

MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA

Addendum to

MPC601

PowerPCTM 601 RISC Microprocessor User's
Manual

This addendum describes additions and corrections to the PowerPC 601 RISC
Microprocessor User's Manual. For convenience, tins information is organized according
to the chapters in the user's manual; however, there is no attempt to provide a
comprehensive list of text that is affected by tllis information. These changes will be
incorporated in the first revision of the user's manual.

Section 1 : Chapter 1, "Ove-rview"
This section describes additional information and corrections to Chapter 1, "Overview."

Section
Number

1.1.5

1.3.8.4

In tile first sentence in this section replace Terabyte with Petabyte.

Replace Figure 1-6 with the following:

PowerPC is a trademark of Intemational Business Machines Corporation.
This document contains information on a new product under development. specifications and information herein are subject to change without notice.

See disclaimers on the last page of this addendum. @ MOTOROLA _

(0 MOTOROLA INC. 1993 v..:y 6/93
Instruction set and other portions hereof ((J International Business Machines Corp. 1993 REV 1

ADDRESS
ARBITRATION

ADDRESS
TRANSFER

START

ADDRESS
TRANSFER

TRANSFER
ATTRIBUTE

ADDRESS
TERMINATION

CLOCKS

t~
f ..

t ..
;-

..

.. .. -

II

'-

f ..
{

'8li 1 1 rnm
BG' ., 1 1 mwo
AIm ., 1 1 UBB'

TS ., 1
XATS" DHO-DH31, DLO-DL31 ., 1 64

8 DPO-DP7
AO-A31 ., 32 1 UP'E

APO-AP3 ., 4
APt: 1 1 'fA

1 rnmrr
TT4

1 1 TEA
TTO-TT3 ., 4
TCO-TC1 2

:s::::
1

m
TSIZO-TSIZ2 -0 ~

TB"ST
., 3 0 1 CKSI p_OOI • 1 0') 1 "Cl 'R'RESET

1 C) 1 WT
1

....L
1 "SRESET

rnr ., 1 1 1iSRV
CSEO-CSE2 SC DRIVE

Rp Sfilp REO 3 1 ., 1

AACI\ ., 1
ARTRV ., 1

S'RU ., 1 7
ESP INTERFACE

2X PCLK ., 1 21 TEST INTERFACE
l"CCi\E'fiI' ., 1 1 S'YS oOIESC
m:m\EfiI' 1 1 RESUME .,

RTC ., 1 1 OUIESC REO

59 59

I-b-
+3.6 V

Figure 1-6. MPC601 Signal Groups

lDATA ;r ARBITRATION

1 DATA

JTRANSFER

=t DATA T TERMINATION

1 SYSTEM j STATUS

~ ESP SCAN
:...r- INTERFACE

=t TEST J SIGNALS

1.3.6.2 Replace the last sentence of the fourth paragraph with the following:

The processor ensures that the ITLB is consistent with the UTLB, and uses an
LRU replacement algorithm when a miss is encountered.

Section 2: Chapter 2, "Registers and Data Types"
This section describes additional information and cOlTections to Chapter 2, "Registers and
Data Types."

2.1 Replace Figure 2-1 with the following:

ADDENDUM-2 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

S

0

0

USER PROGRAMMING
MODEL

FPRO

FPR1

0
0
0

FPR31

GPRO Condition

GPRl
Register

• I CR
• • 0

GPR31

63

I
31

31
Floating Point

Status and
Control
Register

I FPSCR I
0 31

UPERVISOR PROGRAMMING
MODEL

Segment
Registers

SRO

SRl

Machine State •
Register 2 • •

I MSR I SR15

0 31 0 31

~

I ,
I
,
I
I

I

SPRO

SPR1

SPR4

SPR5

SPR8

SPR9

- -"\
User-Level SPRs : I

MQ Register 1 I : I
XER-Integer Exception Register

RTCU-RTC Upper Register (For reading only)I.3 I
RTCL-RTC Lower Register (For reading only)I.3 I

LR-link Register I

I
CTR-Count Register ,

0 I
-------- ------- ------

___ 11 __

Supervisor-Level SPRs

SPR18 DSISR-DAElSource Instruction Service Register

SPR19 DAR-Data Address Register

SPR20 RTCU-RTC Upper Register (For writing only) 1.3

SPR21 RTCL-RTC Lower Register (For writing only) 1.3

SPR22 DEC-Decrementer Register4

SPR25 SDR1-Table Search Description Register 1

SPR26 SRRO-Save and Restore Register 0

SPR27 SRR1-Save and Restore Register 1

SPR272 SPRGO-SPR General 0

SPR273 SPRG1-SPR General 1

SPR274 SPRG2-SPR General 2

SPR275 SPRG3-SPR General 3

SPR282 EAR-External Access Register

SPR287 PVR-Processor Version Register

SPR528 IBATOU-BAT 0 Upper 2

SPR529 IBATOL-BAT 0 Lower 2

SPR530 IBATl U-BAT 1 Upper 2

SPR531 IBATl L-BAT 1 Lower 2

SPR532 IBAT2U-BAT 2 Upper 2

SPR533 IBAT2L-BAT 2 Lower 2

SPR534 IBAT3U-BAT3 Upper2

SPR535 IBAT3L-BAT 3 Lower 2

SPR1008 HIDO 1

SPR1009 HID11

SPR1010 HID2 (IABR) 1

SPR1013 HID5 (DABR) 1

SPR1023 HID15 (PIR) 1

0 31

1 MPC601-only registers. These registers are not necessarily supported by other PowerPC processors.
2 These registers may be implemented differently on other PowerPC processors. The PowerPC architecture defines two sets of

BAT registers---eight IBATs and eight DBATs.The MPC601 implements the IBATs and treats them as unified BATs.
3 The RTCU and RTCL registers can be written only in supervisor mode. in which case SPR20 and SPR21 are used.
4 The DEC register can be read by user programs by specifying SPR6 in the mfspr instruction (for POWER compatibility).

Figure 2-1. Programming Model-Registers

MOTOROLA Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-3

2.1

2.1

2.2.4.1

The mechanism referred to for accessing SPRs is the set of Move to/from SPR
instructions (mtspr and mfspr). These instructions are commonly used to
access certain registers, while other SPRs may be more typically accessed as
the side effect of executing other instructions.

The MSR register is 64 bits wide in 64-bit implementations and is 32 bits wide
in 32-bit implementations.

Replace the first paragraph in this section with the following:

In most integer instructions, when the Rc bit is set, the first three bits in CRO
are set by an algebraic comparison of the result to zero; the fourth bit of CRO
is copied from the XER[SO] bit. The addic., aDdi. and aDdis. instructions set
these four bits implicitly. These bits are interpreted as follows-if any portion
of the result (the 32-bit value placed into the target register) is undefined, the
value placed into the first three bits of CRO is undefined.

2.2.5 The mechanism referred to for accessing SPRs is the set of Move to/from SPR
instructions (mtspr and mfspr). These instructions are commonly used to
access certain registers, while other SPRs may be more typically accessed as
the side effect of executing other instructions.

2.2.5.3 In user-level access, RTCU and RTCL are read-only. The SPR numbers for the
RTCU and RTCL differ depending upon whether the mtspr or mfspr
instruction is used. For the mfspr instruction, RTCU is SPR4 and RTCL is
SPR5. For the mtspr instruction, RTCU is SPR20 and RTCL is SPR21
(supervisor-level access only).

2.3.3 The MSR is not an SPR and should not be included in Table 2-15.

2.3.3 The RTCU and RTCL registers can be written to only in supervisor mode and
the mtspr instruction requires a different SPR encoding. For the mtspr
instruction, RTCU is SPR20 and RTCL is SPR21.

2.3.3.4 The PowerPC architecture defines the DEC register as supervisor-only access
for both reads and writes. SPR22 is used for both reads and writes. The
POWER architecture provides user-level read access, using SPR6. To ensure
compatibility with subsequent PowerPC processors, the mfspr instruction
should not be used in user-level.

2.3.3.10 The PVR is a read-only register that Calmot be modified.

2.3.3.12.1 The HIDO register is set to x'8001 0080' by the hard reset operation. However,
the state of the EMC bit depends on the results of the power-on diagnostics for
the main cache array. This bit is set if the cache fails the built-in self test during
the power-on sequence.

2.3.3.12.1 Checkstop enable bits can be set or cleared without restriction. If a checkstop
source bit is set, it can be cleared; however, if the corresponding checkstop
condition is still present on the next clock, the bit will be set again. A checkstop
source bit caD only be set when the corresponding checkstop condition occurs
and the checks top enable bit is set; it CalIDot be set via an mtspr instruction.
That is, you cannot manually cause a checks top condition.

ADDENDUM·4 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

2.3.3.12.2 Note that when HID1[8-9] = 10, the trap address ofx'2000' has a base address
indicated by the setting of MSR[IP]. This mode is valid for address
comparisons and may produce unpredictable results when used with the HID
single-instruction step mode.

2.4.3 Replace sentence 2 of paragraph 2 with the following:

All transfers of individual scalars between registers and storage are of double
words. A subset of the 64-bit scalar (e.g., a byte) is not addressable in storage.
As a result, to access any subset of the bits of a scalar, the entire 64-bit scalar
must be accessed, and when a storage location is read, the 64-bit value returned
is the 64-bit value last written to that location.

2.4.3 The following example shows how the byte ordering is changed from big- to
little-endian mode by setting HIDO[28] (n refers to the address):

MOTOROLA

<msr[ee] is off (zero) >

n sync !Instructions

n+4 sync laccessed in

n+8 sync Ibig-endian mode

n+c mtspr hidO(28)

n+1O sync !Instructions

n+14 sync laccessed in

n+18 sync Ilittle-endian mode

The same instruction sequence can be used to go from little- to big-endian
mode by clearing HIDO[28].

Little-Endian Address Manipulation
In little-endian operations, the three least significant bits of an address are
manipulated as described in Chapter 2, "Registers and Data Types," to provide
the appearance of a little-endian memory to the program for aligned loads and
stores, as follows:

New_addr(29) <- EA(29) xor (word I half I byte)

New _addr(30) <- EA(30) xor (half I byte)

New_addr(31) <- EA(31) xor (byte)

The physical address used for a access generated by a load or a store to an
operand that is less than a double word is modified as indicated. Addresses for
aligned double word accesses and cache control operations are not modified
since the endian mode has no effect on aligned accesses greater than one word.

The DAR and SRRO will contain the program address (or the next sequential
address, as appropriate) after all exceptions. If the processor is in little-endian
mode, it will be a modified address. If the processor is in big-endian mode, the
address is unmodified.

Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-5

The T bit does not affect address manipulation or the detection of alignment
exception conditions. Therefore I/O interface controller operations and BUID
x'07F' segments receive the modified address. The ecowx and eciwx
instructions are treated as no-ops if the T bit is set regardless of whether the
MPC601 is in little-endian mode.

Because the MPC601 defines a cache block as 32 bytes, bits 27-31 of the
address are not used for snooping. The program address should be specified,
when an address is loaded into HID2 or HID5. That is, if the processor is in
little-endian mode, a little-endian address should be specified, and if the
processor is in big-endian mode, a big-endian address should be specified.

Little-Endian Alignment Exceptions
Additional alignment exception conditions can occur when the processor is in
little-endian mode.

Load/store multiple operands (regardless of EA)

• Imw
• Iscbxx

• Iswi

• Iswx

stmw

stswi

stswx

The new alignment exception conditions are prioritized with other alignment
exceptions ahead of data access exceptions. For more information see Section
2.4.6.2 "Misaligned Scalars."

Little-Endian Instruction Fetching
In little-endian mode, instructions are fetched in big-endian order; however,
the instructions are swapped within a double word before being passed to the
instruction queue, thus putting the instructions in little-endian order for
execution. On exceptions, the MPC601 reports the correct effective address (as
defined by the programming model or computed by a storage access
instruction) regardless of the endian mode selected.

2.4.4 The second line of the program example is incorrect. Replace

double b: /* x'212223242225262728' doubleword */
with the following:

double b: /* x'2122232425262728' doubleword */
2.4.5 The MPC601 big- and little-endian mode operation differs from the PowerPC

architecture in the following ways:

• Choice of big- or little-endian modes is provided through HIDO[LMJ-bit 28
of HIDO. The PowerPC architecture defines two bits in the MSR for this
purpose.

ADDENDUM-6 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

• The basic mode switching sequence requires three sync instructions followed
by the mtspr access to HIDO[28], followed by three more sync instructions.
This sequence should be used whenever the state of this bit is changed.

• External and decrementer interrupts should be disabled before executing the
sequence.

• The starting address of the sequence does not matter; however, the sequence
CaIU10t cross a protection boundary.

• In some cases the mtspr access to HIDO[LM] can occur twice depending on
the alignment of the instruction.

• In some cases not all of the sync instructions will actually be executed,
depending on the starting address of the sequence.

• Although HIDO[LM] can be switched dynamically, there are certain
constraints (such as turning off translation and emptying the memory queues)
that must be considered before the bit can be switched. Note that,when
switching modes between tasks, this code sequence may not allow the
MPC601 to operate at an optimal performance level.

Section 3: Chapter 3, "Addressing Modes and
Instruction Set Summary"

This section describes additional information and corrections to Chapter 3, "Addressing
Modes and Instruction Set Summary."

Section
Number

3.1.2

3.3.4.2

3.4.3

3.5.5

MOTOROLA

The first sentence in this section should include the isync instruction but should
not include the mtmsr instruction.

In Table 3-9, in the descriptions of the Shift Left Word, Shift Right Word, and
Shift Right Algebraic Word instructions the number of bits specified by rB
should be rB(27-31) instead of rB(26-31).

The PowerPC architecture specifies that for the two floating-point convert to
integer instructions, fctiw and fctiwz, both FPSCR(VXCVI) and
FPSCR(YXSNAN) are set when the input operand is an SNaN. The MPC601
sets only FPSCR(VXCVI).

Add the following information:

In future implementations, the load/store multiple instructions are likely to
have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results.

Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-?

3.5.6 Add the following information:

In future implementations, the integer move string instructions are likely to
have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results.

3.5.7 Add the following information:

The paired use of the Iwarx and stwcx. instructions allows programmers to
emulate common semaphore operations such as test and set, compare and
swap, exchange memory, and fetch and add.

The concept behind this part of the architecture is that a processor may load a
semaphore from storage, compute a result based on the value of the semaphore,
and conditionally store it back to the same location. The conditional store is
performed based upon the existence of a reservation established by the
preceding Iwarx instruction. If the reservation exists when the store is
executed, the store is performed and a bit is set in the condition register.

If the reservation does not exist when the store is executed, the target storage
location is not modified and a bit in the condition register is cleared. The Iwarx
and stwcx. primitives allow software to read a semaphore, compute a result
based on the value of the semaphore, store the new value back into the
semaphore location only if that location has not been modified since it was first
read, and determine if the store was successful.

If the store was successful, the sequence of instructions from the read of the
semaphore to the store that updated the semaphore appear to have been
executed atomically (i.e., no other processor or mechanism modified the
semaphore location between the read and the update), thus providing the
equivalent of a real atomic operation. However, other processors may have
read from the location during this operation.

The reservation set by an Iwarx instruction can be cleared by the following
conditions:

• The processor having the reservation executes a store conditional instruction
to any address.

• Another device executes any store instruction to any address in the 32-byte
sector associated with the reservation.

• The processor with the reservation takes any exception.

• The processor with the reservation executes an sc instruction.

• The processor with the reservation executes a trap instruction that takes a
program exception.

3.5.7 In a uniprocessor system, a program that modifies instructions it intends to
execute must execute an isync instruction to ensure that all modifications are
made visible to the instruction queue. Note that additional instructions are
required for other PowerPC processors.

ADDENDUM-8 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

3.5.10.1

3.6.1.1

3.6.1.2

3.6.1.3

3.6.1.4

3.6.3

3.7.1

3.8.4

Replace tlle first sentence of tlns section Witll the following:

The steps for converting a floating-point value from the double-precision
register format to single-precision memory format are as follows:

Note that tlle LI field is appended with b'OO' prior to the addition.

Note tlmt tlle BD field is appended with b'OO' prior to the addition.

Note tlmt tlle LI field is appended witll b'OO' prior to the addition.

Note that the BD field is appended with b'OO' prior to the addition.

The PowerPC architecture defines the bcctr instruction witlI the "decrement
and test CTR" (B02 = 0) option as an invalid form, and attempting to execute
such an instruction causes boundedly undefined results. However, the MPC601
tests tlle count register for 0 and branches based on the result. Instruction
fetching is directed to tlle address specified in the non-decremented version of
the count register.

The RTCU and RTCL registers can be read in user level and can be written to
in supervisor level. The SPR encodings for reading the RTCU and RTCL
registers are 4 and 5, respectively (regardless of whether the processor is in
user- or supervisor level). The SPR encodings for writing RTCU and RTCL are
20 and 21, respectively.

The essence of the tlbie instruction may be broadcast onto the MPC601 bus
interface. This function is enabled by setting HID 1 [17].

Section 4: Chapter 4, "Cache and Memory Unit
Operation"

This section describes additional information and corrections to Chapter 4, "Cache and
Memory Unit Operation."

4.8 Delete the next to the last paragraph in tllls section.

4.8.8 Replace the second paragraph with the following:

The dcbi instruction carmot be used to invalidate instructions in the cache of
the MPC601. This instruction may have the effect of unmodifying data storage
depending upon timing, exceptions, and other events.

4.11 In row #12 on page 4-28, "Four-beat write (quadword 2)" should update the
sector status. The Current State column correctly contains an x but the Next
State Column specifies no change. The next state should be M.

MOTOROLA Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-9

Section 5: Chapter 5, "Exceptions"
This section describes additional infonnation and corrections to Chapter 5, "Exceptions."

Section
Number

5.1

5.1.1.3

The last bullet in the entry for the instruction access exception in Table 5-1
should read as follows:

If the K bits in the segment register and the PP bits in the PTE or BAT are set
to prohibit read access, instructions cannot be fetched from this location.

The second bulle ted item in tins section should read as follows:

SRRO addresses either the instruction that would have completed or some
instruction following it that would have completed if the exception had not
occurred.

5.4.4 The following infonnation should replace the appropriate bit descriptions for
SRR1 in Table 5-12.
3 Cleared. Note that the PowerPC architecture defines this as set if the fetch access was to an I/O

controller interface segment (SR[1]=1). Note that this condition causes SRR1 [0-15] to be cleared
in the MPC601.

10 Cleared

5.4.5 In early versions of the MPC601 (processor revision level x'OooO'), the external
interrupt is a level-sensitive signal and should be held active until reset by the
interrupt service routine. Phantom interrupts due to phenomena such as
crosstalk and bus noise should be avoided.

In later versions of the MPC601 (processor revision level x '000 1 ' and higher),
the MPC601 is guaranteed to detect an external interrupt when tile INT signal
is held active for at least two clock cycles. The MPC601 is guaranteed to ignore
the INT signal if it is held for less than one clock cycle.

5.4.6 The first DSISR value listed in Table 5-14 should be as follows:

00000000000000001 00101 ttut ?????

The following should be added to Table 5-14:

Set to the EA of the data access as computed by the instruction causing the
alignment exception.

5.4.6.1.2 Replace the tllird bulleted item with the following:

The Iwarx/stwcx./lscbx instructions that map into an I/O controller interface
segment always cause a data access exception. However, if the instruction
crosses a segment boundary an alignment exception is taken instead.

5.4.10 Note also that unlike exceptions that occur with memory accesses, loads and
both loads and stores with update to I/O controller interface segments cause the
target register to be updated, regardless of whether an exception is taken.

ADDENDUM-10 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

5.4.12 Replace this section with the following:

Run Mode/Trace Exception (x'02000')

The MPC601 defines an implementation-specific exception called the run mode exception.
This exception is taken by the MPC601 under the following circumstances:

Instruction address compare

Branch target address compare

Trace mode (MSR[SE] is set)-When an instruction clears MSR[SE], trace mode
ends immediately. Note that other PowerPC processors implement a separate trace
exception at vector x'OODOO'.

Note that this exception may not be implemented by other PowerPC processors, and that
tIlis exception can be enabled and disabled using bits 8 and 9 in HID 1; the exception is
enabled when HIDI [8,9] = b'OI I. When this exception occurs, tile registers are set as
indicated in Table 5-24.

Table 5-24. Run Mode Exception-Register Settings

Register Setting

SRRO Set to the address of the instruction that causes the run mode exception

SRR1 Loaded from bits 0-31 of the MSR

MSR EE 0 SE 0
PR 0 FE1 0
FP1 0 EP Value is not altered
ME Value is not altered IT 0
FEO 0 DT 0

The run mode is determined by the settings of HID 1 [1-3]. These settings are defined in
Table 5-25.

Table 5-25. Run Modes Setting

HID1(1-3) Setting Run Mode

000 Normal run mode

001 Undefined. Do not use.

010 Limited instruction address compare.

011 Undefined. Do not use.

100 Single instruction step

101 Undefined. Do not use.

110 Full instruction address compare

111 Full branch target address compare

MOTOROLA Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-11

Table 5-26 describes the run modes.

Table 5-26. Run Modes Description

Mode Description

Normal run mode No address breakpoints are specified and the MPC601 processes zero to
three instructions per cycle.

Single instruction step mode In single instruction step mode, the fetcher processes one instruction at a
time. After an instruction is processed and the chip quiesces, the appropriate
break action is performed. Note that this mode is distinct from the trace
exception, which depends on the setting of MSR[SE].

Limited instruction address The MPC601 runs at full speed until the EA of the instruction in the lowest
compare mode position in the instruction queue (100) matches the one specified in HID2. At

this point the appropriate break action is performed. This is a limited compare
in that branches and floating-point operations and the addresses associated
with them may never be detected.

Full instruction address In full instruction address compare mode, processing proceeds out of 100.
compare mode When the EA in HID2 matches the EA of the instruction in 100, the

appropriate break action is performed. Unlike the limited instruction address
compare mode, all instructions pass through the 100 in this mode. That is,
instructions cannot be folded out of the instruction stream.

Full branch target address This mode is similar to full instruction address compare mode except that the
compare mode branch target is compared against HID2. When addresses match, the

appropriate break action is taken. This allows the programmer to see how a
program got to an address. This mode can be used with b, bc, bcr, and bce
instructions.

When the trace exception is enabled, (MSR[SE] is set), a trace interrupt is taken after each
instruction that completes without causing an exception or context change (such as an sc,
rfi, or a load instruction that causes an exception). MSR[SE] is cleared when the trace
exception is taken. In the normal use of this function, MSR[SE] is restored when the
exception handler returns to the interrupted program using an rfi instruction.

Register settings for the trace mode are described in Table 5-27.

Table 5-27. Trace Exception-Register Settings

Register Setting

SRRO Set to the address of the next instruction to be executed in the program for which the trace
exception was generated

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR EE 0 SE 0
PR 0 FE1 0
FP1 0 EP Value is not altered
ME Value is not altered IT 0
FEO 0 DT 0

ADDENDUM-12 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

When a run mode or trace exception is taken, instruction execution resumes as offset
x'02000' from the base address indicated by MSR[EP].

Section 6: Chapter 6, "Memory Management Unit"
This section describes additional information and corrections to Chapter 6, "Memory
Management Unit."

6.1.8 The first two bullet items wlder constraints enforced for instruction prefetching
should be deleted.

6.7.6 The dcbt/dcbtst instruction branch of Figure 6-10 should say "Abort Access"
instead of "Abort Translation."

6.9.1.5.2 The Hash Value 2 shown in Figure 6-22 shows an extra 4 bits (1111) that should
be deleted. The Hash Value 2 should be replaced with the following: "1011000
0000 0001 1001."

6.9.2 Steps 1 and 5 of the page table search operation imply that PTEs are read into
the processor as single-beat read operations. In reality, the MPC601 performs
a burst read operation at the PTE address (to load a sector of the on-chip cache)
and optionally performs a second burst read operation to fill the cache line.
However, the PTEs are read from the cache and compared with the virtual
address infonnation one at a time.

6.9.2 At the top of Figure 6-23, the fetch of a PTE is described as a single-beat read
from PA. This should be replaced with a box showing that four PTEs are burst
in at once, and four more PTEs may be burst in to fill a cache line.

Section 7: Chapter 7, "Instruction Timing"
This section describes additional information and corrections to Chapter 7, "Instruction
Timing."

7.1 Replace Figure 7-1 with the following:

MOTOROLA

CLOCK 0

CLOCK 1

CLOCK 2

CLOCK 3

I (STAGE 1) A II (STAGE 2) II (STAGE 3)

I (STAGE 1) 6[iS;!..GE 2) A II (STAGE 3)

I (STAGE 1) c']jj§GE2) ~GE3) AI

I (STAGE 1) jj;;GE2) ~GE3) BI

Figure 7-1. Pipelined Execution Unit

Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-13

7.3.3 Replace the last two paragraphs in this section with the following:

Double-precision floating-point multiply instructions spend multiple clock
cycles in the decode and execute stages of the FPU. However, the fmu)
instruction is broken down into two parts (which in the FPU pipeline appear to
be two instructions). This allows the instruction to occupy two stages in the
FPU simultaneously. The first part of the instruction can begin FPU execute 1
stage as the second part enters the decode stage. Likewise, when the first part
of the instruction enters FPU execute 2 stage, the second part enters execute 1
stage.

This self-pipe lining reduces the latency to five cycles and improves the
throughput. For example, a series of fmu) instructions would have a
throughput of one instruction every two cycles.

Section 8: Chapter 8, "Signal Descriptions"
This section describes additional information and corrections to Chapter 8, "Signal
Descriptions."

Section
Number

8.1 Replace Figure 8-1 with Figure 1-7 (shown on page Addendum-2 of this
addendum).

8.2.4.1.2 Replace the first two entries in Table 8-1 with the following:

TTO Special operations: This signal is asserted whenever a bus transaction is run in response to a
Iwarxlstwcx. instruction pair, a TLBI (translation lookaside buffer invalidate) operation, or either an
eciwx or ecowx instruction.

TT1 Read (or write) operations: This signal indicates whether the transaction is a read (TT1 high) or a write
(TT1 low). This assumes that the transaction is not address-only.

8.2.4.2.1 Replace the last paragraph of the State Meaning section with the following:

For external control instructions (eciwx and ecowx), TSIZO-TSIZ2 are used to
output bits 29-31 of the external access register (EAR), which are used to form
the resource ID (TBSTIITSIZO-TSIZ2).

8.2.4.3.1 Replace the first paragraph of the State Meaning section with the following:

Asserted-Indicates that a burst transfer is in progress.

8.2.4.4 Replace the first sentence with the following:

The transfer code (TCO-TC1) consists of two output signals on the MPC601.

ADDENDUM-14 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

TCO

8.2.4.6

8.2.4.9

8.2.6.1

Replace the first entry in Table 8-4 with the following:

Assertion depends on whether the current transaction is a read or write operation; therefore, TCO
should be used with TT1. On a read operation, TCO asserted indicates the transaction is an instruction
fetch operation; otherwise, the read operation is a data operation.
Asserting TCO for write operations indicates the cache sector associated with a write is being
invalidated; TCO negated indicates the cache sector associated with a write is not being invalidated.

Substitute the following for the State Meaning entry:

Asserted-Indicates that a single-beat transaction is write-through, reflecting
the value of the W bit for the block or page that contains the address of the
current transaction. For burst writes, this indicates that the write is the result of
a dcbf or dcbst instruction.

Negated-Indicates that a transaction is not write-through. For bursts it is
negated for cast-outs and snoop pushes.

Add the following sentence to the first paragraph:

This pin must be enabled by setting HIDO[31] if it is to be used.

The Timing Comments should read as follows: "AssertionlNegation-Must be
valid throughout the entire address tenure."

Substitute the following for the Asserted infonnation in the State Meaning
section:

Asserted-Indicates that the MPC601 may, with the proper qualification,
assume mastership of the data bus. The MPC601 derives a qualified data bus
grant when DBG is asserted and TI'Iffi, DRTRY, and ARTRY are negated; that
is, the data bus is not busy (DIm' is negated), there is no outstanding attempt to
retry the current data tenure (DRTRY is negated), and there is no outstanding
attempt to perfonn an ARTRY of the associated address tenure.

8.2.7.2.2 Substitute the following for the next-to-Iast sentence in the State Meaning
section:

Detected even parity causes a checkstop if data parity errors are enabled in the
HID register.

8.2.9.1 Replace the First paragraph of the State Meaning section with the following:

Asserted-The MPC601 latches the interrupt condition if the MSR(EE) bit is
set and ignores the interrupt condition otherwise. To guarantee that the
MPC601 will take the extenlal interrupt, the TNT pin must be held active until
the MPC601 takes the interrupt; otherwise, the MPC601 mayor may not take
an external interrupt, depending on whether MSR[EE] bit was set while the
TNT signal was held active.

8.2.9.6 Add the following sentence to the first paragraph:

Note that systems that do not use this signal should tie it low.

8.2.11 This section should be deleted.

MOTOROLA Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-15

8.2.12.3 Replace Figure 8-6 with the following:

o 2 3 4 5 6

IN

7 8 9 10 11

, ,

1-----.----11:
Bus Transition t t ,

'*Delayof inv~rter output

Figure 8-6. Generation of Bus Transactions-logical Bus Clock = 1/2 P _ClK

Section 9: Chapter 9, "System Interface Operation"
9.1.2 Replace the last sentence in the second bulleted item with the following:

9.2

9.3.2.1

9.3.2.3

The update of the other sector can be disabled by setting bits in the HIDO
register. HIDO[DRF], bit 26, can be used to disable fetches and HIDO[DRL],
bit 27, can be used to disable loads and stores.

Replace the second paragraph with the following:

Figure 9-3 shows that the address and data tenures are distinct from one
another and that both consist of three phases-arbitration, transfer, and
termination. Address and data tenures are independent (indicated in Figure 9-3
by fact that the data tenure begins before the address tenure ends), which
allows split-bus transactions to be implemented at the system level in
multiprocessor systems. Figure 9-3 shows a data transfer that consists of a
single-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte
cache sectors require data transfer termination signals for each beat of data.

Delete the second paragraph.

Substitute the following row in Table 9-3.

I Rm •• ransfor: I
two bytes

010 110 A

9.3.2.4 Replace the last sentence of the second paragraph with the following:

TeO negated indicates the write is not invalidating any cache sector (for
example, write-through or cache-inhibited write operations.)

ADDENDUM-16 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

9.3.3 The second sentence of the second paragraph should read as follows:

After ARTRY and SRI:> are asserted, they will be three-stated for two bus
cycles and the system is responsible for precharging both ARTRY and 'SRI)
signals.

9.3.3 Add the following sentence to the end of the fourth bulleted item:

The override mode uses the HP _SNP _REQ signal to determine if the snoop
queue is to be used. This mode is enabled by setting HIDO[31].

9.4.2 Replace the first sentence of the third paragraph with the following:

The type of transaction initiated by the MPC601 depends on whether the code
or data is cacheable and, for store operations, whether the cache is operated in
write-back or write-through mode which software controls at either the page or
block basis.

9.4.3 Replace the last sentence with the following:

9.4.3.1

ARTRY can also tenninate a data bus transaction. For burst transactions, this
ARTRY must occur no later than the cycle of the second TA. For single-beat
transactions, it must occur no later than the cycle following TA. In either case,
the ARTRY must be for the address bus tenure associated with the data bus
tenure.

Replace Figure 9-10 with the following:

o 2 3 4

'rn !------+-......

qusl"'D1!m

TT2
,

AACK l \------rll /
Figure 9-10. Normal Single-Beat Read Termination

MOTOROLA Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-17

Replace Figure 9-11 with the following:

o 2 3

TT2 : ~ \~--!----~; / ,

AACK:

Figure 9-11. Normal Single-Beat Write Termination

9.5 The clock signals at the bottom of the figures in this section should be ignored.

Replace the first two paragraphs with the following:

This section shows timing diagrams for various scenarios. Figure 9-16
illustrates the fastest single-beat reads. This figure shows both minimal latency
and maximum single-beat throughput. By delaying the data bus tenure, the
latency increases, but, because of split-transaction pipelining, the overall
throughput is not affected unless the data bus latency causes the third address
tenure to be delayed.

Note that all bidirectional signals go to high-impedance between bus tenures.

9.6.4 Replace the last sentence in the fourth paragraph with the following

The MPC601 involved in this transaction, however, does not initiate any other
I/O controller load or store operations once the first I/O controller interface
operation has begun address tenure; however, if the I/O operation is retried,
other higher-priority operations can occur.

9.6.4 Replace the last sentence of the last paragraph with the following:

If the TEA signal is not asserted with each tenure of a given I/O controller
interface operation, the result of the assertion of TEA is unpredictable. The
MPC601 may take a machine check exception or cause a checkstop condition.

9.10 Add the following note after step 5:

Note that steps 4 and 5 can occur in either order.

ADDENDUM-18 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Section 10: Chapter 10, "Instruction Set"
This section describes additional information and corrections to Chapter 10, "Instruction
Set."

Imw Add the following infonnation:

In future implementations, this instruction is likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load
instructions that produce the same results.

Ifsu The reference in the description of this instruction should be to Section 3.5.9.1,
"Double-Precision Conversion for Floating-Point Load Instructions."

Ifsux The reference in the description of this instruction should be to Section 3.5.9.1,
"Double-Precision Conversion for Floating-Point Load Instructions."

Ifsx The reference in the description of this instruction should be to Section 3.5.9.1,
"Double-Precision Conversion for Floating-Point Load Instructions."

Iswi Add the following information:

In future implementations, tins instruction is likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load
instructions that produce the same results.

mffs This instruction is executed in the FPU rather tIIan the IU.

Iswx Add the following information:

mfspr

MOTOROLA

Under certain conditions (for example, segment boundary crossings) the
alignment error handler may be invoked. For additional infonnation about
alignment exceptions, see Section 5.4.6, "Alignment Exception (x'00600')

In future implementations, thls instruction is likely to have greater latency and
take longer to execute, perhaps much longer, tIlan a sequence of individual load
instructions that produce the same results.

Replace Table 10-4 with the following:

Table 10-4. SPR Encodings for mfspr
1

SPR
Register Name Access

Decimal SPR[5-9] SPR[O-4]

0 00000 00000 MQ User

1 00000 00001 XER User

4 00000 00100 RTCU2 User

5 00000 00101 RTCL2 User

6 00000 00110 DEC3 User

8 00000 01000 LR User

9 00000 01001 CTR User

Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-19

Table 10-4. SPR Encodings for mfspr (Continued)
1

SPR
Register Name Access

Decimal SPR[S-9] SPR[O-4]

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC3 Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRRO Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRGO Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

287 01000 11111 PVR Supervisor

528 10000 10000 BATOU Supervisor

529 10000 10001 BATOL Supervisor

530 10000 10010 BAT1U Supervisor

531 10000 10011 BAT1L Supervisor

532 10000 10100 BAT2U Supervisor

533 10000 10101 BAT2L Supervisor

534 10000 10110 BAT3U Supervisor

535 10000 10111 BAT3L Supervisor

1008 11111 10000 Checkstop Register (HI DO) Supervisor

1009 11111 10001 Debug Mode Register (HID1) Supervisor

1010 11111 10010 IABR (HID2) Supervisor

1013 11111 10101 DABR (HID5) Supervisor

1023 11111 11111 PIR (HID15) Supervisor

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with
actual instruction coding.

If the SPR field contains any value other than one of these implementation-specific
values or one of the values shown in Table 3-40, the instruction form is invalid.

SPR[Oj=1 if and only if the register is being accessed at the supervisor level. Execution of
this instruction specifying a defined and supervisor-level register when MSR[PRj=1
results in a privilege violation type program exception.

For mtspr and mfspr instructions, the SPR number coded in assembly language does

ADDENDUM-20 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mtspr

not appear directly as a 1 O-bit binary number in the instruction. The number coded is split
into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits
appearing in bits 16-20 of the instruction and the low-order 5 bits in bits 11-15.

SPR encodings for DEC, MO, RTCL, and RTCU are not part of the FowerPC
architecture.

20n the MPC601, the mfspr instruction for the RTCU and RTCL registers must use these
encodings (SPR4 and SPR5, respectively) regardless of whether the processor is in
supervisor or user mode. The mtspr instruction, which is supervisor-only for the RTCU
and RTCL registers, must use the SPR20 and SPR21 encodings, respectively.

3Read access to the DEC register is supervisor-only in the PowerPC architecture, using
SPR22. However, the POWER architecture allows user-level read access using SPR6.
Note that the SPR6 encoding for the DEC will not be supported by other PowerPC
processors.

Replace Table 10-5 with the following:

Table 10-5. SPR Encodings for mtspr

SPR1
Register Access

Decimal SPR[5-9] SPR[O-4]
Name

0 00000 00000 MQ User

1 00000 00001 XER User

8 00000 01000 lR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

20 00000 10100 RTCU2 Supervisor

21 00000 10101 RTCl2 Supervisor

22 00000 10110 DEC3 Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRRO Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRGO Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

528 10000 10000 BATOU Supervisor

529 10000 10001 BATOl Supervisor

MOTOROLA Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-21

Table 10-5. SPR Encodings for mtspr (Continued)

SPR1
Register

Access
Decimal SPR[5-9] SPR[O-4]

Name

530 10000 10010 BAT1U Supervisor

531 10000 10011 BAT1L Supervisor

532 10000 10100 BAT2U Supervisor

533 10000 10101 BAT2L Supervisor

534 10000 10110 BAT3U Supervisor

535 10000 10111 BAT3L Supervisor

1008 11111 10000 Checkstop Supervisor
Register
(HIDO)

1009 11111 10001 Debug Mode Supervisor
Register
(HID1)

1010 11111 10010 IABR (HID2) Supervisor

1013 11111 10101 DABR (HID5) Supervisor

1023 11111 11111 PIR (HID15) Supervisor

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with
actual instruction coding.

If the SPR field contains any value other than one of these implementation-specific
values or one of the values shown in Table 3-40, the instruction form is invalid.

SPR[O]= 1 if and only if the register is being accessed at the supervisor level. Execution of
this instruction specifying a defined and supervisor-level register when MSR[PR]=1
results in a privilege violation type program exception.

For mtspr and mfspr instructions, the SPR number coded in assembly language does
not appear directly as a 10-bit binary number in the instruction. The number coded is split
into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits
appearing in bits 16-20 of the instruction and the low-order 5 bits in bits 11-15.

SPR encodings for DEC, MO, RTCL, and RTCU are not part of the PowerPC
architecture.

20n the MPC601, the mfspr instruction for the RTCU and RTCL registers must use these
encodings (SPR4 and SPR5, respectively) regardless of whether the processor is in
supervisor or user mode. The mtspr instruction, which is supervisor-only for the RTCU
and RTCL registers, must use the SPR20 and SPR21 encodings, respectively.

3Read access to the DEC register is supervisor-only in the PowerPC architecture, using
SPR22. However, the POWER architecture allows user-level read access using SPR6.
Note that the SPR6 encoding for the DEC will not be supported by other PowerPC
processors.

ADDENDUM-22 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stmw

stswi

stswx

10.3

Add the following information:

In future implementations, this instruction is likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual
store instructions that produce the same results.

Add the following information:

In future implementations, this instruction is likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual
store instructions that produce the same results.

Add the following information:

In future implementations, this instruction is likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual
store instructions that produce the same results.

The tlbiex instruction has been removed from the PowerPC architecture. and
should be deleted from Table 10-6.

Section 11 : Appendixes
This section describes additional information and corrections to the appendixes.

Section
Number

App.A

App.C

App.D

F.3.2

MOTOROLA

The slbiex and tlbiex instructions, which are not implemented in the MPC601,
have been removed from the PowerPC architecture.

The slbiex and tlbiex instructions, which are not implemented in the MPC601,
have been removed from the PowerPC architectrue.

The MPC601 takes an illegal instruction error exception for instructions that
the PowerPC architecture defines as reserved, except for those POWER
instructions that are implemented on the MPC601.

Replace Round Integer(frac,gbit,rbit,xbit,round_mode) with the following:

Round Integer(frac,gbit,rbit,xbit,round _mode)

In this example, u represents an undefined hexadecimal digit. Comparisons
ignore the u bits.

inc f- 0
Ifround mode=: b'OO' then

Do -
If sign II frac[64]11 gbit II rbit II xbit = b 'u 11 uu' then inc f- 1
If sign II frac[64]11 gbit II rbit II xbit = b 'uO 11 u' then inc f- 1
If sign II frac[64]11 gbit II rbit II xbit = b 'uO 1 u l' then inc f- 1

End
Ifround mode=: b'lO' then

Do -
If sign II frac[64]11 gbit II rbit II xbit = b 'Ou 1 uu' then incf-l
If sign II frac[64]II gbit II rbit II xbit = b'Ouu lu' then inc f- 1
If sign II frac[64]II gbit II rbit II xbit = b'Ouuul' then inc f- 1

End

Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-23

App.H

If round_mode:: b' 11 ' then
Do

If sign" frac[64] " gbit " rbit " xbit = b' 1 u 1 uu' then inc ~ 1
If sign" frac[64] " gbit" rbit" xbit = b'l uul u' then inc ~ 1
If sign" frac[64] "gbit" rbit" xbit = b'luuul' then inc~ 1

End
frac[0-64] ~ frac[0-64] + inc
FPSCR[FR] ~ inc
FPSCR[FI] ~ gbit I rbit I xbit
Return

The following appendix should be added to the user's manual.

Appendix H
MPC601 as a PowerPC Microprocessor
The MPC601 processor is the first implementation of the PowerPC architecture. It offers a
reliable platform for software and hardware developers to make products compatible with
subsequent processors in the PowerPC family. In addition, the MPC601 provides
extensions to the PowerPC architecture that allow it to function as a bridge from the
POWER architecture. This appendix describes the POWER extensions as well as other
differences between the MPC601 and the PowerPC architecture (PowerPC Architecture,
First Edition). These differences can be categorized as follows:

POWER extensions-Additional functionality not defined in the PowerPC
architecture. For example, the MPC601 implements many POWER instructions that
do not have PowerPC equivalents.

Variances-MPC601 functionality that is implemented differently than as described
in the PowerPC architecture. For example, there are several differences between the
MPC601 MMU implementation and that specified by the PowerPC architecture. In
general, these variances are not visible from the user level.

Implementation-dependent extensions-These include features that are not part of
but are allowed by the PowerPC architecture. For example, the MPC601 provides a
set of implementation-dependent registers (HIDs) to control hardware features such
as parity checking and instruction address breakpoint that are beyond the
specifications in architecture. Software should take appropriate precautions to
control use of these features.

PowerPC optional features-These include optional features defined in the
PowerPC architecture that are implemented in the MPC601.

This appendix does not describe performance trade-offs allowed by the PowerPC
architecture. For example, some implementations may provide more support for alignment
than others and therefore they may require different amounts of assistance in the interrupt
handler.

ADDENDUM-24 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

This appendix also does not describe variances built into the PowerPC architecture to
provide some latitude in PowerPC implementations for handling reserved, invalid, and
undefined conditions. These aspects are left intentionally undefined. Note that while the
MPC601 's treatment of such aspects may be predictable, taking advantage of that behavior
may cause software incompatibilities with other PowerPC implementations.

Where applicable, a reference is given to the portion of the user's manual that describes that
functionality.

Also, the tables in this appendix indicate the level of architecture at which the MPC601
diverges. These levels are as follows:

PowerPC user instruction set architecture-Defines the base user-level instruction
set, user-level registers, data types, floating-point exception model, memory models
for a uniprocessor environment, and programming model for uniprocessor
environment.

The tables in this appendix identify differences with this part of the architecture by
listing "User" in the "Level" column of the tables.

PowerPC virtual environment architecture-This describes the memory model for a
multiprocessor environment, defines cache control instructions, and describes other
aspects of virtual environments. Implementations that conform to the PowerPC
virtual environment architecture also adhere to the PowerPC user instruction set
architecture, but may not necessarily adhere to the PowerPC operating environment
architecture.

The tables in this appendix identify differences with this part of the architecture by
listing "Virtual environment" in the "Level" column of the tables.

PowerPC operating environment architecture-This defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the PowerPC operating
environment architecture also adhere to the PowerPC user instruction set
architecture and the PowerPC virtual environment architecture definition.

The tables in tllis appendix identify differences with this part of the architecture by
listing "Operating environment" in tlle "Level" colunm of the tables.

H.1 POWER Extensions
Table H-l lists POWER functionality supported by the MPC601 that is not defined in the
PowerPC architecture. POWER extensions include additional functionality not defined in
the PowerPC architecture.

MOTOROLA Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-25

Table H-1. POWER Extensions

Difference Reference Level Type

The MO register, provided for POWER Section 2.2.5.1, "MO User POWER
compatibility, is not part of the PowerPC Register (MOt
architecture.

The MPC601 implements the real-time clock Section 2.2.5.3, "Real- Virtual and POWER and
feature, including POWER registers RTCU and Time Clock (RTC) operating Variance
RTCL, to provide a time reference rather than the Registers" environment
time base feature defined by the PowerPC
architecture.

In the MPC601 processor, the decrementer Section 2.3.3.4, User and POWER and
implementation uses the separate 7.8125 MHz "Decrementer (DEC) virtual Variance
RTC for its base frequency. Other PowerPC Register" environment
processors base the decrementer on the processor
clock.

The decrementer register (DEC) in the MPC601 Section 2.3.3.4, User and POWER
allows user-level read access, which is not "Decrementer (DEC) operating
provided in the PowerPC architecture. Register" environment

Because MPC601 supports the POWER registers, Section 3.7.1, "Move User and POWER
MO, RTCU, and RTCL, instruction encodings to to/from Special Purpose operating
access them, mtspr and mfspr, are also provided. Register Instructions" environment

The MPC601 provides a group of instructions for Appendix C, "PowerPC - POWER
compatibility with POWER. The relationship Instructions Not
between the MPC601 and the PowerPC instruction Implemented in MPC601"
sets are shown in Appendix C. The PowerPC
architecture defines these instructions as reserved.

H.2 Variances
Variances include PowerPC functionality that is implemented in the MPC601 with some
differences. In general, these variances are not visible from the user level. Table H-2 lists
variances to the PowerPC architecture.

ADDENDUM-26 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table H-2. Variances

Difference Reference Level Type

The VXSOFT, VXSQRT, and NI bits (bits 21,22, Section 2.2.3, "Floating- User and Variance
and 29, respectively) are not implemented in the Point Status and Control operating
MPC601 processor. Register (FPSCR)" environment

If the Floating-Point Convert to Integer Word (fctiw) Section 3.4.3, "Floating- User and Variance
instruction results in a conversion exception, Point Rounding and operating
FPSCR[XCVI] is set causing FPSCR[VX] to be set. Conversion Instructions" environment
The PowerPC architecture specifies that when
fctiw causes FPSCR[XCVI] to be set, FPSCR[XX]
is not altered. The MPC601 may set both
FPSCR[XX] and FPSCR[XCVI] in some
arcumstances.

The architecture requires that both FPSCR[VXCVI] Section 3.4.3, "Floating- User and Variance
and FPSCR[VXSNAN] be set when the source Point Rounding and operating
operand of a fctiw is an SNAN. MPC601 sets only Conversion Instructions" environment
FPSCR[VXCVI].

PowerPC architecture defines the following bits in Section 2.3.1, "Machine Operating Variance
the machine state register (MSR) not implemented State Register (MSR)" environment
in the MPCb01 :
Bit Description

13 Power management enable (POW)
15 Interrupt little-endian mode (ILE)
22 Branch trace enable (BE)
30 Recoverable exception (RE)
31 Little-endian mode (LE)

The MPC601 provides a bit in an implementation- Section 2.4.3, "Byte and Operating Variance
specific register (HIDO) for selecting between big- Bit Ordering" environment
and little-endian modes. PowerPC architecture
defines MSR[LE] for this purpose.

The number, function, content, and format of the Section 2.3.3.11, "BAT Operating Variance
BAT registers implemented by the MPC601 is Registers" environment
different than that specified by the PowerPC
architecture.

The MPC601 clears the reservation bit set by the Section 3.5.7, "Memory User and Variance
execution of an Iwarx instruction when taking any Synchronization operating
type of exception. The PowerPC architecture Instructions" environment
defines that the reservation be cleared for a subset
of exceptions.

Because the MPC601 does not implement the Section 5.4.1, "Reset Operating Variance
MSR[RE] bit (recoverable exception bit), the Exceptions (x'00100')" environment
operating system must use other criteria to
determine if it is possible to recover from an
asynchronous, imprecise interrupt.

Instruction access exceptions due to instruction Section 5: "Chapter 5, Operating Variance
fetches from VO controller interface segments do "Exceptions" of this environment
not set the SRR1 [3] bit as defined in the PowerPC addendum
architecture. This condition clears SRR1[D-15].

MOTOROLA Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-27

Table H-2. Variances (Continued)

Difference Reference Level Type

The non-IEEE mode bit, FPSCR[NI), is reserved in Section 5.4.7.1, "Floating- Operating Variance
the MPC601. All floating-point results are Point Enabled Program environment
consistent with IEEE standards. Exceptions"

The MPC601 maps I/O controller interface error Section 5.4.10, "!l0 Operating Variance
conditions to I/O controller interface exceptions Controller Interface Error environment
instead of to the data access exception vector Exception (x'OOAOO')"
specified by the PowerPC architecture.

Unlike exceptions that occur with memory Section 5: "Chapter 5, Operating Variance
accesses,loads,loads with update, and stores with "Exceptions" of this environment
update to I/O controller interface segments cause addendum
any target registers to be updated, regardless of
whether an exception is taken.

The MPC601 does not implement the trace Section 5.4.12, "Run Operating Variance
exception as a separate exception as is defined in ModelTrace Exception environment
the PowerPC architecture (x'OODOO'). The MPC601 (x'02000')"
vectors trace exceptions to the run-modeltrace
exception (x'02000').

The MPC601 allows access to the I/O controller Section 6.1.3, "Address Operating Variance
interface regardless of the setting of MSR[Dl]. The Translation Mechanisms" environment
PowerPC architecture does not allow these
accesses when MSR[Dl] is cleared.

The MPC601 does not implement the PowerPC Section 10.3, Operating Variance
tlbsync instruction, but instead requires the use of "Instructions Not environment
a sync instruction to synchronize the completion of Implemented by the
a broadcast tlbie instruction. MPC601"

PowerPC architecture defines a "Guarded" Section 6.1.8, "Effects of Operating Variance
memory attribute used to protect volatile memory. Instruction Prefetch on environment
This attribute is associated with each virtual page MMU"
(guarded bit in the page table entry) and with
physical memory. The MPC601 provides a similar
function using the "Caching Inhibited" memory
attribute.

H.3 Implementation-Dependent Extensions
Implementation-dependent extensions include features that are not part of, but are allowed
by, the PowerPC architecture. Note that there are a number of such extensions that are
described throughout the user's manual, and there is no attempt to list them exhaustively in
this appendix. Table H-3 provides a brief list of key implementation-dependent extensions
supported by the MPC601.

ADDENDUM-28 Addendum to the PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table H-3. Implementation-Dependent Extensions

Difference Reference Level Type

The MPC601 includes the following Section 2.3.3.12.1, Operating Implementation
implementation-specific registers: "Checkstop Sources and environment -dependent
HIDO, HID1, HID2, HID5, HID15. These mayor Enables Register- extensions
may not be included in future implementations. HIDO," through Section

2.3.3.12.5, "Processor
Identification Register
(PIR)-HID15"

Because the MPC601 automatically handles all - Operating Implementation
floating-point data types, the MPC601 floating-point environment -dependent
assist exception defined in the PowerPC extension
architecture (x'OOEOO') would never be taken by the
MPC601, and therefore it is not implemented.

The MPC601 supports an additional exception Section 5.4.12, "Run Operating Implementation
called the run mode exception in addition to the ModelTrace Exception environment -dependent
exceptions defined by the PowerPC architecture. (x'02000')" extension

The MPC601 includes a feature that supports 256- Section 6.5.2.1, "I/O Operating Implementation
Mbyte translation capability. This is enabled when Controller Interface environment -dependent
the T-bit is set and the BUID field is = x'07F' in the Address Translation: T =1 extension
appropriate segment register(s). in Segment Register"

H.4 Options to the PowerPC Architecture
Table H-4lists options to the PowerPC architecture supported by the MPC601. Note that
because these are optional, they may not be supported by all PowerPC processors, just as
the MPC601 does not f,Upport other optional features supported by the architecture.

Table H·4. Options to the PowerPC Architecture

Difference Reference Level Type

The MPC601 processor implements the external Section 2.3.3.9, "External Operating Optional
access register (EAR), which is optional to the Access Register (EAR)" environment
PowerPC architecture. Note that only four bits (28-
31) are implemented in the MPC601, whereas the
PowerPC architecture defines six bits.

The MPC601 implements the eciwx and ecowx Section 3.9, "External User Optional
instructions that are optional to the PowerPC Control Instructions"
architecture but are required for use with the EAR
register.

MOTOROLA Addendum to the PowerPC 601 RISC Microprocessor User's Manual ADDENDUM-29

Information In this document is provided solely to enable system and software implementers to use PowerPC microprocessors. Thers are no express or Implied
copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, Including without limitation consequential or incidental damages. "Typical" parameters can and do vary In different
applications. All operating parameters, inclUding ''Typicals'' must be validated fl)r each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems Intended for surgical Implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or Indirectly, any claim of personal injury or death
associated wl)lavch unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and v...y are registerE\d trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tannors Drive, Siakelands, Milton Keynes, MK14 SSP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No.2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

_ ® MOTOROLA

Overview _

Registers and Data Types _

Addressing Modes and Instruction Set Summary ..

Cache and Memory Unit Operation _

Exceptions ..

Memory Management Unit _

Instruction Timing _

Signal Descriptions _

System Interface Operation _

Instruction Set ..

MPC601 Instruction Set _

POWER Architecture Cross Reference ..

PowerPC Instructions Not Implemented in MPC601 ...

Classes of Instructions III
Multiple-Precision Shifts ..

Floating-Point Models ..

Synchronization Programming Examples ..

.. Overview

.. Registers and Data Types

.. Addressing Modes and Instruction Set Summary

.. Cache and Memory Unit Operation

.. Exceptions

.. Memory Management Unit

• Instruction Timing

.. Signal Descriptions

.. System Interface Operation

• Instruction Set

.. MPC601 Instruction Set

g POWER Architecture Cross Reference

.. PowerPC Instructions Not Implemented in MPC601

II!II Classes of Instructions

III Multiple-Precision Shifts

__ Floating-,Point Models

• Synchronization Programming Examples

MOTOROLA RISC FAX-IT
We Want Your Comments

FAX (512) 891-2638

Motorola RISe Microprocessor Applications Engineering provides a FAX number for you
to submit any comments about the content of the PowerPC 601 RISe Microprocessor
User's Manual. We welcome your suggestions for improving our documentation.

When referring to items in the manual, please reference the page number, section number,
figure number, table number, and line number, if necessary.

When sending a FAX, please provide your name, company name, FAX number, and phone
number including country and/or area code.

PowerPC 601 RISC Microprocessor User's Manual

PowerPC™601
Rise Microprocessor User's Manual

® MOTOROLA

@Motorola Inc. 1993
Portions @International Business Machines Corporation, 1993

PowerPC is a trademark of International Business Machines Corporation
This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product with
out notice. Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There
are no express or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on
the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and ® are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Paragraph
Number

l.1
1.1.1
1.1.2
1.1.3
1.1.3.1
1.1.4
1.1.4.1
1.1.4.2
1.1.4.3
1.1.S
1.1.6
1.1.7
I.I.X
1.2
1.3
1.3.1
1.3.2
1.3.2.1
1.3.2.1.1
1.3.2.1.2
1.3.2.1.3
1.3.2.1.4
1.3.2.1.S

MOTOROLA

CONTENTS

Title

About This Book

Page
Number

Audience ... xxxii
Organization .. xxxii
Suggested Reading ... xxxiii
Conventions ... xxxiii
Acronyms and Abbreviations .. : xxxiv
Differences between IBM and Motorola Terminology xxxvi

Chapter 1
Overview

MPC60 I Overview .. I-I
MPC601 Features .. 1-2
Block Diagram ... 1-3
Instruction Unit ... ~ I-S

Instruction Queue ... I-S
Independent Execution Units ... 1-6

Branch Processing Unit (BPU) .. 1-6
Integer Unit (IU) .. 1-7
Floating-Point Unit (FPU) ... 1-7

Memory Management Unit (MMU) .. I-X
Cache Unit ... I-X
Memory Unit. ... 1-9
System Interface .. 1-10

Levels of the PowerPC Architecture .. I-II
MPC601 as a PowerPC Implementation .. 1-12

Features .. 1-13
Registers and Programming Model ... 1-13

PowerPC Registers and Programming Model ... 1-14
General-Purpose Registers (GPRs) ; 1-14
Floating-Point Registers (FPRs) ; .. 1-14
Condition Register (CR) .. 1-14
Floating-Point Status and Control Register (FPSCR) I-IS
Machine State Register (MSR) .. I-IS

Contents iii

Paragraph
Number

1.3.2.1.6
1.3.2.1.7
1.3.2.1.8
1.3.2.1.9
1.3.2.2
1.3.3
1.3.3.1
1.3.3.1.1
1.3.3.1.2
1.3.3.2
1.3.4
1.3.4.1
1.3.4.2
1.3.5
1.3.5.1
1.3.S.2
1.3.6
1.3.6.1
1.3.6.2
1.3.7
1.3.8
1.3.8.1
1.3.8.2
1.3.8.3
1.3.8.4
1.3.8.5

2.1
2.1.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.4.1
2.2.4.2
2.2.4.3
2.2.S
2.2.S.1

iv

CONTENTS

Title Page
Number

Segment Registers (SRs) .. I-IS
Special-Purpose Registers (SPRs) .. I-IS
User-Level SPRs .. I-IS
Supervisor-Level SPRs .. 1-16

MPC60 I Programming Model and Additional Registers 1-17
Instruction Set and Addressing Modes ... 1-18

PowerPC Instruction Set and Addressing Modes 1-18
PowerPC Instruction Set .. 1-18
Calculating Effective Addresses .. 1-19

MPC60 I Instruction Set ... 1-20
Cache Implementation .. 1-20

PowerPC Cache Implementation .. 1-20
MPC601 Cache Implementation .. 1-21

Exception Model .. 1-22
PowerPC Exception Model .. 1-23
MPC601 Exception Model ... 1-24

Memory Management .. 1-27
PowerPC Memory Management .. 1-27
MPC601 Memory Management ... 1-28

Instruction Timing .. 1-29
System Interface ... 1-30

Memory Accesses ... 1-31
VO Controller Interface Operations ... 1-31
MPC601 Signals ... 1-31
Signal Configuration .. 1-32
Real-Time Clock Facility ... 1-33

Chapter 2
Registers and Data Types

Normal Instruction Execution State ... 2-1
Changing Privilege Levels ... 2-6

User-Level Registers .. 2-6
General Purpose Registers (GPRs) ... 2-6
Floating-Point Registers (FPRs) ... 2-6
Floating-Point Status and Control Register (FPSCR) 2-7
Condition Register (CR) ... 2-11

Condition Register CRO Field Definition ... 2-ll
Condition Register CR 1 Field Definition ... 2-12
Condition Register CRn Field-Compare Instruction 2-12

User-Level SPRs .. 2-13
MQ Register (MQ) ... 2-14

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

2.2.5.2
2.2.5.3
2.2.5.3.1
2.2.5.3.2
2.2.5.3.3
2.2.5.3.4
2.2.5.4
2.2.5.5
2.3
2.3.1
2.3.2
2.3.3
2.3.3.1
2.3.3.1.1
2.3.3.1.2
2.3.3.2
2.3.3.3
2.3.3.4
2.3.3.4.1
2.3.3.4.2
2.3.3.5
2.3.3.6
2.3.3.7
2.3.3.8
2.3.3.9
2.3.3.10
2.3.3.11
2.3.3.12
2.3.3.12.1
2.3.3.12.2
2.3.3.12.3
2.3.3.12.4
2.3.3.12.5
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.1.3
2.4.2
2.4.2.1
2.4.3
2.4.3.1
2.4.3.2

MOTOROLA

CONTENTS

Title Page
Number

Integer Exception Register (XER) ... 2-15
Real-Time Clock (RTC) Registers ... 2-16

Real-Time Clock Lower (RTCL) Register .. 2-17
Real-Time Clock Upper (RTCU) Register .. 2-17
Reading the RTC .. 2-18
RTC Synchronization in a Multiprocessor System 2-18

Link Register (LR) ... 2-18
Count Register (CTR) .. 2-19

Supervisor-Level Registers .. 2-20
Machine State Register (MSR) .. 2-20
Segment Registers .. 2-22
Supervisor-Level SPRs .. 2-23

Synchronization for Supervisor-Level SPRs, and Segment Registers 2-24
Context Synchronization .. 2-24
Other Requirements by Register .. 2-27

DAE/Source Instruction Service Register (DSISR) 2-27
Data Address Register (DAR) .. 2-27
Decrementer (DEC) Register ... 2-28

Decrementer Operation .. 2-28
Writing and Reading the DEC ... 2-29

Table Search Descriptor Register 1 (SDRI) .. 2-29
Machine Status SaveIRestore Register 0 (SRRO) 2-30
Machine Status Save/Restore Register 1 (SRRl) 2-30
General SPRs (SPRGO-SPRG3) .. 2-31
External Access Register (EAR) .. 2-31
Processor Version Register (PVR) ... 2-33
BAT Registers .. 2-33
MPC601 Implementation-Specific HID Registers 2-35

Checkstop Sources and Enables Register-HIDO 2-36
MPC601 Debug Modes Register-HID 1 .. 2-38
Instruction Address Breakpoint Register (lABR)-HID2 2-39
Data Address Breakpoint Register (DABR)-HID5 2-40
Processor Identification Register (PIR)-HID 15 2-41

Operand Conventions ... 2-42
Effect of Operand Placement on Performance ... 2-42

Instruction Restart .. 2-43
Atomicity ... 2-43
Access Order .. 2-43

Data Organization in Memory and Data Transfers .. 2-43
Alignment and Misaligned Accesses ... 2-44

Byte and Bit Ordering .. 2-44
Big-Endian Byte Ordering ... 2-45
Little-Endian Byte Ordering .. 2-45

Contents v

Paragraph
Number

2.4.4
2.4.4.1
2.4.4.2 .
2.4.5
2.4.6
2.4.6.1
2.4.6.2
2.4.6.3
2.4.6.3.1
2.4.6.3.2
2.4.7
2.4.8
2.4.9
2.4.9.1
2.4.9.1.1
2.4.9.2
2.4.9.2.1
2.4.9.2.2
2.4.9.2.3
2.4.9.2.4
2.4.9.2.5
2.4.9.2.6
2.4.9.2.7
2.4.9.3
2.4.9.4
2.4:9.5
2.4.9.6
2.5
2.6

. 2.6.1
2.6.2

CONTENTS

Title
Page

Number

Structure Mapping Examples ... 2-46
Big-Endian Mapping .. 2-46
Little-Endian Mapping ... 2-46

PowerPC Byte Ordering ... 2-47
PowerPC Data Memory with LM Set .. 2-47

Aligned Scalars ... 2-47
Misaligned Scalars ... 2-50
Non-Scalars .. 2-51

String Operations .. 2-51
Load and Store Multiple Instructions ... 2-52

PowerPC Instruction Memory Addressing in Little-Endian Mode 2-53
PowerPC Input/Output in Little-Endian Mode ... 2-54
Floating-Point Execution Models ... 2-55

Execution Model for IEEE Operations .. 2-55
Execution Model for Multiply-Add Type Instructions 2-58

Floating-Point Data Format .. 2-59
Value Representation ... 2-60
Binary Floating-Point Numbers ... 2-62
Normalized Numbers (±NORM) .. 2-62
Zero Values (±O) ... 2-63
Denormalized Numbers (±DENORM) .. 2-63
Infinities (±oo) ... 2-63
Not a Numbers (NaNs) ... 2-64

Sign of Result ... 2-65
Normalization and Denormalization .. 2-66
Data Handling and Precision .. 2-66
Rounding .. 2-68

Unimplemented PowerPC Registers .. 2-70
Reset ... 2-71

Hard Reset .. 2-71
Soft Reset .. 2-72

Chapter 3
Addressing Modes and Instruction Set Summary

3.1 Memory Addressing ... 3-2
3.1.1 Effective Address Calculation .. 3-2
3.1.2 Context Synchronization .. 3-2
3.2 Exception Summary ... 3-3
3.3 Integer Instructions ... 3-4
3.3: 1 Integer Arithmetic Instructions .. .3-4
3.3.2 Integer Compare Instructions ... 3-15

vi PowerPC 601 RiSe Microprocessor User's Manual MOTOROLA

Paragraph
Number

3.3.3
3.3.4
3.3.4.1
3.3.4.2
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.8.1
3.5.8.2
3.5.9
3.5.9.1
3.5.10
3.5.10.1
3.5.11
3.6
3.6.1
3.6.1.1
3.6.1.2
3.6.1.3
3.6.1.4
3.6.1.5
3.6.1.6
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7

MOTOROLA

CONTENTS

Title Page
Number

Integer Logical Instructions ... 3-16
Integer Rotate ami Shift Instructions .. 3-18

Integer Rotate Instructions ... 3-20
Integer Shift Instructions .. 3-20

Floating-Point Instructions ... 3-30
Floating-Point Arithmetic Instructions .. 3-30
Floating-Point Multiply-Add Instructions .. 3-34
Floating-Point Rounding and Conversion Instructions 3-37
Floating-Point Compare Instructions ... 3-39
Floating-Point Status and Control Register Instructions 3-40

Load and Store Instructions .. 3-42
Integer Load and Store Address Generation .. 3-42

Register Indirect with Immediate Index Addressing 3-42
Register Indirect with Index Addressing ... 3-43
Register Indirect Addressing .. 3-44

Integer Load Instructions ... 3-44
Integer Store Instructions ... 3-47
Integer Load and Store with Byte Reversal Instructions 3-48
Integer Load and Store Multiple Instructions .. 3-49
Integer Move String Instructions ... 3-50
Memory Synchronization Instructions ... 3-53
Floating-Point Load and Store Address Generation 3-55

Register Indirect with Immediate Index Addressing 3-55
Register Indirect with Index Addressing ... 3-56

Floating-Point Load Instructions .. 3-57
Double-Precision Conversion for Floating-Point Load Instructions 3-59

Floating-Point Store Instructions ... 3-60
Double-Precision Conversion for Floating-Point Store Instructions 3-61

Floating-Point Move Instructions .. 3-62
Flow Control Instructions ... 3-63

Branch instruction Address Calculation ... 3-63
Branch Relative Address Mode ... 3-64
Branch Conditional Relative Address Mode ... 3-64
Branch to Absolute Address Mode .. 3-65
Branch Conditional to Absolute Address Mode .. 3-66
Branch Conditional to Link Register Address Mode 3-66
Branch Conditional to Count Register ... 3-66

BI Operand ... 3-69
Basic Branch Mnemonics .. 3-69
Branch Mnemonics Incorporating Conditions ... 3-72
Branch Instructions .. 3-74
Condition Register Logical Instructions ... 3-75
System Linkage Instructions .. 3-76

Contents vii

Paragraph
Number

3.6.8
3.6.9
3.7
3.7.1
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.9
3.10
3.10.1
3.10.2
3.10.3
3.10.4
3.10.5

4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.6
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.5.1
4.7.5.2
4.7.6
4.7.7
4.7.8
4.7.9

viii

CONTENTS

Title Page
Number

Simplified Mnemonics for Branch Processor Instructions 3-77
Trap Mnemonics ... 3-78

Processor Control Instructions .. 3-80
Move to/from Special Purpose Register Instructions 3-80

Memory Control Instructions ... 3-85
Supervisor-Level Cache Management Instruction ... 3-85
User-Level Cache Instructions ... 3-86
Segment Register Manipulation Instructions ... 3-89
Translation Look-Aside Buffer Management Instructions 3-90

External Control Instructions .. 3-90
Miscellaneous Simplified Mnemonics ... 3-91

No-op .. 3-92
Load Immediate .. 3-92
Load Address .. 3-93
Move Register .. 3-93
Complement Register ... 3-93

Chapter 4
Cache and Memory Unit Operation

Cache Organization .. 4-2
Cache Arbitration ... 4-3
Cache Access Priorities .. 4-4
Basic Cache Operations .. 4-4

Cache Reloads .. 4-4
Cache Cast-Out Operation .. 4-4
Cache Sector Push Operation ... 4-5
Optional Cache Sector Line-Fill Operation4-5

Cache Data Transactions .. 4-5
Access to VO Controller Interface Segments .. .4-6
Cache Coherency .. 4-6

Memory Management Access Mode Bits-W, I, and M4-7
MESI Protocol .. 4-8
MESI State Diagram ... 4-9
MESI Hardware Considerations .. .4-1 0
Coherency Precautions ... 4-11

Coherency in Single-Processor Systems4-12
Coherency in Multiprocessor Systems .. .4-12

Memory Loads and Stores .. 4-13
Atomic Memory References ... 4-14
Snoop Response to Bus Operations4-14
Cache Reaction to Specific Bus Operations .. .4-14

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

4.7.10
4.7.11
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8
4.8.9
4.9
4.10
4.10.1
4.10.2
4.10.3
4.11

5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.1.3
5.1.2
5.1.3
5.1.3.1
5.1.3.2
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4
5.4.1
5.4.1.1
5.4.1.2
5.4.2
5.4.2.1

MOTOROLA

CONTENTS

Title Page
Number

Internal ARTRY Scenarios .. 4-17
Enveloped High-Priority Cache Sector Push Operation4-17

Cache Control Instructions ... 4-17
Cache Line Compute Size Instruction (des) .. 4-18
Data Cache Block Touch Instruction (debt)4-18
Data Cache Block Touch for Store Instruction (debtst) 4-19
Data Cache Block Set to Zero Instruction (debz)4-19
Data Cache Block Store Instruction (debst)4-19
Data Cache Block Flush Instruction (debf) .. .4-20
Enforce In-Order Execution of UO Instruction (eieio)4-20
Instruction Cache Block Invalidate Instruction (iebi) 4-21
Instruction Synchronize Instruction (isyne) ... 4-21

Bus Operations Caused by Cache Control Instructions 4-21
Memory Unit .. 4-22

Memory Unit Queuing Structure ... 4-24
Memory Unit Queuing Priorities ... 4-24
Bus Interface .. 4-25

MESI State Transactions .. 4-25

Chapter 5
Exceptions

Exception Classes ... 5-2
Precise Exceptions ... 5-5

Synchronous/Precise Exceptions ... 5-6
Asynchronous/Precise Exceptions ... 5-6
Asynchronous, Imprecise Exceptions .. 5-7

Exception Priorities .. 5-7
Sequential Exception Processing ... 5-8

Recognition of Asynchronous, Imprecise Exceptions 5-9
Recognition of Precise Exceptions .. 5-9

Exception Processing ... 5-9
Enabling and Disabling Exceptions ... 5-13
Steps for Exception Processing .. 5-13
Returning from Supervisor Mode .. 5-14

Process Switching .. 5-14
Exception Definitions ... 5-15

Reset Exceptions (x'00100') .. 5-16
Soft Reset ... 5-17
Hard Reset .. 5-17

Machine Check Exception (x'00200') ... 5-19
Machine Check Exception Enabled (MSR[ME] = 1) 5-20

Contents ix

Paragraph
Number

5.4.2.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.6.1
5.4.6.1.1
5.4.6.1.2
5.4.6.1.3
5.4.6.1.4
5.4.6.2
5.4.6.3
5.4.6.4
5.4.7
5.4.7.1
5.4.7.2
5.4.7.2.1
5.4.7.3
5.4.7.3.1
5.4.7.4
5.4.7.4.1
5.4.7.5
5.4.7.5.1
5.4.7.6
5.4.7.6.1
5.4.8
5.4.9
5.4.10
5.4.11
5.4.12

CONTENTS

Title Page
Number

Checkstop State (MSR[ME] = 0) ... 5-21
Data Access Exception (x'00300') ... 5-21
Instruction Access Exception (x'00400') ... 5-24
External Interrupt (x'00500') ... 5-25
Alignment Exception (x'00600') ... 5-25

Integer Alignment Exceptions .. 5-26
Direct-Translation Access .. 5-27
I/O Controller Interface Access .. 5-27
Memory-Forced I/O Controller Interface Access 5-27
Page Address Translation Access ... 5-28

Floating-Point Alignment Exceptions .. 5-29
Little-Endian Mode Alignment Exceptions ... 5-29
Interpretation of the DSISR as Set by an Alignment Exception 5-29

Program Exception (x'00700') ... 5-32
Floating-Point Enabled Program Exceptions ... 5-33
Invalid Operation Exception Conditions .. 5-39

Action for Invalid Operation Exception Conditions 5-40
Zero Divide Exception Condition .. 5-41

Action for Zero Divide Exception Condition ... 5-41
Overflow Exception Condition .. 5-42

Action for Overflow Exception Condition ... 5-42
Underflow Exception Condition .. 5-43

Action for Underflow Exception Condition ... 5-43
Inexact Exception Condition .. 5-44

Action for Inexact Exception Condition .. 5-44
Floating-Point Unavailable Exception (x'00800') ... 5-44
Decrementer Exception (x '00900') .. 5-45
I/O Controller Interface Error Exception (x'OOAOO') 5-46
System Call Exception (x'OOCOO') .. 5-47
Run Mode Exception (x'02000') .. 5-48

Chapter 6
Memory Management Unit

6.1 MMU Overview ... 6-2
6.1.1 Memory Addressing ... 6-3
6.1.2 MMU Organization .. 6-3
6.1.3 Address Translation Mechanisms ... 6-5
6.1.4 Memory Protection Facilities ... 6-7
6.1.5 Page History Information ... 6-8
6.1.6 General Flow of MMU Address Translation .. 6-8
6.1.7 Memory/MMU Coherency Model ... 6-10

x PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

6.1.X
6.1.9
6.1.10
6.1.11
6.1.12
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.2
6.5.2.1
6.5.2.2
6.5.2.3
6.6
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.X
6.X.1
6.8.2
6.8.2.1
6.X.2.2
6.8.3
6.8.3.1
6.8.3.2
6.8.4
6.X.4.1
6.8.4.2
6.X.5
6.X.6
6.9
6.9.1

MOTOROLA

CONTENTS

Title Page
Number

Effects of Instruction Prefetch on MMU ... 6-11
Breakpoint Facility ... 6-12
MMU Exceptions Summary .. 6-12
MMU Instructions and Register Summary .. 6-14
TLB Entry Invalidation .. 6-14

ITLB Description ... 6-15
Memory ICache Access Modes ... 6-16

Write-Through Bit (W) .. 6-16
Caching Inhibited Bit (I) .. 6-17
Memory Coherence Bit (M) ... 6-17
W, I, and M Bit Combinations ... 6-18

General Memory Protection Mechanism ... 6-19
Selection of Address Translation Type .. 6-21

Address Translation Selection for Instruction Accesses 6-21
Instruction Address Translation Disabled: MSR[IT]=O 6-22
Instruction Address Translation Enabled: MSR[IT]= I 6-22

Address Translation Selection for Data Accesses .. 6-23
va Controller Interface Address Translation: T= 1 in Segment Register .. 6-23
Data Translation Disabled: MSR[DT]=O ... 6-23
Data Translation Enabled: MSR[DT]= 1 .. 6-23

Direct Address Translation ... 6-24
Block Address Translation ... 6-24

BTLB Organization .. 6-24
Recognition of Addresses in BTLB ... 6-26
BAT Register Implementation of BTLB. ... 6~26
Block Memory Protection .. 6-29
Block Physical Address Generation .. 6-29
Block Address Translation Summary .. 6-30

Memory Segment Model. ... 6-31
Page Address Translation Resources ... 6-33
Recognition of Addresses in Segments .. 6-34

Selection of Memory Segments ... 6-34
Selection of va Controller Interface Segments ... 6-35

Page Address Translation ... 6-35
Segment Register Definition .. ;-................... 6-36
Page Table Entry (PTE) Format ... 6-37

Page History Recording ... 6-39
Reference Bit .. 6-40
Change Bit .. ; 6-40

Page Memory Protection .. 6-40
Page Address Translation Summary .. 6-41

Hashed Page Tables ... 6-41
Page Table Definition .. 6-42

Contents xi

Paragraph
Number

6.9.1.1
6.9.1.2
6.9.1.3
6.9.1.4
6.9.1.5
6.9.1.5.1
6.9.1.5.2
6.9.2
6.9.3
6.9.3.1
6.9.3.2
6.9.3.2.1
6.9.3.2.2
6.9.3.2.3
6.9.3.3
6.9.4
6.10
6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6
6.10.7

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.3.3
7.2.4
7.2.4.1
7.2.4.2
7.2.5
7.2.5.1
7.2.5.2

xii

CONTENTS

Title Page
Number

Table Search Description Register (SDRI) .. 6-44
Page Table Size .. 6-44
Hashing Functions .. 6-45
Page Table Addresses ... 6-47
Page Table Structure .. 6-49

Page Table Structure Example ... 6-49
PTEG Address Mapping Example ... 6-5 I

Page Table Search Operation ... 6-53
Page Table Updates .. 6-56

Adding a Page Table Entry .. 6-57
Modifying a Page Table Entry ... 6-58

General Case .. 6-58
Clearing the Reference (R) Bit ... 6-58
Modifying the Virtual Address .. 6-58

Deleting a Page Table Entry ... 6-59
Segment Register Updates .. 6-59

I/O Controller Interface Address Translation ... 6-59
Segment Register Format for I/O Controller Interface 6-60
I/O Controller Interface Accesses .. 6-60
I/O Controller Interface Segment Protection .. 6-61
Memory-Forced I/O Controller Interface Accesses 6-61
Instructions Not Supported in I/O Controller Interface Segments 6-61
Instructions with No Effect in I/O Controller Interface Segments 6-62
I/O Controller Interface Summary Flow .. 6-62

Chapter 7
Instruction Timing

Instruction Timing Overview ... 7-1
Timing Considerations of the MPC601 .. 7-2

Instruction Queue (IQ) ... 7-4
General Instruction Flow .. 7-4
Instruction Prefetch Timing .. 7-6

Cache Arbitration ... 7-6
Cache Hit .. 7-7
Cache Miss ... 7-8

Instruction Decode Timing ... 7 -10
Source Register Considerations .. 7-11
Destination Register Considerations .. 7 -II

Instruction Execute Timing .. 7 -12
Execution Unit Considerations ... 7 -12
Out -of-Order Instruction Issue ... 7 -13

PowerPC 601 RiSe Microprocessor User's Manual MOTOROLA

Paragraph
Number

7.2.6
7.3
7.3.1
7.3.1.1
7.3.1.2
7.3.1.2.1
7.3.1.2.2
7.3.2
7.3.2.1
7.3.2.2
7.3.3
7.3.3.1
7.4
7.4.1
7.4.2
7.4.3
7.5

8.1
8.2
8.2.1
8.2.1.1
8.2.1.2
8.2.1.3
8.2.1.3.1
8.2.1.3.2
8.2.2
8.2.2.1
8.2.2.1.1
8.2.2.1.2
8.2.2.2
8.2.2.2.1
8.2.2.2.2
8.2.3
8.2.3.1
8.2.3.1.1
8.2.3.1.2
8.2.3.1.3
8.2.3.1.4

MOTOROLA

CONTENTS

Title Page
Number

Writeback Timing .. 7-14
Execution Unit Timings ... 7-14

Branch Processing Unit Execution Timing .. 7-14
Branch Folding ... 7-15
Static Branch Prediction ... 7-15

Predicted "Not Taken" Branch Timing Examples 7 -16
Predicted "Taken" Branch Timing Examples .. 7-17

Integer Unit Execution Timing .. 7 -19
Integer Instructions Timing Examples ... 7-20
Data Instructions Timing Examples ... 7-21

Floating-Point Unit Execution Timing ... 7-22
Floating-Point Instructions Timing Examples .. 7-23

Memory Performance Considerations .. 7-25
Copy-Back Mode ... 7-25
Write-Through Mode ... 7-26
Cache-Inhibited Accesses .. 7-26

Instruction Latency Summary .. 7-26

Chapter 8
Signal Descriptions

Signal Configuration .. 8-2
Signal Descriptions .. 8-3

Address B us Arbitration Signal ... 8-3
Bus Request (~-Output ... 8-4
Bus Grant (OO)-Input .. 8-4
Address Bus Busy (ABB) .. 8-5

Address Bus Busy (A:lffi)-Output ... 8-5
Address Bus Busy (AB'If)-Input .. 8-5

Address Transfer Start Signals ... 8-6
Transfer Start (TS) ... 8-6

Transfer Start (TS)-Output .. 8-6
Transfer Start (TS')-Input ... 8-6

Extended Address Transfer Start (XATS') ... 8-6
Extended Address Transfer Start (XAT'S)-Output 8-7
Extended Address Transfer Start (XATS')-Input.. 8-7

Address Transfer Signals ... 8-7
Address Bus(AO-A31) ... 8-7

Address Bus (AO-A31)-Output.. ... 8-7
Address Bus (AO-A31)-Input ... 8-8
Address Bus (AO-A31)-Output (I/O Controller Interface Operations). 8-8
Address Bus (AO-A31)-Input (I/O Controller Interface Operations) ... 8-8

Contents xiii

Paragraph
Number

8.2.3.2
8.2.3.2.1
8.2.3.2.2
8.2.3.3
8.2.4
8.2.4.1
8.2.4.1.1
8.2.4.1.2
8.2.4.2
8.2.4.2.1
8.2.4.2.2
8.2.4.3
8.2.4.3.1
8.2.4.3.2
8.2.4.4
8.2.4.5
8.2.4.6
8.2.4.7
8.2.4.7.1
8.2.4.7.2
8.2.4.8
8.2.4.9
8.2.5
8.2.5.1
8.2.5.2
8.2.5.2.1
8.2.5.2.2
8.2.5.3
8.2.5.3.1
8.2.5.3.2
8.2.6
8.2.6.1
8.2.6.2
8.2.6.3
8.2.6.3.1
8.2.6.3.2
8.2.7
8.2.7.1
8.2.7.1.1
8.2.7.1.2
8.2.7.2
8.2.7.2.1
8.2.7.2.2

xiv

CONTENTS

Title Page
Number

Address Bus Parity (APO-AP3) ... 8-8
Address Bus Parity (APO-AP3)-Output .. 8-9
Address Bus Parity (APO-AP3)-Input.. ... 8-9

Address Parity Error (APE)-Output.. ... 8-9
Address Transfer Attribute Signals .. 8-10

Transfer Type (TTO-TT 4) , .. 8-10
Transfer Type (TTO-TT4)-Output ... 8-10
Transfer Type (TTO-TT3)-Input ... 8-10

Transfer Size (TSIZO-TSIZ2) .. 8-12
Transfer Size (TSIZO-TSIZ2)-Output ... 8-12
Transfer Size (TSIZO-TS IZ2)-Input.. .. 8-13

Transfer Burst (TBST) ... 8-13
Transfer Burst (TBST)-Output .. 8-13
Transfer Burst (TBST)-Input ... 8-14

Transfer Code (TCO-TC I)-Output .. 8-14
Cache Inhibit (a)-Output .. 8-14
Write-through (WT)-Output .. 8-15
Global (GB'[) ... 8-15

Global (DBL)-Output .. 8-15
Global (GBL)-Input ... 8-15

Cache Set Element (CSEO-CSE2)-Output .. 8-15
High-Priority Snoop Request (HP _SNP _REQ) ... 8-16

Address Transfer Termination Signals ... 8-16
Address Acknowledge (AACK)-Input .. 8-16
Address Retry (ARTRy) .. 8-17

Address Retry (ARTR Y)-Output.. ... 8-17
Address Retry (ARTR Y)-Input ... 8-17

Shared (SHU) ... 8-18
Shared (S'HD)-Output .. 8-18
Shared (SHD)-Input ... 8-18

Data Bus Arbitration Signals .. 8-19
Data Bus Grant (1513G)-Input ... 8-19
Data Bus Write Only (15BWO)-Input .. 8-19
Data Bus Busy (I5Bl3) .. 8-20

Data Bus Busy (DBB)-Output ... 8-20
Data Bus Busy (DBB)-Input .. 8-20

Data Transfer Signals ... 8-21
Data Bus (DHO-DH31, DLO-DL3I) ... 8-21

Data Bus (DHO-DH31, DLO-DL31)-Output 8-21
Data Bus (DHO-DH31, DLO-DL31)-Input ... 8-22

Data Bus Parity (DPO-DP7) ... 8-22
Data Bus Parity (DPO-DP7)-Output.. .. 8-22
Data Bus parity (DPO-DP7)-Input .. 8-23

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

R.2.7.3
8.2.8
8.2.8.1
8.2.8.2
8.2.8.3
8.2.9
8.2.9.1
8.2.9.2
8.2.9.3
8.2.9.4
8.2.9.4.1
R.2.9.4.2
8.2.9.5
8.2.9.6
8.2.9.7
8.2.9.8
8.2.9.9
8.2.10
8.2.11
8.2.12
8.2.12.1
R.2.12.2
8.2.12.3
8.2.12.4
8.3

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2
9.3.2.1
9.3.2.2

MOTOROLA

CONTENTS

Title
Page

Number

Data Parity Error (DPE)-Output.. .. 8-23
Data Transfer Tennination Signals .. 8-23

Transfer Acknowledge (T'A)-Input ... 8-23
Data Retry (DRTRY)-Input.. ... 8-24
Transfer Error Acknowledge (l'EA)-Input.. .. 8-24

System Status Signals .. 8-25
Interrupt (INT)-Input ... 8-25
Checkstop Input (CKSTP _IN)-Input.. ... 8-25
Checkstop Output (CKSTP _OUT)-Output ... 8-26
Reset Signals .. 8-26

Hard Reset (HRESET)-lnput .. 8-26
Soft Reset (SRESET)-Input .. 8-27

System Quiesced (SyS_QUIESC) ... 8-27
Resume (RESUME) ... 8-27
Quiesce Request (QUIESC_REQ) ... 8-28
Reserv'ation ("RS1{\7)-Output ... 8-28
Driver Mode (SC_DRIVE) .. 8-28

ESP/Scan Interface ... 8-29
Test Signals .. 8-30
Clock Signals ... 8-31

Double-Speed Processor Clock (2X_PCLK)-Input 8-31
Clock Phase (PCLK_EN)-Input .. 8-31
Bus Phase (BCLK_EN)-Input ... 8-32
Real-Time Clock (RTC)-Input .. 8-35

Clocking in a Multiprocessor System .. 8-35

Chapter 9
System Interface Operation

MPC601 System Interface Overview ... 9-1
Operation of the On-Chip Cache .. 9-2
Operation of the Memory Unit for Loads and Stores 9-4
Operation of the System Interface .. 9-4
VO Controller Interface Accesses .. 9-5

Memory Access Protocol ... 9-6
Arbitration Signals ... 9-8
Address Pipelining and Split-Bus Transactions ... 9-9

Address Bus Tenure ... 9-9
Address Bus Arbitration ... 9-10
Address Transfer .. 9-12

Address Bus Parity ... 9-13
Address Transfer Attribute Signals .. 9-13

Contents xv

Paragraph
Number

9.3.2.2.1
9.3.2.2.2
9.3.2.3
9.3.2.4
9.3.3
9.3.3.1
9.4
9.4.1
9.4.1.1
9.4.2
9.4.3
9.4.3.1
9.4.3.2
9.4.4
9.5
9.6
9.6.1
9.6.1.1
9.6.1.2
9.6.2
9.6.2.1
9.6.2.2
9.6.3
9.6.4
9.7
9.7.1
9.7.2
9.7.3
9.7.4
9.8
9.8.1
9.9
9.9.1
9.9.2
9.10

CONTENTS

Title Page
Number

Transfer Type (TTO-TT4) Signals ... 9-13
Transfer Size (TSIZO-TSIZ2) Signals ... 9-14

Effect of Alignment in Data Transfers ... 9-15
Transfer Code (TCO-TC 1) Signals .. 9-17

Address Transfer Termination ... 9-18
Address Retry Sources ... 9-20

Data Bus Tenure ... 9-20
Data Bus Arbitration ... 9-21

Using the I5l3i3 Signal .. 9-22
Data Transfer .. 9-22
Data Transfer Termination ... 9-23

Normal Single-Beat Termination ... 9-23
Data Transfer Termination Due to a Bus Error .. 9-25

Memory Coherency-MESI Protocol .. 9-27
Timing Examples .. 9-29
I/O Controller Interface Operation ... 9-35

I/O Controller Interface Transactions ... 9-38
Store Operations ... 9-39
Load Operations ... 9-40

I/O Controller Interface Transaction Protocol Details 9-41
Packet 0 .. 9-41
Packet 1 .. 9-42

I/O Reply Operations .. 9-43
I/O Controller Interface Operation Timing .. 9-45

Interrupt, Checkstop, and Reset Signals ... 9-47
External Interrupt .. 9-47
Checkstops .. 9-47
Reset Inputs .. 9-48
Soft Stop Control Signals ... 9-48

Processor State Signals ... 9-48
Support for the Iwarxlstwcx. Instruction Pair .. 9-48

IEEE 1149 . I-Compatible Interface .. 9-49
Deviations from the IEEE 1149.1 Boundary-Scan Specifications 9-49
Additional Information about the IEEE 1149.1 Interface 9-50

Using U13W{) (Data Bus Write Only) .. 9-50

Chapter 10
Instruction Set

10.1 Instruction Formats ... 1 0-1
10.1.1 Split Field Notation .. 10-1
10.1.2 Instruction Fields .. 10-2

xvi PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

CONTENTS

Title
Page

Number

10.1.3 Notation and Conventions .. 10-3
10.2 MPC601 Instruction Set ... 10-5
10.3 Instructions Not Implemented by the MPC601.. .. 10-215

Appendix A
Instruction Set Listings

A.l Complete Instruction List Sorted by Mnemonic A-I
A.2 PowerPC Instruction List Sorted by Opcode .. A-I 0

B.l
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.I0
B.l1
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.23.1
B.23.2
B.23.3
B.24

MOTOROLA

Appendix 8
POWER Architecture Cross Reference

New Instructions, Formerly Privileged Instructions B-1
Newly Privileged Instructions ... B-l
Reserved Bits in Instructions .. B-1
Reserved Bits in Registers .. B-2
Alignment Check .. B-2
Condition Register .. B-2
Inappropriate Use of LK and Rc bits .. B-2
BO Field .. B-3
Branch Conditional to Count Register .. B-3
System Call/Supervisor Call ... B-4
Update Forms of Memory Access .. B-4
Multiple Register Loads .. B-4
Alignment for Load/Store Multiple .. B-5
Load String Instructions .. B-5
Synchronization .. B-5
Move to/froln SPR .. B-5
Effects of Exceptions on FPSCR Bits FR and PI B-6
Floating-Point Store Instructions .. B-6
Move from FPSCR ... B-6
Clearing Bytes in the Data Cache ... B-6
Segment Register Instructions .. B-6
TLB Entry Invalidation ... B-7
Timing Facilities ... B-7

Real-Time Clock ... B-7
Decrementer .. B-7
Deleted Instructions .. B-8

POWER Instructions Supported by the MPC601 Processor B-9

Contents xvii

Paragraph
Number

0.1
0.1.1
0.1.1.1
0.1.2
0.1.3

CONTENTS

Title

Appendix C
PowerPC Instructions Not Implemented in MPC601

Appendix D
Classes of Instructions

Page
Number

Classes of Instructions ... 0-1
Defined Instruction Class .. 0-1
Invalid Instruction Forms .. 0-2
Illegal Instruction Class ... 0-2
Reserved Instructions .. D-3

Appendix E
Multiple-Precision Shifts

E.l Multiple-Precision Shift Examples ... E-l

Appendix F
Floating-Point Models

F.l Conversion from Floating-Point Number to Signed Fixed-Point Integer
Word .. F-l

F.2 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer
Word .. F-l

F.3 Floating-Point Models ... F-2
F.3.l Floating-Point Round to Single-Precision Model F-2
F.3.2 Floating-Point Convert to Integer Model .. F-6
FA Floating-Point Convert from Integer Model ... F-9

Appendix G
Synchronization Programming Examples

G.l General Information .. G-l
G.2 Synchronization Primitives ... G-2
G.2.1 Fetch and No-Op ... G-2
G.2.2 Fetch and Store .. G-2
G.2.3 Fetch and Add .. G-3
G.2.4 Fetch and AND .. G-3
G.2.5 Test and Set ... G-3
G.3 Compare and Swap .. G-4
G.4 List Insertion ... G-4

xviii PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Figure
Number

ILLUSTRATIONS

Title Page
Number

Figure 1-1. MPC601 Block Diagram ... 1-4
Figure 1-2. Instruction Queue .. 1-6
Figure 1-3. MelTIory U nit. .. 1-9
Figure 1-4. Cache Unit Organization ... 1-22
Figure 1-5. SystelTI Interface .. 1-30
Figure 1-6. MPC601 Signal Groups ... 1-33
Figure 2-1. Programming Model-Registers .. 2-2
Figure 2-2. General Purpose Registers (GPRs) ... 2-6
Figure 2-3. Floating-Point Registers (FPRs) ... 2-7
Figure 2-4. Floating-Point Status and Control Register (FPSCR) 2-X
Figure 2-5. Condition Register (CR) ... 2-11
Figure 2-6. MQ Register (MQ) .. 2-14
Figure 2-7. Integer Exception Register (XER) .. 2-15
Figure 2-8. Real-Time Clock (RTC) Registers .. 2-17
Figure 2-9. Link Register (LR) .. 2-19
Figure 2-10. Count Register (CTR) ... 2-19
Figure 2-11. Machine State Register (MSR) ... 2-20
Figure 2-12. Segment Register Format (T = 0) ... 2-22
Figure 2-13. Segment Register Format (T=I) ... 2-23
Figure 2-14. DAE/Source Instruction Service Register (DSISR) 2-27
Figure 2-15. Data Address Register (DAR) .. 2-2X
Figure 2-16. Decrementer Register (DEC) .. 2-2X
Figure 2-17. Table Search Descriptor Register 1 (SDR 1) ... 2-29
Figure 2-1R. Save/Restore Register 0 (SRRO) ... 2-30
Figure 2-19. Machine Status Save/Restore Register 1 (SRRl) 2-30
Figure 2-20. General SPRs (SPRGO-SPRG3) ... 2-31
Figure 2-21. External Access Register (EAR) ... 2-32
Figure 2-22. Processor Version Register (PVR) .. 2-33
Figure 2-23. Upper BAT Register ... 2-34
Figure 2-24. Lower BAT Register ... 2-34
Figure 2-25. Checkstop Sources and Enables Register (HIDO) 2-36
Figure 2-26. MPC601 Debug Modes Register .. 2-3X
Figure 2-27. Instruction Address Breakpoint Register (IABR)-HID2 2-39

MOTOROLA illUstrations xix

Figure
Number

ILLUSTRATIONS

Title Page
Number

Figure 2-28. Data Address Breakpoint Register (DABR .. 2-40
Figure 2-29. Processor Identification Register (PIR) .. 2-41
Figure 2-30. Performance Effects of Memory Operand Placement 2-42
Figure 2-31. Big-Endian Byte and Bit Ordering ... 2-45
Figure 2-32. Big-Endian Mapping of Structure S .. 2-46
Figure 2-33. Little-Endian Mapping of Structure S ... 2-47
Figure 2-34. PowerPC Little-Endian Structure S in Memory or Cache 2-50
Figure 2-35. PowerPC Little-Endian Structure S as Seen by Processor 2-50
Figure 2-36. PowerPC Little-Endian Mode, Word Stored at Address 5 2-51
Figure 2-37. Word Stored at Little-Endian Address 5 as Seen by

Big-Endian Addressing .. 2-51
Figure 2-38. PowerPC Big-Endian, Instruction Sequence as Seen by Processor. 2-53
Figure 2-39. PowerPC Little-Endian, Instruction Sequence as Seen by Processor 2-54
Figure 2-40. Floating-Point Single-Precision Format ... 2-59
Figure 2-41. Floating-Point Double-Precision Format .. 2-59
Figure 2-42. Biased Exponent Format.. ... 2-61
Figure 2-43. Approximation to Real Numbers .. 2-61
Figure 2-44. Format for Normalized Numbers .. 2-62
Figure 2-45. Format for Zero Numbers ... 2-63
Figure 2-46. Format for Denormalized Numbers .. 2-63
Figure 2-47. Format for Positive and Negative Infinities .. 2-63
Figure 2-48. Format for NAN s .. 2-64
Figure 2-49. Representation of QNaN ... 2-65
Figure 2-50. Single-Precision Representation in an FPR .. 2-67
Figure 2-51. Rounding Flow Diagram ... 2-68
Figure 2-52. Relation of Z1 and Z2 ... 2-69
Figure 2-53. Selection of Z1 and Z2 .. 2-70
Figure 3-1. Register Indirect with Immediate Index Addressing 3-43
Figure 3-2. Register Indirect with Index Addressing .. 3-43
Figure 3-3. Register Indirect Addressing ... 3-44
Figure 3-4. Register Indirect with Immediate Index Addressing 3-56
Figure 3-5. Register Indirect with Index Addressing .. 3-57
Figure 3-6. Branch Relative Addressing ... 3-64
Figure 3-7. Branch Conditional Relative Addressing .. 3-65
Figure 3-8. Branch to Absolute Addressing .. 3-65
Figure 3-9. Branch Conditional to Absolute Addressing .. 3-66
Figure 3-10. Branch Conditional to Link Register Addressing 3-67
Figure 3-11. Branch Conditional to Count Register Addressing 3-67
Figure 4-1. Cache Organization ... 4-3
Figure 4-2. Quad-Word Address Ordering .. 4-6

xx PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Figure
Number

ILLUSTRATIONS

Title Page
Number

Figure 4-3. MESI States .. 4-9
Figure 4-4. MESI Cache Coherency Protocol-State Diagram (WIM = OOl) 4-10
Figure 4-5. MetTIory Unit ... 4-23
Figure 5-1. Recognition of Precise Exception Conditions .. 5-10
Figure 5-2. Machine Status Save/Restore Register 0 .. 5-10
Figure 5-3. Machine Status Save/Restore Register 1 .. 5-11
Figure 5-4. Machine State Register ... 5-11
Figure 5-5. Floating-Point Status and Control Register .. 5-33
Figure 6-1. MMU Block Diagram ... 6-4
Figure 6-2. Address Translation Types ... 6-6
Figure 6-3. MMU Block and Page Address Translation Flow .. 6-9
Figure 6-4. Address Translation Type Selection ... 6-22
Figure 6-5. BTLB Organization .. 6-25
Figure 6-6. Format of Upper BAT Registers ... 6-27
Figure 6-7. Format of Lower BAT Registers .. 6-27
Figure 6-8. Block Physical Address Generation .. 6-30
Figure 6-9. Block Address Translation Flow .. 6-31
Figure 6-10. Memory Protection Violation Flow .. 6-32
Figure 6-11. Segment Register and UTLB Organization .. 6-33
Figure 6-12. Page Address Translation Overview .. 6-36
Figure 6-13. Segment Register Format for Page Address Translation 6-36
Figure 6-14. Page Table Entry Format .. 6-38
Figure 6-15. Page Address Translation Flow-UTLB Hit.. ... 6-42
Figure 6-16. Page Table Definitions .. 6-43
Figure 6-17. SDR 1 Register Format ... 6-44
Figure 6-18. Hashing Functions ... 6-47
Figure 6-19. Generation of Addresses for Page Tables .. 6-48
Figure 6-20. Example Page Table Structure .. 6-50
Figure 6-21. Example Primary PTEG Address Generation ... 6-52
Figure 6-22. Example Secondary PTEG Address Generation 6-53
Figure 6-23. Primary Table Search Flow ... 6-55
Figure 6-24. Secondary Table Search Flow ... 6-56
Figure 6-25. Segment Register Format for I/O Controller Interface 6-60
Figure 6-26. I/O Controller Interface Translation Flow ... 6-63
Figure 7-1. PipelinedExecution Unit .. 7-2
Figure 7-2. Instruction Stages ... ~ 7-5
Figure 7-3. Instruction Timing-Cache Hit .. 7-8
Figure 7-4. Instruction Timing-Cache Miss .. 7-9
Figure 7-5. Instruction Timing-Out-of-Order Execution .. 7-13
Figure 7-6. Instruction Timing-Branch Not Taken ... 7-17

MOTOROLA Illustrations xxi

Figure
Number

ILLUSTRATIONS

Title
Page

Number

Figure 7-7. Instruction Timing-Branch Taken .. 7-18
Figure 7-8. Integer Unit Instruction Flow .. 7-19
Figure 7-9. Instruction Timing-Integer Instructions ... 7-20
Figure 7-10. Instruction Timing-Data Instructions ... 7-22
Figure 7-11. Floating-Point Unit Instruction Flow .. 7-23
Figure 7-12. Instruction Timing-Floating-Point Instructions 7-24
Figure 8-1. MPC601 Signal Groups .. 8-3
Figure 8-2. IEEE 1149.1-Compatible Boundary Scan Interface 8-29
Figure 8-3. Internal P _CLOCK Generation .. 8-32
Figure 8-4. Generation of Internal Clock (lNTCLK) .. 8-33
Figure 8-5. Generation of Bus Transitions-Logical Bus Clock = P _CLK 8-33'
Figure 8-6. Generation of Bus Transitions-Logical Bus Clock = 1/2 P _CLK 8-34
Figure 8-7. Generation of Bus Transitions-Cycle Stretching 8-34
Figure 9-1. MPC601 Processor Block Diagram .. 9-3
Figure 9-2. Timing Diagram Legend ... 9-6
Figure 9-3. Overlapping Tenures on the MPC601 Bus for a Single-Beat Transfer 9-7
Figure 9-4. Address Bus Arbitration .. 9-10
Figure 9-5. Address Bus Arbitration Showing Bus Parking ... 9-11
Figure 9-6. Address Bus Transfer. .. 9-12
Figure 9-7. Address-Only Bus Transaction .. 9-14
Figure 9-8. Snooped Address Cycle with ARTRY ... 9-19
Figure 9-9. Data Bus Arbitration .. 9-21
Figure 9-1. Normal Single-Beat Read Termination ... 9-23
Figure 9-11. Normal Single-Beat Write Termination ... 9-24
Figure 9-12. Normal Burst Transaction .. 9-24
Figure 9-13. Termination with DRTRY ... 9-25
Figure 9-14. Read Burst with TA Wait States and DRTRY ... 9-26
Figure 9-15. MESI Cache Coherency Protocol-State Diagram (WIM = 0(1) 9-28
Figure 9-16. Fastest Single-Beat Reads .. 9-29
Figure 9-17. Fastest Single-Beat Writes .. 9-30
Figure 9-18. Single-Beat Reads Showing Data-Delay Controls 9-31
Figure 9-19. Single-Beat Writes Showing Data Delay Controls 9-32
Figure 9-20. Back-to-Back Single-Beat Transfers ... 9-33
Figure 9-21. Burst Transfers with Data Delay Controls ... 9-34
Figure 9-22. Use of Transfer Error Acknowledge (TEA) ... 9-35
Figure 9-23. I/O Controller Interface Tenures .. 9-38
Figure 9-24. I/O Controller Interface Operation-Packet 0 ... 9-42
Figure 9-25. I/O Controller Interface Operation-Packet 1 ... 9-43
Figure 9-26. I/O Reply Operation ... 9-44
Figure 9-27. I/O Controller Interface Load Access Example :. 9-46

xxii PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Figure
Number

ILLUSTRATIONS

Title Page
Number

Figure 9-28. I/O Controller Interface Store Access Example 9-47
Figure 9-29. Data Bus Write-Only Transaction ... 9-51
Figure 10-1. Instruction Description .. 10-6

MOTOROLA illustrations xxiii

xxiv PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table
Number

TABLES

Title Page
Number

Table 1-1. MPC601 Exception Classifications , ... 1-24
Table 1-2. Exceptions and Conditions ... 1-25
Table 2-1. FPSCR Bit Settings .. '" 2-8
Table 2-2. Floating-Point Result Flags in FPSCR ... 2-10
Table 2-3. Bit Settings for CRO Field of CR ... 2-12
Table 2-4. Bit Settings for CR 1 Field of CR ... 2-12
Table 2-5. CRn Field Bit Settings for Compare Instructions ... 2-13
Table 2-6. Undefined Bits in User-Level SPRs ... 2-13
Table 2-7. MPC601-Specific Instructions that Modify the MQ Register 2-14
Table 2-8. PowerPC Instructions that Use the MQ Register ... 2-15
Table 2-9. Integer Exception Register Bit Definitions .. 2-16
Table 2-10. Machine State Register Bit Settings ... 2-20
Table 2-11. Floating-Point Exception Mode Bits .. 2-21
Table 2-12. State of MSR at Power Up ... 2-22
Table 2-13. Segment Register Bit Settings (T = 0) .. 2-22
Table 2-14. Segment Register Bit Settings (T = 1) .. 2-23
Table 2-15. Undefined Bits in Supervisor-Level SPRs ... 2-24
Table 2-16. Table Search Descriptor Register 1 (SDR1) Bit Settings 2-29
Table 2-17. Uses of SPRGO-SPRG3 ... 2-31
Table 2-18. External Access Register (EAR) Bit Settings .. 2-32
Table 2-19. BAT Registers .. 2-34
Table 2-20. BAT Area Lengths ... 2-35
Table 2-21. Additional SPR Encodings ... 2-36
Table 2-22. Checkstop Sources and Enables Register (HIDO) Definition 2-37
Table 2-23. HIDI Register Definition ... 2-38
Table 2-24. HID2 Register Definition ... 2-39
Table 2-25. HID5 Register Definition ... 2-40
Table 2-26. DABR Results .. 2-41
Table 2-27. Memory Operands .. 2-44
Table 2-28. Load/Store Instructions for Data Aligned on Natural Boundaries 2-47
Table 2-29. EA Modifications ... 2-49
Table 2-30. Load/Store String Instructions that Take Alignment Exceptions if LM = 1 2-52
Table 2-31. Load/Store Multiple Instructions that Take Alignment Exceptions if LM=1 2-52
Table 2-32. Interpretation of G, R, and X Bits .. 2-56
Table 2-33. Location of the Guard, Round and Sticky Bits ... 2-57
Table 2-34. IEEE Floating-Point Fields ... 2-60

MOTOROLA Tables xxv

Table
Number

TABLES

Title Page
Number

Table 2-35. Recognized Floating-Point Numbers ... 2-61
Table 2-36. FPSCR Bit Settings-RN Field .. 2-69
Table 2-37. Settings after Hard Reset (Used at Power-On) ... 2-71
Table 3-1. Integer Arithmetic Instructions .. 3-5
Table 3-2. MPC60 I-Specific Integer Arithmetic Instruction Summary 3-14
Table 3-3. Integer Compare Instructions .. 3-15
Table 3-4. Word Compare Simplified Mnemonics ... 3-15
Table 3-5. Integer Logical Instructions ... 3-16
Table 3-6. Rotate and Shift Operations ... 3-18
Table 3-7. MPC60 I-S pecific Rotate and Shift Instructions ... 3-19
Table 3-8. Integer Rotate Instructions .. 3-21
Table 3-9. Integer Shift Instructions ... 3-24
Table 3-10. Floating-Point Arithmetic Instructions ... 3-31
Table 3-11. Floating-Point Multiply-Add Instructions ... 3-34
Table 3-12. Floating-Point Rounding and Conversion Instructions ... 3-38
Table 3-13. CR Bit Settings .. 3-39
Table 3-14. Floating-Point Compare Instructions ... 3-40
Table 3-15. Floating-Point Status and Control Register Instructions 3-41
Table 3-16 Integer Load Instructions .. 3-45
Table 3-17. Integer Store Instructions ... 3-47
Table 3-18. Integer Load and Store with Byte Reversal Instructions .. 3-49
Table 3-19. Integer Load and Store Multiple Instructions ... 3-50
Table 3-20. Integer Move String Instructions .. 3-51
Table 3-21. Memory Synchronization Instructions ... 3-54
Table 3-22. Floating-Point Load Instructions .. 3-58
Table 3-23 Floating-Point Store Instructions .. 3-60
Table 3-24. Floating-Point Move Instructions ... 3-63
Table 3-25. BO Operand Encodings .. 3-68
Table 3-26. Simplified Branch Mnemonics ... 3-70
Table 3-27. Condition Register CR Field Bit Symbols ... 3-71
Table 3-28. Condition Register CR Field Identification Symbols ... 3-71
Table 3-29. Two-Letter Codes for Branch Comparison Conditions .. 3-72
Table 3-30. Simplified Branch Mnemonics Incorporating Comparison Conditions 3-72
Table 3-31. Branch Instructions ... 3-74
Table 3-32. Condition Register Logical Instructions ... 3-75
Table 3-33. System Linkage Instructions .. 3-76
Table 3-34. Trap Instructions ... 3-78
Table 3-35. TO Operand Bit Encoding .. 3-79
Table 3-36. Trap Mnemonics Coding ... 3-79
Table 3-37. Trap Mnemonics ... 3-80
Table 3-38. Move to/from Special Purpose Register Instructions ... 3-81
Table 3-39. User-Level SPR Encodings .. 3-82
Table 3-40. Supervisor-Level SPR Encodings .. 3-83

xxvi PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table
Number

TABLES

Title
Page

Number

Table 3-41. SPR Simplified Mnemonics ... 3-X4
Table 3-42. Cache Management Supervisor-Level Instruction ... 3-X6
Table 3-43. User-Level Cache Instructions ... 3-X7
Table 3-44. Segment Register Manipulation Instructions ... 3-90
Table 3-45. Translation Lookaside Buffer Management Instruction ... 3-91
Table 3-46. External Control Instructions ... 3-92
Table 4-1. MES I State Definitions ... 4-X
Table 4-2. CSEO-CSE2 Signals ... 4-11
Table 4-3. Memory Coherency Actions on Load Operations .. 4-13
Table 4-4. Memory Coherency Actions on Store Operations .. 4-14
Table 4-5. Response to Bus Transactions .. 4-15
Table 4-6.Bus Operations Caused by Cache Control Instructions (WIM = 001) 4-22
Table 4-7. MESI State Transitions ... 4-25
Table 5-1. MPC601 Exception Classifications .. 5-2
Table 5-2. Exceptions and Conditions ... 5-3
Table 5-3. Exception Priorities .. 5-X
Table 5-4. Machine State Register Bit Settings ... 5-11
Table 5-5. Floating-Point Exception Mode Bits .. 5-12
Table 5-6. MSR Setting Due to Exception .. 5-15
Table 5-7. Exception Vector Offset Table ... 5-16
Table 5-X. Soft Reset Exception-Register Settings ... 5-17
Table 5-9. Settings Caused by Hard Reset.. ... 5-1 X
Table 5-10. Machine Check Exception-Register Settings .. 5-20
Table 5-11. Data Access Exception-Register Settings .. 5-23
Table 5-12. Instruction Access Exception-Register Settings .. 5-24
Table 5-13. External Interrupt-Register Settings .. 5-25
Table 5-14. Alignment Exception-Register Settings ... 5-26
Table 5-15. Access Types .. 5-27
Table 5-16. DSISR(l5-21) Settings to Determine Misaligned Instruction 5-30
Table 5-17. Program Exception-Register Settings .. 5-33
Table 5-1X. FPSCR Bit Settings .. 5-34
Table 5-19. MSR[FEO] and MSR[FEI] Bit Settings ... 5-3X
Table 5-20. Floating-Point Unavailable Exception-Register Settings 5-45
Table 5-21. Decrementer Exception-Register Settings ... 5-46
Table 5-22. I/O Controller Interface Error Exception-Register Settings 5-47
Table 5-23. System Call Exception-Register Settings .. 5-4X
Table 5-24. Run Mode Exception-Register Settings ... 5-48
Table 6-1. Access Protection Options .. 6-7
Table 6-2. Defined WIM Combinations .. 6-10
Table 6-3. MMU Exception Conditions/Exception Mapping .. 6-13
Table 6-4. Instruction Summary-Control MMU ... 6-14
Table 6-5. iviMU Registers .. 6-14
Table 6-6. Combinations of W, I, and M Bits ... 6-1 X

MOTOROLA Tables xxvii

Table
Number

TABLES

Title
Page

Number

Table 6-7. Access Protection Control with Key .. 6-20
Table 6-8. Exception Conditions for Key and PP Combinations .. 6-20
Table 6-9. Access Protection Encoding ofPP Bits .. 6-21
Table 6-10. Address Translation Precedence for Blocks and Segments 6-26
Table 6-11. BAT Registers-Field and Bit Descriptions .. 6-27
Table 6-12. Lower BAT Register Block Size Mask Encodings .. 6-28
Table 6-13. Segment Register Types ... 6-34
Table 6-14. Segment Register Bit Defmition for Page Address Translation 6-37
Table 6-15. Segment Register Instructions .. 6-37
Table 6-16. PTE Bit Defmitions .. 6-38
Table 6-17. Table Search Operations to Update History Bits-UTLB Hit Case 6-39
Table 6-18. SDRI Register Bit Settings .. 6-44
Table 6-19. Recommended Page Table Sizes (Minimum) .. 6-45
Table 6-20. Segment Register Bit Defmitions for I/O Controller Interface 6-60
Table 7-1. MPC601 Instruction Latencies ... 7-27
Table 8-1. TTO-TT4 Signal Description .. 8-11
Table 8-2. Transfer Type Encodings .. 8-11
Table 8-3. Data Transfer Size ... 8-13
Table 8-4. Encodings for TCO-TC3 ... 8-14
Table 8-5. SHU and ARTRY Signals ... 8-17
Table 8-6. SHU and ARTRY Signals ... 8-18
Table 8-7. Data Bus Lane Assignments .. 8-21
Table 8-8. DPO-DP7 Signal Assignments .. 8-22
Table 8-9. ESP/Scan Interface ... 8-30
Table 8-10. Test Interface .. 8-30
Table 9-1. Transfer Size Signal Encodings ... 9-15
Table 9-2. Aligned Data Transfers .. 9-15
Table 9-3. Misaligned Data Transfer (Three-Byte Examples) ... 9-17
Table 9-4. Transfer Code Signal Encodings ... 9-18
Table 9-5. Address Retry Causes .. 9-20
Table 9-6. CSE(0-2) Signals .. 9-28
Table 9-7. I/O Controller Interface Bus Operations ... 9-38
Table 9-8. I/O Controller Interface Bus Operations (XATC Encodings) 9-39
Table 9-9. Address Bits for I/O Reply Operations ... 9-44
Table 10-1. Instruction Formats ... 10-2
Table 10-2. Pseudocode Notation and Conventions .. 10-3
Table 10-3. Precedence Rules .. 10-5
Table 10-4. SPR Encodings for mfspr .. 10-120
Table 10-5. SPR Encodings for mtspr .. 10-131
Table 10-6. 32-Bit Instructions Not Implemented by the MPC601.. 10-215
Table 10-7. 32-Bit SPR Encodings Not Implemented by the MPC601 10-215
Table 10-8. 64-Bit Instructions Not Implemented by the MPC601.. 10-216
Table 10-9. 64-Bit SPR Encoding Not Implemented by the MPC601 10-217

xxviii Powerpe 601 RiSe Microprocessor User's Manual MOTOROLA

Table
Number

TABLES

Title Page
Number

Table A-I. Complete Instruction List Sorted by Mnemonic .. A-I
Table A-2 PowerPC Instructions Implemented by MPC60 I: by Opcode A-lO
Table B-3. Deleted POWER Instructions ... B-8

MOTOROLA Tables xxix

xxx PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

About This Book
The primary objective of this user's manual is to define the functionality of the MPC601
microprocessor for use by software and hardware developers. The MPC601 processor is the
first in the family of PowerPCTM microprocessors, and can provide a reliable foundation for
developing products compatible with subsequent processors in the PowerPC family.
However, the MPC601 provides a bridge between the POWER architecture and the
PowerPC architecture, and as a result there are aspects of the MPC601 processor that are
different from the PowerPC architecture. Therefore, a secondary objective of this manual
is to describe how the MPC601 processor differs from the PowerPC architecture.

The PowerPC architecture is comprised of the following components:

PowerPC user instruction set architecture-This includes the base user-level
instruction set (excluding a few user-level cache-control instructions), user-level
registers, programming model, data types, and addressing modes.

PowerPC virtual environment architecture-This describes the semantics of the
memory model that can be assumed by software processes and includes descriptions
of the cache model, cache-control instructions, address aliasing, and other related
issues. Implementations that conform to the PowerPC virtual environment
architecture also adhere to the PowerPC user instruction set architecture, but may
not necessarily adhere to the PowerPC operating environment architecture.

PowerPC operating environment architecture-This includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the PowerPC operating environment architecture
also adhere to the PowerPC user instruction set architecture and the PowerPC virtual
environment architecture.

It is beyond the scope of the manual to provide a thorough description of the PowerPC
architecture. It must be kept in mind that each PowerPC processor is a unique
implementation of the PowerPC architecture.

For readers of this manual who are concerned about compatibility issues regarding
subsequent PowerPC processors, it is critical to read Chapter 1, "Overview," and in
particular Section 1.3, "MPC601 as a PowerPC Implementation," which outlines in a very
general manner the components of the PowerPC architecture, and indicates where and how
the MPC601 diverges from the PowerPC definition. Instances where the MPC601 differs
from the PowerPC architecture are noted throughout the manual.

MOTOROLA About This Book xxxi

Audience
This manual is intended for system software and hardware developers and applications
programmers who want to develop products for the MPC601 microprocessor and PowerPC
processors in general. It is assumed that the reader understands operating systems,
microprocessor system design, and the basic principles of RISC processing.

Organization
Following is a summary and a brief description of the major sections of this manual:

xxxii

Chapter 1, "Overview," is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the MPC601 processor.
This chapter also provides a general description of how the MPC601 differs from
the PowerPC architecture.

Chapter 2, "Registers and Data Types," is useful for software engineers who need to
understand the PowerPC programming model and the functionality of the registers
implemented in the MPC601. This chapter also describes PowerPC conventions for
storing data in memory.

Chapter 3, "Addressing Modes and Instruction Set Summary," provides an
overview of the PowerPC addressing modes and a description of the instructions
implemented by the MPC601, including the portion of the PowerPC instruction set
and the additional instructions implemented by the MPC601.

Specific differences between the MPC601 implementation and the PowerPC
implementation of individual instructions are noted.

Chapter 4, "Cache and Memory Unit Operation," provides a discussion of cache
timing, look-up process, MESI protocol, and interaction with other units. This
chapter contains information that pertains both to the PowerPC virtual environment
architecture and to the specific implementation in the MPC601.

Chapter 5, "Exceptions," describes the exception model defined in the PowerPC
operating environment architecture and the specific exception model implemented
in the MPC601.

Chapter 6, "Memory Management Unit," provides descriptions of operation of the
MMU, interaction with other units, and address translation. Although this chapter
does not provide an in-depth description of both the 64-bit and 32-bit memory
management model defined by the PowerPC operating environment architecture, it
does note differences between the defined 32-bit PowerPC definition and the
MPC601 memory management implementation.

Chapter 7, "Instruction Timing," provides information about latencies, interblocks,
special situations, and various conditions to help make programming more efficient.
This chapter is of special interest to software engineers and system designers.
Because each PowerPC implementation is unique with respect to instruction timing,
this chapter primarily contains information specific to the MPC601.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 8, "Signal Descriptions," provides descriptions of individual signals of the
MPC601.

Chapter 9, "System Interface Operation," describes signal timings for various .
operations. It also provides information for interfacing to the MPC601.

Chapter 10, "Instruction Set," functions as a handbook of the PowerPC instruction
set. It provides opcodes, sorted by mnemonic, as well as a more detailed description
of each instruction. Instruction descriptions indicate whether an instruction is part of
the PowerPC base architecture or if it is specific to the MPC601. Each description
indicates any differences in how the MPC601 implementation differs from the
PowerPC implementation. The descriptions also indicate the privilege level of each
instruction and which execution unit or units executes the instruction.

Appendix A, "Instruction Set Listings," lists the superset of PowerPC and MPC601
instructions.

Appendix B, "POWER Architecture Cross Reference," describes the relationship
between the MPC601 and the POWER architecture.

Appendix C, "PowerPC Instructions Not Implemented in MPC601 ," describes the,.
set of PowerPC instructions not implemented in the MPC601 processor.

Appendix D, "Classes of Instructions," describes how instructions are classified
from the perspective of the PowerPC architecture.

Appendix E, "Multiple-Precision Shifts," describes how multiple-precision shifts
can be programmed.

Appendix F, "Floating-Point Models," gives examples of how the floating-point
conversion instructions can be used to perform various conversions.

Appendix G, "Synchronization Programming Examples," gives examples showing
how synchronization instructions can be used to emulate various synchronization
primitives and how to provide more complex forms of synchronization.

• This manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background to the information in this
manual.

• John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA

Conventions
This document uses the following notational conventions:

MOTOROLA

Names for signals that are active high are shown in uppercase text
without an overbar.

A bar over a signal name indicates that the signal is active low-for

About This Book xxxiii

sync

mnemonics

italics

x'OP'

b'OOll '

rAIO

REO[FIELD]

x

example, ARTRY (address retry) and TS' (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active-low, such as
APO-AP3 (address bus parity signals) and TTO-TT4 (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

Courier monospaced type indicates code examples.

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, bcctrx

Hexadecimal numbers

Binary numbers

The contents of a specified OPR or the value O.

Abbreviations or acronyms for registers are shown in uppercase
text. Specific bit fields or ranges are shown in brackets.

In certain contexts, such as a signal encoding, this indicates a don't
care. For example, if TIO-TT3 are binary encoded b'xOOl', the
state of TIO is a don't care.

Acronyms and Abbreviations
The Table i contains acronyms and abbreviations that are used in this document:

Table i. Acronyms and Abbreviated Terms

Term Meaning Term Meaning

ALU Arithmetic logic unit DABR Data address breakpoint register

ASR Address space register DAE Data access exception

BAT Block address translation DAR Data address register

BIST Built-in self test DBAT Data BAT

BPU Branch processing unit DEC Decrementer register

BTLB Block translation look-aside buffer DSISR DAE/source instruction service
register

BUC Bus unit controller EA Effective address

CAR Cache address register EAR External access register

CMOS Complementary metal-oxide ECC Error checking and correction
semiconductor

COP Common on-chip processor FPECR Floating-point exception cause
register

CR Condition register FPR Floating-point register

CTR Count register FPSCR Floating-point status and control I
register ~

xxxiv PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning Term Meaning

FPU Floating-point unit POWER Performance Optimized with
Enhanced RISC

GPR General-purpose register PR Privilege level bit

IABR Instruction address breakpoint PTE Page table entry
register

IBAT Instruction BAT PTEG Page table entry group

IEEE Institute for Electrical and PVR Processor version register
Electronics Engineers

10 Instruction queue RISC Reduced instruction set computer

ITLB Instruction translation look-aside RTC Real-time clock
buffer

IU Integer unit RTCL Real-time clock lower register

L2 Secondary cache RTCU Real-time clock upper register

LR Link register RTL Register transfer level

LRU Least recently used RWITM Read with intent to modify

LSB Least-significant byte SDR1 Table search descriptor register 1

Isb Least-significant bit SLB Segment look-aside buffer

MDR Memory descriptor register SPR Special-purpose register

MESI Modifiedlexclusive/sharedlinvalid- SPRGn General SPR
cache coherency protocol

MMU Memory management unit SR Segment register

MO MO register SRRa Machine status save/restore
register a

MSB Most-significant byte SRR1 Machine status save/restore
register 1

msb Most-significant bit TB Time base register

MSR Machine state register TLB Translation lookaside buffer.

NaN Not a number TTL Transistor-to-transistor logic

no-op No operation UTLB Unified translation look-aside buffer

PID Processor identification tag WIM Write-through/cache-
inhibitedlmemory-coherency
enforced bits

PIR Processor identification register XER Integer exception register

MOTOROLA About This Book xxxv

Differences between IBM and Motorola Terminology
Table ii describes terminology conventions used in this manual, noting in particular the
differences between IBM and Motorola usages.

Table ii. Differences between IBM and Motorola Terminology

IBM Motorola

Interrupt Exception

Programmable I/O (PIO) vo controller interface
operation

Relocation Translation

Storage Memory

Store in Write back

Store through Write through

xxxvi PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 1
Overview
This chapter provides an overview of the MPC601 features, including a block diagram
showing the major functional components. It also provides an overview of the PowerPC
architecture and hardware design conventions adapted for current and forthcoming
PowerPC processors, and information about how the MPC601 implementation differs or
augments these architectural and hardware definitions.

1.1 MPC601 Overview
This section describes the features of the MPC601, provides a block diagram showing the
major functional units, and gives an overview of how the MPC601 operates.

The MPC601 is the first implementation of the PowerPCTM family of reduced instruction
set computer (RISC) microprocessors. The MPC601 is a 32-bit implementation of the
64-bit PowerPC architecture. It is a superscalar processor capable of issuing and retiring
three instructions per clock, one to each of three execution units. Instructions can complete
out of order for increased performance; however, the MPC601 makes execution appear
sequential.

The MPC601 integrates three execution units-an integer unit (IU), a branch processing
unit (BPU), and a floating-point unit (FPU). The ability to execute three instructions in
parallel and the use of simple instructions with rapid execution times yield high efficiency
and throughput for MPC601-based systems. Most integer instructions execute in one clock
cycle. The FPU is pipelined so a single-precision multiply-add instruction can be issued
every clock cycle.

The MPC601 includes an on-chip, 32-Kbyte, eight-way set-associative, physically
addressed, unified instruction and data cache and an on-chip memory management unit
(MMU). The MMU contains a 256-entry, two-way set-associative, unified translation look­
aside buffer (UTLB) and provides support for demand paged virtual memory address
translation and variable-sized block translation. Both the UTLB and the cache use least
recently used (LRU) replacement algorithms.

The MPC601 has a high-bandwidth, 64-bit data bus and a 32-bit address bus. The MPC601
interface protocol allows multiple masters to compete for system resources through a
central external arbiter. Additionally, on-chip snooping logic maintains cache coherency in

MOTOROLA Chapter 1. Overview 1-1

-

•
multiprocessor applications. The MPC601 supports single-beat and burst data transfers for
memory accesses; it also supports both memory-mapped I/O and I/O controller interface
addressing.

The MPC601 uses an advanced, 3.6-V CMOS process technology and maintains full
interface compatibility with TTL devices.

1.1.1 MPC601 Features
This section describes features specific to the MPC601. Note that general characteristics of
the PowerPC architecture and hardware conventions among the family of PowerPC
processors are listed in Section 1.3.1, "Features." Major features of the MPC601 are as
follows:

1-2

• High-performance, superscalar microprocessor

- As many as three instructions in execution per clock (one to each of the three
execution units)

- Single clock cycle execution for most instructions

- Pipelined FPU for all single-precision and most double-precision operations

• Three independent execution units and two register files

- BPU featuring static branch prediction

- A 32-bit IU

- Fully IEEE 754-compliant FPU for both single- and double-precision operations

- Thirty-two GPRs for integer operands

- Thirty-two FPRs for single- or double-precision operands

• High instruction and data throughput

- Condition register (CR) look-ahead operations performed by BPU

- Zero-cycle branch capability

- Programmable static branch prediction on unresolved conditional branches

- Instruction unit capable of prefetching eight instructions per clock from the
cache

- A prefetch queue that can hold as many as eight instructions that provides look­
ahead capability

- Interlocked pipelines with feed-forwarding that control data dependencies in
hardware

- Unified 32-Kbyte cache-eight-way set-associative, physically addressed; LRU
replacement algorithm

- Cache write-back or write-through operation programmable on a per page or per
block basis

- Memory unit with a two-element read queue and a three-element write queue

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

- Run-time reordering of loads and stores

- BPU that performs condition register (CR) look-ahead operations

- Programmable static branch prediction on unresolved conditional branches

- Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

- A 256-entry, two-way set-associative UTLB

- Four-entry, first-level ITLB

- Hardware table search (caused by UTLB misses) through hashed page tables

- 52-bit virtual address; 32-bit physical address

- Four-entry BTLB providing 128-Kbyte to 8-Mbyte blocks

• Facilities for enhanced system performance

- Bus speed defined as selectable division of operating frequency

- A 64-bit split-transaction external data bus with burst transfers

- Support for address pipelining and limited out-of-order bus transactions

- Snooped copy back queues for cache block (sector) copy back operations

- Bus extensions for I/O controller interface operations

- Multiprocessing support features that include the following:

- Hardware enforced, four-state cache coherency protocol (MESI)

- Separate port into cache tags for bus snooping

1.1.2 Block Diagram
Figure 1-1 provides a block diagram of the MPC601 that illustrates how the execution
units-IU, FPU, and BPU-operate independently and in parallel.

The MPC601's 32-Kbyte, unified cache tag directory has a port dedicated to snooping bus
transactions, preventing interference with processor access to the cache. The MPC601 also
provides address translation and protection facilities, including a UTLB and a BTLB, and
a four-entry ITLB that contains the four most recently used instruction address translations
for fast access by the instruction unit.

Instruction prefetching and issuing is handled in the instruction unit. Translation of
addresses for cache or external memory accesses are handled by the memory management
unit. Both units are discussed in more detail in Sections 1.1.3, "Instruction Unit," and 1.1.5,
"Memory Management Unit (MMU)."

MOTOROLA Chapter 1. Overview 1-3

•

•

64-BIT DATA BUS

32-BIT ADDRESS BUS

Figure 1-1. MPC601 Block Diagram

1-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

1.1.3 Instruction Unit
As shown in Figure 1-1, the MPC601 instruction unit, which contains an instruction queue
and the BPU, provides centralized control of instruction flow to the execution units. The
instruction unit determines the address of the next instruction to be fetched based on
information from a sequential fetcher and the BPU. The instruction unit also enforces
pipeline interlocks and controls feed-forwarding.

The sequential fetcher is a dedicated adder that computes the address of the next sequential
instruction ba~ed on the address of the last fetch and the number of words accepted into the
queue. The BPU searches the bottom half of the instruction queue for a branch instruction
and uses static branch prediction on unresolved conditional branches to allow the
instruction fetch unit to prefetch instructions from a predicted target instruction stream
while a conditional branch is evaluated. The BPU also folds out branch instructions for
unconditional branches.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequential execution. If any of these
instructions are to be executed in the BPU, they are decoded but not issued to the BPU. If
any of these are FPU and IU instructions, they are issued and allowed to complete up to the
register write-back stage, but no write back is performed.

When a correctly predicted branch is resolved, instruction execution continues without
interruption along the predicted path. If branch prediction is incorrect, the instruction
fetcher fl ushes all instructions from the instruction queue. Instruction issue then resumes
with the instruction from the correct path. Instructions are never issued to the IU or FPU
unless they must be executed by the program.

1.1.3.1 Instruction Queue
The instruction queue, shown in Figure 1-2, contains instructions prefetched from the
current instruction stream.

The instruction unit prefetches instructions from the cache into the instruction queue. As
many as eight instructions (a cache sector) can be loaded into the instruction queue during
any cycle. Instructions move from the top of the queue (Q7) towards the bottom of the
queue (QO) and a full range of shift amounts thr~ugh'the queue is supported.

The upper half of the instruction queue (Q4-Q7) provides buffering to reduce the need to
access the cache. Some initial decoding of instructions is performed in the lower half (QO
through Q3) of the queue. QO functions as the initial decode stage for the IU.

As instructions issue to the BPU and FPU, new instructions are loaded into the queue.

MOTOROLA Chapter 1. Overview 1-5

-

•
04------------ FROM CACHE

TOIU

TOBPU

TO FPU

Figure 1-2. Instruction Queue

1.1.4 Independent Execution Units
One benefit of the PowerPC architecture is its support for independent floating-point,
integer, and branch processing execution units, making it possible to implement advanced
features such as look-ahead operations and out-of-order instruction dispatches. For
example, since branch instructions do not depend on GPRs or FPRs, branches can often be
resolved early, eliminating stalls caused by taken branches. Additionally, upon resolution
of the branch, the branch instruction is removed from the pipeline and fetching continues
from the first instruction in the target stream. This procedure is called branch folding.

The following sections describe the MPC601 's three execution units-the BPU, IU, and
FPU.

1.1.4.1 Branch Processing Unit (BPU)
The BPU performs condition register (CR) look-ahead operations on conditional branches.
The BPU looks through the bottom half of the instruction queue for a conditional branch
instruction and attempts to resolve it early, achieving the effect of a zero-cycle branch in
many cases.

The BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore when an unresolved conditional branch instruction is encountered, the
MPC601 prefetches instructions from the predicted target stream until the conditional
branch is resolved.

The BPU contains an adder to compute branch target addresses and three special-purpose,
user-control registers-the LR, the CTR, and the CR. The BPU calculates the return pointer
for subroutine calls and saves it into the LR. The LR also contains the branch target address

1-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

for the Branch Conditional to Link Register (bclrx) instruction. The CTR contains the
branch target address for the Branch Conditional to Count Register (bcctrx) instruction.
The contents of the LR and CTR can be copied to or from any OPR. Because the BPU uses
dedicated registers rather than general-purpose or floating-point registers, execution of
branch instructions is independent from execution of integer and floating-point
instructions.

1.1.4.2 Integer Unit (IU)
The IU executes all integer and memory access instructions (including those required for
floating-point registers). The IU contains an arithmetic logic unit (ALU), a multiplier, a
divider, the integer exception register (XER), and the general-purpose register file. One
instruction can be issued to the IU each clock cycle.

The IU interfaces with the cache and MMU for all instructions that access memory.
Addresses are formed by adding the source 1 register operand specified by the instruction
(or zero) to either a source 2 register operand or to a 16-bit, immediate value embedded in
the instruction.

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. These accesses can be strictly ordered through the use of
synchronizing instructions.

Load and store instructions are considered to have completed execution after the address is
translated. If the address for a load or store instruction hits in the UTLB or BTLB and it is
aligned, the instruction execution takes one clock cycle, allowing back-to-back issue of
load and store instructions.

1.1.4.3 Floating-Point Unit (FPU)
The FPU contains a single-precision multiply-add array, a divider, the floating-point status
and control register (FPSCR), and the FPRs. The multiply-add array allows the MPC601 to
efficiently implement floating-point operations such as multiply, add, and multiply-add.
The FPU is pipelined so that most single-precision instructions and many double-precision
instructions can be issued back-to-back. The FPU contains two additional instruction
queues. These queues allow floating-point instructions to be issued from the instruction
queue even if the FPU is busy, making instructions available for issue to the other execution
units.

Like the BPU, the FPU can access instructions from the bottom half of the instruction queue
(Q3-QO), which permits floating-point instructions that do not depend on unexecuted
instructions to be issued early to the FPU, thus maximizing efficiency and reducing
bottlenecks in the instruction pipeline.

All IEEE 754 floating-point data types (normalized, denormalized, NaN, zero, and infinity)
are supported in hardware on the MPC601, which eliminates the latency incurred by
software exception routines to support all data types.

MOTOROLA Chapter 1. Overview 1-7

•

1.1.5 Memory Management Unit (MMU)
The MPC601 's MMU supports up to 4 Terabytes (252) of virtual memory and 4 Gigabytes
(232) of physical memory. The MMU also controls access privileges for these spaces on
block and page granularities. Referenced and changed status are maintained by the
processor for each page to assist implementation of a demand-paged virtual memory
system.

The instruction unit generates all instruction addresses; these addresses are both for
sequential instruction prefetches and addresses that correspond to a change of program
flow. The integer unit generates addresses for data accesses (both for memory and the I/O
controller interface).

After an address is generated, the upper order bits of the logical address are translated by
the MMU into physical address bits. Simultaneously, the lower order address bits (that are
untranslated and therefore considered both logical and physical), are directed to the on-chip
cache where they form the index into the eight-way set-associative tag array. After
translating the address, the MMU passes the higher-order bits of the physical address to the
cache, and the cache lookup completes. For cache-inhibited accesses or accesses that miss
in the cache, the untranslated lower order address bits are concatenated with the translated
higher-order address bits; the resulting 32-bit physical address is then used by the memory
unit and the system interface, which accesses external memory.

The MMU also directs the address translation and enforces the protection hierarchy
programmed by the operating system in relation to the supervisor/user privilege level of the
access and in relation to whether the access is a load or store.

For instruction accesses, the MMU first performs a lookup in the four entries of the ITLB
for the physical address translation. Instruction accesses that miss in the ITLB and all data
accesses cause a lookup in the UTLB and BTLB for the physical address translation. In
most cases, the physical address translation resides in one of the TLBs and the physical
address bits are readily available to the on-chip cache. In the case where the physical
address translation misses in the TLBs, the MPC601 automatically performs a search of the
translation tables in memory using the information in the SDR1 and the corresponding
segment register.

Memory management in the MPC601 is described in more detail in Section 1.3.6.2,
"MPC601 Memory Management."

1.1.6 Cache Unit
The MPC601 contains a 32-Kbyte, eight-way set associative, unified (instruction and data)
cache. The cache line size is 64 bytes, divided into two eight-word sectors, each of which
can be snooped, loaded, cast-out, or invalidated independently. The cache is designed to
adhere to a write-back policy, but the MPC601 allows control of cacheability, write policy,
and memory coherency at the page and block level. The cache uses a least recently used
(LRU) replacement policy.

1-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The cache provides an eight-word interface to the rest of the device. The surrounding logic
selects, organizes, and forwards the requested information to the requesting unit. Write
operations to the cache can be performed on a byte basis, and a complete read-modify-write
operation to the cache can occur in each cycle.

The instruction unit provides the cache with the address of the next instruction to be
prefetched. In the case of a cache hit, the cache returns the instruction and as many of the
instructions following it as can be placed in the eight-word instruction queue up to the
cache sector boundary. If the queue is empty, as many as eight words (an entire sector) can
be loaded into the queue in parallel.

The cache has one address port dedicated to instruction fetch and load/store accesses and
one dedicated to snooping transactions on the system interface. Therefore, snooping does
not require additional clock cycles unless a snoop hit that requires a cache status update
occurs.

1.1.7 Memory Unit
The MPC601 's memory unit contains read and write queues that buffer operations between
the external interface and the cache. These operations are comprised of operations resulting
from load and store instructions that are cache misse~ and read and write operations
required to maintain cache coherency, and table search operations. As shown in Figure 1-3,
the read queue contains two elements and the write queue contains three elements. Each
element of the write queue can contain as many as eight words (one sector) of data. One
element of the write queue, marked snoop in Figure 1-3, is dedicated to writing cache
sectors to system memory after a modified sector is hit .by a snoop from another processor
or snooping device on the system bus. The use of this queue guarantees a high priority
operation that ensures a deterministic response time when snooping hits a modified sector.

ADDRESS
(from cache)

DATA
(from cache)

WRITE QUEUE

Figure 1-3. Memory Unit

The other two elements in the write queue are used for store operations and writing back
modified sectors that have been deallocated by updating the queue; that is, when a cache

MOTOROLA Chapter 1. Overview 1-9

-

-
location is full, the least-recently used cache sector is deallocated by first being copied into
the write queue and from there to system memory. Note that snooping can occur after a
seCtor has been pushed out into the write queue and before the data has been written to
system memory. Therefore, to maintain a coherent memory, the write queue elements are
compared to snooped addresses in the same way as the cache tags. If a snoop hits a write
queue element, the data is first stored in system memory before it can be loaded into the
cache of the snooping bus master. Full coherency checking between the cache and the write
queue prevents dependency conflicts.

Execution of a load or store instruction is considered complete when the associated address
translation completes, guaranteeing that the instruction has completed to the point where it
is known that it will not generate an internal exception. However, after address translation
is complete, a read or write operation can still generate an external exception.

Load and store instructions are always issued and translated in program order with respect
to other load and store instructions. However, a load or store operation that hits in the cache
can complete ahead of those that miss in the cache. The MPC601 ensures memory
consistency by comparing target addresses and prohibiting instructions from completing
out of order if an address matches. Load and store operations can be forced to execute in
strict program order by using the synchronization instructions.

1.1.8 System Interface
Because the cache on the MPC601 is an on-chip, write-back primary cache, the
predominant type of transaction for most applications is burst-read memory operations,
followed by burst-write memory operations, I/O controller interface operations, and single­
beat (noncacheable or write-through) memory read and write operations. Additionally,
there can be address-only operations, variants of the burst and single-beat operations
(global memory operations that are snooped, and atomic memory operations, for example),
and address retry activity (for example, when a snooped read access hits a modified line in
the cache).

Memory accesses can occur in single-beat and four-beat burst data transfers. The address
and data buses are independent for memory accesses to support pipelining and split
transactions. The MPC601 can pipeline as many as two transactions and has limited support
for out-of-order split-bus transactions.

Memory is accessed through an arbitration mechanism that allows devices to compete for
bus mastership. This arbitration mechanism is flexible, allowing the MPC601 to be
integrated into systems that implement various fairness and bus-parking procedures to
avoid arbitration overhead. Additional multiprocessor support is provided through
coherency mechanisms that provide snooping, external control of the on-chip cache and
TLB, and support for a secondary cache. Multiprocessor software support is provided
through the use of atomic memory operations.

1-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Typically, memory accesses are weakly ordered-sequences of operations, including
load/store string and mUltiple instructions, do not necessarily complete in the order they
begin-maximizing the efficiency of the bus without sacrificing coherency of the data. The
MPC601 allows read operations to precede store operations (except when a dependency
exists, of course). In addition, the MPC601 may reorder high priority store operations
ahead of lower priority store operations. Because the processor can dynamically optimize
run-time ordering of load/store traffic, overall performance is improved.

1.2 Levels of the PowerPC Architecture
The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented:

• PowerPC user instruction set architecture-This definition includes the base user­
level instruction set (excluding a few user-level memory-control instructions), user­
level registers, programming model, data types, and addressing modes.

Aspects of the PowerPC user instruction set architecture are discussed in Chapter 2,
"Registers and Data Types," Chapter 3, "Addressing Modes and Instruction Set
Summary," and Chapter 10, "Instruction Set."

• PowerPC virtual environment architecture-PowerPC virtual environment
architecture-This describes the semantics of the memory model that can be
assumed by software processes and includes descriptions of the cache model, cache­
control instructions, address aliasing, and other related issues. Implementations that
conform to the PowerPC virtual environment architecture also adhere to the
PowerPC user instruction set architecture, but may not necessarily adhere to the
PowerPC operating environment architecture.

Aspects of the PowerPC virtual environment architecture are discussed in
Chapter 2, "Registers and Data Types," Chapter 3, "Addressing Modes and
Instruction Set Summary," Chapter 5, "Exceptions," and Chapter 1 0, "Instruction
Set."

• PowerPC operating environment architecture-This includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the PowerPC operating environment architecture
also adhere to the PowerPC user instruction set architecture and the PowerPC virtual
environment architecture definition.

Aspects of the PowerPC operating environment architecture are discussed in
Chapter 2, "Registers and Data Types," Chapter 3, "Addressing Modes and
Instruction Set Summary," Chapter 5, "Exceptions," Chapter 6, "Memory
Management Unit," and Chapter 10, "Instruction Set."

Note that while the MPC601 is said to adhere to the PowerPC architecture at all three
levels, it diverges in aspects of its implementation to a greater extent than can be expected
of subsequent PowerPC processors. Many of the differences result from the fact that the

MOTOROLA Chapter 1. Overview 1-11

•

..
MPC601 design is pivotal, providing compatibility with an existing architecture standard
(POWER), while providing a reliable platform for hardware and software development
compatible with subsequent PowerPC processors.

The PowerPC architecture allows a wide range of designs for such features as cache and
system interface implementations.

1.3 MPC601 as a PowerPC Implementation
The PowerPC architecture is derived from the IBM Performance Optimized with Enhanced
RISC (POWER) architecture. The PowerPC architecture shares the benefits of the POWER
architecture optimized for single-chip implementations. The architecture design facilitates
parallel instruction execution and is scalable to take advantage of future technological
gains. For compatibility, the MPC601 also implements instructions from the POWER user
programming model that are not part of the PowerPC definition.

This section describes the PowerPC architecture in general, noting where the· MPC601
differs. The organization of this section follows the sequence of the chapters in this manual
as follows:

• Features-This section describes general features that the MPC601 shares with the
PowerPC family of microprocessors. It does not list PowerPC features not
implemented in the MPC601.

• Registers and programming model-This section describes the architected registers
for the operating environment architecture common among PowerPC processors
and describes the programming model. It also describes differences in how the
architected registers are used in the MPC601 and describes the additional registers
that are unique to the MPC601;

• Instruction set and addressing modes-This section describes the PowerPC
instruction set and addressing modes for the PowerPC operating environment
architecture, and it generally defines the subset of the instruction set implemented in
the MPC601 as well as additional instructions implemented in the MPC601 but not
defined in the PowerPC architecture.

• Cache implementation-This section describes the cache model that is defined
generally for PowerPC processors by the virtual environment architecture. It also
provides specific details about the MPC601 cache implementation.

• Exception model-This section describes the exception model of the PowerPC
operating environment architecture and the differences in the MPC601 exception
model.

• Memory management-This section describes generally the conventions for
memory management among the PowerPC processors. Note that the PowerPC
operating environment architecture defines different memory management designs
for 64- and 32-bit implementations. This section also describes the general
differences between the MPC601 and the 32-bit PowerPC memory management
specifi cati on.

1-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Instruction timing-This section provides a general description of the instruction
timing provided by the superscalar, parallel execution supported by the PowerPC
architecture.

System interface-This section describes the signals implemented on the MPC601.

1.3.1 Features
The MPC601 incorporates the following features of the PowerPC architecture:

High-performance, superscalar microprocessor implementations

The PowerPC architecture allows optimizing compilers to schedule instructions to
maximize performance through efficient use of the PowerPC instruction set and
register model. The multiple, independent execution units allow compilers to
maximize parallelism and instruction throughput. Compilers that take advantage of
the flexibility of the PowerPC architecture can additionally optimize system
performance of the PowerPC processors.

The PowerPC architecture supports the following:

- Multiple, independent execution units

- Single clock cycle execution for most instructions

- Fully IEEE 754-compliant FPU for both single- and double-precision operations

- Thirty-two general-purpose registers (GPRs) for integer operands

- Thirty-two floating-point registers (FPRs) for single- or double-precision
operands

High instruction and data throughput

- Cache write-back or write-through operation programmable on a per-page or
per-block basis

- Run-time reordering of loads and stores

Facilities for enhanced system performance

- Programmable big- and little-endian byte ordering

- Interprocessor UTLB invalidation

- Interprocessor cache control operations

- Atomic memory references

In-system testability and debugging features through boundary-scan capability

Specific features of the MPC601 are listed in Section 1.1.1, "MPC601 Features."

1.3.2 Registers and Programming Model
The following subsections describe the general features of the PowerPC registers and
programming model and of the specific MPC601 implementation, respectively.

MOTOROLA Chapter 1. Overview 1-13

-

• 1.3.2.1 PowerPC Registers and Programming Model
The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the on-chip registers
or are provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a different target register from the two source
registers. Data is transferred between memory and registers with explicit load and store
instructions only.

PowerPC processors have two levels of privilege-supervisor mode of operation (typically
used by the operating environment) and one that corresponds to the user mode of operation
(used by the application software). The programming models incorporate 32 GPRs, 32
FPRs, special-purpose registers (SPRs), and several miscellaneous registers. Note that
there are several registers that are part of the PowerPC architecture that are not
implemented in the MPC601; for example, the time base registers are not implemented in
the MPC601 and the address space register (ASR) is implemented only in 64-bit
implementations. Likewise, each PowerPC implementation has its own unique set of
hardware implementation (HID) registers, which are implementation-specific.

This division allows the operating system to control the application environment
(providing virtual memory and protecting operating-system and critical machine
resources). Instructions that control the state of the processor, the address translation
mechanism, and supervisor registers can be executed only when the processor is operating
in supervisor mode.

The following sections summarize the PowerPC registers that are implemented in the
MPC601 processor. Chapter 2, "Register Models and Data Types," provides detailed
information about the registers implemented in the MPC601.

1.3.2.1.1 General-Purpose Registers (GPRs)
The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs). These
registers are either 32 or 64 bits wide depending on the implementation. The GPRs serve
as the data source or destination for all integer instructions and provide addresses for all
memory-access instructions.

1.3.2.1.2 Floating-Point Registers (FPRs)
The PowerPC architecture also defines 32 user-level 64-bit floating-point registers (FPRs)
for both 32- and 64-bit PowerPC implementations. The FPRs serve as the data source or
destination for floating-point instructions. These registers can contain data objects of either
single- or double-precision floating-point formats. The floating-point register file can only
be accessed by the FPU.

1.3.2.1.3 Condition Register (CR)
The CR is a 32-bit user-level register that consists of eight, four-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic,

1-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

and logical instructions, and provide a mechanism for testing and branching. The CR is 32
bits wide in all implementations.

1.3.2.1.4 Floating-Point Status and Control Register (FPSCR)
The floating-point status and control register (FPSCR) is a user-level register that contains
all exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard. The FPSCR is 32 bits wide
in all implementations.

1.3.2.1.5 Machine State Register (MSR)
The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register is saved when an exception is taken and restored
when the exception handling completes. The MPC601 implements the MSR as a 32-bit
register; other PowerPC processors implement it as a 64-bit register.

1.3.2.1.6 Segment Registers (SRs)
The sixteen 32-bit segment registers (SRs) are present only in 32-bit PowerPC
implementations. Figure 2-12 shows the format of a segment register when the T bit is
cleared and Figure 2-13 shows the layout when the T bit is set. The fields in the segment
register are interpreted differently depending on the value of bit O. Note that 64-bit
PowerPC implementations use a segment table rather than the segment registers for
segment information.

1.3.2.1.7 Special-Purpose Registers (SPRs)
The PowerPC operating environment architecture defines numerous special-purpose
registers that serve a variety of functions, such as providing controls, indicating status,
configuring the processor, and performing special operations. Some SPRs are accessed
implicitly as part of executing certain instructions. All SPRs can be accessed by using the
Move to/from Special Purpose Register instructions, mtspr and mfspr.

In the MPC601, all SPRs are 32 bits wide.

1.3.2.1.8 User-Level SPRs
The following MPC601 SPRs are accessible by user-level software:

• Link register (LR)-The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The LR is
64 bits wide in 64-bit implementations and 32 bits wide in 32-bit implementations.

• Count register (CTR)-The CTR is decremented and tested automatically as a result
of branch-and-count instructions. The CTR is 64 bits wide in 64-bit
implementations and 32 bits wide in 32-bit implementations.

• The integer exception register (XER) contains the integer carry and overflow bits
and two fields for the Load String and Compare Byte Indexed (Iscbx) instruction.
The XER is 32 bits wide in all implementations.

MOTOROLA Chapter 1. Overview 1-15

•

•
Note that while these registers are defined as SPRs and can be accessed by using the mtspr
and mfspr instructions, these registers are typically accessed implicitly. In addition, the
PowerPC architecture defines a 64-bit time base register (TB), which replaces the real-time
clock implementation on the MPC601.

1.3.2.1.9 Supervisor-Level SPRs
The MPC601 also contains SPRs that can be accessed only by supervisor-level software.
These registers consist of the following:

The 32-bit data access exception (DAE)/source instruction service register (DSISR)
defines the cause of data access and alignment exceptions.

The data address register (DAR) is a 32-bit register that hoids the address of an
access after an alignment or data access exception.

Decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.
PowerPC architecture defines that the DEC frequency be provided as a subdivision
of the processor clock frequency; however, the MPC601 implements a separate RTC
which also serves the DEC.

• The 32-bit table search description register 1 (SDR 1) specifies the page table format
used in logical-to-physical address translation for pages.

• The machine status save/restore register 0 (SRRO) is a 32-bit register that is used by
the MPC601 for saving the address of the instruction that caused the exception, and
the address to return to when a Return from Interrupt (rfi) instruction is executed.

• The machine status save/restore register 1 (SRR1) is a 32-bit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed.

• General SPRs, SPRGO-SPRG3, are 32-bit registers provided for operating system
use.

• The external access register (EAR) is a 32-bit register that controls access to the
external control facility through the External Control Input Word Indexed (eciwx)
and External Control Output Word Indexed (ecowx) instructions.

• The processor version register (PVR) is a 32-bit, read-only register that identifies the
version (model) and revision level of the PowerPC processor.

• Block address translation (BAT) registers-The PowerPC architecture defines 16
BAT registers, divided into four pairs of data BATs (DBATs) and four pairs of
instruction bats (IBATs). The MPC601 includes four pairs of unified BATs
(BATOU-BAT3U and BATOL-BAT3L). See Figure 2-1 for a list of the SPR
numbers for the BAT registers. Figure 2-23 and Figure 2-24 show the layout of the
upper and lower BAT registers. Note that the format for the MPC601 's
implementation of the BAT registers differs from the PowerPC architecture
definition.

1-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

In addition, 64-bit PowerPC processors implement a supervisor-level, 64-bit address space
register (ASR) that defines the physical address of the segment tables in memory.

1.3.2.2 MPC601 Programming Model and Additional Registers
The MPC601 includes the following registers that are not part of the PowerPC architecture.

• Recl-time clock (RTC) registers-RTCU and RTCL (RTC upper and RTC lower).
The RTCU register maintains the number of seconds from a time specified by
software. The RTCL register maintains a fraction of the current second in
nanoseconds. The contents of either register can be copied to any OPR. These
registers are specific to the MPC601. These registers are not supported in the
PowerPC architecture, which uses the time base facility rather than a separate real­
time clock. For more infonnation, see Section 2.2.5.3, "Real-Time Clock (RTC)
Registers." These registers are also implemented in the POWER architecture.
PowerPC processors implement a time base based on the processor clock.

• MQ register (MQ). The MQ register is a MPC601-specific, 32-bit register used as a
register extension to accommodate the product for the multiply instructions and the
dividend for the divide instructions. It is also used as an operand of long rotate and
shift instructions. This register is provided for compatibility with POWER
architecture, and is not part of the PowerPC architecture. For more infonnation, see
Section 2.2.5.1, "MQ Register (MQ)." The MQ register is typically accessed
implicitly as part of executing a computational instruction. This register is also
implemented in the POWER architecture.

• Block-address translation (BAT) registers. The MPC601 includes eight block­
address translation registers (BATs), consisting of four pairs of BATs (BATOU­
BAT3U and BATOL-BAT3L). See Figure 2-1 for a list of the SPR numbers for the
BAT registers. Figure 2-23 and Figure 2-24 show the formats ofthe upper and lower
BAT registers. Note that other PowerPC implementations have two sets of four BAT
pairs-four sets of upper and lower IBATs (which occupy the space of the unified
BATs in the MPC601) and four sets of upper and lower DBATs (located in the
subsequent eight positions at SPR numbers 536-543). The PowerPC architecture
defines twice as many BAT registers-four IBAT pairs and four DBAT pairs.

• The hardware implementation registers, HIDO-HID2, HID5, and HID15 are
provided primarily for debugging. For more infonnation, see Section 2.3.3.12.1,
"Checkstop Sources and Enables Register-HIDO" through Section 2.3.3.12.5,
"Processor Identification Register (PIR)-HIDI5." HID15 holds the four-bit
processor identification tag (PID) that is useful for differentiating processors in
multiprocessor system designs. For more infonnation, see Section 2.3.3.12.5,
"Processor Identification Register (PIR)-HIDI5." Note that while it is not
guaranteed that the implementation of HID registers is consistent among PowerPC
processors, other processors may be designed with similar or identical HID
registers.

MOTOROLA Chapter 1. Overview 1-17

•

• 1.3.3 Instruction Set and Addressing Modes
The following subsections describe the PowerPC instruction set and addressing modes in
general. Differences in the MPC601 's instruction set are described in Section 1.3.3.2,
"MPC601 Instruction Set."

1.3.3.1 PowerPC Instruction Set and Addressing Modes
All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly
simplifies instruction pipelining. In addition, each instruction is defined in a way that
simplifies pipelined implementations and allows maximum realization of instruction-level
parallelism.

1.3.3.1.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

• Integer instructions-These include computational and logical instructions.

- Integer arithmetic instructions

- Integer compare instructions

- Integer logical instructions

- Integer rotate and shift instructions

• Floating-point instructions-These include floating-point computational
instructions, as well as instructions that affect the floating-point status and control
register (FPSCR).

- Floating-point arithmetic instructions

- Floating-point multiply/add instructions
- Floating-point rounding and conversion instructions

- Floating-point compare instructions

- Floating-point status and control instructions

• Load/store instructions-These include integer and floating-point load and store
instructions.

- Integer load and store instructions

- Integer load and store multiple instructions

- Floating-point load and store

- Floating-point move instructions

• Flow control instructions-These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

- Branch and trap instructions

- Condition register logical instructions

1-18 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Processor control instructions-These instructions are used for synchronizing
memory accesses and management of caches, UTLBs, and the segment registers.

- Move to/from special purpose register instructions

Memory control instructions-These instructions provide control of caches, TLBs,
and segment registers.

- Supervisor-level cache management instructions

- User-level cache instructions

- Segment register manipulation instructions

- Translation look-aside buffer management instructions

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions. This information, which is useful in taking
full advantage of superscalar parallel instruction execution, is provided in Chapter 7,
"Instruction Timing," and Chapter 10, "Instruction Set."

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point operands. The
PowerPC architecture uses instructions that are four bytes long and word-aligned. It
provides for byte, half-word, and word operand loads and stores between memory and a set
of 32 general-purpose registers (GPRs). It also provides for word and double-word operand
loads and stores between memory and a set of 32 floating-point registers (FPRs).

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

A program references memory using the effective address computed by the processor when
it executes a memory access or branch instruction, or when it fetches the next sequential
instruction.

1.3.3.1.2 Calculating Effective Addresses
The effective address (EA) is the 32-bit address computed by the processor when executing
a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:

EA = (rAIO) + offset (including offset = 0) (register indirect with immediate index)

• EA = (rAIO) + rB (register indirect with index)

MOTOROLA Chapter 1. Overview 1-19

•

•
These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.

For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the storage operand is considered to wrap around
from the maximum effective address to effective address O.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

1.3.3.2 MPC601 Instruction Set
The MPC601 instruction set is defined as follows.

• The MPC601 implements the majority of the 32-bit instructions in the PowerPC
architecture, and traps PowerPC instructions that it does not implement to the illega1
instruction program exception handler for execution by a software envelope. These
instructions are described in Appendix C, "PowerPC Instructions Not Implemented
in MPC60 1."

• The MPC601 supports a number of POWER instructions that are otherwise not
implemented in the PowerPC architecture. These are listed in Appendix B,
"POWER Architecture Cross Reference." Individual instructions are described in
Chapter 10, "Instruction Set."

• The MPC601 implements the External Control Input Word Indexed (eciwx) and
External Control Output Word Indexed (ecowx) instructions, which are optional in
the PowerPC architecture definition.

• Several of the instructions implemented in the MPC601 function somewhat
differently than they are defined in the PowerPC architecture. These differences
typically stem from design differences; for instance, the PowerPC architecture
defines severa1 cache control instructions specific to separate instruction and data
cache designs.

When executed on the MPC601, such instructions may provide a subset of the
functions of the architected instruction or they may be no-ops.

For a list of all PowerPC instructions and all MPC601-specific instructions, see
Appendix A, "Instruction Set Listings." Chapter 10, "Instruction Set," describes each
instruction, indicating whether an instruction is MPC601-specific and describing any
differences in the implementation on the MPC601.

1.3.4 Cache Implementation
The following subsections describe the PowerPC cache implementation in general, and the
MPC601-specific implementation, respectively.

1.3.4.1 PowerPC Cache Implementation
PowerPC cache implementations are implementation-specific. For example, some
PowerPC processors may have separate instruction and data caches (Harvard architecture),

1·20 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

while the MPC601 uses a unified cache. This causes PowerPC cache control instructions to
work differently, but compatibly, when executed on the MPC601-for example the icbi
(Instruction Cache Block Invalidate) instruction is treated as a no-op when executed by the
MPC601.

PowerPC implementations can control the following memory access modes on a page or
block basis.

• Write-back/write-through mode
• Cache-inhibited mode

• Memory coherency

To ensure coherency among caches in a multiprocessor (or multiple caching-device)
implementations, PowerPC processors support the MESI protocol. MESI stands for
modified/exclusive/shared/invalid. These four states indicate the state of the cache block as
follows:

• Modified-The cache block is modified with respect to system memory; that is, this
cache block holds the only valid data for this address.

• Exclusive-This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

• Shared-This cache block holds valid data that is identical to this address in system
memory and at least one other caching device.

• Invalid-This cache block does not hold valid data.

Note that in the MPC601 processor, a block is defined as an eight-word sector. The
PowerPC virtual environment architecture also defines a set of cache control instructions.

1.3.4.2 MPC601 Cache Implementation
The MPC601 has a 32-Kbyte, eight-way set-associative unified (instruction and data)
cache. The cache is physically addressed and can operate in either write-back or write­
through mode. Either memory update policy can be selected on a per-page or per-block
basis.

The cache is configured as eight sets of 64 lines. Each line consists of two sectors, four state
bits (two per sector), and an address tag. The two state bits implement the four-state MESI
(modified-exclusive-shared-invalid) protocol. Each sector contains eight 32-bit words.
Note that the PowerPC architecture defines the term block as the cacheable unit. For the
MPC601 processor, the block is a sector. A block diagram of the cache organization is
shown in Figure 1-4.

Each cache line contains 16 contiguous words from memory that are loaded from a
16-word boundary (that is, bits A26-A31 of the logical addresses are zero); thus, a cache
line never crosses a page boundary. Misaligned accesses across a page boundary can incur
a performance penalty.

MOTOROLA Chapter 1. Overview 1-21

..

-
Cache operations are always performed on a sector basis (that is, the cache is snooped and
updated and coherency is maintained on a per-sector basis). However, if the other sector in
the line is marked invalid, an optional, low-priority update of that sector is attempted after
the sector that contained the critical word is filled. This function can be disabled. An LRU
algorithm is used to select the cache line.

External bus transactions that load instructions or data into the cache always transfer the
missed quad word first, regardless of its location in a cache sector; then the rest of the cache
sector is filled. As the missed quad word is loaded into the cache, it is simultaneously
forwarded to the appropriate execution unit so instruction execution resumes as quickly as
possible.

Cache coherency is enforced by on-chip hardware bus snooping logic. Since the cache tag
directory has a separate port dedicated to snooping bus transactions, bus snooping traffic
does not interfere with processor access to the cache unless a snoop hit occurs.

• 1 1 • 1 :1 .
I I I I

I I r--
t- I I t--

r-
LINE 0 ADDRESS TAG I I - _r-- SECTOR 0 SECTOR 1 I--r-

I I - _r-- t--
f-

l l - -- -
f-

I I - -- -
f-

L I - -- -
f-

I l -
- r-

I I -

• • • • • •
• f- • • -

_f- f--

r- f-

- r-
LINE 63 ADDRESS TAG , I r- r--- a WORDS a WORDS

16 WORDS

Figure 1-4. Cache Unit Organization

1.3.5 Exception Model
The following subsections describe the PowerPC exception model and the MPC601
implementation, respectively.

1-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

1.3.5.1 PowerPC Exception Model
The PowerPC exception mechanism allows the processor to change to supervisor state a~
a result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information, such as the instruction that should be
executed after control is returned to the original program and the contents of the machine
state register, is saved to the save/restore registers (SRRO and SRR 1), program control
passes from user to supervisor level, and software continues execution at an address
(exception vector) predetermined for each exception.

Although multiple exception conditions can map to a single exception vector, the specific
condition can be determined by examining a register associated with the exception-for
example, the DAE/source instruction service register (DSISR) and the floating-point status
and control register (FPSCR). Additionally, specific exception conditions can be explicitly
enabled or disabled by software.

Although the PowerPC architecture supports out-of-order instruction dispatch, exception~
are handled in program order; therefore, while exception conditions may be recognized out
of order, they are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered execute state, are allowed to complete. Any
exceptions, caused by those instructions are handled in order. Likewise, exceptions that are
asynchronous and precise are recognized when they occur, but are not handled until all
instructions currently in execute stage successfully complete execution and report their
results.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information saved in SRRO and SRR 1 early to prevent
the program state from being lost due to a system reset and machine check exception or to
an instruction-caused exception in the exception handler.

MOTOROLA Chapter 1. Overview 1-23

..

•
The PowerPC architecture supports four types of exceptions:

Synchronous, precise-These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that the precise address
of the faulting instruction is provided to the exception handler and that neither the
faulting instruction nor subsequent instructions in the code stream will complete
execution.

Synchronous, imprecise mode-The PowerPC architecture permits the
implementation of imprecise floating-point exceptions. The use of recoverable and
nonrecoverable versions of this mode can be enabled or disabled be setting one of
the FEO and FEI bits in the MSR. Note that in the MPC601, these bits are internally
ORed together causing all floating-point exceptions to be handled precisely.

• Asynchronous, precise-The external interrupt and decrementer exceptions are
maskable asynchronous exceptions that are handled precisely. When these
exceptions occur, their handling is postponed until all instructions, and any
exceptions associated with those instructions, complete execution.

Asynchronous, imprecise-There are two non-maskable asynchronous exceptions
that are imprecise: system reset and machine check exceptions. These exceptions
may not be recoverable, or may provide a limited degree of recoverability for
diagnostic purpose.

The PowerPC architecture defines several of the exceptions differently than the MPC601
implementation. For example, the PowerPC exception model provides a unique vector for
the trace exception; the MPC601 vectors trace exceptions to the run-mode exception
handler. Other differences are noted in the following section, Section 1.3.5.2, "MPC601
Exception Model."

1.3.5.2 MPC601 Exception Model
All MPC601 exceptions can be described as either precise or imprecise and either
synchronous or asynchronous. Asynchronous exceptions are caused by events external to
the processor's execution; synchronous exceptions, which are all handled precisely by the
MPC601, are caused by instructions.

The MPC601 exception classes are shown in Table 1-1.

Table 1-1. MPC601 Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Type

Asynchronous Imprecise Machine Check
System Reset

Asynchronous Precise External interrupt
Decrementer

Synchronous Precise Instruction-caused exceptions

1-24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskable, the distinctions shown in Table 1-1 define categories of exceptions that the
MPC601 handles uniquely. Note that Table 1-1 includes no synchronous imprecise
instructions. While the PowerPC architecture supports imprecise handling of floating-point
exceptions, this functionality is not implemented in the MPC601.

The MPC601 's exceptions, and conditions that cause them, are listed in Table 1-2.
Exceptions that are specific to the MPC601 are indicated.

Table 1-2. Exceptions and Conditions

Exception Vector Offset
Causing Conditions

Type (hex)

Reserved 00000 -
System reset 00100 A system reset is caused by the assertion of either 'Sl1E'S'ET or HR'E'SET.

Machine check 00200 A machine check is caused by the assertion of the TEA signal.

Data access 00300 The cause of a data access exception can be determined by the bit settings in
the DSISR, listed as follows:
1 Set if the translation of an attempted access is not found in the primary

hash table entry group (HTEG), or in the rehashed secondary HTEG, or in
the range of a BAT register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism described in Chapter 6, "Memory Management Unit"; otherwise
cleared.

5 Set if the access was to an 1/0 segment (SR[T] =1) by a loadlstore with
reservation instruction; otherwise cleared.

6 Set for a store operation and cleared for a load operation.
9 Set if an EA matches the address in the DABR while in one of the three

compare modes.
11 Set if eciwx or ecowx is used and EAR[E] is cleared.

Instruction 00400 An instruction access exception is caused when an instruction fetch cannot be
access performed for any of the following reasons:

The effective address cannot be translated. That is, there is a page fault for
this portion of the translation, so an instruction access exception must be
taken to retrieve the translation from a storage device such as a hard disk
drive.
The fetch access is to an 1/0 segment. . The fetch access violates memory protection. If the K bits in the segment
register and the PP bits in the PTE are set to prohibit read access,
instructions cannot be fetched from this location.

External 00500 An external interrupt occurs when the m signal is asserted.
interrupt

MOTOROLA Chapter 1. Overview 1-25

I ..

..
Table 1-2. Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Alignment 00600 An alignment exception is caused when the MPC601 cannot perform a memory
access for one of the following reasons:

· The operand of a floating-point load or store or load/store with reservation
operation is in an 1/0 segment (SR[T]=1).

· An Iscbx instruction crosses a page boundary.

· The operand of a load or store (including string loads and stores) crosses a
protection boundary.

· The operand of an Imw or stmw instruction crosses a segment or BAT
boundary.

· The operand of a Data Cache Block Set to Zero (dcbz) instruction is in a
page specified as write-through or cache-inhibited for a page-address
translation access.

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

· Floating-point enabled exception-A floating-point enabled exception
condition is generated when the following condition is met:

(MSR[FEO] I MSR[FE1]) & FPSCR[FEX] is 1.
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a "move to FPSCR"
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

· Illegal instruction-An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields, or when execution of an
optional instruction not provided in the MPC601 is attempted (these do not
include those optional instruction that are treated as no-ops).

· Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. In the MPC601, this
exception is generated for mtspr or mfspr with an invalid SPR field if
SPR[0]=1 and MSR[PR]=1. This may not be true for all PowerPC
processors.

· Trap-A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.
Illegal operations-The MPC601 takes illegal operation program exceptions
for unimplemented PowerPC instructions. The PowerPC instruction set is
described in Chapter 3, "Addressing Modes and Instruction Set Summary."

Floating-point 00800 A floating-point unavailable exception is caused by an attempt to execute a
unavailable floating-point instruction (including floating-point load, store, and move

instructions) and the floating-point available bit is disabled, (MSR[FP]=O).

Decrementer 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

va error OOAOO An 1/0 error exception is taken only when an operation to an 1/0 segment fails
(such a failure is indicated to the MPC601 by a particular bus reply packet). If an
1/0 error exception is taken on a memory access directed to an 1/0 segment, the
SRRO contains the address of the instruction following the offending instruction.
Note that this exception may not be implemented in other PowerPC processors.

Reserved OOBOO -
System call OOCOO A system call exception occurs when a System Call (sc) instruction is executed.

1-26 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

I

Table 1-2. Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Reserved OOEOO Other PowerPC processors may use this vector for floating-point assist
exceptions.

Reserved 00E10-00FFF -
Reserved 01000-02FFF Reserved, implementation-specific

Run mode 02000 The run mode exception is taken depending on the settings of the HID1 register
exception and the MSR[SE] bit.

The following modes correspond with bit settings in the HID1 register:

· Normal run mode-no address break points are specified, and the MPC601
executes from zero to three instructions per cycle

· Single instruction step mode-One instruction is processed at a time. The
appropriate break action is taken after an instruction is executed and the
processor quiesces.

· Umited instruction address compare-The MPC601 runs at full speed (in
parallel) until the EA of the instruction being decoded matches the EA
contained in HID2. Addresses for branch instructions and floating-point
instructions may never be detected.

The following mode is taken when the MSR[SE] bit is set.

· MSR[SE] trace mode-Note that in other PowerPC implementations, the
trace exception is a separate exception with its own vector x'OODOO'.

Reserved 02001-03FFF -

1.3.6 Memory Management
The following subsections describe the PowerPC memory management in general, and the
specific MPC601 implementation, respectively.

1.3.6.1 PowerPC Memory Management
The primary functions of the MMU are to translate logical (effective) addresses to physical
addresses for memory accesses, I/O accesses (most I/O accesses are assumed to be
memory-mapped), and I/O controller interface accesses, and to provide access protection
on blocks and pages of memory.

There are three types of accesses generated by the MPC601 that require address translation:
instruction accesses, data accesses to memory generated by load and store instructions, and
I/O controller interface accesses generated by load and store instructions.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from backing storage only when they are first accessed by an executing program.

PowerPC memory management differs for 32- and 64-bit implementations. Address
translations are enabled by setting bits in the MSR-MSR[IT] enables instruction
translations and MSR[DT] enables data translations.

MOTOROLA Chapter 1. Overview 1-27

..

•
1.3.6.2 MPC601 Memory Management
The MPC601 MMU provides 4-Gbytes of logical address space accessible to supervisor
and user programs with a 4-Kbyte page size and 256-Mbyte segment size. Block sizes
range from 128 Kbyte to 8 Mbyte and are software selectable. In addition, the MPC601
uses an interim 52-bit virtual address and hashed page tables in the generation of 32-bit
physical addresses.

A UTLB provides address translation in parallel with the on-chip cache access, incurring
no additional time penalty. The UTLB is a 256-entry, two-way set-associative cache that
contains instruction and data address translations. The MPC601 provides hardware table
search capability on UTLB misses. Supervisor software can invalidate UTLB entries (both
in the set) selectively. In addition, UTLB control instructions can optionally be broadcast
on the external interface for remote invalidations.

The MPC601 also provides a four-entry BTLB that maintains address translations for
blocks of memory. These entries define blocks that can vary from 128 Kbytes to 8 Mbytes.
The BTLB is maintained by system software.

To accelerate the instruction unit operation, the MPC601 uses a four-entry ITLB. The ITLB
contains up to four copies of the most recently used instruction address translations (page
or block) providing the instruction unit access to the most recently used translations without
requiring the UTLB or BTLB. The ITLB, including coherency, is maintained in hardware
and uses an LRU replacement algorithm.

The MPC601 has a high-bandwidth, 64-bit data bus and a 32-bit address bus. The MPC601
interface protocol allows multiple masters to compete for system resources through a
central external arbiter. Additionally, on-chip snooping logic maintains cache coherency in
multiprocessor applications. The MPC601 supports single-beat and burst data transfers for
memory accesses; it also supports both memory-mapped I/O and I/O controller interface
addressing.

The MPC601 MMU relies on the exception processing mechanism for the implementation
of the paged virtual memory environment and for enforcing protection of designated
memory areas. Exception processing is described in Chapter 5, "Exceptions."
Section 2.3.1, "Machine State Register (MSR)," describes the MSR of the MPC601, which
controls some of the critical functionality of the MMU.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

The page table contains a number of page table entry groups (PTEGs). A PTEG contains
eight page table entries (PTEs) of eight bytes each; therefore each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations. Figure 6-16 shows two PTEG
addresses (PTEGaddrl and PTEGaddr2) where a given PTE may reside.

1-28 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

1.3.7 Instruction Timing
The PowerPC architecture is designed to minimize instruction latencies while maximizing
overall instruction throughput. Although many of the instructions execute in a single clock
cycle, in many cases overall instruction throughput is significantly greater than one
instruction per clock cycle. Because the PowerPC architecture can be applied to such a
wide variety of implementations, instruction timing details vary accordingly.

The MPC601 processor has been designed to minimize average instruction execution
latency. Latency is defined as the number of clock cycles necessary to execute an
instruction and make ready the results of that execution for a subsequent instruction. For
the majority of instructions in the MPC601, this can be simplified to include only the
execute phase for a particular instruction. However, data access instructions require
additional clock cycles between the execute phase and the writeback phase due to memory
latencies.

In accordance with this definition, logical, bit-field, and most integer instructions have a
latency of one clock cycle (for example, results for these instructions are ready for use on
the next clock cycle after issue). Other instructions, such as the integer multiply, require
more than one clock cycle to complete execution.

Effective throughput of more than one instruction per clock cycle can be realized by the
many performance features in the MPC601 including pipelining, superscalar instruction
issue, branch acceleration, and mUltiple execution units that operate independently and in
parallel.

Many of the execution units on the MPC601 are said to be pipelined. This implies that the
particular execution unit is broken into stages. Each stage performs a specific step, which
contributes to the overall execution of an instruction. The pipelined design is analogous to
an assembly line where workers perform a specific task and pass the partially complete
product to the next worker.

When an instruction is issued to a pipelined execution unit, the first stage in the pipeline
begins its designated work on that instruction. As an instruction is passed from one stage in
the pipeline to the next, evacuated stages may accept new instructions. This design allows
a single execution unit to be working on several different instructions simultaneously. Once
the pipeline has been filled with instructions, the execution unit completes a multi-cycle
instruction every clock.

If the number of stages in each pipeline is equal to the total latency in clock cycles of its
respective execution unit, the processor can continuously issue instructions to the same
execution unit without stalling. Thus, when enough instructions have been issued to an
execution unit to fill its pipeline, the first instruction will have completed execution and
exited the pipeline, allowing subsequent instructions to be issued into the tail of the pipeline
without interruption.

MOTOROLA Chapter 1. Overview 1-29

•

•
1.3.8 System Interface
The system interface is specific for each PowerPC processor; however, processor designs
provide the same basic set of signals, with differences depending largely upon other design
factors.

The MPC601 provides a versatile system interface that allows for a wide range of
implementations. The interface includes a 32-bit address bus, a 64-bit data bus, and 52
control and infonnation signals (see Figure 1-5). The system interface allows for address­
only transactions as well as address and data transactions. The MPC601 control and
information signals include the address arbitration, address start, address transfer, transfer
attribute, address termination, data arbitration, data transfer, data termination, and
processor state signals. Test and control signals provide diagnostics for selected internal
circuitry.

ADDRESS

ADDRESS ARBITRATION

ADDRESS START

ADDRESS TRANSFER

TRANSFER ATTRIBUTE

ADDRESS TERMINATION

CLOCKS

MPC601
Processor

I -= +3.6 V -

Figure 1-5. System Interface

DATA

DATA ARBITRATION

DATA TRANSFER

DATA TERMINATION

PROCESSOR STATE

TEST AND CONTROL

The system interface supports bus pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on
external arbitration and control circuitry. Similarly, the MPC601 supports split-bus
transactions for systems with multiple potential bus masters-one device can have
mastership of the address bus while another has mastership of the data bus. Allowing
mUltiple bus transactions to occur simultaneously increases the available bus bandwidth for
other activity and as a result, improves performance.

The MPC601 supports multiple masters through a bus arbitration scheme that allows
various devices to compete for the shared bus resource. The arbitration logic can implement
priority protocols, such as fairness, and can park masters to avoid arbitration overhead. The
MESI protocol ensures coherency among multiple devices and system memory. Also, the
MPC601 's on-chip cache and UTLBs and optional second-level caches can be controlled
externally. Software support for atomic memory operations minimizes the effects of data
dependencies in multiple processor implementations.

1-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The MPC601 clocking structure allows the processor to operate at an integer multiple of
the bus frequency.

The following sections describe the MPC601 bus support for memory and I/O controller
interface operations. Note that some signals perform different functions depending upon
the addressing protocol used.

1.3.8.1 Memory Accesses
Memory accesses allow transfer sizes of 8, 16, 24, 32, 40, 48, 56, or 64 bits in one bus clock
cycle. Data transfers occur in either single-beat transactions or four-beat burst transactions.
A single beat transaction transfers as much as 64 bits. Single-beat transactions are caused
by non-cached accesses that access memory directly (that is, reads and writes when caching
is disabled, cache-inhibited accesses, and stores in write-through mode). Burst transactions,
which always transfer an entire cache sector (32 bytes), are initiated when a sector in the
cache is read from or written to memory. Additionally, the MPC601 supports address-only
transactions used to invalidate entries in other processors' TLBs and caches.

1.3.8.2 I/O Controller Interface Operations
Both memory and I/O accesses can use the same bus transfer protocols. The MPC601 also
has the ability to define memory areas as I/O controller interface areas. Accesses to the I/O
controller interface redefine the function of some of the address transfer and transfer
attribute signals and add control to facilitate transfers between the MPC601 and specific I/O
devices. I/O controller interface transactions provide multiple transaction operations for
variably-sized data transfers (1 to 128 bytes) and support a split request/response protocol.
The distinction between the two types of transfers is made with separate signals-TS' for
memory-mapped accesses and XATS' for I/O controller interface accesses. Refer to
Chapter 9, "System Interface Operation," for more information.

1.3.8.3 MPC601 Signals
The MPC601 signals are grouped as follows:

• Address arbitration signals-The MPC601 uses these signals to arbitrate for address
bus mastership.

• Address transfer start signals-These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals-These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

• Trans[~r attribute signals-These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write­
through, or cache-inhibited.

• Address transfer termination signals-These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

MOTOROLA Chapter 1. Overview 1-31

•

•
• Data arbitration signals-The MPC601 uses these signals to arbitrate for data bus

mastership.

• Data transfer signals-These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

• Data transfer termination signals-Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

• System status signals-These signals include the interrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

• Processor state signals-These two signals are used to set the reservation coherency
bit and set the size of the MPC601 's output buffers.

• Miscellaneous signals-These signals provide information about the state of the
reservation coherency bit and the size of the MPC601's output buffers.

• COP interface signals-The common on-chip processor (COP) unit is the master
clock control unit and it provides a serial interface to the system for performing
built-in self test (BIST).

• Test interface signals-These signals are used for internal testing.

• Clock signals-These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE
A bar over a signal name indicates that the signal is active
low-for example, ARI'RV (address retry) and TS' (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as APO-AP3 (address bus parity
signals) and TTO-TT4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

1.3.8.4 Signal Configuration
Figure 1-6 illustrates the MPC601 microprocessor's pin configuration, showing how the
signals are grouped.

1-32 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

ADDRESS f
ARBITRATION 1 ..

.. ..
ADDRESS {

TRANSFER
START

..
.. ADDRESS f

TRANSFER 1

TRANSFER
ATTRIBUTE

..

.. ..

..

.. ..
ADDRESS j­

TERMINATION 1:

CLOCKS {

tm
1m
'ASS

TS
~

AO-A31

APO-AP3

AJ5t:

TT4
TTO-TT3
TCO-TC1

TSIZO-TSIZ2
TSST
~
wr
cmr

CSEO-CSE2
RFl SI'lFl RE:<:i

~
ARTRY'
mID

2X PCLK
~
~

ATC

1 1 rnm
~

~ 1 1 rnm • 1 1

• 1
~ 1 64

DHO-DH31. DLO-DL31

8 DPO-DP7

~ 32 1 1JPl:

• 4
1 1 TA

1 rnrnw
TEA 1 1

• 4 3: mT
2 1 "'tJ i:::RSTFlII'l .. 3 0 1

• 1 1
CKSTP._OUT

0') HRESET
1 0 1

~
1L 1

'RSIiV .. 1 1 S<:; ORIIJE:
3
1 S?S <:iOIE:Si::: ..

RESUME

• aUIESC_REa

.. 1
ESP INTERFACE • 1 9

.. 1 24 TEST INTERFACE

.. 1

• 1
~ 1

59 57

14-
+3.6 V

Figure 1-6. MPC601 Signal Groups

1.3.8.5 Real-Time Clock Facility

~

1
j-
-

r-

--

:J-

~

DATA
ARBITRATION

DATA
TRANSFER

DATA
TERMINATION

SYSTEM
STATUS

ESP SCAN
INTERFACE

TEST
INTERFACE

The real-time clock (RTC) facility, which is specific to the MPC601, provides a high­
resolution measure of real time to provide time of day and date with a calendar range of
136.19 years. The RTC consists of two registers-the RTC upper (RTCU) register and the
RTC lower (RTCL) register. The RTCU register maintains the number of seconds from a
point in time specified by software. The RTCL register counts nanoseconds. The contents
of either register may be copied to any GPR.

MOTOROLA Chapter 1. Overview 1-33

•

•

1-34 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 2
Reg isters and Data Types
This chapter describes the MPC601's register organization, how these registers are
accessed, and how data is formatted in these registers.

The MPC601 always operates in one of three distinct states-reset state, checkstop state,
and normal execution state, which includes both user- and supervisor-level operations. The
three states are described as follows:

Reset state-In the reset state all processor instruction execution is aborted, registers
are initialized appropriately, and external signals are placed in the high-impedance
state.

Normal instruction execution state-When the MPC601 is in the normal execution
state, it operates at one of two privilege levels-user mode, and supervisor mode,
which can be accessed when an exception is taken. This access privilege determines
which instructions and which of the registers software can access.

Checkstop state-When a processor is in the checkstop state, instruction processing
is suspended and generally cannot be restarted without resetting the processor. The
checks top state is provided to help diagnose problems.

The PowerPC architecture defines register-to-register operations for all computational
instructions. Source operands for these instructions are accessed from the on-chip registers
or are provided as immediate values embedded in the opcode. The three-register instruction
format allows specification of a different target register from the two source registers, thus
preserving the original data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and
registers with explicit load and store instructions only.

2.1 Normal Instruction Execution State
During normal execution, a program can access the registers, shown in Figure 2-1,
depending on the program's access privilege (supervisor or user, determined by the
privilege-level (PR) bit in the machine state register (MSR)). Note that registers such a~ the
general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed through
operands that are part of the instructions. Access to registers can be explicit (that is, througn
the use of specific instructions for that purpose such as Move to Special-Purpose Register
(mtspr) and Move from Special-Purpose Register (mfspr) instructions) or implicitly as the

MOTOROLA Chapter 2. Registers and Data Types 2-1

•

• part of the execution of an instruction. Some registers are accessed both explicitly and
implicitly.

The numbers to the left of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

r - - USER PROGRAMMING -U;;r-Lev;I-SPRs - - - - - - - -

o

GPRO

GPR1

• • •
GPR31

o

MODEL SPRO

FPRO

FPR1

• • •
FPR31

0

31

0

63

Condition

Register

CR

31

Floating Point
Status and

Control
Register

FPSCR

31

SPR1

SPR4

SPR5

SPR8

SPR9

SPR18

SPR19

SPR22

SPR25

SPR26

SPR27

MQ Register 1

XER-Integer Exception Register

RTCU-RTC Upper Register 1,3

RTCL-RTC Lower Register 1,3

LR-Link Register

CTR-Count Register

o 31

Supervisor-Level SPRs

DSISR-DAEI Source Instruction Service Register

DAR-Data Address Register

DEC-Decrementer Register4

SDR1-Table Search Descriptor Register 1

SRRO-Save and Restore Register 0

SRR1-Save and Restore Register 1

SPRGO-SPR General 0

SPRG1-SPR General 1

SPRG2-SPR General 2

SPRG3-SPR General 3

EAR-External Access Register

PVR-Processor Version Register

SUPERVISOR PROGRAMMING
MODEL

SPR272

SPR273

SPR274

SPR275

SPR282

SPR286

SPR528

SPR529

SPR530

SPR531

SPR532

SPR533

SPR534

SPR535

BATOU-Instruction BAT 0 Upper 2

BATOL-Instruction BAT 0 Lower 2

o

2-2

Machine State
Register 2

MSR

31 0

Segment
Registers

SRO

SR1

• • •
SR15

31

SPR1008

SPR1009

SPR1010

SPR1013

SPR1023

BAT1 U-Instruction BAT 1 Upper 2

BAT1L-lnstruction BAT 1 Lower 2

BAT2U-lnstruction BAT 2 Upper 2

BAT2L -Instruction BAT 2 Lower 2

BAT3U-lnstruction BAT 3 Upper 2

BAT3L-lnstruction BAT 3 Lower 2

HIDO 1

HID11

HID2 (IABR) 1

HID5 (DABR) 1

HID15 (PIR) 1

o
1 MPC601-only registers, These registers may not be supported by other PowerPC processors,
2 These registers are implemented differently on other PowerPC processors,
3 The RTCU and RTCL registers can only be written in supervisor mode,

31

4The DEC can be read by user programs by specifying SPR6 in the mfspr instruction (for POWER compatibility)

Figure 2-1. Programming Model-Registers

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The following paragraphs discuss the MPC601 's user- and supervisor-level registers.

• User-level registers-The user-level registers can be accessed by all software with
either user or supervisor privileges. These include the following:

- General-purpose registers (GPRs). The general-purpose register file consists of
thirty-two, 32-bit GPRs designated as GPRO-GPR31. This register file serves as
the data source or destination for all integer instructions and provides addresses
for all memory-access instructions. See Section 2.2.1, "General Purpose
Registers (GPRs)," for more information.

- Aoating-point registers (FPRs). The floating-point register file consists of thirty­
two, 64-bit FPRs designated as FPRO-FPR31, which serve as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point formats. The floating­
point register file is part of the FPU. For more information, see Section 2.2.2,
"Aoating-Point Registers (FPRs)."

- Aoating-point status and control register (FPSCR). The FPSCR is a user-control
register in the FPU. It contains all floating-point exception signal bits, exception
summary bits, exception enable bits, and rounding control bits needed for
compliance with the IEEE 754 standard. For more information, see
Section 2.2.3, "Aoating-Point Status and Control Register (FPSCR)."

- Condition register (CR). The condition register is a 32-bit register, divided into
eight 4-bit fields, CRO-CR7, that reflects the result of certain arithmetic
operations and provides a mechanism for testing and branching. For more
information, see Section 2.2.4, "Condition Register (CR)."

The remaining user-level registers are SPRs. Note however that while the PowerPC
architecture provides a separate mechanism for accessing SPRs, this mechanism is
not the usual method for accessing user-level SPRs.

- MQ register (MQ). The MQ register is a MPC601-specific, 32-bit register used
as a register extension to accommodate the product for the multiply instructions
and the dividend for the divide instructions. It is also used as an operand of long
rotate and shift instructions. This register is provided for compatibility with
POWER architecture, and is not part of the PowerPC architecture. For more
information, see Section 2.2.5.1, "MQ Register (MQ)." The MQ register is
typically accessed implicitly as part of executing a computational instruction.

- Integer exception register (XER). The XER is a 32-bit register that indicates such
things as overflow and carries for integer operations. For more information, see
Section 2.2.5.2, "Integer Exception Register (XER)."

- Real-time clock (RTC) registers-RTCU and RTCL (RTC upper and RTC
lower). The RTCU register maintains the number of seconds from a time
specified by software. The RTCL register maintains a fraction of the current
second in nanoseconds. The contents of either register can be copied to any GPR.
These registers are specific to the MPC601. These registers are not supported in
the PowerPC architecture, which uses the time base facility rather than a separate

MOTOROLA Chapter 2. Registers and Data Types 2-3

2-4

real-time clock. For more information, see Section 2.2.5.3, "Real-Time Clock
(RTC) Registers."

- Link register (LR). The 32-bit link register provides the branch target address for
the Branch Conditional to Link Register (bclrx) instruction, and can optionally
be used to hold the logical address of the instruction that follows a branch and
link instruction. Although this is an SPR, it is not typically accessed through the
PowerPC's SPR mechanism. For more information, see Section 2.2.5.4, "Link
Register (LR)."

- Count register (CTR). The count register is a 32-bit register for holding a loop
count that can be decremented during execution of appropriately coded branch
instructions. The CTR can also provide the branch target address for the Branch
Conditional to Count Register (bcctrx) instruction. Although this is an SPR, it is
not typically accessed through the PowerPC's SPR mechanism. For more
information, see Section 2.2.5.5, "Count Register (CTR)."

• Supervisor-level registers-The MPC601 incorporates registers that can be
accessed only by programs executed with supervisor privileges. These registers
consist of the machine state register, segment registers, and supervisor SPRs,
described as follows:

- The machine state register (MSR), shown in Figure 2-11, is a 32-bit register that
defines the state of the processor. The MSR can be modified by the Move to
Machine State Register (mtmsr), System Call (sc), and Return from Exception
(rfi) instructions. It can be read by the Move from Machine State Register
(mfmsr) instruction. Note that in other PowerPC implementations, the MSR is a
64-bit register.

- Segment registers. The sixteen 32-bit segment registers are present only in 32-bit
PowerPC implementations. Figure 2-12 and Figure 2-13 show the format of a
segment register. The fields in the segment register are interpreted differently
depending on the value of bit O.

The remaining supervisor-level registers are SPRs:

- The 32-bit DAB/source instruction service register (DSISR) defines the cause of
data access and alignment exceptions; see Figure 2-14. For more information,
see Section 2.3.3.2, "DAB/Source Instruction Service Register (DSISR)."

- The data address register (DAR) is a 32-bit register shown in Figure 2-15. After
a data access or an alignment exception, DAR is set to the effective address of a
load or store element. For more information, see Section 2.3.3.3, "Data Address
Register (DAR)."

- The decrementer register (DEC) is a 32-bit decrementing counter that provides
a mechanism for causing a decrementer exception after a programmable delay.
In the MPC601, the RTC provides the frequency for the DEC. In other PowerPC
implementations, the frequency is a subdivision of the processor clock. For more
information, see Section 2.3.3.4, "Decrementer (DEC) Register."

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

- The 32-bit table search descriptor register 1 (SDR 1) specifies the page table
variables used in virtual-to-physical address translation. For more information,
see Section 2.3.3.5, "Table Search Descriptor Register 1 (SDRl)."

- The machine status save/restore register 0 (SRRO) is a 32-bit register that is used
by the MPC601 for saving machine status on exceptions and restoring machine
status when an rfi instruction is executed. SRRO is shown in Figure 2-18. For
more information, see Section 2.3.3.6, "Machine Status Save/Restore Register 0
(SRRO)."

- The machine status save/restore register 1 (SRR1) is a 32-bit register used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. SRR 1 is shown in Figure 2-19. For more information,
see Section 2.3.3.7, "Machine Status Save/Restore Register 1 (SRR1)."

- The general SPRs, SPRGO-SPRG3, are 32-bit registers provided for operating
system use. See Figure 2-20. For more information, see Section 2.3.3.8,
"General SPRs (SPRGO-SPRG3)."

- The external access register (EAR) is a 32-bit register that controls access to the
external control facility through the eciwx and ecowx instructions. Note that the
EAR register and the eciwx and ecowx instructions are an optional part of the
PowerPC architecture and may not be supported in other PowerPC processors.
For more information about the external control facility, see Section 2.3.3.9,
"External Access Register (EAR)."

- The processor version register (PVR) is a 32-bit, read-only register that identifies
the version (model) and revision level of the PowerPC processor. The contents
of the PVR can be copied to a GPR by the Move from Special Purpose Register
(mfspr) instruction. For more information, see Section 2.3.3.10, "Processor
Version Register (PVR)."

- Block-address translation (BAT) registers. The MPC601 includes eight block­
address translation registers (BATs), consisting of four pairs of BATs (BATOU­
BAT3U and BATOL-BAT3L). See Figure 2-1 for a list of the SPR numbers for
the BAT registers. Figure 2-23 and Figure 2-24 show the-formats of the upper
and lower BAT registers. Note that other PowerPC implementations have two
sets of four BAT pairs-four sets of upper and lower IBATs (which occupy the
space of the unified BATs in the MPC6(1) and four sets of upper and lower
DBATs (located in the subsequent eight positions at SPR numbers 536-543).

- The hardware implementation registers, HIDO-HID2, HID5, and HID15 are
provided primarily for debugging. For more information, see Section 2.3.3.12.1,
"Checkstop Sources and Enables Register-HIDO" through Section 2.3.3.12.5,
"Processor identification Register (PIR)-HID15." HIDIS holds the four-bit
processor identification tag (PID) that is useful for differentiating processors in
multiprocessor system designs. For more information, see Section 2.3.3.12.5,
"Processor Identification Register (PIR)-HID15."

MOTOROLA Chapter 2. Registers and Data Types 2-5

1m

.. Note that there are registers common to other PowerPC processors not implemented in the
MPC601. When the MPC601 detects SPR encodings other than those defined in this
document, it either takes a program exception (if bit 0 of the SPR encoding is set) or it treats
the instruction as a no-op (if bit 0 of the SPR encoding is clear).

2.1.1 Changing Privilege Levels
During normal instruction execution, the processor operates using either user- or
supervisor-level instructions and registers. Supervisor-level access is provided through the
MPC601 's exception mechanism. That is, when an exception is taken, either due to an error
or problem that needs to be serviced or deliberately through the use of a trap instruction,
the processor begins operating in supervisor mode. The level of access is indicated by the
privilege-level (PR) bit in the MSR.

2.2 User-Level Registers
This section describes in detail the registers that can be accessed by user-level software. All
user-level registers can be accessed by supervisor-level software.

2.2.1 General Purpose Registers (GPRs)
Integer data is manipulated in the IU's thirty-two 32-bit GPRs shown in Figure 2-2. These
registers are accessed as source and destination registers through operands in the
instruction syntax.

GPRO

GPR1

GPR31

a

Figure 2-2. General Purpose Registers (GPRs)

All GPRs are cleared by hard reset.

2.2.2 Floating-Point Registers (FPRs)

31

The PowerPC architecture provides thirty-two, 64-bit FPRs as shown in Figure 2-3. These
registers are accessed as source and destination registers through operands in floating-point
instructions. Each FPR supports the double-precision, floating-point format. Every
instruction that interprets the contents of an FPR as a floating-point value uses the double­
precision floating-point format for this interpretation.

2-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

All floating-point arithmetic instructions operate on data located in FPRs and, with the
exception of the compare instructions, place the result into an FPR. Information about the
status of floating-point operations is placed into the floating-point status and control
register (FPSCR) and in some cases, into CR after the completion of the operation's final
writeback stage. For information on how CR is affected for floating-point operations, see
Section 2.2.4, "Condition Register (CR)."

Load and store double instructions are provided that transfer 64 bits of data between
memory and the FPRs in the floating-point processor with no conversion. Load single
instructions are provided to transfer and convert floating-point values in floating-point
format from memory to the same value in double-precision floating-point format in the
FPRs. Store single instructions are provided to transfer and convert floating-point values in
double-precision floating-point format from the FPRs to the same value in single-precision
floating-point format in memory.

Single- and double-precision arithmetic instructions accept values from the FPRs in
double-precision format. For single-precision arithmetic instructions, all input values must
be representable in single-precision format; otherwise, the result placed into the target FPR
and the setting of status bits in the FPSCR and in the condition register are undefined.

The MPC601 's floating-point arithmetic instructions produce intermediate results that may
be regarded as infinitely precise. After normalization or denormalization, if the precision of
the intermediate result cannot be represented in the destination format (either 32-bit or 64-
bit) then it must be rounded. The final result is then placed into the FPR in the double­
precision format.

FPRO

FPR1

FPR31

o

Figure 2-3. Floating-Point Registers (FPRs)

All FPRs are cleared by hard reset.

2.2.3 Floating-Point Status and Control Register (FPSCR)

63

The FPSCR, shown in Figure 2-4, controls the handling of floating-point exceptions and
records status resulting from the floating-point operations. Bits 0-23 are status bits. Bits
24-31 are control bits. Bits in the FPSCR are updated after an operation's final writeback
stage.

MOTOROLA Chapter 2. Registers and Data Types 2-7

The floating-point exception condition bits in the FPSCR are bits 0-12 and 21-23 and are
sticky, except for the floating-point enabled exception summary (FE X) and floating-point
invalid operation exception summary (VX). That is, once set sticky bits remain set until
they are cleared by an mcrfs, mtfsfi, mtfsf, or mtfsbO instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore these two bits are not
listed among the FPSCR bits directly affected by the various instructions.

FPSCR Bill Reserved

VXIDI -------, ~----VXZDZ ...---- VXSOFT

VXSQRT

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-4. Floating-Point Status and Control Register (FPSCR)

A listing of FPSCR bit settings is shown in Table 2-1.

Table 2-1. FPSCR Bit Settings

Bit(s) Name Description

° FX Floating-point exception summary (FX). Every floating-point instruction implicitly sets
FPSCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to
transition from ° to 1. The mcrfs instruction implicitly clears FPSCR[FX] if the FPSCR field
containing FPSCR[FX] is copied. The mtfst, mtfstl, mtfsbO, and mtfsb1 instructions can set
or clear FPSCR[FX] explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary (FEX). This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits
masked with their respective enable bits. The mcrfs instruction implicitly clears FPSCR[FEX]
if the result of the logical OR described above becomes zero. The mtfst, mtfsfi, mtfsbO, and
mtfsb1 instructions cannot set or clear FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary (VX). This bit signals the occurrence of
any invalid operation exception. It is the logical OR of all of the invalid operation exceptions.
The mcrfs instruction implicitly clears FPSCR[VX] if the result of the logical OR described
above becomes zero. The mtfst, mtfstl, mtfsbO, and mtfsb1 instructions cannot set or clear
FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception (OX). This is a sticky bit. See Section 5.4.7.4, "Overflow
Exception Condition."

4 UX Floating-point underflow exception (UX). This is a sticky bit. See Section 5.4.7.5, "Underflow
Exception Condition."

5 ZX Floating-point zero divide exception (ZX). This is a sticky bit. See Section 5.4.7.3, "Zero Divide
Exception Condition."

6 XX Floating-point inexact exception (XX). This is a sticky bit. See Section 5.4.7.6, "Inexact
Exception Condition."

2-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 2-1. FPSCR Bit Settings (Continued)

Bit(s) Name Description

7 VXSNAN Floating-point invalid operation exception for SNaN (VXSNAN). This is a sticky bit. See
Section 5.4.7.2, "Invalid Operation Exception Conditions."

8 VXISI Floating-point invalid operation exception for 00-00 (VXISI). This is a sticky bit. See Section
5.4.7.2, "Invalid Operation Exception Conditions."

9 VXIDI Floating-point invalid operation exception for 00/00 (VXIDI). This is a sticky bit. See Section
5.4.7.2, "Invalid Operation Exception Conditions."

10 VXZDZ Floating-point invalid operation exception for % (VXZDZ). This is a sticky bit. See Section
5.4.7.2, "Invalid Operation Exception Conditions."

11 VXIMZ Floating-point invalid operation exception for 00*0 (VXIMZ). This is a sticky bit. See Section
5.4.7.2, "Invalid Operation Exception Conditions."

12 VXVC Floating-point invalid operation exception for invalid compare (VXVC). This is a sticky bit. See
Section 5.4.7.2, "Invalid Operation Exception Conditions."

13 FR Floating-point fraction rounded (FR). The last floating-point instruction that potentially rounded
the intermediate result incremented the fraction. (See Section 2.4.9.6, "Rounding.") This bit is
not sticky.

14 FI Floating-point fraction inexact (FI). The last floating-point instruction that potentially rounded
the intermediate result produced an inexact fraction or a disabled exponent overflow. (See
Section 2.4.9.6, "Rounding.") This bit is not sticky.

15-19 FPRF Floating-point result flags (FPRF). This field is based on the value placed into the target
register even if that value is undefined. Refer to Table 2-2 for specific bit settings.
15 Floating-point result class descriptor (C). Floating-point instructions other than the

compare instructions may set this bit with the FPCC bits, to indicate the class of the
result.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Other
floating-point instructions may set the FPCC bits with the C bit, to indicate the class
of the result. Note that in this case the high-order three bits of the FPCC retain their
relational significance indicating that the value is less than, greater than, or equal to
zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or »
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or?)

20 - Reserved

21 VXSOFT Not implemented in the MPC601. Some implementations use this as the floating-point invalid
operation exception for software request (VXSOFT). This bit can be altered only by the mcrfs,
mtfsfl, mtfsf, mtfsbO, or mtfsb1 instructions. The purpose of VXSOFT is to allow software to
cause an invalid operation condition for a condition that is not necessarily associated with the
execution of a floating-point instruction. For example, it might be set by a program that
computes a square root if the source operand is negative. This is a sticky bit. See Section
5.4.7.2, "Invalid Operation Exception Conditions."

22 VXSQRT Not implemented in the MPC601. Some implementations use this as the floating-point invalid
operation exception for invalid square root (VXSQRT). This is a sticky bit. This guarantees that
software can simulate fsqrt and frsqrte, and to provide a consistent interface to handle
exceptions caused by square-root operations. See Section 5.4.7.2, "Invalid Operation
Exception Conditions."

MOTOROLA Chapter 2. Registers and Data Types 2-9

Table 2-1. FPSCR Bit Settings (Continued)

Bit(s) Name Description

23 VXCVI Floating-point invalid operation exception for invalid integer convert (VXCVI). This is a sticky
bit. See Section 5.4.7.2, "Invalid Operation Exception Conditions."

24 VE Floating-point invalid operation exception enable (VE). See Section 5.4.7.2, "Invalid Operation
Exception Conditions."

25 OE Floating-point overflow exception enable (OE). See Section 5.4.7.4, "Overflow Exception
Condition."

26 UE Floating-point underflow exception enable (UE). This bit should not be used to determine
whether denormalization should be performed on floating-point stores. See Section 5.4.7.5,
"Underflow Exception Condition."

27 ZE Floating-point zero divide exception enable (ZE). See Section 5.4.7.3, "Zero Divide Exception
Condition."

28 XE Floating-point inexact exception enable (XE). See Section 5.4.7.6, "Inexact Exception
Condition."

29 - Reserved. This bit may be implemented as the non-IEEE mode bit (NI) in other PowerPC im-
plementations.

30-31 RN Floating-point rounding control (RN). See Section 2.4.9.6, "Rounding."
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward -infinity

Table 2-2 illustrates the floating-point result flags used by the MPC601. The result flags
correspond to FPSCR bits 15-19.

Table 2-2. Floating-Point Result Flags in FPSCR

Result Flags
(Bits 15-19) Result value class

C<>=?

10001 Quiet NaN

01001 -Infinity

01000 - Normalized number

11000 - Denormalized number

10010 -Zero

00010 + Zero

10100 + Denormalized number

00100 +Normalized number

00101 +Infinity

The FPSCR is cleared by hard reset.

2-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

2.2.4 Condition Register (CR)
The condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing and branching. The bits in the CR are grouped into
eight 4-bit fields, CRO-CR7, as shown in Figure 2-5.

CRO CR1 CR2 CR3 I CR4 I CR5 I CR6 CR7 I
o 34 78 1112 1516 1920 2324 2728 31

Figure 2-5. Condition Register (CR)

The CR fields can be set in one of the following ways:

• Specified fields of the CR can be set by a move instruction (mterf, or merfs) to the
CR from a OPR.

• Specified fields of the CR can be moved from one CRx field to another with the
merf instruction.

• A specified field of the CR can be set by a move instruction (merxr) to the CR from
theXER.

• Condition register logical instructions can be used to perform logical operations on
specified bits in the condition register.

• CRO can be the implicit result of an integer operation.

• CR 1 can be the implicit result of a floating-point operation.

• A specified CR field can be the explicit result of either an integer or floating-point
compare instruction.

Instructions are provided to test individual CR bits. The condition register is cleared by
hard reset.

2.2.4.1 Condition Register CRD Field Definition
In most integer instructions, when the record bit, Rc, is set, CRO is generated by an
algebraic comparison of the result to zero. The integer arithmetic and logical instructions
(addie., andi., and andis.) generate these four bits in CRO implicitly. These bits are shown
in Table 2-3. In the descriptions below, the result refers to the 32-bit value placed into the
target register. If any portion of the result is undefined, the value placed in the CRO field is
undefined.

MOTOROLA Chapter 2. Registers and Data Types 2-11

..

.. Table 2-3. Bit Settings for CRD Field of CR

CRO
Description

Bit

0 Negative (LT)-This bit is set when the result is negative.

1 Positive (GT)-This bit is set when the result is positive (and not zero).

2 Zero (EQ)-This bit is set when the result is zero.

3 Summary overflow (SO)-This is a copy of the final state of XER[SO] at the completion of the instruction.

2.2.4.2 Condition Register CR1 Field Definition
In all floating-point instructions except merfs, fempu, and fempo, when record option is
specified, CR 1 is copied from bits 0-3 of the floating-point status and control register
(FPSCR). For more information about the FPSCR, see Section 2.2.3, "Floating-Point
Status and Control Register (FPSCR)." The bit settings for the CRI field are shown in
Table 2-4.

Table 2-4. Bit Settings for CR1 Field of CR

CR1
Description

Bit

4 Floating-point exception (FX)-This is a copy of the final state of FPSCR[FX] at the completion of the
instruction.

S Floating-point enabled exception (FEX)-This is a copy of the final state of FPSCR[FEX] at the
completion of the instruction.

6 Floating-point invalid exception (VX)-This is a copy of the final state of FPSCR[VX] at the completion of
the instruction.

7 Floating-point overflow exception (OX)-This is a copy of the final state of FPSCR[OX] at the completion
of the instruction.

2.2.4.3 Condition Register CRn Field-Compare Instruction
When a specified CR field is set by a compare instruction, the bits of the specified field are
interpreted, as shown in Table 2-5. A condition register field can also be accessed by the
mfer, mcrf, and mtcrf instructions.

2-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 2-5. CRn Field Bit Settings for Compare Instructions

CRn
Description

Bit·

0 Less than, Floating-point less than (LT, FL).
For integer compare instructions, (rA) < SIMM, UIMM, or (rB) (algebraic comparison) or (rA) SIMM,
UIMM, or (rS) (logical comparison).
For floating-point compare instructions, (frA) < (frS).

1 Greater than, floating-point greater than (GT, FG).
For integer compare instructions, (rA) > SIMM, UIMM, or (rS) (algebraic comparison) or (rA) SIMM,
UIMM, or (rS) (logical comparison).
For floating-point compare instructions, (frA) > (frS).

2 Equal, floating-point equal (EO, FE).
For integer compare instructions, (rA) = SIMM, UIMM, or (rS).
For floating-point compare instructions, (frA) = (frS).

3 Summary overflow, floating-point unordered (SO, FU).
For integer compare instructions, this is a copy of the final state of XER[SO] at the completion of the
instruction.
For floating-point compare instructions, one or both of (frA) and (frS) is not a number (NaN).

*Here, the bit indicates the bit number in anyone of the four-bit subfields, CRO-CR7.

2.2.5 User-Level SPRs
User-level SPRs can be accessed by either user- or supervisor-level instructions. Typically,
these registers are accessed implicitly though the encoding of the instruction rather than
explicitly through the Move to Special Purpose Register (mtspr) and Move from Special
Purpose Register (mfspr) instructions. Some SPRs are implementation-specific; some
SPRs in the MPC601 may not be implemented in other PowerPC processors, or may not be
implemented in the same way in other PowerPC processors.

For registers with reserved bits, implementations return zeros or return the value last
written to those bits. Table 2-6 summarizes how the MPC601 treats the undefined bits in
the user-level SPRs.

Table 2-6. Undefined Bits in User-Level SPRs

Register

XER

Value Returned
for Undefined Sits

Zero

Note that some SPR bits are reserved-the results of writing to and reading from these bits
are undefined. Some of these bits are used by oth~r PowerPC implementations.

The RTCL register is defined as 32 bits, but the lowest-order seven bits are not
implemented. Those bits are reserved, and zeroes are loaded into the respective bit
positions of the target register when the RTCL is read.

MOTOROLA Chapter 2. Registers and Data Types 2-13

..

.. When the MPC601 detects SPR encodings other than those defined in this document, it
either takes a program exception (if bit 0 of the SPR encoding is set) or it treats the
instruction as a no-op (if bit 0 of the SPR encoding is clear).

2.2.5.1 MQ Register (MQ)
The MQ register (MQ), shown in Figure 2-6, is a 32-bit register used as a register extension
to accommodate the product for the multiply instruction and the dividend for the divide
instruction. It is also used as an operand of long rotate and shift instructions. The MQ
register is implemented on the MPC601.

MQ

o 31

Figure 2-6. MQ Register (MQ)

The MQ register is not defined in the PowerPC architecture. However, in the MPC601, it
may be modified during the execution of the mulli, mullw, mulhs, mulhu, divw, and
divwu instructions, which are PowerPC instrutions.

The value written to the MQ register during these operations is operand-dependent and
therefore, the MQ contents become undefined after any of these instructions executes. In
addition, the MQ is modified by the implementation-specific instructions supported by the
MPC601 that are not part of the PowerPC architecture. These are listed in Table 2-7.

Table 2-7. MPC601-Specific Instructions that Modify the MQ Register

Mnemonic Instruction Name ReadlWrite

mul Multiply Read/write

div Divide Read/write

divs Divide Short Read/write

sliq Shift Left Immediate with MQ Read/write

slliq Shift Left Long Immediate with MQ Read/write

sle Shift Left Extended Write

sle~ Shift Left Extended with MQ Read/write

slliq Shift Left Long Immediate with MQ Read/write

slJq Shift Left Long with MQ Read/write

slq Shift Left with MQ Write

sraiq Shift Right Algebraic Immediate with MQ Write

sraq Shift Right Algebraic with MQ Write

sre Shift Right Extended Write

srea Shift Right Extended Algebraic Write

sreq Shift Right Extended with MQ Read/write

2-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 2-7. MPC601-Specific Instructions that Modify the MQ Register (Continued)

Mnemonic Instruction Name ReadlWrite

sriq Shift Right Immediate with MQ Write

srliq Shift Right Long Immediate with MQ Read/write

srlq Shift Right Long with MQ Read/write

srq Shift Right with MQ Write

The PowerPC instructions listed in Table 2-8 use the MQ register but leave it in an
undefined state.

Table 2-8. PowerPC Instructions that Use the MQ Register

Mnemonic Instruction Name

mulIi Multiply Low Immediate

mullw Multiply Low

mulhw Multiply High Word

mulhwu Multiply High Word Unsigned

divw Divide Word

divwu Divide Word Unsigned

The Move to Special Purpose Register (mtspr) and Move from Special Purpose Register
(mfspr) can access the MQ register. The SPR number for the MQ register is O.

The MQ register is not part of the PowerPC architecture and will not be supported in all
PowerPC microprocessors. The MQ register is cleared by hard reset.

2.2.5.2 Integer Exception Register (XER)
The integer exception register (XER) is a user-level, 32-bit register shown in Figure 2-7.

IillillI Reserved

Byte compare value Byte count

o 1 2 3 1516 232425 31

Figure 2-7. Integer Exception Register (XER)

The SPR number for the XER is 1. The bit definitions for XER, shown in Table 2-9, are
based on the operation of an instruction considered as a whole, not on intermediate results.
For example, the result of the Subtract from Carrying (subfcx) instruction is specified as
the sum of three values. This instruction sets bits in the XER based on the entire operation,
not on an intermediate sum.

The XER is cleared by hard reset.

MOTOROLA Chapter 2. Registers and Data Types 2-15

..

Table 2-9. Integer Exception Register Bit Definitions

Bit(s) Name Description

0 SO Summary Overflow (SO)-The summary overflow bit (OV) is set whenever an instruction sets the
overflow bit (OV) to indicate overflow and remains set until software clears it. It is not altered by
compare instructions or other instructions that cannot overflow.

1 OV Overflow (OV)-The overflow bit is set to indicate that an overllow has occurred during execution
of an instruction. Integer and subtract instructions having OE=1 set OV if the carry out of bit ° is
not equal to the carry out of bit 1, and clear it otherwise. The OV bit is not altered by compare
instructions or other instructions that cannot overflow.

2 CA Carry (CA)-In general, the carry bit is set to indicate that a carry out of bit ° occurred during
execution of an instruction. Add carrying, subtract from carrying, add extended, and subtract from
extended instructions set CA to one if there is a carry out of bit 0, and clear it otherwise. The CA
bit is not altered by compare instructions, or other instructions that cannot carry, except that shift
right algebraic instructions set the CA bit to indicate whether any '1' bits have been shifted out of a
negative quantity.

3-15 - Reserved

16-23 This field contains the byte to be compared by a Load String and Compare Byte Indexed (Iscbx)
instruction.

24 - Reserved

25-31 This field specifies the number of bytes to be transferred by a Load String Word Indexed (Iswx),
Store String Word Indexed (stswx) or Load String and Compare Byte Indexed (Iscbx) instruction.

2.2.5.3 Real-Time Clock (RTC) Registers
The real-time clock (RTC) registers provide a high-resolution measure of real time for
indicating the date and time of day. The RTC facility provides a calendar range of roughly
135 years. The RTC registers are not implemented on other PowerPC processors; instead,
other PowerPC processors use a time base which is a subdivision of the processor clock.

The RTC input is sampled using the CPU clock. Therefore, if the CPU clock is less than
twice the RTC frequency, real-time clock (and decrementer) sampling and incrementing
errors will occur. Therefore, in systems that change the CPU clock frequency dynamically
beyond this limit, a method of saving and restoring the real-time clock register values via
external means is required.

The RTC registers, shown in Figure 2-8, consist of the following:

Real-time clock upper (RTCU)-This register specifies the number of seconds that
have elapsed since the time specified in the software.

Real-time clock lower (RTCL)-This register contains the number of nanoseconds
since the beginning of the current second.

Together, RTCU and RTCL provide a high-resolution measurement of real time.

Reading any portion of the RTC registers does not affect its contents. The writing of the
RTCU and RTCL registers is allowed for supervisor programs only (mtspr is supervisor­
only for RTC registers)

2-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

RTCU

o 31
(1)

Eill Reserved

RTCl

012
(2)

2425 31

Figure 2-8. Real-Time Clock (RTC) Registers

The RTC runs constantly while power is applied. Note that the RTC will not be
implemented in other PowerPC processors. The condition register is cleared by hard reset.
Note however, that if an external clock is connected to the RTC, the RTCL and RTCU
registers can change from their initial values without receiving instructions to load those
registers.

2.2.5.3.1 Real-Time Clock Lower (RTCL) Register
The RTCL functions as a 23-bit counter that provides the lower word of the RTC. As an
indicator of the granularity of the RTC, enough bits are implemented to provide a resolution
that is finer than the time required to execute 10 Add Immediate (addi) instructions. The
following details describe the RTCL:

• Bits 0-1 and bits 25-31 are not implemented. (The number of lower order bits
required is determined by the frequency of the oscillator-7.8125 MHz)

• The least significant implemented bit of the RTCL (bit 24) is incremented every 128
nS.

• The period of the RTCL is one billion nanoseconds (one second).

• Unless it is altered by software, the RTCL reaches its terminal count value of
999,999,872 (one billion minus 128) after 999,999,999 nS. The next time RTCL is
incremented, it cycles to all zeros and RTCU is incremented.

• Using the mfspr instruction with RTCL does not affect its contents. Unimplemented
bits are read as zeros.

• If the mtspr instruction is used to replace the contents of the RTCL with the contents
of a GPR, the values of the GPR corresponding to the unimplemented bits in the
RTCL are ignored.

2.2.5.3.2 Real-Time Clock Upper (ATCU) Register
The RTCU register is a 32-bit binary counter in which the least-significant bit is
incremented in synchronization with the transition to zero of the RTCL counter (after one­
billion nanoseconds-that is every second). All 32 bits of the RTCU are implemented.
When the RTCU is set to all ones, the next time it is incremented it becomes all zeros.

MOTOROLA Chapter 2. Registers and Data Types 2-17

..

.. When the contents of the RTCU or the RTCL are copied to a OPR, bits in the OPR
corresponding to the unimplemented bits in the RTCL are cleared.

2.2.5.3.3 Reading the RTC
The contents of either RTC register can be copied into a OPR by user programs with the
mfspr instruction. Because the RTCL continues to increment and the RTCU may be
incremented while instructions are being executed that read the two RTC registers, when
the current time is required in a form that includes more than the upper or lower word of
the RTC, the following procedure should be used:

1. Execute the following instruction sequence:

mfspr rA,r4
mfspr rB,r5
mfspr rC,r4

2. If (rC) = (rA)

then the correct value has been obtained
else repeat step 1

Step 2 is required because the RTC continues to increment and the RTCU may increment
while the instructions that read the two halves of the RTC are being executed. If the values
in rC and rAmatch, the RTCU has not been incremented, and the RTCU value can be used
along with the value in rB as the current RTC value. However, if the values of rC and rA
differ, the RTCU has been incremented and it cannot be guaranteed which, if either, RTCU
value should be associated with the value in rB.

Successive readings of the RTC registers do not necessarily give unique values. If unique
values are required, and the RTCL being updated at least once every ten add immediate
instruction times is insufficient to ensure unique values, a software solution is required.

2.2.5.3.4 RTC Synchronization in a Multiprocessor System
Typically, RTCs must be synchronized in a multiprocessor system.

One way to achieve synchronization is to use a gated RTC clock as the input to all
MPC601 s in a system. The gate clock can be enabled and disabled through the use of an
I/O access (either I/O controller interface store instruction to a selected BUID, or a
memory-mapped I/O access). This allows the RTC input clock to all processors to be turned
on and off at the same time. Each processor's RTC register can then be loaded to the same
value before starting the RTC input clock.

2.2.5.4 Link Register (LR)
The 32-bit LR supplies the branch target address for the Branch Conditional to Link
Register (bclrx) instruction, and can be used to hold the logical address of the instruction
that follows a branch and link instruction. The format of LR is shown in Figure 2-9.

2-18 PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

Branch Address

o 31

Figure 2-9. Link Register (LR)

Note that although the two least-significant bits can accept any values written to them, they
are ignored when the LR is used as an address. The link register can be accessed by the
mtspr and mfspr instructions using the SPR number 8 (the instruction encoding juxtaposes
the IO-bit binary representation, b'01000 00000'). Prefetching instructions along the target
path (loaded by an mtspr instruction) is possible provided the link register is loaded
sufficiently ahead of the branch instruction. It is usually possible to prefetch along a target
path loaded by a branch and link instruction.

Branching can be conditional or unconditional, and the return address can optionally be
provided. If the return address is to be provided, the effective address of the instruction
following the branch instruction is placed into the LR after the branch target address has
been computed- this is done regardless of whether the branch is taken.

As a performance optimization, and as an aid for handling the precise exception model, the
MPC601 implements a two-entry link register shadow. Shadowing allows the link register
to be updated by branch instructions that are executed out-of-order with respect to integer
instructions without destroying machine state informatIon if any integer instructions takes
a precise exception. The link register is cleared by hard reset.

2.2.5.5 Count Register (CTR)
The count register (CTR) is a 32-bit register for holding a loop count that can be
decremented during execution of branch instructions that contain an appropriately coded
BO field. If the value in CTR is 0 before being decremented, it is -1 afterward. The count
register provides the branch target address for the Branch Conditional to Count Register
(bcctrx) instruction. The CTR is shown in Figure 2-10.

eTR

o 31

Figure 2-10. Count Register (CTR)

Prefetching instructions along the target path is also possible provided the count register is
loaded sufficiently ahead of the branch instruction.

The count register can be accessed by the mtspr and mispr instructions by specifying the
SPR9. In branch conditional instructions, the BO field specifies the conditions under which
the branch is taken. The first four bits of the BO field specify how the branch is affected by
or affects the condition register and the count register. The encoding for the BO field is
shown in Table 3-25. The counter register is cleared by hard reset.

MOTOROLA Chapter 2. Registers and Data Types 2-19

..

2.3 Supervisor-Level Registers
There are registers in the MPC601 that can be accessed only by supervisor-level software.
These include the machine state register (MSR), the segment registers, and a number of
SPRs.

2.3.1 Machine State Register (MSR)
The MSR, shown in Figure 2-11, is a 32-bit register that defines the state of the processor.
When an exception occurs, MSR bits are altered in accordance with Table 2-10. The MSR
can also be modified by the mtmsr, SC, and rfi instructions. It can be read by the mfmsr
instruction. Note that in other PowerPC processors, the MSR is a 64-·bit register.

Note that the MPC601 does not implement the branch trace enable bit-BE (bit 22) or the
recoverable exception bit-RE (bit 30). The state of these bits does not affect the operation
of the MPC601.

IillJ Reserved

o 15 1617181920 2122232425262728293031

Figure 2-11. Machine State Register (MSR)

Table 2-10 shows the bit definitions for the MSR.

Table 2-10. Machine State Register Bit Settings

Bit(s) Name Description

0-15 - Reserved

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception

conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point

loads, stores and moves. Floating-point enabled program exceptions can still occur and
the FPRs can still be accessed.

1 The processor can execute floating-point instructions, and can take floating-point
enabled exception type program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FEO Floating-point exception mode 0 (See Table 2-11.)

2-20 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 2-10. Machine State Register Bit Settings (Continued)

Bit(s} Name Description

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of

the next instruction. When this bit is set, the processor dispatches instructions in strict
program order. Successful execution means the instruction caused no other exception.
Single-step tracing may not be present on all implementations.

22 - Reserved * on the MPC601.

23 FE1 Floating-point exception mode 1 (See Table 2-11.)

24 - Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 EP Exception prefix. The setting of this bit specifies whether an exception vector offset is
prep ended with Fs or Os. In the following description, nnnnn is the offset of the exception. See
Table 5-7.
0 Exceptions are vectored to the physical address x'OOOn_nnnn'.
1 Exceptions are vectored to the physical address x'FFFn_nnnn'.

26 IT Instruction address translation
0 Instruction address translation is disabled. When instruction translation is off, EA is

interpreted as described in Chapter 6, "Memory Management Unit."
1 Instruction p,ddress translation is enabled.

27 DT Data address translation
0 Data address translation is disabled. When data translation is disabled, EA is interpreted

as described in Chapter 6, "Memory Management Unit."
1 Data address translation is enabled.

28-29 - Reserved

30 - Reserved" on the MPC601.

31 - Reserved" on the MPC601.

*These reserved bits may be used by other PowerPC processors. Attempting to change these bits does not
affect the operation of the MPC601. These bit positions always return a zero value when read.

The floating-point exception mode bits are interpreted as shown in Table 2-11. For further
details see Section 5.4.7.1, "Floating-Point Enabled Program Exceptions." Note that these
bits are logically ORed, so that if either is set the processor operates in precise mode.

MOTOROLA

Table 2-11. Floating-Point Exception Mode Bits

FEO

0

0

1

1

FE1 Mode

0 Floating-point exceptions disabled

1 Floating-point imprecise nonrecoverable"

0 Floating-point imprecise recoverable"

1 Floating-point precise mode

"Because FEO and FE1 are logically ORed on the
MPC601, neither of these modes is available. If
either bit is set, the processor operates in precise
mode.

Chapter 2. Registers and Data Types 2-21

lEI

Table 2-12 indicates the state of the MSR after a hard reset:

Table 2-12. State of MSR at Power Up

Bit Description

0-15 o (Reserved)

16-18 0

19 1

20-23 0

24 0

25 1

26-27 0

28-30 o (Reserved)

31 0

2.3.2 Segment Registers
The sixteen 32-bit segment registers are present only in 32-bit PowerPC implementations.
Figure 2-12 shows the format of a segment register in the MPC601. Note that the fields in
the segment register are interpreted differently depending on the value of bit 0 (the T bit).

1m] Reserved

Reserved/BUID VSID/controller specific information

o 1 2 3 78 31

Figure 2-12. Segment Register Format (T = 0)

Segment registers can be accessed by using the mtsr and mtsrin instructions. Segment
register bit settings when T = 0 are described in Table 2-13.

Table 2-13. Segment Register Bit Settings (T = 0)

Bits Name Description

0 T T = 0 selects this format

1 Ks Supervisor-state memory key

2 Ku User-state protection key

3-7 - Reserved

8-31 VSID Virtual segment ID

Figure 2-13 shows the bit definition when T = 1.

2-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

BUID Controller Specific

o 1 2 3 11 12 31

Figure 2-13. Segment Register Format (T=1)

The bits in the segment register when T = 1 are described in Table 2-14.

Table 2-14. Segment Register Bit Settings (T = 1)

Bits Name Description

0 T T = 1 selects this format

1 Ks Supervisor-state memory key

2 Ku User-state protection key

3-11 BUID Bus unit ID

12-31 - Device specific data for I/O controller

If T=O in the selected segment register, the effective address is a reference to an ordinary
memory segment. For memory segments the segmented address translation mechanism
may be superseded by the block address translation (BAT) mechanism. If not, the 52-bit
virtual address (VA) is formed by concatenating the following:

The 24-bit VSID field from the segment register

• The 16-bit page index, EA[4-19]

• The 12-bit byte offset, EA[20-31]

The VA is then translated to a physical address as described in Section 6.8, "Memory
Segment Model."

If T=l in the selected segment register, the effective address is a reference to an I/O
controller interface segment. No reference is made to the page tables; address translation
continues as described in Section 6.10, "I/O Controller Interface Address Translation."

The segment registers are cleared by hard reset.

2.3.3 Supervisor-Level SPRs
Many of the SPRs can be accessed only by supervisor-level instructions. Some SPRs are
implementation-specific; some SPRs in the MPC601 may not be implemented in other
PowerPC processors, or may not be implemented in the same way. Table 2-15 summarizes
how the MPC601 treats the undefined bits in supervisor-level SPRs.

Some SPR bits are reserved, and should not be used. Some of these bits are used in other
PowerPC processors.

MOTOROLA Chapter 2. Registers and Data Types 2-23

IFJI

Table 2-15. Undefined Bits in Supervisor-Level SPRs

Register
Value Returned for Undefined

Bits

MSR Zero

FPSCR Zero

SDR1 Zero

All BATs Value last written to that bit position

HIDO Zero

HID1 Value last written to that bit position

HID2 Value last written to that bit position

HID15 Zero

When the MPC60t detects SPR encodings other than those defined in this document, it
either takes a program exception (if bit 0 of the SPR encoding is set) or it treats the
instruction as a no-op (if bit 0 of the SPR encoding is clear).

2.3.3.1 Synchronization for Supervisor-Level SPRs, and Segment
Registers

The processor has synchronization requirements when updating the following MMU
registers when the corresponding address translation is enabled (data accesses with
MSR[OT]=l or instruction fetches with MSR[IR]=l):

SORt

• BATs (if MSR[OT]=t or MSR[IT]=t)

Segment registers

In addition, there are other software requirements that should be observed when modifying
these MMU registers and the MSR[IT] bit.

2.3.3.1.1 Context Synchronization
The processor checks for read and write dependencies with respect to segment registers and
special purpose registers and executes series of instructions involving those registers so that
dependencies are not violated. For example, if an mtspr instruction writes a value to a
particular SPR and an mfspr instruction later in the instruction stream reads the same SPR,
the mfspr reads the value written by the mtspr.

2-24 PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

It is important to note that dependencies caused by side effects of writing to segment
registers and SPRs are not checked automatically. If an mtspr instruction writes a value to
an SPR that changes how address translation is performed, a subsequent load instruction
cannot use the new translation until the CPU is explicitly synchronized by using one of the
following context-synchronizing operations:

isync instruction

• sc instruction
rfi instruction

Any exception, other than machine check and system reset

Note that the sync instruction, although not defined as context-synchronizing in the
PowerPC architecture, can sometimes be used to provide the required synchronization. The
MPC601 processor automatically provides all synchronization required for updates to the
CR, CTR, LR, MSR, FPSCR, and XER registers in all cases.

In general, context-synchronizing operations are required when writes to the MMU
registers are preceded or followed by load or store instructions.

Specifically, a context-synchronizing operation or a sync instruction must precede a
modification of the BAT or segment registers when the corresponding address translations
are enabled (data accesses with MSR[DT]=l or instruction fetches with MSR[IR]=l). In
the case of the SDR 1, a sync instruction must precede the modification of the SDR 1 when
the corresponding address translations are enabled (data accesses with MSR[DT]=l or
instruction fetches with MSR[IR]=l), guaranteeing that the reference and change bits are
updated in the correct context.

If the corresponding address translations are enabled (data accesses with MSR[DT]=l or
instruction fetches with MSR[IR]=l), a context synchronization operation must follow the
modification of any of the above registers.

When several of the registers listed above are modified with no intervening instructions that
are affected by the changes, no context synchronization or sync instructions are required
between the alterations. However, instructions fetched and/or executed after the alteration
but before the context synchronizing operation may be fetched and/or executed in either the
context that existed before the alteration or the context established by the alteration.

For synchronization within a sequence of instructions, the isync instruction can be used as
shown in example 1:

Example 1: Using the isync instruction-In this example a single segment register (n)
needs to be updated in a context where loads and stores might otherwise execute ahead of
the mtsr instruction and use the outdated address translation. Data and instruction address
translation is enabled (MSR[DT] = 1 and MSR[lT] = 1):

isync
mtsr sr,rn
isync

MOTOROLA Chapter 2. Registers and Data Types 2-25

..

The first isync instruction allows all instructions in the pipeline to complete, allowing the
mtsr instruction to dispatch and execute by itself.

Example 2: Using the isync instruction with a series of register modifications-In
example 1, the single mtsr instruction could safely be replaced with a series of mtsr
instructions without each requiring a isync instruction. However, if both mtsr and mfsr
instructions are needed, they should be separated by an isync instruction, as follows:

isync
mtsr sr,rO
mtsr sr,rl

mtsr sr,r7
isync
mfsr r8,sr
mfsr r9,sr

mfsr rl5,sr
isync

Example 3: Using the rfi instruction-When several registers are updated with no
intervening loads or stores with MSR[DT]= 1 or instruction fetches with MSR[IT]= 1,
context-synchronization between updates is unnecessary. For example, when an exception
is taken, the processor is synchronized automatically. In this example, a list of segment
registers is updated with several mtsr instructions followed by a single context­
synchronizing operation.

Because this example modifies all 16 segment registers (and therefore, affects the segment
register(s) that control instruction fetching, this particular sequence must be executed in
direct address translation mode (MSR[IT] = 0). Therefore, no synchronization is required
before the segment registers are loaded. Even if the segment register(s) that control
instruction fetching is not to be reloaded, the sequence can be executed with instruction
address translation enabled (MSR[IT] = 1) and no additional synchronization before the
segment register instructions.

In this example the rfi instruction provides the needed synchronization after all 16 segment
registers are loaded and before translated loads and stores are executed.

mtsr sr,rO
mtsr sr,rl

mtsr sr,rl5
<load rest of machine state>
rfi

2-26 PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

2.3.3.1.2 Other Requirements by Register
SDRI and MSR-The SDRI register should be modified only when MSR[IT] = O. In
addition, the MSR[lT] bit should be altered only by software that is has an address mapping
such that logical addresses directly map to physical addresses.

Segment Registers-The only fields that should be modified in the segment register that
is currently in use for instruction fetching are the Ks and Kp bits. Note that any time the
segment registers are updated, the changes are guaranteed to take affect (including changes
of the Kx bits) only after a context-synchronizing operation has occurred.

BAT Registers-The only fields that should be modified in the BAT register that is
currently in use for instruction fetching are the Ks, Kp and the V (valid) bits. In the case of
modifying the V bit for the BAT register currently in use for instruction accesses, the
instructions immediately following the mtspr for the BAT register must also be mapped by
the page address translation mechanism with the same logical to physical address mapping
(or alternately, the instructions must be duplicated in the newly mapped space). Note that
any time the BAT registers are updated, the changes are guaranteed to take affect (including
changes of the Kx bits) only after a context-synchronizing operation has occurred.

In order to make a BAT register pair valid in a manner such that the BTLB entry then
translates the current instruction stream, the following sequence should be used if fields in
both the upper and lower BAT registers are to be modified (for instruction address
translation):

1. The V bit in the BAT register pair should be cleared to O.

2. The other fields in the BAT register pair should be initialized appropriately.

3. The V bit in the BAT register pair should be set to 1.

4. A context-synchronizing operation should be performed

2.3.3.2 DAE/Source Instruction Service Register (DSISR)
The 32-bit DSISR, shown in Figure 2-14, identifies the cause of data access and alignment
exceptions.

DSISR

o 31

Figure 2-14. DAE/Source Instruction Service Register (DSISR)

For information about bit settings, see Section 5.4.3, "Data Access Exception (x '00300'),"
and Section 5.4.6, "Alignment Exception (x'00600')."

The DSISR is cleared after a hard reset.

2.3.3.3 Data Address Register (DAR)
The DAR is a 32-bit register shown in Figure 2-15.

MOTOROLA Chapter 2. Registers and Data Types 2-27

DAR

o 31

Figure 2-15. Data Address Register (DAR)

After a data access, I/O controller interface error, or alignment exception, DAR is set to the
effective address of a load or store element. For information, see Section 5.4.3, "Data
Access Exception (x'00300')," and Section 5.4.6, "Alignment Exception (x'00600')."

2.3.3.4 Decrementer (DEC) Register
The DEC, shown in Figure 2-16, is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. On the
MPC601, the DEC is driven by the same frequency as the RTC (7.8125 MHz). On other
PowerPC processors, the DEC frequency is based on a subdivision of the processor clock.
The DEC is cleared by hard reset. Note that if an external clock is connected to the RTC,
the DEC can change from its original value of zeros without receiving an instruction to load
the register.

DEC

o 31

Figure 2-16. Decrementer Register (DEC)

2.3.3.4.1 Decrementer Operation
The DEC counts down, causing an exception (unless masked) when it passes through zero.
The DEC satisfies the following requirements:

• The operation of the RTC and the DEC are coherent (that is, the counters are driven
by the same fundamental time base).

• Loading a GPR from the DEC has no effect on the DEC.

• Storing a GPR to the DEC replaces the value in the DEC with the value in the GPR.

• Whenever bit 0 of the DEC changes from 0 to 1, a decrementer exception request is
signaled. (The exception breaks the pipeline in such a way that instructions in the
execute state (except for instructions that have been dispatched ahead of
undispatched integer instructions) complete execution, and instructions in decode
stage remain undecoded until the exception handler returns control to the interrupted
program.) Multiple DEC exception requests may be received before the first
exception occurs; however, any additional requests are canceled when the exception
occurs for the first request.

2-28

If the DEC is altered by software and the content of bit 0 is changed from 0 to 1, an
exception request is signaled.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The RTC input is sampled using the CPU clock. Therefore, if the CPU clock is less than
twice the RTC frequency, real-time clock (and decrementer) sampling and incrementing
errors will occur. Therefore, in systems that change the CPU clock frequency dynamically
beyond this limit, a method of saving and restoring the real-time clock register values via
external means is required.

2.3.3.4.2 Writing and Reading the DEC
The content of the DEC can be read or written using the mfspr and mtspr instructions, both
of which are supervisor-level when they refer to the DEC. However, the MPC60 I also
allows the reading of the DEC in user mode (for POWER compatibility) via the SPR6
register. Using a simplified mnemonic for the mtspr instruction, the DEC may be written
from GPR r A with the following:

mtdec rA

If the execution of this instruction causes bit 0 of the DEC to change from 0 to I, an
exception request is signaled. The DEC may be read into GPR r A with the following
sequence:

mfdec rA

Copying the DEC to a GPR does not affect the DEC content or the exception mechanism.

2.3.3.5 Table Search Descriptor Register 1 (SDR1)
The table search descriptor register 1 (SDR1) is shown in Figure 2-17.

[ill] Reserved

HTABORG HTABMASK

o 15 16 22 23 31

Figure 2-17. Table Search Descriptor Register 1 (SDR1)

The bits of the SDRI are described in Table 2-16.

Table 2-16. Table Search Descriptor Register 1 (SDR1) Bit Settings

Bits Name Description

0-15 HTABORG The high-order 16 bits of the 32-bit physical address of the page table

16-22 - Reserved

23-31 HTABMASK Mask for page table address

The HTABORG field in SDR 1 contains the high-order 16 bits of the 32-bit physical address
of the page table. Therefore, the page table is constrained to lie on a 216 byte (64 Kbytes)
boundary at a minimum. At least 10 bits from the hash function are used to index into the
page table. The page table must consist of at least 64 Kbytes 2 10 PTEGs of 64 bytes each.

MOTOROLA Chapter 2. Registers and Data Types 2-29

-

&I
The page table can be any size 2n where 16 ::; n ::; 25. As the table size is increased, more
bits are used from the hash to index into the table and the value in HTABORG must have
more of its low-order bits equal to O. The HTABMASK field in SDR 1 contains a mask
value that determines how many bits from the hash are used in the page table index. This
mask must be of the form b'OO ... Oll...1 '; that is, a string of 0 bits followed by a string of 1
bits. The 1 bits determine how many additional bits (at least 10) from the hash are used in
the index; HTABORG must have this same number of low-order bits equal to O. See
Figure 6-21.

The number of low-order 0 bits in HTABORG must be at least the number of 1 bits in
HTABMASK so that the final 32-bit physical address can be formed by logically ORing
the various components.

2.3.3.6 Machine Status Save/Restore Register 0 (SRRO)
The machine status save/restore register 0 (SRRO) is a 32-bit register the MPC601 uses to
save machine status on exceptions and restore machine status when an rfi instruction is
executed. It also holds the EA for the instruction that follows the System Call (sc)
instruction. The SRRO is shown in Figure 2-18.

SRRO

o 31

Figure 2-18. Save/Restore Register 0 (SRRO)

When an exception occurs, SRRO is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has begun execution.
The instruction addressed by SRRO may not have completed execution, depending on the
exception type. SRRO addresses either the instruction causing the exception or the
immediately following instruction. The instruction addressed can be determined from the
exception type and status bits.

The SRRO is cleared by hard reset.

For information on how specific exceptions affect SRRO, refer to the descriptions of
individual exceptions in Chapter 5, "Exceptions."

2.3.3.7 Machine Status Save/Restore Register 1 (SRR1)
The SRR 1 is a 32-bit register used to save machine status on exceptions and to restore
machine status when an rfi instruction is executed. The SRRI is shown in Figure 2-19.

o 15 16 31

Figure 2-19. Machine Status Save/Restore Register 1 (SRR1)

2-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

In general, when an exception occurs, bits 0-15 of SRR 1 are loaded with exception-specific
information and bits 16-31 of MSR are placed into bits 16-31 of SRR 1.

The SRR 1 is cleared by hard reset.

For information on how specific exceptions affect SRR 1, refer to the individual exceptions
in Chapter 5, "Exceptions."

2.3.3.8 General SPRs (SPRGO-SPRG3)
SPRGO through SPRG3 are 32-bit registers provided for general operating system use, such
as performing a fast state save and for supporting multiprocessor implementations.
SPRGO--SPRG3 are shown in Figure 2-20.

SPRGO

SPRG1

SPRG2

SPRG3

o 31

Figure 2-20. General SPRs (SPRGO-SPRG3)

Uses for SPRGO-SPRG3 are shown in Table 2-17.

Table 2-17. Uses of SPRGO-SPRG3

Register Description

SPRGO Software may load a unique physical address in this register to identify an area of memory reserved for
use by the exception handler. This area must be unique for each processor in the system.

SPRG1 This register may be used as a scratch register by the exception handler to save the content of a GPR.
That GPR then can be loaded from SPRGO and used as a base register to save other GPRs to memory.

SPRG2 This register may be used by the operating system as needed.

SPRG3 This register may be used by the operating system as needed.

2.3.3.9 External Access Register (EAR)
The EAR is a 32-bit SPR that controls access to the external control facility and identifies
the target device for external control operations. The external control facility provides a
means for user-level instructions to communicate with special external devices. The EAR
is shown in Figure 2-21.

MOTOROLA Chapter 2. Registers and Data Types 2-31

..

rna Reserved

a 1 2728 31

Figure 2-21. External Access Register (EAR)

This register is provided to support the External Control Input Word Indexed (eciwx) and
External Control Output Word Indexed (ecowx) instructions, which are described in
Chapter 10, "Instruction Set." Although access to the EAR is privileged, the operating
system can determine which tasks are allowed to issue external access instructions and
when they are allowed to do so. The bit settings for the EAR are described in Table 2-18.
Interpretation of the physical address transmitted by the eciwx and ecowx instructions and
the 32-bit value transmitted by the ecowx instruction is not prescribed by the PowerPC
architecture but is determined by the target device.

For example, if the external control facility is used to support a graphics adapter, the ecowx
instruction could be used to send the translated physical address of a buffer containing
graphics data to the graphics device. The ecowx instruction could be used to load status
information from the graphics adapter.

Table 2-18. External Access Register (EAR) Bit Settings

Bit Name Description

0 E Enable bit
1 Enabled
0 Disabled

If this bit is set, the eciwx and ecowx instructions can perform the
specified external operation. If the bit is cleared, an eciwx or ecowx
instruction causes a data access exception.

1-27 - Reserved

28-31 RID Resource 10. The RID is formed by concatenating TEmTIlTSIZO-
TSIZ2. Note that in other PowerPC implementations, this field may
use bits 26-31.

This register can also be accessed by using the mtspr and mfspr instructions using the
value 282, b'01000 11010'. When reading from the EAR, the following sequence should
be used:

sync
mfspr rD,282
sync

The EAR is cleared by hard reset.

2-32 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

2.3.3.10 Processor Version Register (PVR)
The PVR is a 32-bit, read-only register that identifies the version and revision level of the
PowerPC processor (see Figure 2-22). The CO!1tents of the PVR can be copied to a aPR by
the mfspr instruction. Read access to the PVR is available in supervisor mode only; write
access is not provided.

Version Revision

a 15 16 31

Figure 2-22. Processor Version Register (PVR)

The PVR consists of two 16-bit fields:

• Version (bits 0-15)-A 16-bit number that identifies the version of the processor
and of the PowerPC architecture.

- The processor version number is x'O(X)1' for the MPC601.

- Other processor numbers assigned as of the initial release of the MPC601 are as
follows

x'0003 '

x'0004'

x'0014'

• Revision (bits 16-31)-A 16-bit number that distinguishes between various releases
of a particular version, (that is, an engineering change level). The value of the
revision portion of the PVR is implementation-specific.

- The initial processor revision level is x'OO(X), and will be changed for each
revision of the device.

The PVR is set to x '0001 0001' by hard reset.

2.3.3.11 BAT Registers
The MPC601 includes eight block-address translation (BAT) registers, consisting of four
pairs of BATs (BATOU-BAT3U and BATOL-BAT3L), as shown in Figure 2-1. Note that
this differs somewhat from other PowerPC implementations, which have two sets of four
pairs of BAT registers. One set contains instruction BATS, or IBATs, (IBATOU-IBAT3U
and IBATOL-IBAT3L), which maps to the BAT registers implemented in the MPC601. The
SPR numbers for these registers are listed in Figure 2-1 The additional eight registers are
data BATs, or DBATs, (DBATOU-DBAT3U and DBATOL-DBAT3L). These BATs use the
eight SPR numbers subsequent to those used by the IBATs (536-543).

Note that the implementation of the bit fields with in the BATs are different from the other
PowerPC implementations. Figure 2-23 and Figure 2-24 show the format of the upper and
lower BAT registers.

MOTOROLA Chapter 2. Registers and Data Types 2-33

o 14 15 24 25 27 28 29 30 31

BLPI

LillI Reserved

Figure 2-23. Upper BAT Register

[IT] Reserved

PBN .:.:.:.:.:.:.:.:.:.:.:.:.:.: :::::,·::::::6:,:O:::B::B::b::H::o::iiB'O .::.::.::.':.:.:.:.:':.',:.:,:.'".·,:.:,:.,,:.:.: .. 1 V I;.;.:.:.:-:.:.:::.:.:-:::.:.:::.:::::::::::::::::::.:.: .. .;.;.; ; ~.
BSM

o 14 15 24 2526 31

Figure 2-24. Lower BAT Register

Table 2-19 describes the bits in the BAT registers.

Table 2-19. BAT Registers

Register Bits Name Description

Upper 0-14 BlPI Block logical page index. This field is compared with bits 0-14 of the logical
BAT address to determine if there is a hit in that BTlB entry.
Registers

15-24 Reserved -

25-27 WIM Memory/cache access mode bits
W Write-through
I Caching-inhibited
M Memory coherence
For detailed information about the WIM bits, see Section 6.3, "Memory/Cache
Access Modes."

28 Ks Supervisor mode key. This bit interacts with MSR[PR] and the PP field to
determine the protection for the block. For more information, see Section 6.4,
"General Memory Protection Mechanism."

29 Ku User mode key. This bit also interacts with MSR[PR] and the PP field to
deteimine the protection for the block. For more information, see Section 6.4,
"General Memory Protection Mechanism."

30-31 PP Protection bits for block. This field interacts with MSR[PR] and the Ks or Ku to
determine the protection for the block as described in Section 6.4, "General
Memory Protection Mechanism."

lower 0-14 PBN Physical block number. This field is used in conjunction with the BSM field to
BAT generate bits 0-14 of the physical address of the block.
Registers

15-24 Reserved -
25 V BAT register pair (BTlB entry) is valid if V=1

26-31 BSM Block size mask (0 ... 5). BSM is a mask that encodes the size of the block.
Values for this field are listed in Table 2-20.

Table 2-20 lists the BAT area lengths encoded in by BAT[BSM].

2-34 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 2-20. BAT Area Lengths

BAT Area
B5M Encoding Length

128 Kbytes 000000

256 Kbytes 000001

512 Kbytes 000011

1 Mbyte 000111

2 Mbytes 00 1111

4 Mbytes 01 1111

8 Mbytes 11 1111

Only the values shown in Table 2-20 are valid for the BSM field. The rightmost bit of BSM
is aligned with bit 14 of the logical address. An logical address is determined to be within
a BAT area if the logical address matches the value in the BLPI field.

The boundary between the string of zeros and the string of ones in BSM determines the bits
of logical address that participate in the comparison with BLP!. Bits in the logical address
corresponding to ones in BSM are cleared for this comparison.

Bits in the logical address corresponding to ones in the BSM field, concatenated with the
17 bits of the logical address to the right (more significant bits) of BSM, form the offset
within the BAT area.

The value loaded into BSM determines both the length of the BAT area and the alignment
of the area in both logical and physical address space. The values loaded into BLPI and
PBN must have at least ac.; many low-order zeros as there are ones in BSM.

The BAT registers are cleared by hard reset.

2.3.3.12 MPC601 Implementation-Specific HID Registers
PowerPC processors may have implementation-specific SPRs, referred to as HID registers.
Additional SPR encodings allow access to the implementation-dependent registers within
the MPC601. The SPR encodings for the MPC601 's HID registers are described in
Table 2-21. Note that these encodings use split-field notation; that is, the order of two 5-bit
components of the 10-bit encoding is reversed.

MOTOROLA Chapter 2. Registers and Data Types 2-35

Table 2-21. Additional SPR Encodings

SPR Number
SPR Encoding

Register Name Access
SPR(5-9)ISPR(0-4)

1008 11111 10000 Checkstop sources and enables register (HIDO) Supervisor

1009 11111 10001 MPC601 debug modes register (HID1) Supervisor

1010 1111110010 IABR (HID2) Supervisor

1013 1111110101 DABR (HIDS) Supervisor

1023 11111 11111 PIR (HID1S) Supervisor

For additional information about the mtspr and mfspr instructions, refer to Chapter 10,
"Instruction Set."

2.3.3.12.1 Checkstop Sources and Enables Register-HIDO
The checkstop sources and enables register (HIDO), shown in Figure 2-25, is a supervisor­
level register that defines enable and monitor bits for each of the checkstop sources in the
MPC601. The SPR number for HI DO is 1008.

HIDO
EDT ------, EBA .------- EBD

ESH ECP

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

WJ Rese~ed ~~~ ~ I I I J
Figure 2-25. Checkstop Sources and Enables Register (HIDO)

Table 2-22 defines the bits in HIDO. The enable bits (bits 15-31) can be used to mask
individual checkstop sources, although these are provided primarily to mask off any false
reports of such conditions for debugging purposes. Bit 0 (HIDO[CE]) is a master checkstop
enable; if it is cleared, all checkstop conditions are disabled; if it is set, individual
conditions can be enabled separately. HIDO[EM] (bit 16) enables and disables machine
check checkstops; clearing this bit masks machine check checkstop conditions that occur
when MSR[ME] is cleared. Bits 1-11 are the checkstop source bits, and can be used to
determine the specific cause of a checkstop condition.

All enable bits except 15 and 24 are disabled at start up. The operating system should enable
these checkstop conditions before the power-on reset sequence is complete.

2-36 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 2-22. Checkstop Sources and Enables Register (HIDO) Definition ..
Bit Name Description

0 CE Master checkstop enable. Enabled if set.

1 S Microcode checkstop detected if set.

2 M Double machine check detected if set.

3 TO Multiple TLB hit checkstop if set.

4 CD Multiple cache hit checkstop if set.

5 SH Sequencer time out checkstop if set.

6 DT Dispatch time out checkstop if set.

7 BA Bus address parity error if set.

8 BD Bus data parity error if set.

9 CP Cache parity error if set.

10 IU Invalid microcode instruction if set.

11 PP VO controller interface access protocol error if set.

12-14 - Reserved

15 ES Enable microcode checkstop. Enabled by hard reset. Enabled if set.

16 EM Enable machine check checkstop. Disabled by hard reset. Enabled if set.

17 ETD Enable TLB checkstop. Disabled by hard reset. Enabled if set.

18 ECD Enable cache checkstop. Disabled by hard reset. Enabled if set.

19 ESH Enable sequencer time out checkstop. Disabled by hard reset. Enabled if set.

20 EDT Enable dispatch time out checkstop. Disabled by hard reset. Enabled if set.

21 EBA Enable bus address parity checkstop. Disabled by hard reset. Enabled if set.

22 EBD Enable bus data parity checkstop. Disabled by hard reset. Enabled if set.

23 ECP Enable cache parity checkstop. Disabled by hard reset. Enabled if set.

24 EIU Enable for invalid ucode instruction checkstop. Enabled by hard reset. Enabled if set.

25 EPP Enable for I/O controller interface access protocol checkstop. Disabled by hard reset.
Enabled if set.

26 DRF 0 Optional reload of alternate sector on instruction fetch miss is enabled.
1 Optional reload of alternate sector on instruction fetch miss is disabled.

27 DRL 0 Optional reload of alternate sector on load/store miss is enabled.
1 Optional reload of alternate sector on load/store miss is enabled.

28 LM 0 Big-endian mode is enabled.
1 Uttle-endian mode is enabled.
For more information about byte ordering, see Section 2.4.3, "Byte and Bit Ordering." Note
that in the PowerPC architecture, the selection between big- and little-endian mode is
controlled by two bits in the MSR.

29 PAR 0 Precharge of the AI1TI1? and m1r> signals is enabled.
1 Precharge of the AI1TI1? and m1r> signals is disabled.

MOTOROLA Chapter 2_ Registers and Data Types 2-37

Table 2-22. Checkstop Sources and Enables Register (HIDO) Definition (Continued)

Bit Name Description

30 EMC 0 No error detected in main cache during array initialization.
1 Error detected in main cache during array initialization.

31 EHP 0 The Rp _sNp _REO signal is disabled. Use of the WRS queue position is restricted to a
snoop hit that occurs when a read is pending. That is, its address tenure is complete but
the data tenure has not begun.

1 The Rp _sNp _REO signal is enabled. Use of the WRS queue position is restricted to a
snoop hit on an address tenure that had Rp _sNp _REO asserted.

The HIDO register is set to x'80010080'by the hard reset operation.

2.3.3.12.2 MPC601 Debug Modes Register-HID1
The MPC601 debug modes register (HID1) is a supervisor-level register that defines enable
bits for the various debug modes supported by the MPC601; see Figure 2-26. The SPR
number for HID1 is 1009.

HID1
[ill] Reserved

Mise

o 1 3 4 7 8 9 10 16 17 31

Figure 2-26. MPC601 Debug Modes Register

Table 2-23 shows bit settings for the HID1 register. Note that if both the single instruction
step option is specified for the M field (b'100') and the trap to run mode exception option
is specified in the RM field (b'10'), the processor iterates in an infinite loop.

Table 2-23. HID1 Register Definition

Bit Name Description

0 - Reserved

1-3 M MPC601 run modes
000 Normal run mode
001 Undefined. Do not use.
010 Limited instruction address compare.
011 Undefined. Do not use.
100 Single instruction step
101 Undefined. Do not use.
110 Full instruction address compare
111 Full branch target address compare

4-7 - Reserved

2-38 PowerPC 601 RiSe Microprocessor User's Manual MOTOROLA

Table 2-23. HID1 Register Definition (Continued)

Bit Name Description

8-9 RM Response to address compare or single step
00 Hard stop (Stop L 1 clocks.)
01 Soft stop (Wait for system activity to quiesce.)
10 Trap to run mode exception (address vector x'02000'), with the base address

indicated in by the setting of MSR[IP]. This mode is valid for address comparisons
and may produce unpredictable results when used with HID single-instruction step
mode.

11 Reserved. Do not use.

10-16 - 10-16 Reserved. Do not use.

17-31 MISC Miscellaneous latches
17 When high, this bit disables the broadcast of the tlbie instruction.
18-31 Reserved. Do not use.

The HIDl register is cleared by a hard reset.

2.3.3.12.3 Instruction Address Breakpoint Register (IABR)-HID2
The instruction address breakpoint register (lABR) , is also HID2. The IABR, shown in
Figure 2-27, is a supervisor-level register defined to hold an effective address that is used
to compare with the logical address of the instruction in the decode phase of the pipeline.
The results of the comparison are used differently depending on the debug mode used.

HID2 Gill Reserved

CEA

a 2930 31

Figure 2-27. Instruction Address Breakpoint Register (IABR)-HID2

Table 2-24 lists HID2 register definitions. The HID2 register is cleared by the hard reset
operation.

The SPR number for HID2 is 1010.

Table 2-24. HID2 Register Definition

Bit Name Description

0-29 CEA Comparison effective address

30-31 - Reserved. Should be set to zero.

MOTOROLA Chapter 2. Registers and Data Types 2-39

.. 2.3.3.12.4 Data Address Breakpoint Register (DABR)-HID5
The data address breakpoint register (DABR) (HIDS), as shown in Figure 2-28, is designed
to hold an effective address that is used to compare with the effective address of the various
memory access instructions. The results of the comparison are used to cause a data access
exception when the appropriate MPC601 debug mode bits are set (as described in
Section 2.3.3.12.2, "MPC601 Debug Modes Register-HID 1 ").

HID5 [ill] Reserved

DAB

o 28 29 30 31

Figure 2-28. Data Address Breakpoint Register (DABR)

Table 2-25 describes bit settings in HIDS. The HIDS register is cleared by the hard reset
operation.

Table 2-25. HID5 Register Definition

Bit Name Description

0-28 DAB Data address breakpoint (EA). This field is set to the double-word EA to compare with
enabled load or store EAs.

29 - Reserved, although on an mfspr (DABR), the value returned is the value last written.

30-31 SA Memory access types:
00 Breakpoints disabled
01 Breakpoints load accesses only
10 Breakpoints store accesses only
11 Breakpoints both load and store accesses

The SPR number for HIDS is 1013.

If the DABR feature is enabled, operations that hit against a properly enabled DABR cause
a data access exception. For this type of data access exception (DAE), bit 9 of the DSISR
is set and the data address register (DAR) contains the EA that caused the DABR match. If
the access crossed a double-word boundary, the DAR contains the EA of the access from
the first double word (even if the DABR match was on the second double word). For more
information about data access exceptions, see Section S.4.3, "Data Access Exception
(x'00300')."

Table 2-26 describes how each instruction type interacts with the DABR feature.

2-40 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 2-26. DABR Results

Operation Description

Load If any part of the load access touches the double word specified in the DABR, and the appropriate
instructions enable bit is set, then the DAE occurs. In this case, the memory read operation is inhibited and

register rS is not updated. If the operation is a load with update, the update to register rA is also
inhibited.

Store If any part of the store access touches the double word specified in the DABR and the appropriate
instructions enable bit is set, the DAE occurs and the memory access is inhibited.

If the operation is a store with update, then the update to register rA is also inhibited.

If the operation is a Store Conditional instruction and the reservation bit is not set at the time of the
DABR compare (at the end of execution as soon as the EA is calculated), the DAE is not taken.

Load and store These instructions are sequenced one register (one word) at a time through the IU for EA
string and calculation. Each access is checked against the DABR as it is presented to the ATU. If a match
multiple occurs, the instruction is aborted and a DAE is taken.
instructions If the initial EA for the string or multiple is not word-aligned, some individual accesses may cross a

double word boundary. If either double word hits in the DABR, the access is inhibited and the DAE
occurs.

Iscbx This instruction is not supported by the DABR Feature. No DAE occurs, even if the EA matches.
Instruction

Cache control These instructions are not supported by the DABR Feature. No DAE occurs even if the EA
instructions matches.

2.3.3.12.5 Processor Identification Register {PIR)-HID15
The PIR register, shown in Figure 2-29, is a 32-bit, supervisor-level register that holds the
4-bit processor identification tag (PID). This tag is useful for processor differentiation in
multiprocessor system designs. The tag is also used to identify the sender and receiver tag
for I/O controller interface operations. For more information, see Section 9.6, "I/O
Controller Interface Operation." The PIR can be accessed by the mfspr instruction by using
the SPR number 1023, as follows:

sync
mfspr rD,1023
sync

The PIR is cleared by the hard reset operation.

PIR

o

Figure 2-29. Processor Identification Register (PIR)

MOTOROLA Chapter 2. Registers and Data Types

(ill] Reserved

28 29 31

2-41

2.4 Operand Conventions
This section describes the conventions used for storing values in registers and memory.

2.4.1 Effect of Operand Placement on Performance
The placement (location and alignment) of operands in memory affect the relative
performance of memory accesses. The best performance is guaranteed if memory operands
are aligned. To obtain the best performance across the widest range of PowerPC processor
implementations, the programmer should assume the performance model described in
Figure 2-30 with respect to the placement of memory operands.

Operand Boundary Crossing

Size Byte Alignment None Cache Line Page BAT/Segment

Integer

8 Byte 8 Optimal - - -
4 Good Good Poor Poor
<4 Poor Poor Poor Poor

4 Byte 4 Optimal - - -
<4 Good Good Poor Poor

2 Byte 2 Optimal - - -
<2 Good Good Poor Poor

1 Byte 1 Optimal - - -
Imw,stmw 4 Good Good Good Poor

String Good Good Poor Poor

Float

8 Byte 8 Optimal - - -
4 Good Good Poor Poor
<4 Poor Poor Poor Poor

4 Byte 4 optimal - - -
<4 Poor Poor Poor Poor

Figure 2-30. Performance Effects of Memory Operand Placement

The performance of accesses varies depending on the following:

• Operand size

• Operand alignment
Crossing a cache block (sector) boundary

Crossing a page boundary
Crossing a BAT boundary

• Crossing a segment boundary

The load/store multiple instructions are defined to operate only on aligned operands. The
Move Assist instructions have no alignment requirements. For the purposes of Figure 2-30,

2-42 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

crossing pages with different memory control attributes (WIM bits) is equivalent to
crossing a segment boundary.

2.4.1.1 Instruction Restart
If a memory access crosses a page or segment boundary, a number of conditions could abort
the execution of the instruction after part of the access has been performed. For example,
this may occur when a program attempts to access a page it has not previously accessed or
when the processor must check for a possible change in memory attributes when an access
crosses a page boundary. When this occurs, the MPC601 or the operating system may
restart the instruction. If the instruction is restarted, some bytes at that word address may
be loaded from or stored to the target location a second time.

The following rules apply to memory accesses with regard to restarting the instruction.

Aligned accesses-A single-register instruction that accesses an aligned operand is
never restarted.

Misaligned accesses-A single-register instruction that accesses a misaligned
operand may be restarted if the access crosses a page, BAT, or segment boundary.

Load/store multiple, move assist-These instructions may be restarted if, in
accessing the locations specified by the instruction, a page, BAT, or segment
boundary is crossed.

2.4.1.2 Atomicity
All aligned accesses are atomic. Instructions causing multiple accesses (for example,
load/store multiple and move assist instructions) are not atomic.

2.4.1.3 Access Order
The ordering of memory accesses is not guaranteed unless the programmer inserts the
appropriate ordering instructions, even if the accesses are generated by a single instruction.
Misaligned accesses, load/store multiple instructions, and move assist instructions have no
implicit ordering characteristics. For example, processor A may store a word operand on an
odd half-word boundary. It may appear to processor A that the store completed atomically.
Processor or other mechanism B, executing a load from the same location, may get a result
that is a combination of the value of the first half word that existed prior to the store by
processor A and the value of the second half word stored by processor A.

2.4.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with O. Each number is the address
of the cOlTesponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and move assist instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

MOTOROLA Chapter 2. Registers and Data Types 2-43

..

.. 2.4.2.1 Alignment and Misaligned Accesses
The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the "natural" address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-27. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.)

Table 2-27. Memory Operands

Operand length
Addr(28-31)

if aligned

Byte 8 bits xxxx

Half word 2 bytes xxxO

Word 4 bytes xxOO

Double word 8 bytes xOOO

Quad word 16 bytes 0000

Note: An "x" in an address bit position indicates that the bit
can be 0 or 1 independent of the state of other bits in
the address.

The concept of alignment is also applied more generally to data in memory. For example,
12 bytes of data are said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignments. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned. Additional effects of data
placement on performance are described in Chapter 7, "Instruction Timing."

Instructions are four bytes long and word-aligned.

2.4.3 Byte and Bit Ordering
The PowerPC architecture supports both big- and little-endian byte ordering. The default
byte- and bit ordering is big-endian, as shown in Figure 2-31. Byte ordering can be set to
little-endian by setting the LM bit in the HI DO register. Note that the mechanism for
selecting between byte orderings is different in the MPC601 than it is in the PowerPC
architecture. The PowerPC architecture provides two enable bits in the MSR that allow
independent control for user- and supervisor-level software.

2-44 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

MSB

* Byte 0 Byte 1 ~...--__ -,--__ B_y_te_N_(m_a_x_) _-'

msb
Big-Endian Byte Ordering

bit n (max)

* 0 2 ~~~ ________ ~ ________ ~I~nl
Big-Endian Bit Ordering

*

Figure 2-31. Big-Endian Byte and Bit Ordering

If scalars (individual computational data items) were indivisible, the concept of byte
ordering would be unnecessary. Order of bits or groups of bits within the smallest
addressable unit of memory is irrelevant, because nothing can be observed about such
order. Order matters only when scalars, which the processor and programmer regard as
indivisible quantities, can be made up of more than one addressable units of memory_

For a device in which the smallest addressable unit is the 64-bit double word, there is no
question of the order of bytes within double words. All scalar transfers between registers
and system memory are for double words and the address of the byte containing the high­
order eight bits of a scalar is no different from the address of a byte containing any other
part of the scalar.

For PowerPC processors, as for most recent processor designs, the smallest addressable
memory unit is the byte (8 bits), and most scalars are composed of groups of bytes. When
a 32-bit scalar is moved from a register to memory, it occupies four consecutive byte
addresses, and a decision must be made regarding the order of these bytes in these four
addresses.

The choice of byte ordering is arbitrary. Although there are 24 ways (4!) to specify the
ordering of four bytes within a word, illustrated as all the permutations of ordering of four
elements-ABCD, ABDC, ACBD, ACDB ... DBCA, DCAB, DCBA-where A corresponds
to the lowest address and D the highest, only two of these orderings are practical-ABCD
(big-endian) and DCBA (little-endian).

2.4.3.1 Big-Endian Byte Ordering
Big-endian ordering assigns the lowest address to the highest-order eight bits of the scalar.
This is called big-endian because the big end of the scalar, considered as a binary number,
comes first in memory.

2.4.3.2 Little-Endian Byte Ordering
Little-endian byte ordering assigns the lowest address to the lowest-order (rightmost) 8 bits
of the scalar. The little end of the scalar, considered as a binary number, comes first in
memory.

MOTOROLA Chapter 2. Registers and Data Types 2-45

• 2.4.4 Structure Mapping Examples
The following C programming example contains an assortment of scalars and one character
string. The value presumed to be in each structure element is shown in hexadecimal in the
comments and are used below to show how the bytes that comprise each structure element
are mapped into memory.

struct {

int a; /* x' 11121314' word */
double b; /* x'212223242225262728 doubleword */
char * c; /* x'3132334 word */
char d[7]; 1* 'A','B','C','D','E','F','G' array of bytes */
short e; /* x'5152' halfword */
int f· , /* x'61626364' word */

} s;

Note that the C structure mapping introduces padding (skipped bytes) in the map in order
to align the scalars on their proper boundaries-4 bytes between a and h, one byte between
d and e, and two bytes between e andf. Both big- and little-endian mappings use the same
amount of padding.

2.4.4.1 Big-Endian Mapping
The big-endian mapping of a structure S is shown in Figure 2-32. Addresses are shown in
hexadecimal at the left of each double word and in small figures below each byte. The
content of each byte, as shown in the preceding C programming example, is shown in
hexadecimal as characters for the elements of the string.

11 12 13 14
00 01 02 03 04 05 06 07 00

21 22 23 24 25 26 27 28
08 09 OA OB OC 00 OE OF 08

10 31 32 33 34 'A' 'B' 'C' '0'
10 11 12 13 14 15 16 17

'E' 'F' 'G' 51 52

I 18 19 1A 18 1C 10 1E 1F 18

61

I
62

I
63 64

20 21 22 23
20

Figure 2-32. Big-Endian Mapping of Structure S

2.4.4.2 Little-Endian Mapping
Figure 2-33 shows the structure, S, using little-endian mapping. Double words are laid out
from right to left.

2-46 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

11 12 13 14
07 06 05 04 03 02 01 00

21 22 23 24 25 26 27 28
OF OE OD oe OB OA 09 08

'D' "e" 'B' 'A' 31 32 33 34
17 16 15 14 13 12 11 10

I
51 52 'G' 'F' 'E'

1F 1E 10 1e 1B 1A 19 18

61 62

t

63

I
64

23 22 21 20

Figure 2-33. Little-Endian Mapping of Structure S

2.4.5 PowerPC Byte Ordering
The default mapping for PowerPC processors is big-endian. Little-endian mode can be
selected after a hard reset by setting the LM bit in the HIDO register in the MPC601 through
the use of the mtspr instruction in the hard reset handler. The location of the bit is unique
for each PowerPC processor.

2.4.6 PowerPC Data Memory with LM Set
One might expect that with the LM bit set (little-endian mode), that the system would have
to perform two-, four-, or eight-way byte swaps when transferring a half word, word, or
double word between memory and a register. However, the PowerPC architecture emulates
little-endian byte ordering by manipulating the three low-order bits of the effective address.
No bytes are swapped and individual multiple-byte scalars appear in memory in big-endian
order. Setting LM adjusts the way effective addresses are computed without affecting the
transfer of data between memory and registers, which is unencumbered by the need for
multiplexers to swap bytes.

2.4.6.1 Aligned Scalars
For the load and store instructions listed in Table 2-28, the effective address is computed as
specified in the instruction descriptions in Chapter 3, "Addressing Modes and Instruction
Set Summary," and is modified as shown in Table 2-29.

Table 2-28. Load/Store Instructions for Data Aligned on Natural Boundaries

Mnemonic Instruction

Ibz Load Byte and Zero

ibzu Load 6yl~ emu Z",ro with Update

Ibzux Load Byte and Zero with Update Indexed

Ibzx Load Byte and Zero Indexed

ltd Load Floating-Point Double-Precision

Itdu Load Floating-Point Double-Precision with Update

MOTOROLA Chapter 2. Registers and Data Types 2-47

..

Table 2-28. Load/Store Instructions for Data Aligned on Natural Boundaries

Mnemonic Instruction

Ifdux Load Floating-Point Double-Precision with Update Indexed

Ifdx Load Floating-Point Double-Precision Indexed

Ifs Load Floating-Point Single-Precision

Ifsu Load Floating-Point Single-Precision with Update

Ifsux Load Floating-Point Single-Precision with Update Indexed

Ifsx Load Floating-Point Single-Precision Indexed

Iha Load Half Word Algebraic

Ihau Load Half Word Algebraic with Update

Ihaux Load Half Word Algebraic with Update Indexed

Ihax Load Half Word Algebraic Indexed

Ihbrx Load Half Word Byte-Reverse Indexed

1hz Load Half Word and Zero

Ihzu Load Half Word and Zero with Update

Ihzux Load Half Word and Zero with Update Indexed

Ihzx Load Half Word and Zero Indexed

Iwa Load Word Algebraic

Iwarx Load Word and Reserve Indexed

Iwaux· Load Word Algebraic with Update Indexed

Iwax· Load Word Algebraic Indexed

Iwbrx Load Word Byte-Reverse Indexed

Iwz Load Word and Zero

Iwzu Load Word and Zero with Update

Iwzux Load Word and Zero with Update Indexed

Iwzx Load Word and Zero Indexed

stb Store Byte

stbu Store Byte with Update

stbux Store Byte with Update Indexed

stbx Store Byte Indexed

stfd Store Floating-Point Double-Precision

stfdu Store Floating-Point Double-Precision with Update

stfdux Store Floating-Point Double-Precision with Update Indexed

stfdx Store Floating-Point Double-Precision Indexed

2-48 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 2-28. Load/Store !nstructions for Data Aligned on Natural Boundaries

Mnemonic Instruction

stfiwx* Store Floating-Point as Integer Word Indexed

stfs Store Floating-Point Single-Precision

stfsu Store Floating-Point Single-Precision with Update

stfsux Store Floating-Point Single-Precision with Update Indexed

stfsx Store Floating-Point Single-Precision Indexed

sth Store Half Word

sthbrx Store Half Word Byte-Reverse Indexed

sthu Store Half Word with Update

sthux Store Half Word with Update Indexed

sthx Store Half Word Indexed

stw Store Word

stwbrx Store Word Byte-Reverse Indexed

stwcx. Store Word Conditional Indexed

stwu Store Word with Update

stwux Store Word with Update Indexed

stwx Store Word Indexed

·Not implemented in the MPC601

Table 2-29 shows how the EA is modified.

Table 2-29. EA Modifications

Data Width (Bytes) EA Modification

8 No change

4 XOR with b'100'

2 XOR with b'11 o·

1 XOR with b'111'

The modified EA is passed to the data cache or the main memory and the specified width
of the data is transferred between a GPR or FPR and the (as modified) addressed memory
locations. Although the data is stored using big-endian byte ordering (but not in the same
bytes within double words as with LM = 0), the modification of the EA makes it appear to
the processor that it is stored in little-endian mode.

The structure S would be placed in memory as shown in Figure 2-34.

MOTOROLA Chapter 2. Registers and Data Types 2-49

..

11 12 13 14
00 01 02 03 04 05 06 07

00

21 22 23 24 25 26 27 28
08 09 OA OB OC OD OE OF 08

10
'D' 'C' 'B' 'A' 31 32 33 34
10 11 12 13 14 15 16 17

I
51 52

I
'G' 'F' 'E'

18 19 1A 1B 1C 10 1E 1F
18

61 62 63 64
20 21 22 23 24 25 26 27 20

Figure 2-34. PowerPC Little-Endian Structure S in Memory or Cache

Because of the modifications on the EA, the same structure S appears to the processor to be
mapped into memory this way when LM = 1 (little-endian enabled). This is shown in
Figure 2-35.

11 12 13 14
07 06 05 04 03 02 01 00

21 22 23 24 25 26 27 28
OF OE OD OC OB OA 09 08

'D' 'C' 'B' 'A' 31 32 33 34
17 16 15 14 13 12 11 10

I
51 52 'G' 'F' 'E'

1F 1E 10 1C 1B 1A 19 18

61 62

I
63

I
64

23 22 21 20

Figure 2-35. PowerPC Little-Endian Structure S as Seen by Processor

Note that as seen by the program executing in the processor, the mapping for the structure
S is identical to the little-endian mapping shown in Figure 2-33. From outside of the
processor, the addresses of the bytes making up the structure S are as shown in Figure 2-34.
These addresses match neither the big-endian mapping of Figure 2-32 or the little-endian
mapping of Figure 2-33. This must be taken into account when performing I/O operations
in little-endian mode; this is discussed in Section 2.4.8, "PowerPC Input/Output in Little­
Endian Mode."

2.4.6.2 Misaligned Scalars
Performing an XOR operation on the low-order bits of the address of a scalar requires the
scalar to be aligned on a boundary equal to a multiple of its length. When executing in little­
endian mode (LM = 1), the MPC601 takes an alignment exception whenever any of the load
and store instructions listed in Table 2-28 is issued with a misaligned EA, regardless of
whether such an access could be handled without causing an exception in big-endian mode
(LM =0).

2-50 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The PowerPC architecture defines that half words, words, and double words be placed in
memory such that the little-endian address of the lowest-order bit is the EA computed by,
the load or store instruction; the little-endian address of the next-lowest-order byte is one
greater, and so on. Figure 2-36 shows a four-byte word stored at little-endian address 5. The
word is presumed to contain the binary representation of x' 11121314' .

12
07

OF

13
06

OE

14 I
05 04

00 OC

03 02 01 00
00

OB OA I
11

09 08
08

Figure 2-36. PowerPC Little-Endian Mode, Word Stored at Address 5

Figure 2-37 shows the same word stored by a little-endian program, as seen by the memory
system (assuming big-endian mode).

00

08

12
00

08

13
01

09

14 I
02 03

OA OB

04 05 06 07

OC 00 I
11

OE OF

Figure 2-37. Word Stored at Little-Endian Address 5 as Seen by Big-Endian
Addressing

Note that the misaligned word in this example spans two double words. The two parts of
the misaligned word are not contiguous in the big-endian addressing space.

An implementation may choose to support only a subset of misaligned little-endian
memory accesses. For example, misaligned little-endian accesses contained within a single
double word may be supported, while those that span double words may cause alignment
exceptions.

2.4.6.3 Non-Scalars
The PowerPC architecture has two types of instructions that handle non-scalars (multiple
instances of scalars). Neither type can deal with the modified EAs required in little-endian
mode and both types cause alignment exceptions.

2.4.6.3.1 String Operations
The load and store string instructions, listed in Figure 2-31, cause alignment exceptions
when they are executed in little-endian mode (HIDO[LM] = 1)

MOTOROLA Chapter 2. Registers and Data Types 2-51

Table 2-30. Load/Store String Instructions that Take Alignment Exceptions if LM = 1

Mnemonic Description

Iswi Load String Word Immediate

Iswx Load String Word Indexed

stswi Store String Word Immediate

stswx Store String Word Indexed

Iscbx Load String and Compare Byte Indexed

String accesses are inherently misaligned; they transfer word-length quantities between
memory (cache) and registers, but the quantities are not necessarily aligned on word
boundaries.

Note that the system software must determine whether to emulate the excepting instruction
or treat it as an illegal operation. Because little-endian mode programs are new with respect
to the PowerPC architecture-that is, they are not POWER binaries-having the compiler
generate these instructions in little-endian mode would be slower than processing the string
in-line or by using a subroutine call.

2.4.6.3.2 Load and Store Multiple Instructions
The following instructions cause alignment exceptions when executed in little-endian
mode (HIDO[LM] = 1).

Table 2-31. Load/Store Multiple Instructions that Take Alignment Exceptions if
LM=1

Mnemonic Instruction

Imw Load Multiple Word

stmw Store Multiple Word

Although the words addressed by these instructions are on word boundaries, each word is
in the half of its containing double word opposite from where it would be in big-endian
mode.

Note that the system software must determine whether to emulate the excepting instruction
or treat it as an illegal operation. Because little-endian mode programs are new with respect

.. to the PowerPC architecture-that is, they are not POWER binaries-having the compiler
generate these instructions in little-endian mode would be slower than processing the string
in-line or by using a subroutine call.

2-52 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

2.4.7 PowerPC Instruction Memory Addressing in Little-Endian
Mode

Each PowerPC instruction occupies 32 bits (one word) of memory. PowerPC processors
fetch and execute instructions as if the current instruction address had been advanced one
word for each sequential instruction. When operating with LM = 1 ~ the address is modified
according to the little-endian rule for fetching word-length scalars; that is~ it is XORed with
b~ 1 OO~. A program is thus an array of little-endian words with each word fetched and
executed in order (not including branches).

Consider the following example:

loop:
cmplwi r5.0
beq done
lwzux r4. r5, r6
add r7, r7, r4

subi r5,1

b loop
done:

stw r7, total

Assuming the program starts at address 0, these instructions are mapped into memory for
big-endian execution as shown in Figure 2-38.

00 loop: cmplwi r5, 8 beq done

00 01 02 03 04 05 06 07

08 Iwzux r4, r5, r6 add r7, r7, r4

08 09 OA OB OC OD OE OF

10 subi r5, 1 bloop

10 11 ,12 13 14 15 16 17

18 done: stw r7, total

18 19 1A 1B 1C 10 1E 1F

Figure 2-38. PowerPC Big-Endian, Instruction Sequence as Seen by Processor

If this same program is assembled for and executed in little-endian mode~ the mapping seen
by the processor appears a" shown in Figure 2-39.

Each machine instruction appears in memory as a 32-bit integer containing the value
described in the instruction description, regardless of whether LM is set. This is because
scalars are ahvays mapped in memory in big-endian byte order.

MOTOROLA Chapter 2. Registers and Data Types 2-53

..

... beq done loop: cmplwi 00

07 06 05 04 03 02 01 00

add r7, r7, r4 Iwzux r4, r5, r6 08

OF OE 00 OC OB OA 09 08

bloop subi r5, 1 10

17 16 15 14 13 12 11 10

done: stw r7, total 18

1F 1E 10 1C 1B 1A 19 18

Figure 2-39. PowerPC Little-Endian, Instruction Sequence as Seen by Processor

When little-endian mapping is used, all references to the instruction stream must follow
little-endian addressing conventions, including addresses saved in system registers when
the exception is taken, return addresses saved in the link register, and branch displacements
and addresses.

An instruction address placed in the link register by branch and link, or an
instruction address saved in an SPR when an exception is taken is the address that a
program executing in little-endian mode would use to access the instruction as a
word of data using a load instruction.

An offset in a relative branch instruction reflects the difference between the
addresses of the instructions, where the addresses used are those that a program
executing in little-endian mode would use to access the instructions as data words
using a load instruction.

A target address in an absolute branch instruction is the address that a program
executing in little-endian mode would use to access the target instruction as a word
of data using a load instruction.

2.4.8 PowerPC Input/Output in Little-Endian Mode
Input/output operations, such as writing the contents of a memory page to disk, transfers a
byte stream on both big- and little-endian systems. For the disk transfer, byte 0 of the page
is written to the first byte of a disk record and so on.

For a PowerPC system running in big-endian mode, both the processor and the memory
subsystem recognize the same byte as byte O. However, this is not true for a PowerPC
system running in little-endian mode because of the modification of the three low-order bits

. . when the processor accesses memory.

In order for I/O transfers in little-endian mode to appear to transfer bytes properly, they
must be performed as if the bytes transferred were accessed one at a time, using the little­
endian address modification appropriate for the single-byte transfers (XOR the bits with
b'lll'. This does not mean that I/O on little-endian PowerPC machines must be done using
only one-byte-wide transfers. Data transfers can be as wide as desired, but the order of the
bytes within double words must be as if they were fetched or stored one at a time.

2-54 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Note that not all I/O operations performed in PowerPC systems is for large blocks as
described above. I/O operations can be performed with certain devices by merely storing
to or loading from addresses that are associated with the devices (this is referred to as I/O
controller interface operations). Care must be taken with such operations when defining the
addresses to be used because these addresses are subjected to the EA modifications
described in Table 2-29. A load or store that maps to a control register on a device may
require the bytes of the value transferred to be reversed. If this reversal is required, the loads
and stores with byte reversal instructions may be used.

2.4.9 Floating-Point Execution Models
The IEEE-754 standard includes 32-bit and 64-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double­
precision operands, but states that single-precision arithmetic instructions should not
accept double-precision operands.

The PowerPC architecture follows these guidelines:

Double-precision arithmetic instructions can have operands of either or both
precisions

Single-precision arithmetic instructions require all operands to be single-precision

Double-precision arithmetic instructions produce double-precision values

Single-precision arithmetic instructions produce single-precision values

For arithmetic instructions, conversions from double-to single-precision must be done
explicitly by software, while conversions from single- to double-precision are done
implicitly.

All implementations of the PowerPC architecture provide the equivalent of the following
execution models to ensure that identical results are obtained. Definition of the arithmetic
instructions for infinities, denormalized numbers, and NaNs follow conventions described
in following sections.

Although the double-precision format specifies an II-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following cases
when the corresponding exception enable bit is one:

Underflow during multiplication using a denormalized factor.

Overflow during division using a denormalized divisor.

2.4.9.1 Execution Model for IEEE Operations
The following description uses 64-bit arithmetic as an example; 32-bit arithmetic is similar
except that the fraction field is a 23-bit field and the single-precision guard, round, and

MOTOROLA Chapter 2. Registers and Data Types 2-55

sticky bits (described in this section) are logically adjacent to the 23-bit FRACTION (or
mantissa) field.

The bits and fields for the IEEE 64-bit execution model are defined as follows:

• The S bit is the sign bit.

• The C bit is the carry bit that captures the carry out of the significand.

• The L bit is the leading unit bit of the significand which receives the implicit bit from
the operands.

• The FRACTION is a 52-bit field, which accepts the fraction (mantissa) of the
operands.

• The guard (G), round (R), and sticky (X) bits are extensions to the low-order bits of
the accumulator. The G and R bits are required for post normalization of the result.
The G, R, and X bits are required during rounding to determine if the intermediate
result is equally near the two nearest representable values. The X bit serves as an
extension to the G and R bits by representing the logical OR of all bits that may
appear to the low-order side of the R bit, either due to shifting the accumulator right
or other generation of low-order result bits. The G and R bits participate in the left
shifts with zeros being shifted into the R bit. Table 2-32 shows the significance of
the G, R, and X bits with respect to the intermediate result (lR), the next lower in
magnitude representable number (NL), and the next higher in magnitude
representable number (NH).

Table 2-32. Interpretation of G, R, and X Bits

G R X Interpretation

0 0 0 IR is exact

0 0 1

0 1 0 IR closer to NL

0 1 1

1 0 0 IR midway between NL & NH

1 0 1

1 1 0 IR closer to NH

1 1 1

The significand of the intermediate result is made up of the L bit, the FRACTION, and the
G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in bits L,
FRACTION, G, R, and X of the floating-point accumulator.

Before results are stored into an FPR, the significand is rounded if necessary, using the
rounding mode specified by FPSCR[RN]. If rounding causes a carry into C, the significand

2·56 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

is shifted right one position and the exponent is incremented by one. This may yield an
inexact result and possibly exponent overflow. Fraction bits to the left of the bit position
used for rounding are stored into the FPR, and low-order bit positions, if any, are set to zero.

Four rounding modes are provided which are user-selectable through FPSCR[RN] as
described in Section 2.4.9.6, "Rounding." For rounding, the conceptual guard, round, and
sticky bits are defined in terms of accumulator bits.

Table 2-33 shows the positions of the guard, round, and sticky bits for double-precision and
single-precision floating-point numbers.

Table 2-33. Location of the Guard, Round and Sticky Bits

Format Guard Round Sticky

Double G bit Rbit X bit

Single 24 25 26-52 G,R,X

Rounding can be treated as though the significand were shifted right, if required, until the
least significant bit to be retained is in the low-order bit position of the FRACTION. If any
of the guard, round, or sticky bits are non-zero, the result is inexact.

Zl and Z2, defined in Section 2.4.9.6, "Rounding," can be used to approximate the result
in the target format when one of the following rules is used:

• Round to nearest

- Guard bit = 0; The result is truncated. (Result exact (GRX = 0(0) or closest to
next lower value in magnitude (GRX = 001,010, or 011)

- Guard bit = 1: Depends on round and sticky bits:

Case a: If the round or sticky bit is one (inclusive), the result is incremented.
(result closest to next higher value in magnitude (GRX = 101, 110, or 111))

Case b: If the round and sticky bits are zero (result midway between closest
representable values) then if the low-order bit of the result is one, the result is
incremented. Otherwise (the low-order bit of the result is zero) the result is
truncated (this is the case of a tie rounded to even).

If during the round to nearest process, truncation of the unroundednumber produces
the maximum magnitude for the specified precision, the following action is taken:

- Guard bit = 1: Store infinity with the sign of the unrounded result.
- Guard bit = 0: Store the truncated (maximum magnitude) value.

MOTOROLA Chapter 2. Registers and Data Types 2-57

lEI

• Round toward zero-Choose the smaller in magnitude of Zl or Z2. If the guard,
round, or sticky bit is non-zero, the result is inexact.

• Round toward +infinity
Choose Z1.

• Round toward -infinity
Choose Z2.

Where the result is to have fewer than 53 bits of precision because the instruction is
a floating round to single-precision or single-precision arithmetic instruction, the
intermediate result either is normalized or is placed in correct denormalized form
before the result is potentially rounded.

2.4.9.1.1 Execution Model for Multiply-Add Type Instructions
The PowerPC architecture makes use of a special form of instruction that performs up to
three operations in one instruction (a multiply, an add, and a negate). With this added
capability is the special feature of being able to produce a more exact intermediate result as
an input to the rounder. The 32-bit arithmetic is similar except that the fraction field is
smaller. Note that the rounding occurs only after add; therefore, the computation of the sum
and product together are infinitely precise before the final result is rounded to a
representable format.

The first part of the operation is a multiply. The multiply has two 53-bit significands as
inputs, which are assumed to be prenormalized, and produces a result conforming to the
above model. If there is a carry out of the significand (into the C bit), the significand is
shifted right one position, placing the L bit into the most significant bit of the FRACTION
and placing the C bit into the L bit. All 106 bits (L bit plus the fraction) of the product take
part in the add operation. If the exponents of the two inputs to the adder are not equal, the
significand of the operand with the smaller exponent is aligned (shifted) to the right by an
amount added to that exponent to make it equal to the other input's exponent. Zeros are
shifted into the left of the significand as it is aligned and bits shifted out of bit 105 of the
significand are ORed into the X' bit. The add operation also produces a result conforming
to the above model with the X' bit taking part in the add operation.

The result of the add is then normalized, with all bits of the add result, except the X' bit,
participating in the shift. The normalized result provides an intermediate result as input to
the rounder that conforms to the model described in Section 2.4.9.1, "Execution Model for
IEEE Operations," where:

• The guard bit is bit 53 of the intermediate result.

• The round bit is bit 54 of the intermediate result.

• The sticky bit is the OR of all remaining bits to the right of bit 55, inclusive.

If the instruction is floating negative multiply-add or floating negative multiply-subtract,
the final result is negated.

2-58 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Status bits are set to reflect the result of the entire operation: for example, no status is
recorded for the result of the multiplication part of the operation.

2.4.9.2 Floating-Point Data Format
The PowerPC architecture defines the representation of a floating-point value in two
different binary, fixed-length formats. The format may be a 32-bit format for a single­
precision floating-point value or a 64-bit format for a double-precision floating-point value.
The single-precision format may be u~ed for data in memory. The double-precision format
can be used for data in memory or in floating-point registers.

The length of the exponent and the fraction fields differ between these two precision
formats. The structure of the single-precision format is shown in Figure 2-40; the structure
of the double-precision format is shown in Figure 2-41.

Is I EXP FRACTION

o 1 8 9

Figure 2-40. Floating-Point Single-Precision Format

EXP FRACTION

o 1 11 12

Figure 2-41. Floating-Point Double-Precision Format

Values in floating-point format consist of three fields:

S (sign bit).

EXP (exponent+bias)

FRACTION (fraction)

31

63

If only a portion of a floating-point data item in memory is accessed, as with a load or store
instruction for a byte of halfword (or word in the case of floating-point double-precision
format), the value affected depends on whether the PowerPC system is using big- or little­
endian byte ordering, which is described in Section 2.4.3, "Byte and Bit Ordering." Big­
endian mode is the default.

The .significand consists of a leading implied bit concatenated on the right with the
FRACTION. This leading implied bit is a 1 for normalized numbers and a 0 for
denormalized numbers in the unit bit position (that is, the first bit to the left of the binary
point). Values representable within the two floating-point formats can be specified by the
parameters listed in Table 2-34.

MOTOROLA Chapter 2. Registers and Data Types 2-59

..

Table 2-34. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023

Maximum exponent +127 +1023
(unbiased)

Minimum exponent -126 -1022

Format width 32 bits 64 bits

Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits

Fraction width 23 bits 52 bits

Significand width 24 bits 53 bits

The exponent is expressed as an 8-bit value for single-precision numbers or an II-bit value
for double-precision numbers. These bits hold the biased exponent; the true value of the
exponent can be determined by subtracting 127 for single-precision numbers and 1023 for
double-precision values. This is shown in Figure 2-42. Note that using a bias eliminates the
need for a sign bit. The highest-order bit is used both to generate the number, and is an
implicit sign bit. Note also that two values are reserved-all bits set indicates that the
number is an infinity or NaN and all bits cleared indicates that the number is either zero or
denormalized.

2.4.9.2.1 Value Representation
The PowerPC architecture defines numerical and non-numerical values representable
within single- and double-precision formats. The numerical values are approximations to
the real numbers and include the normalized numbers, denormalized numbers, and zero
values. The non-numerical values representable are the positive and negative infinities, and
the NaNs. The positive and negative infinities are adjoined to the real numbers but are not
numbers themselves, and the standard rules of arithmetic do not hold when they appear in
an operation. They are related to the real numbers by "order" alone. It is possible however
to define restricted operations among numbers and infinities as defined below. The relative
location on the real number line for each of the defined entities is shown in Figure 2-43.

2-60 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Biased Exponent Single-Precision Double-Precision
(binary) (unbiased) (unbiased)

11 11 Reserved for Infinities and NaNs

11 10 +127 +1023

11 01 +126 +1022

Positive

10 00 1 1

Zero -.. 01 11 0 0

Negative {
01 10 -1 -1

00 01 -126 -1022

00 00 Reserved for Zeros and Denormalized Numbers

Figure 2-42. Biased Exponent Format

Unrepresentable, small numbers ---.-------,

-INF +INF

Figure 2-43. Approximation to Real Numbers

The positive and negative NaNs are not related to the numbers or ±oo by order or value, but
they are encodings that convey diagnostic information such as the representation of
uninitialized variables. Table 2-35 describes each of the floating-point formats.

Table 2-35. Recognized Floating-Point Numbers

Sign Bit Exponent (Biased) Leading Bit Mantissa Value

0 Maximum x Non-zero +NaN

0 Maximum x Zero +Infinity

0 o < Exponent < Maximum 1 Non-zero +Normalized

0 0 0 Non-zero +Denormalized

0 0 0 Zero +0

1 0 0 Zero -0

MOTOROLA Chapter 2. Registers and Data Types 2-61

..

Table 2-35. Recognized Floating-Point Numbers (Continued)

Sign Bit Exponent (Biased) Leading Bit Mantissa Value

1 a a Non-zero -Den or mali zed

1 a < Exponent < Maximum 1 Non-zero -Normalized

1 Maximum x Zero -Infinity

1 Maximum x Non-zero -NaN

The following sec~ions describe floating-point values defined in the architecture:

2.4.9.2.2 Binary Floating-Point Numbers
Binary floating-point numbers are machine-representable values used to approximate real
numbers. Three categories of numbers are supported: normalized numbers, denormalized
numbers, and zero values.

2.4.9.2.3 Normalized Numbers (±NORM)
The values for normalized numbers have a biased exponent value in the range:

1-254 in single-precision format

1-2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:

NORM = (-1)S x 2E x (1.fraction)

where (s) is the sign, (E) is the unbiased exponent and (I.fraction) is the significand
composed of a leading unit bit (implied bit) and a fractional part. The format for normalized
numbers is shown in Figure 2-44.

MIN<EXPONENT <MAX
(BIASED) MANTISSA=ANY BIT PATTERN

SIGN OF MANTISSA, 0 OR 1

Figure 2-44. Format for Normalized Numbers

The ranges covered by the magnitude (M) of a normalized floating-point number are
approximately equal to the following:

Single-precision format:

1.2xHr38 :::;; M :::;; 3.4xl038

Double-precision format:

2.2xHr308 :::;; M :::;; 1.8xl0308

2-62 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

2.4.9.2.4 Zero Values (±O)
Zero values have a biased exponent value of zero and a fraction value of zero. This is shown
in Figure 2-45. Zeros can have a positive or negative sign. The sign of zero is ignored by
comparison operations (that is, comparison regards +0 as equal to -0).

EXPONENT=O
(BIASED)

I L-------- SIGN OF MANTISSA, 0 OR 1

MANTISSA=O

Figure 2-45. Format for Zero Numbers

2.4.9.2.5 Denormalized Numbers (±DENORM)
Denormalized numbers have a biased exponent value of zero and a non-zero fraction value.
The format for denormalized numbers is shown in Figure 2-46.

EXPONENT=O
(BIASED)

"-------- SIGN OF MANTISSA, 0 OR 1

MANTISSA=ANY NON-ZERO
BIT PATTERN

Figure 2-46. Format for Denormalized Numbers

Denormalized numbers are non-zero numbers smaller in magnitude than the representable
normalized numbers. They are values in which the implied unit bit is zero. Denormalized
numbers are interpreted as follows:

DENORM = (_1)5 X 2Emin x (O.fraction)

Emin is the minimum representable exponent value (-126 for single-precision, -1022 for
double-precision).

2.4.9.2.6 Infinities (±oo)
Positive and negative infinities have the maximum biased exponent value:

• 255 in the single-precision format

• 2047 in the double-precision format

The format for infinities is shown in Figure 2-47.

EXPONENT =MAXIMUM
(BIASED)

,'--------- SIGN OF MANTISSA, 0 OR 1

MANTISSA=O

Figure 2-47. Format for Positive and Negative Infinities

The fraction value is zero. Infinities are used to approximate values greater in magnitude
than the maximum normalized value. Infinity arithmetic is defined as the limiting case of

MOTOROLA Chapter 2. Registers and Data Types 2-63

..

.. real arithmetic, with restricted operations defined between numbers and infinities. Infinities
and the reals can be related by ordering in the affine sense:

-00 < every finite number < +00

Arithmetic using infinite numbers is always exact and does not signal any exception, except
when an exception occurs due to the invalid operations as described in Section 5.4.7.2,
"Invalid Operation Exception Conditions."

2.4.9.2.7 Not a Numbers (NaNs)
NaNs have the maximum biased exponent value and a non-zero fraction value. The format
for NaNs is shown in Figure 2-48. The sign bit ofNaNs is ignored (that is, NaNs are neither
positive nor negative). If the high-order bit of the fraction field is a zero, the NaN is a
signaling NaN; otherwise it is a quiet NaN (QNaN).

EXPONENT =MAXIMUM
(BIASED)

MANTISSA=ANY NON-ZERO
BIT PATTERN

~------- SIGN OF MANTISSA (0 for +NaN); 1 for -NaN)

Figure 2-48. Format for NANs

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as invalid arithmetic
operations on infinities or on NaNs, when the invalid operation exception is disabled
(FPSCR[VE]=O). QNaNs are generated under the following conditions:

• An invalid operation occurs and FPSCR[VE] = 0

• An mffs instruction is executed and the upper 32 bits are undefined (only in the
MPC6(1).

• On Floating Convert to Integer with Round (fctir) and Aoating Convert to Integer
with Round toward Zero (fctirz) the PowerPC architecture defines bits 0--31 of the
target floating point register as undefined. In the MPC601, these bits take on the
value x'FFF8 0000' (which is the representation for a QNaN).

Quiet NaNs propagate through all operations, except ordered comparison and conversion
to integer operations without signalling exceptions. Specific encodings in QNaNs can thus
be preserved through a sequence of operations and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN results from an operation because an operand is a NaN or because a QNaN
is generated due to a disabled invalid operation exception, the following rule is applied to
determine the QNaN with the high-order fraction bit set to one that is to be stored as the
result:

If (frA) is a NaN
Then frD ~ (frA)

2-64 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Else if (frB) is a NaN
Then frD ~ (frB)
Else if (fre) is a NaN

Then frD ~ (fre)
Else if generated QNaN

Then frD ~ generated QNaN

If the operand specified by fr A is a NaN, that NaN is stored as the result. Otherwise, if the
operand specified by frB is a NaN (if the instruction specifies an frB operand), that NaN is
stored as the result. Otherwise, if the operand specified by fre is a NaN (if the instruction
specifies an fre operand), that NaN is stored as the result. Otherwise, if a QNaN is
generated by a disabled invalid operation exception, that QNaN is stored as the result. If a
QNaN is to be generated as a result, the QNaN generated has a sign bit of zero, an exponent
field of all ones, and a high-order fraction bit of one with all other fraction bits zero. An
instruction that generates a QNaN as the result of a disabled invalid operation generates this
QNaN. This is shown in Figure 2-49.

111. .. 1 1000 0

L-I ------- SIGN OF MANTISSA, NaN) OR 1

Figure 2-49. Representation of QNaN

2.4.9.3 Sign of Result
The following rules govern the sign of the result of an arithmetic operation, when the
operation does not yield an exception. These rules apply even when the operands or results
are ±() or ±oo:

• The sign of the result of an addition operation is the sign of the source operand
having the larger absolute value. The sign of the result of the subtraction operation,
x-y, is the same as the sign of the result of the addition operation, x+(-y).

• When the sum of two operands with opposite sign, or the difference of two operands
with the same sign, is exactly zero, the sign of the result is positive in all rounding
modes except round toward negative Infinity(-oo), in which case the sign is negative.

• The sign of the result of a multiplication or division operation is the exclusive OR
of the signs of the source operands.

• The sign of the result of a round to single-precision or convert to/from integer
operation is the sign of the source operand.

For multiply-add instructions, these rules are applied first to the multiplication operation
and then to the addition or subtraction operation (one of the source operands to the addition
or subtraction operation is the result of the multiplication operation).

MOTOROLA Chapter 2. Registers and Data Types 2-65

2.4.9.4 Normalization and Denormalization
When an arithmetic operation produces an intermediate result, consisting of a sign bit, an
exponent, and a non-zero significand with a zero leading bit, the result is not a normalized
number and must be normalized before it is stored.

A number is normalized by shifting its significand left while decrementing its exponent by
one for each bit shifted, until the leading significand bit becomes one. The guard bit and the
round bit participate in the shift with zeros shifted into the round bit; see Section 2.4.9.1,
"Execution Model for IEEE Operations." During normalization, the exponent is regarded
as if its range were unlimited. If the resulting exponent value is less than the minimum
value that can be represented in the format specified for the result, the intermediate result
is said to be "tiny" and the stored result is determined by the rules described in Section
5.4.7.5, "Underflow Exception Condition." The sign of the number does not change.

When an arithmetic operation produces a non-zero intermediate result whose exponent is
less than the minimum value that can be represented in the format specified, the stored
result may need to be denormalized. The result is determined by the rules described in
Section 5.4.7.5, "Underflow Exception Condition."

A number is denormalized by shifting its significand to the right while incrementing its
exponent by one for each bit shifted until the exponent equals the format's minimum value.
If any significant bits are lost in this shifting process then "Loss of Accuracy" has occurred
and an underflow exception is signaled. The sign of the number does not change.

When denormalized numbers are operands of multiply and divide operations, operands are
prenormalized internally before performing the operations.

2.4.9.5 Data Handling and Precision
There are specific instructions for moving floating-point data between the FPRs and
memory. For double-precision format data, the data is not altered during the move. For
single-precision data, the format is converted to double-precision format when data is
loaded from memory into an FPR. A format conversion from double- to single-precision is
performed when data from an FPR is stored. Floating-point exceptions cannot occur during
these operations.

All arithmetic operations use floating-point double-precision format.

Aoating-point single-precision formats are used by the following four types of instructions:

2-66

Load Aoating-Point Single-Precision (lfs)-This instruction accesses a single­
precision operand in single-precision format in memory, converts it to double­
precision, and loads it into an FPR. Exceptions are not detected during the load
operation.

Round to floating-point single-precision-If the operand is not already in single­
precision range, the floating round to single-precision instruction rounds a double­
precision operand to single-precision, checking the exponent for single-precision

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

range and handling any exceptions according to respective enable bits in the FPSCR.
The instruction places that operand into an FPR as a double-precision operand. For
results produced by single-precision arithmetic instructions and by single-precision
loads, this operation does not alter the value.

Single-precision arithmetic instructions-These instructions take operands from the
FPRs in double-precision format, performs the operation as if it produced an
intermediate result correct to infinite precision and with unbounded range, and then
forces this intermediate result to fit in single-precision format. Status bits in the
FPSCR and in the condition register are set to reflect the single-precision result. The
result is then converted to double-precision format and placed into an FPR. The
result falls within the range supported by the single format.

For single-precision operations, source operands must be representable in single­
precision format. If they are not, the result placed into the target FPR, and the setting
of status bits in the FPSCR and in the condition register, are undefined.

Store Floating-Point Single-Precision (stfs)-This form of instruction converts a
double-precision operand to single-precision format and stores that operand into
memory. If the operand requires denormalization in order to fit in single-precision
format, it is automatically denormalized prior to being stored. No exceptions are
detected on the store operation (the value being stored is effectively assumed to be
the result of an instruction of one of the preceding three types).

When the result of a Load Floating-Point Single-Precision (lfs), Floating-Point Round to
Single-Precision (frspx), or single-precision arithmetic instruction is stored in an FPR, the
low-order 29 fraction bits are zero. This is shown in Figure 2-50.

Bit 35

s EXP x x x x x x x x x xx x x x x x x x x x x x x 00000000000000000000000000000

o 11 12 63

Figure 2-50. Single-Precision Representation in an FPR

The Floating-Point Round To Single-Precision (frpsx) instruction allows conversion from
double- to single-precision with appropriate exception checking and rounding. This
instruction should be used to convert double-precision floating-point values (produced by
double-precision load and arithmetic instructions) to single-precision values before storing
them into single-format memory elements or using them as operands for single-precision
arithmetic instructions. Values produced by single-precision load and arithmetic
instructions can be stored directly, or used directly as operands for single-precision
arithmetic instructions, without preceding the store, or the arithmetic instruction, by frspx.

A single-precision value can be used in double-precision arithmetic operations. The reverse
is true only if the double-precision value can be represented in single-precision format.
Some implementations may execute single-precision arithmetic instructions faster than

MOTOROLA Chapter 2. Registers and Data Types 2-67

double-precision arithmetic instructions. Therefore, if double-precision accuracy is not
required, using single-precision data and instructions can speed operations.

2.4.9.6 Rounding
All arithmetic instructions defined by the PowerPC architecture produce an intermediate
result considered infinitely precise. This result must then be written with a precision of
finite length into an FPR. After normalization or denormalization, if the infinitely precise
intermediate result cannot be represented in the precision required by the instruction, it is
rounded before being placed into the target FPR.

The instructions that potentially round their result are the arithmetic, multiply-add, and
rounding and conversion instructions. As shown in Figure 2-51, whether rounding occurs
depends on the source values.

>-N_o_~ FI= 0
FR= 0

Figure 2-51. Rounding Flow Diagram

Each of these instructions sets FPSCR bits FR and FI, according to whether rounding
occurs (FI) and whether the fraction was incremented (FR). If rounding occurs, FI is set to
one and FR may be either zero or one. If rounding does not occur, both FR and FI are
cleared. Other floating-point instructions do not alter FR and Fl. Four modes of rounding
are provided that are user-selectable through the floating-point rounding control field in the
FPSCR. See Section 2.2.3, "Floating-Point Status and Control Register (FPSCR)." These
are encoded as follows in Table 2-36.

Let Z be the infinitely precise intermediate arithmetic result or the operand of a conversion
operation. If Z can be represented exactly in the target format, no rounding occurs and the
result in all rounding modes is equivalent to truncation of Z. If Z cannot be represented

2-68 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 2-36. FPSCR Bit Settings-RN Field

RN Rounding Mode

00 Round to nearest

01 Round toward zero

10 Round toward +infinity

11 Round toward -infinity

exactly in the target format, let Zl and Z2 be the next larger and next smaller numbers
representable in the target format that bound Z; then Zl or Z2 can be used to approximate
the result in the target format.

Figure 2-52 shows a graphical representation of Z, Zl, and Z2 in this case and Figure 2-53
shows the selection of Zl and Z2 for the four rounding settings.

By incrementing LSB f Z 0

Infinitely precise value
By truncating after LSB

I
I

Z2 Z1 0 Z2 Z1

Z Z
Negative values ---f--~. Positive values

Figure 2-52. Relation of Z1 and Z2

Rounding follows the four following rules:

• Round to nearest-Choose the best approximation (Zl or Z2. In case of a tie, choose
the one which is even (least significant bit 0)).

• Round toward zero-Choose the smaller in magnitude (Zl or Z2).

• Round toward +infinity-Choose Zl.

• Round toward -infinity-Choose Z2.

See Section 2.4.9.1, "Execution Model for IEEE Operations," for a detailed explanation of
rounding. If Z is to be rounded up and Zl does not exist (that is, if there is no number larger
than Z that is representable in the target format), then an overflow exception occurs if Z is
positive and an underflow exception occurs if Z is negative. Similarly, if Z is to be rounded
down and Z2 does not exist, then an overflow exception occurs if Z is negative and an
underflow exception occurs if Z is positive. The results in these cases are defined in Section
5.4.7.1, "Floating-Point Enabled Program Exceptions."

MOTOROLA Chapter 2. Registers and Data Types 2-69

IFI

O· ·0 Z is infinitely
precise result
or operand
. .

Yes
I--------------~ Rounding = Truncation

Yes
Choose Z2

Yes
Choose Z1

Yes
Choose Z1

Figure 2-53. Selection of Z1 and Z2

2.5 Unimplemented PowerPC Registers
The following PowerPC registers are not implemented in the MPC601 :

• The time base SPRs are used in the PowerPC architecture instead of the RTC
registers. The architected time base facility operates as a subdivision of the
frequency provided by the processor clock.

• Floating-point exception cause register (FPECR)-This is a supervisor-level SPR
(1023) that is used by some implementations to determine the cause of a floating­
point error.

2-70 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Address space register (ASR)-The ASR is a 64-bit SPR used in 64-bit
implementations to perform address translations.

Each PowerPC processor implements a unique set of HID registers. N ate that some
of these registers may be implemented the same way in more than one PowerPC
processor design.

An mtspr or mfspr instruction that specifies an unimplemented register is treated as a no­
op. If a privilege violation is indicated, the program exception has priority over the no-op.
This can occur if a user-mode program tries to access a register with bit 0 of the SPR
encoding field (in the instruction format) set. However, in this case the program exception
is taken regardless of whether the SPR encoding specified an implemented register.

2.6 Reset
The following sections describe hard reset and soft reset in the MPC601 processor. For
more information about the reset exception see Section 5.4.1, "Reset Exceptions
(x'OOI00')."

2.6.1 Hard Reset
The hard reset sequence begins when the hard reset signal HREsE'1 is negated after being
driven as described in Section 8.2.9.4.1, "Hard reset (HRESE'f)-Input." Note that a hard
reset operation is required on power-on in order to properly reset the MPC601.

Table 2-37 shows the state of the registers after a hard reset and before it fetches the first
instruction from address x'FFFO ()lOO' the system reset exception vector.

Table 2-37. Settings after Hard Reset (Used at Power-On)

Register Setting Register Setting

GPRs All Os SRR1 00000000

FPRs All Os SRGO 00000000

FPSCR 00000000 SRG1 00000000

Condition register All Os SRG2 00000000

Segment registers All Os SRG3 00000000

MSR 00001040 EAR 00000000

MQ 00000000 PVR 00010001 1

XER 00000000 BAT registers All Os

RTCU3 00000000 HIDO 800100802

RTCL3 000000003 HID1 00000000

Link register 00000000 HID2 00000000

CTR 00000000 HID5 00000000

DSISR 00000000 HID15 00000000

MOTOROLA Chapter 2. Registers and Data Types 2-71

..

Table 2-37. Settings after Hard Reset (Used at Power-On) (Continued)

Register Setting Register Setting

OAR 00000000 TLBs All as

OEC3 00000000 Cache All as

SOR1 00000000 Tag directory All as. (However, the LRU
bits are initialized such
that each side of the
cache has a unique LRU
value.)

SRRO 00000000

Notes: 1 In the earliest release of the MPC601 (001), this is 00010000. Later versions of the hardware may be
different.

2 Master checkstop enable on, sequencer GPR self·test checkstop invalid microcode instruction checkstop on.
3 Note that if external clock is connected to RTC for the MPC601, then the RTCL, RTCU, and OEC can change

from their initial value of Os without receiving instructions to load those registers.

The following is also true after a hard reset operation:

External checkstops are enabled.

The on-chip COP has given control of the PIs/POs to the rest of the chip for
functional use.

Since the reset exception has data and instruction translation disabled (MSR[DT]
and MSR[IT] both cleared), the chip operates in direct address translation mode.
This implies that instruction fetches as well as loads and stores are cacheable.
(Operations that correspond to direct address translations are implicitly cacheable,
not write-through mode, and require coherency checking on the bus).

All internal arrays and registers are cleared during the hard reset process.

2.6.2 Soft Reset
Registers are not re-initialized when a soft reset occurs (SRESEl' is asserted as described
in Section 8.2.9.4.2, "Soft Reset (SRESET)-Input"). The SRRO and SRRI registers are
updated with instruction and MSR data, and the MSR values are reset according to
procedures described in Section 5.4.1, "Reset Exceptions (x'OOIOO'),"

2-72 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 3
Addressing Modes and Instruction Set
Summary
This chapter describes instructions and address modes supported by the MPC601
microprocessor. These instructions are divided into the following categories:

• Integer instructions-These include computational and logical instructions.

• Roating-point instructions-These include floating-point computational
instructions, as well as instructions that affect the floating-point status and control
register.

• Load/store instructions-These include integer and floating-point load and store
instructions.

• Row control instructions-These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

• Processor control instructions-These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions. This information, which is useful in taking
full advantage of the MPC601 's superscalar parallel instruction execution, is provided with
each instruction in Chapter 10, "Instruction Set."

Integer instructions operate on byte, half-word, and word operands. Roating-point
instructions operate on single-precision and double-precision floating-point operands. The
PowerPC architecture uses instructions that are four bytes long and word-aligned. It
provides for byte, half-word, and word operand fetches and stores between memory and a
set of 32 general-purpose registers (GPRs). It also provides for word and double-word
operand fetches and stores between memory and a set of 32 floating-point registers (FPRs).

Computational instructions do not modify memory. To use a memory opcrarld in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location.

The MPC601 executes program instructions when it is in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-1

•

..
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

3.1 Memory Addressing
A program references memory using the effective address computed by the processor when
it executes a memory access or branch instruction, or when it fetches the next sequential
instruction.

3.1.1 Effective Address Calculation
The effective address is the 32-bit address computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the storage operand is considered to wrap around
from the maximum effective address to effective address 0, as described in the following
paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode. The d operand is added to the contents
of the aPR specified by the r A operand to generate the effective address.

• Register indirect with index mode. The contents of the aPR specified by rB operand
are added to the contents of the aPR specified by the r A operand to generate the
effective address.

• Register indirect mode. The contents of the aPR specified by the r A operand are
used as the effective address.

Branch instructions have three categories of effective address generation:

• Immediate addressing. The BD or LI operands are sign extended with the two low­
order bits cleared to zero to generate the branch effective address.

Link register indirect. The contents of the link register with the two low-order bits
cleared to zero are used as the branch effective address.

• Counter register indirect. The contents of the counter register with the two low-order
bits cleared to zero are used as the branch effective address.

Branch instructions can optionally load the link register with the next sequential instruction
address (current instruction address + 4).

3.1.2 Context Synchronization
The System Call (sc), Return from Interrupt (rfi), and Move to Machine State Register
(mtmsr) instructions perform context synchronization by allowing previously issued

3-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

instructions to complete before performing a context switch. Execution of one of these
instructions ensures the following:

No higher priority exception exists.

All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results must be determined before this instruction is executed.

Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The instructions following the SC, rfi, and mtmsr instruction execute in the context
established by these instruction.

3.2 Exception Summary
There are two kinds of exceptions in the MPC601-those caused directly by the execution
of an instruction and those caused by an asynchronous event. Either kind of exception
causes one of several components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction in the following
situations:

An attempt to execute an illegal instruction or an attempt by an application program
to execute a supervisor-level instruction causes the illegal instruction or supervisor­
level instruction handler to be invoked.

An attempt to access memory in a manner that violates memory protection causes
the data access exception handler or instruction access exception handler to be
invoked.

• An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

• The execution of an sc instruction causes the system service program to be invoked.

• The execution of a trap instruction that traps causes the program exception trap
handler to be invoked.

• The execution of a floating-point instruction when floating-point instructions are
unavailable causes the floating-point unavailable handler to be invoked.

• The execution of an instruction that causes a floating-point exception that is enabled
causes the floating-point enabled exception handler to be invoked.

Exceptions caused by asynchronous events are described in Chapter 5, "Exceptions".

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-3

..

-
3.3 Integer Instructions
This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
• Integer rotate and shift instructions
• Integer logical instructions.

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the integer exception register (XER), and into condition register fields. Trap
instructions compare the contents of one GPR with a second GPR or with immediate data
and, if the conditions are met, invoke the program exception trap handler.

These instructions treat the source operands as signed integers unless the instruction is
explicitly identified as an unsigned operation or an address conversion.

The integer instructions that are coded to update the condition register and the integer
logical and arithmetic instructions (addie., andi., and andis.) set condition register field
CRO (bits 0-3) to characterize the result of the operation. The condition register field CRO
is set as if result were compared algebraically to zero.

The integer arithmetic instructions (addie, addie., subfic, adde, subfe, adde, subfe,
addme, subfme, addze, and subfze) always set integer exception register bit CA to reflect
the carry out of bit O. Integer arithmetic instructions with the overflow enable (OE) bit set
will cause the XER bits SO and OV to be set to reflect overflow of the 32-bit result.

Unless otherwise noted, when condition register field CRO and the XER are affected they
reflect the value placed in the target register.

The MPC601 performs best for aligned load and store operations. See Section 5.4.6,
"Alignment Exception (x'00600')," for scenarios that cause an alignment exception.

3.3.1 Integer Arithmetic Instructions
In the MPC601 instructions that select the overflow option (enable XER(OV)) or that set
the integer exception register carry bit (CA may delay the execution of subsequent
instructions.

The MPC601 integer unit defines one additional register to the user register set and
programming model that is not present in other PowerPC implementations. The MQ
register is a 32-bit register whose primary use is to provide a register extension to
accommodate the product for the MPC601-specific Multiply (mul) instruction and the
dividend for the MPC601-specific Divide (div) instruction. It is also used as an operand of
long rotate and shift instructions.

The MQ register is never architecturally modified by any of the instructions defined in the
PowerPC architecture. However, in the MPC601 the MQ register may be modified during

3-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

the execution of any POWER or PowerPC mUltiply or divide instruction. The value written
to the MQ register during these operations is operand dependent.

Table 3-1 lists the integer arithmetic instructions for the MPC601. Note that some of the
instructions are specific to the MPC601 implementation.

Table 3·1. Integer Arithmetic Instructions

Name Mnemonic
Operand

Operation
Syntax

Add addi rD,rA,SIMM The sum (rAID) + SIMM is placed into register rD.
Immediate

Add addis rD,rA,SIMM The sum (rAID) + (SIMM II x '0000') is placed into register rD.
Immediate
Shifted

Add add rD,rA,rB The sum (rA) + (rB) is placed into register rD.
add.

add Add
addo

add. Add with CR Update. The dot suffix enables the update of
addo.

the condition register.
addo Add with Overflow Enabled. The 0 suffix enables the

overflow bit (OV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables

the update of the condition register and enables the
overflow bit (OV) in the XER.

Subtract subf rD,rA,rB The sum --. (rA) + (rB) + 1 is placed into rD.
from subf.

subf Subtract from
subfo

subf. Subtract from with CR Update. The dot suffix enables the
sUbfo.

update of the condition register.
subfo Subtract from with Overflow Enabled. The 0 suffix enables

the overflow. The 0 suffix enables the overflow bit (OV) in
the XER.

subfo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Add addic rD,rA,SIMM The sum (rA) + SIMM is placed into register rD.
Immediate
Carrying

Add addic. rD,rA,SIMM The sum (rA) + SIMM is placed into rD. The condition register is
Immediate updated.
Carrying
and Record

Subtract subflc rD,rA,SIMM The sum --. (rA) + SIMM + 1 is placed into register rD.
from
Immediate
Carrying

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3·5

..

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax .. Add addc rD,rA,rB The sum (rA) + (rB) is placed into register rD.

Carrying addc.
addc Add Carrying

addco
addc. Add Carrying with CR Update. The dot suffix enables the

addco.
update of the condition register.

addco Add Carrying with Overflow Enabled. The 0 suffix enables
the overflow bit (OV) in the XER.

add co. Add Carrying with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Subtract subfc rD,rA,rB The sum -, (rA) + (rB) + 1 is placed into register rD.
from subfc.

subfc Subtract from Carrying
Carrying subfco

subfc. Subtract from Carrying with CR Update. The dot suffix
subfco.

enables the update of the condition register.
subfco Subtract from Carrying with Overflow. The 0 suffix enables

the overflow bit (OV) in the XER.
subfco. Subtract from Carrying with Overflow and CR Update.

The o. suffix enables the update of the condition register
and enables the overflow bit (OV) in the XER.

Add adde rD,rA,rB The sum (rA) + (rB) + XER(CA) is placed into register rD.
Extended adde.

adde Add Extended
addeo

adde. Add Extended with CR Update. The dot suffix enables the
addeo.

update of the condition register.
addeo Add Extended with Overflow. The 0 suffix enables the

overflow bit (OV) in the XER.
addeo. Add Extended with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Subtract subfe rD,rA,rB The sum -,(rA) + (rB) + XER(CA) is placed into register rD.
from subfe.

subfe Subtract from Extended
Extended subfeo

subfe. Subtract from Extended with CR Update. The dot suffix
subfeo.

enables the update of the condition register.
subfeo Subtract from Extended with Overflow. The 0 suffix

enables the overflow bit (OV) in the XER.
subfeo. Subtract from Extended with Overflow and CR Update.

The o. suffix enables the update of the condition register
and enables the overflow (OV) bit in the XER.

Add to addme rD,rA The sum (rA) + XER(CA) + x'FFFFFFFF' is placed into register rD.
Minus One add me.

addme Add to Minus One Extended
Extended addmeo

addme. Add to Minus One Extended with CR Update. The dot
addmeo.

suffix enables the update of the condition register.
addmeo Add to Minus One Extended with Overflow. The 0 suffix

enables the overflow bit (OV) in the XER.
addmeo. Add to Minus One Extended with Overflow and CR

Update. The o. suffix enables the update of the condition
register and enables the overflow (OV) bit in the XER.

3-6 PowerPC 601 RiSe Microprocessor USE'r's Manual MOTOROLA

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Subtract subfme rD,rA The sum..., (rA) + XER(CA) + x'FFFFFFFF' is placed into register rD.
from Minus subfme.

subfme Subtract from Minus One Extended
One subfmeo subfme. Subtract from Minus One Extended with CR Update. The
Extended subfmeo.

dot suffix enables the update of the condition register.

..
subfmeo Subtract from Minus One Extended with Overflow. The 0

suffix enables the overflow bit (OV) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and CR

Update. The o. suffix enables the update of the condition
register and enables the overflow bit (OV) in the XER.

Add to Zero addze rD,rA The sum (rA) + XER(CA) is placed into register rD.
Extended addze.

addze Add to Zero Extended
addzeo addze. Add to Zero Extended with CR Update. The dot suffix
addzeo.

enables the update of the condition register.
addzeo Add to Zero Extended with Overflow. The 0 suffix enables

the overflow bit (OV) in the XER.
addzeo. Add to Zero Extended with Overflow and CR Update. The

o. suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.

Subtract subfze rD,rA The sum..., (rA) + XER(CA) is placed into register rD.
from Zero subtze. subtze Subtract from Zero Extended
Extended subtzeo

subtze. Subtract from Zero Extended with CR Update. The dot
subtzeo.

suffix enables the update of the condition register.
subtzeo Subtract from Zero Extended with Overflow. The 0 suffix

enables the overflow bit (OV) in the XER.
subtzeo. Subtract from Zero Extended with Overflow and CR

Update. The o. suffix enables the update of the condition
register and enables the overflow bit (OV) in the XER.

Negate neg rD,rA The sum..., (rA) + 1 is placed into register rD.
neg.

neg Negate
nego neg. Negate with CR Update. The dot suffix enables the update
nego.

of the condition register.
nego Negate with Overflow. The 0 suffix enables the overflow bit

(OV) in the XER.
nego. Negate with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Multiply mUIli rD,rA,SIMM The low-order 32 bits of the 48-bit product (rA)*SIMM are placed into
Low register rD. The low-order 32 bits of the product are the correct 32-bit
Immediate product. The low-order bits are independent of whether the operands

are treated as signed or unsigned integers. However, XER[OV] is set
based on the result interpreted as a signed integer.
The high-order bits are lost. This instruction can be used with
mulhwxto calculate a full 64-bit product.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-7

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax • Multiply mullw rD,rA,rB The low-order 32 bits of the 64-bit product (rA) *(rB) are placed into

Low mullw. register rD. The low-order 32 bits of the product are the correct 32-bit
mullwo product. The low-order bits are independent of whether the operands
mullwo. are treated as signed or unsigned integers. However, XER[OV] is set

based on the result interpreted as a signed integer.

The high-order bits are lost. This instruction can be used with
mulhwxto calculate a full 64-bit product. Some implementations may
execute faster if rB contains the operand having the smaller absolute
value.

mullw Multiply Low
mullw_ Multiply Low with CR Update. The dot suffix enables the

update of the condition register.
mullwo Multiply Low with Overflow. The 0 suffix enables the

overflow bit (OV) in the XER.
mullwo. Multiply Low with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Multiply mulhw rD,rA,rB The contents of rA and rB are interpreted as 32-bit signed integers.
High Word mulhw. The 64-bit product is formed. The high-order 32 bits of the 64-bit

product are placed into rD.

Both operands and the product are interpreted as signed integers.

This instruction may execute faster if rB contains the operand having
the smaller absolute value.

mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix enables

the update of the condition register.

Multiply mulhwu rD,rA,rB The contents of rA and of rB are extracted and interpreted as 32-bit
High Word mulhwu. unsigned integers. The 64-bit product is formed. The high-order 32
Unsigned bits of the 64-bit product are placed into rD.

Both operands and the product are interpreted as unsigned integers.

This instruction may execute faster if rB contains the operand having
the smaller absolute value.

mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot

suffix enables the update of the condition register.

3-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Divide Word divw rD,rA,rB The dividend is the signed value of (rA). The divisor is the signed
divw. value of (rB). The 64-bit quotient is formed. The low-order 32 bits of ..
divwo the 64-bit quotient are placed into rD. The remainder is not supplied
divwo. as a result.

Both operands are interpreted as signed integers. The quotient is the
unique signed integer that satisfies the following:

dividend = (quotient times divisor) + r
where a ::; r < Idivisorl if the dividend is non-negative, and -Idivisorl <
r::; a if the dividend is negative.
If an attempt is made to perform any of the divisions

x'BOOO_OOOO' /-1
or
<anything> / a

the contents of register rD are undefined, as are the contents of the
LT, GT, and EQ bits of the condition register field CRO if the
instruction has condition register updating enabled. In these cases, if
instruction overflow is enabled, then XER[OV] is set.

The 32-bit signed remainder of dividing (rA) by (rB) can be computed
as follows, except in the case that (rA) = _231 and (rB) = -1:

divw rD,rA,rB rD = quotient
mull rD,rD,rB rD = quotient*divisor
subf rD,rD,rA rD = remainder

divw Divide Word
divw. Divide Word with CR Update. The dot suffix enables the

update of the condition register.
divwo Divide Word with Overflow. The 0 suffix enables the overflow

bit (OV) in the XER.
divwo_ Divide Word with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables the
overflow bit (OV) in the XER.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-9

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax • Divide divwu rD,rA,r8 The dividend is the value of (rA). The divisor is the value of (r8). The

Word divwu. 32 bit quotient is placed into rD. The remainder is not supplied as a
Unsigned divwuo result.

divwuo. 80th operands are interpreted as unsigned integers. The quotient is
the unique unsigned integer that satisfies the following:

dividend = (quotient times divisor) + r
where 0 ::; r < divisor.

If an attempt is made to perform the division

<anything> / 0

the contents of register rD are undefined, as are the contents of the
LT, GT, and EQ bits of the condition register field CRO if the
instruction has the condition register updating enabled. In these
cases, if instruction overflow is enabled, then XER[OV] is set.

The 32-bit unsigned remainder of dividing (rA) by (r8) can be
computed as follows:

divwu rD,rA,r8 rD = quotient
mull rD,rD,r8 rD = quotient*divisor
subf rD,rD,rA rD = remainder

divwu Divide Word Unsigned
divwu. Divide Word Unsigned with CR Update. The dot suffix

enables the update of the condition register.
divwuo Divide Word Unsigned with Overflow. The a suffix enables

the overflow bit (OV) in the XER.
divwuo. Divide Word Unsigned with Overflow and CR Update. The

o. suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.

Difference dozi rD,rA,SIMM This is a POWER instruction, and is not part of the PowerPC
or Zero architecture. This instruction will not be supported by other
Immediate PowerPC implementations.

The sum ..,(rA) + SIMM + 1 is placed into register rD. If the value in
register rA is algebraically greater than the value of the SIMM field,
register rD is cleared.

This instruction is specific to the MPC601.

3-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Difference doz rD,rA,rB This is a POWER instruction, and is not part of the PowerPC
or Zero doz. architecture. This instruction will not be supported by other ..

dozo PowerPC implementations.
dozo.

The sum -, (rA) + (rB) + 1 is placed into register rD. If the value in
register rA is algebraically greater than the value in register rB,
register rD is cleared.

If the instruction has condition register updating enabled, condition
register field CRO is set to reflect the result placed in register rD (Le.,
if register rD is set to zero, EQ is set to 1).

If the instruction has overflow enabled, XER[OV] is only set on
positive overflows.

doz Difference or Zero
doz. Difference or Zero with CR Update. The dot suffix enables

the update of the condition register.
dozo Difference or Zero with Overflow. The 0 suffix enables the '

overflow bit (OV) in the XER.
dozo. Difference or Zero with Overflow and CR Update. The o.

suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.

This instruction is specific to the MPC601.

Absolute abs rD,rA This is a POWER instruction, and is not part of the PowerPC
abs. architecture. This instruction will not be supported by other
abso PowerPC implementations.
abso.

The absolute value l(rA)1 is placed into register rD. If register rA
contains the most negative number (i.e., x '80000000'), the result of
the instruction is the most negative number and sets the XER[OV] bit
if enabled.

abs Absolute
abs. Absolute with CR Update. The dot suffix enables the

update of the condition register.
abso Absolute with Overflow. The 0 suffix enables the overflow

bit (OV) in the XER
abso. Absolute with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

This instruction is specific to the MPC601.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-11

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax .. Negative nabs rD,rA This is a POWER instruction, and is not part of the PowerPC

Absolute nabs. architecture. This instruction will not be supported by other
nabso PowerPC implementations.
nabso. The negative absolute value -l(rA)1 is placed into register rD.

Note: nabs never overflows. If the instruction is overflow enabled,
then XER[OV] is cleared to zero and XER[SO] is not changed.

nabs Negative Absolute
nabs. Negative Absolute with CR Update. The dot suffix enables

the update of the condition register.
nabso Negative Absolute with Overflow. The 0 suffix enables the

overflow bit (OV) in the XER
nab so. Negative Absolute with Overflow and CR Update. The o.

suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.

This instruction is specific to the MPC601.

Multiply mul rD,rA,rB This is a POWER instruction, and is not part of the PowerPC
mul. architecture. This instruction will not be supported by other
mulo PowerPC implementations.
mulo. Bits 0-31 of the product (rA)*(rB) are placed into register rD. Bits

32-63 of the product (rA)*(rB) are placed into the MO register.

If the condition register updating is enabled, then LT, GT, and EO
reflect the result in the MO register's low-order 32 bits. If the
instruction is overflow enabled, then the XER[SO] and XER[OV] bits
are set to one if the product cannot be represented in 32 bits.

mul Multiply
mul. Multiply with CR Update. The dot suffix enables the update

of the condition register.
mulo Multiply with Overflow. The 0 suffix enables the overflow

bit (OV) in the XER.
mulo. Multiply with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

This instruction is specific to the MPC601.

3-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Divide div rD,rA,rB This is a POWER instruction, and is not part of the PowerPC
div. architecture. This instruction will not be supported by other
diva PowerPC implementations.
diva. The quotient [(rA) II (MQ)Y(rB) is placed into register rD. The

remainder is placed in the MQ register. The remainder has the same
sign as the dividend, except that a zero quotient or a zero remainder
is always positive. The results obey the equation:

dividend = (divisor * quotient) + remainder

where dividend is the original (rA) II (MQ), divisor is the original (r8),
quotient is the final (rD), and remainder is the final (MQ).

If the condition register updating is enabled, condition register field
CRO bits LT, GT, and EQ reflect the remainder. If the instruction is
overflow enabled, then the XER[SO] and XER[OV] bits are set to one
if the quotient cannot be represented in 32 bits.

For the case of _231 /_1, the MQ register is cleared to zero and _231 is
placed in register rD. For all other overflows, (MQ), (rD), and
condition register field CRO (if condition register updating is enabled)
are undefined.

div Divide
div. Divide with CR Update. The dot suffix enables the update

of the condition register.
diva Divide with Overflow. The 0 suffix enables the overflow bit

(OV) in the XER.
diva. Divide with Overflow and CR Update. The o. suffix enables

the update of the condition register and enables the
overflow bit (OV) in the XER.

This instruction is specific to the MPC601.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-13

•
Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Divide Short divs rD,rA,rB This is a POWER instruction, and Is not part of the PowerPC
divs. architecture. This instruction will not be supported by other
divso PowerPC implementations.
divso. The quotient (rA)/(rB) is placed into register rD. The remainder is

placed in MO. The remainder has the same sign as the dividend,
except that a zero quotient or a zero remainder is always positive.
The results obey the equation:

dividend = (divisor * quotient) + remainder

where the dividend is the original (rA) , divisor is the original (rB),
quotient is the final (rD), and remainder is the final (MO).

If the condition register updating is enabled, then the condition
register field CRO bits LT, EO, and GT reflect the remainder. If the
instruction is overflow enabled, then the XER[SO] and XER[OV] bits
are set to one if the quotient cannot be represented in 32 bits (e.g., as
is the case when the divisor is zero, or the dividend is _231 and the
divisor is -1). For the case of _231 /_1, the MO register is cleared and -
231 is placed in register rD. For all other overflows, (MO), (rD), and
condition register field CRO (if condition register updating is enabled)
are undefined.

divs Divide Short
divs. Divide Short with CR Update. The dot suffix enables the

update of the condition register.
divso Divide Short with Overflow. The 0 suffix enables the

overflow bit (OV) in the XER.
divso. Divide Short with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

This instruction is specific to the MPC601.

In addition to supporting all of the PowerPC integer arithmetic instructions, the MPC601
supports the POWER arithmetic instructions summarized in Table 3-1 and Table 3-2 and
described in detail in Chapter 10, "Instruction Set." Note that in order to achieve full
compatibility with future PowerPC implementations, it is up to software to either emulate
these operations in the program exception handler, or to completely avoid their use.

Table 3-2. MPC601-Specific Integer Arithmetic Instruction Summary

Mnemonic Instruction Name

dozi Difference or Zero Immediate

dozx Difference or Zero

absx Absolute

nabsx Negative Absolute

mulx Multiply

divx Divide

divsx Divide Short

3-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

3.3.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of register
rA with either the UIMM operand, the SIMM operand or the contents of register rB.
Algebraic comparison compares two signed integers. Logical comparison compares two
unsigned numbers

The L field specifies whether the operands are treated as 32- or 64 bit values. The simplified
mnemonics for integer compare instructions are shown in Table 3-4 correctly clear the L
value in the instruction rather than requiring it to be coded as a numeric operand.

Table 3-3. Integer Compare Instructions

Name Mnemonic
Operand

Operation
Syntax

Compare cmpi crfD,L,rA,SIMM The contents of register rA is compared with the sign-extended
Immediate value of the SIMM operand, treating the operands as signed

integers. The result of the comparison is placed into the CR field
specified by operand crfD.

Compare cmp crfD,L,rA,rB The contents of register rA is compared with register rB, treating
the operands as signed integers. The result of the comparison is
placed into the CR field specified by operand crfD.

Compare cmpli crfD,L,rA,UIMM The contents of register rA is compared with x'OOOO' II UIMM,
Logical treating the operands as unsigned integers. The result of the
Immediate comparison is placed into the CR field specified by operand crfD.

Compare cmpl crfD,L,rA,rB The contents of register rA is compared with register rB, treating
Logical the operands as unsigned integers. The result of the comparison is

placed into the CR field specified by operand crfD.

The crfD field can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using one of
the CR field symbols (CRO-CR7) or an explicit field number.

The instructions listed in Table 3-4 are simplified mnemonics supported in all PowerPC
implementations that provide compare word capability for 32-bit operands.

Table 3-4. Word Compare Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crfD,rA,SIMM cmpi crfD,O,rA,SIMM

Compare Word cmpw crfD,rA,rB cmp crfD,O,rA,rB

Compare Logical Word cmplwi crfD,rA,UIMM cmpli crfD,O,rA,UIMM
Immediate

Compare Logical Word cmplw crfD,rA,rB cmpl crfD,O,rA,rB

The following examples demonstrate the use of the word compare mnemonics as a way to
simplify instruction coding:

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-15

..

•
1. Compare 32 bits in register rA with immediate value 100 and place result in

condition register field CRO.

cmpwi rA,lOO (equivalent to cmpi O,O,rA,lOO)

2. Same as (1), but place results in condition register field CR4.

cmpwi cr4,rA,lOO (equivalent to cmpi 4,O,rA,lOO)

3. Compare registers rA and rB as logical 32-bit quantities and place result in
condition register field CRO.

cmplw rA,rB (equivalent to cmpl O,O,rA,rB)

3.3.3 Integer Logical Instructions
The logical instructions shown in Table 3-5 perform bit-parallel operations. Logical
instructions with the condition register update enabled and instructions andi. and andis. set
condition register field CRO to characterize the result of the logical operation. These fields
are set as if the sign-extended low-order 32 bits of the result were algebraically compared
to zero. Logical instructions without condition register update and the remaining logical
instructions do not modify the condition register. Logical instructions do not change the
XER[SO], XER[OV], and XER[CA] bits.

Table 3-5. Integer Logical Instructions

Name Mnemonic
Operand

Operation
Syntax

AND andi. rA,rS,UIMM The contents of rS is ANDed with x'OOOO' II UIMM and the result is
Immediate placed into rA.

AND andis. rA,rS,UIMM The contents of rS is ANDed with UIMM II x'OOOO' and the result is
Immediate placed into rA.
Shifted

OR ori rA,rS,UIMM The contents of rS is ORed with x'OOOO' II UIMM and the result is
Immediate placed into rA.

The preferred no-op is ori 0,0,0

OR oris rA,rS,UIMM The contents of rS is ORed with UIMM Ilx'OOOO' and the result is
Immediate placed into rA.
Shifted

XOR xori rA,rS,UIMM The contents of rS is XORed with x'OOOO' II UIMM and the result is
Immediate placed into rA.

XOR xoris rA,rS,UIMM The contents of rS is XORed with UIMM IIx'OOOO' and the result is
Immediate placed into rA.
Shifted

AND and rA,rS,rB The contents of rS is ANDed with the contents of register rB and the
and. result is placed into rA.

and AND
and. AND with CR Update. The dot suffix enables the update of

the condition register.

3-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-5. Integer Logical Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

OR or rA,rS,rB The contents of rS is ORed with the contents of rB and the result is
or. placed into rA. ..

or OR
or. OR with CR Update. The dot suffix enables the update of the

condition register.

XOR xor rA,rS,rB The contents of rS is XORed with the contents of rB and the result is
xor. placed into register rA.

xor XOR
xor. XOR with CR Update. The dot suffix enables the update of

the condition register.

NAND nand rA,rS,rB The contents of rS is ANDed with the contents of rB and the one's
nand. complement of the result is placed into register rA.

nand NAND
nand. NAND with CR Update. The dot suffix enables the update of

the condition register.

NAND with rA=rB can be used to obtain the one's complement.

NOR nor rA,rS,rB The contents of rS is ORed with the contents of rB and the one's
nor. complement of the result is placed into register rA.

nor NOR
nor. NOR with CR Update. The dot suffix enables the update of

the condition register.

NOR with rA=rB can be used to obtain the one's complement.

Equivalent eqv rA,rS,rB The contents of rS is XORed with the contents of rB and the
eqv. complemented result is placed into register rA.

eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the

update of the condition register.

AND with andc rA,rS,rB The contents of rS is ANDed with the complement of the contents of
Complement andc. rB and the result is placed into rA.

andc AND with Complement
ande. AND with Complement with CR Update. The dot suffix

enables the update of the condition register.

OR with orc rA,rS,rB The contents of rS is ORed with the complement of the contents of rB
Complement ore. and the result is placed into rA.

orc OR with Complement
ore. OR with Complement with CR Update. The dot suffix

enables the update of the condition register.

Extend Sign extsb rA,rS Register r S[24-31] are placed into rA[24-31]. Bit 24 of rS is placed
By to c!:t:b. into rA[O-23].

extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the

update of the condition register.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-17

..
Table 3-5. Integer Logical Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Extend Sign extsh rA,rS Register r S[16-31] are placed into rA[16-31]. Bit 16 of rS is placed
Half Word extsh. into rA[O-15].

extsh Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix

enables the update of the condition register.

Count cntlzw rA,rS A count of the number of consecutive zero bits of rS is placed into rA.
Leading cntlzw. This number ranges from 0 to 32, inclusive.
Zeros Word

cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix

enables the update of the condition register.

When the Count Leading Zeros Word instruction has condition
register updating enabled, the LT field is cleared to zero in CRO.

3.3.4 Integer Rotate and Shift Instructions
Rotate and shift instructions provide powerful and general ways to manipulate register
contents. Simplified mnemonics allow some of the simpler operations to be coded easily.
Mnemonics are provided for the types of operation shown in Table 3-6.

Table 3-6. Rotate and Shift Operations

Operation Description

Extract Select a field of n bits starting at bit position b in the source register, right or left justify this field in the
target register, and clear all other bits of the target register to zero.

Insert Select a left· or right-justified field of n bits in the source register, insert this field starting at bit position
b of the target register, and leave other bits of the target register unchanged. (No simplified mnemonic
is provided for insertion of a left-justified field when operating on double-words; such an insertion
requires more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits to 0 (logical shift).

Clear Clear the leftmost or rightmost n bits of a register to O.

Clear left Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used to
and shift scale a known non-negative array index by the width of an element.
left

The IU performs rotation operations on data from a GPR and returns the result, or a portion
of the result, to a GPR. Rotation operations rotate a 32-bit quantity left by a specified
number of bit positions. Bits that exit from position 0 enter at position 31.

Rotate and shift instructions employ a mask generator. The mask is 32 bits long and consists
of I-bits from a start bit, MB, through and including a stop bit, ME, and O-bits elsewhere.
The values of MB and ME range from zero to 31. If MB > ME, the I-bits wrap around from
position 31 to position O. Thus the mask is formed as follows:

3-18 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

if MB ::; ME then

mask[mstart-mstop] = ones
mask[all other bits] = zeros

else
mask[mstart-31] = ones
mask[O-mstop] = ones
mask[all other bits] = zeros

There is no way to specify an all-zero mask. The use of the mask is described in the
following sections.

If condition register updating is enabled, rotate and shift instructions set condition register
field CRO according to the contents of rA at the completion of the instruction. Rotate and
shift instructions do not change the values of XER[OV] and XER[SO] bits. Rotate and shift
instructions, except algebraic right shifts, do not change the XER[CA] bit.

Simplified mnemonics allow simpler coding of often-used functions such as clearing the
leftmost or rightmost bits of a register, left justifying or right justifying an arbitrary field,
and simple rotates and shifts. Some of these are shown as examples with the rotate
instructions.

POWER Compatibility Note: In addition to supporting all of the PowerPC integer rotate
and shift instructions, the MPC601 also supports all POWER rotate and shift instructions.
Note that in order to achieve full compatibility with all POWER applications on future
PowerPC implementations, it is left up to software to either emulate these operations in the
instruction exception handler, or to completely avoid their use. These MPC601-specific
rotate and shift instructions are summarized in Table 3-7.

Table 3-7. MPC601-Specific Rotate and Shift Instructions

Mnemonic Instruction Name

rlmix Rotate Left then Mask Insert

rribx Rotate Right and Insert Bit

maskgx Mask Generate

maskirx Mask Insert from Register

slqx Shift Left with MQ

srqx Shift Right with MQ

sliqx Shift Left Immediate with MQ

slliqx Shift Left Long Immediate with MQ

sriqx Shift Right Immediate with MQ

srliqx Shift Right Long Immediate with MQ

sllqx Shift Left Long with MQ

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-19

..

..
Table 3-7. MPC601-Specific Rotate and Shift Instructions (Continued)

Mnemonic Instruction Name

srlqx Shift Right Long with MQ

slex Shift Left Extended

sleqx Shift Left Extended with MQ

srex Shift Right Extended

sreqx Shift Right Extended with MQ

sraiqx Shift Right Algebraic Immediate with MQ

sraqx Shift Right Algebraic with MQ

sreax Shift Right Extended Algebraic

3.3.4.1 Integer Rotate Instructions
Integer rotate instructions rotate the contents of a register. The result of the rotation is
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is () the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

Rotate left instructions allow right-rotation of the contents of a register to be performed by
a left-rotation of 32-n, where n is the number of bits by which to rotate right

3.3.4.2 Integer Shift Instructions
The instructions in this section perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics are provided to make coding of such shifts
simpler and easier to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by
211.

Multiple-precision shifts can be programmed as shown in Appendix E, "Multiple-Precision
Shifts."

3·20 Powerpe 601 Rise Microprocessor User's Manual MOTOROLA

The integer rotate and shift instructions are summarized in Table 3-8.

Table 3-8. Integer Rotate Instructions

Name Mnemonic Operand Syntax Operation

Rotate Left rlwinm rA,rS,SH,MB,ME The contents of register rS are rotated left by the number of bits • Word rlwinm. specified by operand SH. A mask is generated having 1-bits from
Immediate the bit specified by operand MB through the bit specified by
then AND operand ME and a-bits elsewhere. The rotated data is ANDed with
with Mask the generated mask and the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with

CR Update. The dot suffix enables the update of the
condition register.

Simplified mnemonics:
extlwi rA,rS,n,b rlwinm rA,rS,b,O,n-1
srwi rA,rS,n rlwinm rA,rS,32-n,n,31
clrrwi rA,rS,n rlwinm rA,rS,O,O,31-n

Note: The rlwinm instruction can be used for extracting, clearing
and shifting bit fields using the methods shown below:

To extract an n-bit field that starts at bit position b in register rS, ,
right-justified into rA (clearing the remaining 32-n bits of rA), set
SH",b+n, MB",32-n, and ME",31.

To extract an n-bit field that starts at bit position bin rS, left-
justified into rA, set SH=b, MB '" a, and ME",n-1.

To rotate the contents of a register left (right) by n bits, set SH",n
(32-n), MB=O, and ME",31.

To shift the contents of a register right by n bits, set SH=32-n,
MB",n, and ME",31.

To clear the high-order b bits of a register and then shift the result
left by n bits, set SH",n, MB",b-n and ME",31-n.

To clear the low-order n bits of a register, set SH=O, MB",O, and
ME=31-n.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-21

Table 3-8. Integer Rotate Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Rotate Left rlwnm rA,rS,rB,MB,ME The contents of rS are rotated left by the number of bits specified
Word then rlwnm. by rB[27-31]. A mask is generated having 1-bits from the bit
AND with specified by operand MB through the bit specified by operand ME
Mask and O-bits elsewhere. The rotated data is ANDed with the

generated mask and the result is placed into rA.

rlwinm Rotate Left Word then AND with Mask
rlwinm. Rotate Left Word then AND with Mask with CR Update.

The dot suffix enables the update of the condition
register.

Simplified mnemonics:

rotlw rA,rS,rB rlwnm rA,rS,rB,O,31

Note: The rlwinm instruction can be used to extract and rotate bit
fields using the methods shown below:

To extract an n-bit field that starts at the variable bit position bin
the register specified by operand rS, right-justified into rA (clearing
the remaining 32-nbits of rA), set r B[27-31]=b+n, MB=32-n, and
ME=31.

To extract an n-bit field that starts at variable bit position b in the
register specified by operand rS, left-justified into rA (clearing the
remaining 32-n bits of rA), set rB[27-31]=b, MB = 0, and ME=n-1.

To rotate the contents of the low-order 32 bits of a register left
(right) by variable n bits, set rB[27-31]=n (32-n), MB=O, and
ME=31.

Rotate Left rlwimi rA,rS,SH,MB,ME The contents of rS are rotated left by the number of bits specified
Word rlwimi. by operand SH. A mask is generated having 1-bits from the bit
Immediate specified by MB through the bit specified by ME and O-bits
then Mask elsewhere. The rotated data is inserted into rA under control of the
Insert generated mask.

rlwimi Rotate Left Word Immediate then Mask
rlwimi. Rotate Left Word Immediate then Mask Insert with CR

Update. The dot suffix enables the update of the
condition register.

Simplified mnemonic:

inslw rA,rS,n,b rlwim rA,rS,32-b,b,b+n-1

Note: The opcode rlwimi can be used to insert a bit field into the
contents of register specified by operand rA using the methods
shown below:

To insert an n-bit field that is left-justified in rS into rA starting at bit
position b, set SH=32-b, MB=b, and ME=(b+n)-1.

To insert an n-bit field that is right-justified in rS into rA starting at
bit position b, set SH=32-(b+n), MB=b, and ME=(b+n)-1.

Simplified mnemonics are provided for both of these methods.

3-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-8. Integer Rotate Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Rotate Left rlmi rA,rS,rB,MB,ME This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

then Mask rlmi.
Insert

Rotate
Right and
Insert Bit

Mask
Generate

Mask
Insert from
Register

rrib
rrib.

maskg
maskg.

maskir
maskir.

rA,rS,rB

rA,rS,rB

rA,rS,rB

The contents of rS is rotated left the number of positions specified
by bits 27-31 of rB. The rotated data is inserted into rA under
control of the generated mask.

rlmi
rlmi.

Rotate Left then Mask Insert
Rotate Left then Mask Insert with CR Update. The dot
suffix enables the update of the condition register.

This instruction is specific to the MPC601.

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Bit 0 of rS is rotated right the amount specified by bits 27-31 of rB.
The bit is then inserted into rA.

rrib Rotate Right and Insert Bit
rrib. Rotate Right and Insert Bit with CR Update. The dot

suffix enables the update of the condition register.
This instruction is specific to the MPC601.

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Let mstart = rS[27-31], specifying the starting point of a mask of
ones. Let mstop = rB[27-31], specifying the end point of the mask
of ones.

If mstart < mstop+ 1 then
MASK(mstart ... mstop) = ones
MASK(all other bits) = zeros

If mstart = mstop+ 1 then
MASK(O-31) = ones

If mstart > mstop+ 1 then
MASK(mstop+ 1 ... mstart-1) = zeros
MASK(all other bits) = ones

MASK is then placed in rA.
maskg Mask Generate
maskg. Mask Generate with CR Update. The dot suffix

enables the update of the condition register.
This instruction is specific to the MPC601.

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is inserted into iA under cant,al of th::l m~:;k in :-S.

maskir Mask Insert from Register
maskir. Mask Insert from Register with CR Update. The dot

suffix enables the update of the condition register.
This instruction is specific to the MPC601.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-23

•

The integer shift instructions are summarized in Table 3-9.

Table 3-9. Integer Shift Instructions

• Name Mnemonic
Operand

Operation
Syntax

Shift Left slw rA,rS,rB The contents of rS are shifted left the number of bits specified by
Word slw. rB[26-31]. Bits shifted out of position 0 are lost. Zeros are supplied to

the vacated positions on the right. The 32-bit result is placed into rA.

It rB[26]=1, then rA is filled with zeros.

slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables

the update of the condition register.

Shift Right srw rA,rS,rB The contents of rS are shifted right the number of bits specified by
Word srw. rB[26-31]. Zeros are supplied to the vacated positions on the left.

The 32-bit result is placed into rA.

It rB[26]=1, then rA is filled with zeros.

srw Shift Right Word
srw. Shift Right Word with CR Update. The dot suffix enables

the update of the condition register.

Shift Right srawi rA,rS,SH The contents of rS are shifted right the number of bits specified by
Algebraic srawi. operand SH. Bits shifted out of position 31 are lost. The 32-bit result
Word is sign extended and placed into rA. XER[CA] is set if r S contains a
Immediate negative number and any 1-bits are shifted out of position 31 ;

otherwise XER(CA) is cleared. An operand SH of zero causes rA to
be loaded with the contents of rS and XER[CA] to be cleared to O.

srawi Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update.

The dot suffix enables the update of the condition register.

Shift Right sraw rA,rS,rB The contents of rS are shifted right the number of bits specified by
Algebraic sraw. rB[26-31]. The 32-bit result is placed into rA. XER[CA] is set to 1 if rS
Word contains a negative number and any 1-bits are shifted out of position

31; otherwise XER[CA] is cleared to O. An operand (rB) of zero
causes rA to be loaded with the contents of rS, and XER[CA] to be
cleared to O. If rB[26]= 1, then rA is filled with 32 sign bits (bit 0) from
rS. If rB[26]=0, then rA is filled from the left with sign bits. Condition
register field CRO is set based on the value written into rA.

sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix

enables the update of the condition register.

3-24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-9. Integer Shift Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Shift Left slq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
with MQ slq. architecture. This instruction will not be supported by other --PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
in bits 27-31 of register rB. The rotated word is placed in the MQ
register.

When bit 26 of register rB is a zero, a mask of 32-n ones followed by
n zeros is generated.

When bit 26 of register rB is a one, a mask of all zeros is generated.
The logical AND of the rotated word and the generated mask is
placed into register rA.

slq Shift Left with MQ
slq. Shift Left with MQ with CR Update. The dot suffix enables

the update of the condition register.

This instruction is specific to the MPC601.

Shift Right srq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
with MQ srq. architecture. This instruction will not be supported by other

PowerPC implementations.

Register rS is rotated left 32-n bits where n is the shift amount
specified in bits 27-31 of register rB. The rotated word is placed into
the MQ register. When bit 26 of register rB is a zero, a mask of n
zeros followed by 32-n ones is generated.

When bit 26 of register rB is a one, a mask of all zeros is generated.
The logical AND of the rotated word and the generated mask is
placed in rA.

srq Shift Right with MQ
srq. Shift Right with MQ with CR Update. The dot suffix

enables the update of the condition register.

This instruction is specific to the MPC601.

Shift Left sliq rA,rS,SH This is a POWER instruction, and is not part of the PowerPC
Immediate sliq. architecture. This instruction will not be supported by other
with MQ PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
by operand SH. The rotated word is placed in the MQ register. A
mask of 32-n ones followed by n zeros is generated. The logical AND
of the rotated word and the generated mask is placed into register rA.

sliq Shift Left Immediate with MQ
sliq. Shift Left Immediate with MQ with CR Update. The dot

suffix enables the update of the condition register.

This instruction is specific to the MPC601.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-25

Table 3-9. Integer Shift Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax • Shift Right sriq rA,rS,SH This is a POWER instruction, and is not part of the PowerPC

Immediate sriq. architecture. This instruction will not be supported by other
with MQ PowerPC implementations.

Register rS is rotated left 32-n bits where n is the shift amount
specified by operand SH. The rotated word is placed into the MQ
register. A mask of n zeros followed by 32-n ones is generated. The
logical AND of the rotated word and the generated mask is placed in
register rA.

sriq Shift Right Immediate with MQ
sriq. Shift Right Immediate with MQ with CR Update. The dot

suffix enables the update of the condition register.

This instruction is specific to the MPC601.

Shift Left slliq rA,rS,SH This is a POWER instruction, and is not part of the PowerPC
Long slliq. architecture. This instruction will not be supported by other
Immediate PowerPC implementations.
withMQ Register rS is rotated left n bits where n is the shift amount specified

by SH. A mask of 32-n ones followed by n zeros is generated. The
rotated word is then merged with the contents of MQ, under control of
the generated mask. The merged word is placed into rA. The rotated
word is placed Into the MQ register.

slliq Shift Left Long Immediate with MQ
slliq. Shift Left Long Immediate with MQ with CR Update. The

dot suffix enables the update of the condition register.

This instruction is specific to the MPC601.

Shift Right srliq rA,rS,SH This is a POWER instruction, and is not part of the PowerPC
Long srliq. architecture. This instruction will not be supported by other
Immediate PowerPC implementations.
withMQ

Register rS is rotated left 32-n bits where n is the shift amount
specified by operand SH. A mask of n zeros followed by 32-n ones is
generated. The rotated word is then merged with the contents of the
MQ register, under control of the generated mask. The merged word
is placed in register rA. The rotated word is placed into the MQ
register.

srliq Shift Right Long Immediate with MQ
srliq. Shift Right Long Immediate with MQ with CR Update. The

dot suffix enables the update of the condition register.

This instruction is specific to the MPC601.

3-26 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-9. Integer Shift Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Shift Left sllq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Long with sllq. architecture. This instruction will not be supported by other ..
MQ PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
in bits 27-31 of register rB.

When bit 26 of register rB is a zero, a mask of 32-n ones followed by
n zeros is generated. The rotated word is then merged with the
contents of the MQ register, under control of the generated mask.

When bit 26 of register rB is a one, a mask of 32-n zeros followed by
n ones is generated. A word of zeros is then merged with the contents
of the MQ register, under control of the generated mask.

The merged word is placed in register rA. The MQ register is not
altered.

sllq Shift Left Long with MQ
sllq. Shift Left Long with MQ with CR Update. The dot suffix

enables the update of the condition register.

This instruction is specific to the MPC601.

Shift Right srlq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Long with srlq. architecture. This instruction will not be supported by other
MQ PowerPC implementations.

Register rS is rotated left 32-n bits where n is the shift amount
specified in bits 27-31 of register rB.

When bit 26 of register rB is a zero, a mask of n zeros followed by
32-n ones is generated. The rotated word is then merged with the
contents of the MQ register, under control of the generated mask.

When bit 26 of register rB is a one, a mask of n ones followed by 32-
n zeros is generated. A word of zeros is then merged with the
contents of the MQ register, under control of the generated mask.

The merged word is placed in register rA. The MQ register is not
altered.

srlq Shift Right Long with MQ
srlq. Shift Right Long with MQ with CR Update. The dot suffix

enables the update of the condition register.

This instruction is specific to the MPC601.

Shift Left sis rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Extended sle. architecture. This instruction will not be supported by other

PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
in bits 27-31 of register rB. The rotated word is placed in the MQ
register. A mask of 32-n ones followed by n zeros is generated.

The logical AND of the rotated word and the generated mask is
placed in register rA.

sle Shift Left Extended
sle. Shift Left Extended with CR Update. The dot suffix

enables the update of the condition register.

This instruction is specific to the MPC601.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-27

Table 3-9. Integer Shift Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Shift Right sre rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Extended sre. architecture. This instruction will not be supported by other

PowerPC implementations.

Register rS is rotated left 32-n bits where n is the shift amount
specified in bits 27-31 of register rB. The rotated word is placed into
the MQ register. A mask of n zeros followed by 32-n ones is
generated.

The logical AND of the rotated word and the generated mask is
placed in register rA.

sre Shift Right Extended
sre. Shift Right Extended with CR Update. The dot suffix

enables the update of the condition register.
This instruction is specific to the MPC601.

Shift Left sleq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Extended sleq. architecture. This instruction will not be supported by other
withMQ PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
in bits 27-31 of register rB. A mask of 32-n ones followed by n zeros
is generated. The rotated word is then merged with the contents of
the MQ register, under control of the generated mask. The merged
word is placed in register rA. The rotated word is placed in the MQ
register.

sleq Shift Left Extended with MQ
sleq. Shift Left Extended with MQ with CR Update. The dot

suffix enables the update of the condition register.
This instruction is specific to the MPC601.

Shift Right sreq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Extended sreq. architecture. This instruction will not be supported by other
with MQ PowerPC implementations.

Register rS is rotated left 32-n bits where n is the shift amount
specified in bits 27-31 of register rB. A mask of n zeros followed by
32-n ones is generated. The rotated word is then merged with the
contents of the MQ register, under control of the generated mask.
The merged word is placed in register rA. The rotated word is placed
into the MQ register.

sreq Shift Right Extended with MQ
sreq. Shift Right Extended with MQ with CR Update. The dot

suffix enables the update of the condition register.

This instruction is specific to the MPC601.

3-28 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-9. Integer Shift Instructions (Continued)

Name Mnemonic
Operand

Operation Syntax

Shift Right sraiq rA,rS,SH This is a POWER instruction, and is not part of the PowerPC
Algebraic sraiq. architecture. This instruction will not be supported by other ..
Immediate PowerPC implementations.
with MQ

Register rS is rotated left 32-n bits where n is the shift amount
specified by the operand SH. A mask of n zeros followed by 32-n
ones is generated. The rotated word is placed in the MQ register.

The rotated word is then merged with a word of 32 sign bits from
register rS, under control of the generated mask. The merged word is
placed in register rA. The rotated word is ANDed with the
complement of the generated mask. This 32-bit result is ORed
together and then ANDed with bit 0 of register rS to produce
XER[CA].

Shift Right Algebraic instructions can be used for a fast divide by 2n if
followed with addze.

sraiq Shift Right Algebraic Immediate with MQ
sraiq. Shift Right Algebraic Immediate with MQ with CR Update.

The dot suffix enables the update of the condition register.

This instruction is specific to the MPC601.

Shift Right sraq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Algebraic sraq. architecture. This instruction will not be supported by other
with MQ PowerPC implementations.

Register rS is rotated left 32-n bits where n is the shift amount
specified in bits 27~1 of register rB. When bit 26 of register rB is a
zero, a mask of n zeros followed by 32-nones is generated. When bit
26 of register rB is a one, a mask of all zeros is generated. The
rotated word is placed in the MQ register. The rotated word is then
merged with a word of 32 sign bits from register rS, under control of
the generated mask.

The merged word is placed in register rA.

The rotated word is ANDed with the complement of the generated
mask. This 32-bit result is ORed together and then ANDed with bit 0
of register rS to produce XER[CA].

Shift Right Algebraic instructions can be used for a fast divide by 2n if
followed with addze.

sraq Shift Right Algebraic with MQ
sraq. Shift Right Algebraic with MQ with CR Update. The dot

suffix enables the update of the condition register.

This instruction is specific to the MPC601.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-29

•
Table 3-9. Integer Shift Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Shift Right srea rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Extended srea. architecture. This instruction will not be supported by other
Algebraic PowerPC implementations.

Register rS is rotated left 32-n bits where n is the shift amount
specified in bits 27-31 of register rB. A mask of n zeros followed by
32-n ones is generated. The rotated word is placed in the MQ
register.

The rotated word is then merged with a word of 32 sign bits from
register rS. under control of the generated mask.

The merged word is placed in register rA.

The rotated word is ANDed with the complement of the generated
mask. This 32-bit result is ORed together and then ANDed with bit 0
of register rS to produce XER[CA].

srea Shift Right Extended Algebraic
srea. Shift Right Extended Algebraic with CR Update. The dot

suffix enables the update of the condition register.

This instruction is specific to the MPC601.

3.4 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

Floating-point arithmetic instructions
Floating-point multiply-add instructions

Floating-point rounding and conversion instructions
Floating-point compare instructions

Floating-point status and control register instructions

Floating-point loads and stores are discussed in Section 3.5, "Load and Store Instructions."

3.4.1 Floating-Point Arithmetic Instructions
Single-precision instructions execute faster than their double-precision equivalents in the
MPC601. For additional details on floating-point performance, refer to Chapter 7,
"Instruction Timing."

3-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The ft oating-point arithmetic instructions are summarized in Table 3-10.

Table 3-10. Floating-Point Arithmetic Instructions

Name Mnemonic
Operand

Operation
Syntax

Floating- fadd frD,frA,frS The floating-point operand in register frA is added to the floating-
Point Add fadd. point operand in register frS. If the most significant bit of the resultant

significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frO.

Floating-point addition is based on exponent comparison and
addition of the two significands. The exponents of the two operands
are compared, and the significand accompanying the smaller
exponent is shifted right, with its exponent increased by one for each
bit shifted, until the two exponents are equal. The two significands
are then added algebraically to form an intermediate sum. All 53 bits
in the significand as well as all three guard bits (G, R, and X) enter
into the computation.

If a carry occurs, the sum's significand is shifted right one bit position
and the exponent is increased by one.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fadd Floating-Point Add
fadd. Floating-Point Add with CR Update. The dot suffix

enables the update of the condition register.

Floating- fadds frD,frA,frS The floating-point operand in register frA is added to the floating-
Point Add fadds. point operand in register frS. If the most significant bit of the resultant
Single- significand is not a one, the result is normalized. The result is
Precision rounded to the target precision under control of the floating-point

rounding control field RN of the FPSCR and placed into register frO.

Floating-point addition is based on exponent comparison and
addition of the two significands. The exponents of the two operands
are compared, and the significand accompanying the smaller
exponent is shifted right, with its exponent increased by one for each
bit shifted, until the two exponents are equal. The two significands
are then added algebraically to form an intermediate sum. All 53 bits
in the significand as well as all three guard bits (G, R, and X) enter
into the computation.

If a carry occurs, the sum's significand is shifted right one bit position
and the exponent is increased by one.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fadds Floating-Point Single-Precision
fadds. Floating-Point Single-Precision with CR Update. The dot

suffix enables the update of the condition register.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-31

Table 3-10. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax .. Floating- fsub frO,frA,frS The floating-paint operand in register frS is subtracted from the

Point fsub. floating-point operand in register frA. If the most significant bit of the
Subtract resultant significand is not a 1 the result is normalized. The result is

rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frO.

The execution of the Floating-Point Subtract instruction is identical to
that of Floating-Point Add, except that the contents of register frS
participates in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]= 1 .

fsub Floating-Point Subtract
fsub. Floating-Point Subtract with CR Update. The dot suffix

enables the update of the condition register.

Floating- fsubs frO,frA,frS The floating-point operand in register frS is subtracted from the
Point fsubs. floating-point operand in register frA. If the most significant bit of the
Subtract resultant significand is not a 1 the result is normalized. The result is
Single- rounded to the target precision under control of the floating-point
Precision rounding control field RN of the FPSCR and placed into register frO.

The execution of the Floating-Point Subtract instruction is identical to
that of Floating-Point Add, except that the contents of register frS
participates in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fsubs Floating-Point Subtract Single-Precision
fsubs. Floating-Point Subtract Single-Precision with CR Update.

The dot suffix enables the update of the condition register.

Floating- fmul frO,frA,frC The floating-point operand in register frA is multiplied by the floating-
Point fmul. point operand in register frC.
Multiply

If the most significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frO.

Floating-point multiplication is based on exponent addition and
multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fmul Floating-Point Multiply
fmul. Floating-Point Multiply with CR Update. The dot suffix

enables the update of the condition register.

3-32 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-10. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Floating- fmuls frD,frA,frC The floating-paint operand in register frA is multiplied by the floating-
Point fmuls. point operand in register frC. ..
Multiply

If the most significant bit of the resultant significand is not a one the
Single-

result is normalized. The result is rounded to the target precision
Precision under control of the floating-point rounding control field RN of the

FPSCR and placed into register frO.

Floating-paint multiplication is based on exponent addition and
multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fmuls Floating-Paint Multiply Single-Precision
fmuls. Floating-Point Multiply Single-Precision with CR Update.

The dot suffix enables the update of the condition register.

Floating- fdiv frD,frA,frB The floating-point operand in register frA is divided by the floating-
Point Divide fdiv. point operand in register frB. No remainder is preserved.

If the most significant bit of the resultant significand is not a 1, the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frO.

Floating-point division is based on exponent subtraction and division
of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1 and zero divide
exceptions when FPSCR[ZE]=1.

fdiv Floating-Point Divide
fdiv. Floating-Paint Divide with CR Update. The dot suffix

enables the update of the condition register.

Floating- fdivs frD,frA,frB The floating-paint operand in register frA is divided by the floating-
Point fdivs. point operand in register frB. No remainder is preserved.
Divide

If the most significant bit of the resultant significand is not a 1 , the
Single-

result is normalized. The result is rounded to the target precision
Precision

under control of the floating-point rounding control field RN of the
FPSCR and placed into register frO.

Floating-point division is based on exponent subtraction and division
of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1 and zero divide
exceptions when FPSCR[ZE]=1.

fdivs Floating-Point Divide Single-Precision
fdivs. Floating-Point Divide Single-Precision with CR Update.

The dot suffi" 6i1~bl::;::; the upd:!te of the condition reaister.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-33

..
3.4.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

The floating-point multiply-add instructions are summarized in Table 3-11.

Table 3-11. Floating-Point Multiply-Add Instructions

Name Mnemonic
Operand

Operation
Syntax

Floating- fmadd frO,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Point fmadd. point operand in register frC. The floating-point operand in register
Multiply- frB is added to this intermediate result.
Add If the most significant bit of the resultant significand is not a one the

result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frO.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fmadd Floating-Point Multiply-Add
fmadd. Floating-Point Multiply-Add with CR Update. The dot

suffix enables the update of the condition register.

Floating- fmadds frO,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Point fmadds. point operand in register frC. The floating-point operand in register
Multiply- frB is added to this intermediate result.
Add If the most significant bit of the resultant significand is not a one the
Single-

result is normalized. The result is rounded to the target precision
Precision

under control of the floating-point rounding control field RN of the
FPSCR and placed into register frO.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fmadds Floating-Point Multiply-Add Single-Precision
fmadds. Floating-Point Multiply-Add Single-Precision with CR

Update. The dot suffix enables the update of the
condition register.

Floating- fmsub frO,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Point fmsub. point operand in register frC. The floating-point operand in register
Multiply- frB is subtracted from this intermediate result.
Subtract

If the most significant bit of the reSUltant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frO.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fmsub Floating-Point Multiply-Subtract
fmsub. Floating-Point Multiply-Subtract with CR Update. The dot

suffix enables the update of the condition register.

3-34 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-11. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Floating- fmsubs frO,frA,frC,frS The floating-point operand in register frA is multiplied by the floating-
Point fmsubs. point operand in register frC. The floating-point operand in register
Multiply- frS is subtracted from this intermediate result.
Subtract

If the most significant bit of the resultant significand is not a one the
Single- result is normalized. The result is rounded to the target precision
Precision

under control of the floating-point rounding control field RN of the
FPSCR and placed into register frO.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fmsubs Floating-Point Multiply-Subtract Single-Precision
fmsubs. Floating-Point Multiply-Subtract Single-Precision with CR

Update. The dot suffix enables the update of the
condition register.

Floating- fnmadd frO,frA,frC,frS The floating-point operand in register frA is multiplied by the floating-
Point fnmadd. point operand in register frC. The floating-point operand in register
Negative frS is added to this intermediate result.
Multiply-

If the most significant bit of the resultant significand is not a one the
Add

result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frO.

This instruction produces the same result as would be obtained by
using the floating-point multiply-add instruction and then negating the
result, with the following exceptions:

· ONaNs propagate with no effect on their sign bit.

· ONaNs that are generated as the result of a disabled invalid
operation exception have a "sign" bit of zero.

· SNaNs that are converted to ONaNs as the result of a disabled
invalid operation exception retain the "sign" bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmadd Floating-Point Negative Multiply-Add
fnmadd. Floating-Point Negative Multiply-Add with CR Update.

The dot suffix enables the update of the condition register.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-35

Table 3-11. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax .. Floating- fnmadds frO,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-

Point fnmadds. point operand in register frC. The floating-point operand in register
Negative frB is added to this intermediate result.
Multiply- If the most significant bit of the resultant significand is not a one the
Add

result Is normalized. The result is rounded to the target precision
Single-

under control of the floating-point rounding control field RN of the
Precision FPSCR, then negated and placed into register frO.

This instruction produces the same result as would be obtained by
using the floating-point multiply-add instruction and then negating the
result, with the following exceptions:

· ONaNs propagate with no effect on their sign bit.

· ONaNs that are generated as the result of a disabled invalid
operation exception have a "sign" bit of zero.

· SNaNs that are converted to ONaNs as the result of a disabled
invalid operation exception retain the "sign" bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmadds Floating-Point Negative Multiply-Add Single-Precision
fnmadds. Floating-Point Negative Multiply-Add Single-Precision with

CR Update. The dot suffix enables the update of the
condition register.

Floating- fnmsub frO,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Point fnmsub. point operand in register frC. The floating-point operand in register
Negative frB is subtracted from this intermediate result.
Multiply-

If the most significant bit of the resultant significand is not a one the
Subtract

result is normalized. The re:;ult is rounded to the target preCision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frO.

This instruction produces the same result as would be obtained by
using the floating-point multiply-subtract instruction and then negating
the result, with the following exceptions:

· ONaNs propagate with no effect on their sign bit.

· ONaNs that are generated as the result of a disabled invalid
operation exception have a sign bit of zero.

· SNaNs that are converted to ONaNs as the result of a disabled
Invalid operation exception retain the sign bit of the SNaN.

FPSCR[FPRF) is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fnmsub Floating-Point Negative Multiply-Subtract
fnmsub. Floating-Point Negative Multiply-Subtract with CR Update.

The dot suffix enables the update of the condition register.

3-36 Power PC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-11. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Floating- fnmsubs frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
Point fnmsubs. point operand in register frC. The floating-point operand in register
Negative frB is subtracted from this intermediate result.
Multiply- If the most significant bit of the resultant significand is not a one the
Subtract result is normalized. The result is rounded to the target precision
Single- under control of the floating-point rounding control field RN of the
Precision

FPSCR, then negated and placed into register frO.

This instruction produces the same result as would be obtained by
using the floating-point multiply-subtract instruction and then negating
the result, with the following exceptions:

· ONaNs propagate with no effect on their "Sign" bit.

· ONaNs that are generated as the result of a disabled invalid
operation exception have a "sign" bit of zero.

· SNaNs that are converted to ONaNs as the result of a disabled
invalid operation exception retain the "sign" bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

fnmsubs Floating-Point Negative Multiply-Subtract Single-Precision
fnmsubs. Floating-Point Negative Multiply-Subtract Single-

Precision with CR Update. The dot suffix enables the
update of the condition register.

3.4.3 Floating-Point Rounding and Conversion Instructions
The floating-point rounding instruction is used to produce a 32-bit single-precision number
from a 64-bit double-precision floating-point number. The floating-point convert
instructions convert 64-bit double-precision floating point numbers to 32-bit signed integer
numbers.

On Floating-Point Convert to Integer Word (fctiw) and Floating-Point Convert to Integer
Word with Round toward Zero (fctiwz), the PowerPC architecture defines bits 0-31 of
floating-point register frD as undefined. In the MPC601, these bits take on the value
x'FFF8 0000' (which is the representation for a QNaN). This value may differ in future
PowerPC processors, and software should avoid dependence on this MPC601 feature_

The floating-point rounding instructions are shown in Table 3-12.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-37

..
Examples of uses of these instructions to perform various conversions can be found in
Appendix F, "Floating-Point Models."

Table 3-12. Floating-Point Rounding and Conversion Instructions

Name Mnemonic
Operand

Operation
Syntax

Floating- frsp frO,frB If it is already in single-precision range, the floating-point operand in
Point frsp. register frB is placed into register frO. Otherwise the floating-point
Round to operand in register frB is rounded to single-precision using the
Single- rounding mode specified by FPSCR[RN] and placed into register frO.
Precision The rounding is described fully in Appendix F, "Floating-Point

Models."

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE]=1.

frsp Floating-Point Round to Single-Precision
frsp. Floating-Point Round to Single-Precision with CR

Update. The dot suffix enables the update of the
condition register.

Floating- fctiw frO,frB The floating-point operand in register frB is converted to a 32-bit
Point fctiw. signed integer, using the rounding mode specified by FPSCR[RN],
Convert to and placed in bits 32-63 of register frO. Bits 0-31 of register frO are
Integer undefined.
Word If the operand in register frB is greater than 231 - 1, bits 32-63 of

register frO are set to x '7FFF _FFFF'.

If the operand in register frB is less than _231 , bits 32-63 of register
frO are set to x '8000_0000'.

The conversion is described fully in Appendix F, "Floating-Point
Models."

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF]
is undefined. FPSCR[FR] is set if the result is incremented when
rounded. FPSCR[FI] is set if the result is inexact.

fctiw Floating-Point Convert to Integer Word
fctiw. Floating-Point Convert to Integer Word with CR Update.

The dot suffix enables the update of the condition register.

3-38 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-12. Floating-Point Rounding and Conversion Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Floating- fctiwz frO,frS The floating-point operand in register frS is converted to a 32-bit
Point fctiwz. signed integer, using the rounding mode Round toward Zero, and
Convert to placed in bits 32-63 of register frO. Sits 0-31 of register frO are
Integer undefined.
Word with If the operand in frS is greater than 231 - 1, bits 32-63 of frO are set
Round to x '7FFF _FFFF'.

If the operand in register frS is less than _231 , bits 32-63 of register
frO are set to x '8000_0000'.

The conversion is described fully in Appendix F, "Floating-Point
Models."

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF]
is undefined. FPSCR[FR] is set if the result is incremented when
rounded. FPSCR[FI] is set if the result is inexact.

fctiwz Floating-Point Convert to Integer Word with Round Toward
Zero

fctiwz. Floating-Point Convert to Integer Word with Round Toward
Zero with CR Update. The dot suffix enables the update
of the condition register.

3.4.4 Floating-Point Compare Instructions
Floating-point compare instructions compares the contents of two floating-point registers
and the comparison ignores the sign of zero (that is +0 = -0). The comparison can be
ordered or unordered. The comparison sets one bit in the designated CR field and clears the
other three bits. The FPCC (floating-point condition code; bits 16-19 in the floating-point
status and control register) is set in the same way.

The CR field and the FPCC are interpreted as shown in Table 3-13.

Table 3-13. CR Bit Settings

Bit Name Description

a FL (frA) < (frS)

1 FG (frA) > (frS)

2 FE (frA) = (frS)

3 FU (frA) ? (frS) (unordered)

On Floating-Point Compare Unordered (fcmpu) and Floating-Point Compare Ordered
(fcmpo) instructions with condition register updating enabled, the PowerPC arcpitecture
defines CR 1 and the CR field specified by operand crfD as undefined.

The floating-point compare instructions are summarized in Table 3-14.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-39

..

.. Table 3-14. Floating-Point Compare Instructions

Name Mnemonic
Operand

Operation
Syntax

Floating- fcmpu crfD,frA,frB The floating-point operand in register frA is compared to the floating-
Point point operand in register frB. The result of the compare is placed into
Compare CR field crfD and the FPCC.
Unordered If an operand is a NaN, either quiet or signalling, CR field crfD and

the FPCC are set to reflect unordered. If an operand is a Signalling
NaN, VXSNAN is set.

Floating- fcmpo crfD,frA,frB The floating-point operand in register frA is compared to the floating-
Point point operand in register frB. The result of the compare is placed into
Compare CR field crfD and the FPCC.
Ordered

If an operand is a NaN, either quiet or signalling, CR field crfD and
the FPCC are set to reflect unordered. If an operand is a Signalling
NaN, VXSNAN is set, and if invalid operation is disabled (VE=O) then
VXVC is set. Otherwise, if an operand is a Quiet NaN, VXVC is set.

3.4.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that
all floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. In particular:

All exceptions caused by the previously initiated instructions are recorded in the
FPSCR before the FPSCR instruction is initiated.

All invocations of the floating-point exception handler that caused by the previously
initiated instructions have occurred before the FPSCR instruction is initiated.

No subsequent floating-point instruction that depends on or alters the settings of any
FPSCR bits appears to be initiated until the FPSCR instruction has completed.

Floating-point memory access instructions are not affected.

The floating-point status and control register instructions are summarized in Table 3-15.

3-40 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-15. Floating-Point Status and Control Register Instructions

Name Mnemonic
Operand

Operation
Syntax ..

Move from mffs frD The contents of the FPSCR are placed into bits 32-63 of register frD.
FPSCR mffs. In the MPC601, bits 0-31 of floating-point register frD are set to the

value x 'FFFF _FFFF'.

mffs Move from FPSCR
mffs. Move from FPSCR with CR Update. The dot suffix

enables the update of the condition register.

Move to mcrfs crfD,crfS The contents of FPSCR field specified by operand crfS are copied to
Condition the CR field specified by operand crfD. All exception bits copied are
Register cleared to zero in the FPSCR.
from FPSCR

Move to mtfsfl crfD,IMM The value of the IMM field is placed into FPSCR field crfD. All other
FPSCR mtfsfl. FPSCR fields are unchanged.
Field mtfsfl Move to FPSCR Field Immediate
Immediate mtfsfl. Move to FPSCR Field Immediate with CR Update. The

dot suffix enables the update of the condition register.

When FPSCR[O-3] is specified, bits 0 (FX) and 3 (OX) are set to the
values of IMM[O] and IMM[3] (Le., even if this instruction causes OX
to change from 0 to 1, FX is set from IMM[O] and not by the usual rule
that FX is set to 1 when an exception bit changes from 0 to 1). Bits 1
and 2 (FEX and VX) are set according to the usual rule described in
2.2.3, "Floating-Point Status and Control Register (FPSCR)," and not
from IMM[1-2].

Move to mtfsf FM,frB Bits 32-63 of register frB are placed into the FPSCR under control of
FPSCR mtfsf. the field mask specified by FM. The field mask identifies the 4-bit
Fields fields affected. Let i be an integer in the range 0-7. If FM=1 then

FPSCR field i (FPSCR bits 4*ithrough 4*i+3) is set to the contents
of the corresponding field of the low-order 32 bits of register frB.

mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix

enables the update of the condition register.

In other PowerPC implementations, the mtfsf instruction may
perform more slowly when only a portion of the fields are updated.
This is not the case in the MPC601.

When FPSCR[O-3] is specified, bits 0 (FX) and 3 (OX) are set to the
values of frB[32] and frB[35] (i.e., even if this instruction causes OX
to change from 0 to 1, FX is set from frB[32] and not by the usual rule
that FX is set to 1 when an exception bit changes from 0 to 1). Bits 1
and 2 (FEX and VX) are set according to the usual rule described in
2.2.3, "Floating-Point Status and Control Register {FPSCR)," and not
from frB[33-34].

Move to
_ _ ,..

cibD The b;t cf tho FPSCR :::pccificd by cpcr:!r:d crbD is cleared to O. IIILI~UU

FPSCR Bit 0 mtfsbO.
Bits 1 and 2 (FEX and VX) cannot be explicitly reset.

mtfsbO Move to FPSCR Bit 0
mtfsbO. Move to FPSCR Bit 0 with CR Update. The dot suffix

enables the update of the condition register.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-41

..
Table 3-15. Floating-Point Status and Control Register Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Move to mtfsb1 crbD The bit of the FPSCR specified by operand crbD is set to 1.
FPSCR Bit 1 mtfsb1. Bits 1 and 2 (FEX and VX) cannot be reset explicitly.

mtfsb1 Move to FPSCR Bit 1
mtfsb1. Move to FPSCR Bit 1 with CR Update. The dot suffix

enables the update of the condition register.

3.5 Load and Store Instructions
This section describes the load and store instructions of the MPC6D1, which consist of the
following:

• Integer load instructions

• Integer store instructions
• Integer load and store with byte reversal instructions

• Integer load and store multiple instructions
• Floating-point load instructions

• Floating-point store instructions

• Floating-point move instructions
• Memory synchronization instructions

3.5.1 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode or register indirect mode.

3.5.1.1 Register Indirect with Immediate Index Addressing
Instructions using this addressing mode contain a signed 16-bit immediate index (d
operand) which is sign extended to 32 bits, and added to the contents of a general purpose
register specified in the instruction (rA operand) to generate the effective address. A zero
in place of the rA operand causes a zero to be added to the immediate index (d operand).
The option to specify rA or D is shown in the instruction descriptions as (rAID).

Figure 3-1 shows how an effective address is generated when using register indirect with
immediate index addressing.

3-42 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

o 67 1112 1617 31

Instruction Encoding:

o
Sign Extension

Yes

o 31

GPR (rA) Effective Address

o 31 Store
GPR (rD/rS) Load

Figure 3-1. Register Indirect with Immediate Index Addressing

3.5.1.2 Register Indirect with Index Addressing
Instructions using this addressing mode cause the contents of two general purpose registers
(specified as operands rA and rB) to be added in the generation of the effective address. A
zero in place of the r A operand causes a zero to be added to the contents of the general
purpose register specified in operand rB. The option to specify rA or 0 is shown in the
instruction descriptions as (rAIO).

Figure 3-2 shows how an effective address is generated when using register indirect with
index addressing.

o 6 7 1112 16 17 21 22 30 31
Instruction Encoding: ~----~--~---r----~-------

GPR (rB)

o 31

Effective I\ddrc~~

o 31 Store
GPR (rD/rS) Load

Figure 3-2. Register Indirect with Index Addressing

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-43

..

..
3.5.1.3 Register Indirect Addressing
Instructions using this addressing mode use the contents of the general purpose register
specified by the rA operand as the effective address. A zero in the rA operand causes an
effective address of zero to be generated. The option to specify r A or 0 is shown in the
instruction descriptions as (rAIO).

Figure 3-3 shows how an effective address is generated when using register indirect
addressing.

3031
r---~----r---,----r--------

Yes
o 31

>--------..t 00 0 0 0·· 0 00 0 0

o 31

GPR (rA)

o 31

Effective Address

o 31 Store

GPR (rD/rS) Load

Figure 3-3. Register Indirect Addressing

3.5.2 Integer Load Instructions
For load instructions, the byte, half-word, word, or double-word addressed by EA is loaded
into rD. Many integer load instructions have an update form, in which rA is updated with
the generated effective address. For these forms, if rA -:;:. 0 and rA -:;:. rD, the effective
address is placed into rAand the memory element (byte, half-word, or word) addressed by
EA is loaded into rD.

Note that non-MPC601 implementations of the architecture may run the load half algebraic
instructions (lha, Ihax) and the load with update (lbzu, Ibzux, Ihzu, Ihzux, Ihau, Ihaux)
instructions with greater latency than other types of load instructions. In the MPC601, all
of these instructions operate with the same latency as other load instructions. For details on
instruction timing, see Chapter 7, "Instruction Timing."

3-44 Powerpe 601 RiSe Microprocessor User's Manual MOTOROLA

The PowerPC architecture defines load with update instructions with rA=O or rA=rD as an
invalid form. In the POWER architecture, these forms are not considered invalid and
specifications exist for these cases. To maintain compatibility with the POWER
architecture, for the Cilse where r A=O, the MPC601 does not update rOo In cases where
r A=rD, the load data is loaded into rD and the register r A update is suppressed In addition,
the PowerPC architecture defines integer load instructions with the condition register
update option enabled to be an invalid form and the POWER architecture does not. For
compatibility, the MPC601 executes the instruction in a manner consistent with the
PowerPC architecture and it causes an undefined value to be placed into the condition
register CRO field.

Table 3-16 summarizes the load instructions available for the MPC601.

Table 3-16 Integer Load Instructions

Name Mnemonic
Operand

Operation
Syntax

Load Byte Ibz rO,d(rA) The effective address is the sum (rAIO)+d. The byte in memory
and Zero addressed by the EA is loaded into register rO[24-31]. The remaining

bits in register rO are cleared to O.

Load Byte Ibzx rO,rA,rB The effective address is the sum (rAIO)+(rB). The byte in memory
and Zero addressed by the EA is loaded into register rO[24-31]. The remaining
Indexed bits in register rO are cleared to O.

Load Byte Ibzu rO,d(rA) The effective address (EA) is the sum (rAIO)+d. The byte in memory
and Zero addressed by the EA is loaded into register rO[24-31]. The remaining
with Update bits in register rO are cleared to O. The EA is placed into register rA. If

operand rA=O the MPC601 does not update rO, or if rA=rO the load
data is loaded into register rO and the register update is suppressed.
Although the PowerPC architecture defines load with update
instructions with operand rA=O or rA=rO as invalid forms, the
MPC601 allows these cases.

Load Byte Ibzux rO,rA,rB The effective address (EA)is the sum (rAIO)+(rB). The byte
and Zero addressed by the EA is loaded into register rO[24-31]. The remaining
with bits in register rO are cleared to O. The EA is placed into register rA. If
Update operand rA=O the MPC601 does not update register rO, or if rA=rO
Indexed the load data i5 loaded into register rO and the register update is

suppressed. Although the PowerPC architecture defines load with
update instructions with operand rA=O or rA=rO as invalid forms, the
MPC601 allows these cases.

Load 1hz rO,d(rA) The effective address is the sum (rAIO)+d. The half-word in memory
Half Word addressed by the EA is loaded into register rO[16-31]. The remaining
and Zero bits in rO are cleared to O.

Load Ihzx rO,rA,rB The effective address is the sum (rAIO)+(rB). The half-word in
Half Word memory addressed by the EA is loaded into register rO[16-31]. The
and Zero remaining bits in register rO are cleared.
Indexed

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-45

•

Table 3-16 Integer Load Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax ,.

Load Ihzu rO,d(rA) The effective address is the sum (rAIO)+d. The half-word in memory
Half Word addressed by the EA is loaded into register rO[l6-31]. The remaining
and Zero bits in register rO are cleared.
with Update

The EA is placed into register rA.

It operand rA=O the MPC601 does not update register rO, or if rA=rO
the load data is loaded into register rO and the register update is
suppressed. Although the PowerPC architecture defines load with
update instructions with operand rA=O or rA=rO as invalid forms, the
MPC601 allows these cases.

Load Ihzux rO,rA,rB The effective address is the sum (rAIO)+(rB). The half-word in
Half Word memory addressed by the EA is loaded Into register rO[l6-31]. The
and Zero remaining bits in register rO are cleared. The EA is placed into
with register rA. Although the PowerPC architecture defines load with
Update update instructions with operand rA=O or rA=rO as invalid forms, the
Indexed MPC601 allows these cases.

Load Iha rO,d(rA) The effective address is the sum (rA)+d. The half-word in memory
Half Word addressed by the EA Is loaded into register rO[l6-31]. The remaining
Algebraic bits In register rO are filled with a copy of bit 0 of the loaded half-word.

Load Ihax rO,rA,rB The effective address is the sum (rAIO)+(rB). The half-word in
Half Word memory addressed by the EA is loaded into register rO[16-31]. The
Algebraic remaining bits in register rD are filled with a copy of bit 0 of the loaded
Indexed half-word.

Load Ihau rO,d(rA) The effective address is the sum (rAIO)+d. The half-word in memory
Half Word addressed by the EA is loaded into register rO[16-31]. The remaining
Algebraic bits in register rO are filled with a copy of bit 0 of the loaded half-word.
with Update The EA is placed into register rA. If operand rA=O the MPC601 does

not update register rO, or if rA=rO the load data is loaded into register
rO and the register update is suppressed. Although the PowerPC
architecture defines load with update instructions with operand rA=O
or rA=rO as invalid forms, the MPC601 allows these cases.

Load Ihaux rO,rA,rB The effective address Is the sum (rAIO)+(rB). The half-word In
Half Word memory addressed by the EA is loaded into register rO[l6-31]. The
Algebraic remaining bits in register rD are filled with a copy of bit 0 of the loaded
with half-word. The EA is placed into register rA. If operand rA=O the
Update MPC601 does not update rO, or if rA=rO the load data is loaded into
Indexed register rO and the register update Is suppressed. Although the

PowerPC architecture defines load with update instructions with
operand rA=O or rA=rO as Invalid forms, the MPC601 allows these
cases.

Load Word Iwz rO,d(rA) The effective address is the sum (rAIO)+d. The word in memory
and Zero addressed by the EA is loaded into register rO[0-31].

Load Word Iwzx rO,rA,rB The effective address is the sum (rAIO)+(rB). The word in memory
and Zero addressed by the EA is loaded into register rO[0-31].
Indexed

3-46 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-16 Integer Load Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Load Word Iwzu rD,d(rA) The effective address is the sum (rAIO)+d. The word in memory
and Zero addressed by the EA is loaded into register rD[0-31]. The EA is
with Update placed into register rA. If operand rA=O the MPC601 does not update

register rO, or if rA=rD the load data is loaded into register rD and the
register update is suppressed. Although the PowerPC architecture
defines load with update instructions with operand rA=O or rA=rD as
invalid forms, the MPC601 allows these cases.

Load Word Iwzux rD,rA,rB The effective address is the sum (rAIO)+(rB). The word in memory
and Zero addressed by the EA is loaded into register rD[0-31]. The EA is
with placed into register rA. If operand rA=O the MPC601 does not update
Update register rO, or if rA=rD the load data is loaded into register rD and the
Indexed register update is suppressed. Although the PowerPC architecture

defines load with update instructions with operand rA=O or rA=rD as
invalid forms, the MPC601 allows these cases.

3.5.3 Integer Store Instructions
For integer store instructions, the contents of register rS are stored into the byte, half-word,
word or double-word in memory addressed by EA. Many store instructions have an update
form, in which register r A is updated with the effective address. For these forms, the
following rules apply:

If r A=tO, the effective address is placed into register r A.

If rS=r A, the contents of register rS are copied to the target memory element, then
the generated EA is placed into r A.

The PowerPC architecture defines store with update instructions with rA=O as an invalid
form. In the POWER architecture, this form is not considered invalid and specifications
exist for these cases. To maintain compatibility with POWER in this case, the MPC601
does not update register rOo In addition, PowerPC defines integer store instructions with the
condition register update option enabled to be an invalid form and the POWER architecture
does not. To maintain compatibility in these cases, the MPC601 executes the instruction as
described in the PowerPC architecture, and it loads an undefined value into CRO field of the
condition register.

A summary of the integer store instructions provided by the MPC601 is shown in
Table 3-17.

Table 3-17. Integer Store Instructions

Name Mnemonic
Operand

Operation
Syntax

Store Byte stb rS,d(rA) The effective address is the sum (rAIO)+d. Register rS[24-31] is
stored into the byte in memory addressed by the EA.

Store Byte stbx rS,rA,rB The effective address is the sum (rAIO)+(rB). rS[24-31] is stored into
Indexed the byte in memory addressed by the EA.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-47

-

•
Table 3·17. Integer Store Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Store Byte stbu rS,d(rA) The effective address is the sum (rAIO)+d. rS[24-31] is stored into
with Update the byte in memory addressed by the EA. The EA is placed into

register rA.

Store Byte stbux rS,rA,rB The effective address is the sum (rAIO)+(rB). rS[24-31] is stored into
with the byte in memory addressed by the EA. The EA is placed into
Update register rA.
Indexed

Store sth rS,d(rA) The effective address is the sum (rAIO)+d. rS[16-31] is stored into
Half word the half-word in memory addressed by the EA.

Store sthx rS,rA,rB The effective address (EA) is the sum (rAIO)+(rB). rS[16-31] is stored
half-word into the half-word in memory addressed by the EA.
Indexed

Store sthu rS,d(rA) The effective address is the sum (rAIO)+d. rS[16-31] is stored into
Half word the half-word in memory addressed by the EA. The EA is placed into
with Update register rA.

Store sthux rS,rA,rB The effective address is the sum (rAIO)+(rB). rS[16-31] is stored into
Half word the half-word in memory addressed by the EA. The EA is placed into
with register rA.
Update
Indexed

Store Word stw rS,d(rA) The effective address is the sum (rAIO)+d. Register rS is stored into
the word in memory addressed by the EA.

Store Word stwx rS,rA,rB The effective address is the sum (rAIO)+(rB). rS is stored into the
Indexed word in memory addressed by the EA.

Store Word stwu rS,d(rA) The effective address is the sum (rAIO)+d.
with Update Register rS is stored into the word in memory addressed by the EA.

The EA is placed into register rA..

Store Word stwux rS,rA,rB The effective address is the sum (rAIO)+(rB). Register rS is stored
with into the word in memory addressed by the EA. The EA is placed into
Update register rA.
Indexed

3.5.4 Integer Load and Store with Byte Reversal Instructions
Table 3-18 describes integer load and store with byte reversal instruction. Note that in other
PowerPC implementations, load byte-reverse instructions may have greater latency than
other load instructions.

3-48 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

This is not the case in the MPC601. These instructions operate with the same latency as
other load instructions.

Table 3·18. Integer Load and Store with Byte Reversal Instructions

Name Mnemonic
Operand

Operation
Syntax

Load Ihbrx rD,rA,rB The effective address is the sum (rAIO)+(rB). Bits 0-7 of the half-
Half Word word in memory addressed by the EA are loaded into rD[24-31].
Byte- Bits 8-15 of the half-word in memory addressed by the EA are
Reverse loaded into rD[16-23]. The rest of the bits in rD are cleared to O.
Indexed

Load Word Iwbrx rD,rA,rB The effective address is the sum (rAIO)+(rB). Bits 0-7 of the word
Byte- in memory addressed by the EA are loaded into rD[24-31]. Bits
Reverse 8-15 of the word in memory addressed by the EA are loaded into
Indexed rO[16-23]. Bits 16-23 of the word in memory addressed by the

EA are loaded into rO[8-15]. Bits 24-31 of the word in memory
addressed by the EA are loaded into rD[0-7].

Store sthbrx rS,rA,rB The effective address is the sum (rAIO)+(rB). rS[24-31] are stored
HallWard into bits 0-7 of the half-word in memory addressed by the EA.
Byte- rS[16-23] are stored into bits 8-15 of the half-word in memory
Reverse addressed by the EA.
Indexed

Store Word stwbrx rS,rA,rB The effective address is the sum (rAIO)+(rB). rS[24-31] are stored
Byte- into bits 0-7 of the word in memory addressed by EA. Register
Reverse rS[16-23] are stored into bits 8-15 of the word in memory
Indexed addressed by the EA. Register rS[8-15] are stored into bits 16-23

of the word in memory addressed by the EA. rS[0-7] are stored
into bits 24-31 of the word in memory addressed by the EA.

3.5.5 Integer Load and Store Multiple Instructions
The load/store mUltiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary_ As a result, these instructions may be
interrupted by a data access exception associated with the address translation of the second
page. In this case, the MPC601 performs all of the memory references from the first page,
and none of the memory references from the second page before taking the exception. For
additional information, refer to Section 5.4.3, "Data Access Exception (x'()0300')."

The PowerPC architecture defines the load multiple instruction (tmw) with rAin the range
of registers to be loaded as an invalid form. In the POWER architecture, this form is not
considered invalid and specifications exist for these cases. To maintain compatibility with
the POWER architecture in this case, the MPC601 will execute the instruction normally,
except that the loading of register r A is skipped. If r A=(), the register is not considered to
be actually used for addressing, and the update of rO (if it is in the range of registers to be
loaded) is loaded. In addition, the PowerPC architecture defines the load multiple and store
multiple instructions with misaligned operands (that is, the EA is not a multiple of 4) to be
an invalid form and the POWER architecture does not. To maintain compatibility with the

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-49

•

POWER architecture, the MPC601 executes these instructions subject to the performance
degradation as described in 5.4.6.1, "Integer Alignment Exceptions."

Table 3-19. Integer Load and Store Multiple Instructions

Name Mnemonic
Operand

Operation
Syntax

Load Imw rD,d(rA) The effective address is the sum (rAIO)+d.
Multiple n= 32 -rD.
Word

n consecutive words starting at EA are loaded into GPRs rD through
31. If the EA is not a multiple of 4 the alignment exception handler
may be invoked if a page boundary is crossed.

Store stmw rS,d{rA) The effective address is the sum (rAIO)+d.
Multiple n= (32-rS).
Word

n consecutive words starting at the EA are stored from GPRs rS
through 31.

If the EA is not a multiple of 4 the alignment exception handler may
be invoked if a page boundary is crossed.

3.5.6 Integer Move String Instructions
The integer move string instructions allow movement of data from memory to registers or
from registers to memory without concern for alignment. These instructions can be used for
a short move between arbitrary memory locations or to initiate a long move between
misaligned memory fields.

Load/store string indexed instructions of zero length have no effect, except that load string
indexed instructions of zero length may set register rD to an undefined value.

Load string and store string instructions may involve operands that are not word-aligned.
As described in Section 5.4.6, "Alignment Exception (x'00600')," misaligned string
operations will suffer a performance penalty as compared to an aligned operation of the
same type. Non-word-aligned string operations that cross a 4-Kbyte boundary as well as
word-aligned string operations that cross a 256-Mbyte boundary always cause an alignment
exception. Other non-word-aligned string operations that cross a double-word boundary
also are slower than word-aligned string operations.

Although string operations that are word-aligned and cross a 4-Kbyte boundary operate at
the MPC601 's fastest rate, these instructions may be interrupted by a data access exception
associated with the address translation of the second page. In this case, the MPC601
performs all memory references from the first page and none from the second before taking
the exception. For more information, refer to Section 5.4.3, "Data Access Exception
(x'00300')."

The Load String and Compare Byte Indexed (Iscbx) instruction can lead to several
architecturally undefined results. When the last register loaded is only partially filled, the
remaining bytes are considered to be undefined. If loading is terminated due to a byte

3-50 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

match, all succeeding bytes are considered to be undefined. In addition, if the condition
register update option is enabled, and XER[25-31]=0, condition register field CRO is
undefined. In all of these cases, the MPC601 does not guarantee particular results for these
undefined fields. The values should simply be treated as undefined.

If the EA associated with an Iscbx instruction is directed to a memory-forced I/O controller
interface segment (that is, the segment register T-bit is set and the BUID field equals
x '07F'), the address is translated appropriately and the operation proceeds. On the other

hand, if the EA associated with an Iscbx instruction is directed to an I/O segment (that is,
the segment register T-bii is set but the BUID does not equal x'07F'), then the MPC601
takes a data access exception and sets bit 5 of the DSISR.

If r A is in the range of registers to be loaded for a Load String Word Immediate (Iswi)
instruction or if either r A or rB are in the range of registers to be loaded for a Load String
Word Indexed (Iswx) or Iscbx instruction, then the PowerPC architecture considers the
instruction to be of an invalid form. In the POWER architecture, this form is not considered
invalid and specifications exist for these cases. To maintain compatibility with the POWER
architecture in this case, the MPC601 executes the instruction normally, but loading of
these registers is inhibited. In addition, the Iswx, Iscbx and stswx instructions that specify
a string length of zero are considered an invalid form in the PowerPC architecture, but not
in the POWER architecture. For compatibility with the POWER architecture, the MPC601
executes these instructions normally, but does not alter register rD or cause a memory
access.

Table 3-20. Integer Move String Instructions

Name Mnemonic
Operand

Operation
Syntax

Load String Iswi rD,rA,NB The EA is (rAIO).
Word

Let n = NB if NB:;t:O, n = 32 if NB=O; n is the number of bytes to load.
Immediate

Let nr= (nI4); nris the number of registers to receive data.

n consecutive bytes starting at the EA are loaded into GPRs rD
through rD+nr-1. Bytes are loaded left to right in each register. The
sequence of registers wraps around to rO if required. If the four bytes
of register rD+nr-1 are only partially filled, the unfilled low-order
byte(s) of that register are cleared to o.
If rA is in the range of registers specified to be loaded, it will be
skipped in the load process. If operand rA=O, the register is not
considered as used for addressing, and will be loaded.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-51

..

Table 3·20. Integer Move String Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax .. Load String Iswx rD,rA,rB The EA is the sum (rAIO)+(rB).

Word Let n = XER[25-31]; n is the number of bytes to load.
Indexed

Let nr= CEIL(nI4); nris the number of registers to receive data.

If n>O, n consecutive bytes starting at the EA are loaded into registers
rD through rD+nr-1.

Bytes are loaded left to right in each register. The sequence of
registers wraps around to rO if required. If the four bytes of register
rD+nr-1 are only partially filled, the unfilled low-order byte(s) of that
register are cleared to 0.

If n=O, the contents of register rD is undefined.

If rA is in the range of registers specified to be loaded, it will be
skipped in the load process. If operand rA=O, the register is not
considered as used for addressing, and will be loaded.

Load String Iscbx rD,rA,rB The EA is the sum (rAIO)+(rB). XER[25-31] contains the byte count.
and Iscbx. Register rD is the starting register. n=XER[25-31], which is the
Compare number of bytes to be loaded. nr=CEIL(nI4), which is the number of
Byte registers to receive data. Starting with the leftmost byte in rD,
Indexed consecutive bytes in storage addressed by the EA are loaded into rD

through rD+nr-1, wrapping around back through GPR ° if required,
until either a byte match is found with XER[16-23] or n bytes have
been loaded. If a byte match is found, that byte is also loaded.

Bytes are always loaded left to right in the register. In the case when
a match was found before n bytes were loaded, the contents of the
rightmost byte(s) not loaded of that register and the contents of all
succeeding registers up to and including rD+nr-1 are undefined. Also,
no reference is made to storage after the matched byte is found. In
the case when a match was not found, the contents of the rightmost
byte(s) not loaded of rD+nr-1 is undefined.

When XER[25-31]=O, the content of rD is unchanged. The count of
the number of bytes loaded up to and including the matched byte, if a
match was found, is placed in XER[25-31].

Iscbx Load String and Compare Byte Indexed
Iscbx. Load String and Compare Byte Indexed with CR

Update. The dot suffix enables the update of the
condition register.

Store stswi rS,rA,NB The EA is (rAIO).
String

Let n = NB if NB*O, n = 32 if NB=O; n is the number of bytes to store.
Word
Immediate Let nr = CEIL(nI4); nris the number of registers to supply data.

n consecutive bytes starting at the EA are stored from register rS
through rS+nr-1.

Bytes are stored left to right from each register. The sequence of
registers wraps around through rO if required.

3-52 Powerpe 601 RiSe Microprocessor User's Manual MOTOROLA

Table 3-20. Integer Move String Instructions (Continued)

Name Mnemonic
Operand

Operation Syntax

Store stswx rS,rA,rB The effective address is the sum (rAIO)+(rB).
String

Let n = XER[25-31]; n is the number of bytes to store.
Word
Indexed Let nr= CEIL(n/4); nris the number of registers to supply data.

n consecutive bytes starting at the EA are stored from register rS
through rS+nr-1.

Bytes are stored left to right from each register. The sequence of
registers wraps around through rO if required.

3.5.7 Memory Synchronization Instructions
Memory synchronization instructions can control the order in which memory operations
are completed with respect to asynchronous events and the order in which memory
operations are seen by other processors and by other mechanisms that access memory.
Additional information about these instructions and about related aspects of memory
management can be found in Chapter 6, "Memory Management Unit."

The synchronize (sync) and the Enforce In-order Execution of I/O (eieio) instructions are
handled in the same manner internally to the MPC601. These instructions delay execution
of subsequent instructions until all previous instructions have completed to the point that
they can no longer cause an exception, all previous memory accesses are performed
globally, and the sync or eieio operation is broadcast onto the MPC601 bus interface.

System designs that use a second-level cache should take special care in accepting the
broadcast sync operation and performing the appropriate actions to guarantee that memory
references that may be queued internally to the second-level cache have been performed
globally.

The number of cycles the sync and eieio instructions take depends on various system-level
sensitivities and on the processor's state when the instruction is issued. As a result, frequent
use of these instructions may cause some performance degradation.

Note that the PowerPC architecture defines the sync instruction wi~h the condition register
update option enabled to be an invalid form whereas the POWER architecture does not. For
compatibility, the MPC601 executes this case of the instruction consistently with the
PowerPC architecture, and it loads an undefined value into condition register field CRO.

The Instruction Synchronize (isync) instruction causes the MPC601 to purge its instruction
buffers, wait for any preceding sync instructions to complete ~d then branch to the next
sequential instruction (which has the effect of clearing the pipeline behind the isync
instruction.)

The Load Word and Reserve Indexed (Iwarx) and Store Word Conditional Indexed
(stwcx.) instructions provide an atomic update function for a single, aligned word of

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-53

..

memory. The Iwarx instruction must be paired with a stwcx. instruction with the same
effective address used for both instructions of the pair.

The Iwarx and stwcx. instructions require the EA to be aligned. Software should not
attempt to emulate a misaligned Iwarx or stwcx. instruction because there is no correct way
to define the address associated with the reservation.

The granularity with which reservations are managed is 32 bytes. Therefore the memory to
be accessed by a load and reserve and store conditional instruction should be allocated by
a system library program. Examples of correct uses of these instructions, to emulate
primitives such as "Fetch and Add," "Test and Set," and "Compare and Swap," can be
found Appendix G, "Synchronization Programming Examples." In general, these
instructions should be used only in system programs, which can be invoked by application
programs as needed.

At the most one reservation exists on any given processor-there are not separate
reservations for words and for double words. The address associated with the reservation
can be changed by a subsequent Iwarx instruction. The conditionality of the store
conditional instruction's store is based only on whether a reservation exists, not on a match
between the address associated with the reservation and the address computed from the EA
of the stwcx. instruction. A reservation is cleared by executing a stwcx. instruction to any
address by the processor having the reservation, by executing any store instruction to the
address associated with the reservation, by another processor, execution of an sc instruction
or any exception incurred by the processor which invoked the reservation.

The memory synchronization instructions available for the MPC601 are summarized in
Table 3-21.

Table 3-21. Memory Synchronization Instructions

Name Mnemonic
Operand

Operation
Syntax

Enforce In· eieio The eieio instruction provides an ordering function for the effects of
Order load and store instructions executed by a given processor. Executing
Execution an eieio instruction ensures that all memory accesses previously
of I/O initiated by the given processor are complete with respect to main

memory before allowing any memory accesses subsequently initiated
by the given processor to access main memory.

The eieio instruction orders load and store operations to cache
inhibited memory, and store operations to write through cache
memory.

The eieio instruction performs the same function as a sync
instruction when executed by the MPC601.

Instruction isync This instruction waits for all previous instructions to complete, and
Synchronize then discards any prefetched instructions, causing subsequent

instructions to be fetched (or refetched) from memory and to execute
in the context established by the previous instructions. This
instruction has no effect on other processors or on their caches.

3-54 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-21. Memory Synchronization Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Load Word Iwarx rD,rA,rB The effective address is the sum (rAIO)+(rB). The word in memory
and addressed by the EA is loaded into register rD.
Reserve This instruction creates a reservation for use by a stwcx. instruction.
Indexed

An address computed from the EA is associated with the reservation,
and replaces any address previously associated with the reservation.

The EA must be a multiple of 4. If it is not, the alignment exception
handler will be invoked if the word loaded crosses a page boundary,
or the results may be undefined.

Store Word stwcx. rS,rA,rB The effective address is the sum (rAIO)+(rB).
Conditional If a reservation exists, register rS is stored into the word in memory
Indexed

addressed by the EA and the reservation is cleared.

If a reservation does not exist, the instruction completes without
altering memory.

The EO bit in the condition register field CRO is modified to reflect
whether the store operation was performed (Le., whether a
reservation existed when the stwcx. instruction began execution). If
the store was completed successfully, the EO bit is set to one.

The EA must be a multiple of 4; otherwise, the alignment exception
handler will be invoked if the word stored crosses a page boundary,
or the results may be undefined.

Synchronize sync Executing a sync instruction ensures that all instructions previously
initiated by the given processor appear to have completed before any
subsequent instructions are initiated by the given processor. When
the sync instruction completes, all memory accesses initiated by the
given processor prior to the sync will have been performed with
respect to all other mechanisms that access memory. The sync
instruction can be used to ensure that the results of all stores into a
data structure, performed in a "critical section" of a program, are seen
by other processors before the data structure is seen as unlocked.

The Enforce In-Order Execution of liD (eieio) instruction may be
more appropriate than sync for cases in which the only requirement
is to control the order in which memory references are seen by liD
devices.

3.5.8 Floating-Point Load and Store Address Generation
Floating point load and store operations generate effective addresses using the register
indirect with immediate index mode and register indirect with index mode, the details of
which are described below. Floating-point loads and stores are not supported for I/O
accesses when the SR[BUID] is not equal to x'07F'. The use of floating-point loads and
stores for I/O access will result in an alignment exception.

3.5.8.1 Register Indirect with Immediate Index Addressing
Instructions using this addressing mode contain a signed 16-bit immediate index (d
operand) which is sign extended to 32 bits, and added to the contents of a general purpose
register specified in the instruction (rA operand) to generate the effective address. A zero

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-55

in the rA operand causes a zero to be added to the immediate index (d operand). This is
shown in the instruction descriptions as (rAIO).

Figure 3-4 shows how an effective address is generated when using register indirect with
immediate index addressing.

1112 1617 31

o
Sign Extension

Yes

No

o 31

GPR (rA) Effective Address

o 63 Store

FPR (frD/frS) Load

Figure 3-4. Register Indirect with Immediate Index Addressing

3.5.8.2 Register Indirect with Index Addressing
Instructions using this addressing mode add the contents of two general purpose registers
(specified in operands rA and rB) to generate the effective address. A zero in the rA
operand causes a zero to be added to the contents of general purpose register specified in
operand rB. This is shown in the instruction descriptions as (rAIO).

Figure 3-5 shows how an effective address is generated when using register indirect with
index addressing.

3-56 Powerpe 601 Rise Microprocessor User's Manual MOTOROLA

1112 1617 21 22 30 31

GPR (rB)
Yes

No

0 31

GPR (rA) Effective Address

0 63 Store

FPR (frD/frS) Load

Figure 3-5 Register Indirect with Index Addressing

The PowerPC architecture defines floating-point load and store with update instructions
(lfsu, Ifsux, Ifdu, Ifdux, stfsu, stfsux, stfdu, stfdux) with operand rA=O as invalid forms
of the instructions, but the POWER architecture does not. To maintain compatibility with
the POWER architecture, the MPC601 accesses memory for these cases but inhibits the
update of the integer register rO.

In addition, the PowerPC architecture defines floating-point load and store instructions with
the condition register update option enabled to be an invalid form. For compatibility with
the POWER architecture, the MPC601 executes the instruction normally, but also writes an
undefined value into the condition register field CRt.

The PowerPC architecture defines that the FPSCR[UE] bit should not be used to determine
whether denormalization should be performed on floating-point stores. The MPC601
complies with this definition, although this is different from some POWER architecture
implementations.

3.5.9 Floating-Point Load Instructions
There are two basic forms of floating-point load instruction-single-precision and double­
precision formats. Because the FPRs support only floating-point, double-precision format,
single-precision floating-point load instructions convert single-precision data to double­
precision format before loading the operands into the target FPR. This conversion is
described in Section 3.6.9.1, "Double-Precision Conversion for Floating-Point Load
Instructions." Table 3-22 provides a summary of the floating-point load instructions.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-57

•

Table 3-22. Floating-Point Load Instructions

• Name Mnemonic
Operand

Operation
Syntax

Load Ifs frD,d(rA) The effective address is the sum (rAIO)+d.
Floating- The word in memory addressed by the EA is interpreted as a floating-
Point point single-precision operand. This word is converted to floating-
Single- point double-precision format and placed into register frO.
Precision

Load Ifsx frD,rA,rS The effective address is the sum (rAIO)+(r B).
Floating- The word in memory addressed by the EA is interpreted as a floating-
Point point single-precision operand. This word is converted to floating-
Single- point double-precision and placed into register frO.
Precision
Indexed

Load Ifsu frD,d(rA) The effective address is the sum (rAIO)+d.
Floating- The word in memory addressed by the EA is interpreted as a floating-
Point point single-precision operand. This word is converted to floating-
Single- point double-precision (see Section 3.6.9.1, "Double-Precision
Precision Conversion for Floating-Point Load Instructions,") and placed into
with Update register frO.

The EA is placed into the register specified by rA.

Load Ifsux frD,rA,rS The effective address is the sum (rAIO)+(r B).
Floating- The word in memory addressed by the EA is interpreted as a floating-
Point point single-precision operand. This word is converted to floating-
Single- point double-precision (see Section 3.6.9.1, "Double-Precision
Precision Conversion for Floating-Point Load Instructions,") and placed into
with
Update

register frO.

Indexed The EA is placed into the register specified by rA.

Load Ifd frD,d(rA) The effective address is the sum (rAIO)+d.
Floating-

The double-word in memory addressed by the EA is placed into
Point

register frO.
Double-
Precision

Load Ifdx frD,rA,rS The effective address is the sum (rAIO)+(r B).
Floating- The double-word in memory addressed by the EA is placed into
Point

register frO.
Double-
Precision
Indexed

Load Ifdu frD,d(rA) The effective address is the sum (rAIO)+d.
Floating-

The double-word in memory addressed by the EA is placed into
Point
Double-

register frO.

Precision The EA is placed into the register specified by rA.
with Update

3-58 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-22. Floating-Point Load Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Load Ifdux frD,rA,rB The effective address is the sum (rAIO)+(r B).
Floating- The double-word in memory addressed by the EA is placed into
Point register frO.
Double-
Precision The EA is placed into the register specified by rA.
with
Update
Indexed

3.5.9.1 Double-Precision Conversion for Floating-Point Load
Instructions

The steps for converting from single- to double-precision and loading are as follows:

WORD[O-3l] is the floating-point, single-precision operand accessed from memory_

Normalized Operand

If WORD[1_B] >0 and WORD[1-B] <255
frD 0-1 < WORD 0-1
frD 2 < .. WORD 1
frD 3 < .. WORD 1
frD 4 < .. WORD 1
frD 5-63 < WORD 2-31 II 29b'0'

Denormalized Operand

If WORD 1-8 =0 and WORD 9-31 *0
sign < WORD 0

exp < -126
frac 0-52 < b'O' II WORD 9-31 II 29b'0'
normalize the operand
Do while frac 0 =0
frac < frac 1-52 II b'O'
exp < exp - 1
End
frD 0 < sign
frD 1-11 < exp + 1023
frD 12-63 < frac 1-52

Infinity / QNaN / SNaN / Zero

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary

..

3-59

..
If WORD 1-8 =255 or WORD 1-31 =0
frD 0-1 < WORD 0-1
frD2 <WORD 1
frD3 <WORD 1
frD4 < WORD 1
frD 5-63 < WORD 2-31 ,, 29b'0'

For double-precision floating-point load instructions, no conversion is required as the data
from memory is copied directly into the FPRs.

Many floating-point load instructions have an update form in which register rA is updated
with the EA. For these forms, if operand r A:;tO, the effective address is placed into register
rA and the memory element (word or double-word) addressed by the EA is loaded into the
floating-point register specified by operand frD.

3.5.10 Floating-Point Store Instructions
This section describes floating-point store instructions. There are two basic forms of the
store instruction-single- and double-precision. Because the FPRs support only floating­
point, double-precision format, single-precision floating-point store instructions convert
double-precision data to single-precision format before storing the operands. The
conversion steps are described in Section 3.6.9.2.1, "Double-Precision Conversion for
Floating-Point Store Instructions." Table 3-23 is a summary of the floating point store
instructions provided by the MPC601.

Table 3-23 Floating-Point Store Instructions

Name Mnemonic
Operand

Operation
Syntax

Store stfs frS,d(rA) The EA is the sum (rAIO)+d.
Floating- The contents of register frS is converted to single-precision and
Point stored into the word in memory addressed by the EA.
Single-
Precision

Store stfsx frS,rA,rB The EA is the sum (rAIO)+(rB).
Floating- The contents of register frS is converted to single-precision and
Point stored into the word in memory addressed by the EA.
Single-
Precision
Indexed

Store stfsu frS,d(rA) The EA is the sum (rAIO)+d.
Floating- The contents of register frS is converted to single-precision and
Point stored into the word in memory addressed by the EA.
Single-

The EA is placed into the register specified by operand rA. Precision
with Update

3-60 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-23 Floating-Point Store Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Store stfsux frS,rA,rB The EA is the sum (rAIO)+(rB).
Floating-

The contents of register frS is converted to single-precision and
Point stored into the word in memory addressed by the EA.
Single-
Precision The EA is placed into the register specified by operand rA.
with
Update
Indexed

Store stfd frS,d(rA) The effective address is the sum (rAIO)+d.
Floating-

The contents of register frS is stored into the double-word in memory
Point
Double-

addressed by the EA.

Precision

Store stfdx frS,rA,rB The EA is the sum (rAIO)+(rB).
Floating-

The contents of register frS is stored into the double-word in memory
Point
Double-

addressed by the EA.

Precision
Indexed

Store stfdu frS,d(rA) The effective address is the sum (rAIO)+d.
Floating-

The contents of register frS is stored into the double-word in memory
Point
Double-

addressed by the EA.

Precision The EA is placed into register rA.
with Update

Store stfdux frS,rA,rB The EA is the sum (rAIO)+(rB).
Floating-

The contents of register frS is stored into the double-word in memory
Point
Double-

addressed by EA.

Precision The EA is placed into register rA.
with
Update
Indexed

3.5.10.1 Double-Precision Conversion for Floating-Point Store
Instructions

The steps for converting single- to double-precision for floating-point store instructions are
as follows:

Let WORD[O-31] be the word in memory written to.

Nu Denurm2li:!2tion Required

If frS[l-ll] > 896 or frS[1-63] = 0
WORD[(}-l] < frS[(}-l]
WORD[2-31]< frS[5-34]

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-61

..

..
Denormalization Required

If 874 ::; frS[l-l1] ::; 896
sign < frS[O]
exp < frS[l-l11- 1023
frac < b'l' II frS[12-63]
Denormalize operand
Do while exp < -126
frac < b '0' II fracO-62
exp < exp + 1
End
WORDO< sign
WORD[1-8] < x'OO'
WORD[9-31] < frac[1-23]

For double-precision floating-point store instructions, no conversion is required as the data
from the FPRs is copied directly into memory. Many floating-point store instructions have
an update form, in which register rA is updated with the effective address. For these forms,
if operand r A "# 0, the effective address is placed into register r A.

Floating-point store instructions are listed in Table 3-23. Recall that rA, rB, and rD denote
GPRs, while frA, frB, frC, frS and frD denote FPRs.

3.5.11 Floating-Point Move Instructions
Floating-point move instructions copy data from one floating-point register to another with
data modifications as described for each instruction. These instructions do not modify the
FPSCR. The condition register update option in these instructions controls the placing of
result status into condition register field CR 1. If the condition register update option is
enabled, then CR 1 is set, otherwise CR 1 is unchanged. Floating-point move instructions are
listed in Table 3-24.

3-62 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-24. Floating-Point Move Instructions

Name Mnemonic
Operand

Operation
Syntax

Floating- fmr frO,frB The contents of register frB is placed into frO.
Point Move fmr. fmr Floating-Point Move Register
Register

fmr. Floating-Point Move Register with CR Update. The dot
suffix enables the update of the condition register.

Floating- fneg frO,frB The contents of register frB with bit 0 inverted is placed into register
Point fneg. frO.
Negate fneg Floating-Point Negate

fneg. Floating-Point Negate with CR Update. The dot suffix
enables the update of the condition register.

Floating- fabs frO,frB The contents of frB with bit 0 cleared to 0 is placed into frO.
Point fabs. fabs Floating-Point Absolute Value
Absolute
Value

fabs. Floating-Point Absolute Value with CR Update. The dot
suffix enables the update of the condition register.

Floating- fnabs frO,frB The contents of frB with bit 0 set to one is placed into frO.
Point fnabs. fnabs Floating-Point Negative Absolute Value
Negative fnabs. Floating-Point Negative Absolute Value with CR Update.
Absolute The dot suffix enables the update of the condition register.
Value

3.6 Flow Control Instructions
Branch instructions are executed by the BPU. Some of these instructions can redirect
instruction execution conditionally based on the value of bits in the condition register.
When the branch processor encounters one of these instructions, it scans the execution
pipelines to determine whether an instruction in progress may affect the particular
condition register bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the condition register and taking the action defined for the branch
instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch is predicted using the y-bit as described in Table 3-25. The interlock is monitored
while instructions are fetched for the predicted branch. When the interlock is cleared, the
branch processor determines whether the prediction was correct based on the value of the
condition register bit. If the prediction is correct, the branch is considered completed and
instruction fetching continues. If the prediction is incorrect, the prefetched instructions are
purged, and instruction fetching continues along the alternate path.

3.6.1 Branch instruction Address Calculation
Branch instructions can change the sequence of instruction execution. Instruction addresses
are always assumed to be on word boundaries with the MPC601; therefore the processor
ignores the two low-order bits of the generated branch target address.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-63

•
Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative

• Branch to absolute address
• Branch conditional to relative address

• Branch conditional to absolute address

• Branch conditional to link register

• Branch conditional to count register

3.6.1.1 Branch Relative Address Mode
Instructions that use branch relative addressing generate the next instruction address by
sign extending the immediate displacement operand LI and adding the resultant value to
the current instruction address. Branches using this address mode have the absolute
addressing option (AA) disabled. If the link register update option (LK) is enabled, the
effective address of the instruction following the branch instruction is placed in the link
register.

Figure 3-6 shows how the branch target address is generated when using the branch relative
addressing mode.

o 6 7 29 30 31

Instruction Encoding:
~------~------------~----------------~~~

o 6 7 29 30 31
~------~------------~------------------

o 31

Figure 3-6. Branch Relative Addressing

3.6.1.2 Branch Conditional Relative Address Mode
If the branch conditions are met, instructions that use the branch conditional relative
address mode generate the next instruction address by sign extending the immediate
displacement operand (BD) and adding the resultant value to the current instruction
address. Branches using this address mode have the absolute addressing option (AA)
disabled. If the link register update option (LK) is enabled, the effective address of the
instruction following the branch instruction is placed in the link register.

3-64 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Figure 3-7 shows how the branch target address is generated when using the branch
conditional relative addressing mode.

30 31
Instruction Encoding: BO AALK

31

Next Sequential Instruction Address

o 1617 29 30 31
~-------------------------r------------------

Figure 3-7. Branch Conditional Relative Addressing

3.6.1.3 Branch to Absolute Address Mode
Instructions that use branch to absolute address mode generate the next instruction address
by sign extending the LI operand. Branches using this address mode have the absolute
addressing option (AA) enabled. If the link register update option (LK) is enabled, the
effective address of the instruction following the branch instruction is placed in the link
register.

Figure 3-8 shows how the branch target address is generated when using the branch to
absolute address mode.

o 6 7 29 30 31

Instruction Encoding: LI L

o 6 7 29 30 31

LI 1 0

o 29 30 31

Branch Target Address o 0

Figure 3-8. Branch to Absolute Addressing

MOTOROLA Chapter 3. AddreSSing Modes and Instruction Set Summary 3-65

•
3.6.1.4 Branch Conditional to Absolute Address Mode
If the branch conditions are met, instructions that use the branch conditional to absolute
address mode generate the next instruction address by sign extending the BD operand.
Branches using this address mode have the absolute addressing option (AA) enabled. If the
link register update option (LK) is enabled, the effective address of the instruction
following the branch instruction is placed in the link register.

Figure 3-9 shows how the branch target address is generated when using the branch
conditional to absolute address mode.

o 6711121617 2930 31

Instruction Encoding:
~--~----~--;---------~~~

AALK

31

Next Sequential Instruction Address

29 30 31

Sign Extension SD 1 0

o 29 30 31

Branch Target Address o 0

Figure 3-9. Branch Conditional to Absolute Addressing

3.6.1.5 Branch Conditional to Link Register Address Mode
If the branch conditions are met, the branch conditional to link register instruction
generates the next instruction address by fetching the contents of the link register and
clearing the two low order bits to zero. If the link register update option (LK) is enabled,
the effective address of the instruction following the branch instruction is placed in the link
register.

Figure 3-10 shows how the branch target address is generated when using the branch
conditional to link register address mode.

3.6.1.6 Branch Conditional to Count Register
If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by fetching the contents of the count register and
clearing the two low order bits to zero. If the link register update option (LK) is enabled,
the effective address of the instruction following the branch instruction is placed in the link
register.

3-66 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

o 6 7 11 12 16 17 21 22 30 31
Instruction Encoding:

o 29 3031

Figure 3-10. Branch Conditional to Link Register Addressing

Figure 3-11 shows how the branch target address is generated when using the branch
conditional to count register address mode.

o
Instruction Encoding:

6 7 1112 16 1 21 22 30 31 ----T"""""'"'I
'------'------'----

o 29 30 31

Figure 3-11. Branch Conditional to Count Register Addressing

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-67

..

..
When the branch instructions contain immediate addressing operands, the target addresses
can be computed sufficiently ahead of the branch instruction that instructions can be
prefetched along the target path. If the branch instructions use the link and count registers,
instructions along the target path can be prefetched if the link or count register is loaded
sufficiently ahead of the branch instruction.

Branching can be conditional or unconditional, and the return address can optionally be
provided. If the return address is to be provided, the effective address of the instruction
following the branch instruction is placed in the link register after the branch target address
has been computed. This is done regardless of whether the branch is taken.

For branch conditional instructions, the BO operand specifies the conditions under which
the branch is taken. The first four bits of the BO operand specify how the branch is affected
by or affects the condition and count registers. The fifth bit, shown in Table 3-25 as having
the value y, may be used by some implementations for branch prediction as described
below.

The encodings for the BO operands are shown in Table 3-25.

Table 3-25. 80 Operand Encodings

80 Description

OOOOy Decrement the CTR, then branch if the decremented CTR :t= 0 and the condition is
FALSE.

0OO1y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is
FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR :t= 0 and the condition is
TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is
TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR:t= O.

1z01y Decrement the CTR, then branch if the decremented CTR = O.

1z1zz Branch always.

The z indicates a bit that must be zero; otherwise, the instruction form is invalid.

The ybit provides a hint about whether a conditional branch is likely to be taken and is used by the
MPC601 to improve performance. Other implementations may ignore the ybit.

The "branch always" encoding of the BO operand does not have a "y" bit.

3-68 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Setting the "y" bit to 0 indicates that the following behavior is likely:

• For bex with a negative value in the displacement operand, the branch is taken.

• In all other cases (bex with a non-negative value in the displacement operand, bclrx,
or beetrx), the branch is not taken.

Setting the "y" bit to 1 reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an
absolute address. The default value for the "y" bit should be 0, and should only be set to 1
if software has determined that the prediction corresponding to "y" = 1 is more likely to be
correct than the prediction corresponding to "y" = O. Software that does not compute branch
predictions should set the "y" bit to zero.

For all three of the branch conditional instructions, the branch should be predicted to be
taken if the value of the following expression is 1, and to fall through if the value is O.

((BO[O] & BO[2]) I S) EB BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is the sign
bit of the displacement operand if the instruction has a displacement operand and is 0 if the
operand is reserved. BO[4] is the "y" bit, or 0 for the "branch always" encoding of the BO
operand. (Advantage is taken of the fact that, for bclrx and beetrx, bit 16 of the instruction
is part of a reserved operand and therefore must be 0.)

3.6.2 BI Operand
The 5-bit BI operand in branch conditional instructions specifies which of the 32 bits in the
CR represents the condition to test.

3.6.3 Basic Branch Mnemonics
The mnemonics in Table 3-26 allow all the common BO operand encodings to be specified
as part of the mnemonic, along with the absolute address (AA) and set link register (LK)
bits.

Notice that there are no simplified mnemonics for relative and absolute unconditional
branches. For these, the basic mnemonics b, ba, bl, and bla are used.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-69

.. Table 3-26. Simplified Branch Mnemonics

LR bit not set LR bit set

Branch Semantics be bea belrto beetr bel bela belrl to beetrl
Relative Absolute LR to Relative Absolute LR to CTR

CTR

Branch unconditionally - - blr betr - - blrl betrl

Branch if condition true bt bta btlr btetr btl btla bUrl btetrl

Branch if condition bf bfa bflr bfetr bfl bfla bflrl bfetrl
false

Decrement CTR, bdnz bdnza bdnzlr - bdnzl bdnzla bdnzlrl -
branch if CTR non-zero

Decrement CTR, bdnzt bdnzta bdnztlr - bdnztl bdnztla bdnztlrl -
branch if CTR non-zero
AND condition true

Decrement CTR, bdnzf bdnzfa bdnzflr - bdnzfl bdnzfla bdnzflrl -
branch if CTR non-zero
AND condition false

Decrement CTR, bdz bdza bdzlr - bdzl bdzla bdzlrl -
branch if CTR zero

Decrement CTR, bdzt bdzta bdzt/r - bdztl bdztla bdztlrl -
branch if CTR zero
AND condition true

Decrement CTR, bdzf bdzfa bdzflr - bdzfl bdzfla bdzflrl -
branch if CTR zero
AND condition false

Table 3-26 provides the abbreviated set of simplified mnemonics for the most commonly
performed conditional branches. Unusual cases of conditional branches can be coded using
a basic branch conditional mnemonic (bc, bclr, bcctr) with the condition to be tested
specified as a numeric first operand.

Instructions using a mnemonic from Table 3-26 that tests a condition specify the condition
as the first operand of the instruction. Table 3-27 summarizes the mnemonic symbols and
the equivalent numeric values used to interpret a condition register CR field during a branch
conditional instruction compare operation.

3-70 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-27. Condition Register CR Field Bit Symbols

Symbol Value Meaning

It 0 Less than

gt 1 Greater than

eq 2 Equal

so 3 Summary overflow

un 3 Unordered (after floating-
point comparison)

Table 3-28 summarizes the mnemonic symbols and the equivalent numeric values used to
identify the condition register CR field to be evaluated by the compare operation.

Table 3-28. Condition Register CR Field Identification Symbols

Symbol Value Meaning

erO 0 CRO

er1 4 CR1

er2 8 CR2

er3 12 CR3

er4 16 CR4

er5 20 CR5

erG 24 CRG

er7 28 CR7

The simplified branch mnemonics and the symbols in Table 3-27 and Table 3-28 are
combined in an expression that identifies the bit (0--31) of CR to be tested, as follows:

Examples:

1. Decrement CTR and branch if it is still non-zero (closure of a loop controlled by a
count loaded into CTR).
bdnz target (equivalent to be 16,0,target)

2. Same as (1) but branch only if CTR is non-zero and condition in CRO is "equal."
bdnz eq,target (equivalent to be 8,2,target)

3. Same as (2), but "equal" condition is in CR5.
bdnzt er5+eq,target (equivalent to be 8,22,target)

4. Branch if bit 27 of CR is false.
bf 27,target (equivalent to be 4,27,target)

5. Same as (4), but set the link register. This is a form of conditional "call."
bfl 27,target (equivalent to bcl4,27,target)

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-71

..

..
3.6.4 Branch Mnemonics Incorporating Conditions
The mnemonics defined in Table 3-30 are variations of the "branch if condition true" and
"branch if condition false" BO encodings, with the most common values of the BI operand
represented in the mnemonic rather than specified as a numeric operand.

The two-letter codes for the most common combinations of branch conditions is shown in
Table 3-29.

Table 3-29. Two-Letter Codes for Branch Comparison Conditions

Code Meaning

It Less than

Ie Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

un Unordered (after floating-point comparison)

nu Not unordered (after floating-point
comparison)

These codes are reflected in the simplified mnemonics shown in Table 3-30.

Table 3-30. Simplified Branch Mnemonics Incorporating Comparison Conditions

LR bit not set LR bit set

be bea bclrto bcetr bel bela bclrlto bectrl
Branch Semantics Relativ Absolute LR toCTR Relative Absolute LR to CTR

e

Branch if less than bit blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr bleetr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtetr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnletr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

3-72 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-30. Simplified Branch Mnemonics Incorporating Comparison Conditions

LR bit not set LR bit set

be bea belrto beetr bel bela belrl to beetrl
Branch Semantics Relativ Absolute LR to CTR Relative Absolute LR to CTR

e

Branch if not greater than bng bnga bnglr bngetr bngl bngla bnglrl bngetrl

Branch if summary bso bsoa bsolr bsoetr bsol bsola bsolrl bsoetrl
overflow

Branch if not summary bns bnsa bnslr bnsetr bnsl bnsla bnslrl bnsetrl
overflow

Branch if unordered bun buna bunlr bunetr bunl bunla bunlrl bunetrl

Branch if not unordered bnu bnua bnulr bnuetr bnul bnula bnulrl bnuetrl

Instructions using the mnemonics in Table 3-30 specify the condition register field in an
optional first operand. If the CR field being tested is CRO, this operand need not be
specified. Otherwise, one of the CR field symbols listed in Table 3-28 is coded as the first
operand.

Examples:

1. Branch if CRO reflects condition "not equal."
boe target (equivalent to be 4,2,target)

2. Same as (1), but condition is in CR3.

boe er3,target (equivalent to be 4,14,target)

3. Branch to an absolute target if CR4 specifies "greater than," setting the link register.
This is a form of conditional "call", as the return address is saved in the link register.

bgtla er4,target (equivalent to bela 12,17,target)

4. Same as (3), but target address is in the count register.

bgtetrl cr4 (equivalent to beetrl 12,17)

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-73

..

3.6.5 Branch Instructions
Table 3-31 describes the branch instructions provided by the MPC601. .. Table 3-31. Branch Instructions

Name Mnemonic
Operand

Operation
Syntax

Branch b imm_addr b Branch. Branch to the address computed as the sum of
ba the immediate address and the address of the current
bl instruction.
bla ba Branch Absolute. Branch to the absolute address

specified.
bl Branch then Link. Branch to the address computed as the

sum of the immediate address and the address of the
current instruction. The instruction address following this
instruction is placed into the link register (LR).

bla Branch Absolute then Link. Branch to the absolute
address specified. The instruction address following this
instruction is placed into the link register (LR).

Branch be BO,BI, The BI operand specifies the bit in the condition register (CR) to be
Conditional bea target_addr used as the condition of the branch. The BO operand is used as

bel described in Table 3-25.
bela be Branch Conditional. Branch conditionally to the address

computed as the sum of the immediate address and the
address of the current instruction.

bea Branch Conditional Absolute. Branch conditionally to the
absolute address specified.

bel Branch Conditional then Link. Branch conditionally to the
address computed as the sum of the immediate address
and the address of the current instruction. The instruction
address following this instruction is placed into the link
register.

bela Branch Conditional Absolute then Link. Branch
conditionally to the absolute address specified. The
instruction address following this instruction is placed into
the link register.

Branch belr BO,BI The BI operand specifies the bit in the condition register to be used
Conditional belrl as the condition of the branch. The BO operand is used as described
to Link in Table 3-25.
Register belr Branch Conditional to Link Register. Branch conditionally

to the address in the link register.
belrl Branch Conditional to Link Register then Link. Branch

conditionally to the address specified in the link register.
The instruction address following this instruction is then
placed into the link register.

3-74 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-31. Branch Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Branch bcctr BO,BI The BI operand specifies the bit in the condition register to be used
Conditional bcctrl as the condition of the branch. The BO operand is used as described
to Count in Table 3-25.
Register bcctr Branch Conditional to Count Register. Branch

conditionally to the address specified in the count register.
bcctrl Branch Conditional to Count Register then Unk. Branch

conditionally to the address specified in the count register.
The instruction address following this instruction is placed
into the link register.

Note: If the "decrement and test CTR" option is specified (BO[2]=0),
the instruction form is invalid. For the MPC601 , the decremented
count register is tested for zero and branches based on this test, but
instruction fetching is directed to the address specified by the non-
decremented version of the count register. Use of this invalid form of
this instruction is not recommended. ,

3.6.6 Condition Register Logical Instructions
Similar to the system call (sc) instruction, condition register logical instructions, shown in
Table 3-32, and the move condition register field (mcrf) instruction are defined as flow
control instructions, although they are executed by the IU.

Note that if the link register update option (LR) is enabled for any of these instructions, the
PowerPC architecture defines these forms of the instructions as invalid; however, the
MPC601 executes these instructions and leaves the link register in an undefined state.

Table 3-32. Condition Register Logical Instructions

Name Mnemonic
Operand

Operation Syntax

Condition crand crbD,crbA,crbB The bit in the condition register specified by crbA is ANDed with the
Register bit in the condition register specified by crbB. The result is placed

AND into the condition register bit specified by crbD.

Condition cror crbD,crbA,crbB The bit in the condition register specified by crbA is ORed with the
Register bit in the condition register specified by crbB. The result is placed
OR into the condition register bit specified by crbD.

Condition crxor crbD,crbA,crbB The bit in the condition register specified by crbA is XORed with the
Register bit in the condition register specified by crbB. The result is placed

XOR into the condition register bit specified by crbD.

Condition crnand crbD,crbA,crbB The bit in the condition register specified by crbA is ANDed with the
Register bit in the condition register specified by crbB. The complemented
NAND result is placed into the condition register bit specified by crbD.

Condition crnor crbD,crbA,crbB The bit in the condition register specified by crbA is ORed with the
Register bit in the condition register specified by crbB. The complemented
NOR result is placed into the condition register bit specified by crbD.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-75

..

..
Table 3-32. Condition Register Logical Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Condition creqv crbD,crbA, The bit in the condition register specified by crbA is XORed with the
Register crbB bit in the condition register specified by crbB. The complemented
Equivale result is placed into the condition register bit specified by crbD.
nt

Condition crandc crbD,crbA, The bit in the condition register specified by crbA is ANDed with the
Register crbB complement of the bit in the condition register specified by crbB and
AND the result is placed into the condition register bit specified by crbD.
with
Comple
ment

Condition crorc crbD,crbA, The bit in the condition register specified by crbA is ORed with the
Register crbB complement of the bit in the condition register specified by crbB and
OR with the result is placed into the condition register bit specified by crbD.
Comple
ment

Move mcrf crfD,crfS The contents of crfS are copied into crfD. No other condition
Condition register fields are changed.
Register
Field

3.6.7 System Linkage Instructions
This section describes the system linkage instructions (see Table 3-33). The system call (sc)
instruction pennits a program to call on the system to perfonn a service and the system to
return from perfonning a service or from processing an exception.

Table 3-33. System Linkage Instructions

Name Mnemonic
Operand

Operand Syntax
Syntax

System Call sc - When executed, the effective address of the instruction following the
sc instruction is placed into SRRD. Bits 16-31 of the MSR are placed
into bits 16-31 of SRR1, and bits 0-15 of SRR1 are set to undefined
values. Then a system call exception is generated. The exception
causes the MSR to be altered as described in Section 5.4, "Exception
Definitions."

The exception causes the next instruction to be fetched from offset
x'COO' from the base physical address indicated by the new setting of
MSR[IP]. For a discussion of POWER compatibility with respect to
instruction bits 16-29, refer to the Appendix K, "Incompatibilities with
the POWER Architecture. To ensure compatibility with future versions
of the PowerPC architecture, bits 16-29 should be coded as zero and
bit 3D should be coded as a 1.

This instruction is context synchronizing.

3-76 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-33. System Linkage Instructions (Continued)

Name Mnemonic
Operand

Operand Syntax
Syntax

Return rfl - Bits 16-31 of SRR1 are placed into bits 16~1 of the MSR, then the
from next instruction is fetched, under control of the new MSR value, from
Interrupt the address SRRO[0-29111 b'OO'.

This instruction is a supervisor-level instruction and is context
synchronizing.

3.6.8 Simplified Mnemonics for Branch Processor Instructions
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided that defines simple shorthand for the most frequently used forms of branch
conditional, compare, trap, rotate and shift, and certain other instructions.

Mnemonics are provided so that branch conditional instructions can be coded with the
condition as part of the instruction mnemonic rather than as a numeric operand. Some of
these are shown as examples with the branch instructions.

In some implementations the processor may keep a stack of the link register values most
recently set by branch and link instructions, with the possible exception of the form shown
below fur obtaining the address of the next instruction. To benefit from this stack, the
following programming conventions should be used.

Let A, B, and Glue be programs.

Obtaining the address of the next instruction-use the following form of branch and link.

bel 20,31,$+4

Loop Counts- Keep them in the count register, and use one of the branch conditional
instructions to decrement the count and to control branching (e.g., branching back to the
start of a loop if the decremented counter value is non-zero).

Computed GOT Os, Case Statements, Etc.-U se the count register to hold the address to
branch to, and use the bcctr instruction with the link register option disabled (LK=O) to
branch to the selected address.

Direct Subroutine Linkage-Here A calls Band B returns to A. The two branches should be
as follows:

A calls B: use a branch instruction that enables the link register (LK=l).

• B returns to A: use the belr instruction with the link register option disabled(LK=O)
(the return address is in, or can be restored to, the link register).

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-77

..

..
Indirect Subroutine Linkage-Here A calls Glue, Glue calls B, and B returns to A rather than
to Glue. (Such a calling sequence is common in linkage code used when the subroutine that
the programmer wants to call, here B, is in a different module from the caller: the binder
inserts "glue" code to mediate the branch.) The three branches should be as follows:

A calls Glue. Use a branch instruction that sets the link register with the link register
option enabled(LK=l).

Glue calls B. Place the address of B in the count register, and use the bcctr
instruction with the link register option disabled (LK=O).

B returns to A. Use the bclr instruction with the link register option disabled(LK=O)
(the return address is in, or can be restored to, the link register).

PowerPC-compliant assemblers provide the mnemonics and symbols listed here and
possibly others. Programs written to be portable across various assemblers for the PowerPC
architecture should not assume the existence of mnemonics not defined here.

3.6.9 Trap Mnemonics
The trap instructions shown in Table 3-34 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 3-34. Trap Instructions

Name Mnemonic
Operand

Operand Syntax
Syntax

Trap Word twi TO,rA,SIMM The contents of rA is compared with the sign-extended SIMM
Immediate operand. If any bit in the TO operand is set to 1 and its corresponding

condition is met by the result of the comparison, then the system trap
handler is invoked.

Trap Word tw TO,rA,rB The contents of rA is compared with the contents of rB. If any bit in
the TO operand is set to 1 and its corresponding condition is met by
the result of the comparison, then the system trap handler is invoked.

The trap instructions evaluate a trap condition as follows:

The contents of register rA is compared with either the sign-extended SIMM field or with
the contents of register rB, depending on the trap instruction. The comparison results in
five conditions which are ANDed with operand TO. If the result is not 0, the trap exception

. handler is invoked. These conditions are provided in Table 3-35.

I

3-78 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-35. TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than

1 Greater than

2 Equal

3 Logically less than

4 Logically greater than

A standard set of codes has been adopted for the most common combinations of trap
conditions, as shown in Table 3-36. The mnemonics defined in Tabie 3-37 are variations of
the trap instructions, with the most useful values of the trap instruction TO operand
represented as a mnemonic rather than specified as a numeric operand.

Code

It

Ie

eq

ge

gt

nl

ne

ng

lit

lie

Ige

Igt

Inl

Ing

(ncno)

MOTOROLA

Table 3-36. Trap Mnemonics Coding,

Meaning
TO Operand

< > = <U
Encoding

Less than 16 1 0 0 0

Less than or equal 20 1 0 1 0

Equal 4 0 0 1 0

Greater than or equal 12 0 1 1 0

Greater than 8 0 1 0 0

Not less than 12 0 1 1 0

Not equal 24 1 1 0 0

Not greater than 20 1 0 1 0

Logically less than 2 0 0 0 1

Logically less than or equal 6 0 0 1 1

Logically greater than or 5 0 0 1 0
equal

Logically greater than 1 0 0 0 0

Logically not less than 5 0 0 1 0

Logically not greater than 6 0 0 1 1

Unccrid:t:cncl 31 1 1 1 1

Note: <U indicates an unsigned less than evaluation will be performed.
>U indicates an unsigned greater than evaluation will be performed.

Chapter 3. Addressing Modes and Instruction Set Summary

>U

0

0

0

0

0

0

0

0

0

0

1

1

1

0

1

3-79

•

,.
These codes are reflected in the mnemonics shown in Table 3-37.

Table 3-37. Trap Mnemonics

32-Bit Comparison

Trap Semantics twi Immediate tw Register

Trap unconditionally - trap

Trap if less than twlti twit

Trap if less than or equal twlei twla

Trap if equal tweqi tweq

Trap if greater than or equal twgai twga

Trap if greater than twgti twgt

Trap if not less than twnli twnl

Trap if not equal twnei twna

Trap if logically less than twllti twllt

Trap if logically less than or equal twllei twlle

Trap if logically greater than or equal twllgi twllg

Trap if logically greater than twllgi twllg

Trap if logically not less than twlnli twlnl

Examples:

• Trap if Rx, considered as a 32-bit quantity, is logically greater than x '7FF'.

twig rA, x'7FF' (equivalent to twi l,rA, x'7FF')

• Trap unconditionally.

trap (equivalent to tw 31,0,0)

3.7 Processor Control Instructions
Processor control instructions are used to read from and write to the machine state register
(MSR), special purpose registers (SPRs) and condition register (CR).

3.7.1 Move to/from Special Purpose Register Instructions
The MPC601 defines an additional register (MQ register) to the user register set and
programming model. As a result, the mtspr and mfspr instructions have been extended to
accommodate access to the MQ register for the MPC601. The SPR encoding for the MQ
register is b'(X)OOO 00000'.

The MPC601 also allows user-level read access to the decrementer register (DEC). The
SPR encoding for DEC is b'OOllO 00000' and is valid only for the mfspr instruction.

3-80 PowerPC 601 RiSe Microprocessor User's Manual MOTOROLA

During the execution of the mtspr instruction, the MPC601 does not fully decode SPR
values for the XER, DEC, LR, MQ, CTR, RTCL or RTCU registers. Similarly, during the
execution of the mfspr, the MPC601 does not fully decode the SPR values for the XER,
LR, MQ, or CTR registers. Instead, it only decodes the upper five bits of the SPR field and
assumes that the lower five bits are cleared to zeros. The PowerPC architecture defines the
mfspr and mtspr instructions with the condition register update option enabled to leave
condition register field CRO undefined. In this case, the MPC601 sets condition register
field CRO to an undefined value. Move to/from Special Purpose Register instructions are
listed in Table 3-38. For more information see Chapter 10, "Instruction Set."

Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be
coded with the SPR name as part of the mnemonic rather than as a numeric operand. Some
of these are shown as examples with the two instructions.

Table 3-38. Move to/from Special Purpose Register Instructions

Name Mnemonic
Operand Operation
Syntax

Move to mtspr SPR,rS The SPR field denotes a special purpose register, encoded as shown
Special in Table 3-39 and Table 3-40 below. The contents of rS are placed
Purpose into the designated SPA.
Register Simplified mnemonic examples:

mtxer rA mtspr 1,rA
mtirrA mtsprS,rA
mtctr rA mtspr9,rA

Move from mfspr rD,SPR The SPR field denotes a special purpose register, encoded as shown
Special in Table 3-39 and Table 3-40 below. The contents of the designated
Purpose SPR are placed into rD.
Register Simplified mnemonic examples:

mfxer rA mfspr rA,1
mflr rA mfspr rA,S
mfctr rA mfspr rA,9

Move to mtcrf CRM,rS The contents of rS are placed into the condition register under control
Condition of the field mask specified by operand CRM. The field mask identifies
Register the 4-bit fields affected. Let ibe an integer in the range 0-7. If
Fields CRM(/) = 1,thenCRfieldi(CRbits 4*ithrough 4*i+3) is set to the

contents of the corresponding field of r S.

In some PowerPC implementations, this instruction may perform
more slowly when only a portion of the fields are updated as opposed
to all of the fields. This is not true for the MPC601.

Move to mcrxr crfD The contents of XER[0-3] are copied into the condition register field
Condition designated by crfD. All other fields of the condition register remain
Register unchanged. XER[0-3] is cleared to O.
from XER

Move from mfcr rD The contents of the condition register are placed into rD.
Condition
Register

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-81

..

•
Table 3-38. Move to/from Special Purpose Register Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Move to mtmsr rS The contents of rS are placed into the MSR.
Machine This instruction is a supervisor-level instruction and is context
State synchronizing.
Register

Move from mfmsr rD The contents of the MSR are placed into rD. This is a supervisor-
Machine level instruction.
State
Register

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing in
bits 16-20 of the instruction and the low-order 5 bits in bits 11-15.

Table 3-39 summarizes SPR encodings that the MPC601 recognizes when operating at the
user level.

Decimal
Value in rD

0

1

8

9

4

5

6

3-82

Table 3-39. User-Level SPR Encodings

Register
SPR[0-4] SPR[5-9]

Name
Description

b'OOOOO 00000' MQ MQ register

b'00001 00000' XER Integer exception register

b'01000 00000' LR Unk register

b'01001 00000' eTR Count register

b'00100 00000' RTCU Real- time clock upper
register1

b'00101 00000' RTCL Real- time clock lower register1

b'00110 00000' DEC Decrementer register 2

1 Read-only.

2 Access to the DEC register is restricted to read-only while the
processor is in the user-mode. User-level decrementer access is
provided for POWER compatibility, and is specific to the MPC601.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-40 summarizes SPR encodings that the MPC601 recognizes when operating at the
supervisor level.

Table 3-40. Supervisor-Level SPR Encodings

Decimal
SPR[0-4] SPR[S-9]

Register Description

Value in rD Name

4 b'00100 00000' RTCU Real- time clock upper register

5 b'00101 00000' RTCl Real- time clock lower register

18 b'1 001 a 00000' DSISR DAE/Source instruction
service register

19 b'10011 00000' DAR Data address register

22 b'1 0110 00000' DEC Decrementer register

25 b'11001 00000' SDR1 Table search descriptor register

26 b'11 01 a 00000' SRRO Save and restore register a

27 b'11011 00000' SRR1 Save and restore register 1

272 b'1 0000 01000' SPRGO SPR general a

273 b'10001 01000' SPRG1 SPR general 1

274 b'1 0010 01000' SPRG2 SPR general 2

275 b'10011 01000' SPRG3 SPR general 3

282 b'11 01 001000' EAR External access register

287 b'11111 01000' PVR Processor version register

528 b'1 0000 10000' BATOU Instruction BAT a upper

529 b'10001 10000' BATOl Instruction BAT a lower

530 b'1 001 a 10000' BAT1U Instruction BAT 1 upper

531 b'1 0011 10000' BAT1l Instruction BAT 1 lower

532 b'1 01 00 10000' BAT2U Instruction BAT 2 upper

533 b'1 01 01 10000' BAT2l Instruction BAT 2 lower

534 b'1 011 a 10000' BAT3U Instruction BAT 3 upper

535 b'10111 10000' BAT3l Instruction BAT 3 lower

1008 b'10000 11111' Checkstop Checkstop sources and
(HIDO) enables register

1009 b'10001 11111' Debug Debug modes register
(HID1)

1010 b'10010 11111' IABR Instruction address breakpoint
(HID2) register

1013 b'10101 11111' DABR Data address breakpoint
(HID 5) register

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-83

..

Table 3-40. Supervisor-Level SPR Encodings (Continued)

Decimal
SPR[0-4] SPR[5-9]

Register Description
Value in rD Name

1023 b'1111111111' PIR Processor identification
(HID15) register

If the SPR field contains any value other than one of these implementation-specific values
or one of the values shown in Table 3-40, the instruction form is invalid. For an invalid
instruction form in which SPR[0]=1, the system supervisor-level instruction error handler will
be invoked if the instruction is executed by a user-level program. If the instruction is
executed by a supervisor-level program, the result is a no-op.

SPR[0]=1 if and only if writing the register is supervisor-level. Execution of this instruction
specifying a defined and supervisor-level register when MSR[PR]=1 results in a privilege
violation type program exception.

SPR encodings for the DEC, MO, RTCl and RTCU registers are not part of the PowerPC
architecture.

The PVR (processor version register) is a read-only register.

Note: For compatibility with future versions of this architecture, only SPR numbers
discussed in these instruction descriptions should be used.

The mtspr and mfspr instructions specify a Special Purpose Register (SPR) as a numeric
operand. Simplified mnemonics are provided that represent the SPR in the mnemonic rather
than requiring it to be coded as an operand. Table 3-41 below specifies the simplified
mnemonics provided on the MPC601 for SPR operations.

Table 3-41. SPR Simplified Mnemonics

Special Purpose
Move to SPR

Move to SPR
Movefrom SPR

Move from SPR
Simplified Simplified

Register Mnemonic Instruction Mnemonic
Instruction

Integer unit exception mtxer rS mtspr 1,rS mfxer rD mfspr rD,1
register

Link register mUrrS mtspr 8,rS mflr rD mfspr rD,8

Count register mtctr rS mtspr 9,rS mfctr rD mfspr rD,9

DAE/source instruction mtdsisr rS mtspr 18,rS mfdsisr rD mfspr rD,18
service register

Data address register mtdar rS mtspr 19,rS mfdar rD mfspr rD,19

Decrementer mtdec rS mtspr22,rS mfdec rD mfspr rD,22

Table search descriptor mtsdr1 rS mtspr 25,rS mfsdr1 rD mfspr rD,25
register 1

Status save/restore mtsrrO rS mtspr 26,rS mfsrrO rD mfspr rD,26
register 0

Status save/restore mtsrr1 rS mtspr 27,rS mfsrr1 rD mfspr rD,27
register 1

3-84 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-41. SPR Simplified Mnemonics

Special Purpose Move to SPA Move to SPA Movefrom SPA Move from SPA
Simplified Simplified

Aegister
Mnemonic

Instruction
Mnemonic

Instruction

General special mtsprg n, rS mtspr 272+n,rS mfsprg rD, n mfspr rD,272+n
purpose registers GO
through G3

External access register mtear rS mtspr 282,rS mfear rD mfspr rD,282

Processor version - - mfear rD mfspr rD,287
register

BAT register, upper mtibatu n, rS mtspr 528+(2*n),rS mflbatu rD, n mfspr rD,528+(2*n)

Bat register, lower mtibatl n, rS mtspr 529+ (2*n),rS mflbatl rD, n, mfspr rD,529+(2*n)

3.8 Memory Control Instructions
This section describes memory control instructions, which include the following:

Cache management instructions
Segment register manipulation instructions

Translation lookaside buffer management instructions

3.8.1 Supervisor-Level Cache Management Instruction
This section summarizes the operation of the only supervisor-level cache management
instruction implemented on the MPC601.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-85

•
Table 3-42. Cache Management Supervisor-Level Instruction

Name Mnemonic
Operand

Operation
Syntax

Data dcbi rA,rB The effective address is the sum (rAIO)+(rB).
Cache The action taken depends on the memory mode associated with the
Block
Invalidate

target, and the state (modified, unmodified) of the block. The
following list describes the action to take if the block containing the
byte addressed by the EA is or is not in the cache.

. Coherency Required (WIM = xx1)

- Unmodified Block-Invalidates copies of the block in the
caches of all processors.

- Modified Block-Invalidates copies of the block in the
caches of all processors. (Discards the modified
contents.)

- Absent Block-If copies are in the caches of any other
processor, causes the copies to be invalidated.
(Discards any modified contents.)

. Coherency Not Required (WIM = xxO)

- Unmodified Block-Invalidates the block in the local
cache.

- Modified Block-Invalidates the block in the local cache.
(Discards the modified contents.)

- Absent Block-No action is taken.

When data address translation is enabled, MSR[DT]=1, and the
logical address has no translation, a data access exception occurs.
See Section 5.4.3, "Data Access Exception (x'OO300')."

The function of this instruction is independent of the write-through
and cache-inhibited/allowed modes determined by the WIM bit
settings of the block containing the byte addressed by the EA.

This instruction is treated as a store to the addressed byte with
respect to address translation and protection. The reference and
change bits are modified appropriately.

If the EA specifies a memory address for which T =1 in the
corresponding segment register, the instruction is treated as a no-op.

3.8.2 User-Level Cache Instructions
The instructions summarized in this section provide user-level programs the ability to
manage the MPC601 's unified cache. Note that the term block in the context of the on-chip
cache refers to a sector within the cache (and not a block defined by the block address
translation (BAT) mechanism).

As with other memory-related instructions, the effect of the cache instructions on memory
are weakly consistent. If the programmer needs to ensure that cache or other instructions
have been performed with respect to all other processors and mechanisms, a sync
instruction must be placed in the program following those instructions.

3-86 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

When data address translation is disabled (MSR[DT]=O), the Data Cache Block Set to Zero
(dcbz) instruction allocates a line in the cache and may not verify that the physical address
is valid. If a line is created for an invalid physical address, a machine check condition may
result when an attempt is made to write that line back to memory. The line could be written
back as the result of the execution of an instruction that causes a cache miss and the invalid
addressed line is the target for replacement or a Data Cache Block Store (dcbst) instruction.

Any cache control instruction that generates an effective address that corresponds to an I/O
controller interface segment (SR[T]=l) that has the SR[BUID] field equal to x'07F'
translates the address appropriately and performs the cache operation based on that address.
A cache control instruction that generates an effective address that corresponds to an I/O
controller interface segment (SR[T]=l), but with the SR[BUID] not equal to x '07F' is
treated as a no-op.

Since the MPC601 is implemented with a unified (combined instruction and data) cache,
the Instruction Cache Block Invalidate (icbi) instruction is treated as a no-op by the
MPC601 processor. Table 3-43 summarizes the cache instructions that are accessible to
user-level programs.

Table 3-43. User-Level Cache Instructions

Name Mnemonic
Operand

Operation
Syntax

Data dcbt rA,rB The EA is the sum (rAIO)+(rB).
Cache This instruction provides a method for improving performance
Block Touch through the use of software-initiated prefetch hints. The MPC601

performs the fetch for the cases when the address hits in the UTlB or
the BTlB, and when it is permitted load access from the addressed
page. The operation is treated similarly to a byte load operation with
respect to coherency.

If the address translation does not hit in the UTlB or BTlB, or if it
does not have load access permission, the instruction is treated as a
no-op.

If the access is directed to a cache-inhibited page, or to an liD
controller interface segment, then the bus operation occurs, but the
cache is not updated.

This instruction never affects the reference or change bits in the
hashed page table.

While the MPC601 maintains a cache line size of 64 bytes, the dcbt
instruction may only result in the fetch of a 32-byte sector (the one
directly addressed by the EA). The other 32-byte sector in the cache
line mayor may not be fetched, depending on activity in the dynamic
memory queue.

A successful dcbt instruction will affect the state of the TlB and
cache lRU bits as defined by the lRU algorithm.

Data dcbtst rA,rB The EA is the sum (rAIO)+(rB).
Cache

The dcbtst instruction operates exactly like the dcbt instruction as
Block
Touch for

implemented on the MPC601.

Store

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-87

..

Table 3-43. User-Level Cache Instructions (Continued)

.. Name Mnemonic
Operand

Operation
Syntax

Cache Line clcs rD,rA This is a POWER instruction, and is not part of the PowerPC
Compute architecture. This instruction will not be supported by other
Size PowerPC implementations.

This instruction places the cache line size specified by operand rA
into register rD. The rA operand is encoded as follows:

01100 Instruction cache line size (returns value of 64)
01101 Data cache line size (returns value of 64)
01110 Minimum line size (returns value of 64)
01111 Maximum line size (return value of 64)

All other encodings of the rA operand return undefined values.
This instruction is specific to the MPC601.

Data dcbz rA,rB The EA is the sum (rAIO)+(rB).
Cache If the block (the cache sector consisting of 32 bytes) containing the
Block Set
to Zero

byte addressed by the EA is in the data cache, all bytes are cleared
to O.

If the block containing the byte addressed by the EA is not in the data
cache and the corresponding page is caching-allowed, the block is
established in the data cache without fetching the block from main
memory, and all bytes of the block are cleared to O.

If the page containing the byte addressed by the EA is caching-
inhibited or write-through, then the system alignment exception
handler is invoked.

If the block containing the byte addressed by the EA is in coherence
required mode, and the block exists in the data cache(s) of any other
processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with
respect to address translation and protection.

If the EA corresponds to an I/O controller interface segment
(SR[T]=1), the dcbz instruction is treated as a no-op.

Data dcbst rA,rB The EA is the sum(rAIO)+(rB).
Cache If the block (the cache sector consisting of 32 bytes) containing the
Block Store byte addressed by the EA is in coherence required mode, and a block

containing the byte addressed by the EA is in the data cache of any
processor and has been modified, the writing of it to main memory is
initiated.

The function of this instruction is independent of the write-through
and cache-inhibited/allowed modes of the block containing the byte
addressed by the EA.

This instruction is treated as a load from the addressed byte with
respect to address translation and protection.

If the EA corresponds to an 1/0 controller interface segment
(SR[T]=1), the dcbst instruction is treated as a no-op.

3-88 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-43. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand

Operation
Syntax

Data dcbf rA,rB The EA is the sum (rAIO)+(rB).
Cache The action taken depends on the memory mode associated with the
Block Flush target, and on the state of the block. The following list describes the

action taken for the various cases, regardless of whether the page or
block containing the addressed byte is designated as write-through or
if it is in the caching-inhibited or caching-allowed mode.

Coherency Required (WIM = xx1)

- Unmodified Block-Invalidates copies of the block in the
caches of all processors.

- Modified Block-Copies the block to memory.
Invalidates copies of the block in the caches of all
processors.

- Absent Block-If modified copies of the block are in the
caches of other processors, causes them to be copied to
memory and invalidated. If unmodified copies are in the
caches of other processors, causes those copies to be
invalidated.

Coherency Not Required (WIM = xxO)

- Unmodified Block-Invalidates the block in the
processor's cache.

- Modified Block-Copies the block to memory.
Invalidates the block in the processor's cache.

- Absent Block-Does nothing.

3.8.3 Segment Register Manipulation Instructions
The instructions listed in Table 3-44 provide access to the segment registers of the
MPC601. These instructions operate completely independently of the MSR[IT] and
MSR[DT] bit settings. Note that the rA operand is not defined for the mtsrin and mfsrin
instructions in the MPC601_ Refer to Section 2.3.3.1, "Synchronization for Supervisor­
Level SPRs, and Segment Registers," for serialization requirements and other
recommended precautions to observe when manipulating the segment registers.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-89

•

•
Table 3-44. Segment Register Manipulation Instructions

Name Mnemonic
Operand

Operation
Syntax

Move to mtsr SR,rS The contents of rS is placed into segment register specified by
Segment operand SR.
Register

This is a supervisor-level instruction.

Move to mtsrin rS,rB The contents of rS are copied to the segment register selected by bits
Segment 0-3 of rB.
Register This is a supervisor-level instruction.
Indirect

Move from mfsr rD,SR The contents of the segment register specified by operand SR are
Segment placed into rD.
Register This is a supervisor-level instruction.

Move from mfsrin rD,rB The contents of the segment register selected by bits 0-3 of rB are
Segment copied into rD.
Register This is a supervisor-level instruction.
Indirect

3.8.4 Translation Look-Aside Buffer Management Instructions
The MPC601 implements a TLB that caches portions of the page table. As changes are
made to the address translation tables, the TLB must be updated. This is done by explicitly
invalidating TLB entries (both in the set) with the Translation Lookaside Buffer Invalidate
Entry (tlbie) instruction.

Because the presence, absence, and exact semantics of various translation lookaside buffer
management instructions are implementation dependent, system software should
encapsulate uses of such instructions into subroutines to minimize the impact of migrating
from one implementation to another.

3.9 External Control Instructions
The external control instructions provide a means for a user-level program to communicate
with a special-purpose device. Two instructions are provided and are summarized in
Table 3-46.

3-90 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 3-45. Translation Lookaside Buffer Management Instruction

Nama Mnemonic
Operand

Operation
Syntax

Translation tibia rB The effective address is the contents of rB. If the TLB contains an
Lookaside entry corresponding to the EA, that entry is removed from the TLB.
Buffer The TLB search is done regardless of the settings of MSR[IT] and
Invalidate MSR[DT]. Also, a TLB invalidate operation is broadcast on the
Entry system bus.

Block address translation for the EA, if any, is ignored.

If the corresponding segment register for the EAspecifies T =1 (an liD
controller interface segment), no TLB entry invalidation is performed
on the local processor and no TLB invalidate is broadcast.

Because the MPC601 supports broadcast of TLB entry invalidate
operations, the following must be observed:

The tibia instruction must be contained in a critical section of
memory controlled by software locking, so that the tibia is issued
on only one processor at a time.
A sync instruction must be issued after every tibia and at the end
of the critical section. This causes hardware to wait for the effects
of the preceding tibia instructions(s) to propagate to all
processors.

A processor detecting a TLB invalidate broadcast does the following:

1. Prevents execution of any new load, store, cache control or
tibia instructions and prevents any new reference or change
bit updates

2. Waits for completion of any outstanding memory operations
(including updates to the reference and change bits
associated with the entry to be invalidated)

3. Invalidates the two entries (both associativity classes) in the
UTLB indexed by the matching address

4. Resumes normal execution

This is a supervisor-level instruction.

Software must ensure that SDR 1 points to the page table when
issuing tlbie, even when address translation is disabled. Nothing is
guaranteed about instruction fetching in other processors if tlbie
deletes the page in which another processor is executing.

3.10 Miscellaneous Simplified Mnemonics
In order to make assembly language programs simpler to write and easier to understand, a
set of simplified mnemonics are provided that define a shorthand for some of the most
frequently used instructions. PowerPC compliant assemblers provide the simplified
mnemonics listed here, and in the sections describing the branch, arithmetic, compare, trap,
rotate and shift, and move to/from special purpose register instructions. Programs written
to be portable across the various assemblers for the PowerPC architecture should not
assume the existence of mnemonics not defined in this user's manual.

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-91

.. Table 3-46. External Control Instructions

Name Mnemonic
Operand

Operation
Syntax

External eciwx rD,rA,rB The EA is the sum (rAIO)+(rB).
Control in

If the external access register (EAR) E-bit (bit 0) is set to 1, a load
Word
Indexed

request for the physical address corresponding to the EA is sent to
the device identified by the EAR Resource ID bits (bits 26-31),
bypassing the cache. The word returned by the device is placed in
rD. The EA sent to the device must be word aligned.

If the EAR[E]=O, a data access exception is invoked, with bit 11 of
DSISR set to 1.

The eciwx instruction is supported for EAs that reference ordinary
memory segments (SR[f]=O), for EAs mapped by BAT registers, and
for EAs generated when MSR[DT]=O.The instruction is treated as a
no-op for EAs in 1/0 controller interface segments (SR[1]=1).

The access caused by this instruction is treated as a load from the
location addressed by the EA with respect to protection and
reference and change recording.

External ecowx rS,rA,rB The EA is the sum (rAIO)+(rB).
Control out

If the External Access Register (EAR) E-bit (bit 0) is set to 1, a store
Word
Indexed

request for the physical address corresponding to the EA and the
contents of rS are sent to the device identified by EAR[RID] (resource
ID) (bits 26-31), bypassing the cache. The EA sent to the device must
be word aligned.

If the EAR[E]=O, a data access exception is invoked, with bit 11 of
DSISR set to 1.

The ecowx instruction is supported for EAs that reference ordinary
memory segments (SR[f]=O), for EAs mapped by BAT registers, and
for EAs generated when MSR[DT]=O.The instruction is treated as a
no-op for EAs in 1/0 controller interface segments (SR[1]=1).

The access caused by this instruction is treated as a load from the
location addressed by the EA with respect to protection and
reference and change recording

3.10.1 No-op
Many PowerPC instructions can be coded in a way such that, effectively, no operation is
performed. An additional mnemonic is provided for the preferred form of no-op. If an
implementation performs any type of run-time optimization related to no-ops, the preferred
form is the no-op that will trigger this.

no-op (equivalent to ori 0,0,0)

3.10.2 Load Immediate
The addi and addis instructions can be used to load an immediate value into a register.
Additional mnemonics are provided to convey the idea that no addition is being performed
but that data us being moved from the immediate operand of the instruction to a register.

3-92 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Load a 16-bit signed immediate value into r A:
Ii rA,value (equivalent to addi rA,O,value)

Load a 16-bit signed immediate value, shifted left by 16 bits, into r A:
lis rA,value (equivalent to addi rA,O,value)

3.10.3 Load Address
This mnemonic permits computing the value of a base-displacement operand, using the
addi instruction which normally requires a separate register and immediate operands.

la rD,SIMM(rA) (equivalent to addi rD,rA,SIMM)

The la mnemonic is useful for obtaining the address of a variable specified by natne,
allowing the assembler to supply the base register number and compute the displacement.
If the variable v is located at offset SIMM v bytes from the address in register rv, and the
assembler has been told to use register rv as a base for references to the data structure
containing v, then the following line causes the address of v to be loaded into register rD.

la rD,v (equivalent to addi rD,rA,SIMMv

3.10.4 Move Register
Several PowerPC instructions can be coded to simply copy the contents of one register to
another, An extended mnemonic is provided to move data from one register to another with
no computational activity.

The following instruction copies the contents of register rS into register r A. This
mnemonic can be coded with a "," to cause the condition register update option to be
specified in the underlying instruction.

mr rA,rS (equivalent to or rA,rS,rB)

3.10.5 Complement Register
Several PowerPC instructions can be coded to complement the contents of one register and
place the result in another register. A simplified mnemonic is provided that complements
the contents of rS and places the results into register rAe This mnemonic can be coded with
a "." to cause the condition register update option to be specified in the underlying
instruction.

not rA,rS (equivalent to nor rA,rS,rB)

MOTOROLA Chapter 3. Addressing Modes and Instruction Set Summary 3-93

•

•

3-94 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 4
Cache and Memory Unit Operation
The MPC601 contains a 32-Kbyte, eight-way set associative, unified (instruction and data)
cache. The cache line size is 64 bytes, divided into two eight-word sectors, each of which
can be snooped, loaded, cast-out, or invalidated independently. The cache is designed to
adhere to a write-back policy, but the MPC601 allows control of cacheability, write policy,
and memory coherency at the page and block level. The cache uses a least recently used
(LRU) replacement policy.

The MPC601 's on-chip cache is non-blocking. Burst operations to the cache are buffered
such that the cache update is reduced to two single-cycle operations of four words. That is,
the results of the first two and the last two bursts are buffered and written to the cache in
single cycles apiece. This frees the cache to perform lower priority operations in the
meantime.

System operations, including cache operations, connect to the system interface through the
memory unit, which includes a two-element read queue and a three-element write queue.

The cache provides an eight-word interface to the rest of the device. The surrounding logic
selects, organizes, and forwards the requested information to the requesting unit. Write
operations to the cache can be performed on a byte basis, and a complete read-modify-write
operation to the cache can occur in each cycle.

The cache unit and the memory unit coordinate cache reload and cast-out operations so that
a cache miss does not block the use of the cache for other operations during the next cycle.
Cache reload operations always occur on a sector basis, with the option of reloading the
additional sector as a low-priority operation. On loads and fetch operations, the critical data
is forwarded to the requesting unit without waiting for the entire cache line to be loaded.

The MPC601 maintains cache coherency in hardware by coordinating activity between the
cache, the memory unit, and the bus interface logic. As bus operations are performed on the
bus by other devices, the MPC601 bus snooping logic monitors the addresses that are
referenced. These addresses are compared with the addresses resident in the cache. The
cache unit uses a second port into its tag directory to check for a matching entry and the
memory queue unit does the same. If there is a snoop hit, the MPC601 's bus snooping logic
responds to the bus interface with the appropriate snoop status. An additional snoop action
may be forwarded to the cache or to the memory unit as a result of a snoop hit.

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-1

•

Note that in this chapter the term multiprocessor is used in the context of maintaining cache
coherency, although the system could include other devices that can access system memory,
maintain their own caches, and function as bus masters requiring cache coherency.

This chapter describes the organization of the MPC601 's on-chip cache, the MESI cache
coherency protocol, special concerns for cache coherency in single- and mUltiple-processor
systems, cache control instructions, various cache operations, and the interaction between
the cache and the memory unit.

4.1 Cache Organization
The cache is configured as eight sets of 64 lines. Each line consists of two sectors, four state
bits (two per sector), an address tag, and several bits to maintain the LRU function. The two
state bits implement the four-state MESI (modified-exclusive-shared-invalid) protocol.
Each sector contains eight 32-bit words. Note that PowerPC architecture defines the
cacheable unit as a block, which is a sector in the MPC601.

The instruction unit accesses the cache frequently in order to maintain the flow of
instructions through the instruction queue. The queue is eight words (one sector) long, so
an entire sector can be loaded into the instruction unit on a single clock cycle.

The cache organization is shown in Figure 4-1. Note that the replacement algorithm is
strictly an LRU algorithm; that is, the least recently used sector is used, which may mean
that a modified sector will be replaced on a miss if it is the least recently used, even if
invalid sectors are available. However, for performance reasons, certain conditions (for
example, the execution of some cache instructions) generate accesses to the cache without
modifying the bits that perform the LRU function.

Each cache line contains 16 contiguous words from memory that are loaded from a
16-word boundary (that is, bits A26-A31 of the logical addresses are zero); as a result,
cache lines are aligned with page boundaries.

Note that address bits A20-A25 provide an index to select a line. Bits A26-A31 select a
byte within a line. The tags consists of bits PA(}-PA 19. Address translation occurs in
parallel, such that higher-order bits (the tag bits in the cache) are physical.

4-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

SETS I • I I •
~I

.
I I

I I -
I-

a
1 :1

I I
I 1 r-

LINE 0 ADDRESS TAG I I f- -
l-

SECTOR 0 SECTOR 1 r-

I I f- -
l-

I--

I I f- -
l-

r-

I I f- -
l-

r-

I L f- -
l-

I--
'-

I I f-
l- '-

I I l-

• • •
• • • -• • • r-

1-- r-
l-

-
I- I-

LINE 63 ADDRESS TAG I I - ~ aWaRDS aWaRDS

I" 16 WORDS

Figure 4-1. Cache Organization

4.2 Cache Arbitration
The instruction unit and the integer unit both access the cache; however, the cache unit
handles only one access per cycle. Furthennore, since the cache is non blocking, a
preceding cache operation may generate a cache reload operation which must also compete
for cache access. The bus snooping logic may create additional snoop actioq.s that use the
cache. The MPC601 efficiently handles simultaneous requests to access the on-chip cache.

The MPC601 implements cache arbitration logic to prioritize the various cache requests
that can occur on each cycle. The cache unit provides a cache retry queue (CRTRY) if a
caching operation cannot be completed. There are three entries in this queue, providing a
buffer for one outstanding floating-point store, one integer store, and one instruction fetch.
Priority is given first to floating-point stores, then to integer stores, and finally to instruction
fetches.

A similar situation aris~s wilh respect to the bus. Internal bus arbitration logic chooses the
highest priority operation from the memory queue for presentation onto the bus. These
priorities are listed in Section 4.10.2, "Memory Unit Queuing Priorities."

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4·3

--

•
The MPC601 supports a fully-coherent 4-Gbyte physical memory address space. Bus
snooping is used to drive a MESI four-state cache-coherency protocol that ensures the
coherency of all processor and DMA transactions to and from global memory with respect
to the processor's cache. The MESI protocol is described in Section 4.7.2, "MESI
Protocol." All potential bus masters must employ similar snooping and coherency-control
mechanisms .

4.3 Cache Access Priorities
The MPC601 prioritizes pending cache operations as follows:

1. Cache reloads. Note that the cache is non-blocking. Four-beat burst reloads on the
system bus are buffered into two, single- cycle transactions of four words each,
freeing the cache to perform lower priority operations in the meantime.

2. Second-cycle cast-out operations when the additional sector is modified

3. Snoop requests that hit in the tag directory. These generate a cache sector push
operation.

4. Floating-point store operations

5. Integer operation retries. If a higher priority operation occurs when an integer
operation is ready to cache its results, the results are held in a buffer until the higher
priority operation completes, then it is retried on the next clock cycle. This prevents
the integer unitfrom stalling when this situation occurs.

6. Integer unit requests

7. Instruction fetches

4.4 Basic Cache Operations
This section describes operations that can occur to the cache, and how these operations are
implemented in the MPC601.

4.4.1 Cache Reloads
A cache sector is reloaded after a read miss occurs in the cache. The cache sector that
contains the address is updated by a burst transfer of the data from system memory. Note
that if a read miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified data is first written to external memory before the cache reload occurs.

An instruction prefetch that is generated to fill the instruction queue (not explicitly required
by the program flow) does not generate a reload operation in the case of a cache miss.

4.4.2 Cache Cast-Out Operation
The MPC601 uses an LRU replacement algorithm to determine which of the eight possible
cache locations should be used for a cache update. Adding a new sector to the cache causes
any modified data associated with the least recently used element to be written back, or cast

4-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

out, to system memory. This includes both sectors of the line, even though only one sector
may be reloaded. Casting out of the adjacent sector is referred to as a second-cycle cast-out
operation.

4.4.3 Cache Sector Push Operation
When a cache sector in the MPC601 is snooped and hit by another processor and the data
is modified, the cache sector must be written to memory and made available to the snooping
device. The cache sector that is hit is said to be pushed out onto the bus. The MPC601
supports two kinds of push operations-normal push operations and enveloped high­
priority push operations, which are described in Section 4.7.11, "Enveloped High-Priority
Cache Sector Push Operation."

4.4.4 Optional Cache Sector Line-Fill Operation
The two sectors in a cache line contain contiguous memory addresses; therefore, the two
sectors share the same line address tag. Cache coherency, however, is maintained on a
sector granularity, so there are separate coherency state bits for each sector. If one sector of
the line is filled from memory, the MPC601 may attempt to load the other sector as a low­
priority bus operation.

If the sector is not transferred, the cache line in the snooping processor contains one sector
that is in the shared state (the one that was transferred because of the snoop hit) and one
sector that is invalid (if the optional cache line fill is not performed).

Note that the optional reload of an adjacent sector on an instruction fetch miss can be
disabled globally by.setting bit 26 in the HIDO register, and the optional reload of the
adjacent sector on a load/store miss can be disabled by setting bit 27.

4.5 Cache Data Transactions
The MPC601 output signal TBST (transfer burst) indicates to the system whether the
current transaction is a single-beat transaction or four-beat burst transfer. Burst transactions
have an assumed address order. For cacheable load operations or cacheable, non-write­
through store operations that miss the cache, the MPC601 presents the quad-word aligned
address associated with the read or store that initiated the transaction. (Note that for
optimizing programs to be used with subsequent PowerPC processors, programs should be
double-word aligned.)

As shown in Figure 4-2, this quad-word contains the address of the load or store that missed
the cache. This minimizes latency by allowing the critical code or data to be forwarded to
the processor before the rest of the sector is filled. For all other burst operations, however,
the entire sector is transferred in order (oct-word aligned).

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-5

..

•
MPC601 Cache Address

Bits (27 .. 28)

00 o 1 1 0 1 1

A B C o

If address requested is in double word A or B then the address placed on the bus are that of
quad-word A, and the four data beats are ordered in the following manner:

Beat

o 2 3

A B C o

If address requested is in double word C or 0 then the address placed on the bus will be that
of quad-word C, and the four data beats are ordered in the following manner:

Beat

o 2 3

C o A B

Figure 4-2. Quad-Word Address Ordering

4.6 Access to I/O Controller Interface Segments
The MPC601 supports two kinds of operations that involve the I/O controller interface:

I/O controller interface operations. These operations are considered to address the
noncoherent and noncacheable I/O controller interface; therefore, the MPC601 does
not maintain coherency for these operations, and the cache is bypassed completely.

Memory-forced I/O controller interface operations. These operations are considered
to address memory space and are therefore subject to the same coherency control as
memory accesses. These operations are global memory references within the
MPC601 and are considered to be noncacheable and write-through.

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for
these operations is determined by the settings of the WIM bits. See 6.3, "Memory/Cache
Access Modes."

4.7 Cache Coherency
The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. Coherency allows synchronization, cooperative
use of shared resources, and task migration among the processors. Otherwise, for example,
a device performing a store operation would require exclusive access to the addressed
sector before making an update to prevent another device from using stale data.

4-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Each potential bus master must follow rules for managing the state of its cache. For
example, a device must broadcast its intention to read a sector that is not currently in the
cache. It must also broadcast the intention to write into a sector that is currently not owned
exclusively. Other devices respond to these broadcasts by snooping their caches for the
broadcast addresses and reporting status back to the originating device. The status returned
includes a shared indicator (another device has a copy of the addressed sector) and a retry
indicator (another device either has a modified copy of the addressed sector that it needs to
push out of the chip, or another device had a problem that prevented appropriate snooping).

For faster performance, the MPC601 has a second path into the cache directory so snooping
and mainstream instruction processing occur concurrently. Instruction processing is
interrupted only when the snoop control logic detects a state change or that a snoop push
of modified data is required to maintain memory coherency.

To maintain coherency, secondary caches must forward all relevant system bus traffic onto
the MPC601 bus, which takes the appropriate actions to maintain the MESI protocol.

Support for Iwarx and stwcx. instructions on noncacheable pages may be somewhat more
complicated for a secondary cache than normal cacheable memory accesses. This is
because the secondary cache may not normally forward writes to noncacheable pages in the
processor. However, to maintain the reservation coherency bit, the secondary cache must
know to forward all writes that hit against a specified address.

4.7.1 Memory Management Access Mode Bits-W, I, and M
Some memory characteristics can be set on either a block or page basis by using the WIM
bits in the BAT registers or page table entry (PTE) respectively. The WIM bits control the
following functionality:

Write-through (W bit)

Caching-inhibited (I bit)

Memory coherency (M bit)

These bits allow both single- and multiprocessor-system designs to exploit numerous
system-level performance optimizations. These bits are described in detail in Chapter 2,
"Registers and Data Types," and Chapter 6, "Memory Management Unit." Using these bits
carelessly can cause coherency problems-such as when flushing pages that correspond to
the changed WIM bits from the caches of all devices in the system or when the address
translations of aliased physical addresses specify different values for any of the WIM bits.
The MPC601 considers either of these cases to be a programming error that may
compromise memory coherency. These paradoxes can occur within a single processor or
across several devices, as described in Section 4.7.5.1, "Coherency in Single-Processor
Systems," and Section 4.7.5.2, "Coherency in Multiprocessor Systems."

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-7

..

•
4.7.2 MESI Protocol
The MPC601 cache characterizes each 32-byte sector it contains as being in one of four
MESI states. Addresses presented to the cache are indexed into the cache directory with bits
A20-A25 and the upper-order 20 bits from the physical address translation (PAO-PA 19) are
compared against the indexed cache directory tags. If no tags match, the result is a cache
miss. If a tag matches, a cache hit occurred and the directory indicates the state of the sector
through two state bits kept with the tag. The four possible states for a sector in the cache
are the invalid state (I), the shared state (S), the exclusive state (E), and the modified state
(M). The four MESI states are defined in Table 4-1 and illustrated in Figure 4-3.

Table 4-1. MESI State Definitions

MESI State Definition

Modified (M) The addressed sector is valid in the cache and in only this cache. The sector is modified with
respect to system memory-that is, the modified data in the sector has not been written back to
memory.

Exclusive (E) The addressed sector is in this cache only. The data in this sector is consistent with system
memory.

Shared (S) The addressed sector is valid in the cache and in at least one other cache. This sector is always
consistent with system memory. That is, the shared state is shared-exclusive; there is no shared-
modified state.

Invalid (I) This state indicates that the addressed sector is not resident in the cache.

4-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Modified in Cache A Shared in Cache A

Cache A Cache B Cache A Cache B

System Memory System Memory

Exclusive in Cache A Invalid in Cache A

Cache A Cache B Cache A Cache B

,', :.;.:.:.:.:.::: ..

E -+I :M@MJ#~f?::rt x -.. Don't Care

System Memory

Figure 4·3. MESI States

4.7.3 MESI State Diagram
The MPC601 provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability of the MPC601 enforces the MESI protocol, as
shown in Figure 4-4. Figure 4-4 assumes that the WIM bits are set to 001; that is, write­
back, caching-not-inhibited, and memory coherency enforced.

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-9

-

..
Table 4-7 gives a detailed list of MESI transitions for various operations and WIM bit
settings .

BUS TRANSACTIONS

RH = Read Hit CD = Snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ® = Invalidate Transaction

WH = Write Hit
WM = Write Miss E9 = Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or CD = Cache Sector Fill

Read-with-Intent-to-Modify

Figure 4-4. MESI Cache Coherency Protocol-State Diagram (WIM = 001)

4.7.4 MESI Hardware Considerations
In addition to the hardware required to monitor bus traffic for coherency, the MPC601 has
a cache port dedicated to snooping so that comparing cache entries to address traffic on the
bus does not affect the MPC601's on-chip cache.

The global (GBL) signal, asserted as part of the address attribute field, enables the snooping
hardware of the MPC601. Address bus masters assert GBL to indicate that the current
transaction is a global access (that is, an access to memory shared by more than one device).
If GBL is not asserted for the transaction, that transaction is not snooped.

4-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding translation descriptor(s). Care must be taken to minimize the number of
pages marked as global, because the retry protocol enforces coherency and can use
considerable bus bandwidth if much data is shared. Therefore available bus bandwidth can
decrease as more traffic is marked global. Note that in Figure 4-4, write hits to unmodified
lines of nonglobal pages do not generate invalidate broadcasts.

The MPC601 snoops a transaction if the transfer start (TS") and GBL inputs are a.;;serted
together in the same bus clock (this is a qualified snooping condition). No snoop update to
the MPC601 cache occurs if the snooped transaction is not marked global. This includes
invalidation cycles.

When the MPC601 detects a qualified snoop condition, the address associated with the TS'
is compared with the cache tags through a dedicated cache-tag snoop port. Snooping
finishes if no hit is detected. If, however, the address hits in the cache, the MPC601 reacts
according to the MESI protocol shown in Figure 4-4.

Because they do not require snooping, cache sector cast-outs, snoop pushes, and table­
search operations do not assert GBL. The MPC601 marks these transactions as nonglobal.

To facilitate external monitoring of the internal cache tags, the cache set member signals
(CSEO-CSE2) represent in binary the sector of the cache set being replaced on read
operations (including read-with-intent-to-modify operations). This does not apply and is
not necessary for write operations to memory. Note that these signals are valid only for
MPC601 burst operations. Table 6-2 shows the CSE encodings.

Table 4-2. CSEO-CSE2 Signals

CSEO-CSE2 Cache Set Element

000 Set a

001 Set 1

010 Set 2

011 Set 3

100 Set 4

101 Set 5

110 Set 6

111 Set 7

4.7.5 Coherency Precautions
Cache coherency is greatly affected by whether the MPC601 is used in a single- or
multiple-processor implementation. This section describes precautions for implementing
coherent single- and multiple-processor systems.

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-11

..

•
4.7.5.1 Coherency in Single-Processor Systenls
The following situations concerning coherency can be encountered within a single
processor implementation:

• Load or store to a cache-inhibited page (WIM = b'X1 X') and a cache hit occurs

Caching is inhibited for this page (I = 1). Load or store operations to a cache­
inhibited page that hit in the cache cause a paradox. If the addressed sector is not
modified, the MPC601 invalidates the sector and performs the memory access. If the
addressed sector in the cache line is modified, the MPC601 flushes the modified
sector before accessing memory.

• Store to a page marked write-through (WIM = b'1 OX') and a cache hit to a modified
sector

This page is marked as write-through (W = 1). Store operations to a write-through
page that hit a modified sector are considered coherency paradoxes by the processor.
The MPC601 pushes the modified sector to memory and marks the sector exclusive
(E). Then the MPC601 writes the data into the cache, marking it exclusive and
passing on a write-with-flush operation (to the memory queue).

Note that when WIM bits are changed, it is critical that the cache contents should reflect the
new WIM bit settings. For example, if a block or page that had allowed caching becomes
caching-inhibited, the appropriate cache sectors should be updated to leave no indication
that caching had previously been allowed.

4.7.5.2 Coherency in Multiprocessor Systems
Other situations concerning coherency can occur across multiple processors (or systems
that employ multiple devices that incorporate caches). Paradoxes in mUltiprocessor
systems are particularly difficult to handle since some scenarios cause modified data to be
purged and others may lead to bus deadlock scenarios.

I

Most multiprocessor paradoxes center around the interprocessor coherency of the memory
coherency bit (the M bit). Improper use of the M bit can lead to multiple devices accepting
a cache sector and marking the data as exclusive, leading to the possibility of the same
cache line being modified in multiple caches.

4-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Although these coherency paradoxes are considered programming errors, the MPC601
attempts to handle the offending conditions and minimize the negative effects on memory,
coherency. Note that the intent of this effort is to ease the debugging of mUltiprocessor
operating system development. The following lists some of the operations provided by the
MPC601:

• Noncacheable write operations appear on the processor bus as write-with-flush
operations, which forces other processors with modified copies of the addressed
sector to write data back to memory and to mark the sector as invalid in the cache.
Devices with an unmodified copy of the sector must mark the sector as invalid in
their caches.

All noncacheable read operations appear on the MPC601 bus as read (with clean)
operations, which forces processors with modified copies of the addressed data to
write the data back to memory before the read operation completes.

Note that when WIM bits are changed, it is critical that the cache contents should reflect the
new WIM bit settings. For example, if a block or page that had allowed caching becomes
caching-inhibited, the appropriate cache sectors should be updated to leave no indication
that caching had previously been allowed.

Additional information on bus operations that are generated for specific instructions and
state conditions can be found in Chapter 9, "System Interface Operation."

4.7.6 Memory Loads and Stores
Table 4-3 provides a general overview of memory coherency actions performed by the
MPC6010n load operations.

Table 4-3. Memory Coherency Actions on Load Operations

Cache State
Bus ARTRV "SRD Action

Operation

I Read Negated Negated Load data and mark E

I Read Negated Asserted Load data and mark S

I Read Asserted Don't care Retry read operation

S None Don't care Don't care Read from cache

E None Don't care Don't care Read from cache

M None Don't care Don't care Read from cache

Noncacheable cases are not part of this table. The first three cases also involve selecting a
replacement class and casting-out modified data that may have resided in that replacement
class.

Table 4-4 provides an overview of memory coherency actions on store operations. This
table does not include noncacheable or write-through cases nor does it completely describe
the exact mechanisms for the operations described. It describes generally what happens

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-13

..

..
within the chip. The read-with-intent-to-modify (RWITM) examples involve selecting a
replacement class and casting-out modified data that may have resided in that replacement
class.

Table 4-4. Memory Coherency Actions on Store Operations

Cache State Bus ARTRV 'SJm Action
Operation

I RWITM Negated Don't care Load data, modify it, mark M

I RWITM Asserted Don't care Retry the RWITM

S Kill Negated Don't care Modify cache, mark M

S Kill Asserted Don't care Retry the kill operation

E None Don't care Don't care Modify cache, mark M

M None Don't care Don't care Modify cache

4.7.7 Atomic Memory References
The Iwarx/stwcx. instruction combination can be used to perform atomic memory
references. These instructions are described in Chapter 3, "Addressing Modes and
Instruction Set Summary," and Chapter IO, "Instruction Set."

4.7.8 Snoop Response to Bus Operations
When the MPC601 is not the bus master, it monitors bus traffic and performs cache and
memory-queue snooping as appropriate. The snooping operation is triggered by the receipt
of a qualified snoop request. A qualified snoop request is generated by the simultaneous
assertion of the TS" and GBL bus signals. .

Instruction processing is interrupted only when a snoop hit occurs and the snoop state
machine determines that an additional cache snoop is required to resolve the coherency of
the offended sector.

The MPC601 maintains a write queue of bus operations in progress and/or pending
arbitration. This write queue must also be snooped in response to qualified snoop requests.

The MPC601 drives two snoop status signals (ARTRY and SHlJ) in response to a qualified
snoop request that hits. These signals provide information about the state of the addressed
sector for the current bus operation. These signals are described fully in Chapter 8, "Signal
Descriptions."

4.7.9 Cache Reaction to Specific Bus Operations
There are several bus transaction types defined for the MPC601 bus. The MPC601 must
snoop these transactions· and perform the appropriate action to honor their intention to
maintain memory coherency; see Table 4-5.

4-14 PowerPC 601 RISC Microproc('ssor User's Manual MOTOROLA

A processor may assert ARTRY for any bus transaction due to internal conflicts that prevent
the appropriate snooping. In general, if AR'I'RY is not asserted, each snooping processor
must take full ownership for the effects of the bus transaction with respect to the state of
the processor. The processor can assert ARTRY if an internal conflict prevents it from
snooping properly.

The transactions in Table 4-5 correspond to the transfer type signals TTO-TT4, which are
described in Section 8.2.4.1, "Transfer Type (TTO-TT4)."

Table 4·5. Response to Bus Transactions

Transaction Response

Clean block The clean operation is an address-only bus transaction, initiated by executing a dcbst
instruction. This operation affects only sectors marked as modified (M). Assuming the
Gm: signal is asserted, modified sectors are pushed out to memory, changing the state
to E.

Flush block The flush operation is an address-only bus transaction initiated by executing a debf ,
instruction. Assuming the Gm: signal is asserted, the flush block operation results in the
following:

· If the addressed sector is shared or exclusive, an additional snoop action is
generated internally that invalidates the addressed sector.

• If the addressed sector is in the M state, Am11? is asserted and an additional
internally generated snoop action is initiated that pushes the modified sector out of the
cache and invalidates the sector.

• If HIDO[31] = 0, and any bus read operation is pending during this snoop operation,
the write-back of the modified sector is considered to be a high-priority bus operation
that may be enveloped within the pending load operation.

• If HIDO[31] = 1, and any bus read operation with Rp _SNP _REO asserted is pending
during this snoop operation, the write-back of the modified sector is considered to be a
high-priority bus operation that may be enveloped within the pending load operation.
• If the addressed sector hits any of the three entries in the write queue, that entry is

tagged as a high-priority push, after which it can be loaded from memory.

Write with flush Write-with-flush and write-with-flush-atomic operations occur after the processor issues
Write with flush atomic a store or stwcx. instruction, respectively.

• If the addressed sector is in the shared or exclusive state, an additional snoop action
is generated internally that forces the state of the addressed sector to invalid.

• If the addressed sector is in the modified state, the ARTJii7 is asserted and an
additional, internally generated snoop action is initiated that pushes the modified
sector out of the cache and changes the state of the sector to invalid.

• If HIDO[31] = 0, and any bus read operation is pending during this snoop operation,
the write-back of the modified sector is considered to be a high-priority bus operation
that may be enveloped within the pending load operation.

• If HIDO[31] = 1, and any bus read operation with Rp _SNP _REO asserted is pending
during this snoop operation, the write-back of the modified sector is considered to be a
high-priority bus operation that may be enveloped within the pending load operation.
• If the addressed sector hits any of the three entries in the write queue, that entry is

tagged as a high-priority push operation.

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-15

-

Table 4-5. Response to Bus Transactions (Continued)

Transaction Response

Kill block The kill-block operation is an address-only bus transaction initiated when one of the
following occurs:
• a dcbi instruction is executed
• a dcbz operation to a block marked S or I is executed .. • a write operation to a block marked S occurs

If a snoop hit occurs, an additional snoop is initiated internally and the sector is forced to
the I state, effectively killing any modified data that may have been in the sector. The
three-entry write queue is also snooped, and if a queue entry hits, it is purged.

Write with kill In a write-with-kill operation, the processor eventually snoops the cache for a copy of
the addressed sector. If one is found, an additional snoop action is initiated internally
and the sector is forced to the I state, killing modified data that may have been in the
sector. In addition to snooping the cache, the three-entry write queue is also snooped. A
kill operation that hits an entry in the write queue purges that entry from the queue.

Read The read operation is used by most single- and burst reads on the bus. A read on the
Read atomic bus with the nm: signal asserted causes the following responses:

• If the addressed sector is in the cache but is invalid, the MPC601 takes no action.
• If the sector is in the shared state, the MPC601 asserts the shared snoop status

indicator.
• If the sector is in the E state, the MPC601 asserts the shared snoop status indicator

and initiates an additional snoop action to change the state of that sector from E to S.
• If the sector is in the cache in the M state, the MPC601 asserts both the ARTIiY and

the 'SR[) snoop status signals. It also initiates an additional snoop action to push the
modified sector out of the chip and to mark that cache sector as shared.

Read atomic operations appear on the bus in response to Iwarx instructions and
generate the same snooping responses as read operations.

Read with intent to modify An RWITM operation is issued to acquire exclusive use of a memory location for the
(RWITM) purpose of modifying it.
RWITM atomic • If the addressed sector is in the I state, the MPC601 takes no action.

• If the addressed sector is in the cache and in the S or E state, the MPC601 initiates an
additional snoop action to change the state of the cache sector to I.

• If the addressed sector is in the cache and in the M state, the MPC601 asserts both
the ARTIiY and the 'SR[) snoop status signals. It also initiates an additional snoop
action to push the modified sector out of the chip and to change the state of that sector
in the cache from M to I.

The RWITM atomic operations appear on the bus in response to stwcx. instructions
and are snooped like RWITM instructions.

sync The sync instruction causes an address-only bus transaction. The MPC601 asserts the
ARTIiY snoop status if there are any TLB-related snoop operations pending in the chip.
This transaction is also generated by the eieio instruction on the MPC601.

TLB invalidate A TLB invalidation operation is caused by executing a tlbie instruction. This instruction
transmits the MPC601's TLB index (bits 12-19 of the EA) onto the system bus. Other
processors on the bus invalidate TLB entries associated with EAs that match those bits.

110 reply The I/O reply operation is part of the 110 controller interface operation. It serves as the
final bus operation in the series of bus operations that service an I/O controller interface
operation.

4-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

4.7.10 Internal ARTRY Scenarios
The following scenarios, along with others, cause the MPC601 to assert the ARTRY signal.

Snoop hits to a sector in the M state (optional on kill requests)

Snoop hits when a reload dump request is active

Snoop hits on a valid (that is, not cancelled) operation that is queued internally.

• Snoop hits while a cast-out request is pending during this or the next clock cycle.

4.7.11 Enveloped High-Priority Cache Sector Push Operation
If the MPC601 has a read operation outstanding on the bus and another pipelined bus
operation hits against a modified sector, the MPC601 provides a high-priority push
operation. This transaction is enveloped within the address and data tenures of a read
operation. This feature prevents deadlocks in system organizations that support multiple
memory-mapped buses. More specifically, the MPC601 internally detects the scenario
where a load request is outstanding and the processor has pipelined a write operation on top
of the load. Normally, when the data bus is granted to the MPC601, the resulting data bus
tenure is used for the load operation. The enveloped high-priority cache sector push feature
defines a bus signal, the data bus write only qualifier (OBWO), which, when asserted with
a qualified data-bus grant, indicates that the resulting data tenure should be used for the
store operation instead. This signal is described in Section 9.iO, "Using OBWO (Data Bus
Write Only." OBWO asserted at any other time is considered a no-op to the MPC601 with
respect to the ordering of the data bus tenures of pipelined bus operations. Note that the
enveloped copy-back operation is an internally pipelined bus operation.

4.8 Cache Control Instructions
Software must use the appropriate cache management instructions to ensure that caches are
kept consistent when data is modified by the processor or by input data transfer. When a
processor alters a memory location that may be contained in an instruction cache, software
must ensure that updates to memory are visible to the instruction fetching mechanism.
Although the instructions to enforce coherency vary among implementations and hence
many operating systems will provide a system service for this function, the following
sequence is typical:

1. dcbst (update memory)

2. sync (wait for update)

3. icbi (invalidate copy in cache)

4. iSj'nc (invalidate copy in O'.vn instruction buffer)

These operations are necessary because the memory may be in write-back mode. Since
instruction fetching may bypass the data cache, changes made to items in the data cache
may not be reflected in memory until after the instruction fetch completes.

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-17

-

•
The PowerPC architecture defines instructions for controlling both the instruction and data
caches. Instruction cache control instructions are valid instructions on the MPC601, but
may function differently than they do when used on PowerPC processors that have separate
instruction and data caches.

Data caches and unified caches must be kept consistent with other data caches, combined
caches, memory, and I/O data transfers. However, to ensure consistency, aliased effective
addresses (two effective addresses that map to the same physical address) must have the
same page attributes (WIM bits).

Note that in the PowerPC architecture, the term cache block, or simply block when used in
the context of cache implementations, refers to the unit of memory at which coherency is
maintained. For the MPC601 this is the eight-word sector. This value may be different for
other PowerPC implementations. In-depth descriptions of coding these instructions is
provided in Chapter 3, "Addressing Modes and Instruction Set Summary," and Chapter 10,
"Instruction Set."

4.8.1 Cache Line Compute Size Instruction (clcs)
The cles instruction places the cache information specified in the instruction into a target
register. This instruction is used by the POWER architecture to determine the maximum
and minimum line sizes for cache implementations. For a complete description of this
instruction, refer to Chapter 10, "Instruction Set."

4.8.2 Data Cache Block Touch Instruction (dcbt)
This instruction provides a method for improving performance through the use of software­
initiated prefetch hints. The MPC601 performs the fetch for the cases when the address hits
in the UTLB or the BTLB, and when it is permitted load access from the addressed page.
The operation is treated similarly to a byte load operation with respect to coherency.

If the address translation does not hit in the UTLB or BTLB, or if it does not have load
access permission, the instruction is treated as a no-op.

If the access is directed to a cache-inhibited page, or to an I/O controller interface segment,
then the bus operation occurs, but the cache is not updated.

This instruction never affects the reference or change bits in the hashed page table.

While the MC98601 maintains a cache line size of 64 bytes, the debt instruction may only
result in the prefetch of a 32-byte sector (the one directly addressed by the EA). The other
32-byte sector in the cache line mayor may not be fetched, depending on activity in the
dynamic memory queue.

A successful debt instruction will affect the state of the UTLB and cache LRU bits as
defined by the LRU algorithm.

4-18 Powerpe 601 Rise Microprocessor User's Manual MOTOROLA

Note that other PowerPC implementations may not take any action based on the execution
of this instruction, but they may prefetch the cache block corresponding to the EA into their
cache.

4.8.3 Data Cache Block Touch for Store Instruction (dcbtst)
The debtst instruction behaves exactly like the debt instruction as implemented on the
MPC601.

4.8.4 Data Cache Block Set to Zero Instruction (debz)
If the block (the cache sector consisting of 32 bytes) containing the byte addressed by the
EA is in the data cache, all bytes are cleared to O.

If the block containing the byte addressed by the EA is not in the data cache and the
corresponding page is caching-allowed, the block is established in the data cache without
fetching the block from main memory, and all bytes of the block are cleared to O.

If the page containing the byte addressed by the EA is caching-inhibited or write-through,
then the system alignment exception handler is invoked.

If the block containing the byte addressed by the EA is in coherence required mode, and
the block exists in the data cache(s) of any other processor(s), it is kept coherent in those
caches.

The debz instruction is treated as a store to the addressed byte with respect to address
translation and protection.

If the EA corresponds to an I/O controller interface segment (SR[T]= 1), the dcbz
instruction is treated as a no-op.

See Chapter 5, "Exceptions," for more information about a possible delayed machine check
exception interrupt that can occur by use of debz if the operating system has set up an
incorrect memory mapping.

4.8.5 Data Cache Block Store Instruction (debst)
If the block (the cache sector consisting of 32 bytes) containing the byte addressed by the
EA is in coherence required mode, and a block containing the byte addressed by the EA is
in the data cache of any processor and has been modified, the writing of it to main memory
is initiated.

The function of this instruction is independtmt of the write-through and cache­
inhibited/allowed modes of the block containing the byte addressed by the EA.

This instruction is treated as a load from the addressed byte with respect to address
translation and protection.

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-19

•

•

If the EA specifies a storage address for an I/O controller interface segment (segment
register T-bit=l), the dcbst instruction is treated as a no-op.

4.8.6 Data Cache Block Flush Instruction (dcbf)
The action taken depends on the memory mode associated with the target, and on the state
of the sector. The list below describes the action taken for the various cases. The actions
described must be executed regardless of whether the page containing the addressed byte
is in caching-inhibited or caching-allowed mode.

Coherence-required mode

Unmodified sector-Invalidates copies of the sector in the caches of all processors.

Modified sector-Copies the sector to memory. Invalidates copies of the sector in
the caches of all processors.

Absent sector-If modified copies of the sector are in the caches of other processors,
causes them to be copied to memory and invalidated. If unmodified copies are in the
caches of other processors, cause those copies to be invalidated.

Coherence-not-required mode

Unmodified sector-Invalidates the sector in the processor's cache.

Modified sector-Copies the sector to memory. Invalidate the sector in the
processor's cache.

Absent sector-Does nothing.

The MPC601 treats this instruction as a load from the addressed byte with respect to
address translation and protection.

4.8.7 Enforce In-Order Execution of 1/0 Instruction (eieio)
The eieio instruction provides an ordering function for the effects of load and store
instructions executed by a given processor. Executing eieio ensures that all memory
accesses previously initiated by the given processor are completed with respect to main
memory before any memory accesses subsequently initiated by the processor access main
memory.

The eieio instruction orders loads and stores to caching-inhibited memory only.

The eieio instruction is intended for use only in doing memory-mapped I/O. It can be
thought of as placing a barrier into the stream of memory accesses issued by a processor,
such that any given memory access appears to be on the same side of the barrier to both the
processor and the I/O device.

The eieio instruction may complete before previously initiated memory accesses have been
performed with respect to other processors and mechanisms.

4-20 PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

Unlike the sync instruction, eieio need not serialize the processor. It requires only that the
processor execute memory accesses in the order described above, and enforce that order in
any queues in the memory subsystem.

4.8.8 Instruction Cache Block Invalidate Instruction (icbi)
The icbi instruction is provided in the PowerPC architecture for use in processors with
separate instruction and data caches. The effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture; however, the
instruction functions as a no-op on the MPC60l.

The Data Cache Block Invalidate (dcbi) instruction may be used to invalidate instructions
from the cache in the MPC60l. Refer also to the following section that describes the
requirements for self-modifying code.

In other PowerPC processors, the icbi instruction executes as follows:

If the block (sector) containing the byte addressed by EA is in coherency-required
mode and a sector containing the byte addressed by EA is in the instruction cache of
any processor, the sector is made invalid in all such processors, so that subsequent
references cause the sector to be refetched.

If coherency is not required for the sector containing the byte addressed by EA and
a sector containing the byte addressed by EA is in the instruction cache of this
processor, the sector is made invalid in this processor so that subsequent references
cause the sector to be fetched from main memory (or from a cache).

4.8.9 Instruction Synchronize Instruction (isync)
The isync instruction waits for all previous instructions to complete and then discards any
prefetched instructions, causing subsequent instructions to be fetched (or refetched) from
memory and to execute in the context established by the previous instructions. This
instruction has no effect on other processors or on their caches.

4.9 Bus Operations Caused by Cache Control
Instructions

Table 4-6 provides an overview of the bus operations initiated by cache control
instructions. Note that Table 4-6 assumes that the WIM bits are set to OOl; that is, since the
cache is operating in write-back mode, caching is permitted and coherency is enforced.

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-21

-

..
Table 4-6.Bus Operations Caused by Cache Control Instructions (WIM = 001)

Operation Cache State Next Cache State Bus Operations Comment

sync/eieio Don't care No change sync First clears memory queue

debi Don't care I Kill -
debf I, S, E I Flush -

debf M I Write with kill Sector is pushed

dcbst I, S, E No change Clean -
debst M E Write with kill Sector is pushed

debz I M Kill May also cast out a sector

debz S M Kill -

debz E,M M None Writes over modified data

debt I No change Read State change on reload
may cast out sector

debt S,E,M No change None -

Table 4-6 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. These conditions are described in
Section 4.11, "MESI State Transactions."

The cache control instructions are described in detail in Chapter 3, "Addressing Modes and
Instruction Set Summary ," and Chapter 1 O. Several of the cache control instructions
broadcast onto the MPC601 interface so that all processors in a multiprocessor system can
take appropriate actions. The MPC601 contains snooping logic to monitor the bus for these
commands and the control logic required to keep the cache and the memory queues
coherent. Additional details on the specific bus operations performed by the MPC601 can
be found the Chapter 9, "System Interface Operation."

4.10 Memory Unit
The MPC601 's memory unit contains read and write queues that buffer operations between
the external interface and the cache. These operations are comprised of operations resulting
from load and store instructions that are cache misses, read and write operations required
to maintain cache coherency, and table search operations. As shown in Figure 4-5, the read
queue contains two elements and the write queue contains three elements. Each element of
the write queue can contain as many as eight words (one sector) of data. One element of the
write queue, marked snoop in Figure 4-5, is dedicated to writing cache sectors to system
memory after a modified sector is hit by a snoop from another processor or snooping device
on the system bus. The use of this queue guarantees a high-priority operation receives a
deterministic response time when snooping hits a modified sector.

4-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

ADDRESS
(from cache)

DATA
(from cache)

WRITE QUEUE

Figure 4·5. Memory Unit

The other two elements in the write queue are used for store operations and writing back
modified sectors that have been deallocated by updating the queue; that is, when a cache
sector is full, the least-recently used cache sector is deallocated by first being copied intp
the write queue and from there to system memory if it is modified. Note that snooping can
occur after a sector has been pushed out into the write queue and before the data has been
written to system memory. Therefore, to maintain a coherent memory, the write queue
elements are compared to snooped addresses in the same way as the cache tags. If a snoop
hits a write queue element, the data is first stored in system memory before it can be loaded
into the cache of the snooping bus master. Full coherency checking between the cache and
the write queue prevents dependency conflicts.

The retry signals and bus operations pertaining to snooping are described in Chapter 9,
"System Interface Operation."

Execution of a load or store instruction is considered complete when the associated address
translation completes, guaranteeing that the instruction has completed to the point where it
is known that it will not generate an internal exception. However, after address translation
is complete, a read or write operation can generate an external exception.

Load and store instructions are always issued and translated in program order with respect
to other load and store instructions. However, a load or store operation that hits in the cache
can complete ahead of those that miss in the cache. The MPC601 ensures memory
consistency by comparing target addresses and prohibiting instructions from completing
out of order if an address matches. Load and store operations can be forced to execute in
strict program order.

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-23

..

•

4.10.1 Memory Unit Queuing Structure
The memory queue receives requests from the cache unit for arbitration onto the MPC601
bus interface. These requests may either be presented immediately to the bus interface logic
or they may be queued for future arbitration onto the bus. The memory queue consists of a
two-element load queue and a three-element write queue. Each write queue element can
hold a sector of data (32 bytes) associated with a single address .

Some operations presented to the memory queue cannot be queued. These operations
typically require synchronizatiori with respect to either the execution units, the cache, or
the memory queue itself. In general, when these requests are presented and not arbitrated
directly onto the bus, they stall above the cache (but do not necessarily prevent use of the
cache) and attempt t6 re-arbitrate on the next cycle. These operations include the following:

Cache control instructions that are broadcast

Execution of the t1bie instruction

Execution of the sync instruction

Execution of the eieio instruction

Accesses to I/O controller interface segments

Cache requests for exclusive ownership when the sector is resident but not exclusive
in the cache

The memory queues also allows the optional loading of the sector adjacent to the one
containing the critical data. As the memory read queue receives and processes cache sector
reload requests, it is advantageous to fetch the other sector if it is not already in the cache
unless fetching the other sector delays access to data required for the machine to continue
processing. The memory unit logic detects whether other operations are pending; if not, it
initiates a fetch for the other sector. Note that this function can be disabled by setting bit 26
in HIDO (for instruction fetch misses) and bit 27 in HI DO (for load/store misses).

4.10.2 Memory Unit Queuing Priorities
This section describes the priorities for access to the system interface:

1. High-priority cache push-out operations

2. Normal snoop push-out operations

3. I/O controller interface segment accesses that incur no additional delays (that is,
they have not been retried because of latency).

4. Cache instruction operations

5. Read requests, such as loads, RWITMs, and instruction fetches

6. Single-beat write operations

7. sync instructions

8. Optional cache-line fill operations

4·24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

9. Cache sector cast-out operations

1 O.lIO controller interface segment accesses that incur additional delays (that is, they
have been retried because of latency)

4.10.3 Bus Interface
The bus interface logic sequences operations onto the MPC601 bus according to defined
protocols. The bus interface logic is also responsible for snooping other bus traffic,
presenting these operations to the rest of the device for coherency considerations and
reporting the appropriate snoop status onto the bus.

For additional information about the MPC601 bus interface and the bus protocols, refer to
Chapter 9, "System Interface Operation."

4.11 MESI State Transactions
Table 4-7 shows MESI state transitions for various operations.

Table 4-7. MESI State Transitions

Operation
Cache Bus

WIM
Current Next

Cache Actions
Bus

Operation sync State State Operation

Load or Fetch Read No xOx I Same 1 Cast out of modified Write with kill
(T = 0) sector 1 (as required)

2 Pass four-beat read Read
to memory queue

3 Secondary cast out Write with kill
of sector 2 (as
required)

Load or Fetch Read No xOx S,E,M Same Read data from cache -
(T = 0)

Load or Fetch Read No x1x I Same Pass single-beat read Read
T=O or Load to memory queue
(T =1,
BUID=x'7F')

Load or Fetch Read No x1x S,E I CRTRYread -
T=O or Load
(T =1,
BUID=x'7F')

Load or Fetch Read No x1x M I CRTRY read (push Write with kill
T=O or Load sector to write queue)
(T =1,
BUID=x'7F')

Load 110 - x1x - - - 110 load
(T =1, controller
BUID;ex'7F') load

larx Read Acts like other reads but bus operation uses special encoding

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-25

..

Table 4·7. MESI State Transitions

Operation Cache Bus WIM
Current Next Cache Actions Bus

Operation sync State State Operation

Store Write No OOx I Same 1 Cast out of modified Write with kill
(T=O) sector

- 2 Pass RWITM to rwitm
memory queue

3 Secondary cast out Write with kill
of sector 2

Store Write yes OOx S Same 1 CRTRY write -
(T=O)

2 Pass kill Kill

M 3 Write data to cache -
Store Write No OOx E,M M Write data to cache -
(T=O)

Store ¢ stcx Write No 10x I Same Pass single-beat write Write with
(T=O) to memory queue flush

Store ¢ stcx Write No 10x S,E Same 1 Write data to cache -
(T=O)

2 Pass single-beat Write with
write to memory flush
queue

Store ¢ stcx Write No 10x M E 1 CRTRYwrite -
(T=O)

2 Push sector to write Write with kill
queue

Store (T=O) Write No x1x I Same Pass single-beat write Write with
or stcx to memory queue flush
(WIM=10x)
or store (T =1,
BUID=x'7F')

Store (T=O) Write No x1x S,E I CRTRYwrite -
or stcx
(WIM=10x)
or store (T =1,
BUID=x'7F')

Store (T =0) Write No x1x M I 1 CRTRYwrite -
or stcx
(WIM=10x) 2 Push sector to write Write with kill

or store (T =1, queue

BUID=x'7F')

Store (T =1, va No - - - - va store
BUID¢x'7F') controller request

stcx Conditional If the reserved bit Is set, this operation is like other writes except the bus operation
write uses a special encoding.

4-26 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 4-7. MESI State Transitions

Operation
Cache Bus

WIM
Current Next

Cache Actions
Bus

Operation sync State State Operation

tlbi TLB Yes xxx x x 1 CRTRYTLBI TLB invalidate
invalidate

2 Pass TLBI -
3 No action -

sync/eieio Synchroniz Yes xxx x x 1 CRTRYsync dsync -ation
2 Pass sync -

3 No action -
dcbf Data cache Yes xxx I,S,E Same 1 CRTRY dcbf -

block flush
2 Pass flush Flush

Same I 3 State change only -
dcbf Data cache No xxx M I Push sector to write Write with kill

block flush queue

dcbst Data cache Yes xxx I,S,E Same 1 CRTRY dcbst -
block store

2 Pass clean Clean

Same Same 3 No action -
dcbst Data cache No xxm M E Push sector to write Write with kill

block store queue

dcbz Data cache No x1x x x Alignment trap -
block set to
zero

dcbz Data cache No 10x x x Alignment trap -
block set to
zero

dcbz Data cache Yes OOx I Same 1 CRTRYdcbz -
block set to
zero 2 Cast out of modified Write with kill

sector

3 Pass kill Kill

4 Secondary cast out Write with kill
of sector 2

Same M 5 Clear sector -

dcbz Data cache Yes OOx S Same 1 CRTRYdcb~ -
block set to
::::ro 2 Pass kill Kill

Same M 3 Clear sector -
dcbz Data cache No OOx E,M M Clear sector -

block set to
zero

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-27

Table 4-7. MESI State Transitions

Operation
Caehe Bus

WIM
Current Next

Caehe Aetions
Bus

Operation syne State State Operation

debt Data cache No xlx I Same Pass single-beat read Read
block touch to memory queue .. debt Data cache No x1x S,E I CRTRYread -
block touch

debt Data cache No x1x M I 1 CRTRYread -
block touch

2 Push sector to write Write with kill
queue

debt Data cache No xOx I Same 1 Cast out of modified Write with kill
block touch sector (as required)

2 Pass four-beat read Read
to memory queue

3 Secondary cast out Write with kill
of sector (as
required)

debt Data cache No xOx S,E,M Same No action -
block touch

Secondary Secondary No xxx x Same Cast out Write with kill
cast out cast out

Single-beat Reload No xxx x Same Forward data_in -
read dump 1

Four-beat Reload No xxx x Same 1 Forward datajn -
read (quad- dump 1

2 Write data_in to word 1) -
cache

Four-beat Reload No xxx x Same Write data_in to cache -
read (quad- dump 2
word 2)-S

Four-beat Reload No xxx x Same Write datajn to cache -
read (quad- dump 2
word 2)-E

Four-beat Reload No xxx x Same 1 Splice and forward -
write (quad- dump1 data_in
word 1)

2 Write datajn to -
cache

Four-beat Reload No xxx x Same Write datajn to cache -
write (quad- dump 2
word 2)

Optional Reload No xxx x Same Write datajn to cache -
reload of dump 1
adjacent
sector (quad-
word 1)

4-28 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 4-7. MESI State Transitions

Operation
Cache Bus

WIM
Current Next

Cache Actions
Bus

Operation sync State State Operation

Optional Reload No xxx I S Write data_in to cache -
reload of dump 2
adjacent
sector (quad-
word 2)-S --Optional Reload No xxx I E Write data_in to cache -
reload of dump 2
adjacent
sector (quad-
word 2)-E

E-7S Snoop No xxx E S State change only -
(committed)

S-71 Snoop No xxx S I State change only -
(committed)

E-71 Snoop No xxx E I State change only -
(committed)

M-71 Snoop No xxx M I State change only -
(committed)

Push Snoop No xxx M S Conditionally push Write with kill
M-7S

Push Snoop No xxx M I Conditionally push Write with kill
M-71

Push Snoop No xxx M E Conditionally push Write with kill
M-7E

Note that dcbt is presented to the cache as a load operation.

MOTOROLA Chapter 4. Cache and Memory Unit Operation 4-29

•

4-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 5
Exceptions
The PowerPC exception mechanism allows the processor to change to supervisor state as
a result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information, such as the instruction that should be
executed after control is returned to the original program and the contents of the machine
state register, is saved to the save/restore registers (SRRO and SRRl), program control
passes from user to supervisor level, and software continues execution at an address
(exception vector) predetermined for each exception.

Although multiple exception conditions can map to a single exception vector, the specific
condition can be determined by examining a register associated with the exception-for
example, the OAE/source instruction service register (OSISR) and the floating-point status
and control register (FPSCR). Additionally, specific exception conditions can be explicitly
enabled or disabled by software.

Except for the catastrophic asynchronous exceptions (machine check and system reset) the
MPC601 exception model is precise, defined as follows:

• The exception handler is given the address of the excepting instruction (or the next
instruction to execute in the case of asynchronous, precise exceptions)

All instructions prior in the instruction stream to the excepting instruction have
completed execution and have written back their results.

No instructions subsequent to the excepting instruction in the instruction stream
have been issued.

Although the PowerPC architecture supports out-of-order instruction dispatch, exceptions
are handled in program order; therefore, while exception conditions may be recognized out
of order, they are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered execute state, are allowed to complete. Any
exceptions, caused by those instructions are handled in order. Likewise, exceptions that are
asynchronous and precise are recognized when they occur, but are not handled until all
instructions currently in execute stage successfully complete execution and report their
results.

MOTOROLA Chapter 5. Exceptions 5-1

..

•

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters mUltiple
exception conditions, those conditions are encountered sequentially. After the exception
hafldler handles an exception, the instruction execution continues until the next exception
condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information saved in SRRO and SRR 1 early to prevent
the program state from being lost due to a system reset and machine check exception or to
an instruction-caused exception in the exception handler.

This chapter describes the MPC601 exception model, it explains each class of instruction,
and it describes how the program state is saved for individual exceptions.

5.1 Exception Classes
All MPC601 exceptions can be described as either precise or imprecise and either
synchronous or asynchronous. Asynchronous exceptions are caused by events external to
the processor's execution; synchronous exceptions, which are all handled precisely by the
MPC601, are caused by instructions.

The MPC601 exceptions are shown in Table 5-1.

Table 5-1. MPC601 Exception Classifications

Synchronous! Asynchronous Precisellmprecise Exception Type

Asynchronous Imprecise Machine Check
System Reset

Asynchronous Precise External interrupt
Decrementer

Synchronous Precise Instruction·caused exceptions

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskable, the distinctions shown in Table 5-1 define categories of exceptions that the
MPC601 handles uniquely. Note that Table 5-1 includes no synchronous imprecise
instructions. While the PowerPC architecture supports imprecise floating-point exceptions,
they do not occur in the MPC601.

Exceptions, and conditions that cause them, are listed in Table 5-2.

5·2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 5-2. Exceptions and Conditions

Exception Vector Offset
Causing Conditions

Type (hex)

Reserved 00000 -

System reset 00100 A system reset is caused by the assertion of either ~ or ~.

Machine check 00200 A machine check is caused by the assertion of the TEA signal.

Data access 00300 The cause of a data access exception can be determined by the bit settings in
the DSISR, listed as follows:
1 Set if the translation of an attempted access is not found in the primary

hash table entry group (HTEG), or in the rehashed secondary HTEG, or in
the range of a BAT register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism described in Chapter 6; otherwise cleared.

5 Set if the access was to an I/O segment (SR[T] =1) by an Iwarx, stwcx., or
Iscbx instruction; otherwise cleared.

6 Set for a store operation and cleared for a load operation.
9 Set if an EA matches the address in the DABR while in one of the three

compare modes.
11 Set if eciwx or ecowx is used and EAR[E] is cleared.

Instruction 00400 An instruction access exception is caused when an instruction fetch cannot be
access performed for any of the following reasons:

· The effective address cannot be translated. That is, there is a page fault for
this portion of the translation, so an instruction access exception must be
taken to retrieve the translation from a storage device such as a hard disk
drive.

· The fetch access is to an I/O segment.

· The fetch access violates memory protection. If the K bits in the segment
register and the PP bits in the PTE are set to prohibit read access,
instructions cannot be fetched from this location.

External 00500 An external interrupt occurs when the m signal is asserted.
interrupt

Alignment 00600 An alignment exception is caused when the MPC601 cannot perform a memory
access for one of the following reasons:

The operand of a floating-point load or store operation is in an I/O segment
(SR[T]=1).
An Iscbx instruction crosses a page boundary.

· The operand of a load or store (including string loads and stores) crosses a
protection boundary.
The operand of a Imw or stmw instruction crosses a segment or BAT
boundary.

· The operand of a Data Cache Block Set to Zero (dcbz) instruction is in a
page specified as write-through or cache-inhibited for a page-address
translation access.
In little-endian mode, any operand that is not properly aligned
In Ilttlo-cndi~n mode, any attempted execution of the string/multiple
instructions

MOTOROLA Chapter 5. Exceptions 5-3

Table 5-2. Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions Type (hex)

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

· Floating-point enabled exception-A floating-point enabled exception
condition is generated when the following condition is met:

(MSR[FEO] I MSR[FE1]) & FPSCR[FEX] is 1.
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a "move to FPSCR"
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

· Illegal instruction-An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields, or when execution of an
optional instruction not provided in the MPC601 is attempted (these do not
include those optional instructions that are treated as no-ops).

· Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. In the MPC601, this
exception is generated for mtspr or mfspr with an invalid SPR field if
SPR[0]=1 and MSR[PR]=1. This may not be true for all PowerPC
processors.

· Trap-A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

· Illegal operations-The MPC601 takes illegal operation program exceptions
for unimplemented PowerPC instructions. The PowerPC instruction set is
described in Chapter 3.

Floating-point 00800 A floating-point unavailable exception is caused by an attempt to execute a
unavailable floating-point instruction (including floating-point load, store, and move

instructions) when the floating-point available bit is disabled, MSR[FP]=O.

Decrementer 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

I/O controller OOAOO An I/O controller interface error exception is taken only when an operation to an
interface error 1/0 segment fails (such a failure is indicated to the MPC601 by a particular bus

reply packet). If an 1/0 controller interface exception is taken on a memory
access directed to an 1/0 segment, the SRRO contains the address of the
instruction following the offending instruction. Note that this exception may not
be implemented in other PowerPC processors.

Reserved 00800 -
System call OOCOO A system call exception occurs when a System Call (sc) instruction is executed.

Reserved OOEOO Other PowerPC processors may use this vector for floating-point assist
exceptions.

Reserved 00E10-00FFF -
Reserved 01000-01FFF Reserved, implementation-specific

5-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 5-2. Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Run mode 02000 The run mode exception is taken depending on the settings of the HID1 register
exception and the MSR[SE] bit.

The following modes correspond with bit settings in the HID1 register:

· Normal run mode-no address break points are specified, and the MPC601
executes from to zero to three instructions per cycle

· Single instruction step mode-One instruction is processed at a time. The
appropriate break action is taken after an instruction is executed and the
processor quiesces.

· Umited instruction address compare-The MPC601 runs at full speed (in
parallel) until the EA of the instruction being decoded matches the EA
contained in HID2. Addresses for branch instructions and floating-point
instructions may never be detected.

The following mode is taken when the MSR[SE] bit is set.

· MSR[SE] trace mode-Note that in o~her Power PC implementations, the
trace exception is a separate exception with its own vector x'OODOO'.

Reserved 02001-03FFF -

5.1.1 Precise Exceptions
In the MPC601, all synchronous exceptions and the asynchronous external interrupt and
decrementer exceptions are handled precisely; that is, all instructions that occur in the
instruction stream before the excepting event appear to complete and subsequent
instructions execute after the exception has been handled. When one of the MPC601 's
precise exceptions occurs, SRRO is set to point to an instruction such that all prior
instructions in the instruction stream have completed execution and no subsequent
instruction has begun execution. However, depending on the exception type, the instruction
addressed by SRRO may not have completed execution.

When an exception occurs, instruction dispatch (the issuance of instructions by the
instruction fetch mechanism to any instruction execution mechanism) is halted and the
following synchronization is performed:

1. The exception mechanism waits for all previous instructions in the instruction
stream to complete to a point where they report all exceptions they will cause.

2. The processor ensures that all previous instructions in the instruction stream
complete in the context in which they began execution.

3. The exception mechanism is responsible for saving and restoring the processor state.
After control passes back to the user level, there are no instructions in execute stage,
and the user program instructions are dispatched and executed in this new context.

The synchronization described above is sometimes referred to as conlext synchronization.

MOTOROLA Chapter 5. Exceptions 5-5

5.1.1.1 Synchronous/Precise Exceptions
In the MPC601, all exceptions caused by instructions are precise. When instruction
execution causes a precise exception, the following conditions exist at the exception point:

Depending on the type of exception, SRRO addresses either the instruction causing
the exception or the immediately following instruction. The instruction addressed
can be determined from the exception type and status bits, which are described with
the description of each exception.

All instructions that precede the excepting instruction are allowed to complete
before the exception is processed. However, some memory accesses generated by
these preceding instructions may not have been performed with respect to all other
processors or system devices.

• The instruction causing the exception may not have begun execution, may have
partially completed, or may have completed, depending on the exception type.

No subsequent instructions in the instruction stream complete execution.

Note that other PowerPC microprocessors may support optional imprecise floating-point
exception modes. While parallel processing allows the possibility of two instructions
reporting exceptions during the same cycle, they are handled in program order. If a single
instruction generates multiple exception conditions, those exceptions are handled
sequentially, as described in Section 5.1.3, "Sequential Exception Processing." Exception
priorities are described in Section 5.1.2, "Exception Priorities."

5.1.1.2 Asynchronous/Precise Exceptions
The MPC601 supports two asynchronous, precise exceptions-external interrupt and
decrementer exceptions. For asynchronous exceptions, the following conditions exist at the
exception point:

• All instructions issued before the event that caused the exception, and any
undispatched instructions that precede those instructions in the instruction stream,
appear to have completed before the exception is processed. However, some
memory accesses generated by these preceding instructions may not have been
performed with respect to all other processors or system devices.

• SRRO addresses the next instruction that would have been executed next had the
exception not occurred.

Architecturally, no subsequent instructions in the instruction stream complete
execution.

These two exceptions are maskable. When the machine state register external interrupt
enable bits are cleared (MSR[EE]=O), these exception conditions are latched and are not
recognized until the EE bit is set. MSR[EE] is cleared automatically when an exception is
taken to delay recognition of conditions causing asynchronous, precise exceptions. No two
precise exceptions can be recognized simultaneously. Handling of an asynchronous,
precise exception does not begin until all currently executing instructions complete and any
synchronous, precise exceptions caused by those instructions have been handled, as

5-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

described in Section 5.1.3, "Sequential Exception Processing." Exception priorities are
described in Section 5.1.2, "Exception Priorities."

5.1.1.3 Asynchronous, Imprecise Exceptions
There are two asynchronous, imprecise exceptions-system reset and machine check.
These two exceptions have the highest priority and can occur while other exceptions are
being processed. Note that asynchronous, imprecise exceptions are never delayed;
therefore, if two of these exceptions occur in immediate succession, the state information
saved by the first exception may be overwritten when the subsequent exception occurs.

These exceptions cannot by masked by using the MSR[EE] bit. A machine check exception
can only occur if the machine check enable bit, MSR[ME], is set. If MSR[ME] is cleared,
the processor goes directly into checkstop state. When an imprecise exception occurs, the
following conditions exist at the exception point:

• The integer instruction pipeline acts as the point of reference for all instructions in
the pipeline. When an asynchronous, imprecise exception occurs, floating-point
instructions that have begun execution out-of-order ahead of integer instructions
that have yet to be decoded do not complete execution.

SRRO addresses either the instruction causing the exception or some instruction
following the instruction causing the exception.

An exception is generated such that all instructions preceding the instruction
addressed by SRRO appear to have completed with respect to the executing
processor.

Neither the instruction addressed by SRRO nor any subsequent instructions have begun
execution.

5.1.2 Exception Priorities
This section describes how exceptions are prioritized. Exceptions are roughly prioritized
by exception class, as follows:

1. Asynchronous, imprecise exceptions have priority over all other exceptions. These
exceptions are taken forcibly, and do not wait for the completion of any precise
exception handling.

2. Synchronous, precise exceptions are caused by instructions and are handled in strict
program order.

3. Asynchronous, precise exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are handled.

The exceptions are listed in Table 5-3 in order of highest to lowest priority.

MOTOROLA Chapter 5. Exceptions 5-7

Table 5-3. Exception Priorities

Exception
Priority Exception

class

Asynchronous, 1 System reset-The system reset exception has the highest priority of all exceptions.
imprecise If this exception exists, the exception mechanism ignores all other exceptions and

generates a system reset exception. Instructions issued before the generation of a
system reset exception cannot generate a nonmaskable exception.

2 Machine check-The machine check exception is the second-highest priority
exception. If this exception occurs, the exception mechanism ignores all other
exceptions (except reset) and generates a machine check exception. Instructions
issued before the generation of a machine check exception cannot generate a
nonmaskable exception.

Synchronous, 3 Instruction dependent- When an instruction causes an exception, the exception
precise mechanism waits for any instructions prior to the exception instruction in the

instruction stream to execute. Any exceptions caused by these instructions are
handled first. It then generates the appropriate exception if no higher priority
exception exists when the exception is to be generated.
Note that a single instruction can cause multiple exceptions. The ordering of such
exceptions is described in 5.1.3, ·Sequential Exception Processing."

Asynchronous, 4 External interrupt-The external interrupt exception mechanism waits for instructions
precise currently dispatched to complete execution. After all dispatched instructions are

executed, and any exceptions caused by those instructions are handled, the
exception mechanism generates this exception if no higher priority exception exists.
This exception is delayed if MSR[EE] is cleared.

5 Decrementer-This exception is the lowest priority exception. When this exception is
created, the exception mechanism waits for all other possible exceptions to be
reported. It then generates this exception if no higher priority exception exists. This
exception is delayed if MSR[EE] is cleared.

5.1.3 Sequential Exception Processing
Although more than one condition that can cause a precise exception can exist
simultaneously, precise exceptions are handled sequentially in the MPC601. The order in
which exceptions are recognized is determined by program order and whether the
exception is synchronous or asynchronous, precise or imprecise, and masked or
nonmasked.

Synchronous, precise exceptions (that is, exceptions that are caused by instructions) are
handled in strict program order, even though instructions can execute and exceptions can
be detected out of order. Therefore, before the MPC601 processes an instruction-caused
exception, it executes all instructions, and handles any resulting exceptions, that appear
earlier in the instruction stream.

A single instruction may generate multiple exception conditions. Of these exceptions, the
MPC601 handles the exception it encounters first, then the execution of the excepting
instruction continues until the next excepting condition is encountered. In the POWER
architecture, this feature is referred to as ordered exceptions.

5-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

If the exception is asynchronous and precise (namely an external interrupt or decrementer
exception), the MPC601 synchronizes the pipeline by completing the execution of any
instruction in the execute stage and any undispatched instructions that appear earlier in the
instruction stream (including any exceptions they generate) before handling the external
interrupt or decrementer exceptions.

5.1.3.1 Recognition of Asynchronous, Imprecise Exceptions
Exceptions that are nonmasked, imprecise, and asynchronous (namely system reset or
machine check exceptions) may occur at any time. That is, these exceptions are not delayed
if another exception is being handled. As a result, state information for the interrupted
exception may be lost; therefore, these exceptions are typically non-recoverable.

All other precise exceptions have lower priority than system reset and machine check
exceptions, and they can be delayed.

5.1.3.2 Recognition of Precise Exceptions
Only one precise exception can be reported at a time. (Note that PowerPC implementations
that support imprecise-mode floating-point enabled exceptions allow those to be handled
in the same manner as described in this section.)

Figure 5-1 illustrates the ordering of precise exceptions. Note that this ordering is on a per­
instruction basis. If a precise, asynchronous exception condition occurs while instruction­
caused exceptions are being processed, its handling is delayed until all instruction-caused
exceptions are handled and the instruction completes execution.

5.2 Exception Processing
When an exception is taken, the MPC601 uses the save/restore registers, SRRO and SRR 1,
to save the contents of the machine state register for user-level mode and to identify where
instruction execution should resume after the exception is handled. The save/restore
register 0 (SRRO) is a 32-bit register that the MPC601 uSes to save either the address of the
instruction that causes the exception, the one that follows, or the next instruction that would
have executed in the case of an asynchronous, imprecise exception. This address is used
when an rfi instruction is executed. The SRRO is shown in Figure 5-2.

MOTORCLA Chapter 5. Exceptions 5-9

•

•

o

rfi3 or mtmsr

Privileged Instruction

Run Mode (including Trace3)

1 Not all floating-point instructions can cause enabled exceptions.

21f the MSR bits FEO and FE1 are set such that precise mode floating-point enabled exceptions are
enabled and the FPSCR[FEX] bit is set, a program exception will result.

3Generating a trace exception after an rfi can cause unpredictable results.

Figure 5-1. Recognition of Precise Exception Conditions

SRRO (holds EA for resuming program execution)

Figure 5-2. Machine Status Save/Restore Register 0

31

When an exception occurs, SRRO is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has begun execution.
The instruction addressed by SRRO may not have completed execution, depending on the
exception type. SRRO addresses either the instruction causing the exception or the
immediately following instruction. The instruction addressed can be determined from the
exception type and status bits.

5-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The SRRI is a 32-bit register used to save machine status on exceptions and to restore
machine status when rfi or sc is executed. The SRR 1 is shown in Figure 5-3.

exception-specific MSR[16-31]

a 15 16 31

Figure 5-3. Machine Status Save/Restore Register 1

In general, when an exception occurs, bits 0-15 of SRR 1 are loaded with exception-specific
information and bits 16-31 of the machine state register (MSR) are placed into bits 16-31
of SRRI. The machine state register is shown in Figure 5-4

[ill Reserved

o 15 16 ,7 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-4. Machine State Register

Table 5-4 shows the bit definitions for the MSR.

Table 5-4. Machine State Register Bit Settings

Bit{s) Name Description

0-15 - Reserved

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception

conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user and supervisor privilege-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point

loads, stores and moves. Floating-point enabled program exceptions can still occur and
the FPRs can still be accessed.

1 The processor can execute floating-point instructions, and can take floating-point
enabled exception type program exceptions.

19 ME Machine check enable
0 ~w~~ch:i1o chcc~ cxccpt!cne ~re d!sab!ed.
1 Machine check exceptions are enabled.

20 FEO Floating-point exception mode 0 (See Table 5-5.)

MOTOROLA Chapter 5. Exceptions 5-11

Table 5-4. Machine State Register Bit Settings (Continued)

Bit{s) Name Description

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of

the next instruction. When this bit is set, the processor dispatches instructions in strict
program order. Successful execution means the instruction caused no other exception.
Single-step tracing may not be present on all implementations. If the function is not
implemented, MSR[SE] should be treated as a reserved MSR bit: mfmsr may return the
last value written to the bit, or may return 0 always.

22 - Reserved *

23 FE1 Floating-point exception mode 1 (See Table 5-5.)

24 - Reserved. This bit corresponds to the AL bit of the POWER Architecture.

25 EP Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or Os. In the following description, nnnnn is the offset of the exception. See
Table 5-7.
0 Exceptions are vectored to the physical address x'OOO,,-nnnn'.
1 Exceptions are vectored to the physical address x'FFFn_nnnn'.

26 IT Instruction address translation
0 Instruction address translation is off. When instruction relocation is off, EA is interpreted

as described in Chapter 6, "Memory Management Unit."
1 Instruction address translation is enabled.

27 DT Data address translation
0 Data address translation is off. When data relocation is off, EA is interpreted as

described in Chapter 6, "Memory Management Unit."
1 Data address translation is enabled.

28-29 - Reserved

30 - Reserved *

31 - Reserved *

*These reserved bits may be used by other PowerPC processors. Attempting to change these bits does
not affect the operation of the processor. These bit positions always return a zero value when read.

The floating-point exception mode bits are interpreted as shown in Table 5-5. For further
details see Section 5.4.7.1, "Floating-Point Enabled Program Exceptions."

Table 5-5. Floating-Point Exception Mode Bits

FEO FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode

5-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

MSR bits 16-31 are guaranteed to be written to SRR 1 when the first instruction of the
exception handler is encountered.

The data address register (DAR) is a 32-bit register used by several exceptions (data access,
I/O controller interface error, and alignment) to identify the address of a memory element.

5.2.1 Enabling and Disabling Exceptions
When a condition exists that causes an exception to be generated, it must be determined
whether the exception is enabled for that condition.

• Aoating-point enabled exceptions (a type of program exception) can be disabled by
clearing both MSR[FEO] and MSR[FE 1]. If either or both of these bits are set, all
floating-point exceptions are taken and cause a program exception. Other PowerPC
processors may support imprecise floating-point exceptions. Individual conditions
that can generate floating-point exceptions can be enabled and disabled with bits in
the FPSCR register.

• Asynchronous, precise exceptions are enabled by setting the MSR[EE] bit. When
MSR[EE]=O, recognition of these exception conditions is delayed. MSR[EE] is
cleared automatically when an exception is taken to delay recognition of conditions
causing those exceptions.

• A machine check exception can only occur if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine-check exception condition occurs.

• The run mode exception, which is used to set an instruction breakpoint, can be
enabled and disabled using bits 8 and 9 of HID1 (HID1 [RMD.

• The data address breakpoint ·can be enabled and disabled using bits 30 and 31 of the
DABR (HID5[SAD.

System reset exceptions cannot be masked.

5.2.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruction­
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the MPC601 does the
following:

1. The machine status save/restore register 0 (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. Bits 0-15 of SRR1 are loaded with 16 bits of information specific to the exception
type.

3. Bits 16-31 of SRR 1 are loaded with a copy of bits 16-31 of the MSR.

MOTOROLA Chapter 5. Exceptions 5-13

•

4. The MSR is set as described in Table 5-4. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IT] and MSR[DT] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data access beginning
with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 5-7) to the base address determined by MSR[EP]. If EP is cleared,
exceptions are vectored to the physical address x 'OOOn nnnn'. If EP is set,
exceptions are vectored to the physical address x'FFFn /mnn'. For a machine check
exception that occurs when MSR[ME]=O (machine check exceptions are disabled),
the checkstop state is entered (the machine stops executing instructions). See
Section 5.4.2, "Machine Check Exception (x'00200')."

• The Iwarx and stwx instructions require special handling if a reservation is still set
when an exception occurs. Exceptions clear reservations set with Iwarx (or Idarx).

5.2.3 Returning from Supervisor Mode
The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to user mode. Execution of the
rfi instruction ensures the following:

All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access causes an I/O controller interface error
exception, the results must be determined before this instruction is executed.

Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The instructions following this instruction execute in the context established by this
instruction.

5.3 Process Switching
The operating system should execute the following when processes are switched:

• The sync instruction, to resolve any data dependencies between the processes and to
synchronize the use of segment registers and SPRs. For an example showing use of
the sync instruction, see Section 2.3.3.1, "Synchronization for Supervisor-Level
SPRs, and Segment Registers."

• The isync instruction, to ensure that undispatched instructions not in the new
process are not used by the new process

• The stwcx. instruction, to clear any outstanding reservations, which ensures that an
Iwarx instruction in the old process is not paired with an stwcx. in the new process.

5-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Note that if an exception handler is used to emulate an instruction that is not implemented
in the MPC601, the exception handler must report in SRRO (and in the data address registe~
[DAR] if applicable) the EA computed by the instruction being emulated and not one used
to emulate the instruction being emulated.

5.4 Exception Definitions
Table 5-6 shows all the types of exceptions that can occur with the MPC601 and the MSR
bit settings when the processor transitions to supervisor mode. The state of these bits prior
to the exception is typically stored in SRRl.

Table 5·6. MSR Setting Due to Exception

MSR Bit

Exception EE PR FP1 ME FEO SE FE1 EP IT DT SF
Type 16 17 18 19 20 21 23 25 26 27 31

I

Soft reset 0 0 0 - 0 0 0 - 0 0 0

Machine check 0 0 0 0 0 0 0 - 0 0 0

Data access 0 0 0 - 0 0 0 - 0 0 0

Instruction 0 0 0 - 0 0 0 - 0 0 0
access

External 0 0 0 - 0 0 0 - 0 0 0

Alignment 0 0 0 - 0 0 0 - 0 0 0

Program 0 0 0 - 0 0 0 - 0 0 0

Floating-point 0 0 0 - 0 0 0 - 0 0 0
unavailable

Decrementer 0 0 0 - 0 0 0 - 0 0 0

System call 0 0 0 - 0 0 0 - 0 0 0

Run mode 0 0 0 - 0 0 0 - 0 0 0
exception

va controller 0 0 0 - 0 0 0 - 0 0 0
interface error
exception

o Bit is cleared
1 Bit is set

Bit is not altered
Reserved bits are read as if written as O.

The setting of the exception prefix (EP) bit in the MSR determines how exceptions are
vectored. If the bit is cleared, exceptions are vectored to the physical address x 'OOOn nnnn'
(where nnnnn is the vector offset); if EP is set, exceptions are vectored to the physical
address x 'FFFn _nnnn'. Table 5-7 shows the exception vector offset of the first instruction
of the exception handler routine for each exception type.

MOTOROLA Chapter 5. Exceptions 5-15

..

•

Table 5-7. ~xception Vector Offset Table

Vector Offset Exception Type
(hex)

00000 Reserved

00100 System reset

00200 Machine check

00300 Data access

00400 Instruction access

00500 External interrupt

00600 Alignment

00700 Program

00800 Floating-point unavailable

00900 Decrementer

OOAOO I/O controller interface error

00800 Reserved. Note that other PowerPC processors may use this as a
vector for the trace exception.

OOCOO System call

00000 Reserved. Other PowerPC processors may use this as a vector for
the trace exception.

OOEOO Reserved. Other PowerPC processors may use this vector for
floating-point assist exceptions.

00E10-DOFFF Reserved

01000-01FFF Reserved. Other PowerPC processors may use this range for
implementation-specific exceptions.

02000 Run-mode exception (including the trace exception for the MPC601)

02001-D3FFF Reserved

5.4.1 Reset Exceptions (x'00100')
The system reset exception is a nonmaskable, asynchronous exception signaled to the
MPC601 either through the assertion of either of the reset signals (SRBSET or HRESET).
The assertion of the soft reset signal, SRBSET, as described in Section 8.2.9.4.2, "Soft

. Reset (SRBSE'I')-Input," causes the soft reset exception to be taken and the physical base
address of the handler is determined by the MSR[EP] bit. The assertion of the hard reset
signal, HRESEt as described in Section 8.2.9.4.1, "Hard Reset (HRESET)-Input,"
causes the hard reset exception to be taken and the physical address of the handler is always
x 'FFFO 0100'

5-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

5.4.1.1 Soft Reset
Soft reset exceptions are imprecise-they break the instruction pipeline to handle the
exception. As a result, the MPC601 does not support restarting the interrupted process;'
although it attempts to save the processor stat.e in order to perform diagnostic operations.
When a soft reset exception occurs, registers are set as shown in Table 5-8.

Table 5-8. Soft Reset Exception-Register Settings

Register Setting Description

SRRa Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR. Note that if the processor state is corrupted to the extent

that execution cannot be reliably restarted, SRR1[3a] is cleared.

MSR EE a SE a
PR a FE1 a I

FP1 a EP -
ME - IT a
FEa a DT a

When a soft reset exception is taken, instruction execution resumes at offset x'OOIOO' from
the physical base address indicated by MSR[EP].

Before returning to the main program, the exception handler should do the following:

I. SRRO and SRR 1 should be given the values used by the rfi instruction.

2. Execute rfi.

It is not guaranteed that execution is recoverable. Typically, the processor is recoverable in
a limited sense, if at all. This allows the use of diagnostic aids such as the ESP interface to
determine system problems. .

5.4.1.2 Hard Reset
This section describes the MPC601's reset state after performing a hard reset operation
(asserting HRESET as described in Section 8.2.904.1, "Hard Reset (HRESET)-lnput,").
Note that a hard reset operation should be performed on power-on to appropriately reset the
processor. Table 5-9 shows the state of the machine just before it fetches the first instruction
after a hard reset. Because of the setting of the MSR[EP] bit caused by a hard reset, the first
instruction is fetched from address x 'FFFO 0100' .

MOTOROLA Chapter 5. Exceptions 5-17

Table 5-9. Settings Caused by Hard Reset

Register Setting

GPRs All as

FPRs All as

FPSCR 00000000

Condition register All Os

Segment registers All Os

MSR 00001040

MQ 00000000

XER 00000000

RTCU 00000000

RTCL 000000003

Link register 00000000

CTR 00000000

DSISR 00000000

DAR 00000000

DEC 00000000

SDR1 00000000

SRRO 00000000

SRR1 00000000

SRGO 00000000

SRG1 00000000

SRG2 00000000

SRG3 00000000

EAR 00000000

PVR 00010001 1

BAT registers All as

HIDO 800100802

HID1 00000000

HID2 00000000

HID5 00000000

HID15 00000000

TLBs All as

Cache All as

5-18 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 5-9. Settings Caused by Hard Reset (Continued)

Register Setting

Tag directory All as. (However, the LRU
bits are initialized such
that each side of the
cache has a unique LRU
value.)

1 Early releases (001) of the MPC601 hardware set this
to x'0001 0000'. Other versions of silicon may be
different (see Section 2.3.3.10, "Processor Version
Register (PVR)" for setting information).
2 Master checkstop enable on, sequencer GPR self-test
checkstop invalid microcode instruction checkstop on.
3 Note that if external clock is connected to RTC for the
MPC601, then the RTCL, RTCU, and DEC can change
from their initial value of Os without receiving
instructions to load those registers.

The following is also true after a hard reset operation:

External checkstops are enabled.

The on-chip COP has given control of the PIs/pOs to the rest of the chip for
functional use.

Since the reset exception has data and instruction translation disabled (MSR[DT]
and MSR[lT] both cleared), the chip operates in direct address translation mode.
This implies that instruction fetches as well as loads and stores are cacheable.
(Operations that correspond to direct address translations are implicitly cacheable,
not write-through mode, and require coherency checking on the bus).

All internal arrays and registers are cleared during the hard reset process.

5.4.2 Machine Check Exception (x'00200')
The MPC601 conditionally initiates a machine-check exception after detecting the
assertion of the TEA signal on the MPC601 interface. The assertion of the TEA signal
indicates that a bus error occurred and the system terminates the current transaction. One
clock cycle after TEA is asserted, the data bus signals go to the high-impedance state;
however, data entering the aPR or the cache is not invalidated.

If the MSR[ME] bit is set, the exception is recognized and handled; otherwise, the MPC601
generates an internal checkstop condition. This may not lead to a true checkstop depending
upon the state of the various checkstop enable control bits in the HIDO register. These are
shown in Table 5-10.

The checkstop sources and enables register (HIDO) is a supervisor-level register that
defines enable and monitor bits for each of the checkstop sources in the MPC601. For
debugging, HIDO[EM] (bit 16) can be cleared to disable the machine-check checkstop
state. The HIDO register is described in Section 2.3.3.12.1, "Checkstop Sources and
Enables Register-HIDO."

MOTOROLA Chapter 5. Exceptions 5-19

•

In general, it is expected that the TEA signal would be used by a memory controller to
indicate a memory parity error or an uncorrectable memory ECC error. Note that the
resulting machine check exception is imprecise and has priority over any exceptions caused
by the instruction that generated the bus operation.

Machine check exceptions are enabled when MSR[ME]=I; this is described in
Section 5.4.2.1, "Machine Check Exception Enabled (MSR[ME] = 1)." If MSR[ME]=O
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in 5.4.2.2, "Checkstop State (MSR[ME] = 0)."

5.4.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 5-10.

Table 5-10. Machine Check Exception-Register Settings

Register Setting Description

SRRO Set to the address of the next instruction that would have been executed in the interrupted
instruction stream. Neither this instruction nor any others beyond it will have been executed. All
preceding instructions will have been completed.

SRR1 0-15 Cleared
16-31 Loaded from MSR[16-31]. Note that if the processor state is corrupted to the extent that

execution cannot be reliably restarted, SRR1 [30] is cleared.

MSR EE 0
PR 0
FP1 0
ME 0
Note that when a machine check exception is taken, the exception handler should set MSR[ME]
as soon as it is practical to handle another TEA assertion. Otherwise, subsequent TEA assertions
cause the processor to automatically enter the checkstop state.
FEO 0
SE 0
FE1 0
EP Value is not altered
IT 0
DT 0

The machine check exception is almost always unrecoverable in the sense that execution
cannot resume in the same context that existed before the exception. If the condition that
caused the machine check does not otherwise prevent continued execution, MSR[ME] is
set to allow the MPC601 to continue execution at the machine check exception vector
address, x '00200'. Typically this record does not allow earlier processes to resume;
however, the operating systems can then use the machine check exception handler to try to
identify and log the cause of the machine check condition.

When a machine check exception is taken, instruction execution resumes at offset x '00200'
from the physical base address indicated by MSR[EP].

5-20 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Before returning to the main program, the exception handler should do the following:

1. SRRO and SRR 1 should be given the values to be used by the rfi instruction.

2. Execute rfi.

5.4.2.2 Checkstop State (MSR[ME] = 0)
When a processor is in the checkstop state, instruction processing is suspended and
generally cannot be restarted without resetting the processor. The contents of all latches
(except any associated with the bus clock) are frozen within two cycles upon entering
checkstop state so that the state of the processor can be analyzed through the use of the ESP
interface as an aid in problem determination.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR]=O), or through an invalid translation. On such a system, for
example, execution of a Data Cache Block Set to Zero (dcbz) instruction that introduces a
block into the cache associated with a nonexistent physical address may delay the machine
check exception until an attempt is made to store that block to main memory.

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checkstop state is implementation-dependent.

5.4.3 Data Access Exception (x'00300')
A data access exception occurs when no higher priority exception exists and a data memory
access cannot be performed. The condition that caused the data access exception can be
determined by reading the DAE/source instruction service register (DSISR), a supervisor­
level SPR (SPR 18) that can be read by using the mfspr instruction. Bit settings are
provided in Table 5-11. Table 5-11 also indicates which memory element is saved to the
DAR. Data access exceptions can occur for any of the following reasons:

• The effective address cannot be translated. That is, there is a page fault for this
portion of the translation, so a data access exception must be taken to retrieve the
translation from a storage device such as a hard disk drive.

• The instruction is not supported for the type of memory addressed. Invalid
instructions are described in Section 3.1.1.1, "Invalid Instruction Forms." I/O
controller interface segments are described in Section 9.6, "I/O Controller Interface
Operation."

• The access violates memory protection. Access is not permitted by the key (Ks and
Ku) and PP bits, which are set in the segment register and PTE for page protection
and in the BATs for block protection.

• The execution of an eciwx or ecowx instruction is disallowed because the external
access register enable bit (EAR[ED is cleared.

MOTOROLA Chapter 5. Exceptions 5-21

..

These scenarios are common among all PowerPC processors. The following addition,al
scenarios can cause a data access exception in the MPC601 :

• An Iwarx, stwex., or Isebx instruction refers to a non-memory-forced I/O controller
interface segment (that is, when the SR[T] = 1 and BUID '# x '07F').

• An effective address matches the address in the data-address breakpoint register
(DABR) while in one of the appropriate compare modes. For additional information
on the DABR and the compare modes, refer to Section 2.3.3.12.4, "Data Address
Breakpoint Register (DABR)-HID5."

Data access exceptions can be generated by load/store instructions, and the cache control
instructions (debi, debz, debst, and debt).

Although the MPC601 does not generally support memory accesses that cross a page
boundary, load or store mUltiple as well as load or store string instructions that are word­
aligned and cross a page boundary are handled. In these cases, if the second page has a
translation error or protection violation associated with it, the MPC601 takes the data
access exception in the middle of the instruction. In this case, the data address register
(DAR) always points to the first byte address of the offending page.

If an stwex. instruction has an effective address for which a normal store operation would
cause a data access exception but the processor does not have the reservation from Iwarx,
the MPC601 determines whether a data access exception occurs as follows:

If the reservation bit is cleared before the stwex. instruction executes, that
instruction cannot generate an exception, regardless of whether the address
translation would have failed, page protection would have been violated, or the
address matches one in the DABR.

• A data access exception is taken if there is an address translation or page protection
error, or if the address hits in the DABR as long as the reservation bit is set when the
stwex. instruction begins execution. In particular, the exception is taken even if the
reservation bit is cleared after execution begins.

If the XER indicates that a load or store multiple instruction has a length of zero, a data
access exception does not occur, regardless of the effective address. The condition that
caused the exception is defined in the DSISR. These conditions also use the data address
register (DAR) as shown in Table 5-11.

Table 5-11 shows the register settings for data access exceptions.

5-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 5-11. Data Access Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that caused the exception.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR EE a PR a
FP1 a ME Value is not altered
FEO a SE a
FE1 a EP Value is not altered
IT a DT a

DSISR a Reserved on the MPC601. PowerPC architecture uses this bit for liD controller interface error
exceptions, which are vectored to x'OOAOO' on the MPC601.

1 Set if the translation of an attempted access is not found in the primary hash table entry group
(HTEG), or in the rehashed secondary HTEG, or in the range of a BAT register; otherwise
cleared.

2-3 Cleared
4 Set if a memory access is not permitted by the page or BAT protection mechanism; otherwise

cleared.
,

5 Set if the Iwarx, stwcx., or Iscbx instruction is attempted to liD controller interface space.
6 Set for a store operation and cleared for a load operation.
7-8 Cleared
9 Set if an EA matches the address in the DABR while in one of the three compare modes.
10 Set if the segment table search fails to find a translation for the EA, otherwise cleared.
11 Set if the instruction was an eciwx or ecowx and EAR [E) = O.
12-31 Cleared

DAR Set to the effective address of a memory element as described in the following list: . A byte in the first word accessed in the page that caused the data access exception, for a byte, half
word, or word memory access.
A byte in the first double word accessed in the page that caused the data access exception, for a
double-word memory access.

When a data access exception is taken, instruction execution resumes at offset x '00300'
from the physical base address indicated by MSR[EP].

The architecture permits certain instructions to be partially executed when they cause a data
access exception. These are as follows:

Load multiple or load string instructions-Some registers in the range of registers
to be loaded may have been loaded_

Store mUltiple or store string instructions-Some bytes of memory in the range
addressed may have been updated.

In the cases above, the questions of hmv many registers and how much memory is altered
are instruction- and boundary-dependent. However, memory protection is not violated.
Furthermore, if some of the data accessed is in I/O controller interface space (SR[T]=l),
and the instruction is not supported for I/O controller interface accesses, the locations in
I/O controller interface space are not accessed.

MOTOROLA Chapter 5. Exceptions 5-23

..

•

To preserve the ability to restart, partial execution is not allowed for non-multiple and non­
string integer load operations and the target register is not altered. For update forms, the
update register (rA) is not altered.

5.4.4 Instruction Access Exception (x'00400')
An instruction access exception occurs when no higher priority exception exists and an
attempt to fetch the next instruction to be executed cannot be performed for any of the
following reasons:

• The effective address cannot be translated. That is, there is a page fault for this
portion of the translation, so an instruction access exception must be taken to
retrieve the translation from a storage device such as a hard disk drive.

The fetch access is to an I/O controller interface segment that is not memory-forced.

The fetch access violates memory protection. Access is not permitted by the K and
PP bits, which are set in the segment register and PTE for page protection and in the
BATs for block protection.

An instruction fetch to an I/O controller interface segment while MSR[lT] is set causes an
instruction access exception on the MPC601. Register settings for instruction access
exceptions are shown in Table 5-12.

Table 5-12. Instruction Access Exception-Register Settings

Register Setting

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present (if the exception occurs on attempting to fetch a branch target,
SRRO is set to the branch target address).

SRR1 0 Cleared
1 Set if the translation of an attempted access is not found in the primary hash table entry group

(HTEG), or in the rehashed secondary HTEG, or in the range of an BAT register; otherwise
cleared.

2 Cleared
3 Set if the fetch access was to an liD controller interface segment (SRrr]=1); otherwise cleared.
4 Set if a memory access is not permitted by the page or BAT protection mechanism, described in

Chapter 6; otherwise cleared.
5-9 Cleared
10 Set if the segment table search fails to find a translation for the effective address; otherwise

cleared.
11-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR EE 0 SE 0
PR 0 FE1 0
FP1 0 EP Value is not altered
ME Value is not altered IT 0
FEO 0 DT 0

When an instruction access exception is taken, instruction execution resumes at offset
x'00400' from the physical base address indicated by MSR[EP].

5-24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

5.4.5 External Interrupt (x'00500')
An external interrupt is signaled to the MPC601 by the assertion of the TNT signal as
described in Section 8.2.9.1, "Interrupt (INT)-Input." The interrupt may be delayed by
other higher priority exceptions or if the MSR[EE] bit is cleared when the exception occurs.

After the pulse is detected, the MPC601 stops dispatching instructions and waits for
pending instructions to complete. Therefore, exceptions caused by instructions in progress
are taken before the external interrupt exception is taken. After all instructions complete,
the MPC601 takes the external interrupt exception.

The register settings for the external interrupt exception are shown in Table 5-13.

Table 5-13. External Interrupt-Register Settings

Register Setting Description

SRRa Set to the effective address of the instruction that the processor would have attempted to execute next
if no interrupt conditions were present.

SRRl 0-15 Cleared ,
16-31 Loaded from bits 16-31 of the MSR

MSR EE a SE a
PR a FEl a
FPl a EP Value is not altered
ME Value is not altered IT a
FEa a DT a

When an external interrupt exception is taken, instruction execution resumes at offset
x'00500' from the physical base address indicated by MSR[EP].

5.4.6 Alignment Exception (x'00600')
This section describes conditions that can cause alignment exceptions in the MPC601.
Similar to data access exceptions, alignment exceptions use the SRRO and SRR 1 to save
the machine state and the DSISR to determine the source of the exception.

The register settings for alignment exceptions are shown in Table 5-14.

MOTOROLA Chapter 5. Exceptions 5-25

III

--

Table 5-14. Alignment Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that caused the exception.

SRR1 0-15 Cleared

MSR

DSISR

16-31 Loaded from bits 16-31 of the MSR

EE 0 SE 0
PR 0 FE1 0
FP1 0 EP Value is not altered
ME Value is not altered IT 0
FEO 0 DT 0

0-11 Cleared
12-13 Cleared. (Note that these bits can be set by several 64-bit PowerPC

instructions that are not supported in the MPC601)
14 Cleared
15-16 For instructions that use register indirect with index addressing-set

to bits 29-30 of the instruction
For instructions that use register indirect with immediate index
addressing-cleared

17 For instructions that use register indirect with index addressing-Set
to bit 25 of the instruction
For instructions that use register indirect with immediate index
addressing- Set to bit 5 of the instruction

18-21 For instructions that use register indirect with index addressing-Set
to bits 21-24 of the instruction
For instructions that use register indirect with immediate index
addressing-set to bits 1-4 of the instruction

22-26 Set to bits 6-10 (source or destination) of the instruction. Undefined
for dcbz

27-31 Set to bits 11-15 of the instruction (rA)
Set to either bits 11-15 of the instruction or to any register number not
in the range of registers loaded by a valid form instruction, for Imw,
Iswi, and Iswx instructions. Otherwise undefined

Note that for load or store instructions that use register indirect with index
addressing, the DSISR can be set to the same value that would have
resulted if the corresponding instruction uses register indirect with immediate
index addressing had caused the exception. Similarly, for load or store
instructions that use register indirect with immediate index addressing,
DSISR can hold a value that would have resulted from an instruction that
uses register indirect with index addressing. For example, an unaligned Iwax
instruction that crosses a protection boundary would normally cause the
DSISR to be set to the following binary value:

000000000000 00 0 01 0101 ttttt ?????
The value ttttt refers to the destination and ????? indicates undefined bits.
However, this register may be set as if the instruction were Iwa, as follows:

000000000000 10 0 00 0 1101 ttttt ?????
If there is no corresponding instruction, no alternative value can be specified.

5.4.6.1 Integer Alignment Exceptions
The MPC601 is optimized for load and store operations that are aligned on natural
boundaries. Operations that are not naturally aligned may suffer performance degradation,
depending on the type of operation, the boundaries crossed, and the mode that the processor
is in during execution. More specifically, these operations may either cause an alignment

5-26 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

exception or they may cause the processor to break the memory access into multiple,
smaller accesses with respect to the cache and the memory subsystem.

The MPC601 can initiate alignment exception for the accesses as shown in Table 5-15. In
all of these cases, the appropriate range check is performed before the instruction begins
execution. As a result, if an alignment exception is taken, it is guaranteed that no portion of
the instruction has been executed.

Table 5-15. Access Types

MSR[DT] SR[T] SR[BUID] Access Type

0 0 x Direct translation access

x 1 Not x'07F' VO controller interface access

x 1 x'07F' Memory-forced I/O controller interface access

1 0 x Page-address translation access

5.4.6.1.1 Direct-Translation Access
A direct-translation access occurs when both MSR[DT] and SR[T] are cleared. If a
256-Mbyte boundary is crossed by any portion of the memory being accessed by an
instruction (including string/multiples), an alignment exception is taken.

5.4.6.1.2 1/0 Controller Interface Access
An I/O controller interface access occurs when a data access is initiated, SR[T] is set, and
SR[BUID] is not equal to x'07F'. In the MPC601 (but not for the general PowerPC
processor case), MSR[DT] is a don't care for this case. The following apply for I/O
controller interface accesses:

If a 256-Mbyte boundary will be crossed by any portion of the I/O controller
interface space accessed by an instruction (the entire string for strings/multiples), an
alignment exception is taken.

floating-point loads and stores to I/O controller interface segments always cause an
alignment exception, regardless of operand alignment.

• The Iwarx/stwcx./Iscbx instructions that map into an I/O controller interface
segment always cause a data access exception (not an alignment exception),
regardless of operand alignment.

Note that other I/O controller interface errors may generate an I/O controller interface error
exception, as described in Section 5.4.10, "I/O Controller Interface Error Exception
(x'OOAOO')."

5.4.6.1.3 Memory-Forced 1/0 Controller Interface Access
A memory-forced I/O controller interface access occurs when SR[T] is set, and SR[BUID]
is x'07F' in the MPC601 (not defined as part of the PowerPC architecture). MSR[DT] is a
don't care for this case.

MOTOROLA Chapter 5. Exceptions 5-27

..

..

If a 256-Mbyte boundary is crossed by any portion of the memory being accessed by an
instruction (including string/multiples), an alignment exception is taken.

Note that floating-point instructions and Iwarx, stwcx., and Iscbx instructions are handled
as the page- and block-address translation cases for the memory-forced I/O controller
interface segments. Memory-forced I/O controller interface operations do not cause special
cases of alignment or data access exceptions.

5.4.6.1.4 Page Address Translation Access
A page-address translation access occurs when MSR[DT] is set, SR[T] is cleared and there
is not a BTLB match. Note the following points:

• The following is true for all loads and stores except strings/multiples:

- An alignment exception is taken if the operand spans a 4-Kbyte boundary.

- Byte operands never cause an alignment exception.

- Half-word operands cause an alignment exception if the EA ends in x'FFF'.

- Word operands cause an alignment exception if the EA ends in x'FFD-FFF'.

- Double-word operands cause an alignment exception if the EA ends in x'FF9-
FFF'.

• The Iscbx instruction causes an alignment exception if any portion of the entire
string crosses into the next 4-Kbyte page of memory. This is taken regardless of the
starting address, even if the Iscbx operand starts on a word boundary.

• All other string/multiple instructions (except Iscbx) take alignment exceptions as
follows:

- If the string/multiple starts on a word boundary and a 256-Mbyte boundary is
crossed by any portion of the entire string/multiple, an alignment exception is
taken. Note that it must be a 256-Mbyte crossing-a simple 4-Kbyte crossing
does not cause an exception for a word-aligned string/multiple operation.

- If any portion of the string/multiple will cross into the next 4-Kbyte page of
memory, an alignment exception is taken.

• The dcsz instruction causes an alignment exception if the access is to a page or block
with the W (write-through) or I (cache-inhibit) bit set in the VTLB or BTLB,
respectively.

Note that the above summary indicates that a 256-Mbyte crossing always causes an
alignment exception. This includes accesses of all four types regardless of alignment. Of
course, non-string/multiple load and store operations can only cross this boundary if they
are not aligned.

Misaligned memory accesses that do not cause an alignment exception may not perfonn as
well as an aligned access of the same type. In general, the IV is designed to efficiently
handle memory access quantities of eight bytes or fewer that lie within a double-word
boundary. Internally, all integer memory access instructions that involve more than four

5-28 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

bytes of data are broken into multiple access of four bytes or fewer. Floating-point memory
access instructions always involve either four or eight bytes of data. Any memory access
that crosses a double-word boundary is further broken into two smaller accesses that do not
cross the double-word boundary. For multiple-word and string operations, the MPC601
does not force alignment to reduce the number of accesses.

The resulting performance degradation due to misaligned accesses depends on how well
each individual access behaves with respect to the memory hierarchy. At a minimum,
additional cache access cycles are required that can delay other processor resources from
using the cache. More dramatically, for an access to a noncacheable page, each discrete
access involves individual MPC601 bus operations that reduce the effective bandwidth of
that bus.

Finally, note that when the MPC601 is in page address translation mode, there is no special
handling for accesses that fall into BAT regions. If one of the 4-Kbyte crossing conditions
indicated above happens to be completely contained within a BAT register, the MPC601
still takes the alignment exception.

5.4.6.2 Floating-Point Alignment Exceptions
An alignment exception occurs when no higher priority exception exists and the MPC601
cannot perform a memory access for one of the following reasons:

• The operand of a floating-point load or store operation is in a non-memory-forced
I/O controller interface segment (SR[T]=l).

• The operand of a load or store crosses a 4-Kbyte boundary if MSR[DT] is set or if
the operand crosses a 256-Mbyte boundary if MSR[DT] is cleared.

5.4.6.3 Little-Endian Mode Alignment Exceptions
In little-endian mode, any operand that is not properly aligned (as described in
Section 2.4.6, "PowerPC Data Memory with LM Set"), causes an alignment exception.
Additionally, any attempted execution of the string/multiple instructions causes an
alignment exception.

5.4.6.4 Interpretation of the DSISR as Set by an Alignment Exception
For most alignment exceptions, an exception handler may be designed to emulate the
instruction that causes the exception. To do this, it needs the following characteristics of the
instruction:

• Load or store
• Length (half word, word, or double word)

• . String, multiple, or normal load/store

• Integer or floating-point

• Whether the instruction performs update

• Whether the instruction performs byte reversal

• Whether it is a dcbz instruction

MOTOROLA Chapter 5. Exceptions 5-29

..

•

The PowerPC architecture provides this information implicitly, by setting opcode bits in the
DSISR that identify the excepting instruction type. The exception handler does not need to
load the excepting instruction from memory. The mapping for all exception possibilities is
unique except for the few exceptions discussed below.

Table 5-16 shows the inverse mapping-how the DSISR bits identify the instruction that
caused the exception.

The alignment exception handler cannot distinguish a floating-point load or store that
causes an exception because it is misaligned, or because it addresses the I/O controller
interface space. However, this does not matter; in either case it is emulated with integer
instructions.

Table 5-16. DSISR(15-21) Settings to Determine Misaligned Instruction

DSISR[15-21] Instruction

0000000 Iwarx, Iwz, proprietary 1

0000010 stw

0000100 1hz

0000101 Iha

0000110 sth

0000111 Imw

0001000 11s

0001001 Ifd

0001010 stfs

0001011 stfd

001 0000 Iwzu

001 0010 stwu

0010100 Ihzu

0010101 Ihau

0010110 sthu

001 0111 stmw

001 1000 11su

001 1001 Ifdu

001 1010 stfsu

001 1011 stfdu

01 00101 Iwax

01 01000 Iswx

0101001 Iswi

5-30 Powerpe 601 RiSe Microprocessor User's Manual MOTOROLA

Table 5-16. DSISR(15-21) Settings to Determine Misaligned Instruction (Continued)

01 01010 stswx

0101011 stswi

01 1 0101 Iwaux

1000010 stwcx.

1001000 Iwbrx

1001010 stwbrx

1001100 Ihbrx

1001110 sthbrx

101 1111 dcbz

11 00000 Iwzx

1100010 stwx

1100100 Ihzx

1100101 Ihax

1100110 sthx

11 01000 Ifsx

1101001 Ifdx

1101010 stfsx

1101011 stfdx

11 1 0000 Iwzux

111 0010 stwux

111 0100 Ihzux

111 0101 Ihaux

111 0110 sthux

111 1000 Ifsux

11 1 1001 Ifdux

111 1010 stfsux

111 1011 stfdux

1 The instructions Iwz and Iwarx give the same DSISR bits (all zero). Sut if Iwarx causes an
alignment exception, it is an invalid form, so it need not be emulated in any precise way. It is
adequate for the alignment exception handler to simply emulate the instruction as if it were an
Iwz. It is important that the emulator use the address in the DAR, rather than computing it from
rAirS/D, because Iwz and Iwarx use different addressing modes.

MOTOROLA Chapter 5. Exceptions 5-31

5.4.7 Program Exception (x'00700')
A program exception occurs when no higher priority exception exists and one or more of
the following exception conditions, which correspond to bit settings in SRR 1, occur during
execution of an instruction:

• System floating-point enabled exception-A system floating-point enabled
exception is generated when the following condition is met:

(MSR[FEO] I MSR[FE1]) & FPSCR[FEX] is 1.

FPSCR[FEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of a "move to FPSCR" type instruction that
sets an exception bit when its corresponding enable bit is set. In the MPC601, all
floating-point enabled exceptions are handled in a precise manner. As a result, all
program exceptions taken on behalf of a floating-point enabled exception clear
SRR1[15] to indicate that the address in SRRO points to the instruction that caused
the exception. For more information, refer to Section 5.4.7.1, "Aoating-Point
Enabled Program Exceptions."

• Illegal instruction-An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields, or when execution of an
optional ipstruction not provided in the MPC601 is attempted (these do not include
those optional instructions, such as Instruction Cache Block Invalidate, icbi, that are
treated as no-ops).

• Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the MSR
register privileged bit, MSR[PR], is set. Some implementations may generate this
exception for mtspr or mfspr with an invalid SPR field if spro=1 and MSR[PR]=l.

• Trap-A trap type program exception is generated when any of the conditions
specified in a trap instruction is met. Trap instructions are described in Chapter 3,
"Addressing Modes and Instruction Set Summary."

• Illegal operations-The MPC601 takes illegal operation program exceptions for
unimplemented PowerPC instructions.

Note that instructions using an invalid instruction form do not take a program exception,
but instead cause results that are boundedly undefined. The register settings are shown in
Table 5-17.

5·32 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 5-17. Program Exception-Register Settings

Register Setting Description

SRRO Contains the effective address of the excepting instruction

SRR1 0-10 Cleared
11 Set for a floating-point enabled program exception; otherwise cleared.
12 Set for an illegal instruction program exception; otherwise cleared.
13 Set for a privileged instruction program exception; otherwise cleared.
14 Set for a trap program exception; otherwise cleared.
15 Cleared if SRRO contains the address of the instruction causing the exception, and set if SRRO

contains the address of a subsequent instruction.
16-31 Loaded from bits 16-31 of the MSR.
Note that only one of bits 11-14 can be set.

MSR EE 0 PR 0
FP1 0 ME Value is not altered
FEO 0 SE 0
FE1 0 EP Value is not altered
IT 0 DT 0

When a program exception is taken, instruction execution resumes at offset x '00700' from
the physical base address indicated by MSR[EP].

5.4.7.1 Floating-Point Enabled Program Exceptions
In the MPC601, floating-point exceptions are signaled by condition bits set in the floating­
point status and control register (FPSCR). They can cause the system floating-point enabled
exception error handler to be invoked. All floating-point exceptions are handled precisely.
The FPSCR is shown in Figure 5-5.

FPSCR

VXIDI -------. ...------ VXZDZ

.....----- Reserved

..----- VXSOFT

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19202122232425262728293031

Figure 5-5. Floating-Point Status and Control Register

A listing of FPSCR bit settings is shown in Table 5-18.

MOTOROLA Chapter 5. Exceptions 5-33

..

Table 5-18. FPSCR Bit Settings

Bit(s) Description

0 Floating-point exception summary (FX). Every floating-point instruction implicitly sets FPSCR[FX] if that
instruction causes any of the floating-point exception bits in the FPSCR to transition from 0 to 1. The
mcrfs instruction implicitly clears FPSCR[FX] if the FPSCR field containing FPSCRFX is copied. The
mtfsf, mtfsfl, mtfsbO, and mtfsb1 instructions can set or clear FPSCR[FX] explicitly. This is a sticky bit.

1 Floating-point enabled exception summary (FEX). This bit signals the occurrence of any of the enabled
exception conditions. It is the logical OR of all the floating-point exception bits masked with their

• respective enables. The mcrfs instruction implicitly clears FPSCR[FEX] if the result of the logical OR
described above becomes zero. The mtfsf, mtfsfi, mtfsbO, and mtfsb1 instructions cannot set or clear
FPSCR[FEX] explicitly. This is not a sticky bit.

2 Floating-point invalid operation exception summary (VX). This bit signals the occurrence of any invalid
operation exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs implicitly
clears FPSCR[VX] if the result of the logical OR described above becomes zero. The mtfsf, mtfsfi,
mtfsbO, and mtfsb1 instructions cannot set or clear FPSCR[VX] explicitly. This is not a sticky bit.

3 Floating-point overflow exception (OX). This is a sticky bit.

4 Floating-point underflow exception (UX). This is a sticky bit.

5 Floating-point zero divide exception (ZX). This is a sticky bit.

6 Floating-point inexact exception (XX). This is a sticky bit.

7 Floating-point invalid operation exception for SNaN (VXSNAN). This is a sticky bit.

8 Floating-point invalid operation exception for 00-00 (VXISI). This is a sticky bit.

9 Floating-point Invalid operation exception for 00/00 (VXIDI). This is a sticky bit.

10 Floating-point invalid operation exception for 0/0 (VXZDZ). This is a sticky bit.

11 Floating-point invalid operation exception for 00*0 (VXIMZ). This is a sticky bit.

12 Floating-point invalid operation exception for invalid compare (VXVC). This is a sticky bit.

13 Floating-point fraction rounded (FR). The last floating-point instruction that potentially rounded the
intermediate result incremented the fraction.

14 Floating-point fraction inexact (FI). The last floating-point instruction that potentially rounded the
intermediate result produced an inexact fraction or a disabled exponent overflow.

15-19 Floating-point result flags (FPRF). This field is based on the value placed into the target register even if
that value is undefined. Refer to Table 2-2 for specific bit settings.
15 Floating-point result class descriptor (C). Floating-point instructions other than the compare

instructions may set this bit with the FPCC bits, to indicate the class of the result.
16-19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of

the FPCC bits to one and the other three FPCC bits to zero. Other floating-point instructions
may set the FPCC bits with the C bit, to indicate the class of the result. Note that in this case the
high-order three bits of the FPCC retain their relational significance indicating that the value is
less than, greater than, or equal to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or »
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)

20 Reserved

5-34 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 5-18. FPSCR Bit Settings (Continued)

Bit(s) Description

21 Floating-point invalid operation exception for software request (VXSOFT). This bit can be altered only by
the mcrfs, mtfsfl, mtfsf, mtfsbO, or mtfsb1 instructions. The purpose of VXSOFT is to allow software to
cause an invalid operation condition for a condition that is not necessarily associated with the execution of
a floating-point instruction. For example, it might be set by a program that computes a square root if the
source operand is negative. This is a sticky bit.

22 Floating-point invalid operation exception for invalid square root (VXSQRT). This is a sticky bit. This
guarantees that software can simulate fsqrt and frsqrte, and to provide a consistent interface to handle
exceptions caused by square-root operations.

23 Floating-point invalid operation exception for invalid integer convert (VXCVI). This is a sticky bit. See
Section 5.4.7.2, "Invalid Operation Exception Conditions."

24 Floating-point invalid operation exception enable (VE)

25 Floating-point overflow exception enable (OE)

26 Floating-point underflow exception enable (UE). This bit should not be used to determine whether
de normalization should be performed on floating-point stores

27 Floating-point zero divide exception enable (ZE)

28 Floating-point inexact exception enable (XE)

29 Reserved. This bit may be implemented as the non-IEEE mode bit (NI) in other PowerPC implementations.

30-31 Floating-point rounding control (RN).
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward -infinity

The following conditions that can cause program exceptions are detected by the processor.
These conditions may occur during execution of floating-point arithmetic instructions. The
corresponding bits set in the FPSCR are indicated in parentheses.

Invalid floating-point operation exception condition (VX)

- SNaN condition (VXSNAN)

- Infinity-infinity condition (VXISI)

- Infinity/infinity condition (VXIDI)

- Zero/zero condition (VXZDZ)

- Infinity*zero condition (VXIMZ)

- Illegal compare condition (VXVC)

These exception conditions are described in Section 5.4.7.2, "Invalid Operation
Exception Conditions,"

Software request condition (VXSOFT). These exception conditions are described in
Section 5.4.7.2, "Invalid Operation Exception Conditions."

Illegal integer convert condition (VXCVI). These exception conditions are
described in Section 5.4.7.2, "Invalid Operation Exception Conditions."

MOTOROLA Chapter 5. Exceptions 5-35

• Zero divide exception condition (ZX). These exception conditions are described in
Section 5.4.7.3, "Zero Divide Exception Condition."

• Overflow Exception Condition (OX). These exception conditions are described in
Section 5.4.7.4, "Overflow Exception Condition."

Underflow Exception Condition (UX). These exception conditions are described in
Section 5.4.7.5, "Underflow Exception Condition."

Inexact Exception Condition (XX). These exception conditions are described in
Section 5.4.7.6, "Inexact Exception Condition."

Each floating-point exception condition and each category of illegal floating-point
operation exception condition, has a corresponding exception bit in the FPSCR. In addition,
each floating-point exception has a corresponding enable bit in the FPSCR. The exception
bit indicates the occurrence of the corresponding condition. If a floating-point exception
occurs, the corresponding enable bit governs the result produced by the instruction and, in
conjunction with bits FEO and FE1, whether and how the· system floating-point enabled
exception error handler is invoked. (The "enabling" specified by the enable bit is of
invoking the system error handler, not of permitting the exception condition to occur. The
occurrence of an exception condition depends only on the instruction and its inputs, not on
the setting of any control bits.)

The floating-point exception summary bit (FX) in the FPSCR is set when any of the
exception condition bits transitions from a zero to a one or when explicitly set by software.
The floating-point enabled exception summary bit (FEX) in the FPSCR is set when any of
the exception condition bits is set and the exception is enabled (enable bit is one).

A single instruction may set more than one exception condition bit in the following cases:

• The inexact exception condition bit may be set with overflow exception condition.

• The inexact exception condition bit may be set with underflow exception condition.

• The illegal floating-point operation exception condition bit (SNaN) may be set with
illegal floating-point operation exception condition (00*0) for multiply-add
instructions.

• The illegal operation exception condition bit (SNaN) may be set with illegal
floating-point operation exception condition (illegal compare) for compare ordered
instructions.

• The illegal floating-point operation exception condition bit (SNaN) may be set with
illegal floating-point operation exception condition (illegal integer convert) for
convert to integer instructions.

When an exception occurs, the instruction execution may be suppressed or a result may be
delivered, depending on the exception condition.

5-36 PowerPe 601 RiSe Microprocessor User's Manual MOTOROLA

Instruction execution is suppressed for the following kinds of exception conditions, so that
there is no possibility that one of the operands is lost:

• Enabled illegal floating-point operation

• Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written to the
destination specified by the instruction causing the exception. The result may be a different
value for the enabled and disabled conditions for some of these exception conditions. The
kinds of exception conditions that deliver a result are the following:

• Disabled illegal floating-point operation

• Disabled zero divide

• Disabled overflow

• Disabled underflow

• Disabled inexact

• Enabled overflow

• Enabled underflow
• Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the
action taken when they are detected.

The IEEE standard specifies the handling of exception conditions in terms of traps and trap
handlers. In the PowerPC architecture, setting an FPSCR exception enable bit causes
generation of the result value specified in the IEEE standard for the trap enabled case-the
expectation is that the exception is detected by software, which will revise the result. An
FPSCR exception enable bit of 0 causes generation of the default result value specified for
the trap disabled (or no trap occurs or trap is not implemented) case-the expectation is that
the exception will not be detected by software, which will simply use the default result. The
result to be delivered in each case for each exception is described in the following sections.

The IEEE default behavior when an exception occurs, which is to generate a default value
and not to notify software, is obtained by clearing all FPSCR exception enable bits and
using ignore exceptions mode (see Table 5-19). In this case the system floating-point
enabled exception error handler is not invoked, even if floating-point exceptions occur. If
necessary, software can inspect the FPSCR exception bits to determine whether exceptions
have occurred.

If the program exception handler notifies software that a given exception condition has
occurred, the corresponding FPSCR exception enable bit must b~ set and a mode other than
ignore exceptions mode must be used. In this case the system floating-point enabled
exception error handler is invoked if an enabled floating-point exception condition occurs.

Whether and how the system floating-point enabled exception error handler is invoked if
an enabled floating-point exception occurs is controlled by MSR bits FEO and FEI as

MOTOROLA Chapter 5. Exceptions 5-37

shown in Table 5-19. (The system floating-point enabled exception error handler is never
invoked because of a disabled floating-point exception.)

Table 5-19. MSR[FEO] and MSR[FE1] Bit Settings

FEO FE1 Description

0 0 Ignore exceptions mode-Floating-point exceptions do not cause the program exception error
handler to be invoked.

0 1 Imprecise nonrecoverable mode-This mode is not applicable to the MPC601. FEO and FE1 or
ORed, so setting either bit results in running the processor in precise mode. Note that in PowerPC
processors that support this mode, the system floating-point enabled exception error handler is
invoked at some point at or beyond the instruction that caused the enabled exception. The state of
the processor may include conditions and data affected by the exception (that is, hazards are not
avoided). It may not be possible to identify the excepting instruction or the data that caused the
exception (that is, the data is not recoverable).

1 0 Imprecise recoverable mode-This mode is not applicable to the MPC601. FEO and FE1 or ORed, so
setting either bit results in running the processor in precise mode. Note that in PowerPC processors
that support this mode, the system floating-point enabled exception error handler is invoked at some
point at or beyond the instruction that caused the enabled exception. Sufficient information is
provided to the system floating-point enabled exception error handler that it can identify the excepting
instruction and the operands, and correct the result. All hazards caused by the exception are avoided
(for example, use of the data that would have been produced by the excepting instruction).

1 1 Precise mode-The system floating-point enabled exception error handler is invoked precisely at the
instruction that caused the enabled exception.

Note that in the MPC601, FEO and FEI are ORed; therefore, unless both FEO and FEI are
cleared, the MPC601 operates in precise mode. Whether a floating-point result is stored and
what value is stored is determined by the FPSCR exception enable bits, as described in
subsequent sections, and are not affected by any MSR bit settings.

Whenever the system floating-point enabled exception error handler is invoked, the
microprocessor ensures that all instructions logically residing before the excepting
instruction have completed, and no instruction after that instruction has been executed.

If exceptions are ignored, an FPSCR instruction can be used to force any exceptions, due
to instructions initiated before the FPSCR instruction, to be recorded in the FPSCR. A sync
instruction can also be used to force exceptions, but is likely to degrade performance more
than an FPSCR instruction.

5-38 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

For the best performance across the widest range of implementations, the following
guidelines should be considered:

• If the IEEE default results are acceptable to the application, FEO and FE 1 should be
cleared (ignore exceptions mode). All FPSCR exception enable bits should be
cleared.

• Ignore exceptions mode should not, in general~ be used when any FPSCR exception
enable bits are set.

• Precise mode may degrade performance in some implementations, perhaps
substantially, and therefore should be used only for debugging and other specialized
applications.

5.4.7.2 Invalid Operation Exception Conditions
An invalid operation exception occurs when an operand is invalid for the specified
operation. The invalid operations are as follows:

• Any operation except load, store, move, select, or mtfsf on a signaling NaN (SNaN)

• For add or subtract operations, magnitude subtraction of infinities (00-00)

• Division of infinity by infinity (00/00)

• Division of zero by zero (0/0)

• Multiplication of infinity by zero (00*0)

• Ordered comparison involving a NaN (invalid compare)

• Square root or reciprocal square root of a negative, non-zero number (invalid square
root)

• Integer convert involving a number that is too large to be represented in the format,
an infinity, or a NaN (invalid integer convert)

FPSCR[VXSOFf] allows software to cause an invalid operation exception for a condition
that is not necessarily associated with the execution of a floating-point instruction. For
example, it might be set by a program that computes a square root if the source operand is
negative. This facilitates the emulation of PowerPC instructions not implemented in the
MPC601.

MOTOROLA Chapter 5. Exceptions 5-39

5.4.7.2.1 Action for Invalid Operation Exception Conditions
The action to be taken depends on the setting of the invalid operation exception enable bit
of the FPSCR. When invalid operation exception is enabled (FPSCR[VE]=l) and invalid
operation occurs or software explicitly requests the exception, the following actions are
taken:

• One or two invalid operation exceptions is set
FPSCR[VXSNAN](if SNaN)
FPSCR[VXISI](if 00-00)
FPSCR[VXI D I] (if 00/00)
FPSCR[VXZDZ] (if 0/0)
FPSCR[VXIMZ](if 00*0)
FPSCR[VXVC](if invalid comparison)
FPSCR[VXSOFf] (if software request)
FPSCR[VXCVI) (if invalid integer convert)

• If the operation is an arithmetic or convert-to-integer operation,
the target FPR is unchanged
FPSCR[FR FI] are cleared
FPSCR[FPRF] is unchanged

• If the operation is a compare,
FPSCR[FR FI C] are unchanged
FPSCR[FPCC] is set to reflect unordered

• If software explicitly requests the exception,
FPSCR[FR FI FPRF] are as set by the mtfsfi, mtfsf, or mtfsbl instruction

When invalid operation exception condition is disabled (FPSCRVE=O) and invalid
operation occurs or software explicitly requests the exception, the following actions are
taken:

• One or two invalid operation exception condition bits is set
FPSCR[VXSNAN](if SNaN)
FPSCR[VXISI](if 00-00)
FPSCR[VXIDI](if 00/00)
FPSCR[VXZDZ] (if 0/0)
FPSCR[VXIMZ](if 00*0)
FPSCR[VXVC](if invalid comparison)
FPSCR[VXSOFT](if software request)
FPSCR[VXCVI](if invalid integer convert)

• If the operation is an arithmetic operation, the target FPR is set to a quiet NaN
FPSCR[FR FI] are cleared
FPSCR[FPRF] is set to indicate the class of the result (quiet NaN)

5-40 PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

• If the operation is a convert to 32-bit integer operation, the target FPR is set as
follows:
FRT[O-31] = undefined
FRT[32-63] = most negative 32-bit integer FPSCR[FR FI] are cleared
FPSCR[FPRF] is undefined

• If the operation is a convert to 64-bit integer operation, the target FPR is set as
follows:
FRT[O-63] = most negative 64-bit integer
FPSCR[FR FI] are cleared
FPSCR[FPRF] is undefined

• If the operation is a compare,
FPSCRpR PI C are unchanged
FPSCR[FPCC] is set to reflect unordered

• If software explicitly requests the exception,
FPSCR[FR FI FPRF] are as set by the mtfsfi, mtfsf, or mtfsbl instruction

5.4.7.3 Zero Divide Exception Condition
A zero divide exception condition occurs when a divide instruction is executed with a zero
divisor value and a finite, non-zero dividend value.

The name is a misnomer used for historical reasons. The proper name for this exception
condition should be exact infinite result from finite operands exception condition
corresponding to a mathematical pole.

5.4.7.3.1 Action for Zero Divide Exception Condition
The action to be taken depends on the setting of the zero divide exception condition enable
bit of the FPSCR. When the zero divide exception condition is enabled (FPSCR[ZE]= I)
and a zero divide condition occurs, the following actions are taken:

• Zero divide exception condition bit is set
FPSCR[ZX] = I

• The target FPR is unchanged

• FPSCR[FR FI] are cleared

• FPSCR[FPRF] is unchanged

When zero divide exception condition is disabled (FPSCR[ZE]=O) and zero divide occurs,
the following actions are taken:

• Zero divide exception condition bit is set
FPSCR[ZX] = I

• The target FPR is set to a ±infinity, where the sign is determined by the
XOR of the signs of the operands

FPSCR[FR FI] are cleared

• FPSCR[FPRF] is set to indicate the class and sign of the result (±infinity)

MOTOROLA Chapter 5. Exceptions 5-41

5.4.7.4 Overflow Exception Condition
Overfl ow occurs w~en the magnitude of what would have been the rounded result if the
exponent range were unbounded exceeds that of the largest finite number of the specified
result precision.

5.4.7.4.1 Action for Overflow Exception Condition
The action to be taken depends on the setting of the overflow exception condition enable
bit of the FPSCR. When the overflow exception condition is enabled (FPSCR[OE]=l) and
an exponent overflow condition occurs, the following actions are taken:

• Overflow exception condition bit is set
FPSCR[OX] = 1

• For double-precision arithmetic instructions, the exponent of the normalized
intermediate result is adjusted by subtracting 1536

• For single-precision arithmetic instructions and the floating round to single­
precision instruction, theexponent of the normalized intermediate result is adjusted
by subtracting 192

• The adjusted rounded result ~s placed into the target FPR

• FPSCR[FPRF] is set to indicate the class and sign of the result (±normal number)

When the overflow exception condition is disabled (FPSCR[OE]=O) and an overflow
condition occurs, the following actions are taken:

• Overflow exception condition bit is set
FPSCR[OX] = 1.

• Inexact exception condition bit is set
FPSCR[XX] = 1

• The result is determined by the rounding mode (FPSCR[RN]) and the sign of the
intermediate result as follows:

5-42

- Round to nearest
Store ± infinity, where the sign is the sign of the intermediate result

- Round toward zero
Store the format's largest finite number with the sign of the intermediate result

- Round toward +infinity
For negative over~ows, store the format's most negative finite number; for
positive overflows, store +infinity

- Round toward -infinity
For negative overflows, store -infinity; for positive overflows, store the format's
largest finite number

PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

• The result is placed into the target FPR

• FPSCR[FR FI] are cleared

• FPSCR[FPRF] is set to indicate the class and sign of the result (±infinity
or ±normal number)

5.4.7.5 Underflow Exception Condition
The underflow exception condition is defined separately for the enabled and disabled states:

• Enabled-Underflow occurs when the intermediate result is "Tiny."

• Disabled-Underflow occurs when the intermediate result is "Tiny" and there is
"Loss of Accuracy."

A "Tiny" result is detected before rounding, when a non-zero result value computed as
though the exponent range were unbounded would be less in magnitude than the smallest
nonnalized number.

If the intennediate result is "tiny" and the underflow exception condition enable bit is
cleared (FPSCR[UE]=O), the intennediate result is denormalized (see Section 2.4.9.4,
"Normalization and Denonnalization") and rounded (see Section 2.4.9.6, "Rounding").

"Loss of Accuracy" is detected when the delivered result value differs from what would
have been computed were both the exponent range and precision unbounded.

5.4.7.5.1 Action for Underflow Exception Condition
The action to be taken depends on the setting of the underflow exception condition enable
bit of the FPSCR.

When the underflow exception condition is enabled (FPSCR[UE]= 1) and an exponent
underflow condition occurs, the following actions are taken:

• Underflow exception condition bit is set
FPSCR[UX] = 1

• enable For double-precision arithmetic and conversion instructions, the exponent of
the normalized intennediate result is adjusted by adding 1536

• For single-precision arithmetic instructions and the floating round to single­
precision instruction, the exponent of the nonnalized intennediate result is adjusted
by adding 192

• The adjusted rounded result is placed into the target FPR

• FPSCR[FPRF] is set to indicate the class and sign of the result (±normalized
number)

The FR and FI bits in the FPSCR allow the system floating-point enabled exception error .
handler, when invoked because of an underflow exception condition, to simulate a trap
disabled environment. That is, the FR and FI bits allow the system floating-point enabled
exception error handler to unround the result, thus allowing the result to be denonnalized.

MOTOROLA Chapter 5. Exceptions 5-43

..

III

When the underflow exception condition is disabled (FPSCR[UE]=O) and an underflow
condition occurs, the following actions are taken:

• Underflow exception condition enable bit is set
FPSCR[UX] = 1

• The rounded result is placed into the target FPR

• FPSCR[FPRF] is set to indicate the class and sign of the result
(±denormalized number or ±Zero)

5.4.7.6 Inexact Exception Condition
The inexact exception condition occurs when one of two conditions occur during rounding:

• The rounded result differs from the intermediate result assuming the intermediate
result exponent range and precision to be unbounded.

• The rounded result overflows and overflow exception condition is disabled.

5.4.7.6.1 Action for Inexact Exception Condition
The action to be taken does not depend on the setting of the inexact exception condition
enable bit of the FPSCR.

When the inexact exception condition occurs, the following actions are taken:

• Inexact exception condition enable bit in the FPSCR is set
FPSCR[XX] = 1

• The rounded or overflowed result is placed into the target FPR

• FPSCR[FPRF] is set to indicate the class and sign of the result

In other PowerPC implementations, enabling inexact exception conditions may have
greater latency than enabling other types of floating-point exception condition.

5.4.8 Floating-Point Unavailable Exception (x'00800')
A floating-point unavailable exception occurs when no higher priority exception exists, an
attempt is made to execute a floating-point instruction (including floating-point load, store,
and move instructions), and the floating-point available bit in the MSR is disabled,
(MSR[FP]=O).

The register settings for floating-point unavailable exceptions are shown in Table 5-20.

5-44 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 5-20. Floating-Point Unavailable Exception-Register Settings

Register Setting Description

SRRa Set to the effective address of the instruction that caused the exception.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR EE a SE a
PR a FE1 a
FP1 a EP Value is not altered
ME Value is not altered IT a
FEa a DT a

When a floating-point unavailable exception is taken, instruction execution resumes at
offset x'00800' from the physical base address indicated by MSR[EP].

5.4.9 Decrementer Exception (x'00900')
A decrementer exception occurs when no higher priority exception exists, the decrementer
register has completed decrementing, and MSR[EE]= 1. The decrementer exception request
is canceled when the exception is handled. The decrementer register counts down, causing
an exception (unless masked) when passing through zero. The decrementer implementation
meets the following requirements:

• The operation of the RTC and the decrementer are coherent; that is, the counters are
driven by the same fundamental time base (7.8125 MHz).

Loading a OPR from the decrementer does not affect the decrementer.

Storing a OPR value to the decrementer replaces the value in the decrementer with
the value in the OPR.

Whenever bit 0 of the decrementer changes from 0 to 1, an exception request is
signaled. If multiple decrementer exception requests are received before the first can
be reported, only one exception is reported. The occurrence of a decrementer
exception cancels the request.

If the decrementer is altered by software and if bit 0 is changed from 0 to 1, an
interrupt request is signaled.

The register settings for the decrementer exception are shown in Table 5-21.

MOTOROLA Chapter 5. Exceptions 5-45

•

Table 5-21. Decrementer Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR EE 0 SE 0
PR 0 FE1 0
FP1 0 EP Value is not altered
ME Value is not altered IT 0
FEO 0 DT 0

When a decrementer exception is taken, instruction execution resumes at offset x'00900'
from the physical base address indicated by MSR[EP].

5.4.10 I/O Controller Interface Error Exception (x'OOAOO')
An I/O controller interface error exception occurs when no higher-order priority exists and
a load or store corresponding to an I/O controller interface segment generates an error. I/O
controller interface operations are described in Section 9.6, "I/O Controller Interface
Operation."

This exception is taken only when an operation to an I/O controller interface segment fails
(such a failure is indicated to the MPC601 by a particular bus reply packet). If an I/O
controller interface error exception occurs, the SRRO contains the address of the instruction
following the excepting instruction. Note that illegal accesses to I/O controller interface
space cause alignment or data access exceptions. For information refer to Section 5.4.6.1.2,
"I/O Controller Interface Access." Note that this exception is specific to the MPC601. The
PowerPC architecture treats I/O controller interface exceptions as data access exceptions
(x'(X)300').

The register settings for I/O controller interface error exceptions are shown in Table 5-22.

5-46 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 5-22. 1/0 Controller Interface Error Exception-Register Settings

Register Setting Description

SRRa Set to the effective address of the instruction following the instruction that caused the instruction. The
addressed instruction has not been executed. SRRa contains the EA of the instruction following the
load or store that caused the exception.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR EE a SE a
PR 0 FE1 a
FP1 0 EP Value is not altered
ME Value is not altered IT a
FEO 0 DT a

DAR Set to the EA generated for the access that caused the exception

When an I/O controller interface error exception is taken, instruction execution resumes at
offset x'OOAOO' from the physical base address indicated by MSR[EP].

5.4.11 System Call Exception (x'OOCOO')
A system call exception occurs when a System Call (sc) instruction is executed. The
effective address of the instruction following the sc instruction is placed into SRRO. Bits
16-31 of the MSR are placed into bits 16-31 of SRRl, and bits 0-15 of SRRI are set to
undefined values. Then a system call exception is generated.

The system call exception causes the next instruction to be fetched from offset x 'OOCOO'
from the physical base address indicated by the new setting of MSR[IP]. This instruction is
context synchronizing. That is, when a system call exception occurs, instruction dispatch is
halted and the following synchronization is performed:

1. The exception mechanism waits for all instructions in execution to complete to a
point where they report all exceptions they will cause.

2. The processor ensures that all instructions in execution complete in the context in
which they began execution.

3. Instructions dispatched after the exception is processed are fetched and executed in
the context established by the exception mechanism.

Register settings are shown in Table 5-23.

MOTOROLA Chapter 5. Exceptions 5-47

..

..

Table 5-23. System Call Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the Instruction following the System Call instruction

SRR1 0-15 Loaded from bits 16-31 of the instruction
16-31 Loaded from bits 16-31 of the MSR

MSR EE 0 SE 0
PRo 0 FE1 0
FP1 0 EP Value is not altered
ME Value is not altered IT 0
FEO 0 DT 0

When a system call exception is taken, instruction execution resumes at offset x'OOCOO'
from the physical base address indicated by MSR[EP].

5.4.12 Run Mode Exception (x'02000')
The MPC60l defines an implementation-specific exception called the run mode exception.
This exception is taken by the MPC60l under the following circumstances:

Instruction address compare

Branch target address compare

Trace mode (MSR[SE] is set)-Note that other PowerPC processors implement a
separate trace exception at vector x '()()D()(), .

Note that this exception may not be implemented by other PowerPC processors, and that
this exceptio.n can be enabled and disabled using bits 8 and 9 in HIDl; the exception is
enabled when HIDl [8,9] = b'Ol'. When this exception occurs, the registers are set as
indicated in Table 5-24.

Table 5-24. Run Mode Exception-Register Settings

Register Setting

SRRO Set to the address of the instruction that causes the run mode exception

SRR1 Loaded from bits 0-31 of the MSR.

MSR EE 0 SE 0
PR 0 FE1 0
FP1 0 EP Value is not altered
ME Value is not altered IT 0
FEO 0 DT 0

When a run mode exception is taken, instruction execution resumes as offset x'()2()()()' from
the base address indicated by MSR[EP].

5-48 PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

Chapter 6
Memory Management Unit
This chapter describes the MPC601 's memory management unit (MMU). The primary
functions of the MMU are to translate logical (effective) addresses to physical addresses
for memory accesses, I/O accesses (most I/O accesses are assumed to be memory-mapped),
and I/O controller interface accesses, and to provide access protection on a block or page
basis.

There are three types of accesses generated by the MPC601 that require address translation:
instruction accesses, data accesses to memory generated by load and store instructions, and
I/O controller interface accesses generated by load and store instructions.

The MPC601 MMU provides 4-Gbytes of logical address space accessible to supervisor
and user programs with a 4-Kbyte page size and 256-Mbyte segment size. Block sizes
range from 128 Kbyte to 8 Mbyte and are software selectable. In addition, the MPC601
uses an interim 52-bit virtual address and hashed page tables in the generation of 32-bit
physical addresses.

The MMU contains three translation lookaside buffers (TLBs). There is a 256-entry, two­
way set-associative unified (instruction and data address) TLB (UTLB) for storing
recently-used address translations, and a four-entry fully-associative first-level instruction
TLB (lTLB) that is used only by instruction accesses for storing recently used instruction
address translations. Additionally, there is a four-entry block TLB (BTLB) that stores the
available block address translations (for instruction or data addresses). BTLB entries are
implemented as the block address translation (BAT) registers that are accessible as
supervisor special-purpose registers (SPRs). UTLB entries are generated automatically by
the MPC601 hardware via a search of the page tables in memory. The MPC601 maintains
all the segment information on-chip in 16 supervisor-level segment registers.

This chapter describes the MMU address translation mechanisms, the MMU conditions
that cause MPC601 exceptions, the instructions used to program the MMU, and the
corresponding registers.

The MPC601 MMU relies on the exception processing mechanism for the implementation
of the paged virtual memory environment and for enforcing protection of designated
memory areas. Exception processing is described in Chapter 5, "Exceptions."

MOTOROLA Chapter 6. Memory Management Unit 6-1

..

Section 2.3.1, "Machine State Register (MSR)," describes the MSR of the MPC601, which
controls some of the critical functionality of the MMU.

The operation of the MPC601MMU conforms to the operating environment defined by the
PowerPC architecture for 32-bit implementations in most respects. However, the number
and format of the BAT registers is different, as is the available range of block sizes. In
addition, the PowerPC architecture defines the concept of guarded memory that is not
implemented in the MPC601. Also, some MMU instructions of the PowerPC architecture
(including tlbsync) are not implemented in the MPC601.

Note that the memory-forced I/O controller interface functionality described for the
MPC601 is not defined as part of the PowerPC architecture, and will not be present in other
PowerPC processors. Also note that the hardware implementation details of the MPC601
MMU are not contained in the architectural definition of PowerPC processors and are
invisible to the programming model.

6.1 MMU Overview
The MPC601 MMU and exception model support demand paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand paged implies that individual pages are loaded into physical memory
from backing storage only when they are first accessed by an executing program.

The memory management model of the MPC601 includes the concept of a virtual address
that is not only larger than that of the maximum physical memory allowed but a virtual
address space that is also larger than the logical address space. Each logical address
generated by the MPC601 is 32 bits wide. In the address translation process, a logical
address is converted to a 52-bit virtual address (as governed by the operating system) and
then translated back to a 32-bit physical address.

The operating system is responsible for managing the system's physical memory resources.
Consequently, the operating system programs the MMU registers (segment registers, BAT
registers, and table search descriptor register 1 (SDR1» and sets up the page tables in
memory appropriately. The MMU then assists the operating system by managing page
status and maintaining the recently-used address translations on-chip for quick access.

The MPC601 logical address spaces are divided into 256-Mbyte regions called segments
or other large regions called blocks (128 Kbyte-8 Mbyte). Segments that correspond to

.. memory or memory-mapped devices can be further subdivided into smaller regions called
pages (4 Kbyte). For each block or page, the operating system creates an address descriptor
(page table entry (PTE) or BTLB entry) that the MMU uses to generate the physical address
and the protection and other access control infonnation when an address within the block
or page is accessed. Address descriptors for pages reside in tables (as PTEs) in the physical
memory; for faster accesses, the MMU maintains on-chip copies of recently used PTEs in
the ITLB and UTLB, and keeps the block information on-chip in the BTLB (comprised of
the BAT registers).

6-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

This section provides an overview of the high-level organization and operational concepts
of the MPC601 MMU, and a summary of all MMU control registers. Section 2.3.3.5,
"Table Search Descriptor Register 1 (SDR 1)," describes the SDR 1 register, Section 2.3.2,
"Segment Registers," describes the segment registers, and Section 2.3.1, "Machine State
Register (MSR)," describes the MSR, and Section 2.3.3.11, "BAT Registers," describes the
BAT registers.

6.1.1 Memory Addressing
A program references memory using the effective address computed by the processor when
it executes a load, store, branch, or cache instruction, and when it fetches the next
instruction. The effective (logical) address is translated to a physical address according to
the procedures described throughout this chapter. The memory subsystem uses the physical
address for the access.

For a complete discussion of effective address calculation, see Section 3.1.1, "Effective
Address Calculation."

6.1.2 MMU Organization
Figure 6-1 shows the conceptual organization of the MMU and its relationship to some of
the other functional units in the MPC601. The instruction unit generates all instruction
addresses; these addresses are both for sequential instruction prefetches and addresses that
correspond to a change of program flow. The integer unit generates addresses for data
accesses (both for memory and the I/O controller interface).

After an address is generated, the upper order bits of the logical address, LAO-LA 19 (or a
smaller set of address bits, LAO-LAn, in the cases of blocks), are translated by the MMU
into physical address bits PAO-PAI9. Simultaneously, the lower order address bits, A20-
A31 (that are untranslated and therefore considered both logical and physical), are directed
to the on-chip cache where they form the index into the eight-way set-associative tag array.
After translating the address, the MMU passes the higher-order bits of the physil.:al address
to the cache, and the cache lookup completes. For cache-inhibited accesses or accesses that
miss in the cache, the untranslated lower order address bits are concatenated with the
translated higher-order address bits; the resulting 32-bit physical address is then used by the
memory unit and the system interface, which accesses external memory.

In addition to the upper-order address bits, the MMU automatically keeps an internal
indicator of whether each access was generated as an instruction or data access and a
supervisor/user indicator that reflects the state of the PR bit of the MSR when the logical
address was generated. In addition, for data accesses, there is an indicator of whether the
access is for a load or a store operation. This information is then used by the MMU to
appropriately direct the address translation and to enforce the protection hierarchy
programmed by the operating system. See Section 2.3.1, "Machine State Register (MSR),"
for more information about the MSR.

MOTOROLA Chapter 6. Memory Management Unit 6-3

-

Ol

~
I

0 «
...J

6-4

Instruction
Unit

[3 B
Ol

~
I

0

:s A20-A31

PAO-PA31

ITLB Hit
PAO-PA19

Select 1-----\

Cache
HiVMiss

Figure 6-1. MMU Block Diagram

PowerPC 601 RISC Microprocessor User's Manual

ITLB Hit
A20-A31

Cache

MOTOROLA

For instruction accesses, the MMU first performs a lookup in the four entries of the ITLB
for the physical address translation. Instruction accesses that miss in the ITLB and data
accesses cause a lookup in the UTLB and BTLB for the physical address translation. In
most cases, the physical address translation resides in one of the TLBs and the physical
address bits are readily available to the on-chip cache. In the case where the physical
address translation misses in the TLBs, the MPC601 automatically performs a search of the
translation tables in memory using the information in the SDR1 and the corresponding
segment register.

6.1.3 Address Translation Mechanisms
The MPC601 supports the following four main types of address translation:

Page address translation-translates the page frame address for a 4-Kbyte page size

Block address translation-translates the block number for blocks that range in size
from 128 Kbyte to 8 Mbyte

I/O controller interface address translation-used to generate I/O controller
interface accesses on the external bus

Direct address translation-when address translation is disabled, the physical
address is identical to the logical address

Figure 6-2 shows the four main address translation mechanisms provided by the MPC601.
The segment registers shown in the figure control both the page and I/O controller interface
address translation mechanisms. When an access uses the page or I/O controller interface
address translation, one of the 16 on-chip segment registers is selected by the highest-order
logical address bits. A control bit in the corresponding segment register then determines if
the access is to memory (memory-mapped) or to the I/O controller interface space.

For memory accesses selected by the segment register, the segment register information is
used to generate the interim 52-bit virtual address. Page address translation corresponds to
the conversion of this virtual address into the 32-bit physical address used by the cache or
by external memory. In most cases, the physical address for the page resides in the UTLB
and is available for quick access. However, if the page address translation misses in the
UTLB, the MPC601 automatically searches the page tables in memory (using the virtual
address information and a hashing function) to locate the required physical address.

Block address translation occurs in parallel with page and I/O controller interface address
translation and is similar to page address translation, except that there are fewer upper-order
logical address bits to be translated into physical address bits (more lower-order address
bits (at least 17) are untranslated to form the offset into a block). Also, instead of segment
registers and a UTLB, block address translations use the on-chip BAT registers as a BTLB.
If the logical address of an access matches the corresponding field of a BAT register, the
information in the BAT register is used to generate the physical address; in this case, the
results of the page translation (occurring in parallel) are ignored.

MOTOROLA Chapter 6. Memory Management Unit 6-5

..

va Controller
Interface

Translation

Page Address
Translation

31

51

Address Translation Disabled*

Match with BAT

Translation

Direct Address Translation
Logical Address = Physical Address

0r-__ ~ ________ ~310 r--------~--~3~1 0r-____ ~ ____ ~~ r----~------~3.1
va Cont. I/F Address Physical Address Physical Address

* I/O controller interface translation may occur
when data address translation is disabled.

Figure 6-2. Address Translation Types

I/O controller interface address translation is enabled when the I/O controller interface
translation control bit (T-bit) in the selected segment register (segment register selected by
the highest-order address bits) is set. In this case, the remaining information in the segment
register is interpreted as identifier information that is used with the remaining logical
address bits to generate the packets used in an I/O controller interface access on the external
interface; additionally, no UTLB lookup or page table search is performed and the BTLB
lookup results are ignored. For more information about the I/O controller interface
operations, see Section 9.6, "I/O Controller Interface Operation."

A special case of I/O controller interface address translation (not shown in Figure 6-2) is
supported that forces an I/O controller interface address translation to be interpreted as a
memory access (that is, it uses the usual memory access protocol rather than the I/O

6-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

controller interface access protocol on the external interface). This occurs when a field in
the selected segment register (with the T-bit set) is encoded as memory-forced I/O
controller space. This feature effectively allows the specification of a 256-Mbyte "block"
of memory (with a common physical block number) with the use of only one segment
register, bypassing the page and block address translation and protection mechanisms
described above.

Direct address translation occurs when address translation is disabled; in this case the
physical address generated is identical to the logical address. The translation of addresses
for instruction and data accesses is enabled (and disabled) independently with the MSR[IT]
and MSR[DT] bits, respectively. Thus when the instruction unit generates an instruction
access, and instruction address translation is disabled (MSR[lT] = 0), the resulting physical
address is identical to the logical address and all other translation mechanisms are ignored.

When a data access occurs and MSR[DT] = 0, the resulting physical address is identical to
the logical address with one exception-I/O controller interface address translation for data
accesses is allowed, even when MSR[DT] = O. In this case, the segment registers are used
in the same way as if translation were enabled. Note that this case of data accesses to the
I/O controller interface while MSR[DT] = 0 will not be supported in other PowerPC
processors.

6.1.4 Memory Protection Facilities
In addition to the translation of logical addresses to physical addresses, the MMU provides
access protection of supervisor areas from user access and can designate areas of memory
as read-only. Table 6-1 shows the four protection options supported by the MPC601.

Table 6-1. Access Protection Options

Option User Read User Write
Supervisor Supervisor

Read Write

Supervisor-only Not allowed Not allowed ...J ...J

Supervisor-write-only ...J Not allowed ...J ...J

Both user/supervisor ...J ...J ...J ...J

Both read-only ...J Not allowed ...J Not allowed

Each of these options is enforced at the block or page level. Thus, the supervisor-only
option allows only read and write operations generated while the MPC601 is operating in
supervisor mode (corresponding to MSR[PR] = 0) to use the selected address translation
(block or page). User accesses that map into these blocks or pages cause an exception to be
taken.

As shown in the table, the supervisor-write-only option allows both user and supervisor
accesses to read from the selected area of memory but only supervisor programs can update
(write to) that area. There is also an option that allows both supervisor and user programs
read and write access (both user/supervisor option), and finally, there is an option to

MOTOROLA Chapter 6. Memory Management Unit 6-7

designate an area of memory as read-only, both for user and supervisor programs (both
read-only option).

For I/O controller interface segments, the MMU calculates a "key" bit based on the
protection values programmed in the segment register, and the specific user/supervisor and
read/write infonnation for the particular access. However, this bit is merely passed on to
the system interface to be transmitted in the context of the I/O controller interface protocol
as described in Section 9.6, "I/O Controller Interface Operation." The MMU does not itself
enforce any protection or cause any exception based on the state of the key bit for these
accesses. The I/O controller device or other external hardware can optionally use this bit to
enforce any protection required.

6.1.5 Page History Information
The MPC601 MMU also maintains reference (R) and change (C) bits in the page address
translation mechanism that can be used as history information relevant to the page. This
information can then be used by the operating system to determine which areas of-memory
to write back to disk when new pages must be allocated in main memory. While these bits
are initially programmed by the operating system into the page table, the MPC601
automatically updates these bits when required. Note that the updates to these bits in the
page tables are performed with standard read and write transactions on the bus (not locked
read-modify-write operations). However, when multiple MPC601 devices have shared
access to the page tables, the bit settings are guaranteed to be updated correctly.

6.1.6 General Flow of MMU Address Translation
When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IT] = 0 or MSR[DT] = 0), direct translation is used and the
access continues to the cache. When the selected segment register indicates that the access
is an I/O controller interface access, I/O controller interface address translation occurs. See
Section 6.5, "Selection of Address Translation Type" for more information regarding the
selection of address translation mode used for all cases.

For instruction accesses, if translation is enabled (MSR[IT] =1), the ITLB is first checked
for a matching page or block address translation. If there is a miss, then the MMU uses the
block and page address translation mechanisms to find the address translation. Figure 6-3
shows the flow used to search for the block or page address translation.

Although the MPC601 performs the block and page TLB lookups simultaneously, the flow
diagram shows that if a BTLB hit occurs, that particular translation is performed regardless
of the results of the UTLB lookup. If the BTLB misses, the results of the UTLB search are
considered. If the UTLB hits, the page translation occurs and the physical address bits are
forwarded to the cache (if the access is cacheable).

6-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Logical Address
Generated

Select Segment
Register

Compare Address
with BTLB

(BAT Registers)

BTLB
Miss

Generate 52-bit
Virtual Address from
Segment Register

Compare Virtual
Address with UTLB

Entries

UTLB
Hit

PTE Not
Found

See Figure 6-4

BTLB

Hit~

Access ~ Access
Protected Permitted

Access
Permitted

Continue Access
to Cache

Figure 6·3. MMU Block and Page Address Translation Flow

If the UTLB misses, the MPC601 automatically searches the page tables in memory. If the
page table entry (PTE) is successfully read, a new UTLB entry (and an ITLB entry for the
instruction access case) is created and the page translation is once again attempted. This
time, the UTLB (and ITLB for instruction access case) is guaranteed to hit. If the PTE is
not found by the table search operation, an instruction access or data access exception is
generated.

MOTOROLA Chapter 6. Memory Management Unit 6-9

..

•

Note that if either the BTLB or UTLB results in a hit, the access is qualified with the
appropriate protection bits. If the access is determined to be protected (not allowed), an
exception (instruction access or data access) is generated.

6.1.7 Memory/MMU Coherency Model
The memory model of the MPC601 provides the following features:

• Performance benefits of weak ordering of memory accesses

Memory coherency among processors and between a processor and I/O devices
controlled at the block and page level

• Instructions that ensure a coherent and ordered memory state.

• Processor address order guaranteed

The memory implementations in MPC601 systems can take advantage of the performance
benefi ts of weak ordering of memory accesses between processors or between processors
and other external devices without any additional complications. The MMU assumes that
all accesses are ordered. Thus, the priority of accesses is determined at the external
interface in a way that provides maximum throughput for most cases.

In addition, at the system level, the memory coherency among processors and between a
processor and I/O devices is programmed through the following three mode control bits in
the MMU:

• Write-through (W bit)

• Caching-inhibited (I bit)

• Memory coherency (M bit)

Both the block and page address translation mechanisms contain the WIM bits for each
TLB entry; these bits are used to control all accesses that correspond to the particular block
or page. The four possible combinations of the W and M bits yield modes that are supported
for I = 0 (caching-allowed) as shown in Table 6-2. For the caching-inhibited (1=1) case,
there are only two modes defined, corresponding to W=O/M = 0, and W=O/M=l.

Table 6-2. Defined WIM Combinations

W I M

0 0 0

0 0 1

1 0 0

1 0 1

0 1 0

0 1 1

6·10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The MPC601 also provides instructions (the cache instructions, isync, sync, eieio, Iwarx,
and stwcx.) to ensure a coherent and ordered memory state. These instructions are
described in Chapter 3, "Addressing Modes and Instruction Set Summary," and in Memory
accesses performed by a single processor appear to complete sequentially from the view of
the programming model but may complete out of order with respect to the ultimate
destination in the memory hierarchy. Order is guaranteed at each level of the memory
hierarchy for accesses to the same address from the same processor.

Memory coherency can be enforced externally by a snooping bus design, a centralized
cache directory design, or other design that can take advantage of these coherency features.

6.1.8 Effects of Instruction Prefetch on MMU
Speculative instruction execution occurs when the MPC601 executes instructions in
advance in case the result is needed. If subsequent events indicate that the speculative
instruction should not have been executed, the processor abandons the results produced by
that instruction. Typically, the MPC601 executes instructions speculatively when it has
resources that would otherwise be idle, so the operation is done at little or no cost.

The MPC601 executes computational instructions speculatively (beyond a branch
instruction) and performs instruction prefetches (it fetches instructions ahead in the
instruction stream). However, the MPC601 does not execute any load or store instructions
speculatively. Speculative execution of computational instructions does not involve the
MMU.

To avoid instruction fetch delay, the processor typically prefetches instructions. Such
instruction prefetching is speculative in that prefetched instructions may not be executed
due to intervening branches or exceptions.

The following constraints are enforced for instruction prefetching:

Prefetching does not occur across a page boundary (4 Kbyte). The processor only
fetches from a new page when it is certain that at least the first instruction to be
fetched from the new page is required for execution by the program.

Prefetching from non-cacheable (1= 1) memory does not occur, except when an
instruction within the boundaries of a cache block (sector) is needed. In that case,
the subsequent words in the cache block (sector) are prefetched.

Neither fetching nor prefetching from I/O controller interface segments (T=l)
occurs except for instruction fetches (or prefetches) made from memory-forced I/O
controller interface segment. See 6.10, "I/O Controller Interface Address
Translation" for more information about I/O controller interface segments.

Machine check exceptions that result from instruction prefetching may be generated, even
if the instruction fetched would not have been executed because of a previous branch or
change in program flow. See Section 5.4.2, "Machine Check Exception (x'00200')," for
more information on the machine check exception.

MOTOROLA Chapter 6. Memory Management Unit 6-11

Memory in the MPC601 systems is considered not "guarded" in the sense that prefetching
may occur to any area of memory. For example, if a data area is adjacent to an instruction
area of memory, the MPC601 could prefetch from that data area. Furthermore, if a word in
that data area contains the encoding for an unconditional branch instruction, the processor
could even continue to prefetch from the address it interprets as the target of the branch.
Care may be required to prevent these situations, particularly if peripheral devices that
cannot recover from extraneous accesses reside in these areas. Areas of memory in other
PowerPC processors may be designated as guarded within the MMU in that speculative
operations do not occur.

6.1.9 Breakpoint Facility
Through the use of the HIDx registers (HIDl, HID2, and HID5), the MPC601 has the
ability to perform a breakpoint operation for both instruction and data accesses
independently. For instruction accesses, the logical addresses of instructions in decode are
compared with the address specified in the instruction address breakpoint register (IABR).
If there is a match, then the processor takes a run mode exception. Similarly, data
breakpoints occur when the logical address of a data access matches the address specified
in the data address breakpoint register (DABR) register. However, when a data address
matches, the MPC601 takes a data access exception.

The instruction and data breakpoint functionality is controlled by bit settings in the
MPC601debug modes register (HIDl). Various combinations and levels of breakpoints can
be enabled. Section 2.3.3.12, "MPC601 Implementation-Specific HID Registers" describes
the breakpoint functionality provided in the MPC601. Note that these breakpoints occur
completely independently of the MSR[DT] and MSR[lT] bit settings.

6.1.10 MMU Exceptions Summary
In order to complete any memory access, the logical address must be translated to a
physical address. An MMU exception condition occurs if this translation fails for one of the
following reasons:

• There is no valid entry in the page table for the page specified by the logical address
(and segment register).

• An address translation is found but the access is not allowed by the memory
protection mechanism.

Most MMU exception conditions cause either the instruction access exception or the data
access exception to be taken. The state saved by the MPC601 for each of these exceptions
contains information that identifies the address of the failing instruction. Refer to
Chapter 5, "Exceptions," for a more detailed description of exception processing.

There are 11 types of conditions that can cause an MMU exception to occur. The exception
conditions map to the MPC601 exception as shown in Table 6-3. The only MMU exception
condition recognized when MSR[lT]=O is the instruction breakpoint match condition. The
only exception conditions that occur when MSR[DT]=O are the data breakpoint match

6-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

condition and the conditions that cause the alignment exception for data accesses. For more
detailed information about the conditions that cause the alignment exception (in particular
for string/multiple instructions) see 5.4.6, "Alignment Exception (x'00600')."

Table 6-3. MMU Exception Conditions/Exception Mapping

Condition Description Exception

Page fault No matching PTE found in page I access: instruction access exception
tables SRR1[1] = 1

D access: data access exception
DSISR[1]=1

Block protection violation Conditions described in I access: instruction access exception
Table 6-7 for block SRR1[4] = 1

D access: data access exception
DSISR[4]=1

Page protection violation Conditions described in I access: instruction access exception
Table 6-7 for page SRR1[4] = 1

D access: data access exception
DSISR[4]=1

dcbz with W or I = 1 dcbz instruction to write-through Alignment exception
or cache-inhibited segment or
block

Instruction access to I/O Attempt to fetch instruction when Instruction access exception
controller interface space SR[T]=1, SR[BUID] "# '07F' Causes no SRR1 bits to be set

Iwarx, stwcx., Iscbx instruction Reservation instruction or load Data access exception
to I/O controller interface space string and compare byte DSISR[5] = 1

instruction when SR[T]=1,
SR[BUID] "# '07F'

Floating-point load or store to I/O FP memory access when Alignment exception
controller interface space SR[T]=1, SR[BUID] "# '07F'

Instruction breakpoint match Instruction address matches the Run mode exception
address in HID2

Data breakpoint match Data address matches the Data access exception
address in HID5 DSISR[9] = 1

Operand misalignment: Operand crosses a 256 Mbyte Alignment exception
256 Mbyte boundary boundary (regardless of

MSR[DT] and MSR[IT] setting)

Operand misalignment: Page translation (SR[T] = 0 and Alignment exception
4 Kbyte boundary no BTLB match), and operand

crosses a 4 Kbyte boundary

MOTOROLA Chapter 6. Memory Management Unit 6-13

..

•

6.1.11 MMU Instructions and Register Summary
Table 6-4 summarizes the instructions of the MPC601 that specifically control the MMU.
For more detailed information about the instructions, refer to Chapter 10, "Instruction Set."

Table 6-4. Instruction Summary-Control MMU

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#]f- rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[O-3]]f-rS

mfsr rD,SR Move from Segment Register
rDf-SR[SR#]

mfsrin rD,rB Move from Segment Register Indirect
rDf-SR[rB[O-3]]

tlbie rB Translation Lookaside Buffer Invalidate Entry
If TLB hit (for logical address specified as rB), TLB[V]f-O
Causes TLBI operation on the system bus.

Table 6-5 summarizes the registers that the operating system uses to program the MMU.
These registers are accessible to supervisor-level software only. These registers are
described in detail in Chapter 2, "Registers and Data Types."

Table 6-5. MMU Registers

Register Description

Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SRO-8R15) PowerPC. Figure 6-13 shows the format of a segment register. The fields in the

segment register are interpreted differently depending on the value of bit o. The
segment registers are accessed by the MPC601-specific mtsr, mtsrin, mfsr, and
mfsrin instructions

BAT registers The MPC601 includes eight block-address translation registers (BATs), organized as
(BATOU-BAT3U and four pairs (BATOU-BAT3U and BATOL-BAT3L). Figure 6-6 and Figure 6-7 show the
BATOL-BAT3L) format of the upper and lower BAT registers. These are special-purpose registers

that are accessed by the mtspr and mfspr instructions.

Table search descriptor The 32-bit table search descriptor register 1 (SDR1) specifies the variables used in
register 1 accessing the page tables in memory. This is a special-purpose register that is
(SDR1) accessed by the mtspr and mfspr instructions.

6.1.12 TLB Entry Invalidation
The UTLB (and ITLB) maintains on-chip copies of the PTEs that are resident in physical
memory. The MPC601 has the ability to invalidate resident UTLB entries through the use
of the t1bie instruction. Additionally, the tlbie instruction also causes a TLB invalidate
broadcast (an address-only operation) to occur on the system bus so that other processors
also invalidate their resident copies of the matching PTE. See Chapter 10, "Instruction Set"

6-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

for detailed information about the tlbie instruction and Section 9.3.2.2.1, "Transfer Type
(TTO-TT4) Signals" for more information on address-only bus transactions.

The snooping hardware of the MPC601 detects when other processors perform a TLB
invalidate broadcast on the bus. In the case of a hit with an on-chip UTLB entry, the
MPC601 performs the following:

1. Prevents execution of any new load, store, cache control or tlbie instructions and
prevents any new reference or change bit updates

2. Waits for completion of any outstanding memory operations (including updates to
the reference and change bits associated with the entry to be invalidated)

3. Invalidates the two entries (both associativity classes) in the UTLB indexed by the
matching address

4. Resumes normal execution

6.2 ITLB Description
The MPC601 implements a four-entry, fully-associative TLB for storing the most recently
used instruction address translations. The MPC601 automatically generates an entry in the
ITLB whenever the page or block address translation mechanism generates a new logical­
to-physical mapping for a page or block used for instruction fetch. Each ITLB entry can
contain the translation information for either an entire block or a page. The MPC601 uses
the ITLB for address translation of instruction accesses when MSR[IT] = 1.

The instruction unit accesses the ITLB independently of the rest of the MMU. Therefore,
when instruction accesses hit in the ITLB, the page and block translation mechanisms are
available for use by data accesses simultaneously.

The MPC601 also automatically maintains the integrity of the entries in the ITLB by
purging the contents when any of the following conditions occur:

• An mtsr or mtsrin instruction is executed

• An mtspr instruction that modifies any of the BAT registers is executed

• A tlbie instruction is executed

• A TLB invalidate operation is detected on the system interface (via snooping)

Since these conditions potentially cause the MMU context to be changed, the ITLB entries
may not longer be valid. Therefore, the MMU automatically detects these conditions and
clears all the valid bits in the ITLB array.

Finally, the MPC601 replaces ITLB entries on a least-recently-used (LRU) basis.
Throughout the remainder of this chapter, the page and block translations that are resident
in the ITLB are described within the context of page address translation and block address
translation, as the contents of the ITLB are always a subset of translations that were
generated for the UTLB and/or the BTLB.

MOTOROLA Chapter 6. Memory Management Unit 6-15

..

•

Accesses to the ITLB are transparent to the executing program, except that hits in the ITLB
contribute to a higher overall instruction throughput by allowing data translations to occur
in parallel.

6.3 Memory/Cache Access Modes
All instruction and data accesses are performed under the control of the three mode control
bits that are defined by the MMU for each access. The three mode control bits, W, I, and M,
have the following effects. The Wand I bits control how the processor performing the
access uses its own cache. The M bit specifies whether the processor performing the access
must use the memory coherency protocol to ensure that all copies of the addressed memory
location are consistent.

When an access requires coherency, the processor performing the access must inform the
coherency mechanisms throughout the system that the access requires memory coherency.
The M bit determines the kind of access performed on the bus (global or local). Note that
these mode-control bits are relevant only when an address is translated and are not saved
along with data in the on-chip cache (for cacheable accesses). Once an access has been
translated, the MESI bits in the cache then control the coherency to that cache location
made by subsequent accesses from other processors. See Chapter 4, "Cache and Memory
Unit Operation," for more information about cache accesses.

The operating system programs the WIM bits for each page or block as required. The WIM
bits reside in the BAT registers for block address translation and in the PTEs for page
address translation. Thus these bits are programmed as follows:

• The operating system uses the mtspr instruction to program the WIM bits in the
BAT registers for block address translation.

• The operating system programs the WIM bits for each page into the PTEs in system
memory as it sets up the page tables.

Note that for accesses performed with direct address translation (MSR[IT]=O or
MSR[DT]= 0 for instruction or data access, respectively), the WIM bits are automatically
generated as b'OOl' (the data is write-back, caching is enabled, and memory coherency is
enforced).

6.3.1 Write-Through Bit (W)
When an access is designated as write-through (W=l), if the data is in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
external memory location (as described below). Store-combining compiler optimizations
are allowed for write-through accesses except when the store instructions are separated by
a sync instruction. Note that a store operation that uses the write-through mode may cause
any part of valid data in the cache to be written back to main memory.

6-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The definition of the external memory location to be written to in addition to the on-chip
cache depends on the implementation of the memory system but can be illustrated by the
following examples:

• RAM-The store must be sent to the RAM controller to be written into the target
RAM.

• I/O device-The store must be sent to the I/O control hardware to be written to the
target register or memory location.

In systems with multilevel caching, the store must be written to at leal)t a depth in the
memory hierarchy that is seen by all processors and devices.

Accesses that correspond to W=O are considered write-back. For this case, although the
store operation is performed to the cache, it is only made to external memory when a copy­
back operation is required. Use of the write-back mode (W=O) can improve overall
performance for areas of the memory space that are seldom referenced by other masters in
the system. See Chapter 4, "Cache and Memory Unit Operation," for more information
about cache accesses.

6.3.2 Caching Inhibited Bit (I)
If 1= 1, the memory access is completed by referencing the location in main memory,
completely bypassing the on-chip cache of the MPC601. During the access, the accessed
location is not loaded into the cache nor is the location allocated in the cache. If a copy of
the accessed data is in the cache, that copy is not updated, ft ushed, or invalidated. Data
accesses from more than one instruction may not be combined (as a compiler optimization)
for cache-inhibited operations.

6.3.3 Memory Coherence Bit (M)
This mode control bit is provided to allow improved performance in systems where
hardware-enforced coherency is relatively slow, and software is able to enforce the required
coherency. When M=O, the MPC601 does not enforce data coherency. When M= 1, the
processor enforces data coherency and the corresponding access is considered to be a
global access. When the M bit is set, and the access is performed to external memory, the
GBL signal is asserted and the access is designated as global. Other processors affected by
the access must then respond to this global access and signal whether it is shared. If the data
in another processor is modified, then address retry is signaled.

MOTOROLA Chapter 6. Memory Management Unit 6-17

•

6.3.4 W, I, and M Bit Combinations
Table 6-6 summarizes the six combinations of the WIM bits defined for the MPC60I.

Table 6-6. Combinations of W, I, and M Bits

WIM Setting Meaning

000 Data may be cached.

Loads or stores whose target hits in the cache use that entry in the cache.

Exclusive ownership of the block containing the target location is not required for store accesses
and coherency operations for the block do not occur when fetching the block, storing it back, or
changing its state from shared to exclusive.

001 Data may be cached.

Loads or stores whose target hits in the cache use that entry in the cache.

Memory coherency is enforced by hardware as follows: exclusive ownership of the block
containing the target location is required before store accesses are allowed. When fetching the
block, the processor indicates on the bus transaction that coherency is to be enforced. If the state
of the block is shared-unmodified, the processor must gain exclusive use of the block before
storing into it.

This encoding is used for addresses translated via direct address translation (MSR[IT] = 0 or
MSR[DT] = 0).

010 Caching is inhibited.

The access is performed to external memory, completely bypassing the cache.

Hardware enforced memory coherency is not required.

011 Caching is inhibited.

The access is performed to external memory, completely bypassing the cache.

Memory coherency must be enforced by external hardware (MPC601 asserts UB'C).

100 Data may be cached.

Loads whose target hits in the cache use that entry in the cache.

Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.

Exclusive ownership of the block containing the target location is not required for store accesses
and coherency operations for the block do not occur when fetching the block, storing it back, or
changing its state from shared to exclusive.

101 Data may be cached.

Loads whose target hits in the cache use that entry in the cache.

Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.

Memory coherency is enforced by hardware as follows: exclusive ownership of the block
containing the target location is required before store accesses are allowed. When fetching the
block, the processor indicates on the bus transaction that coherency is to be enforced. If the state
of the block is shared, the processor must gain exclusive use of the block before storing into it.

If the system software maps the same physical page with multiple page table entries that
have different W, I, or M values, the results of the translation are undefined.

6-18 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

6.4 General Memory Protection Mechanism
Another aspect of the MMU that is programmed at the block and page level is the memory
protection option. The memory protection mechanism allows selectively granting read
access, granting read/write access, and prohibiting access to areas of memory based on a
number of control criteria.

The memory protection mechanism is used by both the block and page address translation
mechanisms in a similar way, as described here. For specific information unique to block
address translation, refer to Section 6.7.4, "Block Memory Protection." For specific
information unique to page address translation, refer to Section 6.8.5, "Page Memory
Protection."

For both block and page address translation, the memory protection mechanism is
controlled by the following:

• MSR[PR], which defines the mode of the access as follows:

- MSR[PR]=O corresponds to supervisor mode

- MSR[PR]=l corresponds to user mode

• Ks and Ku, the supervisor and user key bits, which define the key for the block or
page

• The PP bits, which define the access options for the block or page

The key bits (Ks and Ku) and the PP bits are located as follows for block and page address
translation:

• Ks and Ku are located in the upper BAT register for block address translation and in
the selected segment register for a page address translation.

• The PP bits are located in the upper BAT register for block address translation and
in the PTE for page address translation.

The key bits, the PP bits, and the MSR[PR] bit are used as follows:

• When an access is generated, one of the key bits (Ks or Ku) is selected to be the key
as follows:

- For supervisor accesses (MSR[PR]=O), the Ks bit is used and Ku is ignored

- For user accesses (MSR[PR]=l), the Ku bit is used and Ks is ignored

• The selected key is used with the PP bits to determine if the load or store access is
allowed.

Table 6-7 shows the types of accesses that are allowed for the general case (all possible Ks,
Ku, and PP bil combinations).

MOTOROLA Chapter 6. Memory Management Unit 6-19

..

Table 6·7. Access Protection Control with Key

Key1 pp2 Block Type

0 00 Read/write

0 01 Read/write

0 10 Read/write

0 11 Read only

1 00 No access

1 01 Read only

1 10 Read/write

1 11 Read only

1 Ks or Ku selected by state of MSR[PR]
2 PP protection option bits in BTLB entry

or PTE

Thus, the conditions that cause a protection violation are depicted in Table 6-8. Any access
attempted (read or write) when the key = 1 and PP = 00, results in a protection violation
exception condition. When key = 1 and PP = 01, an attempt to perform a write access causes
a protection violation exception condition. When PP = 10, all accesses are allowed, and
when PP = 11, write accesse~ always cause an exception. The MPC601 takes either the
instruction access exception or the data access exception (for an instruction or data access,
respectively) when there is an attempt to violate the memory protection.

Table 6·8 . Exception Conditions for Key and PP Combinations

Key pp Prohibited
Accesses

1 00 Read/write

1 01 Write

x 10 None

x 11 Write

Although any combination of the Ks, Ku and PP bits is allowed, the Ks and Ku bits can be
programmed so that the value of the key bit for Table 6-7 directly matches the MSR[PR]
bit for the access. In this case, the encoding of Ks=O and Ku=1 is used for the BTLB entry
or the PTE, and the PP bits then enforce the protection options shown in Table 6-9.

6-20 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 6-9. Access Protection Encoding of PP Bits

pp User Read User Write
Supervisor Supervisor

Field
Option

(Key=1) (Key=1)
Read Write

(Key=O) (Key=O)

00 Supervisor-only Not allowed Not allowed ~ ~

01 Supervisor-write-only ~ Not allowed ~ ~

10 Both user/supervisor ~ ~ ~ ~

11 Both read-only ~ Not allowed ~ Not allowed

However, if the setting Ks= 1 is used, supervisor accesses are treated as user reads and
writes with respect to Table 6-9. Likewise, if the setting Ku=O is used, user accesses to the
block or page are treated as supervisor accesses in relation to Table 6-9. Therefore, by
modifying one of the key bits (in either the BAT register or the segment register), the way
the MPC601 interprets accesses (supervisor or user) in a particular block or segment can
easily be changed. Note, however, that only supervisor programs can modify the key bits
for the block or the segment as access to the BAT registers and the segment registers is
privileged.

When the memory protection mechanism prohibits a reference, one of the following occurs,
depending on the type of access that was attempted:

For data accesses, a data access exception is generated and bit 4 of DSISR is set. If
the access is a store, bit 6 of DSISR is also set.

For instruction accesses, an instruction access exception is generated and bit 4 of
SRRI is set.

See Chapter 5, "Exceptions," for more information about these exceptions.

6.5 Selection of Address Translation Type
A description of the selection flow for determining the type of address translation to be
perfonned is provided in Figure 6-4. The selection of address translation type differs for
instruction and data accesses in that I/O controller interface accesses are not allowed for
instruction accesses when instruction address translation is disabled, and I/O controller
interface accesses for data occur without regard for the enabling of data address translation.

6.5.1 Address Translation Selection for Instruction Accesses
Addresses for instruction accesses are translated under control of the IT bit of MSR. When
any context-synchronizing event occurs within the MPC601, any prefetched instructions
are discarded and refetched using the updated state of MSR[IT].

MOTOROLA Chapter 6. Memory Management Unit 6-21

..

Logical Address
Generated

Instruction Access Data Access

Translation Enabl~nslation Disabled
(MSR[IT]= 1) (MSR[IT]=O)

otherwise (T =0) 1/0 Cont. IIF
,./" Address (T = 1)

Translation Ena~nslation Disabled
(MSR[DT]=1) (MSR[DT]=O)

Perform Block or Page
Address Translation

Figure 6-4. Address Translation Type Selection

6.5.1.1 Instruction Address Translation Disabled: MSR[IT]=O
When instruction address translation is disabled, designated by MSR[IT]=O, the logical
address is interpreted as described in Section 6.6, "Direct Address Translation."

6.5.1.2 Instruction Address Translation Enabled: MSR[IT]=1
When instruction address translation is enabled (MSR[IT] = 1), instruction fetching occurs
under control of one of the following address translation mechanisms:

Page address translation

Block address translation

Note that for either of these translation mechanisms, the ITLB is first checked for the
address translation. If the ITLB misses, then the corresponding segment register is accessed
to see if the access is to the I/O controller interface space. If the access is not to the I/O
controller interface space, the page and block address translation mechanisms are used as
shown in Figure 6-3.

6-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

In most cases, instructions cannot be fetched from the I/O controller interface ~egments and
attempting to execute an instruction fetched from an I/O controller interface segment
cause~ an in~truction access exception. However, instruction fetches are allowed when the
address translation maps to segments with the T bit set (I/O controller interface segment)
and with the memory-forced I/O controller interface encoding. This case is described in
more detail in Section 6.10.4, "Memory-Forced I/O Controller Interface Accesses."

6.5.2 Address Translation Selection for Data Accesses
As shown in Figure 6-4, for data accesses, the corresponding segment register is selected
independent of the DT bit of MSR. Addresses for data accesses are translated first under
control of the T bit of the selected segment register. If T=l, the translation is to an I/O
controller interface segment. Otherwise, the translation is governed by the state of the DT
bit of MSR. When the state of MSR[DT] changes, subsequent accesses are made using the
new state of MSR[DT].

6.5.2.1 I/O Controller Interface Address Translation: T =1 in Segment
Register

I/o controller interface segments are used independently of MSR[DT]. When the segment
register indexed by the upper-order logical address bits has the T bit set, the access is
considered an I/O controller interface access and the I/O controller interface protocol of the
external interface is used to perform the access to I/O controller space.

Note, however, that an x'07F' encoding in the BUID field of the segment register defines
an access as a memory-forced I/O controller interface access. In this case, the memory
protocol is used on the external interface. See Section 6.10, "I/O Controller Interface
Address Translation" for more information on address translation for I/O controller
interface accesses.

6.5.2.2 Data Translation Disabled: MSR[DT1=O
When MSR[DT]=O, the logical address is interpreted as described in Section 6.6, "Direct
Address Translation." Note that as shown in Figure 6-4, the determination of whether the
address maps to an I/O controller interface segment occurs prior to the checking of
MSR[DT]. Therefore, I/O controller interface address translation occurs independently of
MSR[DT] for data accesses. The attempted execution of the eciwx or ecowx instructions
while MSR[DT]=O causes boundedly undefined results.

6.5.2.3 Data Translation Enabled: MSR[DT]=1
When data addre~s translation is enabled (MSR[DT] = 1), data accesses employ one of the
following translation mechanisms:

• Page address translation

• Block address translation

The block and page address translation mechanisms locate the physical address for the
access as described in Figure 6-3.

MOTOROLA Chapter 6. Memory Management Unit 6-23

6.6 Direct Address Translation
If address translation is disabled (MSR[IT] = () or MSR[DT] = 0) for a particular access
(fetch, load, or store), the logical address is treated as the physical address and is passed
directly to the memory subsystem as a direct address translation.

The addresses for accesses that occur in direct translation mode bypass all memory
protection checks as described in Section 6.4, "General Memory Protection Mechanism,"
and do not cause the recording of reference and change information (described in
Section 6.8.4, "Page History Recording"). Such accesses are performed as though the
memory access mode bits ("WIM") were 001. That is, the cache is write-back and system
memory does not need to be updated (W = 0), caching is enabled (I = 0), and data coherency
is enforced with memory, I/O, and other processors (caches) (M=1 so data is global).

Whenever an exception occurs, the MPC601 clears both the MSR[IT] and MSR[DT] bits.
Therefore, at least at the beginning of all exception handlers (including reset), the MPC60l
operates in direct address translation mode for instruction accesses (and data accesses that
do not map to I/O controller interface space). If address translation is required for the
exception handler code, the software must explicitly enable address translation by
accessing the MSR as described in Chapter 2, "Registers and Data Types."

Note that when translation is disabled, I/O controller interface segments can still be used
for data accesses as the T bit of the segment registers is checked and segment registers with
T=1 are used independently of MSR[DT].

Note also that an attempt to fetch from, load from, or store to a physical address that is not
physically present in the system may cause a machine check exception (or even a checkstop
condition), depending on the response by the system for this case. See Section 5.4.2,
"Machine Check Exception (x '00200')," for more information on machine check
exceptions.

6.7 Block Address Translation
The block address translation (BAT) mechanism in the MPC601 provides a way to map
ranges of logical addresses larger than a single page into contiguous areas of physical
memory. Such areas can be used for data that is not subject to normal virtual memory
handling (paging), such as a memory-mapped display buffer or an extremely large array of
numerical data.

The implementation of the block address translation in the MPC601 including the block
protection mechanism is described followed by a block translation summary with a detailed
flow diagram.

6.7.1 BTLB Organization
The block translation lookaside buffer (BTLB) of the MPC601 maintains the address
translation information for four blocks of memory. The BTLB in the MPC601 is maintained

6-24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

by the system software and is implemented as a set of eight special-purpose registers
(SPRs). Each block is defined by a pair of SPRs called upper and lower BAT registers.

The BAT registers can be read from or written to by the mfspr and mtspr instructions;
access to the BAT registers is privileged. Section 6.7.3, "BAT Register Implementation of
BTLB," gives more information about the BAT registers. Note that the BTLB entries are
completely ignored for TLB invalidate operations detected on the system bus and in the
execution of the tlbie instruction.

Figure 6-5 shows the organization of the BTLB. Four pairs of BAT registers are provided
for translating instruction and data addresses. These four pairs of BAT registers comprise
the four-entry fully-associative BTLB (each BTLB entry corresponds to a pair of BAT
registers). The BTLB is fully-associative in that all four entries are compared with the
logical address of the access to check for a match simultaneously.

Unmasked bits of LAO-lA14
(Instruction or Data Access)

'----i _______ ~~TP_':l _______ SPR528

BATOl .
.. -- .. --- -- ----- ---- ---

•

SPR535 L..-_____I

L..-_____ ._.. BTlB Hit/Miss

Figure 6-5. BllB Organization

Each pair of BAT registers defines the starting address of a block in the logical address
space, the size of the block, and the start of the corresponding block in physical address
space. If a logical address is within the range defined by a pair of BAT registers, its physical
address is defined as the starting physical address of the block plus the lower order logical
address bits.

Blocks are restricted to a finite set of sizes, from 128 Kbytes (217 bytes) to 8 Mbytes (223

bytes). The starting address of a block in both logical address space and physical address
space is defined as a multiple of the block size.

BecaUSe the BTLB entries are used for both instruction and data access, if the same memory
address is to be mapped for both instruction fetching and data load and store operations, the
address mapping must only be loaded into one register pair.

It is an error for system software to program the BAT registers such that a logical address
is translated by more than one BAT pair. If this occurs, the results are undefined and may

MOTOROLA Chapter 6. Memory Management Unit 6-25

III

include a spurious violation of the memory protection mechanism, a machine check
exception, or a check stop condition.

6.7.2 Recognition of Addresses in BTLB
The BTLB (BAT registers) is accessed in parallel with segmented address translation to
determine whether a particular logical address corresponds to a block defined by the BTLB.
If a logical address is within a valid BAT area, the physical address for the memory access
is determined, as described in Section 6.7.5, "Block Physical Address Generation."

Block address translation is enabled only when address translation is enabled (MSR[IT]=l
and/or MSR[DT]=l) and only when the indexed segment register specifies T=O. That is, the
BAT does not apply to I/O controller interface segments (T=l). When the segment register
has T=l, the segment register translation is used. (This is true for both I/O controller
interface segments and memory-forced I/O controller interface segments.)

The BAT registers and the segmented address translation mechanism can be programmed
such that a particular logical address is within a BAT area and that logical address also has
a segment register translation that corresponds to page address translation (T=O in the
segment register). When this occurs, the block address translation is used as shown in
Table 6-10 and the segment address translation is ignored.

Table 6-10. Address Translation Precedence for Blocks and Segments

Segment Register
Address Translation

Tbit

0 Matching BTLB entry prevails

1 Segment register prevails

Additionally, a block can be defined to overlay part of a segment such that the block portion
is non-paged although the rest of the segment is pageable. This allows non-paged areas to
be specified within a segment, and PTEs for the part of the segment overlaid by the block
are not required.

6.7.3 BAT Register Implementation of BTLB
Recall that the BTLB is comprised of four entries used for instruction accesses and data
accesses. Each BTLB entry consists of a pair of BAT registers-an upper and a lower BAT
register for each entry. The BAT registers are accessed with the mtspr and mfspr
instructions and are only accessible to supervisor-level programs. See Section 3.7,
"Processor Control Instructions," for a list of simplified mnemonics for use with the BAT
registers.

Figure 6-6 shows the format of the upper BAT registers and Figure 6-7 shows the format
of the lower BAT registers. The format of the upper and lower BAT registers in the
MPC601 differs from that of the BAT registers in other PowerPC processors.

6-26 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

a 14 15 24 25 27 28 29 30 31

8lPI

[ill] Reserved

Figure 6-6. Format of Upper BAT Registers

[ill] Reserved

P8N 8SM

a 14 15 242526 31

Figure 6-7. Format of Lower BAT Registers

The BAT registers contain the logical to physical address mappings for blocks of memory.
This mapping information includes the logical address bits that are compared with the
logical address of the access, the memory/cache access mode bits (WIM) and the protection
bits for the block. In addition, the size of the block and the starting address of the block are
defined by the block page number and block size mask fields.

Table 6-11 describes the bits in the upper and lower BAT registers.

Table 6-11. BAT Registers-Field and Bit Descriptions

Register Bits Name Description

Upper 0-14 BlPI Block logical page index. This field is compared with bits 0-14 of the logical
BAT address to determine if there is a hit in that BTlB entry.
Registers

15-24 Reserved -

25-27 WIM Memory/cache access mode bits
W Write-through
I Caching-inhibited
M Memory coherence
For detailed information about the WIM bits, see Section 6.3,
"Memory/Cache Access Modes."

28 Ks Supervisor mode key. This bit interacts with MSR[PR] and the PP field to
determine the protection for the block. For more information, see Section 6.4,
"General Memory Protection Mechanism."

29 Ku User mode key. This bit also interacts with MSR[PR] and the PP field to
determine the protection for the block. For more information, see Section 6.4,
"General Memory Protection Mechanism."

30-31 PP Protection bit~ fer b!eck. This field interacts with MSR[PR] and the Ks or Ku
to determine the protection for the block as described in Section 6.4,
"General Memory Protection Mechanism."

MOTOROLA Chapter 6. Memory Management Unit 6-27

•

Table 6-11. BAT Registers-Field and Bit Descriptions (Continued)

Register Bits Name Description

Lower 0-14 PBN Physical block number. This field is used in conjunction with the BSM field to
BAT generate bits 0-14 of the physical address of the block.
Registers

15-24 Reserved -

25 V BAT register pair (BTLB entry) is valid if V=1

26-31 BSM Block size mask (0 ... 5). BSM is a mask that encodes the size of the block.
Values for this field are listed in Table 6-12.

The BSM field in the lower BAT register is a mask that encodes the size of the block.
Table 6-12 defines the bit encodings for the BSM field of the lower BAT register. Note that
the range of block sizes is a subset of that defined by the PowerPC architecture .

Table 6-12. Lower BAT Register Block Size Mask Encodings

Block Size BSM Encoding

128 Kbytes 000000

256 Kbytes 000001

512 Kbytes 000011

1 Mbyte 000111

2 Mbytes 00 1111

4 Mbytes 01 1111

8 Mbytes 11 1111

Only the values shown in Table 6-12 are valid for BSM. A logical address is determined to
be within a BAT area if the appropriate bits (determined by the BSM field) of the logical
address matches the value in the BLPI field of the upper BAT register, and if the valid bit
(V) of the corresponding lower BAT register is set.

The boundary between the strings of zeros and ones in the BSM field determines the bits
of the logical address that are used in the comparison with the BLPI field to determine if
there is a hit in that BTLB entry. The rightmost bit of the BSM field is aligned with bit 14
of the logical address; bits of the logical address corresponding to ones in the BSM field are
then forced to zero for the comparison.

The value loaded into the BSM field determines both the length of the block and the
alignment of the block in both logical address space and physical address space. The values
loaded into the BLPI and PBN fields must have at least as many low-order zeros as there
are ones in BSM.

6-28 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

6.7.4 Block Memory Protection
If a logical address is determined to be within a block defined by the BTLB, the access is
next validated by the memory protection mechanism. If this protection mechanism
prohibits the access, a block protection violation exception condition (data access
exception or instruction access exception) is generated.

The block protection mechanism provides protection at the granularity defined by the block
size (128 Kbyte to 8 Mbyte) and is described in Section 6.4, "General Memory Protection
Mechanism."

The Ks, Ku, and PP bits are located in the upper BAT register for block address translation.

When the block protection mechanism prohibits a reference, one of the following occurs,
depending on the type of access that was attempted:

• For data accesses, a data access exception is generated and bit 4 of DSISR is set. If
the access was a store, bit 6 of DSISR is additionally set.

• For instruction accesses, an instruction access exception is generated and bit 4 of
SRRI is set.

6.7.5 Block Physical Address Generation
If the block protection mechanism validates the access, a physical address is formed as
shown in Figure 6-8. Bits in the logical address corresponding to ones in the BSM field,
concatenated with the 17 lower-order bits of the logical address form the offset within the
block of memory in the case of a hit. Bits in the logical address corresponding to zeros in
the BSM field are then logically ORed with the corresponding bits in the PBN field to form
the next higher-order bits of the physical address. Finally, the highest-order nine bits of the
PBN field form bits 0-8 of the physical address (PAO-PA8).

Access to the physical memory within the block is made according to the memory/cache
access mode defined by the WIM bits in the upper BAT register. These bits apply to the
entire block rather than to an individual page and are described in Section 6.3,
"Memory/Cache Access Modes."

MOTOROLA Chapter 6. Memory Management Unit 6-29

..

..

o 8 9 14 15 31

Logical Address 17-bit

Block Size

17-bit

Physical Block Number

o 8 9 1415 31

Physical Address 17-bit

Figure 6-8. Block Physical Address Generation

6.7.6 Block Address Translation Summary
Figure 6-9 provides the detailed flow for the block address translation mechanism.
Figure 6-9 is an expansion of the "BTLB Hit" branch of Figure 6-3. Note that if the dcbz
instruction is attempted to be executed with either W=1 or 1=1, the alignment exception is
generated.

6-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

BTLB Hit

BLPI (0-8) = LAO-LAB, and
BLPI (9-14) = (LA9-LA14) & (BSM), and

V = 1

dcbz Instruction
with Wor 1=1

Select Key:
If MSR[PR] = 0, Key = Ks
If MSR[PR] = 1, Key = Ku

otherwise Memory Protection
Violation

PAO-PA31 = PBN (0-8) II
PBN (9-14) OR ((LA9-LA14) & (BSM)) II
LA15-LA31

Continue Access to Cache with
WIM in Upper BAT Register

Figure 6-9. Block Address Translation Flow

Memory Protection
Violation Flow

(See Figure 6-10)

Figure 6-10 further expands on the determination of a memory protection violation and the
subsequent actions taken by the processor in this case. Note that in the case of a memory
protection violation for the attempted execution of a debt of debtst instruction, the
translation is aborted and the instruction executes as a no-op (no violation is reported).

6.8 Memory Segment Model
Memory in the MPC601 is divided into sixteen 256-Mbyte segments. The segmented
memory model of the MPC601 provides a way to map 4-Kbyte pages of logical addresses
to 4-Kbyte pages in physical memory (page address translation), while providing the
programming flexibility afforded by a large virtual address (52 bits).

MOTOROLA Chapter 6. Memory Management Unit 6-31

Write Access with
Key II PP = any of:

011
100
101
111

Memory Protection
Violation

Read Access
with Key II PP = 100

otherwise

Instruction ~
Access Access

Instruction Access
Exception

Store
Operation

debt/debtst
Instruction

Abort Translation

Data Access
Exception

Figure 6-10. Memory Protection Violation Flow

The page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 6.7, "Block Address Translation." If

. not, the translation proceeds in two steps: from logical address to the 52-bit virtual address
(which never exists as a specific entity but can be considered to be the concatenation of the
virtual page number and the byte offset within a page), and from virtual address to physical
address.

The implementation of the page address translation mechanism in the MPC601 is described
followed by a summary of page address translation with a detailed flow diagram.

6-32 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

6.8.1 Page Address Translation Resources
The page address translation performed by the MPC601 is facilitated by the 16 segment
registers, which provide virtual address and protection information, and by the UTLB,
which maintains 256 recently-used page table entries (PTEs). The segment registers are
programmed by the operating system to provide the virtual ID for a segment. In addition,
the operating system also creates the page tables in memory that provide the logical to
physical address mappings (in the form of PTEs) for the pages in memory.

As shown in Figure 6-11, when an access occurs, one of the 16 segment registers is selected
with LAO-LA3. For page address translation, the virtual ID field in the segment register is
then compared with the corresponding field of the two entries in the UTLB selected by
LAI3-LAI9 (one entry corresponding to set 0 and the other to set 1). In the case of a hit,
the result of this comparison is then used to select which physical page number (PPN) (from
set 0 or 1) to use for the access.

Segment Registers

LAO-LA31 o 7 8 31

LAO-LA3 Select

UTLB VSID
LA4-LA12

Set 1

Set 0
LA13-LA19 Select

127L......1-__ --'-__ ~
Set 1/Set 0 Hit

L..--___ PAO-PA19

Figure 6-11. Segment Register and UTLB Organization

In the case of a UTLB miss, the table search hardware in the MMU automatically searches
for the required PTE in the page tables in memory. The MMU then automatically loads the

MOTOROLA Chapter 6. Memory Management Unit 6-33

..

•

UTLB with the PTE and the address translation is performed. Note that for an instruction
access, the required PTE is also loaded into the ITLB for future use.

If the table search operations fail to locate the required PTE, then the appropriate exception
(instruction access exception or data access exception) is taken. See Section 6.9.2, "Page
Table Search Operation" for more information on the context for these exception
conditions.

6.8.2 Recognition of Addresses in Segments
As described in Section 6.7.2, "Recognition of Addresses in BTLB," the block and page
translation mechanisms operate in parallel such that if the logical address of an access hits
in the BTLB (the address can be translated as a block address), the selected segment register
is ignored, unless T=1 in the segment register .

Segments in the MPC601 are defined as one of the following two types:

• Memory segment-A logical address in these segments represents a virtual address
that is used to define the physical address of the page.

• I/O controller interface segment-References made to I/O controller interface
segments use the I/O controller interface bus protocol described in Section 9.6, "I/O
Controller Interface Operation," and do not use the virtual paging mechanism of the
MPC601. See Section 6.10, "I/O Controller Interface Address Translation," for a
complete description of the mapping of I/O controller interface segments.

The T bit in a segment register selects between memory segments and I/O controller
interface segments, as shown in Table 6-13.

Table 6-13. Segment Register Types

Segment Register
Segment Type

TBit

0 Memory segment

1 I/O controller interface segment

The types of address translation used by the MPC601 MMU are shown in the flow diagram
of Figure 6-4.

6.8.2.1 Selection of Memory Segments
All accesses generated by the MPC601 index into the array of segment registers and select

.. one of the 16 with LAO-LA3. If MSR[IT]=O or MSR[DT]=O for an instruction or data
access, respectively, then direct address translation is performed as described in
Section 6.6, "Direct Address Translation." Otherwise, if T=O for the selected segment
register, the access maps to memory space and page address translation is performed.

After a memory segment is selected, the MPC601 creates the 52-bit virtual address for the
segment and searches for the PTE (first in the UTLB, then in the page tables in memory)

6-34 PciwerPC 601 RISC Microprocessor User's Manual MOTOROLA

that dictates the physical page number to be used for the access. Note that I/O devices can
easily be mapped into memory space and used as memory-mapped I/O.

6.8.2.2 Selection of 1/0 Controller Interface Segments
All data accesses generated by the MPC601 index into the array of segment registers and
select one of the 16 with LAO-LA3. If T=1 for the selected segment register, the access
maps to the I/O controller interface and the access proceeds as described in Section 6.10,
"I/O Controller Interface Address Translation." This is true, even if data address translation
is disabled (MSR[DT]=O).

For the case of instruction accesses, however, the MPC601 checks the state ofthe MSR[IT]
bit before checking the T bit in the segment register. If MSR[IT] = 0, direct address
translation is performed as described in Section 6.6, "Direct Address Translation." If
MSR[IT] = 1 and the T bit of the selected segment register is set, then the MMU further
checks the state of the BUID field of the segment register. If BUID has the encoding x'07F',
the segment is designated as a memory-forced I/O controller interface segment and the
instruction fetch occurs as described in Section 6.10.4, "Memory-Forced I/O Controller
Interface Accesses." Otherwise, an instruction access exception occurs.

6.8.3 Page Address Translation
The first step in page address translation is the conversion of the 32-bit logical address of
an access into the 52-bit virtual address. The virtual address is then used to locate the PTE
either in the UTLB or in the page tables in memory. The physical page number is then
extracted from the PTE and used in the formation of the physical address of the access.

Figure 6-12 shows the translation of a logical address to a physical address as follows:

• Bits 0-3 of the logical address comprise the segment register number used to select
a segment register, from which the virtual segment ID (VSID) is extracted.

• Bits 4-19 of the logical address correspond to the page number within the segment;
these are concatenated with the VSID from the segment register to form the virtual
page number (VPN). The VPN is used to search for the PTE in either the UTLB or
the page table. The PTE then provides the physical page number (PPN).

• Bits 20-31 of the logical address are the byte offset within the page; these are
concatenated with the PPN field of a PTE to form the physical address used to access
memory.

MOTOROLA Chapter 6. Memory Management Unit 6-35

..

•

32-Bit Logical Address

o

52-Bit Virtual Address

32-Bit Physical Address

o 34

API
(6-bit)

Page Index (16-bit)

1920

Byte Offset
(12-bit)

31

23 24 3940 51

Virtual Se9ment ID (VSID)
(24-bit)

Virtual Page Number (VPN)

Page Index Byte Offset
(16-bit) (12-bit)

Byte Offset
(12-bit)

Figure 6-12. Page Address Translation Overview

6.8.3.1 Segment Register Definition
The fields in the 16 segment registers are interpreted differently depending on the value of
bit 0 (the T bit). When T= 1, the segment register defines an I/O controller interface
segment, and the format is described in Section 6.10.1, "Segment Register Format for I/O
Controller Interface." Figure 6-13 shows the format of a segment register used in page
address translation (T=O).

[ill] Reserved

VSID

o 1 2 3 7 8 31

Figure 6-13. Segment Register Format for Page Address Translation

Table 6-14 provides the definitions of the segment register bits for page address translation.

6-36 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 6-14. Segment Register Bit Definition for Page Address Translation

Bit Name Description

0 T T =0 selects this format

1 Ks Supervisor-mode memory key

2 Ku User-mode memory key

3-7 - Reserved

8-31 VSIO Virtual segment 10

The Ks and Ku bits partially define the access protection for the pages within the segment.
The page protection provided in the MPC601 is described in Section 6.8.5, "Page Memory
Protection." The virtual segment ID field is used as the high-order bits of the virtual page
number (VPN) as shown in Figure 6-12.

The segment registers are programmed with MPC601-specific instructions that implicitly
reference the segment registers. The MPC601 segment register instructions are
summarized in Table 6-15. These instructions are privileged in that they are executable
only while operating in supervisor mode. See Section 2.3.3.1, "Synchronization for
Supervisor-Level SPRs, and Segment Registers" for information about the synchronization
requirements when modifying the segment registers. See Chapter 10, "Instruction Set," for
more detail on the encodings of these instructions.

Table 6-15. Segment Register Instructions

Instruction Description

mtsr SR#,rS Move to Segment Register
SR[SR#]~rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[O-3]]~rS

mfsr rO,SR# Move from Segment Register
rO~SR[SR#]

mfsrin rO,rB Move from Segment Register Indirect
rO~SR[rB[O-3]]

These instructions are specific to the MPC601 and not
guaranteed on other PowerPC processors.

6.8.3.2 Page Table Entry (PTE) Format
Page table entries (PTEs) are generated and placed in page tables in memory by the
operating system using the hashing algorithm described in Section 6.9.1.3, "Hashing
Functions." Each PTE is a 64-bit entity (two words) that maps one virtual page number
(VPN) to one physical page number (PPN). Information in the PTE controls the table
search process and provides input to the memory protection mechanism. Figure 6-14 shows
the format of both words that comprise a PTE.

MOTOROLA Chapter 6. Memory Management Unit 6-37

6] Reserved

o 1 24 25 26 31

PPN
I HI API I VSID

o 19 20 22 23 24 25 27 28 293031

Figure 6-14. Page Table Entry Format

Table 6-16 lists the bit definitions for each word in a PTE.

Table 6-16. PTE Bit Definitions

Word Bit Name Description

0 0 V Entry valid (V=1) or invalid (V=O)

1-24 VSID Virtual segment ID

25 H Hash function identifier

26-31 API Abbreviated page index

1 0-19 PPN Physical page number

20-22 - Reserved

23 R Reference bit

24 C Change bit

25-27 WIM Memory/cache control bits

28-29 - Reserved

30-31 PP Page protection bits

All other fields are reserved.

The PTE contains an abbreviated page index rather than the complete page index field
because at least ten of the low-order bits of the page index are used in the hash function to
select a PTEG address (the location of a PTE). These bits are not repeated in the PTEs of
that PTEG. However, when a PTE is loaded into the UTLB, the entire page index (PI) field
must be loaded into the UTLB entry. The PI field is then compared with incoming logical
address bits LA4-LA12 (LA13-LA16 select the UTLB entries to be compared) to
determine if there is a hit.

The virtual segment ID field corresponds to the high-order bits of the virtual page number
(VPN), and, along with the H bit, it is used to locate the PTE. The Rand C bits maintain
history information for the page as described in Section 6.8.4, "Page History Recording."
The WIM bits define the memory/cache control mode for accesses to the page. Finally, the
PP bits define the remaining access protection constraints for the page. The page protection
provided in the MPC601 is described in Section 6.8.5, "Page Memory Protection."

6-38 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Conceptually, the page table is searched by the address translation hardware to translate the
address of every reference. For performance reasons, the UTLB maintains recently-used
PTEs so that the table search time is eliminated for most accesses. The UTLB is searched
for the address translation first. If the PTE is found, then no page table search is performed.
As a result, software that changes the page tables in any way must perform the appropriate
TLB invalidate operations to keep the UTLB (and ITLB) coherent with respect to the page
tables.

6.8.4 Page History Recording
Reference (R) and change (C) bits are automatically maintained by the MPC601 in the PTE
for each physical page (for accesses made with page table address translation) to keep
history information about the page. This information can then be used by the operating
system to determine which areas of memory to write back to disk when new pages must be
allocated in main memory. Reference and change recording is not performed for
translations made with the BAT or for accesses that correspond to I/O controller interface
(T=I) segments. Furthermore, Rand C bits are maintained only for accesses made while
address translation is enabled (MSR[IT]=l or MSR[DT]=I).

The reference and change bits are automatically updated by the MPC601 under the
following circumstances:

For UTLB hits, if the C bit requires updating (as shown in Table 6-16).

For UTLB misses, when a table search is in progress to locate a PTE. The Rand C
bits are updated (set, if required) to reflect the status of the page based on this access.

Table 6-17. Table Search Operations to Update History Bits-UTLB Hit Case

Rand C bits
MPC601 Action

in UTLB entry

00 Combination doesn't occur

01 Combination doesn't occur

10 Read: No special action
Write: Table search operation to update C

11 No special action for read or write

Note that the processor updates the C bit based only on the status of the C bit in the UTLB
entry in the case of a UTLB hit (the R bit is assumed to be set in the page tables if there is
a UTLB hit). Therefore, when software clears the Rand C bits in the page tables in memory,
it must invalidate the UTLB entries associated with the pages whose reference and change
bits were cleared. See Section 6.9.3, "Page Table Updates," for all of the constraints
imposed on the software when updating the reference and change bits in the page tables.

The R bit or the C bit for a page is not set by the execution of the Data Cache Block Touch
instructions (debt, or debtst).

MOTOROLA Chapter 6. Memory Management Unit 6-39

•

6.8.4.1 Reference Bit
The reference bit of a page is located both in the PTE in the page table and in the copy of
the PTE loaded into the UTLB. Every time a page is referenced (with a read or write access)
the reference bit is set in the page table by the MPC601. Because the reference to a page is
what causes a PTE to be loaded into the UTLB~ the reference bit in all UTLB entries is
always set. The processor never automatically clears the reference bit.

The reference bit is only a hint to the operating system about the activity of a page. At times~
the reference bit may be set although the access was not logically required by the program
or even if the access was prevented by memory protection. Examples of this include the
following:

• Prefetching of instructions not subsequently executed

• Accesses that cause exceptions and are not completed

6.8.4.2 Change Bit
The change bit of a page is also located both in the PTE in the page table and in the copy
of the PTE loaded into the UTLB. Whenever a data store instruction is executed
successfully~ if the UTLB search (for page address translation) results in a hit~ the change
bit in the matching UTLB entry is checked. If it is already set~ the processor does not
change the C bit. If the UTLB change bit is O~ it is set and a table search operation is
performed to set the C bit also in the corresponding PTE in the page table.

The change bit (in both the UTLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism.

The automatic update of the reference and change bits in the MPC601 is performed with
single-beat read and write transactions on the bus (not with atomic read/modify/write
operations).

During a table search operation~ PTEs are fetched as global~ nonexclusive read transactions
(not as read-with-intent-to-modify transactions). This reduces cache thrashing in other
processors (in a multiprocessor system) caused by UTLB load operations because other
processors do not have to invalidate their resident copies of the PTEs. The response on the
bus to a PTE load transaction should then be exclusive (SRI) signal not asserted) if no other
processor has a copy. Because PTEs are considered as cacheable~ the MESI protocol of the
cache then ensures that coherency is maintained among multiple processors for C bit
updates to the page tables.

6.8.5 Page Memory Protection
Similar to the block memory protection mechanism~ the page memory protection of the
MPC601 provides selective access to each page in memory. If a logical address is
determined to be within a page defined by the segment registers and an entry in the UTLB~
the access is next validated by the page protection mechanism. If this protection mechanism

6-40 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

prohibits the access, a page protection violation (data access exception or instruction access
exception) is generated.

When the page protection mechanism prohibits a reference, one of the following occurs,
depending on the type of access that was attempted.

• For data accesses, a data access exception is generated and bit 4 of DSISR is set. If
the access was a store, bit 6 of DSISR is additionally set.

• For instruction accesses, an instruction access exception is generated and bit 4 of
SRR1 is set.

See Chapter 5, "Exceptions," for more information on these types of exceptions

A store operation that is not permitted because of the page protection mechanism does not
cause the change (C) bit to be set in the PTE (in either the UTLB or in the page tables in
memory); however, a prohibited store access may cause a PTE to be loaded into the UTLB
and consequently cause the reference bit to be set in a PTE (both in the UTLB and in the
page table in memory).

6.B.6 Page Address Translation Summary
Figure 6-15 provides the detailed flow for the page address translation mechanism. The
figure is an expansion of the "UTLB Hit" branch of Figure 6-3. The detailed flow for the
"UTLB Miss" branch of Figure 6-3 is described in Section 6.9.2, "Page Table Search
Operation." Note that as in the case of block address translation, if the dcbz instruction is
attempted to be executed with either W=l or I =1, the alignment exception is generated.
Also note that the memory protection violation flow for page address translation is identical
to that of the block memory protection violation and is provided in Figure 6-10.

6.9 Hashed Page Tables
When an access that is to be translated by the page address translation mechanism results
in a miss in the UTLB (a PTE corresponding to the VSID of the segment register is not
resident in either of the UTLB entries indexed by LA 13-LA 19), the MPC601 automatically
searches the page tables set up by the operating system in main memory.

The algorithm used by the processor in searching the page tables includes a hashing
function on some of the virtual address bits. Thus, the addresses forPTEs are allocated
more evenly within the page tables and the hit rate of the page tables is maximized. This
algorithm must be synthesized by the operating system for it to correctly place the page
table entries in main memory.

This section describes the format of the page tables and the algorithm used to access them.
In addition, the constraints imposed on the software in updating the page tables (and other -
MMU resources) are described.

MOTOROLA Chapter 6. Memory Management Unit 6-41

..

•

Logical Address
Generated

Generate 52-bit
Virtual Address from
Segment Register

Compare Virtual
Address with UTLB

Entries

UTLB Hit
Case

LA 13-LA 19 select a UTLB entry for each set (Set 0 and Set 1)
Segment Register [VSID] = VSID in UTLB entry
LA4-LA 12 = PI in UTLB entry
UTLB entry M = 1

dcbz Instruction
with Wor I = 1

Select Key: '
If MSR[PR] = 0, key = Ks
If MSR[PR] = 1, key = Ku

otherwise Memory Protection
Violation

(see Fi9U~ 6-10) "l Store Access with ~ UTlB entry le]- 0
otherwise

Continue Access to Cache
with WIM from UTLB entry

Figure 6-15. Page Address Translation Flow-UTLB Hit

6.9.1 Page Table Definition
The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

6-42 PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

The page table contains a number of page table entry groups (PTEGs). A PTEG contains
eight page table entries (PTEs) of eight bytes each; therefore each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations. Figure 6-16 shows two PTEG
addresses (PTEGaddr1 and PTEGaddr2) where a given PTE may reside.

Page Table

PTE7 PTEGO

PTEGaddr1 PTE7

PTEGaddr2 PTE7

PTEGn

Figure 6·16. Page Table Definitions

A given PTE can reside in one of two possible PTEGS. For each PTEG address, there is a
complementary PTEG address-one is the primary PTEG and the other is the secondary
PTEG. Additionally, a given PTE can reside in any of the PTE locations within an
addressed PTEG. Thus, a given PTE may reside in one of 16 possible locations within the
page table. If a given PTE is not resident within either the primary or secondary PTEG, a
page table miss occurs, corresponding to a page fault condition.

A table search operation is defined as the search of a PTE within a primary and secondary
PTEG. When a table search operation commences, a primary hashing function is performed
on the virtual address. The output of the hashing function is then concatenated with bits
(some of them masked) programmed into the SDR 1 register by the operating system to
create the physical address of the primary PTEG. The PTEs in the PTEG are then checked,
one by one, to see if there is a h~t within the PTEG. In case the PTE is not located during
lhis PTEG, a secondary hashing function h; performed, a ne'.v physical address is generated
for the PTEG, and the PTE is searched for again, this time using the secondary PTEG
address.

MOTOROLA Chapter 6. Memory Management Unit 6-43

..

..

6.9.1.1 Table Search Description Register (SDR1)
The SDRlregister contains the control information for the table structure in that it defines
the highest order bits for the physical base address of the page table and it defines the size
of the table. The format of the SDR 1 register is shown in Figure 6-17 and the bit settings
are described in Table 6-18.

lliJ Reserved

HTABORG HTABMASK

o 15 16 22 23 31

Figure 6-17. SDR1 Register Format

Table 6-18. SDR1 Register Bit Settings

Bits Name Description

0-15 HTABORG Physical address of page table

16-22 - Reserved

23-31 HTABMASK Mask for page table address

The HTABORG field in SDRI contains the high-order 7-16 bits of the 32-bit physical
address of the page table. Therefore, the beginning of the page table lies on a 2 16 byte (64
Kbyte) boundary at a minimum.

A page table can be any size 2n where 16 :::; n :::; 25. The HTABMASK field in SDRI
contains a mask value that determines how many bits from the output of the hashing
function are used as the page table index. This mask must be of the form b'OO ... Ol1. . .1' (a
string of 0 bits followed by a string of 1 bits). As the table size increases, more bits are
used from the output of the hashing function to index into the table. The 1 bits in
HTABMASK determine how many additional bits (beyond the minimum of 10) from the
hash are used as the index; the HTABORG field must have the same number of lower-order
bits equal to 0 as the HTABMASK field has lower-order bits equal to 1.

6.9.1.2 Page Table Size
The number of entries in the page table directly affects performance because it influences
the hit ratio in the page table and thus the rate of page fault exception conditions. If the table
is too small, not all virtual pages that have physical page frames assigned may be mapped
via the page table. This can happen if there are more than 16 entries that map to the same
primary/secondary pair of PTEGs; in this case, many hash collisions may occur.

The minimum allowable size for a page table is 64 Kbytes (2 10 PTEGs of 64 bytes each).
However, it is recommended that the total number of PTEGs (primary plus secondary) in
the page table be greater than half the number of physical page frames to be mapped. While

6-44 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

avoidance of hash collisions cannot be guaranteed for any size page table, making the page
table larger than the recommended minimum size reduces the frequency of such collisions,
by making the primary PTEGs more sparsely populated, and further reducing the need to
use the secondary PTEGs.

Table 6-18 shows some example sizes for total main memory. The recommended minimum
page table size for these example memory sizes are then outlined, along with their
corresponding HTABORG and HTABMASK settings. Note that systems with less than
eight Mbytes of main memory may be designed with the MPC601, but the minimum
amount of memory that can be used for the page tables is 64 Kbytes.

Table 6-19. Recommended Page Table Sizes (Minimum)

Recommended Minimum
Settings for

Recommended Minimum

Total Main Memory Number of
Memory for Mapped Number of

HTABORG HTABMASK
Page Tables Pages PTEGs

(PTEs)

8 Mbytes (223) 64 Kbytes (216) 213 210 X xxxx xxxx 000000000

16 Mbytes (224) 128 Kbytes (217) 214 211 X xxxx xxxO 000000001

32 Mbytes (225) 256 Kbytes (218) 215 212 X xxxx xxOO 000000011

64 Mbytes (226) 512 Kbytes (219) 216 213 X xxxx xOOO 000000111

128 Mbytes (227) 1 Mbytes (220) 217 214 X xxxx 0000 000001111

256 Mbytes (228) 2 Mbytes (221) 218 215 X xxxO 0000 000011111

512 Mbytes (229) 4 Mbytes (222) 219 216 X xxOO 0000 00011 1111

1 Gbytes (230) 8 Mbytes (223) 220 217 X xOOO 0000 001111111

2 Gbytes (231) 16 Mbytes (224) 221 218 X 0000 0000 01111 1111

4 Gbytes (232) 32 Mbytes (225) 222 219 000000000 1 11111111

As an example, if the physical memory size is 229 bytes (512 Mbyte), then there are 229-
212 (4 Kbyte page size) = 217 (128 Kbyte) total page frames. If this number of page frames
is divided by 2, the resultant minimum recommended page table size is 216 PTEGs, or 222
bytes (4 Mbytes) of memory for the page tables.

6.9.1.3 Hashing Functions
The processor uses two different hashing functions, a primary and a secondary, in the
creation of the physical addresses used in a page table search operation. These hashing
functions efficiently distribute the PTEs within the page table, in that there are two possible
PTEGs where a given PTE can reside. Additionally, there are eight possible PTE locations
within a PTEG where a given PTE can reside. If a PTE is not found using the primary
hashing function, the secondary hashing function is performed, and the secondary PTEG is

MOTOROLA Chapter 6. Memory Management Unit 6-45

III

•

searched. Note that these two functions must also be used by the operating system to
appropriately set up the page tables in memory.

The use of the two hashing functions provides a high probability that a required PTE is
resident in the page tables, without requiring the definition of all possible PTEs in main
memory. However, if a PTE is not found in the secondary PTEG, then a page fault occurs
and an exception is taken. Thus, the required PTE can then be placed into either the primary
or secondary PTEG by the system software, and on the next UTLB miss to this page, the
PTE will be found.

The address of a page table is derived from the HTABORG field of the SDR1 register, and
the output of the corresponding hashing function (primary hashing function for primary
PTEG and secondary hashing function for a secondary PTEG). The value in HTABMASK
determines how many of the higher-order hash value bits are masked and how many are
used in the generation of the physical address of the page table.

Figure 6-18 depicts the hashing functions used by the MPC601. The inputs to the primary
hashing function are the lower-order 19 bits of the VSID field of the selected segment
register (bits 5-23 of the 52-bit virtual address), and the page index field of the logical
address (bits 24-39 of the virtual address) concatenated with three zero higher-order bits.
The XOR of these two values generates the output of the primary hashing function (hash
value 1).

6-46 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Primary Hash:

5

Low-Order 19 Bits of VSID (From Segment Register)

o
I

24

Secondary Hash:

o

o

XOR

Page Index (From Logical Address)

Output of Hashing Function 1

8 9

"

Hash Value 1

+ One's Complement Function

Output of Hashing Function 2

8 9

"
Figure 6·18. Hashing Functions

23

39

I Hash Value 1

18

18

Hash Value 2

18
I

When the secondary hashing function is required, the output of the primary hashing
function is complemented with one's complement arithmetic, to provide hash value 2.

6.9.1.4 Page Table Addresses
Figure 6-19 illustrates the generation of the addresses used for accessing the hashed page
tables defined for the MPC601. As stated earlier, the operating system must synthesize the
table search algorithm for setting up the tables.

As shown in Figure 6-19, two of the elements that define the 52-bit virtual address (the
segment register VSID field and the page index field of the logical address) are used as
inputs into a hashing function. Depending on whether the primary or secondary PTEG is to
be accessed, the processor uses either the primary or secondary hashing function.

MOTOROLA Chapter 6. Memory Management Unit 6-47

1&

Virtual Page Number (VPN)
o 45 23 24 2930 39

52-Bit Virtual Address Virtual Segment ID
(24-bit)

Byte Offset
(12-bit)

PTE
01

II
f
V

6-48

SDR1

AND

OR

o 67 15 16 25 26

I _____ ':T!=G Select I

PTEGO

31

PAGE TABLE

PTE7

~4--+--~+-~-4--+-~

•
•
•

32-bit Physical Address of Page Table Entry
.. 64 Bytes -----••

VSID
(24-bit)

242526

II
t
H

31 0 19

API
(6-bit)

Physical Page Number (PPN)
(20-bit)

32-bit Physical Address
PPN

(20-bit)

Figure 6-19. Generation of Addresses for Page Tables

PowerPC 601 RISC Microprocessor User's Manual

25 27 31

Byte Offset
(12-bit)

MOTOROLA

The base address of the page table is defined by the higher order bits of SDRI [HTABORG].
Bits 7-15 of the PTEG address are derived from the masking of the higher-order bits of the
hash value (as defined by SDR 1 [HTABMASKD concatenated with (implemented as an OR
function) the remaining bits of SDR1[HTABORG]. Bits 16-25 of the PTEG address are the
10 lower order bits of the hash value, and bits 26-31 of the PTEG address are zero. In the
process of searching for a PTE, the processor first checks PTEO (at the PTEG base address).

6.9.1.5 Page Table Structure
In the process of searching for a PTE, the processor interprets the values read from memory
as described in Section 6.8.3.2, "Page Table Entry (PTE) Format." The VSID and the
abbreviated page index (API) fields of the 52-bit virtual address of the access are compared
to those same fields of the PTEs in memory. In addition, the valid (V) bit and the hashing
function (H) bit are also checked. For a hit to occur, the V bit of the PTE in memory must
be set. If the fields match and the entry is valid, the PTE is considered a hit if the H bit is
set as follows:

• If this is the primary PTEG, H=O

• If this is the secondary PTEG, H= 1

The physical address of the PTEs to be checked is derived as shown in Figure 6-19, and is
the address of a group of eight PTEs (a PTEG). During a table search operation, the
processor first compares the PTEO location defined by the primary hashing function. If the
VSID and API fields do not match (or if V or H are not set appropriately), the processor
increments the lower order address bits by eight bytes and checks the PTEI location and so
on, until all eight PTEs in the PTEG have been checked.

If no match is found, the secondary hashing function is performed, and the secondary
PTEG address is derived. The eight PTEs within the secondary PTEG are then similarly
checked. If the required PTE is not found in any of the 16 possible locations (the eight PTEs
within the primary PTEG and the eight PTEs within the secondary PTEG), then a page fault
occurs and an exception is taken. Thus, if a valid PTE is located in the page tables, the page
is considered resident; if no matching (and valid) PTE is found for an access, the page is
interpreted as non-resident (page fault) and the operating system must load the PTE (and
possibly the page) into main memory.

Note that for performance reasons, PTEs should be allocated by the operating system first
beginning with the PTEO locations within the primary PTEG, then PTE 1, and so on. If more
than eight PTEs are required within the address space that defines a PTEG address, the
secondary PTEG can be used. Nonetheless, it may be desirable to place the PTEs that will
require most frequent access at the beginning of a PTEG and reserve the PTEs in the
secondary PTEG for the least frequently accessed PTEs.

6.9.1.5.1 Page Table Structure Example
Figure 6-20 shows the structure of an example page table. The base address of this page
table is defined by bits 0-13 in SDR1[HTABORG]; note that bits 14 and 15 of HTABORG
must be zero because the lower order two bits of HTABMASK are ones. The addresses for

MOTOROLA Chapter 6. Memory Management Unit 6-49

..

•

individual PTEGs within this page table are then defined by bits 14-25 as an offset from
bits 0-13 of this base address. Thus the size of the page table is defined as 4096 PTEGs.

HTABORG HTABMASK
Example: 0 15 23 31

I I

Given: SDR1
1

1010 0110 0000 0000 0000 0000 0000 0011 I
Base Address

Page Table

$A600 0000 PTE? PTEGO

PTEGaddr1 PTE?

PTEGaddr2 PTE?

PTEG4095

0 14 25 31
I I

PTEGaddr1 1010 0110 0000 OOaa aaaa aaaa aaOO 0000

0 14 25 31
I I

PTEGaddr2 = 1010 0110 0000 OObb bbbb bbbb bbOO 0000

Figure 6-20. Example Page Table Structure

Two example PTEG addresses are shown in the figure as PTEGaddrl and PTEGaddr2. Bits
14-25 of each PTEG address in this example page table are derived from the output of the
hashing function (bits 26-31 are zero to start with PTEO of the PTEG). In this example, the
'b' bits in PTEGaddr2 are the one's complement of the 'a' bits in PTEGaddrl. If bits 14-
25 of PTEGaddrl were derived by using the primary hashing function, then PTEGaddr2
corresponds to the secondary PTEG.

6-50 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Note, however, that the 'b' bits in PTEGaddr2 can also be derived from a combination of
logical address bits, segment register bits, and the primary hashing function. In this case,
then PTEGaddrl corresponds to the secondary PTEG. Thus, while a PTEG may be
considered a primary PTEG for some logical addresses (and segment register bits), it may
also correspond to the secondary PTEG for a different logical address (and segment register
value).

It is the value of the H bit in each of the individual PTEs that identifies a particular PTE as
either primary or secondary (there may be PTEs that correspond to a primary PTEG and
PTEs that correspond to a secondary PTEG, all within the same physical PTEG address
space). Thus, only the PTEs that have H=O are checked for a hit during a primary PTEG
search. Likewise, only PTEs with H=l are checked in the case of a secondary PTEG search.

6.9.1.5.2 PTEG Address Mapping Example
Figure 6-21 shows an example of a logical address and how its address translation (the
PTE) maps into the primary PTEG in physical memory. The example illustrates how the
processor generates PTEG addresses for a table search operation; this is also the algorithm
that must be used by the operating system in creating the page tables.

In the example, the value in SDR1 defines a page table at address x'OF98 0000' that
contains 8192 PTEGs. The example logical address selects segment register () (SRO) with
the highest order four bits. The contents of SRO are then used along with bits 4-19 of the
logical address to create the 52-bit virtual address.

To generate the address of the primary PTEG, bits 5-23, and bits 24-39 of the virtual
address are then used as inputs into the primary hashing function (XOR) to generate hash
value 1. The lower order 13 bits of hash value 1 are then concatenated with the higher order
13 bits of HTABORG, defining the address of the primary PTEG (x'OF9F F98()').

MOTOROLA Chapter 6. Memory Management Unit 6-51

•

HTABORG HTABMASK
23 31

I
Example: o 15

Given: SDR1 10000 1111 1001 1000 0000 0000 0000 0111 I

LA = x'OOFF A01 S' :

Segment Register Select

x'C

SRO I 0010 0000 1100

Virtual Address:

I

8
I

1100 1010 0111 0000

Primary Hash:

Hash Value 1

Primary PTEG Address:

A

1010

HTASORG 13

0000 1111 1001

x' 0 F 9 F

o

7

0111

I
1100

16

4 19 20 25 31

00001111 1111 1010 0000 0001 1011

Byte Offset

o C'

0000 0001 1100 I
31

I

Page Index

0000 1111 1111 1010 0000 0001 1011

39

25 Start at PTEO

1111 1001 1000 0000

F 9 8 0'

Figure 6-21. Example Primary PTEG Address Generation

Figure 6-22 shows the generation of the secondary PTEG address for this example. If the
secondary PTEG is required, the secondary hash function is performed and the lower order
13 bits of hash value 2 are then concatenated with the higher order 13 bits of HTABORG,
defining the address of the secondary PTEG (x 'OF98 0640').

As described in Figure 6-19, the 10 lower-order bits of the page index field are always used
in the generation of a PTEG address (through the hashing function). This is why only the
abbreviated page index (API) is defined for a PTE (the entire page index field does not need
to be checked). For a given logical address, the lower order 10 bits of the page index (at
least) contribute to the PTEG address (both primary and secondary) where the
corresponding PTE may reside in memory. Therefore, if the higher order 6 bits (the API
field) of the page index match with the API field of a PTE within the specified PTEG, the
PTE mapping is guaranteed to be the unique PTE required.

6-52 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Primary PTEG Address:

HTABORG 16
I

0000 1111 1001 8 1111

x' 0 F 9 F F

Hash Value 2 1111 0001

10-bits

Secondary PTEG Address:

HTABORG

0000 1111 1001 000 0000

x' 0 F 9 8 0

x'OF98 0000'

1) First compare 8 PTEs

at x'OF9F F980' qX'OF98 0640'

2) Then, compare 8 PTEs
at x'OF98 0640',

if necessary x'OF9F F980'

25 Start at PTEO
I I

1001 1000 0000

9 8 0'

1001

0110 0100 0000

6 4 0'

PTEOI I I I I I IPTE7

PTEOI I I I I I IPTE7

Figure 6-22. Example Secondary PTEG Address Generation

PTEGO

PTEG25

PTEG8166

PTEG8191

Note that a given PTEG address does not map back to a unique logical address. Not only
can a given PTEG be considered both a primary and a secondary PTEG (as described in
Section 6.9.1.5.1, "Page Table Structure Example"), but in this example, bits 24-26 of the
page index field of the virtual address are not used to generate the PTEG address.
Therefore, any of the eight combinations of these bits will map to the same primary PTEG
address. (However, these bits are part of the API and are therefore compared for each PTE
within the PTEG to determine if there is a hit.) Furthermore, a logical address can select a
different segment register with a different value such that the output of the primary (or
secondary) hashi~g function happens to equal the hash values shown in the example. Thus
these logical addresses would also map to the same PTEG addresses shown.

6.9.2 Page Table Search Operation
An outline of the table search process performed by the MPC601 in the search of a PTE is
as follows:

1. The 32-bit physical address of the primary PTEG is generated as described in
Section 6.9.1.4, "Page Table Addresses".

2. The first PTE (PTEO) in the primary PTEG is read from memory.

MOTOROLA Chapter 6. Memory Management Unit 6-53

•

3. The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index fields
of the virtual address. For a match to occur, the following must be true:

- PTE[H] =0

- PTE[V] = 1
- PTE[VSID] = VA[O-23]

- PTE [API] = VA[24-29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the
primary PTEG. If a match is found, go to step 8. If a match is not found within the
8 PTEs of the primary PTEG, the address of the secondary PTEG is generated.

5. The first PTE (PTEO) in the secondary PTEG is read from memory.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

- PTE[H] = 1

- PTE[V] = 1
- PTE[VSID] = VA[O-23]
- PTE [API] = VA[24-29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG.

8. If a match is found, the PTE is written into the UTLB and the R bit is updated in the
PTE in memory (if necessary). If there is no memory protection violation, the C bit
is also updated in memory and the table search is complete.

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an instruction access exception
or a data access exception).

Reads from memory for table search operations are performed as global (but not exclusive),
cacheable operations, and are loaded into the on-chip cache of the MPC601.

Figure 6-23 and Figure 6-24 provide detailed flow diagrams of the table search operations
performed by the MPC601. Figure 6-23 shows the case of a debz instruction that is
executed with W=l or 1=1, and that the R bit is updated in memory (if required) before the
alignment exception occurs. The R bit is also updated (if required) in the case of a memory
protection violation except for the case of a debt or a debtst instruction. If either of these
instructions is executed and a protection violation occurs, the translation is simply aborted,
the R bit is not set in memory and the instruction execution becomes a no-op (not shown in
the fi gure),

6-54 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Generate PA using Primary Hash Function
PA~ Base PAof PTEG

(PA26-PA31 =0)

otherwise

otherwisS<

Fetch PTE from PTEG

PTE [VSID, API, H, V]=
Segment Register [VSID], LA[API], 0, 1

PA26-PA31 =56
(Last PTE in PTEG) Secondary Table

Search Hit

otherwise

Select Key:
If MSR[PR] = 0, key = KS
If MSR[PR] = 1, key = KU

otherwise Memory Protection

Clcbz Instruction
with Wor I = 1

R_Fll'olherwise

~ Violation

otherwise-~ Store operation with 't
ref

PTE[C]=O .
ot erwlse

otherwise

R_Flag=1 R_Flag=1

Byte write to
update PTE[R] in

memory

Table Search
Complete

MOTOROLA

Table Search
Complete See Figure 6-10

Figure 6-23. Primary Table Search Flow

Chapter 6. Memory Management Unit 6-55

..

•

Generate PA using Secondary Hash Function
PA f- Base PA of PTEG

(PA26-PA31 =0)

otherwise

otherWis~
PA2)A31=S6

(Last PTE in PTEG)

Fetch PTE from PTEG

PTE [VSID, API, H, V]=
Segment Register [VSID], LA[API], 1,1

Secondary Table
Search Hit

xeFaUl1
Instruction Access Data Access

(See Figure 6·23)

Instruction Access
Exception

Data Access
Exception

Figure 6-24. Secondary Table Search Flow

6.9.3 Page Table Updates
This section describes the requirements on the software when updating page tables in
memory via some pseudo-code examples. In a mUltiprocessor system the rules described
in this section must be followed so that all processors operate with a consistent set of page
tables. Even in a single processor system, certain rules must be followed, regarding
reference and change bit updates, because software changes must be synchronized with
automatic updates made by the hardware. Updates to the tables include the following
operations:

Adding a PTE

Modifying a PTE, including modifying the R and C bits of a PTE
Deleting a PTE

PTEs must be 'locked' on multiprocessor systems. Access to PTEs must be appropriately
synchronized by software locking of (i.e .• guaranteeing exclusive access to) PTEs or
PTEGs if more than one processor can modify the table at that time. In the examples below,

6·56 PowerPe 601 Rise Microprocessor User's Manual MOTOROLA

"lockO" and "unlockO" refer to software locks that must be performed to provide exclusive
status for the PTE being updated. See Appendix G, "Synchronization Programming
Examples," for more infonnation about the use of the Iwarx and stwcx. instructions to
perform software interlocks.

On single processor systems, PTEs need not be locked. To adapt the examples given below
for the single processor case, simply delete the "lockO" and "unlockO" lines from the
examples. The sync instructions shown are required even for single processor systems.

The UTLB (and ITLB) are non-coherent caches of the page tables. UTLB entries must be
flushed explicitly with the TLB invalidate entry instruction (tlbie) whenever the
corresponding PTE is modified. In a multiprocessor system, the tlbie instruction must be
controlled by software locking, so that the tlbie is issued on only one processor at a time.
The sync instruction causes the processor to wait until the TLB invalidate operation in
progress by this processor is complete.

The PowerPC architecture defines the tlbsync instruction (an illegal instruction in the
MPC6(1) that ensures that TLB invalidate operations executed by this processor have
caused all appropriate actions in other processors on the system bus. In a system that
contains both MPC601 processors and other PowerPC processors, the tlbsync functionality
must be emulated for the MPC601 in order to ensure proper synchronization with the other
PowerPC processors.

Any processor, including the processor modifying the page table, may access the page table
at any time in an attempt to reload a UTLB entry. An inconsistent page table entry must
never accidentally become visible; thus there must be synchronization between
modifications to the valid bit and any other modifications. This requires as many as two
sync operations for each PTE update.

The MPC601 writes reference and change bits with un synchronized, atomic byte store
operations. Note that the V, R, and C bits each resides in a distinct byte of a PTE. Therefore,
extreme care must be taken to ensure that no store operation inadvertently overwrites one
of these bytes.

6.9.3.1 Adding a Page Table Entry
Adding a page table entry requires only a lock on the PTE in a multiprocessor system. The
bytes in the PTE are then written, except for the valid bit. A sync instruction then ensures
that the updates have been made to memory, and lastly, the valid bit is set.

10ck(PTE)
PTE[VSID,H,API] ~ new values
PTE[PPN,R,C,WIM,PP] ~ new values
sync
PTE[V] ~ 1
unlock(PTE)

MOTOROLA Chapter 6. Memory Management Unit 6-57

•

6.9.3.2 Modifying a Page Table Entry
This section describes several scenarios for modifying a PTE.

6.9.3.2.1 General Case
In the general case, a currently-valid PTE must be changed. To do this, the PTE must be
locked, marked invalid, flushed from the TLB, updated, marked valid again, and unlocked.
The sync instruction must be used at appropriate times to wait for modifications to
complete.

Note that the t1bsync and the sync instruction that follow are only required if compatibility
is must be maintained with other PowerPC processors that implement the tlbsync
instruction. The tlbsync instruction is not implemented in the MPC601 but can be emulated
in the illegal instruction exception handler .

10ck(PTE)
PTE[V] ~ 0
sync
. t1bie(PTE)
sync
tlbsync
sync
PTE[VSID,H,API] ~ new values
PTE[PPN,R,C,WIM,PP] ~ new values
sync
PTE[V] ~ 1
unlock(PTE)

6.9.3.2.2 Clearing the Reference (R) Bit
When the PTE is modified only to clear the R bit to 0, a much simpler algorithm suffices
because the R bit need not be maintained exactly.

10ck(PTE)
oldR ~ PTE[R]
PTE[R] ~ 0
if oIdR = 1, then tlbie(PTE)
unlock(PTE)

Since only the Rand C bits are modified by the processor, and since they reside in different
bytes, the R bit can be cleared by reading the current contents of the byte in the PTE
containing R (bits 16-~3 of the second word), ANDing the value with x'FE', and storing
the byte pack into the PTE.

6.9.3.2.3 Modifying the Virtual Address
If the virtual address is being changed to a different address within the same hash class
(primary or secondary), the following ~ow suffices:

6-58 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

10ck(PTE)
val ~ PTE[VSID,API,H,V]
val ~ new VSID
PTE[VSID,API,H,V] ~ val
sync
t1bie(PTE)
sync
tlbsync
sync
unlock(PTE)

In this pseudo-code flow, note that the store into the first word of the PTE is performed
atomically. Also, the t1bsync and the sync instruction that follow are only required if
compatibility is must be maintained with other PowerPC processors that implement the
tlbsync instruction. The t1bsync instruction is not implemented in the MPC601 but can be
emulated in the illegal instruction exception handler.

6.9.3.3 Deleting a Page Table Entry
In this example, the entry is locked, marked invalid, invalidated in the TLBs, and unlocked.

Again, note that the t1bsync and the sync instruction that follow are only required if
compatibility is must be maintained with other PowerPC processors that implement the
t1bsync instruction. The tlbsync instruction is not implemented in the MPC601 but can be
emulated in the illegal instruction exception handler.

10ck(PTE)
PTE[V] ~O
sync
tlbie(PTE)
sync
t1bsync
sync
unlock(PTE)

6.9.4 Segment Register Updates
There are certain synchronization requirements for using the move to segment register
instructions. These are described in Section 2.3.3.1, "Synchronization for Supervisor-Level
SPRs, and Segment Registers."

6.10 1/0 Controller Interface Address Translation
An I/O controller interface segment is a mapping of logical addresses to the I/O controller
interface bus protocol. I/O controller interface segments are provided for POWER
compatibility. Applications that require low-latency load/store access to external address
space should use memory-mapped I/O, rather than the I/O controller interface.

MOTOROLA Chapter 6. Memory Management Unit 6-59

•

A logical address within the I/O controller interface space corresponds to a segment register
which has T= 1. For more details about memory references to I/O controller interface
segments, refer to Chapter 9, "System Interface Operation."

As a subset of I/O controller interface address translation, the MPC601 also provides a way
to force I/O controller interface accesses to be made to memory. This memory-forced I/O
controller interface capability allows a 256-Mbyte segment of memory to be mapped with
only one segment register and no page translation overhead. Note that this functionality
may not be provided in other PowerPC processors.

6.10.1 Segment Register Format for I/O Controller Interface
Figure 6-25 shows the register format for the segment registers when the T bit is set.

BUID Controller Specific

o 1 2 3 11 12

Figure 6-25. Segment Register Format for 1/0 Controller Interface

Table 6-20 shows the bit definitions for the segment registers when the T bit is set.

Table 6-20. Segment Register Bit Definitions for 1/0 Controller Interface

Bit Name Description

0 T T =1 selects this format

1 Ks Supervisor mode memory key

2 Ku User mode memory key

3-11 BUID Bus unit 10

12-31 Controller Device-dependent data for liD
specific controller

6.10.2 I/O Controller Interface Accesses

31

When the address translation process determines that the segment has T= 1, I/O controller
interface address translation is selected and any match due to block address translation (see
Section 6.7, "Block Address Translation") is ignored. Additionally, no reference is made
to the page tables. The following data is sent to the memory controller in the protocol (two
packets consisting of address-only cycles) described in Section 9.6, "I/O Controller
Interface Operation":

• PacketO

- One of the Kx bits (Ks or Ku) is selected to be the key as follows:

- For supervisor accesses (MSR[PR]=O), the Ks bit is used and Ku is ignored

- For user accesses (MSR[PR]=l), the Ku bit is used and Ks is ignored

6-60 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

- The contents of bits 3-31 of the segment register, which is the BUID field
concatenated with the "controller-specific" field.

• Packetl-SR[28-31] concatenated with the 28 lower-order bits of the logical
address, LA4-LA31.

The WIM bits for I/O controller interface accesses are forced to b'OIO'. Some instructions
cause multiple address/data transactions to occur on the bus. The address for each
transaction is handled individually with respect to the MMU.

6.10.3 I/O Controller Interface Segment Protection
Page-level protection as described in Section 6.8.5, "Page Memory Protection," is not
provided by the MPC601 for I/O controller interface segments. The appropriate key bit (Ks
or Ku) from the segment register is sent to the memory controller, and the memory
controller implements any protection required. Frequently, no such mechanism is provided;
the fact that a I/O controller interface segment is mapped into the address space of a process
may be regarded as sufficient authority to access the segment.

6.10.4 Memory-Forced I/O Controller Interface Accesses
The MPC601 performs memory-forced I/O controller interface accesses when the T bit in
the selected segment register is set and the BUID field in the segment register is x'07F'. In
this case, the processor bypasses all protection mechanisms and generates a memory access
with the physical address specified by the lowest-order four bits in the segment register
(SR[28-31]) concatenated with LA4-LA31. In this case, the processor assumes the WIM
bits to be '011', denoting the access as cache-inhibited and global.

6.10.5 Instructions Not Supported in I/O Controller Interface
Segments

The following instructions are not supported when issued with a logical address that selects
a segment register that has T= I:

• Iwarx
• stwcx.
• Iscbx

If one of the above instructions is executed with a logical address corresponding to a
segment with T= I, a data access exception occurs and DSISR[5] is set.

The following instructions are not supported at all and cause boundedly undefined results
when issued with a logical address that selects a segment register that has T = 1 (or when
MSR[DT]=O):

• eciwx

• ecowx

MOTOROLA Chapter 6. Memory Management Unit 6-61

6.10.6 Instructions with No Effect in 1/0 Controller Interface
Segments

The following instructions are executed as no-ops when issued with a logical address that
selects a segment where T= 1 :

• debt
• debtst
• debf
• debi
• debst
• debz

6.10.7 1/0 Controller Interface Summary Flow
Figure 6-26 shows the flow used by the MMU when I/O controller interface address
translation is selected. This figure expands the I/O Controller Interface Translation stub
found in Figure 6-4 for both instruction and data accesses.

6-62 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

va Controller
Interface Translation

otherwise

. ~
Instruction Access Data Access

Instruction Access ~
Exception Floating-Point

Load or Store

otherwise

Memory Access
Performed

MOTOROLA

Iwarx, stwex., o~
Isebx Instruction otherwise

Data Access
Exception

O~.~ Cache Instruction
(debt, debtst, debf,

debi, debst, or debz)

~
PAO-PA31 ~ SR[28-31] II LA4-

LA31
c ___ NO_-O_P ____)

Perform 1/0 Controller
Interface Access

Figure 6-26. 1/0 Controller Interface Translation Flow

Chapter 6. Memory Management Unit

..

6-63

6-64 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 7
Instruction Timing
This chapter describes instruction prefetch and execution through all of the execution units
of the MPC601 processor. It also provides examples of instruction sequences showing
concurrent execution and various register dependencies to illustrate timing interactions.
Bus signals described in this chapter are only accurate to within half-clock cycle
increments. Refer to Chapter 9, "System Interface Operation," for more specific
information regarding bus operation timing. Instruction mnemonics used in this chapter can
be identified by referring to Chapter 10, "Instruction Set."

7.1 Instruction Timing Overview·
The MPC601 processor has been designed to minimize average instruction execution
latency. Latency is defined as the number of clock cycles necessary to execute an
instruction and make ready the results of that execution for a subsequent instruction. For
the majority of instructions in the MPC601, this can be simplified to include only the
execute phase for a particular instruction. However, data access instructions require
additional clock cycles between the execute phase and the writeback phase due to memory
latencies.

In accordance with this definition, logical, bit-field, and most integer instructions have a
latency of one clock cycle (for example, results for these instructions are ready for use on
the next clock cycle after issue). Other instructions, such as the integer multiply, require
more than one clock cycle to complete execution.

Effective throughput of more than one instruction per clock cycle can be realized by the
many performance features in the MPC601 including pipelining, superscalar instruction
issue, branch acceleration, and multiple execution units that operate independently and in
parallel.

Many of the execution units on the MPC601 are said to be pipelined. This implies that the
particular execution unit is broken into stages. Each stage performs a specific step, which
contributes to the overall execution of an instruction. The pipelined design is analogous to
an assembly line where workers perform a specific task and pass the partially complete
product to the next worker.

MOTOROLA Chapter 7. Instruction Timing 7-1

-

•

When an instruction is issued to a pipelined execution unit, the first stage in the pipeline
begins its designated work on that instruction. As an instruction is passed from one stage in
the pipeiine to the next, evacuated stages may accept new instructions. This design allows
a single execution unit to be working on several different instructions simultaneously. Once
the pipeline has been filled with instructions, the execution unit completes a multi-cycle
instruction every clock.

Figure 7-1 shows a graphical representation of a generic pipelined execution unit.

CLOCK 0

CLOCK 1

CLOCK 2

CLOCK 3

I (STAGE 1) A II (STAGE 2) II (STAGE 3)

I (STAGE 1) B@GE 2) A II (STAGE 3)

I (STAGE 1) cirjSTI..GE 2) Bfr(S;1..GE 3) A I

I (STAGE 1) @GE2) @GE3) BI

Figure 7-1. Pipelined Execution Unit

If the number of stages in each pipeline is equal to the total latency in clock cycles of its
respective execution unit, the processor can continuously issue instructions to the same
execution unit without stalling. Thus, when enough instructions have been issued to an
execution unit to fill its pipeline, the first instruction will have completed execution and
exited the pipeline, allowing subsequent instructions to be issued into the tail of the pipeline
without interruption.

The MPC601 is capable of retiring three instructions on every clock cycle. In general,
instruction processing is accomplished in four stages-the prefetch stage, the decode stage,
the execute stage, and the writeback stage. The instruction prefetch stage includes the clock
cycles necessary to request instructions from the on-chip cache as well as the time it takes
the on-chip cache to respond to that request. The decode stage consists of the time it takes
to fully decode the instruction. Each of the three execution units on the MPC601 implement
this general pipeline model slightly differently. These details are explained in the following
paragraphs.

In the writeback stage, results are returned to the register file. This stage generally does not
.. contribute to the overall execution time. Instructions are prefetched and executed

concurrently with the execution and writeback of previous instructions producing an
overlap period between instructions.

7.2 Timing Considerations of the MPC601
A superscalar machine is one that can issue multiple instructions concurrently from a
conventional linear instruction stream. The MPC601 is a true superscalar implementation

7-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

of the PowerPC architecture since three instructions can be issued to multiple execution
units during each clock cycle. Although a superscalar implementation complicates
instruction timing, these complications are largely transparent to the software. The
MPC601 provides the logical functionality of issuing only a single instruction at a time,
while providing the increased performance of issuing mUltiple instructions at a time.

The execution unit pipelines are hardware interlocked, therefore, data dependencies
automatically stall instruction issue without software assistance. This hardware
interlocking mechanism eliminates the need to schedule wasteful no-op instructions.

When an instruction is issued, the register file places the appropriate source data on the
appropriate source bus. The corresponding execution unit then reads the data from the bus.
The register files and source buses have sufficient bandwidth to sustain the peak issue rate
of three instructions per clock.

The MPC601 contains the following execution units that operate independently and in
parallel:

Branch processing unit (BPV)
32-bit integer unit (IV)

64-bit floating-point unit (FPU)

When the IV finishes executing an instruction, it places the resulting data, if any, onto one
of the writeback buses. The results are then stored into the correct general-purpose register.
If a subsequent instruction is waiting for this data, it is forwarded past the register file,
directly into the appropriate execution unit for the immediate execution of the waiting
instruction. This allows a data-dependent instruction to be decoded without waiting for the
data to be written into the register file and then read back out again. This feature, known as
feed forwarding, significantly shortens the time the machine may stall on data
dependencies.

When the FPU finishes executing an instruction, it places the resulting data, if any, onto one
of the writeback buses. The results are then stored into the correct floating-point register. If
a subsequent instruction is waiting for this data, that instruction must wait for the data to be
written into the floating-point register file. On the next clock cycle, the following
instruction may begin decode. In other words, the floating-point execution unit is not
equipped with a feed-forwarding mechanism. The exception to this point is when a floating­
point instruction is waiting for data from a floating-point load operation. In this case, the
floating-point operation may begin decode during the same clock cycle as the floating-point
register file is being updated.

When the BPU finishes executing an instruction, it places the resulting data, if any, onto
one of the writeback buses. The results are then stored into the correct special-purpose
register. If a subsequent instruction is waiting for this data, it is forwarded past the register
file, directly into the appropriate execution unit for the immediate execution of the waiting
instruction. This allows a data-dependent instruction to be decoded without waiting for the

MOTOROLA Chapter 7. Instruction Timing 7-3

-

•

data to be written into the register file and then read back out again. The feed forwarding
feature significantly shortens the time the machine may stall on data dependenc.:ies.

7.2.1 Instruction Queue (IQ)
The instruction queue (lQ) contains instructions prefetched from the current instruction
stream. Instructions enter the IQ and are issued to the various execution units from the IQ.
The IQ is an eight-entry queue, which is the backbone of the master pipeline for the
microprocessor. The MPC601 tries to keep the IQ full at all times. As previously
mentioned, a maximum of three instructions can be dispatched during a single clock cycle.
If while topping off the IQ, the request for new instructions misses in the on-chip cache,
then a memory access will only occur if the IQ is half empty. In other words, if the IQ is
only trying to fill its top half (only needs one to four instructions), and that instruction is
not found in the on-chip cache, a memory access will not occur. However, if the I Q is trying
to fill the top five entries (5 instructions are needed), and those instructions are not found
in the on-chip cache, arbitration for a memory access will begin. The figures in this chapter
show the changes in the IQ due to the execution of the flow-control instructions; they do
not show the dynamic state of the IQ or the "topping off' effect.

Instructions enter the IQ through entry 7 and filter down to entry O. The prefetch bus
between the IQ and the on-chip cache is wide enough for eight instructions to be brought
into the IQ simultaneously; that is, the IQ can go from being completely empty to
completely full in one clock cycle. Note that although a maximum of eight instructions can
be brought in from the on-chip cache in a single clock cycle, some restrictions do occur.
Specifically, only the instructions between the instruction requested and the last word in the
mod-32 aligned block are fed into the IQ. For example, if the BPU requests a block of
instructions starting at address x' 10' , then instructions contained in the block from x' 10' to
x'20' will be sent to the IQ.

Each of the execution units pulls instructions out of the IQ from specified entries. For
example, integer instructions are only dispatched from the IQ through entry O. In fact, IQ­
o is also the decode stage for the integer unit. Floating-point instructions may be dispatched
to the FPU from entries 0-3. The branch processing unit also may pull instructions from
the IQ from entries 0-3.

7.2.2 General Instruction Flow
Instructions are said to "issue" from the IQ to the appropriate execution unit. Although
there are only three execution units that pull instructions out of the IQ, each execution unit
may have several paths from which to pull instructions out of the IQ. Figure 7-2 shows how
instructions can be pulled from the IQ and how those instructions progress through the
various execution units. Note that Figure 7-2 is not a data flow diagram, rather it simply
shows the various stages in the processor.

7-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

I FPU Buffer I
I FPU Decode I

I FPU Execute 1 I

I FPU Execute 21

I Writeback I

I

Prefetched instructions
from on-chip cache

~
IQ-7

IQ-6
IQ-S
IQ-4

r-- IQ-3 -
r-- IQ-2 -
r-- IQ-1 -
'--- IQ-O (lU Decode) I-

IU Buffer I I BPU Dec/Exe

I
I

IU EX:~~,~,~~
::

lll~:
I Writeback I I Writeback

Figure 7-2. Instruction Stages

I

I

Once an instruction has been pulled from the IQ by the branch processing unit, the
remaining instructions found above the one just pulled by the BPU will be shifted down by
one element. Once the BPU has pulled an instruction from the IQ, that instruction is placed
into the decode/execute stage of the BPU. The branch is either executed and resolved, or is
predicted. Once a branch instruction has been executed, it may need to update a special
purpose register. In that case, the branch instruction will do its writeback sometime after
the decode/execute phase. If no writeback is needed, the branch instruction is retired.

An integer instruction cannot issue to the IU until that instruction has filtered to the bottom
element of the IQ. Once the integer instruction has been properly decoded, then it moves
into the next phase of the IU pipeline. If the execute phase of the IU is not available, then
the integer instruction may be issued into a one-entry buffer that lies between IQ-O (the
decode stage for the integer unit) and the execute phase of the integer unit. If the execute
phase of the IU is available, the instruction will fall through the integer unit buffer into the
execute phase with no delay. It is important to note that if a data dependency is present, then
the instruction will be hdd in lhe execute stage of the IU pipeline. Once the data
dependency is resolved, the pending instruction will continue execution and will proceed
thought the IU pipeline. This is important because if an instruction stalls in the IU pipeline,
it will stall in the execute stage, leaving the decode stage and the buffer open for subsequent
integer instructions to be issued to. Once execution is complete, the integer instruction is
moved into the writeback stage where results are written into the register file.

MOTOROLA Chapter 7. Instruction Timing 7-5

•

•

Floating-point instructions can issue to the FPU from anyone of the bottom four elements
of the IQ. Once a floating-point instruction has been pulled from the IQ, it moves into the
floating-point buffer. The floating-point execution unit contains a one-entry buffer that lies
between the IQ and the floating-point decode stage. All floating-point instructions must
spend at least one clock cycle in the floating-point buffer. If the decode stage remains
occupied after an instruction has already spent one clock cycle in the floating-point buffer,
then the floating-point instruction will remain in the buffer. If both the decode stage and the
buffer are occupied, then no floating-point instruction may be pulled from the IQ. The one­
entry buffer in the FPU pipeline helps minimize any penalties when certain instructions do
not move from one stage in the pipeline to another in a single clock cycle.

Certain floating-point instructions may spend multiple clock cycles in the decode/execute
phases of the floating-point unit. When a double-precision multiply instruction is
encountered, it will spend a minimum of two clock cycles in each phase of the floating­
point execution unit pipeline-two clock cycles in the decode phase, a minimum of two
clock cycles in FPU execute 1, and a minimum of two clock cycles in FPU execute 2. When
one of these instructions enters the fl oating-point execution unit pipeline, previous floating­
point pipeline stages (except for the FPU buffer) become unavailable. For example, when
a double-precision mUltiply (or single- or double-precision divide) instruction moves from
the FPU decode stage into the FPU execute stages, no other FPU instruction may enter the
FPU decode stage until that double-precision instruction has moved out of the FPU execute
stages into the writeback stage.

7.2.3 Instruction Prefetch Timing
The timing of the prefetch mechanism on the MPC601 depends heavily on the state of the
on-chip cache. There are two factors that determine how quickly the cache responds to the
BPU's request for additional instructions:

Is the cache currently serving a previous request?

Is the instruction being asked for in the on-chip cache (cache hit) or will a memory
transaction need to be initiated to bring the data into the cache (cache miss)?

These issues are discussed further in the following sections.

7.2.3.1 Cache Arbitration
When the branch processing unit attempts to prefetch instructions from the on-chip cache,
the cache mayor may not be able to immediately respond to the request. There are four
scenarios that may be encountered by the BPU when it requests instructions from the on­
chip cache.

The first scenario is when the on-chip cache is idle and a request comes in from the BPU
for additional instructions. In this case, the on-chip cache responds with the requested
instructions on the next clock cycle.

7-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The second scenario occurs if at the time the BPU requests instructions, the on-chip cache
is busy. A busy state may occur due to accesses in progress to/from memory or when
snooping cache change activity is in progress. When this case arises, the on-chip cache may
be inaccessible for one or two clock cycles, depending on the exact state of the memory
access that is in progress.

The third scenario occurs if the integer unit has any pending data access operations. In this
case, priority is always given to the pending IU data accesses. As a result, the BPU may see
a delay in the response to its request for instructions. In addition, if one of these pending
data access operations will cause a cache miss, one of the previously described scenarios
may also occur.

Note that if the on-chip cache is servicing a previous access that results in a cache hit, no
delay is seen by the BPU.

7.2.3.2 Cache Hit
Assuming that the branch processing unit gains control of the on-chip cache and the
instructions it needs are in the on.-chip cache (a cache hit has occurred), there will only be
one clock cycle between the time that the BPU requests the instructions and the time that
the instructions enter the IQ. As previously stated, any number of instructions between one
and eight can be simultaneously fetched from the on-chip cache and loaded into the IQ.

Figure 7-3 shows a brief example of an instruction prefetch that hits in the on-chip cache
and how that prefetch affects instruction issue. In this example, eight instructions are fed
into the IQ during clock cycle O.

During clock cycle 1, instruction 0 is decoded and instruction 1 is fed into the floating-point
buffer. Notice that the branch instruction (instruction 4) is still not within the bottom four
elements of the IQ; thus it may not begin its decode/execute phase.

During clock cycle 2, another integer instruction and floating-point instruction are pulled
from the IQ. In addition, the branch instruction is now within the bottom four elements of
the IQ, thus it may be pulled out of the IQ into the branch pipeline. Notice that the branch
pipeline has a combined decode/execute stage. The BPU is immediately able to determine
that the branch will indeed change program flow and sends a request to the on-chip cache
for the new instruction stream.

During clock cycle 3, the new instructions arrive in the IQ. Note that instructions 5, 6, and
7 are never decoded and are discarded (because of the taken branch) when the new set of
instructions is brought into the IQ.

During clock cycles 4 through 8, the appropriate instructions move through the various
pipelines toward completion. As the IQ is emptied into the individual execution unit _
pipelines, additional instructions will be requested from the on-chip cache.

MOTOROLA Chapter 7. Instruction Timing 7-7

..

•

o 2 3 4 5 6

: ... :
I 0 add It:::: :::;:; ~(t

j 1 fadd i*d ;;;:;;;:'::;:;:::;::::;:;:::-:,
I 2 add IIIIIIIII'}::::::::{?>::::}
1 3 fadd UlllllllFHtti ~t t/;
! 4 br !IIIIIIII!
I 5 add 1111111111
! 6 fadd illllllll~
I 7 add 1111111111 , , , , , , , , , , , ,

c::=J
~
nmnm
1::I::::i?::{::::::::1

mal
mal

Enter 10

FP Buffer

Held in 10

Decode

Execute

Writeback

19 fsub E===3~::)\:}t:/{
• I • I

I 10 or ,llllllllftJt(:>:(\ :
! 11 fsub ~ 11111111P--9:::tt: :~t};; I
112 and IIIIIIIIIIIIIIIIIIIJ}~/:ttt:;~

i 14 add i III III IIi j j

j15 fsub~lIlIIlIIi • • .j 1

7

Figure 7-3. Instruction Timing-Cache Hit

7.2.3.3 Cache Miss

8 9

Assuming that the BPU gains control of the on-chip cache and the instructions that it needs
are not in the on-chip cache (a cache miss has occurred), there will only be seven clock
cycles between the time that the BPU requests the instructions and the time that the
instructions are available for decode. These seven clock cycles do not take into account any
wait states that may be present in the memory system.

Figure 7-4 shows a brief example of an instruction prefetch that misses in the on-chip cache
and how that prefetch affects the instruction issue. In this example, eight instructions are
fed into the IQ during clock cycle O.

During clock cycle 1, instruction 0 is decoded and instruction 1 is fed into the floating-point
buffer. Notice that the branch instruction (instruction 4) is still not within the bottom four
elements of the IQ, thus it may not begin its decode/execute phase.

7-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

o 2 3 4 5 6 7 8 9 10 11

, , ,

AD~RESS H'--------~)
, , ,

1 DATA: :

o add k)):::::

11 fadd f#=f::::::::::::,
! 2 add jllllllll~/):::>:: :
1 3 fadd I11111111 t==§:::::::::J

i 4 br jill II III 'i tl
1 5 add 1111111111 1

6 fadd jllllllll~ 1

7add 1111111111 1

c=:==J Enter 10

~ FPBuffer

IIIllIllD Held in 10

I\:::\l Decode

~ Execute

~ Writeback

I 8 and 1:::::::::::::<::_
I 9 fsub E===3 L\K. , , ,

1 10 or 1111111111:::: ::K
11 fsublllllllllb3

112 and 1

j13 faddj

114 add 1

j15 fSUbj - - _:
, , , , , ,

Figure 7-4. Instruction Timing-Cache Miss

During clock cycle 2, another integer instruction and floating-point instruction are pulled
from the IQ. In addition, the branch instruction is now within the bottom four elements of
the IQ, thus may be pulled out of the IQ into the branch pipeline. Notice that the branch
pipeline has a combined decode/execute stage. The BPU is immediately able to determine
that the branch will indeed change program flow and sends a request to the on-chip cache
for the new instruction stream.

During clock cycle 3, the on-chip cache misses the access and determines that a memory
access will have to occur. During clock cycle 4 the address of the block of instructions is
applied to the system bus. During clock cycle 5 two instructions (64 bits) are returned from
memory. The instructions are not fed directly into the on-chip cache as they are received
from the memory system, but they are buffered into groups of 128 bits.

During clock cycle 7, the first 128 bits of instructions have been received and a request is
placed to the on-chip cache for access, in order to actually update the cache with the new
instructions. Also during clock cycle 7, the third pair of instructions is being received from

MOTOROLA Chapter 7. Instruction Timing 7-9

-

•

memory. During clock cycle 8, the request for access to the on-chip cache is acknowledged
and the first four instructions are fed into the on-chip cache and into the IQ, as required.
Also during clock cycle 8, the fourth pair of instructions is received from memory.

During clock cycle 9, another request for access is made to the on-chip cache to update the
cache with the second four instructions received from memory. Also during clock cycle 9,
instructions 8 and 9 are pulied from the IQ into the appropriate execution units.

During clock cycle 10, the request for access to the on-chip cache is acknowledged and the
second four instructions are fed into the on-chip cache and into the IQ, as required. Also
during clock cycle 10, two more instructions are pulled from the IQ.

During clock cycle 11, instructions 12-15 are fed into the IQ. During the following clock
cycles, these instructions move through the appropriate pipelines toward completion.

7.2.4 Instruction Decode Timing
Most instructions can be decoded in one clock cycle on the MPC601. In addition, recall that
the BPU may decode and execute all instructions in a single clock cycle. Although an
instruction may be decoded in one clock cycle, other factors may keep the instruction from
moving to the next stage in the pipeline. Those factors include dependencies on source
operands, dependencies on registers being available to act as the instruction '5 destination,
and the data type of the operands.

If some dependency exists that may preclude an instruction from beginning execution, that
instruction may stall in a different stage of its pipeline depending on the type of instruction.
For example, if it is a floating-point instruction, the instruction is held in the decode stage
of the floating-point pipeline. If the data that the floating-point operation depends upon is
returned via a cache access, the decode may begin during the same clock cycle that the
floating-point register file is being updated. However, if the data that the floating-point
operation depends upon is returned via the result of a previous floating-point operation,
then the decode will begin the clock cycle after the floating-point register file is updated.

If the instruction that has a data dependency is an integer instruction, the instruction is fully
decoded and may be moved into the execute stage of the integer pipeline where it will wait
for the source data to become available. The integer instruction will begin execution during
the same clock cycle as the update to the general-purpose register file.

If a flow-control operation has a data dependency on the condition register, the instruction
will be predicted during the decode/execute phase in the BPU.

If the instruction is a floating-point multiply operation with double-precision operands,
then that instruction will spend a minimum of two clock cycles in the decode stage of the
floating-point pipeline.

7-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

7.2.4.1 Source Register Considerations
If an instruction attempts to use a source operand that is still being computed by a previous
instruction, a data dependency exists. When a data dependency exists, instruction
acceptance into that execution unit is halted until all of the necessary source data is
available. The MPC601 uses a hardware mechanism to keep track of which registers are
available for use.

Data access instructions follow a unique set of rules for out-of-order issue and completion.
Only one memory access instruction can be issued per clock cycle; however, store
instructions may be issued before the data being stored is available. This allows continued
issuance and execution of other instructions in parallel with the computation of the source
data for the store operation. For example, assume a floating-point divide that will update
register 5 begins execution during clock cycle O. The results for that divide operation (fr5)
will not be available for other instructions to use for a number of clock cycles. Now al)sume
that a store of fr5 to address Ox' 1 000' immediately follows the divide operation in the
instruction stream. Rather than stalling instruction processing while the store operation
waits for fr5 to become available, the address of the store is calculated and the store is
moved into a write buffer. By removing the waiting store from the integer execution
pipeline, the IU can process additional instructions while the store waits in the write buffer
for fr5 to become available.

Note that address operands for store operations are vulnerable to source register checks. For
example, assume a load that will update register 5 begins execution during clock cycle O.
The results for that load operation (r5) will not be available for other instructions to use for
a number of clock cycles. Now assume that a store of r7 to the address contained in r5
immediately follows the load operation in the instruction stream. Rather than issuing the
store into a write buffer, the store operation will stall in the IU's execute stage. In other
words, for a store to be moved into the write buffer, the address calculation must be
complete. The address calculation is not able to complete unless all address source
operands are available.

Additionally, load instructions may bypass store instructions that are pending as long as the
address being accessed by the load instruction does not match that being accessed by any
pending store instruction.

7.2.4.2 Destination Register Considerations
The following paragraphs describe how the MPC601 prevents destination registers from
being overwritten by out-of-sequence instructions and how instructions are prioritized for
writing back to the register files.

In a machine that allows instructions to issue, execute, and complete out of order, there is
the potential for an instruction's result to be overwritten by an instruction that issued later,
but appears earlier in the instruction stream. Consider the following exan1ple: given tW0
instructions, instruction_a and instruction_b, where instruction_a occurs before
instruction_b in the instruction stream. Now, assume that instruction_a is decoded and

MOTOROLA Chapter 7. Instruction Timing 7-11

..

•

begins execution during clock cycle O. Instruction_a completes execution and is ready to
update general purpose register 30 on clock cycle 6. Assume that instruction_b is decoded
and begins execution during clock cycle 2. Instruction_b completes execution in a single
clock cycle and is ready to update general purpose register 30 during clock cycle 3. In this
case, general purpose register 30 is updated incorrectly.

To preclude this possibility, a register interlock mechanism is employed that guarantees that
all source and destination registers are read from and written to in proper order. This
ensures that updates to any given register are always completed in the order specified by
the program and thus no data is ever incorrectly overwritten in the register files. If an
instruction is in execute, it does not move into the writeback stage until its destination
register is guaranteed not to be the destination register for a previously issued, but
incomplete, instruction.

7.2.5 Instruction Execute Timing
Assuming that an instruction has completed its decode stage, and that the required execute
stage is available, it should be forwarded into an execute stage. There are additional factors
that must be considered in calculating when and how an instruction moves from its decode
stage into its execute stage. First, it is possible that the specified execution unit may not be
available for any additional instructions. In addition, if an instruction happens to stall in the
IQ, it is possible that the following instructions may bypass the stalled instruction and begin
execution. This is known as out-of-order instruction issue.

Both topics are discussed further in Sections 7.2.5.1, "Execution Unit Considerations," and
7.2.5.2, "Out-of-Order Instruction Issue."

7.2.5.1 Execution Unit Considerations
As previously noted, the MPC601 is capable of issuing three instructions per clock cycle.
One of the hindrances in maintaining this peak is the availability of execution units on each
clock cycle.

For an instruction to be issued, the required execution unit must be available, or have an
available spot in its buffer. The sequencer monitors the availability of all execution units
and suspends instruction issue if the required execution unit is not available. An execution
unit may not be available under the following circumstances:

An execution unit may become unavailable for additional instructions if its pipeline
becomes full. This situation may occur if execution takes more clock cycles than the
number of pipeline stages in the unit and additional instructions are issued to that
unit to fill the remaining pipeline stages.

Execution units can accept only one instruction per clock.

It is important to note that both the integer unit and the floating-point unit each contain a
one-entry buffer that help reduce the effects of long-latency instructions. Even if a specific

7-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stage of one of these pipelines becomes busy for multiple clock cycles, these buffers may
continue to accept instructions from the IQ.

7.2.5.2 Out-of-Order Instruction Issue
As previously mentioned, integer instructions may only be issued from the IQ through
element O. Also mentioned was the fact that floating-point instructions may be issued from
any of the IQ elements 0-3. Since the different execution units are able to pull instructions
from the IQ through different elements, it is possible for one execution unit to pull an
instruction from the IQ and begin execution while a previous instruction remains held in
the IQ. Figure 7-5 shows an example of out-of-order instruction issue on the MPC601.

c=J EnterlO

!IIllIIIll Held in 10

~ IUBuffer

~ FPBuffer

It~::t:t~:~~tt~:J Decode

~ Cache Access

~ Execute

_ Writeback

o 2 3

I 0 Iwz I>};}}{I
! 1 add ; 1IIIIIIIi:::/~:~:»~:::::;

I: :::: ~G*+~".,
I 4 add ;111111111 l
! 5 fadd "III I III! 1

I 6 add ,,11111111 - - -1
I I I I

4 5

Figure 7-5. Instruction Timing-Out-of-Order Execution

6

On clock 0 in Figure 7-5, eight instructions are received from the on-chip cache. During
clock cycle 1, instructions 0 and 2 are pulled from the IQ while instruction 1 remains. Note
that the Load Word and Zero (lwz) instruction issues to the integer unit while the Aoating­
Point Add (fad d) instruction issues to the floating-point unit; thus these two instructions
can begin processing during the same clock cycle.

During clock cycle 2, two more instructions are pulled from the IQ. During the execution
of instruction 0 on clock 2, a request is sent to the on-chip cache for the required data.

On clock 3, instructions 1 and 3 have been decoded and are ready to begin execution .
. Unfortunately, instruction I has a data dependency on instruction 0, which has not yet
completed. For this realion, instruction 1 cannot begin execution on this clock cycle.
Instruction 1 will wait in the IU until its data dependency is resolved. Notice, however, that
instruction 2 begins execution during clock cycle 3 even though instruction 2 occurs after
instruction 1 in the instruction stream.

On clock cycle 4, instruction 0 completes and data is being written back into the general­
purpose register file while simultaneously being forwarded to the waiting instruction 1. As
its source data is fed to it, instruction 1 is able to immediately begin execution.

MOTOROLA Chapter 7. Instruction Timing 7-13

..

•

Notice that instruction 1 appears to be in the execute stage of the integer unit for two clock
cycles. However, this is only because instruction 1 will move into the execute stage during
clock cycle 3 while it waits for its source data. No execution of instruction 1 occurs during
clock cycle 3.

Floating-point instructions are able to issue out of order with respect to integer instructions
and flow-control instructions. Integer instructions cannot issue out of order with respect to
any other instructions. Flow-control instructions (issued to the BPU) are allowed to issue
out of order with respect to both integer instructions and floating-point instructions, but not
with respect to other flow-control instructions.

7.2.6 Writeback Timing
There are two writeback buses available for each register file on the MPC601. It is possible
for more than one instruction to write to the same register file in a given clock cycle. For
example, a load into the general register file may write its results during the same clock as
a single-cycle integer instruction. Both of these instructions will require a separate
writeback bus into the general register file.

Each of the execution units independently handles data that is being written back. In the
integer unit, if a subsequent integer instruction is waiting for data, it is forwarded past the
register file directly into the appropriate execution unit for the immediate execution of the
waiting instruction.

In the floating-point unit, if a subsequent floating-point instruction is waiting for data, that
instruction must wait for the data to be written into the floating-point register file. On the
next clock cycle, the following instruction may begin decode. In other words, the FPU is
not equipped with a feed-forwarding mechanism. The exception to this point is when a
floating-point instruction is waiting for data from a floating-point load operation. In this
case, the floating-point operation may begin decode during the same clock cycle as the
floating-point register file is being updated.

7.3 Execution Unit Timings
The following sections describe instruction timing within each of the respective execution
units in the MPC601. All timings described are only accurate to within a half-clock cycle.

7.3.1 Branch Processing Unit Execution Timing
Flow-control operations (conditional branches, unconditional branches, and traps) are
typically expensive to execute in most machines because they disrupt normal flow in the
instruction stream. When a change in program flow occurs, the IQ must be reloaded with
the target instruction stream. During this time, bubbles can be introduced into the execution
units. However, previously issued instructions will continue to execute while the new
instruction stream makes its way into the IQ.

7-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Performance features such as branch folding and static branch prediction help minimize the
penalties associated with flow-control operations on the MPC601. The timing for branch
instruction execution is determined by many factors including the following:

Whether the branch is taken

Whether the target instruction stream is in the on-chip cache

Whether the branch can be predicted

Whether the prediction is correct

7.3.1.1 Branch Folding
When a branch instruction is encountered in the bottom four elements of the IQ, the
MPC601 immediately tries to pull that instruction out of the IQ and resolve it. When the
branch processing unit pulls the branch instruction out of the IQ, the instruction above the
branch is shifted down to take the place of the removed branch. The technique of removing
the branch instruction from the instruction sequence seen by the other execution units, is
known as branch folding.

Often, branch folding reduces the penalties of flow-control instructions to zero since
instruction execution proceeds as though the branch was never there.

If the folded branch instruction changes program flow (the branch is said to be "taken" in
this case), the BPU immediately requests the instructions at the new target from the on-chip
cache. In most cases, the new instructions arrive in the IQ before any bubbles are
introduced into the execution units. If the folded branch does not change program flow (the
branch is said to be "not taken" in this case), the branch is already removed from the
instruction stream and execution continues as if there were never a branch in the original
sequence.

7.3.1.2 Static Branch Prediction
Static (compiler-directed) branch prediction is a mechanism by which software (for
example, compilers) can give a hint to the machine hardware about the direction the branch
is likely to take. When a branch instruction encounters a data dependency, the BPU waits
for the required condition code to become available. Rather than stalling instruction issue
until the source operand is ready, the MPC601 predicts which path the branch instruction
is likely to take, and instructions are fetched and executed along that path. When the branch
operand becomes available, the branch is evaluated. If the predicted path was correct,
program flow continues along that path uninterrupted; otherwise, the processor backs up,
and program flow resumes along the correct path.

There is a scenario '.vhere a flow-control instruction will not be predicted on the MPC601.
If the target address of the branch (link register) will be modified by an instruction that
appears before the branch instruction, the branch processing unit must wait until the target
address is available.

MOTOROLA Chapter 7. Instruction Timing 7-15

•

•

The MPC601 may only execute in one level of prediction. In other words, the
microprocessor may not predict a branch if a prior branch instruction is still unresolved.
Additionally, while executing down a predicted path, no data or instruction accesses are
allowed to execute if the access must go off-chip.

The number of instructions that can be executed conditionally after the issue of a predicted
branch instruction is limited by the fact that no conditionally executed instruction may
actually update the register files or memory. That is, instructions may be issued and
executed conditionally, but may not reach the writeback stage of their pipelines. When a
conditionally issued instruction has completed execution, it will not be moved into the
writeback stage, instead, it will simply stall in the last execute phase of that execution unit.
This means that the execution units may become full, which will limit the number of
additional instructions that may be issued conditionally.

In the case of a misprediction, the MPC601 is able to reverse its machine state rather
painlessly because the programing model has not been updated. When a branch is found
out to be mispredicted, all instructions that were issued conditionally are simply flushed
from the execution unit pipelines. No register state needs to be restored because no register
state was modified conditionally.

7.3.1.2.1 Predicted "Not Taken" Branch Timing Examples
Figure 7-6 depicts the case where branch instructions are predicted to be not taken. During
clock cycle 0, eight instructions arrive into the IQ. During clock cycle 1, instructions 0, 1,
and 2 are pulled from the IQ and into their respective execution units. Notice that the BPU
has a combined decode/execute stage, thus the branch (instruction 1) is predicted not to be
taken during clock cycle 1 because its source register (condition register) is not available.
The branch is predicted because its source data is not yet available.

During clock cycle 2, instructions 0 and 2 progress through their pipelines. In addition, the
branch (instruction 1) remains predicted. Notice that the next branch instruction
(instruction 5) is not able to begin its decode/execute phase while instruction 1 is predicted.

During clock cycle 3, instruction 0 begins its writeback stage. The writeback of instruction
o resolves the data dependency for the first branch (instruction 1); thus the first branch
becomes resolved and it is determined that the prediction was correct. Recall that only one
branch may be predicted at a time; thus when instruction 1 is resolved the BPU is free to
predict instruction 5.

During clock 4, the second branch instruction remains predicted while additional
instructions move through the various pipelines.

During clock cycle 5, the BPU realizes that the prediction made for instruction 5 was
incorrect. Note that since instruction 6 was issued and executed conditionally, it never
performed its writeback. As a result of the misprediction, all instructions that followed the
branch in the instruction stream must be flushed from the respective execution unit
pipelines. Notice that instructions 6 and 7 do not continue execution since it has been

7-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

determined that these instructions should have never been issued in the first place. Since
the branch has been resolved, a request is sent to the on-chip cache for the new instruction
stream (based on the execution of instruction 5). During clock 6, the new set of instructions
are in the IQ and the appropriate decoding begins on clock cycle 7.

o 2

; e e e;
I 0 add I:::::::::{)?{I

I 2 fadd i====r(::=::?}f
i 3 add !IIIIIIII~::::::>:::::::::::=:::,

3

14 fadd 111111111F*9?}:::::{::::::;:::
I 5 bc il III I III ill III III '
• I I • I

1 6 add IIIIIIIII,IIIIIIII,{:::::::;:::::{:::[
I ' , , , i 7 fadd !" III III ~1II11111 i+--r:

C==:J Enter 10

mmnn Held in 10

~ FPBuffer

/':}}::::::::}:::::::::] Decode

__ Predicted

__ Execute

__ Write back

4 5 6 7

1 8 and I::::::}}:}}:::/

19fsub b+d , , ,

1 10 or ,1111111,
111 fsub ~ I1II1II1 , , ,
112 and,lllllll,

113 fadd'lIIlIlI~ , , ,
114 add UIIIIII~

115 fsubUlIlIIU , , ,
; e e e; ;

Figure 7-6. Instruction Timing-Branch Not Taken

7.3.1.2.2 Predicted "Taken" Branch Timing Examples
Figure 7-7 depicts the case where branch instructions are predicted to be taken. During
clock cycle 0, eight instructions are fed into the IQ. During clock cycle 1, the first branch
(instruction 1) is decoded and executed (recall that the branch execution unit has a
combined decode/execute stage). Note that as the branch is predicted during clock cycle 1,
a request is sent to the on-chip cache for the new instruction stream. Also during clock cycle
1, all subsequent instructions are not processed any further. Notice that these instructions
are not discarded, they are simply not processed.

MOTOROLA Chapter 7. Instruction Timing 7-17

•

•

o 2 3 4 5

: ... :
I 0 add Itt }:(It:::1 I I
I 1 bc I I I

I I
I I

14 fadd IIIIIIIIIIIIIIIIU
DmIIIIIIIIIIIIIIIIIII Mtt~tt~ti

I 6 add JlIIIIIIIU 11111 UII III III II 11111111
17 fadd UIIIIIII~IIII1IUIIIIIIIUIIIIIIIII

18 and I
19 fsub I
110 faddl

111 andl

112 faddl

113 fsubl

114 add I
115fsubl

6

r==J
~
umnm
Ittttttt:tl

Enter 10

FP Buffer

Held in 10

Decode

Predicted

Execute

Writeback

117 faddFH :::::::::::::::::::\\::,

118 and UII 11111 I ,
p 9 fsubll I 111111 I ••• :
120 faddll 1111111 I - 121 fsUbl1ll III II I - 122 add UIIIII II 1 - 123 fsubU II III II 1

123 fsubll II III III
, , ,

7

Figure 7-7. Instruction Timing-Branch Taken

During clock cycle 2, instruction 0 is executed and the branch (instruction 1) is resolved. It
turns out that this branch was predicted incorrectly. As a result, the instructions that are
being received from the on-chip cache are discarded. Additionally, processing begins again
on the subsequent instructions in the IQ.

It is important to note that the MPC601 does not discard instructions 2-7 in this example.
The processor does not discard instructions until the new instructions have been received
from the on-chip cache. This helps in the case of mispredictions (as shown here).

During clock cycle 3, the next branch (instruction 5) has fallen into one of the bottom 4
positions in the IQ, and thus, can be pulled out of the IQ into the BPU. The branch may not

7-18 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

be resolved immediately, and is predicted to be taken. As a result, processing stops on all
subsequent instructions while processing continues on all previous instructions
(instructions 2, 3, and 4). Additionally, a request is sent to the on-chip cache for the new
instruction stream.

During clock cycle 4, the new instructions arrive in the IQ, which forces instructions 6 and
7 to be discarded. During clock 5, the second branch (instruction 5) is resolved and it is
determined that the prediction was correct. As a result, instruction decode and execute
continues.

7.3.2 Integer Unit Execution Timing
The integer unit executes all integer, bit-field, and data access instructions. Many of these
instructions execute in a single clock cycle. The integer unit has one execute phase in its
pipeline, thus when a multi-cycle integer instruction is being executed, no other integer
instructions may begin an execute phase. Although a multi-cycle integer instruction may
block the integer execute phase, it does not preclude subsequent integer instructions from
being decoded. In addition, there is a one-entry buffer between the integer decode stage (IQ
0) and the integer execute stage. If the execute stage of the integer unit is available, then a
decoded instruction will fall through the buffer into the execute stage.

The single execute stage in the integer unit is used differently for the single-cycle and
multi-cycle integer instructions. For example, single-cycle integer instructions move
through the execute stage in one clock cycle, as do data access instructions, which use the
execute stage of the integer unit for address calculation. For multi-cycle integer instructions
(such as, IDlll) , the same execute stage is used over and over until the multi-cycle
instruction has completed execution. Figure 7-8 illustrates the instruction flow of the
integer unit.

MOTOROLA

IQ-1

• • •
IQ-O (lU Dec.)
Integer Buffer

Writeback

Figure 7-8. Integer Unit Instruction Flow

Chapter 7. Instruction Timing 7-19

•

•

7.3.2.1 Integer Instructions Timing Examples
Figure 7-9 illustrates the timing of the integer unit while executing a sequence of integer
instructions.

o 2 3 4 5 6 7 8 9

1 and jill I 1111 j:}}}{:: :::::::::

2 mul illllllll.'IIIIIII'::(}U)?}>
I I I
I I I
I I I

I 4 add illlllill illlllill i 1I1II11I i 1I11111I jt:{::{{:t}ti:t :{t{):{j:::t}u:U)(ti:t:::}:U){t}WM
• I I • • I I I I I I
• I I • • , I • r I I

! 5 div !IIIIIIII~IIIIIIII~IIIIIIII~ 11111111, 11111111, IIIIIIII~ II II II I '!III II III ~:::t}:::: :«>i
: : : : : ... : r==J Enter 10

DllIllIJl Held in 10

~ Held in IU Buffer

P:::::::titt<tl Decode

~ Execute

~ Writeback

Figure 7-9. Instruction Timing-Integer Instructions

Notice that each integer instruction takes only one clock cycle to decode. After the decode
stage, the integer instruction moves into the execute phase of the integer unit pipeline.
Notice, however, that the mul instruction uses five clock cycles (clocks 4 - 8) in the execute
phase of the integer unit. As a result, during clock 5, the subsequent integer instruction
cannot move into the execute phase. Instead it is held in the IV buffer as it passes from the
decode stage (IQ-O) until the execute phase of the integer unit becomes available (during
clock cycle 9). Although instruction 3 may not enter the execute phase (because that phase
is still being used by instruction 2) on clock cycle 5, instruction 4 may enter the decode
stage.

During clock cycle 9, the mul (instruction 2) instruction moves from the execute stage into
the writeback stage. As a result, instruction 3 is able to move into the execute stage and
instruction 4 moves into the buffer since it has already been decoded. After the mul

7-20 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

instruction is moved out of the execute phase of the pipeline, the single-cycle pipeline
continues.

It is important to note that if the integer unit buffer was not present, the timing of the
instructions shown, with respect to when their writeback stages occur, would be the same.
The real value of the buffer in the integer unit is that it allows instructions to be pulled out
of the IQ even when the execute stage in the integer unit is busy. This in turn allows new
instructions to enter the critical bottom four entries and possibly be decoded/executed by
the floating-point unit or the branch processing unit.

7.3.2.2 Data Instructions Timing Examples
As previously mentioned, the IU also does the address calculation for all data access
instructions. Once the address calculation is complete (in one clock cycle), the data access
instruction is moved to another stage, thus allowing additional integer instructions to be
pushed through the integer unit.

Figure 7-10 illustrates the timing of a data access instruction as it moves through the IU .
During clock cycle 0, the instructions arrive into the IQ. During clock cycle 1, instruction
o is decoded while the subsequent instructions wait in the IQ. During clock cycle 2,
instruction 0 begins its execute phase while instruction 1 is decoded.

During clock cycle 3, instruction 2 is decoded while instruction 0 is writing results back
into the general purpose register file. Also during clock cycle 3, instruction 1 is executed.
During the execution of instruction 1, the effective address is calculated and a request is
sent to the on-chip cache for the data needed.

On clock cycle 4, the on-chip cache is being accessed and data is being returned. While this
access occurs, the execute phase of the IU becomes available to service instruction 2. Note
that even if a cache miss occurred for this data access instruction, the execute phase of the
IU would become available after only one cycle was used to calculate the effective address.

As load and store operations move from the integer unit execution stage, they move to the
cache. If a cache miss occurs, they are inserted in a buffer. There is a separate write buffer
and read buffer. If a cache miss results from a load operation, that load instruction will
remain in the read buffer until data is returned from memory and the cache and register file
are updated. While this load is pending, additional load operations may access the cache.
However, if a load access misses the cache while the load buffer is still holding a previously
issued load, then the integer unit may experience a stall. If a cache miss results from a store
operation, that store instruction will remain in the write buffer until the data has been
properly stored. While this store is pending, additional store operations may access the
cache, and may also be piaced in the store buffer behind the original store if a c~che miss
occurs.

MOTOROLA Chapter 7. Instruction Timing 7-21

•

•

o 2 3 4 5 6 7 8 9

, ,
: ... :
i 0 add it:: :/t:t:::/I

1 Iwz ,11111111!:t):::::{»:

2 mul ,"'I"'I;"I"'I'f::: :i/tt//
, , , , , ,

3 add ~ 1I1II1II~1I1II1II\1II11111~:t: ::t::??~/l"'/ ~/H~J\

4 Iwz ~ 11111111; 11111111(11111111 ~IIIIIIII ~}}} :::::{<>j}tt){)ftjtt}:::)):::::!?{\?)?tV~
I I I I I • I I I •
I • • • I I I I I I
I I I • • I I • I

! 5 div ~11111111~1111I1II1)1II111I~1II1I1I1~1I1II1II ~IIIIIIII ~IIIIIIII~ 1II1II1I~}i :::<1«1
: ' , , , : : : : ... :
. c:=J Enter 10

IIIIIIIIIJ Held in 10

~ Held in IU Buffer

I t))))))) 1 Decode

~ Execute
_ Writeback

~ Cache Access

Figure 7-10. Instruction Timing-Data Instructions

Once the load buffer becomes full, additional load operations which miss the cache, may
have to wait in the integer unit execution stage for a read buffer entry to become available.
In addition, once the three-entry write buffer becomes full, additional store operations
which miss the cache, may have to wait in the integer unit execution stage for a write buffer
entry to become available.

For timing information on cache misses, refer to Section 7.2.3.3, "Cache Miss," which
describes instruction fetches that miss in the on-chip cache.

7.3.3 Floating-Point Unit Execution Timing
The floating-point unit on the MPC601 executes all floating-point instructions with the
exception of the fl oating-point load and store operations. For these instructions, it is the
integer unit that does the effective address calculation, but a single clock cycle is needed
from the FPU in order to move the data in or out of the floating-point register file. The
timing of floating-point load and store instructions with respect to the FPU is discussed
further in the following paragraphs.

7-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The FPU has only two execute phases in its pipeline. There are some floating-point
operations that need more than two clock cycles of execute time. In the case where the FPU
must execute these longer latency instructions, both execute phases and the decode phase
may be used for mUltiple clock cycles. Figure 7-11 illustrates the pipeline of the floating­
point unit. Notice the secondary path out of the first and second execute phases that allow
repeated use of these stages by the same instruction.

• • •
IQ-3
IQ-2

IQ-1
IQ-O

Figure 7-11. Floating-Point Unit Instruction Flow

In fact, all double-precision multiply instructions will spend multiple clock cycles in the
execute phases of the FPU. When a double-precision multiply ,instruction is encountered,
it will spend a minimum of two clock cycles in each phase of the FPU pipeline. That is, it
will spend two clock cycles in the decode phase, a minimum of two clock cycles in FPU
execute 1, and a minimum of two clock cycles in FPU execute 2.

When a double-precision floating-point multiply instruction enters the FPU pipeline,
previous floating-point pipeline stages (except for the FPU buffer) become unavailable. For
example, when a double-precision multiply instruction moves from the FPU decode stage
into the FPU execute stages, no other FPU instruction may enter the FPU decode stage until
the multiply has moved out of the FPU execute stages into the writeback stage.

7.3.3.1 Floating-Point Instructions Timing Exampies
The following paragraphs describe a sequence of the floating-point instructions as they pass
through the various stages of the FPU.

MOTOROLA Chapter 7. Instruction Timing 7-23

•

•

Figure 7-12 illustrates an example of the sequence of floating-point instructions. In clock
0, the eight instructions are fed into the IQ. During clock cycle 1 instruction 0 is pulled from
the IQ into the floating-point buffer.

o 2 3 4 5 6 7 8 9 10

j 0 fadd Edt:':':':'::::t?::::::::::
i 1 fsub ill II II II i==j)))):::: (:::\ iii
j 2 fmul jllllllll,IIIIIIIIM::t:: tt)Jtj)::):t)?t)j::::tt {}t?j: /tttLti

I 3 fsub 111111111 U 11111111111111111 I I I Ii ttitHti
i 4 fadd jlllllill ~ 11111111 i 11111111 ;11111111; 11111111; 1111111, I I :::::})iii(
15 fadd 1I1111111f11IIIII1I1IIIII1IUIIIIIII~IIIIIIIIUIIIIII~1I11111I ~IIIIIIIU--d\it·Z
i 6 fdiv jllllllli ~ 11111111 illlllill ;11111111; 11II1I11~1I11111 ~IIIIIIII ~1II1I11I~llIIlIlIfR

17 'add ~ '1;~;~lr:1~:I:::::11111111111111111111111111111111 jlllllllllllllllllllll~

IIIIllID1 Held in IQ

l:ttfftf::f:1 Decode

_ Execute

_ Predicted

_ Writeback

Figure 7-12. Instruction Timing-Floating-Point Instructions

11

•• e,

During clock 2, instruction 0 is sent into the floating-point decode stage, which makes room
for instruction 1 to be fed into the floating-point buffer. Instructions 0 and 1 continue to flow
through the floating-point pipeline until they complete execution and write back their
results into the floating-point register file.

Instruction 2 has a data dependency on instruction 1. In other words, one of the operands
of instruction 2 is the result of instruction 1. For this reason, instruction 2 may not proceed
through the floating-point pipeline right behind instruction 1. Instruction 2 is held in the
floating-point decode stage during clocks 4-7 while instruction 1 completes execution. It
is during clock cycle 6 that instruction 1 completes execution and updates the floating-point
register file with its results. However, since there is no feed forwarding mechanism in the
floating-point unit on the MPC601, instruction 2 must wait until clock 7 before it may begin
its decode stage. Notice that as instruction 2 is held in the decode stage, instruction 3 is

7-24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

allowed to move into the floating-point buffer. This allows the IQ to be shifted down and
possibly reveal a branch instruction within the critical bottom 4 elements of the IQ.

During clock cycle 8, instruction 2 begins its execute phase, instruction 3 begins its decode
stage, and instruction 4 enters the floating-point buffer. The following clock cycles show
that the subsequent instructions flow through the FPU in a fully pipelined manner. Although
it is not shown here, the fdiv operation (instruction 6) will tie up the execute phases of the
FPU for 14 clock cycles. During this time, instruction 7 will be waiting in the floating-point
decode stage until the execute phase becomes available.

7.4 Memory Performance Considerations
When instruction throughput is capable of three instructions per clock cycle, lack of data
bandwidth can become a performance bottleneck. In order for the MPC601 to approach its
potential performance levels, it must be able to read and write data quickly and efficiently.
If there are many processors in a system environment, one processor may experience long
memory latencies while another bus master (for example, another processor or a direct
memory access controller) is using the external bus.

In order to alleviate this possible contention, the MPC601 provides three memory update
modes: copy-back, write-through, and cache-inhibit. Each page of memory is specified to
be in one of these modes. If a page is in copy-back mode, data being stored to that page is
written only to the on-chip cache. If a page is in write-through mode, writes to that page
update the on-chip cache on hits and always update main memory. If a page is cache­
inhibited, data in that page will never be stored in the on-chip cache. All three of these
modes of operation have advantages and disadvantages. A decision as to which mode to use
depends on the system environment as well as the application.

This section describes how performance is impacted by each memory update mode. For
details about the operation of the on-chip cache and the memory update modes, see
Chapter 4, "Cache and Memory Unit Operation."

7.4.1 Copy-Back Mode
When storing data while in copy-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates only
occur on line replacements, cache flushes, or when another processor attempts to access a
specific address for which there is a corresponding dirty cache entry. For this reason, copy­
back mode may be preferred when external bus bandwidth is a potential bottleneck-for
example, in a multiprocessor environment. Copy-back mode is also well suited for data that
is closely coupled to a processor, such as local variables.

If more than one processor uses data stored in a page that is in copy-back mode, snooping
must be enabled to allow copy-back operations and cache invalidations of modified data.
The MPC601 implements snooping hardware to prevent other devices from accessing
invalid data. When bus snooping is enabled, the processor monitors the transactions of the

MOTOROLA Chapter 7. Instruction Timing 7-25

•

•

other devices. For example, if another device accesses a memory location, the MPC601 on­
chip cache has a modified value for that address, and the memory-coherent (M) bit
corresponding to that page is set, the processor pre-empts the bus transaction, and updates
memory with the cache data. The other device is then free to attempt an access to the
updated memory address. See Chapter 4, "Cache and Memory Unit Operation," for
complete information on bus snooping.

Copy-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

7.4.2 Write-Through Mode
Store operations to memory in write-through mode always update memory as well as the
on-chip cache (on cache hits). Write-through mode is used when the data in the cache must
always agree with external memory (for example, video memory), or when there is shared
(global) data that may be used frequently, or when allocation of a cache line on a cache miss
is undesirable. Automatic copy back of cached data is not performed if that data is from a
memory page marked as write-through mode since valid cache data always agrees with
memory.

Stores to memory that is in write-through mode may cause a decrease in performance. Each
time a store is performed to memory in write-through mode, the bus will be busy for the
extra clock cycles required to perform the memory update; therefore, pending load
operations that miss the on-chip cache must wait while the external store operation
completes. In addition, since the on-chip cache is shared for both instructions and data, any
pending instruction fetches from the on-chip cache may also see an undesired latency.

7.4.3 Cache-Inhibited Accesses
If a memory page is specified to be cache-inhibited, data from this page will not be stored
in the on-chip cache.

Areas of the memory map can be cache-inhibited by the operating system software. If a
cache-inhibited access hits in the on-chip cache, the corresponding cache line is
invalidated. If the line is marked as modified, it is copied back to memory before being
invalidated.

In summary, the copy-back mode allows both load and store operations to use the on-chip
cache. The write-through mode allows load operations to use the on-chip cache, but store
operations cause a memory access and a cache update if the data is already in the cache.
Lastly, the cache-inhibited mode causes memory access for both loads and stores.

7.5 Instruction Latency Summary
Table 7-1 lists the latencies associated with each instruction executed by the MPC601. Note
that Table 7-1 contains no 64-bit archi tected instructions. These instructions will trap to an
illegal instruction exception handler when encountered. Recall that the term latency is

7-26 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

defined as the total time it takes to execute an instruction and make ready the results of that
instruction.

As previously stated, the FPU has no feed-forwarding capabilities. In other words, as a
floating-point operation completes, another floating-point instruction that may be waiting
for those results must wait for the data to be written into the register file before decode can
begin. This extra time is accounted for in Table 7-1.

Table 7-1. MPC601 Instruction Latencies

Mnemonic Instruction
Latency Execution
(Clocks) Unit

abs Absolute 1 IU

add[o][.] Add 1 IU

addc[o][.] Add Carrying 1 IU

adde[o][.] Add Extended 1 IU

addi. Add Immediate 1 IU

addic Add Immediate Carrying 1 IU

addic. Add Immediate Carrying and Record 1 IU

addis Add Immediate Shifted 1 IU

addme[o][.] Add to Minus One Extended 1 IU

addze[o][.] Add to Zero Extended 1 IU

and[.] AND 1 IU

andc[.] AND with Complement 1 IU

andi. AND Immediate 1 IU

andis. AND Immediate Shifted 1 IU

b[l][a] Branch 1 BPU

bc[l][a] Branch Conditional 1 BPU

bcctr[l] Branch Conditional to Count Register 1 BPU

bclr[l] Branch Conditional to Link Register 1 BPU

cmp Compare 1 IU

cmpi Compare Immediate 1 IU

cmpl Compare Logical 1 IU

cmpli Compare Logical Immediate 1 IU

cntlzw[.] Count Leading Zeros Word 1 IU

crand Condition Register AND 1 IU

crandc Condition Register AND with Complement 1 IU

creqv Condition Register Equivalent 1 IU

MOTOROLA Chapter 7. Instruction Timing 7-27

•

Table 7-1. MPC601 Instruction Latencies (Continued)

Mnemonic Instruction
Latency Execution
(Clocks) Unit

crnand Condition Register NAND 1 IU

crnor Condition Register NOR 1 IU

cror Condition Register OR 1 IU

crorc Condition Register OR with Complement 1 IU

crxor Condition Register XOR 1 IU

dcbf Data Cache Block Flush 11 IU

dcbi Data Cache Block Invalidate 11 IU

dcbst Data Cache Block Store 11 IU

dcbt Data Cache Block Touch 11 IU

dcbtst Data Cache Block Touch for Store 11 IU • dcbz Data Cache Block Set to Zero 11 IU

div[o][.] Divide 36 IU

divs[o][.] Divide Short 36 IU

divw[o][.] Divide Word 36 IU

divwu[o)[.] Divide Word Unsigned 36 IU

doz[o][.] Difference or Zero 1 IU

dozi Difference or Zero Immediate 1 IU

eciwx External Control Input Word Indexed 11 IU

ecowx External Control Output Word Indexed 11 IU

eieio Enforce In-Order Execution of VO 11 IU

eqv[.] Equivalent 1 IU

extsb[.] Extend Sign Byte 1 IU

extsh[.] Extend Sign Half Word 1 IU

fabs[.] Floating-Point Absolute Value 4 FPU

fadd[.] Floating-Point Add 4 FPU

fadds[.] Floating-Point Add Single-Precision 4 FPU

fcmpo Floating-Point Compare Ordered 4 FPU

fcmpu Floating-Point Compare Unordered 4 FPU

fctiw[.] Floating-Point Convert to Integer Word 4 FPU

fctiwz[.] Floating-Point Convert to Integer Word with Round 4 FPU
toward Zero

fdiv[.] Floating-Point Divide 31 FPU

7-28 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 7-1. MPC601 Instruction Latencies (Continued)

Mnemonic Instruction
Latency Execution
(Clocks) Unit

fdivs[.] Floating-Point Divide Single-Precision 17 FPU

fmadd[.] Floating-Point Multiply-Add 5 FPU

fmadds[.] Floating-Point Multiply-Add Single-Precision 4 FPU

fmr[.] Floating-Point Move Register 4 FPU

fmsub[.] Floating-Point Multiply-Subtract 5 FPU

fmsubs[.] Floating-Point Multiply-Subtract Single-Precision 4 FPU

fmul[.] Floating-Point Multiply 5 FPU

fmuls[.] Floating-Point Multiply Single-Precision 4 FPU

fnabs[.] Floating-Point Negative Absolute Value 4 FPU

fneg[.] Floating-Point Negate 4 FPU

fnmadd[.] Floating-Point Negative Multiply-Add 5 FPU • fnmadds[.] Floating-Point Negative Multiply-Add Single-Precision 4 FPU

fnmsub[.] Floating-Point Negative Multiply-Subtract 5 FPU

fnmsubs[.] Floating-Point Negative Multiply-Subtract Single- 4 FPU
Precision

fres[.] Floating-Point Reciprocal Estimate Single-Precision Not -
implemented
(trap)

frsp[.] Floating-Point Round to Single-Precision 4 FPU

frsqrte[.] Floating-Point Reciprocal Square Root Estimate Not -
implemented
(trap)

fsel[.] Floating-Point Select Not -
implemented
(trap)

fsqrt[.] Floating-Point Square Root Not -
implemented
(trap)

fsqrts[.] Floating-Point Square Root Single-Precision Not -
implemented
(trap)

fsub[.] Floating-Point Subtract 4 FPU

fsubs[.] Floating-Point Subtract Single-Precision 4 FPU

icbi Instruction Cache Block Invalidate 11 IU

isync Instruction Synchronize Serialize IU

Ibz Load Byte and Zero 2 IU

MOTOROLA Chapter 7. Instruction Timing 7-29

Table 7-1. MPC601 Instruction Latencies (Continued)

Mnemonic Instruction
Latency Execution
(Clocks) Unit

Ibzu Load Byte and Zero with Update 2 IU

Ibzux Load Byte and Zero with Update Indexed 2 IU

Ibzx Load Byte and Zero Indexed 2 IU

Ifd Load Floating-Point Double-Precision 3 IU

Ifdu Load Floating-Point Double-Precision with Update 3 IU

Ifdux Load Floating-Point Double-Precision with Update 3 IU
Indexed

Ifdx Load Floating-Point Double-Precision Indexed 3 IU

Ifs Load Floating-Point Single-Precision 3 IU

Ifsu Load Floating-Point Single-Precision with Update 3 IU

• Ifsux Load Floating-Point Single-Precision with Update 3 IU
Indexed

Ifsx Load Floating-Point Single-Precision Indexed 3 IU

Iha Load Half Word Algebraic 2 IU

Ihau Load Half Word Algebraic with Update 2 IU

Ihaux Load Half Word Algebraic with Update Indexed 2 IU

Ihax Load Half Word Algebraic Indexed 2 IU

Ihbrx Load Half Word Byte-Reverse Indexed 2 IU

1hz Load Half Word and Zero 2 IU

Ihzu Load Half Word and Zero with Update 2 IU

Ihzux Load Half Word and Zero with Update Indexed 2 IU

Ihzx Load Half Word and Zero Indexed 21 IU

Imw Load Multiple Word 1 + numberof IU
registers
transferred

Iscbx Load String and Compare Byte Indexed 1 + numberof IU
registers
transferred

Iswi Load String Word Immediate 1 + numberof IU
registers
transferred

Iswx Load String Word Indexed 1 + number of IU
registers
transferred

Iwarx Load Word and Reserve Indexed 2 IU

Iwbrx Load Word Byte-Reverse Indexed 2 IU

7-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 7·1. MPC601 Instruction Latencies (Continued)

Mnemonic Instruction
Latency EXecution
(Clocks) Unit

Iwz Load Word and Zero 2 IU

Iwzu Load Word and Zero with Update 2 IU

Iwzux Load Word and Zero with Update Indexed 2 IU

Iwzx Load Word and Zero Indexed 2 IU

maskg[.) Mask Generate 1 IU

maskir[.) Mask Insert from Register 1 IU

mcrf Move Condition Register Field 2 IU

mcrfs Move to Condition Register from FPSCR 2 IU

mcrxr Move to Condition Register from XER 2 IU

mfcr Move from Condition Register 1 IU

mffs[.) Move from FPSCR 4 IU ..
mfmsr Move from Machine State Register 1 IU

mfspr Move from Special Purpose Register Variable IU

mfsr Move from Segment Register 2 IU

mfsrin Move from Segment Register Indirect 2 IU

mftb Move from Time Base Not -
implemented
(trap)

mtcrf Move to Condition Register Fields 2 IU

mtfsbO[.) Move to FPSCR Bit 0 4 IU

mtfsb1[.) Move to FPSCR Bit 1 4 IU

mtfsf[.) Move to FPSCR Fields 4 IU

mtfsfi[.) Move to FPSCR Field Immediate 4 IU

mtmsr Move to Machine State Register Serialize IU

mtspr Move to Special Purpose Register Variable IU

mtsr Move to Segment Register 1 IU

mtsrin Move to Segment Register Indirect 1 IU

mul[o)[.) Multiply 5/93 IU

mulhw[.) Multiply High Word 5 IU

mulhwu[.) Multiply High Word Unsigned 5/9/104 IU

mul\[o)[.) Multiply Low 5 IU

mulIi Multiply Low Immediate 5 IU

nabs Negative Absolute 1 IU

MOTOROLA Chapter 7. Instruction Timing 7-31

Table 7-1. MPC601 Instruction Latencies (Continued)

Mnemonic Instruction
Latency Execution
(Clocks) Unit

nand[.] NAND 1 IU

neg [0][.] Negate 1 IU

nor[.] NOR 1 IU

or[.] OR 1 IU

orc[.] OR with Complement 1 IU

ori OR Immediate 1 IU

oris OR Immediate Shifted 1 IU

rfi Return from Interrupt Serialize IU

rlmi[.] Rotate Left then Mask Insert 1 IU

rlwimi[.] Rotate Left Word Immediate then Mask Insert 1 IU • rlwinm[.] Rotate Left Word Immediate then AND with Mask 1 IU

rlwnm[.] Rotate Left Word then AND with Mask 1 IU

rrib[.] Rotate Right and Insert Bit 1 IU

sc System Call Serialize IU

sle[.] Shift Left Extended 1 IU

sleq[.] Shift Left Extended with MQ 1 IU

sliq[.] Shift Left Immediate with MQ 1 IU

sl/iq[.] Shift Left Long Immediate with MQ 1 IU

sllq[.] Shift Left Long with MQ 1 IU

slq[.] Shift Left with MQ 1 IU

slw[.] Shift Left Word 1 IU

sraq[.] Shift Right Algebraic with MQ 1 IU

sraiq[.] Shift Right Algebraic Immediate with MQ 1 IU

sraw[.] Shift Right Algebraic Word 1 IU

srawi[.] Shift Right Algebraic Word Immediate 1 IU

sre[.] Shift Right Extended 1 IU

srea[.] Shift Right Extended Algebraic 1 IU

sreq[.] Shift Right Extended with MQ 1 IU

sriq[.] Shift Right Immediate with MQ 1 IU

srliq[.] Shift Right Long Immediate with MQ 1 IU

srlq[.] Shift Right Long with MQ 1 IU

srq[.] Shift Right with MQ 1 IU

7-32 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 7-1. MPC601 Instruction Latencies (Continued)

Mnemonic Instruction
Latency Execution
(Clocks) Unit

srw[.] Shift Right Word 1 IU

stb Store Byte 1 IU

stbu Store Byte with Update 1 IU

stbux Store Byte with Update Indexed 1 IU

stbx Store Byte Indexed 1 IU

stfd Store Floating-Point Double-Precision 1 IU

stfdu Store Floating-Point Double-Precision with Update 1 IU

stfdux Store Floating-Point Double-Precision with Update 1 IU
Indexed

stfdx Store Floating-Point Double-Precision Indexed 1 IU

stfiwx Store Floating-Point as integer Word Indexed 1 IU

stfs Store Floating-Point Single-Precision 1 IU IfI
stfsu Store Floating-Point Single-Precision with Update 1 IU

stfsux Store Floating-Point Single-Precision with Update 1 IU
Indexed

stfsx Store Floating-Point Single-Precision Indexed 1 IU

sth Store Half Word 1 IU

sthbrx Store Half Word Byte-Reverse Indexed 1 IU

sthu Store Half Word with Update 1 IU

sthux Store Half Word with Update Indexed 1 IU

sthx Store Half Word Indexed 1 IU

stmw Store Multiple Word 1 IU

stswi Store String Word Immediate 1 IU

stswx Store String Word Indexed 1 IU

stw Store Word 1 IU

stwbrx Store Word Byte-Reverse Indexed 1 IU

stwcx. Store Word Conditional Indexed 1 IU

stwu Store Word with Update . 1 IU

stwux Store Word with Update Indexed 1 IU

stwx Store Word Indexed 1 IU

subf[o][.] Subtract from 1 IU

subfc[o][.] Subtract from Carrying 1 IU

subfe[o][.] Subtract from Extended 1 IU

MOTOROLA Chapter 7. Instruction Timing 7-33

•

Table 7-1. MPC601 Instruction Latencies (Continued)

Mnemonic Instruction
Latency Execution
(Clocks) Unit

subflc Subtract from Immediate Carrying 1 IU

subfme[o][.] Subtract from Minus One Extended 1 IU

subfze[o][.] Subtract from Zero Extended 1 IU

sync Synchronize Serialize bus IU
operations

tibia Translation Lookaside Buffer Invalidate All Not -
implemented
(trap)

tlbie Translation Lookaside Buffer Invalidate Entry Serialize IU

tlbiex Translation Lookaside Buffer Invalidate Entry by Index Not -0
implemented
(trap)

tw Trap Word 12 IU

twi Trap Word Immediate 12 IU

xor[.] XOR 1 IU

xori XOR Immediate 1 IU

xoris XOR Immediate Shifted 1 IU

'These instructions access the system bus, thus the latency may vary depending on the exact state
of the machine.

7-34

2These instructions serialize the processor if the trap is taken.

3-yhe longer latency may occur if the contents of rB is larger than 16 bits (not including sign-extend­
ing bits

4Shortest latency occurs if rB <= 16 bits. Longer latency occurs if rB > 16 bits, but most significant
bit is still O. Longest latency occurs if most significant bit is 1.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 8
Signal Descriptions
This chapter describes the MPC601 microprocessor's external signals. It contains a concise
description of individual signals, showing behavior when the signal is asserted and negated
and when the signal is an input and an output.

NOTE
A bar over a signal name indicates that the signal is active
low-for example, ARTRY (address retry) and TS" (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as APO--AP3 (address bus parity
signals) and TTO--TT4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

The MPC601 signals are grouped as follows:

• Address arbitration signals-The MPC601 uses these signals to arbitrate for address
bus mastership.

• Address transfer start signals-These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals-These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

• Transfer attribute signals-These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write­
through, or cache-inhibited.

• Address transfer termination signals-These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

• Data arbitration signals-The MPC601 uses these signals to arbitrate for data bus
mastership.

• Data transfer signals-These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

MOTOROLA Chapter 8. Signal Descriptions 8-1

..

• Data transfer termination signals-Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

• System status signals-These signals include the external interrupt signal,
checkstop signals, and both soft- and hard-reset signals. These signals are used to
interrupt and, under various conditions, to reset the processor.

• Processor state signals-These two signals are used to set the reservation coherency
bit and set the size of the MPC601 's output buffers.

• Miscellaneous signals-These signals provide information about the state of the
reservation coherency bit and the size of the MPC601 1s output buffers.

• COP interface signals-The common on-chip processor (COP) unit is the master
clock control unit and it provides a serial interfal:e to the system for performing
built-in self test (BIST).

• Test interface signals-These signals are used for internal testing.

• Clock signals-These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

8.1 Signal Configuration
Figure 8-1 illustrates the MPC601 microprocessor's pin configuration, showing how the
signals ar~ grouped.

8-2

NOTE
A pinout showing actual pin numbers is included in the
MPC601 microprocessor electrical specifications.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

ADDRESS J:
ARBITRATION 1

~

.. ..
ADDRESS {

TRANSFER
START

..
~

ADDRESS {
TRANSFER

TRANSFER
ATTRIBUTE

..

.. ..

..

~

~

ADDRESS I­
TERMINATION 1:

CLOCKst

1m
'Em

:z;:ss

TS
XATS

AO-A3l

APO-AP3

'AJ5E:

TI4
TIO-TI3

TCO-TCl
TSIZO-TSIZ2

~
cr
wr
GSI

CSEO-CSE2

RF5 Sf:JF5 Fi~<::i

~
ARTR'Y
mm

2X PCLK

~
~

RTC

1 1
m-cr

mwcr
~ 1 1

'lJS'S .. 1 1

III 1
~ 1 64

DHO-DH3l,DLO-DL3l

8 DPO-DP7

III 32 1 ~

.. 4
1 1 TA

Nmi?
1

1U: 1 1
~ 4

2 :s: 1
TFJT

-a i::~ST!5 1f:J .. 3 (") 1
III 1 1

. CK::i I J-'_ou I
0') miESET

1 0 1
~

1
.....

1
~ .. 1 1 Si::-'JFm7l:

3 1
1 1 S?S <::iOI~Si::

III
RESUME

1
OUIESC REO

~ 1
~ 1

ESP INTERFACE
III 1 9

~ 1 24 TEST INTERFACE

III 1
~ 1
~ 1

59 57

14-
+3.6 V

Figure 8-1. MPC601 Signal Groups

8.2 Signal Descriptions

~

~
}
-

-

--

:J-

=r

DATA
ARBITRATION

DATA
TRANSFER

DATA
TERMINATION

SYSTEM
STATUS

ESP SCAN
INTERFACE

TEST
INTERFACE

This section describes individual MPC601 signals, grouped according to Figure 8-1.
Note that the following sections are intended to provide a quick summary of signal
functions. Chapter 9, "System Interface Operation," describes many of these signals in
greater detail, both with respect to how individual signals function and how groups of
signals interact.

8.2.1 Address Bus Arbitration Signal
The address arbitration signals are a collection of input and output signals the MPC601 uses
to request the address bus, recognize when the request is granted, and indicate to other
devices when mastership is granted. For a detailed description of how these signals interact,
see Section 9.3.1, "Address Bus Arbitration."

MOTOROLA Chapter 8. Signal Descriptions 8-3

•

8.2.1.1 Bus Request (B'R)-Output
The bus request (BIt) signal is an output signal on the MPC601. Following are the state
meaning and timing comments for the B1{ signal.

State Meaning Asserted-Indicates that the MPC601 is requesting mastership of
the address bus. See Section 9.3.1, "Address Bus Arbitration."

Negated-Indicates that the MPC601 is not requesting the address
bus. The MPC601 may have no bus operation pending, it may be
parked, or the AR'I'RY input was asserted on the previous bus clock
cycle.

Timing Comments Assertion-Occurs when the MPC601 is not parked and a bus
transaction is needed. This may occur even if the two possible
pipeline accesses have occurred.

Negation-Occurs for at least one bus clock cycle after an accepted,
qualified bus grant (see BG and 'ABB), even if another transaction is
pending. It is also negated for at least one bus clock cycle when the
assertion of ARTRY is detected on the bus .

8.2.1.2 Bus Grant (8G)-lnput
The bus grant (BG) signal is an input signal on the MPC601. Following are the state
meaning and timing comments for the BG signal.

State Meaning Asserted-Indicates that the MPC601 may, with the proper
qualification, assume mastership of the address bus. A qualified bus
grant occurs when BG is asserted and 'ABB' and ARTRY are not
asserted. The'ABB' signal is driven by the MPC601 or another bus
master, but ARTRY is driven only by the bus. If the MPC601 is
parked, B1{ need not be asserted for the qualified bus grant. See
Section 9.3.1, "Address Bus Arbitration."

Negated- Indicates that the MPC601 is not the next potential
address bus master.

Timing Comments Assertion-May occur at any time to indicate the MPC601 is free to
use the address bus. After the MPC601 assumes bus mastership, it
does not check for a qualified bus grant again until the cycle during
which the address bus tenure is completed (assuming it has another
transaction to run). The MPC601 does not accept a BG in the cycles
between the assertion of any TS" or XATS' and A:AtX.

8-4

Negation-May occur at any time to indicate the MPC601 cannot
use the bus. The MPC601 may still assume bus mastership on the bus
clock cycle of the negation of BG because during the previous cycle
BG indicated to the MPC601 that it was free to take mastership (if
qualified).

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

8.2.1.3 Address Bus Busy (ASS)
The address bus busy (ARB) signal is both an input and an output signal.

8.2.1.3.1 Address Bus Busy {A1m)-Output
Following are the state meaning and timing comments for the AB'B" output signal.

State Meaning Asserted-Indicates that the MPC601 is the address bus master. See
Section 9.3.1, "Address Bus Arbitration."

Negated- Indicates that the MPC601 is not using the address bus.
IfAB'B" is negated during the bus clock cycle following a qualified
bus grant, the MPC601 did not accept mastership, even if 1m" was
asserted. This can occur if a potential transaction is aborted
internally before the transaction is started.

Timing Comments Assertion-Occurs on the bus clock cycle following a qualified BG
that is accepted by the processor (see Negated).

Negation-Occurs on the bus clock cycle following the assertion of
AACK. IfAB'B" is negated during the bus clock cycle following a
qualified bus grant, the MPC601 did not accept mastership, even if
Bl{ was asserted.

High Impedance-Occurs one-half processor clock cycle after AB'B"
is negated.

8.2.1.3.2 Address Bus Busy {A1m)-lnput
Following are the state meaning and timing comments for the AIm' input signal.

State Meaning Asserted-Indicates that the address bus is in use. This condition
effectively blocks the MPC601 from assuming address bus
ownership, regardless of the BG input. Optional. (See Section 9.3.1,
"Address Bus Arbitration.")

Negated-Indicates that the address bus is not owned by another bus
master and that it is available to the MPC601 when accompanied by
a qualified bus grant.

Timing Comments Assertion-May occur when the MPC601 must be prevented from
using the address bus (and the processor is not currently asserting
ABB).

Negation-iviay occur whenever the tv1PC601 can u~e the address
bus.

Note that this signal is logically ORed with an internally generated address bus busy signal. -
For more information, see Section 9.3.1, "Address Bus Arbitration," for more information.

MOTOROLA Chapter 8. Signal Descriptions 8-5

..

8.2.2 Address Transfer Start Signals
Address transfer start signals are input and output signals that indicate that an address bus
transfer has begun. The transfer start (TS) signal identifies the operation as a memory
transaction; extended address transfer start (XATS") identifies the transaction as an I/O
controller interface operation.

For detailed information about how TS and XATS" interact with other signals, refer to
Section 9.3.2, "Address Transfer," and Section 9.6, "I/O Controller Interface Operation,"
respecti vely.

8.2.2.1 Transfer Start (IS)
The transfer start (TS') signal is both an input and an output signal on the MPC601.

8.2.2.1.1 Transfer Start (TS)-Output
Following are the state meaning and timing comments for the TS output signal.

State Meaning Asserted-Indicates that the MPC601 has begun a memory bus
transaction and that the address-bus and transfer-attribute signals are
valid. It is also an implied data bus request for a memory transaction
(unless it is an address-only operation.)

Negated-Is negated during an I/O controller interface operation.

Timing Comments Assertion-Coincides with the assertion ofAlm".
Negation-Occurs one bus clock cycle after TS' is asserted.
High Impedance-Coincides with the negation ofAlm".

8.2.2.1.2 Transfer Start (TS)-Input
Following are the state meaning and timing comments for the TS' input signal.

State Meaning Asserted-Indicates that another master has begun a bus transaction
and that the address bus and transfer attribute signals are valid for
snooping (see tmL).

Negated-Has no meaning.

Timing Comments Assertion-May occur during the assertion ofAlm".
Negation-Must occur one bus clock cycle after TS" is asserted.

8.2.2.2 Extended Address Transfer Start (XATS)
The extended address transfer start (XATS") signal is both an input and an output signal on
the MPC601.

8-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

8.2.2.2.1 Extended Address Transfer Start (XATS')-Output
Following are the state meaning and timing comments for the XATS" output signal.

State Meaning Asserted-Indicates that the MPC601 has begun an I/O controller
interface operation and that the first address cycle is valid. It is also
an implied data bus request for certain I/O controller interface
operation (unless it is an address-only operation.)

Negated-Is negated during an entire memory transaction.

Timing Comments Assertion-Coincides with ABB'.
Negation-Occurs one bus clock cycle after the assertion of XATS'.

High Impedance-Coincides with the negation of ASS.
8.2.2.2.2 Extended Address Transfer Start (XATS')-Input
Following are the state meaning and timing comments for the XATS" input signal.

State Meaning Asserted-Indicates that the MPC601 must check for an I/O
controller interface operation reply operation with a receiver tag that
matches bits 2R-31 of the MPC601 PID register.

Negated-Indicates that there is no need to check for an I/O
controller interface operation reply.

Timing Comments Assertion-May occur while ABB' is asserted.
Negation-Must occur one bus clock cycle after XATS' is asserted.

8.2.3 Address Transfer Signals
The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signals interact, refer
to Section 9.3.2, "Address Transfer."

8.2.3.1 Address Bus(AO-A31)
The address bus (AO-A31) consists of 32 signals that are both input and output signals.

8.2.3.1.1 Address Bus (AO-A31)-Output
Following are the state meaning and timing comments for the AO-A31 output signals.

State Meaning Asserted/Negated-Represents the physical address of the data to be
transferred. On burst transfers, the address bus presents the quad­
word-aligned address containing the critical code/data that missed
the cache. See Section 9.3.2, "Address Transfer."

Timing Comments Assertion/Negation-Occurs on the bus clock cycle after a qualified
bus grant (coincides with assertion ofAB'lj and TS'.)

MOTOROLA

High Impedance-Occurs one bus clock cycle after MIT is
asserted.

Chapter 8. Signal Descriptions 8-7

•

8.2.3.1.2 Address Bus (AO-A31)-Input
Following are the state meaning and timing comments for the AO-A31 input signals.

State Meaning AssertedINegated-Represents the physical address of a snoop
operation.

Timing Comments AssertionlNegation-Must occur on the same bus clock cycle as the
assertion of TS'.

8.2.3.1.3 Address Bus (AO-A31)-Output (1/0 Controller Interface
Operations)
Following are the state meaning and timing comments for the address bus signals (AO­
A31) for output I/O controller interface operations on the MPC601.

State Meaning AssertedINegated-For I/O controller interface operations where
the MPC601 is the master, the address tenure consists of two packets
(each requiring a bus cycle). For packet 0, these signals convey
control and tag information. For packet 1, these signals represent the
physical address of the data to be transferred.

Timing Comments Assertion/Negation-Address tenure consists of two beats. The first
beat occurs on the bus clock cycle after a qualified bus grant,
coinciding with XATS. The address bus transitions to the second
beat on the next bus clock cycle.

High Impedance-Occurs on the bus clock cycle after AACK is
asserted.

8.2.3.1.4 Address Bus (AO-A31)-Input (1/0 Controller Interface
Operations)
Following are state meaning and timing comments for input I/O controller interface
operations on the MPC601.

State Meaning Asserted/Negated-When the MPC601 is not the master, it snoops
(and checks address parity) on the first address beat only of alil/O
controller interface operations for an I/O reply operation with a
receiver tag that matches its PID tag. See Section 9.6, "I/O
Controller Interface Operation."

Timing Comments Assertion/Negation-The MPC601100ks for only the first beat of
the I/O transfer address tenure, which coincides with XATS'. The
second address bus beat is not required by the MPC601.

8.2.3.2 Address Bus Parity (APO-AP3)
The address bus parity (APO-AP3) signal is both an input and output signal that has four
pin locations on the MPC601.

8-8 PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

8.2.3.2.1 Address Bus Parity {APO-AP3)-Output
Following are the state meaning and timing comments for the APO-AP3 output signal on
the MPC601.

State Meaning Asserted/Negated-Represents odd parity for each of four bytes of
the physical address for a transaction. By odd parity, an odd number
of bits, including the parity bit, are driven high. The signal
assignments correspond to the following:

APO AO-A7
API A8-AI5
AP2 A16-A23
AP3 A24-A31

For more information, see Section 9.3.2.1, "Address Bus Parity."

Timing Comments Assertion/Negation-The same as AO-A3l.
High Impedance-The same as AO-A3l.

8.2.3.2.2 Address Bus Parity {APO-AP3)-lnput
Following are the state meaning and timing comments for the APO-AP3 input signal on the
MPC601.

State Meaning Asserted/Negated-Represents odd parity for each of four bytes of
the physical address for snooping and I/O controller interface
. operations. Detected even parity causes the processor to enter the
checkstop state if address parity checking is enabled in the HIDO
register (see Section 2.3.3.12.1, "Checkstop Sources and Enables
Register-HIDO). (See also the APE signal description below).

Timing Comments Assertion/Negation-The same as AO-A3l.

8.2.3.3 Address Parity Error (APE)-Output
The address parity error (APE) signal is an output signal on the MPC601. Following are the
state meaning and timing comments for the APE signal on the MPC601. For more
information, see Section 9.3.2.1, "Address Bus Parity."

State Meaning Asserted-Indicates incorrect address bus parity has been detected
by the MPC601 on a snoop(GBL asserted). This includes the first
address beat of an I/O controller interface operation.

Negated-Indicates that the MPC601 has not detected a parity error
(even parity) on the address bus.

Timing Cormnents Assertion-Occurs on the second bus clock cycle after TS or XATS
is asserted.

MOTOROLA

Negation-Occurs on the third bus clock cycle after TS' or XATS i~
asserted.

Chapter 8. Signal Descriptions 8-9

..

.'

8.2.4 Address Transfer Attribute Signals
The transfer attribute signals are a set of signals that further characterize the transfer-such
as the size of the transfer, whether it is a read or write operation, and whether it is a burst
or single-beat transfer. For a detailed description of how these signals interact, see
Section 9.3.2, "Address Transfer."

Note that some signal functions vary depending on whether the transaction is a memory
access or an I/O access. For a description of how these signals function for I/O controller
interface operations, see Section 9.6, "I/O Controller Interface Operation."

8.2.4.1 Transfer Type (TTO-TT4)
The transfer type (TTO-TI4) signals consist of four input/output signals and one output­
only signal on the MPC601. For a complete description of TTO-TT4 signals, see Table X-I
and for transfer type encodings, see Table 8-2.

8.2.4.1.1 Transfer Type (TTO-TT 4)-Output
Following are the state meaning and timing comments for the TTO-TT4 output signals on
the MPC601.

State Meaning Asserted/Negated-Indicates the type of transfer in progress. These
bits roughly correspond to the following decoded operations:
-Atomic
-Read/write
-Invalidate
-Memory cycle
For I/O controller interface operations these signals are part of the
I/O transfer code along with TSIZ and TBST. For I/O controller
interface operations these signals are part of the extended transfer
code along with TSIZ and TBST:

XATC(O:7)=TT(O:3)IITBSTIITSIZ(O:2).

TT4 is driven negated as an output on the MPC601 and is defined for
future expansion.

Timing Comments Assertion/Negation/High Impedance-The same as AO-A31.

8.2.4.1.2 Transfer Type (TTO-TT3)-lnput
Following are the state meaning and timing comments for the TTO-TT3 input signals on
the MPC601.

State Meaning Asserted/Negated-Indicates the type of transfer in progress (see
Table 8-2). For I/O controller interface operations these signals form
part of the extended address transfer code (XATC) and are snooped
by the MPC601 ifXATS" is asserted.

Timing Comments Assertion/Negation-The same as AO--A31.

8-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 8-1. TTO-TT4 Signal Description

Signal Description

TTO Special operations: The MPC601 drives this signal to indicate that the access is part of an atomic data
access sequence. This signal is asserted whenever a bus transaction is run in response to a
Iwarxlstwcx instruction pair, a Ubi operation, or either an eciwx or ecowx instruction.

TT1 Read (/write) operations: This signal indicates whether the transaction is a read (TT1 high) or a write
(TT1 low).

TT2 Invalidate operations: When asserted with <me, the TT2 output signal indicates that all other caches in
the system should invalidate the cache entry on a snoop hit. If the snoop hit is to a modified entry, the
sector should be copied back before being invalidated.

TT3 Address-only operations: This signal, when asserted, indicates that the data transfer is to/from memory.
External logic can synthesize a data bus request from the combined assertions of TS (or XATS) and TT3.
If TT3 is not asserted with the address, the associated bus transaction is considered to be a broadcast
operation that all potential bus masters must honor (or a reserved operation), except for the external
control functions (eciwx and ecowx) which reqUire both address and data tenures.

TT4 Reserved. Always negated (low state). (For expandability)

Table 8-2 describes the encodings for TTO-TT3.

Table 8-2. Transfer Type Encodings ..
TIO TI1 TT2 TT3 Operation Bus Transaction Comment

0 0 0 0 Clean sector Address only Due to cache control
operation 1

0 0 0 1 Write with flush Single-beat write -
0 0 1 0 Flush sector Address only Due to cache control

operation 1

0 0 1 1 Write with kill Burst Cache sector writes
(replacement sector copy
backs and snoop push
operations)

0 1 0 0 sync Address only Due to cache control
operation 1

0 1 0 1 Read Single-beat read or burst -

0 1 1 0 Kill sector Address only Store hit on shared sector
or cache control operation 1

0 1 1 1 Read with intent to modify Burst Store cache miss

1 0 0 0 - - Reserved

1 0 0 1 Write with flush atomic Single-beat write Caused by stwcx

1 0 1 0 External control out Single-beat write Caused by ecowx 2

1 0 1 1 - - Reserved

1 1 0 0 TLB invalidate Address only -

MOTOROLA Chapter 8. Signal Descriptions 8-11

.1

Table 8-2. Transfer Type Encodings (Continued)

TTO TT1 TT2 TT3 Operation Bus Transaction Comment

1

1

1

1 0 1 Read atomic Single·beat read or burst Caused by Iwarx
instruction

1 1 0 External control in Single·beat read Caused by ecowx 2

1 1 1 Read with intent to modify Burst Caused by stwcx
atomic instruction

1 Cache control operations resulting from explicit cache control instructions (for example, dclf, sync, dclz,
dcli).

2rhe signal encodings for these operations do not use the no and n3 signals in the manner described in
Table 8-1.
Note that n 4 is reserved.

8.2.4.2 Transfer Size (TSIZO-TSIZ2)
The transfer size (TSIZO-TSIZ2) signals consist of three input/output signals on the
MPC601.

8.2.4.2.1 Transfer Size (TSIZO-TSIZ2)-Output
Following are state meaning and timing comments for the TS IZO-TS IZ2 output signals on
the MPC601.

State Meaning Asserted/Negated-For memory accesses, these signals along with
TBST, indicate the data transfer size for the current bus operation, as
shown in Table 8-3. Table 9-2 shows how the TSIZ signals are used
with the address signals for aligned transfers. Table 9-3 shows how
the TSIZ signals are used with the address signals for misaligned
transfers. For I/O transfer protocol, these signals form part of the I/O
transfer code (see the entry in this table for TTO-TT4).

For external control instructions (eciwx and ecowx), TSIZO-TSIZ2
are used to output bits 29-31 to the EAR, which are used to form the
resource ID (TB"STIITSIZO-TSIZ3).

Timing Comments Assertion/Negation-The same as AO-A31.
High Impedance-The same as AO-A31.

8-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 8-3. Data Transfer Size

TBST
TSIZO- Transfer
TSIZ2 Size

Asserted 010 Burst

Negated 000 8 bytes

Negated 001 1 byte

Negated 010 2 bytes

Negated 011 3 bytes

Negated 100 4 bytes

Negated 101 5 bytes

Negated 110 6 bytes

Negated 111 7 bytes

8.2.4.2.2 Transfer Size (TSIZO-TSIZ2)-lnput
Following are state meaning and timing comments for the TSIZO-TSIZ2 input signals on
the MPC601.

State Meaning Asserted/Negated-Represents the size of the current transfer, as
shown in Table 8-3. For the I/O controller interface protocol, these
signals form part of the I/O transfer code (see TT).

Timing Comments Assertion/Negation-The same as AO-A31.

8.2.4.3 Transfer Burst (TBST)
The transfer burst (TBST) signal is an input/output signal on the MPC601.

8.2.4.3.1 Transfer Burst (TBST)-Output
Following are the state meaning and timing comments for the TB'ST output signal.

State Meaning Asserted-Indicates that a burst transfer is in progress when asserted
and TSIZO-TSIZ2 are set to 010.

Negated-Indicates that a burst transfer is not in progress. Also, part
of I/O transfer code (see TT).

For external control instructions (eciwx and ecowx), TB'ST are used
to output bit 28 to the EAR, which are used to form the resource ID
(T'SSTIITSIZO-TSIZ3).

Timing Comments Assertion/Negation-The same as AO-A31
High Impedance-The same as AO-A31.

MOTOROLA Chapter 8. Signal Descriptions 8-13

..

8.2.4.3.2 Transfer Burst (TB'ST)-Input
Following are state meaning and timing comments for the TB"ST input signal.

State Meaning Asserted/Negated-Indicates that a burst transfer is in progress
when asserted and TS IZO-TS IZ2 are set to 010. For the I/O transfer
protocol, this signal forms part of the I/O transfer code (see the entry
in this table for IT).

Timing Comments Assertion/Negation-The same as AO-A31.

8.2.4.4 Transfer Code (TCO-TC1)-Output
The transfer code (TCO-TCI) consists of four output signals on the MPC601. Following
are the state meaning and timing comments for the TCO-TCI signals.

State Meaning Asserted/Negated-Represents a special encoding for the transfer in
progress (see Table 8-4).

Timing Comments Assertion/Negation-The same as AO-A31.
High Impedance-The same as AO-A31.

Table 8-4. Encodings for TCO-TC3

Signal Description

TCO Depends on whether the current transaction is a read or write operation; therefore, TCO should be
used with TT1. On a read operation, TCO asserted indicates the transaction is an instruction fetch
operation; otherwise, the read operation is a data operation.
Asserting TCO for write operations indicates the write is a response to a snoop hit to modified data;
TCO negated indicates the write is not a snoop push (it is therefore a cache cast-out, write-through, or
cache-inhibited write operation).

TC1 TC1, when asserted, indicates that an operation to reload the other sector is queued; therefore, the
next bus transaction will likely be to the same page of memory. After the addressed sector in a cache
line is loaded from memory, the MPC601 attempts to load the other sector in the cache line. This is a
low-priority bus operation and may not be the next transaction. The assertion of TC1 suggests that the
next access may be to the same page; the hint may be wrong depending on the bus traffic/code
execution dynamics.

8.2.4.5 Cache Inhibit (Ci)-Output
The cache inhibit (eT) signal is an output signal on the MPC601. Following are the state
meaning and timing comments for the "CT signal.

State Meaning Asserted-Indicates that a single-beat transfer will not change the
cache, reflecting the setting of the I bit for the address of the current
transaction.

Negated-Indicates that a burst transfer will allocate a sector in the
MPC601 data cache.

Timing Comments Assertion/Negation-The same as AO-A31
High Impedance-The same as AO-A31.

8-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

8.2.4.6 Write-through (WT)-Output
The write-through (WT) signal is an output signal on the MPC601. Following are the state
meaning and timing comments for the WT signal.

State Meaning Asserted-Indicates that a single beat transaction is write-through,
reflecting the value of the W bit for the address of the current
transaction.

Negated-Indicates that a transaction is not write-through.

Timing Comments Assertion/Negation-The same as AO-A31
High Impedance-The same as AO-A31.

8.2.4.7 Global (GBl)
The global (GBT) signal is an input/output signal on the MPC601.

8.2.4.7.1 Global (~}-Output
Following are the state meaning and timing comments for the GB'[output signal.

State Meaning Asserted-Indicates that a transaction is global, reflecting the setting
of the M bit for the address of the current transaction (except in the
case of copy-back operations, which are non-global.)

Negated-Indicates that a transaction is not global.

Timing Comments Assertion/Negation-The same as AO-A31
High Impedance-The same as AO-A31

8.2.4.7.2 Global (G'Br}-lnput
Following are the state meaning and timing comments for the GB'[input signal.

State Meaning Asserted- Indicates that a transaction must be snooped by the
MPC601.

Negated-Indicates that a transaction is not snooped by the MPC601
(even if TTO-TT4 indicate an invalidation transaction).

Timing Comments Assertion/Negation-The same as AO-A31.

8.2.4.8 Cache Set Element (CSEO-CSE2)-Output
The cache set element (CSEO-CSE2) signals consist of three output signals on the
MPC601. Following are state meaning and timing comments for the CSE signals.

State Meaning

MOTOROLA

Asserted/Negated-Represents the cache replacement set element
for the current transaction reloading into or writing out of the cache.
Can be used with the address bus and the transfer attribute signals to
externally track the state of each cache sector in the MPC601 's
cache.
See Section 4.7.4, "MESI Hardware Considerations."

Chapter 8. Signal Descriptions 8-15

..

•

Timing Comments Assertion/Negation-The same as AO-A31
High Impedance-The same as AO-A31.

8.2.4.9 High-Priority Snoop Request (HP _SNP _REQ)
The High-Priority Snoop Request (HP _sNp _REQ) signal is an input signal (input-only) on
the MPC601. Following are state meaning and timing comments for the Hp _sNp _REQ
signal

State Meaning Asserted-Indicates that the MPC601 may add an additional
reserved queue to the list of available queues for push transactions
that are a result of a snoop hit.

Negated-Indicates that the MPC601 will not make available the
reserved queue for a snoop hit push resulting from a transaction. This
is the "normal" mode.

Timing Comments Assertion/Negation-The same as AO-A31.

NOTE: This pin is a feature of the MPC601 only and will not be available in any other
PowerPC processors.

8.2.5 Address Transfer Termination Signals
The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be
terminated. These signals are also used to maintain MESI protocol. For detailed
information about how these signals interact, see Section 9.3.3, "Address Transfer
Termination."

8.2.5.1 Address Acknowledge (AACK)-Input
The address acknowledge (AACK) signal is an input signal (input-only) on the MPC601.
Following are state meaning and timing comments for the AACK signal.

State Meaning Asserted-Indicates that the address phase of a transaction is
complete. The address bus will go to a high impedance state on the
next bus clock cycle. The MPC601 samples ARTRY on the bus clock
cycle following the assertion ofAACK.

Negated-CDuring ABE) indicates that the address bus and the
transfer attributes must remain driven.

Timing Comments Assertion-May occur as early as the bus clock cycle after TS or
XATS' is asserted; assertion can be delayed to allow adequate address
access time for slow devices. For example, if an implementation
supports slow snooping devices, an external arbiter can postpone the
assertion of AACK.

8-16

Negation-Must occur one bus clock cycle after the assertion of
AACK.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

8.2.5.2 Address Retry (ARTRY)
The address retry (AR'I'RY) signal is input/output signal on the MPC601.

8.2.5.2.1 Address Retry (ARTRY)-Output
Following are the state meaning and timing comments for the AR'I'RY output signal.

State Meaning Asserted-Indicates that the MPC601 detects a condition in which a
snooped address tenure must be retried (see 'SllI) for encoding). If
the MPC601 needs to update memory as a result of the snoop that
caused the retry, the MPC601 asserts B1{ (unless it is parked).

High Impedance-Indicates that the MPC601 does not need the
snooped address tenure to be retried.

Timing Comments Assertion-Occurs two bus cycles immediately following the
assertion of TS if a retry is required.

Negation-Occurs the bus cycle after the assertion ofAACK. Since
this signal may be simultaneously driven by multiple devices, it
negates in a unique fashion. First the buffer goes to high impedance
for one bus cycle, then it drives high for one 2XPCLK cycle before
returning to high impedance.

This special method of negation may be disabled using the mtspr
instruction to write bit 29 of the HIDO register. .

Table 8-6 shows the relationship between the 'SHU and ARTRY signals.

Table 8-5. SAD' and ARTRY Signals

SR'l5 Am'RV Description

Z Z No snoop hit, no busy
pipeline

Z A Pipeline busy

A Z Snoop hit shared

A A Snoop hit modified

8.2.5.2.2 Address Retry (ARTRY)-Input
Following are the state meaning and timing comments for the AR'fRY input signal.

State Meaning Asserted-If the MPC601 is the address bus master, AR'I'RY

MOTOROLA

indicates that the MPC601 must retry the preceding address tenure
and immediately negate BR (if asserted). If the iviPC601 is not the
address bus master, this input indicates that the MPC601 should
immediately negate B1< for one bus clock cycle following the
negation of ARTRY. Note that the subsequent address retried may
not be the same one associated with the assertion of the ARTRY
signal.

Chapter 8. Signal Descriptions 8-17

•

Negated/High Impedance-Indicates that the MPC601 does not
need to retry the last address tenure.

Timing Comments Assertion-Must occur by the bus clock cycle immediately
following the assertion ofAACK if a retry is required.

Negation-Must occur during the second cycle after the assertion of
AACK. Note that this signal is sampled only following the assertion
ofAACK.

8.2.5.3 Shared (SAD)
The shared (SHlJ) signal is an input/output signal on the MPC601.

8.2.5.3.1 Shared (SRD}-Output
Following are the state meaning and timing comments for the "SH"Jj output signal.

State Meaning Asserted-Indicates that the MPC601 either needs the data to be
shared (in response to a snoop hit for transaction not requiring
invalidation) or with ARTRY indicates the MPC60i has a hit on a
cache sector marked as modified.

Negated/High Impedance-Indicates that the MPC601 did not have
a cache hit on the snooped address.

Timing Comments Assertion-The same as ARTRY.
Negation-The same as ARTRY.
High Impedance-The same as "TA"'I"I:R'P'I"IT1"I:'R'n"Y.

See Table 8-6 for information on 'SH[5 and ARTRY signals.

Table 8-6. SAD' and ARTRY Signals

mm ARTRV Description

Z Z No snoop hit, no busy
pipeline

Z A Pipeline busy

A Z Snoop hit shared

A A Snoop hit modified

8.2.5.3.2 Shared (SRD}-Input
Following are the state meaning and timing comments for the "SH"Jj input signal.

State Meaning Asserted-Indicates that for a self-generated transaction, the
MPC601 must allocate the incoming sector as shared (unmodified).
Or if ARTRY is asserted, the transaction must be retried while the
other master updates memory.

8-18 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Negated-Indicates that the address for the current transaction is not
in any other cache.

Timing Comments Assertion-The same as AR'l'RY.
Negation-The same as ARTRY.

8.2.6 Data Bus Arbitration Signals
Like the address bus arbitration signals, data bus arbitration signals maintain an orderly
process for determining data bus mastership. Note that there is no data bus arbitration signal
equivalent to the address bus arbitration signal BR (bus request), because, except for
address-only transactions, TS' and XATS imply data bus requests. For a detailed description
on how these signals interact, see Section 9.4.1, "Data Bus Arbitration."

One special signal, DBWU, allows the MPC601 to be configured dynamically to write data
out of order with respect to read data. For detailed information about using DBWU, see
Section 9.10, "Using DBWO (Data Bus Write Only)."

8.2.6.1 Data Bus Grant (DBG)-Input
The data bus grant (ImG) signal is an input signal (input-only) on the MPC601. Following
are the state meaning and timing comments for the TIBG signal.

State Meaning Asserted-Indicates that the MPC601 may, with the proper
qualification, assume mastership of the data bus. The MPC601
derives a qualified data bus grant when TIBG is asserted and rffiB',
DR'l'Ry, and AR'l'RY are negated; that is, the data bus is not busy
(I'5BB' is negated) and there is no outstanding attempt to retry the
associated address tenure (ARTRY is negated) or the current data
tenure (DRTRY is negated).

Negated-Indicates that the MPC601 must hold off its data tenures.

Timing Comments Assertion-May occur any time to indicate the MPC601 is free to
take data bus mastership. It is not sampled until TS is asserted.

Negation-May occur at any time to indicate the MPC601 cannot
assume data bus mastership.

8.2.6.2 Data Bus Write Only (DBWO)-Input
The data bus write only (DBWU) signal is an input signal (input-only) on the MPC601.
Following are the state meaning and timing comments for the DBWU signal.

MOTOROLA Chapter 8. Signal Descriptions 8-19

III

..

State Meaning Asserted-Indicates that the MPC601 may run the data bus tenure
for an outstanding write address even if a read address is pipelined
before the write address. If OBWO is asserted, the MPC601 only
al)sumes data bus ownership for a pending data bus write operation
(that is, the MPC601 does not take the data bus for a pending read
operation if this input is asserted along with r:rntJ). Care must be
taken with BG to ensure the desired write is queued (such as a snoop
hit push). Refer to Section 9.10, "Using DBWO (Data Bus Write
Only)," for detailed instructions for using DBWO.

Negated-Indicates that the MPC601 must run the data bus tenures
in the same order as the address tenures.

Timing Comments Assertion-Must occur no later than a qualified TffiG for a previous
write tenure. Do not assert if no pending data bus write tenures are
pending from previous address tenures.

Negation-May occur any time after a qualified TffiG and before the
next assertion of TffiG. .

8.2.6.3 Data Bus Busy (DBB)
The data bus busy (DIm) signal is input/output signal on the MPC601.

8.2.6.3.1 Data Bus Busy (D'B'B)-Output
Following are the state meaning and timing comments for the UIrn" output signal.

State Meaning Asserted-Indicates that the MPC601 is the data bus master. The
MPC601 always assumes data bus mastership if it needs the data bus
and is given a qualified data bus grant (see r:rntJ).

Negated-Indicates that the MPC601 is not using the data bus.

Timing Comments Assertion-Occurs during the bus clock cycle following a qualified
rnm.

Negation-Occurs during the bus clock cycle following the
assertion of the final TA.

High Impedance-Occurs one-half processor clock cycle after tmB'
is negated.

8.2.6.3.2 Data Bus Busy (Mm)-Input
Following are the state meaning and timing comments for the DBB' input signal.

State Meaning Asserted-Indicates that another device is bus master.

8-20

Negated-Indicates that the data bus is free (with proper
qualification, see r:rntJ) for use by the MPC601.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Timing Comments Assertion-Must occur when the MPC601 must be prevented from
using the data bus.

Negation-May occur whenever the data bus is available.

8.2.7 Data Transfer Signals
Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how the data
transfer signals interact, see Section 9.4.2, "Data Transfer."

8.2.7.1 Data Bus (DHO-DH31, DLO-DL31)
The data bus (DHO-DH31 and DLO-DL31) consists of 64 signals that are both input and
output on the MPC601. Following are the state meaning and timing comments for the DH
and DL signals.

State Meaning The data bus has two halves-data bus high (DH) and low (DL). See
Table 8-6 for the data bus lane assignments. Data byte lanes are
illustrated in Figure 9-10. I/O controller interface operations use DH
exclusively (that is, there are no 64-bit, I/O transfers).

Timing Comments The data bus is driven once for non-cached transactions and four
times for cache transactions (bursts).

Table 8-7. Data Bus Lane Assignments

Data Bus Signals Byte Lane

DHO-DH7 0

DH8-DH15 1

DH16-DH23 2

DH24-DH31 3

DLO-DL7 4

DL8-DL15 5

DL16-DL23 6

DL24-DL31 7

8.2.7.1.1 Data Bus (DHO-DH31, DLO-DL31)-Output
Following are the state meaning and timing comments for the DH and DL output signals.

State Meaning Asserted/Negated-Represents the state of data during a data write.
Unused byte lanes are driven to deterministic values.

Timing Comments Assertion/Negation-Initial beat coincides with ImIr and, for
bursts, transitions on the bus clock cycle following each assertion of
TA.

MOTOROLA Chapter 8. Signal Descriptions 8-21

III
•

High Impedance-Occurs on the bus clock cycle after the final
assertion of TA.

8.2.7.1.2 Data Bus (DHO-DH31, DLO-DL31)-lnput
Following are the state meaning and timing comments for the OH and OL input signals.

State Meaning Asserted!Negated-Represents the state of data during a data read
transaction.

Timing Comments Assertion!Negation-Must occur on the same bus clock cycle that
TA is asserted; however, if DRTRY is asserted, it must coincide with
the assertion of the final DRTRY for a given data beat.

8.2.7.2 Data Bus Parity (DPO-DP7)
The eight data bus parity (OPO-OP7) signals on the MPC601 are both output and input
signals.

8.2.7.2.1 Data Bus Parity (DPO-DP7)-Output
Following are the state meaning and timing comments for the OP output signals.

State Meaning Asserted!Negated-Represents odd parity for each of eight bytes of
data write transactions. The signal assignments are listed in
Table 8-8.

Timing Comments Assertion!Negation-The same as OLO-OL31
High Impedance-The same as OLO-OL31

Table 8-8. DPO-DP7 Signal Assignments

Signal Name Signal Assignments

DPO DHO-DH7

DP1 DH8-DH15

DP2 DH16-DH23

DP3 DH24-DH31

DP4 DLO-DL7

DP5 DL8-DL15

DP6 DL16-DL23

DP7 DL24-DL31

8-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

8.2.7.2.2 Data Bus parity (DPO-DP7)-lnput
Following are the state meaning and timing comments for the DP input signals.

State Meaning Asserted/Negated-Represents odd parity for each byte of read
data. Parity is checked on all data byte lanes, regardless of the size
of the transfer. Detected even parity causes a machine-check
exception if data parity errors are enabled in the ME bit of the MSR.
(See UPE.)

Timing Comments AssertionlNegation-The same as DLO-DL31.

8.2.7.3 Data Parity Error (DPE)-Output
The data parity error (UPE) signal is an output signal (output-only) on the MPC601.
Following are the state meaning and timing comments for the UPE signal.

State Meaning Asserted-Indicates incorrect data bus parity.
Negated-Indicates correct data bus parity

Timing Comments Assertion-Occurs on the second bus clock cycle after TA is
asserted to the MPC601.

Negation-Occurs on the third bus clock cycle after TA is asserted
to the MPC601.

8.2.8 Data Transfer Termination Signals
Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat.

These signals are also used to maintain MESI protocol. For a detailed description of how
these signals interact, see Section 9.4.3, "Data Transfer Termination."

8.2.8.1 Transfer Acknowledge (TA)-Input
The transfer acknowledge (11\) signal is an input signal (input-only) on the MPC601.
Following are state meaning and timing comments for the TA signal.

State Meaning Asserted- Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer completed
successfully (unless DRTRY is asserted on the next bus clock cycle).
Note that 'fA must be asserted for each data beat in a burst
transaction. For more information refer to Section 9.4.3, "Data
Transfer Termination."

MOTOROLA

Negated-(During'l:>BB) indicates that, until TA is asserted, the
MPC601 must continue to drive the data for the current write or must
wait to sample the data for reads.

Chapter 8. Signal Descriptions 8-23

..
I

•

Timing Comments Assertion-Must not occur before'A'ACK for the current transaction
(if the address retry mechanism is to be used; otherwise, assertion
may occur at any time during the assertion of DIm". The system can
withhold assertion of TA to indicate that the MPC601 should insert
wait states to extend the duration of the data beat.

Negation-Must occur after the bus clock cycle of the fi nal (or only)
data beat of the transfer. For a burst transfer, the system can assert TA
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.

8.2.8.2 Data Retry (DRTRV)-Input
The data retry (DRTRY) signal is input only on the MPC601. Following are state meaning
and timing comments for the DRI'RY signal.

State Meaning Asserted-Indicates that the MPC601 must invalidate the data from
the previous read operation.

Negated-Indicates that data presented with TA on the previous read
operation is valid. This is essentially a late TA to allow speculative
forwarding of data (with TA) during reads. Note that DRTRY is
ignored for write transactions

Timing Comments Assertion-Must occur during the bus clock cycle immediately after
TA is asserted if a retry is required. The DRTRY signal may be held
asserted for multiple bus clock cycles.

Negation-Must occur during the bus clock cycle after a valid data
beat. This may occur several cycles after DIm" is negated, effectively
extending the data bus tenure.

8.2.8.3 Transfer Error Acknowledge (TEA)-Input
The transfer error acknowledge (TEA) signal is input only on the MPC601. Following are
state meaning and timing comments for the TEA signal.

State Meaning Asserted-Indicates that a bus error occurred. Causes a machine
check exception (and possibly causes the processor to enter
checkstop state if machine check enable bit is cleared (MSR[ME] =
0). For more information see Section 5.4.2.2, "Checkstop State
(MSR[ME] = 0)." Assertion terminates the current transaction; that
is, assertion ofTA and DRI'RY are ignored. The assertion of TEA
causes the negation/high impedance of 'DIm' in the next clock cycle.
However, data entering the GPR or the cache are not invalidated.

Negated-Indicates that no bus error was detected.

8-24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Timing Comments Assertion-May be asserted while IJIm" and/or DRTRY is asserted.

Negation-TEA must be asserted for at least one bus clock cycle.
TEA must be negated no later than the negation of IJIm" or the last
DRTRY.

8.2.9 System Status Signals
Most system status signals are input signals that indicate when exceptions are received,
when checkstop conditions have occurred, and when the MPC601 must be reset. The
MPC601 generates the output signal, CKSTP _00'1', when it detects a checkstop condition.
For a detailed description of these signals, see Section 9.7, "Interrupt, Checkstop, and Reset
Signals."

8.2.9.1 Interrupt (INT)-Input
The interrupt (TNT) signal is input only. Following are state meaning and timing comments
for the lNT signal.

State Meaning Asserted-Indicates that if the MSR[EE] (bit 16, the external
interrupt enable bit) is set, the MPC601 begins processing an
external interrupt exception.

Negated-Indicates that normal operation should proceed. See
Section 9.7.1, "External Interrupt."

Timing Comments Assertion-May occur at any time.
Negation-May occur any time after the minimum pulse width has
been met. (Minimum pulse width is 3 processor clock cycles.) After
the minimum pulse width has been met, an interrupt exception
occurs,

8.2.9.2 Checkstop Input (CKSTP _IN)-Input
The checkstop input (CKS'l'P _LN) signal is input only on the MPC601. Following are state
meaning and timing comments for the CKSTP _IN signal.

State Meaning

MOTOROLA

Asserted-Indicates that the MPC601 must terminate operation by
internally gating off all clocks. Once CKSTP _IN has been asserted
it must remain asserted until the system has been reset; otherwise the
clocks resume operation.

Negated-Indicates that normal operation should proceed. See
Section 9.7.2, "Checkstops."

Chapter 8. Signal Descriptions 8-25

•

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the input clocks. CKSTP _IN must be asserted for
a minimum of three PCLK_EN clock cycles. Or, it may be asserted
synchronously meeting setup and hold times (specified in the
electrical specifications) and must be asserted for at least two
PCLK_EN clock cycles.

Negation-May occur any time after the CKSTP _00'1' output signal
has been asserted.

8.2.9.3 Checkstop Output (CKSTP _ OUT)-Output
The checkstop output (CKSTP _OUT) signal is output only on the MPC601. Following are
state meaning and timing comments for the CKSTP _OUT signal.

State Meaning Asserted-Indicates that the MPC601 has detected a checkstop
condition and has ceased operation.

Negated-Indicates that the MPC601 is operating normally.
See Section 9.7.2, "Checkstops."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the MPC601 input clocks.

Negation-Requires HRESET assertion.

8.2.9.4 Reset Signals
There are two reset signals on the MPC601-hard reset (HRESET) and soft reset
(SRESET). Descriptions of each follows.

8.2.9.4.1 Hard Reset (HRESET)-Input
The hard reset (HRESE1') signal is input only and must be used at power-on to properly
reset the processor. Following are state meaning and timing comments for the HRESET
signal.

State Meaning Asserted-Initiates a complete hard reset operation when this input
transitions from asserted to negated. Causes a reset exception as
described in Section 5.4.1.2, "Hard Reset." Output drivers are
released to high impedance within three clocks after the assertion of
HRESET.

8-26

Negated-Indicates that normal operation should proceed. See
Section 9.7.3, "Reset Inputs."

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the MPC601 input clocks.
Negation-May occur any time after the minimum reset pulse width
has been met. (Minimum pulse width is 300 processor clock cycles.)

This input has additional functionality in certain test modes.

8.2.9.4.2 Soft Reset {SRESET)-Input
The soft reset (SRESE'I') signal is input only. Following are state meaning and timing
comments for the SRESET signal.

State Meaning Asserted- Initiates processing for a a reset exception as described
in Section 5.4.1.1 ~ "Soft Reset."

Negated-Indicates that normal operation should proceed. See
Section 9. 7 .3~ "Reset Inputs."

Timing Comments Assertion-May occur at any time.
Negation-May occur any time after the minimum soft-reset pulse
width has been met. (Minimum pulse width is 10 processor clock
cycles.)

This input has additional functionality in certain test modes.

8.2.9.5 System Quiesced (SYS_QUIESC)
The system quiesced (SYS_QUIESC) signal is input only. Following are state meaning and
timing comments for the SYS_QUIESC signal.

State Meaning Asserted-Enables soft stop in the MPC601

Negated: indicates that soft stop is not enabled in the
MPC601 processor.

Timing Comments Assertion/Negation-Must meet setup and hold times as described
in the electrical specifications.

8.2.9.6 Resume (RESUME)
The resume (RESUME) signal is input only. Following are state meaning and timing
comments for the RESUME signal.

State Meaning Asserted-Restarts the MPC601 after a soft stop.

MOTOROLA

Negated-Indicates that the MPC601 is not allowed to resume
normal operation if a soft stop has occurred.

Chapter 8. Signal Descriptions 8-27

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the MPC601 input clocks. RESUME must be
asserted for a minimum of three PCCK_EN clock cycles. Or, it may
be asserted synchronously meeting setup and hold times (specified in
the electrical specifications) and must be asserted for at least two
PCCK_EN clock cycles. For information, see the MPC601 electrical
specifications.

Negation-May occur any time after the minimum pulse width has
been met.

8.2.9.7 Quiesce Request (QUIESC_REQ)
The quiesce request (QUIESC_REQ) signal is output only. Following are state meaning
and timing comments for the QUIESC_REQ signal.

State Meaning Asserted-Indicates that the MPC601 is requesting a soft stop for
the system.

Negated-Indicates that the MPC601 is operating normally.

Timing Comments Assertion-May occur at any time to indicate that the MPC601 is
requesting a soft stop.

Negation: may occur at any time to indicate that the MPC601 is not
requesting a soft stop.

8.2.9.8 Reservation (RSRV)-Output
The reservation (RSRV) signal is output only on the MPC601. Following are state meaning
and timing comments for the RSRV signal.

State Meaning Asserted/Negated-Represents the state of the reservation
coherency bit in the reservation address register that is used by the
Iwarx and stwcx instructions. See Section 9.8.1, "Support for the
lwarx/stwcx. Instruction Pair."

Timing Comments Assertion/Negation-Occurs synchronously with respect to bus
clock cycles. The execution of an Iwarx instruction sets the internal
reservation condition when the next bus transition occurs, RSRV is
asserted.

8.2.9.9 Driver Mode (SC_DRIVE)
The driver mode (SC_DRIVE) signal is input only on the MPC601. Following are state
meaning and timing comments for the SC_DRIVE signal.

State Meaning Asserted-Indicates that the drive current for the following output
buffers is increased; AIm, 'Dlm, ARTRY, SHU, TS', XATS'.
(approximately 2x).

8-28 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Negated-The drive current for the six signals above will be the
same as all other signals for the MPC601.

Timing Comments Assertion/Negation-This is not a dynamic signal; it must not
transition after HRESET is negated.

8.2.10 ESP/Scan Interface
The MPC601 has extensive on-chip test capability including the following:

• Built-in Self test (BIST)

• Debug control/observation (ESP)

• Boundary scan

The built-in self test hardware is exercised as part of the POR sequence. The ESP and
boundary scan logic are not used under typical operating conditions.

Detailed discussion of the MPC601 test functions is beyond the scope of this document;
however, sufficient information has been provided to allow the system designer to disable
the test functions that would impede normal operation.

The test interface is provided for testing. Table 8-9 describes the test interface signals. For
more information, refer to Section 9.9, "IEEE 1149.1-Compatible Interface." The interface
is shown in Figure 8-2.

~+5
TDI module lead #186

"",+5
TMS module lead #184

~~5
TCK module lead #187

BscAN_EN module lead #186

TOO module lead #078

TRST module lead #279

Figure 8-2. IEEE 1149.1-Compatible Boundary Scan Interface

MOTOROLA Chapter 8. Signal Descriptions 8-29

..

Table 8-9. ESP/Scan Interface

Signal Name I/O Timing Comments

SCAN_CTl I This input signal should be driven high to disable test modes.

SCAN_ClK I This input signal should be driven high to disable test modes.

SCAN_SIN I This input signal should be driven low to disable test modes.

~ I This input signal should be driven high to disable test modes.

EiS1::7\I'U;f'J I This input signal should be driven high to disable test modes.

RUN_NSTOP 0 This output signal is a no connect (NC) for non-test board designs.

SCAN_OUT 0 This output signal is a no connect (NC) for non-test board designs.

8.2.11 Test Signals
Table 8-10 describes the MPC601 's test and COP signals. The value in the operational level
column should be used for normal operations.

Table 8-10. Test Interface

Signal Operation
I/O

Name level

TSTO low I

T8T1 low I

TST2-3 - 0

TST4 - 0

TST5 low I

T8T6 low I

TST7 High I

TST8 High I

T8T9 Low I

TST10 High I

TST11 High I

T8T12 High I

TST13 High I

TST14 High I

TST15 High I

TST16 High I

T8T17 High I

TST18 low I

8-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 8-10. Test Interface (Continued)

Signal Operation
1/0

Name Level

T8T19 - 0

T8T20 Low I

T8T21 Low I

T8T22 High I

T8T23 High I

8.2.12 Clock Signals
The clock signal inputs of the MPC601 determine the system clock frequency and provide
a flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency.

Refer to the MPC601 electrical specifications for exact timing relationships of the clock
signals.

8.2.12.1 Double-Speed Processor Clock (2X_PCLK)-lnput
The double-speed processor clock (2X_PCLK) signal is input only on the MPC601. This
signal is the highest frequency input to the MPC601; it switches at twice the frequency of
the internal P _CLOCK provided that the peLK_EN signal is half the frequency of the
2X_PLCLK as shown in Figure 8-3. This input clocks the latch that samples the peLK_EN
input, providing duty-cycle control for the internal P _CLOCK (see Figure 8-3).

Following are state meaning and timing comments for the 2X_PCLK signal.

State Meaning Rising Edge-Is the clocking edge for a synchronizing latch used to
generate the internal processor clock (see peLK_EN). See
Section 8.2.12, "Clock Signals."

Timing Comments Duty cycle-Refer to the MPC601 electrical specifications.

8.2.12.2 Clock Phase (PCLK_EN)-Input
The clock phase (peLK_EN) signal is input only on the MPC601. The peLK_EN signal
switches at the same frequency as the internal CPU clock (P _CLOCK in Figure 8-3). The
peLK_EN signal determines the phase of the internal P _CLOCK (timing and duty cycle
are derived from the 2X_PCLK input); therefore, this input can be used to synchronize
multiple MPC601 s.

Figure 8-3 shows how the internal P _CLOCK is always identical to the PCLK_ER signal
except it is inverted and delayed by one full 2X_PCLK cycle.

The MPC601 can tolerate dynamic P _CLOCK cycle stretching. This can be accomplished
by altering the duty cycle of the peLK_EN input. For example, the system can extend a
given CPU clock cycle by negating peLK_EN for more than one 2X_PCLK cycle. This

MOTOROLA Chapter 8. Signal Descriptions 8-31

..

effectively delays the bus clock input sampling points and output drive points in half of a
processor cycle increments and further delays execution of instructions accordingly.

o

ClK

.--,.,...----~----. IN OUT
(internal)

P_ClOCK

Figure 8-3. Internal P _CLOCK Generation

Following are state meaning and timing comments for the PCLK_EN signal.

State Meaning Asserted-Indicates that the MPC601 should generate the high
phase of the internal processor clock synchronized to 2X_PCLK.
See Section 8.2.12, "Clock Signals."

Negated-Indicates that MPC601 should generate the low phase of
the internal processor clock synchronized to 2X_PCLK.

Timing Comments Assertion-May occur one 2X_PCLK cycle after the negation of
PCLK_EN with appropriate setup to the falling edge of 2X_PCLK.

Negation-Must occur one 2X_PCLK cycle after the assertion of
PCLK_EN with appropriate setup to the falling edge of 2X_PCLK.

8.2.12.3 Bus Phase { BCLK_EN)-Input
The bus phase (BCLK_EN) signal is input only on the MPC601. This input determines, in
conjunction with PCLK_EN and 2X_PCLK, the transition timing for the MPC601 bus
interface. While all timing is derived from the rising edge of the 2X_PCLK input, the two
phase inputs qualify the edge on which the processor and bus interface sequential logic can
proceed. Inputs are sampled and outputs are driven with the qualified rising edge of the
2X_PCLK input (see Figure 8-4).

Following are state meaning and timing comments for the BCLK_EN signal.

State Meaning Asserted- Indicates that the MPC601 must use the next rising edge
of the internal processor clock to sample and drive the bus interface.

8-32

Negated-Indicates that MPC601 outputs must not change state,
inputs will not be sampled. This signal can be treated as a
synchronous enable for the bus clock cycle clock. See
Section 8.2.12, "Clock Signals."

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Timing Comments AssertionlNegation-With appropriate setup and hold time to the
2X_PCLK provided the rising edge of the internal processor clock
coincides with the 2X_PCLK.

Figure 8-4 through Figure 8-7 illustrate how the MPC601 clocking signals can be used to
generate a logical bus clock. Note that the resulting logical bus clock is represented as an
arrow coincident with the rising edge of the resulting signal. It should not be inferred that
the duty cycle of the bus clock signal is 50 percent.

Figure 8-4 shows how the clock inputs can be used to control the MPC601. Note that the
signal IN is the output of the inverter shown in Figure 8-3.

o
2X_PCLK

PCLK_EN U
IN:

INTCLK:

2 3 4 5 6 7

u

u
*Oelay

Figure 8·4. Generation of Internal Clock (INTClK)

Figure 8-4 shows a simple MPC601 clock implementation with the frequency of the logical
bus clock equal to that of the P _CLK.

o
2X_PCLK

PeCK_EN U
IN

2 3 4 5 6 7

u
B_CLKEN~ __ ~ ____ ~ ____ ~ ____ ~ __________ ~ ____ ~ __ ~

Logical Bus Clock t t t
*Oelay of inverter output

Figure 8·5. Generation of Bus Transitions-logical Bus Clock = P _ClK

Figure 8-6 shows the generation of the logical bus clock at one-half the frequency of the
P_CLK.

MOTOROLA Chapter 8. Signal Descriptions 8-33

..

1 0 2 3 4 5 6 7 819 10 11

Bus Transition: t t t
-*Delay of inverter output

Figure 8-6. Generation of Bus Transitions-logical Bus Clock = 1/2 P _ClK

Figure 8-7 shows how the PCLK_EN signal can be manipulated to perform cycle stretching
on the MPC601.

1 0

IN

P_CLK

BeCK_EN I
Bus Transition:

213

t

4 516171819 10 11

t
*Delay

Figure 8-7. Generation of Bus Transitions-Cycle Stretching

In this document, processor clock refers to the internal P _CLOCK signal; bus clock refers
to the clock that causes the bus transitions.

Figure 8-5 and Figure 8-6 show two examples of the generation of bus transitions. In the
first example, BCLK_EN is grounded (always asserted) and the bus clock period is
equivalent to the P _CLOCK cycle period. In the second example, the BCLK_EN input is
driven by a clock switching at PCLK_EN/2 frequency. This allows the MPC60l bus
interface to run at half the frequency of the CPU P _CLOCK, easing system design
constraints. Note that the BeLK_EN input can be divided further (with respect to
PCLK_EN), allowing an even greater ratio between the clock- and bus-cycle frequencies.

8-34 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

To operate the bus interface slower than P _CLOCK/2, BeLK_EN must be asserted only
for the intended P _CLOCK window (for example, the duty cycle can be skewed such that
the bus logic increments only once during each assertion of BeLK_EN).

8.2.12.4 Real-Time Clock (RTC)-Input
The real-time clock (RTC) signal is input only on the MPC601. Following are state
meaning and timing comments for the RTC signal.

State Meaning Rising Edge-Increments the 7.8125-MHz real-time clock in the
MPC601.

Timing Comments Duty cycle-See the MPC601 electrical specifications.

8.3 Clocking in a Multiprocessor System
Clocking in a multiprocessor system adds a level of complexity. The MPC601 defines the
AC timing specifications for the chip inputs and outputs to allow for a reasonable amount
of system-level skew and still allow the chip to meet its timing goals. These timing
specifications can be found in the MPC601 electrical specifications.

MOTOROLA Chapter 8. Signal Descriptions 8-35

..

8-36 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 9
System Interface Operation
This section describes the MPC601 bus interface and its operation. It shows how the
MPC601 signals, defined in Chapter 8, "Signal Descriptions," interact to perform address
and data transfers.

9.1 MPC601 System Interface Overview
The system interface performs external accesses for loading and storing data and fetching
instructions.

Instructions are automatically fetched from the memory system into the instruction unit
where they are dispatched to the execution units at a maximum rate of three instructions per
clock. Conversely, load and store instructions explicitly specify the movement of operands
to and from the integer and floating-point register files and the memory system.

When the MPC601 encounters an instruction or data access, it calculates the logical address
(effective address) and uses the low-order address bits to check for a hit in the on-chip, 32-
Kbyte cache. Operation of the cache is described in Section 9.1.1, "Operation of the On­
Chip Cache." During the cache lookup, the memory management unit (MMU) uses the
upper-order address bits to calculate the virtual address, from which it calculates the
physical address. The physical address bits are then compared with the corresponding
cache tag bits to determine if a cache hit occurred. If the access misses in the cache, the
physical address is used to access system memory.

In addition to the loads, stores, and instruction fetches, the MPC601 performs other read
and write operations for table searches, cache cast-out operations when least-recently used
sectors are written to memory after a cache miss, and cache-sector snoop push-out
operations when a modified sector experiences a snoop hit from another bus master.

All read and write operations are handled by the memory unit, which consists of a two­
element read queue that holds addresses for read operations, and a three-element write
queue that contains addresses and data for write operations. To maintain coherency, the
write queues are included in snooping. The interface allows one level of pipelining, that is,
there can be two outstanding reads and writes at any given time. Note that these must be
unlike operations; for example, there cannot be two outstanding explicit load operations,
but there can be a load and an instruction fetch. Accesses are prioritized. The operation of

MOTOROLA Chapter 9. System Interface Operation 9-1

III

•

the memory unit is described in Section 9.1.2, "Operation of the Memory Unit for Loads
and Stores."

Figure 9-1 shows the address path from the execution units and instruction fetcher, through
the translation logic to the cache and system interface logic.

The MPC601 uses separate address and data buses and a variety of control and status
signals for performing reads and writes. The address bus is 32 bits wide and the data bus is
64 bits wide. The interface is synchronous-all timing is derived from the equivalent of the
rising edge of the bus clock cycle. All MPC601 inputs are sampled at and all outputs are
driven from this edge. The bus can run at the full processor-clock frequency or at an integer
division of the processor-clock speed. The MPC601 provides a TTL-compatible interface.

9.1.1 Operation of the On-Chip Cache
The MPC601's cache is a combined instruction and data (or unified) cache. It is a
physically-addressed, virtually-indexed, 32-Kbyte cache with eight-way set associativity.
The cache consists of eight sets of 128 sectors. Each 16-word cache line consists of two
8-word sectors. Both sectors share the same line address tag. Cache coherency, however, is
maintained for each sector, so there are separate coherency state bits for each sector. If one
sector of the line is filled from memory, the MPC601 attempts to load the other sector as a
low-priority bus operation. There is no guarantee that the other sector will be loaded.

Because the cache on the MPC601 is an on-chip, write-back primary cache, the
predominant type of transaction for most applications is burst-read memory operations,
followed by burst-write memory operations, I/O controller interface operations, and single­
beat (noncacheable or write-through) memory read and write operations. Additionally,
there can be address-only operations, variants of the burst and single-beat operations
(global memory operations that are snooped, and atomic memory operations, for example),
and address retry activity (for example, when a snooped read access hits a modified line in
the cache).

The cache has one address port dedicated to instruction fetch and load/storeaccesses and
one dedicated to snooping transactions on the system interface. Therefore, snooping does
not require additional clock cycles unless a snoop hit that requires a cache status update
occurs.

9-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

III

64-BIT DATA BUS

32-BIT ADDRESS BUS

Figure 9-1. MPC601 Processor Block Diagram

MOTOROLA Chapter 9. System Interface Operation 9-3

9.1.2 Operation of the Memory Unit for Loads and Stores
As shown in Figure 9-1, the memory unit includes two read-queue elements and three
write-queue elements. The read queue buffers are used for holding addresses for read
operations; the write queue buffers are used for holding addresses and data for write
operations and to support such features as address pipelining, snooping, and write
buffering, described as follows:

• The two read-queue elements allow the system interface logic to buffer as many as
two outstanding read operations. There are two restrictions that apply to filling the
two read-queue elements described as follows:

- There cannot be two outstanding load operations.

- There cannot be two outstanding read-with-intent-to-modify instructions.

Note that when a read miss causes the cache to be updated, only the sector with the
required data is guaranteed to be updated. The other sector can be updated only if
both read-queue elements are free. The update of the other sector can be disabled by
setting bit 26 in the HIDO register (HID[DRF]).

• Two of the three write-queue elements, marked" A" and "B" in Figure 9-1, are
buffers for write operations. They buffer store operations and sectors that are written
back to memory such as when a cache location is updated after a cache miss. This
allows the cache to be updated before the replaced sector is written back to system
memory.

• The third queue element, marked "snoop" in Figure 9-1, is provided to support high­
priority copy-back operations that result from snoop hits to modified data (cache­
sector snoop push-out operations while a read operation is pending on the bus).
Snoop hits to modified data create a high-priority store operation that allows the
processor to become bus master to store the modified data to memory, where it in
turn is read by the snooping device.

The data bus supports one level of pipelining.

9.1.3 Operation of the System Interface
Memory accesses can occur in single-beat and four-beat burst data transfers. The address
and data buses are independent for memory accesses to support pipelining and split
transactions. The MPC601 can pipeline as many as two transactions and has limited support
for out-of-order split-bus transactions.

Memory is accessed through an arbitration mechanism that allows devices to compete for
bus mastership. This arbitration mechanism is flexible, allowing the MPC601 to be
integrated into systems that implement various fairness and bus-parking procedures to
avoid arbitration overhead. Additional multiprocessor support is provided through
coherency mechanisms that provide snooping, external control of the on-chip cache and
TLB, and support for a secondary cache. Multiprocessor software support is provided
through the use of atomic memory operations.

9-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Typically, memory accesses are weakly ordered-sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin-maximizing the efficiency of the bus without sacrificing coherency of the data. The
MPC601 allows read operations to precede store operations (except when a dependency
exists, of course). In addition, the MPC601 may reorder high priority store operations
ahead of lower priority store operations. Because the processor can dynamically optimize
run-time ordering of load/store traffic, overall performance is improved.

Note that the Synchronize (sync) or Enforce In-Order Execution of I/O (eieio) instruction
can be used to enforce strong ordering.

The following sections describe how the MPC601 interface operates, providing detailed
timing diagrams that illustrate how the signals interact. A collection of more general timing
diagrams are included as examples of typical bus operations.

Figure 9-2 is a legend of the conventions used in the timing diagrams.

This is a synchronous interface-all MPC601 input signals except the PCLK_EN signals
are sampled relative to the rising edge of the bus clock cycle. Outputs are driven off the
same rising edge of bus clock cycle (see the electrical specifications for exact timing
information).

9.1.4 I/O Controller Interface Accesses
Memory and I/O controller interface accesses use the MPC601 signals differently.

The MPC601 defines separate memory and I/O address spaces, or segments, distinguished
by the segment register T-bit in the address translation logic of the MPC601. If the T-bit is
cleared, the memory reference is a normal memory access and can use the virtual memory
management hardware of the MPC601. If the T-bit is set, the memory reference is an I/O
controller interface access.

The function and timing of some address transfer and attribute signals (such as TTO-TT3,
TBST, and TSIZO-TSIZ2) are changed for I/O controller interface accesses. Additional
controls are required to facilitate transfers between the MPC601 and intelligent I/O devices.
I/O controller interface and memory transfers are distinguished from one another by their
address transfer start signals-TS" indicates that a memory transfer is starting and XATS"
indicates that an I/O controller interface transaction is starting.

Unlike memory accesses, I/O controller interface accesses cannot be pipelined and must be
strongly ordered-each access occurs in strict program order and completes before another
access can begin. For this reason, 1/0 controller inlerface accesses are less efficient than
memory accesses. The I/O extensions also allow for additional bus pacing and mUltiple
transaction operations for variably-sized data transfers (1 to 128 bytes), and they support a
tagged, split request/response protocol. The I/O controller interface access protocol also
requires the slave device to function as a bus master.

MOTOROLA Chapter 9. System Interface Operation 9-5

•

•

apO

<'--_--I)

Bar over signal name indicates active low

MPC601 input (while MPC601 is a bus master)

MPC601 output (while MPC601 is a bus master)

MPC601 output (grouped: here, address plus attributes)

MPC601 internal signal (inaccessible to the user, but
used in diagrams to clarify operations)

Compelling dependency-event will occur on the
next clock cycle

Prerequisite dependency-event will occur on an
undetermined subsequent clock cycle

MPC601 three-state output

MPC601 non-sampled input

L-.J Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted)

Figure 9-2. Timing Diagram Legend

9.2 Memory Access Protocol
Memory accesses are divided into address and data tenures. Each tenure has three phases­
bus arbitration, transfer, and termination. The MPC601 also supports address-only
transactions. Note that address and data tenures can overlap, as shown in Figure 9-3.

Figure 9-3 shows that the address and data tenures are distinct from one another and that
both consist of three phases-arbitration, transfer, and termination. Having independent
address and data tenures allows address pipelining (indicated in Figure 9-3 by fact that the
data tenure begins before the address tenure ends) and split-bus transactions to be
implemented at the system level in multiprocessor systems. Figure 9-3 shows a data
transfer that consists of a single-beat transfer of as many as 64 bits. Four-beat burst transfers
of 32-byte cache sectors require data transfer termination signals for each beat of data.

9-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

ADDRESS TENURE
~ ________ ~A~ __________ ~

INDEPENDENT ADDRESS AND DATA

~ ~ ____________ ~A~ ____________ __
(\

DATA TENURE

I ARBITRATION I SINGLE-BEAT TRANSFER I TERMINATION I
Figure 9-3. Overlapping Tenures on the MPC601 Bus for a Single-Beat Transfer

The basic functions of the address and data tenures are as follows:

• Address tenure

- Arbitration: During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

- Transfer: After the MPC601 is the address bus master, it transfers the address
on the address bus. The address signals and the transfer attribute signals control
the address transfer. The address parity and address parity error signals ensure
the integrity of the address transfer.

- Termination: After the address transfer, the system signals that the address
tenure is complete or that it must be repeated.

Data tenure

- Arbitration: To begin the data tenure, the MPC601 arbitrates for mastership of
the data bus.

- Transfer: After the MPC601 is the data bus master, it samples the data bus for
read operations or drives the data bus for write operations. The data parity and
data parity error signals ensure the integrity of the data transfer.

- Termination: Data termination signals are required after each data beat in a data
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
fi nal data beat.

The MPC601 bus supports address-only transfers, which use only the address bus, with no
data transfer involved. This is useful in multiprocessor environments where external
control of on-chip primary caches and TLB entries is desirable. Additionally, the MPC601 's
retry capability provides an efficient snooping protocol for systems with multiple memory
systems (including caches) that must remain coherent.

MOTOROLA Chapter 9. System Interface Operation 9-7

9.2.1 Arbitration Signals
Arbitration for both address and data bus mastership in a multiprocessor system is
performed by a central, external arbiter and, minimally, by the arbitration signals shown in
Section 8.2.1, "Address Bus Arbitration Signal". Most arbiter implementations require
additional signals to coordinate bus master/slave/snooping activities. Note that address bus
busy (ABB) and data bus busy (11gB) are bidirectional signals. These signals are inputs
unless the MPC601 has mastership of one or both of the respective buses; they must be
connected high through pull-up resistors so that they remain negated when no devices have
control of the buses.

The following list describes the address arbitration signals:

• BR (bus request)-Assertion indicates that the MPC601 is requesting mastership
of the address bus.

• BG (bus grant)-Assertion indicates that the MPC601 may, with the proper
qualification, assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted and'i-\BR and ARTRY are negated.

If the MPC601 is parked, Bl{ need not be asserted for the qualified bus grant.

• ABB (address bus busy)-Assertion indicates that the MPC601 is the address bus
master.

The following list describes the data arbitration signals:

9-8

• 'D'iiU (data bus grant)-Indicates that the MPC601 may, with the proper
qualification, assume mastership of the data bus. A qualified data bus grant occurs
when TIBG is asserted while I>BB, DRTRY, and ARTRY are negated.

I>BB signal is driven by the current bus master, DRTRY is only driven from the bus,
and ARTRY is from the bus, but only for the address bus tenure associated with the
current data bus tenure (that is, not from another address tenure).

• nBWO (data bus write only)-Assertion indicates that the MPC601 may run the
data bus tenure for an outstanding write address even if a read address is pipelined
before the write address. If DBWO is asserted, the MPC601 only assumes data bus
mastership for a pending data bus write operation (that is, the MPC601 does not take
the data bus for a pending read operation if this input is asserted along with ImU).
Care must be taken with DBWO to ensure the desired write is queued (for example,
a cache-sector snoop push-out operation).

DBB (data bus busy)-Assertion indicates that the MPC601 is the data bus master.
The MPC601 always assumes data bus mastership if it needs the data bus and is
given a qualified data bus grant (see TIBU).

For more detailed information on the arbitration signals, refer to Section 8.2.1,
"Address Bus Arbitration Signal," and Section 8.2.6, "Data Bus Arbitration
Signals."

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

9.2.2 Address Pipelining and Split-Bus Transactions
The MPC601 protocol provides independent address and data bus capability to support
pipelined and split-bus transaction system organizations. Address pipelining allows new
bus transactions to begin before the current transaction has finished by overlapping the data
bus tenure associated with a previous address bus tenure with one or more successive
address tenures. Split-bus transaction capability allows the address bus and data bus to have
different masters at the same time.

While this capability does not inherently reduce memory latency, support for address
pipelining and split-bus transactions can greatly improve effective bus/memory
throughput. For this reason, these techniques are most effective in shared-memory
multiprocessor implementations where bus bandwidth is an important measurement of
system performance.

External arbitration is required in systems in which multiple devices must compete for the
system bus. The design of the external arbiter affects pipelining by regulating address bus
grant (BTI), data bus grant (TIBG), and AAlX signals. For example, a one-level pipeline is
enabled by asserting AAlX to the current address bus master and granting mastership of
the address bus to the next requesting master before the current data bus tenure has
completed. Two address tenures can occur before the current data bus tenure completes.

The MPC601 can pipeline its own transactions to a depth of one level (intraprocessor
pipelining); however, the MPC601 bus protocol does not constrain the maximum number
of levels of pipelining that can occur on the bus between multiple masters (interprocessor
pipelining). The external arbiter must control the pipeline depth and synchronization
between masters and slaves.

In a pipelined implementation, data bus tenures are kept in strict order with respect to
address tenures. However, external hardware can further decouple the address and data
buses, allowing the data tenures to occur out of order with respect to the address tenures.
This requires some form of system tag to associate the out-of-order data transaction with
the proper originating address transaction (not defined for the MPC601 interface).
Individual bus requests and data bus grants from each processor can be used by the system
to implement tags to support interprocessor, out-of-order transactions.

The MPC601 supports a limited intraprocessor out-of-order, split-transaction capability via
the data bus write only (DBWO) signal. For more information about using DBWO, see
Section 9.10, "Using DBWO (Data Bus Write Only)."

9.3 Address Sus Tenure
This section describes the three phases of the address tenure-address bus arbitration,
address transfer, and address termination.

MOTOROLA Chapter 9. System Interface Operation 9-9

•

9.3.1 Address Bus Arbitration
When the MPC601 needs access to the external bus and it is not parked (B'G is negated), it
asserts bus request <Em until it is granted mastership of the bus and the bus is available
(see Figure 9-4). The external arbiter must grant master-elect status to the potential master
by asserting the bus grant (B'G) signal. The MPC601 requesting the bus determines that the
bus is available when the A:BB' input is negated. When the address bus is not busy '{ABlj
input is negated), BG is asserted, and the address retry (ARTRY) input is negated. This is
referred to as a qualified bus grant. The potential master assumes address bus mastership
when it receives a qualified bus grant by asserting AB'B".

The MPC601 also provides an internally generated address bus busy signal, which it
logically ORs with the AIm" signal received off of the bus. This internal address bus busy
signal is asserted with any TS' or XATS' signal and is negated with a valid AACK. Tis
internally generated address bus busy signal is useful in systems that do not use AIm".

-1 0

Logical Bus Clock

/'188d_buG

00

Og

aE'6

artry

~~------~~~--~~
..........,~------i

Figure 9-4. Address Bus Arbitration

External arbiters must allow only one device at a time to be address bus master. In
implementations in which no other device can be a master, BG can be grounded (always
asserted) to continually grant mastership of the address bus to the MPC601.

If the MPC601 asserts B"R before the external arbiter asserts 00, the MPC601 is considered
to be unparked, as shown in Figure 9-4. Figure 9-5 shows the parked case, where a qualified
bus grant exists on the clock edge following a need_bus condition. Notice that the bus clock
cycle required for arbitration is eliminated if the MPC601 is parked, reducing overall

9-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

memory latency for a transaction. The MPC601 always negates 'AIm" for at least one bus
clock cycle after AACK is asserted, even if it is parked and has another transaction pending.

Typically, bus parking is provided to the device that was the most recent bus master;
however, system designers may choose other schemes, such as providing unrequested bus
grants in situations where it is easy to correctly predict the next device requesting bus
mastership.

-1 o

tijuaJllflG

~~------~-=~--~~
--'l ------.

Figure 9-5. Address Bus Arbitration Showing Bus Parking

When the MPC601 receives a qualified bus grant, it assumes address bus mastership by
asserting 'AIm" and negating the ffi{ output signal: Meanwhile, the MPC601 drives the
address for the requested access onto the address bus and asserts TS" to indicate the start of
a new transaction.

When designing external bus arbitration logic, note that the MPC601 may assert ffi{
without using the bus after it receives the qualified bus grant. For example, in a system
using bus snooping, if the MPC601 asserts ffi{ to perform a replacement copy-back
operation, another device can invalidate that sector before the MPC601 is granted
mastership of the bus. Once the MPC601 is granted the bus, it no longer needs to perform
the copy-back operation; therefore, the MPC601 does not assert 'AIm" and does not use the
bus for the copy-back operation. Note that the MPC601 asserts BIt for at least one clock
cycle in these instances.

MOTOROLA Chapter 9. System Interface Operation 9-11

•

9.3.2 Address Transfer
During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency (see discussion about snooping in Section 9.3.3,
"Address Transfer Termination"). The signals used in the address transfer include the
following signal groups (see Figure 8-1):

• Address transfer start signal: Transfer start (TS)

Note that extended address transfer start (XATS") is used for I/O controller interface
operations and has no function for memory accesses. See Section 9.6, "I/O
Controller Interface Operation."

• Address transfer signals: Address bus (AO-A31), address parity (APO-AP3), and
address parity error (APE)

• Address transfer attribute signals: Transfer type (TTO-TT4), transfer code (TCO­
TC3), transfer size (TSIZO-TSIZ2), transfer burst (TBST), cache inhibit (CT), write­
through (WT), global (G'B'L), and cache set element (CSEO-CSE2)

Figure 9-6 shows that the timing for all of these signals, except TS' and APE, is identical.
All of the address transfer and address transfer attribute signals are combined into the
ADDR+ grouping in Figure 9-6. The TS' signal indicates that the MPC601 has begun an
address transfer and that the address and transfer attributes are valid (within the context of
a synchronous bus). The MPC601 always asserts TS' (or XATS for I/O controller interface
operations) coincident with AB'S in multiprocessor systems. As an input, TS' need not
coincide with the assertion ofAB'S on the bus (that is, either TS' or'"XATS' can be asserted
With, or on, a subsequent clock cycle after ABB' is asserted; the MPC601 tracks this
transaction correctly).

o 2 3 4

Figure 9-6. Address Bus Transfer

9-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

In Figure 9-6, the address transfer occurs during bus clock cycles 1 and 2 (arbitration
occurs in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this
diagram, the address bus termination input, AACK, is asserted to the MPC601 on the bus
clock following assertion of TS' (as shown by the dependency line). This is the minimum
duration of the address transfer for the MPC60l; the duration can be extended by delaying
the assertion of AACK for one or more bus clocks.

9.3.2.1 Address Bus Parity
The MPC601 always generates one bit of correct odd-byte parity for each of the four bytes
of address when a valid address is on the bus. The calculated values are placed on the APO­
AP3 outputs when the MPC601 is the address bus master. If the MPC601 is not the master
and TS' and GB'[" are asserted together (qualified condition for snooping memory
operations), the calculated values are compared with the APO-AP3 inputs. If there is no
match, the APE output is asserted. An address bus parity error causes a checkstop condition
if the bus parity checkstop source is enabled in HIDO. See Chapter 5, "Exceptions."

The internal address parity error signal is further qualified by a valid address condition,
since the APE signal may be asserted for invalid address bus conditions. APE does not,
therefore, necessarily represent the state of the internal address parity error signal used to
generate the machine check exception.

9.3.2.2 Address Transfer Attribute Signals
The transfer attribute signals include several encoded signals such as the transfer type
(TTO-TT4) signals, transfer burst (TBST) signal, transfer size (TSIZO-TSIZ2) signals, and
transfer code (TCO-TCl) signals. Section 8.2.4, "Address Transfer Attribute Signals,"
describes the encodings for the address transfer attribute signals. Note that TTO-TT4,
TB'ST, and TSIZO-TSIZ2 have alternate functions for I/O controller interface operations
(see Section 9.6, "I/O Controller Interface Operation)."

9.3.2.2.1 Transfer Type (TTO-TT4) Signals
Snooping logic should fully decode the transfer type signals if the GBL signal is asserted.
Slave devices can use the individual transfer type signals without fully decoding the group.
The transfer type signals generally have the following individual functions:

• TTO-Special operations: The MPC601 drives this signal to indicate that the access
is part of an atomic data access sequence. This signal is asserted by the MPC601
whenever a bus transaction occurs in response to a Iwarx/stwcx. (Load Word and
Reserve Indexed/Store Word Conditional Indexed) instruction pair (see Chapter 3,
"Addressing Modes and Instruction Set Summary"), an eciwx or ecowx instruction,
or for a Translation Look-Aside Buffer Invalidate Entry (tlbie) operation.

• TTl-Read (/write) operations: The TTl signal indicates whether the transaction is
a read (TTl high) or a write (TTl low) transaction. This is valid for transactions that
are not address only

MOTOROLA Chapter 9. System Interface Operation 9-13

II

•

• TT2-Invalidate operations: When asserted with 'G'SL, the TI2 output signal
indicates that all other caches in the system should invalidate the cache entry on a
snoop hit. If the snoop hit is to a modified entry, the sector should be copied back
before being invalidated.

• TT3-Memory (/address-only) operations: Except for eciwx or ecowx instructions
(TTO-TT3 encodings 1010 or 1110) the TT3 signal, when asserted, indicates that the
associated data transfer is to/from memory. External logic can synthesize the data
bus request from the combination of TS' (or XATS) and IT3 (DBR=TS&TT3). If
TT3 is not asserted with the address, the associated bus transaction is considered to
be a broadcast operation that all bus participants must honor (or a reserved
operation). This is an address-only transaction; the MPC601 does not need and will
not acquire data bus ownership, even if it receives a qualified data bus grant.
Figure 9-7 shows an address-only transaction. On the rising edge of bus cycle 2, TI3
is not asserted; therefore, the data bus will not be needed.

• TT4-The IT4 signal is reserved for future expansion.

o 2 3

TIT !------+-""""\\'-----i-'/ \'----
, ,

~~------~\~--~-----~l~ , , , ,
K,.-----'---~') :

TIS ,:, r-\ ::
1 \-----___ ----f-II ~

~ : ... :.:.:.:.:.:::::::::::::::::::. '.::.':'.{} ::,::::.:,:::::,::::.:,::: :::'::::.::::,:::::-.:::::4,/:" ':' \------r.-c'" !=:.,: .. :,::.;:>.i,::.:',:'.:,:::.:=·.:.i.::.,'::'.,'.:'.::,·.i.:'.::.i.:=:"i.t:: =;;;;:;;:,:,::,,:::,,::;,::::,::,:,~ aacl\ ::::::::::::}::::}}:{::::: 'I _ tJ. :

artry_'n ,
:.: :"::':\ ::::::::::::::::u: :::.:::::::::::::::'::::::::'::::::::::t:::::,.::/:::::::::.:::'.::::.'.:.' :::,:::::::::,:;:,::::;:::,::;: :;:,::;::::;::::;:;,;::::;;; :.:,.::,:.::,.:.::,: .. ::::,:: ... ::,.:.::,.:.:.¥

:.'.:.:.:.:.:.:.:.:.:.:.:.:.',:.:.:.:. :~:}~:::~:~:~:~:\~:::::::::::::::::::::::;:::::: .. :.: .. :. .,

Figure 9-7. Address-Only Bus Transaction

9.3.2.2.2 Transfer Size (TSIZO-TSIZ2) Signals

4

The transfer size signals (TSIZO-TSIZ2) indicate the size of the requested data transfer as
shown in Table 9-1. The TSIZO-TSIZ2 signals may be used along with TB'ST and A29-
A31 to determine which portion of the data bus contains valid data for a write transaction
or which portion of the bus should contain valid data for a read transaction. Note that for a
burst transaction (as indicated by the assertion of TEST) TSIZO-TSIZ2 are always set to

9-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

b'OIO'. Therefore, if the TB"ST signal is asserted, the memory system should transfer a total
of eight words (32 bytes), regardless of the TSIZO-TSIZ2 encoding.

Table 9-1. Transfer Size Signal Encodings

TErnT TSIZO TSIZ1 TSIZ2 Transfer Size

Asserted 0 1 0 Eight-word burst

Negated 0 0 0 Eight bytes

Negated 0 0 1 One byte

Negated 0 1 0 Two bytes

Negated 0 1 1 Three bytes

Negated 1 0 0 Four bytes

Negated 1 0 1 Five bytes

Negated 1 1 0 Six bytes

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache
sector). Data transfers that cross an aligned, 32-byte boundary either must present a new
address onto the bus at that boundary (for coherency consideration) or must operate as non­
coherent data with respect to the MPC601.

9.3.2.3 Effect of Alignment in Data Transfers
Table 9-2 lists the aligned transfers that can occur on the MPC601 bus. These are transfers •
in which the data is aligned to an address that is an integer multiple of the size of the data.
For example, Table 9-2 shows that one-byte data is always aligned; however, for a four-
byte word to be aligned, it must be oriented on an address that is a multiple of four.

Table 9-2. Aligned Data Transfers

Data Bus Byte Lane{s)

Transfer Size TSIZO TSIZ1 TSIZ2 A29-A31 0 1 2 3 4 5 6 7

Byte 0 0 1 000 .J - - - - - - -

0 0 1 001 - .J - - - - - -
0 0 1 010 - - .J - - - - -

0 0 1 011 - - - .J - - - -

0 0 1 100 - - - - .J - - -

0 0 1 101 - - - - - .J - -

0 0 1 110 - - - - - - --J -

0 0 1 111 - - - - - - - .J

MOTOROLA Chapter 9. System Interface Operation 9-15

•

Table 9-2. Aligned Data Transfers (Continued)

Data Bus Byte Lane(s)

Transfer Size TSIZO TSIZ1 TSIZ2 A29-A31 0 1 2 3 4 5 6

Half word 0 1 0 000 " " - - - - -

0 1 0 010 - - " " - - -
0 1 a 100 - - - - " " -
0 1 0 110 - - - - - - " Word 1 0 a 000 " " " " - - -
1 0 a 100 - - - - " " " Double word 0 0 0 000 " " " " " " "

Notes:

" The byte portions of the requested operand that are read or written during that bus transaction.

- These entries are not required and are ignored during read transactions and are driven with undefined
data during all write transactions (except non-cacheable write transfers, in which data is mirrored on both
word lanes if the transfer does not exceed four bytes).

7

-

-

-

" -

" "

The MPC601 also supports misaligned memory operations. These transfers address
memory that is not aligned to the size of the data being transferred (such as, a word read of
an odd byte address). Although most of these operations hit in the primary cache (or
generate burst memory operations if they miss), the MPC601 interface supports misaligned
transfers within a double-word (64-bit aligned) boundary, as shown in Table 9-3. Note that
the three-byte transfer in Table 9-3 is only one example of misalignment. As long as the
attempted transfer does not cross a double-word boundary, the MPC601 can transfer the
data on the misaligned address (for example, a word read from an odd byte-aligned address,
or a seven-byte read from an odd byte-aligned address).

An attempt to address data that crosses a double-word boundary requires two bus transfers
to access the data. This is illustrated in the last example of a three-byte transfer in Table 9-3.
The transfer requires two accesses-the first for the last two bytes of one double-word
address, the second for one byte from the next double-word address. The TBST, TSIZO­
TSIZ2, and A29-A31 signals provide enough information to determine the size of the
transfer and the data bus byte lanes involved in the misaligned transfer.

Although misaligned transfers are supported, they may degrade performance substantially.
In addition to the double-word straddle boundary condition, the address translation logic
can generate substantial exception overhead when the microcoded, sequenced, load/store
multiple and load/store string instructions access misaligned data. It is strongly
recommended that software attempt to align code and data where possible.

9-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 9-3. Misaligned Data Transfer (Three-Byte Examples)

Data Bus Byte Lanes
Transfer Size

TSIZ(0-2) A29-A31 0 1 2 3 4 5 6 7

Three bytes 011 000 A A A - - - - -

011 001 - A A A - - - -

011 010 - - A A A - - -

011 011 - - - A A A - -
011 100 - - - - A A A -

011 101 - - - - - A A A

First transfer: 010 110 - - - - - A A -
two bytes

Second 001 000 A - - - - - - -
transfer:
one byte

First transfer: 001 111 - - - - - - A -
one byte

Second 010 000 A A - - - - -
transfer:
two bytes

A: Byte lane used
-: Byte lane not used

9.3.2.4 Transfer Code (TCO-TC1) Signals
The TCO and TCI signals provide supplemental information about the corresponding
address. Note that the TCx signals can be used with the TTO-TT4 and TEST signals to
further define the current transaction. These encodings may be useful for debugging.

The meaning of TCO depends on whether the current transaction is a read or write
operation. On a read operation, TCO asserted indicates that the transaction is an instruction
fetch operation; otherwise, the read operation is a data operation. On an MPC601 write
operation, TCO asserted indicates that the write transfer is invalidating the associated sector.
This is for a copy-back replacement, a Data Cache Block Flush instruction (debt), snoop
that causes invalidation (for example a flush or kill). TCO negated indicates the write is not
invalidating any cache sector (for example, a replacement sector copy-back, write-through,
or cache-inhibited write operation.)

The TC 1 signal is asserted on read and RWITM operations to indicate that a low-priority
operation to load the sector adjacent to one that was previously loaded due to a cache miss
is queued; therefore, the next bus transaction will likely access the same page of memory.
This operation may not be the next transaction if, for instance, a copy-back operation that
resulted from a snoop hit is required. Note that TCI asserted indicates to the memory

MOTOROLA Chapter 9. System Interface Operation 9-17

•

system the likelihood that the next access is on the same page, but it does not guarantee this
will occur because of transfer priorities and the bus traffic/code execution dynamics. TCI
is negated for all write operations on the bus.

Table 9-4 shows the encodings of the TCO and TCI signals.

Table 9-4. Transfer Code Signal Encodings

Signal State Definition

TCO Asserted Bus operation is an instruction fetch
Write: Operation is invalidating the cache line in the MPC601.
Kill (address only): Operation is invalidating the cache line in the MPC601.

Negated Bus operation is a data read
Write: Operation is not invalidating the cache line in the MPC601.
Kill (address only): Operation is not invalidating the cache line.

TC1 Asserted The next access is likely to be on same page. A sector has been loaded, and a
low-priority load of the adjacent sector is queued.

Negated The next access is not likely to be on the next page; an optional low-priority
load of an adjacent sector is not queued.

9.3.3 Address Transfer Termination
The MPC601 does not terminate the address transfer until the "i\AIT (address
acknowledge) input is asserted; therefore, the system can extend the address transfer phase
by delaying the assertion of"i\AIT to the MPC601. Although "i\AIT can be asserted as
early as the bus clock cycle following TS (see Figure 9-8), MPC601 address transfers
require a minimum of three bus clock cycles-enough time to negate and tristate the shared
ARTRY and SHU signals with no contention between devices. As shown in Figure 9-8,
these signals are asserted for one bus clock cycle, tristated for the next bus clock cycle,
driven high for the next 2X_PCLK cycle time, and finally tristated. Note that "i\AIT is
asserted for only one bus clock cycle.

N ate that precharging of the ARTRY and SHU signals during the negation period can be
disabled by enabling HID[29]. After ARTRY and "SH"[) are negated, they will be three­
stated for two bus cycles and the system is responsible for precharging both ARTRY and
SHlJ signals. This allows masters in a system that uses both 3.6-V and 5-V levels to use the
same system bus.

The address transfer can be terminated with the requirement to retry if ARTRY is asserted
during the bus clock cycle following "i\AIT. If ARTRY is asserted in this window, the
MPC601 negates BR in the following bus clock cycle; after that, it attempts to retry the
address transfer. By delaying the bus request by one bus clock cycle, the protocol provides
an opportunity for the snooping device that asserted the ARTRY to access the bus next, and
therefore retry determinacy is possible. In order for the retry determinacy to be guaranteed,
however, the external bus arbitration logic must ensure that the snooping device has access
to the bus next.

9-18 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The only valid window for the ARTRY input is the one bus clock cycle following the
assertion of AACK. Snooping devices must monitor the assertion of AACK to know when
to deassert/tristate ARTRY, as shown in Figure 9-8. The assertion of ARTRYjSH[5 can be
derived in one of the following ways:

• ARTRY,fSHI) can be asserted on the second clock after TS" is asserted

• ARTRY,fSHI) can be asserted before AACK is asserted, but is not qualified by the
master MPC601 until the clock after AACK is asserted

2 3 4 5 6 7

/ ~
~~,~ , , ,

a5b

addr ~ :: : >iii
, ,

Figure 9-8. Snooped Address Cycle with ARrRY

The MPC601 requires that the first (or only) TA not be asserted before AACK (note that
TA can be held off directly by the slave device delaying AACK assertion or indirectly by
an external arbiter delaying r:rnG a~sertion). This requirement guarantees the relationship
between TA and ARTRY,fSHI) such that, in the case of an address retry, the MPC601 can
purge the data/instructions from its data path queues and waive off the data/instructions
before they are forwarded to the cache/CPU.

When the data tenure begins before the address tenure is complete, if the MPC601 has
asserted UIffi', assertion of ARTRY causes the MPC601 to terminate the data bus
transaction and retry both the address and data tenures later. If the transfer is a single-beat
transfer and TA occurs as early as the AACK window, there is no indication of an early data
bus termination. However, if a burst transaction is in progress, the MPC601 negates UIffi'
early in response to ARTRY. The system logic does not need to assert TA for four bus clock
cycles in this case.

MOTOROLA Chapter 9. System Interface Operation 9-19

•

•

If DIm is not asserted until the ARTRY window and AkI'RY is asserted, the MPC601 does
not become data bus master. Note that some system designs, such as single-master systems,
do not require the use of ARTRY.

For information about ARTRY scenarios, see Section 9.3.3.1, "Address Retry Sources."
For information about MESI protocol and its effect on address tenure termination, refer to
Section 9.4.4, "Memory Coherency-MESI Protocol."

9.3.3.1 Address Retry Sources
The assertion of the SHD' and AR'l'RY input signals provide sufficient information for the
appropriate handling of cache sector coherency. They encode information about a
transaction, as shown in Table 9-5.

Table 9-5. Address Retry Causes

S'Rn ARTRY Definition

High impedance High impedance Exclusive. No snoop hit. Pipeline not busy.

Negated Asserted Pipeline busy. Queuing retry

Asserted Negated Snoop hit (shared)

Asserted Asserted Snoop hit (modified)

If the 'SlIT) and ARTRY inputs are not asserted for a cache-sector fill operation, the sector
is marked as exclusive (see Section 9.4.4, "Memory Coherency-MESI Protocol"). If the
'SlIT) input is asserted without AkI'RY, the sector is marked as shared.

NOTE: If the invalidate (TT2) input signal is asserted for the transaction, the sector is
marked exclusive regardless of the state of the SHD' signal. If AkI'RY is asserted without
'SHU, a device cannot service the address transaction currently (because of queuing
constraints) and the transaction is retried later. The MPC601 reacts to the assertion of
ARTRY the same way, regardless of the state of'SlIT). The timing of the 'SlIT) input is the
same as the timing for AR'I'RY.

One or more devices can indicate a queuing retry condition by asserting ARTRY while one
or more devices separately indicate the snoop-hit shared condition by asserting SHD'. This
condition appears as a snoop hit modified condition on the bus, since both SHU and
ARTRY are asserted. This is not a problem for the MPC601 since AkrRY is not qualified
by 'SlIT) (that is, SHU is a don't care ifARTRY is asserted to the MPC6(1).

9.4 Data Bus Tenure
This section describes the data bus arbitration, transfer, and termination phases defined by
the MPC601 memory access protocol. The phases of the data tenure are identical to those
of the address tenure, underscoring the symmetry in the control of the two buses.

9-20 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

9.4.1 Data Bus Arbitration
Data bus arbitration uses the data arbitration signal group, that is, "[ffi'G, DBWO, and DBB'.
Additionally, the combination ofTS or XATS' and TT3 (address-only signal) function as a
data bus request.

The TS signal is an implied data bus request from the MPC601; the arbiter must qualify TS
with the transfer type (TT) encodings to determine if the current address transfer is an
address-only operation, which does not require a data bus transfer (see Figure 9-7). If the
data bus is needed, the arbiter grants data bus mastership by asserting the"[ffi'G input to the
MPC601. As with the address-bus arbitration phase, the MPC601 must qualify the rrnG
input with a number of input signals before assuming bus mastership, as shown in
Figure 9-9.

o 2 3

Figure 9-9. Data Bus Arbitration

A qualified data bus grant can be expressed as the following:

QDBG = DBa asserted while rnm, DRTRY, and ARTRY are negated

When a data tenure overlaps with its associated address tenure, a qualified ARTRY
assertion coincident with a data bus grant does not result in data bus ma~tership (DBB' is
not asserted). Otherwise, the MPC601 always asserts 'DEB" on the bus clock cycle after
recognition of a qualified data bus grant. Since the MPC601 can pipeline transactions, there
may be an outstanding data bus transaction when a new address transaction is retried. In
this case, the MPC601 becomes the data bus master to complete the previous transaction.

MOTOROLA Chapter 9. System Interface Operation 9-21

•

•

9.4.1.1 Using the mnJ Signal
The DIm" signal should be connected between masters only if data tenure hand-off is left
to the masters. The memory system can control data hand-off directly with ImTI.

The MPC601 asserts T5BB" throughout the data transaction; however, the MPC601 does not
park the data bus and assert '[)B'H across multiple transactions. '[)B'H is negated on the bus
clock cycle after a final TA is received from the bus.

9.4.2 Data Transfer
The data transfer signals include DHO-DH31, DLO-DL31, DPO-DP7 and TIPE. For
memory accesses, the DH and DL signals form a 64-bit data path for read and write
operations.

The MPC601 transfers data in either single- or four-beat burst transfers. Single-beat
operations can transfer from one to eight bytes at a time and can be misaligned (see
Section 9.3.2.3, "Effect of Alignment in Data Transfers"). Burst operations always transfer
eight words and are aligned to four- or eight-word address boundaries. Burst transfers can
achieve significantly higher bus throughput than single-beat operations.

The type of transaction initiated by the MPC601 depends on whether the code or data is
cacheable and, for store operations, whether the cache is operated in write-back or write­
through mode which the MMU controls at either the page or block basis. Burst transfers
support cacheable operations only; that is, memory structures must be marked as cacheable
(and write-back for data store operations) in the respective TLB entry to take advantage of
burst transfers.

The MPC601 output TEST indicates to the system whether the current transaction is a
single- or four-beat transfer. A burst transfer has an assumed address order. For load or store
operations that miss in the cache (and are marked as cacheable and, for stores, write-back
in the MMU), the MPC601 presents the quad-word-aligned address associated with the
critical code or data that initiated the transaction. This minimizes latency by allowing the
critical code or data to be forwarded to the processor before the rest of the sector is filled.
For all other burst operations, however, the sector is transferred beginning with the oct­
word aligned data. Note that this difference can complicate cache-to-cache
implementations.

The MPC601 does not directly support interfacing to subsystems with less than a 64-bit
data path (except for I/O controller interface operations, which are discussed in Section 9.6,
"I/O Controller Interface Operation"). However, the MPC601 duplicates, or mirrors, the
transfer data on the unused word lane, for store operations to pages marked as non­
cacheable. This means, for example, that for a non-cacheable byte store operation, the valid
byte is present on two byte lanes-one in the upper word and one in the lower word. For a
word store operation, the word is mirrored across both word lanes. Unused byte lanes are
undefined.

9-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The data is not mirrored, however, for other store operations (including write-through). A
cache hit causes the double word of data containing the data being transferred to be output
on the data bus lanes.

CAUTION

While this information may be useful to some applications that
do not cache data structures, data mirroring may not be
supported on future versions of the MPC601 or other PowerPC
processors.

9.4.3 Data Transfer Termination
Four signals are used to terminate data bus transactions: TA, DRTRY (data retry), TEA
(transfer error acknowledge), and in some cases ARTRY. The TA signal indicates normal
termination of data transactions. DRTRY indicates invalid read data in the previous bus
clock cycle. TEA indicates a non-recoverable bus error event. ARTRY can also terminate
a data bus transaction, only if it occurs before the first assertion of TA.

9.4.3.1 Normal Single-Beat Termination
Normal termination of a single-beat data read operation occurs when TA is asserted by a
responding slave. The TEA and DRTRY signals must remain negated during the transfer
(see Figure 9-10).

o 2 3 4

: q
Mm:
data:

Figure 9-10. Normal Single-Beat Read Termination

Normal termination of a single-beat data write transaction occurs when TA is asserted by
a responding slave. TEA must remain negated during the transfer. The DRTRY signal is
not sampled during data writes, as shown in Figure 9-11. As shown in both Figure 9-10 and
Figure 9-11, the TTl signal driven low by the MPC601 indicates a write is in progress.

MOTOROLA Chapter 9. System Interface Operation 9-23

•

•

o 2 3

drtry :::.: .. :.:::.:.::::.::::.:: .. :.::.:.:: .. :.: :./ . .:' ... :: ... ::.:.:: ;.:::: ... : ... :.: .. ::.: .. ::.: .. ::.: .. ::.:.: ... : : ... :. \:::::::::: :::::::::::::.::::::.:.:.: :::::::::\\\\\\\}::::::::::::::;:::;::::::::::-:-:.:.: ... :.: ;:;:;:;:;::::;:::;:;:;::;:;:;:::::::.:.:.: :.: ,

Figure 9-11. Normal Single-Beat Write Termination

Normal termination of a burst transfer occurs when TA is asserted during four bus clock
cycles, as shown in Figure 9-12. The bus clock cycles need not be consecutive, thus
allowing pacing of the data transfer beats. For read bursts to terminate successfully, TEA
and DRTRY must remain negated during the transfer. For write bursts, TEA must remain
negated during the transfer. DRTRY is ignored during data writes .

2 3 4 5 6 7

rn

quallI'ifffi

mm

data

ta

drtry l
Figure 9-12. Normal Burst Transaction

For read bursts, DRTRY may be asserted one bus clock cycle after TA is asserted to signal
that the data presented with TA is invalid and that the processor must wait for the negation
of DRTRY before forwarding data to the processor (see Figure 9-13). Thus, a data beat can
be speculatively terminated with TA and then one bus clock cycle later confirmed with the
negation of DRTRY. The DRTRY signal is valid only for read transactions. TA must be

9-24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

asserted on the bus clock cycle before the first bus clock cycle of the assertion of DRTRY;
otherwise the results are undefined.

The DR'I'RY signal extends data bus mastership such that other processors cannot use the
data bus until DRTRY is negated. Therefore, in the example in Figure 9-13, 'I)'BB cannot
be asserted until bus clock cycle 5. This is true for both read and write operations even
though DRTRY does not hold the master on write operations.

2 3 4 5

rmu !----;-""'\.
r-'J)---i;:::~~h

data

Figure 9-13. Termination with DRTRY

Figure 9-14 shows the effect of using DRTRY during a burst read. It also shows the effect
of using TA to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 9-14,
11\ is negated for the second data beat. The MPC601 data pipeline does not proceed until
bus clock cycle 4 when the TA is reasserted.

Note that DRTRY is useful for systems that implement speculative forwarding of data such
as those with direct-mapped, second-level caches where hit/miss is determined on the
following bus clock cycle, or for parity- or ECC-checked memory systems.

Note that DRTRY may not be implemented on other PowerPC processors.

9.4.3.2 Data Transfer Termination Due to a Bus Error
The TEA signal indicates that a bus error occurred. It may be asserted while 1JBlj (and/or
DR'l'RY for read operations) is asserted. Asserting TEA to the MPC601 terminates the
transaction; that is, further assertions of TA and DRTRY are ignored and 1JBlj is negated.

MOTOROLA Chapter 9. System Interface Operation 9-25

..

•

2 3 4 5 6 7 8 9

Figure 9-14. Read Burst with TA Wait States and DRIRY

Assertion of the TEA signal causes a machine-check exception (and possibly a check-stop
condition within the MPC6(1). For more information, see Section 5.4.2, "Machine Check
Exception (x '00200')." However assertion of TEA does not invalidate data entering the
aPR or the cache; therefore, the MPC601 may act on invalid code/data (although the
exception will eventually be recognized, if enabled). Additionally, the corresponding
address of the access that caused TEA to be asserted is not latched by the MPC601. To
recover from this condition, the MPC601 must be reset; therefore, this function should only
be used to flag fatal system conditions to the processor (such as parity or uncorrectable ECC
errors). .

After the MPC601 has committed to run a transaction, that transaction must eventually
complete. The separate address and data bus grants and address retry cause the transaction
to be restarted; TA wait states and DRTRY assertion for reads delay termination of
individual data beats. Eventually, however, the system must either terminate the transaction
or assert the TEA signal to put the MPC601 into checkstop mode. For this reason, care must
be taken to check for the end of physical memory and the location of certain system
facilities.

Note that TEA generates a machine-check exception depending on the ME bit in the MSR.
Setting the checkstop enable control bits properly leads to a true checkstop condition.

Note also that the MPC601 does not implement a synchronous error capability for memory
accesses (see Section 9.6, "I/O Controller Interface Operation"). This means that the
exception instruction pointer does not point to the memory operation that caused the
assertion of TEA, but to the instruction about to be executed (perhaps several instructions
later).

9-26 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

9.4.4 Memory Coherency-MESI Protocol
The MPC601 provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability enforces the four-state, MESI cache-coherency
protocol (see Figure 9-15). In addition to the hardware required to monitor bus traffic for
coherency, the MPC601 has a cache port dedicated to snooping so that comparing cache
entries to address traffic on the bus does not tie up the MPC60 l's on-chip cache.

The global (GBL) signal output, indicates whether the current transaction must be snooped
by other snooping devices on the bus. Address bus masters assert GEL to indicate that the
current transaction is a global access (that is, an access to memory shared by more than one
processor/cache). If GEL is not asserted for the transaction, that transaction is not snooped.
When other devices detect the GEL input asserted, they must respond by snooping the
broadcast address.

Normally, Gm: reflects the M-bit value specified for the memory reference in the
corresponding translation descriptor(s). Note that care must be taken to minimize the
number of pages marked as global, because the retry protocol discussed in the previous
section is used to enforce coherency and can require significant bus bandwidth.

When the MPC601 is not the address bus master, GEL is an input. The MPC601 snoops a
transaction if TS' and GEL are asserted together in the same bus clock cycle (this is a
qualified snooping condition). No snoop update to the MPC60 I cache occurs if the snooped
transaction is not marked global. This includes invalidation cycles.

When the MPC601 detects a qualified snoop condition, the address associated with the TS'
is compared against the unified cache tags through a dedicated cache-tag port. Snooping
completes if no hit is detected. If, however, the address hits in the cache, the MPC601 reacts
according to the MESI protocol shown in Figure 9-15, assuming the WIM bits are set to
write-back mode, caching allowed, and coherency enforced (WIM = 001).

Note that, in Figure 9-15, write hits to clean lines of non-global pages do not generate
invalidate broadcasts. There are several types of bus transactions that involve the
movement of data that can no longer access the TLB M-bit (for example, replacement
sector copy-back, snoop push, and table-search operations). In these cases, the hardware
cannot determine whether the sector was originally marked global; therefore, the MPC601
marks these transactions as non-global to avoid retry deadlocks.

The MPC601's on-chip cache is implemented as an eight-way set-associative cache. To
facilitate external monitoring of the internal cache tags, the cache set element (CSEO­
CSE2) signals indicate which sector of the cache set is being replaced on read operations
(including RWITM). Note that these signals are valid only for MPC601 burst operations;
for all other bus operations, the CSE signals should be ignored. Table 9-6 shows the CSE
encodings.

MOTOROLA Chapter 9. System Interface Operation 9-27

9-28

BUS TRANSACTIONS

RH = Read Hit CD = Snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ® = Invalidate Transaction

WH = Write Hit
WM = Write Miss EB = Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or CD = Cache Sector Fill

Read-with-Intent-to-Modify

Figure 9-15.MESI Cache Coherency Protocol-State Diagram (WIM = 001)

Table 9-6. CSE{0-2) Signals

CSEO-CSE2 Cache Set Element

000 Set 0

001 Set 1

010 Set 2

011 Set3

100 Set 4

101 Set 5

110 Set 6

111 Set 7

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

9.5 Timing Examples
This sel:tion shows timing diagrams for various scenarios. For information about
conventions used in these diagrams, refer to Figure 9-2.

Figure 9-16 illustrates the fastest single-beat reads. Note that all bidirectional signals go to
high-impedance between bus tenures.

1 1 213141516 7 1 8 1 9 1 10 1 11 12

tffi n-u \\...--:-------:,.......,1 \............,.._--:--,1 \'---:-_--:--_-:-----!

'1m n!JBfP\ IfE$?\ I h ,; 7

~ \'-_: ____ ~~~: __ ~r-t\'-___ ~I

1"8 LL! ' U-J ' LL!
AO-A31 ~~-rCI C"PCpuJiiA~~ ! CPU A >--+-< I CPUA

TTO-TT3 :..----.!.-r--'-1R~eai:dd -'-1>--t-< Read >--t-<'-'---FRiOOeadd ~~----.:..--.!

TBST

GBI :::>:1 1<· ••••••••••••• < ••• : ••• : ••• : ••• : ••••••• {< •• :

AACR ;<>;.<; :\ ["i/' .:.>;. /, t; .. :·... ... i· .A P. ;:..><:j .<>]

AFiTFfV 1':",.::,:,:,:,:,:" :':::':'::':':":":':'::':':':':'::':""{'.{'}4 I \{ •• ,}:,:}}.",.,.,:,:" ••• : •• v I V<:""': • :.:.: •••••• :: ••• ::: .. Y I , •••••••• : ••••••••••••• : •••• : ••]

TIBG [>::.:> ••••• :.: •• ::::.: ••••• \ k {({{{ ••• ::::.::: ••••• :.:.::::.:\ I .:.:::::> {:>, •• }».{\ k,.{:,:",:,:,:, :.:::.:.:.:.:::.:.:::::.:.:.: •. :.:.:<:::::::.:.: •• ::.,::::{"::.:'!

rnm 1 LL! LL! LL! I

00-063 : Q0 ~ Q0

TA i· ••• <:] .. :.::.< •• :" l<]:.:.":.:\ ! ••• :::) •• <{} •• > \ I:,):', :,:,':j"{i

ITF1TR'? [< •••• "':: •••• :.: ••• :... :':'::'::":':':':':::::':':':::::::"""":.:.{j \)'.'''''''':'' "":"":'::'.'}:::{{! \i.'}"".'.'.' ':':"""'.{'}>4 ":".'. ':"".':{'.:.:.'."':':"j

TEA i>.':)<::"::; :":':"'["'::"'1

1 1 6 1 7 1 8 1 9 1 10 1 11 12

Figure 9-16. Fastest Single-Beat Reads

MOTOROLA Chapter 9. System Interface Operation 9-29

•

Figure 9-17 illustrates the fastest single-beat writes. Note that all bidirectional signals go to
high-impedance between bus tenures. TTO-TT3 are binary encoded b'xOOl '. TTO can be
either 0 or 1, TTl and TT2 are 0, and TT3 is 1.

1 1 213141516 7 1 8 1 9 1 10 11 12

m11Li-J '\\..----;-_~I \\..----;-_~I \\..---;--_--:--_-:------;

SG n fJffiJjl!\ Ifill$%\ i k >\ >1

A8B \: !h: th'--_"__----'--'/

LL! :LL! 'LL!
AO-A31 ~---1--{~i C~PU~A~>---+--< i CPU A >-----+--< i CPU A

TTO-TT3 !...-----!.-rlS~BWW1>-T-< SBW >---t-< SBW

TSST

cmI ::::::::::::::::,:/:::1

AACK l/ i());::: }}):) }\

AFIT'F1? l:\ >{»:{»»::),{:/\\/?\J

::::::/:.::j 1:/)::::··:::·:····::···:·:·:···· .. ······•·······

USG F::: ::::\i::::::i::::::\ h::: ::::::::::::\::::::/»tA kt: »»>t\::::t:\ f ::i:}::«::}}}»i}:::»:::::::::;

rnm 1 LLJ LLJ LLJ i

DO-D63~: --~--~~~~-~~~~~-~~~~~~~~'

17\ 1:;::::::::::<::::>::·::·:··············:::\ /;:::::::::::::::::::;::::\ /(\:}::::::::::::::::::\ l ::};:::::}::::;:::):: :}::]

UFiTR'Y !:nn:;:::}{:::::::::::::::::::::·:::·:::: :.:.:.: .•. : .•.... : ... :.:.:.: .•.•. :.: .•.•. : ::::: .. ::.:.:.:::.: •• :: ••• : ... ::::::::::::::::::.:.:.:::.:::: •• ::::.:::::::::::::::::::::::.::::.:::::::::::::::.:.:::::::::::::::::::::::::::::::::::::::}}::::::::::::::::::::::}}}::::::::«::::::::::::}::::::j

TEAl~i ~=~

1 1 2 1 3 1 4 51 6 7 1 8 1 9 1 10 11 12

Figure 9-17. Fastest Single-Beat Writes

Figure 9-18 shows three ways to delay single-beat reads showing data-delay controls:

• The TA hold-off can be used to insert wait states in clock cycles 3 and 4.

• For the second access, U'.BG could have been asserted in clock cycle fi.

• In the third access, DRTRY is asserted in clock cycle 11 to ft ush the previous data.

9-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Note that all bidirectional signals go to high-impedance between bus tenures. Note also that
two loads cannot be pipelined. The pipelining shown in Figure 9-17 can occur if the second
access is not another load, (for example, an instruction fetch).

I 1 2 I 3 I 4 I 5 6 I 7 8 I 9 I 10 11 I 12 I 13 I 14 I

SRi W W W
~n~~~~}:+{{~}-T __ ~~~<>F{r~>-r~i~/=::~\~4

Arm \~ : _----.JIh~_: _----.-Jih I

1"8 LU :LU :LU
AO-A31 :-~-rCi CPLPUJAA-'-1>---+-< ! CPU A >---+--< ' CPU A

TTO-TT3 !.----..!..-rFR~ea~d ~>---t--< Read >---t--< Read

TBST

GBt :}:::{::!

AACR 1:<:::1>:<:[: >i\ b :};:}:/: :>j:: :\ I <:::)::: «:::; :A I::»:}\::::]«}::l

AR'T'RY [::::::: ::::}:::::>:<:}:<>i:«:«::! i V<::::::::::::::::::}4 \<::::::::<:: ::::}}i(::/ i \':;:: }}::»::::i

TIBG (: :)}}}::::::}\ I }::}:}}}>}:::«<i:::):<::::::/ \ _ i h::;::: <:::::}:}}::::«:::}<::}}«<:>::::<:<::::i

mrl \ / ~
I I I
I I I
I I I

00-063: ~'fFYII;;--n """\-~--i------':

TA i:::> ::::}:)::>::::: :}/:l:: 4 \ /:<} :::::::;:::::::::::::«:/\ tmTtT\ /}} ::::::::}}}::)::::::< ::«::> :«{::::::l

TI1iTRY :}::{}::: ::/:}}::}::::<7 v<:: (::«':;:}}(V : Vi::: :::\:\ / \::::\:\:':;:':;:?<:

'2hl027
I 1 7 I 8 I 9 I 10 11 12 13 14

Figure 9-18. Single-Beat Reads Showing Data-Delay Controls

MOTOROLA Chapter 9. System Interface Operation 9-31

..

Figure 9-19 shows data-delay controls in a single-beat write. Note that all bidirectional
signals are set to high impedance between bus tenures. Data transfers are delayed in the two
following ways:

• The TA holdoff is used to insert wait states in clocks 3 and 4.

• In clock 6, UBG is held negated, delaying the start of the data tenure.

The last access is not delayed (DRTRY is valid only for read operations).

9-32

I 1 I 2 3 I 4 I 5 6 I 7 I 8 I 9 I 10 11 12

1m h-U 'L-__ --'I ''--__ --JI ,'--_____ ____

SG~~_=RillITM=::=:~(=(~--~.~RillITM=((=(i:=){~.· ~--~/=t:=:{~r/J

,~~:~_+~r_f\~~:--_+~r_f\~~--~/

LU i 0-J i 0-J . . .
AO-A31 ~--+-rc: CPLPUiAA-:'>-H : CPU A: >-H : CPU A : . . .

TTO-TT3 '---"---C~-:--S_SW----:'-J>-t-< : SSW: >--+---< . ssw

msT

mIT :::: ??:::::::::::::}:rl

AACR' 1 ::\\i?::}::::)))::\i?\

AJiTI1Y ht ::::\t{):t:::::::::(:j:::tt{:::} tl

{::::::::: ::}}::;:::}}}}:{::::\::::

\' :::::::::) ::):::::\:<4 v::::: }:::t::]

'~~fi5W®~)/=//.=:){~:: __ .~l=::::=;::=>}:={::=»=:>}=;::t=tt::
· . . · . .

TImj : 'L--i-----T----T-'/ U-JT\-L/ · . . · . .
00-063: ~ -~-~..r-'--OO~ut-....!.-"\-~-+-~--i---;

· . . · . . TA \::::{) :: .. ::.:: .. ::: :::::::::\:.::\4 \ I .: ,:. ::: ~ \ :~ : p ::: :: .. i {..... .. i J ::;::.::::;:.:::.:. ::.:::.:.: •• :::./:: '\ : ~ : /': ':':'r::::':':'
i • • · . . t::TI1TliY It)(t> '.).. ·.·.· s.!).}..................))

I 1 6 I 7 I 8 I 9 I 10 11 12

Figure 9-19. Single-Beat Writes Showing Data Delay Controls

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Figure 9-20 shows three single-beat transfers back-to-back. Note that all bidirectional
signals are set at high-impedance state between tenures.

I 1 2 I 3 I 4 I 5 6 I 7 I 8 I 9 I 10 11 12

CPU A Nt f\...J-J \'--~--r---"-I -\>----;I--J!

CPU A "ffij n /}]:}}) :4 'ttl t:::::t:::]: ::\

\ 1 1

CPU B Nt 1\'--'-_--'-, _-'-" _~! 1 V}t)::::::::::::}::}} :::::::::::::::::::;:::::::::::;:::::::::;::::::::::::::::::::::::::::::::}}::}}::::::}}::}}>:::::::::::::\\:]

CPU B "ffij \1tE@1 \ I ttt:::? \ ::::::([:(:::{ }}{{4

\~~:--~11\~ ____ ~11\ !
, ,

, W-IJ------:---,'----l.J

AO-A31 ~--+-{~C~PU~A::~>-+-< CPU s >--+-<[:' ~CP~U~A:J~:--+-~
TTO-TT3 !-----!.-r~R~ea~d -'----1r----+-< ssw r--T-<rPRi;eadd "'J~~-i.----.;

'TSST

cmI ::::::>{:/::::):I

AACK !::}::j :::}} 1::: \ It)::}:::{j:::: \ It {:[::}: :(}::) {\ ! \\:;:::({:"l (}}}::j

ARTFrY' k::}:::;\::::;:::::::::\:::::}:}::::{1 1 v:) [ttt{t{::{1 : Vi' :):/t::::)):/((4 1 Vi}}' .tttt::/:]

CPU A t5EG' ji (::}/:i\ It:}:{::::::::::: :::::::::}:::::::::::::::::::::::::{t:{(:)}\ I((:i):::):::::::::: ::::::::{:t:}:::t\::::}t~

CPU B t5EG' it{:{:::::::::: :::::::}::}::}}::::::::::}:::{:::}}}{:::)::::;:::::{}\ Pt:::}}}:::::::::::::::::::::::::: ::::::::::::::::::::::::::}}}::::::::::::::::::::::::::}}:::::«::::}}}:::{:::::{:://:::>i

TIBB': LW LW LW
00-063; m ~ m 1

11\ 1<>:::: <>::\?\}}}}\ 1 P::i tt::tt:::::{\A 1 [(::?(}(:(::::})\ ltr }}:):}\:::(:/t:::::t:::]

TI'FITRV' [»(}}::):;:: :::{{::::)::: I \: ::::(::>\:::::::<:;: }:::::::::::\/::::t::::::\::[t/\:/t<::tl \ :::::::[<tt:<t:::

I 1 6 I 7 I 8 I 9 I 10 11 12

Figure 9·20. Back-to-Back Single-Beat Transfers

MOTOROLA Chapter 9. System Interface Operation 9-33

..

Figure 9-21 shows the use of data-delay controls with burst transfers. Note that all
bidirectional signals are set to high impedance between bus tenures. Note the following:

• The first data beat of bursted read data (clock 0) is the critical quad word.

• The write burst shows the use of TA holdoff on the third data beat.

• The final read burst shows the use of DRTRY on the third data beat.

• The address for the third transfer is held off until the first transfer completes.

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 110 111 112 113 114 15 16 17 18 19 20

I I I I I I I

m1 0Jl 1 c::J 1 \,--:~----.-J) : \\--,~~~
" , 'BGt\.. 1\\4

, , , , , , , ,
, '------'-,~

, , , , , , ,

AO-A31 ~-+-{~-+-~-+~
I • I I I I I I
I I I I I I I I
I I I • I I I I

TTO-TT3
, ,

)---.---o--{ >--...--~~

TeST

Gm: \::::::::\(:1
I • • I
I • I I
I I I I

Ai'\CK ~;:\\ =::::;= >~::t;t\ 1 ~
I I I •
I I I • I

'AFfmYj :<r{::(::/:/}ttiW :~
I I • I I I • I I
, I • • I • I I I

IT8G' :\::::::::::::::::::\:::A : r\: :::::>{::(::::t:::;:A : f ::::::::::::::::::: :::::::::::::::::::::::::::::::::::/::::»>::;:A : t""'"'(\,:,.".:::::=>{±:::::::::=:::::::::+:;.;.;.·=······d-· ~

TISS 1 ! , ____ : __ ~--' '--~~~~---:..J: r::
DO-D63 : : In 0 ~''-----'-J='''L'-'-=L....ln~3 : '

~~1:\~:\;=::\::~:;A~1-+~~~,~110~,~~~,~~~~~~({\~\(:

TI'RTR'Y'): /») ::{::::)::t>(::[:V >!::::::::::)t::::\[t »):t\ :>;4 \JJ ~

TEA pfi'=iiiF:: =P ~

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 110 111 112 113 114 115 116 117 118 119 120 1

Figure 9-21. Burst Transfers with Data Delay Controls

9-34 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Figure 9-22 shows the use of the TEA signal. Note that all bidirectional signals are set to
high impedance between bus tenures. Note the following:

• The first data beat of the read burst (in clock 0) is the critical quad-word.

• The TEA signal truncates the burst write transfer on the third data beat.

• The MPC601 eventually interrupts on the TEA event.

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 110 111 112 113 1141151161171

'AEm:

TS:

AO-A31 :

TTO-TT3 :

TSST:

GBI \/«1 '
, , , , , , , , ,

AACK ; {/';< \it \ i _ : k> ::>iIi:\ iA : b:Y::{:I\iI ::::
, , ,
I I I • I I I I

A'IiT'RY [:::>: :i ::<}d : ~ : \)[:>::[<::[4 : ~
• • I I I • • •
I I I • I I • I

t5SIT _ : I::::;" {::::{::::::;", : b<::::: ::::::::::::::::::::::::::::::A : k>:i::::::::~:>:}:»:<:::::

USB' :

00-063...-: ~~-{

TA 1 >;::{:):: :/' I

URTJ1'? [it it:::: ::r[i): <:4

~F~~~

I I 1., l P:::it::q

::[:):::::[<\ ::::[{::\\:(/){tV :'JQ
; ll.L±illJ : 'G1lliilllli

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 110 111 112 113 1141151161171
Figure 9-22. Use of Transfer Error Acknowledge (TEA)

9.6 I/O Controller Interface Operation
The MPC601 defines separate memory and I/O address spaces, or segments, distinguished
by the segment register T-bit in the address translation logic of the MPC601. If the T-bit is

MOTOROLA Chapter 9. System Interface Operation 9-35

..

cleared, the memory reference is a normal memory access and can use the virtual memory
management hardware of the MPC601. If the T-bit is set, the memory reference is an I/O
controller interface access.

There are several architectural ramifications of I/O controller interface accesses, such as the
following:

I/O controller interface accesses must be strongly ordered; for example, these
accesses must run on the bus strictly in order with respect to the instruction stream.

I/O controller interface accesses must provide synchronous error reporting.
Chapter 4, "Cache and Memory Unit Operation," describes architectural aspects of
I/O controller interface segments, as well as an overview of the PowerPC's
segmented address space management.

The MPC601 defines two types of I/O controller interface segments (segment register T-bit
set) based on the value of the bus unit 10 (BUID). See Section 9.6.2, "I/O Controller
Interface Transaction Protocol Details," for more information about the B UID.

I/O controller interface (BUID -::f:. x'07F')-1/0 controller interface accesses include
all transactions between the MPC601 and subsystems (referred to as bus unit
controllers (BUCs) mapped through I/O controller interface address space).

Memory-forced I/O controller interface (BUID = x'07F')-Memory-forced I/O
controller interface operations access memory space. They do not use the extensions
to the memory protocol described for I/O controller interface accesses, and they
bypass the page- and block-translation and protection mechanisms. The physical
address is found by concatenating bits 28-31 of the respective segment register with
bits 4-31 of the effective address. This address is marked as non-cacheable, write­
through, and global.

Because memory-forced I/O controller interface accesses address memory space,
they are subject to the same coherency control as other memory reference
operations. More generally, accesses to memory-forced I/O controller interface
segments are considered to be cache-inhibited, write-through and memory-coherent
operations with respect to the MPC601 cache and bus interface.

The MPC601 has a single bus interface to support accesses to both memory accesses and
I/O controller interface segment accesses.

9-36 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The system recognizes the assertion of the TS' signal as the start of a memory access. The
assertion ofXATS' indicates an I/O controller interface access. This allows memory devices
to ignore I/O controller interface transactions. If XATS' is asserted, the access is to I/O
space and the following extensions to the memory access protocol apply:

A new set of bus operations are defined. The transfer type, transfer burst, and
transfer size signals are redefined for I/O controller interface operations; they
convey the opcode for the I/O transaction (see Table 9-7).

There are two beats of address for each I/O controller interface transfer. The first
beat (packet 0) provides basic address information such as the segment register and
the sender tag; the second beat (packet 1) provides additional addressing bits and
several control bits from the segment register.

Explicit sender/receiver tags are provided.

• The sender that initiated the transaction must wait for a reply from the receiver bus­
unit controller (BUC) before starting a new operation.

The MPC601 does not burst I/O controller interface transactions, but streaming is
permitted. Streaming (in this context) allows multiple single-beat transactions to
occur before a reply from the I/O receiver is required.

I/O controller interface transactions use separate arbitration for the split address and data
buses and define address-only and single-beat transactions. The address-retry vehicle is
identical, although there is no hardware coherency support for I/O controller interface
transactions. ARTRY is useful, however, for pacing MPC601 transactions, effectively
indicating to the MPC60l that the BUC is in a queue-full condition and cannot accept new
data.

In addition to the extensions noted above, there are fundamental differences between
memory and I/O controller interface operations. For example, use of DRTRY is undefined
for MPC601 I/O controller interface operations. Additionally, only half of the 64-bit data
path is available for MPC601 I/O controller interface transactions. This lowers the pin­
count for I/O interfaces but generally results in substantially less bandwidth than memory
accesses. Additionally, load/store instructions that address I/O controller interface
segments cannot complete successfully without an error-free reply from the addressed
BUC. Because normal I/O controller interface accesses involve multiple I/O transactions
(streaming), they are likely to be very long latency instructions; therefore, I/O controller
interface operations usually stall MPC601 instruction issue.

Figure 9-23 shows an I/O controller interface tenure. Note that the I/O response is an
address-only bus transaction.

The decision on whether to map I/O peripherals into memory or I/O controller interface
space depends on many factors; however, it should be noted that in the best case, the use of
the MPC601 I/O controller interface protocol degrades performance and requires the
addressed controllers to implement MPC601 bus master capability to generate the reply
transactions.

MOTOROLA Chapter 9. System Interface Operation 9-37

..

..

ADDRESS TENURE I/O RESPONSE
~ ____________ A~_____________ ~ ____________ ~A~ ____________ _

rr ________ ~--------~--------~~ rr ________ ~--------~--------~
ARBITRATION TERMINATION ••• ARBITRATION

INDEPENDENT ADDRESS AND DATA

~ENURE
NO DATA TENURE FOR I/O RESPONSE

ARBITRATION TRANSFER TERMINATION ••• (I/O responses are address-only)

Figure 9-23. 1/0 Controller Interface Tenures

9.6.1 I/O Controller Interface Transactions
Seven I/O controller interface transaction operations are defined by the MPC601, as shown
in Table 9-7. These operations permit communication between the MPC601 and BUCs. A
single MPC601 store or load instruction (that translates to an I/O controller interface
access) generates one or more I/O controller interface operations (two or more I/O
controller interface operations for loads) from the MPC601 and one reply operation from
the addressed B U C.

Table 9-7. 1/0 Controller Interface Bus Operations

Operation Address Only Direction

Load start (request) Yes MPC601 => 10

Load immediate No MPC601 => 10

Load last No MPC601 => 10

Store immediate No MPC601 => 10

Store last No MPC601 => 10

Load reply Yes 10 => MPC601

Store reply Yes 10 => MPC601

9-38 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

For the first beat of the address bus, the extended address transfer code (XATC), contains
the I/O opcode as shown in Table 9-8; the opcode is formed by concatenating the transfer
type, transfer burst, and transfer size signals defined as follows:

XATC = TT(O-3)11TB"STIITSIZ(O-2)

Table 9·8. 1/0 Controller Interface Bus Operations (XATC Encodings)

Operation XATC

Load request 01000000

Load immediate 0101 0000

Load last 0111 0000

Store immediate 0001 0000

Store last 0011 0000

Load reply 11000000

Store reply 10000000

9.6.1.1 Store Operations
There are three operations defined for I/O controller interface store operations from the
MPC601 to the BUC, defined as follows:

1. Store immediate operations transfer up to 32 bits of data

2. Store last operations transfer up to 32 bits of data each from the MPC601 to the BUC

3. Store reply from the BUC reveals the success/failure of that I/O controller interface
access to the MPC601.

An I/O controller interface store access consists of one or more data transfer operations
followed by the I/O store reply operation from the BUe. If the data can be transferred in
one 32-bit data transaction, it is marked as a store last operation followed by the store reply
operation; no store immediate operation is involved in the transfer, as shown in the
following sequence:

STORE LAST (from MPC6(1)

STORE REPLY (from BUC)

MOTOROLA Chapter 9. System Interface Operation 9-39

•

However, if more data is involved in the I/O controller interface access, there will be one
or more store immediate operations. The BUC can detect when the last data is being
transferred by looking for the store last opcode, as shown in the following sequence:

STORE IMMEDIATE(s)

STORE LAST

STORE REPLY

9.6.1.2 Load Operations
I/O controller interface load accesses are similar to store operations, except that the
MPC601 latches data from the addressed BUC rather than supplying the data to the BUC.
As with memory accesses, the MPC601 is the master on both load and store operations; the
external system must provide the data bus grant to the MPC601 when the BUC is ready to
supply the data to the MPC601.

The load request I/O controller interface operation has no analogous store operation; it
informs the addressed BUC of the total number of bytes of data that the BUC must provide
to the MPC601 on the subsequent load immediatelload last operations. For I/O controller
interface load accesses, the simplest, 32-bit (or fewer) data transfer sequence is as follows:

LOAD REQUEST

LOAD LAST

LOAD REPLY(from BUC)

9·40 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

However, if more data is involved in the I/O controller interface access, there will be one
or more load immediate operations. The BUC can detect when the last data is being
transferred by looking for the load last opcode, as seen in the following sequence:

LOAD REQUEST

LOAD IMM(s)

LOAD LAST

LOAD REPLY

Note that three of the seven defined operations are address-only transactions and do not use
the data bus. However, unlike the memory transfer protocol, these transactions are not
broadcast from one master to all snooping devices; The I/O controller interface address­
only transaction protocol strictly controls communication between the MPC601 and the
BUC.

9.6.2 I/O Controller Interface Transaction Protocol Details
As mentioned previously, there are two address-bus beats corresponding to two packets of
information about the address. The two packets contain the sender and receiver tags, the
address and extended address bits, and extra control and status bits. The two beats of the
address bus (plus attributes) are shown at the top of Figure 9-24 as two packets. The first
packet, packet 0, is then expanded to depict the XATC and address bus information in
detail.

9.6.2.1 Packet 0
Figure 9-24 shows the organization of the first packet in an I/O controller interface
transaction.

The XATC contains the I/O opcode, as discussed earlier and as shown in Table 9-8. The
address bus contains the following:

Key bit II segment register II sender tag

MOTOROLA Chapter 9. System Interface Operation 9-41

A (0-31) + Attributes -{PKT ¢\ew.m[)~p

__ ------------------~A~----------------__ r Address Bus (AO-A31) "\

~--------------------~A~------------------~ r "\
o 7 o 123 1112 2728 31

I XATC I + I I I I I I
I/O Opcade

~1 t\... BUID ,.------/~
I segmenY Register

Key bit

Reserved

Figure 9-24. 1/0 Controller Interface Operation-Packet 0

The XATC contains the I/O opcode, as discussed earlier and as shown in Table 9-8. The
address bus contains the following:

Key bit /I segment register II sender tag

This information is organized as follows:

• Bits 0 and 1 of the address bus are reserved-the MPC601 always drives these bits
to zero.

• Key bit-Bit 2 is the key bit from the segment register (either SR[Ku] or SR[Ks]).
Ku indicates user-level access and Ks indicate supervisor-level access. The MPC601
11luItiplexes the correct key bit into this position according to the current operating
context (user or supervisor).

• Segment register-Address bits 3-27 correspond to bits 3-27 of the segment
register. Note that address bits 3-11 form the nine-bit receiver tag. Software must
initialize these bits in the segment register to the ID of the BUC to be addressed; they
are referred to as the BUID (bus unit ID) bits.

• PID (sender tag)-Address bits 28-31 form the four-bit sender tag. These bits come
from bits 28-31 of the MPC601 PID (processor ID) register. A four-bit tag allows a
maximum of 16 processor IDs to be defined for a given system. If more bits are
needed for a very large multiprocessor system, for example, it is envisioned that the
second-level cache (or equivalent logic) can append a larger processor tag as
needed. The BUC addressed by the receiver tag should latch the sender address
required by the subsequent I/O reply operation.

9.6.2.2 Packet 1
The second address beat, packet 1, transfers byte counts and the physical address for the
transaction, as shown in Figure 9-25.

9-42 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

ADDR + -<PKT ~ill@)
~ ____________________________ ~A~ __________________________ ~

(\
a 7 O~ ___ 3~1

I XATC , + 1L...-__________________ B_us_A_d_d_re_s_s __________________ --I,
Byte Count Address Bus (AO-A31)

Figure 9·25. 1/0 Controller Interface Operation-Packet 1

For packet 1, the XATC is defined as follows:

• Load request operations-XATC contains the total number of bytes to be transferred
(l2R bytes maximum for MPC6(1)

Immediate/last (load or store) operations-XATC contains the current transfer byte
count (one to four bytes.)

Address bits 0--31 contain the physical address of the transaction. The physical address is
generated by concatenating segment register bits 28--31 with bits 4-31 of the effective
address, as follows:

Segment register (bits 2R-31) \I effective address (bits 4-31)

While the MPC601 provides the address of the transaction to the BUC, the BUC must
maintain a valid address pointer for the reply.

9.6.3 I/O Reply Operations
BUCs must respond to MPC601 I/O controller interface transactions with an I/O reply
operation. The purpose of this reply operation is to inform the MPC601 of the success or
failure of the attempted I/O controller interface access. This requires the system I/O
controller interface to have MPC601 bus mastership capability-a substantially more
complex design task than bus slave implementations that use memory-mapped I/O access.

Reply operations from the BUC to the MPC601 are address-only transactions. As with
packet 0 of the address bus on MPC601 I/O controller interface operations, the XATC
contains the opcode for the operation (see Table 9-8). Additionally, the I/O reply operation
transfers the sender/receiver tags in the first beat.

MOTOROLA Chapter 9. System Interface Operation 9-43

..

•

Address Bus (AO-A31)

__ --------------------------------~A~----------------------------~ (\
o 7 0 1 2 3 1112 27 28 31
I XATC I + I I I I@:~))::)~()~~)~(~~:)::::::::m:»m::::):}tH I

I/OOpcode ~' /~

1
BUIO Bue ~ecific PIO

,~----------------~r_---------------J V
Error
Bit

Reserved

Segment Register

Figure 9-26. 1/0 Reply Operation

The address bits are described in Table 9-9.

Table 9-9. Address Bits for 1/0 Reply Operations

Address Bits Description

0-1 Reserved. These bits should be set to zero for compatibility with future PowerPC microprocessors.

2 Error bit. It is set if the BUC records an error in the access.

3-11 BUIO. Sender tag of a reply operation. Corresponds with bits 3-11 of one of the MPC601 segment
registers.

12-27 Address bits 12-27 are BUC.specific and are ignored by the MPC601.

28-31 PIO (receiver tag). The MPC601 effectively snoops operations on the bus and, on reply operations,
compares this field to bits 28-31 of the PIO register to determine if it should recognize this 110 reply.

The second beat of the address bus is reserved; the XATC and address buses should be
driven to zero to preserve compatibility with future protocol enhancements.

The following sequence occurs when the MPC601 detects an error bit set on an I/O reply
operation:

1. The MPC601 completes the instruction that initiated the access.

2. If the instruction is a load, the data is forwarded onto the register file(s)/sequencer.

3. An I/O controller interface error exception is generated, which transfers MPC601
control to the I/O controller interface error exception handler to recover from the
error. Refer to Section 5.4.10, "I/O Controller Interface Error Exception
(x 'OOAOO')," for more information.

If the error bit is not set, the MPC601 instruction that initiated the access completes and
instruction execution resumes.

9·44 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

System designers should note the following:

• "Misplaced" reply operations (that match the processor tag and arrive unexpectedly)
cause a checkstop condition. Refer to Chapter 5, "Exceptions," for more
information.

External logic must assert AACK for the MPC601, even though it is the receiver of
the reply operation. AACK is an input-only to the MPC601.

• The MPC601 monitors address parity when enabled by software and XATS' and
reply operations (load or store).

9.6.4 110 Controller Interface Operation Timing
The following timing diagrams show the sequence of events in a typical MPC601 I/O
controller interface load access (Figure 9-27) and a typical MPC601 I/O controller
interface store access (Figure 9-2R). All arbitration signals except for 'AB13 and UIm' have
been omitted for clarity. Note that for either case, the number of immediate operations
depends on the amount and the alignment of data to be transferred. If no more than four
bytes are being transferred, and the data is double-word aligned (that is, does not straddle
an eight-byte address boundary), there will be no immediate operation as shown in the
figures.

The MPC601 can transfer as many as 12R bytes of data in one load or store instruction
(requiring more than 33 immediate operations in the case of misaligned operands).

In Figure 9-27, XATS' is asserted with the same timing relationship as TS' in a memory
access. Notice, however, that the address bus (and XATC) transition on the next bus clock
cycle. The first of the two beats on the address bus is valid for one bus clock cycle window
only, and that window is defined by the assertion of XATS'. The second address bus beat,
however, can be extended by delaying the assertion of AACK until the system has latched
the address.

The load request and load reply operations shown in Figure 9-27, are address-only
transactions, as denoted by the negated TT3 signal during their respective address tenures.
Note that other types of bus operations can occur between the individual I/O controller
interface operations on the bus. The MPC601 involved in this transaction, however, does
not initiate any other transactions once the first I/O controller interface operation has begun
address tenure except for cache-sector snoop push-out operations resulting from snoop hits.

Notice that, in this example (zero wait states), 13 bus clock cycles are required to transfer
no more than eight bytes of data.

MOTOROLA Chapter 9. System Interface Operation 9-45

•

IMM.OP LAST OP REPLYOP REQUESTOP

I 2 I 3 4 I 5 I 6 7 I 8 I 9 10 11 I 12 I 13

ITS:, Ij lY .' 95:

rrnu is :(::tiIiti??:::}}: i:::::?::::{/tiY 9; 1 LU 9; : ~
· .

DHO-DH31 ~i}(}}}:;;;::;{{{;:;:>:;<;: {?tt?:(}}::t{\:x:~=x t:;«)::(t):::<:~ j
· . . · . .

TA l:t?:(:(::[::}{}([:::::)Y::([::((YU:[: \ : ///[:/} ::?:?] :)\ :!!!!2 ~

Figure 9-27. I/O Controller Interface Load Access Example

Figure 9-28 shows an I/O store access, comprised of three I/O controller interface
operations in this example. As with the example in Figure 9-27, notice that data is
transferred only on the 32 bits of the DH bus. As opposed to Figure 9-27, there is no request
operation since the MPC601 has the data ready for the BUC.

The TEA signal may be asserted on any I/O controller interface operation. If it is asserted,
the processor enters a checkstop condition if MSR[ME] is cleared, or it will queue a
machine check exception if ME is set. After TEA is asserted, it must be reasserted for all
tenures associated with the current I/O controller interface operation until the load last or
store last operation occurs. When the operation occurs, the execution unit is released to take
the machine check exception. If the TEA signal is asserted for an I/O controller interface
operation, the reply operations (store reply or load reply) must not occur. If it does, it causes
a checkstop condition. If the TEA signal is not asserted with a given I/O controller interface
operation, the result of the assertion of TEA are unpredictable. The MPC601 may take a
machine check exception or cause as checkstop condition.

9-46 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

I IMM. OP LAST OP REPLY OP

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10

Mill:
}(AI ~,;:

ADDf&, XATO :

TT3~

OHO-OH31 i/:: ::x=:J c=:::=:xsE
TA :\:::i?:\A : hi:::::::><>' : ff!.i:.

Figure 9-28. liD Controller Interface Store Access Example

9.7 Interrupt, Checkstop, and Reset Signals
This section describes external interrupts, checkstop operations, and hard and soft reset
inputs.

9.7.1 External Interrupt
The maskable interrupt input (INT) to the MPC601 eventually forces the processor to take
the external interrupt vector if the MSR(EE) bit is set. See Chapter 5, "Exceptions," for
more information about interrupts and exceptions.

9.7.2 Checkstops
The MPC601 has two checkstop signals, an input (CKSTP _IN) and an output
(CKSTP _OUT). If CKSTP _IN is asserted, the MPC601 halts operations by gating off all
internal clocks. The MPC601 does not assert CKSTP _OUT if CKSTP _IN if asserted.

If CKS'!'P _OUT is asserted, the MPC601 has checkstopped internally. The CKSTP _oO'r
signal can be asserted for various reasons including receiving a TEA signal, as the result of
an instruction dispatch, or internal and external parity errors. For more information on
checkstop state, refer to Section 5.4.2.2, "Checkstop State (MSR[ME] = 0)."

Note that checkstop conditions can be disabled by setting bits in the HIDO register. For
information, see Section 2.3.3.12.1, "Checkstop Sources and Enables Register-HIDO."

MOTOROLA Chapter 9. System Interface Operation 9-47

•

9.7.3 Reset Inputs
The MPC601 has two reset inputs, described as follows:

·HRESET (hard reset)-The HRESET signal is used for power-on reset sequences, or
for situations in which the MPC601 must go through the entire cold-start sequence
of self-tests. Once asserted, this input must be held asserted for a minimum of 300
processor clock cycles to ensure that the processor has had enough time to recognize
the input and initialize registers. This information is provided in Appendix D,
"Reset."

• SRESET (soft reset)-The soft reset input provides warm reset capability. This
input can be used to avoid forcing the MPC601 to complete the cold start sequence.
This can be useful to recover from such conditions as check stop or some machine­
check states that cannot be restarted.

When either reset input is negated and if the self-test sequence completes without error, the
processor attempts to fetch code from the system reset exception vector. The vector is
located at offset x'OOIOO' from the exception prefix (all zeros or ones, depending on the
setting of the exception prefix bit in the machine state register (MSR[EP]). The EP bit is set
for HRESET.

9.7.4 Soft Stop Control Signals
The soft stop control signals allow the processor to stop the clocks and bring the activity to
a quiescent state in an orderly fashion (as opposed to a hard stop, which simply halts the
clocks without regard to system activity).

The soft stop state is entered by asserting the QUIESC_REQ signal. This signal allows the
system to complete any bus activities that might be affected by stopping the clocks. When
the system is ready to enter the soft stop state, it asserts the SYS_QOIESC signal. At this
time the MPC601 takes a soft stop.

During a soft stop all internal clocking is disabled after the system activity quiesces in an
orderly manner, that is, there are no partially finished instructions. Soft stop is typically
used for debugging; during the soft stop, the state bits in the chip can be scanned, examined
and scanned back in. The processor returns to normal operation when the RESUME signal
is asserted.

9.8 Processor State Signals
This section describes the MPC60l's support for atomic update and storage through the use
of the Iwarx/stwcx. opcode pair and the configuration options for the MPC601 output
buffer.

9.8.1 Support for the Iwarx/stwcx. Instruction Pair
The Load Word and Reserve Indexed (Iwarx) and the Store Word Conditional Indexed
(stwcx.)instructions provide a means for atomic memory updating. Memory can be updated

9-48 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

atomically by setting a reservation on the load and checking that the reservation is still valid
before the store is performed. In the MPC601, the reservations are made on behalf of
aligned, 32-byte sections of the memory address space.

The reservation (RSRV) output signal is always driven by bus clock cycle and reflects the
status of the reservation coherency bit in the reservation address register (see Chapter 4,
"Cache and Memory Unit Operation," for more information). See Section X.2.9.X,
"Reservation (RSRV)-Output," for information about timing.

9.9 IEEE 1149.1·Compatible Interface
The MPC601 provides a boundary-scan interface compatible with IEEE 1149.1-compliant
parts. Although the standard allows built-in self-test (BIST), the MPC601 interface
supports only boundary scan. This section briefly describes the MPC601 interface and its
differences with the IEEE 1149.1 interface.

9.9.1 Deviations from the IEEE 1149.1 Boundary-Scan Specifications
The MPC601 deviates from the IEEE 1149.1 specifications in the following ways:

• In the IEEE 1149.1 specifications, no mode pin is required to use the IEEE 1149.1
boundary-scan interface. However, in the MPC601, the scan enable mode input
(BSCAN_EN) signal must be asserted to run boundary-scan testing. The signal must
be pulled up when boundary-scan testing is not being performed.

• Whereas the IEEE 1149.1 specifications indicate that only TCK should be used to
clock data-register latches, in the MPC601 the processor system clock must be
active (oscillating) during testing.

• The MPC601 implements only the PRELOAD portion of the SAMPLE/PRELOAD
function.

• IEEE 1149.1 specifies that data on the primary output should be held valid while the
processor is in the SHIFf DT state and that data should change only in the UPDATE
DT or UPDATE IT states (assuming the instruction is valid). In the MPC601, no
stable values are held on primary outputs for the SHIFf DT state. The SHIFT DT
state forces primary outputs to high impedance. Outputs are enabled if the IT
contains a valid instruction and the TAP is in the UPDATE DT or UPDATE IT state.

• IEEE 1149.1 specifies that asserting the TI<ST signal should reset only the TAP. In
the MPC601, the TI<ST signal resets the TAP, system logic, and the COP.

IEEE 1149.1 also specifies the use of the TI<ST signal to disable TAP. On the
MPC601, this can be done by negating the BSCAN_EN signal, which prohibits
resetting the TAP and system logic independently. The TR"ST signal should not be
used to disable the TAP in the system functional environment; the BSCAN_EN
signal should be used. The user can use the TR'ST signal as described above or hold
m'S" high for five TCK cycles. Note that not all SRLs in the MPC601 are boundary­
scan SRLs. The boundary-scan chain includes functional system SRLs.

MOTOROLA Chapter 9. System Interface Operation 9-49

•

9.9.2 Additional Information about the IEEE 1149.1 Interface
Note the following points concerning the IEEE 1149.1 interface:

• Because the driver inhibit to all COMMON 10 signals is controlled by a common
signal, all COMMON INPUT/OUTPUT devices must inbound off-chip data or
outbound on-chip data.

• Not all SRLs in the boundary-scan chain are boundary-scan SRLs.

9.10 Using DBWO (Data Bus Write Only)
The MPC601 supports split transaction pipelined transactions. Additionally, the OBWO
signal allows the MPC601 to be configured dynamically to source write data out of order
with respect to read data.

In general, an address tenure on the bus is followed strictly in order by its associated data
tenure. Transactions pipelined by a single MPC601 complete strictly in order. However, the
MPC601 can run bus transactions out of order only when the external system allows the
MPC601 to perform a cache-sector snoop push-out operation (or other write transaction, if
pending in the MPC601 write queues) between the address and data tenures of a read
operation through the use of DBWO. This effectively envelopes the write operation within
the read operation. This can be useful in some external queued controller scenarios or for
more complex memory implementations that can support so-called dump-and-run
operations. These include the cache sector cast out of a modified sector caused by a load
miss. A replacement copyback operation can be written to memory buffers while the
memory location is being accessed for the line fill. The sector is written (dumped) into
memory buffers while the memory is accessed for the load operation. Optimally, the
replacement copy-back operation can be absorbed by the memory system without affecting
load memory latency. Figure 9-11 gives an example of the use of the DBWO input.

Figure 9-29 illustrates the following sequence of operations:

1. Processor A begins a read operation. (Bus clock cycle 2)

2. Processor B attempts a global read but is interrupted by a retry from processor A
(bus clock cycle 7)

3. Processor A performs a cache-sector snoop push-out operation out of order because
of the assertion of DBWO (bus clock cycle 8)

4. Processor B successfully performs the global read (bus clock cycle 13)

5. Processor A successfully concludes its original read operation (bus clock cycle 16)

9-50 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

1 1 1 2 1 3 1 4 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 113 114 115 116 1 17 118 1

CPU A Bl1 ~ : \....i..!, -.---.---...-----.
, , ,

CPU A 1m: ~ i !=<::::~.:::::::=;:::::=::::::~:>/r--~~---!-l--""~=?~;::t""::: ~-~~----!

CPU 8 Bl1; , : \ : ~' ; \I..-~~_~.-..J~
, , , ,

CPU 8 1m: P±t$iJ \ i /:::::>::::::::.;.:.;.......' :::::::::::::::/ : \

A91j ~ m.'--i-----T-': m.'--i----T-': /,;--;-1 -n\'---r---r-'!

1"5:

AO-A31 H-<
TTO-TT3~

TBST: '

CPUA >-+-<
Read >--f--<

:\

: 1::://

'AAC5'K ::}::::;;: : .. :::::::::::::;:;:::;:::::;::;:\ : A:::::::::::;':: ::;:::;::::::}\ : h:::::;::::: :::::::::::::::::;;;:\ /:;:;::;;::. :;:;:;:::;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;;:;::::::::;:;;;::::::::\ I:;;;;:;:;:; :::;:;:;:;:;:;:;:::;:;:;:;:;:;;::::;:;;1

ART'1iV ;.:.:.:::::;;:;:;:;::::::f : v;:: ;:;::::::::::::::;;::::::::;:\ : [; ;;;}:;:;:;:;:;:}:;:;:{I v»>;;;;;:;:::;:: :::::;:;:;:;:::::::;:};;:;:::;::;;;;:;:;):j :~
, , , ,

CPU A USG ;.-: --r-----r---r-----r--;...--r--;...,: '--!...I~.....;.---i---r----r--..-.: \'-_----': I '

CPUAtmWOl 1 10 1

CPU 8 USG ~---'--~--'---:""""'4-J 4-J
PUA

00-063 r----r----;.--i---i--..;-..{
, " , "

TA;::::::;:;:;::.;.; "':'::::::;:;:::::::;:::::;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;j;;;};:;:::;;::\::\ ~:-:~

T~:~1: TIR'TRV [::::;:;:::;::::::::: :':':':':':':':':':':':':':"':':':':':':';':':':::::::::::::::::::::::::::::::.;:::::::::::::::::;:;:;:;:;:;:1

, I I I I •
I I I • I I
• I I • I I

i 1 2 i 3 i 4 5 i 6 i 7 i 8 i 9 i 10 i 11 12 13 i 14 i 15 i 16 i 17 i 18 i
* Indicates MPC601 flushed this data due to address retry

Figure 9-29. Data Bus Write-Only Transaction

Note that although the MPC601 can pipeline any write transaction behind the read
transaction, special care should be used when using the enveloped write feature. It is

MOTOROLA Chapter 9. System Interface Operation 9-51

•

envisioned that most system implementations will not need this capability; for these
applications DBWO should remain negated. In systems where this capability is needed,
DSWO should be asserted under the following scenario:

1. The MPC601 initiates a read transaction (either single-beat or burst) by completing
the read address tenure with no address retry.

2. Then, the MPC601 initiates a write transaction by completing the write address
tenure, with no address retry.

3. At this point, if DBWO is asserted with a qualified data bus grant to the MPC601,
the MPC601 asserts"IJBB" and drives the write data onto the data bus, out of order
with respect to the address pipeline. The write transaction concludes with the
MPC601 negating "IJBB".

4. The next qualified data bus grant signals the MPC601 to complete the outstanding
read transaction by latching the data on the bus. This assertion of I5BG' should not
be accompanied by an asserted DBWO.

Any number of bus transactions by other bus masters can be attempted between any of
these steps.

Note the following regarding DBWO:

DBWO cannot be asserted if no data bus write tenures are pending.

DBWO can be asserted if no data bus read is pending, but it has no effect on write
ordering.

• The ordering and presence of data bus writes is determined by the writes in the write
queues at the time BG is asserted for the write address (not UBD). If a particular
write is desired (for example, a cache-sector snoop push-out operation), then BG
must be asserted after that particular write is in the queue and it must be the highest
priority write in the queue at that time. A cache-sector snoop push-out operations
may be the highest priority write, but more than one may be queued.

Because more than one write may be in the write queue when 'DBG is asserted for
the write address, more than one data bus write may be enveloped by a pending data
bus read.

The arbiter must monitor bus operations and coordinate the various masters and slaves with
respect to the use of the data bus when DBWO is used. Individual 'DBG signals associated
with each bus device should allow the arbiter to synchronize both pipelined and split­
transaction bus organizations. Individual 'DBG signals provide a primitive form of source­
level tagging for the granting of the data bus.

Note that use of the DBWO signal allows some operation-level tagging with respect to the
MPC601 and the use of the data bus.

9-52 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Chapter 10
Instruction Set
This chapter describes individual instructions, including a description of instruction
formats and notation and an alphabetical listing of the MPC601's instructions by
mnemonic.

10.1 Instruction Formats
Instructions are four-bytes long and word-aligned, so when instruction addresses are
presented to the processor (as in branch instructions) the two low-order bits are ignored.
Similarly, whenever the processor develops an instruction address, its two low-order bits
are zero.

Bits 0-5 always specify the primary opcode. Many instructions also have an secondary
opcode. The remaining bits of the instruction contain one or more fields for the different
instruction formats.

Some instruction fields are reserved or must contain a predefined value as shown in the
individual instruction layouts. If a reserved field does not have all bits set to 0, or if a field
that must contain a particular value does not contain that value, the instruction form is
invalid and the results are as described in Appendix 0, "Classes of Instructions".

10.1.1 Split Field Notation
Some instruction fields occupy more than one contiguous sequence of bits or occupy a
contiguous sequence of bits used in permuted order. Such a field is called a split field. In
the format diagrams and in the individual instruction layouts, the name of a split field is
shown in small letters, once for each of the contiguous sequences. In the pseudocode
description of an instruction having a split field and in some places where individual bits of
a split field are identified, the name of the field in small letters represents the concatenation
of the sequences from left to right. Otherwise, the name of the field is capitalized and
represents the concatenation of the sequences in some order, which need not be left to right,
as described for each affected instruction.

MOTOROLA Chapter 10. Instruction Set 10-1

10.1.2 Instruction Fields
Table 10-1 describes the instruction fields used in the various instruction formats.

Table 10-1. Instruction Formats

Field Description

AA(30) Absolute address bit
0 The immediate field represents an address relative to the current instruction address. The

effective address of the branch is either the sum of the LI field sign-extended to 32 bits and the
address of the branch instruction or the sum of the BD field sign-extended to 32 bits and the
address of the branch instruction.

1 The immediate field represents an absolute address. The effective address of the branch is
the LI field sign·extended to 32 bits or the BD field sign-extended to 32 bits.

crbA (11-15) Field used to specify a bit in the CR to be used as a source.

crbB (16-20) Field used to specify a bit in the CR to be used as a source.

BD (16-29) Immediate field specifying a 14·bit signed two's complement branch displacement that is
concatenated on the right with b'OO' and sign·extended to 32 bits.

crfD (6-8) Field used to specify one of the CR fields or one of the FPSCR fields as a destination.

crfS (11-13) Field used to specify one of the CR fields or one of the FPSCR fields as a source.

BI (11-15) Field used to specify a bit in the CR to be used as the condition of a branch conditional
instruction.

BO (6-10) Field used to specify options for the branch conditional instructions. The encoding is described in
Section 3.7.1, "Branch Instructions".

crbD (6-10) Field used to specify a bit in the CR or in the FPSCR as the destination of the result of an
instruction.

• d{16-31) Immediate field specifying a 16-bit signed two's complement integer that is sign·extended to 32
bits.

FM (7-14) Field mask used to identify the FPSCR fields that are to be updated by the mtfsf instruction.

frA(11-15) Field used to specify an FPR as a source of an operation.

frB (16-20) Field used to specify an FPR as a source of an operation.

frC (21-25) Field used to specify an FPR as a source of an operation.

frS (6-10) Field used to specify an FPR as a source of an operation.

frD (6-10) Field used to specify an FPR as the destination of an operation.

CRM (12-19) Field mask used to identify the CR fields that are to be updated by the mtcrf instruction.

LI (6-29) Immediate field specifying a 24·bit, signed two's complement integer that is concatenated on the
right with b'OO' and sign-extended to 32 bits.

LK (31) Link bit.
0 Does not update the link register.
1 Updates the link register. If the instruction is a branch instruction, the address of the instruction

following the branch instruction is placed into the link register.

MB (21-25) and Fields used in rotate instructions to specify a 32·bit mask consisting of 1·bits from bit MB+32
ME (26-30) through bit ME+32 inclusive, and O·bits elsewhere, as described in Section 3.3.4, "Integer Rotate

and Shift Instructions".

10-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 10-1. Instruction Formats (Continued)

Field Description

NB (16-20) Field used to specify the number of bytes to move in an immediate string load or store.

opcode (0-5) Primary opcode field.

OE (21) Used for extended arithmetic to enable setting OV and SO in the XER.

rA(11-15) Field used to specify a GPR to be used as a source or as a destination.

rB (16-20) Field used to specify a GPR to be used as a source.

Rc (31) Record bit
0 Does not update the condition register.
1 Updates the condition register (CR) to reflect the result of the operation.

For integer instructions, CR bits 0-3 are set to reflect the result as a signed quantity. The
result as an unsigned quantity or a bit string can be deduced from the EQ bit. For floating-point
instructions, CR bits 4-7 are set to reflect floating-point exception, floating-point enabled
exception, floating-point invalid operation exception, and floating-point overflow exception.

rS (6-10) Field used to specify a GPR to be used as a source.

rD(6-10) Field used to specify a GPR to be used as a destination.

SH (16-20) Field used to specify a shift amount.

SIMM (16-31) Immediate field used to specify a 16-bit signed integer.

SPR (11-20) Field used to specify a special purpose register for the mtspr and mfspr instructions. The
encoding is described in Section 3.8.1, "Move To/From Special Purpose Register Instructions".

TO (6-10) Field used to specify the conditions on which to trap. The encoding is described in Section 3.7.5,
''Trap Mnemonics".

IMM (16-19) Immediate field used as the data to be placed into a field in the FPSCR.

UIMM (16-31) Immediate field used to specify a 16-bit unsigned integer.

XO (21-30, 22- Secondary opcode field.
30, 26-30, or 30)

10.1.3 Notation and Conventions
The operation of some instructions is described by a semiformal language (pseudocode).
See Table 10-2 for a list of pseudocode notation and conventions used throughout this
chapter.

Table 10-2. Pseudocode Notation and Conventions

Notation/Convention Meaning

f- Assignment

..., NOT logical operator

* Multiplication

..... Division (yielding quotient)

+ Two's-complement addition

MOTOROLA Chapter 10. Instruction Set 10-3

•

Table 10-2. Pseudocode Notation and Conventions (Continued)

Notation/Convention Meaning

Two's-complement subtraction, unary minus

=,'1= Equals and Not Equals relations

<,:::;,>,~ Signed comparison relations

<U,>U Unsigned comparison relations

? Unordered comparison relation

&, I AND, OR logical operators

II Used to describe the concatenation of two values (Le., 010 11111 is the same as 010111)

EEl,:: Exclusive-OR, Equivalence logical operators ((a::b) = (aE9-b))

b 'nnnn' A number expressed in binary format

x 'nnnn' A number expressed in hexadecimal format

(rAIO) The contents of rA if the rA field has the value 1-31, or the value 0 if the rA field is 0

. (period) As the last character of an instruction mnemonic, a period (.) means that the instruction
updates the Condition Register field.

CEIL(x) Least integer ~ x

DOUBLE(x) Result of converting x form floating-point single format to floating-point double format.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General Purpose Register x

MASK(x, y) Mask having 1 's in positions x through y (wrapping if x > y) and O's elsewhere

MEM(x, y) Contents of y bytes of memory starting at address x

ROTL[32](x, y) Result of rotating the 64-bit value xlix left y positions, where x is 32 bits long

SINGLE(x) Result of converting x from floating-point double format to floating-point single format.

SPR(x) Special Purpose Register x

x(n) x is raised to the nth power

(n)x The replication of x, n times (Le., x concatenated to itself n-1 times). (n)O and (n)1 are
special cases

x[n] n is a bit or field within x, where x is a register

TRAP Invoke the system trap handler

undefined An undefined value. The value may vary from one implementation to another, and from
one execution to another on the same implementation.

characterization Reference to the setting of status bits, in a standard way that is explained in the text

CIA Current Instruction Address, which is the 32-bit address of the instruction being
described by a sequence of pseudocode. Used by relative branches to set the Next
Instruction Address (NIA). Does not correspond to any architected register.

10-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 10-2. Pseudocode Notation and Conventions (Continued)

Notation/Convention Meaning

NIA Next Instruction Address, which is the 32·bit address of the next instruction to be
executed (the branch destination) after a successful branch. In pseudocode, a
successful branch is indicated by assigning a value to NIA. For instructions which do not
branch, the next instruction address is CIA +4.

if...then ... else ... Conditional execution, indenting shows range, else is optional

do Do loop, indenting shows range. "To" and/or "by" clauses specify incrementing an
iteration variable, and "while' and/or "until" clauses give termination conditions, in the
usual manner.

leave Leave innermost do loop, or do loop described in leave statement

Precedence rules for pseudocode operators are summarized in Table 10-3.

Table 10-3. Precedence Rules

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication, Right to left
x(n) or exponentiation

unary·, ..., Right to left

*,+ Left to right

+,' Left to right

II Left to right

=,:;/:,<,::;,>,;:::,<U,>U, ? Left to right

&,EB,= Left to right

I Left to right

- (range) None

f- None

Note that operators higher in Table 10-3 are applied before those lower in the table.
Operators at the same level in the table associate from left to right, from right to left, or not
at all, as shown.

10.2 MPC601 Instruction Set
The remainder of this chapter lists and describes the instruction set for the MPC601. The
instructions are listed in alphabetical order by mnemonic and include those instructions that
are specific to the MPC601 that are not specified as part of the PowerPC architecture.
Figure 10-1 shows the format for each instruction description page.

MOTOROLA Chapter 10. Instruction Set 10·5

•

Instruction Name

Instruction Syntax

Equivalent Power M nemonics

Instruction Encodin g

ription of Pseudocode Desc
Instruction Operati
Text Description of
Instruction Operati

on

on
Registers Altered b y Instruction

-..

--.

addx
Add

add rD,rA,rB

add. rD,rA,rB

addo rD,rA,rB

addo. rD,rA,rB

[POWER mnemonics: cax, cax., caxo, caxo.J

I ~1 I C! I 8 I
0 5 6 1011 15 16

rD ~ (rA) + (rR)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (eRO Field):

Affected: LT, (iT, EQ, SO

• XER:

Affected: SO, OV

Figure 10-1. Instruction Description

addx
Integer Unit

(OE=O Rc=O)

(OE=O Rc=l)

(OE=I Rc=O)

(OE=I Rc=l)

6 IQ8 222 IBQI
20 21 22 30 31

(ifRc=l)

(ifOE=l)

Note in Figure 10-1 that the execution unit that executes the instruction may not be the
same for other PowerPC processors.

10-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

absx
Absolute

abs

abs.

abso

abso.

o
31

5 6

POWER Architecture Instruction

rD,rA
rD,rA

rD,rA

rD,rA

o
10 11

(OE=() Rc=())

(OE=O Rc=l)

(OE=l Rc=O)

(OE=l Rc=l)

A

15 16 20 21 22

This instruction is not part of the PowerPC architecture.

absx
Integer Unit

[ill] Reserved

360

30 31

The absolute value l(rA)1 is placed into rD. If rA contains the most negative number (i.e.,
x'8000 0000'), the result of the instruction is the most negative number and sets XER[OY]
if overflow signaling is enabled.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO, OY (if OE=l)

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-7

addx
Add

add

add.

addu

addu.

rD,rA,rB

rD,rA,rB

rD,rA,rB

rD,rA,rB

(OE=O Rc=O)

(OE=O Rc=1)

(OE=1 Rc=O)

(OE=1 Rc=l)

[POWER mnemonics: cax, cax., caxo, caxo.]

31 D A

o 5 6 10 11 15 16

rD ~ (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

20 21 22

10-8 PowerPC 601 RISC Microprocessor User's Manual

addx
Integer Unit

266

30 31

MOTOROLA

addcx
Add Carrying

adde

adde.

addeo

addeo.

rD,rA,rB

rD,rA,rB

rD,rA,rB

rD,rA,rB

(OE=O Rc=O)

(OE=O Rc=l)

(OE=1 Rc=O)

(OE=1 Rc=l)

[POWER mnemonics: a, a., ao, ao.]

31 D A

o 5 6 10 11 15 16

rD f- (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: CA

Affected: SO, OV (if OE=l)

20 21 22

MOTOROLA Chapter 10. Instruction Set

addcx
Integer Unit

10

30 31

..

10-9

•

addex
Add Extended

adde

adde.

addeo

addeo.

rD,rA,rB

rD,rA,rB

rD,rA,rB

rD,rA,rB

(OE=O Rc=O)

(OE=O Rc=l)

(OE=l Rc=O)

(OE=l Rc=l)

[POWER mnemonics: ae, ae., aeo, aeo.]

31 D A 8

o 5 6 10 11 15 16

rD f- (rA) + (rR) + XER[CA)

The sum (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

• XER:

Affected: CA

Affected: SO, OV

(if Rc=l)

(if OE=l)

20 21 22

10-10 Powerpe 601 Rise Microprocessor User's Manual

addex
Integer Unit

138

30 31

MOTOROLA

addi addi
Add Immediate Integer Unit

addi rD,r A,SIMM

[POWER mnemonic: cal]

14 D A SIMM

o 5 6 10 11 15 16 31

if rA=O then rD+-EXTS(SIMM)
else rD+-(rA)+EXTS(SIMM)

The sum (rAI 0) + SIMM is placed into rD.

Other registers altered:

• None

Simplified mnemonics:

subi rA,rB,value equivalent to addi rD,rA,-value

MOTOROLA Chapter 10. Instruction Set 10-11

addic addic
Add Immediate Carrying Integer Unit

addic rD,rA,SIMM

[POWER mnemonic: ail

12 o A SIMM

o 5 6 10 11 15 16 31

rD ~ (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• XER:

Affected: CA

•

10-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

addic. addic.
Add Immediate Carrying and Record Integer Unit

addie. rD,rA,SIMM

[POWER mnemonic: ai.]

13 o A SIMM

o 5 6 10 11 15 16 31

rD f- (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

• XER:

Affected: CA

MOTOROLA Chapter 10. Instruction Set 10-13

addis addis
Add Immediate Shifted Integer Unit

addis rD,r A,SIMM

[POWER mnemonic: caul

15 o A SIMM

o 5 6 10 11 15 16 31

if rA=O then rDf-(SIMM II (16)0)
else rDf-(rA)+(SIMM II (16)0)

The sum (rAI 0) + (SIMM II x'OOOO') is placed into rD.

Other registers altered:

• None

•

10-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

addmex
Add to Minus One Extended

addrne rD,rA (OE=O Rc=O)

addrne. rD,rA (OE=O Rc=l)

addrneo rD,rA (OE=l Rc=O)

addrneo. rD,rA (OE=l Rc=l)

[POWER mnemonics: arne, arne., arneo, arneo.]

31 D

o 5 6 10 11 15 16 20 21 22

rD f-- (rA) + XER[CA)- 1

The sum (rA)+XER[CA]+x 'FFFFFFFF' is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

• XER:

Affected: CA

Affected: SO, OV

(if Rc=l)

(if OE=l)

MOTOROLA Chapter 10. Instruction Set

addmex
Integer Unit

Eill Reserved

234

3031

10-15

II

addzex
Add to Zero Extended

addze rD,rA (OE=O Rc=O)

addze. rD,rA (OE=O Rc=l)

addzeo rD,rA (OE=l Rc=O)

addzeo. rD,rA (OE=l Rc=l)

[POWER mnemonics: aze, aze., azeo, azeo.]

31 o A

o 5 6 10 11 15 16

rD +- (rA) + XER[CA]

The sum (rA)+XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

• XER:

Affected: CA

Affected: SO, OV

(if Rc=l)

(if OE=l)

20 21 22

10-16 PowerPC 601 RISC Microprocessor User's Manual

addzex
Integer Unit

Bill Reserved

202

30 31

MOTOROLA

andx andx
AND Integer Unit

and rA,rS,rB (Rc=O)

and. rA,rS,rB (Rc=l)

31 s A B 28 IRcl
0 5 6 10 11 15 16 20 21 30 31

rA f- (rS) & (rB)

The contents of rS is AN Oed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

MOTOROLA Chapter 10. Instruction Set 10-17

andcx andcx
AND with Complement Integer Unit

andc rA,rS,rB (Rc=())

andc. rA,rS,rB (Rc=l)

31 s A B 60 IRcl
0 5 6 10 11 15 16 20 21 30 31

rAf-(rS)+ -,(rB)

The contents of rS is ANDed with the one's complement of the contents of rB and the result
is placed into r A.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

10-18 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

andi. andi.
AND Immediate Integer Unit

andi. r A,rS,UIMM

[POWER mnemonic: andil.]

28 s A UIMM

o 5 6 10 11 15 16 31

rAr(rS) & (x'OOOO'IIUIMM)

The contents of rS is ANDed with x'oooo'li UIMM and the result is placed into r A.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

•

MOTOROLA Chapter 10. Instruction Set 10-19

andis. andis.
AND Immediate Shifted Integer Unit

andis. rA,rS,UIMM

[POWER mnemonic: andiu.]

29 s A UIMM

o 5 6 10 11 15 16 31

rAf-(rS)+(UIMM II x'OOOO')

The contents of rS is ANDed with UIMM II x'oooo' and the result is placed into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

•

10-20 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

bx
Branch

b

ba

bl

bla

targecaddr

targecaddr

targeCaddr
targeCaddr

(AA=O LK=O)
(AA=l LK=O)

(AA=O LK=l)

(AA=l LK=l)

18 LI

056

if AA, then NIA~EXTS(LI II b'OO')
else NIA~CIA+EXTS(LI II b'OO')
ifLK, then
LR~CIA-+4

targecaddr specifies the branch target address.

bx
Branch Processing Unit

2930 31

If AA=O, then the branch target address is the sum of LI II b'OO' sign-extended and the
address of this instruction.

If AA=l, then the branch target address is the value LIII b'OO' sign-extended.

If LK= 1, then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers altered:

Affected: Link Register (LR) (if LK=l)

MOTOROLA Chapter 10. Instruction Set 10-21

II

bcx bcx
Branch Conditional Branch Processing Unit

be

bea

bel

bela

BO,BI,targecaddr

BO,BI,targecaddr

BO,BI,target_addr

BO,BI,targecaddr

(AA=O LK=O)

(AA=l LK=O)

(AA=O LK=l)

(AA=l LK=1)

16 80 81 80

o 5 6 10 11 15 16

if ...,BO(2), then CTR f- CTR-l
eteok f- BO(2) 1 «CTR~) ED BO(3))
eond_ok f- BO[O) 1 (CR[BlT=""'BU[l))
if etr_ok & eond_ok, then

if AA, then NIA f- EXTS(BD II b'OO')
else NIA f- CIA+EXTS(BD II b'OO')

ifLK, then
LR f- CIA-t4

2930 31

The BI field specifies the bit in the Condition Register (CR) to be used as the condition of
the branch. The BO field is used as described above.

target_addr specifies the branch target address.

If AA=Ot the branch target address is the sum of BD II bt()(V sign-extended and the address
of this instruction.

If AA=l t the branch target address is the value BD II btO(f sign-extended.

If LK= 1 t the effective address of the instruction following the branch instruction is placed
into the link register.

Other registers altered:

Affected: Count Register (CTR) (if BO[2] =0)

Affected: Link Register (LR) (if LK=l)

Simplified mnemonics:

bit target equivalent to be 12,O,target

bne er2ttarget equivalent to be 4, 1 O,target

bdnz target equivalent to be 16,O,target

10-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

bcctrx
Branch Conditional to Count Register

beetr

beetrl

BO,BI

BO,BI

[POWER mnemonics: bee, beel]

o
19 BO BI

5 6 10 11

cond_ok ~ BOlO) 1 (CRIBII == BOI I))
if cond_ok then

NIA f- CTR II b'OO'
ifLK then

LR f- CIA+4

(LK=O)

(LK=I)

15 16 20 21

bcctrx
Branch Processing Unit

Gill Reserved

528

30 31

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is used as described above, and the branch target address is
CTR[O-29] II b'OO'.

If LK=I, the effective address of the instruction following the branch instruction is placed
into the link register.

If the "decrement and test CTR" option is specified (BO[2]=O), the instruction form is
invalid.

In the case of BO[2]=O on the MPC601, the decremented count register is tested for zero
and branches based on this test, but instruction fetching is directed to the address specified
by the non-decremented version of the count register. The use of this invalid form of the
beetrx instruction is not recommended. This description is provided for informational
purposes only.

Other registers altered:

Affected: Link Register (LR)

Simplified mnemonics:

bltetr

bneet er2

equivalent to

equivalent to

(if LK=I)

beetr

beetr

MOTOROLA Chapter 10. Instruction Set

12,0

4,10

10-23

II

•

bclrx
Branch Conditional to Link Register

belr
belrl

BO,BI

BO,BI

[POWER mnemonics: ber, berl]

o
19 BO BI

5 6 10 11

if -.BO(2) then CTR ~ CTR-I
etr_ok ~ BO(2) 1 «CTR;t{) ED BO(3))
cond_ok ~ BO[O) , (CR[BI] == BO[I»
if etr_ok & eond_ok then

NIA ~ LR " b'OO'
ifLK then
LR~CIA+4

(LK=O)

(LK=1)

15 16 20 21

bclrx
Branch Processing Unit

ffi]J Reserved

16

30 31

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is used as described above, and the branch target address is
LR[O-29] II b'OO'.

If LK= 1 then the effective address of the instruction following the branch instruction is
placed into the link register .

Other registers altered:

Affected: Count Register (CTR) (if BO[2]=0)

Affected: Link Register (LR) (if LK=l)

Simplified mnemonics:

bltlr equivalent to belr 12,0

bnelr er2 equivalent to belr 4,10

bdnzlr equivalent to belr 16,0

10-24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

clcs POWER Architecture Instruction clcs
Cache Line Compute Size Integer Unit

dcs rD,rA

IlliJ Reserved

31 D A 531

o 5 6 10 11 15 16 20 21 30 31

This instruction is not part of the PowerPC architecture.

This instruction places the cache line size specified by r A into rD, according to the
following:

(rA) Line Size Returned in rD

OOxxx Undefined

010xx Undefined

01100 Instruction Cache Line Size (64)

01101 Data Cache Line Size (64)

01110 Minimum Line Size (64)

01111 Maximum Line Size (64)

1xxxx Undefined

The value placed in rD shall be 64 for valid values of r A.

Other registers altered:

Condition Register (CRO Field):

Affected: Undefined (if Rc=l)

MOTOROLA Chapter 10. Instruction Set 10-25

cmp
Compare

cmp

o

crfD,L,r A,r B

31

5 6

a ~ (rA)
h~ (rR)

crfD I:~::::I L I
8 9 10 11

if a<hthenc~h'100'

else if a> h then c ~ h'O 10'
else c ~ h'OO!'

A

CR[4*crtD:4*crtD+3] ~ c /I XER[SO]

cmp
Integer Unit

Bill Reserved

8

15 16 20 21 30 31

The contents of rA is compared with the contents of rB, treating the operands as signed
integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether the instruction operands are treated as 64- or 32-bit
operands, with L=O indicating 32-bit operands and L=l indicating 64-bit operands. The
state of the L operand does not effect the operation of the MPC601.

Other registers altered:

Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

10-26 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

cmpi cmpi
Compare Immediate Integer Unit

cmpi crfD,L,r A,SIMM

[ill] Reserved

11 A SIMM

o 5 6 8 9 10 11 15 16 31

a ~ (rA)
if a < EXTS(SIMM) then c ~ b' 100'
else if a > EXTS(SIMM) then c ~ b'OlO'
else c ~ b'OOl'
CR[4*crfl):4*crfl)+3] ~ ell XER[SO]

The contents of rA is compared with the sign-extended value of the SIMM field, treating
the operands as signed integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether the instruction operands are treated as 64- or 32-bit
operands, with L=O indicating 32-bit operands and L=l indicating 64-bit operands. The
state of the L operand does not effect the operation of the MPC601.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

MOTOROLA Chapter 10. Instruction Set 10-27

II

cmpl
Compare Logical

cmpl crfD,L,rA,rB

o
31

5 6 8 9 10 11

a ~ (rA)
b ~ (rB)
if a < b then c ~ b'lOO'
else if a > b then c ~ b'OlO'

A

else c~b'OOl'

CR[4*crfD:4*crfD+3) ~ ell XER[SO)

cmpl
Integer Unit

I2J Reserved

B 32

15 16 20 21 31

The contents of rA is compared with the contents of rB, treating the operands as unsigned
integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether the instruction operands are treated as 64- or 32-bit
operands, with L=O indicating 32-bit operands and L=l indicating 64-bit operands. The
state of the L operand does not effect the operation of the MPC601.

Other registers altered:

Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

10-28 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

cmpli
Compare Logical Immediate

cmpli crfD,L,rA,UIMM

10 crlD 1::9":1 L I
o 5 6 8 9 10 11

a (- (rA)
b (- (rB)

A

if a < (x'OOOO' II UIMM) then c (- b' 100'

15 16

else if a > (x'OOOO' II UIMM) then c (- b'OIO'
else c (- b'OOl'
CR[4*crtD:4*crtD+3) (- ell XER[SO)

cmpli
Integer Unit

[ill] Reserved

UIMM

31

The contents of rA is compared with x'OOOO' II UIMM, treating the operands as unsigned
integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether the instruction operands are treated as 64- or 32-bit
operands, with L==O indicating 32-bit operands and L=l indicating 64-bit operands. The
state of the L operand does not effect the operation of the MPC60l.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

MOTOROLA Chapter 10. Instruction Set 10-29

II

II

cntlzwx
Count Leading Zeros Word

cntlzw
cntlzw.

rA,rS
rA,rS

[POWER mnemonics: cntlz, cntlz.]

o
31 s

5 6

n~()

do while n < 32
if rS[nJ=l then leave
n~n+l

rA~n

A

10 11

(Rc=O)
(Rc=l)

15 16 20 21

cntlzwx
Integer Unit

LillI Reserved

26

3031

A count of the number of consecutive zero bits starting at bit 0 of rS is placed into rA. This
number ranges from 0 to 32, inclusive.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

For count leading zeros instructions, if Rc=l then LT is cleared to zero in the CRO field.

10-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

crand crand
Condition Register AND Integer Unit

crand crbD,crbA,crbB

[ill] Reserved

19 crbO crbA crb8 257

o 5 6 10 11 15 16 20 21 30 31

CR[crbD) f- CR[crbA) & CR[crbB)

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

MOTOROLA Chapter 10. Instruction Set 10-31

crandc crandc
Condition Register AND with Complement Integer Unit

crandc crbD,crbA,crbB

[ill] Reserved

19 abD crbA crbB 129

o 5 6 1 0 11 15 16 20 21 30 31

CR[crbD) f- CR[crbA) & -,CR[crbR)

The bit in the condition register specified by crbA is ANDed with the complement of the
bit in the condition register specified by crbB and the result is placed into the condition
register bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

10-32 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

creqv creqv
Condition Register Equivalent Integer Unit

creqv crbD,crbA,crbB

IillJ Reserved

19 crbD crbA crbB 289

o 5 6 10 11 15 16 20 21 30 31

CR[crbD) t- CR[crbA) == CR[crbB)

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition register
bit specified by crbD.

Other registers altered:

Condition Register:

Affected: Bit specified by operand crbD

MOTOROLA Chapter 10. Instruction Set 10-33

crnand crnand
Condition Register NAN 0 Integer Unit

crnand crbD,crbA,crbB

Eilll Reserved

19 crbD crbA crbB 225 1.::2:::1

o 5 6 10 11 1 5 16 20 21 30 31

CR[crbD) f- -(CR[crbA) & CR[crbB))

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

10-34 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

crnor crnor
Condition Register NOR Integer Unit

crnor crbD,crbA,crbB

Iffi] Reserved

19 crbD crbA crbB 33 '"91
o 5 6 1 0 11 15 16 20 21 30 31

CR[crbD) ~ -(CR[crbA)I CR[crbB))

The bit in the condition register specified by crbA is ORed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

MOTOROLA Chapter 10. Instruction Set 10-35

1&

cror cror
Condition Register OR Integer Unit

cror crbD,crbA,crbB

ITill Reserved

19 crbD crbA crbS 449

o 5 6 10 11 15 16 20 21 3031

CR[crbD) ~ CR[crbA) I CR[crbB]

The bit in the condition register specified by crbA is ORed with the bit in the condition
register specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

10-36 PowerPe 601 Rise Microprocessor User's Manual MOTOROLA

crorc crorc
Condition Register OR with Complement Integer Unit

crorc crbD,crbA,crbB

LillI Reserved

19 crbD crbA crbB 417

o 5 6 1 0 11 15 16 20 21 30 31

CR[crbD) ~ CR[crbA)I-.CR[crbB)

The bit in the condition register specified by crbA is ORed with the complement of the
condition register bit specified by crbB and the result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

MOTOROLA Chapter 10. Instruction Set 10-37

•

II

crxor crxor
Condition Register XOR Integer Unit

crxor crbD,crbA,crbB

GIl Reserved

19 crbD crbA crbB 193

o 5 6 1 0 11 15 16 20 21 30 31

CR[crbD) ~ CR[crbA) E9 CR[crbB)

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the result is placed into the condition register specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by crbD

10-38 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

debf debf
Data Cache Block Flush Integer Unit

debf rA,rB

Em Reserved

31 A B 86

o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO)+(rB).

The m:tion taken depends on the memory mode associated with the target address, and on
the state of the block. The list below describes the action taken for the various cases. The
actions described will be executed regardless of whether the page or block containing the
addressed byte is designated as write-through or if it is in caching-inhibited or caching
allowed mode.

Coherency Required (WIM = xx 1)

- Unmodified Block-Invalidates copies of the block in the caches of all
processors.

- Modified Block-Copies the block to memory. Invalidates copies of the block in
the caches of all processors.

- Absent Block-If modified copies of the block are in the caches of other
processors, causes them to be copied to memory and invalidated. If unmodified
copies are in the caches of other processors, causes those copies to be
invalidated.

Coherency Not Required (WIM = xxO)

- Unmodified Block-Invalidates the block in the processor's cache.

- Modified Block-Copies the block to memory. Invalidates the block in the
processor's cache.

- Absent Block-Does nothing.

This instruction operates as a load from the addressed byte with respect to address
translation and protection.

If EA specifies a memory address for which SR[T]=l, the instruction is treated as a no-op.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-39

1m

•

dcbi dcbi
Data Cache Block Invalidate Integer Unit

dcbi rA,rB

ffiill Reserved

31 A 8 470

o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO)+(rB).

The action taken is dependent on the memory mode associated with the target, and the state
of the block. The list below describes the action to take if the block containing the byte
addressed by EA is or is not in the cache. The actions described must be executed regardless
of whether the page containing the addressed byte is in caching-inhibited or caching­
allowed mode. This is a supervisor-level instruction.

Coherency Required (WIM = xx I)

- Unmodified Block-Invalidates copies of the block in the caches of all
processors.

- Modified Block-Invalidates copies of the block in the caches of all processors.
(Discards the modified contents.)

- Absent Block-If copies are in the caches of any other processor, causes the
copies to be invalidated. (Discards any modified contents.)

Coherency Not Required (WIM = xxO)

- Unmodified Block-Invalidates the block in the local cache.

- Modified Block-Invalidates the block in the local cache. (Discards the modified
contents.)

- Absent Block-No action is taken.

This instruction operates as a store to the addressed byte with respect to address translation
and protection. The reference and change bits are modified appropriately. If EA specifies a
memory address for which SR[T]=I, the instruction is treated as a no-op.

Other registers altered:

None

10-40 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

dcbst dcbst
Data Cache Block Store Integer Unit

dcbst rA,rB

IillJ Reserved

31 A B 54

o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO)+(rB).

If the block containing the byte addressed by EA is in coherency required mode, and a
block containing the byte addressed by EA is in the data cache of any processor and has
been modified, the writing of it to main memory is initiated.

If the block containing the byte addressed by EA is in coherency not required mode, and a
block containing the byte addressed by EA is in the data cache of this processor and has
been modified, the writing of it to main memory is initiated.

The function of this instruction is independent of the write-through and caching
inhibited/allowed modes of the page or block containing the byte addressed by EA.

This instruction operates as a load from the addressed byte with respect to address
translation and protection.

If the EA specifies a memory address for an I/O controller interface segment (segment
register T-bit=l), the dcbst instruction operates as a no-op.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-41

,debt debt
Data Cache Block Touch Integer Unit

debt rA,rB

[IT] Reserved

31 '.···.,.i·qp.qp,q ·.' '.·, ... 1
A B 278

o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO)+(rB).

This instruction is a hint that performance will probably be improved if the block
containing the byte addressed by EA is fetched into the data cache, because the program
will probably soon load from the addressed byte. Executing debt does not cause any
exceptions to be invoked.

This instruction operates as a load from the addressed byte with respect to address
translation and protection except that no exception occurs in the case of a translation faul t
or protection violation.

If the EA specifies a memory address for which SR[T]= 1, the instruction is treated as a no­
op.

The purpose of this instruction is to allow the program to request a cache block fetch before
it is actually needed by the program. The program can later perform loads to put data into
registers. However, the processor is not obliged to load the addressed block into the data
cache. If the sector is loaded, it will be either in shared state or exclusive unmodified state.

Other registers altered:

None

10-42 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

dcbtst dcbtst
Data Cache Block Touch for Store Integer Unit

debtst rA,rB

OJ Reserved

31 A B 246

o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO)+(rB).

This instruction is a hint that performance will probably be improved if the block
containing the byte addressed by EA is fetched into the data cache, because the program
will probably soon store into the addressed byte. Executing debtst does not cause any
exceptions to be invoked.

This instruction operates as load from the addressed byte with respect to address translation
and protection, except that no exception occurs in the case of a translation fault or
protection violation. Since debtst does not modify memory, it is not recorded as a store (the
change (C) bit is not modified in the page tables).

If the EA specifies a memory address for which SR[T]= 1, the instruction is treated as a no­
op.

The debtst instruction behaves exactly like the debt instruction as implemented on the
MPC601.

The purpose of this instruction is to allow the program to schedule a cache block fetch
before it is actually needed by the program. The program can later perform stores to put
data into memory. However the processor is not obliged to load the addressed block into
the data cache.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-43

dcbz dcbz
Data Cache Block Set to Zero Integer Unit

dcbz rA,rB

[POWER mnemonic: dclz]

[ill] Reserved

31 A 8 1014

o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO)+(rB).

If the block containing the byte addressed by EA is in the data cache, all bytes of the block
are cleared to zero.

If the block containing the byte addn~ssed by EA is not in the data cache and the
corresponding page is caching allowed, the block is allocated in the data cache without
fetching the block from main memory, ·and all bytes of the block are set to zero.

If the page containing the byte addressed by EA is caching inhibited or write-through, then
the alignment exception handler is invoked and the handler should clear to zero all bytes of
the area of memory that corresponds to the addressed block. If the block containing the byte
addressed by EA is in coherency required mode, and the block exists in the data cache(s)
of any other processor(s), it is kept coherent in those caches.

This instruction is treated as a store to the addressed byte with respect to address translation
and protection.

If the EA specifies a memory address for an I/O controller interface segment (segment
register T-bit= 1), the dcbz instruction is treated as a no-op.

See Chapter 5, "Exceptions" for a discussion about a possible delayed machine check
exception that can occur by use of dcbz if the operating system has set up an incorrect
memory mapping.

Other registers altered:

None

10-44 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

divx POWER Architecture Instruction divx
Divide Integer Unit

div rD,rA,rB (OE=() Rc=O)

div. rD,rA,rB (OE=() Rc=l)

divo rD,rA,rB (OE=I Rc=O)

divo. rD,rA,rB (OE=I Rc=l)

31 0 A B IOEI
0 5 6 10 11 15 16 20 21 22 30 31

This instruction is not part of the PowerPC architecture.

The quotient [(rA)II(MQ)]+(rB) is placed into rD. The remainder is placed in the MQ
register. The remainder has the same sign as the dividend, except that a zero quotient or a
zero remainder is always positive. The results obey the equation:

dividend=(divisor x quotient)+remainder

where dividend is the original (rA)II(MQ), divisor is the original (rB), quotient is the final
(rD), and remainder is the final (MQ).

If Rc=l, then CR bits LT, GT, and EQ reflect the remainder. If OE=I, then SO and OV are
set to one if the quotient cannot be represented in 32 bits. For the case of _231 + -I, the MQ
register is cleared to zero and _231 is placed in rD. For all other overflows, MQ, rD and the
CR() field are undefined (if Rc= I).

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO, OV (if OE=I)

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-45

divsx
Divide Short

divs

divs.

divso

divso.

o
31

5 6

POWER Architecture Instruction

rD,rA,rB (OE=O Rc=O)

rD,rA,rB (OE=O Rc=l)
rD,rA,rB (OE=1 Rc=O)

rD,rA,rB (OE=1 Rc=l)

D A 8 IOEI
10 11 15 16 20 21 22

This instruction is not part of the PowerPC architecture.

divsx
Integer Unit

363

30 31

The quotient (rA)+(rB) is placed into rD. The remainder is placed in the MQ register. The
remainder has the same sign as the dividend, except that a zero quotient or a zero remainder
is always positive. The results obey the equation:

dividend=(divisor*quotient)+remainder

where dividend is the original rA, divisor is the original rB, quotient is the final rD, and
remainder is the final MQ.

If Rc=1 then the CR bits LT, GT, and EQ reflect the remainder. If OE=1 ,then SO and OV
are set to one if the quotient cannot be represented in 32 bits (e.g., as is the case when the
divisor is zero, or the dividend is _231 and the divisor is -1), the MQ register is cleared to
zero and _231 is placed in rD. For all other overflows, MQ, rD and the CRO field (if Rc=l)
are undefi ned.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (If OE=l)

Note: This instruction is specific to the MPC601.

10-46 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

divwx
Divide Word

divw
divw.
divwo
divwo.

31

o 5 6

rD,rA,rB

rD,rA,rB

rD,rA,rB

rD,rA,rB

o
10 11

dividend ~(r A)
divisor ~(rB)
rD ~ dividend + divisor

(OE=O Rc=O)

(OE=O Rc=l)

(OE=1 Rc=O)

(OE=1 Rc=l)

A

15 16 20 21 22

divwx
Integer Unit

491

3031

Register rA is the 32-bit dividend. Register rB is the 32-bit divisor. A 32-bit quotient is
formed and placed into rD. The remainder is not supplied as a result.

Both operands are interpreted as signed integers. The quotient is the unique signed integer
that satisfies the following:

dividend=(quotient times divisor)+r

where

O~ r < Idivisorl

if the dividend is non-negative, and

-Idivisorl < r ~ 0

if the dividend is negative.

If an attempt is made to perform any of the divisions

x'SOOO 0000' /-1

<anything> / 0

then the contents of rD are undefined as are (if Rc=l) the contents of the LT, GT, and EQ
bits of the eRO field. In these cases, if OE=1 then OV is set to 1.

MOTOROLA Chapter 10. Instruction Set 10-47

•

&I

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO, OV (if OE=l)

The 32-bit signed remainder of dividing rA by rB can be computed as follows, except in
the case that rA=_231 and rB=-l.

divw

mull

subf

10-48

rD,rA,rB

rD,rD,rB

rD,rD,rA

rD=quotient

.. D=quotient*divisor

rD=remainder

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

divwux
Divide Word Unsigned

divwu rD,rA,rB

divwu. rD,rA,rB

divwuo rD,rA,rB

divwuo. rD,rA,rB

31 D

o 5 6 10 11

dividend f- (rA)
divisor f- (rB)
rD f- dividend ;- divisor

(OE=O Rc=O)

(OE=O Rc=l)

(OE=l Rc=O)

(OE=l Rc=l)

A

15 16 20 21 22

divwux
Integer Unit

459

30 31

The dividend is the contents of rAe The divisor is the contents of rB. A 32-bit quotient is
formed and placed into rD. The remainder is not supplied as a result.

Both operands are interpreted as unsigned integers. The quotient is the unique unsigned
integer that satisfies the following:

dividend=(quotient * divisor)+r

where

0::; r < divisor.

If an attempt is made to divide by zero, the contents of rD are undefined as are (if Rc=l)
the contents of the LT, GT, and EQ bits of the CRO field. In this case, if DE=l then OV is
set to 1.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO, OV (if OE=l)

The 32-bit signed remainder of dividing rA by rB can be computed as follows, except in
the case that rA=_231 and rB=-1.

divwu

mull

subf

MOTOROLA

rD,rA,rB

rD,rD,rB

rD,rD,rA

rD=quotient

rD=quotient*divisor

rD=remainder

Chapter 10. Instruction Set 10-49

II

II

dozx POWER Architecture Instruction dozx
Difference or Zero Integer Unit

duz rD,rA,rB (OE=O Rc=O)

doz. rD,rA,rB (OE=O Rc=1)

dozo rD,rA,rB (OE=l Rc=O)

dozo. rD,rA,rB (OE=l Rc=l)

31 D A B IOEI 264 IRcl
0 5 6 10 11 15 16 20 21 22 3031

This instruction is not part of the PowerPC architecture.

The sum --, (r A)+(rB) + 1 is placed into rD. If the value in r A is algebraically greater than
the value in rB, rD is set to zero. If Rc=l, the CRO field is set to reflect the result placed in
rD (i.e., if rD is set to zero, EQ is set to 1). If OE= 1, OV can only be set on positive
overflows.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO, OV (if OE=1)

Note: This instruction is specific to the MPC601.

10-50 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

dozi POWER Architecture Instruction dozi
Difference or Zero Immediate Integer Unit

dozi rD,r A,SIMM

9 D A SIMM

o 5 6 10 11 15 16 31

This instruction is not part of the PowerPC architecture.

The sum -,(rA)+SIMM+l is placed into rD. If the value in rAis algebraically greater than
the value of the SIMM field, rD is set to zero.

Other registers altered:

• None

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-51

II

eciwx
External Control Input Word Indexed

eciwx rD,rA,rB

31 D A B 310

o 5 6 10 11 15 16 20 21

if rA=O then b ~ 0
else b ~ (rA)
EA~ b+(rB)
if EAR[E)=1 then

paddr ~ address translation of EA
send load request for paddr to device identified by EAR[RID)
rD ~ word from device

else
DSISR[11) ~ 1
generate data access exception

EA is the sum (rAIO)+(rB).

eciwx
Integer Unit

Em Reserved

30 31

If EAR[E]=I, a load request for the physical address corresponding to EA is sent to the
device identified by EAR[RID], bypassing the cache. The word returned by the device is
placed in rD. The EA sent to the device must be word aligned.

If EAR[E]=O, a data access exception is taken, with bit 11 of DSISR set to 1.

The eciwx instruction is supported for effective addresses that reference ordinary
(SR[T]=O) segments, for EAs mapped by the BAT registers, and for EAs generated when
MSR[DT]=O (direct translation). The instruction is treated as a no-op for EAs that
correspond to I/O controller interface (SR[T]= 1) segments.

The access caused by this instruction is treated as a load from the location addressed by EA
with respect to protection and reference and change recording.

This instruction is defined as an optional instruction by the PowerPC architecture, and may
not be available in all PowerPC implementations.

Other registers altered:

None

10-52 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

ecowx
External Control Output Word Indexed

ecowx rS,rA,rB

o
31 s

5 6

if rA=O then b (- 0
else b(-(rA)
EA(- b+(rB)
ifEAR[E)=l then

10 11

paddr (- address translation of EA

A 8 438

15 16 20 21

send store request for paddr to device identified by EAR[RID)
send rS to device

else
DSISR[11) (- I
generate data access exception

EA is the sum (rAIO)+(rB).

ecowx
Integer Unit

[ill Reserved

30 31

If EAR[E]= 1, a store request for the physical address corresponding to EA and the contents
of rS are sent to the device identified by EAR[RID], bypassing the cache. The EA sent to
the device must be word aligned.

If EAR[E]=O, a data access exception is taken, with bit 11 of DSISR set to 1.

The ecowx instruction is supported for effective addresses that reference ordinary
(SR[T]=O) segments, for EAs mapped by the BAT registers, and for EAs generated when
MSR[DT]=O (direct translation). The instruction is treated as a no-op for EAs that
correspond to I/O controller interface (SR[T]=I) segments. The access caused by this
instruction is treated as a store to the location addressed by EA with respect to protection
and reference and change recording.

This instruction is defined as an optional instruction by the PowerPC architecture, and may
not be available in all PowerPC implementations.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-53

eieio eieio
Enforce I n-Order Execution of liD Integer Unit

[ill) Reserved

31 854

o 5 6 10 11 15 16 20 21 3031

The eieio instruction provides an ordering function for the effects of load and store
instructions executed by a given processor. Executing an eieio instruction ensures that all
memory accesses previously initiated by the given processor are complete with respect to
main memory before any memory accesses subsequently initiated by the given processor
access main memory.

The synchronize (sync) and the enforce in-order execution of I/O (eieio) instructions are
handled in the same manner internally to the MPC601. These instructions delay execution
of subsequent instructions until all previous instructions have completed to the point that
they can no longer cause an exception, all previous memory accesses are performed
globally, and the sync or eieio operation is broadcast onto the MPC601 bus interface.

eieio orders loads/stores to caching inhibited memory and stores to write-through required
memory.

Other registers altered:

None

The eieio instruction is intended for use only in performing memory-mapped I/O
operations and to prevent load/store combining operations in main memory. It can be
thought of as placing a barrier into the stream of memory accesses issued by a processor,
such that any given memory access appears to be on the same side of the barrier to both the
processor and the I/O device.

The eieio instruction may complete before previously initiated memory accesses have been
performed with respect to other processors and mechanisms.

10-54 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

eqvx
Equivalent

eqv

eqv.

o
31

rA,rS,rB

rA,rS,rB

S A

5 6 10 11

rA f- -.«rS) == erR»

(Rc=O)

(Rc=l)

15 16

8

21 22

eqvx
Integer Unit

284

30 31

The contents of rS is XORed with the contents of rB and the complemented result is placed
into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

MOTOROLA Chapter 10. Instruction Set 10-55

1m

•

extsbx
Extend Sign Byte

extsb
extsb.

o
31

5 6

S ~ rS[24)

rA,rS

rA,rS

s
10 11

rA[24-31) ~ rS[24-31)
rA[O-23] ~ (24)S

A

(Rc=O)

(Rc=l)

15 16

954

20 21

extsbx
Integer Unit

Dill Reserved

3031

The contents of rS[24-31 1 are placed into r A[24-31 l. Bit 24 of rS is placed into r A [0-23 l.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

10-56 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

extshx
Extend Sign Half Word

extsh

extsh.

rA,rS

rA,rS

[POWER mnemonics: exts, exts.]

o
31 s

5 6

S+-rS(16)
rAt 16-31)+- rS[16-31)
rA[O-lS) +- (l6)S

10 11

(Rc=O)

(Rc=l)

15 16 20 21

922

extshx
Integer Unit

IE] Reserved

30 31

The contents of rS[16-31] are placed into r A[16-31]. Bit 16 of rS is placed into r A[O-15].

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

MOTOROLA Chapter 10. Instruction Set 10-57

•

fabsx
Floating-Point Absolute Value

fabs
fabs.

o
63

5 6

frD,frB
frD,frB

(Rc=O)
(Rc=l)

1011 1516

8

20 21

The contents of frB with bit 0 cleared to zero is placed into frO.

Other registers altered:

• Condition Register (CRl Field):

Affected: FX, FEX, VX, OX (if Rc=l)

10-58 PowerPC 601 RISC Microprocessor User's Manual

fabsx
Floating-Point Unit

[]] Reserved

264

30 31

MOTOROLA

faddx
Floating-Point Add (Single-Precision)

fadd

fadd.

frD,frA,frB

frD,fr A,frB

[POWER mnemonics: fa, fa.]

o

fadds

fadds.

o

63

59

D

5 6 10 11

frD,fr A,frB

frD,fr A,frB

D

5 6 10 11

A

A

(Rc=O)

(Rc=l)

15 16

(Rc=O)

(Rc=l)

15 16

B

20 21

B

20 21

faddx
Floating-Point Unit

till Reserved

21

2526 30 31

Gill Reserved

21

2526 30 31

The floating-point operand in fr A is added to the floating-point operand in frB. If the most
significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to the target precision under control of the floating-point rounding control field
RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two
significands. The exponents of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal. The two significands are then added
algebraically to form an intermediate sum. All 53 bits in the significand as well as all three
guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for invalid
operation exceptions when FPSCR[VE]=l.

Other registers altered:

• Condition Register (CRI Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPRF, FR, Fl, FX, OX, UX, XX,VXSNAN, VXISI

MOTOROLA Chapter 10. Instruction Set 10-59

•

fcmpo
Floating-Point Compare Ordered

fcmpo

63

o

crID,fr A,frB

crfD

5 6
I·.· •. :.,:: .• · 9·p>1 . :::

8 9 10 11

fcmpo
Floating-Point Unit

Eill Reserved

A B 32

15 16 20 21 30 31

The floating-point operand in frA is compared to the floating-point operand in frB. The
result of the compare is placed into CR Field crfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR Field crfD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set,
and if invalid operation is disabled (VE=O) then VXVC is set. Otherwise, if one of the
operands is a QNaN then VXVC is set.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: FPCC, FX, VXSNAN, VXVC

10-60 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

fcmpu fcmpu
Floating-Point Compare Unordered Floating-Point Unit

fcmpu crfD,fr A,frB

[ill] Reserved

63 A B ,.· •.. ;}i;.;.··; ••• ; •• ·;.· •.• ··.;.@P9P·qp;@P.9>P ·•••· ••• · •• · ••••• 19 .. ·.1

o 5 6 8 9 10 11 15 16 20 21 30 31

The floating-point operand in register fr A is compared to the floating-point operand in
register frB. The result of the compare is placed into CR Field crfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR Field crfD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSN AN is set.

Other registers altered:

Condition Register (CR Field specified by operand crfD):

Affected: FPCC, FX, VXSN AN

MOTOROLA Chapter 10. Instruction Set 10-61

fctiwx
Floating-Point Convert to Integer Word

fctiw
fctiw.

o
63

5 6

frD,frB

frD,frB

o
10 11

(Rc=O)

(Rc=l)

15 16

8

20 21

fctiwx
Floating-Point Unit

!ill] Reserved

14

30 31

The floating-point operand in register frB is converted to a 32-bit signed integer, using the
rounding mode specified by FPSCR[RN], and placed in bits 32-63 of frD. Bits 0-31 of frD
are undefined.

If the contents offrB is greater than 231 _1, bits 32-63 offrD are set to x '7FFF_FFFF '.

If the contents of frB is less than _231 , bits 32-63 of frD are set to x '8()()O_OOOO '.

The conversion is described fully in Appendix F.2, "Conversion from Floating-Point
Number to Unsigned Fixed-Point Integer Word."

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined.
FPSCR[FR] is set if the result is incremented when rounded. FPSCR[FI] is set if the result
is inexact.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

10-62 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

fctiwzx
Floating-Point Convert to Integer Word with Round toward Zero

fctiwz
fctiwz.

63

o 5 6

frO,frB

frO,frB

D

10 11

(Rc=O)

(Rc=l)

15 16

B

20 21

fctiwzx
Floating-Point Unit

[ill] Reserved

15

30 31

The floating-point operand in register frB is converted to a 32-bit signed integer, using the
rounding mode round toward zero, and placed in bits 32-63 of frO. Bits 0-31 of frO are
undefined.

If the operand in frB is greater than 231 _1, bits 32-63 of frO are set to x '7FFF _FFFF '.

If the operand in frB is less than _231 , bits 32-63 of frO are set to x 'ROOO_OOOO '.

The conversion is described fully in Appendix F.2, "Conversion from Floating-Point
Number to Unsigned Fixed-Point Integer Word."

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined.
FPSCR[FR] is set if the result is incremented when rounded. FPSCR[FI] is set if the result
is inexact.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

MOTOROLA Chapter 10. Instruction Set 10-63

fdivx
Floating-Point Divide (Single-Precision)

fdiv

fdiv.

frD,fr A,frB

fr D,fr A,fr B

[POWER mnemonics: fd, fd.]

o

fdivs

fdivs.

o

63

59

D

5 6 10 11

frD,frA,frB

fr D,fr A,fr B

D

5 6 10 11

A

A

(Rc=O)

(Rc=l)

15 16

(Rc=O)

(Rc=l)

15 16

B

20 21

B

20 21

fdivx
Floating-Point Unit

!ill] Reserved

18

2526 30 31

[2] Reserved

18

2526 30 31

The floating-point operand in register frA is divided by the floating-point operand in
register frB. No remainder is preserved.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]=l and zero divide exceptions when FPSCR[ZE]=I.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

10-64 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

fmaddx fmaddx
Floating-Point Multiply-Add (Single-Precision) Floating-Point Unit

frnadd fr O,fr A,frC,fr B (Rc=O)

frnadd. frD,frA,frC,frB (Rc=l)

[POWER mnemonics: frna, frna.]

63 0 A B C 29 IRcl
0 5 6 10 11 15 16 20 21 2526 30 31

frnadds fr D,fr A,frC,fr B (Rc=O)
frnadds. frO,frA,frC,frB (Rc=l)

59 0 A B C 29 IRcl
0 5 6 10 11 15 16 20 21 2526 30 31

The following operation is performed:

frD f- [(frA)*(frC)]+(frB)

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is added to this intermediate result.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frO.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]= 1.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

MOTOROLA Chapter 10. Instruction Set 10-65

1&1

•

fmrx
Floating-Point Move Register

fmr
fmr.

63

frD,frB
frD,frB

(Rc=O)
(Rc=1)

o 5 6 1011 1516

The contents of register frB is placed into frD.

Other registers altered:

• Condition Register (CRl Field):

B

Affected: FX, FEX, VX, OX (if Rc=l)

20 21

10-66 PowerPC 601 RISC Microprocessor User's Manual

fmrx
Floating-Point Unit

[ill] Reserved

72

3031

MOTOROLA

fmsubx fmsubx
Floating-Point Multiply-Subtract (Single-Precision) Floating-Point Unit

fmsub frO,frA,frC,frB (Rc=O)

fmsub. frO,frA,frC,frB (Rc=1)

[POWER mnemonics: fms, fms.]

63 D A B C 28 IRel
0 5 6 10 11 15 16 20 21 2526 30 31

fmsubs fr O,fr A,frC,fr B (Rc=O)

fmsubs. fr O,fr A,frC,fr B (Rc=1)

59 D A B C 28 IRel
0 5 6 10 11 15 16 20 21 2526 30 31

The following operation is performed:

frO f- [(frA)*(frC»)- (frB)

The floating-point operand in register frA is multiplied by the floating-point operand in
register fre. The floating-point operand in register frB is subtracted from this intermediate
result.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frO.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]= 1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Hoating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

MOTOROLA Chapter 10. Instruction Set 10-67

fmulx fmulx
Floating-Point Multiply (Single-Precision) Floating-Point Unit

fmul

fmul.

frD,fr A,frC

frD,fr A,frC

[POWER mnemonics: fm, fm.]

o

fmuls

fmuls.

o

63

59

D

5 6 10 11

fr D,fr A,frC

fr D,fr A,frC

D

5 6 10 11

A

A

(Rc=())

(Rc=l)

15 16

(Rc=())

(Rc=l)

c
20 21 2526

15 16 20 21 25 26

[ill] Reserved

25

3031

EII Reserved

30 31

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frO.

Floating-point mUltiplication is based on exponent addition and multiplication of the
significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]= 1.

Other registers altered:

• Condition Register (CRI Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

10-68 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

fnabsx
Floating-Point Negative Absolute Value

fnabs

fnabs.

o
63

5 6

frD,frB
frD,frB

(Rc=())

(Rc=l)

1011 1516

B

20 21

The contents of register frB with bit () set to one is placed into frO.

Other registers altered:

• Condition Register (CRI Field):

Affected: FX, FEX, VX, OX (if Rc=l)

MOTOROLA Chapter 10. Instruction Set

fnabsx
Floating-Point Unit

12] Reserved

136

2526 30 31

10-69

fnegx
Floating-Point Negate

fneg
fneg.

o
63

5 6

frD,frB
frD,frB

D

10 11

(Rc=O)

(Rc=l)

15 16

B

20 21

The contents of register frB with bit 0 inverted is placed into frO.

Other registers altered:

• Condition Register (CRI Field):

Affected: FX, FEX, VX, OX (if Rc=l)

10-70 PowerPC 601 RISC Microprocessor User's Manual

fnegx
Floating-Point Unit

Gill Reserved

40

3031

MOTOROLA

fnmaddx
Floating-Point Negative Multiply-Add (Single-Precision)

fnmadd frO,frA,frC,frB

fnrnadd. frO,fr A,frC,frB

[POWER mnemonics: fnrna, fnrna.]

63 0 A

0 5 6 10 11

fnrnadds fr O,fr A,frC,fr B

fnrnadds. frO,frA,frC,frB

59 0 A

0 5 6 10 11

The following operation is performed:

frD ~ -([(frA)*(frC)]+(frB»

(Rc=O)

(Rc=l)

15 16

(Rc=O)

(Rc=l)

15 16

B

20 21

B

20 21

fnmaddx
Floating-Point Unit

C 31 IRel
2526 30 31

C 31 IRel
2526 3031

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is added to this intermediate result.
If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR, then negated and placed into frO.

This instruction produces the same result as would be obtained by using the floating-point
multiply-add instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]= I.

MOTOROLA Chapter 10. Instruction Set 10-71

Other registers altered:

• Condition Register (CRI Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

10-72 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

fnmsubx fnmsubx
Floating-Point Negative Multiply-Subtract (Single-Precision) Floating-Point Unit

fnmsub fr D,fr A,frC,fr 8 (Rc=O)

fnmsub. frD,fr A,frC,frB (Rc=l)

[POWER mnemonics: fnms, fnms.

63 D A B C 30 IRcl
0 5 6 10 11 15 16 20 21 2526 30 31

fnmsubs frD,fr A,frC,frB (Rc=O)

fnmsubs. frD,fr A,frClrB (Rc=l)

59 D A B C 30 IRcl
0 5 6 10 11 15 16 20 21 2526 30 31

The following operation is performed:

frD f-- -([(frA)*(frC») - (frB))

The floating-point operand in register frA is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is subtracted from this intermediate
result.

If an operand is a denormalized number, it is prenormalized before the operation is started.
If the most significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to the target precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result obtained by negating the result of a floating
multiply-subtract instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]= 1.

MOTOROLA Chapter 10. Instruction Set 10-73

III

•

Other registers altered:

• Condition Register (CR 1 Field)

Affected: FX, FEX, VX, OX (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

10-74 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

frspx
Floating-Point Round to Single-Precision

frsp
frsp.

o
63

5 6

frD,frB
frD,frB

o
10 11

(Rc=())

(Rc=1)

15 16

frspx
Floating-Point Unit

[ill] Reserved

B 12

20 21 30 31

If it is already in single-precision range, the floating-point operand in register frB is placed
into frO. Otherwise the floating-point operand in register frB is rounded to single-precision
using the rounding mode specified by FPSCR[RN] and placed into frO.

The rounding is described fully in Appendix F.l, "Conversion from Hoating-Point Number
to Signed Fixed-Point Integer Word."

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]=l.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Hoating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN

MOTOROLA Chapter 10. Instruction Set 10-75

fsubx
Floating-Point Subtract (Single-Precision)

fsub frD,frA,frB

fsub. frD,frA,frB

[POWER mnemonics: fs, fs.]

o

fsubs

fsubs.

o

63

59

D

5 6 10 11

frD,frA,frB

fr D,fr A,fr B

D

5 6 10 11

A

A

(Rc=O)

(Rc=l)

15 16

(Rc=O)

(Rc=l)

15 16

fsubx
Floating-Point Unit

Ern Reserved

B 20

20 21 2526 30 31

[21 Reserved

B 20

20 21 2526 30 31

The floating-point operand in register frB is subtracted from the floating-point operand in
register frA. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

The execution of the floating-point subtract instruction is identical to that of floating-point
add, except that the contents of frB participates in the operation with its sign bit (bit 0)
inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]= 1.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

10-76 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

icbi icbi
Instruction Cache Block Invalidate Integer Unit

icbi rA,rB

[ill Reserved

31 A B 982

o 5 6 10 11 15 16 20 21 30 31

EA is the sum (rAIO)+(rB)

In other PowerPC processors, if the block containing the byte addressed by EA is in
coherency required mode, and a block containing the byte addressed by EA is in the
instruction cache of any processor, the block is made invalid in all such processors, so that
subsequent references cause the block to be refetched.

Also, if the block containing the byte addressed by EA is in coherency not required mode,
and a block containing the byte addressed by EA is in the instruction cache of this
processor, the block is made invalid in this processor, so that subsequent references cause
the block to be fetched from main memory (or perhaps from a data cache).

The MPC601 treats the icbi instruction as a no-op, even to the extent of not validating the
EA.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-77

II

isync isync
Instruction Synchronize Integer Unit

isync

[POWER mnemonic: ics]

[ill] Reserved

19 150

o 5 6 10 11 15 16 20 21 3031

This instruction waits for all previous instructions to complete and then discards any
prefetched instructions, causing subsequent instructions to be fetched (or refetched) from
memory and to execute in the context established by the previous instructions. This
instruction has no effect on other processors or on their caches.

This instruction is context synchronizing.

Other registers altered:

None

10-78 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Ibz Ibz
Load Byte and Zero Integer Unit

Ibz rD,d(rA)

34 D A d

o 5 6 10 11 15 16 31

if rA=O thcn b ~ 0
elsc b ~ (rA)
EA ~ b+EXTS(d)
rD ~ (24)0 II MEM(EA, I)

The effective address is the sum (rAIO) + d. The byte in memory addressed by EA is loaded
into rD[24-31]. Bits rD[O-23] are cleared to O.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-79

•

•

Ibzu
Load Byte and Zero with Update

Ibzu

o

rD,d(rA)

35 o
5 6 10 11

if rA={) then h ~ ()
else h ~ (rA)
EA ~ h+EXTS(d)
rD~(24)O II MEM(EA. 1)
rA~EA

Ibzu
Integer Unit

A d

15 16 31

EA is the sum (rAIO) + d. The byte in memory addressed by EA is loaded into rD[24-31].
Bits rD[O-23] are cleared to O.

EA is placed into r A.

If operand rA=O the MPC601 does not update register rO, or if rA=rD the load data is
loaded into register rD and the register update is suppressed. The PowerPC architecture
defines load with update instructions with operand rA=O or rA=rD as invalid forms

Other registers altered:

None

10-80 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Ibzux
Load Byte and Zero with Update Indexed

Ibzux

o

rD,rA,rB

31 D A

5 6 10 11

if rA=lJ then h ~ 0
else h ~ (rA)
EA~ h+(rB)
rD ~ (24)0 II MEM(EA. 1)
rA~EA

8 119

15 16 20 21

Ibzux
Integer Unit

[ill] Reserved

30 31

EA is the sum (r AIO) + (rB). The byte addressed by EA is loaded into rD[24-31]. Bits
rD[O-23] are set to O.

EA is placed into rA.

If operand r A=O the MPC601 does not update register rO, or if r A=rD the load data is
loaded into register rD and the register update is suppressed. The PowerPC architecture
defines load with update instructions with operand rA=O or rA=rD as invalid forms

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-81

II

Ibzx Ibzx
Load Byte and Zero Indexed Integer Unit

Ibzx rD,rA,rB

fill] Reserved

31 o A B 87

o 5 6 10 11 15 16 20 21 30 31

if rA=O then h f- 0
else hf-(rA)
EA f- h+(rB)
rO f- (24)0 II MEM(EA. 1)

EA is the sum (rAIO) + (rB). The byte in memory addressed by EA is loaded into
rD[24-31].

Bits rD[O-23] are set to O.

Other registers altered:

None

10-82 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Ifd Ifd
Load Floating-Point Double-Precision Integer Unit and

Floating-Point Unit

Ifd frO,d(rA)

50 o A d

o 5 6 10 11 15 16 31

if rA=O then h ~ II
else b ~ (rA)
EA ~ h+EXTS(d)
frD ~ MEM(EA. R)

EA is the sum (rAIO) + d.

The double word in memory addressed by EA is placed into frO.

Other registers altered:

None

II

MOTOROLA Chapter 10. Instruction Set 10-83

•

Ifdu
Load Floating-Point Double-Precision with Update

Ifdu

o

frD,d(rA)

51 o
5 6

if rA=O then h +- 0
else h+-(rA)
EA +- h+EXTS(d)
frD +- MEM(EA, X)
rA+- EA

10 11

EA is the sum (rAIO) + d.

A

15 16

The double word in memory addressed by EA is placed into frO.

EA is placed into rA.

Ifdu
Integer Unit and

Floating-Point Unit

d

31

If operand rA=O the MPC601 does not update register rOo The PowerPC architecture
defines load with update instructions with operand rA=O as an invalid form.

Other registers altered:

None

10-84 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Ifdux Ifdux
Load Floating-Point Double-Precision with Update Indexed Integer Unit and

Floating-Point Unit

Ifdux frO,rA,rB

[ill] Reserved

31 D A B 6~

o 5 6 10 11

if rA=O then h f- 0
else h f- (rA)
EA f- h+(rB)
frD f- MEM(EA. X)
rAf- EA

EA is the sum (rAIO) + (rB).

15 16 20 21

The double word in memory addressed by EA is placed into frO.

EA is placed into r A.

30 31

If operand rA=O the MPC601 does not update register rOo The PowerPC architecture
defines load with update instructions with operand rA=O as an invalid form.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-85

•

II

Ifdx Ifdx
Load Floating-Point Double-Precision Indexed Integer Unit and

Floating-Point Unit

Ifdx frD,rA,rB

[ill] Reserved

31 o A B 599

o 5 6 10 11 15 16 20 21

if rA=O then b ~ 0
else b ~ (rA)
EA~ b+(rB)
frD ~ MEM(EA, 8)

EA is the sum (rAIO) + (rB).

The double word in memory addressed by EA is placed into frO.

Other registers altered:

• None

10-86 PowerPC 601 RISC Microprocessor User's Manual

3031

MOTOROLA

Ifs Ifs
Load Floating-Point Single-Precision Integer Unit and

Floating-Point Unit

Ifs frD,d(rA)

48 o A d

o 5 6 10 11 15 16 31

if rA=O then b ~ 0
else b ~ (rA)
EA ~ b+EXTS(d)
frD ~ DOUBLE(MEM(EA. 4))

EA is the sum (rAIO) + d.

The word in memory addressed by EA is interpreted ao.; a floating-point single-precision
operand. This word is converted to floating-point double-precision (see Section 3.6.9.1,
"Double-Precision Conversion for Roating-Point Load Instructions") and placed into frO.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-87

&I

Ifsu
Load Floating-Point Single-Precision with Update

Ifsu

o

frD,d(rA)

49 o
5 6 10 11

if rA=() then b f- 0
else b f- erA)
EA f- b+EXTS(d)
frD f- DOURLE(MEM(EA, 4))
rAf-EA

EA is the sum (r AIO) + d.

A

15 16

Ifsu
Integer Unit and

Floating-Point Unit

d

31

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see Section 3.6.lJ.l ,
"Double-Precision Conversion for Floating-Point Load Instructions") and placed into frO.

EA is placed into r A.

If operand rA=O the MPC601 does not update register rOo The PowerPC architecture
defines load with update instructions with operand rA=O as an invalid form.

Other registers altered:

None

10-88 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Ifsux Ifsux
Load Floating-Point Single-Precision with Update Indexed Integer Unit and

Floating-Point Unit

Ifsux frD,rA,rB

[ill] Reserved

31 o A B 567

o 5 6 10 11

if r A=O then h f-- ()
else hf--(rA)
EA f-- h+(rB)
frD f-- DOUBLE(MEM(EA, 4))
rAf-- EA

EA is the sum (rAIO) + (rB).

15 16 20 21 30 31

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. 1 his word is converted to floating-point double-precision (see Section 3.6.9.1,
"Double-Precision Conversion for Hoating-Point Load Instructions") and placed into frO.

EA is placed into r A.

If operand rA=O the MPC601 does not update register rOo The PowerPC architecture
defines load with update instructions with operand rA=O as an invalid form.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-89

•

Ifsx
Load Floating-Point Single-Precision Indexed

Ifsx frD,rA,rB

Ifsx
Integer Unit and

Floating-Point Unit

[±J Reserved

31 D A B 535

o 5 6 10 11 15 16 20 21 30 31

if rA=O then b f- 0
else bf-(rA)
EAf- b+(rB)
frD f- DOUBLE(MEM(EA, 4»

EA is the sum (rAIO) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see Section 3.n. 9.1,
"Double-Precision Conversion for Floating-Point Load Instructions") and placed into frO.

Other registers altered:

None

10-90 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Iha Iha
Load Half Word Algebraic Integer Unit

Iha rD,d(rA)

42 D A d

o 5 6 10 11 15 16

if rA=<> then b ~ 0
else b ~ (rA)
EA ~ h+EXTS(d)
rD ~ EXTS(MEM(EA, 2))

EA is the sum (r AIO) + d. The half word in memory addressed by EA is loaded into
rD[16-31]. Bits rD[O-15] are filled with a copy of bit 0 of the loaded half word.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set

31

10-91

•

Ihau
Load Half Word Algebraic with Update

Ihau

o

rD,d(rA)

43 D

5 6 10 11

if rA=O then b f- 0
else b f- (rA)
EA f- b+EXTS(d)
rD f- EXTS(MEM(EA, 2))
rA f- EA

A

Ihau
Integer Unit

d

15 16 31

EA is the sum (rAIO) + d. The half word in memory addressed by EA is loaded into rD[I6-
31].

Bits rD[O-15] are filled with a copy of bit 0 of the loaded half word.

EA is placed into rA.

If operand rA::..:O the MPC601 does not update register rO, or if rA=rD the load data is
loaded into register rD and the register update is suppressed. The PowerPC architecture
defines load with update instructions with operand rA=O or rA=rD as invalid forms

Other registers altered:

• None

10-92 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Ihaux
Load Half Word Algebraic with Update Indexed

Ihaux

o

rO,rA,rB

31 o A

5 6 10 11

if rA=O then h ~ 0
else h ~ (rA)
EA~ h+(rB)
rD ~ EXTS(MEM(EA. 2»
rA~EA

8 375

15 16 20 21

Ihaux
Integer Unit

ED Reserved

30 31

EA is the sum (rAIO) + (rB). The half word in memory addressed by EA is loaded into
rO[16-3I]. Bits rO[O-IS] are filled with a copy ofbitO of the loaded half word.

EA is placed into rA.

If operand rA=O the MPC60I does not update register rO, or if rA=rO the load data is
loaded into register rO and the register update is suppressed. The PowerPC architecture
defines load with update instructions with operand rA=O or rA=rO as invalid forms

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-93

•

II

Ihax Ihax
Load Half Word Algebraic Indexed Integer Unit

Ihax rD,rA,rB

[ill] Reserved

31 o A 8 343

o 5 6 10 11 15 16 20 21 3031

if rA=O then b f- 0
else b f- (rA)
EA f- b+(rB)
rD f- EXTS(MEM(EA. 2))

EA is the sum (rAIO) + (rB). The half word in memory addressed by EA is loaded into
rO[16-31]. Bits rD[O-IS] are filled with a copy of bit 0 of the loaded half word.

Other registers altered:

• None

10-94 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Ihbrx Ihbrx
Load Half Word Byte-Reverse Indexed Integer Unit

Ihbrx rD,rA,rB

EB Reserved

31 D A B 790

o 5 6 10 11 15 16 20 21 30 31

if rA=O then h ~ ()
else h~(rA)

EA~ h+(rB)
rD ~ (16)0 II MEM(EA+1, 1) II MEM(EA,l)

EA is the sum (rAIO) + (rB). Bits 0-7 of the half word in memory addressed by EA are
loaded into rD[24-31]. Bits R-IS of the half word in memory addressed by EA are loaded
into rD[16-23]. Bits rD[O-lS] are cleared to O.

The PowerPC architecture cautions programmers that some implementations of the
architecture may run the Ihbrx instructions with greater latency than other types of load
instructions. This is not the case in the MPC601. This instruction operates with the same
latency as other load instructions.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-95

1&1

•

1hz 1hz
Load Half Word and Zero Integer Unit

1hz rD,d(rA)

40 o A d

o 5 6 10 11 15 16 31

if rA=O then b~O
else b ~ rA
EA ~ h+EXTS(d)

rD ~ 0 (16)0 II MEM(EA, 2)

EA is the sum (r AIO) + d. The half word in memory addressed by EA is loaded into rD[] fi-
3]]. Bits rD[O-15] are cleared to O.

Other registers altered:

• None

10-96 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Ihzu
Load Half Word and Zero with Update

Ihzu

o

rD,d(rA)

41 D

5 6 10 11

if rA=O then b f- 0
else bf-(rA)
EA f- b+EXTS(d)
rD f- (1fi)O II MEM(EA. 2)

rA f- EA

A

Ihzu
Integer Unit

d

15 16 31

EA is the sum (r AIO) + d. The half word in memory addressed by EA is loaded into rD[16-
31]. Bits rD[O-IS] are cleared to O.

EA is placed into r A.

If operand rA=O the MPC601 does not update register rO, or if rA=rD the load data is
loaded into register rD and the register update is suppressed. The PowerPC architecture
defines load with update instructions with operand rA=O or rA=rD as invalid forms

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-97

-

1&1

Ihzux
Load Half Word and Zero with Update Indexed

Ihzux

o

rD,rA,rB

31 D A

5 6 10 11

if rA=O then b ~ 0
else b ~ (rA)
EA~ b+(rB)
rDf-(16)O II MEM(EA, 2)

rAf-EA

B ~1

15 16 20 21

Ihzux
Integer Unit

LillI Reserved

30 31

EA is the sum (rAIO) + (rB). The half word in memory addressed by EA is loaded into
rD[I6-31]. Bits rD[O-15] are cleared to O.

EA is placed into r A.

If operand rA=O the MPC601 does not update register rO, or if rA=rD the load data is
loaded into register rD and the register update is suppressed. The PowerPC architecture
defines load with update instructions with operand rA=O or rA=rD as invalid forms

Other registers altered:

None

10·98 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Ihzx Ihzx
Load Half Word and Zero Indexed Integer Unit

Ihzx rD,rA,rB

IillJ Reserved

31 o A B 279

o 5 6 10 11 15 16 20 21 30 31

if rA=O then h~()
else h~rA

EA~h+rB

rD~(l6)O II MEM(EA, 2)

The effective address is the sum (rAIO) + (rB). The half word in memory addressed by EA
is loaded into rD[I6-3I]. Bits rD[O--IS] are cleared to O.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-99

1m

Imw
Load Multiple Word

Imw rD,d(rA)

[POWER mnemonic: 1m]

46 D

o 5 6 10 11

if rA=O then b(-O
else b(-rA
EA(-b+EXTS(d)
r(-rD
do while r ~ 31

GPR(r)(- MEM(EA, 4)
r(-r+l
EA(-EA+4

EA is the sum (rAIO) + d.

n=(32-D).

Imw
Integer Unit

A d

15 16 31

n consecutive words starting at EA are loaded into the 32 bits of GPRs rD through r31. EA
must be a multiple of 4; otherwise, the system alignment exception handler is invoked if
the load crosses a page boundary.

If rA is in the range of registers specified to be loaded, it will be skipped in the load process.
If operand r A=O, the register is not considered as used for addressing, and will be loaded.

Other registers altered:

None

10-100 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Iscbxx POWER Architecture Instruction Iscbxx
Load String and Compare Byte Indexed Integer Unit

Iscbx rD,rA,rB (Rc=O)

Iscbx. rD,rA,rB (Rc=O)

31 0 A 8 277 IRcl
0 5 6 10 11 15 16 20 21 30 31

This instruction is not part of the Po\\erPC architecture.

EA is the sum (rAIO) + (rB). XER[25-31] contains the byte count. Register rD is the
starting register.

n=XER[25-31], which is the number of bytes to be loaded. I1r=(n/4), which is the number
of registers to receive data.

Starting with the leftmost byte in rD, consecutive bytes in memory addressed by the EA
are loaded into rD through rD+nr-l, wrapping around back through GPR 0 if required,
until either a byte match is found with XER[16-23] or n bytes have been loaded. If a byte
match is found, that byte is also loaded.

Bytes are always loaded left to right in the register. In the case when a match was found
before n bytes were loaded, the contents of the rightmost byte(s) not loaded of that register
and the contents of all succeeding registers up to and including rD+nr-l are undefined.
Also, no reference is made to memory after the matched byte is found. In the case when a
match was not found, the contents of the rightmost byte(s) not loaded of rD+nr-l is
undefined.

When XER[25-31]=0, the content of rD is undefined.

The count of the number of bytes loaded up to and including the matched byte, if a match
was found, is placed in XER[25-31].

If r A and rB are in the range of registers specified to be loaded, it will be skipped in the
load process. If operand r A=O, the register is not considered as used for addressing, and
will be loaded.

Other registers affected:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: XER[25-31]=# of bytes loaded

MOTOROLA Chapter 10. Instruction Set 10-101

Note: If Rc=l and XER[25-31]=O then the CRO field is undefined. If Rc=l and
XER[25-31]~O then the CRO field is set as follows:

LT, GT, EQ, SO =b'OO' /I match /I XER(SO)

10-102 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Iswi
Load String Word Immediate

Iswi rD,rA,NB

[POWER mnemonic: lsi]

o
31 D A

5 6 10 11

if r A=O then EA ~O
else EA~rA

if NB=O then n~ 32
else n~NB

r~rD-I

i~32

do while n 2! ()
if i=32 then
r~r+ I (mod 32)

GPR(r)~()

GPR(r)[i-i+7]f--MEM(EA, 1)

i~i+8

The EA is (rA I 0).

Iswi
Integer Unit

[ill] Reserved

NB 597

15 16 20 21 30 31

Let n=NB if NB*O, n=32 if NB=O; n is the number of bytes to load. Let nr=CEIL(n/4); nr
is the number of registers to be loaded with data.

n consecutive bytes starting at the EA are loaded into GPRs rD through rD+nr-l. Bytes are
loaded left to right in each register. The sequence of registers wraps around to rO if required.
If the four bytes of register rD+nr-1 are only partially filled, the unfilled low-order byte(s)
of that register are cleared to 0.

If rA is in the range of registers specified to be loaded, it will be skipped in the load process.
If operand r A=O, the register is not considered as used for addressing, and will be loaded.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-103

1&1

Iswx
Load String Word Indexed

Iswx rD,rA,rB

[POWER mnemonic: Isx]

o
31 D A

5 6 10 11

if rA=O then b~O
else b~rA

EA~b+rB

n~XER[25-31J

r~rD - 1
i~32

do while n>O
ifi=32 then
r~r+l (mod 32)
GPR(r)~O

GPR(r)[i-i+7J~MEM(EA, 1)

i~i+8

Iswx
Integer Unit

mm Reserved

B ~3

15 16 20 21 30 31

EA is the sum (rAIO)+(rB). Let n=XER[25-31]; n is the number of bytes to load. Let
nr=CEIL(n/4): nr is the number of registers to receive data.

If n>O, n consecutive bytes starting at EA are loaded into GPRs rD through rD+nr-l.

Bytes are loaded left to right in each register. The sequence of registers wraps around
through rO if required. If the bytes of rD+nr-l are only partially filled, the unfilled low­
order byte(s) of that register are cleared to O.

If n=O, the content of rD is undefined.

If r A and rB are in the range of registers specified to be loaded, it will be skipped in the
load process. If operand r A=O, the register is not considered as used for addressing, and
will be loaded.

Other registers altered:

• None

10-104 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Iwarx
Load Word and Reserve Indexed

Iwarx

o

rD,rA,rB

31 D

5 6 10 11

if r A=O then bf-O
else bf-rA
EAf-b+rB
RESERVEf-l
RESERVE_ADDR f-func(EA)
rDf-MEM(EA,4)

Iwarx
Integer Unit

[E] Reserved

A B 20

15 16 20 21 30 31

EA is the sum (r AIO) + (rB). The word in memory addressed by EA is loaded into rD.

This instruction creates a reservation for use by a store word conditional instruction. An
address computed from the EA is associated with the reservation, and replaces any address
previously associated with the reservation: the manner in which the address to be associated
with the reservation is computed from the EA is described in Section 3.1.1, "Effective
Address Calculation".

The EA must be a multiple of 4. If it is not, the alignment exception handler will be invoked
if the load crosses a page boundary, or the results will be boundedly undefined.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-105

•

Iwbrx
Load Word Byte-Reverse Indexed

Iwbrx rD,rA,rB
[POWER mnemonic: Ibrx]

31 o A

o 5 6 10 11

if r A=O then hf-O
else hf-rA

EAf-b+rB

rDf-MEM(EA+3, 1) II MEM(EA+2, 1)
II MEM(EA+l, 1) II MEM(EA, 1)

Iwbrx
Integer Unit

[ill] Reserved

B 534

15 16 20 21 30 31

EA is the sum (rAIO)+(rB). Bits 0-7 of the word in memory addressed by EA are loaded
into rD[24-31]. Bits R-15 of the word in memory addressed by EA are loaded into
rD[16--23]. Bits 16--23 of the word in memory addressed by EA are loaded into rD[8-15].
Bits 24-31 of the word in memory addressed by EA are loaded into rD[O-7].

The PowerPC architecture cautions programmers that some implementations of the
architecture may run the Iwbrx instructions with greater latency than other types of load
instructions. This is not the case in the MPC601. This instruction operates with the same
latency as other load instructions .

Other registers altered:

• None

10-106 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Iwz
Load Word and Zero

Iwz rD,d(rA)

[POWER mnemonic: I]

o
32 D

5 6

if rA=O then h~O
else h~rA

EA~h+EXTS(d)

rD~MEM(EA, 4)

10 11

Iwz
Integer Unit

A d

15 16 31

EA is the sum (r AIO) + d. The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-107

..

Iwzu
Load Word and Zero with Update

IWZll rD,d(rA)

[POWER mnemonic: Ill]

o
33 D

5 6

if rA=(J then b f- (J
else b f- (rA)
EA f- b+EXTS(d)
rD~MEM(EA, 4)

rA~EA

10 11

Iwzu
Integer Unit

A d

15 16 31

EA is the sum (rAIO) + d. The word in memory addressed by EA is loaded into rD.

EA is placed into r A.

If operand rA=O the MPC601 does not update register rO, or if rA=rD the load data is
loaded into rD and the register update is suppressed. The PowerPC architecture defines
load with update instructions with operand rA=O or rA=rD as invalid forms.

Other registers altered:

• None

10-108 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Iwzux
Load Word and Zero with Update Indexed

Iwzux rD,rA,rB

[POWER mnemonic: lux]

o
31 D A

5 6 10 11

if rA=O then b f- 0
else b f- (rA)
EAf- b+(rB)
rD~MEM(EA. 4)
rA~EA

B 55

15 16 20 21

Iwzux
Integer Unit

IillJ Reserved

30 31

EA is the sum (rAIO)+(rB). The word in memory addressed by EA is loaded into rD.

EA is placed into rA.

If operand rA=O the MPC601 does not update register rO, or if rA=rD the load data is
loaded into register rD and the register update is suppressed. The PowerPC architecture
defines load with update instructions with operand rA=O or rA=rD as invalid forms

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-109

1&1

•

Iwzx
Load Word and Zero Indexed

Iwzx rD,rA,rB

[POWER mnemonic: Ix]

o
31 o A

5 6 10 11

if r A=O then h~O
else h~rA

EA~b+rB

rD~MEM(EA, 4)

Iwzx
Integer Unit

Eill Reserved

B 23

15 16 20 21 30 31

EA is the sum (rAIO) + (rB). The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

10·110 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

maskgx POWER Architecture Instruction maskgx
Mask Generate

maskg

maskg.

31

rA,rS,rB

rA,rS,rB

S A

(Rc=O)

(Rc=l)

B 29

o 5 6 10 11 15 16 20 21

This instruction is not part of the PowerPC architecture.

Let mstart=rS[27-31], specifying the starting point of a mask of ones. Let
mstop=rB[27-31], specifying the end point of the mask of ones.

If mstart < mstop+ I then

MAS K(mstart..mstop)=ones

MASK(all other bits)=zeros

If mstart=mstop = I then

MASK(O-31)=ones

If mstart>mstop+ I then

MASK(mstop+ I .. mstart-I)=zeros

MASK(all other bits)=ones

MASK is then placed in rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC60 I.

MOTOROLA Chapter 10. Instruction Set

Integer Unit

30 31

10-111

mas ki r x POWER Architecture Instruction
Mask Insert from Register

maskir

maskir.

31

o 5 6

rA,rS,rB

rA,rS,rB

s
10 11

A

(Rc=O)

(Rc=l)

15 16

B

20 21

This instruction is not part of the PowerPC architecture.

Register rS is inserted into r A under control of the mask in rB.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

10-112 PowerPC 601 Rise Microprocessor User's Manual

maskirx
Integer Unit

541

3031

MOTOROLA

mcrf mcrf
Move Condition Register Field Integer Unit

merf erfD,erfS

I£] Reserved

19 crfD

o 5 6 8 9 1 0 11 13 14 15 16 20 21 30 31

CR[4*crfD:4*crfD+3) ~ CR[4*crfS:4*crfS+3)

The contents of condition register field erfS are copied into condition register field crfD.
All other condition register fields remain unchanged.

Note that if the link bit (bit 31) is set for this instruction, the PowerPC architecture
considers the instruction to be of an invalid form. Relative to the MPC601, this instruction
executes and the link register is left in an undefined state.

Note: Use of invalid instruction forms is not recommended. This description is provided
for informational purposes only.

Other registers altered:

Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

MOTOROLA Chapter 10. Instruction Set 10-113

•

II

mcrfs mcrfs
Move to Condition Register from FPSCR Floating-Point Unit

merfs erfD,erfS

[2J Reserved

64

o 56 891011 13141516 2021 30 31

The contents of FPSCR field erfS are copied to CR Field erfD. All other CR fields are
unchanged. All exception bits copied are reset to zero in the FPSCR.

Other registers altered:

• Condition Register (CR Field specified by operand erfS):

Affected: FX, OX (if erfS=O)

Affected: UX, ZX, XX, VXSNAN (if ~rfS=l)

Affected: VXISI, VXIDI, VXZDZ, VXIMZ (if erfS=2)

Affected: VXVC (if errS=3)

Affected: VXSOFT, VXSQRT, VXCVI (if erfS=5)

10-114 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mcrxr
Move to Condition Register from XER

mcrxr crfD

o
31 crfD

5 6 8 9 10 11

CR[4*crtD+3]~XER[O-31

XER[O-31~ h'OOOO'

mcrxr
Integer Unit

[ill] Reserved

512

15 16 20 21 30 31

The contents of XER[O--3] are copied into the condition register field designated by crfD.
All other fields of the condition register remain unchanged. XER[O-3] is cleared to zero.

Other registers altered:

• Condition Register (CR Field specified by crfD operand):

Affected: LT, GT, EQ, SO

• XER[O-3]:

MOTOROLA Chapter 10. Instruction Set 10-115

•

10·116

THIS PAGE
INTENTIONALL V

LEFT BLANK.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mfcr mfcr
Move from Condition Register Integer Unit

mfer rD

(ill] Reserved

31 o 19

o 56 10 11 15 16 20 21 30 31

rD~CR

The contents of the condition register are placed into rD.

Other registers altered:

• None

I&]

MOTOROLA Chapter 10. Instruction Set 10-117

•

mffsx
Move from FPSCR

mffs
mffs.

o
63

56

frO
frD

10 11

(Rc=O)
(Rc=1)

15 16

583

20 21

mffsx
Integer Unit

[E) Reserved

3031

The contents of the FPSCR are placed into bits 32-63 of register frO. Bits 0-31 of register
frO are undefined.

Other registers altered:

• Condition Register (CR1 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

POWER Compatibility Note: The PowerPC architecture defines bits 0-31 of fioating­
point register frD as undefined. In the MPC601, these bits take on the value
x 'FFF8_0000' .

10-118 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mfmsr
Move from Machine State Register

mfmsr rD

31 D

o 56 10 11 15 16

rDf- MSR

The contents of the MSR are placed into rD.

This is a supervisor-level instruction.

Other registers altered:

• None

20 21

MOTOROLA Chapter 10. Instruction Set

mfmsr
Integer Unit

Em Reserved

83

30 31

10-119

mfspr
Move from Special Purpose Register

mfspr

o

rD,SPR

31 o SPR

5 6 10 11

nf-rO[5-9]II rO[O-4]
rOf- SPR(n)

mfspr
Integer Unit

Ell Reserved

339

20 21 30 31

The SPR field denotes a special purpose register, encoded as shown in Table 10-4. The
contents of the designated special purpose register are placed into rD.

The value of SPR[O] is 1 if and only if reading the register is at the supervisor-level.
Execution of this instruction specifying a supervisor-level register when MSR[PR]= 1 will
result in a supervisor-level instruction type program exception.

If the SPR field contains a value that is not valid for the MPC601, the instruction form is
invalid. For an invalid instruction form in which SPR[O]=l, if MSR[PR]=l a supervisor­
level instruction type program exception will occur instead of an no-op.

Other registers altered:

None

Table 10-4. SPR Encodings for mfspr

SPR*
Register Access

Decimal SPR[5-9] SPR[0-4]
Name

0 00000 00000 MQ User

1 00000 00001 XER User

4 00000 00100 RTCU User

5 00000 00101 RTCL User

6 00000 00110 DEC User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

10-120 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 10-4. SPR Encodings for mfspr(Continued)

* SPR
Register

Name
Access

Decimal SPR[5-9] SPR[0-4]

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRRO Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRGO Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

287 01000 11111 PVR Supervisor

528 10000 10000 BATOU Supervisor

529 10000 10001 BATOL Supervisor

530 10000 10010 BAT1U Supervisor

531 10000 10011 BAT1L Supervisor

532 10000 10100 BAT2U Supervisor

533 10000 10101 BAT2L Supervisor

534 10000 10110 BAT3U Supervisor

535 10000 10111 BAT3L Supervisor

1008 11111 10000 Checkstop Supervisor
Register
(HIDO)

1009 11111 10001 Debug Mode Supervisor
Register
(HID1)

1010 11111 10010 IABR (HID2) Supervisor

1013 11111 10101 DABR (HID5) Supervisor

1023 11111 11111 PIR (HID15) Supervisor

*Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding.

If the SPR field contains any value other than one of these implementation-specific values or one
of the values shown in Table 3-40, the instruction form is invalid.

spr[0]=1 if and only if writing the register is supervisor-level. Execution of this instruction specifying
a defined and supervisor-level register when MSR[PR]=1 results in a privilege violation type pro­
gram exception.

MOTOROLA Chapter 10. Instruction Set 10-121

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear
directly as a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves
that are reversed in the instruction, with the high-order 5 bits appearing in bits 16-20 of the instruc­
tion and the low-order 5 bits in bits 11-15.

SPR encodings for the DEC, MO, RTCL and RTCU registers are not part of the PowerPC architec­
ture.

10-122 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mfsr mfsr
Move from Segment Register Integer Unit

mfsr rD,SR

[§J Reserved

31 D SR 595

o 5 6 10 11 12 15 16 20 21 30 31

rDf-SEGREG(SR)

The contents of segment register SR is placed into rD.

This is a supervisor-level instruction.

This instruction is defined only for 32-bit implementations; using it on a 64-bit
implementation causes an illegal instruction type program exception.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-123

mfsrin mfsrin
Move from Segment Register Indirect Integer Unit

mfsrin rD,rB

EiliI Reserved

31 o
I

:::.i:,:.:::,'., :::::::::::6::&%::0::6 ':":'::':";'~"'.:.::.::: .. :::'.:':i.:.:.,1
~ ;:::;:;:::;:::::::;::::::::::::::::::::.:.:. - B 659 !.!q:::1

o 56 10 11 15 16 20 21 3031

rDf-SEGREG(rB[O-3])

The contents of the segment register selected by bits 0-3 of rB are copied into rD.

This is a supervisor-level instruction.

This instruction is defined only for 32-bit implementations. Using it on a 64-bit
implementation causes an illegal instruction exception.

Other registers altered:

• None

10-124 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mtcrf
Move to Condition Register Fields

mtcrf

o

CRM,rS

31 s CRM

5 6 101112

maskf-(4)(CRM[O]) II (4)(CRM[1]) II ... (4)(CRM[7])

CRf-(rS[32-63) & mask) I (CR & -mask)

mtcrf
Integer Unit

[ill] Reserved

144

19 20 21 30 31

The contents of rS are placed into the condition register under control of the field mask
specified by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in
the range 0-7. If CRM(i) = 1, CR Field i (CR bits 4*i through 4*i+3) is set to the contents
of the corresponding field of the of rS.

Other registers altered:

CR fields selected by mask

MOTOROLA Chapter 10. Instruction Set 10-125

mtfsbOx
Move to FPSCR Bit 0

mtfsbO
mtfsbO.

63

crbD

crbD

(Rc=O)

(Rc=l)

o 5 6 10 11 15 16 20 21

mtfsbOx
Integer Unit

LillI Reserved

70

30 31

Bit crbD of the FPSCR is cleared to zero. All other bits of the FPSCR are unchanged.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Floating-point Status and Control Register:

Affected: FPSCR bit crbD

Note: Bits 1 and 2 (FEX and VX) cannot be explicitly reset.

10-126 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mtfsb1x
Move to FPSCR Bit 1

mtfsbl
mtfsbl.

63

crbD

crbD

(Rc=O)

(Rc=l)

o 5 6 10 11 15 16 20 21

mtfsb1x
Integer Unit

[ill] Reserved

38

30 31

Bit crbD of the FPSCR is set to one. All other bits of the FPSCR are unchanged.

Other registers altered:

• Condition Register (CRt Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Floating-point Status and Control Register:

FPSCR bit crbD

Note: Bits land 2 (FEX and VX) cannot be explicitly reset.

MOTOROLA Chapter 10. Instruction Set 10-127

•

II

mtfsfx
Move to FPSCR Fields

mtfsf

mtfsf.

o
63

567

FM,frB

FM,frB

FM

(Rc=O)

(Rc=1)

14 15 16

frB 711

2021

mtfsfx
Integer Unit

Eilll Reserved

30 31

Bits 32-63 of register frB are placed into the FPSCR under control of the field mask
specified by FM. The field mask identifies the 4-bit fields affected. Let i be an integer in the
range 0-7. If FM(i) = 1, FPSCR Field i (FPSCR bits 4*i through 4*i+3) is set to the contents
of the corresponding field of the low-order 32 bits of register frB.

The other PowerPC implementations, the move to FPSCR fields (mtfst) instruction may
perform more slowly when only a portion of the fields are updated.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Floating-point Status and Control Register:

FPSCR fields selected by mask

Updating fewer than all eight fields of the FPSCR may have substantially poorer
performance on some implementations than updating all the fields.

When FPSCR[0-3] is specified, bits 0 (FX) and 3 (OX) are set to the values of frB[32] and
frB[35] (i.e., even if this instruction causes OX to change from 0 to 1, FX is set from
frB[32] and not by the usual rule that FX is set to 1 when an exception bit changes from 0
to 1). Bits 1 and 2 (FEX and VX) are set according to the usual rule and not from
frB[33-34J.

10-128 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mtfsfix
Move to FPSCR Field Immediate

mtfsfi

mtfsfi.

o
63

5 6

crfD,IMM

crfD,IMM

89101112

(Rc=O)

(Rc=l)

15 16

134

19 20 21

mtfsfix
Integer Unit

[±J Reserved

30 31

The value of the IMM field is placed into FPSCR field crfD. All other FPSCR fields are
unchanged.

Other registers altered:

• Condition Register (CRI Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Floating-point Status and Control Register:

FPSCR field crfD

When FPSCR[O-3] is specified, bits 0 (FX) and 3 (OX) are set to the values of IMM[O] and
IMM[3] (i.e., even if this instruction causes OX to change from 0 to 1, FX is set from
IMM[O] and not by the usual rule that FX is set to 1 when an exception bit changes from 0
to 1). Bits 1 and 2 (FEX and VX) are set according to the usual rule, given in Section 2.2.3,
"Floating-Point Status and Control Register (FPSCR)" and not from IMM[l-2].

MOTOROLA Chapter 10. Instruction Set 10-129

III

mtmsr mtmsr
Move to Machine State Register Integer Unit

mtmsr rS

[ill] Reserved

31 s 146

o 5 6 10 11 15 16 20 21 30 31

MSR~rS[0-311

The contents of rS are placed into the MSR.

This is a supervisor-level instruction and context synchronizing. See Section 3.1.2,
"Context Synchronization" for the definition of context synchronization.

Other registers altered:

MSR

10-130 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mtspr
Move to Special Purpose Register

mtspr SPR,rS

o
31 D SPR

56 1011

n= rD[5-9)II rD[O-4)
SPREG(n)f-rS[O-31)

mtspr
Integer Unit

Eill Reserved

467

20 21 30 31

The SPR field denotes a special purpose register, encoded as shown in Table 10-4. The
contents of rS are placed into the designated special purpose register.

The value of SPR[O] is 1 if and only if writing the register is a supervisor-level operation.
Execution of this instruction specifying a defined and supervisor-level register when
MSR[PR]=l results in a supervisor-level instruction exception.

If the rS field contains an invalid value, the instruction form is invalid. For an invalid
instruction form in which SPR[O]= 1, if MSR[PR]= 1 a supervisor-level instruction
exception will occur instead of a no-op.

Other registers altered:

None

Table 10-4 lists the SPR encodings for the MPC601.

Table 10-5. SPR Encodings for mtspr

" SPR
Register

Name
Access

Decimal SPR[5-9) SPR[0-4)

a 00000 00000 MQ User

1 00000 00001 XER User

4 00000 00100 RTCU User

5 00000 00101 RTCL User

6 00000 00110 DEC User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

MOTOROLA Chapter 10. Instruction Set 10-131

Table 10-5. SPR Encodings for mtspr(Continued)

SPR*
Register

Access
Decimal SPR[S-9] SPR[0-4]

Name

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRRO Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRGO Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

528 10000 10000 BATOU Supervisor

529 10000 10001 BATOL Supervisor

530 10000 10010 BAT1U Supervisor

531 10000 10011 BAT1L Supervisor

532 10000 10100 BAT2U Supervisor

533 10000 10101 BAT2L Supervisor

• 534 10000 10110 BAT3U Supervisor

535 10000 10111 BAT3L Supervisor

1008 11111 10000 Checkstop Supervisor
Register
(HIDO)

1009 11111 10001 Debug Mode Supervisor
Register
(HID1)

1010 11111 10010 IABR (HID2) Supervisor

1013 11111 10101 DABR (HID5) Supervisor

1023 11111 11111 PIR (HID15) Supervisor

10-132 PowerPC 601 RiSe Microprocessor User's Manual MOTOROLA

mtsr mtsr
Move to Segment Register Integer Unit

mtsr SR,rS

[ill] Reserved

31 S SR 210

o 56 10 11 12 15 16 20 21 30 31

SEGREG(SR)~(rS)

The contents of rS is placed into SR.

This is a supervisor-level instruction.

This instruction is defined only for 32-bit implementations. Using it on a 64-bit
implementation causes an illegal instruction type program exception.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-133

1m

mtsrin mtsrin
Move to Segment Register Indirect Integer Unit

mtsrin rS,rB

[POWER mnemonic: mtsri]

[ill] Reserved

31 B 242

o 5 6 1011 1516 20 21 30 31

SEGREG(rB[O-3))f-(rS)

The contents of rS are copied to the segment register selected by bits 0-3 of rB.

This is a supervisor-level instruction.

This instruction is defined only for 32-bit implementations. Using it on a 64-bit
implementation causes an illegal instruction exception.

Other registers altered:

• None

10-134 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mulx
Multiply

mul

muI.

mulo

mulo.

POWER Architecture Instruction mulx
Integer Unit

rD,rA,rB (OE=O Rc=O)
rD,rA,rB (OE=O Rc=l)

rD,rA,rB (OE=1 Rc=O)

rD,rA,rB (OE=1 Rc=l)

0 A B IOEI 31 107 IRcl
o 5 6 30 31 10 11 15 16 20 21 22

This instruction is not part of the PowerPC architecture.

Bits 0-31 of the product (rA)*(rB) are placed into rD. Bits 32-63 of the product (rA)*(rB)
are placed into the MQ register.

If Rc=l, then LT,GT and EQ reflect the result in the MQ register (the low order 32 bits). If
OE= 1 then SO and OV are set to one if the product cannot be represented in 32 bits.

If the smaller absolute value of the two multipliers is placed in rB, the instruction may
complete execution more quickly. See 7.3.2.1, "Integer Instructions Timing Examples" for
additional information about instruction performance.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO, OV (if OE=I)

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-135

•

mulhwx
Multiply High Word

mulhw
mulhw.

rD,rA,rB

rD,rA,rB

o
31 D

5 6 10 11

prod(O-63H-rA(32-63 1*rB(32-63)
rD[32-63)~prod[O-31)

rD[O-31)~undefined

A

(Rc=O)

(Rc=l)

15 16

B

20 21 22

mulhwx
Integer Unit

I±J Reserved

75

3031

The contents of rA and of rB are interpreted as 32-bit signed integers. They are multiplied
to fonn a 64-bit signed integer product. The high-order 32 bits of the 64-bit product are
placed into rD.

If the smaller absolute value of the two mUltipliers is placed in rB, the instruction may
complete execution more quickly. See 7.3.2.1, "Integer Instructions Timing Examples" for
additional information about instruction performance.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

10-136 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mulhwux
Multiply High Word Unsigned

mulhwu

mulhwu.

rD,rA,rB

rD,rA,rB

o
31 D

5 6 10 11

prod[O-63]~r A[32-63]* rB[32-63)
rD[32-63]~prod[O-31)

rD[O-31]~undefined

A

(Rc=O)

(Rc=l)

15 16

B

20 21 22

mulhwux
Integer Unit

LillI Reserved

11

30 31

The contents of rA and of rB are extracted and interpreted as 32-bit unsigned integers.
They are multiplied to form a 64-bit unsigned integer product. The high-order 32 bits of the
64-bit product are placed into rD.

If the smaller absolute value of the two multipliers is placed in rB, the instruction may
complete execution more quickly. See 7.3.2.1, "Integer Instructions Timing Examples" for
additional information about instruction performance.

This instruction causes the contents of the MQ to become undefined.

Other registers altered:

• Condition Register (eRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

MOTOROLA Chapter 10. Instruction Set 10-137

1m

mullwx mullwx
Multiply Low

mullw

mullw.

mullwo

mullwo.

rD,rA,rB

rD,rA,rB

rD,rA,rB

rD,rA,rB

(OE=O Rc=O)

(OE=O Rc=l)

(OE= 1 Rc=O)

(OE=1 Rc=l)

[POWER mnemonics: mu's, mu's., mulso, mulso.]

31 D A B

o 5 6 10 11 15 16

rD(-rA[32-631*rB[32-631

Integer Unit

235

20 21 22 30 31

The low-order 32 bits of the 64-bit product (rA)*(rB) are placed into rD. The low-order
bits of the 32-bit product are independent of whether the operands are treated as signed or
unsigned integers. However, OV is set based on the result interpreted as a signed integer.

If the smaller absolute value of the two multipliers is placed in rB, the instruction may
complete execution more quickly. See 7.3.2.1, "Integer Instructions Timing Examples" for
additional information about instruction performance.

If OE= 1, then OV is set to one if the product cannot be represented in 32 bits.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO, OV (if OE=l)

10-138 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

mulli
Multiply Low Immediate

mulli rD,r A,SIMM

[POWER mnemonic: muli]

o
07 D

5 6

prod[0-48]~r A *SIMM
rD~prod[16-48)

10 11

mulli
Integer Unit

A SIMM

15 16 31

The low-order 32 bits of the 48-bit product (rA)*SIMM are placed into rD. The low-order
bits of the 32-bit product are independent of whether the operands are treated as signed or
unsigned integers.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-139

nabsx POWER Architecture Instruction
Negative Absolute

nabs rD,rA (OE=O Rc=O)

nabs. rD,rA (OE=O Rc=})

nabso rD,rA (OE=} Rc=O)

nabso. rD,rA (OE=} Rc=})

31 D

o 5 6 10 11 15 16 20 21 22

This instruction is not part of the PowerPC architecture.

The negative absolute value -1(rA)1 is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO, OV (if OE=l)

nabsx
Integer Unit

[§J Reserved

488

30 31

Note that nabs never overflows. If OE=l then XER(OV) is cleared to zero and XER(SO)
is not changed.

Note: This instruction is specific to the MPC601.

10-140 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

nandx
NAND

nand

nand.

o
31

5 6

rA,rS,rB

rA,rS,rB

s
10 11

rAf- -«(rS) & (rR»

nandx
Integer Unit

(Rc=O)

(Rc=1)

A B 476 IRcl
15 16 20 21 30 31

The contents of rS are ANDed with the contents of rB and the one's complement of the
result is placed into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=1)

NAND with rA=rB can be used to obtain the one's complement.

MOTOROLA Chapter 10. Instruction Set 10-141

negx
Negate

neg
neg.
nego
nego.

o
31

5 6

rD~-{rA)+ 1

rD,rA

rD,rA

rD,rA

rD,rA

o
10 11

(OE=O Rc=O)

(OE=O Rc=l)

(OE=l Rc=O)

(OE=l Rc=l)

15 16 20 21 22

The sum --(rA) + 1 is placed into rD.

negx
Integer Unit

till Reserved

104

30 31

If rA contains the most negative 32-bit number (x '8000_()()OO'), the low-order 32 bits of
the result contain the most negative 32-bit number and, if OE=l, OV is set.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO OV (if OE=l)

10-142 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

norx
NOR

nor
nor.

o
31

rA,rS,rB

rA,rS,rB

S A

5 6 10 11

rAf- -,«rS) I (rR»

(Rc=O)

(Rc=1)

B 124

15 16 20 21

norx
Integer Unit

30 31

The contents of rS are ORed with the contents of rB and the one's complement of the result
is placed into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=1)

MOTOROLA Chapter 10. Instruction Set 10-143

orx orX
OR Integer Unit

or rA,rS,rB (Rc=O)

or. rA,rS,rB (Rc=1)

31 s A B 444 IRel
0 5 6 10 11 15 16 20 21 30 31

rA~(rS) I (rB)

The contents of rS is ORed with the contents of rB and the result is placed into r A.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=1)

10-144 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

orcx orCX
OR with Complement Integer Unit

orc rA,rS,rB (Rc=O)

orc. rA,rS,rB (Rc=l)

31 S A B 412 I~
0 5 6 10 11 15 16 20 21 30 31

rA (- (rS) 1-.(rB)

The contents of rS is ORed with the complement of the contents of rB and the result is
placed into r A.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

MOTOROLA Chapter 10. Instruction Set 10-145

ori ori
OR Immediate Integer Unit

ori rA,rS,UIMM

[POWER mnemonic: oril]

24 s A UIMM

o 5 6 10 11 15 16 31

rAf-(rS) f «(16)0" UIMM)

The contents of rS is ORed with x'oooo'li UIMM and the result is placed into r A.

The preferred "no-op" (an instruction that does nothing) is:

ori 0,0,0

Other registers altered:

• None

10-146 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

oris
OR Immediate Shifted

oris rA,rS,UIMM

[POWER mnemonic: oriu]

25 s
o 5 6 10 11

rAf-(rS) I (UIMM II (16)0)

oris
Integer Unit

A UIMM

15 16 31

The contents of rS is ORed with UIMM II x'oooo' and the result is placed into rA.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-147

II

rfi
Return from Interrupt

o
19

5 6 10 11 15 16 20 21

MSR[16-31)(-SRR 1 [16-31)

NIA(-SRRO[O-29) II ObOO

rfi
Integer Unit

[£] Reserved

50

30 31

Bits 16-31 of SRR 1 are placed into bits 16-31 of the MSR, then the next instruction is
fetched, under control of the new MSR value, from the address SRRO[O-29] II b'OO'.

This is a supervisor-level instruction and is context synchronizing.

Other registers altered:

MSR

10·148 PowerPC 601 RISC Microprocessor User's M~mual MOTOROLA

rlmix POWER Architecture Instruction rlmix
Rotate Left then Mask Insert Integer Unit

rlmi rA,rS,rB,MB,ME (Rc=O)

rlmi. rA,rS,rB,MB,ME (Rc=l)

22 S A B MB ME IRcl
o 5 6 10 11 15 16 20 21 2526 30 31

This instruction is not part of the PowerPC architecture.

The contents of rS is rotated left the number of positions specified by bits 27-31 of rB. The
rotated data is inserted into r A under control of the generated mask.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-149

1&1

rlwimix rlwimix
Rotate Left Word Immediate then Mask Insert Integer Unit

rlwimi

rlwimi.

r A,rS,SH,MB,ME
r A,rS,SH,MB,ME

[POWER mnemonics: rlimi, rlimi.]

20 S A

o 5 6 10 11

nf-SH
rf-ROTL(rS, n)

mf-MASK(MB, ME)

rAf-(r&M) I (rA&-m)

(Rc=O)
(Rc=1)

SH MB ME IRcl
15 16 20 21 25 26 30 31

The contents of rS are rotated left SH bits. A mask is generated having I-bits from bit MB
through bit ME and O-bits elsewhere. The rotated data is inserted into r A under control of
the generated mask.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=I)

10·150 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

rlwinmx rlwinmx
Rotate Left Word Immediate then AND with Mask Integer Unit

rlwinm

rlwinm.

r A,rS,SH,MB,ME

r A,rS,SH,MB,ME

[POWER mnemonics: rlinm, rlinm.]

o
21 S A

5 6 10 11

M-SH
r~ROTL(rS, n)

m~MASK(MB. ME)

rA~r&m

(Rc=O)

(Rc=I)

SH MB ME IRcl
15 16 20 21 25 26 30 31

The contents of rS are rotated left SH bits. A mask is generated having I-bits from bit MB
through bit ME and O-bits elsewhere. The rotated data is ANDed with the generated mask
and the result is placed into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

The opcode rlwinm can be used to extract an n-bit field, that starts at bit position b in rS[O-
31], right-justified into rA (clearing the remaining 32-n bits of rA), by setting SH=b+n,
MB=32-n, and ME=3I. It can be used to extract an n-bit field, that starts at bit position b in
rS[O-31], left-justified into rA (clearing the remaining 32-n bits of rA), by setting SH=b,
MB=O, and ME=n-l. It can be used to rotate the contents of a register left (or right) by n
bits, by setting SH=n (32-n), MB=O, and ME=3I. It can be used to shift the contents of a
register right by n bits, by setting SH=32-N, MB=n, and ME=3I. It can be used to clear the
high-order h bits of a register and then shift the result left by n bits by setting SH=n, MB=b­
nand ME=3I-n. It can be used to clear the low-order n bits of a register, by setting SH=O,
MB=O, and ME=31-n.

MOTOROLA Chapter 10. Instruction Set 10-151

II

rlwnrnx
Rotate Left Word then AND with Mask

rlwnm
rlwnm.

rA,rS,rB,MB,ME

rA,rS,rB,MB,ME

[POWER mnemonics: rlnm, rlnm.]

23 S A

o 5 6 10 11

rx--rB[27-31)
r~ROTL(rS, n)
m~MASK(MB, ME)
rA~r&m

(Rc=O)

(Rc=l)

rlwnmx
Integer Unit

B MB ME IRcl
15 16 20 21 25 26 30 31

The contents of rS are rotated left the number of bits specified by rB[27-3I]. A mask is
generated having I-bit from bit MB through bit ME and O-bits elsewhere. The rotated data
is ANDed with the generated mask and the result is placed into r A.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

The opcode rlwnm can be used to extract an n-bit field, that starts at variable bit position
b in rS[O-31], right-justified into rA (clearing the remaining 32-n bits of rA), by setting
rB[27-31]=b+n, MB=32-n, and ME=31. It can be used to extract an n-bit field, that starts
at variable bit position bin rS[O-31], left-justified into rA (clearing the remaining 32-n bits
of rA), by setting rB[27-3I]=b, MB = 0, and ME=n-l. It can be used to rotate the contents
of a register left (or right) by variable n bits, by setting rB[27-31]=n (32-N), MB=O, and
ME=31.

Equivalent mnemonics are provided for some of these uses.

10-152 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

rribx POWER Architecture Instruction rribx
Rotate Right and Insert Bit Integer Unit

rrib rA,rS,rB (Rc=O)

rrib. rA,rS,rB (Rc=l)

31 s A B 537 IRcl
0 5 6 10 11 15 16 20 21 30 31

This instruction is not part of the PowerPC architecture.

Bit 0 of rS is rotated right the amount specified by bits 27 -31 of rB. The bit is then inserted
into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-153

•

SC SC
System Call Integer Unit

[POWER mnemonic: svca]

[ill] Reserved

o 5 6 10 11 15 16 29 30 31

This instruction calls the operating system to perform a service. When control is returned
to the program that executed the system call, the content of the registers depends on the
register conventions used by the program providing the system service.

This instruction is context synchronizing, as described in Section 3.1.2, "Context
Synchronization". Although the PowerPC architecture considers sc to be a branch
processor instruction, it is executed by the integer processor in the MPCoOl.

Other registers altered:

Dependent on the system service

POWER Compatibility Note: The PowerPC sc instruction is substantially different from
the POWER svc instruction. The following aspects of these instructions were considered
with respect to POWER compatibility:

PowerPC defines the sc instruction with the "LK" bit set to be an invalid form. POWER
architecture defines the svc instruction (same opcode as PowerPC sc instruction) with the
"LK" bit set as a valid form which places the address of the instruction following the svc
into the link register. In the case of MPC601, an sc instruction with the "LK" bit set will
execute correctly (as defined in PowerPC) and will update the link register with the address
of the instruction following the sc instruction.

PowerPC defines the sc instruction in such a manner that requires bit 30 of the instruction
to be b'l' (when bit 30 is b'O', the instruction is considered reserved). The POWER
architecture svc instruction does not have such a restriction, and uses this bit to define an
alternate form of the svc instruction. Although the MPC601 does not support this alternate
form of the svc instruction, it does ignore the state of bit 30 of the instruction during decode
and execution.

As a result of executing an sc instruction, PowerPC defi nes bits 0-15 of register SRR I to
be undefined. In the case of MPC601, execution of the sc instruction will cause bits 10-31
of the instruction to be placed into bits 0-15 of register SRR I.

The effective address of the instruction following the system call instruction is placed into
SRRO. Bits 16-31 of the MSR are placed into bits 16-31 of SRR 1.

10-154 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Then a system call exception is generated. The exception causes the MSR to be altered as
described in Section 5.4, "Exception Definitions".

The exception causes the next instruction to be fetched from offset x'COO' from the
physical base address indicated by the new setting of MSR[IP]. This instruction is context­
synchronizing.

Other registers altered:

SRRO SRR 1 MSR

MOTOROLA Chapter 10. Instruction Set 10-155

•

slex POWER Architecture Instruction
Shift Left Extended

sle
sle.

o
31

5 6

rA,rS,rB

rA,rS,rB

s
10 11

(Rc=O)
(Rc=l)

A B

15 16 20 21

This instruction is not part of the PowerPC architecture.

slex
Integer Unit

153 IRel
30 31

Register rS is rotated left n bits where n is the shift amount specified in bits 27-31 of rB.
The rotated word is placed in the MQ register. A mask of 32-n ones followed by n zeros is
generated. The logical AND of the rotated word and the generated mask is placed in r A.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

10-156 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

sleqx POWER Architecture Instruction sleqx
Shift Left Extended with MQ Integer Unit

sleq rA,rS,rB (Rc=O)
sleq. rA,rS,rB (Rc=l)

31 S A 8 217 IRel
0 5 6 10 11 15 16 20 21 30 31

This instruction is not part of the PowerPC architecture.

Register rS is rotated left n bits where n is the shift amount specified in bits 27-31 of rB.
A mask of 32-n ones followed by n zeros is generated. The rotated word is then merged
with the contents of the MQ register, under control of the generated mask. The merged
word is placed in r A. The rotated word is placed in the MQ register.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-157

I&]

sl iqx POWER Architecture Instruction
Shift Left Immediate with MQ

sliq

sliq.

o
31

rA,rS,SH

rA,rS,SH

S A

5 6 10 11

(Rc=O)

(Rc=l)

SH 184

15 16 20 21

This instruction is not part uf the PuwerPC architecture.

sliqx
Integer Unit

3031

Register rS is rotated left n bits where n is the shift amount specified by SH. The rotated
word is placed in the MQ register. A mask of 32-n ones followed by n zeros is generated.
The logical AND of the rotated word is placed into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

10-158 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

sll iqx POWER Architecture Instruction
Shift Left Long Immediate with MQ

slliq

slliq.

o
31

rA,rS,SH

rA,rS,SH

S A

5 6 10 11

(Rc=O)

(Rc=l)

SH 248

15 16 20 21

This instruction is not part of the PowerPC architecture.

slliqx
Integer Unit

30 31

Register rS is rotated left n bits where n is the shift amount specified by SH. A mask of
32-n ones followed by n zeros is generated. The rotated word is then merged with the
contents of the MQ register, under control of the generated mask. The merged word is
placed into r A. The rotated word is placed into the MQ register.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-159

•

sllqx POWER Architecture Instruction sllqx
Shift Left Long with MQ Integer Unit

sllq rA,rS,rB (Rc=O)

sllq. rA,rS,rB (Rc=l)

31 s A 8 216 IRcl
0 5 6 10 11 15 16 20 21 30 31

This instruction is not part of the PowerPC architecture.

Register rS is rotated left n bits where n is the shift amount specified in bits 27-31 of rB.

When bit 26 of rB is a zero, a mask of 32-n ones followed by n zeros is generated. A word
of zeros is then merged with the contents of the MQ register, under control of the generated
mask.

When bit 26 of rB is a one, a mask of 32-n ones followed by n ones is generated. A word
of zeros is then merged with the contents of the MQ register, under control of the generated
mask.

The merged word is placed into rA. The MQ register is not altered.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

10-160 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

slqx POWER Architecture Instruction slqx
Shift Left with MQ Integer Unit

slq
slq.

o
31

5 6

rA,rS,rB

rA,rS,rB

s
10 11

(Rc=O)

(Rc=l)

A B

15 16 20 21

This instruction is not part of the PowerPC architecture.

152 IRel
30 31

Register rS is rotated left n bits where n is the shift amount specified in bits 27-31 of rB.
The rotated word is placed in the MQ register.

When bit 26 of rB is a zero, a mask of 32-n ones followed by n zeros is generated.

When bit 26 of rB is a one, a mask of all zeros is generated.

The logical AND of the rotated word and the generated mask is placed into r A.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-161

II

slwx
Shift Left Word

slw
slw.

rA,rS,rB
rA,rS,rB

[POWER mnemonics: sl, sl.]

o
31 S A

5 6 10 11

rx--rB[27-31)
rAf-ROTL(rS, n)

(Rc=O)
(Rc=l)

B 24

15 16 20 21

slwx
Integer Unit

30 31

If bit 16 of rB=O, the contents of rS are shifted left the number of bits specified by rB[26-
31]. Bits shifted out of position 0 are lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into rA. If bit 16 of rB=I, 32 zeros are placed into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

10-162 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

sraqx POWER Architecture Instruction sraqx
Shift Right Algebraic with MQ Integer Unit

sraq rA,rS,rB (Rc=O)

sraq. rA,rS,rB (Rc=l)

31 s A B 920 IRcl
0 5 6 10 11 15 16 20 21 30 31

This instruction is not part of the PowerPC architecture.

Register rS is rotated left 32-n bits where n is the shift amount specified in bits 27-31 of
rB. When bit 26 of rB is a zero, a mask of n zeros followed by 32-n ones is generated.
When bit 26 of rB is a one, a mask of all zeros is generated. The rotated word is placed in
the MQ register. The rotated word is then merged with a word of 32 sign bits from rS, under
control of the generated mask.

The merged word is placed in r A.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result
is ORed together and then ANDed with bit 0 of rS to produce XER[CA].

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: CA

All shift right algebraic instructions can be used for a fast divide by 2(n) if followed with
addze.

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-163

1m

•

sraiqx POWER Architecture Instruction
Shift Right Algebraic Immediate with MQ

sraiq
sraiq.

o
31

rA,rS,SH

rA,rS,SH

S A

5 6 10 11

(Rc=O)

(Rc=l)

SH 952

15 16 20 21

This instruction is not part of the PowerPC architecture.

sraiqx
Integer Unit

30 31

Register rS is rotated left 32-n bits where n is the shift amount specified by SH. A mask
of n zeros followed by 32-n ones is generated. The rotated word is placed in the MQ
register. The rotated word is then merged with a word of 32 sign bits from rS, under control
of the generated mask.

The merged word is placed in r A.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result
is ORed together and then ANDed with bit 0 of rS to produce XER[CA].

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: CA

All shift right algebraic instructions can be used for a fast divide by 2(n) if followed with
addze.

Note: This instruction is specific to the MPC601.

10-164 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

srawx
Shift Right Algebraic Word

sraw

sraw.

rA,rS,rB

rA,rS,rB

[POWER mnemonics: sra, sra.]

o
31 S A

5 6 10 11

~rB[27-311
rA~ROTL(rS, n)

(Rc=O)

(Rc=l)

B 792

15 16 20 21

srawx
Integer Unit

30 31

If rB[26]=O,then the contents of rS are shifted right the number of bits specified by rB[27-
31]. Bits shifted out of position 31 are lost. The result is padded on the left with sign bits
before being placed into rA. If rB[26]=1, then rA is filled with 32 sign bits (bit 0) from rS.
CRO is set based on the value written into r A.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: CA

MOTOROLA Chapter 10. Instruction Set 10-165

srawix
Shift Right Algebraic Word Immediate

srawi

srawi.

rA,rS,SH

rA,rS,SH

[POWER mnemonics: srai, srai.]

o
31 S A

5 6 10 11

IX-SH
rA~ROTL(rS, 32-n)

(Rc=O)

(Rc=l)

SH 824

15 16 20 21

srawix
Integer Unit

30 31

The contents of rS are shifted right SH bits. Bits shifted out of position 31 are lost. The
shifted value is sign extended before being placed in rA. The 32-bit result is placed into rA.
XER[CA] is set to 1 if rS contains a negative number and any 1-bits are shifted out of
position 31; otherwise XER[CA] is cleared to O. A shift amount of zero causes XER[CA]
to be cleared to O.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: CA

10-166 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

srex POWER Architecture Instruction
Shift Right Extended

sre

sre.

o
31

5 6

rA,rS,rB

rA,rS,rB

s
10 11

(Rc=O)

(Rc=l)

A B

15 16 20 21

This instructiun is nut part uf the PuwerPC architecture.

srex
Integer Unit

665 IRcl
30 31

Register rS is rotated left 32-n bits where n is the shift amount specified in bits 27-31 of
rB. The rotated word is placed in the MQ register. A mask of n zeros followed by 32-n ones
is generated. The logical AND of the rotated word and the generated mask is placed in r A.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Nute: This instruction is specific to the MPC60 I.

MOTOROLA Chapter 10. Instruction Set 10-167

sreax POWER Architecture Instruction sreax
Shift Right Extended Algebraic Integer Unit

srea rA,rS,rB (Rc=O)

srea. rA,rS,rB (Rc=l)

31 s A B 921 IRcl
0 5 6 10 11 15 16 20 21 3031

This instruction is not part of the PowerPC architecture.

Register rS is rotated left 32-n bits where n is the shift amount specified in bits 27-31 of
rB. A mask of n zeros followed by 32-n ones is generated. The rotated word is placed in
the MQ register. The rotated word is then merged with a word of 32 sign bits from rS, under
control of the generated mask.

The merged word is placed in r A.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result
is ORed together and then ANDed with bit 0 of rS to produce XER[CA].

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: CA

Note: This instruction is specific to the MPC601.

10-168 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

sreqx POWER Architecture Instruction sreqx
Shift Right Extended with MQ Integer Unit

sreq rA,rS,rB (Rc=O)
sreq. rA,rS,rB (Rc=!)

31 s A B 729 IRel
0 5 6 10 11 15 16 20 21 30 31

This instruction is not part of the PowerPC architecture.

Register rS is rotated left 32-n bits where n is the shift amount specified in bits 27-31 of
rB. A mask of n zeros followed by 32-n ones is generated. The rotated word is then merged
with the contents of the MQ register, under control of the generated mask. The merged
word is placed in r A. The rotated word is placed into the MQ register.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPCfiOI.

MOTOROLA Chapter 10. Instruction Set 10-169

•

sriqxx POWER Architecture Instruction
Shift Right Immediate with MQ

sriq

sriq.

o
31

rA,rS,SH

rA,rS,SH

S A

5 6 10 11

(Rc=O)

(Rc=l)

SH 696

15 16 20 21

This instruction is not part of the PowerPC architecture.

sriqx
Integer Unit

30 31

Register rS is rotated left 32-n bits where n is the shift amount specified by SH. The rotated
word is placed into the MQ register. A mask of n zeros followed by 32-n ones is generated.
The logical AND of the rotated word and the generated mask is placed in rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

10-170 PowerPC 601 Rise Microprocessor User's Manual MOTOROLA

sri iqx POWER Architecture Instruction
Shift Right Long Immediate with MQ

srliq

srliq.

o
31

rA,rS,SH

rA,rS,SH

S A

5 6 10 11

(Rc=O)

(Rc=l)

SH 760

15 16 20 21

This instruction is not part of the PowerPC architecture.

srliqx
Integer Unit

30 31

Register rS is rotated left 32-n bits where n is the shift amount specified by SH. A mask of
n zeros followed by 32-n ones is generated. The rotated word is then merged with the MQ
register, under control of the generated mask. The merged word is placed in r A. The rotated
word is placed into the MQ register.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

MOTOROLA Chapter 10. Instruction Set 10-171

srlqx POWER Architecture Instruction srlqx
Shift Right Long with MQ Integer Unit

srlq rA,rS,rB (Rc=O)

srlq. rA,rS,rB (Rc=1)

31 s A B 728 IRel
0 5 6 10 11 15 16 20 21 30 31

This instruction is not part of the PowerPC architecture.

Register rS is rotated left 32-n bits where n is the shift amount specified in bits 27-31 of rB.
When bit 26 of rB is a zero, a mask of n zeros followed by 32-n ones is generated. The
rotated word is then merged with the MQ register, under control of the generated mask.

When bit 26 of rB is a one, a mask of n ones followed by 32-n zeros is generated. A word
of zeros is then merged with the contents of the MQ register, under control of the generated
mask.

The merged word is placed in rA. The MQ register is not altered.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the MPC601.

10-172 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

srqx POWER Architecture Instruction
Shift Right with MQ

srq

srq.

o
31

5 6

rA,rS,rB

rA,rS,rB

s
10 11

(Rc=O)

(Rc=l)

A B

15 16 20 21

This instruction is not part of the PowerPC architecture.

srqx
Integer Unit

664 IRel
30 31

Register rS is rotated left 32-n bits where n is the shift amount specified in bits 27-31 of rB.
The rotated word is placed into the MQ register.

When bit 26 of rB is a zero, a mask of n zeros followed by 32-n ones is generated.

When bit 26 of rB is a one, a mask of all zeros is generated.

The logical AND of the rotated word and the generated mask is placed in r A.

Other registers altered:
"-

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

Note: This instruction is specific to the IvlPC601.

MOTOROLA Chapter 10. Instruction Set 10-173

•

srwx
Shift Right Word

srw

srw.

rA,rS,rB

rA,rS,rB

[POWER mnemonics: sr, sr.]

o
31 S A

5 6 10 11

rx-rB[27-31J
rA~ROTL(rS, 32-n)

(Rc=O)

(Rc=l)

B ~6

15 16 20 21

srwx
Integer Unit

30 31

If rB[26]=O, the contents of rA are shifted right the number of bits specified by rA[27-3l].
Bits shifted out of position 31 are lost. Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into r A.

If rB[26]=1, then rA is filled with zeros.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

10-174 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stb
Store Byte

stb

o

rS,d(rA)

38 s
5 6 10 11

if rA = 0 then b~O
else b~(rA)

EA~b + EXTS(d)
MEM(EA, 1)~rS[24-311

stb
Integer Unit

A d

15 16 31

EA is the sum (r AIO)+d. Register rS[24-31] is stored into the byte in memory addressed
by EA. Register rS is unchanged.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-175

stbu
Store Byte with Update

stbu

o

rS,d(rA)

39 s
5 6 10 11

if rA = 0 then bf-O
else bf-(rA)
EAf-b + EXTS(d)
MEM(EA, 1)f-rS[24-31J
rAf-EA

stbu
Integer Unit

A d

15 16 31

EA is the sum (r AIO)+d. Register rS[24-31] is stored into the byte in memory addressed
by EA.

EA is placed into r A.

While the PowerPC architecture defines the instruction form as invalid if r A=O, the
MPC601 supports execution with rA=O as shown above.

Other registers altered:

• None

10-176 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stbux
Store Byte with Update Indexed

stbux

o

rS,rA,rB

31 s
5 6

if rA = 0 then b~O
else b~(rA)

EA~b+(rB)

10 11

MEM(EA, 1)~rS[24-31J
rA~EA

stbux
Integer Unit

[ill] Reserved

A B 247

15 16 21 22 30 31

EA is the sum (rAIO)+(rB). Register rS[24-31] is stored into the byte in memory addressed
by EA.

EA is placed into rA.

While the PowerPC architecture defines the instruction form as invalid if r A=O, the
MPC601 supports execution with rA=O as shown above.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-177

..

DI

stbx
Store Byte Indexed

stbx rS,rA,rB

o
31 s

5 6

if rA = 0 then bf-O
else bf-(rA)
EAf-b+ (rR)
EM(EA, 1) f-rS[24-31]

10 11

stbx
Integer Unit

[ill] Reserved

A B 215

'

:·.:·:·:·:';.:··1 .m::.
15 16 21 22 30 31

EA is the sum (r AIO)+(rB). Register rS[24-31] is stored into the byte in memory addressed
by EA. Register rS is unchanged.

Other registers altered:

• None

10-178 Powerpe 601 Rise Microprocessor User's Manual MOTOROLA

stfd
Store Floating-Point Double-Precision

stfd

o

frS,d(rA)

54 frS

5 6

if rA = 0 then b~O
else b~(rA)

EA~b + EXTS(d)
MEM(EA, 8)~(frS)

10 11

EA is the sum (rAIO) + d.

A

stfd
Floating-Point Unit

d

15 16 30 31

The contents of register frS is stored into the double word in memory addressed by EA.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-179

1&

II

stfdu
Store Floating-Point Double-Precision with Update

stfdu

o

frS,d(rA)

55 frS

5 6

if rA= 0 then M-O
else b~(rA)

EA~b+d

10 11

MEM(EA, 4)~ SINGLE(frS)

rA~EA

EA is the sum (rAIO) + d.

A

15 16

stfdu
Floating-Point Unit

d

31

The contents of register frS is stored into the double word in memory addressed by EA.

EA is placed into r A.

While the PowerPC architecture defines the instruction form as invalid if r A=O, the
MPC601 supports execution with rA=O as shown above.

Other registers altered:

• None

10-180 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stfdux stfdux
Store Floating-Point Double-Precision with Update Indexed Floating-Point Unit

stfdux frS,rA,rB

[3] ReseNed

31 frS A B 759

o 5 6 10 11

if rA= 0 then h~O
else h~(rA)

EA~h+(rB)

MEM(EA, 8)~(frS)
rA~EA

EA is the sum (r AIO) + (rB).

15 16 20 21 30 31

The contents of register frS is stored into the double word in memory addressed by EA.

EA is placed into r A.

While the PowerPC architecture defines the instruction form as invalid if rA=O, the
MPC601 supports execution with r A=O as shown above.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-181

1&1

stfdx stfdx
Store Floating-Point Double-Precision Indexed Floating-Point Unit

stfdx frS,rA,rB

[]] Reserved

31 frS A B 727

o 5 6 10 11

if r A + 0 then b f-O
else bf-(rA)

EAf-b+ (rB)
MEM(EA. 8)f-(frS)

EA is the sum (rAIO) + (rB).

15 16 20 21 30 31

The contents of register frS is stored into the double word in memory addressed by EA.

Other registers altered:

• None

10-182 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stfs stfs
Store Floating-Point Single-Precision Integer Unit and Floating-Point Unit

stfs

o

frS,d(rA)

52 frS

5 6 10 11

if rA= 0 then b(-O
else b(-(rA)

EA(-b + EXTS(d)

MEM(EA,4)(-SINGLE(frS)

EA is the sum (rAIO)+d.

A d

15 16 31

The contents of register frS is converted to single-precision and stored into the word in
memory addressed by EA.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-183

•

stfsu stfsu
Store Floating-Point Single-Precision with Update Integer Unit and Floating-Point Unit

stfsu

o

frS,d(rA)

53 frS

5 6 10 11

if rA = 0 then bf-O
else hf-(rA)
EAf-h + EXTS(d)
MEM(EA.4)f-SINGLE(frS)
rAf-EA

EA is the sum (rAIO) + d.

A d

15 16 31

The contents of frS is converted to single-precision and stored into the word in memory
addressed by EA.

EA is placed into rA.

While the PowerPC architecture defines the instruction form as invalid if r A=O, the
MPC601 supports execution with rA=O as shown above.

Other registers altered:

• None

10-184 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stfsux
Store Floating-Point Single-Precision with Update Indexed

stfsux frS,rA,rB

stfsux
Integer Unit and

Floating-Point Unit

[ill) Reserved

31 frS A B 695

o 5 6 10 11

if rA = 0 then M-O
else b~(rA)

EA~b+(rB)

MEM(EA, 4)~SINGLE(frS)
rA~EA

EA is the sum (rAIO) + (rB).

15 16 20 21 30 31

The contents of frS is converted to single-precision and stored into the word in memory
addressed by EA.

EA is placed into r A.

While the PowerPC architecture defines the instruction form as invalid if r A=O, the
MPC601 supports execution with r A=O as shown above.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-185

..

1&1

stfsx
Store Floating-Point Single-Precision Indexed

stfsx frS,rA,rB

stfsx
Integer Unit and

Floating-Point Unit

[E] Reserved

31 frS A 8 663

o 5 6 10 11

if r A=O then bf--O
else bf--(rA)
EA~-b+ (rR)
MEM(EA,4)f--SINGLE(frS)

EA is the sum (rAIO) + (rB).

15 16 20 21 30 31

The contents of register frS is converted to single-precision and stored into the word in
memory addressed by EA.

Other registers altered:

• None

10-186 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

sth sth
Store Half Word Integer Unit

sth rS,d(rA)

o
44 s

5 6 10 11

if r A = 0 then b~O

else b~(rA)

EA~b + EXTS(d)

MEM(EA, 2)~rS[16-311

A d

15 16 31

EA is the sum (rAIO) + d. Register rS[16-31] is stored into the half word in memory
addressed by EA.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-187

1&

sthbrx
Store Half Word Byte-Reverse Indexed

sthbrx rS,rA,rB

o
31 s

5 6

if rA = 0 then bf-O
else bf-(rA)

EAf-b + (rB)

10 11

A

MEM(EA, 2)f-rS[24-31]II rS[16-23]

sthbrx
Integer Unit

lliJ Reserved

B 918

15 16 20 21 30 31

EA is the sum (rAIO)+(rB). The contents of rS[24-31] are stored into bits 0-7 of the half
word in memory addressed by EA. Bits rS[16-23] are stored into bits 8-15 of the half word
in memory addressed by EA.

Other registers altered:

• None

10-188 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

sthu
Store Half Word with Update

sthu

o

rS,d(rA)

45 s
5 6 10 11

if rA = 0 then hf-O
else hf-(rA)
EAf-h + EXTS(d)
MEM(EA. 2)f-rS[16-31)

rAf-EA

sthu
Integer Unit

A d

15 16 31

EA is the sum (rAIO)+d. The contents of rS[16-31] are stored into the half word in memory
addressed by EA.

EA is placed into r A.

While the PowerPC architecture defines the instruction form as invalid if r A=O, the
MPC601 supports execution with r A=O as shown above.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-189

1m

sthux
Store Half Word with Update Indexed

sthux

o

rS,rA,rB

31 s
5 6

if rA = 0 then bf-O
else bf-(rA)
EAf-b+ (rR)

10 11

MEM(EA. 2)f-rS[16-31 J

rAf-EA

A

sthux
Integer Unit

ED Reserved

B 439

15 16 20 21 30 31

EA is the sum (r AIO)+(rB). Register rS[16-31] is stored into the half word in memory
addressed by EA.

EA is placed into rA.

While the PowerPC architecture defines the instruction form as invalid if r A=O, the
MPC601 supports execution with r A=O as shown above.

Other registers altered:

• None

10-190 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

sthx
Store Half Word Indexed

sthx rS,rA,rB

o
31 s

5 6

if rA = 0 then bf-O
else bf-(r A)
EAf-b+ (rB)
MEM(EA, 2)f-rSI16-31)

10 11

sthx
Integer Unit

[IT) Reserved

A B 407

15 16 20 21 30 31

EA is the sum (rAIO) + (rB). Register rS[16-31] is stored into the half word in memory
addressed by EA.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-191

•

stmw
Store Multiple Word

stmw rS,d(rA)

[POWER mnemonic: stm]

o
47 s

5 6

if rA = 0 then bf-O
else bf-(rA)
EAf-b + EXTS(d)
rf-rS

10 11

do while r $ 31
MEM(EA,4) f- GPR(r)
rf-r + 1
EAf-EA+4

EA is the sum (rAIO) + d.

n = (32 - rS).

stmw
Integer Unit

A d

15 16 31

n consecutive words starting at EA are stored from the GPRs rS through 31. For example,
if rS=30, 2 words are stored.

EA must be a multiple of 4; otherwise, the system alignment error handler may be invoked.

Other registers altered:

• None

10-192 PowerPe 601 Rise Microprocessor User's Manual MOTOROLA

stswi
Store String Word Immediate

stswi rS,rA,NB

[POWER mnemonic: stsi]

o
31 s

5 6

if rA = 0 then EA~O
else EA~(rA)

ifNB = 0 then n~32
else n~NB

r~rS-l

i~O

do while n>O

10 11

if i = 0 then r~r+l (mod 32)

MEM(EA. I)~GPR(r)[i:i+71
i~i+8

if i = 31 then i~O
EA~EA+l

n~n-l

stswi
Integer Unit

[ill Reserved

A NB ns
15 16 20 21 30 31

EA is (r AIO). Let n = NB if NB:;t:O, n = 32 if NB=O; n is the number of bytes to store. Let
nr = CEIL(n/4): nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS+nr-l.

Bytes are stored left to right from each register. The sequence of registers wraps around
through GPRO if required.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-193

stswx
Store String Word Indexed

stswx rS,rA,rB

[POWER mnemonic: stsx]

o
31 s

5 6

if rA = 0 then bf-O
else bf-(rA)
EAf-b+(rB)
nf-XER[25-3IJ
rf-rS-1
if-O
do while n>O

10 11

if i = 0 then rf-r+ 1 (mod 32)
MEM(EA,1)f-GPR(r)[i:i+7J
if-i+8
if i = 31 then i f-O
EAf-EA+l
nf-n-1

stswx
Integer Unit

Gill Reserved

A B 6~

15 16 20 21 30 31

EA is the sum (rAIO)+(rB). Let n = XER[25-31]; n is the number of bytes to store.

Let nr = CEIL(n/4): nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS+nr-l.

Bytes are stored left to right from each register. The sequence of registers wraps around
through GPRO if required.

Other registers altered:

None

10-194 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stw
Store Word

stw rS,d(rA)

[POWER mnemonic: st]

o
36 s

5 6

if rA= 0 then bf-O
else bf-(r A)
EAf-b + EXTS(d)
MEM(EA,4)f-rS

10 11

stw
Integer Unit

A d

15 16 31

EA is the sum (r AIO) + d. The contents of rS are stored into the word in memory addressed
by EA.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-195

II

stwbrx
Store Word Byte-Reverse Indexed

stwbrx rS,rA,rB

[POWER mnemonic: stbrx]

o
31 s

5 6

if rA = 0 then b~O
else b~(rA)

EA~b+ (rB)

10 11

A B 662

15 16 20 21

MEM(EA,4)~rS[24-31) II rS[16-23) II rS[8-15) II rS[O-7)

stwbrx
Integer Unit

lIT] Reserved

30 31

EA is the sum (rAIO)+(rB). The contents of rS[24-31] are stored into bits 0-7 of the word
in memory addressed by EA. Bits rS[16-23] are stored into bits 8-15 of the word in
memory addressed by EA. Bits rS[8-15] are stored into bits 16-23 of the word in memory
addressed by EA. Bits rS[O-7] are stored into bits 24-31 of the word in memory addressed
by EA.

Other registers altered:

• None

10-196 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stwcx.
Store Word Conditional Indexed

stwcx. rS,rA,rB

o
31 s

5 6

if rA = 0 then bf-O
else bf-(r A)
EAf-b + (rB)
if RESERVE then

MEM(EA,4)f-rS
RESERVEf-O

10 11

CROf-ObOO II ObIlI XER[SO]
else

CROf-OBOO II aBO II XER[SO]

EA is the sum (rAIO)+(rB).

stwcx.
Integer Unit

A 8 150

15 16 20 21 3031

If a reservation exists, the contents of rS are stored into the word in memory addressed by
EA and the reservation is cleared. If no reservation exists, the instruction completes without
altering memory.

CRO Field is set to reflect whether the store operation was performed (i.e., whether a
reservation existed when the stwcx. instruction commenced execution) as follows.

CRO[LT GT EQ SO] ~b'OO' II store_perfonned II XER[SO]

The EQ bit in the condition register field CRO is modified to reflect whether the store
operation was performed (i.e., whether a reservation existed when the stwcx. instruction
began execution). If the store was completed successfully, the EQ bit is set to one.

EA must be a multiple of 4; otherwise, the system alignment error handler may be invoked
or the results may be undefined.

Other registers altered:

Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

MOTOROLA Chapter 10. Instruction Set 10-197

•

stwu
Store Word with Update

stwu rS,d(rA)

[POWER mnemonic: stu]

o
37 s

5 6

if rA = 0 then hf-O
else hf-(rA)
EAf-h + EXTS(d)
MEM(EA,4)f-rS
rAf-EA

10 11

stwu
Integer Unit

A d

15 16 31

EA is the sum (rAIO)+d. The contents of rS are stored into the word in memory addressed
by EA.

EA is placed into rA.

While the PowerPC architecture defines the instruction form as invalid if r A=O, the
MPC601 supports execution with rA=O as shown above.

Other registers altered:

• None

10-198 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stwux
Store Word with Update Indexed

stwux rS,rA,rB

[POWER mnemonic: stux]

o
31 s

5 6

if rA = 0 then bf-O
else hf-(r A)
EAf-b+ (rB)
MEM(EA,4)f-rS
rAf-EA

10 11

stwux
Integer Unit

[]ill Reserved

A B 183

15 16 20 21 30 31

EA is the sum (rAIO)+(rB). The contents of rS are stored into the word in memory
addressed by EA.

EA is placed into r A.

While the PowerPC architecture defines the instruction form as invalid if r A=O, the
MPC601 supports execution with rA=O as shown above.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-199

III

•

stwx
Store Word Indexed

stwx rS,rA,rB

[POWER mnemonic: stx]

o
31 s

5 6

if rA = 0 then b~O
else b~(rA)

EA~b+(rB)

MEM(EA, 4)~rS

10 11

stwx
Integer Unit

[ill] Reserved

A B 151

15 16 20 21 30 31

EA is the sum (rAIO)+(rB). The contents of rS are is stored into the word in memory
addressed by EA.

Other registers altered:

• None

10-200 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

subfx
Subtract from

subf rD,rA,rB

subf. rD,rA,rB

subfo rD,rA,rB

subfo. rD,rA,rB

31 o

o 5 6 10 11

rDf--(rA) + (rR) + 1

(OE=O Rc=O)

(OE=O Rc=l)

(OE=l Rc=O)

(OE=l Rc=l)

A

15 16

B

The sum --(r A) + (rB) + 1 is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: SO, OV (if OE=l)

20 21 22

MOTOROLA Chapter 10. Instruction Set

subfx
Integer Unit

40

3031

10-201

subfcx
Subtract from Carrying

subfe rD,rA,rB (OE=O Rc=O)

subfe. rD,rA,rB (OE=O Re=l)

subfeo rD,rA,rB (OE=l Rc=O)

subfeo. rD,rA,rB (OE=1 Rc=l)

[POWER mnemonics: sf, sf., sfo, sfo.]

31 o A B

o 5 6 10 11 15 16

rDf---{rA) + (rR) + 1

The sum -(rA) + (rB) + I is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• XER:

Affected: CA

Affected: SO, OV (if OE=I)

20 21 22

10-202 Powerpe 601 RiSe Microprocessor User's Manual

subfcx
Integer Unit

8

30 31

MOTOROLA

subfex
Subtract from Extended

subfe rD,rA,rB (OE=() Rc=O)

subfe. rD,rA,rB (OE=() Rc= 1)

subfeo rD,rA,rB (OE=1 Rc=O)

subfeo. rD,rA,rB (OE=l Rc=l)

[POWER mnemonics: sfe, sfe., sfeo, sfeo.]

31 o A B

o 5 6 10 11 15 16

rDf--(rA) + (rB) + XER[CA]

The sum --(rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

• XER:

Affected: CA

Affected: SO, OV

(if Rc=l)

(if OE=1)

20 21 22

MOTOROLA Chapter 10. Instruction Set

subfex
Integer Unit

136

30 31

10-203

subfic subfic
Subtract from Immediate Carrying Integer Unit

subftc rD,r A,SIMM

[POWER mnemonic: sft]

08 D A SIMM

o 5 6 10 11 15 16 31

rDf- -.(rA) + EXTS(SIMM) + 1

The sum-,(rA) + EXTS(SIMM) + 1 is placed into rD.

Other registers altered:

• XER:

Affected: CA

10-204 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

subfmex
Subtract from Minus One Extended

subfme rD,rA (OE=O Rc=O)

subfme. rD,rA (OE=O Rc=l)

subfmeu rD,rA (OE=1 Rc=O)

subfmeu. rD,rA (OE=l Rc=l)

[POWER mnemonics: sfme, sfme., sfmeu, sfmeu.]

31 D

o 5 6 10 11 15 16 20 21 22

rDt--.(rA) + XER[CA]- 1

The sum -.(rA) + XER[CA] + x 'FFFFFFFF' is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

• XER:

Affected: CA

Affected: SO, OV

(if Rc=l)

(if OE=l)

MOTOROLA Chapter 10. Instruction Set

subfmex
Integer Unit

IE] Reserved

232

30 31

10-205

II

subfzex
Subtract from Zero Extended

subfze rD,rA (OE=() Rc=()

subfze. rD,rA (OE=() Rc=l)

subfzeo rD,rA (OE=l Rc=()

subfzeo. rD,rA (OE=l Rc=l)

[POWER mnemonics: sfze, sfze., sfzeo, sfzeo.]

31 D A

o 5 6 10 11 15 16

rD~ -,(rA) + XER[CA]

The sum ,(rA) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

• XER:

Affected: CA

Affected: SO, OV

(if Rc=l)

(if OE=l)

20 21 22

10-206 PowerPC 601 RISC Microprocessor User's Manual

subfzex
Integer Unit

!ill] Reserved

200

30 31

MOTOROLA

sync sync
Synchronize Integer Unit

[POWER mnemonic: dcs]

[ill] Reserved

31 I.··.· .••. • •. • •. QPQ#Q .·.: •• ·.1· ..• · ... ·: ... : .. P •• P •• P.p:·9.{..I ••••••• : •. • •••• :.· ••• p·QP.·p:q •••••••..•• : •••.•••..•.• , 598

o 5 6 10 11 15 16 20 21 30 31

The sync instruction provides an ordering function for the effects of all instructions
executed by a given processor. Executing a sync instruction ensures that all instructions
previously initiated by the given processor appear to have completed before any subsequent
instructions are initiated by the given processor. When the sync instruction completes, all
external accesses initiated by the given processor prior to the sync will have been
performed with respect to all other mechanisms that access memory.

The sync instruction can be used to ensure that the results of all stores into a data structure,
performed in a "critical section" of a program, are seen by other processors before the data
structure is seen as unlocked. The eieio instruction may be more appropriate than sync for
cases in which the only requirement is to control the order in which external references are
seen by I/O devices.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-207

tlbie tlbie
Translation Lookaside Buffer Invalidate Entry Integer Unit

tlbie rB

[POWER mnemonic: tlbi]

LillI Reserved

31 B 306

o 5 6 10 11 15 16 20 21 3031

EA~(rB)

if UTLB entry exists for EA, then
UTLB entry~invalid

EA is the contents of rB. The translation lookaside buffer (referred to as the UTLB)
containing entries corresponding to the EA are made invalid (i.e., removed from the
UTLB). Additionally, a TLB invalidate operation is broadcast on the system interface.

The UTLB search is done regardless of the settings of MSR[IT] and MSR[DT].

Block address translation for EA, if any, is ignored.

If the segment register for EA specifies SR[T]=l (an I/O controller interface segment), no
UTLB entry invalidation is performed on the local processor and no TLB invalidate
operation is broadcast on the system interface.

Because the MPC601 supports broadcast of TLB entry invalidate operations, then the
following must be observed:

• The tlbie instruction(s) must be contained in a critical section, controlled by
software locking, so that tlbie is issued on only one processor at a time.

A sync instruction must be issued after every tlbie and at the end of the critical
section. This causes the hardware to wait for the effects of the preceding tlbie
instructions(s) to propagate to all processors.

A processor detecting a TLB invalidate broadcast performs the following:

1. Prevents execution of any new load, store, cache control or tlbie instructions and
prevents any new reference or change bit updates

2. Waits for completion of any outstanding memory operations (including updates to
the reference and change bits associated with the entry to be invalidated)

3. Invalidates the two entries (both associativity classes) in the UTLB indexed by the
matching address

4. Resumes normal execution

10-208 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

This is a supervisor-level instruction.

The software must ensure that SDRl points to the page table when issuing tlbie, even when
address translation is disabled. Nothing is guaranteed about instruction fetching in other
processors if the tlbie instruction deletes the page in which some other processor is
currently executing.

This instruction is optional in the PowerPC architecture.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-209

•

tw
Trap Word

tw TO,rA,rB

[POWER mnemonic: t]

o
31 TO A

5 6 10 11

af- EXTS(r A)
hf- EXTS(rB)
if (a < b) & TO[O] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

tw
Integer Unit

EITI Reserved

B 4

15 16 20 21 3031

The contents of r A are compared with the contents of rB. If any bit in the TO field is set to
1 and its corresponding condition is met by the result of the comparison, then the system
trap handler is invoked.

Other registers altered:

None

10-210 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

twi
Trap Word Immediate

twi TO,rA,SIMM

[POWER. mnemonic: til

o
03 TO A

5 6 10 11 15 16

af- EXTS(rA)
if (a < EXTS(SIMM)) & TO[O) then TRAP
if (a > EXTS(SIMM)) & TO[1) then TRAP
if (a = EXTS(SIMM)) & TO[2) then TRAP
if (a <U EXTS(SIMM)) & TO(3) then TRAP
if (a >U EXTS(SIMM)) & TO(4) then TRAP

twi
Integer Unit

SIMM

31

The contents of rA are compared with the sign-extended SIMM field. If any bit in the TO
field is set to 1 and its corresponding condition is met by the result of the comparison, then
the system trap handler is invoked.

Other registers altered:

None

MOTOROLA Chapter 10. Instruction Set 10-211

xorx xorx
XOR Integer Unit

xor rA,rS,rB (Rc=O)

xor. rA,rS,rB (Rc=l)

31 s A B 316

0 5 6 10 11 15 16 20 21 30 31

rAf-(rS) ED (rB)

The contents of rA is XORed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

10-212 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

xori
XOR Immediate

xori rA,rS,UIMM

[POWER mnemonic: xoril]

26 s
o 5 6 10 11

rAf-(rS) EB ((16)0 II UIMM)

xori
Integer Unit

A UIMM

15 16 31

The contents of rS is XORed with x'OOOO' II UIMM and the result is placed into rA.

Other registers altered:

• None

MOTOROLA Chapter 10. Instruction Set 10-213

•

xoris xoris
XOR Immediate Shifted Integer Unit

xoris rA,rS,UIMM

[POWER mnemonic: xoriu]

27 S _~I _____ A ____ ~ ______________ U_IM_M ____________ ~
o 5 6 10 11 15 16 31

rA~(rS) EB (UIMM II (16)0)

The contents of rS is XORed with UIMM II x'oooo' and the result is placed into rA.

Other registers altered:

• None

10-214 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

10.3 Instructions Not Implemented by the MPC601
Table 10-6 provides a list of 32-bit instructions that are not implemented by the MPC60 I,
and that generate an illegal instruction exception. Refer to Appendix C, "PowerPC
Instructions Not Implemented in MPC601 ", for a more detailed description of the
instructions.

Table 10-6. 32-Bit Instructions Not Implemented by the MPC601

Mnemonic Instruction

fres Floating-Point Reciprocal Estimate Single-Precision

frsqrte Floating-Point Reciprocal Square Root Estimate

fsel Floating-Point Select

fsqrt Floating-Point Square Root

fsqrts Floating-Point Square Root Single-Precision

mftb Move from Time Base

stfiwx Store Floating-Point as Integer Word Indexed

tibia Translation Lookaside Buffer Invalidate All

tlbiex Translation Lookaside Buffer Invalidate Entry by Index

tlbsync Translation Lookaside Buffer Synchronize

Table 10-7 provides a list of 32-bit SPR encodings that are not implemented by the
MPC601.

Table 10-7. 32-Bit SPR Encodings Not Implemented by the MPC601

SPR
Register

Access
Decimal SPR[S-9] SPR[0-4]

Name

284 01000 11100 TB Supervisor

285 01000 11101 TBU Supervisor

536 10000 11000 DBATOU Supervisor

537 10000 11001 DBATOL Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

Table 10-8 provides a list of 64-bit instructions that are not implemented by the MPC601,

MOTOROLA Chapter 10. Instruction Set 10-215

and that generate an illegal instruction exception. Refer to Appendix C, "PowerPC
Instructions Not Implemented in MPC601".

Table 10-8. 64-Bit Instructions Not Implemented by the MPC601

Mnemonic Instruction

entlzd Count Leading Zeros Double Word

divd Divide Double Word

divdu Divide Double Word Unsigned

extsw Extend Sign Word
"-

fefid Floating Convert From Integer Double Word

fetid Floating Convert to Integer Double Word

fetidz Floating Convert to Integer Double Word with Round to Zero

Id Load Double Word

Idarx Load Double Word and Reserve Indexed

Idu Load Double Word with Update

Idux Load Double Word with Update Indexed

Idx Load Double Word Indexed

Iwa Load Word Algebraic

Iwaux Load Word Algebraic with Update Indexed

Iwax Load Word Algebraic Indexed

mulld Multiply Low Double Word

mulhd Multiply High Double Word

mulhdu Multiply High Double Word Unsigned

rldel Rotate Left Double Word then Clear Left

rider Rotate Left Double Word then Clear Right

rldie Rotate Left Double Word Immediate then Clear

rldiel Rotate Left Double Word Immediate then Clear Left

rldier Rotate Left Double Word Immediate then Clear Right

rldimi Rotate Left Double Word Immediate then Mask Insert

slbia SLB Invalidate All

slbie SLB Invalidate Entry

slbiex SLB Invalidate Entry by Index

sid Shift Left Double Word

srad Shift Right Algebraic Double Word

sradi Shift Right Algebraic Double Word Immediate

10-216 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 10-8. 64-Bit Instructions Not Implemented by the MPC601(Continued)

Mnemonic Instruction

srd Shift Right Double Word

std Store Double Word

stdcx. Store Double Word Conditional Indexed

stdu Store Double Word with Update

stdux Store Double Word Indexed with Update

stdx Store Double Word Indexed

td Trap Double Word

tdi Trap Double Word Immediate

Table 10-9 provides the 64-bit SPR encoding that is not implemented by the MPC601.

Table 10-9. 64-Bit SPR Encoding Not Implemented by the MPC601

SPR
Register

Name
Access

Decimal SPR[5-9] SPR[0-4]

280 01000 11000 ASR Supervisor

•

MOTOROLA Chapter 10. Instruction Set 10-217

10-218 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Appendix A
Instruction Set Listings
This appendix lists the instruction set implemented in the MPC60 I and the additional
PowerPC instructions not implemented in the MPC60, first sorted by mnemonic and then
by opcode.

A.1 Complete Instruction List Sorted by Mnemonic
Table A-I lists the instructions implemented in the MPC60 I plus those defined in the
PowerPC architecture that are not implemented in the MPC60 I in alphabetical order by
mnemonic.]

T3t)le A-1. Complete Instruction List Sorted by Mnemonic

Key:

II Reserved bits l:!:!II:!:!:!:!] Instruction not implemented in the MPC601

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

absx

addx

addcx

addex

addi 14 o A SIMM

addic 12 o A SIMM

addie. 13 o A SIMM

addis

addmex

addzex

andx

andcx

andi.

andis.

MOTOROLA Appendix A. Instruction Set Listings A-1

•

Name

bx

bex

beetrx

belrx

cles

emp

empi

empl

erand

crande

ereqv

crnand

ernor

eror

erore

erxor

debt

debi

debst

debt

debtst

debz

divwx

divwux

dozx

dozi

A-2

0

18

19

19

19

19

31

31

31

31

31

31

9

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

257

crbA crbB 129

crbD crbA crbB 289

crbD crbA crbB

crbD crbA crbB 33

449

417

crbD crbA crbB 193

86

54

278

246

1014

o A SIMM

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx

ecowx

eieio

eqvx

extsbx

fctiwzx

fdivx

fdivsx

fmaddx

fmaddsx

fmrx .,
fmsubx C

fmsubsx C

fmulx 0 C

fmulsx 0 C 25

fnabsx 0 136

fnegx 40

fnmaddx

fnmaddsx

fnmsubx

MOTOROLA Appendix A. Instruction Set Listings A-3

,.

Name 0

Ibz

Ibzu

Ibzux

Ibzx

Ifdx

Ifs

Ifsu

Ifsux

Ifsx

Iha

Ihau

Ihaux

Ihax

Ihbrx

1hz

Ihzu

Ihzux

34

35

31

31

31

48

49

31

43

31

31

40

41

31

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

o A d

o A d

o A B 119

o A B 87

0 A B

0 A d

LJ A d

0 A B 567

B 535

0 A d

0 A B 375

0 A B

0 A B 790

0 A d

A

0 A B

A:6/i6""'~&NJhI:6/lNIoM&:W>''lo6 i61WII'>I'a!>l""'&i6IlaM61l6nl'lll66'\ll~""'Io/'I66j""'ioIIo'k'IN M4~16lIIJo')/'IoI 1li&':~MNlotIlloW!lo:'I~1o'I O"toIIo!'Io/!oc'Io",/',!loI'>INii.16.'I6lII'a6: 1/\Ol1o'lol16l1Mi'NI&~ 01: ...

A-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ihzx
Imw

Isebxx
Iswi

Iwz
Iwzu

Iwzux
Iwzx

maskgx

maskirx
merf

merfs
merxr

mfer
mffsx

mfmsr
mfspr

mfsr

32
33
31

31
31
19
63
31

63
31
31

0 A d

0 A d

0 A B

S A B

A B

erfD
crfD

583
83

339

mtfSbox~====6~3~====t::=~~==~i1l1lilillflllililil~==========~70~========~~ mtfSb1X[63 38
mtfsfx 31 711
mtfsfix
mtmsr

~--------~ ______ ~~~~ZL~Z2~£L~~ ______________ ~bd mtspr

MOTOROLA Appendix A. Instruction Set Listings A-5

.,

•

Name 0

mtsr

mtsrin

mulIi

nabsx

nandx

neg x

norx

orx

orcx

ori

oris

rlwinmx

rlwnmx

rribx

A-6

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

488

476

31

31

31 412

UIMM

25 UIMM

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sleqx A

sliqx 31 S A SH 184

slliqx 31 S A SH 248

sllqx 31 S A B 216

slqx S

slwx S

sraiqx S

srawx S A B

srawix 31 S A SH 824

srd 31 S A B 539

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

srex 31 S A B 665

sreax 31 S A B 921

srliqx 31 III srlqx 31 S A B 728

srqx 31 S A B 664

srwx 31 B 536

stb 38 S A

stbu 39 S A d

stbux S A B 247

MOTOROLA Appendix A. Instruction Set Listings A-7

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfsu d

stfsux 31 frS A B

stfsx 31 frS A B

sth 44 S A d

sthbrx 31 S A B 918

sthu 45 S A d

sthux 31 S A B 439

sthx 31 S A B

stmw 47 S A d

stswi 31 S A

stswx A B

stw 36 S A d

stwbrx 31 S A B

stwcx. 3 A B ,. stwu 37 S A d

stwux 3 A 183

stwx 31 S A B 151

subfx 31 D A B 40

subfcx 31 D A B 8

subfex A B 136

subfic

subfmex

subfzex

A-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Name 0

xori

xoris

MOTOROLA

26

27

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s A UIMM

s A UIMM

•

Appendix A. Instruction Set Listings A-9

A.2 PowerPC Instruction List Sorted by Opcode
Table A-2 lists only the instructions defined in the PowerPC architecture that are
implemented in the MPC60 I in numeric order by opcode. It does not include the MPC601-
only instructions implemented for POWER architecture compatibility. It also does not
include the PowerPC instructions not implemented on the MPC601.

Table A-2. PowerPC Instructions Implemented by MPC601 : by Opcode

Primary Extended
Mnemonic Instruction

Opcode Opeode

3 twi Trap Word Immediate

7 mulli Multiply Low Immediate

8 subfic Subtract from Immediate Carrying

10 cmpli Compare Logical Immediate

11 empi Compare Immediate

12 addic Add Immediate Carrying

13 addie. Add Immediate Carrying and Record

14 addi. Add Immediate

15 addis Add Immediate Shifted

16 bcx Branch Conditional

17 1 sc System Call

18 bx Branch

19 0 mcrf Move Condition Register Field

19 16 bclrx Branch Conditional to Link Register

19 33 crnor Condition Register NOR

19 50 rfi Return from Interrupt

19 129 crandc Condition Register AND with Complement

19 150 isync Instruction Synchronize

19 193 crxor Condition Register XOR

19 225 crnand Condition Register NAND

19 257 crand Condition Register AND

19 289 creqv Condition Register Equivalent

19 417 crorc Condition Register OR with Complement

19 449 cror Condition Register OR

19 528 bcctrx Branch Conditional to Count Register

20 rlwimix Rotate Left Word Immediate then AND with Mask Insert

21 rlwinmx Rotate Left Word Immediate then AND with Mask

A-10 PowerPC 601 RiSe Microprocessor User's Manual MOTOROLA

Table A-2. PowerPC Instructions Implemented by MPC601 : by Opcode (Continued)

Primary Extended
Mnemonic Instruction

Opcode Opcode

23 rlwnmx Rotate Left Word then AND with Mask

24 ori OR Immediate

25 oris OR Immediate Shifted

26 xori XOR Immediate

27 xoris XOR Immediate Shifted

28 andi. AND Immediate

29 andis. AND Immediate Shifted

31 0 cmp Compare

31 4 tw Trap Word

31 8 subfcx Subtract from Carrying

31 10 addcx Add Carrying

31 11 mulhwux Multiply High Word Unsigned

31 19 mfcr Move from Condition Register

31 20 Iwarx Load Word And Reserve Indexed

31 23 Iwzx Load Word and Zero Indexed

31 24 slwx Shift Left Word

31 26 cntlzwx Count Leading Zeros Word

31 28 and x AND

31 32 cmpl Compare Logical

31 40 subfx Subtract from

31 54 dcbst Data Cache Block Store ..
31 55 Iwzux Load Word and Zero with Update Indexed

31 60 andcx AND with Complement

31 75 mUlhw[.] Multiply High Word

31 83 mfmsr Move from Machine State Register

31 86 dcbf Data Cache Block Flush

31 87 Ibzx Load Byte and Zero Indexed

31 104 negx Negate

31 115 mfpmr Move from Program Mode Register

31 119 Ibzux Load Byte and Zero with Update Indexed

31 124 norx NOR

31 136 subfex Subtract from Extended

MOTOROLA Appendix A. Instruction Set Listings A-11

Table A-2. PowerPC Instructions Implemented by MPC601 : by Opcode (Continued)

Primary Extended
Mnemonic Instruction

Opcode Opcode

31 138 addex Add Extended

31 144 mterf Move to Condition Register Fields

31 146 mtmsr Move to Machine State Register 2

31 150 stwex. Store Word Conditional Indexed

31 151 stwx Store Word Indexed

31 178 mtpmr Move to Program Mode Register

31 183 stwux Store Word with Update Indexed

31 200 subfzex Subtract from Zero Extended

31 202 addzex Add to Zero Extended

31 210 mtsr Move to Segment Register

31 215 stbx Store Byte Indexed

31 232 subfmex Subtract from Minus One Extended

31 234 addmex Add to Minus One Extended

31 235 mullx Multiply Low

31 242 mtsrin Move to Segment Register Indirect

31 246 debtst Data Cache Block Touch for Store

31 247 stbux Store Byte with Update Indexed

31 266 addx Add

31 275 mftb Move from Time Base

31 278 debt Data Cache Block Touch ,.
31 279 Ihzx Load Halfword and Zero Indexed

31 284 eqvx Equivalent

31 306 tlbie TLB Invalidate Entry

31 307 mftbu Move from Time Base Upper

31 310 eeiwx External Control Input Word indexed

31 311 Ihzux Load Halfword and Zero with Update Indexed

31 316 xorx XOR

31 339 mfspr Move from Special Purpose Register

31 343 Ihax Load Halfword Algebraic Indexed

31 375 Ihaux Load Halfword Algebraic with Update Indexed

31 403 mttb Move to Time Base 2

31 407 sthx Store Halfword Indexed

A-12 PowerPC 601 RiSe Microprocessor User's Manual MOTOROLA

Table A-2. PowerPC Instructions Implemented by MPC601 : by Opcode (Continued)

Primary Extended
Mnemonic Instruction Opcode Opcode

31 412 orcx OR with Complement

31 434 slbia SLB Invalidate Entry

31 435 mttbu Move to Time Base Upper

31 438 ecowx External Control Output Word indexed

31 439 sthux Store Halfword with Update Indexed

31 444 orx OR

31 459 divwux Divide Word Unsigned

31 466 slbiex SLB Invalidate Entry by Index

31 467 mtspr Move to Special Purpose Register

31 470 dcbi Data Cache Block Invalidate

31 476 nandx NAND

31 491 divwx Divide Word

31 498 slbia SLB Invalidate All

31 512 mcrxr Move to Condition Register from XER

31 533 Iswx Load String Word Indexed

31 534 Iwbrx Load Word Byte-Reverse Indexed

31 535 Ifsx Load Floating-Point Single-Precision Indexed

31 536 srwx Shift Right Word

31 567 Ifsux Load Floating-Point Single-Precision with Update Indexed

31 595 mfsr Move from Segment Register

31 597 Iswi Load String Word Immediate

31 598 sync Synchronize • 31 599 Ifdx Load Floating-Point Double-Precision Indexed

31 631 Ifdux Load Floating-Point Double-Precision with Update Indexed

31 659 mfsrin Move from Segment Register Indirect

31 661 stswx Store String Word Indexed

31 662 stwbrx Store Word Byte-Reverse Indexed

31 663 stfsx Store Floating-Point Single-Precision Indexed

31 695 stfsux Store Floating-Point Single-Precision with Update Indexed

31 725 stswi Store String Word Immediate

31 727 stfdx Store Floating-Point Double-Precision Indexed

MOTOROLA Appendix A. Instruction Set Listings A-13

Table A-2. PowerPC Instructions Implemented by MPC601: by Opcode (Continued)

Primary Extended
Mnemonic Instruction Opcode Opcode

31 759 stfdux Store Floating-Point Double-Precision with Update
Indexed

31 790 Ihbrx Load Halfword Byte-Reverse Indexed

31 792 srawx Shift Right Algebraic Word

31 824 srawix Shift Right Algebraic Word Immediate

31 854 eieio Enforce In-Order Execution of I/O

31 918 sthbrx Store Halfword Byte-Reverse Indexed

31 922 extshx Extend Sign Halfword

31 954 extsbx Extend Sign Byte

31 982 icbi Instruction Cache Block Invalidate

31 983 stfiwx Store Floating-Point as Integer Word Indexed

31 1014 dcbz Data Cache Block set to Zero

31 tibia TLB Invalidate All

31 tlbiex TLB Invalidate Entry by Index

32 Iwz Load Word and Zero

33 Iwzu Load Word and Zero with Update

34 Ibz Load Byte and Zero

35 Ibzu Load Byte and Zero with Update

36 stw Store Word

37 stwu Store Word with Update

38 stb Store Byte

39 stbu Store Byte with Update

40 1hz Load Halfword and Zero

41 Ihzu Load Halfword and Zero with Update

42 Iha Load Halfword Algebraic

43 Ihau Load Halfword Algebraic with Update

44 sth Store Halfword

45 sthu Store Halfword with Update

46 Imw Load Multiple Word

47 stmw Store Multiple Word

48 Ifs Load Floating-Point Single-Precision

49 Ifsu Load Floating-Point Single-Precision with Update

A-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table A-2. PowerPC Instructions Implemented by MPC601: by Opcode (Continued)

Primary Extended
Mnemonic Instruction

Opcode Opcode

50 Ifd Load Floating-Point

51 Ifdu Load Floating-Point Double-Precision with Update

52 sUs Store Floating-Point Single-Precision

53 sUsu Store Floating-Point Single-Precision with Update

54 sUd Store Floating-Point Double-Precision

55 stfdu Store Floating-Point Double-Precision with Update

59 18 fdivsx Floating-Point Divide Single-Precision

59 20 fsubsx Floating-Point Subtract Single-Precision

59 21 faddsx Floating-Point Add Single-Precision

59 22 frsqrtsx Floating-Point Square Root Single-Precision

59 24 fresx Floating-Point Reciprocal Estimate Single-Precision

59 25 fmulsx Floating-Point Multiply Single-Precision

59 28 fmsubsx Floating-Point Multiply-Subtract Single-Precision

59 29 fmaddsx Floating-Point Multiply-Add Single-Precision

59 30 fnmsubsx Floating-Point Negative Multiply-Subtract Single-Precision

59 31 fnmaddsx Floating-Point Negative Multiply-Add Single-Precision

63 0 fcmpu Floating-Point Compare Unordered

63 12 frspx Floating-Point Round to Single-Precision

63 14 fctiwx Floating-Point Convert to Integer Word

63 15 fctiwzx Floating-Point Convert to Integer Word with Round Toward
Zero

63 18 fdivx Floating-Point Divide

63 20 fsubx Floating-Point Subtract

63 21 faddx Floating-Point Add

63 22 frsqrtx Floating-Point Square Root

63 23 fselx Floating-Point Select

63 25 fmulx Floating-Point Multiply

63 26 frsqrtex Floating-Point Reciprocal Square Root Estimate

63 28 fmsubx Floating-Point Multiply-Subtract

63 29 fmaddx Floating-Point Multiply-Add

63 30 fnmsubx Floating-Point Negative Multiply-Subtract

63 31 fnmaddx Floating-Point Negative Multiply-Add

MOTOROLA Appendix A. Instruction Set Listings A-15

Table A-2. PowerPC Instructions Implemented by MPC601 : by Opcode (Continued)

Primary Extended
Mnemonic Instruction

Opcode Opcode

63 32 fcmpo Floating-Point Compare Ordered

63 38 mtfsb1x Move to FPSCR Bit 1

63 40 fnegx Floating-Point Negate

63 64 mcrfs Move to Condition Register from FPSCR

63 70 mtfsbOx Move to FPSCR Bit 0

63 72 fmrx Floating-Point Move Register

63 134 mtfsfix Move to FPSCR Field Immediate

63 136 fnabsx Floating-Point Negative Absolute Value

63 264 fabsx Floating-Point Absolute Value

63 583 mffsx Move from FPSCR

63 711 mtfsfx Move to FPSCR Fields

,.

A-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Appendix B
POWER Architecture Cross Reference
This section identifies the incompatibilities that must be managed in migration from the
POWER architecture to PowerPC architecture. Some of the incompatibilities can, at least
in principle, be detected by the processor, which traps and lets software simulate the
POWER operation. Others cannot be detected by the processor.

In general, the incompatibilities identified here are those that affect a POWER application
program. Incompatibilities for instructions that can be used only by POWER system
programs are not discussed. Note that this section describes incompatibilities with respect
to the PowerPC architecture in general. The MPC601 is more closely compatible with the
POWER architecture. POWER instructions implemented in the MPC601 are listed in
Table B-4.

B.1 New Instructions, Formerly Privileged
Instructions

Instructions new to PowerPC typically use opcode values (including extended opcode) that
are illegal in the POWER architecture. A few instructions that are privileged in the POWER
architecture (for example, delz, called dcbz in the PowerPC architecture) have been made
non-privileged in the PowerPC architecture. Any POWER program that executes one of
these now-valid or now-non-privileged instructions, expecting to cause the system illegal
instruction error handler (program exception) or the system privileged instruction error
handler to be invoked, will not execute correctly on PowerPC processors.

B.2 Newly Privileged Instructions
The following instructions are user-level in the POWER architecture but are supervisor­
level in PowerPC processors.

• mfmsr
• mfsr

B.3 Reserved Bits in Instructions
These are shown with '/'s in the instruction opcode definitions. In the POWER architecture
such bits are ignored by the processor. In PowerPC architecture they must be 0 or the

MOTOROLA Appendix B. POWER Architecture Cross Reference 8-1

instruction form is invalid. In several cases the PowerPC architecture assumes that such bits
in POWER instructions are indeed O. The cases include the following:

• cmpi, cmp, cmpli, and cmpl assume that bit lOin the POWER instructions is O.

• mtspr and mfspr assume that bits 16-20 in the POWER instructions are O.

B.4 Reserved Bits in Registers
The POWER architecture defines these bits to be 0 when read, and either 0 or 1 when
written to. In the PowerPC architecture it is implementation-dependent, for each register,
whether these bits are 0 when read and ignored when written to or are copied from source
to target when read or written to.

B.5 Alignment Check
The AL bit in the POWER machine-state register, MSR[24], is not supported in the
PowerPC architecture. The bit is reserved in the PowerPC architecture. The low-order bits
of the EA are always used. Notice that the value O-the normal value for a reserved SPR
bit-means "ignore the low-order EA bits" in the POWER architecture, and the value 1
means "use the low-order EA bits." However, MSR[24] is not assigned new meaning in
PowerPC.

B.6 Condition Register
The following instructions specify a field in the CR explicitly (via the BF field) and also
have the record bit option. In the PowerPC architecture, if Rc=1 for these instructions the
instruction form is invalid. In the POWER architecture, if Rc= 1 the instructions execute
normally except as shown in Table B-1.

Table B·1. Condition Register Settings

Instruction Setting

cmp CRa is undefined if Rc=1 and BF*a

cmpl CRa is undefined if Rc=1 and BF*O

mcrxr CRa is undefined if Rc=1 and BF*O

fcmpu CR1 is undefined if Rc=1

fcmpo CR1 is undefined if Rc=1

mcrfs CR1 is undefined if Rc=1 and BF*1

B.7 Inappropriate Use of LK and Rc bits
For the instructions listed below, if LK= 1 or Rc= 1, POWER processors execute the
instruction normally with the exception of setting the link register (if LK= 1) or the

8-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

condition register field 0 or 1 (if Rc= 1) to an undefined value. In the PowerPC architecture,
such instruction forms are invalid.

PowerPC instruction form is invalid if LK= 1 :

se (sve in the POWER architecture)

Condition register logical instructions

merf

isyne (ies in the POWER architecture)

PowerPC instruction form is invalid if Rc= 1 :

Integer X-form load and store instructions

Integer X-form compare instructions

X-form trap instruction

mtspr, mfspr, mterf, merxr, mfer, mtmsr, mfmsr, mtsr, mtsrin, Ubi, eciwx,
eeuwx, cles, mfsr, mfsrin, sync, eieiu, ieli

Floating-point X-form load and store instructions and floating-point compare
instructions

merfs

debz (dclz in the POWER architecture)

B.8 BO Field
The POWER architecture shows certain bits in the BO field-used by branch conditional
instructions-as x without indicating how these bits are to be interpreted. These bits are
ignored by POWER processors. The PowerPC architecture treats these bits differently, as
shown in Table B-2.

Table 8-2. Differences in the 80 Field

80 Field Description

80[0-3] The PowerPC architecture shows the bits as z. If it is not cleared, the instruction form is
invalid.

80[4] This bit, which is shown as x in the POWER architecture independent of the other four
bits-is shown in the PowerPC architecture as y. It gives a hint about whether the
branch is likely to be taken. If a POWER program has the wrong value for this bit, the
program runs correctly but performance may suffer.

B.9 Branch Conditional to Count Register
For the case in which the count register is decremented and tested (that is, the case in which
BO[2]=O), the POWER architecture specifies only that the branch target address is
undefi ned, implying that the count register, and the link register (if LK= 1), are updated in
the normal way. The PowerPC architecture considers this instruction form invalid.

MOTOROLA Appendix B. POWER Architecture Cross Reference 8-3

B.10 System Call/Supervisor Call
The System Call (sc) instruction in the PowerPC architecture is called Supervisor Call
(svcx) in the POWER architecture. Differences in implementations are as follows:

• The POWER architecture provides a version of the Supervisor Call instruction (bit
30 = 0) that allows instruction fetching to continue at anyone of 12X locations. It is
used for "fast SVCs." The PowerPC architecture provides no such version

The POWER architecture provides a version of the Supervisor Call instruction (bits
30-31 = b' 11 ') that resumes instruction fetching at one location and sets the link
register to the address of the next instruction. The PowerPC architecture provides no
such version; if bit 31 of the instruction is 1, the instruction form is invalid.

• For the POWER architecture, information from the MSR is saved in the count
register. For the PowerPC architecture, this information is saved in SRR 1.

• The POWER architecture permits bits 16--29 of the Supervisor Call instruction to be
non-zero, while in the PowerPC architecture, such an instruction form is invalid.

• Bits 16-290f the Supervisor Call instruction are regarded as reserved for the
POWER architecture. As long as POWER compatibility is required for this
instruction, bits 16-29 are ignored by the processor.

• The POWER architecture saves the low-order 16 bits of the Supervisor Call
instruction in the count register; the PowerPC architecture does not save them.

• The settings of the MSR bits by the system call exception differ between the
POWER architecture and the PowerPC architecture.

B.11 Update Forms of Memory Access
The PowerPC architecture requires that rA not be equal to either rD (integer load only) or
O. If the restriction is violated, the instruction form is invalid. See Appendix D, "Classes of
Instructions," for information about invalid instructions. The POWER architecture permits
these cases and simply avoids saving the EA.

B.12 Multiple Register Loads
The PowerPC architecture requires that rA and rB if present in the instruction format, not
be in the range of registers to be loaded, while the POWER architecture permits this and
does not alter rA or rB in this case. (The PowerPC architecture restriction applies even if
rA=O, although there is no obvious benefit to the restriction in this case since rAis not used
to compute the effective address if rA=O.) If the PowerPC architecture restriction is
violated, the instruction form is invalid. The instructions affected are listed as follows:

• Imw (1m in the POWER architecture)

• Iswi (lsi in the POWER architecture)

• Iswx (lsx in the POWER architecture)

8-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Thus, for example, an Imw instruction that loads all 32 registers is valid in the POWER
architecture but is an invalid form in the PowerPC architecture.

8.13 Alignment for Load/Store Multiple
The PowerPC mchitecture requires the EA to be word-aligned and yields an alignment
exception or boundedly undefined results if it is not. The POWER architecture specifies that
an alignment exception occurs (if AL= 1).

8.14 Load String Instructions
In the PowerPC architecture, an Iswx instruction with zero length leaves the content of rD
undefined, while in the POWER architecture the corresponding instruction (Isx) does not
alter rD.

8.15 Synchronization
The sync instruction (called des in the POWER architecture) causes a much more pervasive
synchronization in the PowerPC architecture than in the POWER architecture. For more
information, refer to Chapter 10, "Instruction Set."

8.16 Move to/from SPR
Differences in how the Move to/from Special Purpose Register (mtspr and mfspr)
instructions me as follows:

• The SPR field is 10 bits long in the PowerPC architecture, but only 5 in POWER
archi tecture.

• The mfspr instruction can be used to read the decrementer (DEC) register in
problem state (user) mode in the POWER architecture, but only in supervisor state
in the PowerPC architecture.

If the SPR value specified in the instruction is not one of the defined values, the
PowerPC architecture considers the instruction form invalid. (In user mode, the
allowed SPR values exclude those accessible only in supervisor mode.) The
POWER architecture does not alter any architected registers in this case and
generates a program exception if the instruction is executed in user mode and
SPR[O]=l.

For PowerPC processors except the MPC601 processor, a program exception is generated
for an attempt to execute an mtspr or mfspr instruction with SPR[O--4]=O (which denotes
the MQ register). Similarly, a program exception is generated for attempts to execute an
mfspr instruction with SPR[0-4]=6 (which denotes reading the decrementer register in the
POWER architecture).

MOTOROLA Appendix B. POWER Architecture Cross Reference 8-5

B.17 Effects of Exceptions on FPSCR Bits FR and FI
For the following cases, the POWER architecture does not specify how the FR and FI bits
are set, while the PowerPC architecture preserves them for illegal operation exceptions
caused by compare instructions and clears them otherwise.

• Invalid operation exception (enabled or disabled)

• Zero divide exception (enabled or disabled)

• Disabled overflow exception

B.18 Floating-Point Store Instructions
The POWER architecture uses FPSCR[UE] to help determine whether denormalization
should be done, while the PowerPC architecture does not. Using FPSCR[UE] is in fact
incorrect: in the PowerPC architecture if FPSCR[UE]= 1 and a denormalized single­
precision number is copied from one memory location to another by means of an Ifs
instruction followed by an stfs instruction, the two "copies" may not be the same.

B.19 Move from FPSCR
The POWER architecture defines the high-order 32 bits of the result of mffs to be x 'FFFF
FFFF'. In the PowerPC architecture they are undefined.

B.20 Clearing Bytes in the Data Cache
The dclz instruction of the POWER architecture and the dcbz instruction of the PowerPC
architecture have the same opcode. However, the functions differ in the following respects.

• The dclz instruction clears a line; dcbz clears a block (a sector in the MPC()Ol).

• The dclz instruction saves the EA in r A (if r A:t=O); dcbz does not.

• The dclz instruction is supervisor-level; dcbz is not.

B.21 Segment Register Instructions
The definitions of the four segment register instructions (mtsr, mtsrin, mfsr, and mfsrin)
differ in two respects between the POWER architecture and the PowerPC architecture.
Instructions similar to mtsrin and mfsrin are called mtsri and mfsri in the POWER
architecture.

Privilege-mfsr and mfsri are problem state instructions in the POWER architecture,
while mfsr and mfsrin are privileged in the PowerPC architecture.

Function-the indirect instructions (mtsri and mfsri) in the POWER architecture use an
r A register in computing the segment register number, and the computed EA is stored into
r A (if r A:t=O and r A:t=rD); in the PowerPC architecture mtsrin and mfsrin have no r A field
and EA is not stored.

8-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The mtsr, mtsrin (mtsri), and mfsr instructions have the same opcodes in the PowerPC
architecture as in the POWER architecture. The mfsri instruction in the POWER
architecture and the mfsrin instruction in PowerPC architecture have different opcodes.

B.22 TLB Entry Invalidation
The Ubi instruction of the POWER architecture and the Ubie instruction of the PowerPC
architecture have the same opcode. However, the functions differ in the following respects.

• The Ubi instruction computes the EA as (rAIO) + (rB), while tlbie lacks an rA field
and computes the EA as (rB).

• The Ubi instruction saves the EA in rA (if rA;tO); Ubie lacks an rA field and does
not save the EA.

B.23 Timing Facilities
This section describes differences between the POWER architecture and the PowerPC
architecture timer facilities.

8.23.1 Real-Time Clock
The MPC601 implements a POWER-based RTC. Note that the POWER RTC is not
supported in the PowerPC architecture. Instead, the PowerPC architecture provides a time
base (TB). Both the RTC and the time base are 64-bit special purpose registers, but they
differ in the following respects.

• The RTC counts seconds and nanoseconds, while the TB counts "ticks." The
frequency of the RTC is implementation-dependent.

• The RTC increments discontinuously-l is added to RTCU when the value in
RTCL passes 999_999_999. The TB increments continuously-l is added to TBU
when the value in TBL passes x'FFFF FFFF'.

The RTC is written and read by the mtspr and mfspr instructions, using SPR
numbers that denote the RTCU and RTCD. The TB is written and read by new
instructions (mttb, mttbu, mftb, and mftbu).

The SPR numbers that denote RTCL and RTCU are invalid in the PowerPC
architecture except the MPC601.

• The RTC is guaranteed to increment at least once in the time required to execute 10
Add Immediate (addi) instructions. No analogous guarantee is made for the TB.

Not all bits of RTCL need be implemented, while all bits of the TB must be
implemented.

8.23.2 Decrementer
The PowerPC architecture DEC register decrements at the same rate that the TB
increments, while the POWER decrementers decrement every nanosecond (which is the
same rate that the RTC increments).

MOTOROLA Appendix B. POWER Architecture Cross Reference 8-7

Not all bits of the POWER DEC need be implemented, while all bits of the PowerPC DEC
must be implemented.

8.23.3 Deleted Instructions
The following instructions are part of the POWER architecture but have been dropped from
the PowerPC architecture.

Table 8-3. Deleted POWER Instructions

Mnemonic Instruction
Primary Secondary In MPC601
Opcode Opcode Processor

abs Absolute 31 360 Yes

clcs Cache Line Compute Size 31 531 Yes

clf Cache Line Flush 31 118 No

cli Cache Line Invalidate 31 502 No

dclst Data Cache Line Store 31 630 No

div Divide 31 331 Yes

divs Divide Short 31 363 Yes

doz Difference or Zero 31 264 Yes

dozi Difference or Zero Immediate 09 - Yes

Iscbx Load String and Compare Byte Indexed 31 277 Yes

maskg Mask Generate 31 29 Yes

maskir Mask Insert from Register 31 541 Yes

mfsri Move from Segment Register Indirect 31 627 Yes

mul Multiply 31 107 Yes

nabs Negative Absolute 31 488 Yes

rac Real Address Compute 31 818 No

rlmi Rotate Left then Mask Insert 22 - Yes

rrib Rotate Right and Insert Bit 31 537 Yes

sle Shift Left Extended 31 153 Yes

sleq Shift Left Extended with MQ 31 217 Yes

sliq Shift Left Immediate with MQ 31 184 Yes

slliq Shift Left Long Immediate with MQ 31 248 Yes

sllq Shift Left Long with MQ 31 216 Yes

slq Shift Left with MQ 31 152 Yes

sraiq Shift Right Algebraic Immediate with MQ 31 952 Yes

sraq Shift Right Algebraic with MQ 31 920 Yes

8-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 8-3. Deleted POWER Instructions (Continued)

Mnemonic Instruction
Primary Secondary In MPC601
Opcode Opcode Processor

sre Shift Right Extended 31 665 Yes

srea Shift Right Extended Algebraic 31 921 Yes

sreq Shift Right Extended with MQ 31 729 Yes

sriq Shift Right Immediate with MQ 31 696 Yes

srliq Shift Right Long Immediate with MQ 31 760 Yes

srlq Shift Right Long with MQ 31 728 Yes

srq Shift Right with MQ 31 664 Yes

svc[I] Supervisor Call, with SA=O 17 0 No

Note: Many of these instructions use the MQ register. The MQ is not defined in the PowerPC architecture,
but is implemented in the MPC601 processor.

8.24 POWER Instructions Supported by the MPC601
Processor

Table B-4lists the POWER instructions implemented in the PowerPC architecture.

Table 8-4. POWER Instructions Implemented in PowerPC Architecture

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

a[o][.] Add addc[o][.] Add Carrying

ae[o][.] Add Extended adde[o][.]

ai Add Immediate addic Add Immediate Carrying

ai. Add Immediate and addic. Add Immediate Carrying
Record and Record

ame[o][.] Add to Minus One addme[o][.]
Extended

andil. AND Immediate Lower andi. AND Immediate

andiu. AND Immediate Upper andis. AND Immediate Shifted

aze[o][.] Add to Zero Extended addze[o][.]

bcc[l] Branch Conditional to beetr[l]
Count Register

ber[l] Branch Conditional to Link bclr[l]
Register

cal Compute Address Lower addi Add Immediate

cau Compute Address Upper addis Add Immediate Shifted

MOTOROLA Appendix B. POWER Architecture Cross Reference 8-9

Table 8·4. POWER Instructions Implemented in PowerPC Architecture (Continued)

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

cax[o][.] Compute Address add[o][.] Add

cntlz[.] Count Leading Zeros cntlzw[.] Count Leading Zeros
Word

des Data Cache Synchronize sync Synchronize

exts[.] Extend Sign extsh[.] Extend Sign Half Word

fa[.] Floating Add fadd[.]

fd[.] Floating Divide fdiv[.]

fm[.] Floating Multiply fmul[.]

fma[.] Floating Multiply-Add fmadd[.]

fms[.] Floating Multiply-Subtract fmsub[.]

fnma[.] Floating Negative fnmadd[.]
Multiply-Add

fnms[.] Floating Negative fnmsub[.]
Multiply-Subtract

fS[.] Floating Subtract fsub[.]

I Load Iwz Load Word and Zero

Ibrx Load Byte-Reverse Iwbrx Load Word Byte-Reverse
Indexed Indexed

1m Load Multiple Imw Load Multiple Word

lsi Load String Immediate Iswi Load String Word
Immediate

Isx Load String Indexed Iswx Load String Word Indexed

lu Load with Update Iwzu Load Word and Zero with
Update

lux Load with Update Indexed Iwzux Load Word and Zero with
Update Indexed

Ix Load Indexed Iwzx Load Word and Zero
Indexed

mtsri Move to Segment mtsrin Move to Segment
Register Indirect Register Indirect *

muli Multiply Immediate mulIi Multiply Low Immediate

muls[o][.] Multiply Short mulJ[o][.] Multiply Low

oril OR Immediate Lower ori OR Immediate

oriu OR Immediate Upper oris OR Immediate Shifted

8-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table 8-4. POWER Instructions Implemented in PowerPC Architecture (Continued)

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

rlimi[.] Rotate Left Immediate rlwimi[.] Rotate Left Word
then Mask Insert Immediate then Mask

Insert

rlinm[.] Rotate Left Immediate rlwinm[.] Rotate Left Word
then AND With Mask Immediate then AND with

Mask

rlnm[.] Rotate Left then AND with rlwnm[.] Rotate Left Word then
Mask AND with Mask

sf[o][.] Subtract from subfc[o][.] Subtract from Carrying

sfe[o][.] Subtract from Extended subfe[o][.]

sfi Subtract from Immediate subfic Subtract from Immediate
Carrying

sfme[o][.] Subtract from Minus One subfme[o][.]
Extended

sfze[o][.] Subtract from Zero subfze[o][.]
Extended

51[.] Shift Left slw[.] Shift Left Word

sr[.] Shift Right srw[.] Shift Right Word

sra[.] Shift Right Algebraic sraw[.] Shift Right Algebraic Word

srai[.] Shift Right Algebraic srawi[.] Shift Right Algebraic Word
Immediate Immediate

st Store stw Store Word

stbrx Store Byte-Reverse stwbrx Store Word Byte-Reverse
Indexed Indexed

stm Store Multiple stmw Store Multiple Word

stsi Store String Immediate stswi Store String Word
Immediate

stsx Store String Indexed stswx Store String Word
Indexed

stu Store with Update stwu Store Word with Update

stux Store with Update stwux Store Word with Update
Indexed Indexed

stx Store Indexed stwx Store Word Indexed

svca Supervisor Call sc System Call

t Trap tw Trap Word

ti Trap Immediate twi Trap Word Immediate *

tlbi TLB Invalidate Entry Ii tlbie TLB Entry Invalidate

MOTOROLA Appendix B. POWER Architecture Cross Reference 8-11

Table 8-4. POWER Instructions Implemented in Power PC Architecture (Continued)

POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

xoril XOR Immediate Lower xori XOR Immediate

xoriu XOR Immediate Upper xoris XOR Immediate Shifted

• Supervisor-level instruction

III

8-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Appendix C
PowerPC Instructions Not Implemented
in MPC601
This appendix provides a list of 32-bit and 64-bit instructions that are not implemented by
the MPC601, and that generate an illegal instruction exception. It also provides the 32-bit
and 64-bit SPR encodings that are not implemented by the MPC601.

See Table C-I for a list of the 32-bit instructions not implemented by the MPC601.

Table C-1. 32-Bit Instructions Not Implemented by the MPC601

Mnemonic Instruction

fres Floating-Point Reciprocal Estimate Single-Precision

frsqrte Floating-Point Reciprocal Square Root Estimate

fsel Floating-Point Select

fsqrt Floating-Point Square Root

fsqrts Floating-Point Square Root Single-Precision

mftb Move from Time Base

stfiwx Store Floating-Point as Integer Word Indexed

tibia Translation Lookaside Buffer Invalidate All

tlbiex Translation Lookaside Buffer Invalidate Entry by Index

tlbsync Translation Lookaside Buffer Synchronize

Table C-2 provides a list of 32-bit SPR encodings that are not implemented by the
MPC601.

MOTOROLA Appendix C. PowerPC Instructions Not Implemented in MPC601 C-1

Table C-2. 32-Bit SPR Encodings Not Implemented by the MPC601

SPR
Register

Access
Decimal SPR[5-9] SPR[0-4]

Name

284 01000 11100 TB Supervisor

285 01000 11101 TBU Supervisor

536 10000 11000 DBATOU Supervisor

537 10000 11001 DBATOL Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1 L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

Table C-3 provides a list of 64-bit instructions that are not implemented by the MPC601,
and that generate an illegal instruction exception.

Table C-3. 64-Bit Instructions Not Implemented by the MPC601

Mnemonic Instruction

cntlzd Count Leading Zeros Double Word

divd Divide Double Word

divdu Divide Double Word Unsigned

extsw Extend Sign Word

fefid Floating Convert From Integer Double Word

fetid Floating Convert to Integer Double Word

fetidz Floating Convert to Integer Double Word with Round to Zero

Id Load Double Word

Idarx Load Double Word and Reserve Indexed

Idu Load Double Word with Update

Idux Load Double Word with Update Indexed

Idx Load Double Word Indexed

Iwa Load Word Algebraic

Iwaux Load Word Algebraic with Update Indexed

Iwax Load Word Algebraic Indexed

mulld Multiply Low Double Word

C-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Table C-3. 64-Bit Instructions Not Implemented by the MPC601 (Continued)

Mnemonic Instruction

mulhd Multiply High Double Word

mulhdu Multiply High Double Word Unsigned

rldcl Rotate Left Double Word then Clear Left

rldcr Rotate Left Double Word then Clear Right

rldic Rotate Left Double Word Immediate then Clear

rldicl Rotate Left Double Word Immediate then Clear Left

rldicr Rotate Left Double Word Immediate then Clear Right

rldimi Rotate Left Double Word Immediate then Mask Insert

slbia SLB Invalidate All

slbie SLB Invalidate Entry

slbiex SLB Invalidate Entry by Index

sId Shift Left Double Word

srad Shift Right Algebraic Double Word

sradi Shift Right Algebraic Double Word Immediate

srd Shift Right Double Word

std Store Double Word

stdcx. Store Double Word Conditional Indexed

stdu Store Double Word with Update

stdux Store Double Word Indexed with Update

stdx Store Double Word Indexed

td Trap Double Word

tdi Trap Double Word Immediate

Table C-4 provides the 64-bit SPR encoding that is not implemented by the MPC601.

Table C-4. 64-Bit SPR Encoding Not Implemented by the MPC601

SPR
Register

Access
Decimal SPR[5-9] SPR[0-4]

Name

280 01000 11000 ASR Supervisor

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601 C-3

•

cntlzd Not Implemented in MPC601
Count Leading Zeros Double Word

cntlzd
cntlzd.

31

o

Nf-O

5 6

do while N<64

rA,rS

rA,rS

s
10 11

if rS[N]=l then leave
Nf-N+l

rAf-N

A

(Rc=O)

(Rc=l)

15 16 20 21

cntlzd
Integer Unit

Eilll Reserved

58

3031

A count of the number of consecutive zero bits starting at bit 0 of register rS is placed into
rA. This number ranges from 0 to 64, inclusive.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (Rc=l)

divd Not Implemented in MPC601
Divide Double Word

divd rD,rA,rB

divd. rD,rA,rB

divdo rD,rA,rB

divdo. rD,rA,rB

o
31 o

5 6

dividend[O-63)f-r A
divisor[O-63]f-rB
rDf-dividend+divisor

10 11

(OE=O Rc=O)

(OE=O Rc=l)

(OE=1 Rc=O)

(OE=1 Rc=l)

A B

15 16 20 21 22

C-4 PowerPC 601 RISC Microprocessor User's Manual

divd
Integer Unit

489

30 31

MOTOROLA

The 64-bit dividend is rA. The 64-bit divisor is rB. The 64-bit quotient of the dividend and
divisor is placed into rD. The remainder is not supplied as a result.

Both the dividend and the divisor are interpreted as signed integers. The quotient is the
unique signed integer that satisfies

dividend=(quotient*divisor)+r

where 0 ~ r < Idivisorl if the dividend is nonnegative, and -Idivisorl < r~ 0 if the dividend is
negative.

If an attempt is made to perform any of the divisions

OxXOO<L()()OO_OOOO_OOOO + -1
<anything> + °

then the contents of rD are undefined.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Exception Register:

Affected: SO, OV (if OE=l)

divdu Not Implemented in MPC601
Divide Double Word

divdu rD,rA,rB

divdu. rD,rA,rB

divduo rD,rA,rB

divduo. rD,rA,rB

31 o
o 5 6 10 11

dividend[O-63)~rA

divisor[0-63]~rB

rD~dividend+divisor

(OE=O Rc=O)

(OE=O Rc=l)

(OE=l Rc=O)

(OE=l Rc=l)

A B

15 16 20 21 22

divdu
Integer Unit

457

30 31

The 64-bit dividend is rA. The 64-bit divisor is rB. The 64-bit quotient of the dividend and
divisor is placed into rD. The remainder is not supplied as a result.

MOTOROLA Appendix C. PowerPC Instructions Not Implemented in MPC601 C-5

Both the dividend and the divisor are interpreted as unsigned integers. The quotient is the
unique unsigned integer that satisfies

dividend=(quotient*divisor)+r

where 0 ~ r < divisor.

If an attempt is made to perform the division

<anything> + 0

then the contents of rD are undefined.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Exception Register:

Affected: SO, OV (if OE=l)

extsw Not Implemented in MPC601
Extend Sign Word

extsw
extsw.

o

rA,rS

rA,rS

31 s
5 6

sf-rS[32J
rA[32-63]f-rS[32-63J
rA[O-31Jf-(32)s

10 11

A

(Rc=O)

(Rc=l)

15 16 20 21

extsw

Gill Reserved

986

3031

Register rS[32-63] are placed into rA[32-63]. Bit 32 of rS is placed into rA[O-31].

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

C-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

fefid Not Implemented in MPC601
Floating Convert from Integer Double Word

fetid
fetid.

o
63

5 6

frD,frB
frD,frB

frO

10 11

(Rc=())

(Rc=1)

15 16

frB

20 21

fefid
Floating-Point Unit

EJ Reserved

846

30 31

The 64-bit signed fixed-point operand in register frB is converted to an infinitely precise
floating-point integer. If the result of the conversion is already in double-precision range it
is placed into register frD. Otherwise the result of the conversion is rounded to double­
precision using the rounding mode specified by FPSCR[RN] and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result. FPSCR[FR] is set if the result is
incremented when rounded. FPSCR[FI] is set if the result is inexact.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRl Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Exception Register:

Affected: FPRF, FR, FI, FX, XX

fet i d Not Implemented in MPC601
Floating Convert to Integer Double Word

fetid
fetid.

o
63

5 6

frD,frB
frD,frB

frO

10 11

(Rc=O)

(Rc=l)

15 16

frB

20 21

fetid

[ill] Reserved

814

30 31

The floating-point operand in frB is converted to a 64-bit signed fixed-po~nt integer, using
the rounding mode specified by FPSCR[RN], and placed into frD.

If the operand in frB is greater than 2(63)-1, then frD is set to Ox7FFF _FFFF _FFFF _FFFF.
If the operand in frB is less than -2(63), then frD is set to OxRO()()_()()OO_OOO()_OOOO.

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601 C-7

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR]
is set if the result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Exception Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN VXCVI

fctidz Not Implemented in MPC601
Floating Convert to Integer Double Word

fctidz

fctidz.

a
63

5 6

frO,frB
frO,frB

frD

10 11

(Rc=O)

(Rc=l)

15 16

frB

20 21

fctidz

EJ Reserved

815

30 31

The floating-point operand in frB is converted to a 64-bit signed fixed-point integer, using
the rounding mode round toward zero, and placed into frO.

If the operand in frB is greater than 2(63)-1, then frO is set to Ox7FFF _FFFF _FFFF _FFFF.
If the operand in frB is less than -2(63), then frO is set to OxRO()()_()()OO_OOOO_OOOO.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR]
is set if the result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRI Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Exception Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN VXCVI

C-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

fresx Not Implemented in MPC601 fresx
Floating-Point Reciprocal Estimate Single-Precision Floating-Point Unit

fres
fres.

o
59

5 6

frD,frB
frD,frB

frO

(Rc=O)

(Rc=l)

1011 1516

ED Reserved

20 21 25 26 30 31

This PowerPC instruction is not implemented by the MPC601. Execution of this instruction
will invoke the illegal instruction handler. A description of the operation of this instruction
is provided for emulation purposes.

A single-precision estimate of the reciprocal of the floating-point operand in register frB is
placed into register frO. The estimate placed into register frO is correct to a precision of
one part in 256 of the reciprocal of frB.

Operation with various special values of the operand, is summarized below.

Operand Result Exception

-0 None

-() -00* ZX

-to -too * ZX

-too -to None

SNaN QNaN** VXSNAN

QNaN QNaN None

* No result if FPSCR[ZE)=1.

** No result if FPSCR[VE)=1.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]=l and zero divide exceptions when FPSCR[ZE]=l.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: FX, FEX, VX, OX (if Rc=l)

• Aoating-point Status and Control Register:

Affected: FX, OX, UX, ZX, VXSNAN, FPRF, FR (undefined), FI (undefined)

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601 C-9

•

frsqrte Not Implemented in MPC601
Floating-Point Reciprocal Square Root Estimate

frsqrte
frsqrte.

63

o 5 6

frD,frB
frD,frB

frO

10 11

(Rc=O)

(Rc=1)

15 16

frB

20 21

frsqrte
Floating-Point Unit

[ill] Reserved

26

2526 30 31

This PowerPC instruction is not implemented by the MPC601. Execution of this instruction
will invoke the illegal instruction handler. A description of the operation of this instruction
is provided for emulation purposes.

A double-precision estimate of the reciprocal of the square root of the floating-point
operand in register frB is placed into register frD. The estimate placed into register frD is
correct to a precision of one part in 32 of the reciprocal of the square root of frB.

Operation with various special values of the operand is summarized below.

Operand Result Exception

QNaN** VXSQRT

<0 QNaN** VXSQRT

-0 -00* ZX

+0 +00* ZX

+00 +0 None

SNaN QNaN** VXSNAN

QNaN QNaN None

* No result if FPSCR[ZE)=1.

** No result if FPSCR[VE)=1.

FPSCR[FPRF] is set to the class and sin of the result, except for invalid operation
exceptions when FPSCR[VE]=l and zero divide exceptions when FPSCR[ZE]=l.

Other registers altered:

• Condition Register (CR 1 Field):

Affected: FX, FEX, VX, OX (if Rc=l)

Floating-point Status and Control Register:

Affected: FX, OX, UX, ZX, VXSNAN, FPRF, FR (undefined), FI (undefined)

C-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

fselx Not Implemented in MPC601
Floating-Point Select

fsel

fsel.

fr D,fr A,frC,fr B

fr D,fr A,frC,fr B
(Rc=O)

(Rc=l)

fselx
Floating-Point Unit

63 frO frA frB frC 23 I Rc I
a 5 6 10 11 15 16 20 21 25 26 30 31

if Cfr A) ~ 0.0 then frDf-CfrC)

else frDf-CfrB)

This PowerPC instruction is not implemented by the MPC60 I. Execution of this instruction
will invoke the illegal instruction handler. A description of the operation of this instruction
is provided for emulation purposes.

The floating-point operand in register frA is compared to the value zero. If the operand is
greater than or equal to zero, register frD is set to the contents of register frC. If the operand
is less than zero or is a NaN, register frD is set to the contents of register frB. The
comparison ignores the sign of zero (i.e., regards +0 as equal to -0).

Other registers altered:

• Condition Register (CR 1 Field):

Affected: FX, FEX, VX, OX (if Rc=l)

Care must be taken in using fsel if IEEE compatibility is required, or if the values being
tested can be NaNs or infinities.

fsq rtx Not Implemented in MPC601
Floating-Point Square Root [Single-Precision]

fsqrt

fsqrt.

a
63

5 6

frD,frB

frD,frB

frO

10 11

(Rc=O)

(Rc=1)

15 16

frB

20 21

fsqrtx
Floating-Point Unit

[ill] Reserved

22

2526 30 31

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601 C-11

fsqrts
fsqrts.

o
59

5 6

frD,frB
frD,frB

frO

(Rc=O)

(Rc=1)

1011 1516

[ill Reserved

20 21 25 26 3031

This PowerPC instruction is not implemented by the MPC601. Execution of this instruction
will invoke the illegal instruction handler. A description of the operation of this instruction
is provided for emulation purposes.

The square root of the floating-point operand in register frB is placed into register frO.

lf the most significant bit of the resultant significand is not a one the result is normalized.
The result is rounded to the target precision under control of the floating-point rounding
control field RN of the FPSCR and placed into register frO.

Operation with various special values of the operand is summarized below.

Operand Result Exception

QNaN* VXSQRT

<0 QNaN* VXSQRT

-0 -0 None

-too -too None

SNaN QNaN* VXSNAN

QNaN QNaN None

* No result if FPSCR[VE1=1.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE]= 1.

Other registers altered:

Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

Floating-point Status and Control Register:

Affected: FX, XX, VXSQRT, VXSNAN, FPRF, FR, FI

C-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Id Not Implemented in MPC601
Load Double Word

lei

o

rD,ds(rA)

58 o
5 6

if rA=O then b~O
cIsc h~rA

EA~b+EXTS(dsIiObOO)

rD~MEM(EA. X)

10 11

A

15 16

Id
Integer Unit

ds

2930 31

EA is the sum (rAIO)+(dsIiObOO). The double word in storage addressed by EA is loaded
into rD.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

Idarx Not Implemented in MPC601
Load Double Word and Reserve Indexed

Idarx

o

rD,rA,rB

31 o
5 6 10 11

if r A=O then h~O
else b~rA

EA~b+rB

RESERVE~l

RESERVE_ADDR ~func(EA)
rD~MEM(EA. X)

A

15 16

B

20 21

Idarx
Integer Unit

EEl Reserved

84

30 31

EA is the sum (rAIO)+(rB). The double word in storage addressed by EA is loaded into rD.

This instruction creates a reservation for use by a store double word conditional instruction.
An address computed from the EA is associated with the reservation, and replaces any
address previously associated with the reservation.

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601 C-13

•

EA must be a mUltiple of 8. If it is not, the system alignment error handler may be invoked
or the results may be boundedly undefined.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

Idu Not Implemented in MPC601
Load Double Word with Update

Idu rD,ds(rA)

58 D A

o 5 6 10 11

EA~rA+EXTS(dsIiObOO)

rD~MEM(EA, 8)
rA~EA

15 16

Idu
Integer Unit

ds

2930 31

EA is the sum (rA)+(dsliObOO). The double word in storage addressed by EA is loaded into
rD.

EA is placed into r A.

If rA=O or rA=rD, the instruction form is invalid.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

C-14 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Idux Not Implemented in MPC601
Load Double Word with Update Indexed

Idux

o

rD,rA,rB

31 D A

5 6 10 11

EA~rA+rB

rD~MEM(EA, R)
rA~EA

B

15 16 20 21

Idux
Integer Unit

!ill] Reserved

53

30 31

EA is the sum (r A)+(rB). The double word in storage addressed by EA is loaded into rD.

EA is placed into r A.

If rA=O or rA=rD, the instruction form is invalid.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction to be invoked.

Idx Not Implemented in MPC601
Load Double Word Indexed

Idx

o

rD,rA,rB

31 D A

5 6 10 11

if rA = 0 then b~O

else b~rA

EA~b+rB

rD~MEM(EA, 8)

B

15 16 20 21

Idx

[ill] Reserved

21

30 31

EA is the sum (rAIO)+(rB). The double word in storage addressed by EA is loaded into rD.

This instruction is defined only for 64-bit implementations. Using ~t on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

MOTOROLA Appendix C. PowerPC Instructions Not Implemented in MPC601 C-15

•

Iwa Not Implemented in MPC601
Load Word Algebraic

Iwa rD,ds(rA)

58 D A

o 5 6 10 11

if rA=O then bf-O
else bf-rA
EAf-h+EXTS(dsllObOO)
rDf-EXTS(MEM(EA,4»

15 16

Iwa
Integer Unit

ds

2930 31

EA is the sum (rAIO)+(dsliObOO). The word in storage addressed by EA is loaded into
rD[32-63]. Register rD[O-31] are filled with a copy of bit 0 of the loaded word.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

Iwaux Not Implemented in MPC601
Load Word Algebraic with Update Indexed

Iwaux

o

rD,rA,rB

31 D A

5 6 10 11

EAf-rA+rB
rDf-EXTS(MEM(EA,4»
rAf-EA

B 373

15 16 20 21

Iwaux

[ill] Reserved

3031

EA is the sum (rA)+(rB). The word in storage addressed by EA is loaded into rD[32-63].
Register rD[O-31] are filled with a copy of bit 0 of the loaded word.

EA is placed into r A.

If rA=O or rA=rD, the instruction form is invalid.

C-16 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

Iwax Not Implemented in MPC601
Load Word Algebraic Indexed

Iwax

o

rD,rA,rB

31 D A

5 6 10 11

if r A=O then b~O
else b~rA

EA~b+ rB
rD~EXTS(MEM(EA, 4))

B

15 16 20 21

Iwax

Eill Reserved

341

30 31

EA is the sum (rAIO)+(rB). The word in storage addressed by EA is loaded into rD[32-63].
Register rD[O-31] are filled with a copy of bit 0 of the loaded word.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

mftb Not Implemented in MPC601
Move from Time Base

mftb

o

rD,TBR

31 D TBR

5 6 10 11

N~TBR[5-9]1I TBR[0-4]
if N=268 then

if (64-bit implementation) then
rD~TB

else

20 21

371

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601

mftb
Integer Unit

mill Reserved

30 31

C-17

II

rD f- TB[32-63]
else if N=269 then

if (64-bit implementation) then
rDf-(32)O II TB[O-31]

else
rDf-TB[O-31]

The TBR field denotes either the time base or time base upper, encoded as shown in
Table C-5. The contents of the designated register are copied to rD. When reading Time
Base Upper on a 64-bit implementation, the high-order 32 bits of rD are set to zero.

Table C-5. TBR Encodings for mftb

Decimal
TBR· Register

Access
TBR[S-9] TBR[O-4] Name

268 01000 01100 TB User

269 01000 01101 TBU User

*Note that the order of the two 5-bit halves of the TBR number is
reversed.

If the TBR field contains any value other than one of the values shown in Table C-5, the
instruction form is invalid.

Other registers altered:

None

mulhd Not Implemented in MPC601
Multiply High Double Word

mulhd

mulhd.

31

o 5 6

rD,rA,rB

rD,rA,rB

D

10 11

prod[O-127]f-rA*rB
rDf-prod[O-63]

A

(Rc=O)

(Rc=1)

15 16

B

20 21 22

mulhd
Integer Unit

73

30 31

The 64-bit multiplicands are rA and rB. The high-order 64 bits of the 128-bit product of
the multiplicands are placed into rD.

Both the multiplicands and the product are interpreted as signed integers.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

C-18 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

mulhdu Not Implemented in MPC601 mulhdu
Multiply High Double Word Unsigned

mulhdu

mulhdu.

31

o 5 6

rD,rA,rB

rD,rA,rB

o
10 11

prod[O-127)f-rA*rB
rDf-prod[O-63)

A

(Rc=O)

(Rc=l)

15 16

B

20 21 22

Integer Unit

9

30 31

The 64-bit multiplicands are r A and rB. The high-order 64 bits of the 128-bit product of
the multiplicands are placed into rD.

Both the multiplicands and the product are interpreted as unsigned integers.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

mulld Not Implemented in MPC601 mulld
Multiply Low Double Word Integer Unit

mulld rD,rA,rB (OE=O Rc=O)

mulld. rD,rA,rB (OE=O Rc=l)

mulldo rD,rA,rB (OE=l Rc=O)

mull do. rD,rA,rB (OE=l Rc=l)

31 o A B 233

o 5 6 10 11 15 16 20 21 22 30 31

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601 C-19

prod[O-127)f-rA*rB

rDf-prod[64-127)

The 64-bit operands are r A and rB. The low-order 64 bits of the I28-bit product of the
operands are placed into rD.

If OE=I, then SO and OV are set to one if the product cannot be represented in 64 bits.

Both the operands and the product are interpreted as signed integers. However, the result in
rD is independent of whether the operands are interpreted as signed or unsigned integers.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Exception Register:

Affected: SO OV (if OE=I)

rldcl Not Implemented in MPC601
Rotate Left Double Word then Clear Left

rldcl

rldcl.

o

rA,rS,rB,MB

rA,rS,rB,MB

30 s
5 6

Nf-rB[58-63]
rf-ROTL(64)(rS, N)

bf-MB(5)II MB[O-4)

mf-MASK(b, 63)
rAf-r&m

10 11

(Rc=O)

(Rc=l)

A

15 16

B

20 21

rldcl
Integer Unit

MB 8 IRcl
2627 30 31

The contents of rS are rotated[64] left the number of bits specified by rB[58-63]. A mask
is generated having I-bits from bit MB through bit 63 and O-bits elsewhere. The rotated
data is ANDed with the generated mask and the result is placed into rA.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

C-20 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

rider Not Implemented in MPC601
Rotate Left Double Word then Clear Right

rIder

rIder.

o

rA,rS,rB,ME

rA,rS,rB,ME

30 S

5 6

Nf-rB[58--63)

rf-ROTL(64)(rS, N)

ef-ME(5)II ME[O-4)

mf-MASK(O, e)

rAf-r&m

10 11

(Rc=O)

(Rc=l)

A

15 16

B

20 21

rider
Integer Unit

ME 9 IRel
2627 30 31

The contents of rS are rotated[64] left the number of bits specified by rB[58-63]. A mask
is generated having I-bits from bit 0 through bit ME and O-bits elsewhere. The rotated data
is ANDed with the generated mask and the result is placed into rA.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

rldie Not Implemented in MPC601
Rotate Left Double Word Immediate then Clear

rldie

rldie.

o

r A,rS,SH,MB

r A,rS,SH,MB

30 S

5 6

Nf-SH(5)II SH[0-4)

rf-ROTL(64)(rS, N)
bf-MB(5)II MB[0-4)

10 11

(Rc=O)

(Rc=l)

A

15 16

SH
20 21

MB

2627

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601

rldie
Integer Unit

2 ISHIRel
2930 31

C-21

•

m~MASK(b, -N)

rA~r&m

The contents of rS are rotated[64] left SH bits. A mask is generated having I-bits from bit
MB through bit 63-SH and O-bits elsewhere. The rotated data is ANDed with the generated
mask and the result is placed into r A.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

rldicl Not Implemented in MPC601
Rotate Left Double Word Immediate then Clear Left

rldicl
rldicl.

o

rA,rS,SH,MB

rA,rS,SH,MB

30 S

5 6

N~SH(5)1I SH[0-4)

r~ROTL(64)(rS, N)

b~MB(5)1I MB[0-4)

m~MASK(b, 63)

rA~r&m

10 11

(Rc=O)

(Rc=l)

A SH
15 16 20 21

rldicl
Integer Unit

MB 0 \SHIRcl
2627 2930 31

The contents of rS are rotated[64] left SH bits. A mask is generated having I-bits from bit
MB through bit 63 and O-bits elsewhere. The rotated data is ANDed with the generated
mask and the result is placed into r A.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked .

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

C-22 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

rid icr Not Implemented in MPC601
Rotate Left Double Word Immediate then Clear Right

rldicr
rldicr.

r A,rS,SH,ME

rA,rS,SH,ME

o
30 S

5 6

N~SH(5)1I SH[0-4)

r~ROTL(64)(rS, N)

e~ME(5)1I ME[O-4)
mf-MASK(O, e)

rA~r&m

10 11

A

(Rc=O)

(Rc=I)

15 16

SH
20 21

rldicr
Integer Unit

ME

2627 2930 31

The contents of rS are rotated[64] left SH bits. A mask is generated having I-bits from bit
ME and O-bits elsewhere. The rotated data is ANDed with the generated mask and the result
is placed into r A.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=I)

rldimi Not Implemented in MPC601
Rotate Left Double Word Immediate then Clear Left

rldimi
rldimi.

rA,rS,SH,MB

rA,rS,SH,MB

o
30 S

5 6 10 11

N~SH(5)1I SH[0-4)

rf-ROTL(64)(rS, N)

bf-MB(5)II MB[0-4)

mf-MASK(b, -N)

rA~(r & m) I (rA & -m)

(Rc=O)

(Rc=l)

A SH
15 16 20 21

MB

2627

MOTOROLA Appendix C. PowerPC Instructions Not Implemented in MPC601

rldimi
Integer Unit

3 \SHIRel
2930 31

C-23

•

The contents of rS are rotated [64] left SH bits. A mask is generated having I-bits from bit
MB through bit 63-SH and O-bits elsewhere. The rotated data is inserted into rA under
control of the generated mask.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=I)

slbia Not Implemented in MPC601 slbia
SLB Invalidate All

Eilll Reserved

31 498 ,
·::··:.·:.··.·:.·.:<.1 .:::2: ..

o 5 6 10 11 15 16 20 21 3031

All SLB entriesf-invalid

This PowerPC instruction is not implemented by the MPC60 1. Execution of this instruction
will invoke the illegal instruction handler. A description of the operation of this instruction
is provided for emulation purposes.

The SLB is invalidated regardless of the settings of MSR[lR] and MSR[DR].

This instruction is supervisor-level.

This instruction is optional in PowerPC architecture.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause an illegal instruction type program interrupt.

It is not necessary that the ASR point to a valid segment table when issuing slbia.

Other registers altered:

None

C-24 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

slbie Not Implemented in MPC601 slbie
SLB Invalidate Entry

slbie rB

[ill] Reserved

31 B 434

o 5 6 10 11 15 16 20 21 30 31

EA~(rB)

if SLB entry exists for EA, then
SLB entry~invalid

This PowerPC instruction is not implemented by the MPC601. Execution of this instruction
will invoke the illegal instruction handler. A description of the operation of this instruction
is provided for emulation purposes.

EA is the contents of rB. If the segment lookaside buffer (SLB) contains an entry
corresponding to EA, that entry is made invalid (i.e., removed from the SLB).

The SLB search is done regardless of the settings of MSR[IR] and MSR[DR].

Block address translation for EA, if any, is ignored.

This instruction is supervisor-level.

This instruction is optional in PowerPC architecture.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause an illegal instruction type program interrupt.

Other registers altered:

None

It is not necessary that the ASR point to a valid segment table when issuing slbie.

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601 C-25

slbiex Not Implemented in MPC601 slbiex
SLB Invalidate Entry by Index

slbiex rB

[]] Reserved

31 B 466

o 5 6 10 11 15 16 20 21 30 31

N~(rB)

SLB entry N~invalid

This PowerPC instruction is not implemented by the MPC601. Execution of this instruction
will invoke the illegal instruction handler. A description of the operation of this instruction
is provided for emulation purposes.

The SLB entry is invalidated regardless of the settings of MSR[IR] and MSR[DR].

This instruction is supervisor-level.

This instruction is optional in PowerPC architecture.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause an illegal instruction type program interrupt.

Other registers altered:

None

sid Not Implemented in MPC601
Shift Left Double Word

sid

sid.

o

rA,rS,rB
rA,rS,rB

31 s
5 6

N~rB[58-63)
r~ROTL[64)(rS, N)
if rB(57)=O then
m~MASK(O, 63-N)

else m~(64)O
rA~r&m

10 11

A

(Rc=O)
(Rc=l)

15 16

B

20 21

C-26 PowerPC 601 RISC Microprocessor User's Manual

sid
Integer Unit

27

30 31

MOTOROLA

The contents of rS are shifted left the number of bits specified by rB[57-63]. Bits shifted
out of position 0 are lost. Zeros are supplied to the vacated positions on the right. The result
is placed into rA. Shift amounts from 64 to 127 give a zero result.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

srad Not Implemented in MPC601
Shift Right Algebraic Double Word

srad
srad.

o

rA,rS,rB

rA,rS,rB

31 s
5 6

N~rB[58-631

r~ROTL(64)(rS, 64-N)
if rB(57)=O then
m~MASK(N, 63)

else m~(64)O

s~rS[OI

10 11

rA~(r & m) I «(64)s) & -m)

CA~s & «r&-m)*O)

A

(Rc=O)

(Rc=l)

8 794

15 16 20 21

srad
Integer Unit

30 31

The contents of rS are shifted right the number of bits specified by rB[57-63]. Bits shifted
out of position 63 are lost. Bit 0 of rS is replicated to fill the vacated positions on the left.
The result is placed into rA. CA is set to 1 if rS is negative and any I-bits are shifted out
of position 63; otherwise CA is set to O. A shift amount of zero causes rAta be set equal to
rS, and CA to be set to O. Shift amounts from 64 to 127 give a result of 64 sign bits in r A,
and cause CA to receive the sign bit of rS.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

MOTOROLA Appendix C. PowerPC Instructions Not Implemented in MPCG01 C-27

•

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

• Exception Register:

Affected: CA

sradi Not Implemented in MPC601
Shift Right Algebraic Double Word Immediate

sradi
sradi.

o
31

rA,rS,SH

rA,rS,SH

S A

5 6 10 11

Nf-SH(5) II SH[0-4)
rf-ROTL(64)(rS, 64-N)

mf-MASK(N, 63)
sf-rS[O)
rAf-(r & m) I «(64)s) & -m)
CAf-s & «r&-m):;tO)

(Rc=O)

(Rc=I)

SH 413

15 16 20 21

sradi
Integer Unit

30 31

The contents of rS are shifted right SH bits. Bits shifted out of position 63 are lost. Bit 0 of
rS is replicated to fill the vacated positions on the left. The result is placed into rA. CA is
set to I if rS is negative and any I-bits are shifted out of position 63; otherwise CA is set
to O. A shift amount of zero causes rA to be set equal to rS, and CA to be set to O.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=I)

• Exception Register:

Affected: CA

C-28 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

srd Not Implemented in MPC601
Shift Right Double Word

srd

srd.

o

rA,rS,rB

rA,rS,rB

31 s
5 6

Nf-rB[58-63)

rf-ROTL(64)(rS, 64-N)
if rB(57)=O then

111f-MASK(N,63)

else 111f-(64)O

rAf-r & 111

10 11

A

(Rc=O)

(Rc=l)

B 539

15 16 20 21

srd
Integer Unit

30 31

The contents of rS are shifted right the number of bits specified by rB[57-63]. Bits shifted
out of position 63 are lost. Zeros are supplied to the vacated positions on the left. The result
is placed into rA. Shift amounts from 64 to 127 give a zero result.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO (if Rc=l)

std Not Implemented in MPC601
Store Double Word

std rS,ds(rA)

62 S

o 5 6 10 11

if r A=O then bf-O

else bf-rA

EAf-b + EXTS(dsIlObOO)

(MEM(EA, 8»f-rS

A

15 16

std
Integer Unit

ds o I
2930 31

EA is the sum (rAIO)+(dsIiObOO). Register rS is stored into the double word in storage
addressed by EA.

MOTOROLA Appendix C. PowerPC Instructions Not Implemented in MPC601 C-29

•

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

stdcx. Not Implemented in MPC601
Store Double Word Indexed

stdcx.

o

rS,rA,rB

31 s
5 6

if rA=O then bf-O

else bf-rA

EAf-b+rB
if RESERVE then

(MEM(EA, 8))f-rS

RESERVEf-O

10 11

CROf-ObOO II Obi II XER[SO)
else

CROf-ObOO II ObO II XER[SO)

EA is the sum (rAIO)+(rB).

A 8

15 16 20 21

stdcx.
Integer Unit

214

3031

If a reservation exists, rS is stored into the double word in storage addressed by EA and the
reservation is cleared.

If a reservation does not exist, the instruction completes without altering storage.

CRO Field is set to reflect whether the store operation was performed (i.e., whether a
reservation existed when the stdcx. instruction commenced execution), as follows:

CRO[LT GT EQ SO] + ObOO " store_performed" XER[SO]

EA must be a multiple of 8. If it is not, the system alignment error handler may be invoked
or the results may be boundedly undefined.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

• Condition Register (CRO Field):

Affected: LT, GT, EQ, SO

C-30 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

stdu Not Implemented in MPC601
Store Double Word with Update

stdu rS,ds(rA)

62 S

o 5 6 10 11

EA~r A+EXTS(d<;IIObOO)
(MEM(EA, 8))~rS
rA~EA

A

15 16

stdu
Integer Unit

ds

2930 31

EA is the sum (rA)+(dsIiObOO). Register rS is stored into the double word in storage
addressed by EA.

EA is placed into r A.

If r A=O, the instruction form is invalid.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

stdux Not Implemented in MPC601
Store Double Word with Update Indexed

stdux

o

rS,rA,rB

31 S A

5 6 10 11

EA~rA+rB

MEM(EA, 8)~rS
rA~EA

15 16

8

20 21

stdux
Integer Unit

[]J Reserved

181
1

·:.··'.·'.<.·'.·'.··,1 39.:.
30 31

EA is the sum (r A)+(rB). Register rS is stored into the double word in storage addressed
by EA.

EA is placed into r A.

If r A=O, the instruction form is invalid.

MOTOROLA Appendix C. PowerPC Instructions Not Implemented in MPC601 C-31

..

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

stdx Not Implemented in MPC601
Store Double Word Indexed

stdx

o

rS,rA,rB

31 S

5 6

if rA=O then bf-O
else bf-rA
EAf-b+rB
(MEM(EA, 8»f-rS

10 11

A 8

15 16 20 21

stdx
Integer Unit

[ill] Reserved

149 1":9:1
30 31

EA is the sum (rAIO)+(rB). Register rS is stored into the double word in storage addressed
by EA.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

stfiwx Not Implemented in MPC601 stfiwx
Store Floating-Point as Integer Word Floating-Point Unit

stfiwx frS,rA,rB

rum Reserved

31 frS A 8 983

o 5 6 10 11 15 16 20 21 30 31

C-32 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

if rA = 0 then b~O
else b~rA

EA~h+rB

MEM(EA. 4)~frS[32-63]

EA is the sum (rAIO)+(rB).

The contents for the low-order 32 bits of register frS are stored, without conversion, into
the word in storage addressed by EA.

Other registers altered:

None

td Not Implemented in MPC601
Trap Double Word

td

o
31

a~rA

b~rB

TO,rA,rB

TO A

56 1011

if (a < b) & TO[O] then TRAP
if (a > b) & TO[I] then TRAP
if (a = b) & TO[2] then TRAP
if (a u< b) & TO[3] then TRAP
if (a u> b) & TO[4] then TRAP

B 68

15 16 20 21

td
Integer Unit

[TI] Reserved

30 31

The contents of rA is compared with the contents of rB. If any bit in the TO field is set to
1 and its corresponding condition is met by the result of the comparison, then the system
trap handler is invoked.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked. .

Other registers altered:

None

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPC601 C-33

td i Not Implemented in MPC601
Trap Double Word Immediate

tdi TO,r A,SIMM

o
02 TO A

5 6 10 11

af-rA
if (a < EXTS(SIMM)) & TO[O) then TRAP
if (a> EXTS(SIMM)) & TO[1) then TRAP
if (a = EXTS(SIMM)) & TO[2) then TRAP
if (a u< EXTS(SIMM)) & TO[3) then TRAP
if (a u> EXTS(SIMM)) & TO[4J then TRAP

15 16

tdi
Integer Unit

SIMM

31

The contents of rA are compared with the sign-extended SIMM field. If any bit in the TO
field is set to 1 and its corresponding condition is met by the result of the comparison, then
the system trap handler is invoked.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit
implementation will cause the system illegal instruction error handler to be invoked.

Other registers altered:

None

tibia Not Implemented in MPC601 tibia
Translation Lookaside Buffer Invalidate All Integer Unit

mill Reserved

31 NA

o 5 6 10 11 15 16 20 21 30 31

All TLB entries ~ invalid

This PowerPC instruction is not implemented by the MPC601. Execution of this instruction
will invoke the illegal instruction handler. A description of the operation of this instruction
is provided for emulation purposes.

The entire TLB is invalidated (i.e., all entries are removed).

The TLB is invalidated regardless of the settings of MSR[IT] and MSR[DT].

This is a supervisor-level instruction.

C-34 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

This instruction is optional in PowerPC architecture.

Other registers altered:

None

It is not necessary that the ASR point to a valid segment table when issuing tibia.

tlbiex Not Implemented in MPC601 tlbiex
Translation Lookaside Buffer Invalidate Entry by Index Integer Unit

t1biex rB

[ill Reserved

31 B NA

a 5 6 10 11 15 16 20 21 30 31

N~(rB)

TLB entry N~invalid

This PowerPC instruction is not implemented by the MPC601. Execution of this instruction
will invoke the illegal instruction handler. A description of the operation of this instruction
is provided for emulation purposes.

Let N be the contents of rB. The Nth TLB entry is made invalid (i.e., removed from the
TLB). The TLB entry is invalidated regardless of the settings of MSR[IT] and MSR[DT].
If the Nth SLB does not exist, the results are implementation defined.

This instruction is supervisor-level.

This instruction is optional in PowerPC architecture.

Other registers altered:

None

How software knows which TLB entry number is associated with which page table entry,
or even how many TLB entries there are, is not specified in the architecture. This may differ
among PowerPC processors.

It is not necessary that the ASR point to a valid segment table when issuing tlbiex.

MOTOROLA Appendix C. Power PC Instructions Not Implemented in MPCG01 C-35

•

tlbsync Not Implemented in MPC601 tlbsync
TLB Synchronize

[ill] Reserved

31 I.
·:.·: •. ::::·.:.::.::::::·::::::::::.· .• 0:.·:.:.·:.:.·:::.:"0·:.·:.::.·:.·.:.::;0·.·:.:.::.:.·:,::.::0·.::.:·.:::·'.:.·.0'.·:.:.::.:. ·.:.,:.::::.::::::::::.,:::.:::::··:.:.: •. :1: •. ::::.:::: ... ::.::::::: :,:: .. :.· •. ·,:.·0:.: ·.·.: .. : ... 0· : ·::.:.0 ... · ··::.: .•. ·9: : ·:::.:0'.: .. ::.,· >: «1««: 0:::"::0::'::::0:::"::0:':::::0:: :}»:I _ _ (: ::(:/y/(:: .. }).}::: .tt:: 566

o 5 6 10 11 15 16 20 21 3031

The tlbsync instruction waits until all previous tlbie, tlbiex, and tibia instructions executed
by the processor executing this instruction have been received and completed by all other
processors.

This instruction is supervisor-level.

This instruction is optional in PowerPC architecture, but it must be implemented if any of
the following are true:

• A TLB invalidation instruction that broadcasts is implemented.

• The eciwx or ecowx instructions are implemented.

Other registers altered:

None

C-36 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Appendix D
Classes of Instructions
This appendix describes how the classes of PowerPC instructions are defined.The three
classifications are as follows:

• Defined

• Illegal

• Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruction that
is specific to 64-bit implementations is considered defined for 64-bit implementations, but
illegal for 32-bit implementations such as the MPC601.

0.1 Classes of Instructions
The MPC601 is a 32-bit implementation of the PowerPC architecture with differences and
redefinitions noted throughout this document. Differences stem largely from the different
address bus sizes and compliance with POWER architecture.

All MPC601 instructions belong to one of the following three classes:

Defined

• Illegal

• Reserved

The class is determined by examining the opcode and the extended opcode, if any. If the
opcode, or combination of opcode and extended opcode, is not that of a defined instruction
nor of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instructions that are now illegal may
become defined (by being added to the architecture) or reserved (by being assigned to one
of the special purposes). Likewise, reserved instructions may become defined.

0.1.1 Defined Instruction Class
Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 10, "Instruction Set." The

MOTOROLA Appendix D. Classes of Instructions 0-1

•

•

MPC601 provides hardware support for most of the instructions defined for 32-bit
implementations; it does not provide direct hardware support for the instructions listed in
Appendix C, "PowerPC Instructions Not Implemented in MPC601."

The MPC601 invokes the system illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required.

A defined instruction can have invalid forms, as described in Section D.I.I.I, "Invalid
Instruction Forms."

0.1.1.1 Invalid Instruction Forms
An instruction form is invalid if one or more operands, excluding opcodes, are coded
incorrectly. Attempting to execute an invalid form of an instruction either invokes the
system illegal instruction error handler (a program exception) or yields undefined results.
See Chapter 10, "Instruction Set," for individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a
reserved bit is shown as "0" but is coded as a "1". The following instructions have invalid
forms identified in their individual instruction descriptions:

• Branch conditional instructions

• Load/store with update instructions

• Load multiple instructions

• Load string instructions
• Move to/from special purpose register (mtspr, mfspr)

• Load/store floating-point with update instructions

In some cases, an invalid form of a PowerPC instruction is not an invalid form for the
corresponding POWER instruction. As a result, to maintain compatibility with POWER
applications, the MPC601 often handles PowerPC invalid forms as described in the
POWER architecture. In other cases, the MPC601 handles the invalid form in the manner
that is most convenient for that particular case. Each of the PowerPC invalid forms are
addressed in this document, and a description of how MPC601 handles each case is
provided.

0.1.2 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

0-2

• Instructions that are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions. The following primary opcodes are illegal:

1,4,5,6,5~57,60,61

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Instructions that are implemented in the PowerPC architecture but are not
implemented in a specific PowerPC implementation (for example, instructions that
can be executed on 64-bit PowerPC processors are considered illegal for 32-bit
processors.

The following opcodes are defined for 64-bit implementations only and are illegal
on the MPC601:

2,30,5R,62

-The following primary opcodes have unused extended opcodes. Their unused
extended opcodes can be determined from information in Section A.2, "PowerPC
Instruction List Sorted by Opcode," and Section D.1.3, "Reserved Instructions."
Notice that extended opcodes for instructions that are defined only for 64-bit
implementations are illegal in 32-bit implementations. All unused extended
opcodes are illegal.

19, 31, 59, 63 (opcodes 30 and 62 are illegal for all 32-bit implementations, but as
64-bit opcodes have some unused extended opcodes).

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 5.4.7, "Program Exception
(x '0070{)')," for additional information about illegal and invalid instruction exceptions.

Note that an instruction consisting entirely of binary zeros is guaranteed to be an illegal
instruction. This increases the probability that an attempt to execute data or uninitialized
memory invokes the system illegal instruction error handler (a program exception). Note
that if only the primary opcode consists of all zeros, the instruction is considered a reserved
instruction, as described in Section D.1.3, "Reserved Instructions."

With the exception of the instruction consisiting entirely of binary zeros, the illegal
instructions are available for further additions to the PowerPC architecture.

0.1.3 Reserved Instructions
Reserved instructions are allocated to specific purposes outside the scope of the PowerPC
architecture. An attempt to execute a reserved instruction either causes a program exception
or yields undefined results.

An attempt to execute a reserved instruction invokes the illegal instruction error handler (a
program exception); however, the MPC601 executes many POWER architecture
instructions that otherwise are not part of the PowerPC architecture. See Section 5.4.7,
"Program Exception (x'00700')," for additional information about illegal and invalid
instruction exceptions.

The instructions in this class are allocated to specific purposes that are outside the scope of
the PowerPC user instruction set architecture, PowerPC virtual environment architecture,
and PowerPC operating environment architecture.

MOTOROLA Appendix D. Classes of Instructions 0-3

The following types of instructions are included in this class:

0-4

1. Instructions for the POWER architecture that have not been included in the
PowerPC user instruction set architecture

2. Implementation-specific instructions used to conform to the PowerPC
archi tecture specificati ons

3. The instruction with primary opcode 0, when the instruction does not consist
entirely of binary zeros

4. Any other implementation-specific instructions that are not defined in the PowerPC
user instruction set architecture, PowerPC virtual environment architecture, or the
PowerPC operating environment architecture

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Appendix E
Multiple-Precision Shifts
This appendix gives examples of how multiple precision shifts can be programmed. A
multiple-precision shift is initially defined to be a shift of an n-word quantity, where n> 1.
The quantity to be shifted is contained in n registers. The shift amount is specified either by
an immediate value in the instruction or by bits 27-31 of a register.

The examples shown below distinguish between the cases n = 2 and n> 2. If n = 2, the shift
amount may be in the range 0-63, which are the maximum ranges supported by the shift
instructions used. However if n > 2, the shift amount must be in the range 0-31, for the
examples to yield the desired result. The specific instance shown for n > 2 is n = 3:
extending those instruction sequences to larger n is straightforward, as is reducing them to
the case n = 2 when the more ~tringent restriction on shift amount is met. For shifts with
immediate shift amounts only the case n = 3 is shown, because the more stringent
restriction on shift amount is always met.

In the examples it is assumed that GPRs 2 and 3 (and 4) contain the quantity to be shifted,
and that the result is to be placed into the same registers. In all cases, for both input and
result, the lowest-numbered register contains the highest-order part of the data and highest­
numbered register contains the lowest-order part. For non-immediate shifts, the shift
amount is assumed to be in bits 27-31 (32-bit mode) of GPR6. For immediate shifts, the
shift amount is assumed to be greater than O. GPRs 0-31 are used as scratch registers. For
n > 2, the number of instructions required is 2N -1 (immediate shifts) or 3 N -1 (non­
immediate shifts).

E.1 Multiple-Precision Shift Examples
The examples shown here are for 32-bit mode, but they work both in 32-bit mode of a 64-
bit implementation and in a 32-bit implementation. They perform the shift in units of
words. If the ability to run in 32-bit implementations is not required, in a 64-bit
implementation better performance can be obtained in 32-bit mode than that of the
examples shown above, by using all 64 bits of GPRs 2 and 3 (and 4) to contain the quantity
to be shifted, and placing the result into all 64 bits of the same registers.

Let n be the number of words to be shifted.

MOTOROLA Appendix E. Multiple·Precision Shifts E-1

III

Shift Left Immediate, n = 3 (Shift Amount < 32)
rlwinm r2,r2,SH,O,31-SH
rlwimi r2,r3,SH,32-SH,31
rlwinm r3,r3,SH,O,31-SH
rlwimi r3,r4,SH,32-SH,31
rlwinm r4,r4,SH,O,31-SH

Shift Left, n = 2 (Shift Amount < 64)
subfic
slw
srw
or
addic
slw
or
slw

r31,r6,32
r2, r2, r6
rO,r3,r31
r2,r2,rO
r31,r6,r6
rO,r3,r31
r2, r2, rO
r3,r3,r6

Shift Left, n = 3 (Shift Amount < 32)
subfic r31,r6,32
slw r2,r2,r6
srw rO,r3,r31
or r2,r2,rO
slw r3 , r3, 6
srw rO,r4,r31
or r3,r3,rO
slw r4,r4,r6

Shift Right Immediate, n = 3 (Shift Amount < 32)
rlwinm r4,r4,32-SH,SH,31
rlwimi r4,r3,32-SH,O,SH-l
rlwinm r3,r3,32-SH,SH,31
rlwimi r3,r2,32-SH,O,SH-l
rlwinm r2,r2,32-SH,SH,31

Shift Right, n = 2 (Shift Amount < 64)
subfic r31,r6,32
srw r3,r3,r6
slw rO,r2,r31
or r3,r3,rO
addic r31,r6,-32
srw rO,r2,r31
or r3,r3,rO
srw r2,r2,r6

Shift Right, n = 3 (Shift Amount < 32)
subfic r31,r6,32
srw r4,r4,r6
slw rO,r2,r31
or r4,r4,rO
srw r31,r3,r6
slw rO,r2,r31
or r3,r3,rO
srw r2,r2,r6

E-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Shift Right Algebraic Immediate, n = 3 (Shift Amount < 32)
rlwinrn r4,r4,32-SH,SH,31
rlwirni r4,r3,32-SH,O,SH-l
rlwinrn r3,r3,32-SH,SH,31
rlwirni r3,r2,32-SH,O,SH-l
srawi r2,r2,SH

Shift Right Algebraic, n = 2 (Shift Amount < 64)
subfic r31,r6,32
srw r3,r3,r6
slw rO,r2,r31
or r3,r3,rO
addic. r31,r6,-32
sraw rO,r2,r31
ble $+8
ori r3,rO,O
sraw r2,r2,r6

Shift Right Algebraic, n = 3 (Shift Amount < 32)
subfic
srw
slw
or
srw
slw
or
sraw

r31,r6,32
r4,r4,r6
rO,r3,r31
r4,r4,rO
r3,r3,r6
rO,r2,r31
r3,r3,rO
r2,r2,r6

MOTOROLA Appendix E. Multiple-Precision Shifts E·3

E-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Appendix F
Floating-Point Models
This appendix gives examples of how the floating-point conversion instructions can be
used to perform various conversions.

F.1 Conversion from Floating-Point Number to
Signed Fixed-Point Integer Word

The full convert to signed fixed-point integer word function can be implemented with the
sequence shown below, assuming that the floating-point value to be converted is in FPR 1,
the result is returned in GPR3, and a double word at displacement "disp" from the address
in OPR1 can be used as scratch space.

fctiw[z]f2,f1
stfd f2,disp(r1)
lwz r3,disp+4(r1)

#convert to fx int
#store float
#load word and zero

F.2 Conversion from Floating-Point Number to
Unsigned Fixed-Point Integer Word

The full convert to unsigned fixed-point integer word function can be implemented with the
sequence shown below, assuming that the floating-point value to be converted is in FPR I,
the value 0 is in FPRO, the value 232 is in FPR3, the value x'OOOO 0000 7FFF FFFF' is in
FPR4, the value 231 is in FPR5 and OPR5, the result is returned in OPR3, and a double
word at displacement "disp" from the address in OPRl can be used as scratch space.

fmr f2,fO
fcmpu cr2,f1,fO
bl cr2,store
fmr f2, f4
fcmpu cr2,f1,f3
bgt cr2,store
fsub f2,f1,f5
fcmpu cr2,f1,f5
bnl cr2,$+8
fmr f2, f1
fctiw[z]f2,f2
stfd f2,disp(r1)
lwz r3,disp+4(r1)
bl cr2,$+8
add r3,r3,r5

MOTOROLA

#use 0 if <: 0

#use max if > max

#subtract 2**31
#use diff if ~ 2**31

#convert to fx int store­
#store float
#load word
#add 2**31 if input
#was ~ 2**31

Appendix F. Floating-Point Models F-1

II

•

F.3 Floating-Point Models
This section describes models for floating-point instructions.

F.3.1 Floating-Point Round to Single-Precision Model
The following algorithm describes the operation of the Floating-Point Round to Single­
Precision (frsp) instruction.

If FRB[1-11]<897 and FRB[1-63]>0 then
Do

If FPSCR[UE]=O then goto Disabled Exponent Underflow
If FPSCR[UE]=l then goto Enabled Exponent Underflow

End

If FRB[1-11]>1150 and FRB[1-11]<2047 then
Do

If FPSCR[OE]=O then goto Disabled Exponent Overflow
If FPSCR[OE]=l then goto Enabled Exponent Overflow

End .

If FRB[1-11]>896 and FRB[1-11]<1151 then goto Normal Operand

If FRB[1-63]=0 then goto Zero Operand

If FRB[1-11]=2047 then
Do

If FRB[12-63]=0 then goto Infinity Operand
If FRB[12]=1 then goto QNaN Operand
If FRB[12]=0 and FRB[13-63]>0 then goto SNaN Operand

End

Disabled Exponent Underflow:
sign f- FRBO
If FRB[l-ll]=O then

Do
exp f- -1022
frac f-b'O' II FRB[12-63]

End
If FRB[1-11]>0 then

Do
exp f- FRB [1-11] - 1023
frac f- b'l' II FRB[12-63]

End
Denormalize operand:

G " R " X f-b'OOO'
Do while exp<-126

exp f- exp + 1
frac I I G I I R I I X f- b' 0' I I frac I I G I I (R I X)

End
FPSCR[UX] < frac [24-52] I I G II R II X>O
If frac [24-52] I I G I I R I I X>O then FPSCR[XX] f-l
Round single(sign,exp,frac,G,R,X)
If frac=O then

Do

F-2

FRTOO f- sign
FRTO [1-63] f- 0
If sign=O then FPSCR[FPRF] f- "+zero"
If sign=l then FPSCR [FPRF] f- "-zero"

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

End
If frac:>O then

Do
If frac[O]=l then

Do
If sign=O then FPSCR[FPRF] ~ "+normal number"
If sign=l then FPSCR[FPRF] ~ "-normal number"

End
If frac[O]=O then

Do
If sign=O then FPSCR[FPRF] ~ "+denormalized number"
If sign=l then FPSCR [FPRF] ~ "-denormalized number"

End
Normalize operand-

Do while frac[O]=O
exp ~ exp-1
frac II G II R ~ frac[1-52] II G II R II b'O'

End
FRT [0] ~ sign
FRT [1-11] ~ exp + 1023
FRT[12-63] ~ frac[1-23] II b'O 0000 0000 0000 0000 000000000000'

End
Done

Enabled Exponent Underflow
FPSCR lUX] ~ 1
sign ~ FRB[O]
If FRB[l-ll]=O then

Do
exp ~ -1022
frac ~ b'O' II FRB[12-63]

End
If FRB[1-11]:>0 then

Do
exp ~ FRB [1-11] - 1023
frac ~ b'l' II FRB[12-63]

End
Normalize operand-

Do while frac[O]=O
exp ~ exp - 1
frac ~ frac[I-52] II b'O'

End
If frac[24-52]:>0 then FPSCR[XX] ~ 1
Round single(sign,exp,frac,O,O,O)
exp ~ exp + 192
FRT [0] ~ sign
FR T [1-11] ~ e xp + 102 3
FRT[12-63] ~ fracl-23 I I b'O 0000 0000 0000 0000 0000 0000 0000'
If sign=O then FPSCR [FPRF] ~ "+normal number"
If sign=1 then FPSCR[FPRF] ~ "-normal number"
Done

Disabled Exponent Overflow
inc ~ 0
FPSCR[OX] ~ 1
FPSCR[XX] ~ 1
If FPSCR[RN]= b'OO' then/* Round to Nearest */

Do
inc ~ 0

MOTOROLA Appendix F. Floating-Point Models F·3 •

If FRB[O]=O then FRT ~ x'7FFO 0000 0000 0000
If FRB[O]=l then FRT ~x'FFFO 0000 0000 0000'
If FRB[O]=O then FPSCR[FPRF] ~ "+infinity"
If FRB[O]=l then FPSCR[FPRF] ~ "-infinity"

End
If FPSCR [RN] = b' 01' then/ * Round Truncate * /

Do
If (b'O' II FRB[1-63]) <: x'047EF :;'FFF EOOO 0000' then inc ~o
If FRB[O]=O then FRT ~x'47EF FFFF EOOO 0000'
If FRB[O]=l then FRT ~x'C7EF FFFF EOOO 0000'
If FRB[O]=O then FPSCR[FPRF] ~ "+normal number"
If FRB[O]=l then FPSCR[FPRF] ~ "-normal number"

End
If FPSCR[RN] = b' 10' then /* Round to +Infinity * /

Do
If FRB [0] =0 then inc ~ 0
If (FRB[O]=l & (FRB > x'C7EF FFFF EOOO 0000' then inc ~ 1)
If FRB[O]=O then FRT ~ x'7FFO 0000 0000 0000'
If FRB[O]=l then FRT ~ x'C7EF FFFF EOOO 0000'
If FRB[O]=O then FPSCR[FPRF] ~ "+infinity"
If FRB[O]=l then FPSCR[FPRF] ~ "-normal number"

End
If FPSCR[RN]=b'll' then/* Round to -Infinity */

Do
(If FRB[O]=O & FRB <: x'47EF FFFF EOOO 0000') then inc ~1
If FRB[O]= 1 then inc ~ 1
If FRB[O]=O then FRT ~ x'47EF FFFF EOOO 0000'
If FRB[O]=l then FRT ~ x'FFFO 0000 0000 0000'
If FRB[O]=O then FPSCR[FPRF] ~ "+normal number"
If FRB[O] =1 then FPSCR[FPRF] ~ "-infinity"

End
FPSCR[FR] ~ inc
FPSCR[FI] ~ 1
Done

Enabled Exponent Overflow
sign ~ FRB [0]
exp ~ FRB [1-11] - 1023

frac ~ b'l' II [12-63]
If frac[24-52]>0 then FPSCR[XX] ~ 1
Round single(sign,exp,frac,O,O,O)

Enabled Overflow
FPSCR[OX] ~ 1
exp ~ exp - 192
FRT [0] ~ sign
FRT[l-ll] ~ exp + 1023
FRT [12 - 63] ~ f r a c [1-23] I I b' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 '
If sign=O then FPSCR [FPRF] ~ "+normal number"
If sign=l then FPSCR [FPRF] ~ "-normal number"

Done

Zero Operand
FRT ~ FRB
If FRB[O]=O then FPSCR[FPRF] ~ "+zero"
If 'FRB[O]=l then FPSCR[FPRF] ~ "-zero"
FPSCR[FR FI] ~ b'OO'
Done

F-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Infinity Operand
FRT f- FRB
If FRB[O]=O then FPSCR[FPRF] f- "+infinity"
If FRB[O]=l then FPSCR[FPRF] f- "-infinity" Done
QNaN Operand-
FRT f- FRB[0-34] II b'O 0000 0000 0000 0000 0000 0000 0000'
FPSCR [FPRF] f- "QNaN"
FPSCR[FR FI] f- b'OO'
Done

QNaN Operand
FRT f- FRB[0-34] II b'O 0000 0000 0000 0000 0000 0000 0000'
FPSCR [FPRF] f- "QNaN"
FPSCR[FR FI] f- b'OO'
Done

SNaN Operand
FPSCR [VXSNAN] f- 1
If FPSCR[VE]=O then

Do
FRT [0-11] f- FRB [0-11]
FRT [12] f- 1
FR T [13 - 6 3] f- FRB [13 - 3 4] I I b' 0 000 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0000'
FPSCR[FPRF] f- "QNaN"

End
FPSCR[FR FI] f- b' 00'
DDone

Normal Operand
sign f- FRB [0]
exp f- FRB [1-11] - 1023
f r a c f- b' 1 ' I I FRB [12 - 6 3]
If frac[24-52]>0 then FPSCR[XX] f- 1
Round single(sign,exp,frac,O,O,O)
If exp>+127 and FPSCR[OE]=O then go to Disabled Exponent Overflow
If exp>+127 and FPSCR[OE]=l then go to Enabled Overflow
FR T [0] f- sign
FR':'[l-ll] f- exp + 1023
FR T [12 - 6 3] f- f r a c [1-2 3] I I b' 0 '
If sign=O then FPSCR [FPRF] f- "+normal number"
If sign=l then FPSCR [FPRF] f- "-normal number"
Done

Round Single (sign,exp,frac,G,R,X)
inc f- 0
lsb f- frac [23]
gbit f- frac[24]
rbit f-frac[25]
xbit f- (frac[26-52] IIGIIRIIX):;tO
If FPSCR[RN]=b'OO' then

Do
If sign II lsb II gbit II rbit II xbit = b'u11uu' then inc f-1
If sign II lsb II gbit II rbit II xbit = b'u011u' then inc f-1
If sign II lsb II gbit II rbit II xbit = b'u01u1' then inc f-1

End
If FPSCR[RN]= b'10' then

Do

MOTOROLA Appendix F. Floating-Point Models F-5

•

If sign II lsb II gbit II rbit II xbit = b'Ou1uu' then inc ~ 1
If sign I I lsb II gbit II rbit II xbit = b' Ouu1u' then inc ~ 1
If sign I I lsb I I gbit I I rbit I I xbit = b' Ouuu1' then inc ~ 1

End
If FPSCR[RN]= b'll' then

Do
If sign II lsb II gbit II rbit II xbit = b'lu1uu' then inc ~ 1
If sign II lsb II gbit II rbit II xbit = b'luu1u' then inc ~ 1
If sign II lsb I I gbit I I rbit I I xbit = b'luuu1' then inc ~ 1

End
frac[0-23] ~ frac[0-23] + inc
If carry_out=l then

Do
frac[0-23] ~ b'l' I I frac[0-22]
exp ~ exp + 1

End
FPSCR [FR] ~ inc
FPSCR[FI] ~ gbit I rbit I xbit
Return

F.3.2 Floating-Point Convert to Integer Model
The following algorithm describes the operation of the floating-point convert to integer
instructions. In this example, u represents an undefined hexadecimal digit..

If Floating Convert to Integer Word
Then Do

Then round_mode ~ FPSCR[RN]
tgt-precision ~ "32-bit integer"

End
If Floating Convert to Integer Word with round toward Zero

Then Do
round_mode ~ b' 0 l'
tgt-precision ~ "32-bit integer"

End
If Floating Convert to Integer Doubleword

Then Do
round_mode ~ FPSCR[RN]
tgt-precision ~ "64-bit integer"

End
If Floating Convert to Integer Doubleword with round toward Zero

Then Do
round_mode ~ b'Ol'
tgt-precision ~ "64-bit integer"

End
If FRB[1-11]=2047 and FRB[12-63]=O then goto Infinity Operand
If FRB[1-11]=2047 and FRB12=0 then goto SNaN Operand
If FRB[1-11]=2047 and FRB12=1 then goto QNaN Operand
If FRB[1-11]>1086 then goto Large Operand

sign ~ FRBO
If FRB[l-ll]>O then exp ~ FRB[l-ll] - 1023 /* exp - bias */
If FRB[l-ll]=O then exp ~ -1022
If FRB[l-ll]>O then frac[0-64]~b'Ol' IIFRB[12-63] Ilb'OOOOOOOOOOO'
/*normal*/
If FRB[l-ll]=O then frac[0-64]~b'OO' IIFRB[12-63] Ilb'OOOOOOOOOOO'
/*denormal*/

F-G PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

gbit I I rbit I I xbit ~ b' 000'
Do i=l,63-exp

frac[0-64] II gbit II rbit II xbit ~ b'O' II frac[0-64] II gbit II
(rbitlxbit)
End

If gbit I rbit I xbit then FPSCR[XX] ~ 1

Round Integer (frac,gbit,rbit,xbit,round_mode)
In this example, u represents an undefined hexadecimal digit. Comparisons ignore the u
bits.

If sign=l then frac[0-64] ~ ~frac[0-64] + 1

If tgt_precision="32-bit integer" and frac[0-64]>+2(31)-1
then goto Large Operand

If tgt_precision="64-bit integer" and frac[0-64]>+2(63)-1
then goto Large Operand

If tgt_precision="32-bit integer" andfrac[0-64]<-2 (31) thengoto Large
Operand
If tgt_precision=" 6 4-bi t integer" and frac [0-64] <-2 (63) then goto Large
Operand
If tgt-precision="32-bit integer"

then FRT ~ x'xuuuuuuu' I I frac[33-64]
If tgt_precision="64-bit integer" then FRT ~ frac[1-64]
FPSCR[FPRF] ~ undefined
Done

Round Integer(frac,gbit,rbit,xbit,round _mode)
In this example, u represents an undefined hexadecimal digit. Comparisons ignore the u
bits.

inc ~ 0
If round_mode= b'OO' then

Do
If sign II frac[64] II gbit II rbit II xbit = b'u11ux' then inc ~ 1
If sign II frac[64] II gbit II rbit II xbit=b'u011x' theninc~l
If sign II frac64 I I gbit. II rbit II xbit = b'u01ul' then inc ~ 1

End
If round_mode= b'10' then

Do
If sign II frac64 II gbit II rbit II xbit = b'Ou1ux' then inc ~ 1
If sign II frac64 II gbit II rbit II xbit b'Ouu1x' then inc ~ 1
If sign I I frac64 I I gbit I I rbit I I xbit = b' Ouuu1' then inc ~ 1

End
If round_mode= b'll' then

Do
If sign II frac64 II gbit II rbit II xbit = b'lu1ux' then inc ~ 1

If sign II frac64 II gbit II rbit II xbit = b'luulx' then inc ~ 1
If sign II frac64 I I gbit I I rbit I I xbit = b'luuul' then inc ~ 1

End
frac[0-64] ~ frac[0-64] + inc
FPSCR [FR] ~ inc
FPSCR[FI] ~ gbit I rbit xbit
Return

MOTOROLA Appendix F. Floating-Point Models F-7

..

Infinity Operand
FPSCR[FR FI VXCVI] +- b'OOl'
If FPSCR[VE]=O then Do

If tgt-precision="32-bit integer" then
Do

If sign=O then FRT +- x'uuuu uuu~ 7FFF FFFF'
If sign=l then FRT +- x'uuuu uuuu 8000 0000'

End
Else

Do
If sign=O then FRT +- x'7FFF FFFF FFFF FFFF'
If sign=l then FRT +- x'8000 0000 0000 0000'

End
FPSCR[FPRF] < undefined
End

Done

SNaN Operand
FPSCR[FR FI VXCVI VXSNAN] +- b'OOll'
If FPSCR[VE]=O then

Do
If tgt_precision="32-bit integer"

then FRT +- x'uuuu uuuu 8000 0000'
If tgt_precision="64-bit integer"

then FRT +- x'8000 0000 0000 0000'
FPSCR[FPRF] +- undefined

End
Done

QNaN Operand
FPSCR[FR FI VXCVI] +- b'OOl'
If FPSCR[VE]=O then

Do
If tgt_precision="32-bit integer" then FRT +- x'uuuu uuuu 8000

0000'
If tgt_precision="64-bit integer" thenFRT+-x' 8000 0000 0000 0000'
FPSCR[FPRF] < undefined

End
Done

Large Operand
FPSCR[FR FI VXCVI] +- b'OOl'
If FPSCR[VE]=O then Do

If tgt_precision="32-bit integer" then
Do

If sign=O then FRT +- x'uuuu uuuu 7FFF FFFF'
If sign=l then FRT +- x'uuuu uuuu 8000 0000'

End
Else

Do
If sign=O then FRT +- x'7FFF FFFF FFFF FFFF'
If sign=l then FRT +- x'8000 0000 0000 0000'

End
FPSCR[FPRF] +- undefined
End

Done

F-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

F.4 Floating-Point Convert from Integer Model
The following algorithm describes the operation of the floating-point convert from integer
instructions.

sign ~ FRB [0]
exp ~ 63
frac ~ FRB

If frac=O then go to Zero Operand
If sign=l then frac ~ -,frac + 1

Do until frac[O]=l

End

frac ~ frac[1-63] II b'O'
exp ~ exp - 1

Round Float (sign,exp,frac,FPSCR[RND
If sign=l then FPSCR [FPRF] ~ "-normal number"
If sign=O then FPSCR[FPRF] ~ "+normal number"
FRT [0] ~ sign
FRT[l-ll] ~ exp + 1023 /* exp + bias */
FRT[12-63] ~ frac[1-52]
Done

Zero Operand
FPSCR[FR FI] ~ b'OO'
FPSCR[FPRF] ~ "+zero"
FRT ~ x'OOOO 0000 0000 0000'
Done

Round Float (sign,exp,frac,round _mode)

In this example, the bits designated as u are ignored in comparisons.

inc ~ 0
lsb ~ frac [52]
gbit ~ frac[53]
rbit ~ frac[54]
xbit ~ frac[55-63]>0
If round_mode=b'OO' then

Do
If sign I I lsb II gbit I I rbit I I xbit = b'ulluu' then inc ~ 1
If sign I I lsb I I gbit I I rbit I I xbit = b'u011u' then inc ~ 1
If sign II lsb II gbit II rbit II xbit = b'u01u1' then inc ~ 1

End
If round_mode= b'10' then

Do
If sign II lsb II gbit II rbit II xbit = b'Ou1uu' then inc ~ 1
If sign II lsb II gbit II rbit II xbit = b' Ouu1u' then inc ~ 1
If sign I I lsb I I gbit I I rbit I I xbit = b' Ouuu1' then inc ~ 1

End
If round_mode= b'll' then

Do
If sign II lsb II gbit II rbit II xbit = b'lu1uu' then inc ~ 1
If sign II lsb II gbit II rbit II xbit = b'luu1u' then inc ~ 1
If sign II lsb II gbit II rbit II xbit = b'luuu1' then inc ~ 1

MOTOROLA AppendiX F. Floating-Point Models F-9

•

End
frac[O-52] ~ frac[O-52] + inc
If carry_out=l then exp ~ exp + 1
FPSCR [FR] ~ inc
FPSCR[FI] ~ gbit I rbit I xbit
If (gbit I rbit I xbit) then FPSCR[XX] ~ 1
Return

F-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Appendix G
Synchronization Programming
Examples
The examples in this appendix show how synchronization instructions can be used to
emulate various synchronization primitives and how to provide more complex forms of
synchronization.

For each of these examples, it is assumed that a similar sequence of instructions is used by
all processes requiring synchronization of the accessed data.

G.1 General Information
The following points provide general information about the Iwarx and stwcx. instructions:

In general, Iwarx and stwcx. instructions should be paired, with the same effective
address used for both. The exception is an isolated stwcx. instruction that is used to
clear any existing reservation on the processor, for which there is no paired Iwarx
and for which any (scratch) effective address can be used.

It is acceptable to execute an Iwarx instruction for which no stwcx. instruction is
executed. For example, such a dangling Iwarx instruction occurs if the value loaded
in the Test and Set sequence shown Section G.2.5, "Test and Set," is not zero.

To increase the likelihood that forward progress is made, it is important that looping
on Iwarx/stwcx. pairs be minimized. For example, in the sequence shown above for
Test and Set, this is achieved by testing the old value before attempting the store­
were the order reversed, more stwcx. instructions might be executed, and
reservations might more often be lost between the Iwan' and the stwcx. instructions.

• The manner in which Iwarx and stwcx. are communicated to other processors and
mechanisms, and between levels of the memory subsystem within a given processor
is implementation-dependent. In some implementations performance may be
improved by minimizing looping on a Iwarx instruction that fails to return a desired
value. For example, in the Test and Set example shown above, if the programmer
wishes to stay in the loop until the word loaded is zero, he could change the bne S+
12 to bne loop. However, in some implementations better performance may be
obtained by using an ordinary Load instruction to do the initial checking of the
value, as follows:

MOTOROLA Appendix G. Synchronization Programming Examples G-1

•

loop: lwz rS, ° (r3) #load the word
cmpwi r5,O #loop back if word
bne loop #not equal to °
lwarx rS,O,r3#try again, reserving
cmpwi r5,O #(likely to succeed)
bne loop #try to store nonzero
stwcx. r4,O,r3#loop if lost reservation
bne loop

In a multiprocessor, livelock is possible if a loop containing an Iwarx/stwcx. pair
also contains an ordinary Store instruction for which any byte of the affected
memory area is in the reservation granule of the reservation. For example, the first
code sequence shown in Section D. 1.2, List Insertion, can cause livelock if two list
elements have next element pointers in the same reservation granule.

G.2 Synchronization Primitives
The following examples show how the Iwarx and stwcx. instructions can be used to
emulate various synchronization primitives. The sequences used to emulate the various
primitives consist primarily of a loop using Iwarx and stwcx .. Additional synchronization
is unnecessary, because the stwcx. will fail, clearing the EO bit, if the word loaded by Iwarx
has changed before the stwcx. is executed.

G.2.1 Fetch and No-Op
The Fetch and No-Op primitive atomically loads the current value in a word in memory. In
this example it is assumed that the address of the word to be loaded is in GPR3 and the data
loaded are returned in GPR4.

loop: lwarx r4,O,r3#load and reserve
ctwcx. rd ~ #store old value if still reserved
bne loop #loop if lost reservation

Notes:

1. Because stwcx. is not necessarily performed with respect to all other mechanisms
that access memory, an ordinary load instruction, or even a Load and Reserve
instruction, on a different processor, may return a stale value. However, a
subsequent Iwarx on the other processor followed by a successful stwcx. on that
processor is guaranteed to have returned the value stored by the first processor's
stwcx. (in the absence of other stores to the location).

2. The storing done by the stwcx. instruction in this example is redundant.

G.2.2 Fetch and Store
The Fetch and Store primitive atomically loads and replaces a word in memory.

In this example it is assumed that the address of the word to be loaded and replaced is in
GPR3, the new value is in GPR4, and the old value is returned in GPR5 .

G-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

loop: lwarx r5,0,r3#load and reserve
stwcx. r4,0,r3#store new value if still reserved
bne loop #loop if lost reservation

G.2.3 Fetch and Add
The Fetch and Add primitive atomically increments a word in memory.

In this example it is assumed that the address of the word to be incremented is in GPR3, the
increment is in GPR4, and the old value is returned in GPR5.

loop: lwarx r8,0,r3
add ra,r4,r8
stwcx. ra,0,r3
bne loop

G.2.4 Fetch and AND

#load and reserve
#increment word
#store new value if still reserved
#loop if lost reservation

The Fetch and AND primitive atomically ANDs a value into a word in memory.

In this example it is assumed that the address of the word to be ANDed is in GPR3, the
value to AND into it is in GPR4, and the old value is returned in GPR5.

loop: lwarx r8,0,r3
and ra,r4,r8
stwcx. ra,0,r3
bne loop

#load and reserve
#AND word
#store new value if still reserved
#loop if lost reservation

Note: This sequence can be changed to perform another Boolean operation atomically on
a word in memory, simply by changing the AND instruction to the desired Boolean
instruction (OR, XOR, etc.).

G.2.S Test and Set
The Test and Set primitive atomically loads a word from memory, ensures that the word in
memory contains a non-zero value, and sets the EQ bit of CR Field 0 according to whether
the value loaded is zero.

In this example it is assumed that the address of the word to be tested is in GPR3, the new
value (non-zero) is in GPR4, and the old value is returned in GPR5.

loop: lwarx r8,3,r3 #load and reserve
cmpwi r8, a #done if word
bne $+12 #not equal to °
stwcx. r4,0,r3#try to store nonzero
bne loop #loop if lost reservation

MOTOROLA Appendix G. Synchronization Programming Examples G-3

Notes:
1. Test and Set is shown primarily for pedagogical reasons. It is useful on machines

that lack the better synchronization facilities provided by Iwarx and stwcx .. Test and
Set does not scale well. Using Test and Set before a critical section allows only one
process to execute in the critical section at a time. Using Iwarx and stwcx. to bracket
the critical section allows many processes to execute in the critical section at once,
but at most one will succeed in exiting from the section with its results stored.

2. Depending on the application, if Test and Set fails (that is, clears the EQ bit of CR
Field 0) it may be appropriate to re-execute the Test and Set.

G.3 Compare and Swap
The Compare and Swap primitive atomically compares a value in a register with a word in
memory, if they are surely equal stores the value from a second register into the word in
memory, if they may be unequal loads the word from memory into the first register, and sets
the EQ bit of CR Field 0 to indicate the result of the comparison.

In this example it is assumed that the address of the word to be tested is in GPR3, the
comparand is in GPR4, the new value is in GPR5, and the old value is returned in GPR6.

lwarx r6,O,r3#load and reserve
cmpw r4,r6 #first 2 operands equal?
bne $+8 #skip if not
stwcx. rS,O,r3#store new value if still reserved

Notes:
1. Compare and Swap is shown primarily for pedagogical reasons. It is useful on

machines that lack the better synchronization facilities provided by Iwarx and
stwcx .. A major weakness of typical Compare and Swap instructions is that they
permit spurious success if the word being tested has changed and then changed back
to its old value: the sequence shown above does not have this weakness.

2. Depending on the application, if Compare and Swap fails (that is, clears the EQ bit
of CRO) it may be appropriate to recompute the value potentially to be stored and
then re-execute the Compare and Swap.

G.4 List Insertion
The following example shows how the Iwarx and stwcx. instructions can be used to
implement simple LIFO (last-in-first-out) insertion into a singly-linked list. (Complicated
list insertion, in which multiple values must be changed atomically, or in which the correct
order of insertion depends on the contents of the elements, cannot be implemented in the
manner shown below, and requires a more complicated strategy such as using locks.)

G-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

The next element pointer from the list element after which the new element is to be inserted,
here called the parent element, is stored into the new element, so that the new element
points to the next element in the list: this store is performed unconditionally. Then the
address of the new element is conditionally stored into the parent element, thereby adding
the new element to the list.

In this example it is assumed that the address of the parent element is in OPR3, the address
of the new element is in OPR4, and the next element pointer is at offset 0 from the start of
the element. It is also assumed that the next element pointer of each list element is in a
reservation granule separate from that of the next element pointer of all other list elements.

loop: lwarx r2,O,r3#get next pointer
stw r2,O(r4)#store in new element
sync #let store settle (can omit if not MP)
stwcx. r4, a, r3#add new element to list
bne loop #loop if stwcx. failed

In the preceding example, if two list elements have next element pointers in the same
reservation granule then, in a multiprocessor, livelock can occur. (Livelock is a state in
which processors interact in a way such that no processor makes progress.)

If it is not possible to allocate list elements such that each element's next element pointer is
in a different reservation granule, then livelock can be avoided by using the following, more
complicated, code sequence.

lwz r2,O(r3)#get next pointer
loopl: mr r5,r2 #keep a copy

stw r2,O(r4)#store in new element
sync #let store settle

loop2: lwarxrZ,O,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bne loopl #else progressed)
stwcx. r4,O,r3#add new element to list
bne loop2 #loop if failed

MOTOROLA Appendix G. Synchronization Programming Examples G-5

G-6 Powerpe 601 Rise Microprocessor User's Manual MOTOROLA

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Std 754-1985, IEEE Standardfor Binary Floating-Point Arithmetic, copyright ©19R5 by
the Institute of Electrical and Electronics Eneineers, Inc. with the permission of the IEEE.

A Atomic. A bus access that attempts to be part of a read-write operation to the
same address uninterrupted by any other access to that address (the
term refers to the fact that the transactions are indivisible). The
MPC601 initiates the read and write separately, but signals the
memory system that it is attempting an atomic operation. If the
operation fails, status is kept so that the MPC601 can try again. The
MPC601 implements atomic accesses through the Iwarx/stwcx.
instruction pair, which asserts the TTO signal.

B Beat. A single state on the MPC601 interface that may extend across multiple

MOTOROLA

bus cycles. An MPC601 transaction can be composed of multiple
address or data heats.

Biased Exponent. The sum of the exponent and a constant (bias) chosen to
make the biased exponent's range non-negative.

Big-Endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Boundedly Undefined. The results of attempting to execute a given
instruction are said to be houndedly undefined if they could have
been achieved by executing an arbitrary sequence of defined
instructions, in valid form, starting in the state the machine was in
before attempting to execute the given instruction. Boundedly
undefined results for a given instruction may vary between
implementations, and between execution attempts in the same
implementation.

Glossary of Terms and Abbreviations Glossary-1

Branch Folding. A technique of removing the branch instruction from the
instruction sequence.

Burst. A multiple beat data transfer whose total size is typically equal to a
cache block (in the MPC601: a 32-byte sector).

Bus Clock. Clock that causes the bus state transitions

Bus Master. The owner of the address or data bus; the device that initiates or
requests the transaction.

C Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory).

Cache Block. The cacheable unit for a PowerPC processor. The size of a
cache block may vary among processors. For the MPC601, it is one
sector (8 words).

Cache Coherency. Caches are coherent if a processor performing a read
from its cache is supplied with data corresponding to the most recent
value written to memory or to another processor's cache.

Cast-Outs. Cache sectors that must be written to memory when a snoop miss
causes the least recently used section with moditled data to be
replaced.

Context Synchronization. All instructions in execution complete past the
point where they can produce an exception; all instructions in
execution complete in the context in which they began execution; all
subsequent instructions are fetched and executed in the new context.

Copy-Back Operations. A cache operation in which a cache line is copied
back to memory to enforce cache coherency. Copy-back operations
consist of snoop push-out operations and cache cast-out operations.

D Denormalized Number. A non-zero floating-point number whose exponent

Glossary-2

has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Dynamic Store Forwarding. Allows the FPU to collapse a floating-point
arithmetic operation followed by a floating-point store operation that
depends on the result of the arithmetic operation into a single
operation through the pipeline.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

E Exception. An unmmal or error condition encountered by the processor that
results in special processing.

Exception Handler. A software routine that executes when an exception
occurs. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (such
as aborting the program that caused the exception). The addresses of
the exception handlers are defined by a two-word exception vector
that is branched to automatically when an exception occurs.

Exclusive State. MESI state in which only one caching device contains data
that is also in system memory. Note that in the MPC601, shared
cache sectors are also described as shared exclusive, in that data is
the same in both the cache and in external memory.

Execution Synchronization. All instructions in execution are architecturally
complete before beginning execution (appearing to begin execution)
of the next instruction. Similar to context synchronization but doesn't
force the contents of the instruction buffers to be deleted and
refetched.

Exponent. The component of a binary floating-point number that normally
signifies the integer power to which two is raised in determining the
value of the represented number. Occasionally the exponent is called
the signed or unbiased exponent.

F Feed Forwarding. An MPC60lfeature that reduces the number of clock

MOTOROLA

cycles that an execution unit must wait to use a register. When the
source register of the current instruction is the same as the
destination register of the previous instruction, the result of the
previous instruction is routed to the current instruction at the same
time that it is written to the register file. With feed forwarding, the
destination bus is gated to the waiting execution unit over the
appropriate source bus, saving the cycles which would be used for
the write and read.

Floating-Point Unit. The functional unit in the MPC601 processor
responsible for executing all floating-point instructions plus integer
multiply and divided instructions.

Flush. An operation that causes a modified cache sector to be invalidated and
the data to be written to memory.

Fraction. The field of the significand that lies to the right of its implied binary
point.

Glossary of Terms and Abbreviations Glossary-3

•

G General-Purpose Registers. Any of the 32 registers in the MPC601 register
file. These registers provide the source operands and destination
results for all MPC601 data manipulation instructions. Load
instructions move data from memory to registers, and store
instructions move data from registers to memory.

I IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations of binary floating-point arithmetic
and representations of binary floating-point numbers.

Instruction Unit. The functional unit in the MPC601 processor that fetches
all instructions from memory and performs the initial stages of
instruction decoding. The instruction unit also contains the branch
processing unit and performs all instruction address calculations
(including branch address calculations).

Integer Unit. The functional unit in the MPC601 processor responsible for
executing all instructions except floating point, integer multiply and
divide, and change of flow instructions.

Interrupt. An external signal that causes the MPC601 to suspend current
execution and take a predefined exception.

Invalid State. MESI state (I) that indicates that the cache sector does not
contain valid data.

K Kill. An operation that causes a cache sector to be invalidated.

L Latency. The number of clock cycles necessary to execute an instruction and
make ready the results of that instruction.

Little-Endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Livelock. A state in which processors interact in a way such that no processor
makes progress.

M Memory-Mapped Accesses. Accesses whose addresses use the segmented

Glossary-4

or block address translation mechanisms provided by the MMU and
that occur externally with the bus protocol defined for memory.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Memory Coherency. Refers to memory agreement between caches in a
multiple processor and system memory (e.g. MESI cache
coherency).

Memory Consistency. Refers to levels of memory with respect to a single
processor and system memory (e.g. on-chip cache, secondary cache,
and system memory).

Memory-Forced I/O Controller Interface Access(BUID = x'07F'). These
accesses are made to memory space. They do not use the extensions
to the memory protocol described for I/O controller interface
accesses, and they bypass the page- and block -translation and
protection mechanisms.

MESI Modified. MESI state in which one, and only one, caching device has
the valid data for that address. The data at this address in external
memory is not valid.

N NaN. Not a number; a symbolic entity encoded in floating-point format.
There are two types of NaNs-signaling NaNs and quiet NaNs.

No-Op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

o Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are added, the sum may require
33 bits due to carry. Since the 32-bit registers of the MPC601 cannot
represent this sum, an overflow condition occurs.

P Packet. It is used in the MPC601 with respect to I/O controller interface

MOTOROLA

operations.

Page. A4-Kbyte area of memory, aligned on a 4-Kbyte boundary.

Park. The act of allowing a bus master to maintain mastership of the bus
without having to arbitrate.

Pipelining. A technique that breaks instruction execution into distinct steps
so that multiple steps can be performed at the same time.

Precise Exceptions. The pipeline can be stopped so the instructions that
. preceded the faulting instruction can complete, and subsequent

instructions can be executed from scratch. The system is precise

Glossary of Terms and Abbreviations Glossary-5

Q

unless one of the imprecise modes for invoking the floating-point
enabled exception is in effect.

Processor Clock. Internal P _CLOCK signal.

Quiesce. To come to rest. The processor is said to quiesce when an exception
is taken or a sync instruction is executed. The instruction stream is
stopped at the decode stage and executing instructions are aUowed to
complete to create a controlled context for instructions that may be
affected by out-of-order, paraUel execution. See Synchronization.

Quiet NaNs. Propagate through almost every arithmetic operation without
signaling exceptions. These are used to represent the results of
certain invalid operations, such as invalid arithmetic operations on
infinities or on NaNs, when invalid.

R Register Renaming. The use of shadowing that allows a register to be
updated by instructions that are executed out of order without
destroying machine state information. The MPC601 implements a
two-entry link register shadow to improve performance and to help
handle the precise exception model required by PowerPC.

S Scan Interface. The MPC601 's test interface.

Glossary-6

Sector. One half of a MPC601 cache line. Each MPC601 cache line is 16
words long; therefore, each sector is 8 words long. Cache coherency
is maintained with sector granularity. In the MPC601, the sector is
equivalent to a cache block.

Shared State. MESI protocol state in which two or more caching devices
contain the same information. In the MPC601, shared implies
shared, exclusive. That is, shared data is identical to the data at that
address in system memory.

Signaling NaNs. Signal the invalid operation exception when they are
specified as arithmetic operands

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

Slave. The device addressed by a master device. The slaye is identified in the
address tenure and is responsible for supplying or latching the
requested data for the master during the data tenure.

PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Snooping. Monitoring addresses driven by a bus master to detect the need for
coherency actions.

Snoop Push. Write-backs due to a snoop hit. The sector mayor may not
transition to shared state.

Split-Transaction. A transaction with independent request and response
tenures.

Split-Transaction Bus. A bus that allows address and data transactions from
different processors to occur independently.

Static Branch Prediction. Mechanism by which software (fOl' example,
compilers) can give a hint to the machine hardware about the
direction the branch is likely to take.

Superscalar Machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor Mode. The privileged operation state of the MPC601. In
supervisor mode, software can access all control registers and can
access the supervisor memory space, among other privileged
operations.

T Tenure. The period of bus mastership. For the MPC601, there can be separate
address bus tenures and data bus tenures. A tenure consists of three
phases: arbitration, transfer, termination

Transaction. A complete exchange between two bus devices. A transaction
is minimally comprised of an address tenure; one or more data
tenures may be involved in the exchange. There are two kinds of
transactions: address/data and address-only.

Transfer Termination. Signal that refers to both signals that acknowledge
the transfer of individual beats (of both single-beat transfer and
individual beats of a burst transfer) and to signals that mark the end
of the ten ure.

U Underflow. An error condition that occurs during arithmetic operations when

MOTOROLA

the result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result is a single-precision number. The result
may require a larger exponent and/or mantissa than the single­
precision format makes available. In other words, the result is too
small to be represented accurately.

Glossary of Terms and Abbreviations Glossary-7

Unified Cache. Combined data and instruction cache.

User Mode. The unprivileged operating state of the MPC60I. In user mode,
software can only access certain control registers and can only
access user memory space. No privileged operations can be
performed.

w Write-Through. A memory update policy in which all processor write cycles
are written to both the cache and memory.

Glossary-a PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

A
AO-A31, R-7
~,R-16
m, R-5, 9-R
abs, 10-7
add,1O-8
addc, 10-9
adde, 10-10
addi, 3-92, 10-11
addie, 10-12, 10-13
addis, 3-92, 10-14
addme, 10-15
Address bus

address tenure, 9-7, 9-37
address transfer

AO-A31,8-7
APO-AP3,8-R
AJ5t,8-9
signals, 9-12

address transfer attribute
~, 8-14
CSEO-CSE2 signals, 8-15
m,8-15
HP_SNP_REQ,8-16
TS'ST, 8-13, 9-15
TCO-TC1, 8-14, 9-17
TSIZO-TSIZ2, 8-12, 9-14
TTO-TT 4, 8-10, 9-13
WT,8-15

address transfer start
m,8-6
mg,8-6

address transfer termination
~,8-16
ARTRY,8-17
mm,8-18
terminating address transfer, 9-18

arbitration signals, 9-8
bus arbitration, 9-10

Pm,8-5
'00',8-4
m,8-4

Address calculation
branch instructions, 3-63

Address translation, see Memory management unit
Addressing

branch conditional relative, 3-64
branch conditional to absolute, 3-66

MOTOROLA

INDEX

Index

branch conditional to count register, 3-66
branch conditional to link register, 3-66
branch relative, 3-64
branch to absolute, 3-65
immediate index, floating-point, 3-55
register indirect with immediate index, integer, 3-

42
register indirect, floating-point, 3-56
register indirect, integer, 3-44

addze, 10-16
Aligned data transfer, 2-43, 9-15
Alignment

exception, 5-25, 6-13
rules, 2-44, 2-47

and,lO-17
andc, 10-18
andi, 10-19
andis., 10-20
APO-AP3, 8-8
AJ5t,8-9
Arbitration, system bus, 9-10, 9-21
ARTRY, 4-17,8-17
Asynchronous exceptions, 5-6, 5-7, 5-9
Atomic memory references

B

stwcx., 3-53, 10-197
using lwarx/stwcx., 4-14

b, 10-21
be,1O-22
bectr, 10-23
~,8-32
belr, 10-24
'00',8-4,9-8
BI operand, 3-69
Big-endian byte ordering, 2-45
Block address translation

BAT registers, 2-33, 6-26
block address translation flow, 6-8, 6-30
block memory protection, 6-19, 6-29, 6-31
block size options, 6-28
BTLB organization, 6-24
generation of physical addresses, 6-29
selection of block address translation, 6-5, 6-26

BO operand encodings, 3-68, B-3
m, 8-4, 9-8
Branch folding, 1-6,7-15

Index-1

Branch instructions
address calculation, 3-63
condition register logical, 3-75
description, 3-74
simplified branch mnemonics, 3-69
simplified mnemonics, 3-77

Branch prediction, 7-15
Branch processing unit

execution timing, 7-14
overview, 1-6

Breakpoints
breakpoint control, 6-12
data breakpoints, 6-12, 6-13
instruction breakpoints, 6-12, 6-13

Burst transfers
transfers with data delays, timing, 9-34

Bus unit ID (BUID), 9-36
Byte ordering

default, 2-44
endian selection, 2-36

c
Cache arbitration, 4-3, 7-6
Cache cast-out operation, 4-4
Cache coherency

actions on load operations, 4-13
actions on store operations, 4-14
bus interface logic, 4-25
cache control instructions, 4-17
cache snoop, 4-14
coherency precautions, 4-11
copy-back operation, 6-17
in multiprocessor systems, 4-12
in single-processor systems, 4-12
overview, 4-1, 4-6
reaction to bus operations, 4-14
WIM bits, 4-7,6-10,6-16,6-57,6-61
write-back mode, 6-17

Cache control instructions
bus operations, 4-21
cics, 3-88, 4-18, 10-25
dcbf, 3-89,4-20, 10-39
dcbst, 3-88, 4-19,10-41
dcbt, 3-87,4-18, 10-42
dcbtst, 3-87, 4-19, 10-43
dcbz, 3-88,4-19, 10-44
eicio, 4-20, 10-54
icbi, 3-87,4-21, 10-77
isync, 4-21, 10-78
purpose, 4-17

Cache hit, 7-7
Cache miss, 7-8
Cache operations

cache cast-out operation, 4-4

INDEX

cache data transactions, 4-5
cache sector line-fill operation, 4-5
cache sector push operation, 4-5,4-17
overview, 1-9,4-1
response to bus transactions, 4-14

Cache organization, 4-2
Cache sector line-fill operation, 4-5
Cache sector push operation, 4-5, 4-17
Cache unit

memory performance, 7-25
operation of the cache, 9-2
overview, 4-1

Cache-inhibited accesses (I bit)
cache interactions, 4-7
MMU (I-bit setting), 6-10.6-16,6-57,6-61
timing considerations, 7-26

Change (C) bit maintenance
recording, 6-8, 6-39, 6-40, 6-41
updates, 6-56

Checkstop signal, 9-47
Checkstop sources and enables register (HIDO), 2-36
Checkstop state, 5-21
CT,8-14
~,8-25
CKsTp _oUT, 8-26
cics, 4-18, 10-25
Clean block operation, 4-15
Clock signals

2X]CLK, 8-31
~,8-32
'PCDCrn,8-31
RTC, 8-35

cmp, 10-26
cmpi,1O-27
cmpl,1O-28
cmpli, 10-29
cntlzd, C-4
cntlzw, 10-30
Coherency precautions, 4-11
Complement register, simplified mnemonic, 3-93
Context synchronization, 2-24, 3-2
Copy-back mode, 7-25
CR (condition register)

CR bit fields, 2-11
CR settings, 3-39, B-2

crand, 10-31
crandc, 10-32
creqv, 10-33
crnand, 10-34
crnor, 10-35
cror, 10-36
crorc, 10-37
crxor, 10-38
CSEO-CSE2 signals, 8-15, 9-27

Index-2 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

INDEX

CTR (count register), 2-19

D
DABR (data address breakpoint register, HID5), 2-40
DAR (data address register), 2-27
Data access exception, 5-21
Data breakpoints (DABR), 2-40,6-12,6-13
Data bus

arbitration signals, R-19, 9-R
bus arbitration, 9-21
data tenure, 9-7, 9-37
data transfer, R-21, 9-22
data transfer termination, R-23, 9-23

Data transfers, alignment, 2-43, 9-15, 9-17
USE, R-20, 9-R, 9-22
IT9G, R-19, 9-R
1'5'SWO R-19, 9-R, 9-50
tfSW(:j, 4-17
dcbf, 4-20, to-39
dcbi, to-40
dcbst, 4-19, 10-41
debt, 4-1R, 10-42
dcbtst, 4-19, 10-43
dcbz, 4-19, to-44
Debug modes register (HID 1), 2-38
DEC (decrementer register), 2-2R, B-7
Decode timing, 7-10
Decrementer exception, 5-45
Defined instruction class, 0-1
DHO-DH31/DLO-DL31, R-21
Direct address translation (translation disabled)

data accesses, 6-7, 6-R, 6-16, 6-24, 6-34
instruction accesses, 6-7, 6-8, 6-16, 6-24, 6-34

diy, 10-45
divd, C-4
divdu, C-5
divs, 10-46
divw, 10-47
divwu, 10-49
Double-speed processor clock (2X_PCLK), 8-31
doz, to-50
dozi, to-51
DPO-DP7, 8-22
mst,8-23
'!JA'Tt1?, 8-24, 9-23, 9-25
DSISR (DAE/source instruction service register)

format, 2-27

E

settings for alignment exception, 5-30
settings for DAE, 5-21

EAR (external access register), 2-31
eciwx, to-52

MOTOROLA Index

ecowx, 10-53
Effective address calculation

address translation, 6-1
branches, 3-2, 3-63
loads and stores, 3-2, 3-42, 3-55

eieio, 3-53,4-20, 10-54
eqv, 10-55
Error termination, 9-25
ESP interface, 8-29
Exceptions

alignment exception, 5-25
asynchronous exceptions, 5-6,5-7
data access exception, 5-21
decrementer exception, 5-45
enabling and disabling, 5-13
exception classes, 5-2
exception priorities, 5-7
exception processing, 5-9, 5-13
external interrupt, 5-25
FP unavailable exception, 5-44
I/O controller interface error, 5-46
instruction access exception, 5-24
machine check exception, 5-19
precise exceptions, 5-5
priorities, 5-10
program exception, 5-32
register settings

FPSCR,5-33
MSR, 5-11, 5-15
SRRO, SRR1, 5-10

reset, 5-16
run mode exception, 5-48
summary, 3-3
sUlllmary table, 5-2
synchronous/precise, 5-6
system call exception, 5-47
vector offset table, 5-2, 5-16

Execute timing, instruction, 7-12
Execution units, 1-6
External control instructions, 3-90
extsb, 10-56
extsh, 10-57
extsw, C-6

F
fabs, 10-58
fadd, to-59
fcfid, C-7
fcmpo, 10-60
fcmpu, 10-61
fctid, C-7
fctidz, C-R
fctiw, 10-62
fctiwz, 10-63

Index-3

INDEX

fdiv, 10-64
Features, MPC601, 1-2, 1-13
Feed forwarding, 7-3
Floating-point instructions

data formats, 2-59
floating-point models, F-2
IEEE-754 compatability, 2-55
precision handling, 2-66
rounding,2-6R

Floating-point model
compare instructions,3-39
FP arithmetic instructions, 3-30
FP exception mode bits, 5-12
FP multiply-add instructions, 3-34
FP unavailable exception, 5-44
FPSCR instructions, 3-40
program exceptions, 5-33
rounding and conversion instructions, 3-37

Floating-point numbers, conversion, F-l
Float:ng-point unit

execution timing, 7-22
overview, 1-7

Flow control instructions, 3-63
branch instructions, 3-74
condition register logical, 3-75
system linkage, 3-76

Flush hlock operation, 4-15
fmadd, 10-65
fmr, 10-66
fmsub, 10-67
fmul, 10-68
fnabs, 10-69
fneg, 10-70
fnmadd, 10-71
fnmsub, 10-73
FPCC (floating-point condition code), 3-39
FPRO-FPR31 (t1oating-point registers), 2-6
FPSCR (floating-point status and control register), 2-7
FPSCR instructions, 3-40
fres, C-lJ
frsp, 10-75
frsqrte, C-I0
fsel, C-l1
fsqrt, C-ll
fsub,1O-76

G
cmr,R-15
GPRO-GPR31 (general purpose registers), 2-6
Guarded memory, 6-12

H
Hardware consideratons, MESI, 4-10

Hashed page tables, 6-41
Hashing functions

primary PTEG, 6-45, 6-52, 6-55
secondary PTEG, 6-45, 6-53, 6-56

HID registers, 2-35
Hp_SNP _REb, 8-16
'Rl1'rnET, 8-26

I/O controller interface
address translation, 6-59
alignment exception, 5-27
architectural ramifications of accesses, lJ-36
bus protocol

address and data tenures, 9-37
detailed description, 9-41
load access, timing, 9-46
load operations, 9-40
store access, timing, 9-47
store operations, 9-39
transactions, 9-38
ms signal, 9-37

I/O controller interface error exception, 5-46
memory-forced accesses, 6-61
no-op instructions, fi-62
operations, 8-8
protection, 6-60
selection of I/O controller interface segments, 6-

35
unsupported instructions, 6-61

I/O tenures, 9-38
IABR (instruction address hreakpoint register, HID2),

2-39
icbi, 4-21, 10-77
IEEE 1149.1-compatible interface, 9-49}
IlIegal instruction class, D-2
Imprecise exceptions, 5-7, 5-9
Instruction

stmw, 10-192
Instruction access exception, 5-24
Instruction breakpoints (lABR), 2-39, 6-12, 6-13
Instruction flow, 7-4
Instruction prefetch

MMU constraints, 6-11
Instruction queue, 1-6, 7-4
Instruction stages, 7-5
Instruction timing

instruction flow, 7-4
instruction queue, 7-4
instruction stages. 7-5
overview, 7-1
timing considerations, 7-2

Instruction TLB (ITLB), 6-15
Instruction unit, 1-5

Index-4 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

Instructions
ahs. 10-7
add. IO-X
addc. lO-lJ
adde. 10-10
addi. 3-92. lO-11
addic. 10-12, 10-13
addis, 3-92, 10-14
add me, 10-15
addze, 10-16
and, 10-17
andc, lO-IR
andi, 10-19
andis., 10-20
h. 10-21
hc,1O-22
hcctr, 10-23
heir, 10-24
hranch address calculation, 3-63
hranch instructions, 3-74
cache management instructions, 4-17
classes of instructions, 0-1
clcs. 4-IR, 10-25
cmp, 10-26
cmpi,IO-27
cmpl,1O-2R
cmpli, 10-29
cntlzd. C-4
cntlzw, 10-30
condition register logical, 3-75
crand, lO-31
crandc, 10-32
creqv, 10-33
crnand, 10-34
crnor, 10-35
cror, 10-36
crorc, 10-37
crxor, 1O-3R
dchf,4-20, 10-39
dchi, 10-40
dchst, 4-19, 10-41
dcht, 4-1 R, 10-42
dchtst, 4-19, 10-43
dchz, 4-19, 10-44
defined instructions, 0-1
diy, 10-45
divd, C-4
divdu, C-5
divs, 10-46
divw, 10-47
divwu, 10-49
doz, 10-50
dozi, 10-51
eciwx, 3-90, 10-52
ecowx, 3-90. 10-53

MOTOROLA

INDEX

Index

cicio, 3-53,4-20, 10-54
cqv.IO-55
external control. 3-90
extsh, IO-S6
cxtsh, 1O-S7
extsw, C-6
fahs, 1O-SR
fadd, 1O-S9
fcfid, C-7
fcmpo, 10-60
fcmpu, 10-61
fctid, C-7
fctidz. C-X
fctiw, 10-62
fctiwz, 10-63
fdiv, 10-64
tloating-point

arithmetic, 3-30
compare, 3-30. 3-39
douhle-precision conversion, load, 3-59
douhle-precision conversion, store, 3-61
FP status and control register, 3-40
multiply-add, 3-30,3-34
rounding and conversion. 3-30, 3-37
status and control register, 3-30

tloating-point models, F-2
flow control, 3-1. 3-63
fmadd, 1O-6S
fmr, 10-66
fmsuh, 10-67
fmul, 10-68
fnahs, 10-69
fneg, 10-70
fnmadd, 10-71
fnmsuh, 10-73
fres, C-9
frsp, 10-75
frsqrte, C-I 0
fsel, C-II
fsqrt, C-II
fsuh, 10-76
ichi, 4-21, 10-77
illegal instructions, 0-2
integer

arithmetic, 3-4
compare, 3-4, 3-IS
logical, 3-4, 3-16
rotate, 3-20
rotate and shift, 3-4, 3-18, 3-19
shift,3-20

invalid forms. 0-2
isync, 3-S3, 4-21, 10-78
latency summary, 7-26
1hz, 10-79
Ihzll, lO-XO

Index-5

Ibzux. 10-81
Ibzx, 10-82
Id, C-13
Idarx, C-13
Idu, C-14
Idux, C-15
Idx, C-15
Ifd, 10-83
Ifdu, 10-84
Ifdux, 10-85
Ifdx, 10-86
Ifs, 10-87
Ifsu, 10-88
Ifsux, 10-89
Ifsx, 10-90
Iha, 10-91
Ihau, 10-92
Ihaux, 10-93
Ihax, 10-94
Ihbrx, 10-95
1hz, 10-96
Ihzu.1O-97
Ihzux, 10-98
Ihzx, 10-99
Imw, 10-100, B-4
load and store

address generation, floating-point, 3-55
address generation, integer, 3-42

INDEX

byte reversal instructions, 3-48
double-precision conversion for FP load, 3-

59
double-precision conversion for FP store, 3-

61
floating-point load, 3-57
floating-point move, 3-62
floating-point store, 3-60
integer load, 3-44
integer multiple, 3-49
integer store, 3-47
move multiple, 3-50

Iscbx, 10-10 1
Iswi, 10-103, B-4
Iswx, 10-104, B-4
Iwa, C-16
Iwarx, 3-53, 10-105
Iwaux, C-16
Iwax, C-17
Iwbrx. 10-106
Iwz, 10-107
Iwzu, 10-108
Iwzux, 10-109
Iwzx, 10-110
maskg, 10-111
maskir, 10-112

mcrf, 10-113
mcrfs, 10-114
mcrxr, 10-115
memory control, 3-85
mfcr, 10-117
mffs, 10-118
mfmsr, 10-119, B-1
mfspr. 3-80, 10-120, B-5
mfsr, 10-123, B-1
mfsrin, 10-124
mftb, C-17
mtcrf, 10-125
mtfsbO, 10-126
mtfsbl, 10-127
mtfsf, 10-128
mtmsr, 10-130
mtspr, 3-80, 10-131, B-5
mtsr, 10-133
mtsrin, 10-134
mul,1O-135
mulhd, C-18
mulhdu, C-19
mulhw, 10-136
mulhwu, 10-137
mulld, C-19
mUIli, 10-139
mulIw, 10-138
nabs, 10-140
nand, 10-141
neg, 10-142
11O-0P, 3-92
nor, 10-143
or, 10-144
orc, 10-145
ori, 10-146
oris, 10-147
POWER instructions in PowerPC, B-9
POWER instructions, deleted, B-8
PowerPC instructions, list, A-I
processor control, 3-1, 3-80
reserved bits, B-1
reserved instructions, D-3
rfi,IO-148
r1dcl, C-20
rldcr, C-21
rldic, C-21
rldicl, C-22
rldicr, C-23
rldimi, C-23
rlmi, 10-149
rlwimi, 10-150
rlwinm, 10-151
rlwnm, 10-152
rrib, 10-153

Index-6 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

sc, 10-154, B-4
segment register instructions, B-6
segment register manipulation, 3-89
slbia, C-24
slbie, C-25
slbiex, C-26
sid, C-26
sle, 10-156
sleq, 10-157
sliq, 10-158
slliq, 10-159
sllq, 10-160
slq, 10-161
slw, 10-162
srad, C-27
sradi, C-28
sraiq, 10-164
sraq, 10-163
sraw, 10-165
srawi, 10-166
srd, C-29
sre, 10-167
srea, 10-168
sreq, 10-169
srliq, 10-171
srlq, 10-172
srq, 10-173
srw,1O-174
stb,1O-175
stbu, 10-176
stbux, 10-177
stbx, 10-178
std, C-29
stdcx., C-30
stdu, C-31
stdux, C-31
stdx, C-32
stfd, 10-179
stfdu, 10-180
stfdux, 10-181
stfdx, 10-182
stfiwx, C-32
stfs, 10-183
stfsu, 10-184
stfsux, 10-185
stfsx, 10-186
sth, 10-187
sthbrx, 10-188
sthu, 10-189
sthux, 10-190
sthx, 10-191
stswi, 10-193
stswx, 10-194
stw, 10-195
stwbrx, 10-196

MOTOROLA

INDEX

Index

stwcx., 3-53, 10-197
stwu, 10-198
stwux, 10-199
stwx, 10-200
subf, 10-201
subfc, 10-202
subfe, 10-203
subfic, 10-204
subfme, 10-205
subfze, 10-206
supervisor-level cache management, 3-85
support for Iwarx/stwcx., 9-48
sync, 3-53, 10-207
td, C-33
tdi, C-34
TLB management, 3-90
tibia, C-34
tlbie, 3-90, 10-208, B-7
tlbiex, C-35
tlbsync, C-36
trap, 3-78
tw,1O-21O
twi,1O-211
unimplemented by MPC601, 32-bit, C-l
unimplemented by MPC601, 64-bit, C-2
word compare mnemonics, 3-15
xor, 10-212
xori, 10-213
xoris, 10-214

TNT, 8-25, 9-47
Integer arithmetic instructions, 3-4
Integer compare instructions, 3-15
Integer load instructions, 3-44
Integer logical instructions, 3-16
Integer rotate and shift instructions, 3-18, 3-19
Integer store instructions, 3-47
Integer unit

execution timing, 7-19
overview, 1-7

Interrupt, external, 5-25
isync, 3-53, 4-21, 10-78
IU,3-4

K
Key (Ks, Ku) protection bits, 6-19
Kill block operation, 4-15

L
Latency, 7-1, 7-26, 9-22
Ibz, 10-79
Ibzu, to-80
Ibzux, 10-81
lbzx, to-82

Index-7

Id, C-13
Idarx, C-13
Idu, C-14
Idux, C-15
Idx, C-15
Ifd,IO-83
Ifdu, 10-84
Ifdux, 10-85
Ifdx, 10-86
Ifs, 10-87
Ifsu, 10-88
Ifsux, 10-89
Ifsx, 10-90
Iha, 10-91
Ihau, 10-92
Ihaux, 10-93
Ihax, 10-94
Ihbrx, 10-95
1hz, 10-96
Ihzu, 10-97
Ihzux, 10-98
Ihzx, 10-99
Little-endian byte ordering, 2-45
Imw, 10-100, B-4
Load address, simplified mnemonic, 3-93
Load immediate, simplified mnemonic, 3-92
Load operations

I/O load accesses, 9-40
memory coherency actions, 4-13

Load/store
address generation, 3-42
byte reverse instructions, 3-48
floating-point load instructions, 3-57
floating-point move instructions, 3-62
floating-point store instructions, 3-60
integer load instructions, 3-44
integer store instructions, 3-47
load/store multiple instruction, 3-49
memory synchronization instructions, 3-53
move multiple instructions, 3-50

Logical addresses
translation into physical addresses, 6-1

LR (link register), 2-18
Iscbx, 10-101
Iswi, 10-103, B-4
Iswx, 10-104, B-4
Iwa, C-16
Iwarx, 3-53,10-105
IWarx/stwcx.

general information, 4-14, G-1
support, 9-48

Iwaux, C-16
Iwax, C-17
Iwbrx, 10-106

INDEX

Iwz, 10-107
lwzu, 10-108
lwzux, 10-109
lwzx, 10-110

M
Machine check exception, 2-36,5-19
maskg, 10-111
maskir, 10-112
mcrf, 10-113
mcrfs, 10-114
mcrxr, 10-115
Memory accesses, 9-4
Memory coherency bit (M bit)

MMU (M-bit setting), 6-16
cache interactions, 4-7
coherency in multiprocessor systems, 4-12
MMU (M-bit setting), 6-10, 6-57, 6-61
timing considerations, 7-25

Memory control instructions
cache management, 3-85, 3-86
segment register manipulation, 3-89
lLB management, 3-90

Memory management unit
address translation flow, 6-8
address translation mechanisms, 6-5, 6-21
block address translation, 6-5, 6-8, 6-24
block diagram, 6-3
direct address translation, 6-7, 6-8, 6-16, 6-24, 6-

34
exceptions, 6-12
hashing functions, 6-45
instruction TLB (llLB), 6-15
instructions and registers, 6-14
memory protection, 6-7, 6-19, 6-31
memory/cache access modes (WIM bits), 6-10
overview, 1-8, 6 2
page address translation, 6-5, 6-8, 6-35, 6-41
page history status, 6-8, 6-39
page table search operation, 6-53
page tables in memory, 6-41
segment model, 6-31
virtual address (52-bit), 6-35

Memory synchronization
eieio, 3-53
isync, 3-53
lwarx, 3-53
stwcx., 3-53
sync, 3-53

Memory unit
bus interface logic, 4-25
operation for loads and stores, 9-4
overview, 1-9,4-22

Index-8 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

queuing priorities, 4-24
queuing structure, 4-14, 4-24

Memory update modes
copy-back mode, 7-25

Memory/cache access modes, purpose, 7-25
Memory/cache access modes, see WIM bits
MESI protocol

definition, MESI states, 1-21,4-8
enforcing memory coherency, 9-27
hardware considerations, 4-10

MESI state definitions, 4-8
mfcr, 10-117
mffs, 10-118
mfmsr, 10-119, B-1
mfspr, 3-80, 10-120
mfspr, POWER and PowerPC, B-5
mfsr, 10-123, B-1
mfsrin, 10-124
mftb, C-17
Misaligned dak'l transfer, 9-17
Move register, simplified mnemonic, 3-93
MQ register, 2-14, 3-4
MSR (machine sk'lte register), 2-20
mtcrf, 10-125
mtfsbO, 10-126
mtfsb1, 10-127
mtfsf, 10-128
mtmsr, 10-130
mtspr, 3-80, 10-131
mtspr, POWER and PowerPC, B-5
mtsr, 10-133
mtsrin, 10-134
mut, 10-135
mulhd, C-18
mulhdu, C-19
mulhw, 10-136
mulhwu, 10-137
mulld, C-19
mulli,1O-139
mullw, 10-138
Multiple-precision shifts, 3-20, E-1

N
nabs, 10-140
nand,1O-141
neg, 10-142
No-op, 3-92
nor, 10-143
Normal termination, 9-23

o
Operand placement and performance, 2-42
Operating environment arChitecture, 1-11

MOTOROLA

INDEX

Index

or, 10-144
orc, 10-145
ori,10-146
oris, 10-147
Out -of-order instruction issue, 7-13

p
Page address translation

generation of physical addresses, 6-35
page address translation flow, 6-41
page memory protection, 6-19, 6-40
page size, 6-31
page k'lbles in memory, 6-41
segment registers, 6-33, 6-36
selection of page address translation, 6-5, 6-34
k'lble search operation, 6-53
UTLB organization, 6-33
virtual address and virtual segment 10, 6-35

Page history Sk'ltus
Rand C bit recording, 6-8, 6-39
Rand C bit updates, 6-56

Page k'lbles
allocation of PTEs, 6-49
example k'lble structures, 6-49, 6-51
organized as PTEGs, 6-43
page table size, 6-44
page table updates, 6-56
PTE format, 6-37
PTEG addresses, 6-47, 6-51
table search for PTE, 6-53

m-rcm,8-31
Performance considerations, memory, 7-25
Physical address generation

block physical address generation, 6-29
generation of PTEG addresses, 6-47, 6-51
memory management unit, 6-1
page physical address generation, 6-35

PIR (processor identification register, HIDI5), 2-41
POWER architecture

deleted instructions in PowerPC, B-8
migraton to PowerPC, B-1
POWER instructions in PowerPC, B-9
POWER/PowerPC, incompatibilities, B-1
svcx instruction, B-4

PowerPC architecture
features used in MPC601, 1-13
instructions, A-I
levels ofimplemenk'ltion, 1-11
operating environment architecture, 1-11
POWER/PowerPC, incompatibilities, B-1
registers/implementation, 1-14
user instruction set architecture, 1-11
virtual environment architecture, 1-11

Index-9

INDEX

PP protection bits, 6-19
Precise exceptions, 5-5, 5-9
Prefetch timing, 7-6
Priorities

cache access priorities, 4-4
exception priorities, 5-7,5-10
memory unit queuing priorities, 4-24

Privilege levels
changing privilege levels, 2-20, 5-14
supervisor-level cache instruction, 3-85
supervisor-level registers, 2-20
user-level cache instructions, 3-86
user-level registers, 2-6

Process switching, 5-14
Processor control instructions, 3-80
Program exception, 5-32
Programming model

supervisor-level registers, 2-20
user-level registers, 2-6

Protection of memory areas
block access protection, 6-19, 6-29, 6-31
I/O controller interface protection, 6-8, 6-61
options available, 6-7, 6-19
page access protection, 6-19, 6-31, 6-40
programming protection bits, 6-19
protection violations, 6-12, 6-20, 6-31

PTEGs (PTE groups)
definition, 6-43
example primary and secondary PTEGs, 6-51
generation of PTEG addresses, 6-47
table search operation, 6-53

PTEs (page table entries), 6-35, 6-37, 6-43, 6-53, 6-56
PVR (processor version register), 2-33

Q

Qualified bus grant, 9-8
Qualified data bus grant, 9-21
Qualified snoop request, 4-14
Queuing structure, memory unit, 4-24
QUIESC_REQ, 8-28

R
Read (with clean) operations, 4-13
Read atomic operation,4-15
Read operation, 4-15
Read with intent to modify operation, 4-15
Real-time clock (RTC), B-7
Reference (R) bit maintenance

recording, 6-8, 6-39, 6-40, 6-54
updates, 6-56

Registers
DEC, B-7
PowerPC implementation, 1-14

reserved bits, B-2
supervisor-level

MSR,2-20
SR,2-22

supervisor-level SPRs
BATs, 2-33
DAR,2-27
DEC, 2-28
DSISR,2-27
EAR,2-31
HID Registers, 2-35
PVR,2-33
SDR1,2-29
SPRGO-SPRG3, 2-31
SRRO, 2-30
SRR1,2-30

user-level
CR,2-11
FPRO-FPR31, 2-6
FPSCR,2-7
GPRO-GPR31,2-6

user-level SPRs
CTR,2-19
LR,2-18
MQ,2-14
RTC, 2-16
XER,2-15

Reserved instruction class, D-3
Reset

hard reset, 2-71, 5-17
register state after reset, 2-71
reset exception, 5-16
soft reset, 2-72, 5-17

Reset signals
'I1R'rntT, 8-26, 9-48
QUIESC_REQ, 8-28
RESUME,8-27
11SlW,8-28
SC_DRIVE, 8-28
~,8-27, 9-48
SYS_QUlESC, 8-27

RESUME, 8-27
rfi, 10-148
r1dcl, C-20
rider, C-21
r1dic, C-21
rldicl, C-22
rldicr, C-23
r1dimi, C-23
rlmi, 10-149
r1wimi, 10-150
r1winm, 10-151
r1wnm, 10-152
Rotate and shift operations, 3-18

Index-10 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

INDEX

Rounding, floating-point operations, 2-68
rrib,1O-153
'RmW, 8-28, 9-49
RTC (real time clock)

RTC facility, 2-16
signal, 8-35

Run mode exception, 5-48

s
sc, 5-47, 10-154
SC DRIVE, 8-28
SDR 1 (table search description) register

format, 2-29, 6-44
generation of PTEG addresses, 6-47,6-51

Segment registers
format, 2-22, 6-36, 6-60
instructions, 6-37, B-6
SR manipulation instructions, 3-89
T-bit, 2-22, 6-34, 9-35
updates, 2-24

Segmented memory model, see Memory management
unit

mID,8-18
Signals

2X]CLK, 8-31
AO-A31,8-7
7ViCK,8-16
Am!, 8-5, 9-8
address arbitration, 9-8
address transfer, 9-12
address transfer attribute, 9-13
APO-AP3, 8-8
APE,8-9
iiJ1TP.V, 8-17, 9-23
BCOCrn, 8-32
'00,8-4,9-8
'911,8-4,9-8
checkstop, 9-47
CT,8-14
CJ<STl5]N,8-25
CKsTp_oOT,8-26
configuration, 8-2
CSEO-CSE2, 8-15, 9-27
data arbitration, 9-8, 9-21
data transfer termination, 9-23
TI'9'S, 8-20, 9-8, 9-22
T5ffij, 8-19, 9-8
tmWQ, 8-19, 9-8, 9-50
DHO-DH31/DLO-DL31, 8-21
DPO-DP7,8-22
twt,8-23
mmw, 8-24, 9-23, 9-25
ESP interface, 8-29
m,8-15

MOTOROLA Index

Hp_SNP_REO, 8-16
~,8-26
TNT, 8-25, 9-47
15CIJCEN,8-31
QUIESC_REQ, 8-28
reset, 9-48
RESUME,8-27
'RmW, 8-28, 9-49
RTC (real time clock), 8-35
SC_DRIVE, 8-28
mID,8-18
soft stop control, 9-48
~, 8-27, 9-48
SYS_OUlESC, 8-27
TA, 8-23, 9-23
mT, 8-13, 9-22
TCO-TC1, 8-14, 9-17
TEA, 8-24, 9-23, 9-25
m,8-6
TSIZO-TSIZ2, 8-12,9-14
TTO-TT4, 8-10, 9-13
wr,8-15
~,8-6, 9-37

Simplified mnemonics, 3-91
Single-beat reads with data delays, timing, 9-32
Single-beat transfer

back-to-back, timing, 9-33
reads with data delays, timing, 9-31
reads, timing, 9-29
termination, 9-23
writes, timing, 9-30

slbia, C-24
slbie, C-25
slbiex, C-26
sid, C-26
sle, 10-156
sleq, 10-157
sliq, 10-158
slliq, 10-159
s1lq, 10-160
slq, 10-161
slw, 10-162
Snoop operation, 4-14, 7-25, 9-19
Snoop status signals, 4-14
Soft stop control signals, 9-48
Split-bus transaction, 9-9
SPR encodings, unimplemented in MPC601, C-I, C-3
SPRGO-SPRG3 (general SPRs), 2-31
SR (segment register), 2-22
srad, C-27
sradi, C-28
sraiq, 10-164
sraq, 10-163
sraw, 10-165
srawi,1O-166

Index-11

srd, C-29
sre, 10-167
srea, 10-168
sreq, 10-169
m1ESET,8-27
srIiq, 10-171
srIq, 10-172
srq, 10-173
SRRO/SRR 1 (status save/restore registers), 2-30
srw, 10-174
Static branch prediction, 7-15
stb,1O-175
stbu, 10-176
stbux, 10-177
stbx, 10-178
std, C-29
stdcx., C-30
stdu, C-31
stdux, C-31
stdx, C-32
stfd, 10-179
stfdu, 10-180
stfdux, 10-181
stfdx, 10-182
stfiwx, C-32
stfs, 10-183
stfsu, 10-184
stfsux, 10-185
stfsx, 10-186
sth, 10-187
sthbrx, 10-188
sthu, 10-189
sthux, 10-190
sthx, 10-191
stmw, 10-192
Store operations

I/O operations to BUC, 9-39
memory coherency actions, 4-14
single-beat writes, 9-30

stswi, 10-193
stswx, 10-194
stw, 10-195
stwbrx, 10-196
stwcx., 3-53, 10-197
stwu, 10-198
stwux, 10-199
stwx, 10-200
subf, 10-201
subfc, 10-202
subfe, 10-203
subfic, 10-204
subfme, 10-205
subfze, 10-206
Supervisor mode, see privilege levels

INDEX

sync, 3-53, 10-207
sync operation, 4-15
Synchronization

context, 2-24
memory synchronization instructions, 3-53
sync, B-5

Synchronous/precise exceptions, 5-6
SYS_OUIESC, 8-27
System call exception, 5-47
System linkage instructions, 3-76
System status

T

~,8-25
CKsTp_oUT,8-26
mtESET, 8-26
1m,8-25
QUIESC_REQ, 8-28
RESUME,8-27
'RSRV,8-28
SC_DRIVE, 8-28
'SRtStT,8-27
SYS_OUiESC, 8-27

TA, 8-23, 9-23
Table search operations

algorithm, 6-53
hashing functions, 6-45
page table definition, 6-43
SDRI register, 6-44
table search flow (primary and secondary), 6-54

rem, 8-13, 9-22
TCO-TCI signals, 8-14, 9-17
td, C-33
tdi, C-34
!EA, 8-24, 9-25
Termination, 9-18, 9-23
Test signals, 8-30
Timer facilities, B-7
Timing diagrams, interface

address transfer signals, 9-12
back-to-back single-beat transfers, 9-33
burst transfers with data delays, 9-34
I/O controller interface load access, 9-46
I/O controller interface store access, 9-47
single-beat reads, 9-29
single-beat reads with data delays, 9-31
single-beat writes, 9-30
single-beat writes with data delays, 9-32
use of TEA, 9-35
using uswcr, m

Timing, instruction
BPU execution timing, 7-14
cache arbitration, 7-6
cache hit, 7-7

Index-12 PowerPC 601 RISC Microprocessor User's Manual MOTOROLA

INDEX

cache miss, 7-8
decode timing, 7-10
FPU execution timing, 7-22
instruction execute timing, 7-12
IU execution timing, 7-19
prefetch timing, 7-6
writeback timing, 7-14

TLB invalidate
TLB invalidate broadcast operations, 6-14, 6-15,

6-57
TLB management instructions, 3-90
tlbie instruction, 6-14, 6-15, 6-57

tibia, C-34
tlbie, 3-90, 10-208
tlbie, POWER and Power PC, B-7
tlbiex, C-35
tlbsync, C-36
tlbsync instruction emulation, 6-57
TO operand, 3-78
Transactions, cache, 4-5
Transfer, 9-12, 9-22
Trap instructions, 3-78
m, 8-6, 9-12
TSIZO-TSIZ2 signals, 8-12,9-14
TTO-TT4, 8-10, 9-13
tw, 10-210
twi, 10-211

u
Unimplemented instructions in MPC601, C-l
Use of TEA, timing, 9-35
User instruction set architecture, 1-11
User mode, see privilege levels
Using IT9W(), timing, 9-50
UTLB, 6-33, 6-39

v
Vector offset table, exception, 5-2,5-16
Virtual address (52-bit)

logical to virtual to physical address translation,
6-35

Virtual environment architecture, 1-11
Virtual memory implementatien, 6-2

W
WIM bits, 4-7, 6-10, 6-16, 6-57, 6-61, 9-27
Word compare mnemonics, 3-15
Write with atomic operation, 4-15
Write with flush operation, 4-i5
Write with kill operation, 4-15
Write-back mode, 6-17
Writeback timing, 7-14
Write-through (W bit), 6-10

MOTOROLA Index

Write-through mode (W bit)
cache interactions, 4-7
MMU (W-bit setting), 6-16, 6-57, 6-61
timing considerations, 7-26

Write-with-tlush operations, 4-13
Wi, 8-15

x
IDS signal, 8-6, 9-37
XER (integer exception register), 2-15
xor, 10-212
xori, 10-213
xoris, 10-214

Index-13

_ Overview

.. Registers and Data Types

.. Addressing Modes and Instruction Set Summary

.. Cache and Memory Unit Operation

• Exceptions

__ Memory Management Unit

• Instruction Timing

.. Signal Descriptions

.. System Interface Operation

mI Instruction Set

111 MPC601 Instruction Set

III POWER Architecture Cross Reference

.. PowerPC Instructions Not Implemented in MPC601

__ Classes of Instructions

III Multiple-Precision Shifts

• Floating-Point Models

• Synchronization Programming Examples

