
 



 

 MOTOROLA, 1995

  

µ

Motorola reserves the right to make changes without further notice to any products herein.  Motorola makes no warranty, representation or guarantee regarding 
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and 
specifically disclaims any and all liability, including without limitation consequential or incidental damages.  "Typical" parameters can and do vary in different 
applications.  All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.  Motorola does not 
convey any license under its patent rights nor the rights of others.  Motorola products are not designed, intended, or authorized for use as components in systems 
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola 
product could create a situation where personal injury or death may occur.  Should Buyer purchase or use Motorola products for any such unintended or 
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, 
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such 
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and      are 
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

 

MCF5200

ColdFire Family

Programmer’s

Reference Manual

 

TM





 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

iii

 

68K FAX-IT

 

Documentation Comments

 

FAX 512-891-8593—Documentation Comments Only

 

The Motorola High-Performance Embedded Systems Technical Communications Depart-
ment provides a fax number for you to submit any questions or comments about this docu-
ment or how to order other documents. We welcome your suggestions for improving our
documentation. Please do not fax technical questions.

Please provide the part number and revision number (located in upper right-hand corner of
the cover) and the title of the document. When referring to items in the manual, please ref-
erence by the page number, paragraph number, figure number, table number, and line num-
ber if needed.

When sending a fax, please provide your name, company, fax number, and phone number
including area code.

 

For Internet Access:

 

Telnet: pirs.aus.sps.mot.com (Login: pirs)
WWW: http: / / pirs.aus.sps.mot.com/aesop/hmpg.html
Query By Email: aesop_query@pirs.aus.sps.mot.com
(Type ‘‘HELP’’ in text body.)

 

For Dial-Up:

 

Phone: +1-512-891-3650
Phone (US or Canada): 1-800-843-3451
Connection Settings: N/8/1/F
Data Rate: < 14,400 bps
Terminal Emulation: VT100
Login: pirs

 

For AESOP Questions:

 

FAX: +1-512-891-8775
EMAIL: aesop_sysop@pirs.aus.sps.mot.com

 

For Hotline Questions:

 

FAX (US or Canada): 1-800-248-8567
EMAIL: aesop_support@pirs.aus.sps.mot.com



 

iv

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

Applications and Technical Information

 

For questions or comments pertaining to technical information, questions, and applications,
please contact one of the following sales offices nearest you.

 

— Sales Offices —

 

Field Applications Engineering Available Through All Sales Offices

 

UNITED STATES

 

ALABAMA

 

, Huntsville (205) 464-6800

 

ARIZONA

 

, Tempe (602) 897-5056

 

CALIFORNIA

 

, Agoura Hills (818) 706-1929

 

CALIFORNIA

 

, Los Angeles (310) 417-8848

 

CALIFORNIA

 

, Irvine (714) 753-7360

 

CALIFORNIA

 

, Rosevllle (916) 922-7152

 

CALIFORNIA

 

, San Diego (619) 541-2163

 

CALIFORNIA

 

, Sunnyvale (408) 749-0510

 

COLORADO

 

, Colorado Springs (719) 599-7497

 

COLORADO

 

, Denver (303) 337-3434

 

CONNECTICUT

 

, Wallingford (203) 949-4100

 

FLORIDA

 

, Maitland (407) 628-2636

 

FLORIDA

 

, Pompano Beach/
  Fort Lauderdale (305)  486-9776

 

FLORIDA

 

, Clearwater (813) 538-7750

 

GEORGlA

 

, Atlanta (404) 729-7100

 

IDAHO

 

, Boise (208) 323-9413

 

ILLINOIS

 

, Chicago/Hoffman Estates (708) 490-9500

 

INDlANA

 

, Fort Wayne (219) 436-5818

 

INDIANA

 

, Indianapolis (317) 571-0400

 

INDIANA

 

, Kokomo (317) 457-6634

 

IOWA

 

, Cedar Rapids (319) 373-1328

 

KANSAS

 

, Kansas City/Mission (913) 451-8555

 

MARYLAND

 

, Columbia (410) 381-1570

 

MASSACHUSETTS

 

, Marborough (508) 481-8100

 

MASSACHUSETTS

 

, Woburn (617) 932-9700

 

MICHIGAN

 

, Detroit (313) 347-6800

 

MINNESOTA

 

, Minnetonka (612) 932-1500

 

MISSOURI

 

, St. Louis (314) 275-7380

 

NEW JERSEY

 

, Fairfield (201) 808-2400

 

NEW YORK

 

, Fairport (716) 425-4000

 

NEW YORK

 

, Hauppauge (516) 361-7000

 

NEW YORK

 

, Poughkeepsie/Fishkill (914) 473-8102

 

NORTH CAROLINA

 

, Raleigh (919) 870-4355

 

OHIO

 

, Cleveland (216) 349-3100

 

OHIO

 

, Columbus/Worthington (614) 431-8492

 

OHIO

 

, Dayton (513) 495-6800

 

OKLAHOMA

 

, Tulsa (800) 544-9496

 

OREGON

 

, Portland (503) 641-3681

 

PENNSYLVANIA

 

, Colmar (215) 997-1020
  Philadelphia/Horsham (215) 957-4100

 

TENNESSEE

 

, Knoxville (615) 584-4841

 

TEXAS

 

, Austin (512) 873-2000

 

TEXAS

 

, Houston (800) 343-2692

 

TEXAS

 

, Plano (214) 516-5100

 

VIRGINIA

 

, Richmond (804) 285-2100

 

WASHINGTON

 

, Bellevue (206) 454-4160
  Seattle Access (206) 622-9960

 

WISCONSIN

 

, Milwaukee/Brookfield (414) 792-0122

 

CANADA
BRITISH COLUMBIA

 

, Vancouver (604) 293-7605

 

ONTARIO

 

, Toronto (416) 497-8181

 

ONTARIO

 

, Ottawa (613) 226-3491

 

QUEBEC

 

, Montreal (514) 731-6881

 

INTERNATIONAL
AUSTRALIA

 

, Melbourne (61-3)887-0711

 

AUSTRALIA

 

, Sydney (61(2)906-3855

 

BRAZIL

 

, Sao Paulo 55(11)815-4200

 

CHINA

 

, Beijing 86 505-2180

 

FINLAND

 

, Helsinki 358-0-35161191
  Car Phone 358(49)211501

 

FRANCE

 

, Paris/Vanves 33(1)40 955 900

 

GERMANY

 

, Langenhagen/ Hanover 49(511)789911

 

GERMANY

 

, Munich 49 89 92103-0

 

GERMANY

 

, Nuremberg 49 911 64-3044

 

GERMANY

 

, Sindelfingen 49 7031 69 910

 

GERMANY

 

, Wiesbaden 49 611 761921

 

HONG KONG

 

, Kwai Fong 852-4808333
 Tai Po 852-6668333

 

INDIA

 

, Bangalore (91-812)627094

 

ISRAEL

 

, Tel Aviv 972(3)753-8222

 

ITALY

 

, Milan 39(2)82201

 

JAPAN

 

, Aizu 81(241)272231

 

JAPAN

 

, Atsugi 81(0462)23-0761

 

JAPAN

 

, Kumagaya 81(0485)26-2600

 

JAPAN

 

, Kyushu 81(092)771-4212

 

JAPAN

 

, Mito 81(0292)26-2340

 

JAPAN

 

, Nagoya 81(052)232-1621

 

JAPAN

 

, Osaka 81(06)305-1801

 

JAPAN, 

 

Sendai 81(22)268-4333

 

JAPAN, 

 

Tachikawa 81(0425)23-6700

 

JAPAN, 

 

Tokyo 81(03)3440-3311

 

JAPAN

 

, Yokohama 81(045)472-2751

 

KOREA

 

, Pusan 82(51)4635-035

 

KOREA

 

, Seoul 82(2)554-5188

 

MALAYSIA

 

, Penang 60(4)374514

 

MEXICO

 

, Mexico City 52(5)282-2864

 

MEXICO

 

, Guadalajara 52(36)21-8977
 Marketing 52(36)21-9023
 Customer Service 52(36)669-9160

 

NETHERLANDS

 

, Best (31)49988 612 11

 

PUERTO RICO

 

, San Juan (809)793-2170

 

SINGAPORE

 

(65)2945438

 

SPAIN

 

, Madrid 34(1)457-8204
  or 34(1)457-8254

 

SWEDEN

 

, Solna 46(8)734-8800

 

SWITZERLAND

 

, Geneva 41(22)7991111

 

SWITZERLAND

 

, Zurich 41(1)730 4074

 

TAlWAN

 

, Taipei 886(2)717-7089

 

THAILAND

 

, Bangkok  (66-2)254-4910

 

UNITED KINGDOM

 

, Aylesbury 44(296)395-252

 

FULL LINE REPRESENTATIVES
COLORADO

 

, Grand Junction
 Cheryl Lee Whltely (303) 243-9658

 

KANSAS

 

, Wichita
 Melinda Shores/Kelly Greiving (316) 838 0190

 

NEVADA

 

, Reno
 Galena Technology Group (702) 746 0642

 

NEW MEXICO

 

, Albuquerque
 S&S Technologies, lnc. (505) 298-7177

 

UTAH

 

, Salt Lake City
 Utah Component Sales, Inc. (801) 561-5099

 

WASHINGTON

 

, Spokane
 Doug Kenley (509) 924-2322

 

ARGENTINA

 

, Buenos Aires
 Argonics, S.A. (541) 343-1787

HYBRID COMPONENTS RESELLERS
Elmo Semiconductor (818) 768-7400
Minco Technology Labs Inc. (512) 834-2022
Semi Dice Inc. (310) 594-4631



MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL v

PREFACE

The MCF5200 ColdFire Family Programmer’s Reference Manual describes the program-
ming, capabilities, and operation of the ColdFire Family processors, while the MC68000
Family Programmer’s Reference Manual provides instruction details for the EC000 core.

TRADEMARKS

All trademarks reside with their respective owners.



vi MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

vii

 

TABLE OF CONTENTS

 

Paragraph
Number

Title Page
Number

Section 1
Introduction

 

1.1 Integer Unit User Programming Model. . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.1.1 Data Registers (D7 – D0)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1
1.1.2 Address Registers (A7 – A0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1
1.1.3 Program Counter (PC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1
1.1.4 Condition Code Register (CCR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
1.2 Supervisor Programming Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3
1.2.1 Address Register 7 (A7)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3
1.2.2 Status Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
1.2.3 Vector Base Register (VBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
1.3 Integer Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
1.4 Organization of Data in Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-5
1.4.1 Organization of Integer Data Formats in Registers . . . . . . . . . . . . . . .  1-5
1.4.2 Organization of Integer Data Formats in Memory . . . . . . . . . . . . . . . .  1-6

 

Section 2
Addressing Capabilities 

 

2.1 Instruction Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
2.2 Effective Addressing Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2
2.2.1 Data Register Direct Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4
2.2.2 Address Register Direct Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4
2.2.3 Address Register Indirect Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4
2.2.4 Address Register Indirect with Postincrement Mode. . . . . . . . . . . . . .  2-5
2.2.5 Address Register Indirect with Predecrement Mode . . . . . . . . . . . . . .  2-6
2.2.6 Address Register Indirect with Displacement Mode  . . . . . . . . . . . . . .  2-7
2.2.7 Address Register Indirect with Index (8-Bit Displacement) Mode . . . .  2-8
2.2.8 Program Counter Indirect with Displacement Mode  . . . . . . . . . . . . . .  2-9
2.2.9 Program Counter Indirect with Index (8-Bit Displacement) Mode . . .  2-10
2.2.10 Absolute Short-Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-10
2.2.11 Absolute Long-Addressing Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-10
2.2.12 Immediate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-12
2.2.13 Effective Addressing Mode Summary . . . . . . . . . . . . . . . . . . . . . . . .  2-12
2.3 Stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   2-13

 

Section 3
Instruction Set Summary 

 

3.1 Instruction Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3-1
3.1.1 Data Movement Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3-5
3.1.2 Integer Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3-6
3.1.3 Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3-8
3.1.4 Shift Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3-8



 

viii

 

MCF5200 FAMILY PROGRAMMERS REFERENCE MANUAL

 

 MOTOROLA

 

TABLE OF CONTENTS

 

 (

 

Continued

 

)

 

Paragraph
Number

Title Page
Number

 

3.1.5 Bit Manipulation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3-9
3.1.6 Program Control Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3-9
3.1.7 System Control Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3-10
3.2 Integer Unit Condition Code Computation . . . . . . . . . . . . . . . . . . . . .    3-11

 

Section 4
Integer Instructions 

 

ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
ADDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
ADDI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
ADDQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
ADDX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
ANDI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
ASL, ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
Bcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
BCHG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
BCLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
BRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
BSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
BSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31
BTST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33
CLR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36
CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38
CMPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40
CMPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42
EOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43
EORI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45
EXT. EXTB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-46
JMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-47
JSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-48
LEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-49
LINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50
LSL, LSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-51
MOVE, MOVEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53
MOVE from CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-56
MOVE to CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-57
MOVEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-59
MOVEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-62
MULS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63
MULU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMERS REFERENCE MANUAL

 

ix

 

TABLE OF CONTENTS

 

 (

 

Continued

 

)

 

Paragraph
Number

Title Page
Number

 

NEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-69
NEGX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-70
NOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-72
NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-73
OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-74
ORI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-77
PEA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-78
RTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-79
Scc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-80
SUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-82
SUBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-85
SUBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-87
SUBQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-88
SUBX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-90
SWAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-92
TRAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-93
TRAPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-94
TST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-95
UNLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-97

 

Section 5

Supervisor (Privileged) Instructions

 

HALT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
PULSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
WDDATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
WDEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
MOVE from SR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
MOVE to SR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
MOVEC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
RTE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13

 

Section 6
Instruction Format Summary  

 

6.1 Instruction Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    6-1
6.1.1 Effective Address Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    6-1
6.1.2 Shift Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    6-1
6.1.2.1 Count Register Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . 6-1
6.1.2.2 Register Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    6-1
6.1.3 Size Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      6-2



 

x

 

MCF5200 FAMILY PROGRAMMERS REFERENCE MANUAL

 

 MOTOROLA

 

TABLE OF CONTENTS

 

 (

 

Continued

 

)

 

Paragraph
Number

Title Page
Number

 

6.1.4 Opmode Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    6-2
6.1.5 Address/Data Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6-2
6.2 Operation Code Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6-2

ORI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
ANDI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
SUBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
ADDI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
EORI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
CMPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
BTST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
BCHG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
BCLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
BSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
BTST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
BCHG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
BCLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
BSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
MOVE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
MOVE from SR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Move from CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
NEGX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
CLR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
MOVE TO CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
MOVE FROM CCR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
NEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
MOVE TO SR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
EXT, EXTB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
SWAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
PEA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
TST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
HALT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
PULSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
MULU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
MULS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
TRAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
LINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
NOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
RTE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
RTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
MOVEC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMERS REFERENCE MANUAL

 

xi

 

TABLE OF CONTENTS

 

 (

 

Continued

 

)

 

Paragraph
Number

Title Page
Number

 

JSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
JMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
MOVEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
LEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
ADDQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
SUBQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
Scc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
BRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
BSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Bcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
MOVEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
SUBX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
SUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
SUBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
CMPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
EOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
MULU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
MULS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
ADDX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
ADDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
ASL, ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
LSL, LSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
WDATA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
WDEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11

 

Section 7 

Exception Processing  

 

7.1 Exception Processing Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-1
7.2 Exception Stack Frame Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-5
7.3 Processor Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-6
7.3.1 Access Error Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-6
7.3.2 Address Error Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-7
7.3.3 Trap Exception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-7
7.3.4 Illegal Instruction Exception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-7
7.3.5 Privilege Violation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-7
7.3.6 Trace Exception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-7
7.3.7 Debug Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-8



 

xii

 

MCF5200 FAMILY PROGRAMMERS REFERENCE MANUAL

 

 MOTOROLA

 

TABLE OF CONTENTS

 

 (

 

Continued

 

)

 

Paragraph
Number

Title Page
Number

 

7.3.8 RTE and Format Error Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . .    7-8
7.3.9 Interrupt Exception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-9
7.3.10 Fault-on-Fault Halt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-11
7.3.11 Reset Exception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-11
7.4 Exception Priorities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7-13

 

Section 8

S-Record Output Format

 

8.1 S-Record Content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.2 S-Record Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
8.3 S-Record Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

 

Section 9 

Instruction Execution Timing

 

9.1 Timing Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    9-1
9.2 MOVE Instruction Execution Times . . . . . . . . . . . . . . . . . . . . . . . . . . .    9-2
9.3 Standard One Operand Instruction Execution Time. . . . . . . . . . . . . . . . 9-3
9.4 Standard Two Operand Instruction Execution Time. . . . . . . . . . . . . . . . 9-4
9.5 Miscellaneous Instruction Execution Times . . . . . . . . . . . . . . . . . . . . . . 9-5
9.6 Branch Instruction Execution Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6

 

 
  Appendix A

Processor Instruction Summary



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

xiii

 

LIST OF FIGURES

 

Figure
Number

Title Page
Number

 

1-1 ColdFire Family User Programming Model ...................................................... 1-2
1-2 Status Register................................................................................................. 1-4
1-3 Organization of Integer Data Formats in Data Registers ................................. 1-5
1-4 Organization of Integer Data Formats in Address Registers............................ 1-5
1-5 Memory Operand Addressing .......................................................................... 1-6
1-6 Memory Organization for Integer Operands..................................................... 1-7
2-1 Instruction Word General Format..................................................................... 2-1
2-2 Instruction Word Specification Formats ........................................................... 2-2
2-3 Data Register Direct Mode............................................................................... 2-4
2-4 Address Register Direct Mode ......................................................................... 2-4
2-5 Address Register Indirect Mode....................................................................... 2-4
2-6 Address Register Indirect with Postincrement Mode ....................................... 2-5
2-7 Address Register Indirect with Predecrement Mode........................................ 2-6
2-8 Address Register Indirect with Displacement Mode......................................... 2-7
2-9 Address Register Indirect with Index (8-Bit Displacement) Mode.................... 2-8
2-10 Program Counter Indirect with Displacement Mode......................................... 2-9
2-11 Program Counter Indirect with Index (8-Bit Displacement) Mode.................. 2-10
2-12 Absolute Short Addressing Mode................................................................... 2-11
2-13 Absolute Long Addressing Mode ................................................................... 2-11
2-14 Immediate Data Addressing Mode................................................................. 2-12
2-15 Stack Growth from High Memory to Low Memory ......................................... 2-14
2-16 Stack Growth from Low Memory to High Memory ......................................... 2-14
7-1 General Exception Processing Flowchart ........................................................ 7-2
7-2 Exception Stack Frame Form........................................................................... 7-3
7-3 Interrupt Recognition Examples..................................................................... 7-10
7-4 Interrupt Exception Processing Flowchart...................................................... 7-12
8-1 Five Fields of an S-Record............................................................................... 8-1
8-2 Transmission of an S1 Record......................................................................... 8-4



 

xiv

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

 
 

  
 

 

 



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

xv

 

LIST OF TABLES

 

Table
Number

Title Page
Number

 

1-1    Supervisor Registers....................................................................................... 1-3
1-2    Integer Data Formats ...................................................................................... 1-4
2-1    Instruction Word Format Field Definitions ....................................................... 2-2
2-2    Immediate Operand Location........................................................................ 2-12
2-3    Effective Addressing Modes and Categories ................................................ 2-13
3-1    Notational Conventions................................................................................... 3-2
3-1    Notational Conventions (Continued) ............................................................... 3-3
3-1    Notational Conventions (Concluded) .............................................................. 3-4
3-2    Data Movement Operation Format.................................................................. 3-6
3-3    Integer Arithmetic Operation Format............................................................... 3-7
3-4    Logical Operation Format................................................................................ 3-8
3-5    Shift Operation Format.................................................................................... 3-9
3-6    Bit Manipulation Operation Format ................................................................. 3-9
3-7    Program Control Operation Format............................................................... 3-10
3-8    System Control Operation Format ................................................................ 3-11
3-9    Integer Unit Condition Code Computations................................................... 3-12
3-10    Conditional Tests .......................................................................................... 3-13
5-1    Supervisor Mode Instruction Summary........................................................... 5-1
5-2    CPU Space Map ............................................................................................. 5-2
7-1    Exception Vector Assignments ....................................................................... 7-4
7-2    Format Field Encodings .................................................................................. 7-5
7-3    Fault Status Encodings ................................................................................... 7-5
7-4    Exception Priority Groups ............................................................................. 7-13
8-1    Field Composition of an S-Record .................................................................. 8-1
8-2    ASCII Code ..................................................................................................... 8-5
9-1    Move Byte and Word Execution Times........................................................... 9-2
9-2     Move Long Execution Times.......................................................................... 9-2
9-3    One Operand Instruction Execution Times ..................................................... 9-3
9-4    Two Operand Instruction Execution Times ..................................................... 9-4
9-5    Miscellaneous Instruction Execution Times .................................................... 9-5
9-6    General Branch Instruction Execution Times.................................................. 9-6
9-7    BRA, Bcc Instruction Execution Times............................................................ 9-6
A-1    ColdFire Instruction Set...................................................................................A-1



 

xvi

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

Table
Number

Title Page
Number

 

LIST OF TABLES (Continued)



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

1-1

 

SECTION 1
INTRODUCTION 

 

This manual contains detailed information about software instructions used by the
ColdFire

 

TM

 

 5200 microprocessors.

The ColdFire Family programming model consists of two register groups: user and
supervisor. Programs executing in the user mode use only the registers in the user group.
System software executing in the supervisor mode can access all registers and use the
control registers in the supervisor group to perform supervisor functions. The following
paragraphs provide a brief description of the registers in the user and supervisor models as
well as the data organization in the registers. 

 

1.1 INTEGER UNIT USER PROGRAMMING MODEL 

 

Figure 1-1 illustrates the integer portion of the user programming model. It consists of the
following registers: 

• 16 general-purpose 32-bit registers (D7 – D0, A7 – A0) 

• 32-bit program counter (PC) 

• 8-bit condition code register (CCR) 

 

1.1.1 Data Registers (D7 – D0) 

 

These registers are for bit, byte (8 bits), word (16 bits), and long-word (32 bits) operations.
They can also be used as index registers. 

 

1.1.2 Address Registers (A7 – A0) 

 

These registers serve as software stack pointers, index registers, or base address registers.
The base address registers can be used for word and long-word operations. Register A7
functions as a hardware stack pointer during stacking for subroutine calls and exception
handling. 

 

1.1.3 Program Counter (PC)

 

The program counter (PC) contains the address of the instruction currently executing.
During instruction execution and exception processing, the processor automatically
increments the contents or places a new value in the PC. For some addressing modes, the
PC can serve as a pointer for PC relative addressing. 



 

Introduction

 

1-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

1.1.4 Condition Code Register (CCR)

 

Consisting of 5 bits, the condition code register (CCR)—the status register’s lower byte—is
the only portion of the (SR) available in the user mode. Many integer instructions affect the
CCR, indicating the instruction’s result. Program and system control instructions also use
certain combinations of these bits to control program and system flow. The condition codes
meet two criteria: consistency across instructions, uses, and instances and meaningful
results with no change unless it provides useful information. 

 

Consistency across instructions

 

 means that all instructions that are special cases of more
general instructions affect the condition codes in the same way. 

 

Consistency across uses

 

means that conditional instructions test the condition codes similarly and provide the same
results whether a compare, test, or move instruction sets the condition codes. 

 

Consistency
across instances 

 

means that all instances of an instruction affect the condition codes in the
same way. 

The first 4 bits represent a condition of the result generated by an operation. The fifth bit or
the extend bit (X-bit) is an operand for multiprecision computations. In the instruction set
definitions, the CCR is illustrated as follows:

 

Figure 1-1. ColdFire Family User Programming Model

A0
A1
A2
A3
A4
A5
A6

A7 
(USP)

PC

D0
D1
D2
D3
D4
D5
D6
D7

DATA 
REGISTERS

ADDRESS 
REGISTERS

USER 
STACK 
POINTER
PROGRAM 
COUNTER

CCR
CONDITION 
CODE 
REGISTER

01531

01531

0715

031

01531



 

Introduction

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

1-3

 

X—Extend 
Set to the value of the C-bit for arithmetic operations; otherwise not affected or set to a
specified result 

N—Negative 
Set if the most significant bit of the result is set; otherwise clear 

Z—Zero 
Set if the result equals zero; otherwise clear 

V—Overflow 
Set if an arithmetic overflow occurs implying that the result cannot be represented in the
operand size; otherwise clear

C—Carry 
Set if a carryout of the most significant bit of the operand occurs for an addition, or if a
borrow occurs in a subtraction; otherwise clear 

 

1.2 SUPERVISOR PROGRAMMING MODEL 

 

System programers use the supervisor programming model to implement sensitive
operating system functions. The following paragraphs briefly describe the registers in the
supervisor programming model. All accesses that affect the control features of ColdFire
processors are in the supervisor programming model, which consists of the register
available to users as well as the register listed in Table 1-1.

 

1.2.1 Address Register 7 (A7) 

 

ColdFire supports a single stack pointer (A7). The initial value of A7 is loaded from the reset
exception vector, address offset 0. This is the same register as the stack pointer (A7) in the
user programming model.

 

X N Z V C 

 

Table 1-1. Supervisor Registers

 

31 15

 

0

 

A7- Stack Pointer

31 20

 

0

 

 

 

0 0 0 0 0 0 0

 

VBR - Vector Base Register

15

 

0

 

SR - Status Register



 

Introduction

 

1-4

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

1.2.2 Status Register 

 

Figure 1-2 illustrates the SR, which stores the processor status and contains the condition
codes that reflect the results of a previous operation. In the supervisor mode, software can
access the full SR, including the interrupt-priority mask and additional control bits. In user
mode, only the lower 8 bits are accessible (CCR). These bits indicate the following states for
the processor: trace mode (T), supervisor or user mode (S), and master or interrupt mode
(M). 

.

 

1.2.3 Vector Base Register (VBR) 

 

The vector base register (VBR) contains the base address of the exception vector table in
memory. The displacement of an exception vector adds to the value in this register, which
accesses the vector table. The lower 20 bits of the VBR are filled with zeros.

 

1.3 INTEGER DATA FORMATS 

 

The operand data formats are supported by the integer unit, as listed in Table 1-2. Integer
unit operands can reside in registers, memory, or instructions themselves. The operand size
for each instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation. 

 

Figure 1-2. Status Register

Table 1-2. Integer Data Formats

 

Operand Data Format Size

 

Bit 1 Bit

Byte Integer 8 Bits

Word Integer 16 Bits

Long-Word Integer 32 Bits

 T  0 S M 0 I2 I1 I0 X N Z V C0 0 0

SYSTEM BYTE
USER BYTE

CONDITION CODE REGISTER (CCR)

TRACE
ENABLE

INTERRUPT
PRIORITY MASK

I(2:0)
SUPERVISOR/USER STATE

MASTER/INTERRUPT STATE EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0



 

Introduction

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

1-5

 

1.4 ORGANIZATION OF DATA IN REGISTERS 

 

The following paragraphs describe data organization within the data, address, and control
registers. 

 

1.4.1 Organization of Integer Data Formats in Registers 

 

Each integer data register is 32 bits wide. Byte and word operands occupy the lower 8- and
16-bit portions of integer data registers, respectively. Long-word operands occupy the entire
32 bits of integer data registers. A data register that is either a source or destination operand
only uses or changes the appropriate lower 8 or 16 bits (in byte or word operations,
respectively). The remaining high-order portion does not change and must be sign-
extended.The address of the least significant bit (LSB) of a long-word integer is zero, and
the most significant bit (MSB) is 31. 

Because address registers and stack pointers are 32 bits wide, address registers cannot be
used for byte-size operands. When an address register is a source operand, either the low-
order word or the entire long-word operand is used, depending on the operation size. When
an address register is the destination operand, the entire register becomes affected, despite
the operation size. If the source operand is a word size, it is sign-extended to 32 bits and
then used in the operation to an address-register destination. Address registers are primarily
for addresses and address computation support. The instruction set explains how to add to,
compare, and move the contents of address registers. Figure 1-4 illustrates the organization
of addresses in address registers. 

 

Figure 1-4. Organization of Integer Data Formats in Address Registers 

 

31

 

16 15 0

SIGN-EXTENDED 16-BIT ADDRESS OPERAND 

31 0

FULL 32-BIT ADDRESS OPERAND 

LSBMSB

1 031 30
BIT (0    MODULO (OFFSET) 
< 31,OFFSET OF 0 = MSB)

<_

0731

BYTE

031

16-BIT WORD

031

LONG WORD

15

LOW-ORDER WORD

LONG WORD LSB

LSB

MSB

MSB

LSBMSBNOT  USED

NOT  USED

Figure 1-3. Organization of Integer Data Formats in Data Registers



 

Introduction

 

1-6

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

Control registers vary in size according to function. Some control registers have undefined
bits reserved for future definition by Motorola. Those particular bits read as zeros and must
be written as zeros for future compatibility. 

All operations to the SR and CCR are word-size operations. For all CCR operations, the
upper byte is read as all zeros and is ignored when written, despite privilege mode. The
write-only MOVEC instruction writes to the VBR. Other system control registers may be
added depending on the implementation. 

 

1.4.2 Organization of Integer Data Formats in Memory 

 

The byte-addressable organization of memory allows lower addresses to correspond to
higher order bytes. The address N of a long-word data item corresponds to the address of
the highest order words MSB. The lower order word is located at address N + 2, leaving the
LSB at address N + 3 (see Figure 1-5). The lowest address (nearest $00000000) is the
location of the MSB, with each successive LSB located at the next address (N + 1, N + 2,
etc.). The highest address (nearest $FFFFFFFF) is the location of the LSB.

Figure 1-6 illustrates the organization of IU data formats in memory. A base address that
selects one byte in memory—the base byte—specifies a bit number that selects one bit, the
bit operand, in the base byte. The MSB of the byte is 7. 

 

Figure 1-5. Memory Operand Addressing

31 23 15 7 0

BYTE $00000000

WORD $00000000

LONG WORD $00000000

BYTE $00000001 BYTE $00000002 BYTE $00000003

WORD $00000002

BYTE $00000004

WORD $00000004

LONG WORD $00000004

BYTE $00000005 BYTE $00000006 BYTE $00000007

WORD $00000006

BYTE $FFFFFFFC

WORD $FFFFFFFC

LONG WORD $FFFFFFFC

BYTE $FFFFFFFD BYTE $FFFFFFFE BYTE $FFFFFFFF

WORD $FFFFFFFE



 

Introduction

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

1-7

BYTE n + 3BYTE n – 1 BYTE n + 2

7 0 7 07 07 07 0

ADDRESS

WORD INTEGER

BYTE n + 4BYTE n – 1

7 0 7 07 07 07 0 7 0

ADDRESS

LONG-WORD INTEGER

BYTE n + 2BYTE n – 1 BYTE n + 1

7 0 7 07 07 0

BYTE nMSB LSB

ADDRESS

BASE ADDRESS

BYTE DATA

WORD DATA

LONG-WORD
DATA

BYTE n – 1 BYTE n + 1 BYTE n + 2

7 0 7 07 07 0

7 012356 4

ADDRESS BIT
NUMBER

BIT DATA

Figure 1-6. Memory Organization for Integer Operands



 

Introduction

 

1-8

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

2-1

 

SECTION 2
ADDRESSING CAPABILITIES 

 

Most operations compute a source operand and destination operand and store the result in
the destination location. Single-operand operations compute a destination operand and
store the result in the destination location. External microprocessor references to memory
are either program references that refer to program space or data references that refer to
data space. They access either instruction words or operands (data items) for an instruction.
Program space is the section of memory that contains the program instructions and any
immediate data operands residing in the instruction stream. Data space is the section of
memory that contains the program data. The program-counter relative addressing modes
can be classified as data references. 

 

2.1 INSTRUCTION FORMAT 

 

ColdFire Family instructions consist of 1 to 3 words. Figure 2-1 illustrates the general
composition of an instruction. The first word of the instruction, called the simple effective
address operation word, specifies the length of the instruction, the effective addressing
mode, and the operation to be performed. The remaining words further specify the
instruction and operands. These words can be conditional predicates, immediate operands,
extensions to the effective addressing mode specified in the simple effective address
operation word, branch displacements, bit number or special register specifications, trap
operands, or argument counts. The ColdFire architecture instruction word length is limited
to 3 sizes: 16, 32, or 48 bits.

An instruction specifies the function to be performed with an operation code and defines the
location of every operand. Instructions specify an operand location by register specification
(the instruction’s register field holds the register’s number), by effective address (the
instruction’s effective address field contains addressing mode information), or by implicit
reference (the definition of the instruction implies the use of specific registers). 

 

Figure 2-1. Instruction Word General Format

SINGLE EFFECTIVE ADDRESS OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)

EXTENSION WORD (IF ANY)

EXTENSION WORD (IF ANY)

 

15 0



 

Addressing Capabilities

 

2-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

The single effective address operation word format is the basic instruction word (see Figure
2-2). The encoding of the mode field selects the addressing mode. The register field contains
the general register number or a value that selects the addressing mode when the mode
field contains opcode 111. Some indexed or indirect addressing modes use a combination
of the simple effective address operation word followed by an extension word. Figure 2-2
illustrates two formats used in an instruction word;Table 2-1 lists the field definitions. 

 

SINGLE EFFECTIVE ADDRESS OPERATION WORD FORMAT 

EXTENSION WORD FORMAT 

 

Figure 2-2. Instruction Word Specification Formats

 

2.2 EFFECTIVE ADDRESSING MODES 

 

Besides the operation code that specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in 1 of 3 ways: (1) a register field within an instruction can specify the register to be
used; (2) an instruction’s effective address field can contain addressing mode information;

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

X X X X X X X X X X
EFFECTIVE ADDRESS 

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

D/A REGISTER W/L SCALE EV DISPLACEMENT 

 

Table 2-1. Instruction Word Format Field Definitions

 

Field Definition

Instruction

 

Mode Addressing Mode

Register General Register Number

 

Extensions

 

D/A Index Register Type
0 = Dn
1 = An

W/L Word/Long-Word Index Size
0 = Address Error Exception
1 = Long Word

Scale Scale Factor
00 = 1
01 = 2
10 = 4
11 = Address Error Exception

Extension Word Valid
0 = Extension Word Valid
1 = Address Error Exception



 

Addressing Capabilities

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

2-3

 

or (3) the instruction’s definition can imply the use of a specific register. Other fields within
the instruction specify whether the register selected is an address or data register and how
the register is to be used. 

An instruction’s addressing mode specifies the value of an operand, a register that contains
the operand, or how to derive the effective address of an operand in memory. Each
addressing mode has an assembler syntax. Some instructions imply the addressing mode
for an operand. These instructions include the appropriate fields for operands that use only
one addressing mode. 



 

Addressing Capabilities

 

2-4

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

2.2.1 Data Register Direct Mode 

 

In the data register direct mode, the effective address field specifies the data register
containing the operand.

 

Figure 2-3. Data Register Direct Mode

 

2.2.2 Address Register Direct Mode

 

In the address register direct mode, the effective address field specifies the address register
containing the operand.

 

Figure 2-4. Address Register Direct Mode

 

2.2.3 Address Register Indirect Mode 

 

In the address register indirect mode, the operand is in memory. The effective address field
specifies the address register containing the address of the operand in memory.

 

Figure 2-5. Address Register Indirect Mode

EA = Dn
Dn
000
REG. NO.
0

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

DATA REGISTER OPERAND

OPERAND

EA = An
An
001
REG. NO.
0

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

MEMORY

EA = (An)
(An)
010
REG. NO.
0

OPERAND

OPERAND POINTER

031

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

POINTS TO



 

Addressing Capabilities

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

2-5

 

2.2.4 Address Register Indirect with Postincrement Mode 

 

In the address register indirect with postincrement mode, the operand is in memory. The
effective address field specifies the address register containing the address of the operand
in memory. After the operand address is used, it is incremented by one, two, or four,
depending on the size of the operand (i.e., byte, word, or long word, respectively). Note that
the stack pointer (A7) is treated exactly like any other address register.

 

Figure 2-6. Address Register Indirect with Postincrement Mode

EA = (An) + SIZE
(An) +
011
REG. NO.
0

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER CONTENTS

031

CONTENTS

031

OPERAND POINTER

OPERAND LENGTH ( 1, 2, OR 4) SIZE

MEMORY OPERAND

POINTS TO

+



 

Addressing Capabilities

 

2-6

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

2.2.5 Address Register Indirect with Predecrement Mode 

 

In the address register indirect with predecrement mode, the operand is in memory. The
effective address field specifies the address register containing the address of the operand
in memory. Before the operand address is used, it is decremented by one, two, or four
depending on the operand size (i.e., byte, word, or long word, respectively). Note that the
stack pointer (A7) is treated just like the other address registers.

 

Figure 2-7. Address Register Indirect with Predecrement Mode

CONTENTS

031

CONTENTS

031

EA = (An)–SIZE
– (An)
100
REG. NO.
0

OPERAND POINTER

OPERAND LENGTH ( 1, 2, OR 4)

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

SIZE

MEMORY OPERAND

POINTS TO



 

Addressing Capabilities

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

2-7

 

2.2.6 Address Register Indirect with Displacement Mode 

 

In the address register indirect with displacement mode, the operand is in memory. The
operand address in memory consists of the sum of the address in the address register,
which the effective address specifies, and the sign-extended 16-bit displacement integer in
the extension word. Displacements are always sign-extended to 32 bits prior to being used
in effective address calculations.

+DISPLACEMENT

OPERAND POINTER

EA = (An) + d
(d     An)
101
REG. NO.
1

CONTENTS

CONTENTS

0

0

31

31

SIGN EXTENDED

31 0

INTEGER

16
16,

15

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

MEMORY OPERAND

POINTS TO

Figure 2-8. Address Register Indirect with Displacement Mode



 

Addressing Capabilities

 

2-8

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

2.2.7 Address Register Indirect with Index (8-Bit Displacement) Mode 

 

This addressing mode requires one extension word that contains an index register indicator
and an 8-bit displacement. The index register indicator includes size and scale information.
In this mode, the operand is in memory. The operand address is the sum of the address
register contents; the sign-extended displacement value in the extension word’s low-order 8
bits; and the index register’s sign-extended contents (possibly scaled). Users must specify
the address register, the displacement, and the index register in this mode.

 

Figure 2-9. Address Register Indirect with Index (8-Bit Displacement) Mode

+

+X

INTEGERSIGN EXTENDED

SIGN-EXTENDED VALUE

SCALE VALUE

CONTENTS

0

7 031

31 0

31 0

DISPLACEMENT

INDEX REGISTER

SCALE

OPERAND POINTER

31

EA = (An) + (Xn) + d
(d   ,An, Xn.SIZE*SCALE)8

8

110
REG. NO.
1

CONTENTS

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

MEMORY OPERAND

POINTS TO



 

Addressing Capabilities

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

2-9

 

2.2.8 Program Counter Indirect with Displacement Mode 

 

In this mode, the operand is in memory. The address of the operand is the sum of the
address in the program counter (PC) and the sign-extended 16-bit displacement integer in
the extension word. The value in the PC is the address of the extension word. This is a
program reference allowed only for reads.

 

Figure 2-10. Program Counter Indirect with Displacement Mode

+DISPLACEMENT

OPERAND POINTER

CONTENTS

CONTENTS

0

0

31

31

SIGN EXTENDED

31 0

INTEGER

15

EA = (PC) + d
(d    ,PC)
111
010
1

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

PROGRAM COUNTER

16
16

MEMORY OPERAND

POINTS TO



 

Addressing Capabilities

 

2-10

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

2.2.9 Program Counter Indirect with Index (8-Bit Displacement) Mode 

 

This mode is similar to the mode described in 

 

2.2.7 Address Register Indirect with Index
(8-Bit Displacement) Mode

 

, except the PC is the base register. The operand is in memory.
The operand address is the sum of the address in the PC, the sign-extended displacement
integer in the extension word’s lower 8 bits, and the sized, scaled, and sign-extended index
operand. The value in the PC is the address of the extension word. This is a program
reference allowed only for reads. Users must include the displacement, the PC, and the
index register when specifying this addressing mode.

 

Figure 2-11. Program Counter Indirect with Index (8-Bit Displacement) Mode

 

2.2.10 Absolute Short-Addressing Mode 

 

In this addressing mode, the operand is in memory, and the address of the operand is in the
extension word. The 16-bit address is sign-extended to 32 bits before it is used.

 

2.2.11 Absolute Long-Addressing Mode 

 

In this addressing mode, the operand is in memory, and the operand address occupies the
two extension words following the instruction word in memory. The first extension word
contains the high-order part of the address; the second contains the low-order part of the
address.

+

+X

SIGN-EXTENDED VALUE

SCALE VALUE

CONTENTS

31 0

31 0

31 0

EA = (PC) + (Xn) + d
(d  ,PC,Xn.SIZE*SCALE)
111
011
1

DISPLACEMENT

SCALE

OPERAND POINTER

INDEX REGISTER

INTEGERSIGN EXTENDED

031 7

8
8

 CONTENTS

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

PROGRAM COUNTER

MEMORY OPERAND

POINTS TO



 

Addressing Capabilities

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

2-11

 

Figure 2-13. Absolute Long Addressing Mode

Figure 2-12. Absolute Short Addressing Mode

31

31 15 0

0

EA GIVEN
(xxx).W
111
000
1

CONTENTS

SIGN-EXTENDED EXTENSION VALUE

OPERAND POINTER

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

EXTENSION WORD

MEMORY OPERAND

POINTS TO

15 0

15 0

SECOND EXTENSION WORD

ADDRESS HIGH

ADDRESS LOW

EA GIVEN
(xxx).L
111
001
2

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

FIRST EXTENSION WORD

0

CONTENTSOPERAND POINTER

MEMORY OPERAND

POINTS TO

31



 

Addressing Capabilities

 

2-12

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

2.2.12 Immediate Data 

 

In this addressing mode, the operand is in 1 or 2 extension words. Table 2-3 lists the location
of the operand within the instruction word format. The immediate data format is as follows: 

 

Figure 2-14. Immediate Data Addressing Mode

 

2.2.13 Effective Addressing Mode Summary 

 

Effective addressing modes are grouped according to the mode use. Data-addressing
modes refer to data operands. Memory-addressing modes refer to memory operands.
Alterable addressing modes refer to alterable (writable) operands. Control-addressing
modes refer to memory operands without an associated size. 

These categories sometimes combine to form new categories that are more restrictive. Two
combined classifications are alterable memory (addressing modes that are both alterable
and memory addresses) and data alterable (addressing modes that are both alterable and
data). Table 2-4 lists a summary of effective addressing modes and their categories. 

 

Table 2-2. Immediate Operand Location

 

Operation Length Location

 

Byte Low-order byte of the extension word.

Word The entire extension word.

Long Word
High-order word of the operand is in the first extension word; the low-order 
word is in the second extension word.

OPERAND GIVEN
#<xxx>
111
100
1,2,4, OR 6, EXCEPT FOR PACKED DECIMAL REAL OPERANDS

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:



 

Addressing Capabilities

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

2-13

 

2.3 STACK

 

Address register (A7) stacks exception frames, subroutine calls and returns, temporary
variable storage, parameter passing, and is affected by instructions such as the LINK,
UNLK, RTE, and PEA. To maximize performance, A7 must be long-word aligned at all times.
Therefore, when modifying A7, be sure to do so in multiples of 4 to maintain alignment. To
futher ensure alignment of A7 during exception handling, the ColdFire architecture
implements a self-aligning stack when processing exceptions.

Users can employ other address registers to implement other stacks using the address
register indirect

 

 

 

with postincrement and predecrement addressing modes. With an address
register, users can implement a stack that fills either from high memory to low memory or
vice versa. Regarding the following important considerations, users should

• use the predecrement mode to decrement the register before using its contents as the 
pointer to the stack 

• use the postincrement mode to increment the register after using its contents as the 
pointer to the stack 

• maintain the stack pointer correctly when byte, word, and long-word items mix in these 
stacks 

 

Table 2-3. Effective Addressing Modes and Categories

 

Addressing Modes Syntax
Mode
Field

Reg.
Field Data Memory Control Alterable

 

Register Direct 
Data 
Address

Dn
An

000
001

reg. no.
reg. no.

X
—

—
—

—
—

X
X

Register Indirect
Address
Address with Postincrement
Address with Predecrement
Address with Displacement

(An)
(An)+
–(An)

(d

 

16

 

,An)

010
011
100
101

reg. no.
reg. no.
reg. no.
reg. no.

X
X
X
X

X
X
X
X

X
—
—
X

X
X
X
X

Address Register Indirect with Index
8-Bit Displacement (d

 

8

 

,An,Xn) 110 reg. no. X X X X

Program Counter Indirect
with Displacement (d

 

16

 

,PC) 111 010 X X X —

Program Counter Indirect with Index 
8-Bit Displacement (d

 

8

 

,PC,Xn) 111 011 X X X —

Absolute Data Addressing 
Short
Long

(xxx).W
(xxx).L

111
111

000
000

X
X

X
X

X
X

—
—

Immediate #<xxx> 111 100 X X — —



 

Addressing Capabilities

 

2-14

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

To implement stack growth from high memory to low memory, use -(An) to push data on the
stack and (An) + to pull data from the stack. For this type of stack, after either a push or a
pull operation, the address register points to the top item on the stack.

 

Figure 2-15. Stack Growth from High Memory to Low Memory

 

To implement stack growth from low memory to high memory, use (An) + to push data on
the stack and -(An) to pull data from the stack. After either a push or pull operation, the
address register points to the next available space on the stack.

 

Figure 2-16. Stack Growth from Low Memory to High Memory

BOTTOM OF STACK

LOW MEMORY
(FREE)

TOP OF STACK

HIGH MEMORY

An

BOTTOM OF STACK
LOW MEMORY

TOP OF STACK
(FREE)

HIGH MEMORY

An



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

3-1

 

SECTION 3
INSTRUCTION SET SUMMARY 

 

This section briefly describes the ColdFire Family instruction set, using Motorola’s assembly
language syntax and notation. It includes instruction set details such as notation and format,
selected instruction examples, and an integer condition code discussion. The section
concludes with a discussion of conditional test definitions, an explanation of the operation
table, and postprocessing. 

 

3.1 INSTRUCTION SUMMARY 

 

Instructions form a set of tools that perform the following types of operations: 

The following paragraphs describe in detail the instruction for each type of operation. Table
3-1 lists the notations used throughout this manual. In the operand syntax statements of the
instruction definitions, the operand on the right is the destination operand. 

 

Data Movement Program Control 

Integer Arithmetic System Control 

Logical Operations Shift Operations

Bit Manipulation  



 

Instruction Set Summary

 

3-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

Table 3-1. Notational Conventions

 

Single- And Double Operand Operations

 

+ Arithmetic addition or postincrement indicator.

– Arithmetic subtraction or predecrement indicator.

 

×

 

Arithmetic multiplication.

 

÷

 

Arithmetic division or conjunction symbol.

~ Invert; operand is logically complemented.

 

Λ

 

Logical AND

 

V

 

Logical OR

 

⊕

 

Logical exclusive OR

 

→

 

Source operand is moved to destination operand.

 

←→

 

Two operands are exchanged.

<op> Any double-operand operation.

<operand>tested Operand is compared to zero and the condition codes are set appropriately.

sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion.

 

Other Operations

 

TRAP SP - 4 

 

→

 

 SP; PC 

 

→

 

 (SP); SP - 2 

 

→

 

 SP; SR 

 

→

 

 (SP); SP - 2 

 

→

 

 SP; FORMAT 

 

→

 

 (SP); (Vector) 

 

→

 

 PC

STOP Enter the stopped state, waiting for interrupts.

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after “then”are performed. If the condition is false and the 
optional “else”clause is present, the operations after “else”are performed. If the condition is false 
and else is omitted, the instruction performs no operation. Refer to the Bcc instruction description 
as an example.

 

Register Specifications

 

An Any Address Register n (example: A3 is address register 3)

Ax, Ay Source and destination address registers, respectively.

Dc Data register D7–D0, used during compare.

Dh, Dl Data register’s high- or low-order 32 bits of product.

Dn Any Data Register n (example: D5 is data register 5)

Dr, Dq Data register’s remainder or quotient of divide.

Du Data register D7–D0, used during update.

Dx, Dy Source and destination data registers, respectively.

MRn Any Memory Register n.

Rn Any Address or Data Register

Rx, Ry Any source and destination registers, respectively.

Xn Index Register



 

Instruction Set Summary

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

3-3

 

Table 3-1. Notational Conventions (Continued)

 

Data Format And Type

 

<fmt> Operand Data Format: Byte (B), Word (W), Long (L) 

B, W, L Specifies a signed integer data type (twos complement) of byte, word, or long word.

 

Subfields and Qualifiers

 

#<xxx> or #<data> Immediate data following the instruction word(s).

( ) Identifies an indirect address in a register.

[ ] Identifies an indirect address in memory.

d

 

n

 

Displacement Value, n Bits Wide (example: d

 

16

 

 is a 16-bit displacement).

LSB Least Significant Bit

LSW Least Significant Word

MSB Most Significant Bit

MSW Most Significant Word

SIZE The index register’s size (W for word, L for long word).

 

Register Names

 

CCR Condition Code Register (lower byte of status register)

IC, DC, IC/DC Instruction, Data, or Both Caches

PC Program Counter

OC An or Dn Register

SR Status Register



 

Instruction Set Summary

 

3-4

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

Table 3-1. Notational Conventions (Concluded)

 

Register Codes

 

* General Case

C Carry Bit in CCR

cc Condition Codes from CCR

FC Function Code

N Negative Bit in CCR

U Undefined, Reserved for Motorola Use.

V Overflow Bit in CCR

X Extend Bit in CCR

Z Zero Bit in CCR

— Not Affected or Applicable.

 

Miscellaneous

 

<ea> Effective Address

<label> Assemble Program Label

<list> List of registers, for example D3–D0.

m Bit m of an Operand

m–n Bits m through n of Operand



 

Instruction Set Summary

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

3-5

 

3.1.1 Data Movement Instructions 

 

The MOVE instruction with its associated addressing mode is the basic means of
transferring and storing addresses and data. MOVE instructions transfer byte, word, and
long-word operands from memory to memory, memory to register, register to memory, and
register to register. MOVE instructions transfer word and long-word operands and ensure
that only valid address manipulations are executed. In addition to the general MOVE
instructions, there are several special data movement instructions: MOVEM, MOVEQ, LEA,
PEA, LINK, and UNLK. 



 

Instruction Set Summary

 

3-6

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

3.1.2 Integer Arithmetic Instructions 

 

The integer arithmetic operations include 3 basic operations: ADD, SUB, and MUL. They
also include CMP, CLR, and NEG. The instruction set includes ADD, CMP, and SUB
instructions for both address and data operations with all operand sizes valid for data
operations. Address operands consist of 16 or 32 bits. The CLR and NEG instructions apply
to all sizes of data operands. Signed and unsigned MUL instruction includes 

• word multiply to produce a long-word product 

• long-word multiply to produce a long-word product 

A set of extended instructions provides multiprecision and mixed-size arithmetic: ADDX,
SUBX, EXT, and NEGX. Refer to Table 3-3 for a summary of the integer arithmetic
operations. In Table 3-3, X refers to the X-bit in the CCR.

 

Table 3-2. Data Movement Operation Format

 

Instruction Operand Syntax Operand Size Operation

 

LEA <ea>,An 32 <ea> 

 

→

 

 An

LINK An,#<data> 16 SP – 4 

 

→

 

 SP; An 

 

→

 

 (SP); SP 

 

→

 

 An, SP + D 

 

→

 

 SP

MOVE
MOVEA

<ea>,<ea>
<ea>,An

8, 16, 32
16, 32 

 

→

 

 32
Source 

 

→

 

 Destination

MOVEM list,<ea>
<ea>,list

32
32

Listed Registers 

 

→

 

 Destination
Source 

 

→

 

 Listed Registers

MOVEQ #<data>,Dn 8 

 

→

 

 32 Immediate Data 

 

→

 

 Destination

PEA <ea> 32 SP – 4 

 

→

 

 SP; <ea> 

 

→

 

 (SP)

UNLK An 32 An 

 

→

 

 SP; (SP) 

 

→

 

 An; SP + 4 

 

→

 

 SP



 

Instruction Set Summary

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

3-7

 

Table 3-3. Integer Arithmetic Operation Format

 

Instruction Operand Syntax Operand Size Operation

 

ADD

ADDA

Dn,<ea>
<ea>,Dn
<ea>,An

32
32
32

Source + Destination 

 

→

 

 Destination

ADDI
ADDQ

#<data>,Dn
#<data>,<ea>

32
32

Immediate Data + Destination 

 

→

 

 Destination

ADDX Dy,Dx 32 Source + Destination + X 

 

→

 

 Destination

CLR <ea> 8, 16, 32 0 

 

→

 

 Destination

CMP
CMPA

<ea>,Dn
<ea>,An

32
32

Destination – Source

CMPI #<data>, Dn 8, 16, 32 Destination – Immediate Data

EXT

EXTB

Dn
Dn
Dn

8 

 

→

 

 16
16 

 

→

 

 32
8 

 

→

 

 32

Sign-Extended Destination 

 

→

 

 Destination

MULS/MULU <ea>,Dn
<ea>,Dl

16 x 16 

 

→

 

 32
32 x 32 

 

→

 

 32
Source x Destination 

 

→

 

 Destination
(Signed or Unsigned)

NEG <ea> 32 0 – Destination 

 

→

 

 Destination

NEGX <ea> 32 0 – Destination – X 

 

→

 

 Destination

SUB

SUBA

<ea>,Dn
Dn,<ea>
<ea>,An

32
32
32

Destination = Source 

 

→

 

 Destination

SUBI
SUBQ

#<data>, Dn
#<data>,<ea>

32
32

Destination – Immediate Data 

 

→

 

 Destination

SUBX Dy,Dx 32 Destination – Source – X 

 

→

 

 Destination



 

Instruction Set Summary

 

3-8

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

3.1.3 Logical Instructions 

 

The instructions AND, OR, EOR, and NOT perform logical operations with all sizes of integer
data operands. A similar set of immediate instructions (ANDI, ORI, and EORI) provides
these logical operations with all sizes of immediate data. Table 3-4 summarizes the logical
operations. 

 

3.1.4 Shift Instruction 

 

The ASR, ASL, LSR, and LSL instructions provide shift operations in both directions. All shift
operations can be performed on either registers or memory. 

Register shift operations shift all operand sizes. The shift count can be specified in the
instruction operation word (to shift from 1 – 8 places) or in a register (modulo 64 shift count). 

Memory shift operations shift word operands one bit position only. The SWAP instruction
exchanges the 16-bit halves of a register. Table 3-5 is a summary of the shift operations. In
Table 3-5, C and X refer to the C-bit and X- bit in the CCR. 

 

Table 3-4. Logical Operation Format 

 

Instruction Operand Syntax Operand Size Operation

 

AND <ea>,Dn
Dn,<ea>

32
32

Source 

 

Λ

 

 Destination 

 

→

 

 Destination

ANDI #<data>, Dn 32 Immediate Data 

 

Λ

 

 Destination 

 

→

 

 Destination

EOR Dn,<ea> 32 Source 

 

⊕

 

 Destination 

 

→

 

 Destination

EORI #<data>, Dn 32 Immediate Data 

 

⊕

 

 Destination 

 

→

 

 Destination

NOT <ea> 32 ~ Destination 

 

→

 

 Destination

OR <ea>,Dn
Dn,<ea>

32 Source 

 

V

 

 Destination 

 

→

 

 Destination

ORI #<data>, Dn 32 Immediate Data 

 

V

 

 Destination 

 

→

 

 Destination



 

Instruction Set Summary

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

3-9

 

NOTE: X indicates the extend bit and C the carry bit in the CCR.

 

3.1.5 Bit Manipulation Instructions 

 

BTST, BSET, BCLR, and BCHG are bit manipulation instructions. All bit manipulation
operations can be performed on either registers or memory. The bit number is specified
either as immediate data or in the contents of a data register. Register operands are 32 bits
long, and memory operands are 8 bits long. Table 3-6 summarizes bit manipulation
operations; Z refers to the zero bit of the CCR. 

 

3.1.6 Program Control Instructions 

 

A set of subroutine call-and-return instructions and conditional and unconditional branch
instructions perform program control operations. Also included are test operand instructions
(TST), which set the integer condition codes for use by other program and system control
instructions. NOP forces synchronization of the internal pipelines. Table 3-7 summarizes
these instructions. 

 

Table 3–5. Shift Operation Format

 

Instruction Operand Syntax Operand Size Operation

 

ASL Dx, Dy
# <data>, Dn

32
32

ASR Dx, Dy
#<data>, Dn

32
32

LSL Dx, Dy
#<data>, Dn

32
32

LSR Dx, Dy
#<data>, Dn

32
32

SWAP Dn 16

 

Table 3-6. Bit Manipulation Operation Format

 

Instruction Operand Syntax Operand Size Operation

 

BCHG Dn,<ea>
#<data>,<ea>

8, 32
8, 32

~ (<Bit Number> of Destination) 

 

→

 

 Z 

 

→

 

 
Bit of Destination

BCLR Dn,<ea>
#<data>,<ea>

8, 32
8, 32

~ (<Bit Number> of Destination) 

 

→

 

 Z;
0 

 

→

 

 Bit of Destination

BSET Dn,<ea>
#<data>,<ea>

8, 32
8, 32

~ (<Bit Number> of Destination) 

 

→

 

 Z;
1 

 

→

 

 Bit of Destination

BTST Dn,<ea>
#<data>,<ea>

8, 32
8, 32

~ (<Bit Number> of Destination) 

 

→

 

 Z

 

MSW LSW

X0

0

0

X/C

X/C

X/C



 

Instruction Set Summary

 

3-10

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

Letters cc in the integer instruction mnemonics Bcc, and Scc specify testing one of the following conditions:

*Not applicable to the Bcc instructions. 

3.1.7 System Control Instructions 

Privileged and trapping instructions as well as instructions that use or modify the CCR
provide system control operations. The conditional trap instructions, which use the same
conditional tests as their corresponding program control instructions, allow an optional 16-
or 32-bit immediate operand to be included as part of the instruction for passing parameters
to the operating system. These instructions cause the processor to flush the instruction pipe.
Table 3-8 summarizes these instructions. See 3.2 Integer Unit Condition Code
Computation for more details on condition codes. 

Table 3-7. Program Control Operation Format

Instruction Operand Syntax Operand Size Operation
Integer Conditional

Bcc <label> 8, 16 If Condition True, Then PC + dn → PC

Scc Dn 8 If Condition True, Then 1's → Destination;
Else 0's → Destination

Unconditional
BRA <label> 8, 16 PC + dn → PC

BSR <label> 8, 16 SP – 4 → SP; PC → (SP); PC + dn → PC

JMP <ea> none Destination → PC
JSR <ea> none SP – 4 → SP; PC → (SP); Destination → PC
NOP none none PC + 2 → PC (Integer Pipeline Synchronized)

TRAPF
TRAPF

none
# <data>

none
16
32

PC + 2→ PC
PC + 4 → PC
PC + 6→ PC

Returns
RTS none none (SP) → PC; SP + 4 → SP

Test Operand
TST <ea> 8, 16, 32 Set Integer Condition Codes

CC—Carry clear GE—Greater than or equal 

LS—Lower or same PL—Plus 

CS—Carry set GT—Greater than 

LT—Less than T—Always true* 

EQ—Equal HI—Higher 

MI—Minus VC—Overflow clear 

F—Never true* LE—Less than or equal 

NE—Not equal VS—Overflow set 



Instruction Set Summary

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-11

3.2 INTEGER UNIT CONDITION CODE COMPUTATION 

Many integer instructions affect the CCR to indicate the instruction’s results. Program and
system control instructions also use certain combinations of these bits to control program
and system flow. The condition codes meet consistency criteria across instructions, uses,
and instances. They also meet the criteria of meaningful results, where no change occurs
unless it provides useful information. 

Table 3-9 lists the integer condition code computations for instructions and Table 3-10 lists
the condition names, encodings, and tests for the conditional branch and set instructions.
The test associated with each condition is a logical formula using the current states of the
condition codes. If this formula evaluates to one, the condition is true. If the formula
evaluates to zero, the condition is false. For example, the T condition is always true, and the
EQ condition is true only if the Z-bit condition code is currently true. 

Table 3-8. System Control Operation Format

Instruction Operand 
Syntax Operand Size Operation

Privileged

MOVE to SR Dn, SR, 
#<data>, SR

16 Source → SR Dn or #<data> source only

MOVE from SR Dn 16 SR → Destination

MOVEC Rn,Rc 32 Rn → Rc

RTE none none 2 (SP) → SR; 4 (SP) → PC; SP + 8 →SP
Adjust Stack According to Format

STOP #<data> 16 Immediate Data → SR; STOP

HALT none none

WDEBUG <ea-2> 16

PULSE none none

WDDATA <ea> 8, 16, 32 Immediate Data → DDATA port

Trap Generating

TRAP none none  
SP – 4 → SP; PC → (SP);
SP – 2 → SP; SR → (SP)
SP – 2 → SP; Format → (SP)
Vector Address → PC

Condition Code Register

MOVE to SR Dn, SR,
SR #<data> 

16 Source → CCR

MOVE from SR Dn 16 CCR → Destination



Instruction Set Summary

3-12 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Table 3-9. Integer Unit Condition Code Computations  

Operations X N Z V C Special Definition

ADD, ADDI, ADDQ * * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ  Dm V Sm Λ Rm

ADDX * * ? ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm
Z = Z Λ Rm Λ …Λ R0

AND, ANDI, EOR, EORI,
MOVEQ, MOVE, OR, ORI,
CLR, EXT, EXTB, NOT, TST

— * * 0 0

SUB, SUBI, SUBQ * * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

SUBX * * ? ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm
Z = Z Λ Rm Λ …Λ R0

CMP, CMPA, CMPI — * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

MULS, MULU — * * 0 0

NEG * * * ? ? V = Dm Λ Rm
C = Dm V Rm

NEGX * * ? ? ? V = Dm Λ Rm
C = Dm V Rm
Z = Z Λ Rm Λ …Λ R0

BTST, BCHG, BSET, BCLR — — ? — — Z = Dn 

ASL * * * 0 ? C = Dm– r+1

ASL (r = 0) — * * 0 0

LSL * * * 0 ? C = Dm – r + 1



Instruction Set Summary

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-13

NOTES:
N = Logical Not N
V = Logical Not V
Z = Logical Not Z
*Not available for the Bcc instruction.

LSR (r = 0) — * * 0 0

ASR, LSR, ROXR * * * 0 ? C = Dr – 1

ASR, LSR (r = 0) — * * 0 0

? = Other—See Special Definition Rm = Result Operand (MSB)

N = Result Operand (MSB) Rm = Not Result Operand (MSB)

Z = Rm Λ…Λ R0 R = Register Tested

Sm = Source Operand (MSB) r = Shift Count

Dm = Destination Operand (MSB)

Table 3-10. Conditional Tests

Mnemonic Condition Encoding Test

T* True 0000 1 

F* False 0001 0

HI High 0010 C Λ  Z

LS Low or Same 0011 C V Z

CC(HI) Carry Clear 0100 C

CS(LO) Carry Set 0101 C

NE Not Equal 0110  Z

EQ Equal 0111 Z

VC Overflow Clear 1000 V

VS Overflow Set 1001 V

PL Plus 1010 N

MI Minus 1011 N 

GE Greater or Equal 1100 N Λ V V N Λ V

LT Less Than 1101 N Λ V V N Λ V

GT Greater Than 1110 N Λ V Λ  Z V N Λ V Λ  Z

LE Less or Equal 1111 Z V N Λ V V N Λ V

Table 3-9. Integer Unit Condition Code Computations  (Continued)

Operations X N Z V C Special Definition



Instruction Set Summary

3-14 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

4-1

 

SECTION 4
INTEGER INSTRUCTIONS

 

This section describes the integer instructions for the ColdFire Family. A detailed discussion
of each instruction description is arranged in alphabetical order by instruction mnemonic.



 

Integer Instructions

 

4-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

ADD

 

Add

 

 ADD

 

 

Operation: Source + Destination 

 

→

 

 Destination 

 

Assembler

 

ADD < ea > ,Dn 

 

Syntax:

 

ADD Dn, < ea > 

 

Attributes:

 

Size = Long 

 

Description: 

 

Adds the source operand to the destination operand using binary addition and
stores the result in the destination location. The size of the operation may be specified
as a long word. The mode of the instruction indicates which operand is the source and
which is the destination as well as the operand size. 

 

Condition Codes: 

 

X — set the same as the carry bit 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — set if an overflow is generated; cleared otherwise 
C — set if a carry is generated; cleared otherwise 

 

Instruction Format: 

 

X N Z V C 

 

∗ ∗ ∗ ∗ ∗ 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 



 

Integer Instructions

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

4-3

 

ADD

 

Add

 

ADD 

 

Instruction Fields: 

 

Register field—specifies any of the 8 data registers. 

Opmode field 

Effective Address field—determines addressing mode 

a. If the location <ea> specified is a source operand, use addressing modes listed
in the following table: 

 

Long Operation 

 

010 < ea > + Dn 
110 Dn + < ea > 

 

→

 

 < ea > 

 

Addressing Mode Mode Register Addressing Mode Mode Register

 

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d

 

16

 

,An) 101 reg. number:An (d

 

16

 

,PC) 111 010

(d

 

8

 

,An,Xn) 110 reg. number:An (d

 

8

 

,PC,Xn) 111 011



 

Integer Instructions

 

4-4

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

ADD

 

Add

 

ADD 

 

b. If the <ea> location specified is a destination operand, use only memory alterable 
addressing modes listed in the following table: 

 

NOTE 

 

The Dn mode is used when the destination is a data register; the
destination < ea > mode is invalid for a data register. 

ADDA is used when the destination is an address register. ADDI
and ADDQ are used when the source is immediate data. 

 

Addressing Mode Mode Register Addressing Mode Mode Register

 

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d

 

16

 

,An) 101 reg. number:An (d

 

16

 

,PC) — —

(d

 

8

 

,An,Xn) 110 reg. number:An (d

 

8

 

,PC,Xn) — —



 

Integer Instructions

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

4-5

 

ADDA

 

Add Address

 

ADDA 

 

Operation:

 

Source + Destination 

 

→

 

 Destination 

 

Assembler 
Syntax:

 

ADDA < ea > , An 

 

Attributes:

 

Size = Long 

 

Description: 

 

Adds the source operand to the destination address register and stores the
result in the address register. The size of the operation is specified as a long word. 

 

Condition Codes: 

 

Not affected 

 

Instruction Format: 

Instruction Fields: 

 

Register field—specifies any of the 8 address registers (this is always the destination). 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



 

Integer Instructions

 

4-6

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

ADDA

 

Add Address

 

ADDA 

 

 

 

Effective Address field—specifies the source operand; use addressing modes listed in
the following table:

 

Addressing Mode Mode Register Addressing Mode Mode Register

 

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d

 

16

 

,An) 101 reg. number:An (d

 

16

 

,PC) 111 010

(d

 

8

 

,An,Xn) 110 reg. number:An (d

 

8

 

,PC,Xn) 111 011



 

Integer Instructions

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

4-7

 

ADDI

 

Add Immediate

 

ADDI 

 

Operation:

 

Immediate Data + Destination 

 

→

 

 Destination 

 

Assembler 
Syntax:

 

ADDI # < data > , Dn 

 

Attributes:

 

Size = Long 

 

Description: 

 

Adds the immediate data to the destination operand and stores the result in
the destination location. The size of the operation is specified as long word. 

 

Condition Codes: 

 

X — set the same as the carry bit 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — set if an overflow is generated; cleared otherwise 
C — set if a carry is generated; cleared otherwise 

 

Instruction Format: 

Instruction Fields:

 

Register field - specifies the destination data register.

 

X N Z V C 

 

* * * * *

 

 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 1 0 1 0 0 0 0
REGISTER

 

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA



 

Integer Instructions

 

4-8

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

ADDQ

 

Add Quick

 

ADDQ 

 

Operation:

 

Immediate Data + Destination 

 

→

 

 Destination 

 

Assembler 
Syntax:

 

ADDQ # < data > , < ea > 

 

Attributes:

 

Size = Long 

 

Description: 

 

Adds an immediate value of 1 to 8 to the operand at the destination location.
The size of the operation is specified as long word. When adding to address registers,
the condition codes are not altered and the entire destination address register is used. 

 

Condition Codes: 

 

X — set the same as the carry bit 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — set if an overflow occurs; cleared otherwise 
C — set if a carry occurs; cleared otherwise 

The condition codes are not affected when the destination is an address register. 

 

Instruction Format: 

 

X N Z V C 

 

* * * * *

 

 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 DATA 0 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 



 

Integer Instructions

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

4-9

 

ADDQ

 

Add Quick

 

ADDQ 

 

Instruction Fields: 

 

Data field—3 bits of immediate data representing 8 values (0 – 7), with the immediate
value 0 representing a value of 8. 

Effective Address field—specifies the destination location; use only those alterable
addressing modes listed in the following table: 

 

Addressing Mode Mode Register Addressing Mode Mode Register

 

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d

 

16

 

,An) 101 reg. number:An (d

 

16

 

,PC) — —

(d

 

8

 

,An,Xn) 110 reg. number:An (d

 

8

 

,PC,Xn) — —



Integer Instructions

4-10 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ADDX Add Extended ADDX 

Operation: Source + Destination + X → Destination 

Assembler ADDX Dy,Dx 

Attributes: Size = Long 

Description: Adds the source operand and the extend bit to the destination operand and
stores the result in the destination location. The operands can be addressed from data
register to data register—where the data registers specified in the instruction contain
the operands. 

The size of the operation is specified as a long word. 

Condition Codes: 

X — set the same as the carry bit 
N — set if the result is negative; cleared otherwise 
Z — cleared if the result is nonzero; unchanged otherwise 
V — set if an overflow occurs; cleared otherwise 
C — set if a carry is generated; cleared otherwise 

X N Z V C 

* * * * * 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-11

ADDX Add Extended ADDX 

Instruction Format: 

Instruction Fields: 

Register Rx field—specifies the destination data register.

Register Ry field—specifies the source data register.

15 14 13 12 11 10 9 8 7

1

6 5 4 3 2 1 0 

1 1 0 1 REGISTER Rx 1 0 0 0 0 REGISTER Ry 



Integer Instructions

4-12 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

AND AND Logical AND

Operation: Source L Destination → Destination 

Assembler AND < ea > ,Dn 
Syntax: AND Dn, < ea > 

Attributes: Size = Long 

Description: Performs an AND operation of the source operand with the destination
operand and stores the result in the destination location. The size of the operation is
specified as a long word. Address register contents may not be used as an operand. 

Condition Codes: 

X — not affected 
N — set if the most significant bit of the result is set; cleared otherwise
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Fields: 

Register field—Specifies any of the 8 data registers. 

Opmode field 

X N Z V C 
— * * 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Long Operation 
010 < ea > Λ Dn → Dn 
110 Dn Λ < ea > → < ea > 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-13

AND AND Logical AND 

Effective Address field—determines addressing mode. 

a. If the location specified is a source operand, use only those data addressing
modes listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

4-14 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

AND AND Logical AND 

b. If the location specified is a destination operand, use only those memory alterable
addressing modes listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-15

ANDI AND Immediate ANDI 

Operation: Immediate Data Λ Destination → Destination 

Assembler 
Syntax: ANDI # < data > , Dn 

Attributes: Size = Long 

Description: Performs an AND operation of the immediate data with the destination
operand and stores the result in the destination location. The size of the operation is
specified as a long word. The size of the immediate data is specified as a long word.

Condition Codes: 

X — not affected 
N — set if the most significant bit of the result is set; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Fields:

Register field - specifies the destination data register.

X N Z V C 
— * * 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 1 0 1 0 0 0 0 REGISTER

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA



Integer Instructions

4-16 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ASL, ASR Arithmetic Shift ASL, ASR

Operation: Destination Shifted By Count → Destination 

Assembler ASd Dx,Dy 
Syntax: ASd # < data > ,Dy 

where d is direction, L or R 

Attributes: Size = Long 

Description: Arithmetically shifts the bits of the operand in the direction (L or R) specified.
The carry bit receives the last bit shifted out of the operand. The shift count for the
shifting of a register may be specified in two different ways: 

1. Immediate—The shift count is specified in the instruction (shift range, 1 – 8) 

2. Register—The shift count is the value in the data register specified in instruction 
(modulo 64)

An operand in memory can be shifted one bit only, and the operand size is restricted
to a long word. 

For ASL, the operand is shifted left; the shift count equals the number of positions
shifted. Bits shifted out of the high-order bit go to both the carry and the extend bits;
zeros are shifted into the low-order bit. The overflow bit is always zero. 

.

C OPERAND O

X

ASL:



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-17

ASL, ASR Arithmetic Shift ASL, ASR

For ASR, the operand is shifted right; the number of positions shifted equals the shift
count. Bits shifted out of the low-order bit go to both the carry and the extend bits; the
sign bit (MSB) is shifted into the high-order bit. 

Condition Codes: 

X — set according to the last bit shifted out of the operand; unaffected for a shift count
of zero 

N — set if the most significant bit of the result is set; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
C — set according to the last bit shifted out of the operand; cleared for a shift count

of zero
V — always cleared

Instruction Format: 

REGISTER SHIFTS 

Instruction Fields: 

Count/Register field—specifies shift count or register that contains the shift count: 
If i/r = 0, contains the shift count; values 1 – 7 represent counts of 1 – 7; a value of 

zero represents a count of 8. 

If i/r = 1, specifies the data register that contains the shift count (modulo 64). 

X N Z V C 

* * * 0 * 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0
COUNT 

REGISTER
dr 1 0 i/r 0 0 REGISTER 

OPERAND C

X

ASR:

MSB



Integer Instructions

4-18 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ASL, ASR Arithmetic Shift ASL, ASR 

dr field—specifies the direction of the shift: 
0 — shift right 
1 — shift left 

i/r field 
If i/r = 0, specifies immediate shift count 
If i/r = 1, specifies register shift count 

Register field—specifies a data register to be shifted. 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-19

Bcc Branch Conditionally Bcc 

Operation: If Condition True 
Then PC + dn → PC  

Assembler 
Syntax: Bcc < label > 

Attributes: Size = Word or Long 

Description: If the specified condition is true, program execution continues at location (PC)
+ displacement. The program counter contains the address of the instruction word for
the Bcc instruction, plus two. The displacement is a two’s-complement integer that
represents the relative distance in bytes from the current program counter to the
destination program counter. If the 8-bit displacement field in the instruction word is 0,
a 16-bit displacement (the word immediately following the instruction) is used.
Condition code cc specifies one of the following conditional tests (refer to Table 3-19 for
more information on these conditional tests): 

Condition Codes: 

Not affected 

Mnemonic Condition Mnemonic Condition

CC(HI) Carry Clear LS Low or Same

CS(LO) Carry Set LT Less Than

EQ Equal MI Minus

GE Greater or Equal NE Not Equal

GT Greater Than PL Plus

HI High VC Overflow Clear

LE Less or Equal VS Overflow Set



Integer Instructions

4-20 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Bcc Branch Conditionally Bcc 

Instruction Format: 

Instruction Fields: 

Condition field— binary code for one of the conditions listed in the table. 

8-Bit Displacement field—two’s complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed if the
condition is met. 

16-Bit Displacement field—used for the displacement when the 8-bit displacement field
contains $00. 

NOTE 

A branch to the next immediate instruction automatically uses
the 16-bit displacement format because the 8-bit displacement
field contains $00 (zero offset). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 CONDITION 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-21

BCHG Test a Bit and Change BCHG 

Operation: TEST ( < number > of Destination) → Z; 
TEST ( < number > of Destination) → < bit number > of Destination 

Assembler BCHG Dy, < ea > 
Syntax: BCHG # < data > , ea 

Attributes: Size = Byte, Long

Description: Tests a bit in the destination operand and sets the Z-condition code
appropriately, then inverts the specified bit in the destination. When the destination is a
data register, any of the 32 bits can be specified by the modulo 32-bit number. When
the destination is a memory location, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation may be specified in either of two ways: 

1. Immediate— bit number is specified in a second word of the instruction 

2. Register— specified data register contains the bit number 

Condition Codes: 

X — not affected
N — not affected 
Z — set if the bit tested is zero; cleared otherwise
V — not affected
C — not affected 

X N Z V C 
— — * — — 



Integer Instructions

4-22 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

BCHG Test a Bit and Change BCHG 

Instruction Format: 

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER 

Instruction Fields: 

Register field—specifies the data register that contains the bit number. 

Effective Address field—specifies the destination location; use only those data alterable
addressing modes listed in the following table: 

*Long only; all others are byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 0 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dy* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-23

BCHG Test a Bit and Change BCHG

Instruction Format: 

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA 

Instruction Fields: 

Effective Address field—specifies the destination location; use only those data alterable
addressing modes listed in the following table: 

*Long only; all others are byte 

Bit Number field—specifies the bit number. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 0 1
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dy* 000 reg. number:Dn (xxx).W — —

An — — (xxx).L — —

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —



Integer Instructions

4-24 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

BCLR Test a Bit and Clear BCLR 

Operation: TEST ( < bit number > of Destination) → Z; 0 → < bit number > of Des-
tination 

Assembler BCLR Dy, < ea > 
Syntax: BCLR # < data > , < ea > 

Attributes: Size = Byte, Long 

Description: Tests a bit in the destination operand and sets the Z-condition code
appropriately, then clears the specified bit in the destination. When a data register is
the destination, any of the 32 bits can be specified by a modulo 32-bit number. When
a memory location is the destination, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation can be specified in either of two ways:

1. Immediate— bit number is specified in a second word of the instruction 

2. Register— specified data register contains the bit number 

Condition Codes: 

X — not affected
N — not affected 
Z — set if the bit tested is zero; cleared otherwise
V — not affected 
C — not affected 

X N Z V C 
— — * — — 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-25

BCLR Test a Bit and Clear BCLR 

Instruction Format: 

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER 

Instruction Fields: 

Register field—specifies the data register that contains the bit number. 

Effective Address field—specifies the destination location; use only those data
alterable addressing modes listed in the following table: 

*Word only; all others are byte 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dy* 000 reg. number:Dy (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —



Integer Instructions

4-26 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

BCLR Test a Bit and Clear BCLR 

Instruction Format: 

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA 

Instruction Fields: 

Effective Address field—specifies the destination location; use only those data alterable
addressing modes listed in the following table: 

*Long only; all others are byte 

Bit Number field—specifies the bit number. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dy* 000 reg. number:Dy (xxx).W — —

An — — (xxx).L — —

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-27

BRA Branch Always BRA 

Operation: PC + dn → PC 

Assembler 
Syntax: BRA < label > 

Attributes: Size = Byte, Word 

Description: Program execution continues at location (PC) + displacement. The program
counter contains the address of the instruction word of the BRA instruction, plus two.
The displacement is a two’s complement integer that represents the relative distance
in bytes from the current program counter to the destination program counter. If the 8-
bit displacement field in the instruction word is 0, a 16-bit displacement (the word
immediately following the instruction) is used. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Fields: 

8-Bit Displacement field—two’s complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed. 

16-Bit Displacement field—used for a larger displacement when the 8-bit displacement
is equal to $00. 

NOTE 

A branch to the next immediate instruction automatically uses
the 16-bit displacement format because the 8-bit displacement
field contains $00 (zero offset). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 0 0 0 0 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 



Integer Instructions

4-28 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

BSET Test a Bit and Set BSET 

Operation: TEST ( < bit number > of Destination) → Z; 1 → < bit number > of Des-
tination 

Assembler BSET Dn, < ea > 
Syntax: BSET # < data > , < ea-1 > 

Attributes: Size = Byte, Long 

Description: Tests a bit in the destination operand and sets the Z-condition code
appropriately, then sets the specified bit in the destination operand. When a data
register is the destination, any of the 32 bits can be specified by a modulo 32-bit
number. When a memory location is the destination, the operation is a byte operation,
and the bit number is modulo 8. In all cases, bit 0 refers to the least significant bit. The
bit number for this operation can be specified in either of two ways:

1. Immediate— bit number is specified in the second word of the instruction 

2. Register— specified data register contains the bit number 

Condition Codes: 

X — not affected 
N — not affected 
Z — set if the bit tested is zero; cleared otherwise 
V — not affected 
C — not affected 

X N Z V C 
— — ∗ — — 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-29

BSET Test a Bit and Set BSET 

Instruction Format: 

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER 

Instruction Fields: 

Register field—specifies the data register that contains the bit number. 

Effective Address field—specifies the destination location; use only those data
alterable addressing modes listed in the following table: 

*Long only; all others are byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —



Integer Instructions

4-30 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

BSET Test a Bit and Set BSET 

Instruction Format: 

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA 

Instruction Fields: 

Effective Address field—specifies the destination location; use only those data alterable
addressing modes listed in the following table: 

*Long only; all others are byte 

Bit Number field—specifies the bit number. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 BIT NUMBER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W — —

An — — (xxx).L — —

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8, An, Xn) — — (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-31

BSR Branch to Subroutine BSR 

Operation: SP – 4 → SP; PC → (SP); PC + dn → PC 

Assembler 
Syntax: BSR < label > 

Attributes: Size = Byte, Word 

Description: Pushes the word address of the instruction immediately following the BSR
instruction onto the system stack. The program counter contains the address of the
instruction word, plus two. Program execution then continues at location (PC) +
displacement. The displacement is a two’s complement integer that represents the
relative distance in bytes from the current program counter to the destination program
counter. If the 8-bit displacement field in the instruction word is 0, a 16-bit displacement
(the word immediately following the instruction) is used. 

Condition Codes: 

Not affected 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 0 0 0 1 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 



Integer Instructions

4-32 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

BSR Branch to Subroutine BSR 

Instruction Fields: 

8-Bit Displacement field—two’s complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed. 

16-Bit Displacement field—used for a larger displacement when the 8-bit displacement
is equal to $00. 

NOTE 

A branch to the next immediate instruction automatically uses
the 16-bit displacement format because the 8-bit displacement
field contains $00 (zero offset). 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-33

BTST Test a Bit BTST 

Operation: TEST ( < bit number > of Destination) → Z 

Assembler BTST Dn, < ea > 
Syntax: BTST # < data > , < ea > 

Attributes: Size = Byte, Long 

Description: Tests a bit in the destination operand and sets the Z-condition code
appropriately. When a data register is the destination, any of the 32 bits can be
specified by a modulo 32- bit number. When a memory location is the destination, the
operation is a byte operation, and the bit number is modulo 8. In all cases, bit 0 refers
to the least significant bit. The bit number for this operation can be specified in either of
two ways: 

1. Immediate— bit number is specified in a second word of the instruction 

2. Register— specified data register contains the bit number 

Condition Codes: 

X — not affected 
N — not affected 
Z — set if the bit tested is zero; cleared otherwise 
V — not affected 
C — not affected 

X N Z V C 
— — ∗ — — 



Integer Instructions

4-34 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

BTST Test a Bit BTST 

Instruction Format: 

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER 

Instruction Fields: 

Register field—specifies the data register that contains the bit number. 

Effective Address field—specifies the destination location; use only those data
addressing modes listed in the following table: 

*Long only; all others are byte 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 0 0
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-35

BTST Test a Bit BTST 

Instruction Format: 

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA 

Instruction Fields: 

Effective Address field—specifies the destination location; use only those data
addressing modes listed in the following table: 

Bit Number field—specifies the bit number.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 0 0
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W — —

An — — (xxx).L — —

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — — 



Integer Instructions

4-36 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

CLR Clear an Operand CLR 

Operation: 0 → Destination 

Assembler 
Syntax: CLR < ea > 

Attributes: Size = Byte, Word, Long 

Description: Clears the destination operand to 0. The size of the operation may be specified
as byte, word, or long. 

Condition Codes: 

X — not affected 
N — always cleared 
Z — always set 
V — always cleared 
C — always cleared 

Instruction Format: 

X N Z V C 
— 0 1 0 0 

15 14 13 12 11 10 9 8 7  6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-37

CLR Clear an Operand CLR 

Instruction Fields: 

Size field—specifies the size of the operation
00— byte operation 
01— word operation 
10— long word operation 

Effective Address field—specifies the destination location; use only those data
alterable addressing modes listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



Integer Instructions

4-38 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

CMP Compare CMP 

Operation: Destination – Source → cc 

Assembler 
Syntax: CMP < ea > , Dn 

Attributes: Size = Long 

Description: Subtracts the source operand from the destination data register and sets the
condition codes according to the result; the data register is not changed. The size of
the operation is specified as a long word. 

Condition Codes: 

X — not affected 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise
V — set if an overflow occurs; cleared otherwise 
C — set if a borrow occurs; cleared otherwise 

Instruction Format: 

Instruction Fields: 

Register field—specifies the destination data register. 

X N Z V C 
— ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER 0 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-39

CMP Compare CMP 

Effective Address field—specifies the source operand; use addressing modes as listed
in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

4-40 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

CMPA Compare Address CMPA 

Operation: Destination – Source → cc 

Assembler 
Syntax: CMPA < ea > , An 

Attributes: Size = Long 

Description: Subtracts the source operand from the destination address register and sets
the condition codes according to the result. The address register is not changed. The
size of the operation is specified as a long word. Word length source operands are sign-
extended to 32 bits for comparison. 

Condition Codes: 

X — not affected 
N — set if the result is negative; cleared otherwise
Z — set if the result is zero; cleared otherwise 
V — set if an overflow is generated; cleared otherwise 
C — set if a borrow is generated; cleared otherwise

Instruction Format: 

X N Z V C 
— ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-41

CMPA Compare Address CMPA 

Instruction Fields: 

Register field—specifies the destination address register. 

Effective Address field—specifies the source operand; use addressing modes as listed
in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

4-42 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

CMPI Compare Immediate CMPI 

Operation: Destination – Immediate Data → cc 

Assembler 
Syntax: CMPI # < data > , Dn

Attributes: Size = Long 

Description: Subtracts the immediate data from the destination operand and sets the
condition codes according to the result; the destination location is not changed. The
size of the operation is specified as a long word. The size of the immediate data is
specified as a long word. 

Condition Codes: 

X — not affected 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — set if an overflow occurs; cleared otherwise 
C — set if a borrow occurs; cleared otherwise

Instruction Format: 

Instruction Fields:

Register field - destination data register.

X N Z V C 
— ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 0 1 0 0 0 0
REGISTER

 

UPPER WORD

LOWER WORD



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-43

EOR Exclusive-OR Logical EOR 

Operation: Source ⊕  Destination → Destination 

Assembler 
Syntax: EOR Dn, < ea > 

Attributes: Size = Long

Description: Performs an exclusive-OR operation on the destination operand using the
source operand and stores the result in the destination location. The size of the
operation is specified as a long word. The source operand must be a data register. The
destination operand is specified in the effective address field. 

Condition Codes: 

X — not affected 
N — set if the most significant bit of the result is set; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Fields: 

Register field—specifies any of the 8 data registers.

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER 1 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 



Integer Instructions

4-44 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

EOR Exclusive-OR Logical EOR 

Effective Address field—specifies the destination operand. Use only those data
alterable addressing modes listed in the following table : 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-45

EORI Exclusive-OR Immediate EORI 

Operation: Immediate Data ⊕  Destination → Destination 

Assembler 
Syntax: EORI # < data > , Dn

Attributes: Size = Long 

Description: Performs an exclusive-OR operation on the destination operand using the
immediate data and the destination operand and stores the result in the destination
location. The size of the operation is specified as a long word. 

Condition Codes: 

X — not affected 
N — set if the most significant bit of the result is set; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Fields:

Register field - destination data register.

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 1 0 1 0 0 0 0 REGISTER

UPPER WORD IMMEDIATE DATA

LOWER WORD IMMEDIATE DATA



Integer Instructions

4-46 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

EXT, EXTB Sign-Extend EXT, EXTB

Operation: Destination Sign-Extended → Destination 

Assembler EXT.W  Dn extend byte to word 
Syntax: EXT.L  Dn extend word to long word

EXTB.L  Dn extend byte to long word
 

Attributes: Size = Word, Long 

Description: Extends a byte in a data register to a word or a long word, or a word in a data
register to a long word, by replicating the sign bit to the left. When the operation extends
a word to a long word, bit 15 of the designated data register is copied to bits 31 – 16 of
the data register. The EXTB form copies bit 7 of the designated register to bits 31 – 8
of the data register. 

Condition Codes: 

X — not affected 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Fields: 

Opmode field—specifies the size of the sign-extension operation: 
010—sign-extend low-order byte of data register to word 
011—sign-extend low-order word of data register to long
111—sign-extend low-order byte of data register to long 

Register field—specifies that the data register is to be sign-extended. 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 OPMODE 0 0 0 REGISTER 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-47

JMP Jump JMP 

Operation: Destination Address → PC 

Assembler 
Syntax: JMP < ea > 

Attributes: Unsized 

Description: Program execution continues at the effective address specified by the
instruction. The addressing mode for the effective address must be a control
addressing mode. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Field: 

Effective Address field—specifies the address of the next instruction; use only those
control addressing modes listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

4-48 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

JSR Jump to Subroutine JSR 

Operation: SP – 4 → Sp; PC → (SP); Destination Address → PC 

Assembler 
Syntax: JSR < ea > 

Attributes: Unsized 

Description: Pushes the long-word address of the instruction immediately following the
JSR instruction onto the system stack. Program execution then continues at the
address specified in the instruction. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Field: 

Effective Address field—specifies the address of the next instruction; use only those
control addressing modes listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-49

LEA Load Effective Address LEA 

Operation:  < ea > → An 

Assembler 
Syntax: LEA < ea > ,An 

Attributes: Size = Long 

Description: Loads the effective address into the specified address register. This instruction
affects all 32 bits of the address register. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Fields: 

Register field—specifies the address register to be updated with the effective address. 

Effective Address field—specifies the address to be loaded into the address register;
use only those control addressing modes listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

4-50 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

LINK Link and Allocate LINK 

Operation: SP – 4 → SP; An → (SP); SP → An; SP + dn → SP 

Assembler 
Syntax: LINK An, # < displacement > 

Attributes: Size = Word 

Description: Pushes the contents of the specified address register onto the stack. Then
loads the updated stack pointer into the address register. Finally, adds the
displacement value to the stack pointer. The displacement is the sign-extended word
following the operation word. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Fields: 

Register field—specifies the address register for the link.

Displacement field—specifies the two’s complement integer to be added to the stack
pointer. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 0 1 0 REGISTER 

 DISPLACEMENT 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-51

LSL, LSR Logical Shift LSL, LSR 

Operation: Destination Shifted By Count → Destination 

Assembler LSd Dx,Dy 
Syntax: LSd # < data > ,Dy 

where d is direction, L or R 

Attributes: Size = Long 

Description: Shifts the bits of the operand in the direction specified (L or R). The carry bit
receives the last bit shifted out of the operand. The shift count for the shifting of a
register is specified in two different ways: 

1. Immediate— shift count (1 – 8) is specified in the instruction 

2. Register— shift count is the value in the data register specified in the instruction 
modulo 64 

The LSL instruction shifts the operand to the left the number of positions specified as
the shift count. Bits shifted out of the high-order bit go to both the carry and the extend
bits; zeros are shifted into the low-order bit. 

.

The LSR instruction shifts the operand to the right the number of positions specified as
the shift count. Bits shifted out of the low-order bit go to both the carry and the extend
bits; zeros are shifted into the high-order bit. 

.

C OPERAND O

X

LSL:

O OPERAND C

X

LSR:



Integer Instructions

4-52 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

LSL, LSR Logical Shift LSL, LSR 

Condition Codes: 

X — set according to the last bit shifted out of the operand; unaffected for a shift count
of zero 

N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — set according to the last bit shifted out of the operand; cleared for a shift count

of zero 

Instruction Format: 

REGISTER SHIFTS 

Instruction Fields: 

Count/Register field 

If i/r = 0, this field contains the shift count; values 1 – 7 represent shifts of 1 – 7; value
of 0 specifies shift count of 8

If i/r = 1, data register specified in this field contains shift count (modulo 64)

dr field—specifies the direction of the shift: 
0 — shift right 
1 — shift left 

Register field—specifies a data register to be shifted. 

I/R field
0 — immediate shift count
1 — register shift count

X N Z V C 
∗ ∗ ∗ 0 ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0
COUNT/

REGISTER
dr 1 0 i/r 0 1 REGISTER 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-53

MOVE Move Data from Source to Destination MOVE 

 

Operation: Source → Destination 

Assembler 
Syntax: MOVE < ea > , < ea >

MOVEA <ea>, An

Attributes: Size = Byte, Word, Long 

Description: Moves the data at the source to the destination location and sets the condition
codes according to the data. The size of the operation may be specified as byte, word,
or long word. 

Condition Codes: 

X — not affected 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Fields: 

Size field—specifies the size of the operand to be moved: 
01 — byte operation 
11 — word operation 
10 — long operation 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 SIZE
DESTINATION SOURCE 

REGISTER MODE MODE REGISTER 

MOVEA MOVEA



Integer Instructions

4-54 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVE Move Data from Source to Destination MOVE 

Destination Effective Address field—specifies the destination location; the possible
data alterable addressing modes are listed in the table below. The ColdFire MOVE
instruction has restrictions on combinations of source and destination addressing
modes. The table shown on the bottom of page 4-55 outlines the restrictions.

*If the destination is an address register, condition codes are unaffected. Some assemblers accept
the MOVEA mneumonic to designate this slight difference.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number: An (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MOVEA MOVEA



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-55

MOVE Move Data from Source to Destination MOVE 

Source Effective Address field—specifies the source operand; the possible addressing
modes are listed in the table below. The ColdFire MOVE instruction has
restrictions on combinations of source and destination addressing modes. The
table shown on the bottom of this page outlines the restrictions.

NOTE 

Most assemblers use MOVEA when the destination is an
address register. 

Use MOVEQ to move an immediate 8-bit value to a data register. 

Not all combinations of source/destination addressing modes
are possible. The table below shows the possible combinations.

Refere to the previous tables for valid source and destination
addressing modes.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

Source Addressing Mode Destination Addressing Mode

Dn, An, (An), (An)+,-(An) All possible

(d16, An), (d16, PC) All possible except (d8, An, Xn), (xxx).W, (xxx).L

(d8, An, Xn), (d8, PC, Xn), (xxx).W, (xxx).L, #<xxx>
All possible except (d8, An, Xn), (d16, An), (xxx).W,

(xxx).L

MOVEA MOVEA



Integer Instructions

4-56 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVE MOVE 
from CCR Move from the from CCR

Condition Code Register 

Operation: CCR → Destination 

Assembler 
Syntax: MOVE CCR, Dn 

Attributes: Size = Word 

Description: Moves the condition code bits (zero-extended to word size) to the destination
location. The operand size is a word. Unimplemented bits are read as zeros. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Fields:

Register field - destination data register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 1 0 1 1 0 0 0 Register



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-57

MOVE MOVE 
to CCR Move to Condition Code Register to CCR

Operation: Source → CCR 

Assembler 
Syntax: MOVE, Dn ,CCR

MOVE #<data>, CCR

Attributes: Size = Word 

Description: Moves the low-order byte of the source operand to the condition code register.
The upper byte of the source operand is ignored; the upper byte of the status register
is not altered. 

Condition Codes: 

X — set to the value of bit 4 of the source operand 
N — set to the value of bit 3 of the source operand 
Z — set to the value of bit 2 of the source operand 
V — set to the value of bit 1 of the source operand
C — set to the value of bit 0 of the source operand 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 0 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



Integer Instructions

4-58 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVE MOVE 
to CCR Move to Condition Code Register to CCR

Instruction Field: 

Effective Address field—specifies the location of the source operand; use only those
data addressing modes listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W — —

An — — (xxx).L — —

(An) — — #<data> 111 100

(An) + — —

– (An) — —

(d16,An) — — (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-59

MOVEM Move Multiple Registers MOVEM 

Operation: Registers → Destination; Source → Registers 

Assembler MOVEM < list > , < ea > 
Syntax: MOVEM < ea > , < list > 

Attributes: Size = Long 

Description: Moves the contents of selected registers to or from consecutive memory
locations starting at the location specified by the effective address. A register is
selected if the bit in the mask field corresponding to that register is set. 

The registers are transferred starting at the specified address, and the address is incre-
mented by the operand length (4) following each transfer. The order of the registers is
from D0 to D7, then from A0 to A7. 



Integer Instructions

4-60 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVEM Move Multiple Registers MOVEM 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Fields: 

dr field—specifies the direction of the transfer: 
0 — register to memory 
1 — memory to register 

Effective Address field—specifies the memory address for register-to-memory
transfers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 dr 0 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

REGISTER LIST MASK 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W — —

An — — (xxx).L — —

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-61

MOVEM Move Multiple Registers MOVEM 

For memory-to-register transfers, use addressing modes listed in the following tables: 

Register List Mask field—specifies the registers to be transferred. The low-order bit
corresponds to the first register to be transferred; the high-order bit corresponds
to the last register to be transferred. The mask correspondence is shown below.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W — —

An — — (xxx).L — —

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 



Integer Instructions

4-62 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVEQ Move Quick MOVEQ 

Operation: Immediate Data → Destination 

Assembler 
Syntax: MOVEQ # < data > ,Dn 

Attributes: Size = Long 

Description: Moves a byte of immediate data to a 32-bit data register. The data in an 8-bit
field within the operation word is sign- extended to a long operand in the data register
as it is transferred. 

Condition Codes: 

X — not affected 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Fields: 

Register field—specifies the data register to be loaded. 

Data field—8 bits of data, which are sign-extended to a long operand. 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 REGISTER 0 DATA 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-63

MULS Signed Multiply MULS 

Operation: Source x Destination → Destination 

Assembler MULS.W < ea > ,Dn 16 x 16 → 32 
Syntax: MULS.L < ea > ,Dl 32 x 32 → 32 

Attributes: Size = Word, Long 

Description: Multiplies two signed operands yielding a signed result. This instruction has a
word operand form and a long operand form. 

In the word form, the multiplier and multiplicand are both word operands, and the result
is a long-word operand. A register operand is the low-order word; the upper word of the
register is ignored. All 32 bits of the product are saved in the destination data register. 

In the long form, the multiplier and multiplicand are both long word operands. The des-
tination data register stores the low order 32-bits with the product. The upper 32 bits of
the product are discarded.

Condition Codes: 

X — not affected 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared
C — always cleared 

X N Z V C 
— ∗ ∗ 0 0 



Integer Instructions

4-64 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MULS Signed Multiply MULS 

Instruction Format: 

WORD 

Instruction Fields: 

Register field—specifies a data register as the destination. 

Effective Address field—specifies the source operand; use only those data addressing
modes listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-65

MULS Signed Multiply MULS 

Instruction Format: 

LONG 

Instruction Fields: 

Effective Address field—specifies the source operand; use only data addressing modes
listed in the following table: 

Register Dl field—specifies a data register for the destination operand; the 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product are
loaded into this register. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 0 0 0 0
EFFECTIVE ADDRESS 

MODE REGISTER 

0 REGISTER DI 1 0 0 0 0 0 0 0 0  0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W — —

An — — (xxx).L — —

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —



Integer Instructions

4-66 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MULU Unsigned Multiply MULU 

Operation: Source x Destination → Destination 

Assembler MULU.W < ea > ,Dn 16 x 16 → 32 
Syntax: MULU.L < ea > ,Dl 32 x 32 → 32 

Attributes: Size = Word, Long 

Description: Multiplies two unsigned operands yielding an unsigned result. This instruction
has a word operand form and a long operand form. 

In the word form, the multiplier and multiplicand are both word operands, and the result
is a long-word operand. A register operand is the low-order word; the upper word of the
register is ignored. All 32 bits of the product are saved in the destination data register. 

In the long form, the multiplier and multiplicand are both long- word operands, and the
destination data register stores the low order 32 bits of the product. The upper 32 bits
of the product are discarded.

Condition Codes: 

X — not affected 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared
C — always cleared 

X N Z V C 
— ∗ ∗ 0 0



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-67

MULU Unsigned Multiply MULU 

Instruction Format: 

WORD 

Instruction Fields: 

Register field—specifies a data register as the destination. 

Effective Address field—specifies the source operand; use only those data addressing
modes listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

4-68 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MULU Unsigned Multiply MULU 

Instruction Format: 

LONG 

Instruction Fields: 

Effective Address field—specifies the source operand; use only data addressing modes
listed in the following table: 

Register Dl field—specifies a data register for the destination operand; the 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product are
loaded into this register. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 0 0 0 0
EFFECTIVE ADDRESS 

MODE REGISTER 

0 REGISTER Dl 0 0 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W — —

An — — (xxx).L — —

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-69

NEG Negate NEG 

Operation: 0 – Destination → Destination 

Assembler 
Syntax: NEG Dn 

Attributes: Size = Long

Description: Subtracts the destination operand from zero and stores the result in the
destination location. The size of the operation is specified as a long word. 

Condition Codes: 

X — set the same as the carry bit 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — set if an overflow occurs; cleared otherwise 
C — cleared if the result is zero; set otherwise 

Instruction Format: 

Instruction Fields:

Register field - specifies data register used.

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 0 0 1 0  0 0 0
REGISTER

 



Integer Instructions

4-70 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

NEGX Negate with Extend NEGX 

Operation: 0 – Destination – X → Destination 

Assembler 
Syntax: NEGX Dn 

Attributes: Size = Long 

Description: Subtracts the destination operand and the extend bit from zero. Stores the
result in the destination location. The size of the operation is specified as a long word. 

Condition Codes: 

X — set the same as the carry bit 
N — set if the result is negative; cleared otherwise 
Z — cleared if the result is nonzero; unchanged otherwise 
V — set if an overflow occurs; cleared otherwise 
C — set if a borrow occurs; cleared otherwise 

X N Z V C 
∗ ∗ ∗ ∗ ∗  



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-71

NEGX Negate with Extend NEGX 

Instruction Format: 

Instruction Fields:

Register field - specifies data register used.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 1 0 0 0 0 REGISTER



Integer Instructions

4-72 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

NOP No Operation NOP 

Operation: None 

Assembler 
Syntax: NOP 

Attributes: Unsized 

Description: Performs no operation. The processor state, other than the program counter,
is unaffected. Execution continues with the instruction following the NOP instruction.
The NOP instruction does not begin execution until all pending bus cycles have
completed. This synchronizes the pipeline and prevents instruction overlap. 

Condition Codes: 

Not affected 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-73

NOT Logical Complement NOT 

Operation: ~ Destination → Destination 

Assembler 
Syntax: NOT Dn 

Attributes: Size = Long 

Description: Calculates the ones complement of the destination operand and stores the
result in the destination location. The size of the operation is specified as a long word. 

Condition Codes: 

X — not affected 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Fields:

Register field - specifies data register used.

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 1 0 1 0 0 0 0 REGISTER



Integer Instructions

4-74 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

OR Inclusive-OR Logical OR 

Operation: Source V Destination → Destination 

Assembler OR < ea > ,Dn 
Syntax: OR Dn, < ea > 

Attributes: Size = Long 

Description: Performs an inclusive-OR operation on the source operand and the
destination operand and stores the result in the destination location. The size of the
operation is specified as a long word. The contents of an address register may not be
used as an operand. 

Condition Codes: 

X — not affected 
N — set if the most significant bit of the result is set; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Fields: 

Register field—specifies any of the 8 data registers. 

Opmode field 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Long Operation 
010 < ea > V Dn → Dn 
110 Dn V < ea > → < ea > 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-75

OR Inclusive-OR Logical OR 

Effective Address field—if the location specified is a source operand, use only those
data addressing modes listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

4-76 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

OR Inclusive-OR Logical OR 

If the location specified is a destination operand, use only those memory alterable
addressing modes listed in the following table: 

NOTE 

If the destination is a data register, specify using the destination
Dn mode, not the destination < ea > mode. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-77

ORI Inclusive-OR ORI 

Operation: Immediate Data V Destination → Destination 

Assembler 
Syntax: ORI # < data > , Dn 

Attributes: Size = Long 

Description: Performs an inclusive-OR operation on the immediate data and the destination
operand and stores the result in the destination location. The size of the operation is
specified as a long word. The size of the immediate data is specified as a long word. 

Condition Codes: 

X — not affected 
N — set if the most significant bit of the result is set; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 REGISTER

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA



Integer Instructions

4-78 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PEA Push Effective Address PEA 

Operation: SP – 4 → SP; < ea > → (SP) 

Assembler 
Syntax: PEA < ea > 

Attributes: Size = Long 

Description: Computes the effective address and pushes it onto the stack. The effective
address is a long address. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Field: 

Effective Address field—specifies the address to be pushed onto the stack; use only
those control addressing modes listed in the following table: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 0 0 1
EFFECTIVE ADDRESS 

MODE REGISTER 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-79

RTS Return from Subroutine RTS 

Operation: (SP) → PC; SP + 4 → SP 

Assembler 
Syntax: RTS 

Attributes: Unsized 

Description: Pulls the program counter value from the stack. The previous program counter
value is lost. 

Condition Codes: 

Not affected 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 



Integer Instructions

4-80 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Scc Set According to Condition Scc 

Operation: If Condition True 
Then 1s → Destination 

Else 0s → Destination 

Assembler 
Syntax: Scc Dn 

Attributes: Size = Byte 

Description: Tests the specified condition code; if the condition is true, sets the lowest byte
of the destination data register to TRUE (all ones). Otherwise, sets that byte to FALSE
(all zeros). Condition code cc specifies one of the following conditional tests (refer to
Table 3-19 for more information on these conditional tests): 

Condition Codes: 

Not affected

Mnemonic Condition Mnemonic Condition

CC(HI) Carry Clear LS Low or Same

CS(LO) Carry Set LT Less Than

EQ Equal MI Minus

F False NE Not Equal

GE Greater or Equal PL Plus

GT Greater Than T True

HI High VC Overflow Clear

LE Less or Equal VS Overflow Set



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-81

Scc Set According to Condition Scc 

Instruction Format: 

Instruction Fields: 

Condition field— binary code for one of the conditions listed in the table. 

Register field — specifies the destination data region.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 CONDITION 1 1 0 0 0 REGISTER 



Integer Instructions

4-82 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

SUB Subtract SUB 

Operation: Destination – Source → Destination 

Assembler SUB < ea > ,Dn 
Syntax: SUB Dn, < ea > 

Attributes: Size = Long 

Description: Subtracts the source operand from the destination operand and stores the
result in the destination. The size of the operation is specified as a long word. The mode
of the instruction indicates which operand is the source and which is the destination. 

Condition Codes: 

X — set to the value of the carry bit 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — set if an overflow is generated; cleared otherwise 
C — set if a borrow is generated; cleared otherwise 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-83

SUB Subtract SUB 

Instruction Fields: 

Register field—specifies any of the 8 data registers.

Opmode field 

Effective Address field—Determines the addressing mode; if the location specified is a
source operand, use addressing modes listed in the following table: 

Long Operation 
010 Dn – < ea > → Dn 
110 < ea > – Dn → < ea > 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

4-84 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

SUB Subtract SUB 

If the location specified is a destination operand, use only those memory alterable
addressing modes listed in the following table: 

NOTE 

If the destination is a data register, it must be specified as a
destination Dn address, not as a destination < ea > address. 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-85

SUBA Subtract Address SUBA 

Operation: Destination – Source → Destination 

Assembler 
Syntax: SUBA < ea > ,An 

Attributes: Size = Long 

Description: Subtracts the source operand from the destination address register and stores
the result in the address register. The size of the operation is specified as a long word. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Fields: 

Register field—specifies the destination, any of the 8 address registers. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



Integer Instructions

4-86 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

SUBA Subtract Address SUBA 

Effective Address field—specifies the source operand; use addressing modes listed in
the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-87

SUBI Subtract Immediate SUBI 

Operation: Destination – Immediate Data → Destination 

Assembler 
Syntax: SUBI # < data > , Dn 

Attributes: Size = Long 

Description: Subtracts the immediate data from the destination operand and stores the
result in the destination location. The size of the operation is specified as a long word. 

Condition Codes: 

X — set to the value of the carry bit 
N — set if the result is negative; cleared otherwise 
Z — set if the result is zero; cleared otherwise 
V — set if an overflow occurs; cleared otherwise 
C — set if a borrow occurs; cleared otherwise 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 0 0 1 0 0 0 0 REGISTER

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA

Instruction Fields:

Register field — specifies the destination data register.



Integer Instructions

4-88 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

SUBQ Subtract Quick SUBQ 

Operation: Destination – Immediate Data → Destination 

Assembler 
Syntax: SUBQ # < data > , < ea > 

Attributes: Size = Long 

Description: Subtracts the immediate data (1 – 8) from the destination operand. The size
of the operation is specified as a long word. Operations do not affect the condition
codes. When subtracting from address registers, the entire destination address
register. 

Condition Codes: 

X — set to the value of the carry bit 
N — set if the result is negative; cleared otherwise
Z — set if the result is zero; cleared otherwise 
V — set if an overflow occurs; cleared otherwise 
C — set if a borrow occurs; cleared otherwise 

Instruction Format: 

X N Z V C 
∗ ∗ ∗ ∗ ∗  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 DATA 1 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-89

SUBQ Subtract Quick SUBQ 

Instruction Fields: 

Data field—three bits of immediate data; 1 – 7 represent immediate values of 1 – 7, and
0 represents 8. 

Effective Address field—specifies the destination location; use only those alterable
addressing modes listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —



Integer Instructions

4-90 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

SUBX Subtract with Extend SUBX 

Operation: Destination – Source – X → Destination 

Assembler SUBX Dx,Dy 
Syntax:  

Attributes: Size = Long 

Description: Subtracts the source operand and the extend bit from the destination operand
and stores the result in the destination. 

Condition Codes: 

X — set to the value of the carry bit
N — set if the result is negative; cleared otherwise 
Z — cleared if the result is nonzero; unchanged otherwise 
V — set if an overflow occurs; cleared otherwise 
C — set if a borrow occurs; cleared otherwise 

X N Z V C 
∗ ∗ ∗ ∗ ∗  



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-91

SUBX Subtract with Extend SUBX 

Instruction Format: 

Instruction Fields:

Dy field — specifies destination data register.

Dx field — specifies source data register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 Dy 1 1 0 0 0 0  Dx 



Integer Instructions

4-92 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

SWAP Swap Register Halves SWAP 

Operation: Register 31 – 16 ←→ Register 15 – 0 

Assembler 
Syntax: SWAP Dn 

Attributes: Size = Word 

Description: Exchange the 16-bit words (halves) of a data register. 

Condition Codes: 

X — not affected 
N — set if the most significant bit of the 32-bit result is set; cleared otherwise 
Z — set if the 32-bit result is zero; cleared otherwise 
V — always cleared 
C — always cleared 

Instruction Format: 

Instruction Field: 

Register field—specifies the data register to swap. 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 0 0 1 0 0 0 REGISTER 



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-93

TRAP Trap TRAP 

Operation: 1 → S-Bit of SR 
SSP – 4 → SSP; PC → (SSP); SSP – 2 → SSP; 
SR → (SSP); SSP – 2 → SSP; Format/Offset → (SSP); 
Vector Address → PC 

Assembler 
Syntax: TRAP # < vector > 

Attributes: Unsized 

Description: Causes a TRAP # < vector > exception. The instruction adds the immediate
operand (vector) of the instruction to 32 to obtain the vector number. The range of
vector values is 0 – 15, which provides 16 vectors. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Fields: 

Vector field—specifies the trap vector to be taken. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 0 0 VECTOR 



Integer Instructions

4-94 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

TRAPF Trapf TRAPF

Operation: No operation

Assembler 
Syntax: TRAPF

TRAPF.W #<data>
TRAPF.L #<data>

Attributes: Unsized or Size = Word or Long

Description: This instruction performs no operation. It can be used to occupy 16, 32, or 48
bits in instruction space.

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Fields: 

Vector field—specifies the trap vector to be taken.

OPMODE fields:
010—instruction word without any additional extensions
011—instruction word followed by one extension word
100—instruction word followed by two extension words

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 0 0 0 1 1 1 1 1 1 OPMODE

OPTIONAL IMMEDIATE WORD

OPTIONAL IMMEDIATE WORD



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-95

TST Test an Operand TST 

Operation: Destination Tested → Condition Codes 

Assembler 
Syntax: TST < ea > 

Attributes: Size = Byte, Word, Long 

Description: Compares the operand with zero and sets the condition codes according to
the results of the test. The size of the operation is specified as byte, word, or long word. 

Condition Codes: 

X — not affected 
N — set if the operand is negative; cleared otherwise 
Z — det if the operand is zero; cleared otherwise 
V — always cleared
C — always cleared 

Instruction Format: 

X N Z V C 
— ∗ ∗ 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 1 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 



Integer Instructions

4-96 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

TST Test an Operand TST 

Instruction Fields: 

Size field—specifies the size of the operation: 
00 — byte operation 
01 — word operation 
10 — long word operation 

Effective Address field—specifies the addressing mode for the destination operand as
listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-97

UNLK Unlink UNLK 

Operation: An → SP; (SP) → An; SP + 4 → SP 

Assembler 
Syntax: UNLK An 

Attributes: Unsized 

Description: Loads the stack pointer from the specified address register, then loads the
address register with the long word pulled from the top of the stack. 

Condition Codes: 

Not affected 

Instruction Format: 

Instruction Field: 

Register field—specifies the address register for the instruction. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 0 1 1 REGISTER 



Integer Instructions

4-98 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA



Integer Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-99



Integer Instructions

4-100 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

5-1

 

SECTION 5
SUPERVISOR (PRIVILEGED) INSTRUCTIONS

 

This section contains information about the supervisor (privileged) instructions for the
ColdFire Family. Each instruction is described in detail with the instruction descriptions
arranged in alphabetical order by instruction mnemonic. 

The supervisor instruction set has complete access to the user mode instructions in addition
to those listed in Table 5-1.

The MOVEC instruction providess access to the various control registers dealing with
system-level functions. This includes all the configuration registers defining the address
space as well as a single module base address register (MBAR) that provides the
specification for the memory-mapped module configuration and control registers. The
control register address, contained in bits [11:0] of the first extension word of the instruction,
is defined below.

 

Table 5-1. Supervisor Mode Instruction Summary

 

Opcode Supported Operand Sizes Addressing Modes

 

HALT Unsized
MOVE from SR .W Dn

MOVE to SR .W
Dn, SR

#<data>, SR
MOVEC .L Rn, Rc

RTE Unsized
STOP Unsized #<data>

WDEBUG .L <ea>
WDATA .B, .W, .L <ea>
PULSE Unsized



 

Supervisor (Privileged) Instructions

 

5-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

Note that the actual control registers in a given design are dependent of the on-chip memory
and module configurations. In addition, a ColdFire processor only supports write access to
all the control registers accessed by the MOVEC instruction.

 

Table 5-2. CPU Space Map  

 

Rc[11:0]

 

1

 

Register Definition

 

$002

 

Cache Control Register (CACR)

 

$003

 

MMU Translation Control Register (TCR)

 

$004

 

Access Control Unit 2 (ACR2)

 

$005

 

Access Control Unit 3 (ACR3)

 

$006

 

Access Control Unit 0 (ACR0)

 

$007

 

Access Control Unit 1 (ACR1)

 

$08x 

 

2

 

Write the processor core address and data registers 

 

2

 

$18x 

 

2

 

Read the processor core address and data registers

 

$801

 

Vector Base Register (VBR)

 

$80E 

 

2

 

Status Register (SR) 

 

2

 

$C00

 

ROM Base Address Register (ROMBAR)

 

$C04

 

RAM Base Address Register 0 (RAMBAR0)

 

$C05

 

RAM Base Address Register 1 (RAMBAR1)

 

$C0F

 

Module Base Åddress Register (MBAR)

 

1

 

 Any other code produces undefined results and should not be performed.

 

2

 

 Not accessible via MOVEC; only through the Debug interface, if implemented.



 

Supervisor (Privileged) Instructions

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

5-3

 

HALT

 

Halt the CPU (Privileged)

 

HALT 

 

  

 

Operation:

 

If Supervisor State 
Then Source Halt the Processor Core

Else TRAP 

 

Assembler 
Syntax:

 

HALT

 

Attributes:

 

Unsized

 

Description: 

 

The processor core is synchronized (meaning all previous instructions and bus
cycles are completed), and then halts operation. The processor’s halt status is signaled
on the processor status output pins. If a ‘‘go’’ debug command is received, the
processor resumes execution at the next instruction.

 

Condition Codes: 

 

Not affected 

 

Instruction Format:

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0



 

Supervisor (Privileged) Instructions

 

5-4

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

PULSE

 

Generate a Unique Processor Status

 

PULSE 

 

Operation:

 

Generate a Unique Processor Status Encoding

 

Assembler 
Syntax:

 

PULSE

 

Attributes:

 

Unsized 

 

Description: 

 

This instruction does not perform any explicit operation except for the
generation of a unique encoding of the processor status output pins (PST = $4). This
encoding is asserted by one processor clock cycle and is useful in providing a trigger
to external logic during debug, performance characterization, etc.

 

Condition Codes: 

 

Not affected

 

Instruction Format:

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0



 

Supervisor (Privileged) Instructions

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

5-5

 

WDDATA

 

 Write to Debug Data

 

WDDATA 

 

Operation:

 

Source --> DDATA Signal Pins

 

Assembler 
Syntax:

 

WDDATA <ea>

 

Attributes:

 

Size = Byte, Word, Long Word

 

Description: 

 

This instruction fetches the operand defined by the effective address and
captures the data in the ColdFire debug module for display on the DDATA output pins.
The size of the operand determines the number of nibbles displayed on the DDATA
output pins. The value of the debug module configuration/status register (CSR) does
not affect the operation of this instruction.

The execution of this instruction generates a processor status encoding matching the
PULSE instruction before the referenced operand is displayed on the DDATA outputs.

 

Condition Codes: 

 

Not affected 

 

Instruction Format

 

:

 

Instruction Fields: 

 

Size field—specifies the size of the operand data:
00—byte operation
01—word operation
10—long operation

Effective Address field—determines the addressing mode for the operand to be written
to the DDATA signal pins; use only those memory alterable addressing modes listed
in the following table:

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 0 1 0 0 SIZE
EFFECTIVE ADDRESS 

MODE REGISTER 

 

Addressing Mode Mode Register Addressing Mode Mode Register

 

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number: An #<data> — —

(An) + 011 reg. number: An

-(An) 101 reg. number: An

(d

 

16

 

, An) 101 reg. number: An (d

 

16

 

, PC) — —

(d

 

8

 

, An, Xn) 110 reg. number: An (d

 

8

 

, PC, Xn) — —



 

Supervisor (Privileged) Instructions

 

5-6

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

WDEBUG

 

 

 

Write Debug Control Register

 

WDEBUG 

 

Operation:

 

If Supervisor State

 

 

 

Then Addressed Debug Write Control Register Command Executed
Else TRAP

 

Assembler 
Syntax:

 

WDEBUG <ea>

 

Attributes:

 

Size = Long 

 

Description: 

 

This instruction does two things. First, it fetches two consecutive long words
from the memory location defined by the effective address. Second, it sends the
operands to the ColdFire debug module for execution as an instruction to write one of
the debug control registers (DRc). The memory location defined by the effective
address must be on a long word address or the behavior of the operation is undefined.
The debug command must be organized in memory as follows:

where: (1) the first 16 bits define the ‘‘write debug register’’ command to the debug
module, (2) the low-order 4 bits (DRc) define the specific control register being written,
(3) the 32-bit operand to be written is defined as Data[31:0], and (4) the lower 16 bits
of the second long word are unused.

 

Condition Codes: 

 

Not affected 

 

Instruction Format

 

:

 

Instruction Fields:

 

Effective Address field—determines the addressing mode for debug command location
in memory.

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1 0 0 0 DRc

Data[31:16]

Data[15:0]

Unused

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 0 1 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

 

Addressing Mode Mode Register Addressing Mode Mode Register

 

Dn (xxx).W

An (xxx).L

(An) 010 reg. number: An #<data>

(An) + — —

- (An) — —

(d

 

16

 

, An) 101 reg. number: An (d

 

16

 

, PC)

(d

 

8

 

, An, Xn) — — (d

 

8

 

, PC, Xn)



 

Supervisor (Privileged) Instructions

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

5-7

 

MOVE MOVE 
from SR

 

Move from the Status Register

 

from SR 

 

Operation:

 

If Supervisor State 
Then SR 

 

→

 

 Destination
Else TRAP 

 

Assembler 
Syntax:

 

MOVE SR, Dn

 

Attributes:

 

Size = (Word) 

 

Description: 

 

Moves the data in the status register to the destination location. The
destination is word length. Unimplemented bits are read as zeros. 

 

Condition Codes: 

 

Not affected 

 

Instruction Format: 

 

Register field—specifies destination data register.

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 1 1  0 0 0 REGISTER



 

Supervisor (Privileged) Instructions

 

5-8

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

MOVE MOVE 
to SR

 

Move to the Status Register

 

to SR 

 

Operation:

 

If Supervisor State 
Then Source → SR

Else TRAP 

Assembler 
Syntax: MOVE < ea >, SR

Attributes: Size = Word 

Description: Moves the data in the source operand to the status register. The source
operand is a word, and all implemented bits of the status register are affected.

Condition Codes: Set according to the source operand 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 1 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



Supervisor (Privileged) Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-9

MOVE MOVE 
to SR Move to the Status Register to SR 

Instruction Field: 

Effective Address field—specifies the location of the source operand; use only those
data addressing modes listed in the following table: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W — —

An — — (xxx).L — —

(An) — — # < data > 111 100

(An) + — —  

—(An) — —  

(d16,An) — — (d16,PC) — —

(d8,An,Xn) — — (d8,PC,Xn) — —



Supervisor (Privileged) Instructions

5-10 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVEC Move Control Register MOVEC 

Operation: If Supervisor State 
Then Rn → Rc 

Else TRAP 

Assembler  
Syntax: MOVEC Rn,Rc 

Attributes: Size = (Long) 

Description: Moves the contents of the general register to the specified control register.This
is always a 32-bit transfer even though the control register may be implemented with
fewer bits. 

Condition Codes: Not affected 

Instruction Format: 

Instruction Fields: 

A/D field—specifies the type of general register: 
0—data register 
1—address register 

Actual control registers in a given design can vary. Only the VBR exits in all ColdFire
designs. Access to undefined control register space yields undefined results and must not
be attempted. Access to unimplemented, but defined, control registers generally results in
a virtual no-operation. The exception to this is the MBAR register. Access to an
unimplemented MBAR may result in a system hang or bus error, depending on the
implementation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 dr 

A/D REGISTER CONTROL REGISTER 



Supervisor (Privileged) Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-11

MOVEC Move Control Register MOVEC 

Register field—specifies the register number.

Control Register field—specifies the control register.

Table 4-1. CPU Space Map
Rc[11:0] Register Definition

$002 Cache Control Register (CACR)
$003 MMU Translation Control Register (TCR)
$004 Access Control Unit 2 (ACR2)
$005 Access Control Unit 3 (ACR3)
$006 Access Control Unit 0 (ACR0)
$007 Access Control Unit 1 (ACR1)
$801 Vector Base Register (VBR)
$C00 ROM Base Address Register (ROMBAR)
$C04 RAM Base Address Register 0 (RAMBAR0)
$C05 RAM Base Address Register 1 (RAMBAR1)
$COF Module Base Address Register (MBAR)



Supervisor (Privileged) Instructions

5-12 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

RTE Return from Exception RTE 

Operation: 2 (SP) → SR; 4 (SP) → PC; SP + 8→ SP 
Adjust stack according to format

Assembler 
Syntax: RTE 

Attributes: Unsized 

Description: Loads the processor state information stored in the exception stack frame
located at the top of the stack into the processor. The instruction examines the stack
format field in the format/offset word to determine how much information must be
restored. 

Condition Codes: Set according to the condition code bits in the status register value
restored from the stack. 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 



Supervisor (Privileged) Instructions

MOTOROLA MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-13

STOP Load Status Register and Stop STOP 

Operation: If Supervisor State 
Then Immediate Data → SR; STOP 

Else TRAP 

Assembler 
Syntax: STOP # < data > 

Attributes: Unsized 

Description: (1) Moves the immediate operand into the status register (both user and
supervisor portions), (2) advances the program counter to point to the next instruction,
and (3) stops the fetching and executing of instructions. A trace, interrupt, or reset
exception causes the processor to resume instruction execution. A trace exception
occurs if instruction tracing is enabled (T0 = 1) when the STOP instruction begins
execution. If an interrupt request is asserted with a priority higher than the priority level
set by the new status register value, an interrupt exception occurs; otherwise, the
interrupt request is ignored. External reset always initiates reset exception processing.
In the ColdFire processors, the STOP command places the processor in a low-power
state.

Condition Codes: Set according to the immediate operand. 

Instruction Format: 

Instruction Fields: 

Immediate field—specifies the data to be loaded into the status register. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 

IMMEDIATE DATA 



Supervisor (Privileged) Instructions

5-14 MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

6-1

 

SECTION 6
INSTRUCTION FORMAT SUMMARY

 

This section contains a listing of the ColdFire family instructions in binary format. 

 

6.1 INSTRUCTION FORMAT

 

The following paragraphs present a summary of the binary encoding fields. 

 

6.1.1 Effective Address Field 

 

This field specifies which addressing mode is to be used. Some operations allow hardware-
enforced restrictions on the available addressing modes.

 

6.1.2 Shift Instruction 

 

The following paragraphs define the fields used with the shift instructions. 

 

6.1.2.1 Count Register Field.  

 

If i/r = 0, this field contains the shift count of 1 – 8 (a zero
specifies 8). If i/r = 1, this field specifies a data register that contains the shift count. The
following shift fields are encoded as follows: 

dr field: 
0— shift right 
1— shift left 

i/r field: 
0 — immediate shift count 
1 — register shift count 

 

6.1.2.2 Register Field.  

 

This field specifies a data register to be shifted. 



 

Instruction Format Summary

 

6-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

6.1.3 Size Field 

 

This field specifies the size of the operation and is encoded as follows: 

00 — byte operation 
01 — word operation 
10 — long operation 

 

6.1.4 Opmode Field 

 

Refer to the applicable instruction descriptions for the encoding of this field. 

 

6.1.5 Address/Data Field 

 

This field specifies the type of general register and is encoded as follows:

0 — data register 
1 — address register 

 

6.2 OPERATION CODE MAP

 

Table 6-1 lists the encoding for bits 15 – 12 and the operation performed. 

 

Table 6-1. Operation Code Map

 

Bits 15 – 12 Operation 

 

0000 Bit Manipulation/MOVEP/Immed iate 

0001 Move Byte 

0010 Move Long 

0011 Move Word 

0100 Miscellaneous 

0101 ADDQ/SUBQ/Scc 

0110 Bcc/BSR/BRA 

0111 MOVEQ 

1000 OR 

1001 SUB/SUBX 

1010 (Unassigned, Reserved) 

1011 CMP/EOR 

1100 AND/MUL /EXG 

1101 ADD/ADDX 

1110 Shift/Bit Field 

1111 Unassigned reserved



 

Instruction Format Summary

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

6-3

 

1. ORI

2. ANDI

3. SUBI

 

 

 

4. ADDI

5. EORI

6. CMPI

 

 

 

7. BTST 

 

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 REGISTER

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 REGISTER

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 0 0 1 0 0 0 0 REGISTER

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 1 0 1 0 0 0 0 REGISTER

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 1 0 1 0 0 0 0 REGISTER

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 0 1 0 0 0 0 REGISTER

UPPER WORD OF IMMEDIATE DATA

LOWER WORD OF IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 0 0
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 



 

Instruction Format Summary

 

6-4

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

8. BCHG 

 

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA

 

9. BCLR

 

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA 

 

10. BSET 

 

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA 

 

11. BTST 

 

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER 

 

12. BCHG

 

 

 

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER 

 

13. BCLR 

 

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER 

 

14. BSET 

 

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 0 1
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 0 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 

0 0 0 0 0 0 0 BIT NUMBER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 0 0
EFFECTIVE ADDRESS 

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 0 1
EFFECTIVE ADDRESS 

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 1 0
EFFECTIVE ADDRESS 

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS 

MODE REGISTER 



 

Instruction Format Summary

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

6-5

 

15. MOVE 

16. MOVE from SR

17. MOVE from CCR

 

 

 

18. NEGX

19. CLR 

20. MOVE to CCR

21. MOVE from CCR

22. NEG 

23. NOT 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 SIZE
DESTINATION SOURCE 

REGISTER MODE MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 1 1  0 0 0 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 1 0 1 1 0 0 0 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 1 0 0 0 0 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 0 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 0 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 0 0 1 0 0 0 0 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 1 0 1 0 0 0 0 REGISTER



 

Instruction Format Summary

 

6-6

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

24. MOVE to SR
 

25. EXT, EXTB

26. SWAP 

27. PEA 

28. TST 

29. HALT

30. PULSE

31. MULU

 

WORD

LONG 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 1 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 OPMODE 0 0 0 REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 0 0 1 0 0 0 REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 0 0 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 1 0 1 1 0 0 1  0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER 

0 REGISTER DI 0 0 0 0 0 0 0 0 0 0 0 0



 

Instruction Format Summary

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

6-7

 

32. MULS

 

WORD

LONG 

 

33. TRAP 

34. LINK 

 

WORD 

 

35. NOP
 

36. STOP

37. RTE 

38. RTS 

39. MOVEC
 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER 

0 REGISTER DI 1 0 0 0 0 0 0 0 0  0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 0 0 VECTOR 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 0 1 0 REGISTER 

WORD DISPLACEMENT 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 

IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 dr 

A/D REGISTER CONTROL REGISTER 



 

Instruction Format Summary

 

6-8

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

40. JSR

41. JMP 

42. MOVEM 

43. LEA 

44. ADDQ 

45. SUBQ 

46. Scc 

47. BRA 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 1 0
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 dr 0 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

REGISTER LIST MASK 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 DATA 0 1 0
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 DATA 1 1 0
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 CONDITION 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 0 0 0 0 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 



 

Instruction Format Summary

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

6-9

 

48. BSR 

49. Bcc
 

50. MOVEQ

51. OR

52. SUBX

 

 

 

53. SUB 

54. SUBA 

55. CMP 

56. CMPA 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 0 0 0 1 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 CONDITION 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 REGISTER 0 DATA 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 REGISTER Dy 1 1 0 0 0 0 REGISTER Dx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER 0 1 0
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER 



 

Instruction Format Summary

 

6-10

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

57. EOR
 

58. MULU

 

WORD 

 

59. MULS 

 

WORD 

 

60. AND 

61. ADDX 

62. ADDA 

63. ADD

64. ASL, ASR 

 

REGISTER SHIFT 

 

65. LSL, LSR 

 

REGISTER SHIFT 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 REGISTER 1 1 0
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 REGISTER Dy 1 1 0 0 0 0 REGISTER Dy

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0
COUNT/

REGISTER
dr 1 0 i/r 0 0 REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0
COUNT/

REGISTER
dr 1 0 i/r 0 1 REGISTER 



 

Instruction Format Summary

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

6-11

 

66. WDDATA

67. WDEBUG

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 0 1 1 SIZE
EFFECTIVE ADDRESS

MODE REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 0 1 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



 

Instruction Format Summary

 

6-12

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

7-1

 

SECTION 7 
EXCEPTION PROCESSING

 

Exception processing is the activity performed by the processor in preparing to execute a
special routine for any condition that causes an exception. Exception processing does not
include execution of the routine itself. 

This section describes the processing for each type of integer unit exception, exception pri-
orities, the return from an exception, and bus fault recovery. Also described are the formats
of the exception stack frames.

 

7.1 EXCEPTION PROCESSING OVERVIEW

 

Exception processing is the transition from the normal processing of a program to the pro-
cessing required for any special internal or external condition that preempts normal process-
ing. External conditions that cause exceptions are interrupts from external devices, bus
errors, and resets. Internal conditions that cause exceptions are instructions, address
errors, and tracing. In addition, some instructions such as the TRAP and RTE instructions
can generate exceptions as part of their normal execution. Illegal instructions and privilege
violations cause exceptions as well. Exception processing uses an exception vector table
and an exception stack frame. The following paragraphs describe the vector table and a
generalized exception stack frame.

The ColdFire processor uses an instruction restart exception model but does require addi-
tional software support to recover from certain types of exceptions, i.e., access and address
errors.

Exception processing is defined as the time from the detection of the fault condition until the
first instruction of the handler has been fetched. Figure 7-1 illustrates a general flowchart for
the steps taken by the processor during exception processing.



 

Exception Processing

 

7-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

Figure 7-1. General Exception Processing Flowchart

 

First, the processor (a) makes an internal copy of the status register (SR), (b) enters super-
visor mode by asserting the S-bit and (c) disables trace mode by negating the T-bit. Also,
an interrupt exception forces an update of the interrupt priority mask.

Second, the processor determines the vector number of the exception. For all faults 

 

except

 

interrupts, the processor performs this calculation based on the exception type. For inter-
rupts, the processor performs an interrupt acknowledge (IACK) bus cycle to obtain the vec-
tor number from a peripheral device. The IACK cycle is mapped to a special acknowledge
address space with the interrupt level encoded in the transfer modifier.

Third, the processor saves the current context by creating an exception stack frame on the
system stack. Note the ColdFire processor supports a single stack pointer in the A7 address
register, i.e., there is no notion of a supervisor or user stack pointer. As a result, the excep-

ENTRY

SAVE INTERNAL 
COPY OF SR

S --> 1
T --> 0

DETERMINE
VECTOR NUMBER

SAVE CONTENTS TO
STACK FRAME

OTHERWISE

CALCULATE
ADDRESS OF FIRST

INSTRUCTION OF
EXCEPTION HANDLER

FETCH FIRST
INSTRUCTION OF

EXCEPTION HANDLER

OTHERWISE

BEGIN EXECUTION
OF EXCEPTION

HANDLER

EXIT

HALTED STATE

EXIT

(DOUBLE BUS FAULT)

BUS ERROR OR
ADDRESS ERROR

(DOUBLE BUS FAULT)

BUS ERROR

(SEE NOTE)

(SEE NOTE)

NOTE: THESE BLOCKS VARY FOR RESET AND INTERRUPT EXCEPTIONS.



 

Exception Processing

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

7-3

 

tion stack frame is created on the top of the current system stack. The processor always
forces the alignment of the exception stack frame to a 0-modulo-4 address, independent of
the stack pointer value at the time of the exception. Additionally, the processor uses a sim-
plified fixed-length stack frame for all exceptions, as shown in Figure 7-2. The exception type
determines whether the program counter placed in the exception stack frame defines the
location of the faulting instruction (Fault) or the address of the next instruction to be executed
(Next).

Fourth, the processor calculates the address of the first instruction of the exception handler.
This address is generated by fetching an exception vector from the table located at the 0-
modulo-1M address defined in the vector base register. For the ColdFire processor, relocat-
ing the exception vector table has been limited to 0-modulo-1M addresses. The index into
the exception table is calculated as (4 x Vector_Number). Once the exception vector has
been fetched, the vector contents determine the address of the first instruction of the desired
handler. After fetching this initial handler instruction, exception processing terminates and
normal instruction processing continues in the handler.

The ColdFire processor supports a 1024-byte vector table aligned on any 0-modulo-1M
address (see Table 7-1). The table contains 256 exception vectors where the first 64 are
defined by Motorola and the remaining 192 are user-defined interrupt vectors. External
devices can use vectors reserved for internal purposes at the discretion of the system
designer. They can also supply vector numbers for some exceptions. External devices that
cannot supply vector numbers use the autovector capability, which allows the processor to
automatically generate a vector number.

 

Figure 7-2. Exception Stack Frame Form

FORMAT FS[3:2] VECTOR[7:0] FS[1:0] STATUS REGISTER[15:0]

PROGRAM COUNTER[31:0]

SP

+ $04

31 1615 0



 

Exception Processing

 

7-4

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

The ColdFire processor optionally supports autovectored interrupts. If the hardware module
is included in the system, it converts an asserted 

 

AVEC 

 

signal into the appropriate vector
for transmission to the processor core. 

The ColdFire processor inhibits sampling for interrupts during the first instruction of all
exception handlers. This allows any handler to effectively disable interrupts, if desired, by
raising the interrupt mask level contained in the status register.

Normally, the end of an exception handler contains an RTE instruction. When the processor
executes the RTE instruction, it examines the stack frame on top of the  stack to determine
if it is a valid frame. If the processor determines that it is a valid frame, the SR and PC fields
are loaded from the exception frame and control is passed to the specified instruction
address.

All exception vectors are located in the supervisor address space and are accessed using
data references. Only the initial reset vector is fixed in the processor’s memory map; once
initialization is complete, there are no fixed assignments. Since the VBR provides the base
address of the exception vector table, the exception vector table can be located anywhere
in memory; it can even be dynamically relocated for each task that an operating system exe-
cutes.

 

Table 7-1. Exception Vector Assignments

 

Vector
Number(s)

Vector
Offset (Hex)

Stacked
Program
Counter

Assignment

0 $000 -  Initial Stack Pointer
1 $004 -  Initial Program Counter
2 $008 Fault  Access Error
3 $00C Fault  Address Error
4 $010 Fault  Illegal Instruction

5-7 $014-$01C -  Reserved
8 $020 Fault  Privilege Violation
9 $024 Next  Trace
10 $028 Fault  Unimplemented Line-A Opcode
11 $02C Fault  Unimplemented Line-F Opcode
12 $030 Next  Debug Interrupt
13 $034 -  Reserved
14 $038 Fault  Format Error
15 $03C Next  Uninitialized Interrupt

16-23 $040-$05C -  Reserved
24 $060 Next  Spurious Interrupt

25-31 $064-$07C Next  Level 1-7 Autovectored Interrupts
32-47 $080-$0BC Next  TRAP # 0-15 Instructions
48-63 $0C0-$0FC -  Reserved
64-255 $100-$3FC Next  User-Defined Interrupts

“Fault” refers to the PC of the instruction that caused the exception
“Next” refers to the PC of the next instruction that follows the instruction that caused the 
fault.



 

Exception Processing

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

7-5

 

7.2 EXCEPTION STACK FRAME DEFINITION

 

The first longword of the exception stack frame contains the 16-bit format/vector word 
(F/V) and the 16-bit status register, and the second longword contains the 32-bit program
counter address.

The 16-bit format/vector word contains 3 unique fields:

1. A 4-bit format field contained in bits[31:28] at the top of the system stack is always writ-
ten by the processor with a value of {4,5,6,7}  indicating a 2-longword frame format and 
the size of the stack pointer adjustment required to force 0-modulo-4 alignment. See 
Table 7-2.

2. A 4-bit fault status field, FS[3:0], contained in bits[27:26, 17:16] at the top of the system 
stack. This field is defined for access and address errors only, and written as zeros for 
all other types of exceptions (see Table 7-3).

3. The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the 
processor for all internal faults and represents the value supplied by the peripheral in 
the case of an interrupt. Refer to Table 7-1.

 

Table 7-2. Format Field Encodings

 

Original A7 @ Time 
of Exception, bits 1:0

A7 @ 1st Instruction
of Handler

Format Field

 

00 Original A7 - 8 0100

01 Original A7 - 9 0101

10 Original A7 - 10 0110

11 Original A7 - 11 0111

 

Table 7-3. Fault Status Encodings

 

FS[3:0] Definition

 

00xx Reserved

0100 Physical bus error on instruction fetch

0101 Reserved

011x Reserved

1000 Physical bus error on operand write

1001 Attempted write to write-protected space

101x Reserved

1100 Physical bus error on operand read

1101 Reserved

111x Reserved



 

Exception Processing

 

7-6

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

7.3 PROCESSOR EXCEPTIONS

 

The following paragraphs describe the external interrupt exceptions and the different types
of exceptions generated internally by the integer unit. The following exceptions are dis-
cussed:

• Access Error
• Address Error

• Instruction Trap

• Illegal Instruction Exceptions

• Privilege Violation

• Trace

• Format Error

• Breakpoint Instruction

• Interrupt

• Reset

 

7.3.1 Access Error Exception

 

An access error exception in the ColdFire architecture occurs when a bus cycle terminates
with an error condition such as TEA. The exact response by the ColdFire processor to an
access error depends on the type of bus cycle being performed.

If  an instruction fetch results in an access error, the processor postpones error reporting
until the faulted reference is needed by an instruction for execution. Thus, faults that occur
during instruction prefetches which are then followed by a change of instruction flow will not
generate an exception. When the processor tries to execute an instruction with a faulted
opword and/or extension words, the access error will be signaled and the instruction
aborted. For this type of exception, the programming model has not been altered by the
instruction generating the access error.

If the access error occurs on an operand read, the processor immediately aborts the current
instruction execution and initiates exception processing. In this situation, any address reg-
ister updates due to the auto-addressing modes (e.g., (An)+, -(An)), will already have been
performed. Thus, the programming model contains the updated An value.

The ColdFire processor uses an imprecise reporting mechanism for access errors on oper-
and writes. Because the actual write cycle may be decoupled from the processor’s issuing
of the operation, an access error signal appears to be decoupled from the instruction that
generated the write. Accordingly, the PC contained in the exception stack frame merely rep-
resents the location in the program when the access error was signaled. All programming
model updates associated with the write instruction are completed. The NOP instruction can
collect

 

 

 

access errors for writes. This instruction delays its execution until all previous oper-
ations (including all pending write operations) are complete. If any previous write terminates
with an access error, it is guaranteed to be reported on the NOP instruction.



 

Exception Processing

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

7-7

 

When the processor encounters an access error during the exception processing sequence
of another exception, the processor enters a halted state.

 

7.3.2 Address Error Exception

 

Any attempted execution transferring control to an odd instruction address (i.e., if bit 0 of the
target address is = 1) results in an address error exception.

The ColdFire processor default configuration supports word- and longword-sized operand
references on 0-modulo-2 and 0-modulo-4 addresses, respectively. All other references are
defined as misaligned

 

 

 

accesses. Any attempt to access a misaligned operand generates an
address-error exception, unless the optional hardware module for handling misalignment is
present. This misalignment module converts any misaligned operand references into a
series of aligned bus cycles to access the data. The existence of the misalignment module
is implementation-dependent and is documented in the appropriate ColdFire user’s manual.

Any attempted use of a word-sized index register (Xn.w) or a scale factor of 8 on an indexed
effective addressing mode generates an address error, as does attempted execution of a
full-format indexed addressing mode.

Finally, when the processor encounters an address error during the exception processing
sequence of another exception, the processor enters a halted state.

 

7.3.3 Trap Exception

 

The TRAP #n instruction always forces an exception and is useful for implementing system
calls in user programs. Typically, passing a variable to the trap handler is done through
registers. Otherwise, if passed through the stack, the stack frame format needs to be
queried to determine the proper offset to the passed variables on the stack.

 

7.3.4 Illegal Instruction Exception

 

Attempting to execute the 

 

$0000

 

 and the 

 

$4AFC

 

 opwords generates an illegal instruction
exception. Additionally, attempting to execute any line A and most line F opcode generates
their unique exception types, vectors 10 and 11 respectively. The ColdFire processor does
not provide illegal instruction detection on the extension words on any instruction, including

 

MOVEC

 

. 

 

7.3.5 Privilege Violation

 

Any attempt to execute a supervisor mode instruction while in user mode will generate a
privilege violation exception.

 

7.3.6 Trace Exception

 

To aid in program development, the ColdFire processor provides an instruction-by-instruc-
tion tracing capability. While in trace mode (indicated by the assertion of the T-bit in the sta-
tus register (SR[15] = 1)), the completion of an instruction execution signals a trace
exception. This functionality allows a debugger to monitor execution of a program. 



 

Exception Processing

 

7-8

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

In general terms, a trace exception is an extension to the function of any traced instruction.
The execution of a traced instruction is not complete until trace exception processing is com-
plete. If an instruction does not complete because of an access error or address error excep-
tion, trace exception processing is deferred until the suspended instruction resumes
execution. If an interrupt is pending at the completion of an instruction, trace exception pro-
cessing occurs before interrupt exception processing starts. If an instruction forces an
exception as part of its normal execution, the forced exception processing occurs before the
trace exception is processed.

The T-bit in the supervisor portion of the SR controls tracing. The state of the T-bit when an
instruction begins execution determines whether the instruction generates a trace exception
after the instruction completes. 

Note that if the processor is executing in trace mode when a group 2 exception is signaled,
a trace exception will not be generated. This means that for the second example, as the
TRAP exception handler completes its execution and performs its RTE, the next instruction
of the program sequence will be executed before the next trace exception is performed (the
MC68060 will not trace immediately after the TRAP). If tracing is required immediately fol-
lowing a group 2  exception, the SR contained in the exception stack frame should be
checked before returning to the next instruction. If the stacked SR indicates that the proces-
sor was executing in trace mode, the trace handler should be executed to account for the
instruction that initiated the exception.

 

7.3.7 Debug Interrupt

 

This special type of program interrupt is reserved for use with the Debug module. This
exception is generated in response to a hardware breakpoint register trigger. The processor
does not generate an IACK cycle, but rather calculates the vector number internally (vector
$030).

 

7.3.8 RTE and Format Error Exceptions

 

When an RTE instruction is executed, the processor first examines the 4-bit format field to
validate the frame type. For the ColdFire processor, any attempted execution of an RTE
where the format is not equal to {4,5,6,7} generates a format error. The exception stack
frame for the format error is created without disturbing the original RTE frame and the
stacked PC pointing to the RTE instruction.

The format value corresponds to the required system stack pointer adjustment  to return it
to the value at the time of the exception. This mechanism essentially negates the self-align-
ing operation to restore the stack pointer to its original value.

The selection of the format value provides some limited debug support for porting code from
68000 applications. On 680x0 family processors, the status register (SR) was located at the
top of the stack. On those processors, bit[30] of the longword addressed by the system stack
pointer is typically zero. Thus, an attempted RTE using this “old” format  generates a format
error on the ColdFire processor.



 

Exception Processing

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

7-9

 

If the format field defines a valid type, the processor: (1) reloads the status register operand,
(2) adjusts the stack pointer by adding the format value’s two least significant bits to the
auto-incremented value after the fetch of the first longword, and (3) transfers control to the
instruction address defined by the program counter field within the stack frame. 

In essence, the RTE restores the stack pointer to its original value, whether or not the stack
frame was  misaligned at the time of exception.

 

7.3.9 Interrupt Exception

 

When a peripheral device requires the services of the ColdFire processor or is ready to send
information that the processor requires, it can signal the processor to take an interrupt
exception. The exact hardware for reporting these interrupts is implementation-specific. The
ColdFire architecture defines seven priority levels. 

When an interrupt request has a priority higher than the value in the interrupt priority mask
of the SR (bits 10–8), the processor makes the request a pending interrupt. Priority level 7,
the nonmaskable interrupt, is a special case. The transition-sensitive Level 7 interrupts
cannot be masked by the interrupt priority mask. The processor recognizes an interrupt
request each time the external interrupt request level changes from some lower level to level
7, regardless of the value in the mask. Figure 7-3 shows two examples of interrupt
recognitions, one for level 6 and one for level 7. 

When the ColdFire processes a level 6 interrupt, the SR mask is automatically updated with
a value of 6 before entering the handler routine so that subsequent level 6 interrupts and
lower-level interrupts are masked. Provided no instruction that lowers the mask value is
executed, the external request can be lowered to level 3 and then raised back to level 6 and
a second level 6 interrupt is not processed. 

However, if the processor is handling a level 7 interrupt (SR mask set to level 7) and the
external request is lowered to level 3 and than raised back to level 7, a second level 7
interrupt is processed. The second level 7 interrupt is processed because the level 7
interrupt is transition-sensitive. A level comparison also generates a level 7 interrupt if the
request level and mask level are at 7 and the priority mask is then set to a lower level (as 



 

Exception Processing

 

7-10

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

with the MOVE to SR or RTE instruction). The level 6 interrupt request and mask level
example in Figure 7-3 is the same as for all interrupt levels except level 7.

Note that a mask value of 6 and a mask value of 7 both inhibit request levels of 1–6 from
being recognized. In addition, neither masks an interrupt request level of 7. The only differ-
ence between mask values of 6 and 7 occurs when the interrupt request level is 7 and the
mask value is 7. If the mask value is lowered to 6, a second level 7 interrupt is recognized.

External circuitry can chain or otherwise merge signals from devices at each level, allowing
an unlimited number of devices to interrupt the processor. When several devices are con-
nected to the same interrupt level, each device should hold its interrupt priority level constant
until its corresponding interrupt acknowledge bus cycle ensures that all requests are pro-
cessed. The interrupt acknowledge cycle is implementation-specific and is documented in
the appropriate processor user’s manual.

Figure 7-1 illustrates a flowchart for interrupt exception processing. When processing an
interrupt exception, the processor first makes an internal copy of the SR, sets the mode to
supervisor, suppresses tracing, and sets the processor interrupt mask level to the level of

 

Figure 7-3. Interrupt Recognition Examples 

 EXTERNAL
IPL2 - IPL0

INTERRUPT PRIORITY
MASK (I2 - I0)

ACTION

(INITIAL CONDITIONS)

 (LEVEL COMPARISON)

(LEVEL COMPARISON)

LE
V

E
L 

6 
E

X
A

M
P

LE
LE

V
E

L 
7 

E
X

A
M

P
LE

100 ($3) 101 ($5)

IF 001 ($6) AND 101 ($5) THEN LEVEL 6 INTERRUPT

IF 100 ($3) AND STILL 110 ($6) THEN NO ACTION

IF 001 ($6) AND STILL 110 ($6) THEN NO ACTION

IF STILL 001 ($6) AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT

100 ($3) 101 ($5) (INITIAL CONDITIONS)

IF 000 ($7) AND 101 ($5) THEN LEVEL 7 INTERRUPT

IF 000 ($7) AND  111 ($7) THEN NO ACTION

IF 100 ($3) AND 111 ($7) THEN NO ACTION

IF 000 ($7) AND STILL 111 ($7) THEN LEVEL 7 INTERRUPT

IF STILL 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT (LEVEL COMPARISON)

(TRANSITION)

(TRANSITION)



 

Exception Processing

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

7-11

 

the interrupt being serviced. The processor attempts to obtain a vector number from the
interrupting device using an interrupt-acknowledge bus cycle with the interrupt level number
output on the transfer modifier signals. 

To support  external devices that cannot provide an interrupt vector, the autovector signal
must be asserted. The autovector feature of the ColdFire processor is implementation-
dependent. If the specific implementation supports autovectoring, it is done through an
optional module. 

In the autovector case, the ColdFire processor uses an internally generated autovector  (one
of vector numbers 25–31) that corresponds to the interrupt level number. If external logic
indicates a bus error during the interrupt acknowledge cycle, the interrupt is considered spu-
rious, and the processor generates the spurious interrupt vector number, 24. 

Interrupt sampling is deferred from the beginning of exception processing of any exception,
up to and until the first instruction of the exception handler. This allows the first instruction
of any exception handler to raise the interrupt mask level and  execute the exception handler
without interrupts (except level 7 interrupts).

Many M68000 Family peripherals use programmable interrupt vector numbers as part of the
interrupt-acknowledge operation for the system. If this vector number is not initialized after
reset and the peripheral must acknowledge an interrupt request, the peripheral usually
returns the vector number for the uninitialized interrupt vector, 15.

 

7.3.10 Fault-on-Fault Halt

 

If the ColdFire processor encounters any access error or address error during the exception
processing of another fault, the processor immediately halts execution with the catastrophic
“fault-on-fault” condition. A reset is required to force the processor to exit this halted state.

 

7.3.11 Reset Exception

 

Asserting the reset input signal to the processor causes a reset exception. The reset excep-
tion has the highest priority of any exception; it provides for system initialization and recov-
ery from catastrophic failure. Reset also aborts any processing in progress when the reset
input is recognized. Processing cannot be recovered.

The reset exception places the processor in the supervisor mode by setting the S-bit and
disables tracing by clearing the T-bit in the SR. This exception also sets the processor’s
interrupt priority mask in the SR to the highest level (level 7). Next, the VBR is initialized to
zero ($00000000), and any caches in the specific ColdFire implementation are disabled.

Other implementation-specific supervisor registers are affected as well. Refer to the specific
user’s manual for details.

If the processor is granted the bus, and it does not detect any other alternate masters taking
the bus, the processor then performs two long-word-read bus cycles. The first long word, at
address 0, is loaded into the stack pointer, and the second long word, at address 4, is loaded
into the program counter. After the initial instruction is fetched from memory, program exe-



 

Exception Processing

 

7-12

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

cution begins at the address in the PC. If an access error or address error occurs before the
first instruction is executed, the processor goes into a halted state.

 

Figure 7-4. Interrupt Exception Processing Flowchart

ENTRY

SAVE INTERNAL
COPY OF SR

S = 1
T = 0

I2 - I1 = LEVEL OF
INTERRUPT

FETCH VECTOR
FROM INTERRUPTING

DEVICE

AUTOVECTOR #25 - #31 SPURIOUS INTERRUPT
VECTOR #24

IF NO VECTOR #
BUS ERROR

VECTOR OFFSET,
PC, AND SR-->

STACK FRAME

CALCULATE ADDRESS
OF FIRST INSTRUCTION

OF HANDLER

FETCH FIRST
INSTRUCTION
OF HANDLER

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

OTHERWISE
BEGIN INSTRUCTION

EXECUTION HALTED STATE

EXIT EXIT

 



 

Exception Processing

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

7-13

 

7.4 EXCEPTION PRIORITIES

 

Exceptions can be divided into the five basic groups identified in Table 7-4. These groups
are defined by specific characteristics and the order in which they are handled. Table 7-4
represents the priority used for simultaneous faults, as viewed by the ColdFire hardware. In
Table 7-4, 0.0 represents the highest priority, while 3.1 is the lowest.

Within a ColdFire system, more than one exception can occur at the same time. The reset
exception is unique; a reset overrides and clears all other exceptions that may have
occurred at the same time. All other exceptions are handled according to the priority rela-
tionship defined in Table 7-4.

In general, when multiple exceptions are pending, the exception with the highest priority is
processed first, and the remaining exceptions are regenerated when the original faulting
instruction is restarted. 

To illustrate the handling of multiple exceptions, consider first a pending interrupt being
posted while a program is executing in trace mode (i.e., bit 15 of the SR is set).

Since the processor always samples for pending interrupts and traces at the conclusion of
instruction execution, both the trace and the interrupt appear simultaneous to the processor.
Because the trace has higher priority than the interrupt (3.0 versus 3.1), trace exception pro-
cessing begins. After the first instruction of the trace exception handler has been executed,
the processor again samples for pending interrupts. Providing the previous interrupt is still
pending, the processor now begins interrupt-exception processing. As the interrupt handler
completes execution, control returns to the trace handler. As the trace handler completes,
control returns to the original program.

As a second example of the handling of multiple exceptions, consider the prior scenario (a
pending interrupt being posted while a program is executing in trace mode) at the same time
a TRAP instruction enters the execution unit.

As described before, because the processor always samples for pending interrupts and
traces at the conclusion of instruction execution, both the trace and the interrupt appear
simultaneous to the processor. Because the trace has higher priority than the interrupt, trace
exception processing begins. After the first instruction of the trace exception handler has
been executed, the processor again samples for pending interrupts. Providing the previous

 

Table 7-4. Exception Priority Groups

 

Group.Priority Exception and Relative Priority Characteristics

 

0.0 Reset The processor aborts all processing (instruction 
or exception) and does not save old context.

1.0
1.1
1.2

Address Error
Instruction Access Error
Data Access Error

The processor suspends processing and saves 
the processor context. 

2.0
2.1
2.2
2.3

A-Line Unimplemented
F-Line Unimplemented
Illegal Instruction
Privilege Violation

Exception processing begins before the instruc-
tion is executed.

3.0
3.1

Trace
Interrupt

Exception processing begins when the current 
instruction is completed.



 

Exception Processing

 

7-14

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

interrupt is still pending, the processor begins interrupt exception processing. As the inter-
rupt handler completes execution, control returns to the trace handler. As the trace handler
completes, control returns to the original program, where the TRAP instruction is executed,
causing that exception to occur.

Note that if the processor is executing in trace mode when a group 2 exception is signaled,
a trace exception will not be generated. This means that for the second example, as the
TRAP exception handler completes its execution and performs its RTE, the next instruction
of the program sequence will be executed before the next trace exception is performed (the
ColdFire processor will not trace immediately after the TRAP). If tracing is required immedi-
ately following a group 2 exception, the SR contained in the exception stack frame should
be checked before returning to the next instruction. If the stacked SR indicates that the pro-
cessor was executing in trace mode, the trace handler should be executed to account for
the instruction that initiated the exception.

Considering the previous example, the TRAP handler should check the stacked SR, and
because the processor was executing in trace mode, pass control to the trace handler. If this
check is not made, the next trace exception will not occur until the instruction after the TRAP
has completed execution.



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

8-1

 

SECTION 8
S-RECORD OUTPUT FORMAT

 

The S-record format for output modules is for encoding programs or data files in a printable
format for transportation between computer systems. The transportation process can be
visually monitored, and the S-records can be easily edited. 

 

8.1 S-RECORD CONTENT

 

Visually, S-records are essentially character strings made of several fields that identify the
record type, record length, memory address, code/data, and checksum. Each byte of binary
data encodes as a two- character hexadecimal number: the first character represents the
high- order four bits, and the second character represents the low-order four bits of the byte.
Figure 8-1 illustrates the five fields that comprise an S-record. Table 8-1 lists the composition
of each S-record field. 

 

Figure 8-1. Five Fields of an S-Record 

 

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM

 

Table 8-1. Field Composition of an S-Record

 

Field Printable 
Characters

Contents

 

Type 2 S-record type—S0, S1, etc.

Record Length 2 The count of the character pairs in the record, excluding the type 
and record length.

Address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data field is to be loaded 
into memory.

Code/Data

0–2n

From 0 to n bytes of executable code, memory loadable data, or 
descriptive information. For compatibility with teletypewriters, 
some programs may limit the number of bytes to as few as 28 (56 
printable characters in the S-record).

Checksum
2

The least significant byte of the one’s complement of the sum of 
the values represented by the pairs of characters making up the 
record length, address, and the code/data fields.



 

S-Record Ouput Format

 

8-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

When downloading S-records, each must be terminated with a CR. Additionally, an S-record
may have an initial field that fits other data such as line numbers generated by some time-
sharing systems. The record length (byte count) and checksum fields ensure transmission
accuracy. 

 

8.2 S-RECORD TYPES

 

There are 8 types of S-records to accommodate the encoding, transportation, and decoding
functions. The various Motorola record transportation control programs (e.g. upload, down-
load, etc.), cross assemblers, linkers, and other file creating or debugging programs, only
utilize S-records serving the program’s purpose. For more information on support of specific
S-records, refer to the user’s manual for that program. 

An S-record format module may contain S-records of the following types: 

S0 —  The header record for each block of S-records. The code/data field may contain
any descriptive information identifying the following block of S-records. Under
VERSAdos, the resident linker IDENT command can be used to designate
module name, version number, revision number, and description information
that will make up the header record. The address field is normally zeros. 

S1 —  A record containing code/data and the 2-byte address at which the code/data
is to reside. 

S2 —  A record containing code/data and the 3-byte address at which the code/data
is to reside. 

S3 —  A record containing code/data and the 4-byte address at which the code/data
is to reside. 

S5 —  A record containing the number of S1, S2, and S3 records transmitted in a par-
ticular block. This count appears in the address field. There is no code/data
field. 

S7 —  A termination record for a block of S3 records. The address field may optionally
contain the 4-byte address of the instruction to which control is to be passed.
There is no code/data field. 

S8 —  A termination record for a block of S2 records. The address field may optionally
contain the 3-byte address of the instruction to which control is to be passed.
There is no code/data field. 

S9 —  A termination record for a block of S1 records. The address field may optionally
contain the 2-byte address of the instruction to which control is to be passed.
Under VERSAdos, the resident linker ENTRY command can be used to specify
this address. If this address is not specified, the first entry point specification
encountered in the object module input will be used. There is no code/data
field. 

Each block of S-records uses only one termination record. S7 and S8 records are only active
when control passes to a 3- or 4-byte address; otherwise, an S9 is used for termination. Nor-
mally, there is only one header record, although it is possible for multiple header records to
occur. 



 

S-Record Output Format

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

8-3

 

8.3 S-RECORD CREATION

 

Dump utilities, debuggers, a VERSAdos resident linkage editor, or cross assemblers and
linkers produce S-record format programs. On VERSAdos systems, the build load module
(MBLM) utility builds an executable load module from S-records. It has a counterpart utility
in BUILDS that creates an S-record file from a load module. 

Programs are available for downloading or uploading a file in S- record format from a host
system to an 8- or 16-bit microprocessor- based system. A typical S-record format module
is printed or displayed as follows: 

S00600004844521B 
S1130000285F245F2212226A000424290008237C2A 
S11300100002000800082629001853812341001813 
S113002041E900084E42234300182342000824A952 
S107003000144ED492 
S9030000FC 

The module has an S0 record, four S1 records, and an S9 record. The following character
pairs comprise the S-record format module. 

S0 Record: 

S0 — S-record type S0, indicating that it is a header record 
06 — Hexadecimal 06 (decimal 6), indicating that six character pairs (or ASCII bytes)

follow 
0000—A 4-character, 2-byte address field; zeros in this example 
48 — ASCII H 
44 — ASCII D 
52 — ASCII R 
1B — The checksum 

First S1 Record: 

S1 — S-record type S1, indicating that it is a code/data record to be loaded/verified at
a 2-byte address 

13 — Hexadecimal 13 (decimal 19), indicating that 19 character pairs, representing
19 bytes of binary data, follow 

0000—A 4-character, 2-byte address field (hexadecimal address 0000) indicating
where the data that follows is to be loaded 



 

S-Record Ouput Format

 

8-4

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

The next 16 character pairs of the first S1 record are the ASCII bytes of the actual program
code/data. In this assembly language example, the program hexadecimal opcodes are
sequentially written in the code/data fields of the S1 records. 

The rest of this code continues in the remaining S1 record’s code/data fields and stores in
memory location 0010, etc. 

2A — The checksum of the first S1 record. 

The second and third S1 records also contain hexadecimal 13 (decimal 19) character pairs
and end with checksums 13 and 52, respectively. The fourth S1 record contains 07 character
pairs and has a checksum of 92. 

S9 Record: 

S9 — S-record type S9, indicating that it is a termination record
03 — Hexadecimal 03, indicating that three character pairs (3 bytes) follow 
0000—The address field, zeros 
FC — The checksum of the S9 record

Each printable character in an S-record encodes in hexadecimal (ASCII in this example) rep-
resentation of the binary bits that transmit. Figure 8-2 illustrates the sending of the first S1
record. Table 8-2 lists the ASCII code for S-records.

 

Opcode Instruction

 

285F MOVE.L (A7) +, A4

245F MOVE.L (A7) +, A2

2212 MOVE.L (A2), D1

226A0004 MOVE.L 4(A2), A1

24290008 MOVE.L FUNCTION(A1), D2

237C MOVE.L #FORCEFUNC, FUNCTION(A1)

 

Figure 8-2. Transmission of an S1 Record 

0101 0011 0011 0001 0011 0001 0011 00110011 00000011 00000011 00000011 00000011 00100011 10000011 01010100 0110 **** 0011001001000001
5 3 3 1 3 1 3 3 3 0 3 0 3 0 3 0 3 2 3 8 3 5 4 6 **** 3 2 4 1

S 1 1 3 0 0 0 0 2 8 5 F **** 2 A
RECORD LENGTH ADDRESS CODE/DATA CHECKSUMTYPE



 

S-Record Output Format

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

8-5

 

Table 8-2. ASCII Code

 

Least
Significant

Digit

Most Significant Digit

 

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ’ 7 G W g w

8 BS CAN ( 8 H X h x

9 HT EM ) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [ k {

C FF FS , < L \ l |

D CR GS – = M ] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL



 

S-Record Ouput Format

 

8-6

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

9-1

 

SECTION 9
INSTRUCTION EXECUTION TIMING (5200 SERIES ONLY)

 

This section presents ColdFire 5200 Series processor instruction execution times in terms
of processor core clock cycles. The number of operand references for each instruction is
also included, enclosed in parentheses following the number of clock cycles. Each timing
entry is presented as 

 

C

 

(r/w) where:

•

 

C 

 

  - The number of processor clock cycles, including all applicable operand fetches and 
writes, as well as all internal core cycles required to complete the instruction execution.

• r/w - The number of operand reads (r) and writes (w) required by the instruction. An op-
eration performing a read-modify-write function is denoted as (1/1).

This section includes assumptions concerning the timing values and the execution time
details.

 

9.1 TIMING ASSUMPTIONS

 

The timing data presented in this section have the following assumptions:

1. The operand execution pipeline (OEP) is loaded with the opword and all required ex-
tension words at the beginning of each instruction execution. This implies that the OEP 
doesn’t wait for the instruction fetch pipeline (IFP) to supply opwords and/or extension 
words.

2. The OEP does not experience any sequence-related pipeline stalls. For the ColdFire 
processor, the most common example of this type of stall involves consecutive 
STORE operations, excluding the MOVEM instruction. For all STORE operations (ex-
cept MOVEM), certain hardware resources within the ColdFire processor are marked 
as "busy" for two clock cycles after the final DSOC cycle of the STORE instruction. If 
a subsequent STORE instruction is encountered within this 2-cycle window, it will be 
stalled until the resource again becomes available. Thus, the maximum pipeline stall 
involving consecutive STORE operations is 2 cycles. The MOVEM instruction uses a 
different set of resources and this stall does not apply.

3. The OEP completes all memory accesses without any stall conditions caused by the 
memory itself. Thus, the timing details provided in this section assume an infinite zero-
wait state memory is attached to the processor core.

4. All operand data accesses are aligned on the same byte boundary as the operand 
size: 16-bit operands aligned on 0-modulo-2 addresses, 32-bit operands aligned on 0-
modulo-4 addresses.



 

Instruction Execution Timing

 

9-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

If the operand alignment fails these guidelines, the optional hardware module that supports
misaligned references is required. With the support this module provides, each misaligned
reference requires a minimum of 2 additional clock cycles to process.

 

9.2 MOVE INSTRUCTION EXECUTION TIMES

 

The execution times for the MOVE.{B,W} instructions are shown in Table 9-1, while Table
9-2 provides the timing for MOVE.L.

For all

 

 

 

tables in this section, the execution time (ET) of any instruction using the PC-relative
effective addressing modes is exactly equivalent to the time using the comparable An-rela-
tive mode.

The nomenclature "xxx.wl" refers to both forms of absolute addressing, xxx.w and xxx.l. 

 

Table 9-1. Move Byte and Word Execution Times

 

Source
Destination 

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xn*SF) xxx.wl

 

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)
(Ay)+ 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)
-(Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

(d16,Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —
(d8,Ay,Xn*SF) 4(1/0) 4(1/1) 4(1/1) 4(1/1) — — —

xxx.w 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
xxx.l 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

(d16,PC) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —
(d8,PC,Xn*SF) 4(1/0) 4(1/1) 4(1/1) 4(1/1) — — —

#xxx 1(0/0) 3(0/1) 3(0/1) 3(0/1) — — —

 

Table 9-2.  Move Long Execution Times

 

Source
Destination

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xn*SF) xxx.wl

 

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(Ay)+ 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
-(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,Ay,Xn*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

xxx.w 2(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
xxx.l 2(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

(d16,PC) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,PC,Xn*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

#xxx 1(0/0) 2(0/1) 2(0/1) 2(0/1) — — —



 

Instruction Execution Timing

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

9-3

 

9.3 STANDARD ONE OPERAND INSTRUCTION EXECUTION TIMES

 

Table 9-3. One Operand Instruction Execution Times

 

Opcode <ea>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

 

CLR.B <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
CLR.W <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
CLR.L <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
EXT.W Dx 1(0/0) — — — — — — —
EXT.L Dx 1(0/0) — — — — — — —

EXTB.L Dx 1(0/0) — — — — — — —
NEG.L Dx 1(0/0) — — — — — — —

NEGX.L Dx 1(0/0) — — — — — — —
NOT.L Dx 1(0/0) — — — — — — —
SCC Dx 1(0/0) — — — — — — —

SWAP Dx 1(0/0) — — — — — — —
TST.B <ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
TST.W <ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
TST.L <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)



 

Instruction Execution Timing

 

9-4

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

9.4 STANDARD TWO OPERAND INSTRUCTION EXECUTION TIMES 

 

Table 9-4. Two Operand Instruction Execution Times

 

Opcode <ea>
Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx

 

ADD.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
ADD.L Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
ADDI.L #imm,Dx 1(0/0) — — — — — — —
ADDQ.L #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
ADDX.L Dy,Dx 1(0/0) — — — — — — —
AND.L <ea>,Dn 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
AND.L Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
ANDI.L #imm,Dx 1(0/0) — — — — — — —
ASL.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)
ASR.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)
BCHG Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
BCHG #imm,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — — —
BCLR Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
BCLR #imm,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — — —
BSET Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
BSET #imm,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — — —
BTST Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
BTST #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — — 1(0/0)
CMP.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
CMPI.L #imm,Dx 1(0/0) — — — — — — —
EOR.L Dy,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
EORI.L #imm,Dx 1(0/0) — — — — — — —

LEA <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —
LSL.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)
LSR.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)

MOVEQ #imm,Dx — — — — — — — 1(0/0)
MULS.W <ea>,Dx 9(0/0) 11(1/0) 11(1/0) 11(1/0) 11(1/0) 12(1/0) 11(1/0) 9(0/0)
MULU.W <ea>,Dx 9(0/0) 11(1/0) 11(1/0) 11(1/0) 11(1/0) 12(1/0) 11(1/0) 9(0/0)
MULS.L <ea>,Dx 18(0/0) 20(1/0) 20(1/0) 20(1/0) 20(1/0) — — —
MULU.L <ea>,Dx 18(0/0) 20(1/0) 20(1/0) 20(1/0) 20(1/0) — — —

OR.L <ea>,Dn 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
OR.L Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
OR.L #imm,Dx 1(0/0) — — — — — — —
SUB.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
SUB.L Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
SUBI.L #imm,Dx 1(0/0) — — — — — — —
SUBQ.L #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
SUBX.L Dy,Dx 1(0/0) — — — — — — —



 

Instruction Execution Timing

 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

9-5

 

9.5 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

 

Table 9-5. Miscellaneous Instruction Execution Times

 

Opcode <ea>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

 

LINK.W Ay,#imm 2(0/1) — — — — — — —
MOVE.W CCR,Dx 1(0/0) — — — — — — —
MOVE.W <ea>,CCR 1(0/0) — — — — — — 1(0/0)
MOVE.W SR,Dx 1(0/0) — — — — — — —

MOVE.W <ea>,SR 7(0/0) — — — — — — 7(0/0) 

 

1

 

MOVEC Ry,Rc 9(0/1) — — — — — — —
MOVEM.L <ea>,&list — 1+n(n/0) — — 1+n(n/0) — — —
MOVEM.L &list,<ea> — 1+n(0/n) — — 1+n(0/n) — — —

NOP 3(0/0) — — — — — — —

PEA <ea> — 2(0/1) — — 2(0/1) 

 

3

 

3(0/1) 

 

4

 

2(0/1) —

PULSE 1(0/0) — — — — — — —

STOP #imm — — — — — — — 3(0/0)

 

 2

 

TRAP #imm — — — — — — — 15(1/2)
TPF 1(0/0) — — — — — — —

TPF.W #imm 1(0/0) — — — — — — —
TPF.L #imm 1(0/0) — — — — — — —
UNLK Ax 2(1/0) — — — — — — —

WDDATA <ea> — 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(1/0)
WDEBUG <ea> — 5(2/0) — — 5(2/0) — — —

n is the number of registers moved by the movem opcode.

 

1

 

If a MOVE.W #imm,SR instruction is executed and imm[13] = 1, the execution time is 1(0/0).

 

2

 

The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.

 

3

 

 PEA execution times are the same for (d16,PC)

 

4 

 

PEA execution times are the same for (d8,PC,Xn*SF)



 

Instruction Execution Timing

 

9-6

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

9.6 BRANCH INSTRUCTION EXECUTION TIMES

 

Table 9-6. General Branch Instruction Execution Times

 

Opcode <ea>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xi*SF) xxx.wl #xxx

 

BSR — — — — 3(0/1) — — —
JMP <ea> — 3(0/0) — — 3(0/0) 4(0/0) 3(0/0) —
JSR <ea> — 3(0/1) — — 3(0/1) 4(0/1) 3(0/1) —
RTE — — 8(2/0) — — — — —
RTS — — 5(1/0) — — — — —

 

Table 9-7. BRA, Bcc Instruction Execution Times

 

Opcode
Forward
Taken

Forward
Not Taken

Backward
Taken

Backward
Not Taken

 

BRA 2(0/0) — 2(0/0) —
Bcc 3(0/0) 1(0/0) 2(0/0) 3(0/0) 



 

MOTOROLA

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

A-1

 

APPENDIX A
PROCESSOR INSTRUCTION SUMMARY

 

This appendix provides a quick reference of the ColdFire instructions. Table A-1 lists the
ColdFire instructions by mnemonics, followed by the descriptive name.

 

Table A-1. ColdFire Instruction Set  

 

Mnemonic Description 

 

ADD Add 
ADDA Add Address 
ADDI Add Immediate 
ADDQ Add Quick 
ADDX Add with Extend 
AND Logical AND 
ANDI Logical AND Immediate 
ASL, ASR Arithmetic Shift Left and Right 
Bcc Branch Conditionally 
BCHG Test Bit and Change 
BCLR Test Bit and Clear 
BRA Branch 
BSET Test Bit and Set 
BSR Branch to Subroutine 
BTST Test Bit
CLR Clear 
CMP Compare 
CMPA Compare Address 
CMPI Compare Immediate
EOR Logical Exclusive-OR 
EORI Logical Exclusive-OR Immediate 
EXT, EXTB Sign Extend
HALT Halt CPU
JMP Jump 
JSR Jump to Subroutine 
LEA Load Effective Address 
LINK Link and Allocate 
LSL, LSR Logical Shift Left and Right 
MOVE Move 
MOVEA Move Address
MOVEC Move Control Register
MOVE from CCR Move from Condition Code Register 
MOVE to CCR Move to Condition Code Register 
MOVEM Move Multiple Registers 
MOVE from SR Move from the Status Register



 

Appendix A

 

A-2

 

MCF5200 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

MOVE to SR Move to the Status Register
MOVEQ Move Quick
MULS Signed Multiply 
MULU Unsigned Multiply 
NEG Negate 
NEGX Negate with Extend 
NOP No Operation 
NOT Logical Complement 
OR Logical Inclusive-OR 
ORI Logical Inclusive-OR Immediate 
PEA Push Effective Address 
PULSE Generate Processor Status
RTE

RTS

Return from Exception

Return from Subroutine
SUB Subtract 
Scc Set According to Condition
STOP Load Status Register and Stop
SUBA Subtract Address 
SUBI Subtract Immediate 
SUBQ Subtract Quick 
SUBX Subtract with Extend 
SWAP Swap Register Words 
TRAP Trap 
TRAPF No Operation
TST Test Operand 
UNLK Unlink
WDDATA Write Data Control Register
WDEBUG Write Debug Control Register

 

Table A-1. ColdFire Instruction Set (Continued) 

 

Mnemonic Description 


