address that hits on the line-fill buffer, the processor
asserts SHD instead of ARTRY. In this case, the processor updates the data cache to
be modified and the reading device has a copy marked S (shared). Store operations to
the cache block could be lost at this point.

For all invalidating snoop operations to that address, the processor asserts no response
instead of asserting ARTRY. In this case, the processor updates the data cache to be
modified while another device could also have a modified copy. The processor’s stores
to this cache block or another processor’s stores to this cache block could be lost.

TLBSYNC This TLB synchronize operation is an address-only transaction placed onto the bus by a
604e when it executes a tlbsync  instruction.

When the TLBSYNC bus operation is detected by a snooping 604e, the 604e asserts
the ARTRY snoop status if any operations based on an invalidated TLB are pending.

TLB invalidate A TLB invalidate transaction is an address-only transaction issued by a processor when
it executes a tlbie  instruction. The address transmitted as part of this transaction
contains bits 12–19 of the EA in their correct respective bit positions.

In response to a TLB invalidate operation, snooping processors invalidate the entire
congruence class in any TLBs associated with the specified EA. In addition, a snooping
604e also asserts the ARTRY snoop status when it has a pending TLB invalidate
operation, and a second TLB invalidate operation is detected.

For more information on the tlbie  instruction, see Section 2.3.6.3.3, “Translation
Lookaside Buffer Management Instructions—(OEA).”

Table 3-4. Response to Bus Transactions (Continued)

Transaction Response
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3.9.7  Enveloped High-Priority Cache Block Push Operation
If the 604e has a read operation outstanding on the bus and another pipelined bus op
hits against a modified block, the 604e provides a high-priority push operation.
transaction can be enveloped within the address and data tenures of a read operatio
feature prevents deadlocks in system organizations that support multiple memory-m
buses. More specifically, the 604e internally detects the scenario where one or mor

I/O reply The I/O reply operation is part of the direct-store operation. It serves as the final bus
operation in the series of bus operations that service a direct-store operation.

EIEIO An EIEIO operation is put onto the bus as a result of executing an eieio instruction. The
eieio instruction enforces ordered execution of accesses to noncacheable memory. The
604s internally enforce ordering of such accesses with respect to the eieio instruction in
that noncacheable accesses due to instructions that occur before the eieio instruction in
the program order are placed on the bus before any noncacheable accesses that result
from instructions that occur after the eieio  instruction with the EIEIO bus operation
separating the two sets of bus operations.

If the system implements a mechanism that allows reordering of noncacheable
requests, the appearance of an EIEIO operation should cause it to force ordering
between accesses that occurred before and those that occur after.

SYNC The sync  instruction generates an address-only transaction, which the 604e places
onto the bus.
When a 604e detects a SYNC operation on the bus, it asserts the ARTRY snoop status
if any other snooped cache operations are pending in the device.

Read-with-no-intent-to-
cache (RWNITC)

An RWNITC operation is issued by a bus-attached device as TT0–TT4 = 0b01011. The
604e snoops this operation and if it gets a cache hit on a block marked M, it writes the
block back to memory and marks it E.

This operation is useful for a graphics adapter that reads display data from memory.
This data may be in the processor’s cache and may be updated frequently. Because the
adapter does not cache the data, the processor need not leave the block in the S state,
requiring a bus operation to regain exclusive access.

XFERDATA XFERDATA read and write operations are bus transactions that result from execution of
the eciwx or ecowx instructions, respectively. These instructions assist certain adapter
types (especially displays) to make high-speed data transfers. They do this by
calculating an effective address, translating it, and presenting the resulting physical
address to the adapter.

The XFERDATA read and write operations transfer a word of data to or from the
processor, respectively. They also present the 4-bit resource ID (RID) field, using the
concatenation of the bits TBST || TSIZ[0–2]. These transactions are unique in the sense
that the address that is transferred does not select the slave device; it is simply being
passed to the slave device for use in a subsequent transaction. Rather, the RID bits are
used to select among the slave devices.

Although the intent of these instructions is that the slave device that is selected by the
RID bits will use the address that is transferred in a subsequent data transfer, the exact
nature of this data transfer is not defined by 604e bus specifications. It is a private
transfer that can be defined by the system like any other direct memory access.

ICBI An ICBI transaction is issued by a processor that executes an icbi instruction. All copies
of the addressed block in bus-attached instruction caches are invalidated. In this
transaction, a 604e could assert ARTRY in response to its own transaction.

Table 3-4. Response to Bus Transactions (Continued)

Transaction Response
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requests are outstanding and the processor has pipelined a write operation on top
load. Normally, when the data bus is granted to the 604e, the resulting data bus ten
used for the load operation.

The enveloped high-priority cache block push feature defines a bus signal, the da
write only qualifier (DBWO), which, when asserted with a qualified data bus gra
indicates that the resulting data tenure should be used for the first store operation in
If no store operation is pending, the first read operation is performed. If no write oper
is pending, the 604e can perform a read operation. This signal is described in de
Section 8.11, “Using Data Bus Write Only.” Note that the enveloped copy-back opera
is an internally pipelined bus operation.

3.9.8  Bus Operations Caused by Cache Control Instructions
Table 3-5 provides an overview of the bus operations initiated by cache control instruc
Note that Table 3-5 assumes that the WIM bits are set to 001; that is, since the ca
operating in write-back mode, caching is permitted and coherency is enforced.

3.9.9  Cache Control Instructions
Table 3-5 lists bus operations performed by the 604e when they execute cache c
instructions.

Table 3-5. Bus Operations Initiated by Cache Control Instructions

Instruction Cache State Next Cache State Bus Operation Comment

sync Don’t care No change SYNC First clears memory queue

eieio Don’t care No change EIEIO No clear meaning

icbi Don’t care I ICBI —

dcbi
(invalidate)

Don’t care I Kill —

dcbf
(flush)

E, S, I I Flush —

M I Write-with-kill Marked as write-through

dcbst
(store)

E, S, I No change Clean —

M E Write-with-kill Marked as write-through

dcbz
(zero)

I M Kill May also replace

S M Kill —

M, E M None Write over modified data

dcbt , dcbtst I E, S Read State change on reload

M, E, S No Change None —

tlbsync Don’t care No change TLBSYNC —
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Table 3-5 does not include noncacheable or write-through cases, nor does it comp
describe the mechanisms for the operations described. For more information
Section 3.10, “Cache Actions.”

Chapter 3, “Addressing Modes and Instruction Set Summary,” and Chapter 8, “Instru
Set,” inThe Programming Environments Manualdescribe the cache control instructions
detail. Several of the cache control instructions broadcast onto the 604e interface so t
processors in a multiprocessor system can take appropriate actions. The 604e co
snooping logic to monitor the bus for these commands and the control logic requir
keep the cache and the memory queues coherent. For additional details about the s
bus operations performed by the 604e, see Chapter 8, “System Interface Operation

3.10  Cache Actions
Table 3-6 lists the actions that occur for various operations depending on different WI
settings. It also provides information about general cache conditions and does not tak
account all possible interactions and conditions. In particular, Table 3-6 does not ad
many of the conditions that might be encountered in an in-line L2 cache implementa

Table 3-6. Cache Actions

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

000 I Load Read 000 01010 (n/a) (None) Load the block of data into
cache
forward data from load
mark cache block E

000 I Load Read 000 01010 (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

000 I Load Read 000 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M E
S

Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache

001 I Load Read 001 01010 (n/a) (None) Load the block of data into
cache
mark cache block E
load from cache

001 I Load Read 001 01010 (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

001 I Load Read 001 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M E
S

Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache
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011
010
110
111

E S I Load Single-
beat read

01M
11M

01010 (n/a) (None) or
SHD

Load from main memory

011
010
110
111

E S I Load Single-
beat read

01M
11M

01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

M Load Single-
beat read

01M
11M

01010 (n/a) (None) or
SHD

Paradox—cache should be I
load from main memory

011
010
110
111

M Load Single-
beat read

01M
11M

01010 (n/a) ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

100 I Load Read 100 01010 (n/a) (None) Load the block of data into
cache
load from cache
mark the cache block E

100 I Load Read 100 01010 (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

100 I Load Read 100 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M E
S

Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache

101 I Load Read 101 01010 (n/a) (None) Load the block of data into
cache
load from cache
mark cache E

101 I Load Read 101 01010 (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

101 I Load Read 101 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M E
S

Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache

000 I lwarx Read
atomic

000 11010 Set by
this op

(None) Load the block of data into
cache
set reservation
load from cache
mark cache block E

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action
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000 I lwarx Read
atomic

000 11010 Set by
this op

SHD Load the block of data into
cache
set reservation
load from cache
mark cache block S

000 I lwarx Read
atomic

000 11010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M E
S

lwarx lwarx
reservation
set*

000 00001 Set by
this op

(None) or
SHD

Set reservation
load from cache

000 M E
S

lwarx lwarx
reservation
set*

000 00001 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 I lwarx Read
atomic

001 11010 Set by
this op

(None) Load the block of data into
cache
mark cache block E
set reservation
load from cache

001 I lwarx Read
atomic

001 11010 Set by
this op

SHD Load the block of data into
cache
set reservation
load from cache
mark cache block S

001 I lwarx Read
atomic

001 11010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M E
S

lwarx lwarx
reservation
set*

001 00001 Set by
this op

(None) or
SHD

Set reservation
load from cache

001 M E
S

lwarx lwarx
reservation
set*

001 00001 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010

I lwarx Single-
beat read
atomic

01M 11010 Set by
this op

(None) or
SHD

Set reservation
load from main memory

011
010

I lwarx Single-
beat read
atomic

01M 11010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010

E S lwarx Single-
beat read
atomic

01M 11010 Set by
this op

(None) or
SHD

Set the reservation
load from main memory

011
010

E S lwarx Single-
beat read
atomic

01M 11010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action
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011
010

M lwarx Single-
beat read
atomic

01M 11010 Set by
this op

(None) or
SHD

Paradox—cache should be I
set the reservation
load from main memory

011
010

M lwarx Single-
beat read
atomic

01M 11010 (n/a) ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

100
101

I lwarx (n/a) (n/a) (n/a) (n/a) (n/a) A lwarx  to a page marked
write-through causes a data
access exception; therefore
no bus transaction results.

101 (n/a) lwarx (n/a) (n/a) (n/a) (n/a) (n/a) A lwarx  to a page marked
write-through causes a data
access exception; therefore
no bus transaction results.

000 I Store RWITM 000 01110 (n/a) (None) or
SHD

Load the block of data into
cache
store to cache
mark cache M

000 I Store RWITM 000 01110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 S Store Kill 000 01100 (n/a) (None) or
SHD

Wait for the kill to be
successfully presented
store to cache
mark cache block M

000 S Store Kill 000 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 E Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache
mark cache block M

000 M Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache

001 I Store RWITM 001 01110 (n/a) (None) or
SHD

Load the block of data into
cache
mark cache block E
store to cache
mark cache block M

001 I Store RWITM 001 01110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 S Store Kill 001 01100 (n/a) (None) or
SHD

Wait for kill to be
successfully presented
mark cache block E
store to cache
mark cache block M

001 S Store Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action
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001 E Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache
mark cache block M

001 M Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache

011
010
110
111

I Store Write with
flush

01M
11M

00010 (n/a) (None) or
SHD

Store to main memory

011
010
110
111

I Store Write with
flush

01M
11M

00010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

E S Store Write with
flush

01M
11M

00010 (n/a) (None) or
SHD

Paradox—cache should be I
store to main memory

011
010
110
111

E S Store Write with
flush

01M
11M

00010 (n/a) ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

011
010
110
111

M Store Write with
flush

01M
11M

00010 (n/a) (None) or
SHD

Paradox—cache should be I
store to main memory

011
010
110
111

M Store Write with
flush

01M
11M

00010 (n/a) ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

100 I Store Write with
flush

100 00010 (n/a) (None) or
SHD

Store to main memory

100 M E
S I

Store Write with
flush

100 00010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M E
S

Store Write with
flush

100 00010 (n/a) (None) or
SHD

Store to cache
store to main memory

101 I Store Write with
flush

101 00010 (n/a) (None) or
SHD

Write to main memory
(note: no reload on a store
miss)

101 M E
S I

Store Write with
flush

101 00010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M E
S

Store Write with
flush

101 00010 (n/a) (None) or
SHD

Store to cache
store to main memory

000 S I stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action
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000 I stwcx. RWITM
atomic

000 11110 Yes
(and
reset)

(None) or
SHD

Load the block of data into
cache
release the reservation
update the condition
register
store to cache
mark cache M

000 I stwcx. RWITM
atomic

000 11110 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 S stwcx. Kill 000 01100 Yes
(and
reset)

(None) or
SHD

Wait for the kill to be
successfully presented
release reservation
update condition register
store to cache
mark cache block M

000 S stwcx. Kill 000 01100 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M E stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

000 E stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) Release reservation
update condition register
store to cache
mark cache block M

000 M E stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) (n/a)

000 M stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) Release reservation
update condition register
store to cache

001 S I stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

001 I stwcx. RWITM
atomic

001 11110 Yes
(and
reset)

(None) or
SHD

Load the block of data into
cache
release the reservation
update the condition
register
store to cache
mark cache M

001 I stwcx RWITM
atomic

001 11110 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 S stwcx. Kill 001 01100 Yes
(and
reset)

(None) or
SHD

Release reservation
update condition register
mark cache block E
store to cache
mark cache block M

001 S stwcx. Kill 001 01100 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
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001 E stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

001 M E stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) Release reservation
update condition register
store to cache
mark cache block M

001 M E stwcx. (None) (n/a) (n/a) Yes (n/a) (n/a)

001 M stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) Release reservation
update condition register
store to cache

011
010

I stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

011
010

I stwcx. Write with
flush
atomic

01M 10010 Yes
(and
reset)

(None) or
SHD

Release reservation
update condition register
store to main memory

011
010

I stwcx. Write with
flush
atomic

01M 10010 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010

M E
S

stwcx. (None) (n/a) (n/a) None (n/a) Paradox—cache should be I
update condition register

011
010

M E
S

stwcx. Write with
flush
atomic

01M 10010 Yes
(and
reset)

(None) or
SHD

Paradox—cache should be I
check/release reservation
update condition register
store to main memory

011
010

M E
S

stwcx. Write with
flush
atomic

01M 10010 Yes ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

011
010

M stwcx. (n/a) (n/a) (n/a) None (n/a) (n/a)

100
101
11X

(n/a) stwcx. (n/a) (n/a) (n/a) (n/a) (n/a) A stwcx. to a page marked
write-though causes a data
access exception; therefore,
no bus transaction results.

100
101
11X

(n/a) stwcx. (n/a) (n/a) (n/a) Yes (n/a) An stwcx.  to a page
marked write-though
causes a data access
exception; therefore, no bus
transaction results.

000 I dcbt Read 000 01010 (n/a) (None) Load the block of data into
cache
mark the cache E

Table 3-6. Cache Actions (Continued)

Cache
WIM
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Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
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000 I dcbt Read 000 01010 (n/a) SHD Load the block of data into
cache
mark the cache S

000 I dcbt Read 000 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M E
S

dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

001 I dcbt Read 001 01010 (n/a) (None) Load the block of data into
cache
mark the cache E

001 I dcbt Read 001 01010 (n/a) SHD Load the block of data into
cache
mark the cache S

001 I dcbt Read 001 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M E
S

dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

011
010
110
111

I dcbt (None) 01M
11M

(n/a) (n/a) (n/a) No-op

011
010
110
111

E S dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

011
010
110
111

M dcbt (None) (n/a) (n/a) None (n/a) No-op

011
010
110
111

M dcbt (n/a) (n/a) (n/a) None (n/a) (n/a)

100 I dcbt Read 100 01010 (n/a) (None) Load the block of data into
cache
mark the cache E

100 I dcbt Read 100 01010 (n/a) SHD Load the block of data into
cache
mark the cache S

100 I dcbt Read 100 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M E
S

dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

Table 3-6. Cache Actions (Continued)
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101 I dcbt Read 101 01010 (n/a) (None) Load the block of data into
cache
mark the cache E

101 I dcbt Read 101 01010 (n/a) SHD Load the block of data into
cache
mark the cache S

101 I dcbt Read 101 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M E
S

dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

000 I dcbtst Read 000 01010 (n/a) (None) Load the block of data into
cache
mark the cache E

000 I dcbtst Read 000 01010 (n/a) SHD Load the block of data into
cache
mark the cache S

000 I dcbtst Read 000 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 S dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

000 M E dcbtst (None) 000 (n/a) (n/a) (n/a) No-op

001 I dcbtst Read 001 01010 (n/a) (None) Load the block of data into
cache
mark the cache E

001 I dcbtst Read 001 01010 (n/a) SHD Load the block of data into
cache
mark the cache S

001 I dcbtst Read 001 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M E
S

dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

011
010
110
111

I dcbtst (None) 01M
11M

(n/a) (n/a) (n/a) No-op

011
010
110
111

E S dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

011
010
110
111

M dcbtst (None) (n/a) (n/a) None (n/a) No-op

Table 3-6. Cache Actions (Continued)
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011
010
110
111

M dcbtst (n/a) (n/a) (n/a) None (n/a) (n/a)

100 I dcbtst Read 100 01010 (n/a) (None) Load the block of data into
cache
mark cache E

100 I dcbtst Read 100 01010 (n/a) SHD Load the block of data into
cache
mark cache as block S

100 I dcbtst Read 100 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M E
S

dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

101 I dcbtst Read 101 01010 (n/a) (None) Load the block of data into
cache
mark cache block E

101 I dcbtst Read 101 01010 (n/a) SHD Load the block of data into
cache
mark cache block S

101 I dcbtst Read 101 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 S
E

dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

101 M dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

000 I dcbz Kill 000 01100 (n/a) (None) or
SHD

Establish the block in data
cache without fetching the
block from main memory
clear all bytes
mark cache block M

000 S I dcbz Kill 000 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 S dcbz Kill 000 01100 (n/a) (None) or
SHD

Clear all bytes in the block
mark cache block M

000 E dcbz (None) 000 (n/a) (n/a) (n/a) Clear all bytes in the block
mark cache block M

000 M dcbz (None) (n/a) (n/a) (n/a) (n/a) Write zeros to all bytes in
the cache block

001 I dcbz Kill 001 01100 (n/a) (None) or
SHD

Establish the block in data
cache without fetching the
block from main memory
clear all bytes
mark cache block M

Table 3-6. Cache Actions (Continued)
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001 I dcbz Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 S dcbz Kill 001 01100 (n/a) (None) or
SHD

Mark cache block E
set all bytes of the block to
zero
mark the cache block M

001 S dcbz Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
Retry the operation

001 E dcbz (None) (n/a) (n/a) (n/a) (n/a) Write zeros to all bytes in
the Cache block
mark cache block M

001 M dcbz (None) (n/a) (n/a) (n/a) (n/a) Write zeros to all bytes in
the cache block

010
011
110
111
100
101

M E
S I

dcbz (n/a) (n/a) (n/a) (n/a) (n/a) A dcbz  to a page marked
cache inhibited or write-
through causes an
alignment exception;
therefore this transaction
does not occur on the bus

000 E S I dcbst Clean 000 00000 (n/a) (None) or
SHD

No-op

000 E S I dcbst Clean 000 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block to main
memory
mark cache block E

000 M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 E S I dcbst Clean 001 00000 (n/a) (None) or
SHD

No-op

001 E S I dcbst Clean 001 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write all bytes in the cache
block to main memory
mark cache block E

001 M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

E S I dcbst Clean W1M 00000 (n/a) (None) or
SHD

No-op

Table 3-6. Cache Actions (Continued)
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011
010
110
111

I dcbst Clean W1M 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write all bytes in the cache
block to main memory
Mark cache block E

011
010
110
111

M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 E S I dcbst Clean 100 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 E S I dcbst Clean 100 00000 (n/a) (None) or
SHD

No-op

100 M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block back to
memory
mark cache block E

100 M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 E S I dcbst Clean 101 00000 (n/a) (None) or
SHD

No-op

101 E S I dcbst Clean 101 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block back to
memory
mark cache block E

101 M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 I dcbf Flush 000 00100 (n/a) (None) or
SHD

No-op

000 I dcbf Flush 000 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 E S dcbf Flush 000 00100 (n/a) (None) or
SHD

Mark cache block I

000 E S dcbf Flush 000 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block of data back
to main memory
mark the cache block I

000 M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation
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001 I dcbf Flush 001 00100 (n/a) (None) or
SHD

No-op

001 E S dcbf Flush 001 00100 (n/a) (None) or
SHD

Mark cache block I

001 E S I dcbf Flush 001 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Write all bytes in the cache
block to main memory
mark cache block I

001 M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

I dcbf Flush W1M 00100 (n/a) (None) or
SHD

No-op

011
010
110
111

I dcbf Flush W1M 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

E S dcbf Flush W1M 00100 (n/a) (None) or
SHD

Mark cache block I

011
010
110
111

E S dcbf Flush W1M 00100 (n/a) ARTRY or
ARTRY&SHD

Retry the operation

011
010
110
111

M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Flush the block
mark cache block I

011
010
110
111

M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 I dcbf Flush 100 00100 (n/a) (None) or
SHD

No-op

100 E S dcbf Flush 100 00100 (n/a) (None) or
SHD

Mark cache block I

100 E S I dcbf Flush 100 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block back to
memory
mark cache block I
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100 M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 I dcbf Flush 101 00100 (n/a) (None) or
SHD

No-op

101 E S dcbf Flush 101 00100 (n/a) (None) or
SHD

Mark cache block I

101 E S I dcbf Flush 101 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Flush the block
mark cache block I

101 M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 I dcbi Kill 000 01100 (n/a) (None) or
SHD

No-op

000 M E
S

dcbi Kill 000 01100 (n/a) (None) or
SHD

Mark the cache block I

000 M E
S I

dcbi Kill 000 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 I dcbi Kill 001 01100 (n/a) (None) or
SHD

No-op

001 I dcbi Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 S dcbi Kill 001 01100 (n/a) (None) or
SHD

Mark cache block I

001 S dcbi Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 E M dcbi Kill 001 01100 (n/a) (None) or
SHD

Mark cache block I

001 E M dcbi Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

I dcbi Kill W1M 01100 (n/a) (None) or
SHD

No-op

011
010
110
111

M E
S

dcbi Kill W1M 01100 (n/a) (None) or
SHD

Mark cache block I

011
010
110
111

M E
S I

dcbi Kill W1M 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation
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100 I dcbi Kill 100 01100 (n/a) (None) or
SHD

No-op

100 M E
S I

dcbi Kill 100 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M E
S

dcbi Kill 100 01100 (n/a) (None) or
SHD

Mark cache block I

101 I dcbi Kill 101 01100 (n/a) (None) or
SHD

No-op

101 M E
S I

dcbi Kill 101 01100 (n/a) ARTRY or
ARTR&SHD

Release the bus
retry the operation

101 M E
S

dcbi Kill 101 01100 (n/a) (None) or
SHD

Mark cache block I

000 INV icbi ICBI 000 01101 (n/a) (None) or
SHD

No-op

000 INV icbi ICBI 000 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 VAL icbi ICBI 000 01101 (n/a) (None) or
SHD

Mark icache block INV

000 VAL icbi ICBI 000 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 INV icbi ICBI 001 01101 (n/a) (None) or
SHD

No-op

001 INV
VAL

icbi ICBI 001 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 VAL icbi ICBI 001 01101 (n/a) (None) or
SHD

Mark icache block INV

011
010
110
111

INV icbi ICBI 01M
11M

01101 (n/a) (None) or
SHD

No-op

011
010
110
111

INV
VAL

icbi ICBI 01M
11M

01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

VAL icbi ICBI 01M
11M

01101 (n/a) (None) or
SHD

Mark icache block INV

100 INV icbi ICBI 100 01101 (n/a) (None) or
SHD

No-op
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100 INV
VAL

icbi ICBI 100 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 VAL icbi ICBI 100 01101 (n/a) (None) or
SHD

Mark icache block INV

101 INV icbi ICBI 101 01101 (n/a) (None) or
SHD

No-op

101 INV
VAL

icbi ICBI 101 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 VAL icbi ICBI 101 01101 (n/a) (None) or
SHD

Mark icache block INV

(n/a) (n/a) sync SYNC xx1 01000 (n/a) (None) or
SHD

The sync  instruction
completed.
(Note: This table does not
give an accurate
representation of what the
sync  instruction does.)

(n/a) (n/a) sync SYNC xx1 01000 (n/a) ARTRY or
ARTRY&SHD

Release the bus.
Retry the operation.

(n/a) (n/a) eieio EIEIO xx1 10000 (n/a) (None) or
SHD

The eieio  instruction has
completed.
(Note: This table does not
give an accurate
representation of what the
eieio  instruction does.)

(n/a) (n/a) eieio EIEIO xx1 10000 (n/a) ARTRY or
ARTRY&SHD

Release the bus.
Retry the operation.

(n/a) (n/a) tlbie TLB
invalidate

xx1 11000 (n/a) (None) or
SHD

Hold off any new storage
instructions.
Wait for the completion of
any outstanding storage
instructions
Invalidate the requested
TLB entry
(Note: This table does not
thoroughly characterize the
tlbie  instruction.)

(n/a) (n/a) tlbie TLB
invalidate

xx1 11000 (n/a) ARTRY or
ARTRY&SHD

Release the bus.
Retry the operation

tlbsync TLB sync xx1 01001 (n/a) (None) or
SHD

The TLB sync instruction
has completed.
(Note: This table does not
thoroughly characterize the
tlbsync  instruction.)

tlbsync TLB sync xx1 01001 (n/a) ARTRY or
ARTRY&SHD

Release the bus.
Retry the operation.
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I Snoop-kill xx1 01100 None (None) No-op

I Snoop-kill xx1 01100 Yes
(and
reset)

(None) Release reservation.

M E
S

Snoop-kill xx1 01100 None (None) Mark cache block I.

M E
S

Snoop-kill xx1 01100 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

I Snoop-
read

xx1 01010 None (None) No-op

I Snoop-
read

xx1 01010 Yes SHD No-op

S Snoop-
read

xx1 01010 (n/a) SHD No-op

E Snoop-
read

xx1 01010 (n/a) SHD Mark cache block S.

M Snoop-
read

x01 01010 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache
block S

M Snoop-
read

x11 01010 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory;
If successful, mark cache
block S

I Snoop-
read
atomic

xx1 11010 None (None) No-op

I Snoop-
read
atomic

xx1 11010 Yes SHD No-op

S Snoop-
read
atomic

xx1 11010 (n/a) SHD No-op

E Snoop-
read
atomic

xx1 11010 (n/a) SHD Mark cache block S

M Snoop-
read
atomic

xx1 11010 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory; if
successful, mark cache
block S.

I Snoop-
RWITM

xx1 01110 None (None) No-op
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I Snoop-
RWITM

xx1 01110 Yes
(and
reset)

(None) Release reservation.

E S Snoop-
RWITM

xx1 01110 None (None) Mark cache block I.

E S Snoop-
RWITM

xx1 01110 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

M Snoop-
RWITM

xx1 01110 None ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache
block I.

M Snoop-
RWITM

xx1 01110 Yes
(and
reset)

ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache
block I,
release reservation

I Snoop-
RWITM
atomic

xx1 11110 None (None) No-op

I Snoop-
RWITM
atomic

xx1 11110 Yes
(and
reset)

(None) Release reservation.

S
E

Snoop-
RWITM
atomic

xx1 11110 None (None) Mark cache block I.

S
E

Snoop-
RWITM
atomic

xx1 11110 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

M Snoop-
RWITM
atomic

xx1 11110 None ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache
block I.

M Snoop-
RWITM
atomic

xx1 11110 Yes
(and
reset)

ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache
block I, release reservation.

I Snoop-
flush

xx1 00100 None (None) No-op

I Snoop-
flush

xx1 00100 Yes (None) No-op

S E Snoop-
flush

xx1 00100 (n/a) (None) Mark cache block I.
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M Snoop-
flush

xx1 00100 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory;
if successful:
mark cache block I.

E S I Snoop-
clean

xx1 00000 (n/a) (None) No-op

M Snoop-
clean

xx1 00000 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory; if
successful, mark cache
block E.

I Snoop-
write with
flush

xx1 00010 None (None) No-op

I Snoop-
write with
flush

xx1 00010 Yes
(and
reset)

(None) Release reservation.

S Snoop-
write with
flush

xx1 00010 None (None) Mark cache block I.

S Snoop-
write with
flush

xx1 00010 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

E Snoop-
write with
flush

xx1 00010 None (None) Paradox—no one else
should be writing if this
cache is E.
Mark cache block I

E Snoop-
write with
flush

xx1 00010 Yes
(and
reset)

(None) Paradox—no one else
should be writing if this
cache is E.
Mark cache block I.
Release reservation.

M Snoop-
write with
flush

xx1 00010 None ARTRY&SHD Paradox—no one else
should be writing if this
cache is M.
Attempt to write cache block
back to main memory;
if successful, mark cache
block I

M Snoop-
write with
flush

xx1 00010 Yes
(and
reset)

ARTRY&SHD Paradox—no one else
should be writing if this
cache is M.
Attempt to write cache block
back to main memory;
if successful, mark cache
block I, release reservation
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I Snoop-
write with
kill

xx1 00110 None (None) No-op

I Snoop-
write with
kill

xx1 00110 Yes
(and
reset)

(None) Release reservation.

S Snoop-
write with
kill

xx1 00110 None (None) Mark cache block I.

S Snoop-
write with
kill

xx1 00110 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

E Snoop-
write with
kill

xx1 00110 None (None) Paradox—no one else
should be writing if this
cache is E.
Mark cache block I.

E Snoop-
write with
kill

xx1 00110 Yes
(and
reset)

(None) Paradox—no one else
should be writing if this
cache is E.
Mark cache block I.
Release reservation.

M Snoop-
write with
kill

xx1 00110 None (None) Paradox—no one else
should be writing if this
cache is M.
Mark cache block I.

M Snoop-
write with
kill

xx1 00110 Yes
(and
reset)

(None) Paradox—no one else
should be writing if this
cache is M.
Mark cache block I.
Release reservation.

I Snoop-
write with
flush
atomic

xx1 10010 None (None) No-op

I Snoop-
write with
flush
atomic

xx1 10010 Yes
(and
reset)

(None) Release reservation.

S Snoop-
write with
flush
atomic

xx1 10010 None (None) Mark cache block I.

S Snoop-
write with
flush
atomic

xx1 10010 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.
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E Snoop-
write with
flush
atomic

xx1 10010 None (None) Paradox—no one else
should be writing if this
cache is E.
Mark cache block I.

E Snoop-
write with
flush
atomic

xx1 10010 Yes
(and
reset)

(None) Paradox—no one else
should be writing if this
cache is E.
Mark cache block I,
release reservation.

M Snoop-
write with
flush
atomic

xx1 10010 None ARTRY&SHD Paradox—no one else
should be writing if this
cache is M.
Attempt to write block back
to main memory;
if successful, mark cache
block I

M Snoop-
write with
flush
atomic

xx1 10010 Yes
(and
reset)

ARTRY&SHD Paradox—no one else
should be writing if this
cache is M.
Attempt to write block back
to main memory;
if successful: mark cache
block I, release reservation.

(n/a) Snoop-
TLB
invalidate

xx1 11000 (n/a) (None) Respond with (none) when
the TLB has been
invalidated.

(n/a) Snoop-
TLB
invalidate

xx1 11000 (n/a) (None) but
ARTRY is
activated on
the bus from
another
processor

Do not perform the TLB
invalidate—this is to prevent
a deadlock condition from
occurring.

(n/a) Snoop-
TLB
invalidate

xx1 11000 (n/a) ARTRY Respond with retry until the
TLB has been invalidated.

(n/a) Snoop-
SYNC

xx1 01000 (n/a) (None) If no TLB invalidates are
pending, no-op.

(n/a) Snoop-
SYNC

xx1 01000 (n/a) ARTRY If a TLB invalidate is
pending, respond with retry.

(n/a) Snoop-
TLBSYNC

xx1 01001 (n/a) (None) If no TLB invalidates are
pending, no-op.

(n/a) Snoop-
TLBSYNC

xx1 01001 (n/a) ARTRY If a TLB invalidate is
pending, respond with retry.

(n/a) Snoop-
EIEIO

xx1 10000 (n/a) (None) No-op
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3.11  Access to Direct-Store Segments
The 604e supports both memory-mapped and I/O-mapped access to I/O devic
addition to the high-performance bus protocol for memory-mapped I/O accesses, the
provides the ability to map memory areas to the direct-store interface (SR[T] = 1) with
following two kinds of operations:

• Direct-store operations. These operations are considered to address the nonco
and noncacheable direct-store; therefore, the 604e does not maintain coheren
these operations, and the cache is bypassed completely.

• Memory-forced direct-store operations. These operations are considered to ad
memory space and are therefore subject to the same coherency control as m
accesses. These operations are global memory references within the 604e an
considered to be noncacheable.

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency
these operations is determined by the settings of the WIM bits.

(n/a) Snoop-
EIEIO

xx1 10000 (n/a) ARTRY No-op

I Snoop-
ICBI

xx1 01101 (n/a) (None) No-op

VAL Snoop-
ICBI

xx1 01101 (n/a) (None) Invalidate entry in icache

I Snoop-
RWNITC

xx1 01011 None (None) No-op

I Snoop-
RWNITC

xx1 01011 Yes SHD No-op

E S Snoop-
RWNITC

xx1 01011 (n/a) SHD No-op

M Snoop-
RWNITC

xx1 01011 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory; if
successful, mark cache
block E.

Note: It is possible for a snoop invalidate operation that invalidates both the cache block and the reservation
to preempt the operation and cause the 604e to generate a “read atomic” operation instead. It is also
possible that between the time that the lwarx  instruction hits in the cache and the lwarx  reservation set is
broadcast that a flush snoop operation can remove the cache block from the cache without canceling the
reservation. In this case, the lwarx  broadcast still occurs even through the cache block is not in the data
cache.
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Chapter 4
Exceptions
40
40

The OEA portion of the PowerPC architecture defines the mechanism by which Pow
processors implement exceptions (referred to as interrupts in the architecture specific
Exception conditions may be defined at other levels of the architecture. For exampl
UISA defines conditions that may cause floating-point exceptions; the OEA define
mechanism by which the exception is taken.

PowerPC exception mechanism allows the processor to change to supervisor sta
result of external signals, errors, or unusual conditions arising in the executio
instructions. When exceptions occur, information about the state of the processor is
to certain registers and the processor begins execution at an address (exception
predetermined for each exception. Processing of exceptions begins in supervisor m

Although multiple exception conditions can map to a single exception vector, a m
specific condition may be determined by examining a register associated with
exception—for example, the DSISR and the floating-point status and control reg
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disa
by software.

The PowerPC architecture requires that exceptions be taken in program order; the
although a particular implementation may recognize exception conditions out of order
are handled strictly in order with respect to the instruction stream. When an instruc
caused exception is recognized, any unexecuted instructions that appear earlier
instruction stream, including any that have not yet entered the execute state, are requ
complete before the exception is taken. For example, if a single instruction encou
multiple exception conditions, those exceptions are taken and handled sequen
Likewise, exceptions that are asynchronous and precise are recognized when they
but are not handled until all instructions currently in the execute stage success
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing
multiple exceptions can become nested. It is up to the exception handler to save the
if it is desired to allow control to ultimately return to the excepting program.
Chapter 4.  Exceptions 4-1
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In many cases, after the exception handler handles an exception, there is an atte
execute the instruction that caused the exception. Instruction execution continues un
next exception condition is encountered. This method of recognizing and han
exception conditions sequentially guarantees that the machine state is recoverab
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the inform
stored in SRR0 and SRR1 soon after the exception is taken to prevent this information
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exce
processing:

Recognition Exception recognition occurs when the condition that can caus
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the contex
saved and the instruction at the appropriate vector offset is fetch
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervis
level (referred to as privileged state in the architecture specificati

Note that the PowerPC architecture documentation refers to exceptions as interrupts.
book, the term interrupt is reserved to refer to asynchronous exceptions, and someti
the event that causes the exception to be taken. Also, the PowerPC architecture u
word exception to refer to IEEE-defined floating-point exceptions, conditions that
cause a program exception to be taken (See Section 4.5.7, “Program Exception (0x00
The occurrence of these IEEE exceptions may in fact not cause an exception to be
IEEE-defined exceptions are referred to as IEEE floating-point exceptions or floating-
exceptions.

4.1  PowerPC 604e Microprocessor Exceptions
As specified by the PowerPC architecture, all exceptions can be described as either p
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are
by events external to the processor’s execution; synchronous exceptions are cau
instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except fo
system management interrupt and performance monitoring exception are defined
PowerPC architecture.
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Exceptions implemented in the 604e, and conditions that cause them, are list
Table 4-2.

Table 4-1. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine Check
System Reset

Asynchronous/maskable External interrupt
Decrementer interrupt
System management interrupt (604e-specific)
Performance monitoring exception (604e-
specific)

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Table 4-2. Exceptions and Conditions—Overview

Exception
Type

Vector Offset
(hex)

Causing Conditions

Reserved 00000 —

System reset 00100 The causes of system reset exceptions are implementation-dependent. In the
604e a system reset is caused by the assertion of either the soft reset or hard
reset signal.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Machine check 00200 On the 604e a machine check exception is signaled by the assertion of a
qualified TEA indication on the 604e bus, or the machine check input (MCP)
signal. If the MSR[ME] is cleared, the processor enters the checkstop state
when one of these signals is asserted. Note that MSR[ME] is cleared when an
exception is taken. The machine check exception is also caused by parity errors
on the address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by read, write, and instruction
fetch operations initiated by the processor; however, it is expected that the TEA
signal would be used by a memory controller to indicate that a memory parity
error or an uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

The machine check exception is disabled when MSR[ME] = 0. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state. (Note that, physical address is referred to as the real
address in the architecture specification.)

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.
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DSI 00300 A DSI exception occurs when a data memory access cannot be performed for
any of the reasons described in Section 4.5.3, “DSI Exception (0x00300).” Such
accesses can be generated by load/store instructions, certain memory control
instructions, and certain cache control instructions.

ISI 00400 An ISI exception occurs when an instruction fetch cannot be performed for a
variety of reasons described in Section 4.5.4, “ISI Exception (0x00400).”

External
interrupt

00500 An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604e stops dispatching
instructions and waits for all dispatched instructions to complete. Any exceptions
associated with dispatched instructions are taken before the interrupt is taken.

Alignment 00600 An alignment exception may occur when the processor cannot perform a
memory access for reasons described in Section 4.5.6, “Alignment Exception
(0x00600).” Note that the PowerPC architecture defines a wider range of
conditions that may cause an alignment exception than required in the 604e. In
these cases, the 604e provides logic to handle these conditions without
requiring the processor to invoke the alignment exception handler.

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:
• Floating-point enabled exception—A floating-point enabled exception

condition is generated when either MSR[FE0] or MSR[FE1] and
FPSCR[FEX] are set. The settings of FE0 and FE1 are described in
Table 4-4.
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that sets both an exception condition bit and its corresponding
enable bit in the FPSCR. These exceptions are described in Chapter 3 of
The Programming Environments Manual.

• Illegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).
The PowerPC instruction set is described in Section 2.3, “Instruction Set
Summary.”

• Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr  or mfspr  with an invalid SPR field if spr[0]=1 and
MSR[PR] = 1.

• Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

For more information, refer to Section 4.5.7, “Program Exception (0x00700).”

Floating-point
unavailable

00800 The floating-point unavailable exception is implemented as defined in the
PowerPC architecture.

Decrementer 00900 The decrementer interrupt exception is taken if the interrupt is enabled and the
exception is pending. The exception is created when the most significant bit
changes from 0 to 1. If it is not enabled, the exception remains pending until it is
taken.

Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions
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4.2  Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exception
system reset and machine check exceptions (although the machine check exc
condition can be disabled so the condition causes the processor to go directly
the checkstop state). These exceptions cannot be delayed, and do not wait fo
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions ar
taken.

4. Maskable asynchronous exceptions (external interrupt and decrementer excep
are delayed until higher priority exceptions are taken.

Reserved 00A00 Reserved for implementation-specific exceptions. For example, the 601 uses
this vector offset for direct-store exceptions.

Reserved 00B00 —

System call 00C00 A system call exception occurs when a System Call (sc ) instruction is executed.

Trace 00D00 The trace exception, which is implemented in the 604e, is defined by the
PowerPC architecture but is optional. A trace exception occurs if either MSR[SE]
= 1 and any instruction (except rfi ) successfully completed or MSR[BE] = 1 and
a branch instruction is completed.

Performance
monitoring
interrupt

00F00 The performance monitoring interrupt is a 604e-specific exception and is used
with the 604e performance monitor, described in Section 4.5.13, “Performance
Monitoring Interrupt (0x00F00).”

The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled by through bits in the monitor mode control register 0 (MMCR0).
Although the exception condition may occur when the MSR[EE] bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000–012FF Reserved for implementation-specific exceptions not implemented on the 604e.

Instruction
address
breakpoint

01300 An instruction address breakpoint exception occurs when the address (bits 0 to
29) in the IABR matches the next instruction to complete in the completion unit,
and the IABR enable bit (bit 30) is set to 1.

System
management
interrupt

01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI
input signal is asserted. This exception is provided for use with the nap mode.

Reserved 014FF–02FFF Reserved for implementation-specific exceptions not implemented on the 604e.

Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions
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Exception priorities are described in “Exception Priorities,” in Chapter 6, “Exceptions
The Programming Environments Manual.

System reset and machine check exceptions may occur at any time and are not delay
if an exception is being handled. As a result, state information for the interrupted exce
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check excep
and the exception may not be taken immediately when it is recognized.

If an imprecise exception is not forced by either the context or the execution synchron
mechanism and if the instruction addressed by SRR0 did not cause the exception th
instruction appears not to have begun execution. For more information on con
synchronization, see Chapter 6, “Exceptions,” inThe Programming Environments Manual.

4.3  Exception Processing
When an exception is taken, the processor uses the save/restore registers, SRR0 an
to save the contents of the machine state register for user-level mode and to identify
instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in machine status save/restore re
(SRR0) is used to help calculate where instruction processing should resume whe
exception handler returns control to the interrupted process. Depending on the exce
this may be the address in SRR0 or at the next address in the program flow. All instruc
in the program flow preceding this one will have completed execution and no subse
instruction will have begun execution. This may be the address of the instruction
caused the exception or the next one (as in the case of a system call or trap exceptio
SRR0 register is shown in Figure 4-1.

Figure 4-1. Machine Status Save/Restore Register 0

SRR0 is 32 bits wide in 32-bit implementations.

The save/restore register 1(SRR1) is used to save machine status (selected bits fr
MSR and possibly other status bits as well) on exceptions and to restore those values
rfi  is executed. SRR1 is shown in Figure 4-2.

Figure 4-2. Machine Status Save/Restore Register 1

SRR0 (holds EA for instruction in interrupted program flow)

0 31

0 31

Exception-specific information and MSR bit values
4-6 PowerPC 604e RISC Microprocessor User’s Manual
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Typically, when an exception occurs, bits 2–4 and 10–12 of SRR1 are loaded
exception-specific information and bits 5–9, and 16–31 of MSR are placed into
corresponding bit positions of SRR1.

Note that in other implementations every instruction fetch that occurs when MSR[IR]
and every instruction execution requiring address translation when MSR[DR] = 1,
modify SRR1.

In the 604e and in other 32-bit PowerPC implementations, the MSR is 32 bits wid
shown in Figure 4-3.

Figure 4-3. Machine State Register (MSR)

The MSR bits are defined in Table 4-3. Full function reserved bits are saved in SRR1
an exception occurs; partial function reserved bits are not saved.

Table 4-3. MSR Bit Settings

Bit(s) Name Description

0 — Reserved. Full Function.

1–4 — Reserved. Partial function.

5–9 — Reserved. Full function.

10–12 — Reserved. Partial function.

13 POW Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Note that power management functions are implementation-dependent.

14 — Reserved—Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

16 EE External interrupt enable
0 While the bit is cleared the processor delays recognition of external interrupts and

decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

0 12 13 14 15 16 17 18 19 20 21 22 23 24 252627282930 31

Reserved

0 0 0 0 0 0 0 0 0 0 0 0 0 POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 IP IR DR 0 PM RI LE
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18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point

loads, stores, and moves.
1 The processor can execute floating-point instructions, and can take floating-point enabled

exception type program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 IEEE floating-point exception mode 0 (See Table 4-4).

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of

the next instruction (unless that instruction is an rfi  instruction). Successful execution
means that the instruction caused no other exception.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a branch type trace exception upon the successful execution of

a branch instruction.

23 FE1 IEEE floating-point exception mode 1 (See Table 4-4).

24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or 0s. In the following description, nnnnn is the offset of the exception.
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, “Memory Management.”

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, “Memory Management.”

28 — Reserved, full function.

29 PM Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
This bit is specific to the 604e, and is defined as reserved by the PowerPC architecture. For
more information about the performance monitor, see Section 4.5.13, “Performance Monitoring
Interrupt (0x00F00).”

Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description
4-8 PowerPC 604e RISC Microprocessor User’s Manual
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The IEEE floating-point exception mode bits (FE0 and FE1) together define whe
floating-point exceptions are handled precisely, imprecisely, or whether they are tak
all. The possible settings and default conditions for the 604e are shown in Table 4-4
further details, see Chapter 6, “Exceptions,” ofThe Programming Environments Manual.

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exce
handler is encountered.

4.3.1  Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be dete
whether the exception is enabled for that condition.

• IEEE floating-point enabled exceptions (a type of program exception) are igno
when both MSR[FE0] and MSR[FE1] are cleared. If either of these bits are set
IEEE enabled floating-point exceptions are taken and cause a program excep

• Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] = 0, recognit
of these exception conditions is delayed. MSR[EE] is cleared automatically whe
exception is taken, to delay recognition of conditions causing those exception

30 RI Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable.
1 Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRR0 is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Table 4-4. IEEE Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable. In the 604e, this bit setting causes the 604e to operate in
floating-point precise mode.

1 1 Floating-point precise mode

Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description
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• A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checks
state when a machine check exception condition occurs. Individual machine c
exceptions can be enabled and disabled through bits in the HID0 register, wh
described in Table 4-7.

• System reset exceptions cannot be masked.

4.3.2  Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruc
caused exceptions occurring earlier in the instruction stream have been handled, a
confirming that the exception is enabled for the exception condition), the processor
the following:

1. The machine status save/restore register 0 (SRR0) is loaded with an instructi
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. Bits 1–4 and 10–15 of SRR1 are loaded with information specific to the excep
type.

3. Bits 5–9 and 16–31 of SRR1 are loaded with a copy of the corresponding bits o
MSR. Note that depending on the implementation, reserved bits may not be co

4. The MSR is set as described in Table 4-3. The new values take effect beginning
the fetching of the first instruction of the exception-handler routine located at t
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a locat
specific to the exception type. The location is determined by adding the except
vector (see Table 4-2) to the base address determined by MSR[IP]. If IP is clea
exceptions are vectored to the physical address 0x000n_nnnn. If IP is set, exceptions
are vectored to the physical address 0xFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See
Section 4.5.2, “Machine Check Exception (0x00200).”
4-10 PowerPC 604e RISC Microprocessor User’s Manual
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4.3.3  Setting MSR[RI]
The operating system should handle MSR[RI] as follows:

• In the machine check and system reset exceptions—If SRR1[RI] is cleared, th
exception is not recoverable. If it is set, the exception is recoverable with respe
the processor.

• In each exception handler—When enough state information has been saved t
machine check or system reset exception can reconstruct the previous state, 
MSR[RI].

• In each exception handler—Clear MSR[RI], set the SRR0 and SRR1 registers
appropriately, and then executerfi .

• Not that the RI bit being set indicates that, with respect to the processor, enou
processor state data is valid for the processor to continue, but it does not gua
that the interrupted process can resume.

4.3.4  Returning from an Exception Handler
The Return from Interrupt (rfi ) instruction performs context synchronization by allowin
previously issued instructions to complete before returning to the interrupted proce
general, execution of therfi instruction ensures the following:

• All previous instructions have completed to a point where they can no longer ca
an exception. If a previous instruction causes a direct-store interface error excep
the results must be determined before this instruction is executed.

• Previous instructions complete execution in the context (privilege, protection, 
address translation) under which they were issued.

• Therfi  instruction copies SRR1 bits back into the MSR.

• The instructions following this instruction execute in the context established by
instruction.

For a complete description of context synchronization, refer to Chapter 6, “Exception
The Programming Environments Manual.

4.4  Process Switching
The operating system should execute one of the following when processes are switc

• Thesync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before thesync
instruction completes, and no subsequent instructions appear to be initiated un
syncinstruction completes. For an example showing use of thesyncinstruction, see
Chapter 2, “PowerPC Register Set,” ofThe Programming Environments Manual.
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• Theisync instruction, which waits for all previous instructions to complete and th
discards any fetched instructions, causing subsequent instructions to be fetche
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

• Thestwcx. instruction, to clear any outstanding reservations, which ensures tha
lwarx  instruction in the old process is not paired with anstwcx. instruction in the
new process.

The operating system should set the MSR[RI] bit as described in Section 4.3.3, “Se
MSR[RI].”

4.5  Exception Definitions
Table 4-5 shows all the types of exceptions that can occur with the 604e and the MS
settings when the processor transitions to supervisor mode due to an exception. Dep
on the exception, certain of these bits are stored in SRR1 when an exception is take

Table 4-5. MSR Setting Due to Exception

Exception
Type

MSR Bit

POW ILE EE PR FP ME FE0 SE BE FE1 IP IR DR RI LE

System reset 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Machine check 0 — 0 0 0 0 0 0 0 0 — 0 0 0 ILE

DSI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

ISI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

External 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Alignment 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Program 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Floating-point
unavailable

0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Decrementer 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

System call 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Trace exception 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

System
management

0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Performance
monitor

0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

0 Bit is cleared.
ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered
Reserved bits are read as if written as 0.
4-12 PowerPC 604e RISC Microprocessor User’s Manual
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The setting of the exception prefix bit (IP) determines how exceptions are vectored.
bit is cleared, exceptions are vectored to the physical address 0x000n_nnnn(wherennnnn
is the vector offset); if IP is set, exceptions are vectored to the physical add
0xFFFn_nnnn. Table 4-2 shows the exception vector offset of the first instruction of
exception handler routine for each exception type.

4.5.1  System Reset Exception (0x00100)
The 604e implements the system reset exception as defined in the PowerPC archi
(OEA). The system reset exception is a nonmaskable, asynchronous exception sign
the processor through the assertion of system-defined signals. In the 604e, the exce
signaled by the assertion of either theSRESET orHRESET inputs, described more fully in
Chapter 7, “Signal Descriptions.”.

The SRESET input provides a “warm” reset capability. This input is used to avoid cau
the 604e to perform the entire power-on reset sequence, thereby preserving the cont
the architected registers. This capability is useful when recovering from certain chec
or machine check states. When a system reset exception is taken, instruction exe
continues at offset 0x00100 from the physical base address indicated by MSR[IP].

AssertingSRESET causes the 604e to perform a system reset exception.SRESET is an
edge-sensitive signal that may be asserted and deasserted asynchronously, provi
minimum pulse width specified in thePowerPC 604e RISC Microprocessor Hardwa
Specificationsis met. This exception modifies the MSR, SRR0, and SRR1, as describ
The Programming Environments Manual. Unlike hard reset, soft reset does not direct
affect the states of output signals. Attempts to useSRESET during a hard reset sequence
while the JTAG logic is non-idle cause unpredictable results. Processing interrupted
SRESET can be restarted.

Table 4-6. System Reset Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR
1–4 Cleared
5–9 Loaded with equivalent bits from the MSR
10–15 Cleared
16–31 Loaded with equivalent bits of the MSR
Note that if the processor state is corrupted to the extent that execution cannot resume reliably, the
MSR[RI] bit (SRR1[30]) is cleared.

MSR POW 0 BE 0
ILE --- FE1 0
EE 0 IP —
PR 0 IR 0
FP 0 DR 0
ME --- RI 0
FE0 0 LE Set to value of ILE
SE 0
Chapter 4.  Exceptions 4-13
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A hard reset is initiated by assertingHRESET. Hard reset is used primarily for power-o
reset (POR), but can also be used to restart a running processor. TheHRESET signal should
be asserted during power up and must remain asserted for a period that allows the P
achieve lock and the internal logic to be reset. This period is specified in thePowerPC 604e
RISC Microprocessor Hardware Specifications. The 604e internal state after the hard res
interval is defined in Table 2-11.

If HRESET is asserted for less than this amount of time, the results are not predicta
HRESET is asserted during normal operation, all operations cease and the machine
lost.

4.5.2  Machine Check Exception (0x00200)
The 604e implements the machine check exception as defined in the PowerPC archi
(OEA). It conditionally initiates a machine check exception after an address or data p
error occurred on the bus or in a cache, after receiving a qualified transfer
acknowledge (TEA) indication on the 604e bus, or after the machine check interrupt (MCP)
signal had been asserted. As defined in the OEA, the exception is not taken if the MSR
is cleared.

Machine check conditions can be enabled and disabled using bits in the HID0 describ
Table 4-7.

A TEA indication on the bus can result from any load or store operation initiated by
processor. In general, theTEA signal is expected to be used by a memory controller
indicate that a memory parity error or an uncorrectable memory ECC error has occu
Note that the resulting machine check exception is imprecise and unordered with resp
the instruction that originated the bus operation.

If the MSR[ME] bit and the appropriate bits in HID0 are set, the exception is recogn
and handled; otherwise, the processor generates an internal checkstop condition. W
processor is in checkstop state, instruction processing is suspended and generally
continue without restarting the processor. Note that many conditions may lead t
checkstop condition; the disabled machine check exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is describe
Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] =

Table 4-7. Machine Check Enable Bits

HID0 Bit Description

0 Enable machine check input pin

1 Enable cache parity checking

2 Enable machine check on address bus parity error.

3 Enable machine check on data bus parity error.
4-14 PowerPC 604e RISC Microprocessor User’s Manual
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and a machine check occurs, the processor enters the checkstop state. Checkstop
described in Section 4.5.2.2, “Checkstop State (MSR[ME] = 0).”

4.5.2.1  Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table

The machine check exception is usually unrecoverable in the sense that execution
resume in the same context that existed before the exception. If the condition that c
the machine check does not otherwise prevent continued execution, MSR[ME] is s
allow the processor to continue execution at the machine check exception vector ad
Typically earlier processes cannot resume; however, the operating systems can then
machine check exception handler to try to identify and log the cause of the machine
condition.

When a machine check exception is taken, instruction execution resumes at offset 0x
from the physical base address indicated by MSR[IP].

Table 4-8. Machine Check Exception—Register Settings

Register Setting Description

SRR0 On a best-effort basis implementations can set this to an EA of some instruction that was executing
or about to be executing when the machine check condition occurred.

SRR1 0–9 Cleared
10 Set when an instruction cache parity error is detected, otherwise zero
11 Set when a data cache parity error is detected, otherwise zero
12 Set when Machine Check Pin (MCP) is asserted, otherwise zero
13 Set when TEA pin is asserted, otherwise zero
14 Set when a data bus parity error is detected, otherwise zero
15 Set when an address bus parity error is detected, otherwise zero
16–29 MSR(16–29)
30 Zero for APE, DPE, instruction or data cache parity error, or TEA.

For MCP or other conditions, SRR1[30] is set to value of MSR[30]. If MCP and TEA are
asserted simultaneously, SRR1[30] is zero and the exception is not recoverable.

31 MSR(31)

MSR POW 0 BE 0
ILE --- FE1 0
EE 0 IP —
PR 0 IR 0
FP 0 DR 0
ME* 0 RI 0
FE0 0 LE Set to value of ILE
SE 0

* Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.
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4.5.2.2  Checkstop State (MSR[ME] = 0)
When a processor is in the checkstop state, instruction processing is suspende
generally cannot resume without the processor being reset. The contents of all latch
frozen within two cycles upon entering checkstop state.

A machine check exception may result from referencing a nonexistent physical add
either directly (with MSR[DR] = 0), or through an invalid translation. On such a syst
for example, execution of a Data Cache Block Set to Zero (dcbz) instruction that introduces
a block into the cache associated with a nonexistent physical address may dela
machine check exception until an attempt is made to store that block to main memo

Note that not all PowerPC processors provide the same level of error checking. The re
a processor can enter checkstop state are implementation-dependent.

4.5.3  DSI Exception (0x00300)
A DSI exception occurs when no higher priority exception exists and a data memory a
cannot be performed. The DSI exception is implemented as it is defined in the Pow
architecture (OEA). Note that there are some conditions for which the Powe
architectures allow implementations to optionally take a DSI exception. Table 4-9
conditions defined by the architecture that optionally may cause a DSI exception.

4.5.4  ISI Exception (0x00400)
An ISI exception occurs when no higher priority exception exists and an attempt to
the next instruction fails. This exception is implemented as it is defined by the Pow
architecture (OEA). In addition, an instruction fetch from a no-execute segment resu
an ISI exception.

When an ISI exception is taken, instruction execution resumes at offset 0x00400 fro
physical base address indicated by MSR[IP].

4.5.5  External Interrupt Exception (0x00500)
An external interrupt is signaled to the processor by the assertion of the external inte
signal (INT). TheINT signal is expected to remain asserted until the 604e takes the ext
interrupt exception. If the external interrupt signal is negated early, recognition of

Table 4-9. Other MMU Exception Conditions

Condition Description DSISR

lwarx or stwcx.  with W = 1 Reservation instruction to write-through segment or block DSISR[5] = 1

lwarx , stwcx. , eciwx , or ecowx
instruction to direct-store segment

Reservation instruction or external control instruction
when SR[T] = 1 or STE[T] = 1

DSISR[5] = 1

Load or store that results in a direct-
store error

Direct-store interface protocol signalled with an error
condition

DSISR[0] = 1

eciwx  or ecowx  attempted when
external control facility disabled

eciwx  or ecowx  attempted with EAR[E] = 0 DSISR[11] = 1
4-16 PowerPC 604e RISC Microprocessor User’s Manual
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interrupt request is not guaranteed. After the 604e begins execution of the external int
handler, the system can safely negate theINT. When the signal is detected, the 604e sto
dispatching instructions and waits for all pending instructions to complete. This allows
instructions in progress that need to take an exception to do so before the external in
is taken. After all instructions have cleared, the 604e takes the external interrupt exce
as defined in the PowerPC architecture (OEA).

The interrupt may be delayed by other higher priority exceptions or if the MSR[EE] b
cleared when the exception occurs. Register settings for this exception are descri
Chapter 6, “Exceptions,” inThe Programming Environments Manual.

When an external interrupt exception is taken, instruction execution resumes at
0x00500 from the physical base address indicated by MSR[IP].

4.5.6  Alignment Exception (0x00600)
The 604e implements the alignment exception as defined by the PowerPC archit
(OEA). An alignment exception is initiated when any of the following conditions are m

• A floating-point load or store,lmw, stmw, lwarx , or stwcx. instruction is not word-
aligned.

• If a floating-point number is not word-aligned. The 604e provides hardware sup
for misaligned storage accesses for other memory access instructions. If a
misaligned memory access crosses a 4-Kbyte page boundary within a memo
segment, an exception may occur when the boundary is crossed (that is, ther
protection violation on an attempt to access the new page). In these cases, a
exception occurs and the instruction may complete partially.

• Some types of misaligned memory accesses are slower than aligned accesse
Accesses that cross a word boundary (and double-precision values not aligned
double-word boundary) are broken into multiple accesses by the LSU. More
dramatically, any noncacheable memory access that crosses a double-word
boundary requires multiple external bus tenures.

• Operations that cross a word boundary (and operations involving double-prec
values not aligned on a double-word boundary) require two accesses, which a
translated separately. If either translation creates a DSI exception condition, t
exception is signaled.

• If the T-bit settings are not the same for both portions of a misaligned memory
access, (which is considered to be a programming error), the 604e completes
the accesses for the operation, the segment information from the T = 1 space
presented on the bus for every access of the operation, and the 604e requires a
store access reply from the device. If two translations cross memory locations
are T = 0 into T = 1, a DSI exception is signaled.

• A dcbz instruction references a page that is marked either cache-inhibited or w
through or has executed when the 604e data cache is locked or disabled. No
this condition may not cause an alignment exception in other PowerPC proces
Chapter 4.  Exceptions 4-17
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• An access is not naturally aligned in little-endian mode.
• An ecowx or eciwx is not word-aligned.
• A lmw, stmw, lswi, lswx, stswi,or stswxinstruction is issued in little-endian mode

4.5.7  Program Exception (0x00700)
The 604e implements the program exception as it is defined by the PowerPC archit
(OEA). A program exception occurs when no higher priority exception exists and on
more of the exception conditions defined in the OEA occur.

The 604e invokes the system illegal instruction program exception when it detects
instruction from the illegal instruction class.

The 604e fully decodes the SPR field of the instruction. If an undefined SPR is specifi
program exception is taken.

The UISA defines themtspr andmfspr instructions with the record bit (Rc) set to cause
program exception or provide a boundedly undefined result. In the 604e, the appro
CR should be treated as undefined. Likewise, the PowerPC architecture states th
Floating Compared Unordered (fcmpu) or Floating Compared Ordered (fcmpo)
instruction with the record bit set can either cause a program exception or prov
boundedly undefined result. In the 604e, CR field BF for these cases should be trea
undefined.

When a program exception is taken, instruction execution resumes at offset 0x00700
the physical base address indicated by MSR[IP].

Note that the 604e supports one of the two floating-point imprecise modes supported
PowerPC architecture. The three modes supported by the 604e are described as fo

• Ignore exceptions mode (MSR[FE0] = MSR[FE1] = 0)—In ignore exceptions
mode, the instruction dispatch logic feeds the FPU as fast as possible, and the
uses an internal pipeline to allow overlapped execution of instructions. IEEE
floating-point exception conditions (as defined in the PowerPC architecture) do
cause any exceptions.

• Precise exceptions mode (MSR[FE0] = 1; MSR[FE1] = x)—In this mode, a float
point instruction that causes a floating-point exception brings the machine to a
precise state. In doing so, the 604e sequencer unit can detect floating-point exce
conditions and take floating-point exceptions as defined by the PowerPC
architecture. Note that the imprecise recoverable mode supported by the Pow
architecture (MSR[FE0] = 1; MSR[FE1] = 0) is implemented identically to preci
exceptions mode in the 604e.

• Imprecise nonrecoverable mode (MSR[FE0] = 0; MSR[FE1] = 1)—In this mod
floating-point exception conditions cause a floating-point exception to be take
SRR0 may point to some instruction following the instruction that caused the
exception.
4-18 PowerPC 604e RISC Microprocessor User’s Manual
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Register settings for this exception are described in Chapter 6, “Exceptions,” inThe
Programming Environments Manual.

4.5.8  Floating-Point Unavailable Exception (0x00800)
The floating-point unavailable exception is implemented as defined in the Pow
architecture. A floating-point unavailable exception occurs when no higher prio
exception exists, an attempt is made to execute a floating-point instruction (inclu
floating-point load, store, or move instructions), and the floating-point available bit in
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are describe
Chapter 6, “Exceptions,” inThe Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction execution resum
offset 0x00800 from the physical base address indicated by MSR[IP].

4.5.9  Decrementer Exception (0x00900)
The decrementer exception is implemented in the 604e as it is defined by the Pow
architecture. The decrementer exception occurs when no higher priority exception ex
decrementer exception condition occurs (for example, the decrementer registe
completed decrementing), and MSR[EE] = 1. In the 604e, the decrementer regis
decremented at one fourth the bus clock rate. Register settings for this exceptio
described in Chapter 6, “Exceptions,” inThe Programming Environments Manual.

When a decrementer exception is taken, instruction execution resumes at offset 0x
from the physical base address indicated by MSR[IP].

4.5.10  System Call Exception (0x00C00)
A system call exception occurs when a System Call (sc) instruction is executed. In the 604e
the system call exception is implemented as it is defined in the PowerPC archite
Register settings for this exception are described in Chapter 6, “Exceptions,” inThe
Programming Environments Manual.

When a system call exception is taken, instruction execution resumes at offset 0x0
from the physical base address indicated by MSR[IP].

4.5.11  Trace Exception (0x00D00)
The trace exception is taken when the single step trace enable bit (MSR[SE]) or the b
trace enable bit (MSR[BE]) is set and an instruction successfully completes. When a
exception is taken, the values written to SRR1 are implementation-specific; those valu
the 604e are shown in Table 4-10.
Chapter 4.  Exceptions 4-19



m the

s not

ovides
ccess
opers
ware,
t be
rhaps

rs

 of

). The
 that

gative

the
. The
ove
d in
When a trace exception is taken, instruction execution resumes as offset 0x00D00 fro
base address indicated by MSR[IP].

4.5.12  Floating-Point Assist Exception (0x00E00)
The optional floating-point assist exception defined by the PowerPC architecture i
implemented in the 604e.

4.5.13  Performance Monitoring Interrupt (0x00F00)
The PowerPC 604e performance monitor is a software-accessible mechanism that pr
detailed information concerning the dispatch, execution, completion, and memory a
of PowerPC instructions. The performance monitor is provided to help system devel
to debug their systems and to increase system performance with efficient soft
especially in a multiprocessor system where memory hierarchy behavior mus
monitored and studied in order to develop algorithms that schedule tasks (and pe
partition them) and distribute data optimally.

The performance monitor uses the following SPRs:

• Performance monitor counters 1 and 2 (PMC1 and PMC2)—two 32-bit counte
used to store the number of times a certain event has occurred.

• The monitor mode control register 0 (MMCR0), which establishes the function
the counters.

• Sampled instruction address and sampled data address registers (SIA and SDA
two address registers contain the addresses of the data and of the instruction
caused a threshold-related performance monitor interrupt.

The 604e supports a performance monitor interrupt that is caused by a counter ne
condition or by a time-base flipped bit counter defined in the MMCR0 register.

As with other PowerPC interrupts, the performance monitoring interrupt follows
normal PowerPC exception model with a defined exception vector offset (0x00F00)
priority of the performance monitoring interrupt is below the external interrupt and ab
the decrementer interrupt. The contents of the SIA and SDA are describe

Table 4-10. Trace Exception—SRR1 Settings

Register Setting

SRR1 0–2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5–9 Cleared
10 Set for lswx  or stswx , otherwise cleared
11 Set for mtspr  to SDR1, EAR, HID0, PIR, IBATs, DBATs, SRs
12 Set for taken branch, otherwise cleared
13–15 Cleared
16–31 MSR(16–31).
4-20 PowerPC 604e RISC Microprocessor User’s Manual
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Section 2.1.2.5, “Performance Monitor Registers.” The performance monitor is desc
in Chapter 9, “Performance Monitor.”

4.5.14  Instruction Address Breakpoint Exception (0x01300)
The instruction address breakpoint exception occurs when an attempt is made to exe
instruction that matches the address in the instruction address breakpoint register (I
and the breakpoint is enabled (IABR[30] is set). The instruction that triggers the instru
address breakpoint exception is not executed before the exception handler is invoke
vector offset of the instruction address breakpoint exception is 0x01300.

4.5.15  System Management Interrupt (0x01400)
The 604e implements a system management interrupt exception, which is not defin
the PowerPC architecture. The system management exception is very similar to the ex
interrupt exception and is particularly useful in implementing the nap mode. It has pri
over an external interrupt and it uses a different interrupt vector in the exception tab
offset 0x01400).

Like the external interrupt, a system management interrupt is signaled to the 604e b
assertion of an input signal. The system management interrupt signal (SMI) is expected to
remain asserted until the interrupt is taken. If theSMI signal is negated early, recognitio
of the interrupt request is not guaranteed. After the 604e begins execution of the s
management interrupt handler, the system can safely negate theSMI signal. After theSMI
signal is detected, the 604e stops dispatching instructions and waits for all pe
instructions to complete. This allows any instructions in progress that need to tak
exception to do so before the system management interrupt is taken.

When the exception is taken, 604e vectors to the system management interrupt vecto
interrupt table. The vector offset of the system management is 0x01400.

4.5.16  Power Management
Nap mode is a simple power-saving mode, in which all internal processing and
operation is suspended. Software initiates nap mode by setting MSR[POW]. After th
is set, the 604e suspends instruction dispatch and waits for all activity, including activ
pending bus transactions, to complete. It then shuts down the internal chip clocks and
nap mode state. The 604e indicates the internal idle state by asserting the HALTED o
regardless whether the clock is stopped.

Nap mode must be entered by using the following code sequence:

naploop:

sync
mtmsr <GPR> (modify the POW bit only; at this point the EE bit should

have already been enabled by the software)
isync
ba naploop
Chapter 4.  Exceptions 4-21
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Since this code sequence creates an infinite loop, the programmer should ensure t
exit routine (one of the exception handler routines listed below) properly updates SR
return to a point outside of this loop.

While the 604e is in nap mode, all internal activity except for decrementer, timebase
interrupt logic is stopped. During nap mode, the 604e does not snoop; if snoopi
required, the system may assert the RUN signal. The clocks run while the RUN sig
asserted, but instruction execution does not resume. The HALTED output is deasse
indicate any bus activity, including a cache block pushout caused by a snoop reques
is reasserted to indicate that the processor is idle and that the RUN signal can be
deasserted to stop the clocks. The maximum latency from the RUN signal assertion
starting of clock is three bus clock cycles.

To ensure proper handling of snoops in a multiprocessor system when a processor
first to enter nap mode, the system must assert the RUN signal no later than the asse
BG to another bus master. This constraint is necessary to ensure proper handling of s
when the first processor is entering nap mode.

Nap mode is exited (clocks resume and MSR[POW] cleared) when an external interr
signaled by the assertion ofINT, SRESET,MCP, orSMI, when a decrementer interrup
occurs, or when a hard reset is sensed.

For more information about the RUN and HALTED signals, refer to Section 7.2.10.5, “
(RUN)—Input,” and Section 7.2.10.3, “Reservation (RSRV)—Output.”
4-22 PowerPC 604e RISC Microprocessor User’s Manual
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Chapter 5
Memory Management
50
50

This chapter describes the PowerPC 604e microprocessor’s implementation of the m
management unit (MMU) specifications provided by the operating environm
architecture (OEA) for PowerPC processors. The primary function of the MMU i
PowerPC processor is the translation of logical (effective) addresses to physical add
(referred to as real addresses in the architecture specification) for memory access
accesses (most I/O accesses are assumed to be memory-mapped), and direct-store
accesses. In addition, the MMU provides access protection on a segment, block o
basis. This chapter describes the specific hardware used to implement the MMU mo
the OEA in the 604e. Refer to Chapter 7, “Memory Management,” inThe Programming
Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require a
translation—instruction accesses and data accesses to memory generated by load a
instructions. Generally, the address translation mechanism is defined in terms of se
descriptors and page tables used by PowerPC processors to locate the effective-to-p
address mapping for instruction and data accesses. The segment information transla
effective address to an interim virtual address, and the page table information transla
interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are sto
on-chip segment registers on 32-bit implementations (such as the 604e). In addition
translation lookaside buffers (TLBs) are implemented on the 604e to keep recently
page address translations on-chip. Although the PowerPC OEA describes one
(conceptually), the 604e hardware maintains separate TLBs and table search resour
instruction and data accesses that can be performed independently (and simultane
Therefore, the 604e is described as having two MMUs, one for instruction acce
(IMMU) and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that s
the available block address translations on-chip. BAT array entries are implemented a
of BAT registers that are accessible as supervisor special-purpose registers (SPRs)
are separate instruction and data BAT mechanisms, and in the 604e, they reside
instruction and data MMUs respectively.
Chapter 5.  Memory Management 5-1
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The MMUs, together with the exception processing mechanism, provide the nece
support for the operating system to implement a paged virtual memory environment a
enforcing protection of designated memory areas. Exception processing is describ
Chapter 4, “Exceptions.” Section 4.3, “Exception Processing,” describes the MSR, w
controls some of the critical functionality of the MMUs.

5.1  MMU Overview
The 604e implements the memory management specification of the PowerPC OE
32-bit implementations. Thus, it provides 4 Gbytes of effective address space access
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment s
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52
and hashed page tables in the generation of 32-bit physical addresses. PowerPC pro
also have a BAT mechanism for mapping large blocks of memory. Block sizes range
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the 604e MMU implementation defined by the OEA are as follows:

• Support for real addressing mode—Logical-to-physical address translation ca
disabled separately for data and instruction accesses.

• Block address translation—Each of the BAT array entries (four IBAT entries a
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 32-bit effective address space into the physical memory sp
This can be used for translating large address ranges whose mappings do not c
frequently.

• Direct-store segments—If the T bit in the indexed segment register is set for any
or store request, this request accesses a direct-store segment; bus activity is di
and the memory space used has different characteristics with respect to how 
be accessed. The address used on the bus consists of bits from the EA and t
segment register.

• Segmented address translation—The 32-bit effective address is extended to a
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segm
register. This 52-bit virtual address space is divided into 4-Kbyte pages, each
which can be mapped to a physical page.

The 604e also provides the following features that are not required by the Pow
architecture:

• Separate translation lookaside buffers (TLBs)—The 128-entry, two-way set
associative ITLBs and DTLBs keep recently-used page address translations on

• Table search operations performed in hardware—The 52-bit virtual address is
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the translation is not found in a T
(that is, a TLB miss occurs), the hardware performs a table search operation (u
a hashing function) to search for the PTE.
5-2 PowerPC 604e RISC Microprocessor User's Manual
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• TLB invalidation—The 604e implements the optional TLB Invalidate Entry (tlbie)
and TLB Synchronize (tlbsync) instructions, which can be used to invalidate TL
entries. For more information on thetlbie andtlbsync instructions, see
Section 5.4.3.2, “TLB Invalidation.”

Table 5-1 summarizes the 604e MMU features, including those defined by the Pow
architecture (OEA) for 32-bit processors and those specific to the 604e.

Table 5-1. MMU Feature Summary

Feature Category
Architecturally Defined/

604e-Specific
Feature

Address ranges Architecturally defined 232 bytes of effective address

252 bytes of virtual address

232 bytes of physical address

Page size Architecturally defined 4 Kbytes

Segment size Architecturally defined 256 Mbytes

Block address
translation

Architecturally defined Range of 128 Kbyte–256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history Architecturally defined Referenced and changed bits defined and maintained

Page address
translation

Architecturally defined Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync
instructions in 604e)

604e-specific 128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors Architecturally defined Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

604e-specific The 604e performs the table search operation in hardware.
Chapter 5.  Memory Management 5-3
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5.1.1  Memory Addressing
A program references memory using the effective (logical) address computed b
processor when it executes a load, store, branch, or cache instruction, and when it f
the next instruction. The effective address is translated to a physical address accord
the procedures described in Chapter 7, “Memory Management,” inThe Programming
Environments Manual, augmented with information in this chapter. The memo
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Eff
Address Calculation.”

5.1.2  MMU Organization
Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32
implementation; note that it does not describe the specific hardware used to impleme
memory management function for a particular processor. Processors may optio
implement on-chip TLBs and may optionally support the automatic search of the
tables for PTEs. In addition, other hardware features (invisible to the system software
depicted in the figure may be implemented.

The 604e maintains two on-chip TLBs with the following characteristics:

• 128 entries, two-way set associative (64 x 2), LRU replacement
• Data TLB supports the DMMU; instruction TLB supports the IMMU
• Hardware TLB update
• Hardware update of memory access recording bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the resu
a translation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the 604e instruction
data MMUs, respectively. The instruction addresses shown in Figure 5-2 are genera
the processor for sequential instruction fetches and addresses that correspond to a
of program flow. Data addresses shown in Figure 5-3 are generated by load and
instructions (both for the memory and the direct-store interfaces) and by cache instruc

As shown in the figures, after an address is generated, the higher-order bits of the eff
address, EA0–EA19 (or a smaller set of address bits, EA0–EAn, in the cases of blocks), are
translated into physical address bits PA0–PA19. The lower-order address bits, A20–A
untranslated and therefore identical for both effective and physical addresses.
translating the address, the MMUs pass the resulting 32-bit physical address to the m
subsystem.
5-4 PowerPC 604e RISC Microprocessor User's Manual
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In addition to the higher-order address bits, the MMUs automatically keep an indicat
whether each access was generated as an instruction or data access and a superv
indicator that reflects the state of the PR bit of the MSR when the effective address
generated. In addition, for data accesses, there is an indicator of whether the access
load or a store operation. This information is then used by the MMUs to appropria
direct the address translation and to enforce the protection hierarchy programmed
operating system. Section 4.3, “Exception Processing,” describes the MSR, which co
some of the critical functionality of the MMUs.

The figures show the way in which the A20–A26 address bits index into the on-
instruction and data caches to select a cache set. The remaining physical address
then compared with the tag fields (comprised of bits PA0–PA19) of the two selected c
blocks to determine if a cache hit has occurred. In the case of a cache miss, the instr
or data access is then forwarded to the bus interface unit which then initiates an ex
memory access.
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Figure 5-1. MMU Conceptual Block Diagram—32-Bit Implementations
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Figure 5-2. PowerPC 604e Microprocessor IMMU Block Diagram
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Figure 5-3. PowerPC 604e Microprocessor DMMU Block Diagram
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5.1.3  Address Translation Mechanisms
PowerPC processors support the following four types of address translation:

• Page address translation—translates the page frame address for a 4-Kbyte pa

• Block address translation—translates the block number for blocks that range in
from 128 Kbyte to 256 Mbyte.

• Direct-store interface address translation—used to generate direct-store inter
accesses on the external bus; not optimized for performance—present for
compatibility only.

• Real addressing mode address translation—when address translation is disabl
physical address is identical to the effective address.

Figure 5-4 shows the four address translation mechanisms provided by the MMUs
segment descriptors shown in the figure control both the page and direct-store int
address translation mechanisms. When an access uses the page or direct-store i
address translation, the appropriate segment descriptor is required. In 3
implementations, one of the 16 on-chip segment registers (which contain seg
descriptors) is selected by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access
memory (memory-mapped) or to the direct-store interface space. Note that the direct
interface is present only for compatibility with existing I/O devices that used this interf
When an access is determined to be to the direct-store interface space, the impleme
invokes an elaborate hardware protocol for communication with these devices.
direct-store interface protocol is not optimized for performance, and therefore, its u
discouraged. The most efficient method for accessing I/O devices is by memory-ma
the I/O areas.

For memory accesses translated by a segment descriptor, the interim virtual add
generated using the information in the segment descriptor. Page address tran
corresponds to the conversion of this virtual address into the 32-bit physical address
by the memory subsystem. In most cases, the physical address for the page reside
on-chip TLB and is available for quick access. However, if the page address trans
misses in an on-chip TLB, the MMU causes a search of the page tables in memory (
the virtual address information and a hashing function) to locate the required phy
address.

Block address translation occurs in parallel with page and direct-store segment ad
translation and is similar to page address translation; however, fewer higher-order eff
address bits are translated into physical address bits (more lower-order address bits (
17) are untranslated to form the offset into a block). Also, instead of segment descr
and a TLB, block address translations use the on-chip BAT registers as a BAT array.
effective address matches the corresponding field of a BAT register, the information i
BAT register is used to generate the physical address; in this case, the results of th
translation and the direct-store translation (occurring in parallel) are ignored.
Chapter 5.  Memory Management 5-9
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Figure 5-4. Address Translation Types

Direct-store address translation is used when the direct-store translation control bit (
in the corresponding segment descriptor is set. In this case, the remaining informat
the segment descriptor is interpreted as identifier information that is used with
remaining effective address bits to generate the packets used in a direct-store int
access on the external interface; additionally, no TLB lookup or page table sear
performed.

Real addressing mode translation occurs when address translation is disabled; in th
the physical address generated is identical to the effective address. Instruction an
address translation is enabled with the MSR[IR] and MSR[DR] bits, respectively. T
when the processor generates an access, and the corresponding address translatio
bit in MSR (MSR[IR] for instruction accesses and MSR[DR] for data accesses) is cle
the resulting physical address is identical to the effective address and all other trans
mechanisms are ignored.

(T = 1) (T = 0)

0 31
Effective Address

0 51
Virtual Address

Segment Descriptor
Located

Match with BAT Reg-
isters

0 31
Physical Address

0 31
Direct-Store Address

0 31
Physical Address

0 31
Physical Address

Look Up in
Page Table

Address Translation Disabled

Page
Address

Direct-Store Segment
Translation

(see Section 5.5)

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
Effective Address = Physical Address

(see Section 5.2)

Block Address
Translation

(see Section 5.3)
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5.1.4  Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the M
provide access protection of supervisor areas from user access and can designate
memory as read-only as well as no-execute or guarded. Table 5-2 shows the prot
options supported by the MMUs for pages.

The operating system programs whether instructions can be fetched from an ar
memory by appropriately using the no-execute option provided in the segment reg
Each of the remaining options is enforced based on a combination of information i
segment descriptor and the page table entry. Thus, the supervisor-only option allow
read and write operations generated while the processor is operating in supervisor
(corresponding to MSR[PR] = 0) to access the page. User accesses that map
supervisor-only page cause an exception to be taken.

Finally, there is a facility in the VEA and OEA that allows pages or blocks to be design
as guarded preventing out-of order accesses that may cause undesired side effec
example, areas of the memory map that are used to control I/O devices can be mar
guarded so that accesses (for example, instruction prefetches) do not occur unless t
explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,”
Chapter 7, “Memory Management,” in theThe Programming Environments Manual.

Table 5-2. Access Protection Options for Pages

Option
User Read

User
Write

Supervisor Read
Supervisor

Write
I-Fetch Data I-Fetch Data

Supervisor-only — — —

Supervisor-only-no-execute — — — —

Supervisor-write-only —

Supervisor-write-only-no-execute — — —

Both user/supervisor

Both user-/supervisor-no-execute — —

Both read-only — —

Both read-only-no-execute — — — —

Guarded

 Access permitted
 — Protection violation
Chapter 5.  Memory Management 5-11
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5.1.5  Page History Information
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits
page address translation mechanism that can be used as history information relevan
page. This information can then be used by the operating system to determine which
of memory to write back to disk when new pages must be allocated in main memory. W
these bits are initially programmed by the operating system into the page table
architecture specifies that the R and C bits may be maintained either by the proc
hardware (automatically) or by some software-assist mechanism that updates the
when required.

Implementation Note—In the process of loading the TLB, the 604e checks the state of
changed and referenced bits for the matched PTE. If the referenced bit is not set a
table search operation is initially caused by a load operation or by an instruction fetc
604e automatically sets the referenced bit in the translation table. Similarly, if the
search operation is caused by a store operation and either the referenced bit or the c
bit is not set, the hardware automatically sets both bits in the translation table. In add
during the address translation portion of a store operation that hits in the TLB, the
checks the state of the changed bit. If the bit is not already set, the hardware automa
updates the TLB and the translation table in memory to set the changed bit. For
information, see Section 5.4.1, “Page History Recording.”

5.1.6  General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to tra
effective addresses to virtual and then physical addresses.

5.1.6.1  Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is use
(physical address equals effective address) and the access continues to the m
subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-5 shows the flow used by the MMUs in determining whether to select
addressing mode, block address translation or to use the segment descriptor to selec
direct-store interface or page address translation.
5-12 PowerPC 604e RISC Microprocessor User's Manual
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Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the approp
protection bits. If the access violates the protection mechanism, an exception (ISI o
exception) is generated.

Implementation Note—The 604e BAT registers are not initialized by the hardware af
the power-up or reset sequence. Consequently, all valid bits in both instruction and
BAT areas must be cleared before setting any BAT area for the first time. This is
regardless of whether address translation is enabled. Also, software must avoid overla
blocks while updating a BAT area or areas. Even if translation is disabled, multiple
area hits are treated as programming errors and can corrupt the BAT registers and p
unpredictable results.

Perform Address Translation
with Segment Descriptor

Access Faulted

Compare Address with
Instruction or Data BAT
Array (as appropriate)

Translate Address

Perform Real
Addressing Mode

Translation

Effective Address
Generated

Continue Access
to Memory
Subsystem

Instruction
Translation Enabled

(MSR[IR] = 1)

Data
Translation Enabled

(MSR[DR] = 1)

(see The Programming
Environments Manual)

(see Figure 5-6)

Instruction
Translation Disabled

(MSR[IR] = 0)

Data
Translation Disabled

(MSR[DR] = 0)

BAT Array
Hit

BAT Array
Miss

D-accessI-access

Access
Protected

Access
Permitted

Perform Real
Addressing Mode

Translation
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5.1.6.2   Page and Direct-Store Interface Address Translation
Selection

If address translation is enabled and the effective address information does not matc
a BAT array entry, then the segment descriptor must be located. Once the seg
descriptor is located, the T bit in the segment descriptor selects whether the transla
to a page or to a direct-store segment as shown in Figure 5-6. In addition, Figure 5-6
shows the way in which the no-execute protection is enforced; if the N bit in the seg
descriptor is set and the access is an instruction fetch, the access is faulted as desc
Chapter 7, “Memory Management,” inThe Programming Environments Manual. Note that
the figure shows the flow for these cases as described by the PowerPC OEA, and so th
references are shown as optional. As the 604e implements TLBs, these branches ar
and described in more detail throughout this chapter.
5-14 PowerPC 604e RISC Microprocessor User's Manual



Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation
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Optional to the PowerPC architecture. Implemented in the
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5.1.6.2.1  Selection of Page Address Translation
If the T bit in the corresponding segment descriptor is 0, page address translat
selected. The information in the segment descriptor is then used to generate the
virtual address. The virtual address is then used to identify the page address tran
information (stored as page table entries (PTEs) in a page table in memory). For incr
performance, the 604e has two on-chip TLBs to store recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page translation occurs and the ph
address bits are forwarded to the memory subsystem. If the required PTE is not res
the MMU requires a search of the page table. In this case, the 604e hardware perfor
page table search operation. If the PTE is successfully found, a new TLB entry is cr
and the page translation is once again attempted. This time, the TLB is guaranteed
Once the PTE is located, the access is qualified with the appropriate protection bits.
access is a protection violation (not allowed), either an ISI or DSI exception is gener

If the PTE is not found by the table search operation, a page fault condition exists, a
ISI or DSI exception occurs so software can handle the page fault.

5.1.6.2.2  Selection of Direct-Store Interface Address Translation
When the segment descriptor has the T bit set, the access is considered a direc
interface access and the direct-store interface protocol of the external interface is u
perform the access to direct-store space. The selection of address translation type diff
instruction and data accesses only in that instruction accesses are not allowed
direct-store segments; attempting to fetch an instruction from a direct-store segment c
an ISI exception. See Section 5.5, “Direct-Store Interface Address Translation,” for m
detailed information about the translation of addresses in direct-store space.

5.1.7  MMU Exceptions Summary
In order to complete any memory access, the effective address must be translate
physical address. As specified by the architecture, an MMU exception condition occ
this translation fails for one of the following reasons:

• There is no valid entry in the page table for the page specified by the effective
address (and segment descriptor) and there is no valid BAT translation.

• An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations c
either the ISI or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains informatio
identifies the address of the failing instruction. Refer to Chapter 4, “Exceptions,” for a m
detailed description of exception processing.
5-16 PowerPC 604e RISC Microprocessor User's Manual
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In addition to the translation exceptions, there are other MMU-related conditions (som
them defined as implementation-specific and therefore, not required by the archite
that can cause an exception to occur. These exception conditions map to the pro
exception as shown in Table 5-4. The only MMU exception conditions that occur w
MSR[DR] = 0 are the conditions that cause the alignment exception for data access
more detailed information about the conditions that cause the alignment exceptio
particular for string/multiple instructions), see Section 4.5.6, “Alignment Except
(0x00600).”

Note that some exception conditions depend upon whether the memory area is se
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully
“Memory/Cache Access Attributes,” in Chapter 5, “Cache Model and Memory Coheren
of The Programming Environments Manual.Refer to Chapter 4, “Exceptions,” and t
Chapter 6, “Exceptions,” inThe Programming Environments Manualfor a complete
description of the SRR1 and DSISR bit settings for these exceptions.

Table 5-3. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and no
matching BAT array entry)

I access: ISI exception
SRR1[1] = 1

D access: DSI exception
DSISR[1] =1

Block protection violation Conditions described for block in “Block Memory
Protection” in Chapter 7, “Memory Management,”
in The Programming Environments Manual.“

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

Page protection violation Conditions described for page in “Page Memory
Protection” in Chapter 7, “Memory Management,”
in The Programming Environments Manual.

I access: ISI exception
SRR1[4] = 1

Note: DSISR[6] is also set for
store operations

D access: DSI exception
DSISR[4] =1

No-execute protection
violation

Attempt to fetch instruction when SR[N] = 1 ISI exception
SRR1[3] = 1

Instruction fetch from
direct-store segment

Attempt to fetch instruction when SR[T] = 1 ISI exception
SRR1[3] =1

Instruction fetch from
guarded memory

Attempt to fetch instruction when MSR[IR] = 1 and
either matching xBAT[G] = 1, or no matching BAT
entry and PTE[G] = 1

ISI exception
SRR1[3] =1
Chapter 5.  Memory Management 5-17
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5.1.8  MMU Instructions and Register Summary
The MMU instructions and registers provide the operating system with the ability to se
the block address translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that ref
these structures are also optional. However, as these structures serve as caches of
table, the architecture specifies a software protocol for maintaining coherency bet
these caches and the tables in memory whenever changes are made to the tables in m
When the tables in memory are changed, the operating system purges these cache
corresponding entries, allowing the translation caching mechanism to refetch from
tables when the corresponding entries are required.

Note that the 604e implements all TLB-related instructions excepttlbia , which is treated
as an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recomme
that the software that uses these instructions and registers be “encapsulated
subroutines to minimize the impact of migrating across the family of implementation

Table 5-4. Other MMU Exception Conditions for the PowerPC 604e Processor

Condition Description Exception

dcbz  with W = 1 or I = 1 dcbz  instruction to write-through or
cache-inhibited segment or block

Alignment exception (not
required by architecture for
this condition)

dcbz  when the data cache is
locked

The dcbz instruction takes an alignment
exception if the data cache is locked (HID0
bits 18 and 19) when it is executed.

Alignment exception

lwarx  or stwcx.  with W = 1 Reservation instruction to write-through
segment or block

DSI exception DSISR[5] = 1

lwarx , stwcx. , eciwx , or ecowx
instruction to direct-store segment

Reservation instruction or external control
instruction when SR[T] =1

DSI exception
DSISR[5] = 1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1 Alignment exception (not
required by architecture)

Load or store that results in a
direct-store error

Direct-store interface protocol signalled with
an error condition

DSI exception
DSISR[0] = 1

eciwx  or ecowx  attempted when
external control facility disabled

eciwx  or ecowx  attempted with EAR[E] = 0 DSI exception
DSISR[11] = 1

lmw , stmw , lswi , lswx , stswi , or
stswx  instruction attempted in
little-endian mode

lmw , stmw , lswi , lswx , stswi , or stswx
instruction attempted while MSR[LE] = 1

Alignment exception

Operand misalignment Translation enabled and operand is
misaligned as described in Chapter 4,
“Exceptions.”

Alignment exception (some
of these cases are
implementation-specific)
5-18 PowerPC 604e RISC Microprocessor User's Manual
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Table 5-5 summarizes 604e instructions that specifically control the MMU.

Table 5-6 summarizes the registers that the operating system uses to program th
MMUs. These registers are accessible to supervisor-level software only. These regist
described in Chapter 2, “Programming Model.”

Table 5-5. PowerPC 604e Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr  SR,rS Move to Segment Register
SR[SR#]← rS

mtsrin r S,rB Move to Segment Register Indirect
SR[rB[0–3]]←rS

mfsr r D,SR Move from Segment Register
rD←SR[SR#]

mfsrin r D,rB Move from Segment Register Indirect
rD←SR[rB[0–3]]

tlbie  rB * Execution of this instruction causes all entries in the congruence class corresponding to the EA to
be invalidated in the processor executing the instruction and in the other processors attached to
the same bus.
Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie  instruction have been completed prior to executing the tlbie  instruction.

tlbsync * The tlbsync operation appears on the bus as a distinct operation that causes synchronization of
snooped tlbie  instructions.

* These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6. PowerPC 604e Microprocessor MMU Registers

Register Description

Segment registers
(SR0–SR15)

The sixteen 32-bit segment registers are present only in 32-bit implementations of
the PowerPC architecture. The fields in the segment register are interpreted
differently depending on the value of bit 0. The segment registers are accessed by
the mtsr , mtsrin , mfsr , and mfsrin  instructions.

BAT registers
(IBAT0U–IBAT3U,
IBAT0L–IBAT3L,
DBAT0U–DBAT3U, and
DBAT0L–DBAT3L)

There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBAT0U–IBAT3U paired with IBAT0L–IBAT3L) and four pairs of data BAT registers
(DBAT0U–DBAT3U paired with DBAT0L–DBAT3L). The BAT registers are defined as
32-bit registers in 32-bit implementations. These are special-purpose registers that
are accessed by the mtspr  and mfspr  instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in
memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr  and mfspr  instructions.
Chapter 5.  Memory Management 5-19
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5.1.9  TLB Entry Invalidation
For PowerPC processors such as the 604e that implement TLB structures to ma
on-chip copies of the PTEs that are resident in physical memory, the optional
Invalidate Entry (tlbie) instruction provides a way to invalidate the TLB entries.

Execution of this instruction causes all entries in the congruence class corresponding
presented EA to be invalidated in the processor executing the instruction and in the
processors attached to the same bus.

The tlbsync operation appears on the bus as a distinct operation, that ca
synchronization of snoopedtlbie instructions. Section 5.4.3.2, “TLB Invalidation,
describes the TLB invalidation mechanisms in the 604e.

5.2  Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular acc
the effective address is treated as the physical address and is passed directly to the m
subsystem as described in Chapter 7, “Memory Management,” inThe Programming
Environments Manual.

For information on the synchronization requirements for changes to MSR[IR]
MSR[DR], refer to Section 2.3.2.4, “Synchronization.”

Note that the PowerPC architecture states that, for data accesses performed
addressing mode (MSR[DR] = 0), the WIMG bits are assumed to be 0b0011 (the d
write-back, caching is enabled, memory coherency is enforced, and memory is gua
For instruction accesses performed in real addressing mode (MSR[IR] = 0), the WIMG
are assumed to be 0b0001 (the data is write-back, caching is enabled, memory coh
is not enforced, and memory is guarded).

5.3  Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ra
of effective addresses larger than a single page into contiguous areas of physical me
Such areas can be used for data that is not subject to normal virtual memory han
(paging), such as a memory-mapped display buffer or an extremely large array of num
data.

Block address translation in the 604e is described in Chapter 7, “Memory Manageme
The Programming Environments Manualfor 32-bit implementations.

5.4  Memory Segment Model
The 604e adheres to the memory segment model as defined in Chapter 7, “Me
Management,” inThe Programming Environments Manualfor 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segme
5-20 PowerPC 604e RISC Microprocessor User's Manual
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memory model provides a way to map 4-Kbyte pages of effective addresses to 4-K
pages in physical memory (page address translation), while providing the program
flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block
translation (BAT) mechanism described in Section 5.3, “Block Address Translation.” If
the translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific e
but can be considered to be the concatenation of the virtual page number and th
offset within a page), and

2. from virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OE
are specific to the 604e.

5.4.1  Page History Recording
Referenced (R) and changed (C) bits reside in each PTE to keep history information
the page. They are maintained by a combination of the 604e table search hardware a
system software. The operating system uses this information to determine which ar
memory to write back to disk when new pages must be allocated in main mem
Referenced and changed recording is performed only for accesses made with page a
translation and not for translations made with the BAT mechanism or for accesse
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintaine
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] =

In the 604e, the referenced and changed bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 5-7.

• For TLB misses, when a table search operation is in progress to locate a PTE
R and C bits are updated (set, if required) to reflect the status of the page bas
this access.

The table shows that the status of the C bit in the TLB entry (in the case of a TLB h
what causes the processor to update the C bit in the PTE (the R bit is assumed to be
the page tables if there is a TLB hit). Therefore, when software clears the R and C b

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

R and C bits
in TLB Entry

Processor Action

00 Combination doesn’t occur

01 Combination doesn’t occur

10 Read: No special action
Write: The 604e initiates a table search operation to update C.

11 No special action for read or write
Chapter 5.  Memory Management 5-21
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the page tables in memory, it must invalidate the TLB entries associated with the p
whose referenced and changed bits were cleared.

Thedcbt anddcbtst instructions can execute if there is a TLB/BAT hit or if the process
is in real addressing mode. In case of a TLB/BAT miss, these instructions are treat
no-ops; they do not initiate a table search operation and they do not set either the R or

As defined by the PowerPC architecture, the referenced and changed bits are updat
address translation were disabled (real addressing mode). Additionally, these upda
performed with single-beat read and byte write transactions on the bus.

5.4.1.1  Referenced Bit
The referenced (R) bit of a page is located in the PTE in the page table. Every time a
is referenced (with a read or write access) and the R bit is zero, the 604e sets the R
the page table. The OEA specifies that the referenced bit may be set immediately,
setting may be delayed until the memory access is determined to be successful. Beca
reference to a page is what causes a PTE to be loaded into the TLB, the referenced b
604e TLB entries is effectively always set. The processor never automatically clear
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a pag
times, the referenced bit may be set although the access was not logically required
program or even if the access was prevented by memory protection. Examples of t
PowerPC systems include the following:

• Fetching of instructions not subsequently executed

• Accesses generated by anlswx or stswx instruction with a zero length

• Accesses generated by anstwcx. instruction when no store is performed because
reservation does not exist

• Accesses that cause exceptions and are not completed

5.4.1.2  Changed Bit
The changed bit of a page is located both in the PTE in the page table and in the copy
PTE loaded into the TLB (if a TLB is implemented, as in the 604e). Whenever a data
instruction is executed successfully, if the TLB search (for page address translation) r
in a hit, the changed bit in the matching TLB entry is checked. If it is already set,
processor does not change the C bit. If the TLB changed bit is 0, the 604e sets it and
search operation is performed to also set the C bit in the corresponding PTE in the
table. The 604e initiates the table search operation for setting the C bit in this case.
5-22 PowerPC 604e RISC Microprocessor User's Manual
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The changed bit (in both the TLB and the PTE in the page tables) is set only when a
operation is allowed by the page memory protection mechanism and the store is guar
to be in the execution path (unless an exception, other than those caused by thesc, rfi , or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit
set:

• The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

• The execution of anstswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified leng
zero.

• The store operation is not performed because an exception occurs before the s
performed.

Again, note that although the execution of thedcbt anddcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

5.4.1.3  Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) that is use
PowerPC processors for maintaining the referenced and changed bits. In some sce
the bits are guaranteed to be set by the processor, in some scenarios, the architecture
that the bits may be set (not absolutely required), and in some scenarios, the bi
guaranteed to not be set. Note that when the 604e updates the R and C bits in memo
accesses are performed as if MSR[DR] = 0 and G = 0(that is, as nonguarded cacheab
operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The en
in the table are prioritized from top to bottom, such that a matching scenario occu
closer to the top of the table takes precedence over a matching scenario closer to the
of the table. For example, if anstwcx. instruction causes a protection violation and there
no reservation, the C bit is not altered, as shown for the protection violation case. Not
in the table, load operations include those generated by load instructions, by theeciwx
instruction, and by the cache management instructions that are treated as a load with
to address translation. Similarly, store operations include those operations genera
store instructions, by theecowxinstruction, and by the cache management instructions
are treated as a store with respect to address translation.
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For more information, see “Page History Recording” in Chapter 7, “Mem
Management,” ofThe Programming Environments Manual.

5.4.2  Page Memory Protection
The 604e implements page memory protection as it is defined in Chapter 7, “Me
Management,” inThe Programming Environments Manual.

5.4.3  TLB Description
Because the 604e has two MMUs (IMMU and DMMU) that operate in parallel, som
the MMU resources are shared, and some are actually duplicated (shadowed) in each
to maximize performance. For example, although the architecture defines a single
segment registers for the MMU, the 604e maintains two identical sets of segment reg
one for the IMMU and one for the DMMU; when a segment register instruction execu
the 604e automatically updates both sets.

Table 5-8. Model for Guaranteed R and C Bit Settings

Priority Scenario

Causes Setting of
R Bit

Causes Setting of
C Bit

OEA 604e OEA 604e

1 No-execute protection violation No No No No

2 Page protection violation Maybe Yes No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation contingent on a branch, trap,
sc  or rfi  instruction, or a possible exception

Maybe No No No

5 Out-of-order store operation contingent on an exception,
other than a trap or sc  instruction, not occurring

Maybe No No No

6 Zero-length load (lswx ) Maybe No No No

7 Zero-length store (stswx ) Maybe1 No Maybe1 No

8 Store conditional (stwcx. ) that does not store Maybe1 Yes Maybe1 Yes

9 In-order instruction fetch Yes2 Yes No No

10 Load instruction or eciwx Yes Yes No No

11 Store instruction, ecowx , or dcbz instruction Yes Yes Yes Yes

12 icbi , dcbt , dcbtst , dcbst , or dcbf instruction Maybe Yes no no

13 dcbi  instruction Maybe1 Yes Maybe1 Yes

1 If C is set, R is also guaranteed to be set.
2 This includes the case in which the instruction was fetched out-of order and R was not set

(does not apply for 604e).
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5.4.3.1  TLB Organization
The 604e implements separate 128-entry data and instruction TLBs to suppo
implementation of separate instruction and data MMUs. This section describes
hardware resources provided in the 604e to facilitate page address translation. Note t
hardware implementation of the MMU is not specified by the architecture, and while
description applies to the 604e, it does not necessarily apply to other PowerPC proce

Each TLB contains 128 entries organized as a two-way set associative array with 64 s
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an add
is being translated, a set of two TLB entries is indexed in parallel with the access
segment register. If the address in one of the two TLB entries is valid and matche
virtual address, that TLB entry contains the physical address. If no match is found, a
miss occurs.

Figure 5-7. Segment Register and DTLB Organization
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Unless the access is the result of an out-of-order access, a hardware table search op
begins if there is a TLB miss. If the access is out of order, the table search operat
postponed until the access is required, at which point the access is no longer out of
When the matching PTE is found in memory, it is loaded into a particular TLB en
selected by the least-recently-used (LRU) replacement algorithm, and the trans
process begins again, this time with a TLB hit.

TLB entries are on-chip copies of PTEs in the page tables in memory and are simi
structure. TLB entries consist of two words; the upper-order word contains the VSID
API fields of the upper-order word of the PTE and the lower-order word contains the R
the C bit, the WIMG bits and the PP bits (as in the lower-order word of the PTE)
uniquely identify a TLB entry as the required PTE, the PTE also contains four more b
the page index, EA10–EA13 (in addition to the API bits of the PTE). Formats for the P
are given in “PTE Format for 32-Bit Implementations,” in Chapter 7, “Memo
Management,” ofThe Programming Environments Manual.

Software does not have direct access to the TLB arrays, except to invalidate an entr
thetlbie instruction.

Each set of TLB entries is associated with one LRU bit, which is accessed when
entries in the same set are indexed. LRU bits are updated whenever a TLB entry is u
after the entry is replaced. Invalid entries are always the first to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registe
TLBs can be accessed in the same clock), when there is an exception condition, on
exception is reported at a time.

Although address translation is disabled on a reset condition, the valid bits of the BAT
and TLB entries are not automatically cleared. Thus, TLB entries must be explicitly cle
by the system software (with thetlbie instruction) before the valid entries are loaded a
address translation is enabled. Also, note that the segment registers do not have a va
and so they should also be initialized before translation is enabled.

5.4.3.2  TLB Invalidation
The 604e implements the optionaltlbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of thetlbie instruction always invalidates four
entries—both the ITLB entries indexed by EA14–EA19 and both the indexed entries o
DTLB.

Execution of thetlbie instruction causes all entries in the congruence class correspon
to the specified EA to be invalidated in the processor executing the instruction and a
the other processors attached to the same bus by causing a TLB invalidate bro
operation on the bus as described in Section 7.2.4, “Address Transfer Attribute Sign
5-26 PowerPC 604e RISC Microprocessor User's Manual
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A TLB invalidate broadcast operation is an address-only transaction issued by a proc
when it executes atlbie instruction. The address transmitted as part of this transac
contains bits 12–19 of the EA in their correct respective bit positions.

When a snooping 604e detects a TLB invalidate operation on the bus, it accep
operation only if no TLB invalidation is being performed by this processor and
processors on the bus accept the operation (ARTRY is not asserted). Once accepted, th
TLB invalidation is performed unless the processor is executing a multiple/st
instruction, in which case the TLB invalidation is delayed until the instruction
completed. Note that a 604e processor can only have one TLB invalidation oper
pending internally. Thus if the 604e has a pending TLB invalidate operation, it asser
ARTRY snoop status in response to another TLB invalidate operation on the bus. Det
TLB invalidate operations on the bus and the execution of thetlbie instruction both cause
a congruence-class invalidation on both instruction and data TLBs.

The OEA requires that a synchronization instruction be issued to guarantee complet
a tlbie instruction across all processors of a system. The 604e implements thetlbsync
instruction which causes a TLBSYNC broadcast operation to appear on the bus
address-only transaction, distinct from a SYNC operation. It is this bus operation
causes synchronization of snoopedtlbie instructions. Multipletlbie instructions can be
executed correctly with only onetlbsync instruction, following the lasttlbie, to guarantee
all previoustlbie instructions have been performed globally.

When the TLBSYNC bus operation is detected by a snooping 604e, the 604e asse
ARTRY snoop status if any operations based on an invalidated TLB are pending.

Software must ensure that instruction fetches or memory references to the virtual
specified by thetlbie have been completed prior to executing thetlbie instruction.

Other than the possible TLB miss on the next instruction prefetch, thetlbie does not affect
the instruction fetch operation—that is, the prefetch buffer is not purged and does not
these instructions to be refetched.

Thetlbia instruction is optional for an implementation if its effects can be achieved thro
some other mechanism. As described above, thetlbie instruction can be used to invalidat
a particular index of the TLB based on EA[14–19]. With that concept in mind, a sequ
of 64 tlbie instructions followed by a singletlbsync instruction would cause all the 604
TLB structures to be invalidated (for EA[14–19] = 0, 1, 2, ..., 63). Therefore thetlbia
instruction is not implemented on the 604e. Execution of atlbia instruction causes an
illegal instruction program exception.

Thetlbie andtlbsync instructions are described in detail in Section 2.3.6.3.3, “Transla
Lookaside Buffer Management Instructions—(OEA).” For more information about h
other processors react to TLB operations broadcast on the system bus of a multiproc
system, see Section 3.9.6, “Cache Reaction to Specific Bus Operations.”
Chapter 5.  Memory Management 5-27



ands
f
in the
er
n is
ress
5.4.4  Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then exp
on the “TLB Hit” branch of Figure 5-6. The detailed flow for the “TLB Miss” branch o
Figure 5-6 is described in Section 5.4.5, “Page Table Search Operation.” Note that as
case of block address translation, if thedcbz instruction is attempted to be executed eith
in write-through mode or as cache-inhibited (W = 1 or I = 1), the alignment exceptio
generated. The checking of memory protection violation conditions for page add
translation is described in Chapter 7, “Memory Management,” inThe Programming
Environments Manual.
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Figure 5-8. Page Address Translation Flow—TLB Hit
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5.4.5  Page Table Search Operation
If the translation is not found in the TLBs (a TLB miss), the 604e initiates a table se
operation which is described in this section. Formats for the PTE are given in “PTE Fo
for 32-Bit Implementations,” in Chapter 7, “Memory Management,” ofThe Programming
Environments Manual.

The following is a summary of the page table search process performed by the 604e

1. The 32-bit physical address of the primary PTEG is generated as described in “
Table Addresses” in Chapter 7, “Memory Management,” ofThe Programming
Environments Manual.

2. The first PTE (PTE0) in the primary PTEG is read from memory. PTE reads o
with an implied WIM memory/cache mode control bit setting of 0b001. Therefo
they are considered cacheable and read (burst) from memory and placed in t
cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page num
(VPN) of the access. The VPN is the VSID concatenated with the page index
of the virtual address. For a match to occur, the following must be true:

— PTE[H] = 0
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in
primary PTEG. If a match is found, the table search process continues as desc
in step 8. If a match is not found within the 8 PTEs of the primary PTEG, the add
of the secondary PTEG is generated.

5. The first PTE (PTE0) in the secondary PTEG is read from memory. Again, bec
PTE reads have a WIM bit combination of 0b001, an entire cache line is read
the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual
number (VPN) of the access. For a match to occur, the following must be true

— PTE[H] = 1
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in
secondary PTEG. If it is never found, an exception is taken (step 9).
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8. If a match is found, the PTE is written into the on-chip TLB and the R bit is upda
in the PTE in memory (if necessary). If there is no memory protection violation,
C bit is also updated in memory (if the access is a write operation) and the tab
search is complete.

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search 
and a page fault exception condition occurs (either an ISI exception or a DSI
exception).

Reads from memory for table search operations should be performed as global (b
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and seco
page table search operations, described inThe Programming Environments Manualare
realized in the 604e.

Figure 5-9 shows the case of adcbz instruction that is executed with W = 1 or I = 1, an
that the R bit may be updated in memory (if required) before the operation is perform
the alignment exception occurs. The R bit may also be updated if memory protecti
violated.
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Figure 5-9. Primary Page Table Search
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Figure 5-10. Secondary Page Table Search Flow

If the address in one of the two selected TLB entries is valid and matches the v
address, that TLB entry contains the physical address. If no match is found, a TLB
occurs and, if this is an in-order access, a hardware table search operation begins. O
matching PTE is found in memory, it is loaded into the appropriate TLB entry depen
on the LRU bit setting and translation continues.

The LSU initiates out-of-order accesses without knowledge of whether it is legal to d
Therefore, the MMU does not perform hardware table search due to TLB misses un
request is nonspeculative. In these out-of-order cases, the MMU does detect prot
violations and whether adcbz instruction specifies a page marked as write-through
cache-inhibited. The MMU also detects alignment exceptions caused by thedcbz
instruction, which prevents the changed bit in the PTE from being updated erroneou

Note that when a TLB miss occurs, the MMU does not begin the table search operat
the access is out of order.
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If the MMU registers are being accessed by an instruction in the instruction stream
IMMU stalls for one translation cycle to perform those operation. The sequencer seria
instructions to ensure the data correctness. For updating the IBATs and SRs, the seq
classifies those operations as fetch serialization. After such an instruction is dispatche
instruction buffer is flushed and the fetch stalls until the instruction completes. How
for reading from the IBATs, the operation is classified as execution serialization. As
as the LSU ensures that all previous instructions can be executed, subsequent instr
can be fetched and dispatched.

5.4.6  Page Table Updates
This section describes the requirements on the software when updating page tab
memory via some pseudocode examples. Multiprocessor systems must follow the
described in this section so that all processors operate with a consistent set of page
Even single-processor systems must follow certain rules, because software change
be synchronized with the other instructions in execution and with automatic update
may be made by the hardware (referenced and changed bit updates). Updates to the
include the following operations:

• Adding a PTE
• Modifying a PTE, including modifying the R and C bits of a PTE
• Deleting a PTE

PTEs must be locked on multiprocessor systems. Access to PTEs must be approp
synchronized by software locking of (that is, guaranteeing exclusive access to) PT
PTEGs if more than one processor can modify the table at that time.

When TLBs are implemented, they are defined as noncoherent caches of the page
TLB entries must be invalidated explicitly with the TLB invalidate entry instruction (tlbie)
whenever the corresponding PTE is modified. In a multiprocessor system, thetlbie
instruction must be controlled by software locking, so that thetlbie is issued on only one
processor at a time. Thesync instruction causes the processor to wait until the TL
invalidate operation in progress by this processor is complete.

The PowerPC OEA defines thetlbsync instruction that ensures that TLB invalidat
operations executed by this processor have caused all appropriate actions in
processors. In a system that contains multiple processors, thetlbsync functionality must be
used in order to ensure proper synchronization with the other PowerPC processors
that for compatibility with PowerPC 601 microprocessor systems async instruction must
also follow the tlbsync to ensure that thetlbsync has completed execution on thi
processor.

Any processor, including the processor modifying the page table, may access the pag
at any time in an attempt to reload a TLB entry. An inconsistent page table entry must
accidentally become visible; thus, there must be synchronization between modificatio
5-34 PowerPC 604e RISC Microprocessor User's Manual
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the valid bit and any other modifications (to avoid corrupted data). This requires as m
as twosync operations for each PTE update.

Because the V, R, and C bits each reside in a distinct byte of a PTE, programs may u
these bits with byte store operations (without requiring any higher-level synchronizat
However, extreme care must be taken to ensure that no store overwrites one of thes
accidentally. Processors write referenced and changed bits with unsynchronized, a
byte store operations.

Explicitly altering certain MSR bits (using themtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effect
physical addresses from which the current instruction stream is being fetched. This k
side effect is defined as an implicit branch. Implicit branches are not supported an
attempt to perform one causes boundedly undefined results. Therefore, PTEs must
changed in a manner that causes an implicit branch. Chapter 2, “PowerPC Register S
The Programming Environments Manual, lists the possible implicit branch conditions tha
can occur when system registers and MSR bits are changed.

5.4.7  Segment Register Updates
There are certain synchronization requirements for using the move to segment re
instructions. These are described in “Synchronization Requirements for Special Reg
and for Lookaside Buffers” in Chapter 2, “PowerPC Register Set,” inThe Programming
Environments Manual.

5.5  Direct-Store Interface Address Translation
As described for memory segments, all accesses generated by the processor m
segment descriptor in the segment table. If T = 1 for the selected segment descript
there are no BAT hits, the access maps to the direct-store interface, invoking a specifi
protocol for accessing some special-purpose I/O devices. Direct-store segmen
provided for POWER compatibility. As the direct-store interface is present only
compatibility with existing I/O devices that used this interface and the direct-store inte
protocol is not optimized for performance, its use is discouraged. Applications that re
low latency load/store access to external address space should use memory-mapp
rather than the direct-store interface.

5.5.1  Direct-Store Interface Accesses
When the address translation process determines that the segment descriptor has
direct-store interface address translation is selected and no reference is made to th
tables and referenced and changed bits are not updated. These accesses are perfor
the WIMG bits were 0b0101; that is, caching is inhibited, the accesses bypass the c
hardware-enforced coherency is not required, and the accesses are considered gua

The specific protocol invoked to perform these accesses involves the transfer of addre
data information in packets; however, the PowerPC OEA does not define the
Chapter 5.  Memory Management 5-35
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hardware protocol used for direct-store interface accesses. Some instructions
multiple address/data transactions to occur on the bus. In this case, the address fo
transaction is handled individually with respect to the DMMU.

The following data is sent by the 604e to the memory controller in the protocol (two pac
consisting of address-only cycles) described in Section 8.6, “Direct-Store Operation

• Packet 0
— One of the Kx bits (Ks or Kp) is selected to be the key as follows:

– For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is igno
–  For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored

— The contents of bits 3–31 of the segment register, which is the BUID field
concatenated with the “controller-specific” field.

• Packet 1—SR[28–31] concatenated with the 28 lower-order bits of the effectiv
address, EA4–EA31.

5.5.2  Direct-Store Segment Protection
Page-level memory protection as described in Section 5.4.2, “Page Memory Protectio
not provided for direct-store segments. The appropriate key bit (Ks or Kp) from
segment descriptor is sent to the memory controller, and the memory controller implem
any protection required. Frequently, no such mechanism is provided; the fact t
direct-store segment is mapped into the address space of a process may be rega
sufficient authority to access the segment.

5.5.3  Instructions Not Supported in Direct-Store Segments
The following instructions are not supported at all and cause a DSI exception (
DSISR[5] set) when issued with an effective address that selects a segment descript
has T = 1 (or when MSR[DR] = 0):

• lwarx
• stwcx.
• eciwx
• ecowx

5.5.4  Instructions with No Effect in Direct-Store Segments
The following instructions are executed as no-ops when issued with an effective ad
that selects a segment where T = 1:

• dcbt
• dcbtst
• dcbf
• dcbi
5-36 PowerPC 604e RISC Microprocessor User's Manual
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• dcbst
• dcbz
• icbi

5.5.5  Direct-Store Segment Translation Summary Flow
Figure 5-11 shows the flow used by the MMU when direct-store segment add
translation is selected. This figure expands the direct-store segment translation stub
in Figure 5-6 for both instruction and data accesses. In the case of a floating-point lo
store operation to a direct-store segment, other implementations may not take an alig
exception, as is allowed by the PowerPC architecture. In the case of aneciwx, ecowx,
lwarx , or stwcx. instruction, the implementation either sets the DSISR register as sh
and causes the DSI exception, or causes boundedly undefined results.

Figure 5-11. Direct-Store Segment Translation Flow
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otherwise
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otherwise
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Optional to the PowerPC architecture. Implemented in the 604e.
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Chapter 6
Instruction Timing
60
60

This chapter describes instruction prefetch and execution through all of the execution
of the PowerPC 604e microprocessor. It also provides examples of instruction sequ
showing concurrent execution and various register dependencies to illustrate t
interactions.

6.1  Terminology and Conventions
This section describes terminology and conventions used in this chapter. This se
defines terms used in this chapter.

• Stage—An element in the pipeline at which certain actions are performed, su
decoding the instruction, performing an arithmetic operation, and writing back
results. A stage typically takes a cycle to perform its operation; however, som
stages are repeated (a double-precision floating-point multiply, for example). W
this occurs, an instruction immediately following it in the pipeline is forced to st
in its cycle.

In some cases, an instruction may also occupy more than one stage
simultaneously—for example, instructions may complete and write back their
results in the same cycle.

After an instruction is fetched, it can always be defined as being in one or mo
stages.

• Pipeline—In the context of instruction timing, the term pipeline refers to the
interconnection of the stages. The events necessary to process an instruction
broken into several cycle-length tasks to allow work to be performed on sever
instructions simultaneously—analogous to an assembly line. As an instruction
processed, it passes from one stage to the next. When it does, the stage bec
available for the next instruction.

Although an individual instruction may take many cycles to complete (the num
of cycles is called instruction latency), pipelining makes it possible to overlap 
processing so that the throughput (number of instructions completed per cycle
greater than if pipelining were not implemented.
Chapter 6.  Instruction Timing 6-1



ons

e. In
 leave

Such
s not
fines
The

t

n. A
 will
s can

h the

 to

ake

ycle.
s a

llows
 may

tion
nits
d out
tion
, all
with

ted

tion
• Superscalar—A superscalar processor is one that can issue multiple instructi
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the same stage at the same tim
the 604e these instructions can leave the execute stage out of order but must
the other stages in order.

• Branch prediction—The process of guessing whether a branch will be taken. 
predictions can be correct or incorrect; the term predicted as it is used here doe
imply that the prediction is correct (successful). The PowerPC architecture de
a means for static branch prediction, which is part of the instruction encoding.
604e also implements dynamic branch prediction, where there are levels of
probability assigned to a particular instruction depending on the history of tha
instruction, which is recorded in the branch history table (BHT).

• Branch resolution—The determination of whether a branch is taken or not take
branch is said to be resolved when it can exactly be determined which path it
take. If the branch is resolved as predicted, speculatively executed instruction
be completed. If the branch is not resolved as predicted, instructions on the
mispredicted path are purged from the instruction pipeline and are replaced wit
instructions from the nonpredicted path.

• Program order—The original order in which program instructions are provided
the instruction queue from the cache.

• Stall—An occurrence when an instruction cannot proceed to the next stage.

• Latency— The number of clock cycles necessary to execute an instruction and m
ready the results of that execution for a subsequent instruction.

• Throughput—A measure of the number of instructions that are processed per c
For example, a series of double-precision floating-point multiply instructions ha
throughput of one instruction per clock cycle.

• Reservation station—A buffer between the dispatch and execute stages that a
instructions to be dispatched even though the operands required for execution
not yet be available. In the 604e, each execution unit has a two-entry reserva
station. The 604e implements two types of reservation stations. The integer u
implement out-of-order execution units so integer instructions can be execute
of order within individual integer units and among the three units. The reserva
stations for the other execution units are in-order reservation stations—that is
noninteger instructions must pass through its assigned unit in program order 
respect to other like instructions.

• Rename buffer—Temporary buffers used by instructions that have not comple
and as write-back buffers for those that have.

• Finish—The term indicates the final cycle of execution. In this cycle, the comple
buffer is updated to indicate that the instruction has finished executing.
6-2 PowerPC 604e RISC Microprocessor User's Manual
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• Completion—Completion occurs when an instruction is removed from the
completion buffer. When an instruction completes we can be sure that this
instruction and all previous instructions will cause no exceptions. In some situati
an instruction can finish and complete in the same cycle.

• Write-back—Write-back (in the context of instruction handling) occurs when a
result is written from the rename registers into the architectural registers (typi
the GPRs and FPRs). Results are written back at completion time or are moved
the write-back buffer. Results in the write-back buffer cannot be flushed. If an
exception occurs, these buffers must write back before the exception is taken

6.2  Instruction Timing Overview
The 604e has been designed to maximize instruction throughput and minimize av
instruction execution latency. For many of the instructions in the 604e, this can
simplified to include only the execute phase for a particular instruction. Note tha
number of additional cycles required by data access instructions depends on wheth
access hits in the cache in which case there is a single cycle required for the cache a
If the access misses in the cache, the number of additional cycles required is affected
processor-to-bus clock ratios and other factors pertaining to memory access.

In keeping with this definition, most integer instructions have a latency of one clock c
(for example, results for these instructions are ready for use on the next clock cycle
issue). Other instructions, such as the integer multiply, require more than one clock
to finish execution.

Figure 6-1 provides a detailed block diagram—showing the additional data paths
contribute to the improved efficiency in instruction execution and more clearly shows
relationships between execution units and their associated register files.
Chapter 6.  Instruction Timing 6-3
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Figure 6-1. Block Diagram—Internal Data Paths

As shown in Table 6-1, effective throughput of more than one instruction per clock c
can be realized by the many performance features in the 604e including multiple exec
units that operate independently and in parallel, pipelining, superscalar instruction
dynamic branch prediction, the implementation of two reservation stations for
execution unit to avoid additional latency due to stalls in individual pipelines, and re
buses that forward results to dependent instructions instead of requiring those instru
to wait until results become available in the architected registers.

The reservation stations and result buses for the GPRs are shown in Figure 6-2

Fetch Unit

branch

(Four-instruction
Dispatch Unit

BPU

32-Kbyte data cache
4-way, 8 words/block
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Figure 6-2. GPR Reservation Stations and Result Buses

Although it is not shown in Figure 6-1, the LSU and FPU are pipelined.

The 604e’s completion buffer can retire four instructions every clock cycle. In gen
instruction processing is accomplished in six stages—fetch stage, decode stage, d
stage, execute stage, completion stage, and write-back stage. The instruction fetch
includes the clock cycles necessary to request instructions from the on-chip cache a
as the time it takes the on-chip cache to respond to that request. The decode stage c
of the time it takes to fully decode the instruction. In the complete stage, as many as
instructions per cycle are completed in program order. In the write-back stage, resul
returned to the register file. Instructions are fetched and executed concurrently wit
execution and write-back of previous instructions producing an overlap period bet
instructions. The details of these operations are explained in the following paragrap

6.2.1  Pipeline Structures
The master instruction pipeline of the 604e has six stages. Instructions executed
machine flow through these stages. Some instructions combine the completion and
back stages into a single cycle. Some instructions (load, store, and floating-
instructions) flow through additional execution pipeline stages.

The six basic stages of the master instruction pipeline are as follows:

• Fetch (IF)
• Decode (ID)
• Dispatch (DS)
• Execute (E)
• Completion (C)
• Write-back (W)

GPR Result Buses

A op B op A op B op A op B op A op B op

SCIU 1 SCIU 2 LSUMCIU 3
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These stages are shown in Figure 6-3. Some instructions occupy multiple s
simultaneously and some individual execution units, such as the FPU and MCIU,
multiple execution stages.

Figure 6-3. Pipeline Diagram

Pipelines for typical instructions for each of the execution units are shown in Figure
Note that this figure does not accurately reflect the latencies for all instructions that
through each of the pipelines. The division of instructions into branch, integer, load/s
and floating-point instructions indicates the execution unit in which the instruct
execute. For example,mtspr instructions, which are not thought of as integer instructio
from a functional perspective, are considered with integer instructions here becaus
execute in the MCIU.

Note that in many circumstances, complete and write-back can occur in the same
Also, integer multiply, integer divide, move to/from SPR, store, and load instructions
miss in the cache can occupy both the final stage of execute (finish) and complete
write-back) simultaneously.

Complete (C)

Write-Back (W)

(Four-instruction dispatch per clock
cycle in any combination)

SCIU1 SCIU2 MCIU FPU LSUBPU

Execute Stage

Fetch (IF)

Decode (ID)

CRU

Dispatch (DS)
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Figure 6-4. PowerPC 604e Microprocessor Pipeline Stages

Table 6-1 lists the latencies and throughputs for general groups of instructions.

6.2.1.1  Description of Pipeline Stages
This section gives a brief description of each of the six stages of the master instru
pipeline.

Table 6-1. Execution Latencies and Throughputs

Instruction Latency Throughput

Most integer instructions 1 1

Integer multiply (32x32) 4 2

Integer multiply (others) 3 1

Integer divide 20 19

Integer load 2 1

Integer store 3 1

Floating-point load 3 1

Floating-point store 3 1

Double-precision floating-point multiply-add 3 1

Single-precision floating-point divide 18 18

Double-precision floating-point divide 31 31

Validate

Fetch Decode Dispatch Execute* Complete Write-Back

Fetch Decode Dispatch Complete Write-BackEA

Fetch Decode Dispatch Complete Write-Back

Integer Instructions

Load/Store Instructions

Floating-point Instructions

Branch Instructions
Fetch
Predict

Decode
Predict

Dispatch
Predict Complete

/Normalize)(Multiply) (Add) (Round

* Note that several integer instructions that execute in the MCIU have multiple execute stages.

Execute

Execute

Calc Cache Align
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6.2.1.1.1  Fetch Stage
The fetch stage primarily is responsible for fetching instructions from the instruction c
and determining the address of the next instruction to be fetched. Instructions fetched
the cache are latched into an instruction buffer for subsequent consideration by the d
stage.

The fetch unit keeps the instruction buffer (four-entry decode and four-entry disp
buffer) supplied with instructions for the dispatcher to process. Normally, the fetch
fetches instructions sequentially, even when the instruction buffer is full because spac
become available by the time the instruction cache supplies them. Instructions are fe
from the instruction cache in groups of four along double-word boundaries. Instruc
can be fetched from only one cache block at a time, so if only two instructions rema
the cache block, only two instructions are fetched. If fetching is sequential, then it res
at four instructions per clock from the next cache block.

If translation is disabled (MSR[IR] = 0), the 604e fetches instructions when they hit in
cache or if the previous completed instruction fetch was to the same page as this instr
fetch. Where an instruction access hits in the cache, the 604e continues to fetc
consecutive accesses to that same page.

The next address to be fetched is affected by several different conditions. Each stage
its own candidate for the next instruction to be fetched, and the latest stage has the h
priority. As a block is prefetched, the branch target address cache (BTAC) and the b
history table (BHT) are searched with the fetch address. If the fetch address is found
BTAC, it is the fetch stage candidate for being the next instruction address (as sho
Section 6.4.4.1.1, “Timing Example—Branch Timing for a BTAC Hit”); otherwise, t
next sequential address is the candidate provided by the fetch stage.

The decode logic may indicate, based on the BHT or an unconditional branch decod
an earlier BTAC prediction was incorrect. The BPU can indicate that a previous br
prediction, either from the BTAC or the decoder was incorrect and it can supply a new
address. In this case, the contents of the instruction buffers are flushed. Exception
within the completion logic may indicate the need to vector to an exception han
address. From these choices the exception has first priority, the branch unit has s
priority, the decode correction of a BTAC prediction has third priority, and the BT
prediction has the final priority for instruction prefetching.

6.2.1.1.2  Decode Stage
The decode stage handles all time-critical instruction decoding for instructions in
instruction buffer. The decode stage contains a four-instruction buffer that shifts one o
pairs of instructions into the dispatch buffer as space becomes available.

On the 604e, the branch correction in the decode stage predicts branches whose t
taken from the CTR or LR. This correction occurs if no CTR or LR updates are pend
This correction, like all other decode stage corrections, is done only on the first
instructions of the decode stage. This correction saves at least one cycle on b
6-8 PowerPC 604e RISC Microprocessor User's Manual



SPR

tions
n be
d from
At the
ed into

fetch,
re said
stage

fully-
-cycle
ctions,
sult.

y come
d of
entry,

rlier
at the

o the
Under
name

ame

ns

s
only
the
correction when themtspr instruction can be separated from the branch that uses the
as a target address.

6.2.1.1.3  Dispatch Stage
The dispatch pipeline stage is responsible for non–time-critical decoding of instruc
supplied by the decode stage and for determining which of the instructions ca
dispatched in the current cycle. Also, the source operands of the instructions are rea
the appropriate register file and dispatched with the instruction to the execute stage.
end of the dispatch stage, the dispatched instructions and their operands are latch
reservation stations or execution unit input latches.

6.2.1.1.4  Execute Stage
As shown in Figure 6-3, after an instruction passes through the common stages of
decode, and dispatch, they are passed to the appropriate execution unit where they a
to be in execute stage. Note that the time that an instruction spends in the execute
varies depending on the execution unit. For example, the floating-point unit has a
pipelined, three-stage execution unit, so most floating-point instructions have a three
execute latency, regardless whether they are single- or double-precision. Some instru
such as integer divides, must repeat some stages in order to calculate the correct re

The execute stage executes the instruction selected in the dispatch stage, which ma
from the reservation stations or from instructions arriving from dispatch. At the en
execute stage, the execution unit writes the results into the appropriate rename buffer
and notifies the complete stage that the instruction has finished execution.

If it is determined that the direction of a branch instruction was mispredicted in an ea
stage, the instructions from the mispredicted path are flushed and fetching resumes
correct address.

If an instruction causes an exception, the execution unit reports the exception t
complete stage and continues executing instructions regardless of the exception.
certain conditions, results can write directly into the register file and bypass the re
registers.

Most instructions that execute in the MCIU can finish execution and complete in the s
cycle. These include the following:

• Integer divide, multiply when OE = 0 (Note that this does not include instructio
that change OV or CA (OE = 1).)

• All mfspr

• All mtspr instructions except when LR/CTR is involved because they are not
serialized

An example of one of these instructions,mulli , is shown in the instruction timing example
in Figure 6-8 through Figure 6-11. An instruction can finish execution and complete
if it is the first instruction to complete. Whether an instruction is able to complete in
Chapter 6.  Instruction Timing 6-9
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same cycle in which it finishes execution is also subject to the normal consideration
affect execution and completion.

For more information about individual execution units, see Section 6.5, “Execution
Timings.”

6.2.1.1.5  Complete Stage
The complete stage maintains the correct architectural machine state. In doing
considers a number of instructions residing in the completion buffer and uses
information about the status of instructions provided by the execute stage.

When instructions are dispatched, they are issued a position in the 16-entry comp
buffer which they hold until they meet the constraints of completion. When an instruc
finishes execution, its status is recorded in its completion buffer entry. The compl
buffer is managed as a first-in, first-out (FIFO) buffer; it examines the entries in the o
in which the instructions were dispatched. The fact that the completion buffer allow
processor to retain the program order ensures that instructions are completed in ord

The status of four entries are examined during each cycle to determine whether the
can be written back, and therefore, as many as four instructions can complete per cl
an instruction causes an exception, the status information in the completion buffer re
this, and this information in the completion buffer is used to generate the exception. In
way the completion buffer is used to ensure a precise exception model. Typic
exceptions are detected in the fetch, decode, or execute stage.

Apart from those restrictions necessary to support a precise exception model, the
imposes the following restrictions per each cycle:

• Completion stops before a store since store data is read directly from GPRs or
• Completion stops after a taken branch instruction to simplify the program cou

logic.

Note that the 604e decouples instruction completion from the actual update (write-ba
the register file; therefore, instructions can complete regardless of how many register
must update, and a few instructions, such as load cache misses can complete bef
result is known. The write-back occurs during the complete stage if the ports and resu
available; otherwise, the write-back is treated as a separate stage, as shown in the
examples in Section 6.4.1, “General Instruction Flow.” This provision allows the proce
to complete instructions, without concern for the number or presence of results. Not
if a read operation misses in the cache, the instruction can complete (as long as it is c
that the instruction can cause no exceptions) even though the result is not available

Rename buffer entries for the FPRs, GPRs, and CR act as temporary buffers for instru
that have not completed and as write-back buffers for those that have.
6-10 PowerPC 604e RISC Microprocessor User's Manual
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Each of the rename buffers has two read ports for write-back, corresponding to th
ports provided for write-back for the GPRs, FPRs, and CR. As many as two result
copied from each write-back buffer to a register per clock cycle.

If the completion logic detects an instruction containing exception status or an instru
that can cause subsequent instructions to be flushed at completion (such asmtspr[xer] ,
instructions that set the summary overflow (SO) bit, and other instructions listed below
following instructions are cancelled, their execution results in the rename buffers
discarded, and fetching resumes at the correct stream of instructions. Other archite
registers, such as CTR, LR, and CR, are updated during this stage. A complete list
affected instructions is as follows:

• mtspr (xer)

• mcrxr

• isync

• Instructions that set the summary overflow, SO, bit

• lswx with 0 bytes to load

• Floating-point arithmetic,frsp, fctiw, andfctiwz instructions that cause an
exception with FPSCR[VE] = 1

• A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE = 1)

6.2.1.1.6  Write-Back Stage
The write-back stage is used to write back any information from the rename buffers
was not written back by the complete stage.

As mentioned in Section 6.2.1.1.5, “Complete Stage,” each of the rename buffers ha
read ports for write-back, corresponding to the two ports provided for write-back for
GPRs, FPRs, and CR. As many as two results are copied from the write-back buffer
register per clock cycle. To compensate for the extra write-back stage, the GPR re
buffer has 12 entries, which reduces the chances for dispatch stalls for application
depend heavily on integer instructions.

6.3  Memory Performance Considerations
Due to the 604e’s instruction throughput of four instructions per clock cycle, lack of
bandwidth can become a performance bottleneck. In order for the 604e to approa
potential performance levels, it must be able to read and write data quickly and efficie
If there are many processors in a system environment, one processor may experienc
memory latencies while another bus master (for example, a direct memory a
controller) is using the external bus.
Chapter 6.  Instruction Timing 6-11
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To reduce this possible contention, the PowerPC architecture provides three me
update modes—write-back, write-through, and cache-inhibit. Each page of memo
specified to be in one of these modes. If a page is in write-back mode, data being sto
that page is written only to the on-chip cache. If a page is in write-through mode, writ
that page update the on-chip cache on hits and always update main memory. If a p
cache-inhibited, data in that page is never stored in the on-chip cache. All three of
modes of operation have advantages and disadvantages. A decision as to which mod
depends on the system environment as well as the application. Although these mod
described in detail in Chapter 3, “Cache and Bus Interface Unit Operation,” Section 6
“Memory Operations,” briefly describes how these modes may affect instruction timi

6.3.1  MMU Overview
The 604e implements separate 128-entry, two-way set-associative TLBs, one ea
instruction and data accesses. The TLBs are managed in hardware and adhere
specifications for segmented page virtual memory provided in the operating environ
architecture (OEA). The block address translation (BAT) registers make it possible to e
manage large contiguous areas of memory (128 Kbyte to 256 Mbyte).

The MMUs also control memory protection as well as the cache functions, such as wh
a block or page is write-back or write-through, is cacheable/noncacheable, is kept coh
or is available for speculative execution.

For more information about the 604e MMU implementation, see Chapter 5, “Mem
Management.”

6.3.2  Cache Overview
The nonblocking data cache, shown in Figure 6-5, provides continuous load or store a
during a cache block reload.
6-12 PowerPC 604e RISC Microprocessor User's Manual
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Figure 6-5. Data Caches and Memory Queues

For a load operation, the cache is accessed first by the LSU and data is forwarded
execution unit and to the rename buffer if the access hits in the cache. Otherwise, th
operation is added to the load queue.

Store operations are added to the store queue after they are successfully translated.
store operation is completed with respect to the execution unit, it is only marke
completed in the queue so instruction processing can continue without having to wa
the actual store operation to take place either in the cache or in system memory. Wh
cache is not busy, one completed store can be written to the cache per cycle. In the c
a cache miss on a store operation, that store information is placed in the store miss
to allow subsequent store operations to continue while the missing cache block is br
in from system memory. The store queue can hold six instructions.

As each load miss completes, the cache is accessed a second time. If it misses ag
instruction is moved to the load miss register while the missing cache block is broug
This allows a second load miss to begin without having to wait for the first one to comp
The load queue can hold as many as four instructions.

Load/Store Unit

Data Cache

Bus Interface

Store Queue Load Queue

Result Buses

Store Miss

Line-Fill Buffer

 Queue
Load Miss

 Queue
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Requests from a mispredicted branch path are selectively removed from the me
queues when the misprediction is corrected, eliminating unnecessary memory access
reducing traffic on the system bus. The 604e also implements the cache block
instructions (dcbt anddcbtst) which allows the processor to schedule bus activity mo
efficiently and increase the likelihood of a cache hit.

The data cache is kept coherent using MESI protocol and maintains a separate p
snooping does not interfere with other bus traffic. Note that coherency is not maintain
the instruction cache. Instructions are provided by the PowerPC architecture to e
coherency in the instruction cache.

Both caches can be disabled, invalidated, or locked by using bits in the HID0 registe
more information, see Section Table 2-3, “. Hardware Implementation-Dependent Re
0 Bit Settings.”

For more information about the 604e cache implementation, see Chapter 3, “Cache an
Interface Unit Operation.”

6.3.3  Bus Interface Overview
The bus interface unit (BIU) on the 604e is compatible with that on the PowerPC 601
603 processors. The BIU supports both tenured and split-transaction modes and can
as many as three outstanding pipelined operations. The BIU can complete one or
write transactions between the address and data tenures of a read transaction. T
provides critical double word first, so the data in the double word requested by
instruction fetcher or LSU is presented to the cache before the other data in the cache
The critical double word is forwarded to the fetcher or to the LSU without having to w
for the entire cache block to be updated.

For more information about the BIU, see Chapter 3, “Cache and Bus Interface
Operation.”

6.3.4  Memory Operations
The 604e provides features that provide flexible and efficient accesses to memory in
single- and multiple-processor systems.

6.3.4.1  Write-Back Mode
When storing data while in write-back mode, store operations for cacheable data d
necessarily cause an external bus cycle to update memory. Instead, memory updat
occur on modified line replacements, cache flushes, or when another processor attem
access a specific address for which there is a corresponding modified cache entry. F
reason, write-back mode may be preferred when external bus bandwidth is a pot
bottleneck—for example, in a multiprocessor environment. Write-back mode is also
suited for data that is closely coupled to a processor, such as local variables.
6-14 PowerPC 604e RISC Microprocessor User's Manual
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If more than one device uses data stored in a page that is in write-back mode, snoopin
be enabled to allow write-back operations and cache invalidations of modified data
604e implements snooping hardware to prevent other devices from accessing invalid
When bus snooping is enabled, the processor monitors the transactions of the other d
For example, if another device accesses a memory location and its memory-cohere
bit is set, and the 604e’s on-chip cache has a modified value for that address, the pro
preempts the bus transaction, and updates memory with the cache data. If the
contents associated with the snooped address are unmodified, the 604e invalidates th
block. The other device is then free to attempt an access to the updated memory ad
See Chapter 3, “Cache and Bus Interface Unit Operation,” for complete information a
bus snooping.

Write-back mode provides complete cache/memory coherency as well as maxim
available external bus bandwidth.

6.3.4.2  Write-Through Mode
Store operations to memory in write-through mode always update memory as well a
on-chip cache (on cache hits). Write-through mode is used when the data in the cach
always agree with external memory (for example, video memory), or when there is sh
(global) data that may be used frequently, or when allocation of a cache block on a
miss is undesirable. Cached data is not automatically written back if that data is fr
memory page marked as write-through mode since valid cache data always agree
memory.

Stores to memory that are in write-through mode may cause a decrease in perform
Each time a store is performed to memory in write-through mode, the bus remains bu
the extra clock cycles required to update memory; therefore, load operations that mi
cache must wait until the external store operation completes.

6.3.4.3  Cache-Inhibited Mode
If a memory page is specified to be cache-inhibited, data from this page is not cache

Areas of the memory map can be cache-inhibited by the operating system software
cache-inhibited access hits in the on-chip cache, the corresponding cache blo
invalidated. If the line is marked as modified, it is written back to memory before be
invalidated.

In summary, the write-back mode allows both load and store operations to use the on
cache. The write-through mode allows load operations to use the on-chip cache, bu
operations cause a memory access and a cache update if the data is already in the
Lastly, the cache-inhibited mode causes memory access for both loads and stores.
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6.4  Timing Considerations
A superscalar machine is one that can issue multiple instructions concurrently fr
conventional linear instruction stream. The 604e is a true superscalar implementation
PowerPC architecture since a maximum of four instructions can be issued to the exe
units during each clock cycle. Although a superscalar implementation complic
instruction timing, these complications are transparent to the functionality of softw
While the 604e appears to the programmer to execute instructions in sequential ord
604e provides increased performance by executing multiple instructions at a time, a
using hardware to manage dependencies.

When an instruction is issued, the register file places the appropriate source data
appropriate source bus. The corresponding execution unit then reads the data from t
The register files and source buses have sufficient bandwidth to allow the dispatch
four instructions per clock. If an operand is unavailable, the instruction is kept
reservation station until the operand becomes available.

The 604e contains the following execution units that operate independently and in pa

• Branch processing unit (BPU)
• Condition register unit (CRU)
• Two 32-bit single-cycle integer units (SCIU)
• One 32-bit multiple-cycle integer units (MCIU)
• 64-bit floating-point unit (FPU)
• Load/store unit (LSU)

As shown in Figure 6-1, the BPU directs the program flow with the aid of a dynamic bra
prediction mechanism. The instruction unit determines to which of the six other exec
units an instruction is dispatched.

6.4.1  General Instruction Flow
When the IU or FPU finishes executing an instruction, it places the resulting data, if
into one of the GPR, FPR, or condition register rename registers. The results are then
into the correct register file during the write-back stage. If a subsequent instructi
waiting for this data, it is forwarded from the result buses, directly into the appropr
execution unit for the immediate execution of the waiting instruction. This allows a d
dependent instruction to be executed without waiting for the data to be written into
register file and then read back out again. This feature, known as feed forwar
significantly shortens the time the machine may stall on data dependencies.
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As many as four instructions are fetched from the instruction cache per cycle and plac
the decode buffer. After they are decoded, instructions advance to the dispatch buff
space becomes available. The 604e tries to keep the IQ full at all times. Although
instructions can be brought in from the on-chip cache in a single clock cycle, if there
two-instruction vacancy in the IQ, two instructions can be fetched from the cache to fi
If while filling the IQ, the request for new instructions misses in the on-chip cac
arbitration for a memory access begins. Whenever a pair of positions opens in the q
the next two instructions are shifted in.

6.4.2  Instruction Fetch Timing
The timing of the instruction fetch mechanism on the 604e depends heavily on the st
the on-chip cache. The speed with which the required instructions are returned t
fetcher depends on whether the instruction being asked for is in the on-chip cache (
hit) or whether a memory transaction is required to bring the data into the cache (c
miss).

6.4.2.1  Cache Hit Timing Example
Assuming that the instruction fetcher is not blocked from the cache by a cache re
operation and the instructions it needs are in the on-chip cache (a cache hit has occ
there will only be one clock cycle between the time that the instruction fetcher reques
instructions and the time that the instructions enter the IQ. As previously sta
instructions are fetched in pairs from a single cache block, so usually four instruction
simultaneously fetched from the on-chip cache and loaded into the IQ. If the fetch ad
points to the last two instructions in the instruction cache block, as is the case in Figur
only two instructions can be fetched into the IQ.

Figure 6-6 shows the timing for the following simple code sequence for instructions
use the SCIUs and the FPU:

and
or
fadd
fsub
addc
subfc
fmadd
fmsub
xor
neg
fadds
fsubs
add
subf
Chapter 6.  Instruction Timing 6-17
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Figure 6-6. Instruction Timing—Cache Hit

The instruction timing for this example is described cycle-by-cycle as follows:

0. Two integer instructions (and andor) and two floating-point instructions (fadd and
fsub) are fetched in cycle 0. These were fetched from the second double-word
boundary in the instruction cache, so only two instructions can be fetched in the
clock cycle.

1. In cycle 1, the last two instructions in the cache block (addcandsubfc) are fetched,
while instructions 0–3 pass into the decode stage.

2. In cycle 2, the two integer add instructions (0 and 1) are dispatched, one to ea
the SCIUs. Thefadd instruction (2) is dispatched to the FPU. Thefsub instruction
cannot be dispatched, so is held in the dispatch stage until the next cycle.
Instructions 4 and 5 are in the decode stage.

Instructions 6–9 are fetched from a new cache block. Note that this is the typi
and the most efficient, alignment for instructions fetching, allowing all eight
instruction in the cache block to be fetched in two cycles (four instructions per
cycle).

1 2 3 4 5 6 7 80

Decode

Dispatch

Execute

0 and

3 fsub

•••

9

Fetch

4 addc

6 fmadd

5 subfc

7 fmsub

10

8 xor

9 neg

10 fadds

11 fsubs

12 add

13 subf

11

Complete

Write-Back

1 or

2 fadd
6-18 PowerPC 604e RISC Microprocessor User's Manual



o

ons

ck.

tage,

ack

rder
ge
s

and
 and
l the

is

py

ain

ffer
of
ions
3. The following occurs in cycle 3:
— The first two integer instructions (andandor) enter the execute stages of the tw

SCIUs. The two integer instructions decoded in cycle 2 (addc andsubfc) are
dispatched without delay to the two SCIUs. The next pair of integer instructi
(xor andneg) is in decode stage and the final pair of integer instructions (add
andsubf) is fetched from the second quad word in the instruction cache blo

— Thefadd instruction enters execute stage in the FPU, vacating the dispatch s
allowing thefsub instruction to dispatch. Thefmadd andfmsub instructions are
in decode stage, and the final pair of floating-point instructions (faddsandfsubs)
is fetched.

4. The following occurs in cycle 4:
— In the SCIUs, the first two integer instructions complete execution and write b

their results, and the second pair of integer instructions (addcandsubfc) enters
execute stage. The next pair of integer instructions (xor andneg) is held in the
dispatch stage because thefmsub instruction cannot dispatch.

— Thefadd instruction is in the second of the three execute stages andfsub is in
the first. Thefmadd instruction (6) is in the dispatch stage, which forcesfmsub
to remain in the dispatch stage, similar to the situation in cycle 1 when two
floating-point instructions were ready for dispatch. Note that because of in-o
dispatch, the integer instructions (8 and 9) are also held in the dispatch sta
behind thefmsub instruction. The final pair of floating-point instructions enter
decode stage.

5. The following occurs in cycle 5:
— The first two integer instructions have completed, written back their results,

vacated the pipeline. The second pair of integer instructions has executed
vacated the execution stages, but must remain in the completion buffer unti
previous floating-point instructions can complete. The third pair of integer
instructions is allowed to dispatch, and the final pair of integer instructions 
held in the decode stage behind the previous floating-point instructions
(10 and 11).

— In the FPU,fadd is in the final execute stage,fsub is in the second stage,fmadd
is in the first, andfmsub is allowed to dispatch. Because instructions 7–9 occu
the two available positions for instruction pairs in the dispatch unit,faddsand
fsubsare held in decode, again, forcing subsequent integer instructions to rem
in decode.

6. The following occurs in cycle 6:
— The second pair of integer instructions (4 and 5) remains in the completion bu

waiting for the previous floating-point instructions to complete. The third pair
integer instructions is in execute stage, and the final pair of integer instruct
is held in the dispatch stage behind thefsubs instruction.
Chapter 6.  Instruction Timing 6-19
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— In the FPU,fadd is in the complete and write-back stages,fsub is in the final
execute stage,fmadd is in the second stage, andfmsub is in the first. Thefadds
instruction is in dispatch, causing the final floating-point instruction,fsubs, to
stall in dispatch.

7. The following occurs in cycle 7:
— Integer instructions 4 and 5 are allowed to complete and writeback becaus

previousfsub instruction completes. However, the next pair of integer
instructions (8 and 9) must wait in the complete stage untilfmadd andfmsub
can complete. Theadd andsubf instructions are in the dispatch stage along wi
the previousfsubs instruction.

— Thefsub instruction completes, allowing integer instructions 4 and 5 to
complete. Floating-point instructions continue to move through the floating
point pipeline withfmadd in the final execute stage,fmsub in the second stage,
andfadds in the first. The final floating-point instruction,fsubs, is allowed to
dispatch.

8. The following occurs in cycle 8:
— Integer instructions 8 and 9 continue to wait in the complete stage untilfmsub

can complete. Theadd andsubf instructions move into execute stage along wi
the previousfsubs instruction, which is in the first stage of execute.

— Thefmadd instruction completes and writes back and the subsequent float
point instructions each move to the next stage in the floating-point pipeline

9. The following occurs in cycle 9:
— Integer instructions 8 and 9 are allowed to complete with thefmsub instruction.

However, the final pair of integer instructions (12 and 13) must wait in the
complete stage untilfaddsandfsubscan complete and write back.

— Thefmsub instruction completes and writes back and the subsequent float
point instructions each move to the next stage in the floating-point pipeline

10.The following occurs in cycle 10:
— The two remaining integer instructions remain in the complete stage until t

fsubs instruction completes.

— Thefadds instruction completes and writes back and the remaining floating
point instruction,fsubs, is in the last execute stage in the floating-point pipelin

11. In cycle 11 all remaining instructions complete.

Note that the double-precision floating-point add instructions each has a latency of
cycles (assuming no register dependencies) but can be fully pipelined and achi
throughput of one floating-point instruction per clock cycle.
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6.4.2.2  Cache Miss Timing Example
Figure 6-7 illustrates the timing for a cache miss using the following code sequence

add
fadd
add
fadd
br
add
fsub
add
fsub
add
fadd

Note that this example assumes a best-case scenario.

Figure 6-7. Instruction Timing—Instruction Cache Miss (BTAC Hit)

1 2 3 4 5 6 7 80

0 add

2 add

1 fadd

3 fadd

•••

9

4 br

5 add

6 fsub

7 add

Address

10 11

9 add

12 13 14 15 16

Decode

Dispatch

ExecuteFetch

Complete

Write-Back 10 fsub
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The instruction timing for this example is described cycle-by-cycle as follows:

0. In cycle 0, the first pair ofadd andfadd instructions is fetched.

1. In cycle 1, the second pair ofadd andfadd instructions is fetched as the first pair is
decoded.

2. In cycle 2, the first pair ofadd andfadd instructions is dispatched, the second pa
is decoded and thebr  instruction is fetched.

3. In cycle 3, the first pair ofadd andfadd instructions is in execute, the second pa
is in dispatch stage, and thebr instruction is in decode. By this time the target
instruction,add (5) was not found in the instruction cache and arbitration for the li
fill has begun.

4. In cycle 4, the firstadd instruction completes and writes back, the firstfadd
instruction is in the second execute stage, and the second pair ofadd/fadd
instructions enter execute stage. Thebr instruction is in dispatch stage and
arbitration continues for the line fill. The target instruction,add (5), andfsub remain
in the fetch state.

5. In cycle 5,fadd (1) is in the final execute stage in the floating-point pipeline, whi
prevents the subsequentadd instruction from completing and writing back. The
secondfadd instruction is in the second cycle of the floating-point execute stage
thebr instruction is in execute stage. During this cycle, the address for the tar
instruction is on the address bus and access has been granted for the data bu

6. In cycle 6,fadd (1) completes and writes back, allowing theadd (2) instruction to
complete and write back. Thefadd (3) instruction is in the final execute stage an
thebr instruction is in complete stage. The first beat of the four-beat burst (wh
contains the critical double word) is sent over the data bus.

7. In cycle 7,fadd (3) completes and writes back, allowing thebr instruction to
complete. The second beat of the burst transfer begins on the data bus.

8. In cycle 8, the two instructions in the critical double word transferred in cycles 6
7 (add (5) andfsub (6)) are placed in the instruction queue. All previous instructio
have vacated the completion buffer.

9. In cycle 9,add (5) andfsub (6) are in decode stage and the pair of instructions
loaded in the second beat of the data burst (add (7) andfsub (8)) are fetched. Note
that although there is room in the instruction queue for as many as four instructi
only instructions 7 and 8 are available.

10. In cycle 10, instructions 5 and 6 are in dispatch stage, instructions 7 and 8 ar
decode stage, and the third pair of instructions are fetched. The fourth pair of
instructions are sent in the fourth and final beat of the four-beat data burst.

11. In the remaining clock cycles, the instructions shown complete processing simi
to instructions 0–3. Note again that although the integer instructionsadd (7) andadd
(9) complete, they cannot write back until the previous floating-point instructio
fsub (6) andfsub (8) write back.
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6.4.3  Cache Arbitration
When a cache miss occurs, a line-fill operation is initiated to update the appropriate
block. When the double word containing the data at the specified address (the c
double word) is available, it is forwarded to the cache and made available to other reso
on the 604e. Likewise, subsequent double words are also forwarded as they rea
memory unit.

Fetches to different lines can hit in the cache during the line-fill operation; however
miss occurs before the cache block has been updated, the line-fill operation must com
before the line-fill operation caused by the subsequent miss can begin.

For more information about the cache implementation in the 604e, see Chapter 3, “C
and Bus Interface Unit Operation.”

6.4.4  Branch Prediction
The 604e implements several features to reduce the latencies caused by handling
instructions. In particular, it provides a means of dynamic branch prediction. Th
especially critical for the 604e to take fullest advantage of the possibilities of incre
throughput made available from its pipelined and highly parallel organization. Dyna
branch prediction is implemented in the fetch, decode, and dispatch stages, as descr
the following:

In the fetch stage, the fetch address is used to access the branch target addres
(BTAC), which contains the target address of previously executed branch instruction
are predicted to be taken. The 64-entry BTAC is fully associative to provide a high
percentage. If a fetch address is in the BTAC, the target address is used in the next c
fetch the instructions from the predicted path. If the address is not present, sequ
instruction flow is assumed and the appropriate sequential address is generated base
number of instructions added to the decode buffer. The fetch address, rather than th
branch address, is sufficient to access the BTAC, since a BTAC entry contains the
predicted taken branch beyond the current fetch address.

In the decode and dispatch stages, the first branch instruction is identified and its ou
is predicted. For an unconditional branch instruction, the instruction prefetch is redire
to the target address if this branch was predicted as not taken by a previous
Conditional instructions whose direction depends on the value in the CTR are pred
based on that value. If the prediction differs from the current branch prediction, the pre
is redirected.

Note that the 604e has modified branch correction in the decode stage to predict bra
whose target is taken from the CTR or LR. This correction occurs if no CTR or LR upd
are pending. This correction, like all other decode stage corrections, is done only on th
two instructions of the decode stage. This correction saves at least one cycle on b
correction when themtspr instruction can be separated from the branch that uses the
as a target address.
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For conditional branch instructions that depend only on a bit in the CR, the BHT is use
the prediction. The BHT is a 512-entry, direct-mapped cache with 2 bits that can ind
four prediction states—strongly taken, taken, not-taken, and strongly not-taken. The
is updated each time a conditional branch instruction that depends on a bit in the con
register is executed. For example, a BHT entry that predicts “taken” is updated to “stro
taken” after the branch is taken or is updated to “not-taken” if the next branch is not-ta
Note that clearing HID0[29] disables the use of the branch history table.

6.4.4.1  Branch Timing Examples
This section shows how the timing of a branch is affected depending upon whethe
branch hits in the BTAC, or whether correction is required in one of the stages.
following examples use the following code sequence:

and
ld
add
bc
or
cmp
ld
mulli

6.4.4.1.1 Timing Example—Branch Timing for a BTAC Hit
Figure 6-8 shows the timing for a branch instruction that had a BTAC hit.

Figure 6-8. Instruction Timing—Branch with BTAC Hit

1 2 3 4 5 6 70
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•••
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The timing for this example is described, cycle-by-cycle, as follows:

0. In clock cycle 0, instructions 0–3 are fetched. The target instruction of thebc
instruction is found in the BTAC.

1. In cycle 1, instructions 0–3 are decoded and instructions 4–7, using the addre
the BTAC, are fetched.

2. In cycle 2, instructions 0–3 are dispatched and instructions 4–7 are decoded.

3. In cycle 3, instructions 0–3 are in the execute stage and instructions 4–7 are 
dispatch stage.

4. In cycle 4, instructions 0, 2, and 3 are in the complete stage, but only instruct
is allowed to complete and write back because theld instruction (1) is still in the
execute stage of the LSU pipeline. Instructions 2and 3 wait in the complete st
Instructions 4–7 all enter the execute stage.

5. In cycle 5, theld (1) instruction is able to complete and write back, allowing theadd
instruction to write back and vacate the pipeline in the next cycle. Thebr instruction
also completes. Because the branch is taken, theor (4) instruction, which could
otherwise write back in this cycle, stays in the complete stage and completes
writes back in the next cycle. Thecmp (5) instruction also enters the complete stag
ld (6) andmulli  (7) enter the second stages of the LSU and MCIU pipelines,
respectively.

6. In cycle 6, instructions 4–6 complete and write back their results. Themulli
instruction, which is one of the instructions that can complete and write back du
its final cycle in the execute stage, occupies the execute and complete stages
cannot write back because both GPR write-back ports are occupied by theor andld
instructions.

7. Themulli  instruction writes back its results.

6.4.4.1.2 Timing Example—Branch with BTAC Miss/Decode Correction
In the example shown in Figure 6-9, the branch target address is not found in the B
during the fetch cycle of thebc instruction, as was the case in Figure 6-8. This one-cy
delay causes the second group of instructions to be executed one cycle later than if t
a BTAC hit.
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Figure 6-9. Instruction Timing—Branch with BTAC Miss/Decode Correction

A cycle-by-cycle description of this example is as follows:

0. In cycle 1, instructions 0 and 1 are in decode stage, but instructions 2–5 cann
fetched because of a miss in the BTAC.

1. In cycle 2, instructions 0 and 1 are dispatched and instructions 2–5 are locate
fetched.

2. In cycle 3, instructions 0 and 1 are in the execute stage and instructions 2–5 
the decode stage, and the instruction timing proceeds as normal.

3. In cycle 5, theld (1) instruction is able to write back, allowing the followingadd
instruction (which completed in the previous cycle) to write back and vacate th
pipeline in the next cycle. Instructions 4–7 are in the execute stage.

4. In cycle 6, theor andcmp (5) instructions complete and write back;ld (6) andmulli
(7) enter the second stages of the LSU and MCIU execute pipelines, respecti

5. In cycle 7, theld (6) instruction completes and writes back its results. Themulli
instruction finishes executing, completes, and writes back its results. Note tha
mulli instruction is able to complete in the same cycle as theld instruction because,
unlike in the previous example, the two GPR write-back ports are available.
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6.4.4.1.3 Timing Example—Branch with BTAC Miss/Dispatch Correction
Figure 6-10 uses the same code sequence as the example shown in Figure 6-8, and
the timing when the BTAC miss is corrected in the dispatch stage. The timing in
example is identical to that in Figure 6-9, except that the timings for instructions 4–7
shifted over by one cycle.

Figure 6-10. Instruction Timing—Branch with BTAC Miss/Dispatch Correction

6.4.4.1.4 Timing Example—Branch with BTAC Miss/Execute Correction
Figure 6-11 uses the same code sequence as the previous examples, and shows th
when the BTAC miss is corrected in the execute stage. The timing in this examp
identical to that in Figure 6-9, except that the timings for instructions 4–7 are shifted
by two cycles (and over one cycle when compared to the timing when correction is pro
in the dispatch stage, as shown in Figure 6-10).
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Figure 6-11. Instruction Timing—Branch with BTAC Miss/Execute Correction

6.4.5  Speculative Execution
To take fullest advantage of pipelining and parallelism, the 604e speculatively exe
instructions along a predicted path until the branch is resolved. The 604e can han
many as four dispatched, uncompleted branch instructions (with four more in
instruction queue) and can execute instructions from the predicted path of two unres
branch instructions. The results of speculatively executed instructions (the predicted
are kept in temporary locations, such as rename buffers, the completion buffer, and v
shadow registers. Architecturally defined resources are updated only after a bran
resolved.

To record the predicted state, the 604e uses many of the same resources (primar
rename buffers and completion buffer) and logic as the mechanism used to main
precise exception model, as is common among superscalar implementations. The
design avoids the performance degradation that may come from such a design d
speculative execution of longer latency instructions, by implementing additional log
record the predicted state whenever a predicted branch instruction is dispatched
allows the state to be quickly recovered when the branch prediction is incorrect.
recording of these predicted states makes it possible to identify and selectively re
instructions from the mispredicted path.

A shadow register is used with the CTR and LR to accelerate instructions that access
registers. Shadow registers are updated and the old value is saved whenever a
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instruction is dispatched, even if it is from a predicted path for a branch that has not yet
resolved. If the prediction is correct, there is no penalty. If the prediction is incorr
shadow registers are restored from the saved values so instructions fetched from the
path can be dispatched and executed. When the branch instruction completes, arch
registers are updated.

6.4.6  Instruction Dispatch and Completion Considerations
The 604e’s ability to dispatch instructions at a peak rate of four per cycle is affecte
availability of such resources as execution units, destination rename registers
completion buffer entries. To avoid dispatch unit stalls due to instruction d
dependencies, each execution unit has two reservation stations. If a data dependenc
prevent an instruction from beginning execution, that instruction is dispatched to
reservation station associated with its execution unit, clearing the dispatch unit. Whe
data that the operation depends upon is returned via a cache access or as a res
previous operation, execution begins during the cycle after the rename register is up
If the second instruction in the dispatch unit requires the same execution unit,
instruction is not dispatched until the first instruction completes execution.

Instructions are dispatched to reservation stations in order, but from the perspective
overall program flow, instructions can execute out of order. The following aspects o
604e’s support for out-of-order execution should be noted:

• The BPU, CRU, FPU, and LSU each have two-entry in-order reservation stati
These stations allow instructions to clear the dispatch stage even though ope
may not yet be available for execution to occur. The BPU, CRU, FPU, and LS
instructions may execute out of order with respect to one another and to othe
execution units, but the BPU, CRU, FPU, and LSU instructions pass through 
respective reservation stations and pipelines in program order.

The 604e-specific condition register unit (CRU) executes all condition register
logical and flow control instructions. Because the CRU shares the dispatch bus
the BPU, only one condition register or branch instruction can be issued per c
cycle. In the 604e, the CR logical unit operations are handled by the BPU. Th
addition of the CRU allows branch instructions to potentially execute/resolve be
a preceding CR logical instruction. Although one CR logical or branch instruct
can be dispatched per clock cycle, both branch and CR logical instructions ca
execute simultaneously. Branches are still executed in order with respect to o
branch instructions. If either the CR logical reservation station or the branch
reservation station is full then no instructions can be dispatched to either unit.

• Each integer unit has a two-entry out-of-order reservation station which allows
integer instructions to execute out-of-order within each execution as well as w
respect to instructions in other execution units.

The completion unit can track instructions from dispatch through execution and ensur
they are completed in program order. In-order completion ensures the correct archite
Chapter 6.  Instruction Timing 6-29
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state when the 604e must recover from a mispredicted branch, or any other except
interrupt.

The rate of instruction completion is unaffected by the 604e’s ability to write the instruc
results from the rename registers to the architecturally defined registers whe
instruction is retired. The 604e can perform two write-back operations from each o
rename registers to the register files (CR, GPRs, and FPRs) each clock cycle.

Due to the 604e’s out-of-order execution capability, the in-order completion of instruct
by the completion unit provides a precise exception mechanism. All program-re
exceptions are signaled when the instruction causing the exception has reached t
position in the completion buffer. All prior instructions are allowed to complete and w
back before the exception is taken.

6.4.6.1  Rename Register Operation
To avoid contention for a given register file location in the course of out-of-order execu
the 604e provides rename registers for the storage of instruction results prior to
commitment (in program order) to the architecturally defined register by the comple
unit. Register renaming minimizes architectural resource dependencies, namely the
and antidependencies, that would otherwise limit opportunities for out-of-order execu
Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight f
condition register.

A GPR rename buffer entry is allocated when an instruction that modifies a GP
dispatched. This entry is marked as allocated but not valid. When the instruction exe
it writes its result to the entry and sets the valid bit. When the instruction complete
result is copied from the rename buffer entry to the GPR and the entry is freed
reallocation. For load with update instructions that modify two GPRs, one for load data
another for address, two rename buffer entries are allocated.

The rename register for the GPRs is shown in Figure 6-12.
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Figure 6-12. GPR Rename Register

When an integer instruction is dispatched, its source operands are searched simultan
from the GPR file and its rename buffer. If a value is found in the rename buffer, that v
is used; otherwise, the value is read from the GPR. However, the rename buffer entr
not yet be valid if the instruction that updates the GPR has not yet executed. In this
the instruction is dispatched with the rename buffer entry identifier in place of the ope
which will be supplied by the reservation station when the result is produced. The GP
and its rename buffer have eight read ports for source operands to support dispatch
four integer instructions each cycle.

The FPR file has 32 registers of 64 bits wide and an eight-entry rename buffer. The FP
and its rename buffer have three read ports for three source operands, which allo
floating-point instruction to be dispatched per cycle.

GPR Operand Bus (8)

2:1 MUX (8)

SCIU1

SCIU 2

MCIU 3

LSU

32 bit x 8

32

Rename Buffers

8 x 5

32

GPR

8 x 5

Eight Source Operand Register Numbers
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The 604e treats each of the 4-bit fields in the condition register as a register and a
register renaming for each with an eight-entry rename buffer.

Along with the reorder buffer, the rename buffers provide the basis of the precise exce
mechanism, because the 604e’s architectural state represents, at all times, the re
instructions completed in program order. Precise exceptions greatly simplify the exce
model by allowing the appearance of serialized execution.

6.4.6.2  Execution Unit Considerations
As previously noted, the 604e is capable of dispatching and retiring four instruction
clock cycle. One of the factors affecting the peak dispatch rate is the availabilit
execution units on each clock cycle.

For an instruction to be issued, the required reservation station must be available
dispatcher monitors the availability of all execution units and suspends instruction dis
if the required reservation station is not available. An execution unit may not be avai
if it can accept and execute only one instruction per cycle, or if an execution unit’s pip
becomes full. This situation may occur if instruction execution takes more clock cycles
the number of pipeline stages in the unit, and additional instructions are issued to tha
to fill the remaining pipeline stages.

6.4.7  Instruction Serialization
Some instructions, such asmfspr and mostmtspr instructions, extended arithmeti
instructions that require the carry bit, and condition register instructions, req
serialization to execute correctly. For this reason, the 604e implements a si
serialization mechanism that allows such instructions to be dispatched properly but d
execution until they can be executed safely. When all previous instructions have comp
and updated their results to the architectural states, the serialized instruction is execu
directly reading and updated in the architectural states. If the instruction target is a
FPR, or the CR, the register is renamed to allow later nondependent instructions to ex

Store instructions are dispatched to the LSU where they are translated and check
exception conditions. If no exception conditions are present, the instruction is passed
store queue where it waits for all previous instructions to complete before it ca
completed. Direct-storage accesses are handled in the same way to ensure that exc
are precise.

The performance is not degraded since instructions following a serializing instructio
dispatched and executed usually before the serializing instruction is executed.
serialized instruction can complete per clock cycle.

The following sections describe the serialization modes.
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6.4.7.1  Dispatch Serialization Mode
Dispatch serialization occurs when anmtspr instruction that accesses either the counter
link or a mtcrf instruction that accesses multiple bits is dispatched to the MCIU. In th
instances, an interlock is set so that no other such instructions or branch unit instru
(branch and CR logical) can dispatch until the original instruction executes and clea
interlock. The interlock is cleared when the instruction that sets the interlock fini
executing. On the next cycle the instruction that is waiting can dispatch.

6.4.7.2  Execution Serialization Mode
The occurrence of an execution serialization instruction has no effect on the dispat
and execution of any following instructions. The only difference between an execu
serialization instruction and a nonserialization instruction is that the execution serializ
instruction cannot be executed until it is the oldest uncompleted instruction in the proce
In other words, the instruction is dispatched into a reservation station, but cann
executed until the completion block informs the execution unit to execute the instruc
This means it is guaranteed to wait at least one cycle before it can execute.

Instructions causing execution serialization include the following:

• Condition register logical operations (crand, crandc, creqv, crnand, crnor, cror,
crorc, crxor, andmcrf )

• mfspr andmfmsr

• mtspr (except count and link registers) andmtmsr

• Instructions that use the carry bit (adde, addeo, subfe, subfeo, addme, addmeo,
subfme, subfmeo, addze, addzeo, subfze, andsubfzeo)

6.4.7.3  Postdispatch Serialization Mode
Postdispatch serialization occurs when the serializing instruction is being completed
instructions following the postdispatch serialized instruction are flushed, refetched, an
executed. Instructions causing postdispatch serialization include the following:

• mtspr (xer)

• mcrxr

• isync

• Instructions that set the summary overflow, SO, bit

• lswx with 0 bytes to load

• Floating-point arithmetic,frsp, fctiw, andfctiwz instructions that cause an
exception with FPSCR[VE] = 1

• Floating-point instructions with the Rc (record bit) set

• FPSCR instructions—mtfsb0, mtfsb1, mtfsfi, mffs, mtfsf, andmcrfs

• A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE = 1)
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6.4.7.4  Serialization of String/Multiple Instructions
Serialization is required for all load/store multiple/string instructions. These instruct
are broken into a sequence of register-aligned operations. The first operation is disp
along with any preceding instructions in the dispatch buffer. Subsequent operation
dispatched one-word-per-cycle until the operation is finished. String/multiple instruc
remain in the dispatch buffer for at least two cycles even if they only require a single-w
aligned memory operation.

Instructions causing string/multiple serialization includelmw, stmw, lswi, lswx, stswi, and
stswx.

6.4.7.5  Serialization of Input/Output
In this serialization mode, all noncacheable loads are performed in order with respect
eieio instruction.

6.5  Execution Unit Timings
The following sections describe instruction timing considerations within each of
respective execution units in the 604e. Refer to Table 6-2 for branch instruction exec
timing.

6.5.1  Branch Unit Instruction Timings
The 604e can have two unresolved branches in the branch reservation station an
resolved branches that have not yet completed. The branch unit serves to validate
predictions made in earlier stages. It also verifies that the predicted target match
actual target address. If a misprediction is detected, it redirects the fetch to the c
address and starts the branch misprediction recovery.

The branch execution unit also executes condition register logical instructions, whic
PowerPC architecture provides for calculating complex branch conditions. O
architectures that lack such instructions would need to use a series of branch instruct
resolve complex branching conditions. All execution units can update the CR fields
only the branch and CR logical operations use CR fields as source operands.

6.5.2  Integer Unit Instruction Timings
The two SCIUs and the MCIU execute all integer and bit-field instructions, and are sh
in Figure 6-13 and Figure 6-14, respectively.

The SCIUs consist of three one-cycle subunits:

• A fast adder/comparator subunit
• A logic subunit
• A rotator/shifter/count-leading zero subunit
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These subunits handle all of the one-cycle arithmetic instructions. Only one subunit in
SCIU can obtain and execute an instruction at a time.

Figure 6-13. SCIU Block Diagram

The MCIU, which handles all integer multiple-cycle integer instructions, consists of a
bit integer multiplier/divider subunit. The multiplier supports early exit on 32 x 16-
operations. In addition the MCIU executes allmfspr andmtspr instructions.

Instruction Dispatch Buses

GPR Operand Buses

Result Buses

Rotate/Shift/
LogicCTLZ

C
ontrol Logic

Reservation Station

3:1 MUX

Adder /
Comparator
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Figure 6-14. MCIU Block Diagram

Most instructions that execute in the MCIU can finish execution and complete in the s
cycle. These include the following:

• Integer divide, multiply when OE = 0
• All mfspr instructions
• All mtspr instructions except when LR/CTR is involved

Note that all instructions that execute in the MCIU can complete during the same cyc
which they finish executing except for the following:

• Instruction that changes OV or CA (OE = 1)
• The move to CTR/LR instructions cannot because they are not execution-seria

6.5.3  Floating-Point Unit Instruction Timings
The floating-point unit on the 604e executes all floating-point instructions. Executio
most floating-point instructions is pipelined within the FPU, allowing up to th
instructions to be executing in the FPU concurrently. While most floating-point instruct
execute with three-cycle latency and one-cycle throughput, three instructions (fdivs, fdiv,
andfres) execute with latencies of 18 to 33 cycles. Thefdivs, fdiv, fres, mtfsb0, mtfsb1,
mtfsfi, mffs, andmtfsf instructions block the floating-point pipeline until they comple
execution and thereby inhibit the execution of additional floating-point instructions. W
the exception of themcrfs instruction, all floating-point instructions immediately forwar

Instruction Dispatch Buses

GPR Operand Buses

Result Buses

Multiplier /
Divider

Reservation Station

SPR

C
ontrol Logic
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their CR results to the CRU for fast branch resolution without waiting for the instructio
be retired by the completion unit and the CR to be updated. Refer to Table 6-2 for floa
point instruction execution timing.

As shown in Figure 6-15, The FPU on the 604e is a single-pass, double-precision unit
means that both single- and double-precision floating-point operations require
pass/one-cycle throughput with a latency of three cycles. This hardware implemen
supports the IEEE 754-1985 standard for floating-point arithmetic, including suppor
the NaNs and denormalized data types.

Instructions are obtained from the instruction dispatcher and placed in the reserv
station queue. The operand sources are the FPR, the floating-point rename buffers,
result buses. The result of an FPU operation is written to the floating-point rename bu
and to the reservation stations. Instructions are executed from the reservation station
in the order they were originally dispatched.

Figure 6-15. FPU Block Diagram

Floating-Point Multiply

Floating-Point Pipeline Add

Add Pre-Alignment

Normalize/Round/Write-Back

Instruction Dispatch Bus
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6.5.4  Load/Store Unit Instruction Timings
The execution of most load and store instructions is pipelined. The LSU has two pip
stages; the first stage is for effective address calculation, and MMU translation, an
second stage is for accessing the data in the cache. Load instructions have a two
latency and one-cycle throughput, and store instructions have a two-cycle latenc
single-cycle throughput.

The primary function of the LSU is to transfer data between the data cache and the
bus, which routes data to the other execution units. The LSU supports the ad
generation and all the data alignment to and from the data cache. As shown in Tabl
the LSU also executes special instructions such as string transfers and cache contr

To improve execution performance, the LSU allows a load operation to be executed
of pending store operations. All data dependencies introduced by this out-of-o
execution are resolved by the LSU. These dependencies arise when, in the instr
stream, a store is followed by a load from the same address. If the load instructi
speculatively executed before the store has modified the cache, incorrect data is load
the rename registers. If the low-order 12 bits of the effective addresses are equal, th
effective addresses may be aliases for the same physical address, in which case t
instruction waits until the store data is written back to the cache, guaranteeing that th
operation retrieves the correct data.

The LSU provides hardware support for denormalization of floating-point numbers. W
the 604e, all floating-point numbers are represented as double-precision num
Denormalization can occur during a store floating-point single instruction, when
double-precision number is converted to a single-precision number.

A block diagram of the load/store unit is shown in Figure 6-16. The unit is compose
reservation stations, an address calculation block, data alignment blocks, load queue
store queues.
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Figure 6-16. LSU Block Diagram

The reservation stations are used as temporary storage of dispatched instruction
cannot be executed until all of the instruction operands are valid. The address calcu
block includes a 32-bit adder that computes the effective address for all operations
data alignment blocks manage the necessary byte manipulations to support align
unaligned data transfers to and from the data cache. The load and store queues are u
temporary storage of instructions for which the effective addresses have been translat
are waiting to be completed by the sequencer unit.

MMU/Cache Interface

Store Align

EA

Reservation
Station

Instruction Flow and Result Bus

Address

Data

 Calculation

Load
Queue

Floating-Point
Convert

Load
Align

Complete
Store

Queue

Finish
Store

Queue

FP Convert
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Figure 6-17 shows the structure of the store queue. There are four regions that ident
state of the store instructions.

Figure 6-17. Store Queue Structure

When a store instruction finishes execution, it is placed in the finished state. When
completed, the finish pointer advances to place it in the completed state. When the
data is committed to memory, the completion pointer advances to place it in the comm
state. If the store operation hits in the cache, the commit pointer advances to effec
remove the instruction from the queue. Otherwise, the commit pointer does not ad
until the cache block is reloaded and the store operation can occur. During this tim
next store instruction pointed to by the completion pointer can access the cache.
second store instruction hits in the cache, it is removed from the queue. If not, another
block reload begins.

6.5.5  isync, rfi, and sc Instruction Timings
The isync, rfi , andsc instructions do not execute in one of the execution units. Th
instructions decode to branch unit instructions, as specified by the PowerPC archite
but they do not actually execute in the BPU in the same sense that other branch instru
do. The completion unit treats therfi andsc instructions as exceptions, and handles the
precisely. When anisync instruction reaches the top of the completion buffer, subsequ
instructions are flushed from the pipeline and are refetched during the next clock cy

Although therfi andscare dispatched to the branch reservation stations, these instruc
do not execute in the ordinary sense, and do not occupy a position in an execute st
one of the BPU. Instead, these instructions are given a position in the completion buf
dispatch. When thesc instruction reaches the top of the completion buffer, the system
exception is taken. When therfi instruction reaches the top of the completion buffer, t
necessary operations required for restoring the machine state upon returning fro
exception are performed.

The isync instruction causes instructions to be flushed when it is completed. This m
that the decode buffers, dispatch buffers, and execution pipeline are all flushed. Fe
resumes from the instruction following theisync.

Completed

Committed

Empty

Finished
6-40 PowerPC 604e RISC Microprocessor User's Manual



and
ing.
ines:

ions

ind

atch

ns

r

s
her

CR

unit
the

PR
two

omes

r.

ult is
6.6  Instruction Scheduling Guidelines
The performance of the 604e can be improved by avoiding resource conflicts
promoting parallel utilization of execution units through efficient instruction schedul
Instruction scheduling on the 604e can be improved by observing the following guidel

• Schedule instructions such that they can maximize the dispatch rate.
• Schedule instructions to minimize execution-unit-busy stalls
• Avoid using serializing instructions
• Schedule instructions to avoid dispatch stalls due to renamed resource limitat

6.6.1  Instruction Dispatch Rules
The following list provides limitations on instruction dispatch that should be kept in m
in order to ensure stalls:

• At most, four instructions can be dispatched per cycle.

• An instruction cannot be dispatched unless all preceding instructions in the disp
buffer are dispatched

• One instruction can be dispatched per functional unit.

— The branch unit executes all branch and condition register logical instructio

— The two SCIUs are identical and either can be used to execute any intege
arithmetic, logical, shift/rotate, trap, andmtcrf instructions that update only one
field.

— The MCIU executes all integer multiply, divide and move to/from instruction
exceptmtcrf instructions that update only one field, which are executed in eit
of the SCIUs.

— The load/store unit executes load, store, and cache control instructions

— The FPU executes all floating-point instructions including move to/from FPS

Table 6-2 indicates which execution unit executes each instruction.

• Each instruction must have an entry in the 16-entry reorder buffer. The dispatch
stalls when the reorder buffer is full. Reorder buffer entries become available on
cycle after the instruction has completed.

• An instruction that modifies a GPR is assigned one of the 12 positions in the G
rename buffer. Load with update instructions get two positions since they update
registers. When the GPR rename buffer is full, the dispatch unit stalls when it
encounters the first instruction that needs an entry. A rename buffer entry bec
available one cycle after the result is written to the GPR.

• Any floating-point instruction exceptmcrfs, mtfsfi, mtfsfi., mtfsf, mtfsf., mtfsb0,
mtfsb0., mtfsb1, andmtfsb1. gets one entry in the eight-entry FPR rename buffe
When the FPR rename buffer is full, dispatch stalls on the next floating-point
instruction. A rename buffer entry can become available one cycle after the res
written to the FPR.
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• The eight-entry CR rename buffer is similar to the GPR rename buffer in that 
instruction that modifies a CR field gets one entry. This includes, for example,
condition register logical instructions andmtcrf  instructions that update only one
CR field. When the CR rename buffer is full, dispatch stalls when the next
instruction to be dispatched needs a CR entry. A rename buffer entry become
available one cycle after the result is written to the CR.

• Each execution unit has a two-entry reservation station that holds instructions
they are ready for execution. Instructions cannot be dispatched if the reservat
station is full.

• No following instruction can dispatch in the same cycle as a branch instruction

• Since instructions are dispatched in program order, a later instruction cannot 
dispatched until all earlier ones have.

• There is an interlock mechanism between CTR and LR. After dispatching a mov
CTR/LR ormtcrf with multiple field update, the dispatch stalls on the first branc
CR logical, move to CTR/LR, ormtcrf  that update multiple fields until one cycle
after the dispatched move to CTR/LR ormtcrf  instruction executes. Thosemtcrf
instructions that update multiple fields are execution-serialized.

• The 604e can handle as many as four branch instructions in the execute and
complete stages. The dispatch stalls on the first instruction after the fourth bra
until the first branch completes.

• An instruction cannot be dispatched until all destination registers for the instruc
have been assigned to a rename register.

• An instruction may not be dispatched if a serialization mode is in effect for the
instruction.

6.6.2 Additional Programming Tips for the PowerPC 604e Processor
The following guidelines should be followed when writing assembly code for the 604

• Interleave memory instructions with integer and floating-point operations.

The 604e has a dedicated LSU that does not require the use of the integer or flo
point units to process memory operations. As a result, when scheduling code fo
604e, interleaving memory operations with integer or floating-point instruction
typically result in better performance.

• Interleave integer operations.

Because the 604e has three IUs, it is also possible to interleave multiple,
independent integer operations. Two of these integer units support simple inte
operations, while the third supports complex integer operations such as bit-fie
manipulation.

• Avoid using instructions that write to multiple registers.

The 604e’s dynamic register renaming permits instructions to execute out of o
with respect to their original program sequence, which increases overall through
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However, in other PowerPC processors, certain instructions including the load/
multiple/string operations, monopolize these internal hardware resources, whic
affect performance. For software portability, such instructions should be avoid
even though they do not suffer the performance degradation in the 604e that 
might in other PowerPC processors. The most common use of such instructio
in subroutine prologues or epilogues The following alternatives are typically m
efficient:
— Expanding the register save/restore code in-line

— Branching to special save/restore functions (sometimes called millicode) tha
in-line sequences of save and restore instructions.

• Use the load with update instruction judiciously.

Another frequently used set of instructions that are subject to this multiple reg
usage effect are the load with update instructions. While use of such instructio
usually desirable from a performance standpoint (they eliminate a dependent in
operation), care must still be taken to not issue too many of these instructions
consecutively.

• Schedule code to take advantage of rename registers.

As discussed previously, the 604e provides register renaming as a means of
improving execution speed. Since there are a limited number of rename buffe
implemented in hardware, it is always desirable to minimize pressure on this
resource. One relatively simple means of doing this is to use immediate addre
when the option exists. For example, an integer register copy can be performed
single cycle using a number of different instructions. However, using anori
instruction (with an immediate operand of zero) uses only one source register
operand; whereas, the register indirect form of theor instruction uses two source
registers.

• Minimize use of instructions that serialize execution.

Some operations, such as memory synchronization primitives and trap instruct
have well-known serialization properties that are intended when used by a
programmer. Other instructions, however, have more subtle serialization effects
may affect performance. For example, if operations that manipulate condition
register fields are used frequently, they can significantly hinder performance,
particularly when multiple condition fields are being accessed by a single
instruction, described in the following:

• Avoid using the mtcrf instruction to update multiple fields.

Note that the performance of themtcrf instruction depends greatly on whether onl
one field is accessed or either no fields or multiple fields are accessed as follo

— Thosemtcrf instructions that update only one field are executed in either of
SCIUs and the CR field is renamed as with any other SCIU instruction.

— Thosemtcrf instructions that update either multiple fields or no fields are
dispatched to the MCIU and a count/link scoreboard bit is set. When that b
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set, no moremtcrf instructions of the same type,mtspr instructions that update
the count or link registers, branch instructions that depend on the condition
register and CR logical instructions can be dispatched to the MCIU. The b
cleared when themtctr , mtcrf , ormtlr  instruction that set the bit is executed.

Becausemtcrf  instructions that update a single field do not require such
synchronization that othermtcrf instructions do, and because two such single-fie
instructions can execute in parallel, it is typically more efficient to use multiple
mtcrf instructions that update only one field apiece than to use onemtcrf instruction
that updates multiple fields. A rule of thumb follows:

— It is alwaysmore efficient to use twomtcrf instructions that update only one field
apiece than to use onemtcrf  instruction that updates two fields.

— It is almost always more efficient to use three or fourmtcrf  instructions that
update only one field apiece than to use onemtcrf instruction that updates three
fields.

— It is oftenmore efficient to use more than fourmtcrf instructions that update only
one field than to use onemtcrf  instruction that updates four fields.

• Minimize branching.

The 604e supports dynamic branch prediction and other mechanisms that redu
impact of branching; nevertheless, changing control flow in a program is relativ
expensive, in that fullest advantage cannot be taken of resources that can imp
throughput. such as superscalar instruction dispatch and execution. In some 
branches can be minimized by simply rewriting an algorithm. In other cases, sp
PowerPC instructions, such asfsel, can be used to eliminate a conditional branch
altogether.

• Note that thefsel instruction is optional to the PowerPC architecture and may not
implemented on all PowerPC implementations, so use of this instruction to imp
performance in the 604e should be weighed against portability considerations

6.7  Instruction Latency Summary
Table 6-2 summarizes the execution cycle time of each instruction. Note that the late
themselves provide limited insight as to the actual behavior of an instruction. The follo
list summarizes some aspects of instruction behavior:

• For a store operation, availability means data is visible to the following loads f
the same address. Misaligned load or store operations require one additional c
assuming cache hits.

— Floating-point stores that require denormalization take an additional cycle 
each bit of shifting that is needed up to a maximum of 23.

— Store multiple instructions are taken in pairs and take one additional cycle i
odd number of registers is stored.
6-44 PowerPC 604e RISC Microprocessor User's Manual



ord

ycle

cute

ers.
 an

 an

s.
ose
rst
lier.

nt
.111
tion
cle.
kes
nal
— Misaligned load string operations require two cycles per register plus two
additional cycles.

— Misaligned store string operations take six cycles per register being stored
(although the final store may only take three cycles if it does not cross a w
boundary).

• For instructions with both a CR result and either a GPR or an FPR result, the c
count shown is for the GPR or FPR result. CR results from logical or bit field
instructions that execute in the SCIU and CR results from instructions that exe
in the FPU take one additional cycle.

• Integer multiplies that detect an early exit condition finish a cycle earlier than oth
For signed multiplies, if the top 15 bits of the RB operand are all the same it is
early out condition. For unsigned multiplies, if the top 15 bits are all zeros it is
early out condition.

• All instructions are fully pipelined except for divides and some integer multiplie
The integer multiplier is a three-stage pipeline. Integer multiplies other than th
that can exit early (described in the previous bullet) stall for one cycle in the fi
stage of the pipeline. Integer divide instructions iterate in stage two of the multip
Special-purpose register operations can execute in the MCIU in parallel with
multiplies and divides.

— The FPU unit is a three-stage pipeline. Floating-point divides iterate in the
floating-point pipeline. The floating-point unit also has some data-depende
delays not shown inTable 6-2. If the rounder has a carry out, that is, 1.11..
rounds to 2.00...000, the FPU takes an additional cycle. If the final normaliza
of the result requires a shift of more than 63, the FPU takes an additional cy
Underflow and overflow take an additional cycle. Denormalization to zero ta
an additional cycle. Massive cancellation resulting in zero takes an additio
cycle.

Table 6-2. Instruction Execution Timing

Instruction Unit Cycle (cycle) Serialization

add SCIU 1 —

addc SCIU 1 —

adde SCIU 1 Execute

addi SCIU 1 —

addic SCIU 1 —

addic. SCIU 1 —

addis SCIU 1 —

addme SCIU 1 Execute

addze SCIU 1 Execute

and SCIU 1 —
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andc SCIU 1 —

andi. SCIU 1 —

andis. SCIU 1 —

b BPU 1 —

bc BPU 1 —

bcctr BPU 1 —

bclr BPU 1 —

cmp SCIU 1 —

cmpi SCIU 1 —

cmpl SCIU 1 —

cmpli SCIU 1 —

cntlzw SCIU 1 —

crand CRU 1 Execute

crandc CRU 1 Execute

creqv CRU 1 Execute

crnand CRU 1 Execute

crnor CRU 1 Execute

cror CRU 1 Execute

crorc CRU 1 Execute

crxor CRU 1 Execute

dcbf LSU — Execute

dcbi LSU 3 Execute

dcbst LSU — Execute

dcbt LSU — Execute

dcbtst LSU — Execute

dcbz LSU 3 Execute

divw MCIU 20 —

divwu MCIU 20 —

eciwx LSU 2 + bus Execute

ecowx LSU 3 + bus Execute

eieio LSU — I/O

eqv SCIU 1 —

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
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extsb SCIU 1 —

extsh SCIU 1 —

fabs FPU 3 —

fadd FPU 3 —

fadds FPU 3 —

fcmpo FPU 3 —

fcmpu FPU 3 —

fctiw FPU 3 —

fctiwz FPU 3 —

fdiv FPU 32 FP empty1

fdivs FPU 18 FP empty1

fmadd FPU 3 —

fmadds FPU 3 —

fmr FPU 3 —

fmsub FPU 3 —

fmsubs FPU 3 —

fmul FPU 3 —

fmuls FPU 3 —

fnabs FPU 3 —

fneg FPU 3 —

fnmadd FPU 3 —

fnmadds FPU 3 —

fnmsub FPU 3 —

fnmsubs FPU 3 —

fres FPU 18 FP empty1

frsp FPU 3 —

frsqrte FPU 3 —

fsel FPU 3 —

fsub FPU 3 —

fsubs FPU 3 —

icbi LSU — —

isync Completion 1 Postdispatch

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
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lbz LSU 2 —

lbzu LSU 2 —

lbzux LSU 2 —

lbzx LSU 2 —

lfd LSU 3 —

lfdu LSU 3 —

lfdux LSU 3 —

lfdx LSU 3 —

lfs LSU 3 —

lfsu LSU 3 —

lfsux LSU 3 —

lfsx LSU 3 —

lha LSU 2 —

lhau LSU 2 —

lhaux LSU 2 —

lhax LSU 2 —

lhbrx LSU 2 —

lhz LSU 2 —

lhzu LSU 2 —

lhzux LSU 2 —

lhzx LSU 2 —

lmw LSU #regs + 2 String/multiple

lswi LSU 2(#regs) + 2 String/multiple

lswx LSU 2(#regs) + 2 String/multiple

lwarx LSU 3+bus Execute

lwbrx LSU 2 —

lwz LSU 2 —

lwzu LSU 2 —

lwzux LSU 2 —

lwzx LSU 2 —

mcrf CRU 1 Execute

mcrfs FPU 3 —

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
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mcrxr MCIU 3 Execute

mfcr MCIU 3 Execute

mffs FPU 3 —

mfmsr MCIU 3 Execute

mftb MCIU 3 Execute

mfspr LR/CTR MCIU 3 Execute

mfspr (others) MCIU 3 Execute

mtcrf (0/multiple bit) MCIU 1 Dispatch/Execute

mtcrf (single bit) SCIU 1 —

mtfsb0 FPU 3 —

mtfsb1 FPU 3 —

mtfsf FPU 3 —

mtfsfi FPU 3 —

mtmsr MCIU 1 Execute

mtspr (LR/CTR) MCIU 1 Dispatch

mtspr (XER) MCIU 1 Complete 2

mtspr (others) MCIU 1 Execute

mulhw MCIU 4(3) —

mulhwu MCIU 4(3) —

mulli MCIU 3 —

mullw MCIU 4(3) —

nand SCIU 1 —

neg SCIU 1 —

nor SCIU 1 —

or SCIU 1 —

orc SCIU 1 —

ori SCIU 1 —

oris SCIU 1 —

rfi Completion — Postdispatch

rlwimi SCIU 1 —

rlwinm SCIU 1 —

rlwnm SCIU 1 —

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
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sc Completion — Postdispatch

slw SCIU 1 —

sraw SCIU 1 —

srawi SCIU 1 —

srw SCIU 1 —

stb LSU 3 Execute

stbu LSU 3 Execute

stbux LSU 3 Execute

stbx LSU 3 Execute

stfd LSU 3 Execute

stfdu LSU 3 Execute

stfdux LSU 3 Execute

stfdx LSU 3 Execute

stfiwx LSU 3 Execute

stfs LSU 3 Execute

stfsu LSU 3 Execute

stfsux LSU 3 Execute

stfsx LSU 3 Execute

sth LSU 3 Execute

sthbrx LSU 3 Execute

sthu LSU 3 Execute

sthux LSU 3 Execute

sthx LSU 3 Execute

stmw LSU #regs + 2 String/multiple

stswi LSU #regs + 2 String/multiple

stswx LSU #regs + 2 String/multiple

stw LSU 3 Execute

stwbrx LSU 3 Execute

stwcx. LSU 3 Execute

stwu LSU 3 Execute

stwux LSU 3 Execute

stwx LSU 3 Execute

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
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subf SCIU 1 —

subfc SCIU 1 —

subfe SCIU 1 Execute

subfic SCIU 1 —

subfme SCIU 1 Execute

subfze SCIU 1 Execute

sync LSU — —

tlbie LSU — Execute

tlbsync LSU — —

tw SCIU 1 —

twi SCIU 1 —

xor SCIU 1 —

xori SCIU 1 —

xoris SCIU 1 —

1 These instructions are not pipelined. They cannot be executed until the previous
instruction in the FPU completes; subsequent FPU instructions cannot begin
execution until these instructions complete.
2 The mtspr (XER) instruction causes instructions to be flushed when it executes.

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
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Signal Descriptions
70
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This chapter describes the PowerPC 604e microprocessor’s external signals. It con
concise description of individual signals, showing behavior when the signal is asserte
negated and when the signal is an input and an output.

NOTE
A bar over a signal name indicates that the signal is active
low—for example,ARTRY (address retry) andTS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as AP[0–3] (address bus parity signals)
and TT[0–4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

The 604e signals are grouped as follows:

• Address arbitration signals—The 604e uses these signals to arbitrate for addre
mastership.

• Address transfer start signals—These signals indicate that a bus master has b
transaction on the address bus.

• Address transfer signals—These signals, which consist of the address bus, a
parity, and address parity error signals, are used to transfer the address and to
the integrity of the transfer.

• Transfer attribute signals—These signals provide information about the type o
transfer, such as the transfer size and whether the transaction is bursted, writ
through, or cache-inhibited.

• Address transfer termination signals—These signals are used to acknowledg
end of the address phase of the transaction. They also indicate whether a con
exists that requires the address phase to be repeated.

• Data arbitration signals—The 604e uses these signals to arbitrate for data bu
mastership.

• Data transfer signals—These signals, which consist of the data bus, data parity
data parity error signals, are used to transfer the data and to ensure the integ
the transfer.
Chapter 7.  Signal Descriptions 7-1
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• Data transfer termination signals—Data termination signals are required after
data beat in a data transfer. In a single-beat transaction, the data termination s
also indicate the end of the tenure, while in burst accesses, the data terminat
signals apply to individual beats and indicate the end of the tenure only after the
data beat. They also indicate whether a condition exists that requires the data
to be repeated.

• Interrupt signals—These signals include the external interrupt signal, machine
check signal, and system reset signal. These signals are used to interrupt and,
various conditions, to reset the processor.

• Processor state signals—These signals include the memory reservation signa
reset signal, and checkstop signals.

• Clock signals—These signals provide for system clock input and frequency con

• JTAG/COP interface signals—The JTAG (IEEE 1149.1) interface and common
chip processor (COP) unit provides a serial interface to the system for perform
monitoring and boundary tests.

• Miscellaneous signals—These signals include the time base enable signal, L2
intervention signal, the run and halted signals, and the analog VDD signal.

7.1  Signal Configuration
Figure 7-1 illustrates the pin configuration of the 604e, showing how the signals
grouped.

NOTE
A pinout showing actual pin numbers is included in the 604e
hardware specifications.
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Figure 7-1. Signal Groups

7.2  Signal Descriptions
This section describes individual 604e signals, grouped according to Figure 7-1. Not
the following sections are intended to provide a quick summary of signal functi
Chapter 8, “System Interface Operation,” describes many of these signals in greater
both with respect to how individual signals function and how groups of signals intera

BUS REQUEST

BUS GRANT

ADDRESS BUS BUSY

TRANSFER START

EXTENDED TRANSFER START

ADDRESS

ADDRESS PARITY

ADDRESS PARITY ERROR

TRANSFER TYPE

TRANSFER CODE

TRANSFER SIZE

TRANSFER BURST

CACHE INHIBIT

WRITE THROUGH

GLOBAL

ADDRESS ACKNOWLEDGE

CACHE SET MEMBER

ADDRESS RETRY

SHARED

DATAARBITRATION

ADDRESS
START

ADDRESS
TRANSFER

TRANSFER
ATTRIBUTE

ADDRESS
TERMINATION

DATA BUS GRANT

DATA BUS WRITE ONLY

DATA BUS BUSY

DATA

DATA PARITY

DATA PARITY ERROR

TRANSFER ACKNOWLEDGE

DATA RETRY

TRANSFER ERROR ACK

INTERRUPT

SYSTEM RESET

1

1

1

1

1

32

4

1

5

3

3

1

1

1

1

2

1

1

1

1

1

1

64

8

1

1

1
1

1

1

1

ADDRESS

ARBITRATION

DATA
TRANSFER

DATA
TERMINATION

INTERRUPT

TEST ACCESS PORT
JTAG / COP

1

1

SYSTEM CLOCK1

CHECKSTOP INPUT1

STATE
PROCESSOR

CHECKSTOP OUTPUT

RESERVATION

TEST DATA OUT
4

CLOCK

ENABLE TIMEBASE1

MACHINE CHECK1

DATA BUS DISABLE1

1 HARD RESET

MISC

L2_INT
1

RUN1
HALTED1

SYSTEM MANAGEMENT1

PLL CONFIG4

CLOCK OUT1

1
ANALOG VDD

SIGNALS

VOLTDETGND (BGA only)1

604e
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7.2.1  Address Bus Arbitration Signals
The address arbitration signals are a collection of input and output signals the 604e u
request the address bus, recognize when the request is granted, and indicate to other
when mastership is granted. For a detailed description of how these signals intera
Section 8.3.1, “Address Bus Arbitration.”

7.2.1.1  Bus Request ( BR)—Output
The bus request (BR) signal is an output signal on the 604e. Following are the state mea
and timing comments for theBR signal.

State Meaning Asserted—Indicates that the 604e is requesting mastership of t
address bus. Note thatBR may be asserted for one or more cycles
and then deasserted due to an internal cancellation of the bus req
(for example, due to the loss of a memory reservation). See
Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 604e is not requesting the address
The 604e may have no bus operation pending, it may be parked
theARTRY input was asserted on the previous bus clock cycle.

Timing Comments Assertion—Occurs when a bus transaction is needed and the 6
does not have a qualified bus grant. This may occur even if the th
possible pipeline accesses have occurred.

Negation—Occurs for at least one bus clock cycle after an accep
qualified bus grant (see BG and ABB), even if another transaction
pending. It is also negated for at least one cycle after the assertio
ARTRY, unless that processor was responsible for the assertion
ARTRY due to the need to perform a cache block push for that sno
operation.

7.2.1.2  Bus Grant ( BG)—Input
The bus grant (BG) signal is an input signal on the 604e. Following are the state mea
and timing comments for theBG signal.

State Meaning Asserted—Indicates that the 604e may, with the proper qualificati
assume mastership of the address bus. A qualified bus grant oc
whenBG is asserted,ABB andARTRY are not asserted, and
ARTRY has been negated on the previous cycle. TheABB and
ARTRY signals are driven by the 604e or other bus masters. If t
604e is parked,BR need not be asserted for the qualified bus gra
See Section 8.3.1, “Address Bus Arbitration.”

Negated— Indicates that the 604e is not the next potential addr
bus master.
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Timing Comments Assertion—May occur at any time to indicate the 604e is free to u
the address bus. After the 604e assumes bus mastership, it doe
check for a qualified bus grant again until the cycle during which t
address bus tenure is completed (assuming it has another transa
to run). The 604e does not accept aBG in the cycles between the
assertion of anyTS orXATS through to the assertion ofAACK.

Negation—May occur at any time to indicate the 604e cannot use
bus. The 604e may still assume bus mastership on the bus clock c
of the negation ofBG because during the previous cycleBG
indicated to the 604e that it was free to take mastership (if qualifie

7.2.1.3  Address Bus Busy ( ABB)
The address bus busy (ABB) signal is both an input and an output signal.

7.2.1.3.1  Address Bus Busy ( ABB)—Output
Following are the state meaning and timing comments for theABB output signal.

State Meaning Asserted—Indicates that the 604e is the address bus master. S
Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 604e is not using the address bus.
ABB is negated during the bus clock cycle following a qualified bu
grant, the 604e did not accept mastership, even ifBR was asserted.
This can occur if a potential transaction is aborted internally bef
the transaction is started.

Timing Comments Assertion—Occurs on the bus clock cycle following a qualifiedBG
that is accepted by the processor (see Negated).

Negation—Occurs on the bus clock cycle following the assertion
AACK. If ABB is negated during the bus clock cycle following a
qualified bus grant, the 604e did not accept mastership, even ifBR
was asserted.

High Impedance—Occurs one-half bus cycle (two-thirds bus cyc
when using 3:1 clock mode, and one-third bus cycle when using
bus ratio) afterABB is negated. Occurs during fractional portion o
the bus cycle in whichABB is negated.ABB is guaranteed by design
to be high impedance by the end of the cycle in which it is nega

7.2.1.3.2  Address Bus Busy ( ABB)—Input
Following are the state meaning and timing comments for theABB input signal.

State Meaning Asserted—Indicates that the address bus is in use. This conditio
effectively blocks the 604e from assuming address bus ownersh
regardless of theBG input; see Section 8.3.1, “Address Bus
Arbitration.” Note that the 604e will not take the address bus for t
sequence of cycles beginning withTS and ending withAACK; thus
Chapter 7.  Signal Descriptions 7-5
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effectively making the use ofABB optional, provided that other bus
masters respond in the same way.

Negated—Indicates that the address bus is not owned by anothe
master and that it is available to the 604e when accompanied b
qualified bus grant.

Timing Comments Assertion—May occur when the 604e must be prevented from us
the address bus (and the processor is not currently assertingABB).

Negation—May occur whenever the 604e can use the address 

7.2.2  Address Transfer Start Signals
Address transfer start signals are input and output signals that indicate that an addre
transfer has begun. The transfer start (TS) signal identifies the operation as a memo
transaction; extended address transfer start (XATS) identifies the transaction as a direc
store operation.

For detailed information about howTS andXATS interact with other signals, refer to
Section 8.3.2, “Address Transfer,” and Section 8.6, “Direct-Store Operation,” respect

7.2.2.1  Transfer Start ( TS)
TheTS signal is both an input and an output signal on the 604e.

7.2.2.1.1  Transfer Start ( TS)—Output
Following are the state meaning and timing comments for theTS output signal.

State Meaning Asserted—Indicates that the 604e has begun a memory bus
transaction and that the address-bus and transfer-attribute signal
valid. When asserted with the appropriate TT[0–4] signals it is a
an implied data bus request for a memory transaction (unless it is
address-only operation).

Negated—Has no special meaning. However,TS is negated during
an entire direct-store address tenure.

Timing Comments Assertion—Coincides with the assertion ofABB.
Negation—Occurs one bus clock cycle afterTS is asserted.
High Impedance—Occurs one bus clock cycle after the negatio
TS. For the 604e, theTS negation is only one bus cycle long,
regardless of theTS-to-AACK delay.

7.2.2.1.2  Transfer Start ( TS)—Input
Following are the state meaning and timing comments for theTS input signal.

State Meaning Asserted—Indicates that another master has begun a bus transa
and that the address bus and transfer attribute signals are valid
snooping (seeGBL).

Negated—Indicates that no bus transaction is occurring.
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Timing Comments Assertion—May occur at any time outside of the cycles that defi
the window of an address tenure. This window is marked by eith
the interval that includes the cycle of a previousTS assertion through
the cycle afterAACK.
Negation—Must occur one bus clock cycle afterTS is asserted.

7.2.2.2  Extended Address Transfer Start ( XATS)
TheXATS signal is both an input and an output signal on the 604e.

7.2.2.2.1  Extended Address Transfer Start ( XATS)—Output
Following are the state meaning and timing comments for theXATS output signal.

State Meaning Asserted—Indicates that the 604e has begun a direct-store opera
and that the first address cycle is valid. When asserted with the
appropriate XATC signals it is also an implied data bus request 
certain direct-store operation (unless it is an address-only operat

Negated—Has no special meaning; however,XATS remains negated
during an entire memory address tenure.

Timing Comments Assertion—Coincides with the assertion ofABB.
Negation—Occurs one bus clock cycle after the assertion ofXATS.

High Impedance—Occurs one bus clock cycle after the negatio
XATS. For the 604e, theXATS negation is only one bus-cycle long
regardless of theXATS-to-AACK delay.

7.2.2.2.2  Extended Address Transfer Start ( XATS)—Input
Following are the state meaning and timing comments for theXATS input signal.

State Meaning Asserted—Indicates that the 604e must check for a direct-store
operation reply.

Negated—Indicates that there is no need to check for a direct-s
operation reply.

Timing Comments Assertion—May occur at any time outside of the cycles that defi
the window of an address tenure. This window is marked by eith
the interval that includes the cycle of a previousXATS assertion
through the cycle afterAACK or by the cycles in whichABB is
asserted for a previous address tenure, whichever is greater.
Negation—Must occur one bus clock cycle afterXATS is asserted.

7.2.3  Address Transfer Signals
The address transfer signals are used to transmit the address and to generate and
parity for the address transfer. For a detailed description of how these signals interact
to Section 8.3.2, “Address Transfer.”
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7.2.3.1  Address Bus (A[0–31])
The address bus (A[0–31]) consists of 32 signals that are both input and output sign

7.2.3.1.1  Address Bus (A[0–31])—Output (Memory Operations)
Following are the state meaning and timing comments for the A[0–31] output signal

State Meaning Asserted/Negated—Represents the physical address (real addre
the architecture specification) of the data to be transferred. On b
transfers, the address bus presents the double-word–aligned ad
containing the critical code/data that missed the cache on a rea
operation, or the first double word of the cache line on a write
operation. Note that the address output during burst operations is
incremented. See Section 8.3.2, “Address Transfer.”

Timing Comments Assertion/Negation—Occurs on the bus clock cycle after a qualifi
bus grant (coincides with assertion ofABB andTS).

High Impedance—Occurs one bus clock cycle afterAACK is
asserted.

7.2.3.1.2  Address Bus (A[0–31])—Input (Memory Operations)
Following are the state meaning and timing comments for the A[0–31] input signals.

State Meaning Asserted/Negated—Represents the physical address of a snoo
operation.

Timing Comments Assertion/Negation—Must occur on the same bus clock cycle as
assertion ofTS; is sampled by 604e only on this cycle.

7.2.3.1.3  Address Bus (A[0–31])—Output (Direct-Store Operations)
Following are the state meaning and timing comments for the address bus signals
A31) for output direct-store operations on the 604e.

State Meaning Asserted/Negated—For direct-store operations where the 604e is
master, the address tenure consists of two packets (each requir
bus cycle). For packet 0, these signals convey control and tag
information. For packet 1, these signals represent the physical
address of the data to be transferred. For reply operations, the
address bus contains control, status, and tag information.

Timing Comments Assertion/Negation—Address tenure consists of two beats. The
beat occurs on the bus clock cycle after a qualified bus grant,
coinciding withXATS. The address bus transitions to the second
beat on the next bus clock cycle.

High Impedance—Occurs on the bus clock cycle afterAACK is
asserted.
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ns on

(and
tore
es

ure

g one
n the

n the

s of
odd
al

”

n the

s of

op
r

e
e

7.2.3.1.4  Address Bus (A[0–31])—Input (Direct-Store Operations)
Following are the state meaning and timing comments for input direct-store operatio
the 604e.

State Meaning Asserted/Negated—When the 604e is not the master, it snoops
checks address parity) on the first address beat only of all direct-s
operations for an I/O reply operation with a receiver tag that match
its PID tag. See Section 8.6, “Direct-Store Operation.”

Timing Comments Assertion/Negation—The first beat of the I/O transfer address ten
coincides withXATS, with the second address bus beat on the
following cycle.

7.2.3.2  Address Bus Parity (AP[0–3])
The address bus parity (AP[0–3]) signals are both input and output signals reflectin
bit of odd-byte parity for each of the four bytes of address when a valid address is o
bus.

7.2.3.2.1  Address Bus Parity (AP[0–3])—Output
Following are the state meaning and timing comments for the AP[0–3] output signal o
604e.

State Meaning Asserted/Negated—Represents odd parity for each of four byte
the physical address for a transaction. Odd parity means that an
number of bits, including the parity bit, are driven high. The sign
assignments correspond to the following:

AP0 A[0–7]
AP1 A[8–15]
AP2 A[16–23]
AP3 A[24–31]
For more information, see Section 8.3.2.1, “Address Bus Parity.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.3.2.2  Address Bus Parity (AP[0–3])—Input
Following are the state meaning and timing comments for the AP[0–3] input signal o
604e.

State Meaning Asserted/Negated—Represents odd parity for each of four byte
the physical address for snooping and direct-store operations.
Detected even parity causes the processor to enter the checkst
state, or take a machine check exception depending on whethe
address parity checking is enabled in the HID0 register and the
condition of the MSR[ME] bit; see Section Table 2-3, “. Hardwar
Implementation-Dependent Register 0 Bit Settings.” (See also th
APE signal description.)

Timing Comments Assertion/Negation—The same as A[0–31].
Chapter 7.  Signal Descriptions 7-9
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7.2.3.3  Address Parity Error ( APE)—Output
The address parity error (APE) signal is an output signal on the 604e. Note that the (APE)
signal is an open-drain type output, and requires an external pull-up resistor (for exa
10 k to Vdd) to assure proper deassertion of theAPE signal). Following are the state
meaning and timing comments for theAPE signal on the 604e. For more information, s
Section 8.3.2.1, “Address Bus Parity.”

State Meaning Asserted—Indicates incorrect address bus parity has been dete
by the processor on a snoop of a transaction type that the proce
recognizes and can respond to. This includes the first address be
a direct-store operation.

Negated—Indicates that the 604e has not detected a parity erro
(even parity) on the address bus.

Timing Comments Assertion—Occurs on the second bus clock cycle afterTS orXATS
is asserted.

High Impedance—Occurs on the third bus clock cycle afterTS or
XATS is asserted.

7.2.4  Address Transfer Attribute Signals
The transfer attribute signals are a set of signals that further characterize the transfer—
as the size of the transfer, whether it is a read or write operation, and whether it is a
or single-beat transfer. For a detailed description of how these signals interact
Section 8.3.2, “Address Transfer.”

Note that some signal functions vary depending on whether the transaction is a me
access or an I/O access. For a description of how these signals function for direct
operations, see Section 8.6, “Direct-Store Operation.”

7.2.4.1  Transfer Type (TT[0–4])
The transfer type (TT[0–4]) signals consist of five input/output signals on the 604e. F
complete description of TT[0–4] signals and for transfer type encodings, see Table 7

7.2.4.1.1  Transfer Type (TT[0–4])—Output
Following are the state meaning and timing comments for the TT[0–4] output signa
the 604e.

State Meaning Asserted/Negated—Indicates the type of transfer in progress.

For direct-store operations these signals are part of the extende
address transfer code (XATC) along with TSIZ andTBST:

 XATC(0–7)=TT(0–3)||TBST||TSIZ(0–2).

Timing Comments Assertion/Negation/High Impedance—The same as A[0–31].
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7.2.4.1.2  Transfer Type (TT[0–4])—Input
Following are the state meaning and timing comments for the TT[0–4] input signals o
604e.

State Meaning Asserted/Negated—Indicates the type of transfer in progress (s
Table 7-1). For direct-store operations, the TT0–TT3 signals for
part of the XATC and are snooped by the 604e ifXATS is asserted.

Timing Comments Assertion/Negation—The same as A[0–31].

Table 7-1 describes the transfer encodings for a 604e bus master and the 60
specification.

Table 7-1. Transfer Encoding for PowerPC 604e Processor Bus Master

TT[0–4]
604e Bus Master

Transaction
Transaction Transaction Source

00000 Clean block Address only Cache operation

00100 Flush block Address only Cache operation

01000 SYNC Address only Cache operation

01100 Kill block Address only Store hit/shared or cache operation

10000 Ordered I/O operation Address only eieio  (The 604e does not snoop eieio  transactions.)

10100 External control word write Single-beat write ecowx (The 604e does not snoop ecowx  transactions.)

11000 TLB invalidate Address only tlbie

11100 External control word read Single-beat read eciwx (The 604e does not snoop eciwx  transactions.)

00001 lwarx  reservation set Address only lwarx  operation that hit in the cache at the time of its
execution. The cache block may have been flushed
between execution of the lwarx  and broadcast of the
reservation set operation. Note that the 604e does not
snoop lwarx  reservation set operations.

00101 Reserved Address only N/A

01001 TLBSYNC Address only tlbsync

01101 ICBI Address only N/A

1xx01 Reserved — N/A (The 604e does not snoop.)

00010 Write with flush Single-beat write
or burst

Caching-inhibited or write-through store

00110 Write with kill Single-beat write
or burst

Cast-out, snoop copy-back, dcbf , or dcbst instruction
that hit on modified data.

01010 Read Single-beat read
or burst

Cacheable load miss—cacheable instruction miss,
cache-inhibited load, cache-inhibited instruction fetch.

01110 Read with intent to modify Burst Store miss

10010 Write with flush atomic Single-beat write stwcx.

10110 Reserved N/A N/A
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7.2.4.2  Transfer Size (TSIZ[0–2])
The transfer size (TSIZ[0–2]) signals consist of three input/output signals on the 604

7.2.4.2.1  Transfer Size (TSIZ[0–2])—Output
Following are the state meaning and timing comments for the TSIZ[0–2] output signa
the 604e.

State Meaning Asserted/Negated—For memory accesses, these signals along
TBST, indicate the data transfer size for the current bus operation
shown in Table 7-2. Table 8-4 shows how the TSIZ signals are u
with the address signals for aligned transfers. Table 8-5 shows h
the TSIZ signals are used with the address signals for misaligne
transfers. For I/O transfer protocol, these signals form part of the
transfer code; see the description in Section 7.2.4.1, “Transfer T
(TT[0–4]).”

For external control instructions (eciwxandecowx), TSIZ[0–2] are
used to output bits 29–31 of the external access register (EAR),
which are used to form the resource ID (TBST||TSIZ[0–2]).

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

11010 Read atomic Single-beat read
or burst

lwarx

11110 Read with intent to modify
atomic

Burst stwcx.  miss with valid reservation

00011 Reserved — N/A (The 604e does not snoop.)

00111 Reserved — N/A (The 604e does not snoop.)

01011 Read with no intent to
cache

Single-beat read
or burst

N/A

01111 Reserved — N/A (The 604e does not snoop.)

1xx11 Reserved — N/A (The 604e does not snoop.)

Table 7-1. Transfer Encoding for PowerPC 604e Processor Bus Master (Continued)

TT[0–4]
604e Bus Master

Transaction
Transaction Transaction Source
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7.2.4.2.2  Transfer Size (TSIZ[0–2])—Input
Following are the state meaning and timing comments for the TSIZ[0–2] input signa
the 604e.

State Meaning Asserted/Negated— For the direct-store protocol, these signals for
part of the I/O transfer code; see Section 7.2.4.1, “Transfer Type
(TT[0–4]).”

Timing Comments Assertion/Negation—The same as A[0–31].

7.2.4.3  Transfer Burst ( TBST)
The transfer burst (TBST) signal is an input/output signal on the 604e.

7.2.4.3.1  Transfer Burst ( TBST)—Output
Following are the state meaning and timing comments for theTBST output signal.

State Meaning Asserted—Indicates that a burst transfer is in progress.

Negated—Indicates that a burst transfer is not in progress. Also,
of I/O transfer code; see Section 7.2.4.1, “Transfer Type (TT[0–4

For external control instructions (eciwxandecowx), TBST is used to
output bit 28 of the EAR, which is used to form the resource ID
(TBST||TSIZ[0–2]).

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

Table 7-2. Data Transfer Size

TBST TSIZ[0–2] Transfer Size

Asserted 010 Burst (32 bytes)

Negated 000 8 bytes

Negated 001 1 byte

Negated 010 2 bytes

Negated 011 3 bytes

Negated 100 4 bytes

Negated 101 5 bytes

Negated 110 6 bytes

Negated 111 7 bytes
Chapter 7.  Signal Descriptions 7-13
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7.2.4.3.2  Transfer Burst ( TBST)—Input
Following are the state meaning and timing comments for theTBST input signal.

State Meaning Asserted/Negated— For the I/O transfer protocol, this signal for
part of the I/O transfer code; see Section 7.2.4.1, “Transfer Type
(TT[0–4]).”

Timing Comments Assertion/Negation—The same as A[0–31].

7.2.4.4  Transfer Code (TC[0–2])—Output
The transfer code (TC[0–2]) consists of three output signals on the 604e that,
combined with theWT signal, provide additional information about the transaction
progress. Following are the state meaning and timing comments for the TC[0–2] sig

State Meaning Asserted/Negated—Represents a special encoding for the transf
progress (see Table 7-3).

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].
Table 7-3. Transfer Code Signal Encoding

Transfer
Type

WT1 TC[0-2]
BR

Asserted
2, 3

From
Copyback

Buffer

TS after
ARTRYd
Snoop 4

Final
MESI
State5

Comments

Write
with kill

1 100 Never Always Don’t
care

I Cache copy-back

0 xx0 No Yes Yes M, E, S or
I

Could be cache copy-back, block
clean (dcbst ), or block flush (dcbf )
To distinguish between these
operations, this transaction must be
ARTRYd. This transaction eventually
returns (before anything but another
snoop push directly from the data
cache) indicating another WT/TC code
combination.

100 No Yes No I Block flush (dcbf )

000 No Yes No M, E, or I Block clean (dcbst )
The dcbst  instruction changes the
data cache state to E when the
modified line is placed in the copy-
back buffer queue. Before the low-
priority copy-back buffer entry
successfully completes its address
tenure, the data cache line state can
be changed to M by a subsequent
store to that line; it can be changed to I
by either a subsequent dcbi
instruction or by a cache-miss.
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Write
with kill

0 010 Yes No Don’t
care

S or I Snoop push6 directly from data cache
(read or read-atomic)
The read or read-atomic snoop
changes the data cache state to S
when the modified line is placed in the
snoop push buffer queue. Before the
snoop push buffer successfully
completes its address tenure, the data
cache line state can be changed to I
by either a subsequent dcbi
instruction or cache-miss.

010 Yes Yes Don’t
care

S or I Snoop push6 from copy-back buffer
(read or read-atomic)
In this case, the processor keeps a
shared copy in the data cache if this
copy-back buffer contained a block
clean (dcbst ) transaction. If the copy-
back buffer contained a block flush
(dcbf ) or a cache copy-back
transaction, the processor has no valid
copy of this line in its data cache after
this transaction completes
successfully.
To determine whether the processor
has kept a shared copy or has
invalidated this line, this transaction
must be ARTRYd. If this transaction
originated from the copy-back buffers
and no new snoops are given to the
processor, the transaction immediately
comes back as the next TS and
indicates a DCBF, DCBST, or copy-
back WT/TC code. If the transaction
comes back as a snoop push read, it
came from the data cache.

100 Yes No Don’t
care

I Snoop push6 directly from data cache
(RWITM, RWITM-atomic, flush, write
with flush, write with flush-atomic, or
kill)

100 Yes Yes Don’t
care

I Snoop push6 from copy-back buffers
(RWITM, RWITM-atomic, flush, write
with flush atomic, write with flush, write
with kill, or kill)

Table 7-3. Transfer Code Signal Encoding  (Continued)

Transfer
Type

WT1 TC[0-2]
BR

Asserted
2, 3

From
Copyback

Buffer

TS after
ARTRYd
Snoop 4

Final
MESI
State5

Comments
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Write
with kill

0 000 Yes No Don’t
care

M, E, or I Snoop push6 from data cache (clean
or RWNITC).
The clean or RWNITC snoop changes
the data cache state to E when the
modified line is placed in the snoop
push buffer queue. Before the snoop
push buffer successfully completes its
address tenure, the data cache line
state can be changed to M by a
subsequent store to that line, or it can
be changed to I by either a
subsequent DCBI instruction or cache
miss.

000 Yes Yes Don’t
care

M, E, or I
(if dcbst
in buffer)

I (if cache
copy-back
or dcbf in
buffer)

Snoop push6 from copy-back buffers
(clean or RWNITC)
If this snoop hit on a block flush (dcbf )
or a cache copy-back in the copy-back
buffers, the processor does not have a
valid copy of this address after this
transaction completes successfully. If
this snoop hit on a block store (dcbst )
in the copy-back buffers, the processor
can keep an exclusive copy of the
cache block.

x 100 Never No Don’t
care

I Kill block deallocate (dcbi )

1 000 M Kill block & allocate no castout
required (dcbz )

1 001 Kill block & allocate castout required
(dcbz )

1 000 Kill block; write to block marked S

Read W8 0x0 Never No Don’t
care

E or S Data read no castout required
The cache state is S if SHD was
asserted to the processor for a read or
read-atomic transaction. If SHD was
not asserted or if the transaction was
an RWITM or RWITM-atomic
transaction, the cache state is E.

W 0x1 E or S Data read castout required
The cache state is S if SHD was
asserted to the processor for a read or
read-atomic transaction. If SHD was
not asserted, or if the transaction was
an RWITM or RWITM-atomic
transaction, the cache state is E.

Table 7-3. Transfer Code Signal Encoding  (Continued)

Transfer
Type

WT1 TC[0-2]
BR

Asserted
2, 3

From
Copyback

Buffer

TS after
ARTRYd
Snoop 4

Final
MESI
State5

Comments
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7.2.4.5  Cache Inhibit ( CI)—Output
The cache inhibit (CI) signal is an output signal on the 604e. Following are the st
meaning and timing comments for theCI signal.

State Meaning Asserted—Indicates that a single-beat transfer will not be cache
reflecting the setting of the I bit for the block or page that contai
the address of the current transaction.

Negated—Indicates that a burst transfer will allocate a line in th
604e data cache.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.6  Write-Through ( WT)—Output
The write-through (WT) signal is an output signal on the 604e. Following are the st
meaning and timing comments for theWT signal.

State Meaning Asserted—Indicates that a single-beat transaction is write-throu
reflecting the value of the W bit for the block or page that contai
the address of the current transaction.

Negated—Indicates that a transaction is not write-through.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

Read W 1x0 Never No Don’t
care

Valid in
instruction
cache

Instruction read

ICBI x 100 Never No Don’t
care

Invalid in
instruction
cache

Kill block deallocate (icbi 9)

1 The value shown in the WT column reflects the actual logic value seen on the signal (active low).
2 The window of opportunity for the assertion of BR is defined as the second cycle after AACK if ARTRY were asserted the
cycle after AACK.
3 The full condition for this column is “The BR corresponding to this transaction was asserted in the window of opportunity
for the last snoop to this address.”
4 The full condition for this column is “This transaction is the first TS asserted by this processor after one or more ARTRYd
snoop transactions and the address of this transaction matches the address of at least one of those ARTRYd snoop
transactions.”
5 This column reflects the final MESI state in the processor of the line referenced by this transaction after the transaction
completes successfully without ARTRY.
6 This snoop push is guaranteed to push the most recently modified data in the processor. No more snoop operations are
required to ensure that this snoop has been fully processed by the processor.
7 READ in this case encompasses all of read or RWITM, normal or atomic.
8 W = write-through bit from translation. WT is active-high and is the inverse of the setting of the W bit.
9 icbi  is distinguished from kill block by assertion of TT4.

Table 7-3. Transfer Code Signal Encoding  (Continued)

Transfer
Type

WT1 TC[0-2]
BR

Asserted
2, 3

From
Copyback

Buffer

TS after
ARTRYd
Snoop 4

Final
MESI
State5

Comments
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7.2.4.7  Global ( GBL)
The global (GBL) signal is an input/output signal on the 604e.

7.2.4.7.1  Global ( GBL)—Output
Following are the state meaning and timing comments for theGBL output signal.

State Meaning Asserted—Indicates that a transaction is global, reflecting the set
of the M bit for the block or page that contains the address of th
current transaction (except in the case of copy-back operations,
which are nonglobal.)

Negated—Indicates that a transaction is not global.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.7.2  Global ( GBL)—Input
Following are the state meaning and timing comments for theGBL input signal.

State Meaning Asserted—Indicates that a transaction may be snooped by the 6
The 604e will not snoop, regardless ofGBL signal assertion,
reserved transaction types, bus operations associated with theeieio,
eciwx, ecowx instructions, or the address-only bus transaction
associated with alwarx  reservation set.

Negated—Indicates that a transaction is not snooped by the 60

Timing Comments Assertion/Negation—The same as A[0–31].

7.2.4.8  Cache Set Element (CSE[0–1])—Output
Following are the state meaning and timing comments for the CSE[0–1] signals.

State Meaning Asserted/Negated—Represents the cache replacement set elem
for the current transaction reloading into or writing out of the cach
Can be used with the address bus and the transfer attribute signa
externally track the state of each cache line in the 604e’s cache

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.5  Address Transfer Termination Signals
The address transfer termination signals are used to indicate either that the address
of the transaction has completed successfully or must be repeated, and when it sho
terminated. For detailed information about how these signals interact, see Section
“Address Transfer Termination.”

7.2.5.1  Address Acknowledge ( AACK)—Input
The address acknowledge (AACK) signal is an input signal (input-only) on the 604
Following are the state meaning and timing comments for theAACK signal.
7-18 PowerPC 604e RISC Microprocessor User's Manual



 the

utes

dress

the

f

a
 to
e

ped

ne

es,

,

ted
State Meaning Asserted—Indicates that the address phase of a transaction is
complete. The address bus will go to a high-impedance state on
next bus clock cycle. The processor samplesARTRY on the bus
clock cycle following the assertion ofAACK. The 604e also
supports sampling ofARTRY as early as the second cycle afterTS.

Negated—Indicates that the address bus and the transfer attrib
must remain driven, if negated duringABB.

Timing Comments Assertion—May occur as early as the bus clock cycle afterTS or
XATS is asserted; assertion can be delayed to allow adequate ad
access time for slow devices. For example, if an implementation
supports slow snooping devices, an external arbiter can postpone
assertion ofAACK.

Negation—Must occur one bus clock cycle after the assertion o
AACK.

7.2.5.2  Address Retry ( ARTRY)
The address retry (ARTRY) signal is both an input and output signal on the 604e.

7.2.5.2.1  Address Retry ( ARTRY)—Output
Following are the state meaning and timing comments for theARTRY output signal.

State Meaning Asserted—Indicates that the 604e detects a condition in which 
snooped address tenure must be retried. If the processor needs
update memory as a result of the snoop that caused the retry, th
processor assertsBR in the window of opportunity for that snoop.
The window of opportunity is defined as the second cycle after
AACK if ARTRY was asserted the cycle afterAACK.

High Impedance—Indicates that the 604e does not need the snoo
address tenure to be retried.

Timing Comments Assertion—Asserted the second bus cycle after the assertion ofTS if
a retry is required. Thus, when a retry is required, there is only o
empty cycle between the assertion ofTS and the assertion of
ARTRY.

Negation—Occurs the second bus cycle after the assertion ofAACK.
Since this signal may be simultaneously driven by multiple devic
it is driven negated in the following ways:

• 1:1 and 2:1 bus ratio—high-impedance for 1/2 bus clock cycle
deasserted for 1 bus clock cycle, then high-impedance.

• 3:1 bus ratio—high-impedance for 1/3 bus clock cycle, deasser
for 2/3 bus clock cycle, then high-impedance.

• 3:2 bus ratio—high-impedance for 1/3 system clock cycle,
deasserted for 1 bus clock cycle, then high-impedance.
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This special method of negation may be disabled by setting the
disable snoop response high state restore bit (bit 7) in HID0.

ARTRY becomes high impedance for at least one half bus cycle, th
is driven high for approximately one bus cycle.ARTRY is then
guaranteed by design to become high impedance at latest by the
of third cycle afterAACK.

7.2.5.2.2  Address Retry ( ARTRY)—Input
Following are the state meaning and timing comments for theARTRY input signal.

State Meaning Asserted—If the 604e is the address bus master,ARTRY indicates
that the 604e must retry the preceding address tenure and
immediately negateBR (if asserted). If the associated data tenure h
already started, the 604e will also abort the data tenure immediat
even if the burst data has been received. If the 604e is not the add
bus master, this input indicates that the 604e should immediate
negateBR for one bus clock cycle following the assertion ofARTRY
by the snooping bus master to allow an opportunity for a copy-ba
operation to main memory.

Negated/High Impedance—Indicates that the 604e does not nee
retry the last address tenure.

Timing Comments Assertion—May occur as early as the second cycle following th
assertion ofTS orXATS, and must occur by the bus clock cycle
immediately following the assertion ofAACK if an address retry is
required.

Negation—Must occur during the second cycle after the assertion
AACK.

7.2.5.3  Shared ( SHD)
The shared (SHD) signal is both an input and output signal on the 604e.

7.2.5.3.1  Shared ( SHD)—Output
Following are the state meaning and timing comments for theSHD output signal.

State Meaning Asserted—IfARTRY is not asserted, indicates that after this
transaction completes successfully, the master will keep a valid
shared copy of the address or that a reservation exists on this add
If SHD is asserted withARTRY for a given snooping master, this
indicates that the snoop scored a hit on modified data that will b
pushed from that master as its next address transaction.

Negated/High Impedance—Indicates that after this address
transaction completes successfully, the processor will not have 
valid copy of the snooped address.

Timing Comments Assertion/Negation—Same asARTRY.

High Impedance—Same asARTRY.
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7.2.5.3.2  Shared ( SHD)—Input
Following are the state meaning and timing comments for theSHD input signal.

State Meaning Asserted—IfARTRY is not asserted, indicates that for a self-
generated transaction the 604e must allocate the incoming cach
block as shared-unmodified.

Negated—IfARTRY is not asserted, indicates that for a self-
generated read or read-atomic transaction, the master can alloc
the incoming cache block as exclusive-unmodified.

Timing Comments Assertion/Negation—The same asARTRY.

7.2.6  Data Bus Arbitration Signals
Like the address bus arbitration signals, data bus arbitration signals maintain an o
process for determining data bus mastership. Note that there is no data bus arbitration
equivalent to the address bus arbitration signalBR (bus request), because, except f
address-only transactions,TS andXATS imply data bus requests. For a detailed descript
on how these signals interact, see Section 8.4.1, “Data Bus Arbitration.”

One special signal,DBWO, allows the 604e to be configured dynamically to write data
of order with respect to read data. For detailed information about usingDBWO, see
Section 8.11, “Using Data Bus Write Only.”

7.2.6.1  Data Bus Grant ( DBG)—Input
The data bus grant (DBG) signal is an input signal (input-only) on the 604e. Following a
the state meaning and timing comments for theDBG signal.

State Meaning Asserted—Indicates that the 604e may, with the proper qualificati
assume mastership of the data bus. The 604e derives a qualified
bus grant whenDBG is asserted andDBB, DRTRY, andARTRY are
negated; that is, the data bus is not busy (DBB is negated), there is no
outstanding attempt to retry the current data tenure (DRTRY is
negated), and there is no outstanding attempt to perform anARTRY
of the associated address tenure.

The master achieves the position of master of the data bus (tha
has achieved a qualified data bus grant) when the following
conditions are met:

The data bus is not bus busy (DBB is negated). (This condition does
not apply to the 604e or 604e in fast-L2 mode.)

DRTRY is negated. (This condition does not apply to the 604e in
fast-L2 mode or the 604e in fast-L2 or no-DRTRY mode.)

ARTRY is negated ifARTRY applies to the associated address
tenure.

Negated—Indicates that the 604e must hold off its data tenures
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Timing Comments Assertion—May occur any time to indicate that the processor
other master is free to assume the position of master of the data
The earliest it is sampled by the processor is the same cycleTS or
XATS is asserted.

For the 604e in fast-L2 mode,DBG must be asserted no earlier tha
the cycle before 604e's data tenure is to commence only when
another master currently owns the data bus (that is, whenDBB
would normally be asserted for a data tenure). If no other maste
currently own the data bus (assertingDBB), the 604e allows the
system to parkDBG on 604e.DBB is still an output-only signal in
fast-L2 Mode (that is,DBB does not participate in determining
qualified data bus grant), requiring the system to useDBG to ensure
that different masters do not collide on data tenures. If the syste
attempts to stream any back-to-back data tenures by assertingDBG
with the finalTA of the first data tenure, the processor will accept th
DBG as a qualified data bus grant only if the current data tenure
burst read and the next data tenure is a burst read. The 604e wil
allow the system to stream any two other types of data tenures.

7.2.6.2  Data Bus Write Only ( DBWO)—Input
The data bus write only (DBWO) signal is an input signal (input-only) on the 604
Following are the state meaning and timing comments for theDBWO signal.

State Meaning Asserted—Indicates that the 604e may run the data bus tenure fo
outstanding write address even if a read address is pipelined be
the write address. Refer to Section 8.11, “Using Data Bus Write
Only,” for detailed instructions for usingDBWO.

Negated—Indicates that the 604e must run the data bus tenures i
same order as the address tenures.

Timing Comments Assertion—Must occur no later than a qualifiedDBG for an
outstanding write tenure.DBWO is only recognized by the 604e on
the clock of a qualifiedDBG. If no write requests are pending, the
604e will ignoreDBWO and assume data bus ownership for the ne
pending read request.

Negation—May occur any time after a qualified data bus grant a
before the next qualified data bus grant.

7.2.6.3  Data Bus Busy ( DBB)
The data bus busy (DBB) signal is both an input and output signal on the 604e.

7.2.6.3.1  Data Bus Busy ( DBB)—Output
Following are the state meaning and timing comments for theDBB output signal.
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State Meaning Asserted—Indicates that the 604e is the data bus master. The 6
always assumes data bus mastership if it needs the data bus an
given aqualified data bus grant (seeDBG).

Negated—Indicates that the 604e is not using the data bus, unles
data tenure is being extended by the assertion ofDRTRY. Note that
for the 604e in no-DRTRY mode,DRTRY is tied asserted and is
ignored.

Timing Comments Assertion—Occurs during the bus clock cycle following a qualifie
DBG.

Negation—Occurs for a fractional bus clock cycle following the
assertion of the finalTA.

High Impedance—Occurs one-half bus cycle (two-thirds bus cyc
when using 3:1 clock mode, and one-third bus cycle when using
bus ratio) afterDBB is negated.

7.2.6.3.2  Data Bus Busy ( DBB)—Input
Following are the state meaning and timing comments for theDBB input signal. Note that
theDBB input signal cannot be used in systems that use read data streaming.

State Meaning Asserted—Indicates that another device is bus master.
Negated—Indicates that the data bus is free (with proper
qualification, seeDBG) for use by the 604e.

Timing Comments Assertion—Must occur when the 604e must be prevented from us
the data bus.

Negation—May occur whenever the data bus is available.

7.2.7  Data Transfer Signals
Like the address transfer signals, the data transfer signals are used to transmit data
generate and monitor parity for the data transfer. For a detailed description of how the
transfer signals interact, see Section 8.4.3, “Data Transfer.”

7.2.7.1  Data Bus (DH[0–31], DL[0–31])
The data bus (DH[0–31] and DL[0–31]) consists of 64 signals that are both input and o
on the 604e. Following are the state meaning and timing comments for the DH an
signals.

State Meaning The data bus has two halves—data bus high (DH) and data bus
(DL). See Table 7-4 for the data bus lane assignments. Direct-s
operations use DH exclusively (that is, there are no 64-bit, I/O
transfers).

Timing Comments The data bus is driven once for noncached transactions and fou
times for cache transactions (bursts).
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7.2.7.1.1  Data Bus (DH[0–31], DL[0–31])—Output
Following are the state meaning and timing comments for the DH and DL output sig

State Meaning Asserted/Negated—Represents the state of data during a data wri
Byte lanes not selected for data transfer will not supply valid da

Timing Comments Assertion/Negation—Initial beat coincides withDBB and, for
bursts, transitions on the bus clock cycle following each assertion
TA.

High Impedance—Occurs on the bus clock cycle after the final
assertion ofTA.

7.2.7.1.2  Data Bus (DH[0–31], DL[0–31])—Input
Following are the state meaning and timing comments for the DH and DL input sign

State Meaning Asserted/Negated—Represents the state of data during a data 
transaction.

Timing Comments Assertion/Negation—Data must be valid on the same bus clock cy
thatTA is asserted.

7.2.7.2  Data Bus Parity (DP[0–7])
The eight data bus parity (DP[0–7]) signals on the 604e are both output and input sig

7.2.7.2.1  Data Bus Parity (DP[0–7])—Output
Following are the state meaning and timing comments for the DP output signals.

State Meaning Asserted/Negated—Represents odd parity for each of eight byte
data write transactions. Odd parity means that an odd number of b
including the parity bit, are driven high. The signal assignments a
listed in Table 7-5.

Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane

DH[0–7] 0

DH[8–15] 1

DH[16–23] 2

DH[24–31] 3

DL[0–7] 4

DL[8–15] 5

DL[16–23] 6

DL[24–31] 7
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Timing Comments Assertion/Negation—The same as DL[0–31].
High Impedance—The same as DL[0–31].

7.2.7.2.2  Data Bus Parity (DP[0–7])—Input
Following are the state meaning and timing comments for the DP input signals.

State Meaning Asserted/Negated—Represents odd parity for each byte of read d
Parity is checked on all data byte lanes during data read operatio
regardless of the size of the transfer. During direct-store read
operations, only the DP[0-3] signals (corresponding to byte lane
DH[0–31]) are checked for odd parity. Detected even parity cause
checkstop or a machine check exception (and assertion ofDPE) if
data parity errors are enabled in the HID register. (The DP[0–7]
signals function in the same way as the AP[0-3] signals.)

Timing Comments Assertion/Negation—The same as DL[0–31].

7.2.7.3  Data Parity Error ( DPE)—Output
The data parity error (DPE) signal is an output signal (output-only) on the 604e. Note t
the (DPE) signal is an open-drain type output, and requires an external pull-up resisto
example, 10 k to Vdd) to assure proper deassertion of the (DPE) signal. Following are the
state meaning and timing comments for theDPE signal.

State Meaning Asserted—Indicates incorrect data bus parity.
Negated—Indicates correct data bus parity.

Timing Comments Assertion—Occurs on the second bus clock cycle afterTA is asserted
to the 604e.

High Impedance—Occurs on the third bus clock cycle afterTA is
asserted to the 604e.

Table 7-5. DP[0–7] Signal Assignments

Signal Name Signal Assignments

DP0 DH[0–7]

DP1 DH[8–15]

DP2 DH[16–23]

DP3 DH[24–31]

DP4 DL[0–7]

DP5 DL[8–15]

DP6 DL[16–23]

DP7 DL[24–31]
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7.2.7.4  Data Bus Disable ( DBDIS)—Input
The Data Bus Disable (DBDIS) signal is an input signal (input-only) on the 604
Following are the state meanings and timing comments for theDBDIS signal.

State Meaning Asserted—Indicates for a write transaction that the processor m
release the data bus (DH[0–31] and DL[0-31]) and the data bus
parity (DP[0–7]) to high impedance during the following cycle. Th
data tenure will remain active,DBB will remain driven, and the
transfer termination signals will still be monitored by the 604e.

Negated—Indicates the data bus should remain normally driven
DBDIS is ignored during read transactions.

Timing Comments Assertion/Negation—May be asserted on any clock cycle when
604e is driving, or will be driving the data bus; may remain assert
multiple cycles.

7.2.8  Data Transfer Termination Signals
Data termination signals are required after each data beat in a data transfer. Note th
single-beat transaction, the data termination signals also indicate the end of the t
while in burst accesses, the data termination signals apply to individual beats and in
the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 8.4.4, “Data Tr
Termination.”

7.2.8.1  Transfer Acknowledge ( TA)—Input
The transfer acknowledge (TA) signal is an input signal (input-only) on the 604e. Followin
are the state meaning and timing comments for theTA signal.

State Meaning Asserted— Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer completed
successfully (unlessDRTRY is asserted on the next bus clock cycle
Note thatTA must be asserted for each data beat in a burst
transaction. For more information, see Section 8.4.4, “Data Trans
Termination.”

Negated—(DuringDBB) indicates that, untilTA is asserted, the
604e must continue to drive the data for the current write or mu
wait to sample the data for reads.

Timing Comments Assertion—When the bus is configured for normal operation, m
not occur earlier than one bus clock cycle before the beginning of
valid ARTRY window, or when the bus is configured for fast-L2
mode, must not be asserted earlier than the first cycle of a valid
ARTRY window; otherwise, assertion may occur at any time durin
the assertion ofDBB. The system can withhold assertion ofTA to
indicate that the 604e should insert wait states to extend the dura
of the data beat.
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Negation—Must occur after the bus clock cycle of the final (or onl
data beat of the transfer. For a burst transfer, the system can asseTA
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next b

7.2.8.2  Data Retry ( DRTRY)—Input
The data retry (DRTRY) signal is input only on the 604e. Following are the state mean
and timing comments for theDRTRY signal.

State Meaning Asserted—Indicates that the 604e must invalidate the data from
previous read operation.

Negated—Indicates that data presented withTA on the previous read
operation is valid. This is essentially a lateTA to allow speculative
forwarding of data (withTA) during reads. Note thatDRTRY is
ignored for write transactions.

Timing Comments Assertion—Must occur during the bus clock cycle immediately afte
TA is asserted if a retry is required. TheDRTRY signal may be held
asserted for multiple bus clock cycles. WhenDRTRY is negated,
data must have been valid on the previous clock withTA asserted.

Negation—Must occur during the bus clock cycle after a valid da
beat. This may occur several cycles afterDBB is negated, effectively
extending the data bus tenure.

Startup—DRTRY is sampled at the negation ofHRESET; ifDRTRY
is asserted, fast-L2 mode is selected. IfDRTRY is negated at startup,
DRTRY is enabled.DRTRY must be negated during normal
operation (followingHRESET) if fast-L2/data streaming mode is
selected.

7.2.8.3  Transfer Error Acknowledge ( TEA)—Input
The transfer error acknowledge (TEA) signal is input only on the 604e. Following are th
state meaning and timing comments for theTEA signal.

State Meaning Asserted—Indicates that a bus error occurred. Causes a machin
check exception (and possibly causes the processor to enter
checkstop state if machine check enable bit is cleared
(MSR[ME] = 0)). For more information, see Section 4.5.2.2,
“Checkstop State (MSR[ME] = 0).” Assertion terminates the curre
transaction; that is, assertion ofTA andDRTRY are ignored. The
assertion ofTEA causes the negation/high impedance ofDBB in the
next clock cycle. However, data entering the GPR or the cache 
not invalidated. Note that the architecture specification refers to
exceptions as interrupts.

Note that ifTEA is asserted during a direct-store transaction, the
machine check or checkstop action of theTEA is delayed and the
following direct-store transactions continue until all data transfer
Chapter 7.  Signal Descriptions 7-27



erts
e
no
d by
r

t

dicate
en the

rrupt,

ng

04e

n
et

ems
ith
from the direct-store segment complete. The bus agent that ass
TEA must assertTEA for every direct-store data tenure including th
last one. The processor takes a machine check or a checkstop 
sooner than the last direct-store data tenure has been terminate
the assertion ofTEA. The load or store reply is not necessary afte
the last data tenure has received aTEA assertion.

Negated—Indicates that no bus error was detected.

Timing Comments Assertion—May be asserted whileDBB is asserted, or during valid
DRTRY window. In fast-L2/data streaming mode, the 604e will no
recognizeTEA the cycle afterTA during a read operation due to the
absence of aDRTRY assertion opportunity. TheTEA signal should
be asserted for one cycle only.

Negation— TheTEA signal must be negated no later than the
negation ofDBB or the lastDRTRY. The 604e deassertsDBB within
one bus clock cycle following the assertion ofTEA.

7.2.9  System Interrupt, Checkstop, and Reset Signals
Most of the system interrupt, checkstop, and reset signals are input signals that in
when exceptions are received, when checkstop conditions have occurred, and wh
604e must be reset. The 604e generates the output signal,CKSTP_OUT, when it detects a
checkstop condition. For a detailed description of these signals, see Section 8.8, “Inte
Checkstop, and Reset Signals.”

7.2.9.1  Interrupt ( INT)—Input
The interrupt (INT) signal is input only. Following are the state meaning and timi
comments for theINT signal.

State Meaning Asserted—The 604e initiates an interrupt if MSR[EE] is set;
otherwise, the 604e ignores the interrupt. To guarantee that the 6
will take the external interrupt, theINT signal must be held active
until the 604e takes the interrupt; otherwise, the 604e will take a
external interrupt depending on whether the MSR[EE] bit was s
while theINT signal was held active.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. TheINT input is level-sensitive.

Negation—Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor syst
operating in lock step), theINT signal should be asserted and negated synchronously w
the SYSCLK signal.
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7.2.9.2  System Management Interrupt ( SMI)—Input
The system management interrupt (SMI) signal is input only. Following are the stat
meaning and timing comments for theSMI signal.

State Meaning Asserted—The 604e initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the 604e ignores the
interrupt condition. The system must hold theSMI signal active until
the interrupt is taken.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. TheSMI input is level-sensitive.

Negation—Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor syst
operating in lock step), theSMI signal should be asserted and negated synchronously w
the SYSCLK signal.

7.2.9.3  Machine Check Interrupt ( MCP)—Input
The machine check interrupt (MCP) signal is input only on the 604e. Following are the sta
meaning and timing comments for theMCP signal.

State Meaning Asserted—The 604e initiates a machine check interrupt operatio
MSR[ME] and HID0[EMCP] are set; if MSR[ME] is cleared and
HID0[EMCP] is set, the 604e must terminate operation by interna
gating off all clocks, and releasing all outputs (exceptCKSTP_OUT)
to the high impedance state. If HID0[EMCP] is cleared, the 604
ignores the interrupt condition. TheMCP signal must be held
asserted for two bus clock cycles.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. TheMCP input is negative edge-
sensitive.

Negation—May be negated two bus cycles after assertion.

If deterministic cycle sequencing is required (for example, in multiple processor syst
operating in lock step), theMCP signal should be asserted and negated synchronously
the SYSCLK signal.
Chapter 7.  Signal Descriptions 7-29



ate

reset.

he
ll-up

erly

put
as
.”
7.2.9.4  Checkstop Input( CKSTP_IN)—Input
The checkstop input (CKSTP_IN) signal is input only on the 604e. Following are the st
meaning and timing comments for theCKSTP_IN signal.

State Meaning Asserted—Indicates that the 604e must terminate operation by
internally gating off all clocks, and release all outputs (except
CKSTP_OUT) to the high impedance state. OnceCKSTP_IN has
been asserted it must remain asserted until the system has been

Negated—Indicates that normal operation should proceed. See
Section 8.8.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks.

Negation—May occur any time after theCKSTP_OUT output signal
has been asserted.

7.2.9.5  Checkstop Output ( CKSTP_OUT)—Output
The checkstop (CKSTP_OUT) signal is output only on the 604e. Note that t
(CKSTP_OUT) signal is an open-drain type output, and requires an external pu
resistor (for example, 10 k to Vdd) to assure proper deassertion of the (CKSTP_OUT)
signal. Following are the state meaning and timing comments for theCKSTP_OUT signal.

State Meaning Asserted—Indicates that the 604e has detected a checkstop
condition and has ceased operation.

Negated—Indicates that the 604e is operating normally.
See Section 8.8.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604e input clocks.

Negation—Is negated upon assertion ofHRESET.

7.2.9.6  Reset Signals
There are two reset signals on the 604e—hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.9.6.1  Hard Reset ( HRESET)—Input
The hard reset (HRESET) signal is input only and must be used at power-on to prop
reset the processor. Following are the state meaning and timing comments for theHRESET
signal.

State Meaning Asserted—Initiates a complete hard reset operation when this in
transitions from asserted to negated. Causes a reset exception 
described in Section 4.5.1, “System Reset Exception (0x00100)
Output drivers are released to high impedance within five clocks
after the assertion ofHRESET.
7-30 PowerPC 604e RISC Microprocessor User's Manual



or a

th

ems
usly
st

ing

d in

ems
usly
t

ase,
PLL
n set,

nce

state
Negated—Indicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604e input clock; must be held asserted f
minimum of 255 clock cycles.

Negation—May occur any time after the minimum reset pulse wid
has been met.

If deterministic cycle sequencing is required (for example, in multiple processor syst
operating in lock step), theHRESET signal should be asserted and negated synchrono
with the SYSCLK signal. TheHRESET signal has additional functionality in certain te
modes.

7.2.9.6.2  Soft Reset ( SRESET)—Input
The soft reset (SRESET) signal is input only. Following are the state meaning and tim
comments for theSRESET signal.

State Meaning Asserted— Initiates processing for a reset exception as describe
Section 4.5.1, “System Reset Exception (0x00100).”

Negated—Indicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604e input clock. TheSRESET input is
negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

If deterministic cycle sequencing is required (for example, in multiple processor syst
operating in lock step), theSRESET signal should be asserted and negated synchrono
with the SYSCLK signal. TheSRESET signal has additional functionality in certain tes
modes.

7.2.10  Processor Configuration Signals
The signals described in this section provide inputs for controlling the 604e’s timeb
signal drive capabilities, L2 cache access, bus snooping while in nap mode, and
configuration, along with output signals to indicate that a storage reservation has bee
and that the 604e’s internal clocking has stopped.

7.2.10.1  Drive Mode (DRVMOD)—Input
The DRVMOD signals must be pulled up to VDD for the 604e to operate in accorda
with the hardware specifications.

7.2.10.2  Timebase Enable (TBEN)—Input
The timebase enable (TBEN) signal is input only on the 604e. Following are the
meanings and timing comments for the TBEN signal.
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State Meaning Asserted—Indicates that the timebase should continue clocking
This input is essentially a “count enable” control for the timebas
counter.

Negated—Indicates the timebase should stop clocking.

Timing Comments Assertion/Negation—May occur on any cycle.

7.2.10.3  Reservation ( RSRV)—Output
The reservation (RSRV) signal is output only on the 604e. Following are the state mean
and timing comments for theRSRV signal.

State Meaning Asserted/Negated—Represents the state of the reservation
coherency bit in the reservation address register that is used by
lwarx  andstwcx. instructions. See Section 8.9.1, “Support for the
lwarx/stwcx. Instruction Pair.”

Timing Comments Assertion—Occurs synchronously one bus clock cycle after
execution of anlwarx instruction that sets the internal reservatio
condition. On the 604 and 604e, theRSRV signal is asserted as late
as the fourth cycle afterAACK for a read-atomic operation if the
lwarx  instruction requires a read-atomic operation.

Negation—Occurs synchronously one bus clock cycle after the
execution of anstwcx. instruction that clears the reservation or as
late as the second bus cycle after aTS for a snoop that clears the
reservation.

7.2.10.4  L2 Intervention (L2_INT)—Input
The L2 intervention (L2_INT) signal is input only on the 604e. Following are the s
meanings and timing comments for the L2_INT signal.

State Meaning Asserted— Indicates that the current data transaction requires
intervention from other bus masters.

Negated—Indicates that the current data transaction requires
intervention from other bus masters.

Timing Comments Assertion/Negation—The L2_INT signal is sampled by the 604e
concurrently with the first assertion ofTA for a given data tenure.

7.2.10.5  Run (RUN)—Input
The run (RUN) signal is input only on the 604e. Following are the state meanings
timing comments for the RUN signal.

State Meaning Asserted— Forces the internal clocks to continue running during n
mode, allowing bus snooping to occur.

Negated—Internal clocks are inhibited from running when 604e
in nap mode.
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For additional information regarding the nap mode, refer to Section 7.2.13, “Po
Management.”

Timing Comments Assertion/Negation—Assertion may occur asynchronously to th
604e input clock; and must be held asserted for a minimum of 3 b
clock cycles before snoop activity.

7.2.10.6  Halted (HALTED) —Output
The halted (HALTED) signal is output only on the 604e. Following are the state mea
and timing comments for the HALTED signal.

State Meaning Asserted—Indicates that the internal clocks have stopped due to
604e entering nap mode, no snoop copy-back operations are in
progress, or a JTAG/COP request.

Negated—Indicates that internal clocks are running.

Timing Comments Assertion/Negation—Occurs synchronously with internal proces
clock.

For additional information regarding the nap mode, refer to Section 7.2.13, “Po
Management.”

7.2.11  COP/Scan Interface
The 604e has extensive on-chip test capability including the following:

• Built-in instruction and data cache self test (BIST)
• Debug control/observation (COP)
• Boundary scan (IEEE 1149.1 compliant interface)

The BIST hardware is not exercised as part of the POR sequence. The COP and bo
scan logic are not used under typical operating conditions.

Detailed discussion of the 604e test functions is beyond the scope of this docu
however, sufficient information has been provided to allow the system designer to di
the test functions that would impede normal operation.

The COP/scan interface is shown in Figure 7-2. For more information, see Section 8
“IEEE 1149.1 Interface Description.”

Figure 7-2. IEEE 1149.1-Compliant Boundary Scan Interface

TDI (Test Data Input)

TMS (Test Mode Select)

TCK (Test Clock input)

TDO (Test Data Output)

TRST (Test Reset)
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7.2.12  Clock Signals
The clock signal inputs of the 604e determine the system clock frequency and prov
flexible clocking scheme that allows the processor to operate at an integer multiple o
system clock frequency. An analog voltage input signal is provided to supply stable p
for the internal PLL clock generator.

Refer to the 604e hardware specifications for exact timing relationships of the clock sig

7.2.13 Power Management
The 604e implements signals that allow the processor to operate in three different mo
normal, nap, and doze. These signals are the HALTED signal, see Section 7.2
“Reservation (RSRV)—Output,” and the RUN signal, see Section 7.2.10.5, “Run (RUN
Input,” for more information.

• In normal mode, all clocks are running and instruction execution is proceeding
normally. The HALTED signal is not asserted.

• In doze mode, no instructions are being executed, but clocks are still running 
allow snooping of the caches. If necessary, the caches perform copybacks of
modified data. The HALTED signal is asserted unless a snoop-triggered copy-
is pending. Asserting the RUN signal is equivalent to the doze mode in the Powe
603™.

• In nap mode, all internal clocks except those necessary to keep the decremen
timebase, and interrupt logic running are stopped. The HALTED signal is alwa
asserted. The 604e supports nap mode with a RUN signal similar to the 604.

A transition state table for the three modes is shown in Figure 7-3.

Figure 7-3. Power Management States

The following sections describe how the processor can go from one mode to the oth

NORMAL

DOZENAP
7-34 PowerPC 604e RISC Microprocessor User's Manual



the
ted by
nce can
ffects
ower

he
quence
fore

ode,
en in
ack is
ed in

d for

st 10

t bus

ve any
bus is

ccurs.
stem
7.2.13.1  State Transition from Normal Mode to Doze Mode
As shown in Figure 7-3, the only state transition allowed from the normal mode is to
doze mode. This transition requires system support. The RUN signal must be asser
the system for at least 10 bus cycles before the software power management seque
begin. The RUN signal does not affect the 604e operation in the normal mode, but a
operation during the transition from normal mode to doze mode. The software p
management sequence is the following code:

sync
mtmsr
isync
branch back to the sync instruction

Themtmsr instruction should modify only MSR[POW]. All other MSR values such as t
external interrupt enable should be set up before the software power management se
is begun. Whenmtmsr is executed, the processor waits for its internal state to be idle be
asserting HALTED, putting the processor in the doze mode. When entering the doze m
the system must assert RUN for at least 10 bus cycles after HALTED is asserted. Wh
the doze state, the HALTED signal is deasserted only when a snoop-triggered copy-b
in progress. The system must continually assert RUN whenever HALTED is negat
doze mode due to a snoop copy-back.

7.2.13.2  State Transition from Doze Mode to Nap Mode
A processor in doze mode can enter nap mode by doing the following:

1. The system should ensure that the bus is idle and the HALTED signal is asserte
at least 10 bus cycles.

2. The system should negate RUN and continue to prevent bus grants for at lea
additional bus cycles. At this point, the processor is in the nap mode and bus
transactions can be resumed. The processor does not snoop any subsequen
transactions.

In going from doze to the nap mode, the system must ensure that the 604e not recei
TS (orXATS) assertions by negating address bus grants to other bus masters. If the
not quiescent throughout the 10 clock transition window, the system may hang.

7.2.13.3  State Transition from Nap Mode to Doze Mode
A processor in nap mode can enter doze mode with the following sequence:

1. The system should ensure that the bus is idle for at least 10 bus cycles.

2. The system should assert the RUN signal and continue to prevent bus grants
for at least an additional 10 bus cycles. At this point, the processor is in doze
mode and all bus transactions can be snooped.

7.2.13.4  State Transition from Nap Mode to Normal Mode
Normal execution resumes from the nap mode when an interrupt or reset condition o
The transition from nap to normal mode is triggered by hard reset, soft reset, sy
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management interrupt, machine check interrupt (if MSR[ME] = 1), external interrup
MSR[EE] = 1), or decrementer interrupt (if MSR[EE] = 1). When this transition occurs,
processor resumes clocking and vectors to the proper exception handler. Note that
points to an instruction inside the software power management sequence.

To exit power management, the exception handler should return to code outside this

To re-enter power management, the system must ensure that the above mode transitio
are followed.

7.2.13.5  State Transition from Doze Mode to Normal Mode
The transition from doze to normal mode can be triggered by the same conditions a
nap to normal mode transition. This transition can also be triggered by a snoop detec
parity error and causing a machine check exception. Other than the additional tr
condition, this transition is identical to the nap-to-normal mode transition.

7.2.13.6  System Clock (SYSCLK)—Input
The 604e internal clocking scheme is more similar to the PowerPC 603e™ than to the
The 604e requires a single system clock (SYSCLK) input. This input sets the frequen
operation for the bus interface. Internally, the 604e uses a phase-lock loop (PLL) circ
generate a master clock for all of the CPU circuitry (including the bus interface circu
which is phase-locked to the SYSCLK input. The master clock may be set to a mu
(x1.5, x2, x2.5, x3, or x4) of the SYSCLK frequency allowing the CPU core to operat
an equal or greater frequency than the bus interface.

State Meaning Asserted/Negated—The SYSCLK input is the primary clock inp
for the 604e, and represents the bus clock frequency for 604e b
operation. Internally, the 604e may be operating at a multiple of t
bus clock frequency.

Timing Comments Duty cycle—Refer to the 604e hardware specifications for timin
comments.
Note: SYSCLK is used as the frequency reference for the intern
PLL clock generator, and must not be suspended or varied duri
normal operation to ensure proper PLL operation.

7.2.13.7  Test Clock (CLK_OUT)—Output
The Test Clock (CLK_OUT) signal is an output signal (output-only) on the 60
Following are the state meaning and timing comments for the CLK_OUT signal.

State Meaning Asserted/Negated—Provides PLL clock output for PLL testing a
monitoring. CLK_OUT clocks at the processor clock frequency. T
CLK_OUT signal is provided for testing purposes only.

Timing Comments Assertion/Negation—Refer to the 604e hardware specifications
timing comments.
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7.2.14  Analog VDD (AVDD)—Input
The analog VDD signal is an input for supplying a stable voltage to the on-chip phas
locked loop clock generator. Although the 604e has the same signal configuration a
604, the 604e VDD and AVDD must be connected to 2.5 Vdc and OVDD must be
connected to 3.3 Vdc. The 604e uses split voltage planes, and for replacement
compatibility, 604/604e designs should provide both 2.5-V and 3.3-V planes and the a
to connect those two planes together and disable the 2.5-V plane for operation with a
For more information about the electrical requirements of the AVDD input signal, refe
the 604e electrical specifications.

7.2.15  VOLTDETGND Signal (BGA Package Only)
The VOLTDETGND output signal, which is implemented only on BGA packages, is 
indicator of the core voltage. On the 604e, which has a 2.5-V core, VOLTDETGND is
to ground internally to indicate to a power supply that a low-power processor is pres
This signal connects to a control signal on a power supply capable of providing 2.5-V
3.3-V outputs. Refer to the hardware specifications for more information about
VOLTDETGND.

7.2.16  PLL Configuration (PLL_CFG[0–3])—Input
The PLL (phase-lock loop) is configured by the PLL_CFG[0–3] pins. For a given SYSC
(bus) frequency, the PLL configuration pins set the internal CPU frequency of opera

Following are the state meaning and timing comments for the PLL_CFG[0–3] signal

State Meaning Asserted/Negated— Configures the operation of the PLL and th
internal processor clock frequency. Settings are based on the des
bus and internal frequency of operation.

Timing Comments Assertion/Negation—Must remain stable during operation.

The 604e’s PLL_CFG settings are compatible with the 603e and
604, although the supported frequency ranges may differ. Chang
the PLL_CFG setting during nap mode is not permitted. Table 7
lists PLL_CFG settings used for specifying processor/bus freque
ratios (r) and VCO divider values (d). For specific information, see
the hardware specifications.

Table 7-6. PLL Configuration Encodings

PLL_CFG[0–3]
Processor/Bus Frequency Ratio (r) VCO Divider ( d)

Bin Dec

0000 0 1x /2

0001 1 1x /8

0010 2 7x /2

0011 3 PLL bypass n/a
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0100 4 2x /2

0101 5 6.5x /2

0110 6 2.5x /2

0111 7 4.5x /2

1000 8 3x /2

1001 9 5.5x /2

1010 10 4x /2

1011 11 5x /2

1100 12 1.5x /2

1101 13 6x /2

1110 14 3.5x /2

1111 15 Off n/a

Notes:

1. The processor/bus frequency ratio (r) and the value of the VCO divider (d) shown
in Table 7-6 together determine the resulting frequency ranges according to the
following formulas:

• SYSCLK frequency range:

— Min = VCOmin/(r*d)

— Max = VCOmax/(r*d)

• Core frequency range:

— Min = VCOmin/d

— Max = VCOmax/d

The actual values supported by a given 604e are provided in the 604e hardware
specifications.

2. Bus clock ratios—The 604e supports processor-to-bus frequency ratios of 1:1,
3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Each ratio is limited to the frequency ranges
specified in the PLL_CFG encodings shown in Table 7-6. Support for
processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.

Table 7-6. PLL Configuration Encodings

PLL_CFG[0–3]
Processor/Bus Frequency Ratio (r) VCO Divider ( d)

Bin Dec
7-38 PowerPC 604e RISC Microprocessor User's Manual
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Chapter 8
System Interface Operation
80
80

This chapter describes the PowerPC 604e microprocessor bus interface and its opera
shows how the 604e signals, defined in Chapter 7, “Signal Descriptions,” intera
perform address and data transfers.

8.1  Overview
The system interface prioritizes requests for bus operations from the instruction and
caches, and performs bus operations per the 604e bus protocol. It includes address
queues, prioritization logic, and the bus control unit. The system interface latches s
addresses for snooping in the data cache and in the address register queues, and sn
direct-store reply operations and for reservations controlled by the Load Word and Re
Indexed (lwarx ) and Store Word Conditional Indexed (stwcx.) instructions. The interface
allows two level of pipelining; that is, with certain restrictions discussed later, there ca
three outstanding transactions at any given time. Accesses are prioritized with
operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction
where they are dispatched to the execution units at a peak rate of four instructions per
Conversely, load and store instructions explicitly specify the movement of operands t
from the integer and floating-point register files and the memory system.

When the 604e encounters an instruction or data access, it calculates the logical a
(effective address in the architecture specification) and uses the low-order address
check for a hit in the on-chip, 16-Kbyte instruction and data caches. During cache loo
the instruction and data memory management units (MMUs) use the higher-order ad
bits to calculate the virtual address, from which they calculate the physical address
address in the architecture specification). The physical address bits are then compare
the corresponding cache tag bits to determine if a cache hit occurred. If the access
in the corresponding cache, the physical address is used to access system memory

In addition to the loads, stores, and instruction fetches, the 604e performs hardware
search operations following TLB misses, cache cast-out operations when least-re
used cache lines are written to memory after a cache miss, and cache-line snoop pu
operations when a modified cache line experiences a snoop hit from another bus m
Chapter 8.  System Interface Operation 8-1
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Figure 8-1 shows the address path from the execution units and instruction fetcher, th
the translation logic to the caches and system interface logic.

The 604e provides a versatile bus interface that allows a wide variety of system d
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of pari
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control sign
allow for a variety of system-level optimizations. The system interface is specific for e
PowerPC processor implementation. The interface is synchronous—all 604e inpu
sampled at and all outputs are driven from the rising edge of the bus clock. The
supports processor-to-bus frequency ratios of 1:1, 3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Su
for processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.While the
operates at 3.3 Volts, all the I/O signals are 5.0-Volt TTL-compatible.

8.1.1  Operation of the Instruction and Data Caches
The 604e provides independent instruction and data caches. Each cache is a phy
addressed, 16-Kbyte cache with four-way set associativity. Both caches consist of 12
of four cache lines, with eight words in each cache line.

Because the data cache on the 604e is an on-chip, write-back primary cache
predominant type of transaction for most applications is burst-read memory opera
followed by burst-write memory operations, direct-store operations, and single-
(noncacheable or write-through) memory read and write operations. Additionally, ther
be address-only operations, variants of the burst and single-beat operations (global m
operations that are snooped, and atomic memory operations, for example), and a
retry activity (for example, when a snooped read access hits a modified line in the ca

The 604e data cache tags are dual-ported to facilitate efficient coherency checking
allows data cache accesses to occur concurrently with snooping operations. Data
accesses are only interrupted when the snoop control logic detects a situation where
push of modified data is required to maintain memory coherency.

The 604e supports a four-state coherency protocol that supports the modified, exc
shared and invalid (MESI) cache states. The MESI protocol ensures that the 604e op
coherently in systems that contain multiple four-state caches, provided that al
participants employ similar snooping and coherency control mechanisms.

Cache lines in the 604e are loaded in four beats of 64 bits each. The burst load is perf
as critical-double-word-first. The cache that is being loaded allows internal accesses
the load completes (that is, the 604e supports cache hits under misses). The critical
word is simultaneously written to the cache and forwarded to the requesting unit,
minimizing stalls due to load delays. If consecutive double words are required from
same cache line following a cache line miss, the LSU stalls until the entire cache lin
been loaded into the cache,
8-2 PowerPC 604e RISC Microprocessor User's Manual
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Cache lines are selected for replacement based on an LRU (least recently used) alg
Each time a cache line is accessed, it is tagged as the most recently used line of t
When a miss occurs, if all lines in the set are marked as valid, the least recently used
replaced with the new data. When data to be replaced is in the modified state, the mo
data is written into a write-back buffer while the missed data is being read from mem
When the load completes, the 604e then pushes the replaced line from the write-back
to main memory in a burst write operation if the memory queue is idle, or at a later tim
other transactions are pending.

8.1.2  Operation of the System Interface
Memory accesses can occur in single-beat (1–8 bytes) and four-beat (32 bytes) bur
transfers. The address and data buses are independent for memory accesses to
pipelining and split transactions. The 604e can pipeline as many as three transactio
has limited support for out-of-order split-bus transactions.

Access to the system interface is granted through an external arbitration mechanis
allows devices to compete for bus mastership. This arbitration mechanism is flex
allowing the 604e to be integrated into systems that implement various fairness and
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, inc
load/store string and multiple instructions, do not necessarily complete in the order
begin—maximizing the efficiency of the bus without sacrificing coherency of the data.
604e allows read operations to precede store operations (except when a dependency
In addition, the 604e performs snoop push operations ahead of all other bus opera
Because the processor can dynamically optimize run-time ordering of load/store tr
overall performance is improved.

Note that the Synchronize (sync) or Enforce In-Order Execution of I/O (eieio) instructions
can be used to enforce strong ordering.

The following sections describe how the 604e interface operates, providing detailed t
diagrams that illustrate how the signals interact. A collection of more general tim
diagrams are included as examples of typical bus operations.

Figure 8-2 is a legend of the conventions used in the timing diagrams.

This is a synchronous interface—all 604e input signals are sampled and output signa
driven on the rising edge of the bus clock cycle (see the 604e hardware specificatio
exact timing information).
8-4 PowerPC 604e RISC Microprocessor User's Manual
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Figure 8-2. Timing Diagram Legend

8.1.3  Direct-Store Accesses
Memory and direct-store accesses use the 604e signals differently.

The 604e defines separate memory and I/O address spaces, or segments, distingui
the segment register T bit in the address translation logic of the 604e. If the T bit is cle
the memory reference is a normal memory access and uses the paged virtual m
management mechanism of the 604e. If the T bit is set, the memory reference is a d
store access.

The function and timing of some address transfer and attribute signals (such as TT
TBST, and TSIZ[0–2]) are changed for direct-store accesses. Additional controls
required to facilitate transfers between the 604e and the specific I/O devices that us
interface. Direct-store and memory transfers are distinguished from one another by

604e input (while 604e is a bus master)

604e output (while 604e is a bus master)

604e output (grouped: here, address plus attributes)

604e internal signal (inaccessible to the user, but used in
diagrams to clarify operations)

Compelling dependency—event will occur on the
next clock cycle

Prerequisite dependency—event will occur on an
undetermined subsequent clock cycle

604e three-state output or input

604e nonsampled input

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted)

Bar over signal name indicates active low

ap0

BR

ADDR+

qual BG
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address transfer start signals—TS indicates that a memory transfer is starting andXATS
indicates that a direct-store transaction is starting.

Direct-store accesses are strongly ordered—each access occurs in strict program or
completes before another access can begin. For this reason, direct-store accesses
efficient than memory accesses. The direct-store extensions also allow for addition
pacing and multiple transaction operations for variably-sized data transfers (1 to 128 b
and they support a tagged, split request/response protocol. The direct-store access p
also requires the slave device to function as a bus master.

8.2  Memory Access Protocol
Memory accesses are divided into address and data tenures. Each tenure has three p
bus arbitration, transfer, and termination. The 604e also supports address-only transa
Note that address and data tenures can overlap, as shown in Figure 8-3.

Figure 8-3 shows that the address and data tenures are distinct from one another a
both consist of three phases—arbitration, transfer, and termination. Address and
tenures are independent (indicated in Figure 8-3 by the fact that the data tenure b
before the address tenure ends), which allows split-bus transactions to be implemen
the system level in multiprocessor systems. Figure 8-3 shows a data transfer that co
of a single-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte
lines require data transfer termination signals for each beat of data.

Figure 8-3. Overlapping Tenures on the Bus for a Single-Beat Transfer

ARBITRATION TRANSFER TERMINATION

ADDRESS TENURE

ARBITRATION SINGLE-BEAT TRANSFER TERMINATION

DATA TENURE

INDEPENDENT ADDRESS AND DATA
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The basic functions of the address and data tenures are as follows:

• Address tenure

— Arbitration: During arbitration, address bus arbitration signals are used to g
mastership of the address bus.

— Transfer: After the 604e is the address bus master, it transfers the address o
address bus. The address signals and the transfer attribute signals control
address transfer. The address parity and address parity error signals ensu
integrity of the address transfer.

— Termination: After the address transfer, the system signals that the address t
is complete or that it must be repeated.

• Data tenure

— Arbitration: To begin the data tenure, the 604e arbitrates for mastership of 
data bus.

— Transfer: After the 604e is the data bus master, it samples the data bus for
operations or drives the data bus for write operations. The data parity and 
parity error signals ensure the integrity of the data transfer.

— Termination: Data termination signals are required after each data beat in a
transfer. Note that in a single-beat transaction, the data termination signals
indicate the end of the tenure, while in burst accesses, the data terminatio
signals apply to individual beats and indicate the end of the tenure only afte
final data beat.

The 604e generates an address-only bus transfer during the execution ofdcbz, sync, eieio,
tlbie, tlbsync, andlwarx instructions, which use only the address bus with no data tran
involved. Additionally, the 604e’s retry capability provides an efficient snooping proto
for systems with multiple memory systems (including caches) that must remain cohe

8.2.1  Arbitration Signals
Arbitration for both address and data bus mastership is performed by a central, ex
arbiter and, minimally, by the arbitration signals shown in Section 8.3.1, “Address
Arbitration.” Most arbiter implementations require additional signals to coordinate
master/slave/snooping activities. Note that address bus busy (ABB) and data bus busy
(DBB) are bidirectional signals. These signals are inputs unless the 604e has master
one or both of the respective buses; they must be connected high through pull-up re
so that they remain negated when no devices have control of the buses.
Chapter 8.  System Interface Operation 8-7
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The following list describes the address arbitration signals:

• BR (bus request)—Assertion indicates that the 604e is requesting mastership o
address bus.

• BG (bus grant)—Assertion indicates that the 604e may, with the proper
qualification, assume mastership of the address bus. A qualified bus grant oc
whenBG is asserted,ABB is negated, andARTRY is negated during the current and
previous bus cycle.

If the 604e is parked,BR need not be asserted for the qualified bus grant.

• ABB (address bus busy)— Assertion by the 604e indicates that the 604e is th
address bus master.

The following list describes the data arbitration signals:

• DBG (data bus grant)—Indicates that the 604e may, with the proper qualificat
assume mastership of the data bus. A qualified data bus grant occurs whenDBG is
asserted whileDBB, DRTRY, andARTRY are negated (althoughARTRY may
actually be asserted at the timeDBG is asserted due to the snoop of a later addr
tenure).

TheDBB signal is driven by the current bus master,DRTRY is only driven from the
bus, andARTRY is from the bus, but only for the address bus tenure associated w
the current data bus tenure (that is, not from another address tenure).

• DBWO (data bus write only)—Assertion indicates that the 604e may perform 
data bus tenure for an outstanding write address even if a read address is pip
before the write address. IfDBWO is asserted, the 604e will assume data bus
mastership for a pending data bus write operation; the 604e will take the data bu
a pending read operation if this input is asserted along withDBG and no write is
pending. Care must be taken withDBWO to ensure the desired write is queued (fo
example, a cache-line snoop push-out operation).

• DBB (data bus busy)—Assertion by the 604e indicates that the 604e is the dat
master. The 604e always assumes data bus mastership if it needs the data bus
given a qualified data bus grant (seeDBG).

For more detailed information on the arbitration signals, refer to Section 8.3.1
“Address Bus Arbitration,” and Section 8.4.1, “Data Bus Arbitration.”

Note that while operating in fast-L2/data streaming mode,DBB becomes a 604e output
only signal and is driven in the same manner as before. If systems using the 604e in
L2/data streaming mode also implement data streaming across multiple masters, theDBB
signal must not be common among processors to avoid contention problems whe
processor is negatingDBB while another is assertingDBB. Table 8-1 describes the bu
arbitration signals provided by the 604e.
8-8 PowerPC 604e RISC Microprocessor User's Manual
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8.2.2  Address Pipelining and Split-Bus Transactions
The 604e protocol provides independent address and data bus capability to s
pipelined and split-bus transaction system organizations. Address pipelining allow
address tenure of a new bus transaction to begin before the data tenure of the c
transaction has finished. Split-bus transaction capability allows other bus activity to o
(either from the same master or from different masters) between the address an
tenures of a transaction.

While this capability does not inherently reduce memory latency, support for add
pipelining and split-bus transactions can greatly improve effective bus/memory throug
For this reason, these techniques are most effective in shared-memory multiproc
implementations where bus bandwidth is an important measurement of sy
performance.

External arbitration is required in systems in which multiple devices must compete fo
system bus. The design of the external arbiter affects pipelining by regulating theBG,
DBG, andAACK signals. For example, a one-level pipeline is enabled by assertingAACK
to the current address bus master and granting mastership of the address bus to t
requesting master before the current data bus tenure has completed. Three address
can occur before the current data bus tenure completes.

The 604e can pipeline its own transactions to a depth of two levels (intraproce
pipelining); however, the 604e bus protocol does not constrain the maximum numb
levels of pipelining that can occur on the bus between multiple masters (interproc
pipelining). The external arbiter must control the pipeline depth and synchroniza
between masters and slaves.

In a pipelined implementation, data bus tenures are kept in strict order with respe
address tenures. However, external hardware can further decouple the address a
buses, allowing the data tenures to occur out of order with respect to the address te
This requires some form of system tag to associate the out-of-order data transactio
the proper originating address transaction (not defined for the 604e interface). Indiv

Table 8-1. Bus Arbitration Signals

Signal Name Mnemonic Signal Type Signal Connection Requirements

Bus request BR Output One per processor

Bus grant BG Input One per processor

Address bus busy ABB Input/output Common among processors

Data bus grant DBG Input One per processor

Data bus busy DBB Input/output Common among processors
(One per processor if in data streaming
mode, and data streaming across multiple
processors is implemented.)
Chapter 8.  System Interface Operation 8-9
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bus requests and data bus grants from each processor can be used by the sy
implement tags to support interprocessor, out-of-order transactions.

The 604e supports a limited intraprocessor out-of-order, split-transaction capability v
DBWO signal. For more information about usingDBWO, see Section 8.11, “Using Dat
Bus Write Only.”

8.3  Address Bus Tenure
This section describes the three phases of the address tenure—address bus arb
address transfer, and address termination.

8.3.1  Address Bus Arbitration
When the 604e needs access to the external bus and does not have a qualified bus
asserts bus request (BR) until it is granted mastership of the bus and the bus is available
Figure 8-4). The external arbiter must grant master-elect status to the potential mas
asserting the bus grant (BG) signal. The 604e requesting the bus determines that the b
available when theABB input is negated. When the address bus is not busy(ABB input is
negated),BG is asserted and the address retry (ARTRY) input is negated, and was negate
the previous cycle, the 604e has what is referred to as a qualified bus grant. The
assumes address bus mastership by assertingABB when it receives a qualified bus grant

Figure 8-4. Address Bus Arbitration

-1 0 1

need_bus

BR

bg

abb

artry

qual BG

ABB

Logical Bus Clock
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External arbiters must allow only one device at a time to be the address bus m
Implementations in which no other device can be a master,BG can be grounded (always
asserted) to continually grant mastership of the address bus to the 604e.

If the 604e assertsBR before the external arbiter assertsBG, the 604e is considered to b
unparked, as shown in Figure 8-4. Figure 8-5 shows the parked case, where a qualifi
grant exists on the clock edge following a need_bus condition. Notice that the two bus
cycles required for arbitration are eliminated if the 604e is parked, reducing ov
memory latency for a transaction. The 604e always negatesABB for at least one bus clock
cycle afterAACK is asserted, even if it is parked and has another transaction pendin

Typically, bus parking is provided to the device that was the most recent bus ma
however, system designers may choose other schemes such as providing unreques
grants in situations where it is easy to correctly predict the next device requesting
mastership.

Figure 8-5. Address Bus Arbitration Showing Bus Parking

When the 604e receives a qualified bus grant, it assumes address bus masters
assertingABB and negating theBR output signal. Meanwhile, the 604e drives the addre
for the requested access onto the address bus and assertsTS to indicate the start of a new
transaction.

When designing external bus arbitration logic, note that the 604e may assertBR without
using the bus after it receives the qualified bus grant. For example, in a system usin
snooping, if the 604e assertsBR to perform a queued read-with-intent-to-modify-atom
(RWITMA), and the 604e snoops an access which cancels the reservation associate

-1 0 1

need_bus

BR

bg

abb

artry

qual BG

ABB
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the RWITMA. Once the 604e is granted the bus, it no longer needs to perform
RWITMA; therefore, the 604e does not assertABB and does not use the bus for the rea
operation. Note that the 604e assertsBR for at least one clock cycle in these instances.

8.3.2  Address Transfer
During the address transfer, the physical address and all attributes of the transacti
transferred from the bus master to the slave device(s). Snooping logic may monito
transfer to enforce cache coherency; see discussion about snooping in Section
“Address Transfer Termination.”

The signals used in the address transfer include the following signal groups:

• Address transfer start signal: Transfer start (TS)

Note that extended address transfer start (XATS) signal is used for direct-store
operations and has no function for memory-mapped accesses; see Section 8
“Direct-Store Operation.”

• Address transfer signals: Address bus (A[0–31]), address parity (AP[0–3]), an
address parity error (APE)

• Address transfer attribute signals: Transfer type (TT[0–4]), transfer code (TC[0–
transfer size (TSIZ[0–2]), transfer burst (TBST), cache inhibit (CI), write-through
(WT), global (GBL), and cache set element (CSE[0–1])

Figure 8-6 shows that the timing for all of these signals, exceptTS andAPE is identical.
All of the address transfer and address transfer attribute signals are combined in
ADDR+ grouping in Figure 8-6. TheTS signal indicates that the 604e has begun an add
transfer and that the address and transfer attributes are valid (within the contex
synchronous bus). The 604e always assertsTS (or XATS for direct-store operations
coincident withABB. As an input,TS need not coincide with the assertion ofABB on the
bus (that is, eitherTS orXATS can be asserted with, or on a subsequent clock cycle a
ABB is asserted; the 604e tracks this transaction correctly).
8-12 PowerPC 604e RISC Microprocessor User's Manual
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Figure 8-6. Address Bus Transfer

In Figure 8-6, the address transfer occurs during bus clock cycles 1 and 2 (arbitration o
in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this diag
the address bus termination input,AACK, is asserted to the 604e on the bus clock followin
assertion ofTS (as shown by the dependency line). This is the minimum duration of
address transfer for the 604e; the duration can be extended by delaying the asser
AACK for one or more bus clocks.

8.3.2.1  Address Bus Parity
The 604e always generates one bit of correct odd-byte parity for each of the four by
address when a valid address is on the bus. The calculated values are placed on the
3] outputs when the 604e is the address bus master. If the 604e is not the master,TS and
GBL are asserted together, and the transaction type is one that the 604e snoops (q
condition for snooping memory operations), the calculated values are compared wi
AP[0–3] inputs. If there is an error, theAPE output is asserted. If HID0[2] is set to 1,
parity error will cause a machine check if the MSR[ME] bit is set, or will cause a check
if the MSR[ME] bit is cleared. If HID0[2] is cleared to 0, then no action is taken. In eith
case, theAPE signal will be asserted if even parity is detected. For more information a
checkstop conditions, see Chapter 4, “Exceptions.”

8.3.2.2  Address Transfer Attribute Signals
The transfer attribute signals include several encoded signals such as the transfe
(TT[0–4]) signals, transfer burst (TBST) signal, transfer size (TSIZ[0–2]) signals, an
transfer code (TC[0–2]) signals. Section 7.2.4, “Address Transfer Attribute Sign
describes the encodings for the address transfer attribute signals. Note that TT[0–4],TBST,
and TSIZ[0–2] have alternate functions for direct-store operations; see Section
“Direct-Store Operation.”
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8.3.2.2.1  Transfer Type (TT[0–4]) Signals
Snooping logic should fully decode the transfer type signals if theGBL signal is asserted.
Slave devices can sometimes use the individual transfer type signals without fully dec
the group. For a complete description of the encoding for TT[0–4] signals, refer to Tab
1.

8.3.2.2.2  Transfer Size (TSIZ[0–2]) Signals
The transfer size signals (TSIZ[0–2]) indicate the size of the requested data trans
shown in Table 8-2. The TSIZ[0–2] signals may be used along withTBST and A[29–31]
to determine which portion of the data bus contains valid data for a write transactio
which portion of the bus should contain valid data for a read transaction. Note that
burst transaction (as indicated by the assertion ofTBST) TSIZ[0–2] are always set to
0b010. Therefore, if theTBST signal is asserted (except in cases of direct-store operat
or operations involving the use ofeciwx or ecowxinstructions), the memory system shou
transfer a total of eight words (32 bytes), regardless of the TSIZ[0–2] encoding.

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one
line). Data transfers that cross an aligned, 32-byte boundary either must present
address onto the bus at that boundary (for coherency consideration) or must oper
noncoherent data with respect to the 604e.

8.3.2.3  Burst Ordering During Data Transfers
During burst data transfer operations, 32 bytes of data (one cache line) are transferre
from the cache in order. Burst write transfers are always performed zero-double-word
but since burst reads are performed critical-double-word-first, a burst read transfer m
start with the first double word of the cache line, and the cache line fill may wrap aro
the end of the cache line. Table 8-3 describes the various burst orderings for the 60

Table 8-2. Transfer Size Signal Encodings

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size

Asserted 0 1 0 Eight-word burst

Negated 0 0 0 Eight bytes

Negated 0 0 1 One byte

Negated 0 1 0 Two bytes

Negated 0 1 1 Three bytes

Negated 1 0 0 Four bytes

Negated 1 0 1 Five bytes

Negated 1 1 0 Six bytes

Negated 1 1 1 Seven bytes
8-14 PowerPC 604e RISC Microprocessor User's Manual
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8.3.2.4  Effect of Alignment in Data Transfers
Table 8-4 lists the aligned transfers that can occur on the 604e bus. These are trans
which the data is aligned to an address that is an integer multiple of the size of the dat
example, Table 8-4 shows that one-byte data is always aligned; however, for a fou
word to be aligned, it must be oriented on an address that is a multiple of four.

Table 8-3. Burst Ordering

Data Transfer
For Starting Address:

A[27–28] = 00 A[27–28] = 01 A[27–28] = 10 A[27–28] = 11

First data beat DW0 DW1 DW2 DW3

Second data beat DW1 DW2 DW3 DW0

Third data beat DW2 DW3 DW0 DW1

Fourth data beat DW3 DW0 DW1 DW2

Note:  A[29–31] are always 0b000 for burst transfers by the 604e.

Table 8-4. Aligned Data Transfers

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29–31]
Data Bus Byte Lane(s)

0 1 2 3 4 5 6 7

Byte 0 0 1 000 — — — — — — —

0 0 1 001 — — — — — — —

0 0 1 010 — — — — — — —

0 0 1 011 — — — — — — —

0 0 1 100 — — — — — — —

0 0 1 101 — — — — — — —

0 0 1 110 — — — — — — —

0 0 1 111 — — — — — — —

Half word 0 1 0 000 — — — — — —

0 1 0 010 — — — — — —

0 1 0 100 — — — — — —

0 1 0 110 — — — — — —

Word 1 0 0 000 — — — —

1 0 0 100 — — — —

Double word 0 0 0 000
Chapter 8.  System Interface Operation 8-15
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The 604e supports misaligned memory operations, although their use may substa
degrade performance. Misaligned memory transfers address memory that is not alig
the size of the data being transferred (such as, a word read of an odd byte add
Although most of these operations hit in the primary cache (or generate burst me
operations if they miss), the 604e interface supports misaligned transfers within a word
bit aligned) boundary, as shown in Table 8-5. Note that the four-byte transfer in Tabl
is only one example of misalignment. As long as the attempted transfer does not c
word boundary, the 604e can transfer the data on the misaligned address (for exam
half-word read from an odd byte-aligned address). An attempt to address data that c
a word boundary requires two bus transfers to access the data.

Due to the performance degradations associated with misaligned memory operation
are best avoided. In addition to the double-word straddle boundary condition, the ad
translation logic can generate substantial exception overhead when the load/store m
and load/store string instructions access misaligned data. It is strongly recommende
software attempt to align code and data where possible.

Table 8-5. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size
(Four Bytes)

TSIZ(0–2) A[29–31]
Data Bus Byte Lanes

0 1 2 3 4 5 6 7

Aligned 1 0 0 0 0 0 A A A A — — — —

Misaligned—first access

second access

0 1 1 0 0 1 A A A — — — —

0 0 1 1 0 0 — — — — A — — —

Misaligned—first access

second access

0 1 0 0 1 0 — — A A — — — —

0 1 0 1 0 0 — — — — A A — —

Misaligned—first access

second access

0 0 1 0 1 1 — — — A — — — —

0 1 1 1 0 0 — — — — A A A —

Aligned 1 0 0 1 0 0 — — — — A A A A

Misaligned—first access

second access

0 1 1 1 0 1 — — — — — A A A

0 0 1 0 0 0 A — — — — — — —

Misaligned—first access

second access

0 1 0 1 1 0 — — — — — — A A

0 1 0 0 0 0 A A — — — — — —

Misaligned—first access

second access

0 0 1 1 1 1 — — — — — — — A

0 1 1 0 0 0 A A A — — — — —

A: Byte lane used
—: Byte lane not used
8-16 PowerPC 604e RISC Microprocessor User's Manual
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Table 8-6 shows the signal configuration for three-word accesses.

8.3.2.4.1  Alignment of External Control Instructions
The size of the data transfer associated with theeciwxandecowxinstructions is always four
bytes. However, if theeciwx or ecowx instruction is misaligned and crosses any wo
boundary, the 604e will generate two bus operations, each with a size of fewer than
bytes. For the first bus operation, bits A[29–31] equals bits 29–31 of the data, which
be 0b101, 0b110, or 0b111. The size associated with the first bus operation will be 3
1 bytes, respectively. For the second bus operation, bits A[29–31] equal 0b000, and th
associated with the operation will be 1, 2, or 3 bytes, respectively. For both opera
TBST and TSIZ[0–2] are redefined to specify the resource ID (RID). The resource I
copied from bits 28–31 of the external access register (EAR). Foreciwx/ecowxoperations,
the state of bit 28 of the EAR is presented by theTBST signal without inversion (if
EAR[28] = 1,TBST = 1). The size of the second bus operation cannot be deduced from
operation itself; the system must determine how many bytes were transferred on th
bus operation to determine the size of the second operation.

Furthermore, the two bus operations associated with such a misaligned external c
instruction are not atomic. That is, the 604e may initiate other types of memory opera
between the two transfers. Also, the two bus operations associated with a misalignedecowx
may be interrupted by aneciwxbus operation, and vice versa. The 604e does guarantee
the two operations associated with a misalignedecowxwill not be interrupted by another
ecowx operation; and likewise foreciwx.

Table 8-6. Misaligned Data Transfer—Three-Byte Examples

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29–31]
Data Bus Byte Lane(s)

0 1 2 3 4 5 6 7

Three Bytes 0 1 1 0 0 0 A A A — — — — —

0 1 1 0 0 1 — A A A — — — —

0 1 1 0 1 0 — — A A A — — —

0 1 1 0 1 1 — — — A A A — —

0 1 1 1 0 0 — — — — A A A —

0 1 1 1 0 1 — — — — — A A A

First transfer—two bytes 0 1 0 1 1 0 — — — — — — A A

Second transfer—one byte 0 0 1 0 0 0 A — — — — — — —

First transfer—one byte 0 0 1 1 1 1 — — — — — — --- A

Second transfer—two bytes 0 1 0 0 0 0 A A — — — — — —
Chapter 8.  System Interface Operation 8-17
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Because a misaligned external control address is considered a programming err
system may choose some means to cause an exception, typically by assertingTEA to cause
a machine check exception orINT to cause an external interrupt, when a misalign
external control bus operation occurs.

8.3.2.5  Transfer Code (TC[0–2]) Signals
The TC[0–2] signals provide supplemental information about the corresponding add
Note that the TCx signals can be used with theWT, TT[0–4] andTBST signals to further
define the current transaction. When asserted, the transfer codes have the foll
meanings:

• TC0

—  Read cycle: indicates code fetch
— Write cycle: de-allocation from L1 cache

• TC1

— Write cycle: indicates new cache state is shared

• TC2

— Read and write cycle: indicates allocation cycle utilized a copy-back buffer

Table 8-7 shows the supplemental information provided by the TC[0–2] andWT signals.

Table 8-7. Transfer Code Encoding

TT Type Code WT TC0 TC1 TC2 Operation

Write with kill 1 1 0 0 Cache copyback

Write with kill 0 1 0 0 Block invalidate
(dcbf)

Write with kill 0 0 0 0 Block clean
(dcbst )

Write with kill 0 0 1 0 Snoop push
(read operation)

Write with kill 0 1 0 0 Snoop push
(read-with-intent-to-modify)

Write with kill 0 0 0 0 Snoop push
(clean operation)

Write with kill 0 1 0 0 Snoop push
(flush operation)

Kill block x 1 0 0 Kill block de-allocate
(dcbi )

Kill block 1 0 0 0 Kill block and allocate, no cast
out required (dcbz )

Kill block 1 0 0 1 Kill block and allocate, cast
out required (dcbz )
8-18 PowerPC 604e RISC Microprocessor User's Manual
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Note : 1. Read encompasses all of the read or read-with-intent-to-modify operations, both normal and atomic.

2. The icbi  instruction is distinguished from kill block by assertion of the TT4 bit.

3. Value determined by write-through bit from translation.

8.3.3   Address Transfer Termination
The address tenure of a bus operation is terminated when completed with the asser
AACK, or retried with the assertion ofARTRY. TheSHD signal may also be asserted eith
coincident with theARTRY signal, or alone to indicate that a copy of the requested d
exists in one of the devices on the bus, and that the requesting device should mark th
as shared in its cache. The 604e does not terminate the address transfer until theAACK
(address acknowledge) input is asserted; therefore, the system can extend the a
transfer phase by delaying the assertion ofAACK to the 604e.AACK can be asserted as
early as the bus clock cycle followingTS (see Figure 8-7), which allows a minimum
address tenure of two bus cycles. As shown in Figure 8-7, these signals are asserted
bus clock cycle, three-stated for half of the next bus clock cycle, driven high till
following bus cycle, and finally three-stated. Note thatAACK must be asserted for only one
bus clock cycle.

The address transfer can be terminated with the requirement to retry ifARTRY is asserted
anytime during the address tenure and through the cycle followingAACK. The assertion
causes the entire transaction (address and data tenure) to be rerun. As a snooping
the 604e assertsARTRY for a snooped transaction that hits modified data in the data ca
that must be written back to memory, or if the snooped transaction could not be serv
As a bus master, the 604e responds to an assertion ofARTRY by aborting the bus
transaction and re-requesting the bus. Note that after recognizing an assertion ofARTRY
and aborting the transaction in progress, the 604e is not guaranteed to run the
transaction the next time it is granted the bus.

If an address retry is required, theARTRY response will be asserted by a bus snoopi
device as early as the second cycle after the assertion ofTS. Once asserted,ARTRY must
remain asserted through the cycle after the assertion ofAACK. The assertion ofARTRY
during the cycle after the assertion ofAACK is referred to as a qualifiedARTRY. An earlier
assertion ofARTRY during the address tenure is referred to as an earlyARTRY.

Kill block 1 0 0 0 Kill block, write to shared
block

Read1 W3 0 x 0 Data read, cast out required

Read W3 0 x 1 Data read, cast out required

Read W3 1 x 0 Instruction read

Instruction cache
block invalidate

x 1 0 0 Kill block de-allocate
(icbi )2

Table 8-7. Transfer Code Encoding (Continued)

TT Type Code WT TC0 TC1 TC2 Operation
Chapter 8.  System Interface Operation 8-19
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As a bus master, the 604e recognizes either an early or qualifiedARTRY and prevents the
data tenure associated with the retried address tenure. If the data tenure has already
the 604e aborts and terminates the data tenure immediately even if the burst data ha
received. If the assertion ofARTRY is received up to or on the bus cycle following the fir
(or only) assertion ofTA for the data tenure, the 604e ignores the first data beat, and if
a load operation, does not forward data internally to the cache and execution units.

If the 604e is in fast-L2/data streaming mode,TA should not be asserted prior to th
qualifiedARTRY cycle. If ARTRY is asserted after the first (or only) assertion ofTA,
improper operation of the bus interface may result.

During the clock of a qualifiedARTRY, the 604e also determines if it should negateBR and
ignoreBG on the following cycle. On the following cycle, only the snooping master t
assertedARTRY and needs to perform a snoop copy-back operation is allowed to a
BR. This guarantees the snooping master an opportunity to request and be granted
before the just-retried master can restart its transaction.

Figure 8-7. Snooped Address Cycle with ARTRY

8.4  Data Bus Tenure
This section describes the data bus arbitration, transfer, and termination phases defi
the 604e memory access protocol. The phases of the data tenure are identical to thos
address tenure, underscoring the symmetry in the control of the two buses.
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8.4.1  Data Bus Arbitration
Data bus arbitration uses the data arbitration signal group—DBG, DBWO, andDBB.
Additionally, the combination ofTS orXATS and TT[0–4] provides information about th
data bus request to external logic.

TheTS signal is an implied data bus request from the 604e; the arbiter must qualifyTS with
the transfer type (TT) encodings to determine if the current address transfer is an ad
only operation, which does not require a data bus transfer (see Figure 8-7). If the da
is needed, the arbiter grants data bus mastership by asserting theDBG input to the 604e. As
with the address-bus arbitration phase, the 604e must qualify theDBG input with a number
of input signals before assuming bus mastership, as shown in Figure 8-8.

Figure 8-8. Data Bus Arbitration

A qualified data bus grant can be expressed as the following:

QDBG =DBG asserted whileDBB, DRTRY, andARTRY (associated with the data
bus operation) are negated.

When a data tenure overlaps with its associated address tenure, a qualifiedARTRY
assertion coincident with a data bus grant signal does not result in data bus mast
(DBB is not asserted). Otherwise, the 604e always assertsDBB on the bus clock cycle after
recognition of a qualified data bus grant. Since the 604e can pipeline transactions,
may be an outstanding data bus transaction when a new address transaction is ret
this case, the 604e becomes the data bus master to complete the previous transact
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8.4.1.1  Effect of ARTRY Assertion on Data Transfer and Arbitration
The system designer must define the qualified snoop response window, and ensure th
is not transferred prior to one cycle before the end of that window in non–fast-L2/
streaming mode, or prior to the same cycle as the end of that window in fast-L2
streaming mode. The 604e supports a snoop response window as early as two cycle
assertion ofTS. Operation of the 604e in fast-L2/data streaming mode requires that da
transferred no earlier than the first cycle of theARTRY window, not the cycle earlier. The
system may assertTA for a data transaction prior to the termination of an address ten
in this case note that the snoop response window is closed either on the clock thatTA is
asserted (if in fast-L2/data streaming mode), or the clock after the assertion ofTA (if in
non–fast-L2/data streaming mode).

An assertedARTRY can invalidate a previous or current data transfer and terminate
data cycle, invalidate a qualified data bus grant, or cancel a future data transfer. The po
scenarios are described below:

• If data is transferred (via assertion ofTA) two or more cycles before the beginning
of the snoop window in non–fast-L2/data streaming mode, or one or more cyc
before the beginning of the snoop window in fast-L2/data streaming, then data
transferred too early to be cancelled byARTRY. Therefore, systems in which
ARTRY can be asserted must not attempt data transfers (assertTA) prior to this
cycle.

• If data is transferred in the cycle before the beginning of the snoop response win
assertion ofARTRY invalidates the data transfer, in a similar fashion to assertion
DRTRY, except that the data tenure is aborted, not extended. If the fast-L2/da
streaming mode is active, data may not be transferred in this cycle.

• If data is transferred in the first cycle of the snoop response window, assertion
ARTRY invalidates the data transfer. This is similar to deassertingTA except that
the data tenure is aborted, instead of continued.

• If DBG has been asserted, the system must not attempt to transfer data in cy
following the assertion ofARTRY. The 604e negatesDBB the cycle following
ARTRY, and expects no more data to be transferred. However, note that the d
related to a previous address tenure must not be affected, and that the system
distinguish this case.

• If a DBG has not been asserted, anARTRY assertion effectively negates the implie
data bus request that was associated with the address transfer, and the 604e w
expect a transfer. The system must not assertDBG for this transfer if any other 604e
data transfers are pending.

• If ARTRY assertion occurs while a data transfer is in progress, the 604e will
terminate data transfers following the first cycle ofARTRY assertion. This means
that a burst transfer may be cut short.

• If an ARTRY assertion occurs the same cycle as its correspondingDBG, the
ARTRY will disqualify the data bus grant in that cycle and the 604e will not initia
any data transaction on the following cycle regardless of whether any other da
8-22 PowerPC 604e RISC Microprocessor User's Manual
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transactions are queued. However, on the following cycle (the cycle after the
ARTRY assertion) the 604e processor will respond to a qualified data bus gran
has previously queued data transactions. Figure 8-9 shows an example where a
address tenure receives anARTRY snoop response in the same cycle the system
assertsDBWO andDBG (cycle 6) to grant the write data tenure before a previous
requested read data tenure. Following theARTRY assertion, the qualifiedDBG
assertion to the 604e in cycle 7 will be accepted for the read data tenure.

Figure 8-9. Qualified DBG Generation Following ARTRY

8.4.1.2  Using the DBB Signal
TheDBB signal should be connected between masters if data tenure scheduling is
the masters. Optionally, the memory system can control data tenure scheduling di
with DBG. However, it is possible to ignore theDBB signal in the system if theDBB input
is not used as the final data bus allocation control between data bus masters, and
memory system can track the start and end of the data tenure. In non–fast-L2
streaming mode, ifDBB is not used to signal the end of a data tenure,DBG is only asserted
to the next bus master the cycle before the cycle that the next bus master may actually
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its data tenure, rather than asserting it earlier (usually during another master’s data t
and allowing the negation ofDBB to be the final gating signal for a qualified data bus gra
If the 604e is in fast-L2/data streaming mode, theDBB signal is an output only, and is no
sampled by the 604e. Even ifDBB is ignored in the system, the 604e always recognizes
own assertion ofDBB (except when in fast-L2/data streaming mode), and requires
cycle after data tenure completion to negate its ownDBB before recognizing a qualified
data bus grant for another data tenure. If theDBB signal is not used by the system,DBB
must still be connected to a pull-up resistor on the 604e to ensure proper operation.
604e is in fast-L2/data streaming mode, and data streaming is to be performed a
multiple processors, theDBB signal for each processor should be connected directly to
memory arbiter.

8.4.2  Data Bus Write Only
As a result of address pipelining, the 604e may have up to three data tenures que
perform when it receives a qualifiedDBG. Generally, the data tenures should be perform
in strict order (the same order) as their address tenures were performed. The 604e, ho
also supports a limited out-of-order capability with the data bus write only (DBWO) input.
The DBWO capability exists to alleviate deadlock conditions that are possible in ce
system topologies. When recognized on the clock of a qualifiedDBG, DBWO may direct
the 604e to perform the next pending data write tenure even if a pending read tenure
have normally been performed first. For more information on the operation ofDBWO, refer
to Section 8.11, “Using Data Bus Write Only.”

If the 604e has any data tenures to perform, it always accepts data bus masters
perform a data tenure when it recognizes a qualifiedDBG. If DBWO is asserted with a
qualifiedDBG and no write tenure is queued to run, the 604e still takes mastership o
data bus to perform the next pending read data tenure. If the 604e has multiple q
writes, the assertion ofDBWO causes the reordering of the write operation whose add
was sent first.

Generally,DBWO should only be used to allow a copy-back operation (burst write
occur before a pending read operation. IfDBWO is used for single-beat write operation
it may negate the effect of theeieio instruction by allowing a write operation to precede
program-scheduled read operation. IfDBWO is asserted when the 604e does not have w
data available, bus operations occur as ifDBWO had not been asserted.

8.4.3  Data Transfer
The data transfer signals include DH[0–31], DL[0–31], DP[0–7] andDPE. For memory
accesses, the DH and DL signals form a 64-bit data path for read and write operatio

The 604e transfers data in either single- or four-beat burst transfers. Single-beat ope
can transfer from one to eight bytes at a time and can be misaligned; see Section 8
“Effect of Alignment in Data Transfers.” Burst operations always transfer eight words
8-24 PowerPC 604e RISC Microprocessor User's Manual
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are aligned on eight-word address boundaries. Burst transfers can achieve signifi
higher bus throughput than single-beat operations.

The type of transaction initiated by the 604e depends on whether the code or d
cacheable and, for store operations whether the cache is considered in write-back or
through mode, which software controls on either a page or block basis. Burst tran
support cacheable operations only; that is, memory structures must be marked as cac
(and write-back for data store operations) in the respective page or block descriptor t
advantage of burst transfers.

The 604e outputTBST indicates to the system whether the current transaction is a sin
or four-beat transfer (except duringeciwx/ecowxtransactions, when it signals the state
EAR[28]). A burst transfer has an assumed address order. For load or store operatio
missed in the cache (and are marked as cacheable and, for stores, write-back in the M
the 604e uses the double-word–aligned address associated with the critical code or d
initiated the transaction. This minimizes latency by allowing the critical code or data t
forwarded to the processor before the rest of the cache line is filled. For all other
operations, however, the cache line write operations are transferred beginning with th
word–aligned data, and burst reads begin on double-word boundaries.

The 604e does not directly support dynamic interfacing to subsystems with less than
bit data path (except for direct-store operations discussed in Section 8.6, “Direct-
Operation”).

8.4.4  Data Transfer Termination
Four signals are used to terminate data bus transactions—TA, DRTRY (data retry),TEA
(transfer error acknowledge), andARTRY. TheTA signal indicates normal termination o
data transactions. It must always be asserted on the bus cycle coincident with the da
it is qualifying. It may be withheld by the slave for any number of clocks until valid dat
ready to be supplied or accepted.DRTRY indicates invalid read data in the previous b
clock cycle.DRTRY extends the current data beat and does not terminate it. If it is ass
after the last (or only) data beat, the 604e negatesDBB but still considers the data bea
active and waits for another assertion ofTA. DRTRY is ignored on write operations.TEA
indicates a nonrecoverable bus error event. Upon receiving a final (or only) termin
condition, the 604e always negatesDBB for one cycle, except when data streaming in fa
L2/data streaming mode.

If DRTRY is asserted by the memory system to extend the last (or only) data beat pa
negation ofDBB, the memory system should three-state the data bus on the clock afte
final assertion ofTA, even though it will negateDRTRY on that clock. This is to prevent a
potential momentary data bus conflict if a write access begins on the following cycle

TheTEA signal is used to signal a nonrecoverable error during the data transaction
TEA signal will be recognized anytime during the assertion ofDBB or when a valid
DRTRY could be sampled. The assertion ofTEA terminates the data tenure immediate
Chapter 8.  System Interface Operation 8-25
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even if in the middle of a burst; however, it does not prevent incorrect data that has just
acknowledged withTA from being written into the 604e’s cache or GPRs. The assertio
TEA initiates either a machine check exception or a checkstop condition based o
setting of the MSR.

An assertion ofARTRY causes the data tenure to be terminated immediately if theARTRY
is for the address tenure associated with the data tenure in operation (the data tenu
not be terminated due to address pipelining). IfARTRY is connected for the 604e, th
earliest allowable assertion ofTA to the 604e is directly dependent on the earliest possi
assertion ofARTRY to the 604e; see Section 8.3.3, “Address Transfer Termination.”

8.4.4.1  Normal Single-Beat Termination
Normal termination of a single-beat data read operation occurs whenTA is asserted by a
responding slave. TheTEA andDRTRY signals must remain negated during the trans
(see Figure 8-10).

Figure 8-10. Normal Single-Beat Read Termination
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TheDRTRY signal is not sampled during data writes, as shown in Figure 8-11.

Figure 8-11. Normal Single-Beat Write Termination

Normal termination of a burst transfer occurs whenTA is asserted for four bus clock cycles
as shown in Figure 8-12. The bus clock cycles in whichTA is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to term
successfully,TEA andDRTRY must remain negated during the transfer. For write bur
TEA must remain negated for a successful transfer.DRTRY is ignored during data writes

Figure 8-12. Normal Burst Transaction
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For read bursts,DRTRY may be asserted one bus clock cycle afterTA is asserted to signal
that the data presented withTA is invalid and that the processor must wait for the negati
of DRTRY before forwarding data to the processor (see Figure 8-13). Thus, a data be
be speculatively terminated withTA and then one bus clock cycle later confirmed with th
negation ofDRTRY. TheDRTRY signal is valid only for read transactions.TA must be
asserted on the bus clock cycle before the first bus clock cycle of the assertion ofDRTRY;
otherwise the results are undefined.

TheDRTRY signal extends data bus mastership such that other processors cannot u
data bus untilDRTRY is negated. Therefore, in the example in Figure 8-13,DBB cannot
be asserted until bus clock cycle 5. This is true for both read and write operations
thoughDRTRY does not extend bus mastership for write operations.

Figure 8-13. Termination with DRTRY

Figure 8-14 shows the effect of usingDRTRY during a burst read. It also shows the effe
of usingTA to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8
TA is negated for the second data beat. The 604e data pipeline does not proceed un
clock cycle 4 when theTA is reasserted.

Note thatDRTRY is useful for systems that implement speculative forwarding of data s
as those with direct-mapped, second-level caches where hit/miss is determined o
following bus clock cycle, or for parity- or ECC-checked memory systems.

Note thatDRTRY may not be implemented on other PowerPC processors.
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8.4.4.2  Data Transfer Termination Due to a Bus Error
The TEA signal indicates that a bus error occurred. It may be asserted whileDBB is
asserted or when a validDRTRY could be recognized by the 604e. AssertingTEA to the
604e terminates the transaction; that is, further assertions ofTA andDRTRY are ignored
andDBB is negated. If the system assertsTEA for a data transaction on the same cycle
beforeARTRY is asserted for the corresponding address transaction, the 604e will ig
the effects ofARTRY on the address transaction and will consider it successf
completed.

Note that from a bus standpoint, the assertion ofTEA causes nothing worse than the ear
termination of the data tenure in progress. All the system logic involved in processin
data transfer prior to theTEA must return to the normal nonbusy state following theTEA
so that the bus operations associated with a machine check exception can proceed.
bus pipelining in the 604e, all outstanding bus operations, including all queued reques
completed in the normal fashion following theTEA. The machine check exception can b
taken while these transactions are in progress.

If the TEA signal is asserted during a direct-store access, the action of theTEA is delayed
until all data transfers from the direct store access have been completed. The device c
assertion of theTEA signal is responsible for maintaining assertion of theTEA signal until
the last direct-store data tenure is complete. The direct store reply, in cases ofTEA
assertion, is not required, and will be ignored by the 604e. The 604e will recogniz
assertion of theTEA signal at the completion of the last direct-store data tenure, and
before.

Figure 8-14. Read Burst with TA Wait States and DRTRY

TS

qual DBG

DBB

data

ta

drtry

1 2 3 4 5 6 7 8 9
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Assertion of theTEA signal causes a machine check exception (and possibly a check
condition within the 604e). For more information, see Section 4.5.2, “Machine Ch
Exception (0x00200).” Note also that the 604e does not implement a synchronous
capability for memory accesses. This means that the exception instruction pointer do
point to the memory operation that caused the assertion ofTEA, but to the instruction about
to be executed (perhaps several instructions later). However, assertion ofTEA does not
invalidate data entering the GPR or the cache. Additionally, the corresponding addre
the access that causedTEA to be asserted is not latched by the 604e. To recover,
exception handler must determine and remedy the cause of theTEA, or the 604e must be
reset; therefore, this function should only be used to flag fatal system conditions t
processor (such as parity or uncorrectable ECC errors).

After the 604e has committed to run a transaction, that transaction must even
complete. Address retry causes the transaction to be restarted;TA wait states andDRTRY
assertion for reads delay termination of individual data beats. Eventually, howeve
system must either terminate the transaction or assert theTEA signal (and vector the 604e
into a machine check exception.) For this reason, care must be taken to check for th
of physical memory and the location of certain system facilities to avoid memory acce
that result in the generation of machine check exceptions.

Note thatTEA generates a machine check exception depending on the ME bit in the M
Clearing the machine check exception enable control bit leads to a true checkstop con
(instruction execution halted and processor clock stopped); a machine check exc
occurs if the ME bit is set.

8.4.5  Memory Coherency—MESI Protocol
The 604e provides dedicated hardware to provide memory coherency by snoopin
transactions. The address retry capability enforces the four-state, MESI cache-coh
protocol (see Figure 8-15). In addition to the hardware required to monitor bus traffi
coherency, the 604e has a cache port dedicated to snooping so that comparing cache
to address traffic on the bus does not tie up the 604e's on-chip data cache.

The global (GBL) signal output, indicates whether the current transaction must be sno
by other snooping devices on the bus. Address bus masters assertGBL to indicate that the
current transaction is a global access (that is, an access to memory shared by more th
processor/cache). IfGBL is not asserted for the transaction, that transaction is not snoo
When other devices detect theGBL input asserted, they must respond by snooping
broadcast address.

Normally, GBL reflects the M-bit value specified for the memory reference in
corresponding translation descriptor(s). Note that care must be taken to minimiz
number of pages marked as global, because the retry protocol discussed in the pr
section is used to enforce coherency and can require significant bus bandwidth.
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When the 604e is not the address bus master,GBL is an input. The 604e snoops
transaction ifTS andGBL are asserted together in the same bus clock cycle (this
qualifiedsnooping condition). No snoop update to the 604e cache occurs if the sno
transaction is not marked global. This includes invalidation cycles.

When the 604e detects a qualified snoop condition, the address associated with theTS is
compared against the data cache tags through a dedicated cache tag port. Sn
completes if no hit is detected. If, however, the address hits in the cache, the 604e
according to the MESI protocol shown in Figure 8-15, assuming the WIM bits are s
write-back mode, caching allowed, and coherency enforced (WIM = 001).

Note that write hits to clean lines of nonglobal pages do not generate invalidate broad
There are several types of bus transactions that involve the movement of data that c
longer access the TLB M-bit (for example, replacement cache block copy-back, or a s
push). In these cases, the hardware cannot determine whether the cache bloc
originally marked global; therefore, the 604e marks these transactions as nonglobal to
retry deadlocks.

The 604e's on-chip data cache is implemented as a four-way set-associative cac
facilitate external monitoring of the internal cache tags, the cache set element (CSE
signals indicate which sector of the cache set is being replaced on read oper
(including RWITM). Note that these signals are valid only for 604e burst operations; fo
other bus operations, the CSE[0–1] signals should be ignored.
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Figure 8-15. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 8-8 shows the CSE[0–1] encodings.

Table 8-8. CSE[0–1] Signals

CSE[0–1] Cache Set Element

00 Set 0

01 Set 1

10 Set 2

11 Set 3

SHARED

SHR

RH

RH

EXCLUSIVE

SHW

RMS

S
H

R

SHWSHR

RME WH

WH

WH

RH

MODIFIED

S
H

W

S
H

W
(b

ur
st

)

INVALID
(On a miss, the old

line is first invalidated
and copied back

if M)

W
M

BUS TRANSACTIONS

RH = Read Hit = Snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive = Invalidate Transaction

WH = Write Hit
WM = Write Miss = Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or = Cache Block Fill

Read-with-Intent-to-Modify
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8.5  Timing Examples
This section shows timing diagrams for various scenarios. Figure 8-16 illustrates the f
single-beat reads possible for the 604e604e. This figure shows both minimal latenc
maximum single-beat throughput. By delaying the data bus tenure, the latency incre
but, because of split-transaction pipelining, the overall throughput is not affected unle
data bus latency causes the fourth address tenure to be delayed.

Note that all bidirectional signals are three-stated between bus tenures.

Figure 8-16. Fastest Single-Beat Reads
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Figure 8-17 illustrates the fastest single-beat writes supported by the 604e. Note th
bidirectional signals are three-stated between bus tenures. The TT[1–4] signals are
encoded 0bx0010, and TT0 can be either 0 or 1.

Figure 8-17. Fastest Single-Beat Writes
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Figure 8-18 shows three ways to delay single-beat reads showing data-delay contro

• TheTA signal can remain negated to insert wait states in clock cycles 3 and 4
• For the second access,DBG could have been asserted in clock cycle 6.
• In the third access,DRTRY is asserted in clock cycle 11 to flush the previous da

Note that all bidirectional signals are three-stated between bus tenures.

Figure 8-18. Single-Beat Reads Showing Data-Delay Controls
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Figure 8-19 shows data-delay controls in a single-beat write operation. Note tha
bidirectional signals are three-stated between bus tenures. Data transfers are delaye
following ways:

• TheTA signal is held negated to insert wait states in clocks 3 and 4.
• In clock 6,DBG is held negated, delaying the start of the data tenure.

The last access is not delayed (DRTRY is valid only for read operations).

Figure 8-19. Single-Beat Writes Showing Data Delay Controls
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Figure 8-20 shows the use of data-delay controls with burst transfers. Note tha
bidirectional signals are three-stated between bus tenures. Note the following:

• The first data beat of bursted read data (clock 3) is the critical quad word.
• The write burst shows the use ofTA signal negation to delay the third data beat.
• The final read burst shows the use ofDRTRY on the third data beat.
• The address for the third transfer is delayed until the first transfer completes.

Figure 8-20. Burst Transfers with Data Delay Controls
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Figure 8-21 shows the use of theTEA signal. Note that all bidirectional signals are thre
stated between bus tenures. Note the following:

• The first data beat of the read burst (in clock 0) is the critical quad word.

• TheTEA signal truncates the burst write transfer on the third data beat.

• The 604e604e eventually causes an exception to be taken on theTEA event.

Figure 8-21. Use of Transfer Error Acknowledge ( TEA)
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8.6  Direct-Store Operation
The 604e defines separate memory-mapped and I/O address spaces, or seg
distinguished by the corresponding segment register T bit in the address translation
of the 604e. If the T bit is cleared, the memory reference is a normal memory-ma
access and can use the virtual memory management hardware of the 604e. If the T bi
the memory reference is a direct-store access.

The following points should be considered for direct-store accesses:

• The use of direct-store segment (referred to as direct-store segments in the
architecture specification) accesses may have a significant impact on the
performance of the 604e. The provision of direct-store segment access capabil
the 604e is to provide compatibility with earlier hardware I/O controllers and m
not be provided in future derivatives of the 604e family.

• Direct-store accesses must be strongly ordered; for example, these accesses
run on the bus strictly in order with respect to the instruction stream.

• Direct-store accesses must provide synchronous error reporting. Chapter 3, “C
and Bus Interface Unit Operation,” describes architectural aspects of direct-st
segments, as well as an overview of the segmented address space managem
PowerPC processors.

The 604e has a single bus interface to support both memory accesses and direc
segment accesses.

The direct-store protocol for the 604e allows for the transfer of 1 to 128 bytes of
between the 604e and the bus unit controller (BUC) for each single load or store re
issued by the program. The block of data is transferred by the 604e as multiple single
bus transactions (individual address and data tenure for each transaction) until comp
The program waits for the sequence of bus transactions to be completed so that
completion status (error or no error) can be reported precisely with respect to the pro
flow. The completion status is snooped by the 604e from a bus transaction run by the

The system recognizes the assertion of theTS signal as the start of a memory-mappe
access. The assertion ofXATS indicates a direct-store access. This allows memory-map
devices to ignore direct-store transactions. IfXATS is asserted, the access is to a dire
store space and the following extensions to the memory access protocol apply:

• A new set of bus operations are defined. The transfer type, transfer burst, and
transfer size signals are redefined for direct-store operations; they convey the op
for the I/O transaction (see Table 8-9).

• There are two beats of address for each direct-store transfer. The first beat (p
0) provides basic address information such as the segment register and the s
tag and several control bits; the second beat (packet 1) provides additional
addressing bits from the segment register and the logical address.
Chapter 8.  System Interface Operation 8-39
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• The TT[0–3],TBST, and TSIZ[0–2] signals are remapped to form an 8-bit extend
transfer code (XATC) which specifies a command and transfer size for the
transaction. The XATC field is driven and snooped by the 604e during direct-s
transactions.

• Only the data signals such as DH[0–31] and DP[0–3] are used. The lower half o
data bus and parity is ignored.

• The sender that initiated the transaction must wait for a reply from the receiver
unit controller (BUC) before starting a new operation.

• The 604e does not burst direct-store transactions. All direct-store transactions
generated by the 604e are single-beat transactions of four bytes or less (single
beat tenure per address tenure).

Direct-store transactions use separate arbitration for the split address and data bus
define address-only and single-beat transactions. The address-retry vehicle is ide
although there is no hardware coherency support for direct-store transactions. TheARTRY
signal is useful, however, for pacing 604e transactions, effectively indicating to the
that the BUC is in a queue-full condition and cannot accept new data.

In addition to the extensions noted above, there are fundamental differences be
memory-mapped and direct-store operations. For example, only half of the 64-bit data
is available for 604e direct-store transactions. This lowers the pin count for I/O interf
but generally results in substantially less bandwidth than memory-mapped acc
Additionally, load/store instructions that address direct-store segments cannot com
successfully without an error-free reply from the addressed BUC. Because normal d
store accesses involve multiple I/O transactions (streaming), they are likely to be very
latency instructions; therefore, direct-store operations usually stall 604e instruction i

Figure 8-22 shows a direct-store tenure. Note that the I/O device response is an ad
only bus transaction.

It should be noted that in the best case, the use of the 604e direct-store protocol de
performance and requires the addressed controllers to implement 604e bus m
capability to generate the reply transactions.
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Figure 8-22. Direct-Store Tenures

8.6.1  Direct-Store Transactions
The 604e defines seven direct-store transaction operations, as shown in Table 8-9.
operations permit communication between the 604e and BUCs. A single 604e store o
instruction (that translates to a direct-store access) generates one or more direc
operations (two or more direct-store operations for loads) from the 604e and one
operation from the addressed BUC.

For the first beat of the address bus, the extended address transfer code (XATC), co
the I/O opcode as shown in Table 8-9; the opcode is formed by concatenating the tr
type, transfer burst, and transfer size signals defined as follows:

XATC = TT[0–3]||TBST||TSIZ[0–2]

Table 8-9. Direct-Store Bus Operations

Operation Address Only Direction XATC Encoding

Load start (request) Yes 604e ⇒ IO 0100 0000

Load immediate No 604e ⇒ IO 0101 0000

Load last No 604e ⇒ IO 0111 0000

Store immediate No 604e ⇒ IO 0001 0000

Store last No 604e ⇒ IO 0011 0000

Load reply Yes IO ⇒ 604e 1100 0000

Store reply Yes IO ⇒ 604e 1000 0000

ARBITRATION TRANSFER TERMINATION

ADDRESS TENURE

DATA TENURE

INDEPENDENT ADDRESS AND DATA

ARBITRATION TRANSFER TERMINATION

I/O RESPONSE

ARBITRATION TRANSFER TERMINATION
NO DATA TENURE FOR I/O RESPONSE

(I/O responses are address-only)
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8.6.1.1  Store Operations
There are three operations defined for direct-store store operations from the 604e
BUC, defined as follows:

1. Store immediate operations transfer up to 32 bits of data each from the 604e
BUC.

2. Store last operations transfer up to 32 bits of data each from the 604e to the 

3. Store reply from the BUC reveals the success/failure of that direct-store access
604e.

A direct-store store access consists of one or more data transfer operations followed
I/O store reply operation from the BUC. If the data can be transferred in one 32-bit
transaction, it is marked as a store last operation followed by the store reply operatio
store immediate operation is involved in the transfer, as shown in the following sequ

STORE LAST (from 604e)
•
•

STORE REPLY (from BUC)
However, if more data is involved in the direct-store access, there will be one or more
immediate operations. The BUC can detect when the last data is being transferr
looking for the store last opcode, as shown in the following sequence:

STORE IMMEDIATE(s)
•
•

STORE LAST
•
•

STORE REPLY

8.6.1.2  Load Operations
Direct-store load accesses are similar to store operations, except that the 604e latch
from the addressed BUC rather than supplying the data to the BUC. As with mem
accesses, the 604e is the master on both load and store operations; the external syste
provide the data bus grant to the 604e when the BUC is ready to supply the data to the
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The load request direct-store operation has no analogous store operation; it inform
addressed BUC of the total number of bytes of data that the BUC must provide to the
on the subsequent load immediate/load last operations. For direct-store load access
simplest, 32-bit (or fewer) data transfer sequence is as follows:

LOAD REQUEST
•
•

LOAD LAST
•
•

LOAD REPLY(from BUC)
However, if more data is involved in the direct-store access, there will be one or more
immediate operations. The BUC can detect when the last data is being transferr
looking for the load last opcode, as seen in the following sequence:

LOAD REQUEST
•
•

LOAD IMM(s)
•
•

LOAD LAST
•
•

LOAD REPLY
Note that three of the seven defined operations are address-only transactions and do
the data bus. However, unlike the memory transfer protocol, these transactions a
broadcast from one master to all snooping devices. The direct-store address
transaction protocol strictly controls communication between the 604e and the BUC

8.6.2  Direct-Store Transaction Protocol Details
As mentioned previously, there are two address-bus beats corresponding to two pac
information about the address. The two packets contain the sender and receiver ta
address and extended address bits, and extra control and status bits. The two beat
address bus (plus attributes) are shown at the top of Figure 8-23 as two packets. Th
packet, packet 0, is then expanded to depict the XATC and address bus informat
detail.
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8.6.2.1  Packet 0
Figure 8-23 shows the organization of the first packet in a direct-store transaction.

The XATC contains the I/O opcode, as discussed earlier and as shown in Table 8-9
address bus contains the following:

Key bit || segment register || sender tag

Figure 8-23. Direct-Store Operation—Packet 0

This information is organized as follows:

• Bits 0 and 1 of the address bus are reserved—the 604e always drives these b
zero.

• Key bit—Bit 2 is the key bit from the segment register (either SR[Kp] or SR[Ks
Kp indicates user-level access and Ks indicate supervisor-level access. The 6
multiplexes the correct key bit into this position according to the current opera
context (user or supervisor). (Note that user- and supervisor-level refer to pro
and privileged state, respectively, in the architecture specification.)

• Segment register—Address bits 3–27 correspond to bits 3–27 of the selected
segment register. Note that address bits 3–11 form the 9-bit receiver tag. Soft
must initialize these bits in the segment register to the ID of the BUC to be
addressed; they are referred to as the BUID (bus unit ID) bits.

• PID (sender tag)—Address bits 28–31 form the 4-bit sender tag. The 604e PI
(processor ID) comes from bits 28-31 of the 604e’s processor ID register. The 4
PID tag allows a maximum of 16 processor IDs to be defined for a given system
more bits are needed for a very large multiprocessor system, for example, it is
envisioned that the second-level cache (or equivalent logic) can append a larg
processor tag as needed. The BUC addressed by the receiver tag should latc
sender address required by the subsequent I/O reply operation.

I/O Opcode

0 1 2 3 1112 27 28 310 7

A (0–31) + Attributes

Address Bus (A[0–31])

PKT 0 PKT 1

+XATC

Reserved

Key Bit

From Segment Register

BUID PID
8-44 PowerPC 604e RISC Microprocessor User's Manual



for the

rred

byte

ress is
ective

intain

hown
ss or

have
slave

acket
for the
eiver
8.6.2.2  Packet 1
The second address beat, packet 1, transfers byte counts and the physical address
transaction, as shown in Figure 8-24.

Figure 8-24. Direct-Store Operation—Packet 1

For packet 1, the XATC is defined as follows:

• Load request operations—XATC contains the total number of bytes to be transfe
(128 bytes maximum for 604e).

• Immediate/last (load or store) operations—XATC contains the current transfer
count (1 to 4 bytes).

Address bits 0–31 contain the physical address of the transaction. The physical add
generated by concatenating segment register bits 28–31 with bits 4–31 of the eff
address, as follows:

Segment register (bits 28–31) || effective address (bits 4–31)

While the 604e provides the address of the transaction to the BUC, the BUC must ma
a valid address pointer for the reply.

8.6.3  I/O Reply Operations
BUCs must respond to 604e direct-store transactions with an I/O reply operation, as s
in Figure 8-25. The purpose of this reply operation is to inform the 604e of the succe
failure of the attempted direct-store access. This requires the system direct-store to
604e bus mastership capability—a substantially more complex design task than bus
implementations that use memory-mapped I/O access.

Reply operations from the BUC to the 604e are address-only transactions. As with p
0 of the address bus on 604e direct-store operations, the XATC contains the opcode
operation (see Table 8-9). Additionally, the I/O reply operation transfers the sender/rec
tags in the first beat.

Byte Count

0 7

ADDR +

Address Bus (A[0–31])

PKT 0 PKT 1

+XATC Bus Address
0 3 4 31
SR(28–31)
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Figure 8-25. I/O Reply Operation

The address bits are described in Table 8-10.

The second beat of the address bus is reserved; the XATC and address buses sh
driven to zero to preserve compatibility with future protocol enhancements.

The following sequence occurs when the 604e detects an error bit set on an I/O
operation:

1. The 604e completes the instruction that initiated the access.

2. If the instruction is a load, the data is forwarded onto the register file(s)/seque

3. A direct-store error exception is generated, which transfers 604e control to th
direct-store error exception handler to recover from the error.

If the error bit is not set, the 604e instruction that initiated the access completes
instruction execution resumes.

Table 8-10. Address Bits for I/O Reply Operations

Address Bits Description

0–1 Reserved. These bits should be cleared for compatibility with future PowerPC microprocessors.

2 Error bit. It is set if the BUC records an error in the access.

3–11 BUID. Sender tag of a reply operation. Corresponds with bits 3–11 of one of the 604e segment
registers.

12–27 Address bits 12–27 are BUC-specific and are ignored by the 604e.

28–31 PID (receiver tag). The 604e effectively snoops operations on the bus and, on reply operations,
compares this field to bits 28–31 of the PID register to determine if it should recognize this I/O reply.

I/O Opcode

0 7

Address Bus (A[0–31])

+XATC

Reserved

Error
Bit

Segment Register

BUID PIDBUC Specific

0 1 2 3 1112 27 28 31
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System designers should note the following:

• “Misplaced” reply operations (that match the processor tag and arrive unexpecte
are ignored by the 604e.

• External logic must assertAACK for the 604e, even though it is the receiver of th
reply operation.AACK is an input-only signal to the 604e.

• The 604e monitors address parity when enabled by software andXATS and reply
operations (load or store).

8.6.4  Direct-Store Operation Timing
The following timing diagrams show the sequence of events in a typical 604e direct-
load access (Figure 8-26) and a typical 604e direct-store store access (Figure 8-2
arbitration signals except forABB andDBB have been omitted for clarity, although the
are still required as described earlier in this chapter. Note that, for either case, the nu
of immediate operations depends on the amount and the alignment of data to be trans
If no more than 4 bytes are being transferred, and the data is double-word–aligned (t
does not straddle an 8-byte address boundary), there will be no immediate operat
shown in the figures.

The 604e can transfer as many as 128 bytes of data in one load or store instr
(requiring more than 33 immediate operations in the case of misaligned operands).

In Figure 8-26,XATS is asserted with the same timing relationship asTS in a memory
access. Notice, however, that the address bus (and XATC) transition on the next bus
cycle. The first of the two beats on the address bus is valid for one bus clock cycle win
only, and that window is defined by the assertion ofXATS. The second address bus bea
however, can be extended by delaying the assertion ofAACK until the system has latched
the address.

The load request and load reply operations, shown in Figure 8-26, are addres
transactions as denoted by the negated TT3 signal during their respective address t
Note that other types of bus operations can occur between the individual direct-
operations on the bus. The 604e involved in this transaction, however, does not initia
other direct-store load or store operations once the first direct-store operation has
address tenure; however, if the I/O operation is retried, other higher-priority operation
occur.

Notice that, in this example (zero wait states), 13 bus clock cycles are required to tra
no more than 8 bytes of data.
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Figure 8-26. Direct-Store Interface Load Access Example

Figure 8-27 shows a direct-store store access, comprised of three direct-store oper
As with the example in Figure 8-26, notice that data is transferred only on the 32 bits o
DH bus. As opposed to Figure 8-26, there is no request operation since the 604e h
data ready for the BUC.

The assertion of theTEA signal during a direct-store operation indicates that
unrecoverable error has occurred. If theTEA signal is asserted during a direct-sto
operation, theTEA action will be delayed and following direct-store transactions w
continue until all data transfers from direct store segment had been completed. Th
agent that assertsTEA is responsible to assertTEA for every direct-store transaction tenur
including the last one. The direct-store reply, under this case, is not required and w
ignored by the processor. The processor will take a machine check exception after th
direct-store data tenure has been terminated by the assertion ofTEA, and not before.

ABB

XATS

ADDR+XATC

DBB

DH[0–31]

TA

1 2 3 4 5 6 7 8 9 10 11 12 13

PKT 0 PKT 1 PKT 0 PKT 1 PKT 0 PKT 1 Reply Rsrvd

REQUEST OP IMM. OP LAST OP REPLY OP
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Figure 8-27. Direct-Store Interface Store Access Example

8.7  Optional Bus Configurations
The 604e supports the three following bus modes:

• Normal mode. Default mode, as implemented by the 604.

• Data streaming mode. For information about the 604e implementation of fast-
L2/data streaming mode, see Section 8.7.1.3, “Data Bus Arbitration in Data
Streaming Mode.”

• No-DRTRY mode that improves performance for data read operations. In
no-DRTRY mode the data retry function is not available, and all read data is u
by the processor one bus cycle earlier than in normal mode. (Not implemente
the 604.) For more information, refer to Section 8.7.2, “No-DRTRY Mode.”

Note that this mode is identical to the no-DRTRY mode in the 603 except for the
manner in which it is entered during hard reset. Fast-L2/data streaming is not
allowed in no-DRTRY mode—there always must be at least one dead cycle betw
data tenures.

The operation and selection of the optional bus configuration are described in the follo
sections.

8.7.1  Data Streaming Mode
The 604e supports an optional fast-L2/data streaming mode that disables the use of t
retry function provided through theDRTRY signal. Although this bus interface mod
implies its suitability for use in interfacing to a second-level cache, the fast-L2/
streaming mode allows the forwarding of data during load operations to the internal
one bus cycle sooner than in the normal bus protocol. The PowerPC bus protocol sp

ABB

XATS

ADDR+XATC

DBB

DH[0–31]

TA

1 2 3 4 5 6 7 8 9 10

PKT 0 PKT 1 PKT 0 PKT 1 Reply Rsrvd

IMM. OP LAST OP REPLY OP
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that, during load operations, the memory system normally has the capability to cance
that was read by the master on the bus cycle afterTA was asserted. In the 604
implementation, this late cancellation protocol requires the 604e to hold any loaded d
the bus interface for one additional bus clock to verify that the data is valid be
forwarding it to the internal CPU. The use of the optional fast-L2/data streaming m
eliminates the one-cycle stall during all load operations, and allows for the forwardin
data to the internal CPU immediately whenTA is recognized, thereby increasing maximu
read bandwidth.

When the 604e is following normal bus protocol, data may be cancelled the bus cycle
TA by either of two means—late cancellation byDRTRY, or late cancellation byARTRY.
When the fast-L2/data streaming mode is selected, both cancellation cases m
disallowed in the system design for the bus protocol.

When the fast-L2/data streaming mode is selected for the 604e, the system must ensu
DRTRY will not be asserted to the 604e. If it is asserted, it may cause improper oper
of the bus interface. The system must also ensure that an assertion ofARTRY by a snooping
device must occur before or coincident with the first assertion ofTA to the 604e, but not on
the cycle after the first assertion ofTA.

In fast-L2 mode, an external device must never assertARTRY after the cycle of the firstTA
assertion. Thus, ifARTRY is always asserted by an external device, at latest, the sec
cycle afterTS,TA can be asserted by the system as early as the second cycle afterTS (with
the first cycle ofARTRY).

The 604e selects the desiredDRTRY mode at startup by sampling the state of theDRTRY
signal at the negation of theHRESET signal. If theDRTRY signal is negated at the
negation ofHRESET, normal operation is selected. If theDRTRY signal is asserted at the
negation ofHRESET, fast-L2/data streaming mode is selected. To select the fast-L2
streaming mode, the system designer may connect theDRTRY signal to theHRESET
signal. This assertsDRTRY during startup for fast-L2/data streaming mode selection,
holds theDRTRY signal negated during operation.

When the 604e is in fast-L2/data streaming mode, the bus protocol is modified to di
the ability to cancel data that was read by the master on the bus cycle afterTA was asserted.
Also, DBB is an output-only signal, and is not a term in generating a qualified data
grant. When in fast-L2/data streaming mode, the system is not allowed to assertDBG
earlier than one cycle before the data tenure is to commence, to parkDBG, or to assertDBG
for multiple consecutive cycles. In all other respects, the bus protocol for the 604
identical to that for the basic and extended transfer bus protocols described in this ch

It is assumed that systems using data-streaming mode would be running the 604
interface at its upper frequency limits for which the cycle time is very short and the pa
precharge ofABB and DBB might make it difficult to guarantee that the precharge
successful enough that other devices would see a valid precharge value at the end
8-50 PowerPC 604e RISC Microprocessor User's Manual
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precharge cycle. This timing problem can be solved by not connecting or usingABB/DBB
in the system design since this design can be done fairly easily.

8.7.1.1  Data Streaming Mode Design Considerations
It is recommended that use of fast-L2/data streaming mode be accompanied by two
system design practices.

The first recommendation is not to use theABB signal. If the system is designed so that a
address tenure is defined byTS andAACK assertion, (which the 604e is designed
support), theABB signal is unnecessary, and should be pulled high at the 604e. Bec
the ABB signal has an inherently short “restore high” time, it is desirable that theABB
signal not be used in systems that try to achieve a short cycle time.

The second recommendation is not to use theDBB signal. This signal is restored high in
the same way asABB, and therefore has the same problems in a system with short c
time. To avoid the use of theDBB signal, the system arbiter must assert tDBG for a single
cycle, one cycle before the 604e is supposed to begin its data tenure. TheDBB signal
should be pulled high. The additional system cost of operating in this manner is that it
count the number of data transfers, and assertDBG only on the last cycle in a data tenur

8.7.1.2  Data Streaming in the Data Streaming Mode
Data streaming is the ability to commence a data tenure after a previous data tenur
no dead cycles between. The 604e only supports data streaming for consecutive bur
data transfers. This does include support for data streaming consecutive burst rea
transfers between two separate masters. For instance, in a multi-604e system
streaming is allowed on consecutive burst read data transfers from different 604s.

To cause data streaming to take place, the system assertsDBG during the last data transfe
of the first data tenure as shown in Figure 8-28. To fully realize the performance ga
data streaming, the system should be prepared to, but is not required to, supp
uninterrupted sequence ofTA assertions.

Figure 8-28 shows the operation of theDBG signal when data streaming operations a
taking place on the data bus
Chapter 8.  System Interface Operation 8-51



y
ystem
ark

rtion
d by

4e’s
hat is,
ntly

to use

hich it
a dead
cept an

tream
d, a

before

data
e

Figure 8-28. Data Transfer in Fast-L2/Data Streaming Mode

8.7.1.3  Data Bus Arbitration in Data Streaming Mode
When the 604 operates in fast-L2/data streaming mode,DBG must be asserted for exactl
one cycle per data bus tenure, in the cycle before the data tenure is to begin. The s
cannot either assertDBG earlier than one cycle before the data tenure is to begin, p
DBG, or assert it for multiple consecutive cycles.

In fast-L2/data streaming mode, the 604e is compatible with the 604’s asse
requirements forDBG, but less restrictive regarding successive data tenures mastere
the 604e. For the 604e,DBG must be asserted no earlier than the cycle before the 60
data tenure is to begin only when another master currently controls the data bus (t
whenDBB would normally be asserted for a data tenure). If no other masters curre
control the data bus (are assertingDBB), the 604e allows the system to parkDBG on the
604e.DBB remains an output-only signal in fast-L2/data streaming mode (that is,DBB
does not participate in determining a qualified data bus grant), requiring the system
DBG to ensure that different masters don’t collide on data tenures.

Like the 604, the 604e requires a dead cycle between successive data tenures for w
is master, except for back-to-back burst read operations that can be streamed without
cycle. For back-to-back data tenures that cannot be streamed, the 604e does not ac
early data bus grant for the second tenure and negates itsDBB output signal for one cycle
between the first and second data tenure. The system must not attempt to s
consecutiveTA assertions from the first to second data tenure in this case. Instea
minimum of one dead cycle must be placed between theDBBs of two tenures if the two
tenures are not both burst reads.

8.7.1.4  Data Valid Window in the Data Streaming Mode
Standard bus mode operations allow data to be transferred no earlier than the cycle
the ARTRY window that the system defines. In some cases, an assertedARTRY signal
invalidates the data that was transferred the previous cycle, in the same wayDRTRY
cancels data from the previous cycle.

In fast-L2/data streaming mode, the data buffering that allows late cancellation of a
transfer does not exist, so late cancellation withARTRY is also impossible. Therefore, th

DATA

TA

Bus Clock

0 1 2 3 4 5 6 7 8

DBG

TR-A1 TR-A2 TR-A3  TR-A4 TR-B1 TR-B2 TR-B3 TR-B4

9
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earliest that data can be transferred in fast-L2/data streaming mode is the first cycle
ARTRY window, not the cycle before that.

8.7.2  No-DRTRY Mode
No-DRTRY mode disables the data retry function provided through theDRTRY signal. In
normal mode, the memory system can cancel a data read operation by the master on
cycle after TA was asserted. This functionality requires the load data to be held
additional cycle to validate the data, and if necessary to assertDRTRY to cancel the
operation. Disabling data retry eliminates the need for this cycle and allows data
forwarded during load operations one bus cycle sooner—immediately when the ass
of TA is recognized. In no-DRTRY mode, the system must ensure that there are no attem
at late cancellation, which may cause improper operation by the 604e. The system
also ensure that a snooping device assertsARTRY no later than the first assertion ofTA to
the 604e, but not on the cycle after the first assertion ofTA.

To enter no-DRTRY mode, the system must assertDRTRY coincidentally withHRESET.
This can be done by tyingDRTRY asserted in hardware.DRTRY must remain asserted.

In no-DRTRY mode, data bus arbitration is unchanged except thatDRTRY is no longer
used to determine a qualifiedDBG. A qualifiedDBG in no-DRTRY mode is simply the
assertion ofDBG and the negation ofDBB (plus possibly additional qualifications due t
ARTRY identical to those qualifications in normal and fast-L2/data streaming bus mo

The system must define the beginning of the window in which the snoop response is
and ensure that no data is transferred before the same cycle as the beginning of that w
in no-DRTRY mode. For example, if the system defines a snoop response window
begins the second cycle afterTS, the earliestTA can be asserted to the 604e is the seco
cycle afterTS.

This no-DRTRY mode timing constraint on the earliest allowable assertion ofTA with
respect toARTRY is identical to that constraint in fast-L2/data streaming mode.

To upgrade a 604-based system to the 604e and use no-DRTRY mode, thefollowing
considerations should be observed:

• The system uses the 604 in normal bus mode, described earlier in this sectio

• TheDRTRY must be tied negated and never used.

• The system must never assertTA before the first cycle of the system’s snoop
response window.

This system would then see a performance improvement due to the shorter effective la
seen by the 604e on read operations. This reduction in latency is equal to one bus
(three processor cycles in 3:1 bus mode).
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8.8  Interrupt, Checkstop, and Reset Signals
This section describes external interrupts, checkstop operations, and hard and so
inputs.

8.8.1  External Interrupts
The external interrupt input signals (INT, SMI andMCP) to the 604e eventually force th
processor to take the external interrupt vector, the system management interrupt vec
the machine check interrupt if enabled by the MSR[ME] bit (and the HID0[EMCP] bi
the case of a machine check interrupt).

8.8.2  Checkstops
The 604e has two checkstop input signals—CKSTP_IN andMCP (when MSR[ME] is
cleared, and HID0[EMCP] is set), and a checkstop output (CKSTP_OUT). IfCKSTP_IN
or MCP is asserted, the 604e halts operations by gating off all internal clocks. The
assertsCKSTP_OUT ifCKSTP_IN is asserted.

If CKSTP_OUT is asserted by the 604e, it has entered the checkstop state, and proc
has halted internally. TheCKSTP_OUT signal can be asserted for various reas
including receiving aTEA signal and detection of external parity errors. For mo
information about checkstop state, see Section 4.5.2.2, “Checkstop State (MSR[ME]

8.8.3  Reset Inputs
The 604e has two reset inputs, described as follows:

• HRESET (hard reset)—TheHRESET signal is used for power-on reset sequenc
or for situations in which the 604e must go through the entire cold-start sequen
internal hardware initializations.

• SRESET (soft reset)—The soft reset input provides warm reset capability. Th
input can be used to avoid forcing the 604e to complete the cold start sequen

When either reset input is negated, the processor attempts to fetch code from the s
reset exception vector. The vector is located at offset 0x00100 from the exception prefi
zeros or ones, depending on the setting of the exception prefix bit in the machine
register (MSR[IP]). The IP bit is set forHRESET.

8.8.4  PowerPC 604e Processor Configuration during HRESET
The 604e has three modes that are configurable during a hard reset. Table 8-11 de
how the 604e is configured during hard reset. Normal mode and data-streaming
HRESET configurations are identical to those on the 604e.
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8.9  Processor State Signals
This section describes the 604e's support for atomic update and memory through the
the lwarx /stwcx. opcode pair.

8.9.1  Support for the l warx/stwcx. Instruction Pair
The Load Word and Reserve Indexed (lwarx ) and the Store Word Conditional Indexe
(stwcx.) instructions provide a means for atomic memory updating. Memory can
updated atomically by setting a reservation on the load and checking that the reserva
still valid before the store is performed. In the 604e, the reservations are made on beh
aligned, 32-byte sections of the memory address space.

The reservation (RSRV) output signal is driven synchronously with the bus clock a
reflects the status of the reservation coherency bit in the reservation address regist
Chapter 3, “Cache and Bus Interface Unit Operation,” for more information).
Section 7.2.10.3, “Reservation (RSRV)—Output,” for information about timing.

8.10  IEEE 1149.1-Compliant Interface
The 604e boundary-scan interface is a fully-compliant implementation of the IEEE 11
standard. This section describes the 604e IEEE 1149.1(JTAG) interface.

8.10.1  IEEE 1149.1 Interface Description
The 604e has five dedicated JTAG signals which are described in Table 8-12. The TD
TDO scan ports are used to scan instructions as well as data into the various scan re
for JTAG operations. The scan operation is controlled by the test access port (
controller which in turn is controlled by the TMS input sequence. The scan data is lat
in at the rising edge of TCK.

Table 8-11. Pr ocessor Modes Configurable during Assertion of HRESET

604e Mode Input Signal Timing Requirements Notes

Normal DRTRY Must be negated throughout the duration of the
HRESET assertion. After HRESET negation,
DRTRY can be used normally.

—

Data streaming DRTRY Must be asserted and negated with HRESET and
remain negated during normal operation.

Can be done by tying
DRTRY to HRESET

No-DRTRY DRTRY Must be asserted with HRESET and remain
asserted during normal operation.

Can be done by statically
tying DRTRY asserted.
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TRST is a JTAG optional signal which is used to reset the TAP controller asynchrono
TheTRST signal assures that the JTAG logic does not interfere with the normal oper
of the chip, and should be held asserted during normal operation. The remaining
signals are provided with internal pullup resistors, and may be left unconnected.

Boundary scan description language (BSDL) files for the 604e and other Pow
microprocessors are available in the RISC support area of the Motorola Freeware
Services bulletin board system. The bulletin board system, located in Austin, Texas, c
reached at (512) 891-3733; the connecting terminal or terminal emulator shoul
configured with 8-bit data, no parity, and one start and one stop bit. Asynchro
transmission rates to 14.4K bits per second are supported.

8.11  Using Data Bus Write Only
The 604e supports split-transaction pipelined transactions. It supports a limited o
order capability for its own pipelined transactions through the data bus write only (DBWO)
signal. When recognized on the clock of a qualifiedDBG, the assertion ofDBWO directs
the 604e to perform the next pending data write tenure (if any), even if a pending
tenure would have normally been performed because of address pipelining. TheDBWO
does not change the order of write tenures with respect to other write tenures from the
604e. It only allows that a write tenure be performed ahead of a pending read tenure
the same 604e.

In general, an address tenure on the bus is followed strictly in order by its associate
tenure. Transactions pipelined by the 604e complete strictly in order. However, the
can run bus transactions out of order only when the external system allows the 60
perform a cache line snoop push out operation (or other write transaction, if pending
604e write queues) between the address and data tenures of a read operation thro
use ofDBWO. This effectively envelopes the write operation within the read operat
Figure 8-29 shows how theDBWO signal is used to perform an enveloped wri
transaction.

Table 8-12. IEEE Interface Pin Descriptions

Signal Name Input/Output
Weak Pullup

Provided
IEEE 1149.1 Function

TDI Input Yes Serial scan input pin

TDO Output No Serial scan output pin

TMS Input Yes TAP controller mode pin

TCK Input Yes Scan clock

TRST Input Yes TAP controller reset
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Figure 8-29. Data Bus Write Only Transaction

Note that although the 604e can pipeline any write transaction behind the read transa
special care should be used when using the enveloped write feature. It is envisione
most system implementations will not need this capability; for these applicationsDBWO
should remain negated. In systems where this capability is needed,DBWO should be
asserted under the following scenario:

1. The 604e initiates a read transaction (either single-beat or burst) by completin
read address tenure with no address retry.

2. Then, the 604e initiates a write transaction by completing the write address te
with no address retry.

3. At this point, ifDBWO is asserted with a qualified data bus grant to the 604e, 
604e assertsDBB and drives the write data onto the data bus, out of order with
respect to the address pipeline. The write transaction concludes with the 604e
negatingDBB.

4. The next qualified data bus grant signals the 604e to complete the outstanding
transaction by latching the data on the bus. This assertion ofDBG should not be
accompanied by an assertedDBWO.

Any number of bus transactions by other bus masters can be attempted between any o
steps.

AACK

DBG

ABB

BG

(2) (1)

DBB

Enveloped Write

DBWO

Transaction

(1) (2)

Read Address Write Address

Write Data Read Data
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Note the following regardingDBWO:

• TheDBWO signal can be asserted if no data bus read is pending, but it has no e
on write ordering.

• The ordering and presence of data bus writes is determined by the writes in the
queues at the timeBG is asserted for the write address (notDBG). A cache-line
snoop push-out operation has the highest priority, and takes precedence over
queued write operations.

• Because more than one write may be in the write queue whenDBG is asserted for
the write address, more than one data bus write may be enveloped by a pendin
bus read.

The arbiter must monitor bus operations and coordinate the various masters and slav
respect to the use of the data bus whenDBWO is used. IndividualDBG signals associated
with each bus device should allow the arbiter to synchronize both pipelined and
transaction bus organizations. IndividualDBG andDBWO signals provide a primitive form
of source-level tagging for the granting of the data bus.

Note that use of theDBWO signal allows some operation-level tagging with respect to
604e and the use of the data bus.
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Chapter 9
Performance Monitor
90
90

The PowerPC 604e microprocessor provides a performance monitor facility to monito
count predefined events such as processor clocks, misses in either the instruction ca
the data cache, instructions dispatched to a particular execution unit, mispred
branches, and other occurrences. The count of such events (which may b
approximation) can be used to trigger the performance monitor exception.
performance monitor facility is not defined by the PowerPC architecture.

The performance monitor can be used for the following:

• To increase system performance with efficient software, especially in a
multiprocessing system. Memory hierarchy behavior must be monitored and stu
in order to develop algorithms that schedule tasks (and perhaps partition them
that structure and distribute data optimally.

• To improve processor architecture, the detailed behavior of the 604e’s structure
be known and understood in many software environments. Some environments
not easily be characterized by a benchmark or trace.

• To help system developers bring up and debug their systems.

The performance monitor uses the following 604e-specific special-purpose reg
(SPRs):

• Performance monitor counters 1–4 (PMC1–PMC4)—These four 32-bit counter
used to store the number of times a certain event has been detected.

• The monitor mode control registers (MMCR0 and MMCR1), which establishes
function of the counters.

• Sampled instruction address and sampled data address registers (SIA and SD
Depending on how the performance monitor is configured, these registers poi
the data or instruction that caused a threshold-related performance monitor inte

The 604e supports a performance monitor interrupt that is caused by a counter ne
condition or by a time-base flipped bit counter defined in the MMCR0 register.

As with other PowerPC interrupts, the performance monitor interrupt follows the no
PowerPC exception model with a defined exception vector offset (0x00F00). The pr
of the performance monitor interrupt is below the external interrupt and above
Chapter 9.  Performance Monitor 9-1
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decrementer interrupt. The contents of the SIA and SDA are described in Section 9.1
“Sampled Instruction Address Register (SIA),” and Section 9.1.1.2.2, “Sampled
Address Register (SDA),” respectively. The performance monitor counter register
described in Section 9.1.1.1, “Performance Monitor Counter Registers (PMC1–PMC

9.1  Performance Monitor Interrupt
The 604e performance monitor is a software-accessible mechanism that provides d
information concerning the dispatch, execution, completion, and memory acce
PowerPC instructions. A performance monitor interrupt (PMI) can be triggered b
negative counter (most significant bit set to one) condition. If the interrupt signal cond
occurs while MSR[EE] is cleared, the interrupt is delayed until the MSR[EE] bit is se
PMI may also occur when certain bits in the time base register change from 0 to 1
provides a way to generate interrupts based on a time reference.

Depending on the type of event that causes the PMI condition to be signaled
performance monitor responds in one of two ways:

• When a threshold event causes a PMI to be signaled, the exact addresses of
instruction and data that caused the counter to become negative are saved in
sampled instruction address (SIA) register and the sampled data address (SD
register, respectively. For more information, see Section 9.1.2.2, “Threshold
Events.”

• For all other programmable events that cause a PMI, the address of the last
completed instruction during that cycle is saved in the SIA, which allows the use
determine the part of the code being executed when a PMI was signaled. Likew
the effective address of an operand being used is saved in the SDA. Typically
operands in the SDA and SIA are unrelated. For more information, see
Section 9.1.2.3, “Nonthreshold Events.”

When the performance monitor interrupt is signaled, the hardware clears MMCR0[EN
and prevents the changing of the values in the SIA and SDA until ENINT is set by softw
The MMCR0 is described in the Section 9.1.1.3, “Monitor Mode Control Registe
(MMCR0).”

The following section describes the SPRs used with the performance monitor.

9.1.1  Special-Purpose Registers Used by Performance Monitor
The performance monitor incorporates the SPRs listed in Table 9-1. The SIA regis
located in the sequencer unit and the SDA register is located in the LSU. All of t
supervisor-level registers are accessed throughmtspr and mfspr instructions. The
following table shows more information about all performance monitor SPRs.
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9.1.1.1  Performance Monitor Counter Registers (PMC1–PMC4)
PMC1–PMC4 are 32-bit counters that can be programmed to generate interrupt s
when they are negative. Counters are considered to be negative when the high-order
sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000). How
an interrupt is not signaled unless both MMCR0[PMCINTCONTROL] a
MMCR0[ENINT] are also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal cond
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is
Setting MMCR0[DISCOUNT] forces the counters stop counting when a counter inter
occurs.

PMC1 (SPR 953), PMC2 (SPR 954), PMC3 (SPR 957), and PMC4 (SPR 958) can be
and written to by using themfspr andmtspr instructions. Software is expected to use t
mtspr instruction to explicitly set the PMC register to non-negative values. If software
a negative value, an erroneous interrupt may occur. For example, if
MMCR0[PMCINTCONTROL] and MMCR0[ENINT] are set and themtspr instruction is
used to set a negative value, an interrupt signal condition may be generated prior
completion of themtspr and the values of the SIA and SDA may not have any relations
to the type of instruction being counted.

The event that is to be monitored can be chosen by setting the appropriate bits
MMCR0[19–31]. The number of occurrences of these selected events is counted fro
time the MMCR0 was set either until a new value is introduced into the MMCR0 regi
or until a performance monitor interrupt is generated. Table 9-2 lists the selectable e
with their appropriate MMCR0 encodings.

Table 9-1. Performance Monitor SPRs

SPR Number spr[5–9] || spr[0–4] Register Name Access Level

952 0b11101 11000 MMCR0 Supervisor

956 0b11101 11100 MMCR1 Supervisor

953 0b11101 11001 PMC1 Supervisor

954 0b11101 11010 PMC2 Supervisor

957 0b11101 11101 PMC3 Supervisor

958 0b11101 11110 PMC4 Supervisor

955 0b11101 11011 SIA Supervisor

959 0b11101 11111 SDA Supervisor
Chapter 9.  Performance Monitor 9-3



Table 9-2. Selectable Events—PMC1

MMCR0[0–4] Description

000 0000 Nothing. Register counter holds current value.

000 0001 Processor cycles 0b1. Count every cycle.

000 0010 Number of instructions completed every cycle

000 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

000 0100 Number of instructions dispatched

000 0101 Instruction cache misses

000 0110 Data TLB misses (in order)

000 0111 Branch misprediction correction from execute stage

000 1000 Number of reservations requested. The lwarx instruction is ready for execution in the LSU.

000 1001 Number of data cache load misses exceeding the threshold value with lateral L2 cache intervention

000 1010 Number of data cache store misses exceeding the threshold value with lateral L2 cache
intervention

000 1011 Number of mtspr instructions dispatched

000 1100 Number of sync instructions completed

000 1101 Number of eieio instructions completed

000 1110 Number of integer instructions completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions completed every cycle (no loads or stores)

001 0000 LSU produced result.

001 0001 SCIU1 produced result for an add, subtract, compare, rotate, shift, or logical instruction.

001 0010 FPU produced result.

001 0011 Number of instructions dispatched to the LSU

001 0100 Number of instructions dispatched to the SCIU1

001 0101 Number of instructions dispatched to the FPU

001 0110 Valid snoop requests received from outside the 604e. Does not distinguish hits or misses.

001 0111 Number of data cache load misses exceeding the threshold value without lateral L2 intervention

001 1000 Number of data cache store misses exceeding the threshold value without lateral L2 intervention

001 1001 Number of cycles the branch unit is idle

001 1010 Number of cycles MCIU0 is idle

001 1011 Number of cycles the LSU is idle. No new instructions are executing; however, active loads or
stores may be in the queues.

001 1100 Number of times the L2_INT is asserted (regardless of TA state)
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Bits MMCR0[26–31] are used for selecting events associated with PMC2. These se
are shown in Table 9-3.

001 1101 Number of unaligned loads

001 1110 Number of entries in the load queue each cycle (maximum of five). Although the load queue has
four entries, a load miss latch may hold a load waiting for data from memory.

001 1111 Number of instruction breakpoint hits

Table 9-3. Selectable Events—PMC2

MMCR0[26–31] Description

00 0000 Register counter holds current value.

00 0001 Processor cycles 0b1. Count every cycle.

00 0010 Number of instructions completed. Legal values are 000, 001, 010, 011, 100.

00 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

00 0100 Number of instructions dispatched (0 to 4 instructions per cycle)

00 0101 Number of cycles a load miss takes

00 0110 Data cache misses (in order)

00 0111 Number of instruction TLB misses

00 1000 Number of branches completed. Indicates the number of branch instructions being completed
every cycle (00 = none, 10 = one, 11 = two, 01 is an illegal value).

00 1001 Number of reservations successfully obtained (stwcx. operation completed successfully)

00 1010 Number of mfspr instructions dispatched (in order)

00 1011 Number of icbi instructions. It may not hit in the cache.

00 1100 Number of pipeline “flushing” instructions (sc, isync, mtspr (XER), mcrxr, floating-point operation
with divide by 0 or invalid operand and MSR[FE0, FE1] = 00, branch with MSR[BE] = 1, load
string indexed with XER = 0, and SO bit getting set)

00 1101 BPU produced result.

00 1110 SCIU0 produced result (of an add, subtract, compare, rotate, shift, or logical instruction).

00 1111 MCIU produced result (of a multiply/divide or SPR instruction).

01 0000 Number of instructions dispatched to the branch unit.

01 0001 Number of instructions dispatched to the SCIU0.

01 0010 Number of loads completed. These include all cache operations and tlbie, tlbsync, sync, eieio,
and icbi instructions.

01 0011 Number of instructions dispatched to the MCIU

01 0100 Number of snoop hits occurred

01 0101 Number of cycles during which the MSR[EE] bit is cleared

Table 9-2. Selectable Events—PMC1 (Continued)

MMCR0[0–4] Description
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Bits MMCR1[0–4] are used for selecting events associated with PMC3. These setting
shown in Table 9-4.

01 0110 Number of cycles the MCIU is idle

01 0111 Number of cycles SCIU1 is idle

01 1000 Number of cycles the FPU is idle

01 1001 Number of cycles the L2_INT signal is active (regardless of TA state)

01 1010 Number of times four instructions were dispatched

01 1011 Number of times three instructions were dispatched

01 1100 Number of times two instructions were dispatched

01 1101 Number of times one instruction was dispatched

01 1110 Number of unaligned stores

01 1111 Number of entries in the store queue each cycle (maximum of six)

Table 9-4. Selectable Events—PMC3

MMCR1[0–4] Comments

0 0000 Register counter holds current value.

0 0001 Count every cycle.

0 0010 Indicates the number of instructions being completed every cycle

0 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

0 0100 Number of instructions dispatched

0 0101 Number of cycles the LSU stalls due to BIU or cache busy. Counts cycles between when a load or
store request is made and a response was expected. For example, when a store is retried, there
are four cycles before the same instruction is presented to the cache again. Cycles in between are
not counted.

0 0110 Number of cycles the LSU stalls due to a full store queue

0 0111 Number of cycles the LSU stalls due to operands not available in the reservation station

0 1000 Number of instructions written into the load queue. Misaligned loads are split into two transactions
with the first part always written into the load queue. If both parts are cache hits, data is returned to
the rename registers and the first part is flushed from the load queue. To count the instructions that
enter the load queue to stay, the misaligned load hits must be subtracted. See event 8 in Table 9-5.

0 1001 Number of cycles that completion stalls for a store instruction

0 1010 Number of cycles that completion stalls for an unfinished instruction. This event is a superset of
PMC3 event 9 and PMC4 event 10.

0 1011 Number of system calls

0 1100 Number of cycles the BPU stalled as branch waits for its operand

Table 9-3. Selectable Events—PMC2 (Continued)

MMCR0[26–31] Description
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Bits MMCR1[5–9] are used for selecting events associated with PMC4. These setting
shown in Table 9-4.

0 1101 Number of fetch corrections made at the dispatch stage. Prioritized behind the execute stage.

0 1110 Number of cycles the dispatch stalls waiting for instructions

0 1111 Number of cycles the dispatch stalls due to unavailability of reorder buffer (ROB) entry. No ROB
entry was available for the first nondispatched instruction.

1 0000 Number of cycles the dispatch unit stalls due to no FPR rename buffer available. First
nondispatched instruction required a floating-point reorder buffer and none was available.

1 0001 Number of instruction table search operations

1 0010 Number of data table search operations. Completion could result from a page fault or a PTE match.

1 0011 Number of cycles the FPU stalled

1 0100 Number of cycles the SCIU1 stalled

1 0101 Number of times the BIU forwards noncritical data from the line-fill buffer

1 0110 Number of data bus transactions completed with pipelining one deep with no additional bus
transactions queued behind it

1 0111 Number of data bus transactions completed with two data bus transactions queued behind

1 1000 Counts pairs of back-to-back burst reads streamed without a dead cycle between them in data
streaming mode

1 1001 Counts non-ARTRYd processor kill transactions caused by a write-hit-on-shared condition

1 1010 This event counts non-ARTRYd write-with-kill address operations that originate from the three
castout buffers. These include high-priority write-with-kill transactions caused by a snoop hit on
modified data in one of the BIU’s three copy-back buffers. When the cache block on a data cache
miss is modified, it is queued in one of three copy-back buffers. The miss is serviced before the
copy-back buffer is written back to memory as a write-with-kill transaction.

1 1011 Number of cycles when exactly two castout buffers are occupied

1 1100 Number of data cache accesses retried due to occupied castout buffers

1 1101 Number of read transactions from load misses brought into the cache in a shared state

1 1110 CRU Indicates that a CR logical instruction is being finished.

Table 9-5. Selectable Events—PMC4

MMCR1[5–9] Description

0 0000 Register counter holds current value

0 0001 Count every cycle

0 0010 Number of instructions being completed

0 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

0 0100 Number of instructions dispatched

Table 9-4. Selectable Events—PMC3 (Continued)

MMCR1[0–4] Comments
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0 0101 Number of cycles the LSU stalls due to busy MMU

0 0110 Number of cycles the LSU stalls due to the load queue full

0 0111 Number of cycles the LSU stalls due to address collision

0 1000 Number of misaligned loads that are cache hits for both the first and second accesses. Related to
event 8 in PMC3.

0 1001 Number of instructions written into the store queue

0 1010 Number of cycles that completion stalls for a load instruction

0 1011 Number of hits in the BTAC. Warning —if decode buffers cannot accept new instructions, the
processor refetches the same address multiple times.

0 1100 Number of times the four basic blocks in the completion buffer from which instructions can be
retired were used

0 1101 Number of fetch corrections made at decode stage

0 1110 Number of cycles the dispatch unit stalls due to no unit available. First nondispatched instruction
requires an execution unit that is either full or a previous instruction is being dispatched to that unit.

0 1111 Number of cycles the dispatch unit stalls due to unavailability of GPR rename buffer. First
nondispatched instruction requires a GPR reorder buffer and none are available.

1 0000 Number of cycles the dispatch unit stalls due to no CR rename buffer available. First
nondispatched instruction requires a CR rename buffer and none is available.

1 0001 Number of cycles the dispatch unit stalls due to CTR/LR interlock. First nondispatched instruction
could not dispatch due to CTR/LR/mtcrf  interlock.

1 0010 Number of cycles spent doing instruction table search operations

1 0011 Number of cycles spent doing data table search operations

1 0100 Number of cycles SCIU0 was stalled

1 0101 Number of cycles MCIU was stalled

1 0110 Number of bus cycles after an internal bus request without a qualified bus grant

1 0111 Number of data bus transactions completed with one data bus transaction queued behind

1 1000 Number of write data transactions that have been reordered before a previous read data
transaction using the DBWO feature

1 1001 Number of ARTRYd processor address bus transactions

1 1010 Number of high-priority snoop pushes. Snoop transactions, except for write-with-kill, that hit
modified data in the data cache cause a high-priority write (snoop push) of that modified cache
block to memory.This operation has a transaction type of write-with-kill. This event counts the
number of non-ARTRYd processor write-with-kill transactions that were caused by a snoop hit on
modified data in the data cache. It does not count high-priority write-with-kill transactions caused
by snoop hits on modified data in one of the BIU’s three copy-back buffers.

Table 9-5. Selectable Events—PMC4 (Continued)

MMCR1[5–9] Description
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9.1.1.2  SIA and SDA Registers
The two address registers contain the addresses of the data or the instruction that ca
threshold-related performance monitor interrupt. For more information
threshold-related interrupts, see Section 9.1.2.2, “Threshold Events.”

9.1.1.2.1  Sampled Instruction Address Register (SIA)
The SIA contains the effective address of an instruction executing at or around the tim
the processor signals the performance monitor interrupt condition. If the perform
monitor interrupt was triggered by a threshold event, the SIA contains the exact instru
that caused the counter to become negative. The instruction whose effective addres
in the SIA is called the sampled instruction.

If the performance monitor interrupt was caused by something besides a threshold
the SIA contains the address of the last instruction completed during that cycle. The
contains an effective address that is not guaranteed to match the instruction in the SIA
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using themfspr instruction and written to by using themtspr
instruction (SPR 955).

9.1.1.2.2  Sampled Data Address Register (SDA)
The SDA contains the effective address of an operand of an instruction executing
around the time that the processor signals the performance monitor interrupt conditi
this case the SDA is not meant to have any connection with the value in the SIA. I
performance monitor interrupt was triggered by a threshold event, the SDA contain
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than a threshold
the SIA contains the address of the last instruction completed during that cycle. The
contains an effective address that is not guaranteed to match the instruction in the SIA
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using themfspr instruction and written to by using themtspr
instruction (SPR 959).

1 1011 Number of cycles for which exactly one castout buffer is occupied

1 1100 Number of cycles for which exactly three castout buffers are occupied

1 1101 Number of read transactions from load misses brought into the cache in an exclusive (E) state

1 1110 Number of undispatched instructions beyond branch

Table 9-5. Selectable Events—PMC4 (Continued)

MMCR1[5–9] Description
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9.1.1.2.3  Updating SIA and SDA
The values of the SIA and SDA registers depend on the type of event being monit
These registers have predicted values after a PMI is signaled. A PMI may be signale
not serviced because the exception is masked by the MSR(EE) bit. Programmers
make sure that this bit is set active in order to take the PMI.

9.1.1.3 Monitor Mode Control Register 0 (MMCR0)
The monitor mode control register 0 (MMCR0) is a 32-bit SPR (SPR 952) whose bits
partitioned into bit fields that determine the events to be counted and recorded
selection of allowable combinations of events causes the counters to operate concu

The MMCR0 can be written to or read only in supervisor mode. The MMCR0 inclu
controls, such as counter enable control, counter overflow interrupt control, counter
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not chan
contents. The fields of the register are defined in Table 9-6.

Table 9-6. MMCR0 Bit Settings

Bit Name Description

0 DIS Disable counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters

are not changed by hardware.

2 DU Disable counting while in user mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not

changed by hardware.

3 DMS Disable counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitoring interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.
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6 DISCOUNT Disable counting of PMC1–PMC4 when a performance monitor interrupt is
signalled or the occurrence of an enabled time base transition with
((INTONBITTRANS =1) & (ENINT = 1)).
0 Signalling a performance monitoring interrupt does not affect the counting

status of PMC1–PMC4.
1 The signalling of a performance monitoring interrupt prevents the changing

of the PMC1 counter. The PMC2–PMC4 counters does not change if
PMCTRIGGER = 0.

Because, a time base signal could have occurred along with an enabled counter
negative condition, software should always reset INTONBITTRANS to zero, if the
value in INTONBITTRANS was a one.

7–8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 INTONBITTRANS Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.

10–15 THRESHOLD Threshold value. All 6 bits are supported by the 604e. The threshold value is
multiplied by 4, allowing threshold values from 0 to 252 in increments of 4. The
intent of the THRESHOLD support is to be able to characterize L1 data cache
misses.

16 PMC1INTCONTROL Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMC1 interrupt signaling due to PMC1 counter negative
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative

17 PMCINTCONTROL Enable interrupt signalling due to any PMCn (n>1) counter negative.
0 Disable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter

negative.
1 Enable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter negative.

18 PMCTRIGGER PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has
become negative or after a performance monitoring interrupt is signalled.
0 Enable PMCn (n>1) counting
1 Disable PMCn (n>1) counting until PMC1 bit 0 is “on” or until a performance

monitor interrupt is signalled.
PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has
become negative. This provides a triggering mechanism to allow counting after a
certain condition occurs or after enough time has occurred. It can be used to
support getting the count associated with a specific event.

19-25 PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 9-2.

26–31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 9-3.

Table 9-6. MMCR0 Bit Settings (Continued)

Bit Name Description
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9.1.1.3.1  Monitor Mode Control Register 1—MMCR1
The 604e defines an additional monitor mode control register (MMCR1), which funct
as an event selector for the two 604e-specific performance monitor counter reg
(PMC3 and PMC4). MMCR1 is SPR 956. The MMCR1 register is shown in Figure 9

Figure 9-1. Monitor Mode Control Register 1 (MMCR1)

Bit settings for MMCR1 are shown in Table 9-7. The corresponding events are desc
in the Section 9.1.1.1, “Performance Monitor Counter Registers (PMC1–PMC4).”

9.1.2  Event Counting
Counting can be enabled if conditions in the processor state match a software-spe
condition. Because a software task scheduler may switch a processor’s execution a
multiple processes and because statistics on only a particular process may be of inte
facility is provided to mark a process. The performance monitor (PM) bit, MSR[29] is u
for this purpose. System software may set this bit when a marked process is running
enables statistics to be gathered only during the execution of the marked process. The
of MSR[PR] and MSR[PM] together define a state that the processor (supervis
program) and the process (marked or unmarked) may be in at any time. If this state m
a state specified by the MMCR, the state for which monitoring is enabled, countin
enabled.

The following are states that can be monitored:

• (Supervisor) only
• (User) only
• (Marked and user) only
• (Not marked and user) only
• (Marked and supervisor) only
• (Not marked and supervisor) only
• (Marked) only
• (Not marked) only

Table 9-7. MMCR1 Bit Settings

Bits Name Description

0–4 PMC3SELECT PMC3 event selector

5–9 PMC4SELECT PMC4 event selector

10–31 — Reserved

0 4 5 9 10 31

Reserved

PMC3SELECT PMC4SELECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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In addition, one of two unconditional counting modes may be specified:

• Counting is unconditionally enabled regardless of the states of MSR[PM] and
MSR[PR]. This can be accomplished by clearing MMCR0[0–4].

• Counting is unconditionally disabled regardless of the states of MSR[PM] and
MSR[PR]. This is done by setting MMCR0[0].

The performance monitor counters track how often a selected event occurs and are u
generate performance monitor exceptions when an overflow (most significant bit is
situation occurs. The 604e performance monitor contains two counters. This regis
cleared at startup and can be updated through anmtspr instruction.

The 32-bit registers can count up to 0x7FFFFFFF (2,147,483,648 in decimal) b
becoming negative. The most significant bit (bit 0) of both registers is used to determ
an interrupt condition exists.

9.1.2.1  Event Selection
Event selection is handled through PMC1–PMC4, described in Table 9-2 to Table
respectively. Event selection is described as follows:

• The event select fields are located in MMCR0 and MMCR1. There are 7 bits
associated with PMC1, 6 bits associated with PMC2, 5 bits associated with PM
and 5 bits associated with PMC4. Only the low order bits are used for selection.
higher order bits are reserved for future applications.

• In the tables, a correlation is established between each counter, the events to
traced, and the pattern required for the desired selection.

• The first five events are common to both counters. These are considered to b
reference events.

• Some events can have multiple occurrences per cycle, and therefore need tw
three bits to represent them. These events are number 2, 4, 14, 15 for PMC1 
2, 4, 8, 18 for PMC2.

9.1.2.2  Threshold Events
These PMC1 events are numbers 9, 10, 23, and 24. These events monitor load an
misses (with and without lateral L2 intervention). Only “marked” loads and stores (lo
and stores at queue position 0) are monitored. See Section 9.1.2.2.1, “Thre
Conditions,” for more information.

When a marked operation is detected, the SDA is updated with the effective address.
the marked instruction finishes executing, the SIA will be updated with the address o
instruction. Thus, when a PMI is signaled (as a result of a threshold event) the SIA and
contains the exact SIA and SDA belonging to the instruction that caused PMC1 to be
negative; see Section 9.1.2.2.3, “Warnings,” for further information.
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9.1.2.2.1  Threshold Conditions
The ability to generate a PMI based on a threshold condition makes it possib
characterize L1 data cache misses. Specifically, the programmer should be able to id
(through repeated runs and sampling) the time distribution required to satisfy L1 c
misses. For example, if PMC1 is counting load misses and the threshold is set to
(cycles), only load misses taking more than two cycles are counted. Repeated run
different threshold values would allow construction of a load-miss distribution chart.

When a load (or store) miss arrives in the load/store queue, the threshold control
begins decrementing. For each cycle that passes, the threshold value in a shadow
(obtained from MMCR0[10–15]) is decremented. The threshold is exceeded when
value reaches 0, at which point the PMC1 count is updated.

While servicing the load/store misses, the SIA and SDA registers are updated to the
instruction and data addresses at the time an interrupt condition occurs. Thus, at the
each threshold load or store operation, the SIA contains the address of the instructio
was last monitored, and the SDA contains the address of the data of the same instr

9.1.2.2.2  Lateral L2 Cache Intervention
A load or store operation that misses in the L1 cache can receive its data from one of s
memory devices. In a uniprocessor system, the data would likely come an L2 cache, o
main memory if no L2 cache is present. In a multiprocessor system, the data can orig
from the L2 cache connected to another 604e (that is, a lateral L2 cache), in which cas
L2 controller asserts an intervention signal (L2_INT) used by the performance mon
This signal is useful when tracking memory latencies in a SMP system. For informa
about the L2_intervention signal, see Section 7.2.10.4, “L2 Interven
(L2_INT)—Input.”

9.1.2.2.3  Warnings
The following warnings should be noted:

• Not all load and store operations are monitored when a threshold event is selec
PMC1. Only those in queue position 0 of their respective load/store queues a
monitored.

• The 604e cannot accurately track threshold events with respect to the followin
types of loads and stores:

— Unaligned load and store operations that cross a word boundary

— Load and store multiple operations

— Load and store string operations

• The lateral L2 cache intervention signal is controlled by the L2 cache controlle
being used. If the L2 cache controller does not provide this functionality, the eve
that use this signal (PMC1 events 9 and 10) become obsolete.

• If L2_INT is not connected to any source (negated or to an L2 controller) the res
obtained from the threshold events 9, 10, 23, and 24 of PMC1 are undefined.
9-14 PowerPC 604e RISC Microprocessor User's Manual



PMI
e SIA
tion or
of the
s an

same
9.1.2.3  Nonthreshold Events
Nonthreshold events are all events except for PMC1 events 9, 10, 23, or 24. Any
signaled from nonthreshold events operate the same way. There is no distinction (in th
and SDA registers) between an interrupt generated by a time-base register bit transi
from PMC2 or PMC1 becoming negative. In these cases the SIA contains the address
last instruction completed during the cycle the PMI was signaled. The SDA contain
effective address of some instruction currently being processed.

Under these events the SIA and SDA does not contain information belonging to the
instruction.
Chapter 9.  Performance Monitor 9-15
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Appendix A
PowerPC Instruction Set Listings
A0
A0

This appendix lists the PowerPC 604e microprocessor instruction set as well as Pow
instructions not implemented in the 604e. Instructions are sorted by mnemonic, op
function, and form. Also included in this appendix is a quick reference table that con
general information, such as the architecture level, privilege level, and form, and indi
if the instruction is 64-bit and optional.

Note that split fields, that represent the concatenation of sequences from left to righ
shown in lowercase. For more information refer to Chapter 8, “Instruction Set,” inThe
Programming Environments Manual.

A.1  Instructions Sorted by Mnemonic
Table A-1 lists the instructions implemented in the 604e in alphabetical order
mnemonic.

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addme x 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

andx 31 S A B 28 Rc

Reserved bits

Key:

Instruction not implemented in the 604e
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andc x 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctr x 19 BO BI 0 0 0 0 0 528 LK

bclr x 19 BO BI 0 0 0 0 0 16 LK

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzd x 4 31 S A 0 0 0 0 0 58 Rc

cntlzw x 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divd x 4 31 D A B OE 489 Rc

divdu x 4 31 D A B OE 457 Rc

divw x 31 D A B OE 491 Rc

divwu x 31 D A B OE 459 Rc

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc

extsw x 4 31 S A 0 0 0 0 0 986 Rc

fabs x 63 D 0 0 0 0 0 B 264 Rc

fadd x 63 D A B 0 0 0 0 0 21 Rc

fadds x 59 D A B 0 0 0 0 0 21 Rc

fcfid x 4 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctid x 4 63 D 0 0 0 0 0 B 814 Rc

fctidz x 4 63 D 0 0 0 0 0 B 815 Rc

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

fdiv x 63 D A B 0 0 0 0 0 18 Rc

fdivs x 59 D A B 0 0 0 0 0 18 Rc

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fmul x 63 D A 0 0 0 0 0 C 25 Rc

fmuls x 59 D A 0 0 0 0 0 C 25 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc

fres x 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsp x 63 D 0 0 0 0 0 B 12 Rc

frsqrte x 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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fsel x 5 63 D A B C 23 Rc

fsqrt x 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrts x 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsub x 63 D A B 0 0 0 0 0 20 Rc

fsubs x 59 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 4 58 D A ds 0

ldarx 4 31 D A B 84 0

ldu 4 58 D A ds 1

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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lmw 3 46 D A d

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwa 4 58 D A ds 2

lwarx 31 D A B 20 0

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsf x 63 0 FM 0 B 711 Rc

mtfsfi x 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 S spr 467 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

mulhd x 4 31 D A B 0 73 Rc

mulhdu x4 31 D A B 0 9 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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mulhw x 31 D A B 0 75 Rc

mulhwu x 31 D A B 0 11 Rc

mulld x 4 31 D A B OE 233 Rc

mulli 7 D A SIMM

mullw x 31 D A B OE 235 Rc

nand x 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rldcl x 4 30 S A B mb 8 Rc

rldcr x 4 30 S A B me 9 Rc

rldic x 4 30 S A sh mb 2 sh Rc

rldicl x 4 30 S A sh mb 0 sh Rc

rldicr x 4 30 S A sh me 1 sh Rc

rldimi x 4 30 S A sh mb 3 sh Rc

rlwimi x 20 S A SH MB ME Rc

rlwinm x 21 S A SH MB ME Rc

rlwnm x 23 S A B MB ME Rc

sc 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sld x 4 31 S A B 27 Rc

slw x 31 S A B 24 Rc

srad x 4 31 S A B 794 Rc

sradi x 4 31 S A sh 413 sh Rc

sraw x 31 S A B 792 Rc

srawi x 31 S A SH 824 Rc

srd x 4 31 S A B 539 Rc

srw x 31 S A B 536 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 4 62 S A ds 0

stdcx. 4 31 S A B 214 1

stdu 4 62 S A ds 1

stdux 4 31 S A B 181 0

stdx 4 31 S A B 149 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx  5 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 3 47 S A d

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subf x 31 D A B OE 40 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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subfc x 31 D A B OE 8 Rc

subfe x 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfme x 31 D A 0 0 0 0 0 OE 232 Rc

subfze x 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 4 31 TO A B 68 0

tdi 4 02 TO A SIMM

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xor x 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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A.2  Instructions Sorted by Opcode
Table A-2 lists the 604e instruction set sorted in numeric order by opcode, including t
PowerPC instructions not implemented by the 604e.

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 4 0 0 0 0 1 0 TO A SIMM

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclr x 0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

Reserved bits

Key:

Instruction not implemented in the 604e
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bcctr x 0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimi x 0 1 0 1 0 0 S A SH MB ME Rc

rlwinm x 0 1 0 1 0 1 S A SH MB ME Rc

rlwnm x 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

rldicl x 4 0 1 1 1 1 0 S A sh mb 0 0 0 sh Rc

rldicr x 4 0 1 1 1 1 0 S A sh me 0 0 1 sh Rc

rldic x 4 0 1 1 1 1 0 S A sh mb 0 1 0 sh Rc

rldimi x 4 0 1 1 1 1 0 S A sh mb 0 1 1 sh Rc

rldcl x 4 0 1 1 1 1 0 S A B mb 0 1 0 0 0 Rc

rldcr x 4 0 1 1 1 1 0 S A B me 0 1 0 0 1 Rc

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfc x 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 0 0 Rc

mulhdu x 4 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 0 1 Rc

addc x 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 1 0 Rc

mulhwu x 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

ldx 4 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slw x 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzw x 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

sld x 4 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 1 1 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subf x 0 1 1 1 1 1 D A B OE 0 0 0 0 1 0 1 0 0 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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ldux 4 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 0 1 0

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

cntlzd x 4 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 Rc

andc x 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

td 4 0 1 1 1 1 1 TO A B 0 0 0 1 0 0 0 1 0 0 0

mulhd x 4 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 0 1 Rc

mulhw x 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

ldarx 4 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 0 0 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

nor x 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfe x 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stdx 4 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 0 1 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

stdux 4 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 0 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfze x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 1 0 Rc

mtsr 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stdcx. 4 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 0 1

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfme x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 0 0 Rc

mulld 4 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 0 1 Rc

addme x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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mullw x 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 1 1 Rc

mtsrin 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE 0 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xor x 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 2 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lwax 4 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 0 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lwaux 4 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 0 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orc x 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

sradi x 4 0 1 1 1 1 1 S A sh 1 1 0 0 1 1 1 0 1 1 sh Rc

slbie 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 1 0 1 1 0 0 1 0 0

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divdu x 4 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 0 1 Rc

divwu x 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 1 1 Rc

mtspr 2 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

dcbi 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

nand x 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divd x 4 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 0 1 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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divw x 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 1 1 Rc

slbia 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

 mcrxr 0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx 3 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srw x 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

srd x 4 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 1 1 Rc

tlbsync 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 3 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 1 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx 3 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 3 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

sraw x 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

srad x 4 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 1 0 Rc

srawi x 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extsh x 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsb x 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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stfiwx 5 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

extsw 4 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 Rc

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 3 1 0 1 1 1 0 D A d

stmw 3 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

ld 4 1 1 1 0 1 0 D A ds 0 0

ldu 4 1 1 1 0 1 0 D A ds 0 1

lwa 4 1 1 1 0 1 0 D A ds 1 0

fdivs x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubs x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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fadds x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrts x 5 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fres x 5 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmuls x 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubs x 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmadds x 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubs x 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmadds x 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

std 4 1 1 1 1 1 0 S A ds 0 0

stdu 4 1 1 1 1 1 0 S A ds 0 1

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frsp x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiw x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwz x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdiv x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsub x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

fadd x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrt x 5 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fsel x 5 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmul x 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrte x 5 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsub x 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmadd x 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsub x 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmadd x 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1 x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fneg x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0 x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmr x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfi x 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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fnabs x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabs x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffs x 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsf x 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

fctid x 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 0 Rc

fctidz x 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 1 Rc

fcfid x 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 0 1 1 1 0 Rc

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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s the
A.3  Instructions Grouped by Functional Categories
Table A-3 through Table A-30 list the 604e instructions grouped by function, as well a
PowerPC instructions not implemented in the 604e.

Table A-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addme x 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divd x 4 31 D A B OE 489 Rc

divdu x 4 31 D A B OE 457 Rc

divw x 31 D A B OE 491 Rc

divwu x 31 D A B OE 459 Rc

mulhd x 4 31 D A B 0 73 Rc

mulhdu x4 31 D A B 0 9 Rc

mulhw x 31 D A B 0 75 Rc

mulhwu x 31 D A B 0 11 Rc

mulld  4 31 D A B OE 233 Rc

mulli 07 D A SIMM

mullw x 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subf x 31 D A B OE 40 Rc

subfc x 31 D A B OE 8 Rc

subfic x 08 D A SIMM

Reserved bits

Key:

Instruction not implemented in the 604e
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Table A-4. Integer Compare Instructions

Table A-5. Integer Logical Instructions

subfe x 31 D A B OE 136 Rc

subfme x 31 D A 0 0 0 0 0 OE 232 Rc

subfze x 31 D A 0 0 0 0 0 OE 200 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzd x 4 31 S A 0 0 0 0 0 58 Rc

cntlzw x 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc

extsw x 4 31 S A 0 0 0 0 0 986 Rc

nand x 31 S A B 476 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xor x 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Table A-6. Integer Rotate Instructions

Table A-7. Integer Shift Instructions

Table A-8. Floating-Point Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldcl x 4 30 S A B mb 8 Rc

rldcr x 4 30 S A B me 9 Rc

rldic x 4 30 S A sh mb 2 sh Rc

rldicl x 4 30 S A sh mb 0 sh Rc

rldicr x 4 30 S A sh me 1 sh Rc

rldimi x 4 30 S A sh mb 3 sh Rc

rlwimi x 22 S A SH MB ME Rc

rlwinm x 20 S A SH MB ME Rc

rlwnm x 21 S A SH MB ME Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sld x 4 31 S A B 27 Rc

slw x 31 S A B 24 Rc

srad x 4 31 S A B 794 Rc

sradi x 4 31 S A sh 413 sh Rc

sraw x 31 S A B 792 Rc

srawi x 31 S A SH 824 Rc

srd x 4 31 S A B 539 Rc

srw x 31 S A B 536 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fadd x 63 D A B 0 0 0 0 0 21 Rc

fadds x 59 D A B 0 0 0 0 0 21 Rc

fdiv x 63 D A B 0 0 0 0 0 18 Rc

fdivs x 59 D A B 0 0 0 0 0 18 Rc

fmul x 63 D A 0 0 0 0 0 C 25 Rc

fmuls x 59 D A 0 0 0 0 0 C 25 Rc

fres x 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrte x 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsub x 63 D A B 0 0 0 0 0 20 Rc
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Table A-9. Floating-Point Multiply-Add Instructions

Table A-10. Floating-Point Rounding and Conversion Instructions

Table A-11. Floating-Point Compare Instructions

fsubs x 59 D A B 0 0 0 0 0 20 Rc

fsel x 5 63 D A B C 23 Rc

fsqrt x 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrts x 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcfid x 4 63 D 0 0 0 0 0 B 846 Rc

fctid x 4 63 D 0 0 0 0 0 B 814 Rc

fctidz x 4 63 D 0 0 0 0 0 B 815 Rc

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

frsp x 63 D 0 0 0 0 0 B 12 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Table A-12. Floating-Point Status and Control Register Instructions

Table A-13. Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsf x 31 0 FM 0 B 711 Rc

mtfsfi x 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 4 58 D A ds 0

ldu 4 58 D A ds 1

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwa 4 58 D A ds 2

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0
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Table A-14. Integer Store Instructions

Table A-15. Integer Load and Store with Byte Reverse Instructions

Table A-16. Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 4 62 S A ds 0

stdu 4 62 S A ds 1

stdux 4 31 S A B 181 0

stdx 4 31 S A B 149 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 3 46 D A d

stmw 3 47 S A d
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Table A-17. Integer Load and Store String Instructions

Table A-18. Memory Synchronization nstructions

Table A-19. Floating-Point Load Instructions

Table A-20. Floating-Point Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

ldarx 4 31 D A B 84 0

lwarx 31 D A B 20 0

stdcx. 4 31 S A B 214 1

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0
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Table A-21. Floating-Point Move Instructions

Table A-22. Branch Instructions

Table A-23. Condition Register Logical Instructions

stfiwx 5 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabs x 63 D 0 0 0 0 0 B 264 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctr x 19 BO BI 0 0 0 0 0 528 LK

bclr x 19 BO BI 0 0 0 0 0 16 LK

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Table A-24. System Linkage Instructions

Table A-25. Trap Instructions

Table A-26. Processor Control Instructions

Table A-27. Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

td 4 31 TO A B 68 0

tdi 4 03 TO A SIMM

tw 31 TO A B 4 0

twi 03 TO A SIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 D spr 467 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0
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Table A-28. Segment Register Manipulation Instructions

Table A-29. Lookaside Buffer Management Instructions

Table A-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction
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A.4  Instructions Sorted by Form
Table A-31 through Table A-45 list the 604e instructions grouped by form, including th
PowerPC instructions not implemented in the 604e.

Table A-31. I-Form

Table A-32. B-Form

Table A-33. SC-Form

Table A-34. D-Form

OPCD LI AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

OPCD BO BI BD AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Reserved bits

Key:

Instruction not implemented in the 604e
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Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 3 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

stmw 3 47 S A d
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Table A-35. DS-Form

Table A-36. X-Form

stw 36 S A d

stwu 37 S A d

subfic 08 D A SIMM

tdi 4 02 TO A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

OPCD D A ds XO

OPCD S A ds XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ld 4 58 D A ds 0

ldu  4 58 D A ds 1

lwa 4 58 D A ds 2

std 4 62 S A ds 0

stdu 4 62 S A ds 1

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzd x 4 31 S A 0 0 0 0 0 58 Rc

cntlzw x 31 S A 0 0 0 0 0 26 Rc

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc
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extsw x 4 31 S A 0 0 0 0 0 986 Rc

fabs x 63 D 0 0 0 0 0 B 264 Rc

fcfid x 4 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctid x 4 63 D 0 0 0 0 0 B 814 Rc

fctidz x 4 63 D 0 0 0 0 0 B 815 Rc

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

frsp x 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ldarx 4 31 D A B 84 0

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwarx 31 D A B 20 0

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfi x 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

nand x 31 S A B 476 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sld x 4 31 S A B 27 Rc

slw x 31 S A B 24 Rc

srad x 4 31 S A B 794 Rc

sraw x 31 S A B 792 Rc

srawi x 31 S A SH 824 Rc

srd x 4 31 S A B 539 Rc

srw x 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stdcx. 4 31 S A B 214 1

stdux 4 31 S A B 181 0

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Table A-37. XL-Form

stdx 4 31 S A B 149 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 5 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 4 31 TO A B 68 0

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xor x 31 S A B 316 Rc

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctr x 19 BO BI 0 0 0 0 0 528 LK

bclr x 19 BO BI 0 0 0 0 0 16 LK

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Table A-38. XFX-Form

Table A-39. XFL-Form

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 2 31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtspr 2 31 D spr 467 0

OPCD 0 FM 0 B XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsf x 63 0 FM 0 B 711 Rc

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Table A-40. XS-Form

Table A-41. XO-Form

OPCD S A sh XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sradi x 4 31 S A sh 413 sh Rc

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addme x 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divd x 4 31 D A B OE 489 Rc

divdu x 4 31 D A B OE 457 Rc

divw x 31 D A B OE 491 Rc

divwu x 31 D A B OE 459 Rc

mulhd x 4 31 D A B 0 73 Rc

mulhdu x 4 31 D A B 0 9 Rc

mulhw x 31 D A B 0 75 Rc

mulhwu x 31 D A B 0 11 Rc

mulld x 4 31 D A B OE 233 Rc

mullw x 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subf x 31 D A B OE 40 Rc

subfc x 31 D A B OE 8 Rc

subfe x 31 D A B OE 136 Rc

subfme x 31 D A 0 0 0 0 0 OE 232 Rc

subfze x 31 D A 0 0 0 0 0 OE 200 Rc
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Table A-42. A-Form

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fadd x 63 D A B 0 0 0 0 0 21 Rc

fadds x 59 D A B 0 0 0 0 0 21 Rc

fdiv x 63 D A B 0 0 0 0 0 18 Rc

fdivs x 59 D A B 0 0 0 0 0 18 Rc

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fmul x 63 D A 0 0 0 0 0 C 25 Rc

fmuls x 59 D A 0 0 0 0 0 C 25 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc

fres x 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrte x 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsel x 5 63 D A B C 23 Rc

fsqrt x 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrts x 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsub x 63 D A B 0 0 0 0 0 20 Rc

fsubs x 59 D A B 0 0 0 0 0 20 Rc
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Table A-43. M-Form

Table A-44. MD-Form

Table A-45. MDS-Form

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimi x 20 S A SH MB ME Rc

rlwinm x 21 S A SH MB ME Rc

rlwnm x 23 S A B MB ME Rc

OPCD S A sh mb XO sh Rc

OPCD S A sh me XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldic x 4 30 S A sh mb 2 sh Rc

rldicl x 4 30 S A sh mb 0 sh Rc

rldicr x 4 30 S A sh me 1 sh Rc

rldimi x 4 30 S A sh mb 3 sh Rc

OPCD S A B mb XO Rc

OPCD S A B me XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldcl x 4 30 S A B mb 8 Rc

rldcr x 4 30 S A B me 9 Rc

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction
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A.5  Instruction Set Legend
Table A-46 provides general information on the 604e instruction set (such as
architectural level, privilege level, and form), including instructions not implemented in
604e.

Table A-46. PowerPC Instruction Set Legend

UISA VEA OEA Supervisor Level 64-Bit Optional Form

addx XO

addc x XO

addex XO

addi D

addic D

addic. D

addis D

addme x XO

addzex XO

andx X

andc x X

andi. D

andis. D

bx I

bcx B

bcctr x XL

bclr x XL

cmp X

cmpi D

cmpl X

cmpli D

cntlzd x X

cntlzw x X

crand XL

crandc XL

Key:

Instruction not implemented in the 604e
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creqv XL

crnand XL

crnor XL

cror XL

crorc XL

crxor XL

dcbf X

dcbi X

dcbst X

dcbt X

dcbtst X

dcbz X

divd x XO

divdu x XO

divw x XO

divwu x XO

eciwx X

ecowx X

eieio X

eqvx X

extsb x X

extsh x X

extsw x X

fabs x X

fadd x A

fadds x A

fcfid x X

fcmpo X

fcmpu X

fctid x X

fctidz x X

fctiw x X

fctiwz x X

UISA VEA OEA Supervisor Level 64-Bit Optional Form
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fdiv x A

fdivs x A

fmadd x A

fmadds x A

fmr x X

fmsub x A

fmsubs x A

fmul x A

fmuls x A

fnabs x X

fneg x X

fnmadd x A

fnmadds x A

fnmsub x A

fnmsubs x A

fres x A

frsp x X

frsqrte x A

fsel x A

fsqrt x A

fsqrts x A

fsub x A

fsubs x A

icbi X

isync XL

lbz D

lbzu D

lbzux X

lbzx X

ld DS

ldarx X

ldu DS

ldux X

UISA VEA OEA Supervisor Level 64-Bit Optional Form
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ldx X

lfd D

lfdu D

lfdux X

lfdx X

lfs D

lfsu D

lfsux X

lfsx X

lha D

lhau D

lhaux X

lhax X

lhbrx X

lhz D

lhzu D

lhzux X

lhzx X

lmw 2 D

lswi 2 X

lswx 2 X

lwa DS

lwarx X

lwaux X

lwax X

lwbrx X

lwz D

lwzu D

lwzux X

lwzx X

mcrf XL

mcrfs X

 mcrxr X

UISA VEA OEA Supervisor Level 64-Bit Optional Form
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mfcr X

mffs x X

mfmsr X

mfspr 1 XFX

mfsr X

mfsrin X

mftb XFX

mtcrf XFX

mtfsb0 x X

mtfsb1 x X

mtfsf x XFL

mtfsfi x X

mtmsr X

mtspr 1 XFX

mtsr X

mtsrin X

mulhd x XO

mulhdu x XO

mulhw x XO

mulhwu x XO

mulld x XO

mulli D

mullw x XO

nand x X

negx XO

nor x X

orx X

orc x X

ori D

oris D

rfi XL

rldcl x MDS

rldcr x MDS

UISA VEA OEA Supervisor Level 64-Bit Optional Form
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rldic x MD

rldicl x MD

rldicr x MD

rldimi x MD

rlwimi x M

rlwinm x M

rlwnm x M

sc SC

slbia X

slbie X

sld x X

slw x X

srad x X

sradi x XS

sraw x X

srawi x X

srd x X

srw x X

stb D

stbu D

stbux X

stbx X

std DS

stdcx. X

stdu DS

stdux X

stdx X

stfd D

stfdu D

stfdux X

stfdx X

stfiwx X

 stfs D

UISA VEA OEA Supervisor Level 64-Bit Optional Form
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stfsu D

stfsux X

stfsx X

sth D

sthbrx X

sthu D

sthux X

sthx X

stmw 2 D

stswi 2 X

stswx 2 X

stw D

stwbrx X

stwcx. X

stwu D

stwux X

stwx X

subf x XO

subfc x XO

subfe x XO

subfic D

subfme x XO

subfze x XO

sync X

td X

tdi D

tlbia X

tlbie X

tlbsync X

tw X

twi D

UISA VEA OEA Supervisor Level 64-Bit Optional Form
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xor x X

xori D

xoris D

1 Supervisor- and user-level instruction
2 Load and store string or multiple instruction

UISA VEA OEA Supervisor Level 64-Bit Optional Form
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Appendix B
Invalid Instruction Forms
B0
B0

This appendix describes how invalid instructions are treated by the PowerPC
microprocessor.

B.1  Invalid Forms Excluding Reserved Fields
Table B-1 illustrates the invalid instruction forms of the PowerPC architecture that ar
a result of a nonzero reserved field in the instruction encoding.

Table B-1. Invalid Forms (Excluding Reserved Fields)

Mnemonic BO 2 = 0
rA = 0

or
rA = rD

rA = 0 rA = r T = 0
rA in

Range
rA or rB
in Range

L = 1
SPR Not

Implemented

bcctr X

bcctrl X

lbzu X

lbzux X

lhzu X

lhzux X

lhau X

lhaux X

lwzu X

lwzux X

stbu X

stbux X

sthu X

sthux X

stwu X

stwux X

lmw X X
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B.2  Invalid Forms with Reserved Fields (Bit 31
Exclusive)

Table B-2 lists the invalid instruction forms of the PowerPC architecture that result fro
nonzero reserved field in the instruction encoding. This table takes into consideratio
reserved fields in an instruction that must be zero, excluding only those instructions
would become invalid if only bit 31 were set. Note that any combination of a one b
detected in the instructions field(s) marked X results in an invalid form.

The tlbsync instruction has the same opcode and format as thesync instruction. Setting
bit 31 in the instruction indicates atlbsync.

lswi X X

lswx X X

cmpi X

cmp X

cmpli X

cmpl X

mtspr X

mfspr X

LFSU X

lfsux X

lfdu X

lfdux X

stfsu X

stfsux X

stfdu X

stfdux X

Table B-1. Invalid Forms (Excluding Reserved Fields) (Continued)

Mnemonic BO 2 = 0
rA = 0

or
rA = rD

rA = 0 rA = r T = 0
rA in

Range
rA or rB
in Range

L = 1
SPR Not

Implemented
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Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive)

Mnemonic 6
6
to
10

6
to
15

6
to
20

6
to
29

9
9
to
10

9
to
15

1
1

11
to
15

11
to
20

14
to
20

15
16
to
20

20 21
21
to
25

31

bclr X

bclrl X

bcctr X

bcctrl X

sc X X

mcrf X X X

sync X *

addme [o][.] X

subfme [o][.] X

addze [o][.] X

subfze [o][.] X

neg [o][.] X

mulhw [u][.] X

cmpi X X

cmp X

cmpli X X

cmpl X

extsb [.] X

extsh [.] X

cntlzw [.] X

mtcrf X X X

mcrxr X X X

mtpmr X X

mfpmr X X

fmr [.] X

fneg [.] X

fabs [.] X

fnabs [.] X

fadd [.] X

fadds [.] X

fsub [.] X
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fsubs [.] X

fmul [.] X

fmuls [.] X

fdiv [.] X

fdivs [.] X

frsp [.] X

fctiw [.] X

fctiwz [.] X

fcmpu X X

fcmpuo X X

mffs [.] X

mcrfs X X X

mtfsfi [.] X X

mtfsf [.] X X

mtfsb0 [.] X

mtfsb1 [.] X

icbi X X

isync X X

dcbt X X

dcbtst X X

dcbz X X

dcbst X X

dcbf X X

eieio X X

mftb X X

mftbu X X

rfi X X

mtmsr X X

mfmsr X X

dcbi X X

mtsr X X X

Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) (Continued)

Mnemonic 6
6
to
10

6
to
15

6
to
20

6
to
29

9
9
to
10

9
to
15

1
1

11
to
15

11
to
20

14
to
20

15
16
to
20

20 21
21
to
25

31
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B.3  Invalid Form with Only Bit 31 Set
The following instructions generate invalid instruction forms if only bit 31 is set in
instruction:

• cror
• crxor
• crnand
• crnor
• crandc
• creqv
• crorc
• lbzx
• lbzux
• lhzx
• lhzux
• lhax
• lhaux
• lwzx
• lwzux
• stbx
• stbux
• sthx
• sthux
• stwx
• stwux
• lhbrx

mfsr X X X

mtsrin X X

mfsrin X X

tlbie X X

mttb X X

mttbu X X

tlbsync X *

Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) (Continued)

Mnemonic 6
6
to
10

6
to
15

6
to
20

6
to
29

9
9
to
10

9
to
15

1
1

11
to
15

11
to
20

14
to
20

15
16
to
20

20 21
21
to
25

31
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• lwbrx
• sthbrx
• stwbrx
• lswi
• lswx
• stswi
• stswx
• lwarx
• tw
• mtspr
• mfspr
• lfsx
• lfsux
• lfdx
• lfdux
• stfsx
• stfsux
• stfdx
• stfdux

B.4  Invalid Forms from Invalid BO Field Encodings
The following list illustrates the invalid BO fields for the conditional branch instructio
(bc, bca, bcl, bcla, bclr, bclrl , bcctr, and bcctrl ). Specifying a conditional branch
instruction with one of these fields results in a invalid instruction form. Note that en
with they bit represent two possible instruction encodings. Invalid BO field encodings
as follows:

• 0011y
• 0111y
• 1100y
• 1101y
• 10101
• 10110
• 10111
• 11100
• 11101
• 11110
• 11111

The 604e treats the bits listed above as causing an invalid form as “don’t cares.”
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Appendix C
PowerPC 604 Processor System Design
and Programming Considerations
C0
C0

While the PowerPC 604 microprocessor shares most of the attributes of the PowerPC
microprocessor, the system designer or programmer should keep in mind the 604 har
and software differences, described in the following sections, that can require modifica
to accommodate the 604 in systems designed for the 604e. Note that the discussio
follows appears in chapter order for ease of reference.

C.1  PowerPC 604 Programming Model
The 604’s programming model differs from the 604e as described in the following sect

C.1.1  Register Set
The 604e implements the full 604 register set with the addition of the following regis

• HID1 register—HID1 is a supervisor-level register that allows software to read
current PLL_CFG value. The PLL_CFG signal values are read from bits
HID1[0–3]. The remaining bits are reserved and are read as zeros. HID1 is a 
only register.

• MMCR1—The 604e defines an additional monitor mode control register
(MMCR1), which functions as an event selector for the two 604e-specific
performance monitor counter registers (PMC3 and PMC4).

• PMC3 and PMC4—Like the PMC1 and PMC2, the PMC3 and PMC4 are 32-b
counters that can be programmed to generate interrupt signals when they are
negative.

• The 604e also introduces new bits to the HID0 register. Table C-1 contains the
HID0 bits descriptions.
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Table C-1. Hardware Implementation-Dependent Register 0 Bit Settings

Bit Description

0 Enable machine check input pin
0 The assertion of the MCP does not cause a machine check exception.
1 Enables the entry into a machine check exception based on assertion of the MCP input, detection of a

Cache Parity Error, detection of an address parity error, or detection of a data parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

1 Enable cache parity checking
0 The detection of a cache parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

2 Enable machine check on address bus parity error
0 The detection of a address bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

3 Enable machine check on data bus parity error
0 The detection of a data bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

7 Disable snoop response high state restore
HID bit 7, if active, alters bus protocol slightly by preventing the processor from driving the SHD and ARTRY
signals to the high (negated) state. If this is done, then the system must restore the signals to the high state.

15 Not hard reset
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

16 Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked

cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The instruction cache is enabled

17 Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked cache-

inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The data cache is enabled.

18 Instruction cache lock
0 Normal operation
1 All misses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to

work as normal. This is the only method for “deallocating” an entry.

19 Data cache lock
0 Normal operation
1 All misses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to

work as normal. This is the only method for “deallocating” an entry. The dcbz  instruction takes an
alignment exception if the data cache is locked when it is executed, provided the target address had
been translated correctly.
C-2 PowerPC 604e RISC Microprocessor User's Manual
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• Processor version register (PVR). This register is a read-only register that iden
the version (model) and revision level of the PowerPC processor. For more
information, see “Processor Version Register (PVR),” in Chapter 2, “PowerPC
Register Set,” ofThe Programming Environments Manual.

Implementation Note—The processor version number is 4 for the 604. The
processor revision level starts at 0x0000 and is different for each revision of t
chip. The revision level is updated for each silicon revision.

C.1.2  Operand Conventions
The 604e supports alignment in much the same way as the 604 with the excepti
misaligned little-endian accesses which has full hardware support on the 604e.

20 Instruction cache invalidate all
0 The instruction cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the instruction cache as

invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write
operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 Data cache invalidate all
0 The data cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the data cache as

invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write
operation to the register). Note that the data cache must be enabled for the invalidation to occur.

24 Serial instruction execution disable
0 The 604 executes one instruction at a time. The 604 does not post a trace exception after each

instruction completes, as it would if MSR[SE] or MSR[BE] were set.
1 Instruction execution is not serialized.

29 Branch history table enable
0 The 604 uses static branch prediction as defined by the PowerPC architecture (UISA) for those branch

instructions that the BHT would have otherwise been used to predict (that is, those that use the CR as
the only mechanism to determine direction. For more information on static branch prediction, see
section “Conditional Branch Control,” in Chapter 4 of The Programming Environments Manual.

1 Allows the use of the 512-entry branch history table (BHT).
The BHT is disabled at power-on reset. The BHT is updated while it is disabled, so it can be initialized before
it is enabled.

Table C-1. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description
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C.2  Cache and Bus Interface Unit
The 604 cache implementation has the following characteristics:

• Separate 16-Kbyte instruction and data caches. This is half the size of the 604e
Kbyte caches.

• The 604 caches are organized as a four-way set with 128 sets compared to the 6
256 sets. The organization of the 604 instruction and data caches is shown in
Figure C-1.

Figure C-1. Cache Organization

• The 604e implements three copy-back write buffers (the 604 has one).

• The 604e provides additional support for data cache line-fill buffer forwarding.
the 604, only the critical double word of a burst operation is made available to
requesting unit at the time it is burst into the line-fill buffer. Subsequent data is
unavailable until the cache block is filled. On the 604e, subsequent data is also
available as it arrives in the line-fill buffer.

• Snooping protocol change for Read-with-Intent-to-Modify bus operations—It i
now illegal for any snooping device to generate a SHD snoop response witho
ARTRY response to a RWITM address tenure. This change is required for the
and 604e.

C.3  Exceptions
The 604 implements the same set of exceptions as the 604e.

C.4  Memory Management Unit
The 604 MMU implementation is the same as is used in the 604e.
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C.5  Instruction Timing
The 604 instruction timing model is slightly different from the 604e, although it is basic
the same design. A conceptual model of the 604 hardware design showing the relatio
between the various units that affect the instruction timing is shown in Figure C-2.

Figure C-2. PowerPC 604 Microprocessor Block Diagram Showing Data Paths

The instruction timing in the 604e incorporates the following changes from the 604:

• In the 604, the CR logical unit operations are handled by the BPU but the 604e
a condition register unit (CRU) which executes all condition register logical an
flow control instructions. Because the CRU shares the dispatch bus with the B
only one condition register or branch instruction can be issued per clock cycle in
604e.

• The 604e has modified the branch correction in the decode stage to predict bra
whose target is taken from the CTR or LR. This correction occurs if no CTR or
updates are pending. This correction, like all other decode stage corrections, is

Fetch Unit

Branch

(Four-Instruction
Dispatch Unit

BPU

16-Kbyte Data Cache
4-Way, 8 Words/Block

Instruction

Instruction Dispatch Buses

Result Status Buses

Correction

FPR Operand Buses

LSUMCIUSCIUSCIU FPU

Result Buses
Operand Buses

Dispatch)

RS(2)

Completion Unit Dispatch Buses

GPR Operand Buses

GPR Result Buses

RS(2)RS(2)RS(2)RS(2) RS(2)

FPR Result Buses

F
P

R
R

en
am

e
B

uf
fe

rs
 (

8)

G
P

R
R

en
am

e
B

uf
fe

rs
 (

12
)

32
 G

P
R

s

32
 F

P
R

s

Appendix C. PowerPC 604 Processor System Design and Programming Considerations C-5



 least

e
etch.
y

s:

or
us
 to
park

sert
lso,
te
,
egins

 the
only on the first two instructions of the decode stage. This correction saves at
one cycle on branch correction when themtspr instruction can be separated from
the branch that uses the SPR as a target address.

• Instruction fetch when translation is disabled—If translation is disabled
(MSR[IR] = 0), the 604e fetches instructions when they hit in the cache or if th
previous completed instruction fetch was to the same page as this instruction f
Where an instruction access hits in the cache, the 604e continues to fetch an
consecutive accesses to that same page.

C.6  Signals
The 604 has the same signal configuration as the 604e with the following exception

• The timing for theDBG signal on the 604 are more restrictive than on the 604e. F
the 604 in fast-L2 mode,DBG must be asserted for exactly one cycle per data b
tenure, the cycle before the data tenure is to begin. The system is not allowed
assertDBG earlier than one cycle before the data tenure is to commence, nor to
DBG, nor to assert it for multiple consecutive cycles.DBB does not participate in
determining a qualified data bus grant. Therefore, the system is required to as
DBG in a manner such that different masters do not collide on data tenures. A
the system must assertDBG in a manner such that 604 data tenures are comple
before providing anotherDBG. If a DBG is given early to the 604 in fast-L2 mode
the processor drops the current data tenure prematurely in the next cycle and b
the subsequent data tenure if a subsequent data tenure is pending.

• The 604e adds the VOLTDETGND output signal (BGA package only). The
VOLTDETGND signal is an indicator of the core voltage for use with power
supplies capable of providing 2.5-V and 3.3-V outputs.

C.7  System Interface Operation
The 604 differs from the 604e in the following respects:

• The 604 bus interface allows for a 32-bit address bus (increased to 36 bits on
604e) and a 64-bit data bus (increased to 72 bits on the 604e) as shown in
Figure C-3.
C-6 PowerPC 604e RISC Microprocessor User's Manual
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• Bus clock ratios—The 604e supports processor-to-bus frequency ratios of 1:1
2:1, 5:2, 3:1, 4:1, and 7:2. Support for processor/bus clock ratios 5:2, 7:2, and 4
not supported on the 604.

• The 604 implementation of the fast-L2/data streaming mode is more restrictive
the 604e’s implementation. When the 604 operates in data streaming mode,DBG
must be asserted for exactly one cycle per data bus tenure, in the cycle befor
data tenure is to begin. The system cannot either assertDBG earlier than one cycle
before the data tenure is to begin, parkDBG, or assert it for multiple consecutive
cycles.

In data streaming mode, the 604e is compatible with the 604’s assertion
requirements forDBG, but less restrictive regarding successive data tenures
mastered by the 604e. For the 604e,DBG must be asserted no earlier than the cyc
before the 604e’s data tenure is to begin only when another master currently con
the data bus (that is, whenDBB would normally be asserted for a data tenure). If n
other masters currently control the data bus (are assertingDBB), the 604e allows the
system to parkDBG on the 604e.DBB remains an output-only signal in data
streaming mode (that is,DBB does not participate in determining a qualified dat
bus grant), requiring the system to useDBG to ensure that different masters don’
collide on data tenures.

Like the 604, the 604e requires a dead cycle between successive data tenure
which it is master, except for back-to-back burst read operations that can be
streamed without a dead cycle. For back-to-back data tenures that cannot be
streamed, the 604e does not accept an early data bus grant for the second tenu
negates itsDBB output signal for one cycle between the first and second data ten
The system must not attempt to stream consecutiveTA assertions from the first to
second data tenure in this case. Instead, a minimum of one dead cycle must be p
between theDBBs of two tenures if the two tenures are not both burst reads.

C.8  Performance Monitor
In addition to the 604’s use of the performance monitor counters 1 and 2 (PMC1
PMC2) and the monitor mode control register (MMCR0), the 604e performance mo
uses two additional counter registers and one additional control register. The co
register is MMCR1 (SPR 956). The counters, PMC3 and PMC4, are SPR 957 and SPR
respectively. Refer to Chapter 9, “Performance Monitor,” for more information.

MMCR0 on the 604e has been changed slightly from the original 604 definition. On
604, the monitor mode control register 0 (MMCR0) is a 32-bit SPR (SPR 952) whose
are partitioned into bit fields that determine the events to be counted and recorded
selection of allowable combinations of events causes the counters to operate concur
Control fields in the MMCR0 select the events to be counted, can enable a counter ove
C-8 PowerPC 604e RISC Microprocessor User's Manual
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The MMCR0 can be written to or read only in supervisor mode. The MMCR0 inclu
controls, such as counter enable control, counter overflow interrupt control, counter
selection, and counter freeze control.

This register is cleared at power up. Reading this register does not change its conten
fields of the register are defined in Table C-2.

Table C-2. MMCR0 Bit Settings

Bit Name Description

0 DIS Disable counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are

not changed by hardware.

2 DU Disable counting while in user mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not

changed by hardware).

3 DMS Disable counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR[PM] is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. This bit is cleared before passing control to the
operating system.

6 DISCOUNT Disable counting of PMC1 and PMC2 when a performance monitor interrupt is
signaled (that is, ((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or
the occurrence of an enabled time base transition with ((INTONBITTRANS =1) &
(ENINT = 1)).
0 Signaling a performance monitor interrupt has no effect on the counting

status of PMC1 and PMC2.
1 Signaling a performance monitor interrupt prevents the PMC1 counter from

changing. The PMC2 counter does not change if PMC2COUNTCTL = 0.
Because, a time-base signal could have occurred along with an enabled counter
negative condition, software should always reset INTONBITTRANS to zero, if the
value in INTONBITTRANS was a one.
Appendix C. PowerPC 604 Processor System Design and Programming Considerations C-9



7–8 RTCSELECT 64-bit time base, bit selection enable.
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 INTONBITTRANS Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to
on.
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.

10–15 THRESHOLD Threshold value. All 6 bits are supported by the 604 processor; allowing threshold
values from 0 to 63. The intent of the THRESHOLD support is to be able to
characterize L1 data cache misses.

16 PMC1INTCONTROL Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMC1 interrupt signaling due to PMC1 counter negative.
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative.

17 PMC2INTCONTROL Enable interrupt signaling due to PMC2 counter negative. This signal overrides
the setting of DISCOUNT.
0 Disable PMC2 interrupt signaling due to PMC2 counter negative.
1 Enable PMC2 Interrupt signaling due to PMC2 counter negative.

18 PMC2COUNTCTL May be used to trigger counting of PMC2 after PMC1 has become negative or
after a performance monitor interrupt is signaled.
0 Enable PMC2 counting
1 Disable PMC2 counting until PMC1 bit 0 is set or until a performance monitor

interrupt is signaled.
This signal can be used to trigger counting of PMC2 after PMC1 has become
negative. This provides a triggering mechanism for counting after a certain
condition occurs or after a preset time has elapsed. It can be used to support
getting the count associated with a specific event.

19-25 PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 9-2.

26–31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 9-3.

Table C-2. MMCR0 Bit Settings (Continued)

Bit Name Description
C-10 PowerPC 604e RISC Microprocessor User's Manual
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Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
book. Some of the terms and definitions included in the glossary are reprinted fromIEEE
Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the I

Atomic. A bus access that attempts to be part of a read-write operation to
same address uninterrupted by any other access to that addres
term refers to the fact that the transactions are indivisible). T
PowerPC architecture implements atomic accesses through
lwarx /stwcx. instruction pair.

Biased exponent. The sum of the exponent and a constant (bias) chose
make the biased exponent's range non-negative.

Big-endian. A byte-ordering method in memory where the address n o
word corresponds to the most significant byte. In an addres
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with
being the most significant byte.

Boundedly undefined. The results of attempting to execute a give
instruction are said to beboundedly undefinedif they could have
been achieved by executing an arbitrary sequence of defi
instructions, in valid form, starting in the state the machine was
before attempting to execute the given instruction. Bounde
undefined results for a given instruction may vary betwe
implementations, and between execution attempts in the s
implementation.

Cache. High-speed memory containing recently accessed data an
instructions (subset of main memory).

Cache block. The cacheable unit for a PowerPC processor. The size
cache block may vary among processors.

A

B

C

Glossary of Terms and Abbreviations Glossary-1



rom
alue

iss
be

fic
h
in
an
in
hed

nt
ose

cial

ion
hat
such
es of
ctor

y
ion)
n't
nd

lly
the
alled
Cache coherency. Caches are coherent if a processor performing a read f
its cache is supplied with data corresponding to the most recent v
written to memory or to another processor’s cache.

Cast-outs. Cache blocks that must be written to memory when a snoop m
causes the least recently used section with modified data to
replaced.

Context synchronization. Context synchronization as the result of speci
instructions (such asisyncor rfi ) or when certain events occur (suc
as an exception). During context synchronization, all instructions
execution complete past the point where they can produce
exception; all instructions in execution complete in the context
which they began execution; all subsequent instructions are fetc
and executed in the new context.

Denormalized number. A nonzero floating-point number whose expone
has a reserved value, usually the format's minimum, and wh
explicit or implicit leading significand bit is zero.

Exception. A condition encountered by the processor that requires spe
processing.

Exception handler. A software routine that executes when an except
occurs. Normally, the exception handler corrects the condition t
caused the exception, or performs some other meaningful task (
as aborting the program that caused the exception). The address
the exception handlers are defined by a two-word exception ve
that is branched to automatically when an exception occurs.

Execution synchronization. All instructions in execution are architecturall
complete before beginning execution (appearing to begin execut
of the next instruction. Similar to context synchronization but does
force the contents of the instruction buffers to be deleted a
refetched.

Exponent. The component of a binary floating-point number that norma
signifies the integer power to which two is raised in determining
value of the represented number. Occasionally the exponent is c
the signed or unbiased exponent.

D
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Floating-point register (FPR). Any of the 32 registers in the floating-poin
register file. These registers provide the source operands
destination results for floating-point instructions. Load instructio
move data from memory to FPRs, and store instructions move
from FPRs to memory.

Fraction. The field of the significand that lies to the right of its implied bina
point.

General-purpose register (GPR). Any of the 32 registers in the register file
These registers provide the source operands and destination re
for all data manipulation instructions. Load instructions move d
from memory to registers, and store instructions move data fr
registers to memory.

IEEE 754. A standard written by the Institute of Electrical and Electroni
Engineers that defines operations of binary floating-point arithm
and representations of binary floating-point numbers.

Interrupt . An asynchronous exception.

Kill . An operation that causes a cache block to be invalidated.

Latency. The number of clock cycles necessary to execute an instruction
make ready the results of that instruction.

Little-endian . A byte-ordering method in memory where the addressn of a
word corresponds to the least significant byte. In an addres
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with
being the most significant byte.

Mantissa. The decimal part of logarithm.

Memory-mapped accesses. Accesses whose addresses use the segment
block address translation mechanisms provided by the MMU a
that occur externally with the bus protocol defined for memory.

Memory coherency. Refers to memory agreement between caches i
multiple processor and system memory (for example, MESI ca
coherency).
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Memory consistency. Refers to agreement of levels of memory with respe
to a single processor and system memory (e.g. on-chip ca
secondary cache, and system memory).

Memory management unit. The functional unit that translates the effectiv
address bits to physical address bits.

NaN. An abbreviation for Not a number; a symbolic entity encoded
floating-point format. There are two types of NaNs—signaling Na
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect regis
or generate bus activity.

Overflow. An error condition that occurs during arithmetic operations wh
the result cannot be stored accurately in the destination registe
For example, if two 32-bit numbers are added, the sum may req
33 bits due to carry.

Page. A 4-Kbyte area of memory, aligned on a 4-Kbyte boundary.

Pipelining. A technique that breaks instruction execution into distinct ste
so that multiple steps can be performed at the same time.

Precise exceptions. The pipeline can be stopped so the instructions t
preceded the faulting instruction can complete, and subseq
instructions can be executed from scratch. The system is pre
unless one of the imprecise modes for invoking the floating-po
enabled exception is in effect.

Quiet NaNs. Propagate through almost every arithmetic operation with
signaling exceptions. These are used to represent the resul
certain invalid operations, such as invalid arithmetic operations
infinities or on NaNs, when invalid.

Signaling NaNs. Signal the invalid operation exception when they a
specified as arithmetic operands

Significand. The component of a binary floating-point number that cons
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.
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Static branch prediction. Mechanism by which software (for example
compilers) can give a hint to the machine hardware about
direction the branch is likely to take.

Sticky bit. A bit that when set must be cleared explicitly.

Superscalar machine. A machine that can issue multiple instruction
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of the a processor.
supervisor mode, software can access all control registers and
access the supervisor memory space, among other privile
operations.

Underflow. An error condition that occurs during arithmetic operations wh
the result cannot be represented accurately in the destination reg
For example, underflow can happen if two floating-point fractio
are multiplied and the result is a single-precision number. The re
may require a larger exponent and/or mantissa than the sin
precision format makes available. In other words, the result is
small to be represented accurately.

Unified cache. Combined data and instruction cache.

User mode. The unprivileged operating state of a processor. In user mo
software can only access certain control registers and can only ac
user memory space. No privileged operations can be performed

Write-through . A memory update policy in which all processor write cycle
are written to both the cache and memory.

U
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604 and 604e clocking differences, 7-36
604 to 604e upgrade considerations using

no-DRTRY, 8-53
604e-specific bits

HID0, 2-10
MMCR0, 2-13

604e-specific features, 1-7
604e-specific registers, 2-8
block diagram, 1-3
branch correction in decode stage, 6-8, 6-23
complete feature summary, 1-2
misaligned little-endian access support, 1-12, 2-23
processor configuration duringHRESET, 7-30,

8-54
registers

PVR number, 2-6
signals

differences between the 604 and 604e, 1-25
power management signals, 7-34
VOLTDETGND, 7-37

604-specific features, C-1

A
AACK signal, 7-18
ABB signal, 7-5, 8-8
Address bus

address tenure, 8-7, 8-40
address transfer

An, 7-8
APE, 7-10
APn, 7-9
signals, 8-12

address transfer attribute
CI, 7-17
CSEn, 7-18
GBL, 7-18
TBST, 7-13, 8-14
TCn, 7-14, 8-18
TSIZn, 7-12, 8-14
TTn, 7-10, 8-14
WT, 7-17

address transfer start
TS, 7-6
XATS, 7-7

address transfer termination
AACK, 7-18
ARTRY, 7-19
SHD, 7-20
terminating address transfer, 8-19

arbitration signals, 8-8
bus arbitration

ABB, 7-5
BG, 7-4
BR, 7-4
bus parking, 8-11

Address translation,see Memory management unit
Aligned data transfer, 8-15
Alignment

exception, 4-17, 5-17
misaligned accesses, 2-23
rules, 2-23

An signals, 7-8
APE signal, 7-10
APn signals, 7-9
Arbitration, system bus, 8-10, 8-21
ARTRY signal, 7-19
Atomic memory references using lwarx/stwcx., 3-21

B
BAT see Block address translation
BG signal, 7-4, 8-8
Big-endian memory mapping, 1-13, 2-24
Block address translation

BAT register initialization, 5-13
BAT registers, 2-6
block address translation flow, 5-12
selection of block address translation, 5-9

Block diagram, 604e, 1-3
Boundedly undefined, definition, 2-28
BR signal, 7-4, 8-8
Branch correction in decode stage, 6-8, 6-23
Branch instructions

address calculation, 2-50
branch instructions, 2-51, A-24
condition register logical, 2-51, A-24
system linkage, 2-52, 2-59, A-25
trap, 2-51, A-25

Branch prediction, 6-2, 6-23
Branch processing unit

instruction timings, 6-24, 6-34
Branch resolution, 6-2
BTAC (branch target address cache), 2-12
Burst data transfers

64-bit data bus, 8-14
transfers with data delays, timing, 8-37

Bus clock, 1-26
Bus configurations, 8-49
Bus interface unit (BIU), 3-6, 6-14
Byte ordering, 2-30

C
Cache

cache configuration, 3-17
cache configuration bits, 3-17
Index Index-1
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cache control instructions
dcbi, 2-61
dcbt, 2-57

cache integration, 3-4
characteristics, 3-1, C-4
coherency checking with HID0 (bit 23), 1-14, 3-5
data cache

description, 1-15
line-fill buffer, 1-7
line-fill forwarding, 1-15
overview, 1-7

data caches and memory queues, 6-13
instruction cache

coherency checking, HID0 bit 23, 1-14, 3-5
description, 1-14, 3-3
overview, 1-7

MESI state definitions, 3-13
organization, 1-14, 3-3
organization, 604-specific, C-4
organization, instruction and data, 3-4, 3-5
set associativity, 3-4
summary of enhancements, 1-7

Cache arbitration, 6-23
Cache block push operation, 3-21, 3-25
Cache cast-out operation, 3-21
Cache coherency

cache coherency protocol, 3-13
cache snoop, 3-22
coherency paradoxes, 3-16, 3-17
L2 cache, 3-15
MESI protocol, 3-16
reaction to bus operations, 3-22

Cache control instructions, A-25
bus operations, 3-26
dcbf, 3-20
dcbi, 3-20
dcbst, 3-20
dcbt, 3-19
dcbtst, 3-19
dcbz, 3-19
icbi, 3-18
isync, 3-19

Cache hit
instruction timing example, 6-18

Cache miss, 6-21
Cache operations

overview, 3-1
response to bus transactions, 3-22
types of operations, 3-20

Cache reload operation, 3-20
Cache unit

operation of the cache, 8-2
Cache-inhibited accesses (I-bit)

memory/cache access attributes, 3-12

performance considerations, 6-15
Changed (C) bit maintenance

recording, 5-12, 5-21–5-22
updates, 5-34

Checkstop signal, 7-30, 8-54
Checkstop state, 4-16
CI signal, 7-17
Classes of instructions, 2-28
Clean block operation, 3-22
Clock configuration register, 2-12
Clock signals

CLK_OUT, 7-36
PLL_CFGn, 7-37
SYSCLK, 7-36

Completion
completion considerations, 6-29
completion pipeline stage, 6-10
definition, 6-3

Context synchronization, 2-31
Conventions, xxviii, xxxii
COP/scan interface, 7-33
CR (condition register)

CR logical instructions, 2-51
CR, description, 2-4

CRU (condition register unit), 1-24, 6-29
CSEn signals, 7-18, 8-31
CTR register, 2-5

D
DABR (data address breakpoint register), 2-7
DAR (data address register), 2-7
Data bus

arbitration signals
DBB, 7-22, 8-8
DBG, 7-21, 8-8
DBWO, 7-22, 8-8

bus arbitration
ARTRY assertion, effect of, 8-22
signals, 8-21

data tenure, 8-7, 8-40
data transfer

alignment, 8-15
ARTRY assertion, effect of, 8-22
burst ordering, 8-14
DBDIS, 7-26
DHn/DLn, 7-23, 8-24
DPE, 7-25, 8-24
DPn, 7-24, 8-24
eciwx/ecowx instructions, alignment, 8-17

data transfer termination
DRTRY, 7-27, 8-25
error termination, 8-29
TA, 7-26, 8-25
TEA, 7-27, 8-25
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terminating data transfer, 8-25
Data cache

data caches and memory queues, 6-13
description, 1-15
disabling and enabling, 3-4
line-fill buffer, 1-7
line-fill forwarding, 1-15
organization, 3-4
overview, 1-7

Data organization in memory, 2-23
Data streaming mode, 8-49
DBB signal, 7-22, 8-8, 8-23
DBDIS signal, 7-26
DBG signal, 7-21, 8-8
DBWO signal, 3-26, 7-22, 8-8, 8-24, 8-56
dcbt, 2-57
DEC (decrementer register), 2-7
Decode stage, 6-8
Decrementer exception, 4-19
Defined instruction class, 2-28
DHn/DLn signals, 7-23
Direct-store interface

access to direct-store segments, 3-48, 5-35
architectural ramifications of accesses, 8-39
bus protocol

address and data tenures, 8-40
detailed description, 8-43
load access, timing, 8-48
load operations, 8-42
store access, timing, 8-49
store operations, 8-42
transactions, 8-41
XATS signal, 8-39

instructions with no effect, 5-36
no-op instructions, 5-36
operations, 7-8
protection, 5-36
segment protection, 5-36
selection of direct-store segments, 5-16, 5-35
unsupported functions, 5-36

Dispatch considerations, 6-29
Dispatch serialization mode, 6-33
Dispatch stage, 6-9
DMMU, 5-8
DPE signal, 7-25
DPn signals, 7-24
DRTRY signal, 7-27, 8-25, 8-28
DRVMOD signal, 7-31
DSI exception, 4-16
DSISR register, 2-7
DTLB organization, 5-25

E
EAR (external access register), 2-8

Effective address calculation
address translation, 5-4
branches, 2-31
loads and stores, 2-31, 2-41, 2-47

eieio, 2-56, 3-25
Error termination, 8-29
Event counting, 9-12
Exceptions, 1-16

alignment exception, 4-4, 4-17
decrementer exception, 4-4, 4-19
DSI exception, 4-4, 4-16
enabling and disabling, 4-9
exception classes, 4-2
exception prefix bit (IP), 4-13
exception priorities, 4-5
exception processing, 4-6, 4-10
external interrupt, 4-4, 4-16
FP assist exception, 4-20
FP unavailable exception, 4-4, 4-19
instruction address breakpoint exception, 4-5, 4-2
instruction-related exceptions, 2-32
ISI exception, 4-4
machine check exception, 4-3, 4-14
performance monitoring interrupt, 4-5
program exception, 4-4, 4-18
register settings

MSR, 4-7, 4-12
SRR0, SRR1, 4-6

reset, 4-13
returning from an exception handler, 4-11
summary table, 4-3
system call exception, 4-5, 4-19
system management interrupt, 4-5, 4-21
system reset, 4-3
terminology, 4-2
trace exception, 4-5, 4-19
vector offset table, 4-3

Execute stage, 6-9
Execution serialization mode, 6-33
Execution synchronization, 2-32
Execution units, 6-32
External control instructions, 2-59, 8-17, A-26

F
Fast L2 mode, 8-49
Features of the 604e,see 604e-specific features
Feed forwarding, 6-16
Fetch stage, 6-8
Finish cycle, definition, 6-2
Floating-point model

FE0/FE1 bits, 4-9
FP arithmetic instructions, 2-37, A-19
FP assist exceptions, 4-20
FP compare instructions, 2-39, A-20
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FP load instructions, A-23
FP move instructions, A-24
FP multiply-add instructions, 2-38, A-20
FP rounding and conversion instructions, A-20
FP store instructions, 2-48, A-23
FP unavailable exception, 4-19
FPSCR instructions, 2-39, A-21
IEEE-754 compatibility, 2-22
NI bit in FPSCR, 2-25
rounding and conversion instructions, 2-38

Floating-point unit
execution timing, 6-36

Flush block operation, 3-22
FPR0–FPR31 (floating-point registers), 2-4
FPSCR (floating-point status and control register)

FPSCR instructions, 2-39
FPSCR register description, 2-4
NI bit, 2-24

G
GBL signal, 7-18
GPR0–GPR31 (general-purpose registers), 2-4
Guarded attribute (G bit), 3-12

H
HALTED signal, 1-26, 7-33, 7-34
HID0 register

bit 23, instruction fetching coherency, 1-14, 2-11,
3-5

bit 30, disable BTAC, 2-12
bit settings, 2-10, C-2
cache configuration bits, 3-17
disabling the instruction cache, 1-14, 3-5
hardware implementation register, 2-8

HID1 register
bit settings, 2-12
description, 2-12

HRESET signal
description, 7-30, 8-54
processor configuration during power-on, 8-54
settings at power-on, 2-21, 8-55

I
I/O tenures, 8-41
IABR (instruction address breakpoint register), 2-8,

2-9
IEEE 1149.1-compliant interface, 8-55
Illegal instruction class, 2-29
IMMU, 5-7
Instruction address breakpoint exception, 4-21
Instruction cache

coherency checking, 1-14, 3-5

description, 1-14, 3-3
disabling and enabling, 3-5
organization, 3-5
overview, 1-7

Instruction dispatch rules, 6-41
Instruction fetch

timing, 6-17
Instruction timing

block diagram of internal data paths, 1-23, 6-4
examples

branch with BTAC hit, 6-24
branch with BTAC miss/decode correction, 6-25
branch with BTAC miss/dispatch correction, 6-2
branch with BTAC miss/execute correction, 6-2
cache hit, 6-18
cache miss, 6-21

instruction flow, 6-16
overview, 1-21, 6-3
terminology, 6-1
timing considerations, 6-16

Instructions
64-bit instructions, A-38
branch address calculation, 2-50
branch instructions, A-24
cache control, A-25
classes, 2-28
condition register logical, 2-51, A-24
defined instructions, 2-28
eieio, 2-56
external control instructions, 2-59, A-26
floating-point

arithmetic, 2-37, A-19
compare, 2-39, A-20
FP load instructions, A-23
FP move instructions, A-24
FP rounding and conversion, 2-38
FP status and control register, 2-39
FP store instructions, A-23
FPSCR instructions, A-21
multiply-add, 2-38, A-20
rounding and conversion, A-20

illegal instructions, 2-29
input/output, serialization, 6-34
instruction fetch, 1-24, 6-8
instruction set

description, 1-13
instructions, list, A-1, A-9, A-17, A-27, A-38
integer

arithmetic, 2-33, A-17
compare, 2-33, 2-35, A-18
load, A-21
logical, 2-33, 2-35, A-18
rotate and shift, 2-36, A-19
store, A-22
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-1
isync, 2-56, 4-12
latency summary, 6-44
load and store

address generation, floating-point, 2-47
address generation, integer, 2-41
byte reverse instructions, 2-44, A-22
floating-point move, 2-40
floating-point store, 2-48
handling misalignment, 2-40
integer load, 2-42
integer multiple, 2-44
integer store, 2-43
multiple instructions, A-22
string instructions, 2-45, A-23

memory control instructions, 2-56, 2-61
memory synchronization instructions, 2-53
mtcrf, 2-52, 6-43
optional instructions, A-38
processor control instructions, 2-52, 2-55, 2-59,

A-25
reserved instructions, 2-30
rfi, 4-11
segment register manipulation, A-26
string/multiple, serialization, 6-34
stwcx., 4-12
supervisor-level, A-38
support for lwarx/stwcx., 8-55
sync, 4-11
system linkage, 2-52, A-25
TLB management instructions, A-26
tlbie, 2-62
tlbsync, 2-62
trap instructions, 2-51, A-25

INT signal, 7-28, 8-54
Integer arithmetic instructions, 2-33, A-17
Integer compare instructions, 2-35, A-18
Integer load instructions, 2-42, A-21
Integer logical instructions, 2-35, A-18
Integer rotate and shift instructions, 2-36, A-19
Integer store instructions, 2-43, A-22
Integer unit

instruction timings, 6-34
Internal clocking differences from 604, 7-36
Interrupt, external, 4-16
isync, 2-56, 4-12
ITLB organization, 5-25

K
Kill block operation, 3-22

L
L2_INT signal, 7-32
Latency

definition, 6-2
execution latency, 6-7
minimizing latency, 8-25

Link register (LR), 2-5
Little-endian

memory mapping, 1-13, 2-24
misaligned little-endian access support, 1-12, 2-2

Load operations
I/O load accesses, 8-42

Load/store
address generation, 2-41
byte reverse instructions, 2-44, A-22
floating-point load instructions, A-23
floating-point move instructions, 2-40, A-24
floating-point store instructions, 2-47, 2-48, A-23
handling misalignment, 2-40
integer load instructions, 2-42, A-21
integer store instructions, 2-43, A-22
load/store multiple instructions, 2-44
memory synchronization instructions, A-23
multiple instructions, A-22
string instructions, 2-45, A-23

Load/store unit
execution timing, 6-38

Logical addresses to physical address translation, 5
lwarx/stwcx.

general information, 3-21
support, 8-55

M
Machine check exception, 4-14
MCP signal, 7-29
Memory accesses, 8-4, 8-6
Memory coherency

memory coherency actions, 3-9
memory/cache access attributes, 3-12
sequential consistency, 3-11

Memory control instructions, 2-56, 2-61
Memory management unit, 1-21

address translation flow, 5-12
address translation mechanisms, 5-9, 5-12
block address translation, 5-9, 5-12, 5-20
block diagram, 5-6, 5-7, 5-8
exceptions, 5-16
features summary, 5-3
implementation-specific features, 5-2
instructions and registers, 5-18
memory protection, 5-11
page address translation, 5-9, 5-12, 5-28
page history status, 5-12, 5-21–5-24
real addressing mode, 5-10, 5-12, 5-20
segment model, 5-20

Memory mapping, 1-13, 2-24
Memory operations, features, 6-14
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Memory synchronization
instructions, 2-53, A-23

Memory unit
queuing structure, 3-22

Memory/cache access modes
performance impact of write-back mode, 6-14

MESI
enforcing memory coherency, 8-30
state definitions, 3-13

Misaligned little-endian access, 1-12, 2-23
MMCR0 (monitor mode control register 0), 2-13, 9-10
MMCR1 (monitor mode control register 0), 2-14, 9-12
MSR (machine state register)

FE0/FE1 bits, 4-9
IP bit, 4-13
PM bit, 2-6
POW bit, 4-21
RI bit, 4-11
settings due to exception, 4-12

mtcrf, performance, 2-52, 6-43
Multiple-precision shifts, 2-37

N
Nap mode, 4-21
No-DRTRY mode, 1-25, 8-49

O
OEA

exception mechanism, 4-1
memory management specifications, 5-1
registers, 2-5

Operand conventions, 2-22
Operand placement and performance, 2-26
Operating environment architecture (OEA), xxiv
Optional instructions, A-38
Overview of the 604e, 1-1

P
Page address translation

page address translation flow, 5-28
page size, 5-20
selection of page address translation, 5-9, 5-16
TLB organization, 5-25

Page history status
cases of dcbt and dcbtst misses, 5-22
Making R and C bit updates to page tables, 5-34
R and C bit recording, 5-12, 5-21–5-24
R and C bit updates, 5-12, 5-34

Page table updates, 5-34
Performance considerations, memory, 6-11
Performance monitor

description, 1-28, 9-1

event counting, 9-12
performance monitor SPRs, 9-3
performance monitoring interrupt, 9-2
purposes, 9-1

Physical address generation
memory management unit, 5-1

Pipeline
completion stage, 6-10
decode stage, 6-8
dispatch stage, 6-9
execute stage, 6-9
fetch stage, 6-8
instruction timing, definition, 6-1
pipeline diagram, 6-6
pipeline stages, 6-7
pipeline structures, 6-5
write-back stage, 6-11

PIR (processor identification register), 2-8, 2-9
PMCn (performance monitor counter) registers, 2-8

2-15, 9-3
Postdispatch serialization mode, 6-33
Power management

nap mode, 4-21
POW bit, 4-21
signals, 1-26, 7-34
state transitions, 7-35

Power-on reset settings, 2-21, 8-55
PowerPC 604-specific features, C-1
PowerPC architecture

603e, similiarities to 604e, 7-36
architecture implementation, 1-8
general features, 1-9
implementation of the 604e, 1-1
instruction list, A-9, A-17, A-27, A-38
instructions implemented, 1-13
instructions list, A-1
operating environment architecture (OEA), xxiv
user instruction set architecture (UISA), xxiii
virtual environment architecture (VEA), xxiii

Precharge timing signals, 1-26
Priorities

exception priorities, 4-5
Process switching, 4-11
Processor clock, 1-26
Processor configuration

DRVMOD, 7-31
duringHRESET, 7-30, 8-54
HALTED, 7-33
L2_INT, 7-32
RSRV, 7-32
RUN, 7-32
TBEN, 7-31

Processor control instructions, 2-52, 2-55, 2-59
Program exception, 4-18
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Program order, 6-2
Programming tips, 6-42
Protection of memory areas

direct-store interface protection, 5-36
no-execute protection, 5-14
options available, 5-11
protection violations, 5-16

PTEs (page table entries)
page table updates, 5-34

PVR (processor version register), 2-6, C-3

Q
Qualified data bus grant, 8-8, 8-21
Qualified snoop request, 3-22

R
Read operation, 3-23
Read-atomic operation, 3-23
Read-with-intent-to-modify operation, 3-23
Read-with-no-intent-to-cache operation, 3-25
Real address (RA),see physical address generation
Real addressing mode (translation disabled)

data accesses, 5-10, 5-12, 5-20
instruction accesses, 5-10, 5-12, 5-20
support for real addressing mode, 5-2

Referenced (R) bit maintenance
recording, 5-12, 5-21–??, 5-22, 5-31
updates, 5-34

Registers
604e-specific bits, 2-10

, 2-13
604e-specific registers, 2-3, 2-8, 2-60
clock configuration register, 2-12
hardware implementation registers, 2-8
PLL configuration register,see HID1 register
PVR number, 2-6
rename register, 6-31
supervisor-level

BAT registers, 2-6
DABR, 2-7
DAR, 2-7
DEC, 2-7
DSISR, 2-7
EAR, 2-8
HID0, 2-8
IABR, 2-8
MMCR0, 2-13, 9-10
MMCR1, 2-14, 9-12
MSR, 2-5
PIR, 2-8
PMCn, 2-8
PVR, 2-6, C-3
SDR1 register, 2-6

SIA and SDA, 2-8, 2-20, 9-9
SPRGn, 2-7
SPRs for performance monitor, 9-1
SRR0/SRR1, 2-7
SRs, 2-6
time base (TB), 2-7

user-level
CR, 2-4
CTR, 2-5
FPR0–FPR31, 2-4
FPSCR, 2-4
GPR0–GPR31, 2-4
LR, 2-5
time base (TB), 2-5
XER, 2-5

Rename buffer, 6-2
Rename register operation, 6-30
Reservation station, 6-2
Reserved instruction class, 2-30
Reset

HRESET signal, 7-30, 8-54
reset exception, 4-13
settings at power-on, 2-21, 8-55
SRESET signal, 7-31, 8-54

rfi, 4-11
Rotate and shift instructions, A-19
RSRV signal, 7-32, 8-55
RUN signal, 1-26, 7-32, 7-34

S
sc, 4-19
SDR1 register, 2-6
Segment registers

SR description, 2-6
SR manipulation instructions, 2-61, A-26
T bit, 8-39

Segmented memory model,seeMemory management
unit

SHD signal, 7-20
SIA and SDA registers, 2-8, 2-20, 9-9
Signals

604 to 604e differences, 1-25
AACK, 7-18
ABB, 7-5, 8-8
address arbitration, 7-4, 8-8
address transfer, 7-7, 8-12
address transfer attribute, 7-10, 8-13
address transfer start, 7-6
An, 7-8, 7-9
APE, 7-10
ARTRY, 7-19, 8-25
BG, 7-4, 8-8
BR, 7-4, 8-8
checkstop, 8-54
Index Index-7



INDEX

,

CI, 7-17
CKSTP_IN, 7-30
CKSTP_OUT, 7-30
CLK_OUT, 7-36
configuration, 7-2
COP/scan interface, 7-33
CSEn, 7-18, 8-31
data arbitration, 8-8, 8-21
data bus arbitration, 7-21
data transfer, 7-23
data transfer termination, 7-26, 8-25
DBB, 7-22, 8-8, 8-23
DBDIS, 7-26
DBG, 7-21, 8-8
DBWO, 3-26, 7-22, 8-8, 8-24, 8-56
DHn/DLn, 7-23
DPE, 7-25
DPn, 7-24
DRTRY, 7-27, 8-25, 8-28
DRVMOD, 7-31
GBL, 7-18
HALTED, 1-26, 7-33, 7-34
HRESET, 7-30, 8-54
INT, 7-28, 8-54
L2_INT, 7-32
MCP, 7-29
PLL_CFGn, 7-37
power management signals, 1-26, 7-34
precharge timing signals, 1-26
processor configuration, 7-31
reset, 8-54
RSRV, 7-32, 8-55
RUN, 1-26, 7-32, 7-34
SHD, 7-20
signal groupings, illustration, 1-25
SMI, 4-21, 7-29
snoop status signals, 3-22
SRESET, 7-31, 8-54
system status, 7-28
TA, 7-26
TBEN, 7-31
TBST, 7-13, 8-25
TCn, 7-14, 8-18
TEA, 7-27, 8-25, 8-29
TS, 7-6
TSIZn, 7-12, 8-14
TTn, 7-10, 8-14
VOLTDETGND, 7-37
WT, 7-17
XATS, 7-7, 8-39

Single-beat reads with data delays, timing, 8-36
Single-beat transfer

reads with data delays, timing, 8-35
reads, timing, 8-33

termination, 8-26
writes, timing, 8-34

SMI signal, 4-21, 7-29
Snoop operation, 3-22, 6-15
Split-bus transaction, 8-9
SPRGn registers, 2-7
SRESET signal, 7-31
SRR0/SRR1 (status save/restore registers), 2-7

exception processing, 4-6
Stage

definition, instruction timing, 6-1
Stall, 6-2
Store operations

I/O operations to BUC, 8-42
single-beat writes, 8-34

String/multiple Instructions, serialization, 6-34
stwcx., 4-12
Supervisor-level instructions, A-38
sync, 4-11
Synchronization

context/execution synchronization, 2-31
execution of rfi, 4-11
memory synchronization instructions, 2-53, 2-55

A-23
SYSCLK signal, 7-36
System call exception, 4-19
System interface operation, 1-27
System linkage instructions, 2-52, 2-59
System management interrupt, 4-21
System status

CKSTP_IN, 7-30
CKSTP_OUT, 7-30
INT, 7-28
MCP, 7-29
SMI, 4-21, 7-29
SRESET, 7-31

T
TA signal, 7-26
Table search operations

table search flow (primary and secondary), 5-31
TBEN signal, 7-31
TBST signal, 7-13, 8-14, 8-25
TCn signals, 7-14, 8-18
TEA signal, 7-27, 8-29
Termination, 8-19, 8-25
Throughput, 6-2, 6-7
Time base

TBL/TBU registers, 2-5, 2-7
Timing diagrams, interface

address transfer signals, 8-12
burst transfers with data delays, 8-37
direct-store interface load access, 8-48
direct-store interface store access, 8-49
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single-beat reads, 8-33
single-beat reads with data delays, 8-35
single-beat writes, 8-34
single-beat writes with data delays, 8-36
use ofTEA, 8-38
usingDBWO, 8-56

Timing, instruction
branch prediction, 6-23
branch unit execution timing

BTAC hit, 6-24
BTAC miss/decode correction, 6-25
BTAC miss/dispatch correction, 6-27
BTAC miss/execute correction, 6-27
overview, 6-34

branch with BTAC miss/decode correction, 6-26
branch with BTAC miss/dispatch correction, 6-27
branch with BTAC miss/execute correction, 6-28
cache arbitration, 6-23
cache hit, 6-18
cache miss, 6-21
FPU execution timing, 6-36
instruction dispatch, 6-29
instruction fetch timing, 6-17
instruction flow, 6-16
instruction scheduling guidelines, 6-41
instruction serialization, 6-32
integer unit execution timing, 6-34
isync, rfi, sc instruction timing, 6-40
latency summary, 6-44
load/store unit execution timing, 6-38
overview, 6-3
speculative execution, 6-28

TLB
description, 5-24
LRU replacement, 5-26
organization for ITLB and DTLB, 5-25
TLB miss and table search operation, 5-26, 5-30,

5-33
TLB invalidation

description, 5-20, 5-26
page table updates, 5-34
TLB invalidate and TLBSYNC operations, 3-24,

5-27
TLB invalidate and TLBSYNC operrations, 5-27
TLB invalidate broadcast operations, 5-27
TLB management instructions, A-26

tlbia (not implemented), 2-62, 5-27
tlbie, 2-62, 5-26, 5-34
tlbsync, 2-62, 5-27, 5-34

tlbie, 2-62, 5-26, 5-34
tlbsync, 2-62, 5-27, 5-34
Trace exception, 4-19
Transfer, 8-12, 8-24
Trap instructions, 2-51
TS signal, 7-6, 8-12

TSIZn signals, 7-12, 8-14
TTn signals, 7-10, 8-14

U
Upgrade considerations (604 to 604e) usin

no-DRTRY, 8-53
Use ofTEA, timing, 8-38
User instruction set architecture (UISA), xxiii
UsingDBWO, timing, 8-56

V
Vector offset table, exception, 4-3
Virtual environment architecture (VEA), xxiii
VOLTDETGND signal, 7-37

W
WIMG bits

cache actions, 3-27
memory coherency, 8-30
WIM combination, 8-31

Write-back, 6-3, 6-11, 6-14
Write-through mode (W bit)

memory/cache access attriibute, 3-12
performance considerations, 6-15

Write-with-atomic operation, 3-22
Write-with-flush operation, 3-22
Write-with-kill operation, 3-23
WT signal, 7-17

X
XATS signal, 7-7, 8-39
XER register, 2-5
XFERDATA read/write operation, 3-25
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